
Преимущества облачных бессерверных веб-
приложений бесспорны: меньшая сложность,
быстрое продвижение на рынок и автоматиче-
ская масштабируемость выгодно отличают их
от традиционных серверных проектов. А бла-
годаря поддержке JavaScript в AWS Lambda и
мощным новым бессерверным инструментам,
таким как библиотека Claudia.js, вы можете
создавать и развертывать бессерверные при-
ложения, не изучая новый язык.
Данная книга научит вас проектировать и соз-
давать бессерверные веб-приложения на AWS
с использованием JavaScript, Node и Claudia.js.
Вы овладеете основными навыками разработ-
ки функций AWS Lambda, а также шаблонами
бессерверного программирования, такими
как API Gateway. Попутно отточите свои но-
вые навыки, создав действующий чат-бот и
добавив поддержку голосового помощника
Amazon Alexa. Вы также узнаете, как перене-
сти существующие приложения на бессервер-
ную платформу.

«Помогает быстро органи-
зовать выполнение простых
операций в AWS Lambda,
не влияя на организацию и
работу проектов.»

— из предисловия
Гойко Аджича,

Neuri Consulting

«Отличный источник практи-
ческих знаний, написанный
известными экспертами, кото-
рый поможет вам в кратчайшие
сроки освоить AWS Lambda
с использованием Claudia.js.»

— Валентин Гретаз,
Consulthys

«Одна из самых полных книг
среди посвященных этой теме;
содержит множество ссылок
на ресурсы в интернете.»

— Дамиан Эстебан,
BetterPT

Интернет-магазин: www.dmkpress.com

Оптовая продажа: КТК «Галактика»
 books@alians-kniga.ru

Краткое содержание:
• аутентификация и использование баз

данных в бессерверных приложениях;
• асинхронные функции;
• разработка бессерверных микросервисов;
• разнооборазные практические примеры.

Слободан Стоянович
Александар Симович

www.дмк.рф

Для веб-разработчиков, знакомых с JavaScript и Node.js.

С. Стоянович (S. Stojanovic) и А. Симович (A. Simovic) являются облада-
телями титула AWS Serverless Heroes и основными участниками проекта
Claudia.js. Они вместе создали Desolе – инструмент с открытым исход-
ным кодом для трассировки ошибок в бессерверных приложениях – и
являются ведущими разработчиками Claudia Bot Builder.

Бессерверные приложения на JavaScript

Бессерверные приложения на JavaScript

9 785970 607824

ISBN 978-5-97060-782-4

Бессерверные
приложения
на JavaScript

 1 / 4

Слободан Стоянович
Александар Симович

Бессерверные
приложения
на JavaScript

 2 / 4

MongoDB in Action
KYLE BANKER

M A N N I N G
SHELTER ISLAND

Licensed to Kimberly Brabec <brabec.kimberly.waterside@gmail.com>

Serverless Applications
with Node.js

Slobodan Stojanović
Aleksandar Simović

 3 / 4

Москва, 2020

Бессерверные
приложения
на JavaScript

Слободан Стоянович
Александар Симович

Перевод с английского Киселева А. Н.

Powered by TCPDF (www.tcpdf.org)

 4 / 4

УДК 004.42
ББК 32.972

 С81

С81 Слободан Стоянович, Александар Симович
Бессерверные приложения на JavaScript / пер. с англ. А. Н. Киселева. – М.:
ДМК Пресс, 2020. – 394 с.: ил.

 ISBN 978-5-97060-782-4

Преимущества облачных бессерверных веб-приложений бесспорны:
меньшая сложность, быстрое продвижение на рынок и автоматическая
масштабируемость выгодно отличают их от традиционных серверных
проектов. Данная книга научит вас проектировать и создавать бессервер-
ные веб-приложения на AWS с использованием JavaScript, Node и Claudia.js.
Новичков издание знакомит не только с AWS Lambda, но и с целым рядом
связанных служб, таких как DynamoDB, Cognito, API Gateway. Даже решив
позднее взять на вооружение другие инструменты, вы сможете сохранить
весь код и просто развернуть его немного иначе. Подробно описывается не-
сколько вариантов практического использования бессерверных платформ,
в том числе веб-API, чат-боты, обработка платежей и управление заказами.

Издание предназначено веб-разработчикам, знакомым с JavaScript и
Node.js.

									 УДК 004.42
								 ББК 32.972

Original English language edition published by Manning Publications. Copyright © 2019
by Manning Publications. Russian language edition copyright © 2019 by DMK Press. All
rights reserved.

Все права защищены. Любая часть этой книги не может быть воспроизведена
в какой бы то ни было форме и какими бы то ни было средствами без письменного
разрешения владельцев авторских прав.

Материа,л, изложенный в данной книге, многократно проверен. Но, поскольку
вероятность технических ошибок все равно существует, издательство не может га-
рантировать абсолютную точность и правильность приводимых сведений. В связи
с этим издательство не несет ответственности за возможные ошибки, связанные с
использованием книги.

ISBN 978-1-61729-472-3 (англ.) Copyright © 2019 by Manning Publications Co.
ISBN 978-5-97060-782-4 (рус.) © Оформление, перевод на русский язык,
	 издание, ДМК Пресс, 2020

 1 / 36

Оглавление

Предисловие от издательства..12

Предисловие..13

Вступление...15

Благодарности...16

Об этой книге...17
Кому адресована книга.. 17
Краткое содержание.. 17
Об исходном коде.. 19
Автор в сети... 20
Другие онлайн-ресурсы.. 20

Об авторах...21

Об иллюстрации на обложке..22

ЧАСТЬ I. Бессерверная пиццерия...23

Глава 1. Введение в бессерверные вычисления с Claudia.........................24
1.1. Серверы и стиральные машины.. 25
1.2. Основные понятия.. 26
1.3. Как работают бессерверные вычисления?.. 28
1.4. Бессерверные вычисления на практике.. 28

1.4.1. Бессерверная пиццерия тетушки Марии... 29
1.4.2. Распространенный подход... 29
1.4.3. Бессерверное решение.. 31

1.5. Бессерверная инфраструктура – AWS.. 32
1.6. Что такое и для чего используется Claudia?.. 38
1.7. Когда и где использовать бессерверные вычисления............................. 41
В заключение... 42

Глава 2. Создание первого бессерверного API...43
2.1. Приготовление пиццы из ингредиентов: сборка API............................. 43

2.1.1. Какие пиццы можно заказать?... 46

 2 / 36

6    Оглавление

2.1.2. Структурирование API.. 49
2.1.3. Отправка заказа... 55

2.2. Как Claudia развертывает API... 59
2.3. Управление трафиком: как работает API Gateway.................................. 61
2.4. Когда бессерверный API не является решением..................................... 62
2.5. Опробование!.. 63

2.5.1. Упражнение... 63
2.5.2. Решение... 64

В заключение... 68

Глава 3. Простота асинхронных операций с Promise()...............................69
3.1. Хранение заказов.. 69
3.2. Обещание доставить меньше чем за 30 минут!...................................... 75
3.3. Опробование API... 79
3.4. Извлечение заказов из базы данных... 83
3.5. Опробование!.. 85

3.5.1. Упражнение... 86
3.5.2. Решение... 87

В заключение... 90

Глава 4. Доставка пиццы: подключение к внешней службе.....................91
4.1. Подключение к внешней службе.. 91
4.2. Подключение к API компании доставки... 93

4.2.1. API компании доставки Some Like It Hot... 93
4.2.2. Создание первой заявки на доставку.. 94

4.3. Типичные проблемы асинхронных взаимодействий.......................... 101
4.3.1. Забыли вернуть Promise.. 102
4.3.2. Отсутствие значения, возвращаемого из Promise.................................. 102
4.3.3. Вызов внешней службы не завернут в Promise....................................... 104
4.3.4. Превышение времени ожидания длительной асинхронной

операцией... 105
4.4. Опробование!.. 107

4.4.1. Упражнение... 107
4.4.2. Решение... 108

В заключение... 110

Глава 5. Хьюстон, у нас проблема!...111
5.1. Отладка бессерверного приложения... 111
5.2. Отладка функции Lambda... 113
5.3. Рентген для приложения.. 116
5.4. Опробование!.. 120

 3 / 36

Оглавление    7

5.4.1. Упражнение... 120
5.4.2. Решение... 120

В заключение... 121

Глава 6. Совершенствование API..122
6.1. Бессерверная аутентификация и авторизация..................................... 122
6.2. Создание пулов пользователей и идентификации............................... 126

6.2.1. Управление доступом к API с помощью Cognito..................................... 130
6.3. Опробование!.. 134

6.3.1. Упражнение... 135
6.3.2. Решение... 136

В заключение... 137

Глава 7. Работа с файлами...138
7.1. Хранение статических файлов в бессерверных приложениях............. 138
7.2. Создание миниатюр.. 143

7.2.1. Развертывание функции обработки файлов в S3.................................... 150
7.3. Опробование!... 151

7.3.1. Упражнение.. 152
7.3.2. Решение.. 152

7.4. Конец первой части: специальное упражнение.................................... 155
7.4.1. Усложненное задание.. 155

В заключение... 155

ЧАСТЬ II. Поболтаем..157

Глава 8. Заказ пиццы одним сообщением: чат-боты................................158
8.1. Заказ пиццы без браузера.. 158
8.2. Привет из Facebook Messenger... 160
8.3. Какие виды пиццы у нас имеются?... 162
8.4. Ускорение развертывания.. 164
8.5. Шаблоны для взаимодействий... 167
8.6. Как работает Claudia Bot Builder?... 170
8.7. Опробование!... 172

8.7.1. Упражнение.. 172
8.7.2. Решение.. 172

В заключение... 173

Глава 9. Ввод... асинхронные и отложенные ответы................................174
9.1. Добавление интерактивности в чат-бот.. 174

9.1.1. Выбор заказа: получение ответа от пользователя.................................. 175

 4 / 36

8    Оглавление

9.2. Улучшение масштабируемости чат-бота... 182
9.3. Подключение чат-бота к базе данных DynamoDB................................ 186
9.4. Получение адреса доставки

заказа в чат-боте.. 191
9.5. Планирование доставки... 194
9.6. Добавление простой обработки естественного языка......................... 200
9.7. Опробование!... 202

9.7.1. Упражнение.. 202
9.7.2. Решение.. 203
9.7.3. Усложненное задание.. 205

В заключение... 205

Глава 10. Джарвис, то есть Алекса, закажи мне пиццу.............................206
10.1. Не могу сейчас говорить: отправка SMS с помощью службы

Twilio... 207
10.1.1. Список пицц в SMS.. 209
10.1.2. Оформление заказа... 211

10.2. Эй, Алекса!... 217
10.2.1. Подготовка сценария.. 221
10.2.2. Оформление заказа с помощью Алексы.. 226

10.3. Опробование!.. 230
10.3.1. Упражнение.. 230
10.3.2. Решение.. 231

10.4. Конец второй части: специальное упражнение.................................. 232
В заключение... 232

ЧАСТЬ III. Дальнейшие шаги..233

Глава 11. Тестирование, тестирование и еще раз тестирование............234
11.1. Тестирование обычных и бессерверных приложений....................... 234
11.2. Подходы к тестированию бессерверных приложений....................... 236
11.3. Подготовка... 238
11.4. Модульные тесты... 241
11.5. Использование имитаций для тестирования бессерверных

функций.. 246
11.6. Интеграционные тесты... 253
11.7. Другие типы автоматизированных тестов.. 258
11.8. В дополнение к тестам: приемы разработки бессерверных

функций для упрощения их тестирования.. 259
11.9. Опробование!.. 264

 5 / 36

Оглавление    9

11.9.1. Упражнение.. 264
11.9.2. Решение.. 265

В заключение... 266

Глава 12. Получение платы за пиццу...268
12.1. Платежные транзакции.. 268

12.1.1. Реализация онлайн-платежей.. 270
12.2. Реализация платежной службы.. 274
12.3. Можно ли взломать нашу платежную службу?................................... 281

12.3.1. Стандарты.. 281
12.3.2. Компетентность... 282

12.4. Опробование!.. 283
12.4.1. Упражнение.. 283
12.4.2. Решение.. 283

В заключение... 285

Глава 13. Миграция существующих приложений Express.js
в окружение AWS Lambda...286

13.1. Приложение для таксомоторной компании дядюшки Роберто......... 287
13.2. Запуск приложения Express.js в AWS Lambda...................................... 287

13.2.1. Интеграция с оберткой... 291
13.2.2. Как работает serverless-express... 291

13.3. Обслуживание статического контента.. 292
13.4. Подключение к MongoDB.. 295

13.4.1. Использование управляемой базы данных MongoDB
с бессерверным приложением Express.js.. 295

13.5. Ограничения бессерверных приложений Express.js........................... 300
13.6. Опробование!.. 301

13.6.1 Exercise.. 301
13.6.2. Решение.. 302

В заключение... 303

Глава 14. Миграция в бессерверное окружение.......................................304
14.1. Анализ текущего бессерверного приложения..................................... 304
14.2. Миграция существующего приложения в бессерверное окружение......305
14.3. Общий взгляд на платформу.. 309

14.3.1. Обслуживание статических файлов... 310
14.3.2. Сохранение состояния.. 310
14.3.3. Журналы... 311
14.3.4. Непрерывная интеграция... 313
14.3.5. Управление окружениями: промышленное окружение

и окружение для разработки... 314

 6 / 36

10    Оглавление

14.3.6. Совместное использование конфиденциальных данных.................... 315
14.3.7. Виртуальное частное облако... 318

14.4. Оптимизация приложения... 318
14.4.1. Связанные и узкоспециализированные функции................................ 319
14.4.2. Выбор правильного объема памяти для функции Lambda................... 319

14.5. Преодоление проблем... 320
14.5.1. Тайм-ауты.. 320
14.5.2. Холодный запуск... 321
14.5.3. Атаки DDoS... 323
14.5.4. Привязка к производителю.. 323

14.6. Опробование!.. 325
В заключение... 325

Глава 15. Примеры из практики...327
15.1. CodePen.. 328

15.1.1. До перехода на бессерверные вычисления.. 328
15.1.2. Миграция на бессерверные вычисления... 329
15.1.3. Затраты на инфраструктуру... 332
15.1.4. Тестирование и проблемы.. 333

15.2. MindMup... 333
15.2.1. До перехода на бессерверные вычисления.. 334
15.2.2. Миграция на бессерверные вычисления... 337
15.2.3. Затраты на инфраструктуру... 338
15.2.4. Тестирование, журналирование и проблемы.. 340

В заключение... 341

Приложение A. Установка и настройка..343
A.1. Установка Claudia.. 343

A.1.1. Настройка зависимостей Claudia... 344
A.1.2. Создание профиля AWS и получение ключей... 345
A.1.3. Установка Claudia API Builder... 348
A.1.4. Установка Claudia Bot Builder... 348

A.2. Установка AWS CLI.. 348

Приложение B. Настройка Facebook Messenger, Twilio и Alexa..............350
B.1. Настройка Facebook Messenger.. 350

B.1.1. Создание страницы Facebook... 350
B.1.2. Создание приложения Facebook.. 352
B.1.3. Создание чат-бота Facebook Messenger с использованием

Claudia Bot Builder.. 354
B.1.4. Подключение встроенного механизма NLP.. 361

B.2. Настройка Twilio... 361
B.2.1. Создание учетной записи Twilio.. 362

 7 / 36

Оглавление    11

B.2.2. Получение номера Twilio.. 363
B.2.3. Настройка службы Twilio Programmable SMS.. 364

B.3. Настройка Alexa.. 366

Приложение C. Настройка Stripe и MongoDB...373
C.1. Настройка учетной записи Stripe и получение ключей Stripe API...... 373

C.1.1. Создание учетной записи Stripe.. 373
C.1.2. Получение ключей Stripe API... 373

C.2. Установка и настройка MongoDB... 375
C.2.1. Создание учетной записи... 375
C.2.2. Настройка кластера... 377

Приложение D. Рецепт пиццы...383

Предметный указатель..385

 8 / 36

Предисловие от издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете

об этой книге – что понравилось или, может быть, не понравилось. Отзывы
важны для нас, чтобы выпускать книги, которые будут для вас максимально
полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.com, зайдя
на страницу книги, и оставить комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.
com, при этом напишите название книги в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересова-
ны в написании новой книги, заполните форму на нашем сайте по адресу
http://dmkpress.com/authors/publish_book/ или напишите в издательство по адресу
dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы удостовериться в ка-

честве наших текстов, ошибки все равно случаются. Если вы найдете ошибку
в одной из наших книг – возможно, ошибку в тексте или в коде, – мы будем
очень благодарны, если вы сообщите нам о ней. Сделав это, вы избавите дру-
гих читателей от расстройств и поможете нам улучшить последующие версии
этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу dmkpress@gmail.com, и мы исправим это в следую
щих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Из-

дательства «ДМК Пресс» и Manning очень серьезно относятся к вопросам за-
щиты авторских прав и лицензирования. Если вы столкнетесь в интернете с
незаконно выполненной копией любой нашей книги, пожалуйста, сообщите
нам адрес копии или веб-сайта, чтобы мы могли применить санкции.

Пожалуйста, свяжитесь с нами по адресу электронной почты dmkpress@gmail.
com со ссылкой на подозрительные материалы.

Мы высоко ценим любую помощь по защите наших авторов, помогающую
предоставлять вам качественные материалы.

 9 / 36

http://www.dmkpress.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
http://dmkpress.com/authors/publish_book/
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com
mailto:dmkpress@gmail.com

Предисловие

Amazon навсегда изменила IT-инфраструктуру, упростив подготовку вир-
туальных машин в 2007 году. После этого совершенствование архитектуры
современных приложений носило постепенный характер. Спустя десятиле-
тие, упростив возможность предоставления отдельных функций, платформа
Amazon Lambda дала толчок новой волне глубинных перемен. Эта «бессервер-
ная» экосистема кардинально меняет способы проектирования, разработки и
эксплуатации интернет-приложений.

Как один из первых, кто начал использовать эту платформу на практике, я
имел честь работать со Слободаном и Александаром и воочию убедиться, на-
сколько сильно влияет «бессерверное» мышление на время выхода на рынок
и стоимость эксплуатации. В то же время платформа развивается настолько
быстро, что в ней легко запутаться. Чтобы получить настоящие преимущества
нового способа работы, разработчики должны пересмотреть стратегии аутен-
тификации, управления сеансами, хранения данных, планирования мощно-
стей и распределения вычислений. В своей книге «Бессерверные приложения
на JavaScript» Слободан и Александар предлагают первый отчет об этой рево-
люции и бесценное руководство для разработчиков на JavaScript, желающих
воспользоваться преимуществами платформ нового поколения.

В этой книге мне понравилось, как она помогает быстро организовать вы-
полнение простых операций в AWS Lambda, не влияя на организацию и ра-
боту проектов. Многие бессерверные фреймворки приложений абстрагируют
службы AWS, что увеличивает риск замкнуться на одном фреймворке, так как
экосистема продолжает быстро развиваться. Авторы не заставляют нас при-
нять их выбор фреймворков, но объясняют, как легко использовать все связан-
ные службы. Новичков в AWS эта книга знакомит не только с AWS Lambda, но
и с целым рядом связанных служб, таких как DynamoDB (хранилище данных),
Cognito (аутентификация), API Gateway (доступ к работающим веб-службам) и
Cloudwatch (обработка и планирование событий). Даже решив позднее взять
на вооружение другие инструменты, вы сможете сохранить весь код и просто
развернуть его немного иначе.

Еще одна веская причина прочитать эту книгу – в ней описывается несколь-
ко вариантов практического использования бессерверных платформ, включая
веб-API, чат-боты, обработку платежей и управление заказами. Постепенно
создавая онлайн-магазин для вымышленной пиццерии, авторы представля-
ют практически готовые компоненты, необходимые для запуска современных
бизнес-сценариев в облаке. Этот способ постепенного формирования знаний
позволяет авторам по мере обсуждения исследовать все более сложные во-
просы разработки, такие как организация автоматического тестирования и
разработка приложений с прицелом на простоту сопровождения. Последняя
часть книги посвящена стратегиям миграции и отвечает на некоторые наи-
более распространенные вопросы от людей, у которых уже есть приложения

 10 / 36

14    Предисловие

на какой-либо другой облачной платформе и которые хотят быстро получить
конкурентные преимущества, сократить время выхода на рынок или умень-
шить стоимость эксплуатации.

Я надеюсь, что вы получите от этой книги столько же удовольствия, сколько
и я, и обнаружите эффективные способы предоставления услуг с помощью
программного обеспечения в облаке.

Гойко Аджич (Gojko Adzic),
партнер в Neuri Consulting LLP

 11 / 36

Вступление

Мы оба были разработчиками более 10 лет, оба начинали с наших первых
компьютеров в 90-х годах, когда писали первые функции на Pascal и BASIC
и даже участвовали в соревнованиях по программированию. Но все измени-
лось, когда появился интернет. Мы сразу начали создавать свои веб-прило-
жения и веб-страницы со статическими HTML и CSS. Когда JavaScript и jQuery
превратились в новый стандарт, мы почти сразу переключились на них (прав-
да, один из нас продолжил экспериментировать с Flash и ActionScript). С появ-
лением Node.js мы естественно переключились на этот фреймворк с языков,
на которых писали в ту пору, таких как Python и C#. Хотя иногда мы можем
написать несколько функций на этих языках, наш переход на Node.js состоял-
ся бесповоротно.

Примерно три года назад мы обратили наше внимание на бессерверные
архитектуры. Гойко Аджич познакомил нас с AWS Lambda на примере сво-
ей разработки Claudia.js – инструмента развертывания. Мы были поражены,
насколько просто и быстро разрабатывать и развертывать бессерверные при-
ложения и насколько легко их масштабировать, и мы вместе с ним начали
работать над созданием Claudia Bot Builder.

Изучение бессерверной архитектуры постепенно изменило наш взгляд на
создание и поддержку веб-приложений. Внутренние службы сменили бес-
серверные функции, и, вместо того чтобы писать сценарии на bash, входить
на наши серверы и распределять вычислительные мощности, мы перестали
заботиться об этих проблемах и сосредоточились больше на бизнес-логике и
ценности приложений.

Мы опубликовали наши первые бессерверные веб-приложения и разрабо-
тали сотни чат-ботов. Наша продуктивность увеличилась почти в пять раз. Это
было невероятно. Месяцы, потраченные на изучение настройки и обслужи-
вания серверов приложений с помощью bash, ssh, rsync и т. д., потеряли свою
важность. Все изменилось. С нашей точки зрения бессерверная экосистема
прошла долгий путь: бессерверными услугами стало проще пользоваться, и с
каждым годом становится все больше и больше компонентов для бессервер-
ных приложений (с Amazon re:Invent).

Случилось так много и так быстро – мы сделали нашу карьеру бессерверной.
Мы начали вести дискуссии о бессерверных архитектурах, проводить семи-
нары и давать консультации. Мы попытались объединить наш опыт и знания
из множества других источников и изложить их в удобном для изучения и
понятном формате.

 12 / 36

Благодарности

Работать над этой книгой было трудно, так как это наш первый опыт. Некото-
рые главы переписывались по пять и более раз, чтобы вам, уважаемый чита-
тель, легче было понять и усвоить обсуждаемые в них сведения. Наши друзья
и семьи оказывали нам большую поддержку в процессе, и мы хотели бы по-
благодарить всех, кто помогал нам на этом пути.

Прежде всего мы хотели бы поблагодарить Гойко Аджича (Gojko Adzic). Он
ввел нас в мир без серверов несколько лет назад. Отдельное спасибо за его
комментарии к этой книге, такие как: «эта страница ничего не стоит, удалите
ее», «не лгите своим читателям о шагах» и т. п. Они были бесценны для нас.

Мы хотели бы поблагодарить нашего редактора из издательства Manning
Тони Арритола (Toni Arritola). Спасибо, что помогли нам выбраться из тупика,
когда мы застряли на первых нескольких главах, что были терпеливы, когда
мы отставали от графика, и поддерживали нас всем необходимым. Вы всег-
да требовали от нас высокого качества и тем помогали сделать книгу лучше
для читателей. Также мы хотим поблагодарить Майкла Стивенса (Michael
Stephens) и Берта Бейтса (Bert Bates), которые помогли лучше объяснить де-
тали бессерверных архитектур и сосредоточиться на важных темах. Спасибо
сотрудникам издательства Manning, работавшим над выпуском и продвиже-
нием книги, это была сплоченная команда. Спасибо техническому корректору
Валентину Креттазу (Valentin Crettaz) и техническому редактору Костасу Пас-
садису (Kostas Passadis) за тщательный анализ кода.

Спасибо также рецензентам из Manning, которые нашли время, чтобы про-
читать нашу рукопись на разных этапах, и дали ценные отзывы, в том числе:
Арно Бейли (Arnaud Bailly), Барнаби Норман (Barnaby Norman), Клаудио Бер-
нардо Родригес (Claudio Bernardo Rodríguez), Дамиан Эстебан (Damian Esteban),
Ден Балия (Dane Balia), Дипак Бхаскаран (Deepak Bhaskaran), Джасба Симпсон
(Jasba Simpson), Джереми Ланге (Jeremy Lange), Кай Стрем (Kaj Ström), Кэт-
лин Р. Эстрада (Kathleen R. Estrada), Кумар Унникришнан (Kumar Unnikrishnan),
Лука Меццалира (Luca Mezzalira), Мартин Денерт (Martin Dehnert), Рами Аб-
дельвахед (Rami Abdelwahed), Сурджит Манхас (Surjeet Manhas), Томас Пеклак
(Thomas Peklak), Умур Йильмаз (Umur Yilmaz) и Ивон Вивилль (Yvon Vieville).

Спасибо сотрудникам Amazon и AWS, что создали такую потрясающую
компьютерную службу: AWS Lambda. Ваши усилия меняют мир.

Наконец, спасибо тетушке Марии и всем другим вымышленным героям
этой книги!

 13 / 36

Об этой книге

Основная цель книги «Бессерверные приложения на JavaScript» – обучение и
помощь в создании бессерверных приложений Node.js. Она отличается праг-
матическим подходом и рассказывает о вымышленной пиццерии тетушки
Марии, чьи проблемы мы будем пытаться решить с помощью бессерверной
архитектуры. Книга начинается с объяснения основ бессерверной архитекту-
ры и потом раз за разом описывает решение каждой проблемы, с которой
сталкивается тетушка Мария, с применением отдельных идей бессерверных
вычислений, помогая тем самым сформировать ясное представление о прие-
мах создания эффективных бессерверных приложений с Node.js.

Кому адресована книга
Книга «Бессерверные приложения на JavaScript» предназначена для разработ-
чиков веб-приложений на JavaScript, стремящихся узнать, как создавать бес-
серверные приложения, и понять, как правильно их организовывать, проек-
тировать и тестировать. В интернете можно найти массу информации о Node.
js и множество пособий по созданию простых бессерверных приложений, и
тем не менее в этой книге мы последовательно расскажем, как применить все
эти знания для создания больших бессерверных приложений с Node.js.

Краткое содержание
Книга делится на 3 части и 15 глав.

В первой части описываются основы бессерверных вычислений и как по-
строить бессерверное приложение с базой данных, как подключиться к сто-
ронним службам, как отладить его, как добавить поддержку авторизации и
аутентификации и как работать с файлами.

�� Глава 1 знакомит с бессерверной платформой Amazon Web Services и
описывает бессерверные вычисления с применением простых анало-
гий. Здесь вы также познакомитесь с тетушкой Марией, ее пиццерией
и проблемами. Наконец, вы увидите, как выглядит типичное бессервер-
ное приложение Node.js, и узнаете, что такое Claudia.js и как этот ин-
струмент помогает развертывать приложения Node.js в AWS Lambda.

�� Глава 2 иллюстрирует разработку простого Pizzeria API с использовани-
ем AWS Lambda, API Gateway и Claudia API Builder. Здесь вы также научи-
тесь одной командой развертывать свои API с помощью Claudia.

�� Глава 3 рассказывает, как в бессерверной архитектуре работают базы
данных, а также о том, как подключить Pizzeria API к DynamoDB – бес-
серверной базе данных, предлагаемой AWS.

 14 / 36

18    Об этой книге

�� Глава 4 рассказывает, как подключить Pizzeria API к сторонним службам,
таким как служба доставки, а также знакомит с некоторыми распростра-
ненными проблемами, с которыми можно столкнуться при использова-
нии объектов Promise с Claudia API Builder.

�� Глава 5 покажет, как искать ошибки в бессерверных приложениях, как
их отлаживать и какие инструменты отладки имеются в вашем распо-
ряжении.

�� Глава 6 показывает, как реализовать аутентификацию и авторизацию в
бессерверном приложении. Здесь вы узнаете, чем отличается аутенти-
фикация от авторизации в бессерверной среде, как реализовать меха-
низм веб-авторизации с помощью AWS Cognito и как идентифициро-
вать своих пользователей с помощью социальных сетей.

�� Глава 7 описывает возможности хранения файлов в бессерверном окру-
жении и показывает, как создать отдельную функцию для обработки
файлов, которая использует хранилище и предоставляет запрошенные
файлы другим вашим функциям в AWS Lambda, составляющим ваш бес-
серверный API.

Во второй части рассказывается, как создавать дополнительные бессервер-
ные приложения, работающие с теми же ресурсами, как создавать чат-ботов,
голосовых помощников, SMS-чат-ботов, как добавить обработку естествен-
ного языка и как следует организовывать все эти бессерверные приложения
вместе.

�� Глава 8 показывает, как создать свой первый чат-бот для Facebook
Messenger и как Claudia Bot Builder поможет вам сделать это, написав
всего несколько строк.

�� Глава 9 показывает, как добавить простую обработку текстов на естест
венном языке в свой чат-бот, подключить чат-бот к базе данных
DynamoDB и организовать асинхронную отправку отложенных ответов.

�� Глава 10 показывает, как использовать голосового помощника Alexa и
SMS-чат-бота Twilio и как Claudia Bot Builder позволяет сделать это не-
вероятно быстро.

Третья часть охватывает более сложные темы: тестирование бессерверных
приложений и миграция существующих приложений в бессерверное окру-
жение. Здесь также даются рекомендации, описываются типичные шаблоны
программирования, решения распространенных проблем и приводятся от-
веты на часто задаваемые вопросы. Еще тут будет представлен пример двух
компаний, перешедших на бессерверные вычисления.

�� Глава 11 рассказывает о тестировании бессерверных приложений: как
писать бессерверные функции, чтобы упростить их тестирование, и как

 15 / 36

Об исходном коде    19

выполнять автоматизированные тесты локально. Здесь также рассказы-
вается о гексагональной архитектуре и о том, как реорганизовать бес-
серверные приложения, чтобы упростить их тестирование и устранять
потенциальные риски.

�� Глава 12 посвящена обработке платежей с помощью бессерверных при-
ложений, реализации приема платежей в бессерверном API и описанию
требований к безопасности при обработке платежей.

�� Глава 13 расскажет все, что вы должны знать о запуске приложений
Express.js в AWS Lambda и бессерверной экосистеме, обслуживании ста-
тического контента из приложения Express.js, подключении к MongoDB
из бессерверного приложения Express.js и об ограничениях и рисках
приложения Express.js в бессерверной экосистеме.

�� Глава 14 рассказывает, с чего начать миграцию существующего прило-
жения в бессерверное окружение, как привести структуру приложения
в соответствие с характеристиками провайдера услуг бессерверных вы-
числений, как организовать архитектуру приложения, чтобы она была
ориентирована на бизнес и могла развиваться, как учесть архитектур-
ные различия между бессерверными и традиционными серверными
приложениями.

�� Глава 15 рассказывает, как CodePen использует преимущества бессер-
верных вычислений для своих препроцессоров, обеспечивая обработ-
ку сотен миллионов запросов, и как MindMup способна обслуживать
400 000 активных пользователей с командой из двух человек благодаря
бессерверным технологиям.

Об исходном коде
Эта книга содержит много примеров исходного кода и в виде листингов, и в
виде фрагментов в обычном тексте. В обоих случаях исходный код оформ-
ляется моноширинным шрифтом, чтобы его можно было отличить от обычного
текста. Иногда, чтобы подчеркнуть отличия от предыдущего шага и выделить
вновь добавленные особенности, код будет оформляться жирным моноширинным
шрифтом.

Во многих случаях оригинальный исходный код был переформатирован;
мы добавили переносы строк и изменили ширину отступов, чтобы уместить
строки кода по ширине книжной страницы. Кроме того, мы убрали коммен-
тарии из кода, если он описывается в тексте книги. Многие листинги сопро-
вождаются дополнительными аннотациями, подчеркивающими наиболее
важные идеи.

Исходный код примеров в книге доступен для загрузки на сайте изда
тельства: https://manning.com/books/serverless-apps-with-node-and-claudiajs.

 16 / 36

https://manning.com/books/serverless-apps-with-node-and-claudiajs

20    Об этой книге

Автор в сети
Одновременно с покупкой книги «Бессерверные приложения на JavaScript» вы
получаете бесплатный доступ к частному веб-форуму, организованному из-
дательством Manning Publications, где можно оставлять комментарии о кни-
ге, задавать технические вопросы, а также получать помощь от автора и дру-
гих пользователей. Чтобы получить доступ к форуму и зарегистрироваться
на нем, откройте в веб-браузере страницу https://forums.manning.com/forums/
serverless-apps-with-node-and-claudiajs. Кроме того, узнать больше о прави-
лах поведения на форуме можно по адресу: https://forums.manning.com/forums/
about.

Издательство Manning обязуется предоставить своим читателям место
встречи, где может состояться содержательный диалог между отдельными чи-
тателями и между читателями и автором. Но со стороны автора отсутствуют
какие-либо обязательства уделять форуму какое-то определенное внимание –
его присутствие на форуме остается добровольным (и неоплачиваемым). Мы
предлагаем задавать автору стимулирующие вопросы, чтобы его интерес не
угасал!

Другие онлайн-ресурсы
Те, кому понадобится дополнительная помощь, могут:

�� перейти на страницу проекта Claudia.js в Gitter: https://gitter.im/clau-
diajs/claudia, где обычно авторы отвечают на вопросы о Claudia.js, Clau-
dia API Builder и Claudia Bot Builder;

�� выполнить поиск по тегу claudiajs на сайте Stack Overflow (http://stack-
overflow.com/questions/tagged/claudiajs) и найти сообщения с вопроса-
ми и ответами, касающимися разработки бессерверных приложений с
Node.js и Claudia.js. Здесь же вы сможете помочь другим, столкнувшимся
с проблемами, решение которых вам уж известно.

 17 / 36

https://forums.manning.com/forums/serverless-apps-with-node-and-claudiajs
https://forums.manning.com/forums/serverless-apps-with-node-and-claudiajs
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://gitter.im/claudiajs/claudia
https://gitter.im/claudiajs/claudia
http://stackoverflow.com/questions/tagged/claudiajs
http://stackoverflow.com/questions/tagged/claudiajs

Об авторах

Слободан Стоянович (Slobodan Stojanovic) и Александар Симович
(Aleksandar Simovic) являются обладателями титула AWS Serverless Heroes и
основными участниками проекта Claudia.js. Они занимаются разработкой и
сопровождением Claudia Bot Builder и являются соавторами книги «Бессер-
верные приложения на JavaScript».

Александар больше семи лет работал старшим консультантом и инженером
по программному обеспечению, но не только на JavaScript. Он также увлекает-
ся языками Swift, Python и Rust. Живет в Белграде и является соорганизатором
встреч JS Belgrade.

Слободан – технический директор Cloud Horizon, студии разработки про-
граммного обеспечения, базирующейся в Монреале. Живет в Белграде и яв-
ляется соорганизатором встреч JS Belgrade.

 18 / 36

Об иллюстрации на обложке

На обложке книги «Бессерверные приложения на JavaScript» изображен рису-
нок с названием «Сербка из Шумадии». Иллюстрация взята из книги «Серб-
ские национальные костюмы» Владимира Кирина (Vladimir Kirin). Кирин
(1894–1963) изучал графический дизайн в Лондоне, посещал Академию худо-
жеств в Вене, работал художником и иллюстратором. Считается, что его рабо-
та способствовала совершенствованию оформления книг в Хорватии.

На протяжении всей своей богатой истории центральный регион Сербии,
известный как Шумадия, был культурным центром, и традиционная одежда
этого района является стандартом национального костюма Сербии. Как по-
казано на этом изображении, традиционное сербское женское платье состоя-
ло из опанчи, вышитых шерстяных носков, доходивших до колен. Юбки были
разнообразные, плиссированные или собранные в складки и вышитые, с тка-
ницей, служившей поясом. Важной частью костюма был передник, украшен-
ный цветочными мотивами. Рубашки были в форме туники, богато украшен-
ные серебряной нитью, а поверх рубашки надевались шнуры. Девушки также
носили нашейные украшения или монисто из золотых монет вокруг горла,
сережки, браслеты, а их волосы были украшены металлическими монетами
или цветами.

Мы в издательстве Manning славим изобретательность, предприимчивость
и радость компьютерного бизнеса обложками книг, изображающими богат-
ство региональных различий двухвековой давности, оживших благодаря Ки-
рин.

 19 / 36

Часть I
Бессерверная пиццерия

Тетушка Мария – волевой человек. Вот уже тридцать лет она управляет своей
пиццерией, местом сбора людей из разных поколений, живущих неподале-
ку: многие проводили там время со своими семьями, смеялись и даже ходили
на романтические свидания. Но в последнее время в ее пиццерии наступили
тяжелые времена. Число посетителей постепенно уменьшается. Развитие тех-
нологий привело к тому, что ее клиенты предпочитают делать заказы онлайн
через веб-сайты или телефоны в пиццериях конкурентов.

У ее пиццерии уже есть веб-сайт, но для него нужно написать приложение,
обрабатывающее и хранящее информацию о пиццах и заказах.

Наша задача в первой части этой книги – помочь тетушке Марии наверстать
упущенное, создав для нее бессерверный API. Но так как вы все еще нови-
чок в разработке бессерверных приложений, сначала мы расскажем вам, что
такое бессерверные вычисления и как они могут помочь в создании Pizzeria
API (глава 1). Затем вы добавите маршруты в свой API и развернете его в AWS
Lambda с помощью Claudia (глава 2). Чтобы сохранить и выполнить все заказы,
необходимо связать новый API с таблицей DynamoDB (глава 3) и установить
связь со сторонней службой доставки (глава 4).

Во время разработки вы столкнетесь с некоторыми проблемами и узнаете,
как отлаживать бессерверные приложения (глава 5).

Чтобы сделать API полностью функциональным, нужно научиться аутен-
тифицировать и авторизовать пользователей (глава 6), а также сохранять и
манипулировать изображениями пиццы (глава 7).

 20 / 36

Глава 1
Введение в бессерверные

вычисления с Claudia

Эта глава охватывает следующие темы:

	что такое бессерверные вычисления;
	основные понятия бессерверных вычислений;
	различия между бессерверными и серверными веб-приложения-

ми;
	назначение Claudia;
	преимущества бессерверных вычислений.

Бессерверные вычисления – это способ развертывания и выполнения прило-
жений в облачной инфраструктуре с оплатой за фактическое использование,
без аренды или покупки серверов. За планирование, масштабирование, ба-
лансировку и мониторинг вычислительных мощностей отвечает поставщик
услуг бессерверных вычислений. Кроме того, поставщик может рассматривать
ваши приложения как функции.

Что значит бессерверные? Создается впечатление, что это еще одно ново-
модное словцо, обещающее улучшить вашу жизнь.

В этой книге объясняется, что такое бессерверные вычисления, какие проб
лемы они решают и где могут или не могут использоваться для ваших прило-
жений, без рекламной шелухи и попытки втюхать вам бессерверные подходы
как какой-то модный облачный культ, которому должен следовать каждый.
Мы предпримем более прагматический подход и объясним понятия, попутно
демонстрируя приемы создания надежных и масштабируемых бессерверных
приложений с Node.js и Claudia.js.

В этой главе основное внимание уделяется понятию «бессерверные вычис-
ления»: что это такое, почему важно иметь представление о них и в чем их
отличие и сходство с серверными вычислениями. Ваша главная цель в этой

 21 / 36

Введение в бессерверные вычисления с Claudia    25

главе – получить хорошее представление об основных понятиях бессервер-
ных вычислений и заложить прочный фундамент для будущих глав.

1.1. Серверы и стиральные машины
Чтобы понять идею бессерверных вычислений, рассмотрим пример со сти-
ральными машинами. Устройство стирки одежды может показаться странной
аналогией, но владение сервером в настоящее время похоже на владение сти-
ральной машиной. Всем нужна чистая одежда, и покупка стиральной машины
кажется вполне логичным решением. Но большую часть времени стиральная
машина простаивает без дела. В лучшем случае она используется от 5 до 15 ча-
сов в неделю. То же самое касается серверов. В большинстве случаев средний
сервер приложений просто ждет получения запроса, ничего не делая.

Самое интересное, что у серверов и стиральных машин много общих проб
лем. И те, и другие имеют предельный вес или объем, который они могут
обработать. Владение небольшим сервером аналогично владению небольшой
стиральной машиной; если накапливается большая куча белья, машина не
сможет обработать все сразу. Вы можете купить большую машину, способную
выстирать сразу до 8 кг одежды, но тогда возникнет другая проблема – за-
пуск большой машины для стирки единственной рубашки окажется слишком
расточительным. Кроме того, настроить единственный сервер для безопас
ного и надежного выполнения всех имеющихся приложений сложно, а иногда
невозможно. Правильная настройка для одного приложения может совершен-
но не подходить для другого. Точно так же перед стиркой требуется рассорти-
ровать одежду по цвету, а затем выбрать правильную комбинацию програм-
мы, моющего средства и смягчителя. Если выбрать неправильные настройки
или моющие компоненты, машина может испортить вашу одежду.

Эти проблемы, а также проблема, заключающаяся в том, что не каждый мо-
жет купить стиральную машину, привели к росту количества прачечных само-
обслуживания или прачечных-автоматов, предлагающих платные услуги сти-
ральных машин для стирки одежды. Аналогичная потребность в отношении
серверов привела к появлению компаний, предоставляющих услуги аренды
серверов, как локальных, так и в облаке. Вы можете арендовать сервер, а по-
ставщик услуги позаботится об их сохранности, электропитании и основных
настройках. Но как прачечные, так и прокатные серверы решают лишь часть
проблем.

Арендуя стиральные машины или серверы, вы все равно должны знать, как
сочетать одежду или приложения и выбирать программу стирки, подходящие
моющие средства или настраивать среду выполнения на серверах. Вы также
должны учесть количество машин и их ограничения по размеру, заранее пла-
нируя, сколько машин арендовать.

В мире бытовых услуг во второй половине XX века появилась новая услуга –
услуга по вызову. Суть ее заключается в следующем: вы собираете белье в кучу
и звоните в прачечную, а служащие прачечной заберут его, постирают, высу-
шат, сложат в аккуратную стопку и, если вы пожелаете, доставят постиранное

 22 / 36

26    Глава 1. Введение в бессерверные вычисления с Claudia

белье вам на дом. Сдавать белье в стирку часто можно поштучно, то есть вам
не нужно ждать, пока накопится определенный объем грязного белья, и не
нужно беспокоиться о стиральных машинах, моющих средствах и програм-
мах стирки.

В отличие от индустрии бытовых услуг, индустрия программного обеспече-
ния все еще находится на стадии прачечных самообслуживания, так как мно-
гие из нас все еще арендуют серверы или пользуются услугами PaaS (платфор-
ма как услуга). Мы по-прежнему должны оценить количество потенциальных
запросов (количество одежды), которые собираемся обработать, и резервиру-
ем достаточное число серверов, чтобы (мы надеемся) справиться с нагрузкой,
часто тратя наши деньги на серверы, которые либо не работают на полную
мощность, либо перегружены и не могут обработать все запросы наших кли-
ентов.

1.2. Основные понятия
Итак, что меняет внедрение бессерверных вычислений? Судя по названию
технологии, она подразумевает отсутствие серверов, что выглядит более чем
нелогично. Вернемся к определению, которое было дано в начале главы:

Что такое бессерверные вычисления?
Бессерверные вычисления – это способ развертывания и выполнения приложе-
ний в облачной инфраструктуре с оплатой за фактическое использование, без
аренды или покупки серверов.

Вопреки своему названию, технология бессерверных вычислений не ис-
ключает существования серверов; программному обеспечению нужна аппа-
ратура, на которой оно будет выполняться. Под словом «бессерверный» прос
то подразумевается, что компаниям, организациям или разработчикам не
требуется приобретать либо арендовать физический сервер.

Возможно, вам интересно узнать, почему было выбрано такое название.
Потому что эта технология основывается на абстрагировании от понятия
«сервер». Вместо приобретения или аренды сервера для своего приложения,
настройки и развертывания среды выполнения вы просто выгружаете при-
ложение в облако поставщика услуг бессерверных вычислений, который сам
позаботится о том, чтобы выделить серверы, хранилища, настроить среду вы-
полнения для приложения и запустить его.

ПРИМЕЧАНИЕ. Кому-то из вас может быть интересно, избавляет ли технология
бессерверных вычислений от необходимости иметь в компаниях свои подразде-
ления сопровождения и эксплуатации программного обеспечения. В большинстве
случаев ответ на этот вопрос: да, избавляет.

 23 / 36

1.2. Основные понятия    27

Точнее, поставщик услуг сохранит ваше приложение в некотором контей-
нере. Контейнер представляет изолированное окружение, содержащее все,
необходимое вашему приложению для работы. Контейнер можно предста-
вить как горшок для комнатного растения. Он содержит грунт со всеми пита-
тельными веществами, необходимыми вашему растению.

Как и горшок с растением, контейнер позволяет поставщику услуги бес-
серверных вычислений безопасно перемещать и хранить ваше приложение,
а также выполнять его и копировать в зависимости от ваших потребностей.
Но главное преимущество бессерверной технологии – отсутствие необходи-
мости выполнять какие-либо настройки, балансировать, масштабировать
серверы, то есть решать любые задачи управления сервером. Провайдер сам
управляет всем этим за вас, а также гарантирует, что с увеличением нагрузки
на ваше приложение он создаст достаточное количество копий контейнера с
приложением для обработки всех вызовов, и каждый контейнер будет точной
копией исходного. Если потребуется, провайдер создаст тысячи копий. Реше-
ние о запуске еще одной копии контейнера принимается провайдером, толь-
ко когда количество запросов к вашему приложению становится настолько
большим, что текущее число действующих контейнеров не успевает обрабо-
тать их все.

Если к вашему приложению вообще не поступает запросов, провайдер
остановит все экземпляры, соответственно, оно не будет расходовать память
и процессорное время сервера. Провайдер услуги бессерверных вычислений
отвечает за все детали, касающиеся работы: он знает, где хранится ваше при-
ложение, как и куда его копировать, когда запускать новые контейнеры и ког-
да уменьшать количество контейнеров при снижении нагрузки.

Продолжая аналогию со стиральными машинами, процесс предоставления
услуги бессерверных вычислений напоминает услуги прачечной по вызову;
служащий прачечной появляется у вашей двери, чтобы забрать грязное белье,
затем оно стирается в прачечной и потом возвращается к вам. Независимо от
того, сколько у вас одежды и каких видов (шерсть, хлопок, кожа и т. д.), прачеч-
ная берет на себя всю ответственность за сортировку белья, выбор моющих
средств и программ.

Бессерверные вычисления и FaaS
Первоначально термин «бессерверные вычисления» интерпретировался ина-
че, чем сейчас. Подразумеваемая под ним технология называлась сервер как
услуга (Backend as a Service, BaaS) и предназначалась для приложений, кото-
рые частично или полностью зависят от сторонних услуг по предоставлению
серверной логики. Позднее эта технология стала называться функция как ус-
луга (Function as a Service, FaaS), поскольку провайдеры услуг бессерверных
вычислений интерпретируют приложения как функции, вызывая их только по
запросу.

 24 / 36

28    Глава 1. Введение в бессерверные вычисления с Claudia

1.3. Как работают бессерверные вычисления?
Как отмечалось выше, провайдеры услуг бессерверных вычислений предла-
гают изолированные контейнеры для приложений. Контейнер управляется
событиями, поэтому активируется только при появлении определенного со-
бытия.

События – это конкретные внешние воздействия, подобные физическим
выключателям. Возьмем в качестве примера освещение в доме: события,
включающие его, могут отличаться. Свет может быть включен человеком,
щелкнувшим обычным выключателем; датчиком движения; датчиком осве-
щенности, включающим свет, когда садится солнце. Но контейнеры не огра-
ничиваются приемом определенных событий и вызовом содержащихся в них
функций; они также позволяют вашим функциям самим создавать события
или, точнее, их генерировать. В техническом смысле в бессерверных вычисле-
ниях контейнеры функций являются и приемниками, и источниками событий.

Наконец, провайдеры предлагают различные события, способные запус
кать ваши функции. Список событий зависит от провайдера и реализации,
но часто их роль играют HTTP-запросы, выгрузка файлов в хранилище, об-
новление базы данных, события интернета вещей (Internet of Things, IoT) и
множество других.

ПРИМЕЧАНИЕ. Бессерверные функции запускаются только по событиям, и вы
платите лишь за время выполнения. После выполнения провайдер отключает
функцию, сохраняя возможность повторного ее запуска по следующему событию.

1.4. Бессерверные вычисления на практике
Ландшафт бессерверных вычислений содержит множество движущихся час
тей, поэтому далее мы познакомимся с ними поближе. С этой целью мы соз-
дадим пример приложения, разрабатывая его поэтапно, чтобы вы могли ви-
деть, как оно конструируется. По мере знакомства с новыми понятиями мы
будем расширять пример приложения.

В этой книге мы напишем пример совершенно нового приложения (оно
будет создано «с нуля»), решающего проблемы небольшой компании, а точ-
нее – пиццерии. Пиццерия управляется вашей вымышленной тетушкой Ма-
рией. В течение книги тетушка Мария столкнется со множеством реальных
проблем, и наша цель – помочь ей в этом, попутно усваивая понятия бессер-
верных вычислений. Бессерверные вычисления, как и любая новая техноло-
гия, вводят множество новых понятий, с которыми сложно справиться, если
рассматривать их все сразу.

ПРИМЕЧАНИЕ. В случае проблем при переносе существующего приложения на
бессерверную платформу не стесняйтесь обращаться к последней части книги.
Если вы пока незнакомы с бессерверными вычислениями, прочитайте хотя бы
несколько первых глав, прежде чем переходить к последней части книги.

 25 / 36

1.4. Бессерверные вычисления на практике    29

1.4.1. Бессерверная пиццерия тетушки Марии
Тетушка Мария – волевой человек. Вот уже тридцать лет она управляет сво-

ей пиццерией, местом сбора людей из разных поколений, живущих неподале-
ку: многие проводили там время со своими семьями, смеялись и даже ходили
на романтические свидания. Но в последнее время в ее пиццерии наступи-
ли тяжелые времена. Число посетителей постепенно уменьшается. Многие
из ее клиентов теперь предпочитают делать заказы онлайн, через веб-сайты
или телефоны в пиццериях конкурентов. Некоторые новые компании нача-
ли переманивать ее клиентов. Например, в новой пиццерии Chess запустили
мобильное приложение с предварительным просмотром пиццы и возможно-
стью сделать заказ онлайн, а также чат-бота для заказов через различные при-
ложения мгновенного обмена сообщениями. Клиенты нашей тетушки любят
ее пиццерию, но многие предпочитают заказывать пиццу с доставкой на дом,
поэтому ее тридцатилетний бизнес начал угасать. В пиццерии уже есть веб-
сайт, но для обработки и хранения информации о пиццах и заказах требуется
внутреннее (серверное) приложение.

1.4.2. Распространенный подход
Учитывая ограниченность ресурсов тетушки Марии, самым простым ре-

шением является создание небольшого API с использованием популярного
фреймворка Node.js, такого как Express.js или Hapi, и настройка базы данных
(скорее всего, MongoDB, MySQL или PostgreSQL).

Код типичного API делится на несколько уровней и напоминает трехуров-
невую архитектуру. То есть код должен делиться на такие уровни, как пред-
ставление, бизнес-логика и данные.

Трехуровневая архитектура
Трехуровневая архитектура – это шаблон архитектуры клиент-серверного про-
граммного обеспечения, в котором пользовательский интерфейс (представ-
ление), логика работы («бизнес-правила»), хранение данных и доступ к ним
разрабатываются и поддерживаются как независимые модули, чаще всего на
отдельных платформах.
Узнать больше о трехуровневой архитектуре можно на странице Википедии
https://ru.wikipedia.org/wiki/Трехуровневая_архитектура.

На рис. 1.1 изображен дизайн типичного трехуровневого приложения с
отдельными маршрутами для пиццы, заказов и пользователей. В нем так-
же должны иметься точки входа для чат-ботов и обработчика платежей. Все
маршруты должны запускать некоторые функции-обработчики на уровне
бизнес-логики, а результаты обработки – отправляться на уровень данных, в
базу данных и хранилище файлов и изображений.

 26 / 36

https://ru.wikipedia.org/wiki/Трехуровневая_архитектура

30    Глава 1. Введение в бессерверные вычисления с Claudia

API

Сервер

Хранилище изображений и файлов База данных

Уровень хранилища

Уровень бизнес-логики

Обработка
прейскуранта и заказов

Обработка платежа Обработка
изображений

Приложение
на сервере.

Веб- и мобильные
приложения

взаимодействуют
с серверным

приложением через API.

Чат-бот использует
API как точку входа

для оформления
заказа.

Система платежей тоже
использует API как точку
входа после выполнения

оплаты.

RESTful API реализует «уровень
представления» в приложении с
трехуровневой архитектурой.

«Уровень логики» включает разные
службы, в том числе обработку
прейскуранта и заказов,
изображений и файлов, и платежей.

«Уровень данных» приложения
служит для хранения изображений
и других файлов в базе данных.

/pizzas /orders /users /payments /chatbot

Рис. 1.1. Pizza API с типичным трехуровневым дизайном

Этот подход идеален для небольших приложений, в том числе и для нашего
Pizza API, по крайней мере до тех пор, пока количество заказов на пиццу не
вырастет до определенного уровня. После этого вам потребуется масштаби-
ровать инфраструктуру.

Но, чтобы масштабировать монолитное приложение, необходимо отделить
слой данных (чтобы не копировать базу данных ради согласования данных).
После этого приложение будет выглядеть так, как показано на рис. 1.2. И у нас
все равно остается единый конгломерат со всеми маршрутами и бизнес-ло-
гикой. Такое приложение можно реплицировать (запускать дополнительные
копии, чтобы увеличить пропускную способность), если у вас слишком мно-
го пользователей, но в каждом экземпляре будут присутствовать все службы
приложения, независимо от интенсивности их использования.

Монолитное приложение
Монолитным называют приложение, в котором интерфейс пользователя и код
доступа к данным объединены в одну программу на одной платформе. Моно-
литное приложение является автономным и независимым от других приложе-
ний.

 27 / 36

1.4. Бессерверные вычисления на практике    31

Хранилище изображений и файлов

API

Уровень хранилища

Уровень хранилища

/pizzas /orders /users /payments /chatbot

Сервер

База данных

изображений
Обработка

прейскуранта и заказов Обработка платежа
Обработка

RESTful API реализует «уровень
представления» в приложении с
трехуровневой архитектурой.

«Уровень логики» включает разные
службы, в том числе обработку
прейскуранта и заказов,
изображений и файлов, и платежей.

«Уровень данных» приложения
служит для хранения изображений
и других файлов в базе данных.

«Уровень логики» напрямую
взаимодействует со службами
хранения.

Большая часть
приложения все
еще находится

на сервере.

Веб- и мобильные
приложения

взаимодействуют
с серверным

приложением через API.

Чат-бот использует
API как точку входа

для оформления
заказа.

Система платежей тоже
использует API как точку
входа после выполнения

оплаты.

Рис. 1.2. Типичная архитектура с внешней базой данных и хранилищем файлов

1.4.3. Бессерверное решение
Для использования бессерверных вычислений требуется иной подход, так

как приложения в этом случае управляются событиями и являются распреде-
ленными.

Все части бессерверного приложения с конечными точками API и биз-
нес-логикой изолируются в независимых и автоматически масштабируемых
контейнерах.

В бессерверном приложении запросы обрабатываются на уровне маршру-
тизатора API, который решает единственную задачу: принимает HTTP-за-
просы и направляет их в службы уровня бизнес-логики. Маршрутизатор API в
бессерверной архитектуре всегда действует независимо. Это означает, что от
разработчиков приложений не требуется поддерживать маршрутизацию API,
и поставщик услуг бессерверных вычислений автоматически масштабирует
приложение, чтобы обеспечить своевременную обработку всех HTTP-запро-
сов, поступающих в адрес вашего API. Также вы платите только за запросы,
которые обрабатываются.

В примере нашего Pizza API маршрутизатор будет принимать все запросы
от мобильных и веб-приложений и, если необходимо, обслуживать точки вхо-
да для чат-ботов и системы обработки платежей.

 28 / 36

32    Глава 1. Введение в бессерверные вычисления с Claudia

После получения запроса маршрутизатор передает его для обработки в дру-
гой контейнер со службой уровня бизнес-логики.

В бессерверных приложениях бизнес-логика часто разбивается на более
мелкие единицы. Размер каждой единицы зависит от предпочтений разра-
ботчика. Единицей может быть единственная функция или целое монолитное
приложение. В большинстве случаев размер единицы не влияет напрямую
на сумму оплаты услуг инфраструктуры, поскольку вы платите за выполне-
ние функции. Кроме того, единицы масштабируются автоматически, и вам
не придется платить за единицы, которые ничего не обрабатывают, поэтому
владение одной или дюжиной единиц обходится одинаково.

Однако в ситуациях с небольшими приложениями или когда обрабатыва-
ется не очень большой объем информации, можно сэкономить на хостинге и
обслуживании, объединив функции, связанные с одной службой, в одну биз-
нес-единицу. Для Pizza API вполне разумно будет создать одну единицу для
обработки прейскуранта и заказов, одну для обработки платежей, одну для
обработки сообщений от чат-бота и одну для обработки изображений и фай-
лов.

Последняя часть нашего бессерверного API – уровень данных, который мало
чем отличается от уровня данных в масштабируемом монолитном приложе-
нии с отдельно масштабируемой базой данных и службой хранения файлов.
Было бы лучше, если бы база данных и хранилище файлов были также неза-
висимыми и автоматически масштабируемыми.

Еще одно преимущество бессерверных приложений – уровень данных мо-
жет вызывать бессерверную функцию «из коробки». Например, когда в храни-
лище выгружается изображение пиццы, есть возможность запустить службу
обработки изображений, которая изменит размер фотографии и свяжет ее с
конкретной пиццей в прейскуранте.

Потоки обработки данных в бессерверном Pizza API можно видеть на
рис. 1.3.

1.5. Бессерверная инфраструктура – AWS
Нашему бессерверному Pizza API нужна инфраструктура для работы. Техноло-
гия бессерверных вычислений еще очень молода, и на данный момент имеется
лишь несколько вариантов инфраструктуры. Большинство вариантов принад-
лежит крупным поставщикам, поскольку для бессерверных вычислений тре-
буется большая и развитая инфраструктура с поддержкой масштабирования.
Самыми известными и наиболее продвинутыми инфраструктурами являют-
ся бессерверный контейнер Amazon AWS Lambda, Microsoft Azure Functions и
Google Cloud Functions.

В этой книге мы будем использовать AWS Lambda, потому что это самая
зрелая из доступных на рынке бессерверных инфраструктур, она имеет ста-
бильный API и множество успешных историй использования.

AWS Lambda – это бессерверная вычислительная платформа, управляемая
событиями, которая предлагается компанией Amazon как часть Amazon Web

 29 / 36

1.5. Бессерверная инфраструктура – AWS    33

Services. Это вычислительная служба, которая запускает код в ответ на собы-
тия и автоматически управляет вычислительными ресурсами, необходимыми
этому коду.

After an API request is routed, it is passed to another container with the business
layer service to be processed.

Instead of having one monolithic application, the business logic of a serverless appli-
cation is often split into smaller units. The size of each unit depends on your prefer-
ences. A unit can be as small as a single function or as large as a monolithic application.
Most of the time, its size does not directly affect the infrastructure cost, because you are
paying for function execution. Units are also scaled automatically, and you won’t pay for
units that aren’t processing anything, so owning one or a dozen of them costs the same.

However, for small applications and situations in which you don’t have a lot of infor-
mation, you can save money on hosting and maintenance by bundling functionalities
related to one service into a single business unit. For your Pizza API, a sensible solution
is to have one unit for processing pizzas and orders, one for handling payments, one for
handling chatbot functionality, and one for processing images and files.

The last part of your serverless API is the data layer, which can be similar to the data
layer in a scaled monolithic application, with a separately scaled database and file stor-
age service. It would be best if the database and file storage were also independent and
autoscalable.

Another benefit of a serverless application is that the data layer can trigger a server-
less function out of the box. For example, when a pizza image is uploaded to the file
storage, an image processing service can be triggered, and it can resize the photo and
associate it with the specific pizza.

You can see the flow of the serverless Pizza API in figure 1.3.

1.5 Serverless infrastructure — AWS
Your serverless Pizza API needs infrastructure to run on. Serverless is very young and at
the moment has several infrastructure choices. Most of these choices are owned by big
vendors, because serverless requires a big infrastructure for scaling. The best-known
and most advanced infrastructures are Amazon’s AWS Lambda serverless compute
container, Microsoft’s Azure Functions, and Google’s Cloud Functions.

This book focuses on AWS Lambda because AWS has the most mature serverless
infrastructure available in the market, with a stable API and many successful stories
behind it.

AWS Lambda is an event-driven serverless computing platform provided by Amazon
as part of Amazon Web Services. It is a compute service that runs code in response to
events and automatically manages the compute resources required by that code.

Google Cloud Functions and Microsoft Azure Functions
Google launched Google Cloud Functions, its answer to Amazon’s AWS Lambda, in mid-
2016. Google Cloud Functions are explained as lightweight event-based microservices
that allow you to run JavaScript functions in a Node.js runtime. Your function can be trig-
gered by an HTTP request, Google Cloud Storage, and other Google Cloud Pub/Sub ser-
vices. At the time this book was written, Google Cloud Functions were still in alpha, so
pricing was not known. You can learn more at the official website: https://cloud.google
.com/functions/.

Маршрутизатор/Шлюз

Уровень бизнес-логики

API

Уровень хранилища

Чат-бот
Обработка

прейскуранта
и заказов

Обработка
платежа

Обработка
изображений

Хранилище
изображений

и файлов
База данных

Веб- и мобильные приложения
взаимодействуют с серверным

приложением через API.

Чат-бот использует API
как точку входа для
оформления заказа.

Система платежей тоже
использует API как точку входа

после выполнения оплаты.

Уровень хранения
реализуется как
распределенная
сторонняя служба.

Каждая единица бизнес-логики
действует совершенно
самостоятельно и изолированно
и может автоматически
масштабироваться для
обработки всех поступающих
запросов или останавливаться
в отсутствие запросов.

Маршрутизация API и уровень
представления приложения

полностью обслуживаются
маршрутизатором, который

принимает запросы и передает
их единицам бизнес-логики.

Каждая единица
бизнес-логики может

запускаться событием,
посланным другой

службой.

Уровень бизнес-логики состоит
из нескольких единиц.

Но теперь даже уровень
хранения имеет
возможность
действовать как уровень
представления – он
может принимать
запросы и запускать
единицы бизнес-логики.

Рис. 1.3. Бессерверная реализация Pizza API

Google Cloud Functions и Microsoft Azure Functions
Компания Google запустила услугу Google Cloud Functions в середине 2016 года,
в ответ на появление Amazon AWS Lambda. Инфраструктура Google Cloud
Functions позиционируется как набор легковесных микросервисов, управля-
емых событиями, которые позволяют запускать функции на JavaScript в среде
выполнения Node.js. Ваша функция может быть вызвана в ответ на HTTP-за-
прос, событие из Google Cloud Storage и других служб Google Cloud Pub/Sub. На
момент написания этих строк инфраструктура Google Cloud Functions еще на-
ходилась в стадии разработки, поэтому цены не были известны. Дополнитель-
ные подробности вы можете узнать на официальном сайте: https://cloud.
google.com/functions/.
Реализация бессерверных вычислений от корпорации Microsoft – Azure
Functions – является частью ее платформы облачных вычислений Azure.

 30 / 36

https://cloud.google.com/functions/
https://cloud.google.com/functions/

34    Глава 1. Введение в бессерверные вычисления с Claudia

Microsoft описывает ее как инфраструктуру бессерверных вычислений, управ-
ляемых событиями, которая ускоряет разработку, осуществляет масштабиро-
вание в зависимости от спроса и взимает плату только за фактически потреб
ленные ресурсы. Инфраструктура Azure Functions позволяет писать функции
на JavaScript, C#, F#, Python и других языках сценариев. Цены на услуги Azure
аналогичны ценам на AWS Lambda: вы платите 20 центов за 1 миллион выпол-
нений и 0,000016 доллара США за гигабайт потребленных ресурсов в месяц,
при этом обработка первого миллиона запросов и 400 000 Гбайт каждый месяц
предоставляются бесплатно. За дополнительной информацией обращайтесь
на официальный веб-сайт: https://azure.microsoft.com/ru-ru/services/
functions/.

ПРИМЕЧАНИЕ. Большинство из того, с чем вы познакомитесь в этой книге, также
можно реализовать с помощью других поставщиков услуг бессерверных вычис-
лений, но некоторые услуги могут отличаться, поэтому для отдельных решений
может потребоваться использовать немного иной подход.

На платформе Amazon слово бессерверные обычно напрямую связано с AWS
Lambda. Но для бессерверных приложений, таких как Pizza API, AWS Lambda
является лишь одним из строительных блоков. Чтобы создать полноценное
приложение, часто нужны другие службы, такие как службы хранения, марш-
рутизации и базы данных. В табл. 1.1 перечислены все необходимые службы,
предлагаемые платформой AWS:

�� Lambda – используется для вычислений;
�� API Gateway (шлюз API) – выполняет маршрутизацию, принимая HTTP-

запросы и вызывая другие службы в зависимости от маршрута;
�� DynamoDB – автоматически масштабируемая база данных;
�� Simple Storage Service (S3) – служба хранилища, реализующая абстрак-

цию обычного жесткого диска и предлагающая неограниченное про-
странство для хранения.

Таблица 1.1. Строительные блоки бессерверных приложений в AWS

Назначение Служба AWS Краткое описание

Вычисления Lambda Вычислительный компонент для бизнес-логики

Маршрутизация API Gateway Компонент маршрутизации, используется для
маршрутизации HTTP-запросов к функциям Lambda

База данных DynamoDB Автоматически масштабируемая документ-ориенти-
рованная база данных

Хранилище S3 Служба автоматически масштабируемого хранилища
файлов

 31 / 36

https://azure.microsoft.com/ru-ru/services/functions/
https://azure.microsoft.com/ru-ru/services/functions/

1.5. Бессерверная инфраструктура – AWS    35

Lambda – это самая важная часть инфраструктуры бессерверных вычисле-
ний, с которой вы обязательно должны разобраться, потому что она содержит
вашу бизнес-логику. Lambda – это бессерверный вычислительный контейнер
AWS, который запускает вашу функцию по событию. Он автоматически мас-
штабируется, если в функцию поступает сразу большое число событий. Чтобы
создать Pizza API в виде бессерверного приложения, необходимо использо-
вать вычислительный бессерверный контейнер AWS Lambda.

Когда возникает определенное событие, такое как HTTP-запрос, служба
Lambda запускает функцию и передает ей аргументы с данными из события,
контекстом и функцию обратного вызова для отправки ответа. Функция в
терминологии Lambda – это самая обычная функция-обработчик, написанная
на одном из поддерживаемых языков. На момент написания этих строк AWS
Lambda поддерживала следующие языки:

�� Node.js;
�� Python;
�� Java (Java 8) и другие языки JVM;
�� C# (.NET Core).

В Node.js данные события, контекст и функция обратного вызова передают-
ся как объекты JSON. Объект контекста context содержит подробную инфор-
мацию о вашей функции и ее текущем выполнении, такую как время выпол-
нения, причина вызова функции и т. д. Третий аргумент, который получает
ваша функция, – это функция обратного вызова, которая позволит вам вер-
нуть ответ с некоторой полезной информацией или ошибкой, которая будет
отправлена обратно, службе, сгенерировавшей событие. В листинге 1.1 пока-
зан пример небольшой функции AWS Lambda, которая возвращает текст Hello
from AWS Lambda.

Листинг 1.1. Пример минимальной действующей функции Lambda на Node.js

function lambdaFunction(event, context, callback) {
 callback(null, 'Hello from AWS Lambda')
}

exports.handler = lambdaFunction

ПРИМЕЧАНИЕ. Как показано в листинге 1.1, функция должна экспортироваться
присваиванием ссылки на нее свойству exports.handler, а не module.exports,
стандартному свойству для Node.js. Это объясняется тем, что в AWS Lambda экс-
портируемый элемент должен быть объектом с методом handler, а не функцией
непосредственно.

Функция экспортируется
как обработчик.

Функция принимает событие, контекст
и функцию обратного вызова.

Функция обратного вызова вызывается
для возврата сообщения об успехе.

 32 / 36

36    Глава 1. Введение в бессерверные вычисления с Claudia

Как упоминалось выше, событие event в вашей функции – это данные, пе-
реданные службой, которая запустила вашу функцию. В AWS функции могут
вызываться разными службами, такими как маршрутизатор HTTP-запросов,
S3, выполняющей операции с файлами, или более экзотическими, такими как
службы развертывания кода, изменения инфраструктуры, и даже консольны-
ми командами из AWS SDK.

Вот список наиболее важных событий и служб, которые могут вызвать функ-
цию AWS Lambda, и их аналоги в API Pizza:

�� HTTP-запросы, направляемые службой API Gateway, – на веб-сайт пицце-
рии поступил новый запрос;

�� выгрузка изображений, удаление или изменение файлов в S3 – выгружено
новое изображение пиццы;

�� изменения в базе данных DynamoDB – получен новый заказ на доставку
пиццы;

�� разные уведомления от службы Simple Notification Service (AWS SNS) – пиц-
ца доставлена;

�� результат обработки голосовой команды помощником Amazon Alexa –
клиент заказал пиццу, используя голосовой интерфейс.

Полный список событий, запускающих функции, можно найти по адресу:
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html.

Функции Lambda имеют некоторые ограничения, например ограниченное
время выполнения и объем доступной памяти. По умолчанию функции да-
ется на выполнение до трех секунд, это означает, что работа функции будет
прервана по тайм-ауту, если она попытается потратить больше времени на
обработку данных. Функция получает 128 Мбайт ОЗУ, то есть она не может
выполнять слишком много сложных вычислений.

ПРИМЕЧАНИЕ. Оба эти ограничения можно изменить в настройках функции.
Время выполнения можно увеличить до 15 минут, а объем памяти – до 3 Гбайт.
Увеличение обоих ограничений может повлиять на стоимость выполнения вашей
функции.

Другой важной характеристикой функций Lambda является отсутствие со-
стояния, то есть состояние вычислений не сохраняется между вызовами.

Как показано на рис. 1.4, типичный порядок выполнения функции Lambda
выглядит следующим образом:

�� происходит определенное событие, и служба, обрабатывающая его, вы-
зывает функцию Lambda;

�� функция, как та, что была показана в листинге 1.1, запускается на вы-
полнение;

�� функция завершается и возвращает сообщение об успехе или ошибке,
или ее выполнение прерывается по истечении установленного времени.

 33 / 36

http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

1.5. Бессерверная инфраструктура – AWS    37

Запуск

Процесс выполнения функции в AWS Lambda

Каждая функция выполняется
в AWS Lambda в три этапа.

После появления
события происходит

запуск функции.

После запуска функция
вызывается, и ей передаются

данные из события.

Наконец, функция
завершается отправкой
ответа с сообщением об
успехе или ошибке или

прерывается по истечении
установленного времени.

КонецВыполнение функции

Рис. 1.4. Порядок выполнения функции в AWS Lambda

Стоимость бессерверных вычислений
Одним из уникальных преимуществ бессерверных вычислений является невы-
сокая стоимость. Amazon принимает почасовую оплату за аренду своих стан-
дартных виртуальных серверов Elastic Compute Cloud (Amazon EC2). Стоимость
AWS Lambda выше, чем EC2, если сравнивать стоимость часа, но зато вам не
придется платить за периоды времени, когда ваша функция не работала. Вы
платите 20 центов за 1 миллион выполнений и 0,000016 доллара США за гига-
байт потребленных ресурсов в месяц, при этом обработка первого миллиона
запросов и 400 000 Гбайт каждый месяц предоставляются бесплатно.
Тетушка Мария нисколько не должна будет платить за работу Pizza API, пока не
достигнет 1 миллиона выполнений в месяц. Если это число будет достигнуто,
значит, вам удалось помочь ей.
За более подробной информацией о ценах обращайтесь на официальный веб-
сайт https://aws.amazon .com/lambda/pricing/.

Еще один важный аспект, который может повлиять на наш бессерверный
Pizza API, – это задержка в работе функции. Поскольку контейнеры с функция
ми Lambda управляются провайдером, а не владельцем приложения, невоз-
можно узнать, будет ли событие обслужено существующим контейнером или
платформа создаст новый. Если до выполнения функции потребуется создать
и инициализировать новый контейнер, на это может уйти чуть больше вре-
мени – эта ситуация называется холодным запуском, как показано на рис. 1.5.
Время, необходимое для запуска нового контейнера, зависит от размера при-
ложения и платформы, используемой для его запуска. Работая над этой кни-
гой, мы установили опытным путем, что задержки с Node.js и Python заметно
ниже, чем с Java.

 34 / 36

https://aws.amazon .com/lambda/pricing/

38    Глава 1. Введение в бессерверные вычисления с Claudia

Создание Инициализация

Время вызова
функции

Холодный
запуск

Когда производится
холодный запуск,

необходимо создать
контейнер для функции... и инициализировать ее...

перед
выполнением.

Когда производится
теплый запуск, контейнер

уже готов и функция
запускается немедленно.

Функция остается теплой еще какое-то
время, в ожидании следующего вызова.

Теплый
запуск

Время вызова
функции

Выполнение функции

Выполнение функции

Рис. 1.5. Холодный и теплый запуски функции в AWS Lambda

ПЛАТА ЗА PIZZA API. Разработка Pizza API, описываемая в следующих главах,
обойдется вам дешевле чашки кофе. Сама услуга AWS Lambda получится бес-
платной, но некоторые службы, используемые в разработке Pizza API, такие как
DynamoDB и Simple Storage Service, взимают небольшую плату за хранение ваших
данных. Обе эти услуги и их стоимость описаны в последующих главах. Оконча-
тельная цена будет зависеть от объема данных и их использования, но если вы
будете следовать примерам в книге, она не превысит 1 доллар в месяц.

Функции Lambda просты в освоении и использовании. Самое сложное – это
этап развертывания.

Развернуть бессерверное приложение в AWS Lambda можно несколькими
способами: с помощью визуального интерфейса консоли AWS Lambda; с по-
мощью интерфейса командной строки из терминала AWS, с использованием
AWS API; или напрямую, с помощью AWS SDK для одного из поддерживаемых
языков. Развертывание бессерверного приложения проще, чем развертыва-
ние традиционного приложения, но его можно упростить еще больше.

1.6. Что такое и для чего используется Claudia?
Claudia – это библиотека Node.js, упрощающая развертывание проектов на
Node.js в AWS Lambda и API Gateway. Она автоматизирует все трудоемкие опе-

 35 / 36

1.6. Что такое и для чего используется Claudia?    39

рации, связанные с развертыванием и настройкой, и подготавливает прило-
жение к работе.

Claudia реализована на основе AWS SDK с целью упростить разработку. Это
не замена AWS SDK или AWS CLI, а расширение, которое упрощает решение
некоторых типичных задач, таких как развертывание и настройка.

Вот некоторые основные достоинства Claudia:

�� создание и изменение функции одной командой (избавляет от необхо-
димости вручную архивировать приложение и затем выгружать архив
через пользовательский интерфейс AWS Dashboard);

�� избавляет от шаблонных операций, позволяя сосредоточиться на более
интересной работе, и сохраняет настройки проекта;

�� упрощает управление версиями;
�� проста в освоении – чтобы освоить ее, достаточно нескольких минут.

Claudia действует как инструмент командной строки и позволяет создавать
и обновлять функции из терминала. Однако в экосистеме Claudia имеется еще
две полезные библиотеки Node.js: Claudia API Builder (позволяет создавать
API в API Gateway) и Claudia Bot Builder (дает возможность создавать чат-боты
для разных платформ обмена мгновенными сообщениями).

В отличие от Claudia, которая используется на стороне клиента и никогда
не внедряется в AWS, API Builder и Bot Builder всегда развертываются в AWS
Lambda (см. рис. 1.6).

API Gateway
AWS Lambda

AWS
Claudia Bot Builder – модуль
Node.js, который передается
в функцию Lambda, где
обрабатывает запросы и
возвращает ответы для
разных чат-платформ.

Claudia API Builder – это модуль
Node.js, который передается в

функцию Lambda, где
осуществляет внутреннюю

маршрутизацию, обеспечивает
использование общих ресурсов

и выполняет другие операции,
связанные с API.

Claudia – это инструмент командной
строки, выполняющийся на стороне
клиента и взаимодействующий с
платформой AWS посредством AWS
SDK для Node.js.

AWS Lambda

Claudia API Builder

Claudia

Терминал

Claudia Bot Builder

Рис. 1.6. Визуальное представление связей Claudia, API Builder
и Bot Builder с платформой AWS

Вы можете работать с AWS Lambda и API Gateway без Claudia, используя эко-
систему AWS непосредственно или некоторые альтернативы.

Powered by TCPDF (www.tcpdf.org)

 36 / 36

40    Глава 1. Введение в бессерверные вычисления с Claudia

К наиболее известным альтернативам относятся следующие:

�� Serverless Application Model (SAM), созданная в AWS, – позволяет созда-
вать и развертывать бессерверные приложения через AWS CloudForma-
tion. Подробности ищите по адресу: https://github.com/awslabs/server-
less-application-model;

�� Serverless Framework – реализует подход, напоминающий SAM, но до-
полнительно поддерживает другие платформы, такие как Microsoft
Azure. Подробности ищите по адресу: https://serverless.com;

�� Apex – еще один инструмент командной строки, помогающий развер-
тывать бессерверные приложения, но поддерживает более обширный
список языков программирования, таких как Go. Подробности ищите
по адресу: http://apex.run.

ПРИМЕЧАНИЕ. Почти все, что можно сделать с Claudia, можно сделать и с ис-
пользованием перечисленных альтернатив.

Вы, наверное, удивляетесь, почему мы решили использовать Claudia. Лучше
всего наши мотивы объясняют часто задаваемые вопросы по Claudia:

�� Claudia – это утилита развертывания, а не фреймворк. Она не абстраги-
рует службы AWS, а упрощает их использование. В отличие от Serverless
и Seneca, Claudia не пытается изменить структуру или способ запуска
проектов. Необязательный API Builder, который упрощает веб-марш-
рутизацию, является единственной дополнительной зависимостью
времени выполнения, но он создавался с прицелом на минимализм и
автономность. Микросервисные фреймворки имеют много хороших
плагинов и расширений, помогающих выполнять стандартные задачи,
но Claudia намеренно фокусируется только на развертывании. Одна из
наших ключевых целей разработки – не вводить слишком много магии
и позволить людям структурировать код так, как они хотят;

�� Claudia ориентирована на Node.js. В отличие от Apex и других подоб-
ных инструментов развертывания, Claudia имеет гораздо более узкую
область применения. Она работает только с Node.js, но работает очень
хорошо. Универсальные фреймворки поддерживают больше окружений
времени выполнения, но перекладывают на разработчика решение за-
дач, специфических для языка. Поскольку Claudia фокусируется на Node.
js, она автоматически устанавливает шаблоны для преобразования па-
раметров и результатов в объекты, которые код на JavaScript может лег-
ко использовать, и действует именно так, как ожидают разработчики на
JavaScript.

Дополнительные подробности вы найдете по адресу: https://github.com/
claudiajs/claudia/blob/master/FAQ.md.

 1 / 40

https://github.com/awslabs/serverless-application-model
https://github.com/awslabs/serverless-application-model
https://serverless.com
http://apex.run
https://github.com/claudiajs/claudia/blob/master/FAQ.md
https://github.com/claudiajs/claudia/blob/master/FAQ.md

1.7. Когда и где использовать бессерверные вычисления    41

Цель этой книги состоит в том, чтобы научить вас думать в терминах бес-
серверных вычислений и разрабатывать и развертывать бессерверные при-
ложения. Непосредственное использование экосистемы AWS требует отвле
чения внимания на множество побочных аспектов, таких как обучение
взаимодействию и настройке различных частей платформы AWS. Claudia не
стремится заменить AWS SDK, но, построенная на его основе, она позволяет
выполнить большинство рутинных задач одной командой.

Claudia отдает предпочтение коду перед настройками. В результате в
библиотеке почти нет настроек. Это облегчает обучение и исследование.
Написание качественного приложения требует правильного тестирования;
наличие большого количества настроек не означает, что их не нужно тести-
ровать.

Claudia имеет минимальный набор удобных команд для создания бессер-
верных приложений. Две основные идеи Клаудии – минимум магии и про-
зрачное отображение происходящего при вызове команды.

Несмотря на немногочисленный API, библиотека Claudia позволяет выпол-
нять множество действий: создавать бессерверные приложения с нуля, пере-
носить текущие приложения на Express.js в бессерверное окружение и даже
создавать свои собственные бессерверные чат-боты и голосовые помощники.

1.7. Когда и где использовать бессерверные
вычисления
Бессерверная архитектура – не панацея от всех болезней. Она не решает всех
проблем и может не решить ваших.

Например, если вы создаете приложение, которое интенсивно использует
веб-сокеты, бессерверные вычисления не для вас. Приложение в AWS Lambda
может работать до 15 минут, после чего не сможет продолжать принимать со-
общения через веб-сокеты.

Контейнеры запускаются довольно быстро, но не мгновенно. На запуск
контейнера может уходить до нескольких десятков миллисекунд, что для не-
которых приложений может оказаться неприемлемым.

Отсутствие конфигурации является одним из главных преимуществ бес-
серверных вычислений, но это преимущество может стать серьезным пре-
пятствием для некоторых типов приложений. Если вы решите создать прило-
жение, требующее конфигурации на уровне системы, вам лучше рассмотреть
возможность использования традиционного подхода. AWS Lambda поддержи-
вает возможность настройки до некоторой степени; вы можете предоставить
статический двоичный файл и использовать Node.js для его вызова, но во мно-
гих случаях это может быть сопряжено с большими накладными расходами.

Другим важным недостатком является так называемое замыкание на по-
ставщике. Сами функции не являются большой проблемой, потому что это
обычные функции Node.js, но если вы решите приложение целиком реализо-
вать как бессерверное, с некоторыми службами придется повозиться. Однако

 2 / 40

42    Глава 1. Введение в бессерверные вычисления с Claudia

это распространенная проблема – она характерна не только для бессерверных
вычислений, и ее можно минимизировать, выбрав хорошую архитектуру для
приложения.

Тем не менее бессерверные вычисления имеют больше преимуществ, чем
недостатков, и остальная часть этой книги показывает некоторые из хороших
вариантов использования.

В заключение
�� Бессерверная архитектура абстрагирует серверы от разработки про-

граммного обеспечения.
�� Бессерверное приложение отличается от традиционного тем, что управ-

ляется событиями и автоматически распределяется и масштабируется.
�� Есть несколько вариантов бессерверных архитектур, и наиболее совер-

шенным является Amazon AWS Lambda.
�� AWS Lambda – это платформа бессерверных вычислений, управляемых

событиями, позволяющая запускать функции, написанные на Node.js,
Python, C# или Java и других языках JVM.

�� AWS Lambda имеет определенные ограничения, например на время вы-
полнения, которое можно увеличить до 15, и на объем доступной памя-
ти, который можно увеличить до 3 Гбайт.

�� Самым сложным в бессерверных вычислениях является развертывание
функций в AWS и их настройка.

�� Некоторые инструменты и фреймворки могут сделать процесс развер-
тывания и настройки более простым. Самым простым из них является
библиотека Claudia в комплексе с ее API Builder и Bot Builder.

�� Claudia – это инструмент командной строки, предлагающий минималь-
ный набор удобных команд для сборки бессерверных приложений.

�� Бессерверная архитектура не является панацеей, и в некоторых ситуа-
циях это не лучший выбор, например для приложений реального вре-
мени с веб-сокетами.

 3 / 40

Глава 2
Создание первого
бессерверного API

Эта глава охватывает следующие темы:

	создание и развертывание API с помощью Claudia;
	как Claudia развертывает API в AWS;
	как работает API Gateway.

Главная цель данной главы – помочь вам создать свой первый бессерверный
API и развернуть его в AWS Lambda и API Gateway с помощью Claudia. Вы также
увидите различия в структуре традиционных и бессерверных приложений и
будете лучше понимать Claudia, когда узнаете, что эта библиотека делает за
кулисами. Чтобы извлечь максимальную пользу из этой главы, вы должны по-
нимать основные идеи бессерверных вычислений, описанные в главе 1.

2.1. Приготовление пиццы из ингредиентов:
сборка API
Тетушка Мария счастлива и благодарна, что вы решили помочь ей встать на
ноги. Она даже приготовила вам свою знаменитую пиццу пеперони! (Хорошо,
если вы сейчас не голодны!)

У тетушки Марии уже есть веб-сайт, поэтому от вас требуется создать сер-
верное приложение – точнее API, – чтобы ее клиенты могли просматривать
и заказывать пиццу. API будет отвечать за передачу информации о пиццах и
порядке оформления заказа, а также за обработку заказов на пиццу. Позднее
тетушка Мария хотела бы добавить также мобильное приложение, которое бу-
дет использовать ваш API.

На начальном этапе наши первые конечные точки API будут выполнять
простую бизнес-логику и возвращать статические объекты JSON. На рис. 2.1
представлена общая схема первоначальной структуры приложения и поток
HTTP-запросов через API.

 4 / 40

44    Глава 2. Создание первого бессерверного API

API

Уровень
бизнес-логики

Обработка
прейскуранта

и заказов

API Gateway

Запросы из веб-
и мобильных приложений
поступают в API Gateway.

После первоначальной
обработки в API Gateway
запросы передаются
уровню бизнес-логики.

Уровень бизнес-логики
(или просто логики)
на данный момент
содержит единственную
функцию Lambda,
обрабатывающую
прейскурант и заказы.

Despite API Gateway being a
router itself, because you are
processing your pizzas and
orders in one function, you need
to do internal routing to
differentiate the intended
actions. For internal routing, you
will be using Claudia API Builder.

API Gateway receives the
request and passes parsed

request data to the
corresponding service.

User sends a request from a
mobile or web application.

Based on the received
request, Claudia API
Builder invokes
corresponding handlers.

After the request has been
processed, a response is
returned to the user. The
response is passed through
both Claudia API Builder
and API Gateway.

DELETE /
orders

Claudia
API Builder

Pizza and order
processing

PUT /
orders

POST /
orders

GET /
orders

GET /
 pizzas

Delete an
order

handler

Update an
order

handler

Create an
order

handler

Get orders
handler

Get pizzas
handler

API Gateway

Figure 2.2 A visual representation of the AWS Lambda function that handles pizza and order processing
Рис. 2.1. Общая схема Pizza API, который мы построим в этой главе

Вот список функций, которые будет поддерживать первоначальный вари-
ант API:

�� вывод прейскуранта с изображениями разных пицц;
�� прием заказа на доставку пиццы;
�� создание заказа;
�� изменение/корректировка заказа;
�� отмена заказа.

Все это довольно маленькие и простые функции, поэтому реализуем их в
одной функции Lambda.

Даже если вы чувствуете, что эти функции следует отделить друг от друга,
прямо сейчас мы не будем делать этого и просто поместим все функции в
одну функцию Lambda, потому что все функции тесно связаны. Если бы мы
дополнительно следили за запасами, мы с самого начала создали бы для этого
отдельную функцию.

Для каждой из перечисленных функций необходимо определить отдельный
маршрут к соответствующему обработчику. Маршрутизацию можно реализо-
вать вручную, но в Claudia есть инструмент, который поможет решить эту за-
дачу: Claudia API Builder.

Claudia API Builder – это инструмент, помогающий обрабатывать входящие
запросы и ответы API Gateway, а также их конфигурацию, контекст и парамет
ры, и позволяет определить внутренние маршруты в функции Lambda. Он
имеет Express-подобный синтаксис конечной точки, поэтому, если вы знако-
мы с Express, использование Claudia API Builder не вызовет у вас сложностей.

 5 / 40

2.1. Приготовление пиццы из ингредиентов: сборка API    45

На рис. 2.2 показана более подробная схема маршрутизации с функциями
обработки прейскуранта и заказов внутри функции Lambda, которая будет
построена с помощью Claudia API Builder. На рисунке видно, что после полу-
чения запросов от API Gateway Claudia API Builder пересылает их по опреде-
ленным вами маршрутам соответствующим обработчикам.

To start gently, the first API endpoints will handle some simple business logic and
return static JSON objects. You can see the broad overview of your initial application
structure in figure 2.1. The figure also shows the crude HTTP requests flow through
your API.

Here is the list of features we cover for the initial API:

¡	Listing all pizzas
¡	Retrieving the pizza orders
¡	Creating a pizza order
¡	Updating a pizza order
¡	Canceling a pizza order

These features are all small and simple; therefore, you will implement them in a single
Lambda function.

Even though you might feel that you should separate each feature into a separate
function, for now it’s simplest to put everything in the same Lambda, because the func-
tions are tightly coupled. If you were to do inventory tracking as well, you would create
that as a separate function from the start.

Each of the listed features will need to have a separate route to the corresponding
handler within your function. You can implement the routing yourself, but Claudia has
a tool to help you with that task: Claudia API Builder.

Claudia API Builder is an API tool that helps you handle all your incoming API Gate-
way requests and responses, as well as their configuration, context, and parameters, and
enables you to have internal routing within your Lambda function. It has an Express-like
endpoint syntax, so if you are familiar with Express, Claudia API Builder will be easy to use.

API

Business
layer

Pizza and
order

processing

API Gateway

Requests from the web apps
and mobile app are accepted by
API Gateway.

After being processed by API
Gateway, the request is parsed
and passed to your business layer.

The business layer, or logic tier, at
the moment contains only the pizza
and order processing Lambda.

Figure 2.1 A broad overview of the Pizza API you will build in this chapter

API Gateway получает
запрос, выполняет его

парсинг и передает
данные из запроса

соответствующей службе.

Пользователь посылает
запрос из мобильного
или веб-приложения.

Опираясь
на полученный
запрос, Claudia API
Builder вызывает
соответствующий
обработчик.

После обработки запроса
пользователю возвращается
ответ. Ответ возвращается
через Claudia API Builder и
API Gateway.

DELETE /
orders

Claudia
API Builder

Обработка прейскуранта и заказа

PUT /
orders

POST /
orders

GET /
orders

GET /
 pizzas

Обработчик
удаления

заказа

Обработчик
изменения

заказа

Обработчик
создания

заказа

Обработчик
извлечения

заказов

Обработчик
извлечения

прейскуранта

API Gateway

API Gateway сам является
маршрутизатором, но, так

как мы обрабатываем
прейскурант и заказы в
одной функции Lambda,

мы должны организовать
внутреннюю

маршрутизацию для
выполнения конкретных

действий. Для внутренней
маршрутизации будем

использовать Claudia API
Builder.

Рис. 2.2. Структура функции AWS Lambda, обрабатывающей прейскурант и заказы

ПРИМЕЧАНИЕ. На момент написания этих строк AWS API Gateway можно было
использовать в двух режимах:

�� с моделями и отображаемыми шаблонами для запросов и ответов;
�� с промежуточной логикой.

Claudia API Builder использует промежуточную логику, которая извлекает инфор-
мацию из HTTP-запросов и преобразует ее в представление, более удобное для
JS-разработчика.

 6 / 40

46    Глава 2. Создание первого бессерверного API

За более подробной информацией о режимах работы AWS API Gateway об-
ращайтесь к официальной документации: http://docs.aws.amazon.com/apigate-
way/latest/developerguide/how-to-method-settings.html.

2.1.1. Какие пиццы можно заказать?
Первый метод в нашем Pizza API реализует службу GET, которая возвращает

прейскурант со всеми доступными для заказа пиццами. Чтобы создать этот
метод, вам потребуется:

�� получить учетную запись AWS и создать файл с настройками;
�� установить Node.js и диспетчер пакетов NPM;
�� установить Claudia с помощью NPM как глобальную зависимость.

Если прежде вам не доводилось выполнять эти шаги или вы не уверены,
выполнили ли их, перейдите к приложению А, которое проведет вас через
каждый этап процесса установки.

ПРИМЕРЫ КОДА. С этого момента вы увидите много примеров программного
кода. Мы настоятельно рекомендуем опробовать их все, даже если они кажутся
вам знакомыми. Вы можете использовать ваш любимый текстовый редактор, если
не указано иное.

Теперь, когда все готово, начнем с создания пустой папки для нашего пер-
вого бессерверного приложения. Вы можете назвать папку проекта как угодно,
но в этой книге мы будем использовать имя pizza-api. После создания папки
откройте терминал, перейдите в созданную папку и инициализируйте прило-
жение Node.js. После инициализации установите модуль claudia-api-builder с
помощью NPM, как описано в приложении A.

Следующий шаг – создание точки входа в приложение. Создайте файл с
именем api.js в папке pizza-api и откройте его в текстовом редакторе.

СИНТАКСИС ES6 В ПРИМЕРАХ КОДА. Все примеры кода в книге написаны с
использованием синтаксиса ES6/ES2015. Если вы незнакомы с такими особенно-
стями ES6, как стрелочные функции и/или шаблонные строки, прочитайте книгу
Уэса Хигби (Wes Higbee) «ES6 in Motion» (Manning) или второе издание «Secrets of
the JavaScript Ninja»1 Джона Резига (John Resig).

Для создания внутреннего маршрута необходимо создать экземпляр Clau-
dia API Builder, потому что это класс, а не функция. Поэтому в начале файла
api.js создайте экземпляр claudia-api-builder.

Теперь можно задействовать встроенный маршрутизатор Claudia API
Builder. Для реализации маршрута GET /pizzas необходимо использовать ме-

1	 Резиг Джон, Бибо Бер, Марас Иосип. Секреты JavaScript ниндзя. 2-е изд. М.: Вильямс, 2017. ISBN: 978-
5-9908911-8-0. – Прим. перев.

 7 / 40

http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-method-settings.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-method-settings.html

2.1. Приготовление пиццы из ингредиентов: сборка API    47

тод get экземпляра Claudia API Builder. Метод get получает два аргумента:
маршрут и функцию-обработчик. В качестве маршрута передайте строку
/pizzas, а в качестве обработчика – анонимную функцию.

Анонимная функция-обработчик для Claudia API Builder имеет одно су-
щественное отличие, по сравнению с Express.js. В Express.js вы передаете в
функцию обратного вызова аргументы с ответом и запросом, но в Claudia API
Builder функция обратного вызова принимает только запрос. Чтобы отпра-
вить ответ, достаточно вернуть его в виде возвращаемого значения.

Обработчик маршрута GET /pizzas должен вернуть список пицц (прейску-
рант), но пока мы будем возвращать статический массив с названиями пицц,
которые готовятся в пиццерии тетушки Марии: Capricciosa (Капричоза), Quat-
tro Formaggi (Четыре сыра), Napoletana (Наполетана) и Margherita (Маргарита).

Наконец, нужно экспортировать экземпляр API, который Claudia API Builder
встраивает в функцию Lambda как промежуточный обработчик.

На данный момент код должен выглядеть, как показано в листинге 2.1.

Листинг 2.1. Обработчик GET /pizzas в Pizza API

'use strict'

const Api = require(''claudia-api-builder')
const api = new Api()

api.get('/pizzas', () => {
 return [
 'Capricciosa',
 'Quattro Formaggi',
 'Napoletana',
 'Margherita'
]
})
module.exports = api

Вот и все, что нужно для создания простой бессерверной функции. Однако,
перед тем как открыть шампанское и отпраздновать это событие, развернем
наш код в функции Lambda. Для этого вернемся к терминалу и воспользуемся
мощью библиотеки Claudia.

Поскольку одной из основных целей Claudia является развертывание одной
командой, для развертывания нашего API требуется выполнить лишь одну
простую команду claudia create. Эта команда принимает два параметра: ре-
гион AWS, в котором вы хотите развернуть API, и точку входа в приложение.
Параметры передаются в виде флагов, поэтому для развертывания API просто
выполните команду claudia create с флагами --region и --api-module, как пока-
зано в листинге 2.2. Подробное описание команды claudia create вы найдете
в разделе 2.2.

Подключение модуля Claudia API Builder.

Создание экземпляра Claudia API Builder.

Определение маршрута и обработчика.

Возврат простого списка пицц.

Экспорт экземпляра Claudia API Builder.

 8 / 40

48    Глава 2. Создание первого бессерверного API

ВЫПОЛНЕНИЕ КОМАНД В WINDOWS. Некоторые команды в книге разбиты
на несколько строк для удобства чтения и комментирования. Если вы пользуетесь
ОС Windows, вам может понадобиться объединить эти команды в одну строку и
удалить символ обратного слеша (\).

Листинг 2.2. Развертывание API в AWS Lambda и API Gateway с помощью Claudia

claudia create \
 --region eu-central-1 \
 --api-module api

Выберите регион, ближайший к вашим пользователям, чтобы минимизи-
ровать задержки. Пиццерия тетушки Марии находится во Франкфурте (Гер-
мания), поэтому ближайший регион называется eu-central-1. Все доступные
регионы перечислены в официальной документации AWS: http://docs.aws.
amazon.com/general/latest/gr/rande.html#lambda_region.

Файл api.js служит точкой входа в наш API. Claudia автоматически доба-
вит расширение .js, поэтому укажите имя точки входа как api, без расши-
рения.

ПРИМЕЧАНИЕ. Имя и местоположение точки входа вы можете выбирать по
своему усмотрению; достаточно указать правильный путь к точке входа в команде
claudia create. Например, если вы дадите файлу имя index.js и поместите его в
папку src, тогда флаг команды Claudia должен иметь вид: --api-module src/index.

Через минуту или чуть больше Claudia развернет наш API. Вы увидите ответ,
как показано в листинге 2.3. В ответе имеется полезная информация о раз-
вернутой функции Lambda и нашем API, такая как базовый URL, имя функции
Lambda и регион.

ПРОБЛЕМЫ РАЗВЕРТЫВАНИЯ. Если при развертывании вы столкнетесь с
проблемами, например связанными с учетной записью, проверьте еще раз все
настройки, которые описываются в приложении A.

Листинг 2.3. Ответ на команду claudia create

{
 "lambda": {
 "role": "pizza-api-executor",
 "name": "pizza-api",
 "region": "eu-central-1"
 },

Создает и развертывает новую функцию Lambda.

Определяет регион, где должна быть развернута функция.

Сообщает библиотеке Claudia, что создается API с точкой входа api.js.

Информация о функции Lambda.

 9 / 40

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region

2.1. Приготовление пиццы из ингредиентов: сборка API    49

 "api": {
 "id": "g8fhlgccof",
 "module": "api",
 "url": "https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest"
 }
}

В процессе развертывания Claudia создаст файл claudia.json в корневом ка-
талоге проекта и поместит в него похожую информацию, но без базового URL.
Этот файл используется библиотекой Claudia, чтобы связать код API с кон-
кретной функцией Lambda и экземпляром API Gateway. Файл предназначен
только для библиотеки Claudia; не изменяйте его вручную.

Теперь пришло время «попробовать на вкус» наш API. Для этого можно вос-
пользоваться любым веб-браузером. Просто введите в адресную строку базо-
вый URL из ответа, который вернула команда claudia create, не забыв добавить
к нему свой маршрут. Он должен выглядеть примерно так: https://whpcvzntil.
execute-api.eu-central-1.amazonaws.com/latest/pizzas. Когда вы откроете эту
ссылку в браузере, вы должны увидеть следующее:

["Capricciosa","Quattro Formaggi","Napoletana","Margherita"]

АДРЕСА URL ДЛЯ ПРИМЕРОВ В КНИГЕ. Вместо latest URL для каждого при-
мера в книге будет содержать разные версии в формате: chapterX_Y, где X – номер
главы, а Y – номер примера в этой главе. Мы сделали это, чтобы вы могли запускать
примеры, просто скопировав URL из книги. При опробовании своих примеров
ваши URL должны содержать latest вместо chapterX_Y.
Например, первый пример доступен по URL: https://whpcvzntil.execute-api.
eu-central-1.amazonaws.com/chapter2_1/pizzas.

Поздравляю – вы только что создали бессерверный API с помощью Claudia!
Если это ваш первый опыт, можете гордиться собой. А сейчас приостановимся
ненадолго.

2.1.2. Структурирование API
Прежде чем добавлять новые возможности, всегда следует потратить

несколько минут на переосмысление структуры и организации API. Обработка
всех маршрутов в основном файле затрудняет программирование и поддержку,
поэтому в идеале обработчики следует отделить от маршрутизации. Маленькие
файлы с кодом легче понять и сопровождать, чем один большой файл.

На момент написания этих строк не существовало каких-либо конкретных
рекомендаций по организации приложений. Кроме того, Claudia дает вам
полную свободу в этом отношении. Так как для обработки прейскуранта и
заказов не потребуется много кода, все обработчики маршрутов для нашего

Базовый URL.Информация об API.

 10 / 40

https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_1/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_1/pizzas

50    Глава 2. Создание первого бессерверного API

Pizza API можно поместить в отдельную папку и оставить в файле api.js только
маршруты. Кроме того, поскольку каждая пицца в прейскуранте должна будет
иметь больше атрибутов, чем просто название, его следует переместить в
отдельный файл. Можно пойти еще дальше и создать папку для данных, как
мы сделали это для списка пицц, упоминавшегося выше. После применения
этих рекомендаций структура нашего кода должна выглядеть примерно так,
как показано на рис. 2.3.

js

json

json

json

pizza-api

Корневая папка
Pizza API.

Точка входа в API;
содержит все
маршруты.

Наше приложение –
это обычный проект
Node.js, поэтому оно
содержит файл
package.json.

Конфигурационный
файл, созданный
библиотекой Claudia.

Все статические
данные приложения
хранятся в папке
data; сейчас это
простой список пицц.

Каталог для всех
обработчиков
маршрутов.

api.js

package.json

claudia.json

data

pizzas.json

handlers

get-pizzas.jsjs

Рис. 2.3. Первый вариант структуры проекта Pizza API

Для начала переместим прейскурант в отдельный файл и добавим в него
дополнительную информацию: идентификатор пиццы и ингредиенты. Для
этого создайте в корне проекта Pizza API папку с именем data. Затем создайте
в новой папке файл с именем pizzas.json. Добавьте в новый файл код из
листинга 2.4.

Листинг 2.4. Прейскурант в формате JSON с информацией о пиццах

[
 {
 "id": 1,
 "name": "Capricciosa",
 "ingredients": [

Этот файл JSON содержит
массив объектов пицц.

Для каждой пиццы определен ее числовой
идентификатор, название и список ингредиентов.

 11 / 40

2.1. Приготовление пиццы из ингредиентов: сборка API    51

 "tomato sauce", "mozzarella", "mushrooms", "ham", "olives"
]
 },
 {
 "id": 2,
 "name": "Quattro Formaggi",
 "ingredients": [
 "tomato sauce", "mozzarella", "parmesan cheese", "blue cheese", "goat cheese"
]
 },
 {
 "id": 3,
 "name": "Napoletana",
 "ingredients": [
 "tomato sauce", "anchovies", "olives", "capers"
]
 },
 {
 "id": 4,
 "name": "Margherita",
 "ingredients": [
 "tomato sauce", "mozzarella"
]
 }
]

Далее поместим обработчик getPizzas в отдельный файл. Создайте в кор-
не проекта папку с именем handlers и внутри нее создайте файл с именем
get-pizzas.js.

В новый файл get-pizzas.js поместите обработчик getPizzas, возвращаю-
щий прейскурант из листинга 2.4. Для этого вам потребуется импортировать
файл JSON с прейскурантом. Затем вам нужно создать функцию-обработчик
getPizzas и экспортировать, чтобы получить возможность сослаться на нее из
файла с точкой входа. Затем, вместо того чтобы просто возвращать прейску-
рант, сделайте еще один шаг и верните информацию только для одной пиццы,
если обработчику getPizzas был передан параметр с идентификатором пиццы.
Чтобы вернуть только одну пиццу, можно использовать метод Array.find, кото-
рый отыщет пиццу по идентификатору. Если он найдет пиццу, верните ее в
качестве результата. Если пицца с запрошенным идентификатором не будет
найдена, верните признак ошибки.

Дополненный код обработчика должен выглядеть, как показано в листин-
ге 2.5.

 12 / 40

52    Глава 2. Создание первого бессерверного API

Листинг 2.5. Обработчик getPizzas с фильтром по числовому идентификатору
в отдельном файле

const pizzas = require('../data/pizzas.json')

function getPizzas(pizzaId) {
 if (!pizzaId)
 return pizzas

 const pizza = pizzas.find((pizza) => {
 return pizza.id == pizzaId
 })

 if (pizza)
 return pizza

 throw new Error('The pizza you requested was not found')
}

module.exports = getPizzas

Также удалите предыдущий код обработчика getPizzas из файла api.js. Уда-
лите весь код, находящийся между инструкцией импортирования Claudia API
Builder и инструкцией экспортирования экземпляра Claudia API Builder.

После строки с инструкцией импортирования Claudia API Builder добавь-
те инструкцию импортирования нового обработчика get-pizzas из папки
handlers:

const getPizzas = require('./handlers/get-pizzas')

ПРИМЕЧАНИЕ. Создайте также обработчик GET-маршрута для корневого пути (/),
который должен возвращать статическое сообщение пользователю. Это необя-
зательно, но мы настоятельно рекомендуем добавить его. Пользователю будет
удобнее, если он получит дружественное сообщение, а не ошибку, обратившись к
базовому URL вашего API.

Затем добавьте маршрут для получения списка пицц, но на этот раз исполь-
зуйте только что созданный обработчик get-pizzas. Для этого импортируйте
файл с обработчиком в начале файла api.js. Если вы помните, наш обработ-
чик get-pizzas может выполнить поиск пиццы по ее идентификатору, поэто-
му добавьте еще один маршрут, возвращающий одну пиццу. Оформите этот
маршрут так, чтобы он принимал запрос GET с URL /pizzas/{id}. Часть /{id} – это
параметр динамического маршрута, который сообщает обработчику, какой

Объявление функции-обработчика
getPizzas.

Импортировать прейскурант
из каталога data.

Если идентификатор пиццы не
указан, вернуть полный список.

Экспортировать обработчик getPizzas.

Если пицца не найдена,
сгенерировать ошибку.

Обратите внимание, что используется == вместо ===.
Причина в том, что в pizzaId передается строка и
поэтому нам не нужно строгое сравнение, так как в
базе данных идентификаторы могут храниться как
целые числа.

Иначе найти пиццу
по идентификатору.

 13 / 40

2.1. Приготовление пиццы из ингредиентов: сборка API    53

идентификатор пиццы запрошен пользователем. Как и Express.js, Claudia API
Builder поддерживает параметры динамического маршрута, но использует
иной синтаксис: /{id} вместо /:id. Параметры динамического пути доступны
в объекте request.pathParams. Наконец, если обработчик не нашел запрошен-
ную пиццу, верните ошибку 404:

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

По умолчанию в ответ на все запросы API Gateway возвращает код HTTP
200. Claudia API Builder помогает изменить некоторые из умолчаний, напри-
мер вернуть код 500 в случае ошибки, чтобы клиентское приложение могло
обработать ошибку.

Чтобы вернуть ошибки, передайте третий параметр в функцию api.get. На-
пример, в функцию обработки маршрута get/pizza/{id}, помимо пути и функ-
ции обработчика, можно передать объект с пользовательскими заголовками
и кодами. Чтобы установить код ошибки 404, передайте объект со значением
error: 404.

Дополненный файл api.js должен выглядеть, как показано в листинге 2.6.

Листинг 2.6. Дополненный файл api.js

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')

api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

module.exports = api

Добавить обработчик для базового
URL, возвращающий простой
статический текст, чтобы сделать
API более дружественным.

Заменить встроенную функцию-
обработчик вызовом новой
импортированной функции.

Добавить маршрут для поиска
пиццы по идентификатору.

Настроить коды успешной и
неудачной обработки запроса.

Импортировать обработчик
get-pizzas из каталога handlers.

 14 / 40

54    Глава 2. Создание первого бессерверного API

Теперь снова развернем API. Чтобы заменить существующую функцию
Lambda вместе с ее маршрутами в API Gateway, запустите в терминале коман-
ду claudia update:

claudia update

ПРИМЕЧАНИЕ. Благодаря файлу claudia.json команда claudia update точно зна-
ет, в какую функцию Lambda следует развернуть файлы. Команду можно допол-
нительно настроить с помощью флага --config. За дополнительной информацией
обращайтесь к официальной документации https://github.com/claudiajs/
claudia/blob/master/docs/update.md.

Через минуту или чуть больше должен появиться ответ, подобный пред-
ставленному в листинге 2.7. После выполнения команды и повторного раз-
вертывания приложения Claudia выведет в терминал некоторую полезную
информацию о функции Lambda и API, включая имя функции, версию среды
выполнения Node.js, величину тайм-аута, объем памяти, доступный функции,
и базовый URL нашего API.

Листинг 2.7. Информация, возвращаемая командой claudia update

{
 "FunctionName": "pizza-api",
 "Runtime": "nodejs6.10",
 "Timeout": 3,
 "MemorySize": 128,
 "Version": "2",
 "url": "https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/
 chapter2_2",
 "LastModified": "2017-07-15T14:48:56.540+0000",
 "CodeSha256": "0qhstkwwkQ4aEFSXhxV/zdiiS1JUIbwyKOpBup35l9M=",
 // Дополнительные метаданные
}

Открыв этот маршрут в браузере (который должен выглядеть примерно так:
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas),
вы увидите массив со всеми объектами-пиццами из файла data/pizza.js.

Открыв другой маршрут (который должен выглядеть примерно так: https://
whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1), вы уви-
дите только первую пиццу, как показано ниже:

{"id":1,"name":"Capricciosa","ingredients":["tomato
 sauce","mozzarella","mushrooms","ham","olives"]}

Имя функции AWS Lambda.

Версия среды выполнения Node.js.

Базовый URL вашего API.

Тайм-аут для функции (в секундах).
Объем памяти, доступной для функции.

Версия развертывания.

 15 / 40

https://github.com/claudiajs/claudia/blob/master/docs/update.md
https://github.com/claudiajs/claudia/blob/master/docs/update.md
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1

2.1. Приготовление пиццы из ингредиентов: сборка API    55

Для проверки работы API попробуйте также запросить пиццу с несущест
вующим идентификатором. Для этого введите URL, например такой: https://
whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42. В этом
случае вы должны получить ответ:

{"errorMessage" : "The pizza you requested wasn't found"}

Отлично! Теперь наш Pizza API может возвращать прейскурант с пиццами
клиентам тетушки Марии! Это добавит радости тетушке Марии, но наш API
еще не закончен. Мы должны еще реализовать самую главную функцию: со-
здание заказа на доставку пиццы.

2.1.3. Отправка заказа
Возможность создать заказ с помощью API очень важна для тетушки Марии.

Даже не будучи столь же технически подкованной, как вы, она понимает, что
это ускорит оформление заказов и поможет ей быстро обслуживать клиентов,
проживающих в ее районе или даже во всем городе.

ПРИМЕЧАНИЕ. В этом примере вы познакомитесь с базовой структурой при-
ложения, которое для простоты демонстрации нигде не сохраняет полученные
заказы. Поддержку хранилища мы добавим в главе 3.

Для функции приема заказов нам понадобится определить маршрут «со-
здание заказа на пиццу» и обработчик «создание заказа», а это означает, что
мы должны создать новый файл в папке handlers в нашем проекте Pizza API.
Как обычно, старайтесь выбирать простые и осмысленные имена для файлов.
В данном случае прекрасно подойдет имя create-order.js.

Сначала создайте новый файл для обработчика и откройте его в текстовом
редакторе. Затем объявите функцию createOrder и экспортируйте ее в конце
файла. Функция-обработчик должна принимать некоторую информацию о
заказе в форме объекта заказа order. На данный момент этот объект имеет
только два атрибута: идентификатор пиццы и адрес клиента, куда нужно до-
ставить пиццу.

Первым делом нужно проверить наличие значений в атрибутах переданно-
го объекта. Если какое-то значение отсутствует, вернем ошибку.

Следующим шагом должно бы быть сохранение заказа в базе данных, но
пока мы не готовы к этому и поэтому просто вернем пустой объект, если объ-
ект заказа order прошел проверку. Можно было бы сохранить объект в файл,
но функция Lambda может быть запущена в нескольких разных контейнерах,
и мы не можем управлять этим процессом, поэтому очень важно исключить
любые ссылки на локальное состояние. В следующей главе вы узнаете, как
подключить бессерверную функцию к базе данных и сохранить заказ.

Содержимое файла create-order.js должно выглядеть, как показано в лис
тинге 2.8.

 16 / 40

https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42

56    Глава 2. Создание первого бессерверного API

Листинг 2.8. Обработчик запроса на создание заказа

function createOrder(order) {
 if (!order || !order.pizzaId || !order.address)
 throw new Error('To order pizza please provide pizza type and address
 where pizza should be delivered')

 return {}
}

module.exports = createOrder

Теперь, когда у нас есть обработчик для создания заказа, определим марш-
рут. В отличие от предыдущих маршрутов, этот должен принимать запросы
POST. Для этого вернемся в файл api.js. По аналогии с api.get, в Claudia API
Builder есть метод api.post, принимающий три аргумента: путь, функцию-об-
работчик и параметры.

ПРИМЕЧАНИЕ. Помимо GET, Claudia API Builder поддерживает также HTTP-
запросы POST, PUT и DELETE.

Путь, определяющий маршрут для создания нового заказа, запишем как
/orders. В качестве функции-обработчика импортируем файл create-order.js,
который мы только что создали в папке handlers. Наконец, в аргументе с пара-
метрами передадим настроенные коды, соответствующие успеху и неудаче:
201 и 400 соответственно. Используйте атрибут success, чтобы добавить свой
код для случая успешного завершения.

Тело запроса POST будет извлечено автоматически и передано в атрибуте
request.body, то есть вам не нужно предпринимать никаких дополнительных
действий для парсинга полученных данных.

Парсинг тела запроса POST
Парсинг тела запроса POST автоматически выполняет API Gateway. Claudia про-
веряет тело и нормализует его. Например, если запрос имеет тип содержимого
application/json, Claudia превратит пустое тело в пустой объект JSON.

После добавления нового маршрута содержимое файла api.js должно вы-
глядеть, как показано в листинге 2.9.

Функция createOrder
принимает объект заказа.

Если объект order не имеет
идентификатора пиццы или адреса
клиента, сгенерировать ошибку.

Экспортировать функцию-обработчик.

Иначе вернуть пустой объект.

 17 / 40

2.1. Приготовление пиццы из ингредиентов: сборка API    57

Листинг 2.9. Главный файл API с новыми маршрутами

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')

api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request.body)
}, {
 success: 201,
 error: 400
})
module.exports = api

Снова разверните API командой claudia update.
Тестирование запроса POST выглядит немного сложнее, чем запроса GET. Его

нельзя проверить, просто открыв URL маршрута в браузере. По этой причине
для проверки маршрутов POST следует использовать один из бесплатных ин-
струментов тестирования HTTP, например curl или Postman.

ПРИМЕЧАНИЕ. Начиная с этого момента, вы будете видеть команды curl для
всех примеров, где требуется опробовать конечные точки API. При желании вы
можете использовать любой другой инструмент по своему выбору.

Протестируем конечную точку POST /orders с помощью команды curl. В этой
команде мы отправим пустое тело запроса, чтобы проверить ошибку провер-
ки. Помимо тела запроса POST, нужно указать метод, заголовок, сообщающий
нашему API, что запрос содержит данные в формате JSON, и полный URL, куда
отправляется запрос.

Добавить маршрут POST /orders для создания
заказа и передать request.body в обработчик.

Импортировать обработчик
create-order из каталога handlers.

Вернуть код «400 Bad Request» в случае ошибки.

Вернуть код «201 Created» в случае успеха.

 18 / 40

58    Глава 2. Создание первого бессерверного API

curl и Postman
curl – это инструмент, используемый в командной строке или сценариях для
передачи данных. Он также применяется в автомобилях, телевизорах, маршру-
тизаторах, принтерах, аудиотехнике, мобильных телефонах, планшетах, теле
визионных приставках и медиапроигрывателях и является главным инстру-
ментом передачи данных через интернет для тысяч программных приложений,
которыми ежедневно пользуются миллиарды людей. curl предназначен для
работы без непосредственного взаимодействия с пользователем.
Postman – это приложение с графическим интерфейсом, которое также может
помочь вам протестировать ваши API. Его применение может ускорить разра-
ботку, поскольку дает вам возможность конструировать запросы API и доку-
ментацию методом тестирования. Имеются версии Postman для Mac, Windows
и Linux, а также в виде плагина для Chrome.

ПРИМЕЧАНИЕ. По умолчанию curl не выводит код HTTP-ответа. Чтобы прове-
рить возвращаемый код, используйте флаг -w и добавьте код HTTP после отве-
та API.

Формат команды показан в листинге 2.10. Эта команда создает запрос с пус
тым телом и таким образом позволяет проверить реакцию API на ошибочную
ситуацию.

Листинг 2.10. Команда curl для тестирования маршрута POST /orders route
(ошибочная ситуация)

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{}' https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/
 chapter2_3/orders

После запуска команды curl из листинга 2.10 в терминале должен появиться
следующий ответ с несколькими дополнительными заголовками:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 104
Date: Mon, 25 Sep 2017 06:53:36 GMT

{"errorMessage":"To order pizza please provide pizza type and address where
 pizza should be delivered"}

Потребовать от команды curl
вывести ответ с HTTP-заголовками. Установить заголовок, сообщающий,

что параметры запроса передаются
в формате JSON.

Послать пустой объект в API по адресу /orders.

Указать метод POST.

 19 / 40

2.2. Как Claudia развертывает API    59

Теперь, после проверки ошибки в случае отсутствия данных заказа, мы
должны проверить успешный ответ. Для этого выполним аналогичную ко-
манду curl, изменив только тело запроса, указав в нем идентификатор пиц-
цы и адрес клиента. Соответствующая команда curl показана в листинге 2.11.
Она имеет правильно сформированное тело, поэтому мы можем проверить
успешный ответ.

Листинг 2.11. Команда curl для тестирования маршрута POST /orders route
(успешная ситуация)

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizzaId":1,"address":"221B Baker Street"}' \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_3/orders

Эта команда вернет следующий ответ:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2
Date: Mon, 25 Sep 2017 06:53:36 GMT

{}

Этот ответ подтверждает правильную работу API.
Теперь, познакомившись с основами конструирования бессерверных API,

пришло время посмотреть, что делает библиотека Claudia после запуска ко-
манды claudia create.

2.2. Как Claudia развертывает API
Предыдущие примеры наглядно демонстрируют одну из главных целей
Claudia: дать возможность развертывать приложения одной командой. В этом
инструменте нет ничего волшебного, то есть принцип действия каждой его
команды легко объяснить.

На рис. 2.4 изображен поток событий, происходящих после запуска коман-
ды claudia create. Эта упрощенная диаграмма показывает только наиболее
важные этапы процесса, чтобы его проще было понять. Кроме того, некото-
рые этапы можно пропустить или изменить их работу, добавив дополнитель-
ные флаги в команду create. Например, Claudia может пропустить первый этап
и скопировать ваш код со всеми локальными зависимостями, если передать
флаг --use-local-dependencies. Полный список флагов и параметров можно
найти на странице: https://github.com/claudiajs/claudia/blob/master/docs/cre-
ate.md.

Послать в теле POST-запроса
идентификатор пиццы и адрес
клиента.

 20 / 40

https://github.com/claudiajs/claudia/blob/master/docs/create.md
https://github.com/claudiajs/claudia/blob/master/docs/create.md

60    Глава 2. Создание первого бессерверного API

Копирует код в /tmp

Проверка кода

Упаковка кода

Создание и развертывание
функции Lambda

Создание определений
API Gateway

Настройка разрешений

npm pack

npm install --production

AWS

Сначала Claudia вызывает
команду “npm pack”, чтобы
создать zip-архив с вашим
кодом, без зависимостей и
скрытых файлов.

Затем Claudia
создает zip-архив

с вашим кодом и
всеми

установленными
зависимостями.

Далее Claudia
создает новую

функцию Lambda
и развертывает

в ней ваш проект,
используя AWS SDK.

Вслед за функцией
развертываются

определения
API Gateway, если

функция реализует API.

Затем устанавливаются
все промышленные
и дополнительные
зависимости из NPM.
После установки
зависимостей Claudia
проверяет код на
наличие некоторых
очевидных проблем.

Claudia также настраивает
все необходимые

разрешения для функции
Lambda и API Gateway.

В случае успешного завершения
команды Claudia создает файл
claudia.json в каталоге проекта и
сообщает о завершении команды.

После запуска команды
“claudia create” код
сначала копируется во
временную папку.

Рис. 2.4. Порядок работы команды claudia create

Сразу после запуска команды claudia create библиотека Claudia помещает
ваш код без зависимостей и скрытых файлов в zip-архив, используя команду
npm pack. Затем создает копию проекта во временной папке в локальной систе-
ме. Это гарантирует чистоту и воспроизводимость развертывания – разверты-
вание всегда начинается с одной и той же известной точки, что предотвраща-
ет любые потенциальные проблемы, вызванные локальными зависимостями.
На этом этапе Claudia игнорирует вашу папку node_modules и все файлы, кото-
рые игнорируются Git или NPM. Она также устанавливает промышленные и
дополнительные зависимости командой npm install --production.

Так как для развертывания функции Lambda требуется, чтобы выгружае-
мый zip-архив содержал код со всеми зависимостями, перед упаковкой про-
екта в zip-файл Claudia устанавливает все промышленные и дополнительные
зависимости NPM.

Так как отладка функций Lambda не самое простое дело, в чем вы убеди-
тесь в главе 5, Claudia также проверяет ваш проект на наличие некоторых оче-
видных проблем, таких как опечатки или ссылки на неопределенные модули.
Не принимайте этот этап всерьез, потому что он выполняет лишь самые по-
верхностные проверки. Если вы допустите опечатку или попытаетесь вызвать
неопределенную функцию либо модуль внутри функции-обработчика, эта
проверка не заметит ошибки. На следующем этапе Claudia создает zip-файл
с вашим кодом и всеми зависимостями, установленными на первом этапе.

 21 / 40

2.3. Управление трафиком: как работает API Gateway    61

Последние три этапа, изображенных на рис. 2.4, выполняются параллельно.
После создания zip-файла Claudia вызывает AWS API для создания функции
Lambda и выгружает архив. Взаимодействие с платформой AWS осуществля-
ется посредством модуля AWS SDK для Node.js. Прежде чем выгрузить код,
Claudia создает нового пользователя с помощью IAM и настраивает его приви-
легии, необходимые для взаимодействий с AWS Lambda и API Gateway.

Пользователи IAM в AWS, роли и разрешения
Механизм идентификации и управления доступом в AWS (Identity and Access
Management, IAM) помогает обеспечить безопасный доступ к службам и ресур-
сам AWS для ваших пользователей. С помощью IAM можно создавать учетные
записи и группы пользователей AWS и управлять ими, а также определять при-
вилегии, разрешающие или запрещающие пользователям или группам доступ
к ресурсам AWS.
Подробное описание IAM выходит далеко за рамки этой книги, но мы настоя-
тельно советуем познакомиться с этим механизмом, прежде чем вы перейдете
к следующим главам. Для начала можно ознакомиться с официальной доку-
ментацией: https://aws.amazon.com/iam/.

После установки и настройки функции Lambda Claudia настраивает
экземпляр API Gateway, определяя маршруты и назначая необходимые раз-
решения.

Команда claudia update действует почти так же, как claudia create, но про-
пускает некоторые этапы, такие как создание роли и настройка разрешений.

Желающие глубже изучить работу Claudia и ее команд могут заглянуть в
исходный код библиотеки: https://github.com/claudiajs/claudia.

Теперь, узнав, как действует Claudia, нам осталось разобраться с последним
элементом мозаики – особенностями маршрутизации в API Gateway.

2.3. Управление трафиком: как работает
API Gateway
В главе 1 вы узнали, что пользователи не могут взаимодействовать с AWS
Lambda из-за пределов платформы AWS иначе, обратившись к некоторому
механизму, который вызовет функцию. Одним из важнейших таких механиз-
мов в Lambda является API Gateway.

Как показано на рис. 2.5, API Gateway действует подобно маршрутизатору
или регулировщику дорожного движения. Он принимает HTTP-запросы (на-
пример, запрос к Pizza API от мобильного или веб-приложения), преобразует
их в обобщенный формат и направляет в одну из ваших служб в AWS.

 22 / 40

https://aws.amazon.com/iam/
https://github.com/claudiajs/claudia

62    Глава 2. Создание первого бессерверного API

GET
/tasks

API Gateway

GET
/tasks/1

GET
/files/1

PUT
/files

POST
/tasks

AWS Lambda AWS Lambda Amazon S3

Веб-приложение

После обработки запроса службой API
Gateway получает ответ и возвращает
его обратно веб-приложению.

API Gateway может обслуживать
несколько ресурсов.

Веб-приложение
посылает HTTP- или Ajax-
запрос в API, созданный
с помощью API Gateway.

Каждый ресурс имеет
по меньшей мере один метод.

Когда служба вернет ответ,
он обрабатывается шлюзом
API Gateway.

Каждый метод интегрируется
со службой в фоне; API Gateway
поддерживает множество
разных служб AWS, включая
AWS Lambda и Amazon S3.

HTTP-ответ

Запрос обрабатывается
маршрутизатором API Gateway.

HTTP-запрос

Рис. 2.5. API Gateway пересылает запросы вашим службам AWS

API Gateway может интегрироваться со множеством служб AWS, включая
AWS Lambda и Amazon S3. Каждый API в API Gateway может подключаться
к нескольким службам. Например, один маршрут может приводить к вызо-
ву функции Lambda, а другой – осуществлять взаимодействия с некоторыми
другими службами.

API Gateway предлагает еще один подход к маршрутизации HTTP-запросов,
который называется прокси-маршрутизацией (proxy router). Вместо создания
отдельных маршрутов прокси-маршрутизатор пересылает все запросы един-
ственной функции AWS Lambda. Этот подход удобно использовать для созда-
ния небольших API или когда желательно увеличить скорость развертывания,
потому что создание и обновление большого числа маршрутов в API Gateway
может длиться до нескольких минут, в зависимости от быстродействия ваше-
го подключения к интернету и количества маршрутов.

2.4. Когда бессерверный API не является
решением
Несмотря на довольно поверхностное знакомство, мы уже имели возможность
убедиться, насколько просто создать бессерверный API с помощью Claudia.js и
Claudia API Builder. Бессерверные API могут быть очень мощными и отличают-
ся невероятной способностью к масштабированию, но иногда традиционные
API оказываются более удачным решением, например:

 23 / 40

2.5. Опробование!    63

�� когда никакая дополнительная задержка в обработке запроса недопус
тима. Бессерверные приложения не могут гарантировать минимальную
задержку;

�� когда важно гарантировать определенный уровень доступности. В боль-
шинстве случаев AWS обеспечивает довольно высокий уровень доступ-
ности, но иногда этого бывает недостаточно;

�� когда приложение выполняет тяжелые и продолжительные вычисления;
�� когда API должен соответствовать специальным стандартам. AWS Lamb-

da и API Gateway могут оказаться недостаточно гибкими для этого.

2.5. Опробование!
В конце каждой главы присутствует раздел «сделай сам». В большинстве глав
вам будет предложено решить некоторую задачу, и вы должны попробовать
реализовать ее самостоятельно. В этих разделах мы также будем представлять
некоторые подсказки и возможные варианты решения.

2.5.1. Упражнение
В этой главе мы реализовали маршруты GET /pizzas и POST /orders. Чтобы API

получился более функциональным, в него нужно добавить еще два маршрута:
PUT /orders и DELETE /orders.

В этом первом упражнении попробуйте:

�� создать обработчик, изменяющий заказ, и добавить маршрут к нему;
�� создать обработчик, удаляющий заказ, и добавить маршрут к нему.

Вот несколько подсказок:

�� для добавления маршрута PUT используйте метод api.put экземпляра
Claudia API Builder;

�� для добавления маршрута DELETE используйте метод api.delete экземп
ляра Claudia API Builder;

�� оба метода принимают три аргумента: путь маршрута, функцию-обра-
ботчик и объект с параметрами;

�� в обоих случаях пути содержат динамический параметр: числовой иден-
тификатор заказа;

�� обработчик updateOrder также требует передачи тела запроса с новыми
параметрами заказа;

�� так как пока мы не сохраняем заказы в базе данных, просто возвращай-
те пустой объект или обычное текстовое сообщение.

После выполнения упражнения структура файлов в Pizza API должна выгля-
деть, как показано на рис. 2.6.

 24 / 40

64    Глава 2. Создание первого бессерверного API

Корневая папка
проекта Pizza API.

Точка входа в ваш API;
содержит все маршруты.

Ваше приложение –
обычный проект Node.js,
поэтому в нем присутствует
файл package.json.

Конфигурационный
файл, созданный
библиотекой Claudia.

В папке data хранятся все
статические данные
проекта; на данный
момент здесь хранится
только прейскурант со
списком пицц.

Каталог для обработчиков
маршрутов.

js

json

json

json

pizza-api

api.js

package.json

claudia.json

data

pizzas.json

handlers

get-pizzas.jsjs

create-order.jsjs

update-order.jsjs

delete-order.jsjs

Рис. 2.6. Измененная структура файлов и каталогов проекта Pizza API

Если упражнение покажется вам слишком простым и вы захотите услож-
нить его, попробуйте добавить маршрут для получения списка заказов. Ва-
риант решения этого задания мы не приводим, но вы можете заглянуть в ис-
ходный код примера проекта Pizza API, распространяемого вместе с книгой,
чтобы сравнить свое решение с нашим.

2.5.2. Решение
Надеемся, что у вас получилось самим реализовать решение предложенно-

го упражнения. Ниже приводится наше решение, чтобы вы могли сравнить
его со своим.

В упражнении выше вам было предложено создать обработчик для измене-
ния существующего заказа. Для этого сначала нужно создать в папке handlers

 25 / 40

2.5. Опробование!    65

новый файл с именем update-order.js. В этом файле вы должны экспортировать
функцию updateOrder, принимающую идентификатор заказа и параметры из-
мененного заказа. Функция должна сгенерировать ошибку, если идентифи-
катор или параметры заказа не указаны, иначе – вернуть признак успеха. В
листинге 2.12 показано, как примерно должен выглядеть код.

Листинг 2.12. Обработчик изменения заказа

function updateOrder(id, updates) {
 if (!id || !updates)
 throw new Error('Order ID and updates object are required for updating
 the order')
 return {
 message: Order ${id} was successfully updated
 }
}

module.exports = updateOrder

Создав функцию updateOrder, проделайте те же шаги, чтобы создать
обработчик удаления заказа. Сначала создайте файл delete-order.js в папке
handlers. Затем определите в нем экспортируемую функцию deleteOrder. Эта
функция должна принимать идентификатор заказа. Если идентификатор не
указан, функция должна генерировать ошибку; иначе вернуть пустой объект.
В листинге 2.13 показано, как примерно должен выглядеть код.

Листинг 2.13. Обработчик удаления заказа

function deleteOrder(id) {
 if (!id)
 throw new Error('Order ID is required for deleting the order')
 return {}
}

module.exports = deleteOrder

Следующий шаг после реализации обработчиков – импортировать их в api.
js и создать маршруты для изменения и удаления заказов.

Чтобы определить маршрут изменения заказа, используйте метод api.put и
путь /orders/{id}; затем назначьте функцию-обработчик и верните код 400 в
случае ошибки. Вы не сможете просто передать функцию-обработчик, создан-
ную на предыдущем шаге, потому что она не принимает полный объект за-
проса; вместо этого нужно передать анонимную функцию, которая вызывает
updateOrder с идентификатором заказа, извлеченным из тела запроса. Марш-

Обработчик принимает идентификатор
и параметры измененного заказа.

Иначе вернуть сообщение
об успешном выполнении операции.

Если идентификатор или
объект updates отсутствует,

сгенерировать ошибку.

Экспортировать
функцию-обработчик.

Обработчик принимает идентификатор заказа.

Иначе вернуть пустой объект.

Если
идентификатор
отсутствует,
сгенерировать
ошибку.Экспортировать

функцию-обработчик.

 26 / 40

66    Глава 2. Создание первого бессерверного API

рут DELETE /orders оформляется так же, но с двумя отличиями: для этого ис-
пользуется метод api.delete и не требуется передавать тело запроса в функ-
цию deleteOrder.

После выполнения этого шага содержимое файла api.js должно выглядеть
как в листинге 2.14.

Листинг 2.14. Pizza API с маршрутами PUT/orders и DELETE/orders

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')
const updateOrder = require('./handlers/update-order')
const deleteOrder = require('./handlers/delete-order')

// Определения маршрутов
api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request.body)
}, {
 success: 201,
 error: 400
})

api.put('/orders/{id}', (request) => {
 return updateOrder(request.pathParams.id, request.body)
}, {
 error: 400
})

api.delete('/orders/{id}', (request) => {

Импортировать обработчик
update-order из каталога
handlers.

Импортировать обработчик
delete-order из каталога
handlers.

Добавить маршрут PUT /orders
и подключить обработчик.

Добавить маршрут DELETE /orders
и подключить обработчик.

Маршрут возвращает
код 400 в случае ошибки.

 27 / 40

2.5. Опробование!    67

 return deleteOrder(request.pathParams.id)
}, {
 error: 400
})

module.exports = api

Как обычно, откройте терминал, перейдите в папку pizza-api и запустите
команду claudia update, чтобы обновить функцию Lambda и определение API
Gateway.

По завершении обновления Pizza API вы можете использовать команды
curl из листингов 2.15 и 2.16, чтобы протестировать новые конечные точки.
Эти команды очень похожи на команду, использовавшуюся для отправки за-
проса POST, но имеют следующие отличия:

�� отличается HTTP-метод: для изменения заказа используется метод PUT,
для удаления – метод DELETE;

�� для изменения заказа требуется передать непустое тело запроса с изме-
ненным заказом;

�� для удаления заказа передавать что-либо в теле запроса не требуется.

Обе команды должны завершаться успехом.

Листинг 2.15. Команда curl для проверки маршрута PUT/orders/{id}

curl -i \
 -H "Content-Type: application/json" \
 -X PUT \
 -d '{"pizzaId":2}' \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_4/orders/42

Листинг 2.16. Команда curl для проверки маршрута DELETE/orders/{id}

curl -i \
 -H "Content-Type: application/json" \
 -X DELETE \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_4/orders/42

Команды должны вывести в терминале ответы {"message":"Order 42 was suc-
cessfully updated"}, {} соответственно, оба с кодом 200.

Посылает запрос PUT.

Маршрут возвращает
код 400 в случае ошибки.

Добавляет дополнительные
ингредиенты.

Идентификатор заказа
как параметр пути.

Идентификатор заказа
как параметр пути.

Посылает запрос DELETE.

 28 / 40

68    Глава 2. Создание первого бессерверного API

В заключение
�� Библиотека Claudia позволяет развернуть API в API Gateway и AWS Lamb-

da одной командой.
�� Для обновления API с помощью Claudia также достаточно одной коман-

ды.
�� Бессерверный API в AWS Lambda не требует какой-то особой структуры

каталогов.
�� API Gateway действует подобно регулировщику и может вызывать раз-

ные службы.
�� Чтобы связать несколько маршрутов с единственной функцией AWS

Lambda, необходимо организовать внутреннюю маршрутизацию.
�� Маршрутизатор в Claudia API Builder идентичен маршрутизаторам в

других популярных веб-библиотеках Node.js.
�� Бессерверные API обладают широкими возможностями, но они не па-

нацея, поэтому иногда традиционные API могут оказаться лучшим ре-
шением.

 29 / 40

Глава 3
Простота асинхронных

операций с Promise()

Эта глава охватывает следующие темы:

	 выполнение асинхронных операций с помощью Claudia;
	 основы асинхронных вычислений в JavaScript;
	 подключение к DynamoDB из Claudia и AWS Lambda.

В предыдущей главе мы создали простой API для обработки прейскуранта и
заказов. Вы узнали, что, в отличие от традиционного сервера Node.js, функ-
ции AWS Lambda не сохраняют состояния между вызовами. Следовательно,
для хранения заказов на доставку пиццы и любых других данных требуется
база данных или внешняя служба.

Node.js действует асинхронно, поэтому сначала мы посмотрим, как бессер-
верные вычисления влияют на асинхронные взаимодействия: как они выпол-
няются в Claudia, и, что более важно, познакомимся с рекомендуемым спо-
собом разработки бессерверных приложений. Освоив эти идеи, вы увидите,
насколько просто подключить AWS Lambda к внешней службе и как исполь-
зовать эту возможность для организации хранения заказов в AWS DynamoDB.

Так как наш мозг плохо справляется с асинхронными операциями, да и
книги пишутся в синхронной манере, будем двигаться вперед постепенно и
последовательно.

3.1. Хранение заказов
Дзынь-дзынь! Мы только что позвонили тетушке Марии. Она впечатлена на-
шей скоростью, хотя по-прежнему не может использовать приложение, по-
скольку мы не реализовали сохранение заказов на пиццу. Она еще должна
использовать старый метод с ручкой и бумагой. Чтобы закончить создание
базовой версии Pizza API, мы должны добавить хранение заказов.

 30 / 40

70    Глава 3. Простота асинхронных операций с Promise()

Перед началом разработки всегда следует выяснить, какие данные должны
храниться. В нашем случае элементарный заказ пиццы определяется выбран-
ной пиццей, адресом доставки и состоянием заказа. Для наглядности в таких
случаях информацию обычно изображают в виде диаграммы. Итак, в качестве
небольшого упражнения отвлекитесь на минутку и попытайтесь нарисовать
ее самостоятельно.

Ваша диаграмма должна быть похожа на рис. 3.1.

3
Каждый заказ должен
содержать следующую
информацию:

– состояние заказа, чтобы
 можно было понять, это
 новый заказ или уже
 выполненный;

– адрес доставки;

– пицца, выбранная
 клиентом.

Выбранная
пицца

Адрес
доставки

Состояние
заказа

Заказ на
пиццу

Рис. 3.1. Элементарный заказ на доставку пиццы

Теперь, получив представление о том, какие данные должны сохраняться,
посмотрим, как их следует организовать для хранения в базе данных. Как вы
уже знаете, мы не можем полагаться на AWS Lambda для сохранения состоя-
ния, а это означает, что хранить информацию о заказе в файловой системе
Lambda не получится.

В традиционном приложении Node.js мы использовали бы одну из попу-
лярных баз данных, таких как MongoDB, MySQL или PostgreSQL. В мире бес-
серверных вычислений каждый из поставщиков услуг имеет свою комбина-
цию систем хранения данных. AWS не имеет готового решения ни для одной
из перечисленных баз данных.

В качестве простейшей альтернативы можно использовать Amazon
DynamoDB – популярную базу данных NoSQL, которая легко подключается к
AWS Lambda.

ПРИМЕЧАНИЕ. AWS Lambda не ограничивается поддержкой только DynamoDB,
вы можете использовать также другие базы данных, но обсуждение этого вопроса
выходит за рамки данной книги.

Что такое DynamoDB?
DynamoDB – это полноценная, проприетарная служба баз данных NoSQL,
предлагаемая Amazon в рамках портфеля услуг AWS. DynamoDB предоставляет
аналогичную модель данных и получила свое название от Dynamo – высокодо-
ступной структурированной системы хранения пар ключ/значение.

 31 / 40

3.1. Хранение заказов    71

Проще говоря, DynamoDB – это еще один строительный блок с базой дан-
ных для бессерверных приложений. DynamoDB в мире баз данных NoSQL – это
то же самое, что AWS Lambda в мире вычислительных функций: полноценно,
автоматически масштабируемое и относительно дешевое решение для облач-
ных баз данных.

DynamoDB хранит данные в таблицах. Таблица – это набор данных. Каждая
таблица содержит несколько элементов. Элемент представляет нечто единое
целое и описывается группой атрибутов. Элемент можно рассматривать как
объект JSON, поскольку он имеет следующие сходные характеристики:

�� его ключи уникальны;
�� число атрибутов не ограничивается;
�� значения могут быть разных типов, в том числе числами, строками и

объектами.

Таблица – это просто хранилище модели, представленной на рис. 3.1.
Теперь нам нужно преобразовать эту модель в структуру, понятную базе

данных: в таблицу базы данных. При этом нужно иметь в виду, что DynamoDB
практически не имеет схемы, а это означает, что достаточно определить толь-
ко первичный ключ, а все остальное можно будет добавить позже. В качестве
первого шага создадим минимальную жизнеспособную таблицу для наших
заказов.

Готовы?
Итак, нам нужно сохранить каждый заказ как отдельный элемент табли-

цы. Для хранения заказов мы используем одну таблицу DynamoDB, служащую
коллекцией наших заказов. Мы будем получать заказы через API и сохранять
их в таблице DynamoDB. Каждый заказ можно описать следующим набором
характеристик:

�� уникальный номер заказа;
�� выбранная пицца;
�� адрес доставки;
�� состояние заказа.

Эти характеристики можно использовать как ключи таблицы. Таблица с за-
казами должна выглядеть, как показано в табл. 3.1.

Таблица 3.1. Структура заказов в таблице в DynamoDB

Номер заказа Состояние заказа Пицца Адрес

1 ожидает Капричоза 221Б Бейкер-стрит

2 ожидает Наполетана 29 Акация-роуд

Следующий шаг – создание таблицы. Назовем ее pizza-orders. Как и в боль-
шинстве других случаев в AWS, сделать это можно несколькими способами;

 32 / 40

72    Глава 3. Простота асинхронных операций с Promise()

мы предпочитаем интерфейс командной строки. Чтобы создать таблицу для
заказов, можно выполнить команду aws dynamicodb create-table, как показано
в листинге 3.1.

Мы должны добавить в команду несколько обязательных параметров.
Во-первых, мы должны указать имя таблицы; в нашем случае это будет
pizza-orders. Затем нужно определить атрибуты. Как уже упоминалось выше,
DynamoDB требует определить только первичный ключ, поэтому мы можем
указать лишь атрибут orderId и сообщить DynamoDB, что он будет иметь стро-
ковый тип. Мы также должны сообщить DynamoDB, что orderId будет вашим
первичным ключом (или, выражаясь терминологией DynamoDB, хеш-ключом).

Далее мы должны сообщить DynamoDB, какую пропускную способность для
операций чтения и записи она должна зарезервировать для вашего приложе-
ния. Поскольку мы пока еще только разрабатываем приложения, пропускной
способности 1 будет более чем достаточно, а кроме того, ее легко изменить
позже, воспользовавшись клиентом командной строки AWS CLI. DynamoDB
поддерживает автоматическое масштабирование, но требует определить ми-
нимальную и максимальную пропускную способность. На данный момент
нам не нужно автоматическое масштабирование, но если вы захотите узнать
больше об этом, посетите страницу http://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/AutoScaling.html.

Наконец, вам нужно выбрать регион, где будет создана таблица. Выберите тот
же регион, что и для приложения с функцией Lambda, чтобы уменьшить задерж-
ку при обмене данными с таблицей. Полная команда приводится в листинге 3.1.

Листинг 3.1. Создание таблицы DynamoDB с помощью AWS CLI

aws dynamodb create-table --table-name pizza-orders \
 --attribute-definitions AttributeName=orderId,AttributeType=S \
 --key-schema AttributeName=orderId,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1 \
 --region eu-central-1 \
 --query TableDescription.TableArn --output text

СОВЕТ. Атрибут --query в команде AWS CLI отфильтрует выходные данные и вер-
нет только те значения, которые вам нужны. Например, --query TableDescription.

TableArn вернет лишь имя ресурса Amazon (Amazon Resource Name, ARN) таблицы.
Также можно определить тип вывода, добавив атрибут --output со значением. На-
пример, --output text вернет результат в виде простого текста.

Определение пропускной
способности (чтения и

записи) для таблицы
DynamoDB.

Определение схемы ключа.

Создание таблицы pizza-orders
с помощью AWS CLI.

Определение атрибута, сообщающее
базе данных DynamoDB, что первичный

ключ имеет строковый тип (S).

По результатам вернуть имя ресурса
таблицы (Amazon Resource Name, ARN),

чтобы убедиться, что таблица создана.

Выбор региона для таблицы DynamoDB.

 33 / 40

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

3.1. Хранение заказов    73

После запуска команда из листинга 3.1 выведет ARN таблицы DynamoDB,
который выглядит примерно так:

arn:aws:dynamodb:eu-central-1:123456789101:table/pizza-orders

Вот и все! Теперь у нас есть таблица DynamoDB для хранения заказов. Да-
вайте посмотрим, как подключить ее к обработчикам маршрутов нашего API.

Чтобы подключиться к таблице DynamoDB из Node.js, необходимо устано-
вить AWS SDK для Node.js. Для этого установите модуль aws-sdk с помощью
NPM. Если вы не знаете, как это делается, загляните в приложение А.

Теперь у вас есть все ингредиенты, и пришло время сделать самый важный
шаг: приготовить из них пиццу. (К счастью, у нас есть рецепт пиццы в прило-
жении D.)

Самый простой способ взаимодействий с DynamoDB из приложения
Node.js – использовать класс DocumentClient, который действует асинхронно.
Как и любая часть AWS SDK, он отлично работает с Claudia, поэтому использу-
ем его в обработчиках маршрутов API, реализованных в главе 2.

DynamoDB DocumentClient
DocumentClient – это один из классов DynamoDB в AWS SDK. Его цель – упрос
тить работу с элементами таблицы путем абстрагирования операций. Он имеет
простой API, но мы рассмотрим только те его части, которые вам понадобятся в
этой главе. Желающие ознакомиться с документацией могут найти ее по адре-
су: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/
DocumentClient.html.

Подключить Pizza API к вновь созданной базе данных не составляет труда.
Чтобы сохранить заказ в таблице DynamoDB, нужно выполнить два шага:

1)	 импортировать AWS SDK и инициализировать экземпляр DocumentClient;
2)	 дополнить обработчик метода POST, добавив операцию сохранения за-

каза.

Поскольку в главе 2 мы разбили свой код на отдельные файлы, начнем с
файла create-order.js в папке handlers. В листинге 3.2 показано, как изменить
create-order.js, чтобы добавить сохранение нового заказа в таблице pizza-or-
ders.

Листинг 3.2. Сохранение заказа в таблице DynamoDB

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function createOrder(request) {

Импортировать AWS SDK
и инициализировать DocumentClient.

 34 / 40

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

74    Глава 3. Простота асинхронных операций с Promise()

 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address
 where pizza should be delivered')

 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: 'some-id',
 pizza: request.pizza,
 address: request.address,
 orderStatus: 'pending'
 }
 }).promise()
 .then((res) => {
 console.log('Order is saved!', res)
 return res
 })
 .catch((saveError) => {
 console.log(Oops, order is not saved :(, saveError)
 throw saveError
 })
}

module.exports = createOrder

По завершении этого шага метод POST /orders нашего Pizza API должен ра-
ботать, как показано на рис. 3.2.

Рассмотрим происходящее поближе. После импорта AWS SDK мы должны
инициализировать экземпляр класса DocumentClient. Также мы заместили воз-
врат пустого объекта в строке 7 предыдущей версии обработчика create-order.
js кодом, который сохраняет заказ в таблице с помощью DocumentClient.

Чтобы сохранить заказ в DynamoDB, мы вызвали метод DocumentClient.put,
который помещает новый элемент в базу данных, создавая новый или заме-
няя существующий элемент с тем же идентификатором. Метод put принима-
ет объект с атрибутом TableName, описывающим таблицу, и с атрибутом Item,
представляющим элемент. Проектируя таблицу в базе данных, мы решили,
что элемент должен иметь четыре атрибута: номер заказа, вид пиццы, адрес
и состояние заказа. Именно эти данные добавляются в атрибут Item объекта,
который передается методу DocumentClient.put.

Поскольку Claudia API Builder поддерживает асинхронные операции, мы ис-
пользовали метод .promise для DocumentClient.put. Метод .promise преобразует
ответ в JavaScript-объект Promise1. Возможно, вам интересно узнать, существу-
1	 Promise в переводе с англ. – «обещание». Возвращая объект Promise, класс DocumentClient обе-

щает выполнить запрошенную операцию в какой-то момент в будущем. – Прим. перев.

Сохранить новый заказ
в таблице DynamoDB.

Номер заказа может быть любой
строкой – пока он жестко зашит в код.

Вывести ответ в консоль и вернуть данные,
когда объект Promise завершит выполнение.

Экземпляр DocumentClient имеет метод
.promise, возвращающий объект Promise.

Если Promise завершился с ошибкой, вывести
сообщение об ошибке и снова сгенерировать ее, чтобы

дать возможность обработать в файле api.js.

Экспортировать функцию-обработчик.

 35 / 40

3.2. Обещание доставить меньше чем за 30 минут!     75

ют ли какие-либо отличия в работе объектов Promise в бессерверных приложе-
ниях и как Claudia обрабатывает асинхронный обмен данными. В следующем
разделе вы найдете краткое описание объектов Promise и как они работают с
Claudia и Claudia API Builder. Если вы уже знакомы с этими понятиями, можете
смело переходить к разделу 3.3.

HTTP-запрос

Функция Lambda

DynamoDB

Data: {},
success: true

{}, status 201

Данные о заказе

{}, status 201

HTTP-ответ

API Gateway

API Gateway

Claudia API Builder

Claudia API Builder

Обработчик
маршрута

POST /orders

таблица
“pizza-orders”

POST /orders
Data:
{
 “pizza”: “Margherita”,
 “address”: “221b Baker Street”
}

Данные в запросе POST /
orders, описывающие заказ.

После подтверждения функция-
обработчик передает признак
успеха в Claudia API Builder,
который, в свою очередь,
посылает код успешного
выполнения пользователю
через API Gateway.

Функция createOrder посылает
информацию
о заказе в таблицу DynamoDB
и получает подтверждение,
что заказ успешно сохранен.

Запрос передается
функции-обработчику
маршрута POST /orders.

API Gateway вызывает
функцию, и Claudia API
Gateway получает запрос.

Рис. 3.2. Поток обработки запроса POST /orders в Pizza API
с использованием базы данных DynamoDB

3.2. Обещание доставить меньше чем
за 30 минут!
Процесс приготовления пиццы включает замешивание теста, выпекание, до-
бавление ингредиентов на основу и т. д. Все это асинхронные операции. Если
бы они были синхронными, пиццерия тетушки Марии застопорилась бы и

 36 / 40

76    Глава 3. Простота асинхронных операций с Promise()

перестала выполнять любые другие операции до окончания текущей. Напри-
мер, вам пришлось бы ждать, пока тесто поднимется, и только потом делать
что-то еще. И за такую трату времени тетушка Мария уволит кого угодно, даже
вас! Поскольку большинство сред выполнения JavaScript является однопоточ-
ными, многие длительные операции, такие как сетевые запросы, выполня-
ются асинхронно. Асинхронное выполнение реализуется двумя известными
способами: с помощью обратных вызовов и обещаний (объектов Promise). На
момент написания этих строк для всех приложений Node.js рекомендовался
способ с использованием объектов Promise. Мы не будем описывать обратные
вызовы, так как вы, скорее всего, уже знакомы с ними.

Асинхронные обещания
Обещание, или объект Promise, представляет результат асинхронной операции,
который будет получен в будущем.

Объект обещания (Promise) сродни обычным обещаниям, которые мы часто
даем партнерам, друзьям, родителям и детям:

�� «Дорогой, ты вынесешь мусор?»
�� «Да, дорогая, я обещаю сделать это!»

Угадайте, кто через пару часов вынесет мусор?
По большому счету объекты Promise – это всего лишь удобные обертки во-

круг обратных вызовов. Объекты Promise используются для обертывания неко-
торого действия или операции и, подобно обычным обещаниям, могут оказы-
ваться в двух состояниях: выполнено или отвергнуто (не выполнено).

Объекты Promise могут иметь связанные с ними условия, и тогда мощь асин-
хронных вычислений проявляется особенно ярко:

�� «Джонни, когда закончишь убирать свою комнату, сможешь пойти по-
гулять!»

Этот пример демонстрирует возможность организовать выполнение опре-
деленных действий только после успешного выполнения некоторой асинхрон-
ной операции. Аналогично, есть возможность приостановить выполнение
определенных блоков кода в ожидании завершения асинхронной операции.

Листинг 3.3 реализует на JavaScript обещание, данное в предложении
выше.

Листинг 3.3. Отпускаем Джонни погулять, используя подход с обещаниями

function tellJohhny(homework) {
 return finish(homework)
 .then(finishedHomework => {

finish, getOut и play – это асинхронные функции,
но все они возвращают обещания, которые
можно объединить в цепочку.

 37 / 40

3.2. Обещание доставить меньше чем за 30 минут!     77

 return getOut(finishedHomework);
 })
 .then(result => {
 return play();
 })
 .catch(error => {
 console.log(error);
 });
}

Объекты Promise обладают следующими особенностями:

�� могут объединяться в цепочки – как показано в листинге 3.3, объекты
обещаний можно объединять в цепочки и передавать результаты из од-
ного блока кода в другой;

�� выполняются параллельно – можно одновременно выполнить две функ-
ции и получить результаты обеих одновременно;

�� позволяют прерывать асинхронные операции – если функция вернула
ошибку или ее результат стал не нужен, вы можете отвергнуть полу-
ченный результат или в любой момент прервать выполнение функции.
В отличие от подхода на основе обратных вызовов, прерывание работы
объекта Promise останавливает выполнение всей цепочки обещаний;

�� восстановление после ошибки – используя блок catch, легко можно пере-
хватить и обработать возникшую ошибку.

Некоторые клиенты заказывают несколько пицц в одном заказе, и все они
доставляются вместе, а не по одной. Если бы доставка осуществлялась иначе,
клиенты были бы крайне недовольны такой неэффективностью. Поэтому по-
вар обычно печет все пиццы одновременно, а доставщик ждет, пока все они
приготовятся.

Этот процесс реализует код в листинге 3.4.

Листинг 3.4. Одновременное выпекание нескольких пицц

function preparePizza(pizzaName) {
 return new Promise((resolve, reject) => {
 // Выпекание пиццы
 resolve(bakedPizza);
 });
}

function processOrder(pizzas) {
 return Promise.all([
 preparePizza('extra-cheese'),

getOut вызывается только после того, как
Джонни закончит уборку в своей комнате.

Перехватывает ошибки, возникшие
при выполнении любых функций
в цепочке обещаний.

 38 / 40

78    Глава 3. Простота асинхронных операций с Promise()

 preparePizza('anchovies')
]);
}

return processOrder(pizzas)
 .then((readyPizzas) => {
 // Вывести результат приготовления пиццы с двойным сыром
 console.log(readyPizzas[0]);
 // Вывести результат приготовления пиццы с анчоусами
 console.log(readyPizzas[1]);
 return readyPizzas;
})

Как демонстрируют листинги 3.3 и 3.4, объекты обещаний Promise здорово
помогают организовать процесс. Они позволяют справиться с любой ситуа-
цией в пиццерии тетушки Марии и помогают правильно описать все процес-
сы. Библиотека Claudia поддерживает все возможности Promise, так что вы без
труда сможете использовать их. В листинге 3.5 показан простой пример, когда
обработчик задерживает ответ на одну секунду. Поскольку функция setTime-
out не возвращает экземпляр Promise, ее вызов нужно обернуть инструкцией
Promise().

Листинг 3.5. Обертывание асинхронной операции, не возвращающей экземпляр
объекта обещания Promise

const Api = require('claudia-api-builder')
const api = new Api()

api.get('/', request => {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('Hello after 1 second')
 }, 1000)
 })
})

module.exports = api

Как видите, в отличие от некоторых популярных фреймворков для Node.js,
Claudia API Builder передает запрос в обработчик маршрута. В главе 2, чтобы
отправить ответ, мы просто возвращали значение, но в случае асинхронной
операции мы должны вернуть обещание – экземпляр Promise. Получив его,
Claudia API Builder дождется выполнения операции и вернет полученное зна-
чение в ответе.

Заключить асинхронную операцию
в JavaScript-объект Promise.

Вызвать setTimeout для
односекундной задержки.

Использовать метод resolve для
отправки ответа в Claudia API Builder.

 39 / 40

3.3. Опробование API    79

ПРИМЕЧАНИЕ. AWS SDK имеет встроенную поддержку JavaScript-объектов
Promise. Все классы SDK имеют метод promise, возвращающий обещание.

3.3. Опробование API
После краткого знакомства с обещаниями снова выполните команду claudia
update в папке pizza-api и разверните код. Менее чем через минуту вы сможете
протестировать API и проверить его работу.

Для тестирования снова используем команду curl из главы 2:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_1/orders

ПРИМЕЧАНИЕ. Не забудьте заменить URL в команде своим URL, который верну-
ла команда claudia update.

Вот так так ! Команда curl вернула:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 219
Date: Mon, 25 Sep 2017 06:53:36 GMT

{"errorMessage":"User: arn:aws:sts::012345678910:assumed-role/pizza-api
 -executor/book-pizza-api
is not authorized to perform: dynamodb:PutItem on resource:
arn:aws:dynamodb:eu-central-1:012345678910:table/pizza-orders"}

В чем ошибка?
Команда сообщила, что роль, которой наделена наша функция Lambda

(arn:aws:sts::012345678910:assumed-role/pizza-api-executor/book-pizza-api), не
допускает выполнения команды dynamodb:PutItem в базе данных DynamoDB
(arn:aws:dynamodb:eu-central-1:012345678910:table/pizza-orders).

Чтобы устранить проблему, нужно добавить IAM-политику, которая позво-
лит нашей функции Lambda взаимодействовать с базой данных. Сделать это
можно с помощью команды claudia create с ключом --policies. Но будьте вни-
мательны: команда claudia update не поддерживает этот ключ – библиотека
Claudia не дублирует возможности одной команды в другой.

ПРИМЕЧАНИЕ. В AWS все ограничивается политиками IAM, которые напоми-
нают политики авторизации. Политика IAM аналогична визе в паспорте. Чтобы
въехать в определенную страну, необходимо иметь действующую визу.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

80    Глава 3. Простота асинхронных операций с Promise()

Сначала определим роль в файле JSON. Создайте новую папку roles в кор-
невом каталоге проекта. Затем создайте файл роли для DynamoDB. Сохраните
его с именем dynamicodb.json и добавьте в него код из листинга 3.6. Вам нужно
разрешить вашей функции Lambda читать, удалять и помещать элементы в
таблице. Поскольку в будущем у вас может появиться больше таблиц, приме-
ним это правило ко всем таблицам, а не только к той, которая есть сейчас.

Листинг 3.6. Файл JSON с описанием роли DynamoDB

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:Scan",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

СОВЕТ. В промышленном приложении вам могут понадобиться более точные
роли, запрещающие доступ функциям Lambda ко всем таблицам в DynamoDB.
Узнать больше о ролях и политиках можно на странице http://docs.aws.amazon.
com/IAM/latest/UserGuide/access_policies.html.

Теперь можно использовать команду put-role-policy, чтобы добавить по-
литику к своей роли, как показано в листинге 3.7. Для этого нужно указать
роль, которую использует функция Lambda, имя политики и абсолютный путь
к файлу dynamodb.json. Где сохраняется роль? Помните файл claudia.json, соз-
данный библиотекой Claudia в корневой папке проекта? Откройте этот файл,
и вы увидите атрибут role в разделе lambda.

Листинг 3.7. Добавление политики для роли Lambda, позволяющей взаимодейст-
вовать с таблицами в DynamoDB

aws iam put-role-policy \
 --role-name pizza-api-executor \

Разрешить ("Allow") описанные действия.

Это правило применяет роль
ко всем таблицам в DynamoDB.

Определение версии.

Определение инструкции для этой роли.

Определение конкретных действий,
допускаемых или отвергаемых этой ролью.

Команда put-role-policy добавляет политику.

Роль Lambda из файла claudia.json,
для которой определяется политика.

 1 / 40

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

3.3. Опробование API    81

 --policy-name PizzaApiDynamoDB \
 --policy-document file://./roles/dynamodb.json

ПРИМЕЧАНИЕ. Путь к dynamicodb.json должен указываться с префиксом file://.
Если вы решите указать абсолютный путь, то должны после file: добавить три сле-
ша. Первые два относятся к определению протокола file://, а третий обозначает
начало абсолютного пути.

Команда из листинга 3.7 ничего не выводит. Это нормально, потому что
отсутствие ответа означает, что все прошло благополучно.

Теперь снова выполните ту же команду curl и попробуйте добавить заказ:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_1/orders

ПРИМЕЧАНИЕ. На этот раз не нужно повторно развертывать код, потому что он
не изменился. Мы лишь изменили роль для функции Lambda.

Команда curl должна вернуть {} с кодом 201. Если у вас это получилось, по-
здравляем! Ваша база данных подключена и работает! Но как узнать, что за-
каз действительно сохранился в таблице?

У AWS CLI есть ответ на этот вопрос. Чтобы вывести список всех элементов
в вашей таблице, выполните команду scan. Команда scan вернет все элементы,
хранящиеся в таблице, если вызвать ее без фильтра. Чтобы вывести список
всех элементов в таблице, выполните команду из листинга 3.8.

Листинг 3.8. Команда для вывода списка всех элементов из таблицы pizza-orders

aws dynamodb scan \
 --table-name pizza-orders \
 --region eu-central-1 \
 --output json

Эта команда «просканирует» таблицу pizza-orders и вернет результат в виде
объекта JSON. Есть возможность изменить формат вывода, передав параметр
text. В этом случае вы получите результат в виде обычного текста. Также под-
держиваются и другие форматы вывода, включая XML.

Команда должна вернуть результат, как показано в листинге 3.9: ответ в
формате JSON с количеством записей и массивом всех элементов из таблицы.

Имя политики.
Использовать файл dynamodb.json
как источник для создания политики.

Команда scan выводит список всех элементов в таблице.

Команде нужно передать параметр с именем таблицы.

Также можно определить формат вывода результатов.

 2 / 40

82    Глава 3. Простота асинхронных операций с Promise()

Листинг 3.9. Результат применения команды scan к таблице pizza-orders

{
 "Count": 1,
 "Items": [
 {
 "orderId": {
 "S": "some-id"
 },
 "orderStatus": {
 "S": "pending"
 },
 "pizza": {
 "N": 4
 },
 "address": {
 "S": "221b Baker Street"
 }
 }
],
 "ScannedCount": 1,
 "ConsumedCapacity": null
}

Отлично! Похоже, что наш API работает так, как ожидалось!
Попробуйте добавить еще один заказ с помощью той же команды curl, на-

пример пиццу Napoletana с адресом доставки 29 Acacia Road. Если потом снова
запустить команду из листинга 3.8, вы увидите только один элемент в вашей
таблице – предыдущий таинственным образом исчез!

Почему так получилось?
Помните, что мы жестко зашили номер заказа orderId в код обработчика

create-order.js (см. листинг 3.2)?
Каждый заказ должен иметь уникальный первичный ключ, а мы использо-

вали один и тот же номер, поэтому новый заказ заменил старый.
Чтобы решить эту проблему, нужно установить модуль uuid из NPM и сохра-

нить его как зависимость. uuid – это простой модуль, генерирующий универ-
сально-уникальные идентификаторы (universally unique identifiers).

После установки модуля измените обработчик create-order.js, как показано
в листинге 3.10. Чтобы получить уникальный идентификатор, достаточно им-
портировать и вызвать функцию uuid. Имейте в виду, в листинге 3.10 показана
только часть обработчика create-order.js, затронутая изменениями; остальной
код остался без изменений (см. листинг 3.2).

Элементы возвращаются в виде
массива Items-объектов.

Команда возвращает также некоторые дополнительные
метаданные, например пропускную способность,
израсходованную запросом.

Количество элементов в таблице.

Значение каждого атрибута – это объект,
содержащий ключ с типом атрибута и фактическое
значение атрибута (S – строка, N – число).

Каждый атрибут возвращается
как ключ объекта Item.

 3 / 40

3.4. Извлечение заказов из базы данных    83

Универсально-уникальные идентификаторы
Универсально-уникальный идентификатор – это 128-битное значение, исполь-
зуемое для идентификации информации в компьютерных системах. Он более
широко известен под аббревиатурой UUID. Иногда его называют глобально-
уникальным идентификатором (Globally Unique IDentifier, GUID).
Универсально-уникальные идентификаторы стандартизованы фондом сво-
бодного программного обеспечения Open Software Foundation (OSF) как часть
среды распределённых вычислений (Distributed Computing Environment, DCE).
Узнать больше о стандарте UUID можно в документе RFC 4122 (описывающем
этот стандарт), доступном по адресу: http://www.ietf.org/rfc/rfc4122.txt.

Листинг 3.10. Добавление универсально-уникального идентификатора UUID
в заказ при его создании

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const uuid = require('uuid')

function createOrder(request) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: request.pizza,
 address: request.address,
 status: 'pending'
 }
 }).promise()

// Остальной код не изменился

Повторно разверните код командой claudia update, выполните ту же коман-
ду curl, что использовалась для тестирования API, и затем снова вызовите
команду scan из листинга 3.8. Вы увидите, что появился новый заказ с уни-
кальным идентификатором, который выглядит примерно так: 8c499027-a2d7-
4ad9-8360-a49355021adc. Попробовав добавить еще заказы, вы увидите, что те-
перь все они сохраняются в таблице.

3.4. Извлечение заказов из базы данных
Извлечь заказ, сохраненный в таблице, намного проще. Для этого можно ис-
пользовать метод scan класса DocumentClient.

Импортировать модуль uuid,
установленный с помощью NPM.

Вызвать функцию uuid, чтобы получить
уникальный идентификатор для заказа.

Остальной код в файле остался
прежним, как в листинге 3.2.

 4 / 40

http://www.ietf.org/rfc/rfc4122.txt.

84    Глава 3. Простота асинхронных операций с Promise()

Метод scan действует подобно одноименной команде в AWS CLI, отличаясь
лишь тем, что требует передать параметр с объектом, содержащим атрибуты,
которые описывают операцию сканирования. Единственным обязательным
атрибутом в этом объекте является атрибут с именем таблицы.

Обработчик get-orders.js может не только сканировать таблицу, но и из-
влекать элементы по их идентификаторам. То же самое можно сделать, от-
фильтровав результаты сканирования, но это неэффективное решение. Более
эффективный подход заключается в использовании метода get, который дей-
ствует почти так же, но дополнительно требует указать ключ извлекаемого
элемента.

Изменим наш файл get-orders.js в папке handlers, добавив в него сканиро-
вание таблицы с заказами или извлечение единственного элемента, если был
указан его ключ. Код должен выглядеть, как показано в листинге 3.11. После
внесения этих изменений снова разверните функцию Lambda командой clau-
dia update.

Листинг 3.11. Обработчик get-orders.js читает данные из таблицы pizza-orders

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function getOrders(orderId) {
 if (typeof orderId === 'undefined')
 return docClient.scan({
 TableName: 'pizza-orders'
 }).promise()
 .then(result => result.Items)

 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
}

module.exports = getOrders

Давайте проверим его! Сначала извлечем все заказы следующей коман-
дой curl:

curl -i \
 -H "Content-Type: application/json" \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_2/orders

И снова, метаданные нам не интересны,
поэтому возвращаем только элемент.

Импортировать и инициализировать
DocumentClient.

Метаданные нам не интересны, поэтому
вернуть только элементы.

Если указан идентификатор заказа, использовать метод
get, чтобы получить только требуемый элемент.

Сканировать таблицу pizza-orders.

Метод get требует указать первичный ключ –
в данном случае orderId.

 5 / 40

3.5. Опробование!    85

Она должна вывести примерно такой список:

HTTP/1.1 200 OK
[{
 "address": "29 Acacia Road",
 "orderId": "629d4ab3-f25e-4110-8b76-aa6d458b1fce",
 "pizza": 4,
 "orderStatus":"pending"
}, {
 "address": "29 Acacia Road",
 "orderId": "some-id",
 "pizza": 4,
 "status": "pending"
}]

Не волнуйтесь, если увидите у себя другие идентификаторы заказов; так и
должно быть, потому что они уникальные.

Теперь попробуйте передать один из идентификаторов, чтобы получить
только один заказ, выполнив следующую команду curl:

curl -i \
 -H "Content-Type: application/json" \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_2/
 orders/629d4ab3-f25e-4110-8b76-aa6d458b1fce

Результат должен выглядеть примерно так:

HTTP/1.1 200 OK
{
 "address": "29 Acacia Road",
 "orderId": "629d4ab3-f25e-4110-8b76-aa6d458b1fce",
 "pizza": 4,
 "status": "pending"
}

Все работает! Это было легко и просто, верно?

3.5. Опробование!
Как вы уже видели, сохранение заказов в базе данных и их извлечение реали-
зуется довольно просто. Но тетушка Мария сказала нам, что иногда клиенты
совершают ошибки и заказывают не ту пиццу, поэтому ей нужна возможность
изменить или отменить заказ пиццы.

 6 / 40

86    Глава 3. Простота асинхронных операций с Promise()

3.5.1. Упражнение
Чтобы выполнить просьбу тетушки Марии, подключите к базе данных еще

две конечные точки:

1)	 добавьте в обработчик update-order.js возможность изменения сущест
вующего заказа в таблице pizza-orders;

2)	 добавьте в обработчик delete-order.js возможность удаления заказа из
таблицы pizza-orders.

После выполнения упражнения структура файлов в Pizza API должна выгля-
деть, как показано на рис. 3.3.

Claudia
API Builder api.js

data/
pizzas.json

handlers/
create-order.js

handlers/
update-order.js

handlers/
delete-order.js

handlers/get-
pizzas.js

таблица
“pizza-orders”

Входящие запросы
обрабатываются в Claudia API

Builder, который затем
передает их в файл api.js,

где определяются внутренние
маршруты.

В соответствии
с описанием маршрутов

в api.js выбирается
обработчик для

обработки запроса.

get-pizzas.js из папки handlers
возвращает прейскурант

со списком всех пицц, который
определен в файле pizzas.json

в папке data.

Но остальные методы API
подключаются к таблице pizza-

orders в базе данных DynamoDB
и используют ее для сохранения,
изменения и удаления заказов.

Подсвеченные части –
это элементы API,
затрагиваемые
упражнением в этом
разделе, – конечные
точки, отвечающие за
изменение и удаление
заказов из таблицы в
DynamoDB.

Функция
Lambda

DynamoDB

Рис. 3.3. Структура файлов и каталогов проекта Pizza API после подключения
всех конечных точек к таблице DynamoDB. Элементы, затронутые изменениями,

выделены другим цветом

Код решения приводится в следующем разделе. Но, прежде чем перейти к
нему, попробуйте выполнить упражнение самостоятельно, но если возникнут
затруднения, можете подглядеть одним глазком.

Несколько подсказок:

�� для изменения и удаления заказов используйте класс DocumentClient;
�� для изменения существующего заказа используйте метод DocumentClient.
update. Кроме TableName, вы должны будете передать в вызов этого метода
дополнительные параметры: Key, UpdateExpression и др. За более полной

 7 / 40

3.5. Опробование!    87

информацией обращайтесь к официальной документации для Claudia
API Builder: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Dyna-
moDB/DocumentClient.html#update-property;

�� если метод update покажется вам слишком сложным, вспомните, что
метод DocumentClient.put заменяет существующий заказ новым, если их
первичные ключи совпадают, поэтому можете попробовать использо-
вать его;

�� для удаления существующего заказа используйте метод DocumentClient.
delete. Вы должны передать в этот метод объект с атрибутами TableName
и Key. За более полной информацией обращайтесь к официальной доку-
ментации: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Dyna-
moDB/DocumentClient.html#delete-property;

�� не забудьте вернуть Promise и передать значение.

Если упражнение покажется вам слишком простым и вы захотите услож-
нить его, попробуйте также реализовать:

�� измените обработчики update-order.js и delete-order.js, чтобы можно
было изменять или удалять только невыполненные заказы, потому что
клиенты не должны иметь возможности изменять заказы, которые уже
были доставлены;

�� измените обработчик get-orders.js, добавив фильтрацию по состоянию
заказа. По умолчанию он должен возвращать только заказы, находящие
ся в состоянии ожидания выполнения.

Решение этих дополнительных заданий вместе с комментариями можно
найти в исходном коде примера.

3.5.2. Решение
Вы уже закончили? Или решили подглядеть? Если закончили, отлично! Но

даже если вы не справились с упражнением, ничего страшного. База данных
DynamoDB немного отличается от других популярных баз данных noSQL, и
вам может понадобиться время, чтобы освоить ее.

А теперь рассмотрим решение. В листинге 3.12 показаны изменения в фай-
ле update-order.js.

Листинг 3.12. Изменение заказа в таблице pizza-orders

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function updateOrder(orderId, options) {
 if (!options || !options.pizza || !options.address)

Импортировать и инициализировать
DocumentClient.

 8 / 40

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property

88    Глава 3. Простота асинхронных операций с Promise()

 throw new Error('Both pizza and address are required to update an order')

 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set pizza = :p, address=:a',
 ExpressionAttributeValues: {
 ':p': options.pizza,
 ':a': options.address
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 .then((result) => {
 console.log('Order is updated!', result)
 return result.Attributes
 })
 .catch((updateError) => {
 console.log(`Oops, order is not updated :(`, updateError)
 throw updateError
 })
}

module.exports = updateOrder

Этот код несильно отличается от кода в обработчике create-order.js. Вот два
основных отличия:

�� вызывается метод DocumentClient.update с параметром Key, представляю-
щим идентификатор заказа orderId;

�� в метод передается больше параметров – orderId и новые значения для
атрибутов (pizza и address).

СОВЕТ. Синтаксис метода update может показаться немного запутанным из-за
атрибутов UpdateExpression, ExpressionAttributeValues и ReturnValues. Но эти
атрибуты довольно просты. Комментарии в листинге 3.12 объясняют их. За бо-
лее полной информацией обращайтесь к официальной документации: http://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.
UpdateExpressions.html.

В листинге 3.13 показаны изменения в файле delete-order.js. Они напоми-
нают изменения в файлах create-order.js и update-order.js; единственное от-
личие – здесь используется метод DocumentClient.delete.

Экспортировать обработчик.

Передать идентификатор и объект
с атрибутами для изменения заказа.

Определение ключа заказа.
Описание изменения
атрибутов заказа.

Передать значения
в выражение UpdateExpression.

Сообщить DynamoDB, что требуется
вернуть новый элемент.

Просто вывести ответ или ошибку и
передать значение – мы используем
его в главе 5 для отладки.

 9 / 40

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html.
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html.
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html.

3.5. Опробование!    89

Листинг 3.13. Удаление заказа из таблицы pizza-orders

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function deleteOrder(orderId) {
 return docClient.delete({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then((result) => {
 console.log('Order is deleted!', result)
 return result
 })
 .catch((deleteError) => {
 console.log(Oops, order is not deleted :(, deleteError)
 throw deleteError
 })
}

module.exports = deleteOrder

Это было совсем несложно, верно?
Теперь снова запустите команду claudia update из папки pizza-api, чтобы

повторно развернуть код. Чтобы убедиться, что все работает правильно, ис-
пользуйте те же команды curl, которые применялись в главе 2. Скопируйте их
из листингов 3.14 и 3.15 и вставьте в окно терминала. Не забудьте заменить
значение orderId. Без этого команды не будут работать, потому что это просто
заполнитель.

Листинг 3.14. Команда curl для тестирования маршрута PUT /orders/{orderId}

curl -i \
 -H "Content-Type: application/json" \
 -X PUT \
 -d '{"pizza": 3, "address": "221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_3/
 orders/some-id

Эта команда должна вернуть:

HTTP/1.1 200 OK
{

Экспортировать обработчик.

Импортировать и инициализировать
DocumentClient.

Передать идентификатор заказа.

Не забудьте заменить some-id
действительным

идентификатором заказа.

Использовать метод DocumentClient.delete
для удаления заказа.

Не забудьте вызвать метод .promise,
чтобы вернуть экземпляр Promise.

Передать orderId, первичный ключ в таблице.

Вывести ответ или
ошибку и передать
значение.

 10 / 40

90    Глава 3. Простота асинхронных операций с Promise()

 "address": "221b Baker Street",
 "orderId": "some-id",
 "pizza": 3
 "status": "pending"
}

Листинг 3.15. Команда curl для тестирования маршрута DELETE /orders/{orderId}

curl -i \
 -H "Content-Type: application/json" \
 -X DELETE \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_3/
 orders/some-id

Эта команда должна вернуть:

HTTP/1.1 200 OK
{}

В заключение
�� Для создания полезного бессерверного приложения часто требуется ис-

пользовать сторонние службы, например для хранения информации в
базе данных или для получения данных из других API.

�� Взаимодействия с внешними службами выполняются асинхронно.
�� Claudia позволяет вызывать асинхронные функции с помощью Java

Script-объектов Promise.
�� JavaScript-объекты Promise упрощают выполнение асинхронных опера-

ций. Они также позволяют решить проблему, известную под названием
«ад обратных вызовов», за счет возможности объединять асинхронные
операции в цепочки, передавать значения между ними и возвращать
ошибки.

�� Простейший способ организовать хранение данных в функциях AWS
Lambda – использовать DynamoDB, базу данных NoSQL, которая являет-
ся частью экосистемы AWS.

�� Для использования DynamoDB из Node.js требуется установить модуль
aws-sdk. Кроме того, AWS SDK предлагает также класс DocumentClient, по-
могающий сохранять, извлекать, изменять и удалять элементы в табли-
цах DynamoDB.

�� Таблицы DynamoDB напоминают коллекции в традиционных базах дан-
ных NoSQL. К сожалению, DynamoDB поддерживает только запросы по
первичному ключу, который может быть комбинацией хеш-ключа и
диапазона.

Не забудьте заменить some-id
действительным

идентификатором заказа.

 11 / 40

Глава 4
Доставка пиццы: подключение

к внешней службе

Эта глава охватывает следующие темы:

	подключение бессерверной функции к внешней службе через
HTTP API;

	решение распространенных проблем асинхронных взаимодейст
вий с помощью Claudia API Builder.

Как мы уже говорили в предыдущей главе, асинхронные операции в AWS
Lambda выполняются с помощью Claudia API Builder. Там же мы рассказали,
как создать базу данных для заказов на пиццу, и написали функции для их
хранения, поиска, обновления и удаления. Но наше приложение способно на
гораздо большее.

В этой главе мы покажем, как подключить бессерверное приложение к
внешней службе HTTP, добавив в него возможность использовать API компа-
нии Some Like It Hot и предлагать больше услуг по доставке на дом. Вы узнаете,
как сформировать HTTP-запрос в AWS Lambda, как обрабатывать ответы с со-
общениями об ошибках и как определить точку входа с помощью Claudia API
Builder. Вы также познакомитесь с самыми распространенными проблемами
и подводными камнями асинхронных операций и узнаете, как их решать, а
также как избежать их появления.

4.1. Подключение к внешней службе
Дзынь-дзынь! Снова звонок от тетушки Марии. Она довольна и благодарит
вас за проделанную работу, но в ее голосе чувствуется легкое беспокойство.
После секундной паузы она просит об одолжении.

Просьба касается организации доставки. Каждый раз, когда пиццерия вы-
полняет заказ и хочет доставить его клиенту, сотруднику приходится звонить

 12 / 40

92    Глава 4. Доставка пиццы: подключение к внешней службе

в компанию Some Like It Hot, осуществляющую доставку. Это не было пробле-
мой, пока количество заказов на пиццу не начало расти с недавнего времени
(спасибо вам!). Но теперь это отнимает слишком много времени, поэтому те-
тушка Мария хочет, чтобы вы нашли альтернативное решение. К счастью, ком-
пания Some Like It Hot имеет свою веб-службу. Можно ли подключиться к ней?

Как мы уже говорили, бессерверное приложение может подключиться к:

�� базе данных (DynamoDB, Amazon RDS);
�� другой функции Lambda;
�� другой службе AWS (SQS, S3 и многим другим);
�� внешнему API.

Веб-служба Like It Hot как раз принадлежит к последней категории.

Подключение бессерверных приложений
	Подключение к базе данных. Как упоминалось в предыдущей главе, неко-

торым приложениям необходима более структурированная база данных
и DynamoDB не подходит для их задач. AWS Lambda предлагает мно-
жество других возможностей, и вы можете подключиться практически к
любой другой базе данных, включая MySQL или PostgreSQL, воспользо-
вавшись службой Amazon Relational Database Service (RDS).

 Amazon RDS – это веб-служба, упрощающая настройку, использование и
масштабирование реляционной базы данных в облаке. Она обеспечива-
ет экономически эффективную модель размещения стандартной реляци-
онной базы данных и управляет общими задачами администрирования.
Узнать больше о RDS можно на странице: https://aws.amazon.com/rds/.

	Подключение к функции Lambda. Иногда требуется подключить функцию
Lambda к другой функции Lambda или вызвать саму себя. Это можно сде-
лать с помощью механизма асинхронных вызовов в AWS SDK. Данный
метод имеет широкое применение, например Claudia Bot Builder исполь-
зует его для доставки отложенных сообщений Slack. Подробнее о Claudia
Bot Builder мы поговорим во второй части этой книги.

	Подключение к другой службе AWS. AWS предлагает широкий спектр раз-
личных услуг, включая услугу простой очереди Simple Queue Service
(SQS), услугу простого хранилища Simple Storage Service (S3) и многие
другие. Подключения к другим службам AWS (например, SQS или S3) час
то используются на практике, но точно так же можно подключаться к сто-
ронним службам, используя AWS SDK. Некоторые из этих служб описаны
в последующих главах данной книги.

Все перечисленные варианты подключения поддерживаются библиотекой
Claudia и описаны в этой книге. Первый мы рассмотрели в предыдущей гла-
ве, а последний рассмотрим в этой. Главы с 8 по 10 (описывающие создание
чат-ботов) будут посвящены подключению к функциям Lambda.

 13 / 40

https://aws.amazon.com/rds/

4.2. Подключение к API компании доставки    93

4.2. Подключение к API компании доставки
Начнем с обработчика createOrder в файле create-order.js, находящемся в пап-
ке handlers внутри проекта. После того как обработчик createOrder сохранит
заказ в базе данных, мы должны подключиться к API компании Some Like It
Hot, чтобы запланировать доставку. Алгоритм работы приложения в этой си-
туации показан на рис. 4.1.

Some Like It Hot API

DynamoDB

Pizza API

Claudia API Builder

Создание заказа

Пользователь заказывает пиццу
и посылает запрос в Pizza API.

И ждет ответа.

Claudia API Builder принимает
запрос и передает его
обработчику createOrder.

После проверки заказа
обработчик createOrder посылает
запрос на доставку веб-службе
компании Some Like It Hot.

Получив ответ от веб-службы,
обработчик createOrder
сохраняет заказ в таблице
pizza-orders.

Получив ответ, обработчик
createOrder формирует ответ
и посылает его клиенту
(и спустя какое-то время
клиент получит свою пиццу).

Рис. 4.1. Подключение обработчика createOrder к веб-службе
компании доставки Some Like It Hot

Прежде чем приступить к подключению, рассмотрим API компании достав-
ки Some Like It Hot, описанный в следующем разделе.

4.2.1. API компании доставки Some Like It Hot
Тетушка Мария довольна услугами компании доставки Some Like It Hot.

По разумной цене они забирают и доставляют пиццы, пока они еще горячие.

 14 / 40

94    Глава 4. Доставка пиццы: подключение к внешней службе

И у них хорошо отлажена работа отдела приема заказов по телефону; сотруд-
ники вежливы и быстро принимают заказы. Но это все еще узкое место – у них
не так много сотрудников, сидящих на телефоне, и, несмотря на высокую ско-
рость их работы, иногда приходится ждать какое-то время, пока сотрудник
освободится и сможет ответить на ваш звонок, что является проблемой, когда
нужно организовать доставку большого числа заказов каждый день.

Давайте заглянем на их веб-сайт и посмотрим, есть ли простой способ
отправить им запрос. Даже простенькая веб-форма много лучше телефонно-
го звонка. И тут нас поджидает приятный сюрприз! Компания доставки не
только предлагает хорошее решение, но и полноценный API со следующими
конечными точками:

�� 	POST /delivery создает новую заявку на доставку и возвращает иденти-
фикатор заявки и примерное время ее выполнения;

�� 	GET /delivery возвращает список запланированных к выполнению за
явок, поданных вашим рестораном;

�� 	GET /delivery/{id} возвращает код состояния указанной заявки;
�� 	DELETE /delivery/{id} отменяет заявку, но только в течение первых 10 ми-

нут после ее создания.

Это не самый лучший API, но он достаточно хорош, чтобы мы могли авто-
матизировать процесс.

API КОМПАНИИ SOME LIKE IT HOT НЕ НАСТОЯЩИЙ API. Имейте в виду, что API
компании Some Like It Hot на самом деле... не настоящий. Мы создали фиктивный
API с использованием Claudia и AWS Lambda, чтобы вы могли подключить свое
тестовое приложение. Как вы увидите далее, он возвращает фиктивные данные о
времени и расстоянии, не связанных с введенным вами адресом.
Исходный код API открыт, и вы сможете увидеть его и документацию к нему на
сайте https://github.com/effortless-serverless/some-like-it-hot-delivery.
Вы можете без опаски использовать его – на самом деле он не исполняет никаких
заявок и создан только ради тестирования ваших приложений!

Мы не будем углубляться в описание Some Like It Hot API, но познакомим
вас с наиболее важными особенностями каждой конечной точки этого API по
мере подключения к ним.

4.2.2. Создание первой заявки на доставку
Как уже рассказывала тетушка Мария, чтобы организовать доставку заказа,

она обычно звонит по телефону и оставляет заявку на доставку. Наша задача –
автоматизировать этот процесс. Потратьте несколько секунд и попробуйте
нарисовать диаграмму алгоритма.

Когда клиент заказывает пиццу, вы должны:

 15 / 40

https://github.com/effortless-serverless/some-like-it-hot-delivery

4.2. Подключение к API компании доставки    95

1)	 проверить заказ;
2)	 подключиться к Some Like It Hot API и узнать, когда компания Some Like

It Hot сможет доставить заказ;
3)	 сохранить заказ в базе данных.

ПРИМЕЧАНИЕ. Имейте в виду, что мы создаем минимально пригодный к работе
продукт, поэтому не будем усложнять логику приложения. В реальных приложе-
ниях эта логика должна учитывать время приготовления пиццы, часы работы и,
может быть, что-то еще.

Весь процесс изображен на рис. 4.2.

Подтверждение
доставки пиццы

Заказ на пиццу

Клиент

Pizza API

API
службы

доставки
“Some

Like it Hot”

Ok

Ok

Ok

База
данных

Пицца доставлена, статус заявки
изменяется на “delivered”

Доставщик забрал пиццу, статус заявки
изменяется на “in-progress”

Ok

Заявка на доставку

Сохранить заказ

Сохранить заказ

Сохранить заказ

Рис. 4.2. Диаграмма, иллюстрирующая порядок взаимодействий
обработчика createOrder с Some Like It Hot API и базой данных

Перед реализацией этого процесса нам нужно чуть больше узнать о созда-
нии заявки на доставку через Some Like It Hot API. Сделаем это прямо сейчас.

Наиболее важным в Some Like It Hot API является маршрут POST /delivery,
который создает заявку. Эта конечная точка принимает следующие парамет
ры:

�� 	pickupAddress – адрес, откуда нужно забрать заказ. По умолчанию будет
использоваться адрес из вашей учетной записи;

�� 	deliveryAddress – адрес доставки заказа;

 16 / 40

96    Глава 4. Доставка пиццы: подключение к внешней службе

�� 	pickupTime – время, когда можно забрать заказ. Если время не указано,
заказ заберут при первой же возможности;

�� 	webhookUrl – адрес URL точки входа, куда следует отправить уведомление
об изменении состояния заявки.

Some Like It Hot API возвращает идентификатор заявки, время получения
заказа и начальный статус заявки – «pending» («ожидает»). Когда доставщик
заберет заказ из ресторана, Some Like It Hot API пошлет запрос POST вашей
конечной точке с идентификатором и новым статусом заявки «in-progress»
(«выполняется»).

Точки входа
Точка входа – это просто конечная точка в вашем API. Проще говоря, это об-
ратный вызов HTTP: HTTP-запрос POST, отправляемый вам, когда происходит
какое-то событие. Считайте этот HTTP-запрос POST уведомлением о некотором
событии. Веб-приложение, использующее точки входа, будет отправлять запро-
сы POST на указанный URL-адрес при появлении определенных событий.

Настал момент обновить обработчик create-order.js. Он должен послать
POST-запрос в Some Like It Hot API, дождаться ответа и сохранить заказ на пиц-
цу в базе данных. Вам также нужно добавить идентификатор заявки на до-
ставку в базу данных, чтобы получить возможность обновлять статус заказа,
когда точка входа получит данные.

Дополненная версия обработчика create-order.js показана в листинге 4.1.

Листинг 4.1. Дополненная версия обработчика create-order.js, создающая заявку
на доставку перед сохранением заказа в базе данных

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function createOrder(request) {
 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address
 where pizza should be delivered')

 return rp.post('https://some-like-it-hot.effortless-serverless.com/
 delivery', {

Послать запрос POST в
Some Like It Hot API.

 17 / 40

4.2. Подключение к API компании доставки    97

 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: request.address,
 webhookUrl: 'https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/
chapter4_1/delivery',
 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: response.deliveryId,
 pizza: request.pizza,
 address: request.address,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)
 return res
 })
 .catch(saveError => {
 console.log(Oops, order is not saved :(, saveError)
 throw saveError
 })
}

Обратите внимание на следующее:

�� 	minimal-request-promise – как можно догадаться по имени, это минималь-
но возможный API на основе Promise для отправки HTTP-запросов. Вы
можете выбрать другой аналогичный модуль. Но мы советуем исполь-
зовать minimal-request-promise, потому что он включает минимально не-
обходимую реализацию. Дополнительные подробности можно узнать,
заглянув в его исходный код на GitHub: https://github.com/gojko/mini-
mal-request-promise;

Добавить заголовки
в запрос, включая
заголовок Authorization
с токеном авторизации.

Послать в теле параметры pickupTime,
pickupAddress и deliveryAddress.

Тело запроса нужно преобразовать
в строку, потому что модуль minimal-
request-promise ожидает получить строку.

Послать URL точки входа в запросе.

Выполнить парсинг тела ответа,
которое является строкой, –
обратите внимание, что здесь
объекты Promise объединяются
в цепочку.Сохранить данные

в таблицу в DynamoDB.

Так как идентификатор заявки на доставку уникален,
можно использовать его вместо создания своего
идентификатора с помощью модуля uuid.

 18 / 40

https://github.com/gojko/minimal-request-promise
https://github.com/gojko/minimal-request-promise

98    Глава 4. Доставка пиццы: подключение к внешней службе

�� 	Authorization – чтобы послать запрос внешней службе, часто требуется
пройти этап авторизации, но, так как данный пример Some Like It Hot
API не является настоящим API, в заголовке Authorization можно послать
что угодно;

�� 	webhookURL – точка входа в ваш API, которая будет использоваться Some
Like It Hot API для отправки уведомлений об изменении статуса заяв-
ки.

Как уже отмечалось выше, точка входа – это обычная конечная точка, при-
нимающая запросы POST. Для ее реализации вы должны:

1)	 создать обработчик маршрута для точки входа;
2)	 создать маршрут /delivery для запросов POST.

Начнем с первого пункта. Перейдите в каталог handlers в своем проекте Piz-
za API и создайте новый файл update-delivery-status.js.

Алгоритм работы точки входа в общих чертах можно описать так:

1)	 точка входа должна принять запрос POST с идентификатором заявки на
доставку и кодом состояния заявки;

2)	 найти заказ в таблице по идентификатору заявки, полученной от Some
Like It Hot API;

3)	 изменить статус заявки.

Но здесь есть одна сложность. DynamoDB поддерживает две операции: get
и scan. Команда get извлекает элементы по ключевым столбцам, а scan способ-
на вернуть все элементы. Другая важная особенность состоит в том, что scan
загружает всю таблицу, а затем применяет указанный фильтр к коллекции;
команда get выполняет прямой запрос к таблице.

Эти различия кажутся существенными, но в действительности требуют вы-
полнить лишь пару дополнительных шагов. Помимо единственного первич-
ного ключа, DynamoDB поддерживает также составные ключи, состоящие из
первичного, или хеш-ключа, и ключа сортировки, или диапазона, и требует,
чтобы комбинация этих двух ключей была уникальной. Другой способ спра-
виться с подобными проблемами – добавить вторичный индекс. Узнать боль-
ше об обоих подходах можно в официальной документации: http://docs.aws.
amazon.com/amazondynamodb/latest/developerguide/Introduction.html.

В вашем случае есть еще более простое решение – идентификатор заявки
на доставку уникален, и он известен до сохранения заказа в таблице pizza-or-
ders, поэтому мы можем использовать его в роли идентификатора заказа. Это
позволит нам запрашивать базу данных как по номеру заказа, так и по иден-
тификатору заявки, поскольку они совпадают, а также избавиться от модуля
uuid, потому что он вам больше не нужен.

Попробуем реализовать задуманное. Код представлен в листинге 4.2.

 19 / 40

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

4.2. Подключение к API компании доставки    99

Листинг 4.2. Обработчик изменения статуса заявки на доставку по запросу
от службы Some Like It Hot в таблице заказов

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = function updateDeliveryStatus(request) {
 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: request.deliveryId
 },
 AttributeUpdates: {
 deliveryStatus: {
 Action: 'PUT',
 Value: request.status
 }
 }
 }).promise()
 .then(() => {
 return {}
 })
}

Прежде чем протестировать точку входа, нужно добавить маршрут в файл
api.js. Для этого импортируем новый обработчик в начале файла, добавив
строку const updateDeliveryStatus = require('./handlers/update-delivery-sta-

tus'). Затем добавим еще один маршрут POST, как мы уже делали это в главе 2.
В листинге 4.3 показаны последние несколько строк измененного файла api.
js.

Листинг 4.3. Последние несколько строк из измененного файла api.js с новым
маршрутом для точки входа /delivery

// Прежний код в файле

api.delete('/orders/{id}', request => deleteOrder(request.pathParams.id), {
 success: 200,
 error: 400

Проверка.

Использовать DocumentClient
для изменения значения в таблице.

Прежний код в файле остался без изменений, кроме дополнительной
инструкции импорта обработчика изменения статуса доставки.

Использовать deliveryId как первичный
ключ для заказа, потому что он совпадает
с идентификатором заказа.

Изменить deliveryStatus
в выбранном заказе.

Вернуть пустой объект
службе Some Like It Hot.

 20 / 40

100    Глава 4. Доставка пиццы: подключение к внешней службе

})

api.post('/delivery', request => updateDeliveryStatus(request.body), {
 success: 200,
 error: 400
})

// Экспортировать экземпляр Claudia API Builder
module.exports = api

Отлично! Теперь у нас есть точка входа и все необходимое наконец-то на
месте. Опробуем точку входа. Для этого развернем наш API с помощью коман-
ды claudia update. Когда развертывание завершится, используйте ту же коман-
ду curl, которую мы использовали в главах 2 и 3 для проверки создания заказа:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter4_1/orders

ПРИМЕЧАНИЕ. Не забудьте заменить URL в команде curl, подставив вместо него
URL, указанный в команде claudia update.

Команда curl должна вернуть {}, код 200, сообщающий об успехе. А теперь
посмотрим, что происходит за кулисами.

ВРЕМЯ В SOME LIKE IT HOT API. Чтобы упростить тестирование, через одну минуту
Some Like It Hot API устанавливает для каждой заявки статус «in-progress» («вы-
полняется»), а еще через минуту – статус «delivered» («доставлен»). То есть весь
процесс, от заказа до доставки, занимает две минуты. Было бы замечательно, если
бы так было в реальном мире!

Как можно видеть на рис. 4.3, наш Pizza API сначала подключается к Some
Like It Hot API, а затем сохраняет заказ в таблице pizza-orders. Чуть позже Some
Like It Hot API посылает запрос нашей точке входа и изменяет статус доставки
на «in-progress» («выполняется»). И наконец, еще чуть позже снова посылает
запрос точке входа, чтобы установить статус «delivered» («доставлен»).

Вот и все!
Необходимо ли подключаться к Some Like It Hot API для чего-то еще?
Имея точку входа, нам не нужно обращаться к Some Like It Hot API, чтобы

получить статус доставки. Но нам нужно обратиться к API, если потребуется
отменить заявку на доставку. Реализация отмены заявки послужит хорошим
упражнением, и мы предложим вам реализовать ее самостоятельно в раз-

Добавить маршрут, принимающий
запросы POST и использующий

обработчик updateDeliveryStatus,
импортированный в начале файла.

Установить признак ошибки – код 400.

Установить признак успеха – код 200.

 21 / 40

4.3. Типичные проблемы асинхронных взаимодействий    101

деле 4.4. Но прежде чем приступить к упражнению, рассмотрим некоторые
типичные проблемы асинхронных запросов в AWS Lambda, выполняемых с
использованием Claudia.

Listing 4.3 Last few lines of updated api.js file, with the new route for the delivery
webhook

// Rest of the file
api.delete('/orders/{id}', request => deleteOrder(request.pathParams.id), {
 success: 200,
 error: 400
})

api.post('/delivery', request => updateDeliveryStatus(request.body), {
 success: 200,
 error: 400
})

// Export a Claudia API Builder instance
module.exports = api

Awesome—you have the webhook, and all the ingredients are finally in place. Let’s
taste the webhook—pardon, let’s test it. To do so, you need to deploy your API using
the claudia update command. After updating the API, use the same curl command
you used in chapters 2 and 3 to test creating an order:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter4_1/orders

NOTE Don’t forget to replace the URL in these curl commands with the URL
you got from the claudia update command.

The curl command should return {}, status 200, so everything is fine. But what is hap-
pening in the background?

TIME IN THE SOME LIKE IT HOT DELIVERY API For easier testing, the Some Like It
Hot Delivery API sets each order status to “in-progress” after one minute, and
then to “delivered” after another minute—so the entire process, from “order-
ing” to “delivered pizza,” takes two minutes. It would be awesome if that were
the case in the real world too, right?

As you can see in figure 4.3, your Pizza API contacts the Some Like It Hot Deliv-
ery API first, then it saves the order to the pizza-orders table. Then, a bit later, the
Some Like It Hot Delivery API contacts your webhook and updates the delivery status to
“in-progress.” And finally, it contacts your webhook again to set the status to “delivered.”

That’s it!
What else do you need to connect to the Some Like It Hot Delivery API?
Because you have a webhook, you don’t need to contact the Some Like It Hot Deliv-

ery API to get the delivery status. But you do need to contact the API if you want to
cancel a delivery request. That would be a nice exercise, and you can try to do that in

The rest of the file is the same, except for
importing the delivery status handler.

Add another route that accepts POST requests and
uses updateDeliveryStatus, which was

imported at the top of the file.

Set status 200 for success.
Set status 400 for an error.

Some Like It Hot API

DynamoDB

Pizza API

Claudia API Builder

Пользователь заказывает пиццу
и посылает запрос в Pizza API.

И ждет ответа.

Claudia API Builder принимает
запрос и передает его
обработчику createOrder.

После проверки заказа
обработчик createOrder посылает
запрос на доставку веб-службе
компании Some Like It Hot.

Создание заказа

Получив ответ от веб-службы,
обработчик createOrder
сохраняет заказ в таблице
pizza-orders.

Получив ответ, обработчик
createOrder формирует ответ
и посылает его клиенту
(и спустя какое-то время
клиент получит свою пиццу).

Рис. 4.3. Процесс от заказа до доставки

4.3. Типичные проблемы асинхронных
взаимодействий
Как вы уже видели, AWS Lambda и Claudia упрощают работу с асинхронными
запросами. Но иногда возникают проблемы, когда требуется подключиться к
внешней службе или выполнить асинхронную операцию.

Перечислить все потенциальные проблемы невозможно, поэтому остано-
вимся на наиболее распространенных ошибках, которые вы можете совер-
шить:

 22 / 40

102    Глава 4. Доставка пиццы: подключение к внешней службе

�� забыли вернуть Promise;
�� не вернули значение из .then или .catch;
�� не завернули вызов внешней службы в Promise, если она не поддержива-

ет JavaScript-объекты Promise;
�� превысили время ожидания до того, как асинхронная функция завер-

шила выполнение.

Как видите, большинство проблем связано с объектами Promise. Давайте
рассмотрим их по порядку.

4.3.1. Забыли вернуть Promise
Наиболее распространенная проблема интеграции с внешней службой или

при выполнении асинхронной операции – отсутствие ключевого слова return.
Пример этой ошибки показан в листинге 4.4. Эту проблему сложно отладить,
поскольку код будет выполняться без ошибки, но выполнение остановится до
выполнения асинхронной операции.

Листинг 4.4. Потеря работоспособности из-за отсутствия инструкции return

module.exports = function(pizza, address) {
 docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza,
 address: address,
 status: 'pending'
 }
 }).promise()

В чем причина этой проблемы? Как показано на рис. 4.4, если асинхрон-
ная операция не возвращает Promise, Claudia API Builder не будет знать, что
операция асинхронная, и сообщит AWS Lambda, что функция завершила свое
выполнение. Он также отправит undefined как результат функции, потому что
вы не вернули ничего значащего.

Решается эта проблема просто: убедитесь, что всегда возвращаете Promise, и
когда код не работает, сначала убедитесь, что все экземпляры Promise возвра-
щаются как нужно.

4.3.2. Отсутствие значения, возвращаемого из Promise
Эта проблема во многом похожа на предыдущую. Ее пример показан в лис

тинге 4.5.

Эта строка больше
не возвращает Promise.

 23 / 40

4.3. Типичные проблемы асинхронных взаимодействий    103

Поток обработки
запроса

Claudia
API Builder

Функция-
обработчик

Асинхронная
операция

Claudia
API Builder

Ваша бессерверная
функция

Время выполнения
AWS Lambda

Когда вызывается
AWS Lambda, она
запускает вашу
функцию.

Функция сначала запускает
Claudia API Builder, который,

в свою очередь, вызывает вашу
функцию-обработчик и ожидает

получить объект Promise.

Если ваша асинхронная операция
не вернет Promise, Claudia API
Builder не узнает, что операция
асинхронная, и сообщит Lambda,
что обработка запроса
завершена.

Остальная часть
функции просто
не будет
выполнена.

Функция-
обработчик

Рис. 4.4. Визуальное представление порядка выполнения функции Lambda,
когда асинхронная операция не возвращает Promise

Листинг 4.5. Потеря работоспособности из-за отсутствия значения,
возвращаемого из Promise

module.exports = function(pizza, address) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza,
 address: address,
 status: 'pending'
 }
 }).promise()
 .then(result => {
 console.log('Result', result)
 })

Как показано на рис. 4.5, основное отличие в том, что асинхронная опе-
рация в данном случае завершает свое выполнение, но результат никогда не
возвращается обратно в вашу функцию-обработчик, и вся цепочка обеща-
ний нарушается. И снова ваша бессерверная функция возвращает результат
undefined.

Возвращается объект Promise,
как и должно быть.

Но после журналирования запроса функция
ничего не возвращает, поэтому вслед за
.then ничего нельзя добавить в цепочку.

 24 / 40

104    Глава 4. Доставка пиццы: подключение к внешней службе

Claudia
API Builder

Claudia
API Builder

Асинхронная операция возвращает
Promise, но инструкция .then ничего
не возвращает, поэтому Claudia API

Builder считает, что запрос
обработан, и передает эту

информацию в AWS Lambda.

Когда вызывается
AWS Lambda, она
запускает вашу
функцию.

Функция сначала запускает
Claudia API Builder, который,

в свою очередь, вызывает вашу
функцию-обработчик и ожидает

получить объект Promise.

Поток обработки
запроса

Функция-
обработчик

Асинхронная
операция

Ваша бессерверная
функция

Время выполнения
AWS Lambda

Остальная часть
функции просто
не будет
выполнена.

Функция-
обработчик

Рис. 4.5. Визуальное представление порядка выполнения функции Lambda,
когда асинхронная операция не возвращает значения

Решается эта проблема так же, как предыдущая, – проверьте код, чтобы он
всегда возвращал значение.

4.3.3. Вызов внешней службы не завернут в Promise
Иногда внешние и асинхронные службы не имеют встроенной поддерж-

ки Promise. В этом случае еще одной распространенной ошибкой является
незаключение операции в экземпляр Promise, как показано в листинге 4.6.

Листинг 4.6. Потеря работоспособности из-за того, что асинхронная операция
не завернута в Promise

module.exports = function(pizza, address) {
 return setTimeout(() => {
 return 'Are we there yet?'
 }, 500)
})

Как показано на рис. 4.6, эта проблема в точности повторяет первую.
Но решается она немного иначе. Как показано в листинге 4.7, нужно вер-

нуть новый, пустой объект Promise. Затем выполнить асинхронную операцию
внутри него и, наконец, перевести объект Promise в состояние «выполнено»,
когда асинхронная операция завершится.

Вы снова возвращаете значение, но это не Promise и возвращаемое
значение из обратного вызова ничего не делает; эта часть кода так
же никогда не выполняется.

Значение возвращается, но setTimeout
не возвращает Promise, поэтому данная
строка разрушает цепочку обещаний.

 25 / 40

4.3. Типичные проблемы асинхронных взаимодействий    105

Claudia
API Builder

Асинхронная
операция,

не завернутая
в Promise

Claudia
API Builder

Если асинхронная операция
не вернет Promise, Claudia
API Builder не будет знать,
что операция асинхронная,
и сообщит Lambda, что
запрос обработан.

Поток обработки запроса

Функция-
обработчик

Ваша бессерверная
функция

Время выполнения
AWS Lambda

Когда вызывается
AWS Lambda, она
запускает вашу
функцию.

Функция сначала запускает
Claudia API Builder, который,

 в свою очередь, вызывает вашу
функцию-обработчик и ожидает

получить объект Promise.

Остальная часть
функции просто
не будет
выполнена.

Функция-
обработчик

Рис. 4.6. Визуальное представление порядка выполнения функции Lambda,
когда асинхронная операция не заключена в Promise

Листинг 4.7. Исправление ошибки заворачиванием асинхронного кода
в объект Promise

module.exports = function(pizza, address) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Are we there yet?')
 }, 500)
 })
})

4.3.4. Превышение времени ожидания длительной
асинхронной операцией
Эта последняя распространенная проблема связана с тайм-аутами в AWS

Lambda. Как рассказывалось в главе 1, по умолчанию на выполнение дается
три секунды. Что случится, когда асинхронная операция будет выполняться
дольше трех секунд, как показано в листинге 4.8?

Листинг 4.8. Потеря работоспособности из-за превышения тайм-аута AWS Lambda

module.exports = function(pizza, address) {
 return new Promise((resolve, reject) => {

Когда она вернет значение, объявить об успешном
выполнении Promise, указав нужное значение.

Выполнить асинхронную операцию, которая
поддерживает только функцию обратного вызова.

Создать и вернуть пустой объект Promise.
Теперь есть возможность объявить об успехе
или неудаче в функции обратного вызова.

Операция setTimeout завернута
в Promise и возвращает значение.

 26 / 40

106    Глава 4. Доставка пиццы: подключение к внешней службе

 setTimeout(() => {
 resolve('Are we there yet?')
 }, 3500)
 })
})

Итак, как показано на рис. 4.7, длительная операция, превысившая макси-
мальное время ожидания, просто останавливается, и функция Lambda не воз-
вращает никакого значения. Основное отличие здесь в том, что даже Claudia
API Builder не получит управления. Представьте, что кто-то отключил ваш
компьютер во время какой-либо операции, – эффект тот же.

Асинхронная операция
выполняется слишком долго –

дольше установленного тайм-аута,
поэтому она будет остановлена,
как только время выполнения

превысит тайм-аут.

Claudia
API Builder

Claudia
API Builder

Поток обработки
запроса

Функция-
обработчик

Длительная
асинхронная

операция

Ваша бессерверная
функция

Время выполнения
AWS Lambda (3 секунды)

Когда вызывается
AWS Lambda, она
запускает вашу
функцию.

Функция сначала запускает
Claudia API Builder, который,

в свою очередь, вызывает вашу
функцию-обработчик и ожидает

получить объект Promise.

Остальная часть
функции просто
не будет
выполнена.

Функция-
обработчик

Рис. 4.7. Визуальное представление порядка выполнения функции Lambda,
когда выполнение останавливается из-за превышения тайм-аута

Как исправить эту проблему?
Если нет возможности увеличить скорость асинхронной операции до уров-

ня, когда функция уверенно будет выполняться меньше чем за три секунды,
тогда остается только изменить величину тайм-аута для вашей функции.

Claudia позволяет изменить тайм-аут только во время создания функции.
Для этого выполните команду create с параметром --timeout, например так:

claudia create --region eu-central-1 --api-module api --timeout 10

Значение этого параметра измеряется в секундах.
Если у вас уже есть функция, можно обновить ее, выполнив следующую ко-

манду AWS CLI:

claudia update --timeout 10

Но она выполняется 3.5 секунды, и если время выполнения
AWS Lambda имеет значение по умолчанию, равное
3 секундам, эта асинхронная операция будет остановлена.

Операция setTimeout завернута
в Promise и возвращает значение.

 27 / 40

4.4. Опробование!    107

Дополнительную информацию об этой команде можно найти в официаль-
ной документации: http://docs.aws.amazon.com/cli/latest/reference/lambda/up-
date-function-configuration.html.

После выполнения команды для вашей функции будет установлен новый
10-секундный тайм-аут. Если вы снова запустите пример из листинга 4.9, он
должен работать без проблем.

Это далеко неполный список возможных проблем, но эти четыре проблемы
охватывают подавляющее большинство случаев.

Теперь поиграйте с параметрами и попробуйте сломать свой бессерверный
API более творческим способом!

4.4. Опробование!
Как вы уже видели, подключиться к внешним службам совсем несложно, по
этому теперь попробуйте сделать это самостоятельно.

4.4.1. Упражнение
Напомним, что нам еще нужно реализовать отмену заявки на доставку, ис-

пользуя Some Like It Hot API.
Ваша задача: добавьте в обработчик delete-order.js отмену заявки на до-

ставку, использовав Some Like It Hot API перед удалением заказа из базы дан-
ных.

Вот некоторая информация о методе DELETE в Some Like It Hot API:

�� чтобы удалить заявку на доставку, нужно послать в Some Like It Hot De-
livery API запрос DELETE с маршрутом /delivery/{deliveryId};

�� в запросе следует указать идентификатор заявки как параметр пути в
URL;

�� полный URL для Some Like It Hot API имеет вид: https://some-like-it-hot.
effortless-serverless.com/delivery;

�� заказ можно удалить, только если он находится в состоянии «pending»
(«ожидает»).

Если этой информации вам будет достаточно, тогда идите и дерзайте!
Вот дополнительные подсказки для тех, кому перечисленной информации

покажется недостаточно:

�� сначала извлеките заказ из таблицы pizza-orders, чтобы узнать его со-
стояние;

�� если заказ находится не в состоянии «pending» («ожидает»), сгенерируй-
те ошибку;

�� если заказ находится в состоянии «pending» («ожидает»), пошлите за-
прос в Some Like It Hot API; и, только получив положительный ответ,
удалите заказ из таблицы pizza-orders.

 28 / 40

http://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html

108    Глава 4. Доставка пиццы: подключение к внешней службе

Если и этого вам недостаточно или вы все сделали и хотите увидеть наше
решение, переходите к следующему разделу.

Если упражнение покажется вам слишком простым и вы захотите услож-
нить его, попробуйте создать свою версию Some Like It Hot API, руководству-
ясь описанием в разделе 4.2.1. Вариант решения этого задания мы не при-
водим, но вы можете заглянуть в исходный код примера проекта по адресу:
https://github.com/effortless-serverless/some-like-it-hot-delivery.

4.4.2. Решение
Начнем с алгоритма. Как мы уже говорили, сначала нужно прочитать заказ

из таблицы pizza-orders в базе данных, чтобы убедиться, что заказ находит-
ся в состоянии «pending» («ожидает»). Затем отменить, послав запрос DELETE в
Some Like It Hot Delivery API, и, наконец, удалить из таблицы pizza-orders. Этот
алгоритм изображен на рис. 4.8.

Pizza API

?

DynamoDB

DynamoDB

Fake
Delivery

API

Если заказ не
в состоянии

"pending",
отклонить

запрос.

Клиент решил
отменить заказ.

Pizza API извлекает
состояние заказа
из базы данных.

Если заказ
в состоянии
"pending", Pizza API
вызывает Fake
Delivery API, чтобы
отменить заказ.

После отмены
заявки на доставку
Pizza API удаляет
заказ из таблицы
pizza-orders.

После отмены
заявки на доставку
и удаления заказа
клиенту
отправляется
признак успеха _
код 200.

Рис. 4.8. Порядок обработки запроса на отмену заказа в Pizza API

Какие изменения следует внести в обработчик delete-order.js?
Здесь все просто. Во-первых, нужно импортировать модуль minimal-re-

quest-promise, потому что он будет использоваться для отправки запроса в
Some Like It Hot API.

 29 / 40

https://github.com/effortless-serverless/some-like-it-hot-delivery

4.4. Опробование!    109

Затем в функции deleteOrder прочитать заказ из таблицы pizza-orders. Если
заказа с указанным идентификатором не существует, функция автоматиче-
ски вернет ошибку, и клиент получит код 400. Если заказ существует, нужно
проверить его состояние; если состояние отличается от «pending» («ожидает»),
сгенерируйте ошибку вручную.

Если заказ находится в состоянии «pending» («ожидает»), используйте мо-
дуль minimal-request-promise, чтобы послать запрос DELETE в Some Like It Hot API.
Не забывайте, что идентификатор заказа совпадает с идентификатором заяв-
ки на доставку, поэтому для удаления заявки можно использовать этот иден-
тификатор. Если Some Like It Hot API вернет ошибку, ваша функция deleteOrder
автоматически вернет ее, поэтому клиент получит код 400, как и требуется.

Если API успешно удалит заявку на доставку, удалите заказ из таблицы
pizza-orders – и все!

В листинге 4.9 приводится полный код обработчика delete-order.js после
внесения всех изменений.

Листинг 4.9. Удаление заказа из таблицы pizza-orders

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function deleteOrder(orderId) {
 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
 .then(item => {
 if (item.orderStatus !== 'pending')
 throw new Error('Order status is not pending')

 return rp.delete(https://some-like-it-hot.effortless-serverless.com/
delivery/${orderId}, {
 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 }
 })
 })
 .then(() => {
 return docClient.delete({

Извлечь заказ из таблицы
pizza-orders.

Удалить заявку на доставку,
обратившись к Some Like It
Hot API.

Импортировать модуль
minimal-request-promise.

Если заказ не в состоянии
«pending», сгенерировать ошибку.

Удалить заказ из таблицы
pizza-orders.

 30 / 40

110    Глава 4. Доставка пиццы: подключение к внешней службе

 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 })
}

В заключение
�� В AWS Lambda можно подключиться к любой внешней службе, как в

любом приложении Node.js, если асинхронные операции выполняются
правильно.

�� Подключаясь к внешнему API, убедитесь, что ваша библиотека HTTP
поддерживает механизм обещаний Promise, или заворачивайте асин-
хронные операции в этот объект.

�� Подключение к внешним службам сопряжено с некоторыми потенци-
альными проблемами; чаще всего они связаны с разрушением цепочки
обещаний (Promise).

�� Еще одна распространенная проблема связана с превышением тайм-
аута – если для выполнения функции Lambda требуется больше трех се-
кунд, увеличьте тайм-аут для своей функции.

Вызовы .then и .catch были удалены, потому что результат
операции будет служить результатом вызова функции.

 31 / 40

Глава 5
Хьюстон, у нас проблема!

Эта глава охватывает следующие темы:

	чтение вывода в консоль с помощью CloudWatch;
	проблемы отладки бессерверных приложений;
	отладка бессерверных API.

Мы – люди – склонны ошибаться. Что бы мы не делали, всегда есть шанс оши-
биться, даже если мы сделаем все возможное, чтобы этого не допустить. Это
особенно верно в отношении разработки программного обеспечения. Дово-
дилось ли вам наблюдать, как зависает мобильное приложение или веб-сайт
перестает отвечать? Скорее всего, вы наблюдали это совсем недавно, и вам
приходилось обновлять страницу в браузере или перезапускать приложение.

Все мы допускаем ошибки, и приложения тоже зависают каждый день. Не-
смотря на то что ошибки в приложениях обычно безвредны, иногда они могут
приводить к огромным потерям. Рассмотрим пример ошибки в приложении
для пиццерии, которая не позволяет создавать заказы. Как найти ошибку? Как
выполнить отладку бессерверного приложения?

В этой главе вы узнаете, как искать ошибки в бессерверных приложениях,
как их отлаживать и какие инструменты отладки имеются в вашем распоря-
жении.

5.1. Отладка бессерверного приложения
Мы быстро движемся вперед, и тетушка Мария отправила вам сообщение, что
наняла разработчика мобильных приложений, Пьера. Она хотела увеличить
охват своих клиентов, и мобильное приложение для заказа пиццы показалось
ей хорошим началом. Пьер решил опробовать ваше бессерверное приложе-
ние. К сожалению, когда он попытался создать заказ, приложение вернуло не-
верный ответ. Пьер пожаловался тетушке, и теперь тетушка звонит вам. Вы,
вероятно, почесываете голову, думая «Где я мог ошибиться?» и «Как отладить
ошибку?».

 32 / 40

112    Глава 5. Службы: обеспечение клиентам возможности обнаруживать модули...

В традиционном серверном приложении Node.js можно просто добавить
команду console.log("некоторый текст") в программу, чтобы вывести какой-ли-
бо текст или объекты в консоль, или даже использовать отладчик, чтобы рас-
ставить точки останова в коде для отладки, а потом запустить код локально и
попробовать найти ошибку или зайти на сервер и просмотреть отладочный
вывод.

Отладка бессерверных приложений отличается от традиционных. Бессер-
верное приложение часто состоит из совершенно отдельных модулей – API
Gateway и функции Lambda, поэтому у вас не получится запустить его локаль-
но и отладить весь поток приложения. Кроме того, поскольку приложение не
имеет сервера, нет никакого сервера, куда можно было бы зайти, чтобы ис-
следовать журналы. Да, это звучит странно и расстраивает, но не волнуйтесь.

Каждый поставщик услуг бессерверных вычислений предлагает инстру-
менты, чтобы помочь вам проверить и отладить ваши бессерверные функции.
В AWS это CloudWatch.

CloudWatch – это служба AWS, предназначенная для трассировки, регистра-
ции и мониторинга ресурсов в AWS. Ее можно считать бессерверной версией
старого доброго журнала на сервере, хотя она способна на большее. Подобно
другим службам AWS, CloudWatch доступна из командной строки AWS CLI, и
мы будем использовать ее из своего терминала.

Так как мы пользуемся услугами AWS, служба CloudWatch – наш выбор по
умолчанию.

ПРИМЕЧАНИЕ. Бессерверную функцию можно запустить локально, но это не
значит, что она будет выполняться так же, как в бессерверном окружении. В Azure
есть возможность запустить функцию в Visual Studio, а в Google Cloud Platform
есть локальный эмулятор для локальной отладки, но ни один поставщик не ре-
комендует использовать свой эмулятор для промышленного использования, по-
скольку оба находятся на альфа-стадии разработки.

AWS CloudWatch можно использовать из:

�� веб-консоли AWS в окне браузера;
�� AWS CLI в терминале;
�� AWS API;
�� AWS SDK (в зависимости от выбранного языка программирования).

Вы можете использовать любой из этих вариантов, который вам нравится,
но в этой книге мы будем работать с интерфейсом командной строки AWS CLI,
потому что он удобен для разработчиков и его можно использовать в окне
локального терминала.

CloudWatch – это простая служба, которая регистрирует вывод и сообще-
ния об ошибках из ваших бессерверных функций. Всякий раз, когда вы что-то
выводите в своей функции, например с помощью console.log, этот вывод ав-
томатически отправляется в AWS CloudWatch. AWS CloudWatch отвечает за их

 33 / 40

5.2. Отладка функции Lambda    113

хранение и группировку. Вы можете получить доступ к этим журналам через
интерфейс командной строки AWS CLI или через пользовательский интер-
фейс веб-консоли AWS. На рис. 5.1 показано, как это работает.

Весь вывод,
произведенный

в функции Lambda
с помощью console.log,

автоматически
пересылается
в CloudWatch.

Пользователь может
прочитать журналы из
CloudWatch, используя

веб-консоль или AWS CLI.

Функция
Lambda

Терминал

CloudWatch

Рис. 5.1. AWS Lambda посылает вывод console.log непосредственно в CloudWatch

ПРИМЕЧАНИЕ. Захват вывода в CloudWatch не влияет на время отклика функ-
ции Lambda. Но журналы доступны не сразу; между вызовом функции и появле-
нием журналов в CloudWatch имеется задержка не менее нескольких секунд.
По умолчанию журналы CloudWatch хранятся неопределенно долго, но вы можете
уточнить, сколько должны храниться разные группы журналов.
CloudWatch имеет бесплатный тариф, но количество журналов и срок хранения
могут повлиять на вашу ежемесячную плату. За дополнительной информацией об-
ращайтесь по адресу: https://aws.amazon.com/cloudwatch/pricing/.

5.2. Отладка функции Lambda
Теперь, узнав, что такое CloudWatch, используем эту службу, чтобы найти
источник проблем Пьера. Пьер сообщает, что ошибка возникает, когда он пы-
тается создать заказ на пиццу с типом пиццы и адресом доставки. Мы долж-
ны попытаться воспроизвести проблему, включив мониторинг журналов в
CloudWatch. Добавим оператор log в начало обработчика create-order.js, по-
вторно развернем API и попросим Пьера повторить попытку.

Мы должны зарегистрировать запрос с каким-либо сопроводительным текс
том – например, «Сохранить заказ» – в первой строке функции createOrder, как
показано в листинге 5.1. Такой текст поможет отыскать нужные сообщения.

 34 / 40

https://aws.amazon.com/cloudwatch/pricing/

114    Глава 5. Службы: обеспечение клиентам возможности обнаруживать модули...

(В этом листинге показан только начальный фрагмент из файла; остальной
код не изменился.)

Листинг 5.1. Измененный обработчик create-order.js

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function createOrder(request) {
 console.log('Save an order', request)

 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address
 where pizza should be delivered')

 // ...

Пьер попытался снова создать заказ и получил ту же ошибку. Теперь мы
должны найти в журналах текст «Save an order» («Сохранить заказ»). Просмотр
журналов CloudWatch для нашей функции Lambda может оказаться непрос
тым делом из-за большого числа записей с кучей метаданных. К счастью, мы
можем ускорить работу с помощью интерфейса командной строки AWS CLI и
команды logs filter-log-events.

Так как CloudWatch сохраняет журналы в группах, перед запуском команды
logs filter-log-events нужно найти имя вашей группы журналов. Для этого вос-
пользуемся командой describe-log-groups, как показано в листинге 5.2.

Листинг 5.2. Команда describe-logs-groups

aws logs describe-log-groups --region eu-central-1

Эта команда вернет ответ, включающий имя группы logGroupName, например:

{
 "logGroups": [
 {
 "arn": "arn:aws:logs:eu-central-1:123456789101:log-group:/aws/lambda/
 pizza-api:*",
 "creationTime": 1524828117184,
 "metricFilterCount": 0,
 "logGroupName": "/aws/lambda/pizza-api",
 "storedBytes": 1024

Вывести информацию о запросе
и добавить текст «Save an order»
в начало.

Остальной код в файле не изменился.

 35 / 40

5.2. Отладка функции Lambda    115

 }
]
}

ПРИМЕЧАНИЕ. Помимо filter-log-events, служба logs в AWS CLI предлагает не-
сколько других полезных команд. Чтобы получить полный список доступных ко-
манд, запустите команду aws logs help в терминале.

Запустите в терминале команду logs filter-log-events и добавьте текст «Save
an order» в качестве фильтра, как показано в листинге 5.3. Вы также можете
указать формат вывода (в этом примере используем формат JSON).

Листинг 5.3. Запрос журналов из CloudWatch с выбором группы и текстом «Save
an order» для фильтрации

aws logs \
 filter-log-events \
 --filter='Save an order' \
 --log-group-name=/aws/lambda/pizza-api \
 --region=eu-central-1 \
 --output=json

Команда в листинге 5.3 поможет нам получить вывод, произведенный ин-
струкцией console.log в нашей функции Lambda. Но, как показано в листин-
ге 5.4, результаты возвращаются в формате JSON с большим количеством ме-
таданных, которые нам, по большому счету, не нужны. Единственное, что вас
волнует, – это сообщение «message» в каждом из событий. Все остальное в от-
вете – это метаданные о журналах, в которых произведен поиск, и некоторая
дополнительная информация о сообщениях.

Листинг 5.4. Журнал с метаданными, сгенерированный Pizza API в CloudWatch

{
 "searchedLogStreams": [
 {
 "searchedCompletely": true,
 "logStreamName": "2017/06/18/[$LATEST]353ce211793946dba5bb276b0bde3e0e"
 }
],
 "events": [
 {
 "ingestionTime": 1497802509940,

Вывести результат в формате JSON.

Использовать команду filter-log-
events для фильтрации журналов.

Использовать службу
logs из AWS CLI.

Показать только искомые сообщения
из группы /aws/lambda/pizza-api.

Добавить искомый текст.

 36 / 40

116    Глава 5. Службы: обеспечение клиентам возможности обнаруживать модули...

 "timestamp": 1497802509920,
 "message": "2017-06-18T16:15:09.860Z\t4cc844ea-5441-11e7-8919-29f1e77e006c\
tSave an order
 { pizza: 1,\n adress: '420 Paper St.' }\n",
 "eventId": "33402112131445556039184566359053029477419337484906135552",
 "logStreamName": "2017/06/18/[$LATEST]e24e0cab3d6f47f2b03005ba4ca16b8b"
 }
]
}

Кроме того, вывод в формате JSON не очень удобочитаем, если отформа-
тирован как однострочный текст. Вы можете улучшить форматирование,
указав тип вывода text и повторно выполнив команду, как показано в лис
тинге 5.5.

Листинг 5.5. Измененный запрос журналов из CloudWatch с выбором группы
и текстом «Save an order» для фильтрации

aws logs \
 filter-log-events \
 --filter='Save an order' \
 --log-group-name=/aws/lambda/pizza-api \
 --query='events[0].message' \
 --region=eu-central-1 \
 --output=text

Эта команда вернет более ясный и понятный текст, как показано в листин-
ге 5.6.

Листинг 5.6. Сообщения, сгенерированные Pizza API, без метаданных

2017-06-18T16:15:09.860Z 4cc844ea-5441-11e7-8919-29f1e77e006c
 Save an order { pizza: 1, adress: '420 Paper St.' }

Этот вывод выглядит намного яснее и полезнее. И да, посмотрите на это,
Пьер допустил опечатку! Он отправлял параметр с именем adress вместо
address. Такая суета из-за простой орфографической ошибки! Но мы не будем
звонить тетушке, чтобы объяснить проблему.

5.3. Рентген для приложения
Отладка бессерверных приложений иногда бывает трудной, потому что слож-
но представить поток данных, но в AWS есть инструмент, который вам в этом
поможет. AWS X-Ray – это служба, отображающая почти в реальном време-

Команда вернула только
одно сообщение

Потребовать вернуть
только последнее событие.

Изменить формат вывода.

 37 / 40

5.3. Рентген для приложения    117

ни потоки данных внутри приложения и все задействованные службы. Служ-
бу X-Ray можно использовать с приложениями, работающими на EC2, ECS,
Lambda и Elastic Beanstalk. Кроме того, X-Ray SDK автоматически собирает
метаданные для всех вызовов служб AWS, выполняемых с использованием
AWS SDK. На рис. 5.2 и 5.3 показано, как выглядит наш Pizza API, с точки зре-
ния AWS X-Ray.

Рис. 5.2. Визуальное представление потока передачи строки
«Create an order» в Pizza API

Рис. 5.3. Подробное визуальное представление потока передачи строки
«Create an order» в Pizza API

 38 / 40

118    Глава 5. Службы: обеспечение клиентам возможности обнаруживать модули...

Чтобы включить поддержку AWS X-Ray в функции Lambda, нужно добавить
политику, которая разрешит службе X-Ray взаимодействовать с ней, и вклю-
чить режим активной трассировки в настройках функции.

AWS X-Ray и AWS Lambda
AWS Lambda использует Amazon CloudWatch, чтобы автоматически создать мет
рики и журналы для всех вызовов вашей функции. Но этот механизм не очень
удобен для отслеживания источников событий, вызвавших вашу функцию
Lambda, или исходящих вызовов, которые делает ваша функция. И тут на сцену
выходит AWS X-Ray. Интеграция с X-Ray для AWS Lambda осуществляется легко
и просто, потому что когда выполняется AWS Lambda, демон X-Ray уже запущен.
В этом разделе мы покажем только самый простой случай интеграции нашей
функции Lambda с X-Ray; чтобы узнать больше, загляните в официальное ру-
ководство по адресу: http://docs.aws.amazon.com/lambda/latest/dg/
lambda-x-ray.html.

ПРИМЕЧАНИЕ. Мы будем использовать веб-консоль AWS для работы с AWS
X-Ray, потому что в терминале нельзя увидеть визуальное представление прило-
жения.

Итак, посмотрим, как добавить политику и включить режим активной
трассировки с помощью интерфейса командной строки AWS CLI. Чтобы доба-
вить политику, снова используем команду iam attach-role-policy, но теперь с
arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess, как показано в листинге 5.7.

Листинг 5.7. Добавление политики для X-Ray в роль Lambda

aws iam \
 attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess \
 --role-name pizza-api-executor \
 --region eu-central-1 \
 --output json

Как вы уже знаете, при успешном выполнении эта команда возвращает пус
той результат.

Следующий шаг – обновление конфигурации функции. Сделать это можно с
помощью команды lambda update-function-configuration. Она ожидает имя функ-
ции и параметры; в данном случае нам нужно обновить параметр tracing-
config, установив в нем режим Active. В листинге 5.8 приводится полная ко-
манда.

Использовать команду attach-role-policy
для добавления политики.

Использовать службу
iam из AWS CLI.

Выбрать желаемую
роль для политики.

Указать ARN
для добавляемой
политики.

 39 / 40

http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

5.3. Рентген для приложения    119

Листинг 5.8. Включение режима активной трассировки в AWS X-Ray

aws lambda \
 update-function-configuration \
 --function-name pizza-api \
 --tracing-config Mode=Active \
 --region eu-central-1

Эта команда вернет конфигурацию функции Lambda в формате JSON, как
показано в листинге 5.9. Теперь служба X-Ray готова визуализировать по-
ток нашей функции Lambda, но по умолчанию мы не сможем увидеть другие
службы AWS, которые использует наша функция, такие как DynamoDB.

Листинг 5.9. Ответ после включения трассировки в X-Ray

{
 "TracingConfig": {
 "Mode": "Active"
 },
 "CodeSha256": "HwV+/VdUztZ782NBEqY9Dvzj3nxF6tigLOZPt8yyCoU=",
 "FunctionName": "pizza-api",
 // ...
}

Чтобы увидеть другие службы AWS, поддерживаемые X-Ray, нужно завер-
нуть AWS SDK для Node.js в модуль aws-xray-sdk-core. После установки этого
модуля из NPM измените обработчик create-order.js, как показано в листин-
ге 5.10.

Листинг 5.10. Измененный обработчик create-order.js для обертывания AWS SDK
функцией X-Ray

'use strict'

const AWSXRay = require('aws-xray-sdk-core')
const AWS = AWSXRay.captureAWS(require('aws-sdk'))
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = function updateDeliveryStatus(request) {
 console.log('Save an order', request)

 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

// ...

Обновить конфигурацию функции.
Использовать службу lambda из AWS CLI.

Выбор режима активной трассировки.

Имя функции.

Режим активной трассировки.

Информация о функции, включая имя,
ARN, версию и другие метаданные.

Импортировать модуль
aws-xray-sdk-core.

Завернуть модуль aws-sdk
в команду AWSXRay.captureAWS.

Остальной код в файле остался без изменений.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

120    Глава 5. Службы: обеспечение клиентам возможности обнаруживать модули...

После запуска команды claudia update для повторного развертывания API
служба X-Ray будет полностью настроена.

Чтобы увидеть визуальное представление функции, перейдите в раздел
X-Ray в веб-консоли AWS. В этом случае URL имеет вид: https://eu-central-1.
console.aws.amazon.com/xray/home?region=eu-central-1#/service-map. Ваш URL
может отличаться, если вы использовали другой регион для развертывания
функции.

5.4. Опробование!
Упражнение для этой главы довольно простое, но в следующей главе мы рас-
смотрим более сложные темы.

5.4.1. Упражнение
Теперь, когда вы узнали, как отлаживать бессерверные приложения, верни-

тесь к листингам из глав 3 и 4 и попробуйте прочитать их журналы.
Ваша задача – попытаться прочитать журналы CloudWatch и отыскать все

сообщения об успешных операциях и ошибках в обработчике create-order.
js.

Поскольку это всего лишь отладочное упражнение, мы не будем давать ни-
каких советов. Если вам нужна помощь, можете подсмотреть решение в сле-
дующем разделе.

5.4.2. Решение
В главе 3 вы добавили в обработчик create-order.js вывод сообщений об

успехах и ошибках. Чтобы прочитать эти журналы с помощью CloudWatch,
используйте команду aws logs filter-log-events. Как вы уже знаете, она тре-
бует указать фильтр. Напоминаем, что успешные сообщения регистрирова-
лись с префиксом «Order is saved!». Для ошибок мы использовали префикс
«Oops, order is not saved :(». Используйте оба эти префикса для фильтрации
журналов.

Команда для извлечения записей с текстом «Order is saved!» приводится в
листинге 5.11.

Листинг 5.11. Команда для извлечения из CloudWatch записей с текстом «Order is
saved!»

aws logs \
 filter-log-events \
 --filter='Order is saved!' \
 --log-group-name=/aws/lambda/pizza-api \
 --query='events[0].message' \
 --output=text

Выбрать из CloudWatch записи
с текстом «Order is saved!»

 1 / 40

https://eu-central-1.console.aws.amazon.com/xray/home?region=eu-central-1#/service-map
https://eu-central-1.console.aws.amazon.com/xray/home?region=eu-central-1#/service-map

В заключение    121

ПРИМЕЧАНИЕ. Эту же команду можно использовать для извлечения записей с
текстом «Oops, order is not saved :(», чтобы прочитать ошибки. Но поскольку наше
сообщение содержит запятую и двоеточие, которые считаются специальными
символами, безопаснее использовать только часть текста в фильтре – например,
«order is not saved».

Ответы, возвращаемые командами, будут различаться в зависимости от ко-
личества успешных и неудачных попыток оформить заказ. Если ошибок нет,
на выходе появится ответ None.

В заключение
�� Для чтения журналов функций Lambda используйте CloudWatch.
�� Вместо фильтрации журналов вручную можно использовать разные ко-

манды из AWS CLI.
�� Для визуализации потока выполнения функции можно использовать

службу AWS X-Ray.

 2 / 40

Глава 6
Совершенствование API

Эта глава охватывает следующие темы:

	как осуществляются аутентификация и авторизация в бессервер-
ных приложениях;

	реализация аутентификации и авторизации в нашем бессервер-
ном приложении;

	идентификация пользователей с помощью социальных сетей.

Аутентификация и авторизация – одна из множества сложностей, с которы-
ми приходится сталкиваться при разработке распределенных приложений.
Проблема состоит в том, чтобы передать информацию об авторизованном
пользователе вместе с его привилегиями всем распределенным службам, со-
ставляющим приложение, и правильно интегрировать сторонние механизмы
аутентификации.

Эта глава покажет вам, как реализовать аутентификацию и авторизацию
в нашем бессерверном приложении для удобства клиентов тетушки Марии.
Здесь вы узнаете разницу между аутентификацией и авторизацией в бессер-
верной среде и как реализовать механизм веб-авторизации с помощью AWS
Cognito. Затем вы научитесь идентифицировать пользователей с помощью
социальных сетей – в нашем случае с помощью Facebook.

6.1. Бессерверная аутентификация
и авторизация
Тетушка Мария и Пьер, нанятый ею разработчик мобильного приложения, с
которым мы столкнулись в предыдущей главе, сообщили нам, что наш API в
ответ на запрос списка заказов возвращает все заказы, независимо от того,
кто послал запрос. Все заказы должны видеть только сотрудники пиццерии.
Клиентам должны быть доступны лишь их заказы. Не клиенты и не сотрудни-
ки вообще ничего не должны видеть.

 3 / 40

Совершенствование API    123

Вот как мы исправим эту проблему:

1)	 добавим в приложение поддержку аутентификации пользователей дву-
мя способами:

�� по адресу электронной почты;
�� по учетной записи в Facebook;

2)	 создадим список пользователей нашего API и позволим каждому поль-
зователю видеть только его заказы.

Аутентификация и авторизация
Вы, наверное, заметили, что два разных существительных – аутентификация и
авторизация – выглядят похожими, но в действительности они соответствуют
двум разным понятиям. В сочетании с другими понятиями, такими как иденти-
фикация и привилегии, они могут вызывать немалые сложности.
Попробуем разобрать их на примере.
Представьте, что наше приложение – это крупная компания, владеющая или
арендующая офисное здание. Часто такие офисные здания охраняются, чтобы
в здание никто не мог войти, кроме сотрудников компании. Поскольку служ-
ба безопасности здания должна знать, кому разрешено входить, сотрудникам
этой службы обычно передается список работников компании с информацией
о них, включая фотографии.
Если человек попытается войти в здание, охранник остановит его и потребует
предъявить информацию, идентифицирующую личность человека. Если чело-
век не предъявит никакой идентифицирующей информации, охранник запре-
тит вход и выведет его из здания. Если человек предъявит идентифицирующую
информацию, охранник проверит ее, чтобы убедиться в достоверности. Этот
процесс называется аутентификацией.
Если представленная информация достоверна, человек пройдет проверку под-
линности (аутентифицируется). Но затем охранник проверит, присутствует ли
человек, пытающийся войти, в списке сотрудников компании. Если этого чело-
века нет в списке, охранник запретит вход. Если человек присутствует в списке,
ему будет разрешено войти. Этот процесс называется авторизацией.
А теперь интересный вопрос: имеет ли право любой сотрудник тратить день-
ги с банковского счета компании? Если сотрудник не является генеральным
директором, скорее всего, он не имеет такого права (иногда таким правом не
обладает даже генеральный директор). Право тратить деньги компании или
делать что-то ограничительное называется привилегией.
Проще говоря:
	 аутентификация – это проверка личности пользователя; действительно

ли он является тем, кем себя называет;
	 авторизация – это проверка права войти;
	 идентификационная информация – информация, описывающая личность

пользователя;
	 привилегии – набор прав на выполнение некоторых действий.

 4 / 40

124    Глава 6. Совершенствование API

Основываясь на опыте работы с Express.js или другими более традицион-
ными приложениями, вы, вероятно, захотите реализовать аутентификацию
как часть API и хранить список пользователей в таблице базы данных. В прин-
ципе, это возможно, но для бессерверных приложений мы рекомендуем ис-
пользовать другой способ.

Авторизация необходима в большинстве приложений и обычно осуществ
ляется вводом комбинации из адреса электронной почты и пароля. Практи-
чески всегда авторизация реализуется аналогичным, если не идентичным
образом. Поэтому практически все провайдеры бессерверных вычислений
предлагают встроенные службы аутентификации и авторизации для работы
с бессерверными ресурсами. В частности, Amazon предлагает AWS Cognito –
службу управления пользователями, которая решает задачи аутентификации
и авторизации пользователей, управляет доступом и обеспечивает передачу
информации о пользователях между службами.

Amazon Cognito поддерживает два основных механизма, каждый со своей
областью ответственности:

�� пулы пользователей – служба, отвечающая за управление идентифи-
кацией, предлагающая возможность авторизации «из коробки». Про-
ще говоря, это набор каталогов (пулов пользователей), позволяющий
определить свой механизм авторизации. Для нашего мобильного и
веб-приложения мы можем реализовать авторизацию пользователей с
помощью AWS Cognito SDK.

	 Пул пользователей представлен единственной коллекцией, или катало-
гом пользователей;

�� федеративная идентификация (также этот механизм называют пулами
идентификации) – служба, отвечающая за взаимодействие с провайде-
рами аутентификации и временную авторизацию для доступа к ресур-
сам AWS. Служба федеративной идентификации предлагает:
	 интеграцию с механизмами идентификации социальных сетей

(таких как Facebook, Google и OpenId) и провайдером идентифи-
кации вашего пула пользователей Cognito;

	 временный доступ к ресурсам приложения AWS для аутентифици-
рованных пользователей.

	 Служба федеративной идентификации хранит каталоги с информаци-
ей об отдельных пользователях. Она определяет момент входа каждого
пользователя с использованием разных механизмов идентификации.
Для хранения актуальных данных о пользователях требует подключе-
ния пулов пользователей Cognito.

Одним из ключевых преимуществ AWS Cognito является авторизация за-
просов до того, как они попадут в ваше бессерверное приложение. Это дела-
ется путем настройки авторизации на уровне шлюза API Gateway. Если поль-
зователь не авторизован, его запросы будут остановлены до попадания в вашу
функцию Lambda, что может сэкономить немало времени и денег. Несмотря

 5 / 40

6.1. Бессерверная аутентификация и авторизация    125

на то что услуги AWS Lambda стоят недорого, дополнительное сокращение
расходов никогда не будет лишним.

В примере с пиццерией тетушки Марии нам нужно настроить оба механиз-
ма – пулы идентификации и пулы пользователей Cognito. Пул идентифика-
ции позволит нам интегрировать службу идентификации в Facebook, а также
даст временный доступ к нашему пулу пользователей Cognito без жесткой
привязки к нашим ключам доступа к AWS в мобильном и веб-приложении.
Пул пользователей будет управлять базой данных пользователей, которые мо-
гут заказать пиццу.

Мы должны разрешить клиентам пиццерии тетушки Марии производить
аутентификацию через Facebook. Как показано на рис. 6.1, процесс аутен
тификации через Facebook включает следующие шаги:

1)	 аутентифицировать пользователя в Facebook и получить ключ доступа;
2)	 передать ключ доступа в пул идентификации Cognito, который предо-

ставит временный доступ к пулу пользователей Cognito;
3)	 использовать пул пользователей Cognito для входа или регистрации

пользователя. После успешного входа или регистрации пул пользовате-
лей вернет ключ JWT;

4)	 использовать полученный ключ JWT для соединения с Pizza API и созда-
ния нового заказа либо получения списка прошлых заказов.

Регистрация пользователя
в пуле пользователей

Facebook

Вход пользователя
с помощью Facebook

Данные
аутентификации

пользователя
в Facebook Отправка ключа

доступа из Facebook

Создание заказа (с использованием ключа JWT)

Возврат ответа на попытку создать заказ

Возвращает ключ JWT пользователя

Авторизация
временного доступа

к пулу пользователей

Веб-
или мобильное

приложение

Пул
идентификации

Cognito

Пул
пользователей

Cognito
Pizza API

Рис. 6.1. Процесс авторизации пользователя в бессерверном Pizza API
с использованием Facebook, пула пользователей и пула идентификации

 6 / 40

126    Глава 6. Совершенствование API

Как показано на рис. 6.2, аутентификация с использованием адреса элект
ронной почты и пароля осуществляется аналогично:

1)	 запросить у службы пула идентификации Cognito временный доступ к
пулу пользователей Cognito;

2)	 выполнить вход или регистрацию в пуле пользователей Cognito с ис-
пользованием адреса электронной почты и пароля. После успешного
входа или регистрации пул пользователей вернет ключ JWT;

3)	 использовать ключ JWT для соединения с Pizza API и создания нового
заказа или получения списка прошлых заказов.

Запросить временный доступ
к пулу пользователей Cognito

для неавторизованного
пользователя

Авторизация временного
доступа к пулу пользователей

Аутентификация в пуле пользователей

Pizza API

Создание заказа (с использованием ключа JWT)

Возврат ответа на попытку создать заказ

Возвращает ключ JWT пользователя

Веб-
или мобильное

приложение

Пул
идентификации

Cognito

Пул
пользователей

Cognito

Рис. 6.2. Процесс авторизации пользователя в бессерверном Pizza API
с использованием адреса электронной почты и пароля

6.2. Создание пулов пользователей
и идентификации
Для реализации процедуры аутентификации, описанной в предыдущем раз-
деле, нужно создать пулы пользователей и идентификации.

Начнем с пула пользователей. Чтобы создать его, выполните в терминале
команду aws cognito-idp create-user-pool. Эта команда имеет единственный
обязательный параметр – имя нового пула. Кроме имени пула, добавьте также
в команду ключ --username-attributes, указывающий, что для идентификации
пользователей будут применяться адреса электронной почты. Дополнитель-
но можно настроить политику паролей, передав ключ --policies. Политика по
умолчанию требует присутствия в пароле букв верхнего и нижнего регистров,
цифр и специальных символов. Полная команда создания пула пользователей
приводится в листинге 6.1.

 7 / 40

6.2. Создание пулов пользователей и идентификации    127

Другие способы авторизации
Кроме Amazon Cognito, в AWS поддерживаются другие способы защиты вашего
API:
	 с использованием ролей и политик IAM – самый простой механизм авто-

ризации. Чтобы позволить одному API вызывать другой API, необходимо
определить политики IAM, разрешающие указанному API вызывать неко-
торый метод, для которого включена IAM-аутентификация пользователя.
Для нас это не самое оптимальное решение, потому что у нас имеется
единственный API в Gateway API и несколько маршрутов, которые необхо-
димо защитить;

	 с использованием нестандартного механизма авторизации – нестандарт-
ные механизмы авторизации реализуются в Amazon API Gateway как
функции Lambda, которые управляют доступом к методам вашего API с
применением ключей аутентификации, таких как OAuth или SAML. При
этом при каждом обращении к вашему API в API Gateway будет вызываться
ваша функция авторизации. Если функция авторизации подтвердит право
доступа, запрос будет передан функции-обработчику Lambda.

Листинг 6.1. Создание пула пользователей

aws cognito-idp create-user-pool \
 --pool-name Pizzeria \
 --policies "PasswordPolicy={MinimumLength=8,RequireUppercase=false,
 RequireLowercase=false,
 RequireNumbers=false,RequireSymbols=false}" \
 --username-attributes email \
 --query UserPool.Id \
 --output text

Команда вернет идентификатор пула, потому что в нее был добавлен ключ
--query. Сохраните этот идентификатор – он еще понадобится нам.

ПРИМЕЧАНИЕ. Для простоты в этом примере используется лишь часть возмож-
ностей Cognito. Пулы пользователей поддерживают множество других интерес-
ных функций, таких как автоматическая проверка электронной почты или телефо-
на, список обязательных атрибутов. За более полной информацией обращайтесь
к официальной документации, доступной по адресу: https://console.aws.
amazon.com/cognito/home.

В пуле пользователей должен иметься хотя бы один клиент, чтобы мож-
но было подключить его. Создать клиента можно с помощью команды aws
cognito-idp create-user-pool-client, как показано в листинге 6.2. Команде нуж-

Использовать адреса электронной почты
для идентификации пользователей.

Создать пул пользователей.

Настройка политики паролей.

Имя пула.

Вывести идентификатор
пула в виде текста.

 8 / 40

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home

128    Глава 6. Совершенствование API

но передать идентификатор пула, который вернула предыдущая команда, и
имя клиента. Мы будем тестировать эту конфигурацию с помощью простого
веб-приложения, поэтому создадим клиента без секретного ключа (это озна-
чает, что в будущем вам придется создать еще одного клиента для мобильного
приложения Пьера).

Листинг 6.2. Создание клиента для пула пользователей

aws cognito-idp create-user-pool-client \
 --user-pool-id eu-central-1_userPoolId \
 --client-name PizzeriaClient \
 --no-generate-secret \
 --query UserPoolClient.ClientId \
 --output text

Эта команда вернет идентификатор клиента; сохраните его – он понадо-
бится вам на следующем шаге.

Перед реализацией аутентификации через Facebook и привилегий внутри
приложения посетите портал разработчиков Facebook, чтобы создать прило-
жение и получить его идентификатор.

ПРИМЕЧАНИЕ. Если вы не знаете, как создать приложение в Facebook, загляните
в документацию для разработчиков Facebook, где этот процесс описан во всех
подробностях: https://developers.facebook.com/docs/apps/register.
Если вы не пользуетесь Facebook и не хотите создавать учетную запись для свое
го приложения, ваше приложение сможет работать, используя для авторизации
электронную почту и пароль. Там, где потребуется внести соответствующие изме-
нения, мы сообщим.

Следующий шаг – создание пула идентификации с помощью команды aws
cognito-identity create-identity-pool из AWS CLI, как показано в листинге 6.3.
В команде нужно указать имя пула идентификации, перечислить всех поддер-
живаемых провайдеров аутентификации (в вашем случае Facebook) и провай-
дера идентификации Cognito. В параметре --cognito-identity-provider нужно
указать имя провайдера и идентификатор клиента, а также необходимость про-
верки ключей на стороне сервера. Имя провайдера имеет следующий формат:
cognito-idp.<REGION>.amazonaws.com/<USER_POOL_ID>. Идентификатор клиента – это
то, что вернула предыдущая команда. Нам не требуется проверка ключей на
стороне сервера, поэтому для этого параметра установлено значение false.

Листинг 6.3. Создание пула идентификации

aws cognito-identity create-identity-pool \
 --identity-pool-name Pizzeria \

Вывести только идентификатор клиента в виде текста.

Идентификатор пула, который вернула
предыдущая команда.

Создать клиента пула пользователей.

Имя клиента.

Не генерировать секретный ключ.

Создать пул идентификации.
Имя пула.

 9 / 40

https://developers.facebook.com/docs/apps/register

6.2. Создание пулов пользователей и идентификации    129

 --allow-unauthenticated-identities \
 --supported-login-providers graph.facebook.com=266094173886660 \
 --cognito-identity-providers ProviderName=cognito-idp.eu-central-1.
 amazonaws.com/
 eu-central-1_qpPMn1Tip,ClientId=4q14u0qalmkangdkhieekqbjma,
 ServerSideTokenCheck=false \
 --query IdentityPoolId \
 --output text

После успешного создания пула идентификации нужно добавить две
роли для аутентифицированных и неаутентифицированных пользователей.
Если вам понадобится помощь в создании ролей, обращайтесь по адресу:
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentica-
tion-part-3-roles-and-policies/.

СОВЕТ. Если у вас возникнут сложности с созданием ролей из интерфейса ко-
мандной строки AWS CLI, воспользуйтесь веб-консолью, где все то же самое мож-
но сделать одним щелчком мыши. Перейдите в свой пул идентификации, щелкни-
те на кнопке Edit identity pool (Изменить пул идентификации), а затем на ссылке
Create New Role (Создать новую роль) для аутентифицированных и неаутентифи-
цированных ролей.

Для настройки ролей используйте команду aws cognito-identity set-identity-
pool-role, передав ей идентификатор пула и роли для аутентифицированных
и неаутентифицированных пользователей, как показано в листинге 6.4. Не за-
будьте заменить <ROLE1_ARN> и <ROLE2_ARN> именами ресурсов Amazon (Amazon
Resource Name, ARN) двух ролей, которые вы только что создали.

Листинг 6.4. Добавление ролей в пул идентификации

aws cognito-identity set-identity-pool-roles \
 --identity-pool-id eu-central-1:2a3b45c6-1234-123d-1234-1e23fg45hij6 \
 --roles authenticated=<ROLE1_ARN>,unauthenticated=<ROLE2_ARN>

В случае успеха эта команда вернет пустой ответ.

Добавить провайдера
идентификации Cognito,
указав идентификатор
пула пользователей
и идентификатор
клиента, полученные на
предыдущих шагах.

Вывести идентификатор
пула в виде текста.

Добавить
поддерживаемых

провайдеров
аутентификации – в

нашем случае Facebook.

Разрешить
неаутентифицированным

пользователям доступ к
пулу идентификации.

Идентификатор пула идентификации.

Добавить роли для аутентифицированных
и неаутентифицированных пользователей.

Настройка ролей в пуле идентификации.

 10 / 40

https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/

130    Глава 6. Совершенствование API

6.2.1. Управление доступом к API с помощью Cognito
Теперь, создав пулы пользователей и идентификации, можно добавить

поддержку аутентификации в наш код.
Claudia в сочетании с Claudia API Builder поддерживает все три метода ав-

торизации, упомянутых выше: с использованием ролей IAM, нестандартных
механизмов авторизации и пулов пользователей Cognito. В этой книге мы
рассмотрим только последний вариант, но два других работают аналогично.
Более подробную информацию о них ищите в официальной документации
для Claudia API Builder: https://github.com/claudiajs/claudia-api-builder/blob/
master/docs/api.md#require-authorization.

ПРИМЕЧАНИЕ. Пул идентификации Cognito не используется ни библиотекой
Claudia, ни нашей функцией Lambda. Он используется интерфейсными приложе-
ниями для получения временного доступа к пулам пользователей Cognito, что
избавляет нас от необходимости включать в код ключи доступа к профилю AWS.

Для реализации авторизации с использованием пула пользователей Cognito
необходимо зарегистрировать свою функцию авторизации вызовом метода
registerAuthorizer экземпляра Claudia API Builder. Этот метод принимает два
атрибута: имя функции авторизации и объект с массивом ARN пулов пользо-
вателей Cognito, например:

api.registerAuthorizer('MyCognitoAuth', {
 providerARNs: ['<COGNITO_USER_POOL_ARN>']
});

После регистрации функции авторизации добавьте в определение марш-
рута (как третий аргумент) объект с атрибутом cognitoAuthorizer, содержащим
имя зарегистрированной функции авторизации. Определение маршрута
должно выглядеть так:

api.post('/protectedRoute', request => {
 return doSomething(request)
}, { cognitoAuthorizer: 'MyCognitoAuth' })

Проделайте то же самое для всех маршрутов в файле api.js. После этого
маршруты должны выглядеть, как показано в листинге 6.5. Все маршруты,
имеющие отношение к заказам, должны быть защищены функцией автори-
зации Cognito, а маршруты, возвращающие прейскурант, должны оставаться
общедоступными.

Листинг 6.5. API с нестандартной функцией авторизации

'use strict'

const Api = require('claudia-api-builder')

 11 / 40

https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#require-authorization
https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#require-authorization

6.2. Создание пулов пользователей и идентификации    131

const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')
const updateOrder = require('./handlers/update-order')
const deleteOrder = require('./handlers/delete-order')

api.registerAuthorizer('userAuthentication', {
 providerARNs: [process.env.userPoolArn]
})

// Определение маршрутов
api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})
api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request)
}, {
 success: 201,
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

api.put('/orders/{id}', (request) => {
 return updateOrder(request.pathParams.id, request.body)
}, {
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

api.delete('/orders/{id}', (request) => {
 return deleteOrder(request.pathParams.id)
}, {
 error: 400,
 cognitoAuthorizer: 'userAuthentication'

Регистрация своей
функции авторизации.

Получить ARN пула пользователей
из переменной окружения и установить
его как ARN провайдера.

Передать объект запроса целиком,
включая его тело и данные авторизации.

Добавить авторизацию только
в выбранные маршруты.

 12 / 40

132    Глава 6. Совершенствование API

})

api.post('delivery', (request) => {
 return updateDeliveryStatus(request.body)
}, {
 success: 200,
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

module.exports = api

Последнее, что нужно сделать, – изменить обработчики маршрутов, задей-
ствовав в них функцию авторизации.

Например, в обработчике create-order.js нужно:

�� принять объект запроса целиком, а не только его тело. Нам потребуется
прочитать данные о пользователе из пула пользователей Cognito; эта
информация хранится в объекте запроса, но за пределами его тела;

�� получить данные о пользователе, вызвав функцию авторизации. Они
доступны в объекте контекста авторизации, в атрибуте с именем claims;

�� извлечь адрес пользователя из тела запроса, если указан, иначе извлечь
адрес по умолчанию из профиля авторизованного пользователя;

�� сохранить имя пользователя из Cognito в таблице заказов.

На рис. 6.3 показано, как осуществляется управление доступом к API с ис-
пользованием API Gateway и пула пользователей Amazon Cognito.

Мобильное
приложение

API
Gateway

Пул
пользователей

Cognito

Lambda

API Gateway выполняет
проверку с помощью
пула пользователей

Cognito.

Доступ к Lambda
получают только
авторизованные

пользователи.

Рис. 6.3. Схема управления доступом к нашему API с использованием
API Gateway и пула пользователей Amazon Cognito

Измененный обработчик create-order.js представлен в листинге 6.6.

Добавить авторизацию только
в выбранные маршруты.

 13 / 40

6.2. Создание пулов пользователей и идентификации    133

Листинг 6.6. Обработчик create-order.js с поддержкой авторизации

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

function createOrder(request) {
 console.log('Save an order', request.body)
 const userData = request.context.authorizer.claims
 console.log('User data', userData)

 let userAddress = request.body && request.body.address
 if (!userAddress) {
 userAddress = JSON.parse(userData.address).formatted
 }

 if (!request.body || !request.body.pizza || userAddress)
 throw new Error('To order pizza please provide pizza type and address where
pizza should be delivered')

 return rp.post('https://some-like-it-hot.effortless-serverless.com/delivery', {
 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: userAddress,
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.com/
latest/delivery',
 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,

Функция createOrder принимает
объект запроса целиком.

Если адрес не указан,
использовать адрес из профиля.

Получить данные о пользователе
из объекта контекста авторизации
и вывести их в журнал.

По умолчанию использовать
адрес из тела запроса.

Передать адрес службе
доставки Some Like It Hot.

Сохранить имя пользователя
из Cognito в базе данных.

 14 / 40

134    Глава 6. Совершенствование API

 address: userAddress,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)

 return res
 })
 .catch(saveError => {
 console.log(`Oops, order is not saved :(`, saveError)

 throw saveError
 })
}

module.exports = createOrder

После изменения кода запустите команду claudia update, чтобы развернуть
API. Для проверки работы авторизации вам потребуется реализовать процесс
входа/регистрации в систему. Реализация авторизации в серверной части не
вызвала у нас особых сложностей. Но основная работа, включая интеграцию
пулов пользователей и идентификации, должна выполняться на стороне кли-
ента. Обсуждение этой части приложения выходит за рамки книги, но вы мо-
жете увидеть рабочий пример с практическим руководством в репозитории
GitHub по адресу: https://github.com/effortless-serverless/pizzeria-web-app.

Однако, прежде чем запустить этот код из репозитория, можно выполнить
простую проверку невозможности доступа к API для неавторизованного поль-
зователя, выполнив такую команду curl:

curl -o - -s -w ", status: %{http_code}\n" \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizzaId":1,"address":"221B Baker Street"}' \
 https://21cioselv9.execute-api.us-east-1.amazonaws.com/latest/orders

Эта команда должна вернуть HTTP-код ошибки 401.

6.3. Опробование!
Теперь, когда вы знаете, как работает авторизация, настал момент опробовать
ее.

Сохранить адрес
в базе данных.

Передать userData как
дополнительный аргумент.

 15 / 40

https://github.com/effortless-serverless/pizzeria-web-app

6.3. Опробование!    135

6.3.1. Упражнение
Ваша задача – изменить обработчик delete-order.js, чтобы позволить поль-

зователям удалять только их собственные заказы.
Вот несколько подсказок для тех, кому они понадобятся:

�� авторизация уже была добавлена в маршрут в листинге 6.5;
�� в настоящее время функция deleteOrder принимает только идентифика-

тор заказа orderId, поэтому вам нужно добавить прием информации об
авторизованном пользователе;

�� для проверки принадлежности заказа текущему пользователю исполь-
зуйте в методе deleteOrder атрибут cognito:username из объекта request.
context.authorizer.claims;

�� если заказ не принадлежит пользователю, вы должны вернуть ошиб-
ку.

Возврат нестандартных ошибок из Claudia
Когда обработчик генерирует ошибку, Claudia посылает клиенту код «400 Bad
Request», как мы определили раньше. Но в случае, когда пользователь пытается
удалить заказ, который ему не принадлежит, можно вернуть HTTP-ошибку «403
Forbidden» или «401 Unauthorized».
Для этого нужно установить код ошибки и ответ динамически. Claudia API
Builder позволяет сделать это, предлагая метод ApiResponse в экземпляре API
Builder. Например, вот как можно вернуть код 403:

return new api.ApiResponse({ message: 'Action is forbidden' },
{ 'Content-Type': 'application/json' }, 403)

Дополнительные подробности о динамических ответах можно найти в офици-
альной документации для Claudia API Builder: https://github.com/claudiajs/
claudia-api-builder/blob/master/docs/api.md#dynamic-responses.

Если упражнение покажется вам слишком простым, вот вам еще пара
упражнений посложнее:

�� измените первичный ключ заказа, превратив его в комбинацию из
идентификатора заказа и имени пользователя Cognito, создавшего его.
При таком подходе появляется возможность находить и удалять заказы,
принадлежащие только авторизованному пользователю;

�� измените обработчик update-order.js так, чтобы пользователи могли из-
менять только свои заказы.

 16 / 40

https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#dynamic-responses
https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#dynamic-responses

136    Глава 6. Совершенствование API

6.3.2. Решение
Прежде всего нужно изменить обработчик delete-order.js, чтобы он прини-

мал идентификатор заказа orderId и данные об авторизованном пользователе.
Также нужно извлечь заказ из базы данных и проверить его принадлежность
авторизованному пользователю. Измененный обработчик показан в листин-
ге 6.7.

Листинг 6.7. Обработчик delete-order.js с поддержкой авторизации

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

function deleteOrder(orderId, userData) {
 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
 .then(item => {
 if (item.cognitoUsername !== userData['cognito:username'])
 throw new Error('Order is not owned by your user')

 if (item.orderStatus !== 'pending')
 throw new Error('Order status is not pending')

 return
 rp.delete(`https://some-like-it-hot.effortless-serverless.com/
delivery/${orderId}`, {
 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 }
 })
 })
 .then(() => {
 return docClient.delete({
 TableName: 'pizza-orders',
 Key: {

Проверить принадлежность
заказа авторизованному

пользователю.

Сгенерировать ошибку,
если заказ не принадлежит
авторизованному
пользователю.

Принять дополнительный
аргумент userData.

 17 / 40

В заключение    137

 orderId: orderId
 }
 }).promise()
 })
}

module.exports = deleteOrder

После изменения обработчика нужно обновить маршрут и передать пра-
вильные данные обработчику. В листинге 6.8 показан фрагмент из файла api.
js, в котором идентификатор заказа и данные о пользователе передаются в
обработчик delete-order.js. Как было показано выше, данные доступны в виде
атрибута claims в объекте request.context.authorizer.

Листинг 6.8. Изменение маршрута удаления заказа для передачи в обработчик
данных о пользователе

api.delete('/orders/{id}', (request) => {
 return deleteOrder(request.pathParams.id, request.context.authorizer.claims)
}, {
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

После внесения изменений в код просто запустите команду claudia update,
чтобы развернуть его. По завершении вы можете использовать веб-приложе-
ние из репозитория https://github.com/effortless-serverless/pizzeria-web-app
для получения ключа авторизации и для тестирования. Попытка удалить ста-
рый заказ с помощью этого ключа не увенчается успехом, потому что он был
создан без авторизации – имя пользователя Cognito не будет совпадать.

В заключение
�� Аутентификацию пользователей в бессерверных приложениях можно

организовать с помощью Amazon Cognito.
�� Для больших групп пользователей с разными привилегиями используй-

те пулы идентификации Amazon Cognito.
�� В одном приложении с легкостью можно организовать аутентификацию

разными способами; просто помните, что для каждого способа нужно
создать свой пул пользователей.

�� Библиотека Claudia ускоряет настройку аутентификации с AWS Cognito.

Передать в обработчик
orderId и claims

из объекта authorizer.

 18 / 40

https://github.com/effortless-serverless/pizzeria-web-app

Глава 7
Работа с файлами

Эта глава охватывает следующие темы:

	хранение медиафайлов и другого статического содержимого
в бессерверных приложениях;

	управление файлами и доступ к ним в бессерверных API;
	обработка статических файлов с использованием бессерверных

функций.

Приложениям часто требуется хранить информацию не только в базах дан-
ных, но и в статических файлах. Обычно в статических файлах хранятся фо-
тографии, аудио- или видеозаписи, а также простой текст (например, файлы
HTML, CSS и JavaScript).

Бессерверным приложениям тоже приходится хранить статические файлы.
Однако бессерверный характер таких приложений предполагает необходи-
мость использования решения для хранения данных, основанного на тех же
принципах бессерверных вычислений. В этой главе рассматриваются возмож-
ности хранения файлов в бессерверном окружении и описываются приемы
создания отдельной функции для обработки файлов, которая использует хра-
нилище и возвращает требуемые файлы другой функции Lambda – в данном
случае нашему бессерверному API.

7.1. Хранение статических файлов
в бессерверных приложениях
Наше приложение для пиццерии тетушки Марии не будет полным без изобра
жений вкусной пиццы. Ваш двоюродный брат Микеланджело (также извест-
ный как Майк) уже сделал потрясающие фотографии всех пицц, поэтому нам
остается только организовать хранение и обслуживание этих статических
файлов. Для этого в AWS есть служба Simple Storage Service (S3), позволяющая
хранить файлы до 5 Тбайт в бессерверном окружении.

 19 / 40

7.1. Хранение статических файлов в бессерверных приложениях    139

Amazon S3 хранит файлы в так называемых корзинах (buckets) – структурах,
напоминающих папки, которые принадлежат учетной записи AWS. Каждый
файл или объект в корзине имеет уникальный идентификационный ключ.
Корзины S3 поддерживают триггеры для функций Lambda, которые позволя-
ют вызвать определенную функцию, когда что-то происходит в корзине.

ПРИМЕЧАНИЕ. Мы советуем ознакомиться с основами Amazon S3, перед тем
как продолжить чтение этой главы. Хорошей отправной точкой вам послужит
официальная документация, доступная по адресу http://docs.aws.amazon.com/
AmazonS3/latest/dev/Welcome.html.

Основой всего в S3 является корзина, которую можно создать с помощью
веб-консоли AWS или интерфейса командной строки AWS CLI – нашего люби-
мого инструмента. Команде mb требуется передать аргумент с URI службы S3.
S3 URI – это имя вашей корзины в S3 с префиксом s3://. Если понадобится, с
помощью флага --region можно указать регион. В нашем примере мы созда-
дим корзину с именем aunt-marias-pizzeria и укажем регион.

Выполните следующую команду в AWS CLI:

aws s3 mb s3://aunt-marias-pizzeria --region eu-central-1

ПРИМЕЧАНИЕ. Обратите внимание, что имя корзины должно быть уникальным
среди всех корзин, существующих в Amazon S3. Ваша команда не будет выполнена,
если вы используете имя, которое указано в предыдущем листинге. Для успешного
выполнения команды используйте уникальное имя. За дополнительной информа-
цией о соглашениях и правилах именования корзин в S3 обращайтесь по адресу:
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html.

Команда должна вернуть ответ: make_bucket: aunt-marias-pizzeria. Если ука-
зать неуникальное имя для корзины, она вернет следующую ошибку, и вам
придется повторно запустить команду с другим именем:

make_bucket failed: s3://bucket-name An error occurred
(BucketAlreadyExists) when calling the CreateBucket operation: The
requested bucket name is not available. The bucket namespace
is shared by all users of the system.

Please select a different name and try again.

(Перевод:
make_bucket, ошибка: s3://bucket-name При выполнении операции
CreateBucket возникла ошибка (BucketAlreadyExists): указанное
имя корзины уже занято. Все пользователи системы используют
одно и то же пространство имен.

Пожалуйста, выберите другое имя и повторите попытку.)

 20 / 40

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

140    Глава 7. Работа с файлами

После создания корзины следует определить пользователей, имеющих пра-
во выгружать в нее файлы. Но перед этим нужно подумать о структуре папок
в корзине.

ПРИМЕЧАНИЕ. Корзины в Amazon S3 на самом деле не поддерживают папок –
только объекты. Но чтобы упростить взаимодействие с S3, Amazon отображает
в веб-консоли имена объектов, представляющих папки, в виде реальных папок.
Например, объект с именем /images/large/pizza.jpg будет показан как изображе-
ние pizza.jpg в папке с именем large, которая вложена в папку images.

Как показано на рис. 7.1, вы должны выгрузить изображения в папку images.
Иногда исходные изображения могут оказаться слишком большими для мо-
бильного приложения, поэтому также нужно создать папку thumbnails, где бу-
дут храниться уменьшенные версии изображений. Кроме того, поскольку в
каждый момент времени будет иметься только один файл menu.pdf, его необя-
зательно хранить в папке.

Корзина Amazon S3

Папка для исходных
изображений

Папка для
уменьшенных
изображений,
генерируемых
функцией AWS Lambda

images

aunt-marias-pizzeria

thumbnails

Рис. 7.1. Рекомендованная структура папок в корзине Amazon S3

Далее, определив структуру папок, можно настроить разрешения для опре-
деленных пользователей выгружать изображения в корзину. Самый простой
способ сделать это – сгенерировать предварительно подписанный URL, кото-
рый будет использоваться для выгрузки изображений.

По умолчанию все объекты и сегменты являются приватными – доступ к
ним имеет только пользователь, создавший их. Предварительно подписан-
ный URL позволяет пользователям, не имеющим права доступа, выгружать
файлы в корзину. Такой URL создается пользователем, который имеет доступ
к корзине и предоставит временные разрешения всем, кого знает.

Поскольку этот URL должен быть защищен от несанкционированного до-
ступа, мы создадим новый маршрут в Pizza API, который будет генерировать и
возвращать нужный URL. Этот маршрут также должен быть защищен; в нашем
примере мы разрешим всем авторизованным пользователям использовать
эту конечную точку API, но в реальном приложении у вас должна быть опре-
делена специальная группа пользователей, которая сможет получить доступ к
конкретным конечным точкам API, например группа администраторов.

 21 / 40

7.1. Хранение статических файлов в бессерверных приложениях    141

ПРИМЕЧАНИЕ. Упоминаемые здесь группы пользователей являются группами
в пулах пользователей Cognito. Узнать больше о группах в пулах пользователей
Cognito можно по адресу: http://docs.aws.amazon.com/cognito/latest/de-
veloperguide/cognito-user-pools-user-groups.html.

Чтобы сгенерировать URL, нужно создать новый обработчик и использовать
в нем метод getSignedUrl класса S3. Этот метод принимает два аргумента: имя
метода, который будет использоваться через подписанный URL (putObject), и
объект с параметрами. В этом объекте должны быть определены следующие
параметры:

�� имя корзины, доступ к которой будет осуществляться посредством под-
писанного URL;

�� уникальный ключ для подписи URL. Поскольку сгенерировать уникаль-
ный ключ вручную непросто, для этой цели лучше использовать модуль
uuid. Мы уже использовали этот модуль в главе 3; только не забудьте пе-
реустановить его, если вы удалили его из файла package.json (Устанавли-
вайте UUID версии 4, прямо указав uuid/v4.);

�� список управления доступом (Access Control List, ACL), определяющий
порядок взаимодействий с объектами в корзине. В нашем случае объек-
ты должны быть доступны всем пользователям, поэтому мы передадим
значение public-read;

�� время действия сгенерированного URL в секундах. Двух минут будет
вполне достаточно, поэтому мы передадим в этом параметре 120 секунд.

После создания объекта параметров вызовем метод getSignedUrl, чтобы
подписать URL, а затем вернем его как объект JSON. Создайте файл с именем
generate-presigned-url.js в папке handlers и скопируйте в него код из листин-
га 7.1.

Листинг 7.1. Обработчик в Pizza API для создания предварительно подписанного URL

'use strict'

const uuidv4 = require('uuid/v4')
const AWS = require('aws-sdk')
const s3 = new AWS.S3()

function generatePresignedUrl() {
 const params = {
 Bucket: process.env.bucketName,
 Key: uuidv4(),
 ACL: 'public-read',

Импортировать AWS SDK
и инициализировать класс S3.

Объявить объект доступным для чтения всем пользователям.

Получить имя корзины из переменой
окружения bucketName.

Импортировать
модуль uuid.

Определить функцию-обработчик.

Создать уникальный идентификатор.

 22 / 40

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html

142    Глава 7. Работа с файлами

 Expires: 120
 }

 s3.getSignedUrl('putObject', params).promise()
 .then(url => {
 return {
 url: url
 }
 })
}

module.exports = generatePresignedUrl

Теперь добавим в файл api.js новый маршрут к этому обработчику. Назо-
вем его /upload-url. Как отмечалось выше, мы должны защитить этот марш-
рут, как уже защитили маршруты /orders, чтобы только пользователи, авто-
ризованные с помощью функции userAuthentication, могли получить этот URL.
В листинге 7.2 показан конец файла api.js. Остальной код в нем остался без
изменений. Кроме того, не забудьте импортировать обработчик getSignedUrl в
начале файла api.js, добавив строку const getSignedUrl = require('./handlers/
generate-presigned-url.js').

Листинг 7.2. Новые маршруты /delivery и /upload-url в файле api.js

api.post('delivery', (request) => {
 return updateDeliveryStatus(request.body)
}, {
 success: 200,
 error: 400
}, {
 cognitoAuthorizer: 'userAuthentication'
})

api.get('upload-url', (request) => {
 return getSignedUrl()
},
{ error: 400 },
{ cognitoAuthorizer: 'userAuthentication' })

module.exports = api

Если теперь обновить API командой claudia update и затем послать запрос
по новому маршруту с ключом авторизации (полученным из веб-приложе-
ния, как описано в предыдущей главе), в ответ будет возвращен подписанный
URL, который можно использовать для выгрузки файлов в корзину.

Определить время действия
URL в секундах.

Вернуть объект JSON
и подписанный URL.

Получить подписанный URL
для метода putObject.

Добавить новый маршрут GET.

Потребовать авторизацию
для этого нового маршрута.

Вызвать обработчик getSignedURL.

В случае ошибки вернуть HTTP-код 400.

 23 / 40

7.2. Создание миниатюр    143

7.2. Создание миниатюр
Поскольку выгруженные изображения могут оказаться слишком большими
для мобильного приложения, также имеющегося у тетушки Марии, мы долж-
ны предусмотреть создание уменьшенных копий всех фотографий-миниа-
тюр. Создание миниатюр не должно каким-либо образом блокировать наш
API, поэтому для обработки изображений лучше создать независимый микро-
сервис.

Независимая служба в данном случае представляет собой отдельную функ-
цию Lambda, которая автоматически запускается после выгрузки новой фо-
тографии в Amazon S3. При этом имеет место следующая последовательность
событий (рис. 7.2):

�� обращением к маршруту /upload-url пользователь запрашивает новый
подписанный URL;

�� выгружает новую фотографию в этот URL;
�� Amazon S3 запускает нашу новую функцию Lambda;
�� функция Lambda изменяет размер изображения и сохраняет миниатюру

в папке thumbnails.

Мобильное
приложение

Функция Lambda,
обрабатывающая

изображения

Pizza API

Корзина
Amazon S3

Мобильное приложение
обращается к API, чтобы
получить подписанный URL.

API генерирует URL, который
остается действительным
в течение 120 секунд,
и возвращает его.

Мобильное приложение
выгружает файл
непосредственно
в Amazon S3, используя
подписанный URL.

По окончании выгрузки
файла Amazon S3
автоматически вызывает
функцию Lambda,
обрабатывающую
изображения, и передает ей
информацию о выгруженном
файле, включая имя корзины
и имя файла.

Рис. 7.2. Процесс выгрузки и обработки изображений

Новая функция Lambda не будет запускаться HTTP-запросами, поэтому нам
не потребуется использовать Claudia API Builder. Вместо этого она будет полу-
чать новый объект из S3 и изменять его размер с помощью ImageMagick. Пакет
ImageMagick доступен в AWS Lambda по умолчанию; вам не нужно устанавли-
вать его перед использованием.

 24 / 40

144    Глава 7. Работа с файлами

ImageMagick
ImageMagick – это бесплатный программный пакет с открытым исходным ко-
дом для отображения, преобразования и редактирования файлов растровых
и векторных изображений. Он включает несколько интерфейсов командной
строки и может читать и записывать изображения в более чем 200 различных
форматах.
ImageMagick может преобразовывать файлы из одного формата в другой,
масштабировать и трансформировать изображения, манипулировать цветами,
композицией и многими другими аспектами.
Узнать больше об ImageMagick можно на сайте http://imagemagick.org.

Первый шаг на пути к созданию отдельной службы – создание нового про-
екта. Вы должны:

1)	 создать новую папку за пределами папки pizza-api (мы выбрали имя
pizza-image-processor);

2)	 внутри папки инициализировать новый пакет NPM (командой npm init).

Следующий шаг – создание файла, экспортирующего функцию-обработчик.
Поскольку это всего лишь обработчик изображений, а не API, доступный из-
вне, в нем не нужно использовать Claudia API Builder.

ПРИМЕЧАНИЕ. Когда Claudia API Builder не используется, вы не сможете экспор-
тировать функцию-обработчик с помощью module.exports. Вместо этого экспорти-
рование следует выполнять с помощью export.handler.

Эта служба будет небольшой и вполне уместится в одном файле, но для
простоты обслуживания и удобства тестирования разделим ее на два файла:
первый – файл с исходным кодом, который просто извлекает данные из собы-
тия Lambda, а второй – фактическая реализация преобразования.

В первом файле определим функцию-обработчик, принимающую три ар-
гумента:

�� событие, вызвавшее запуск функции Lambda;
�� контекст функции Lambda;
�� функцию обратного вызова для отправки ответа.

В первом файле сначала проверим существование действительной записи
о событии и поступило ли оно из Amazon S3. Поскольку одну и ту же функцию
Lambda могут запускать разные службы, необходимо также проверить, исхо-
дит ли событие от хранилища S3. Затем нужно извлечь имя корзины S3 и имя
файла с путем или ключом объекта, выполнив соответствующий запрос к S3.

 25 / 40

http://imagemagick.org

7.2. Создание миниатюр    145

Ответом на запрос будет изображение, которое нужно передать в функцию
convert.

ПРИМЕЧАНИЕ. Реализация функции преобразования convert основана на ис-
пользовании Promise, как того требует Claudia API Builder. Мы должны придер-
живаться общего стиля программирования во всех своих службах, но если вы
предпочитаете обратные вызовы, можете использовать их.

Код в первом файле показан в листинге 7.3.

Листинг 7.3. Код функции Lambda, реализующий службу обработки изображений

'use strict'

const convert = require('./convert')

function handlerFunction(event, context, callback) {
 const eventRecord = event.Records && event.Records[0]

 if (eventRecord) {
 if (eventRecord.eventSource === 'aws:s3' && eventRecord.s3) {
 return convert(eventRecord.s3.bucket.name, eventRecord.s3.object.key)
 .then(response => {
 callback(null, response)
 })
 .catch(callback)
 }

 return callback('unsupported event source')
 }
 callback('no records in the event')
}

exports.handler = handlerFunction

Теперь займемся созданием функции convert. Так как служба невелика, нет
необходимости усложнять структуру папок: поместим файл convert.js в основ-
ную папку проекта. На рис. 7.3 изображена следующая последовательность
операций, выполняемых функцией convert:

�� S3 вызывает функцию AWS Lambda в первом файле, которая, в свою оче-
редь, вызывает функцию convert;

�� функция convert загружает изображение из S3 и сохраняет его локально,
в папке /tmp;

Импортировать
функцию convert
из второго файла.

Определить функцию-обработчик,
принимающую событие, контекст
Lambda и функцию обратного вызова.

Получить запись о событии
в отдельную переменную.

Проверить существование записи.

Также проверить,
что событие исходит
из S3, и преобразо-
вать файл.

Вернуть ошибку, если
событие исходит не из S3.

Иначе вернуть
признак ошибки.

В случае успешного преобразования вернуть признак
успеха с помощью функции обратного вызова.

Экспортировать
функцию-обработчик.

Также вернуть ошибку, если запись о событии отсутствует.

 26 / 40

146    Глава 7. Работа с файлами

�� изображение преобразуется с помощью команды convert из пакета
ImageMagick, и полученная в результате миниатюра сохраняется в пап-
ке /tmp;

�� затем функция convert выгружает новую миниатюру в корзину S3
�� и объявляет объект Promise вычисленным, сообщая тем самым первому

файлу, что операция успешно выполнена.

Корзина Amazon S3

Выгрузка
миниатюры

Загрузка
изображения

Уменьшение
изображенияФункция-

обработчик
(index.js)

Функция преобразования (convert.js)

Функция Lambda, обрабатывающая изображения

1. Когда пользователь
выгрузит файл,
корзина Amazon S3
автоматически
вызовет функцию
Lambda,
обрабатывающую
изображения, и
передаст ей
информацию о файле,
включая имя корзины
и имя файла.

2. Затем функция
Lambda извлечет
необходимую
информацию из
события и, если событие
исходит из Amazon S3,
вызовет функцию
convert, передав ей имя
корзины и имя файла;
иначе дальнейшее
выполнение будет
прекращено.

3. Функция
преобразования сначала
загрузит файл из Amazon
S3 с помощью AWS SDK,
указав имя корзины и
имя файла, полученные
от главного обработчика,
и сохранит файл в
локальной папке /tmp.

4. По окончании загрузки
функция преобразования
выполнит команду convert
из пакета ImageMagick
вызовом метода
child_process.exec, которая
создаст уменьшенную
версию изображения,
и сохранит результат
в локальной папке /tmp.

5. После создания миниатюры
функция Lambda выгрузит ее
с помощью AWS SDK из
локальной папки /tmp в папку
/thumbnails в корзине Amazon S3
и объявит объект Promise
завершившимся, сообщив
главной функции-обработчику,
что преобразование выполнено
успешно; обработчик просто
обратится к функции обратного
вызова, чтобы подтвердить
успешное выполнение.

Рис. 7.3. Алгоритм работы функции convert

Как показано на рис. 7.3, функция convert должна сначала загрузить файл
из S3, вызвав метод getObject класса S3. Этот метод принимает имя корзины
и путь к файлу в S3 и возвращает объект Promise, который после завершения
вычислений вернет ответ с телом файла в буфере.

Файл convert.js должен экспортировать функцию convert, которая является
обычной функцией Node.js, принимающей имя корзины и путь к файлу в S3 и
возвращающей объект Promise. Для решения задач, стоящих перед функцией
convert, необходимо импортировать три модуля Node.js:

�� 	fs – для работы с файловой системой;
�� 	path – для выполнения операций с путями к файлам;
�� 	child_process – для вызова команд ImageMagick.

В дополнение к этим трем модулям также необходимо установить два
дополнительных пакета из NPM: mime (который определяет тип MIME

 27 / 40

7.2. Создание миниатюр    147

загруженного файла) и aws-sdk (AWS SDK требуется для программного доступа
к службе S3).

Следующий шаг – сохранение загруженного файла. Внутри функции Lambda
только папка /tmp доступна для записи. Поэтому мы должны создать две папки
внутри /tmp: одну с именем images для загруженного изображения и другую с
именем thumbnails для миниатюры.

ПРИМЕЧАНИЕ. Перед созданием этих папок проверьте – возможно, они уже су-
ществуют. AWS может вызвать функцию Lambda не в первый раз, и папки могут
быть уже созданы.

Убедившись в наличии папки images внутри /tmp, используем команду
fs.writeFile с именем загруженного файла, чтобы сохранить его в этой папке.
Этот метод действует асинхронно, но он не возвращает объект Promise, поэто-
му мы должны заключить его вызов в Promise.

Затем, когда файл будет сохранен в локальной папке, можно создать из него
миниатюру с помощью ImageMagick. Для этого нужно выполнить коман-
ду convert, которая позволяет изменять размеры и преобразовывать файлы
изображений. Мы не будем менять формат файла, а просто изменим размер
изображения. Для этого вызовем команду convert со следующими аргументами:

�� путь к исходному файлу;
�� флаг -resize, определяющий операцию изменения размера;
�� значение 120x120\>, определяющее размеры, до которых должно быть

уменьшено изображение. Обратите внимание на символы \>, следую-
щие за значением: они сообщают, что размер следует изменить, только
если исходное изображение имеет размеры больше указанных;

�� путь для сохранения миниатюры.

Ниже приводится полная команда для создания миниатюры изображения с
именем image.png, имеющей размеры 120×120 пикселей:

convert /tmp/images/image.png -resize 120x120\> /tmp/thumbnails/image.png

Чтобы выполнить команду в функции Lambda, нужно использовать метод
exec из модуля child_process, который мы импортировали в начале файла. Ме-
тод exec действует асинхронно, но не возвращает объект Promise, поэтому мы
должны заключить этот вызов в Promise.

В заключение функция convert должна выгрузить файл в корзину Amazon
S3. Сделать это можно с помощью метода putObject класса S3. Этот метод воз-
вращает Promise и принимает следующие аргументы:

�� объект с параметрами, содержащий имя корзины;
�� путь к файлу в S3;
�� тело файла в буфере;

 28 / 40

148    Глава 7. Работа с файлами

�� ACL;
�� тип содержимого файла.

Так как служба обработки изображений может работать с разными типа-
ми файлов, нам потребуется пакет mime, чтобы получить тип MIME исходного
изображения и передать его как тип содержимого миниатюры. Если этого не
сделать, S3 будет считать, что содержимое файла имеет тип binary/octet-stream.

exec и spawn
Модуль child_process в Node.js предлагает два метода для выполнения внеш-
них команд: exec и spawn. Оба могут выполнять одну и ту же работу, но делают
это немного по-разному.
Метод spawn возвращает объект, который содержит потоки stdout и stderr.
Этот метод больше подходит для команд, которые принимают или возвращают
больший объем информации.
Метод exec принимает функцию обратного вызова, которая вызывается пос
ле завершения команды. Этот обратный вызов возвращает ошибку, если она
возникла, а также вывод stdout и stderr. По умолчанию exec ограничивает
размер вывода 200 Кбайт, поэтому он больше подходит для команд, которые
не возвращают много данных и для которых важнее окончательные, а не про-
межуточные результаты.
За дополнительной информацией по обеим командам обращайтесь по
адресу: https://nodejs.org/api/child_process.html#child_process_
asynchronous_process_creation.

В листинге 7.4 приводится полный код для файла convert.js.

Листинг 7.4. Преобразование изображений в миниатюры

'use strict'

const fs = require('fs')
const path = require('path')
const exec = require('child_process').exec
const mime = require('mime')
const aws = require('aws-sdk')
const s3 = new aws.S3()

function convert(bucket, filePath) {
 const fileName = path.basename(filePath)

 return s3.getObject({

Определить функцию-обработчик, принимающую
имя корзины и путь к файлу в S3.

 29 / 40

https://nodejs.org/api/child_process.html#child_process_asynchronous_process_creation
https://nodejs.org/api/child_process.html#child_process_asynchronous_process_creation

7.2. Создание миниатюр    149

 Bucket: bucket,
 Key: filePath
 }).promise()
 .then(response => {
 return new Promise((resolve, reject) => {
 if (!fs.existsSync('/tmp/images/'))
 fs.mkdirSync('/tmp/images/')

 if (!fs.existsSync('/tmp/thumbnails/'))
 fs.mkdirSync('/tmp/thumbnails/')

 const localFilePath = path.join('/tmp/images/', fileName)

 fs.writeFile(localFilePath, response.Body, (err, fileName) => {
 if (err)
 return reject(err)

 resolve(filePath)
 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 exec(`convert ${localFilePath} -resize 120x120\\>
 ${localThumbnailPath}`, (err, stdout, stderr) => {
 if (err)
 return reject(err)

 resolve(fileName)
 })
 })
 })
 .then(fileName => {
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 return s3.putObject({
 Bucket: bucket,
 Key: `thumbnails/${fileName}`,
 Body: fs.readFileSync(localThumbnailPath),
 ContentType: mime.getType(localThumbnailPath),

Уменьшить изображение
с помощью ImageMagick.

Заключить вызовы асинхронных
функций в JavaScript-объект Promise.

Создать папки images и thumbnails внутри
папки /tmp, если они отсутствуют.

Сохранить файл, полученный
из S3, в локальной папке.

Заключить вызовы асинхронных
функций в JavaScript-объект Promise.

Прочитать содержимое
файла из папки /tmp.

Отправить объект обратно в S3.

Получить тип MIME-файла.

 30 / 40

150    Глава 7. Работа с файлами

 ACL: 'public-read'
 }).promise()
 })
}

module.exports = convert

7.2.1. Развертывание функции обработки файлов в S3
Теперь, после реализации службы, ее нужно развернуть с помощью Claudia.

Интересно отметить, что в этом случае у нас нет API. Точно так же, как в гла-
ве 2, мы используем команду claudia create с флагом --region, но вместо фла-
га --api-module, определяющего модуль для обработки запросов, используем
флаг --handler. Полная команда приводится в листинге 7.5. С помощью флага
--handler передается путь к обработчику с суффиксом .handler. Например, если
обработчик экспортировался из файла index.js, путь будет иметь вид: index.
handler; если обработчик экспортировался из файла lambda.js, следует указать
lambda.handler.

ПРИМЕЧАНИЕ. Формат <имя_файла>.handler параметра для флага --handler дол-
жен строго соблюдаться, потому что, к сожалению, флаг --handler не поддержива-
ет никаких других форматов.
Если вы инициализируете свойство exports.somethingElse или module.exports в
главном файле и затем выполните команду с флагом --handler index или --handler
index.default, команда потерпит неудачу, потому что главный файл должен экс-
портировать свойство handler. Поэтому флаг --handler работает только со свой-
ством exports.handler.

Листинг 7.5. Развертывание службы обработки изображений с помощью Claudia

claudia create \
 --region eu-central-1 \
 --handler index.handler

Эта команда вернет информацию о функции Lambda, как показано в лис
тинге 7.6, и создаст файл claudia.json в корневом каталоге проекта.

Листинг 7.6. Ответ команды claudia create, завершившейся успехом

execution
{
 "lambda": {

Назначить разрешения
для миниатюры.

Путь к функции-обработчику.

Выбор региона.
Создать новую функцию.

 31 / 40

7.3. Опробование!    151

 "role": "pizza-image-processor-executor",
 "name": "pizza-image-processor",
 "region": "eu-central-1"
 }
}

Прежде чем опробовать нашу новую службу, мы должны сделать еще один
шаг – настроить триггер для вызова функции из корзины S3. Для этого в биб
лиотеке Claudia есть команда claudia add-s3-event-source. Она принимает не-
сколько параметров, но мы будем использовать только два из них:

�� 	--bucket – обязательный флаг, определяющий имя корзины;
�� 	--prefix – дополнительный флаг, позволяющий указать папку.

ПРИМЕЧАНИЕ. Полный список параметров команды можно найти по адресу:
https://github.com/claudiajs/claudia/blob/master/docs/add-s3-event-
source.md.

Как показано в листинге 7.7, мы должны указать также префикс images/, по-
тому что тогда команда настроит триггер, реагирующий только на события в
папке images.

Листинг 7.7. Добавление триггера S3 для вызова функции Lambda

claudia add-s3-event-source \
 --bucket aunt-marias-pizzeria \
 --prefix images/

В случае успеха команда вернет пустой объект, иначе – сообщение об ошиб-
ке.

Самый простой способ проверить работоспособность нашей новой служ-
бы – вручную выгрузить файл в папку images в корзине S3. Попробуйте сделать
это, затем подождите несколько секунд и проверьте папку thumbnails в корзи-
не S3.

Чтобы опробовать всю цепочку, включающую API пиццерии и обработчик
изображений, можно использовать веб-приложение по адресу: https://github.
com/effortless-serverless/pizzeria-web-app.

7.3. Опробование!
Это была довольно простая глава, но, так как это конец первой части этой кни-
ги, мы решили усложнить упражнение.

Имя роли для функции, созданной
библиотекой Claudia.

Имя функции Lambda.

Регион, где развернута
функция Lambda.

Добавить триггер S3 для передачи
событий в функцию.Имя корзины.

Префикс – имя папки в корзине S3,
для которого генерируются события.

 32 / 40

https://github.com/claudiajs/claudia/blob/master/docs/add-s3-event-source.md
https://github.com/claudiajs/claudia/blob/master/docs/add-s3-event-source.md
https://github.com/effortless-serverless/pizzeria-web-app
https://github.com/effortless-serverless/pizzeria-web-app

152    Глава 7. Работа с файлами

7.3.1. Упражнение
Некоторые изображения, подготовленные Микеланджело, имеют очень

большие размеры – до 10 мегапикселей и даже больше. Чтобы файлы боль-
ших размеров не замедляли их загрузку в мобильном и веб-приложении, мы
должны уменьшить изображения, которые имеют высоту или ширину больше
1024 пикселей.

Вот несколько советов:

�� повторно используйте функцию convert для изменения размеров файла;
�� будьте осторожны, потому что вы изменяете файлы, которые использу-

ются для создания миниатюр, – возможно, не стоит выполнять обе опе-
рации параллельно;

�� выгрузите оба файла в S3.

7.3.2. Решение
Как показано в листинге 7.8, большая часть кода осталась прежней – вам

точно так же нужно загрузить изображение из S3 и сохранить его в папке /tmp,
затем сгенерировать миниатюру и, наконец, выгрузить ее в S3.

Но есть некоторые отличительные особенности. После загрузки изображе-
ния из S3 и сохранения его в локальной файловой системе вам нужно изме-
нить его размер перед созданием миниатюры. Технически можно изменить
размер после создания миниатюры, но лучше сделать наоборот – создать
миниатюру из уменьшенного изображения.

После уменьшения размеров изображения и создания миниатюры выгру-
зите оба файла в Amazon S3. Выгружать файлы можно одновременно, поэтому
используйте Promise.all для распараллеливания процесса выгрузки.

В листинге 7.8 приводится полный код примера. Выполните команду claudia
update и попробуйте вручную выгрузить большое изображение в корзину, что-
бы протестировать решение.

СОВЕТ. На этот раз команда claudia update может потребовать больше времени
на выполнение, что обусловлено большим размером пакета aws-sdk. Он доступен
в AWS Lambda по умолчанию, поэтому для ускорения развертывания его можно
объявить необязательной зависимостью и выполнить команду claudia update с
флагом --no-optional-dependencies. В этом случае все необязательные зависи-
мости будут удалены из zip-файла, предназначенного для развертывания вашей
функции Lambda.

Листинг 7.8. Преобразование изображений в миниатюры с предварительным
уменьшением слишком больших изображений

'use strict'

const fs = require('fs')

 33 / 40

7.3. Опробование!    153

const path = require('path')
const exec = require('child_process').exec
const mime = require('mime')

const aws = require('aws-sdk')
const s3 = new aws.S3()

function convert(bucket, filePath) {
 const fileName = path.basename(filePath)

 return s3.getObject({
 Bucket: bucket,
 Key: filePath
 }).promise()
 .then(response => {
 return new Promise((resolve, reject) => {
 if (!fs.existsSync('/tmp/images/'))
 fs.mkdirSync('/tmp/images/')

 if (!fs.existsSync('/tmp/thumbnails/'))
 fs.mkdirSync('/tmp/thumbnails/')

 const localFilePath = path.join('/tmp/images/', fileName)

 fs.writeFile(localFilePath, response.Body, (err, fileName) => {
 if (err)
 return reject(err)

 resolve(filePath)
 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)

 exec(`convert ${localFilePath} -resize 1024x1024\\>
 ${localFilePath}`, (err, stdout, stderr) => {
 if (err)
 return reject(err)

 resolve(fileName)

Сохранить файл в локальном
каталоге /tmp.

Загрузить файл из S3.

Уменьшить исходное
изображение.

Выполнить команду
convert.

Заключить команду convert
в JavaScript-объект Promise.

 34 / 40

154    Глава 7. Работа с файлами

 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 exec(`convert ${localFilePath} -resize 120x120\\>
 ${localThumbnailPath}`, (err, stdout, stderr) => {
 if (err)
 return reject(err)

 resolve(fileName)
 })
 })
 })
 .then(fileName => {
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)
 const localImagePath = path.join('/tmp/images/', fileName)

 return Promise.all([
 s3.putObject({
 Bucket: bucket,
 Key: `thumbnails/${fileName}`,
 Body: fs.readFileSync(localThumbnailPath),
 ContentType: mime.getType(localThumbnailPath),
 ACL: 'public-read'
 }).promise(),
 s3.putObject({
 Bucket: bucket,
 Key: `images/${fileName}`,
 Body: fs.readFileSync(localImagePath),
 ContentType: mime.getType(localImagePath),
 ACL: 'public-read'
 }).promise()
])
 })
}

module.exports = convert

Сгенерировать миниатюру и сохранить
в локальной файловой системе.

Выгрузить файл в S3.

Вернуть Promise.all, который
выгрузит в S3 оба файла.

Выгрузить миниатюру.

Выгрузить изображение.

 35 / 40

В заключение    155

7.4. Конец первой части: специальное
упражнение
Вы подошли к концу первой части книги. Вы познакомились с основами соз-
дания бессерверных API, и теперь пришло время проверить ваши знания.
Каждая часть книги заканчивается специальным упражнением, в котором вы
будете проверять знания и навыки, полученные в этой части. Каждое специ-
альное упражнение требует вспомнить все, о чем рассказывалось, и содержит
усложненное задание для тех, кому будет интересно заняться их решением.

Чтобы выполнить специальное упражнение, предлагаемое далее, вам по-
требуется применить все знания, полученные в этой части. Итак, ваша цель:
создать в DynamoDB новую таблицу pizzas, которая будет хранить прейску-
рант, добавить в нее статический список пицц, а затем реализовать новый
API-вызов, использующий более удачный алгоритм обработки изображений.
В отличие от реализации, представленной выше в этой главе, новый API-вы-
зов должен сохранить выгруженное изображение пиццы в S3, а затем записать
сгенерированный URL-адрес в базу данных DynamoDB, в дополнительный
столбец в таблице pizzas. Это означает, что каждой пицце будет соответство-
вать свой URL-адрес изображения.

ПРИМЕЧАНИЕ. Для специальных упражнений мы не даем подсказок и оставля-
ем вам возможность самим проверить ваше решение.

7.4.1. Усложненное задание
Если предыдущее задание показалось слишком простым, попробуйте ре-

шить следующую, более сложную задачу, которая часто встречается во мно-
гих приложениях: расширьте объект, представляющий пиццу, чтобы можно
было связать с ним несколько изображений, а также выбрать одно из них как
изображение по умолчанию.

ПРИМЕЧАНИЕ. Усложненные задания всегда описываются довольно кратко.

В заключение
�� Бессерверные приложения необязательно должны использовать бессер-

верное хранилище, но всегда должны быть полностью бессерверными.
�� При использовании AWS вам пригодится служба бессерверного храни-

лища S3.
�� Всегда старайтесь разделить свое бессерверное приложение на неболь-

шие микросервисы. Например, для обработки изображений всегда ис-
пользуйте отдельную бессерверную функцию.

 36 / 40

156    Глава 7. Работа с файлами

�� Claudia.js поможет вам связать вашу функцию Lambda с событиями,
происходящими в S3.

�� Внутри бессерверной функции можно использовать ImageMagick для
обработки изображений и сохранять результаты в S3.

 37 / 40

Часть II
Поболтаем

Теперь, когда тетушка Мария получила действующее приложение, пришло
время приблизить пиццерию к молодому поколению, добавив поддержку
чат-ботов и голосовых помощников. Зачем запускать приложение, когда мож-
но просто попросить Алексу1 заказать пиццу для вас?!

Для начала мы создадим простой чат-бот для Facebook (глава 8), свяжем
его с текущей базой данных и службой доставки (глава 9). Затем мы создадим
SMS-чат-бот для клиентов, плохо разбирающихся в современных техноло-
гиях, таких как дядюшка Фрэнк, чтобы они могли заказать пиццу, отправив
простое SMS-сообщение (глава 10). Наконец, учитывая, что племянница Джу-
лия подарила тетушке Марии на Рождество устройство Amazon Echo Dot, мы
попробуем подключиться к голосовому помощнику Алекса, чтобы дать кли-
ентам возможность заказывать пиццу с помощью голосовых команд.

1	 Алекса (Alexa) – голосовой помощник, реализованный и поддерживаемый компанией Amazon. –
Прим. перев.

 38 / 40

Глава 8
Заказ пиццы одним

сообщением: чат-боты

Эта глава охватывает следующие темы:
	создание бессерверного чат-бота;
	как работают бессерверные чат-боты и как Claudia Bot Builder по-

могает их создавать;
	использование сторонней платформы для чат-ботов (Facebook

Messenger).

Бессерверные приложения не всегда реализуют какой-то API или простые
микросервисы обработки данных. Программное обеспечение развивается,
и люди находят разные, иногда необычные способы его использования. Мы
прошли долгий путь от изолированных настольных приложений до веб-сай-
тов и мобильных приложений и в последнее время наблюдаем повсеместное
распространение чат-ботов и голосовых помощников.

В этой главе мы покажем, как еще больше сократить дистанцию между вами
и вашими пользователями, создав бессерверный чат-бот в Facebook Messenger
и интегрировав его с Pizza API. Вы также узнаете, как работают чат-боты и как
легко они реализуются в бессерверном окружении с помощью Claudia.

8.1. Заказ пиццы без браузера
Пока мы работали над Pizza API для тетушки Марии, ее племянница Джулия
несколько раз заходила в пиццерию, чтобы поздороваться. Джулия учится в
средней школе и, конечно же, много времени проводит в своем телефоне. Она
рада, что вы помогли пиццерии создать службу онлайн-заказов, но отметила,
что она недостаточно крутая. Мы отстаем от основного конкурента тетуш-
ки Марии – пиццерии Chess, которая имеет чат-бота в Facebook Messenger,
помогающего клиентам заказывать пиццу, не покидая Facebook. Так как од-

 39 / 40

8.1. Заказ пиццы без браузера    159

ноклассники Джулии много общаются в Facebook Messenger, они постоянно
пользуются этой возможностью. Наличие чат-бота определенно поможет те-
тушке Марии привлечь больше молодых клиентов, поэтому она спрашивает,
сможем ли мы помочь ей с этим.

ЧТО ТАКОЕ ЧАТ-БОТ? Чат-бот – это компьютерная программа, имитирующая
осмысленный диалог с одним или несколькими людьми с помощью текстовых
или аудиометодов.

Краткая история чат-ботов
Для многих термин «чат-бот» звучит как что-то новое, хотя сама идея вовсе не
нова. Чат-боты появились в середине XX века в результате попыток организо-
вать более удобный способ взаимодействия человека с компьютером.
Интерфейс чат-бота упоминается в известном тесте Тьюринга 1950 года. Затем,
в 1966 году, появилась программа ELIZA, имитирующая роджерианского пси-
хотерапевта, которая стала первым примером обработки естественного языка.
Потом, в 1972 году, появилась программа PARRY, имитирующая человека с па-
раноидальной шизофренией (и да, была устроена встреча PARRY и ELIZA – см.
https://tools.ietf.org/html/rfc439).
В 1983 году программой Racter была сгенерирована книга под названием
«The Policeman’s Beard Is Half Constructed» («Борода полицейского наполовину
сконструирована»), которая воспроизводила случайную англоязычную прозу.
Позже Racter была выпущена как чат-бот.
Одним из самых известных чат-ботов была Алиса (также известная как A.L.I.C.E.,
сокращенно от Artificial Linguistic Internet Computer Entity – искусственное
лингвистическое интернет-компьютерное существо), выпущенная в 1995 году.
Она не смогла пройти тест Тьюринга, но трижды выиграла конкурс Лебнера.
Конкурс Лебнера – это ежегодный конкурс по искусственному интеллекту, по
итогам которого призами награждаются компьютерные программы, наиболее
похожие на человека. В 2005 и 2006 годах тот же конкурс выиграли два персо-
нажа-бота Jabberwocky.
Выход платформы Slackbot в 2014 году снова сделал чат-боты популярными.
В 2015 году поддержку чат-ботов реализовали Telegram, а затем Facebook
Messenger. В 2016 году то же самое сделала Skype. Apple и некоторые другие
компании тоже объявили о создании своих платформ для чат-ботов.
Создание своего чат-бота в наши дни часто является маркетинговой инициа
тивой с целью привлечь больше потенциальных клиентов, пользующихся ос-
новными социальными платформами, не требуя от них посещения другого
веб-сайта, установки мобильного приложения или настольной программы.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

https://tools.ietf.org/html/rfc439

160    Глава 8. Заказ пиццы одним сообщением: чат-боты

8.2. Привет из Facebook Messenger
Поскольку мы решили создать чат-бота для Pizza API в Facebook Messenger, нам
важно понять, как пользователи будут отправлять сообщения этому чат-боту
и как работает чат-бот в Facebook.

Чат-боты Facebook являются приложениями поддержки страниц Facebook,
то есть они не являются отдельными и независимыми приложениями, подоб-
но играм. Чат-боты для Facebook создаются в четыре этапа:

1)	 подготовка страницы Facebook для будущего чат-бота;
2)	 создание приложения Facebook, которое будет обслуживать ваш чат-бот

и подключать к вашей странице;
3)	 реализация и развертывание чат-бота.
4)	 подключение чат-бота к приложению Facebook.

Чтобы начать взаимодействовать с чат-ботом, пользователь должен от-
крыть вашу страницу в Facebook и отправить сообщение. Приложение, связан-
ное со страницей в Facebook, получит сообщение и отправит запрос чат-боту с
сообщением пользователя. Далее чат-бот получит и обработает сообщение и
вернет ответ приложению Facebook, которое, в свою очередь, выведет его на
вашей странице в Facebook.

Этот процесс изображен на рис. 8.1.

Отправка сообщения
странице, принадлежащей
пиццерии тетушки Марии

Сообщение отправлено

Сообщение получено

Сообщение от чат-бота

Код 200, OK

Ответ

Вызов обработчика

Facebook
Messenger

Платформа
Facebook

Чат-бот
пиццерии

Рис. 8.1. Процесс отправки сообщения чат-боту и получения ответа

Пока вы еще не начали глубоко задумываться о том, как реализовать свой
чат-бот, мы хотим сообщить вам приятную новость. Помимо API Builder, в
библиотеке Claudia имеется также модуль Bot Builder.

Библиотека Claudia Bot Builder – это тонкая обертка вокруг Claudia API
Builder. Она абстрагирует различные API платформы обмена сообщениями и
предоставляет простой и универсальный интерфейс для создания чат-ботов.

 1 / 40

8.2. Привет из Facebook Messenger    161

Цель Claudia Bot Builder – помочь в создании чат-ботов для различных плат-
форм обмена сообщениями, таких как Facebook, Slack, Viber и многих других.

Для начала создадим новую папку на том же уровне, где находятся пап-
ки pizza-api и pizza-image-processing. Мы выбрали имя pizza-fb-chatbot. Создав
папку, откройте ее и создайте новый проект NPM. Затем установите Claudia
Bot Builder как зависимость проекта (см. приложение А).

После установки Bot Builder необходимо создать страницу Facebook с прило-
жением и связать их. О том, как это сделать, рассказывается в приложении B.

Теперь, когда у нас есть готовый проект, можно приступать к фактической
реализации. Создайте файл bot.js для исходного кода чат-бота в корневой
папке pizza-fb-bot и откройте его в текстовом редакторе.

В начале файла bot.js импортируйте библиотеку Claudia Bot Builder.

СОВЕТ. В отличие от Claudia API Builder, Bot Builder – это модуль, а не класс, по
этому вам не нужно создавать его экземпляр.

Модуль Bot Builder – это функция, которая в первом аргументе принимает
функцию-обработчик сообщений и возвращает экземпляр Claudia API Builder.
Функция-обработчик сообщений – это функция, которая должна вызываться
при получении сообщения чат-ботом. Самый простой способ вернуть ответ из
чат-бота – вернуть текстовое сообщение. Claudia Bot Builder отформатирует
это текстовое сообщение в соответствии с шаблоном для платформы – в дан-
ном случае для Facebook Messenger.

Так как Claudia Bot Builder возвращает экземпляр Claudia API Builder, мы
также должны экспортировать экземпляр API Builder, возвращаемый функ-
цией Bot Builder.

В листинге 8.1 приводится содержимое файла bot.js.

Листинг 8.1. Простой чат-бот, возвращающий текст приветствия

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return `Hello from Aunt Maria's pizzeria!`
})

module.exports = api

Развертывание чат-бота выполняется подобно развертыванию Pizza API.
Как показано в листинге 8.2, нужно запустить команду claudia create, указав
регион и флаг --api-module, определяющий путь к файлу с исходным кодом (без
расширения). Наш файл с исходным кодом называется bot.js, поэтому укажем
путь bot. Кроме региона и модуля API, также нужно указать флаг --configure-fb-

Импортировать модуль
Claudia Bot Builder.

Определение функции-обработчика
сообщений для Claudia Bot Builder и
сохранение экземпляра Claudia API Builder.

Вернуть простой текстовый ответ.

 2 / 40

162    Глава 8. Заказ пиццы одним сообщением: чат-боты

bot. Он обеспечит автоматическую настройку чат-бота для Facebook Messenger.
Для начала посмотрим, как действует наш чат-бот, а потом исследуем его ра-
боту более подробно.

Листинг 8.2. Развертывание чат-бота и его настройка для Facebook Messenger

claudia create \
 --region eu-central-1 \
 --api-module bot \
 --configure-fb-bot

Команда claudia create с флагом --configure-fb-bot будет выполнена в интер
активном режиме. Если развертывание API завершится успехом, команда
предложит ввести ключ доступа к странице Facebook, а затем выведет URL-
адрес точки входа с вашим ключом верификации. (Подробное описание про-
цесса настройки Facebook приводится в приложении B.)

ПРИМЕЧАНИЕ. После развертывания чат-бота общаться с ним смогут толь-
ко пользователи, добавленные в страницу Facebook и в приложение Facebook.
Чтобы сделать чат-бот общедоступным, необходимо передать его для проверки.
За дополнительной информацией о процессе проверки обращайтесь по адресу:
https://developers.facebook.com/docs/messenger-platform/app-review/.

После ввода ключа доступа к странице Facebook бот будет готов и доступен
для тестирования. Чтобы проверить бота, перейдите на свою страницу в Face-
book и отправьте ему сообщение. В настоящее время бот всегда возвращает
один и тот же текст «Hello from Aunt Maria’s pizzeria!» («Привет из пиццерии
тетушки Марии!»), как показано на рис. 8.2.

8.3. Какие виды пиццы у нас имеются?
Создание чат-бота за несколько минут действует воодушевляюще, но на дан-
ный момент он не имеет никакой практической ценности. Чтобы сделать его
полезным, нужно дать клиентам возможность посмотреть список доступных
видов пицц и оформить заказ. Начнем с отображения списка.

Как вы наверняка помните, в настоящее время список доступных видов
пицц хранится в статическом файле JSON. Как временное решение скопируй-
те этот файл в новый проект. Сначала создайте в проекте pizza-fb-chatbot пап-
ку data, а затем скопируйте туда файл pizzas.json из папки pizza-api.

Следующее, что мы должны сделать, – вернуть список пицц в ответе чат-бо-
та. Выбор формы вежливого обращения чат-бота к клиентам выходит за рам-
ки этой книги, поэтому просто придумайте достаточно дружеское сообщение,
которое должно появиться перед списком, например: «Привет, вот меню на-
шей пиццерии», – а затем спросите пользователя, какую пиццу тот желает за-
казать. Для этого мы должны внести изменения в файл bot.js.

Настройка API Gateway.

Настройка чат-бота для Facebook Messenger.

 3 / 40

https://developers.facebook.com/docs/messenger-platform/app-review/

8.3. Какие виды пиццы у нас имеются?    163

Рис. 8.2. Первое сообщение, полученное от чат-бота

Сначала импортируйте список пицц из файла pizzas.json, который находит-
ся в папке data. Затем измените функцию-обработчик сообщений botBuilder,
вернув из нее список пицц и предложив пользователю выбрать понравив
шуюся ему для заказа.

Claudia Bot Builder позволяет вернуть пользователю несколько ответов. Для
этого достаточно вернуть массив сообщений вместо одной статической стро-
ки. Каждое сообщение в массиве будет отправлено отдельно, в порядке их сле-
дования в массиве.

Теперь нужно прочитать список пицц из файла JSON и преобразовать описа
ние каждой пиццы в строку. Для этого содержимое файла можно отобразить
в массив, получить название каждой пиццы и затем преобразовать массив в
строку с помощью функции Array.join.

Измененный код в файле bot.js должен выглядеть, как показано в листин-
ге 8.3.

Листинг 8.3. Чат-бот возвращает список пицц

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {

Импортировать файл JSON
со списком пицц.

 4 / 40

164    Глава 8. Заказ пиццы одним сообщением: чат-боты

 return [
 Hello, here's our pizza menu:  + pizzas.map(pizza => pizza.name).
 join(', '),
 'Which one do you want?'
]
})

module.exports = api

Разверните обновленного бота командой claudia update без аргументов.
Примерно через минуту команда завершится и вернет результат, как показа-
но в листинге 8.4.

Листинг 8.4. Результат выполнения команды claudia update

{
 "FunctionName": "pizza-fb-bot",
 "FunctionArn": "arn:aws:lambda:eu-central-1:721177882564:function:pizza-fb-
bot:2",
 "Runtime": "nodejs6.10",
 "Role": "arn:aws:iam::721177882564:role/pizza-fb-bot-executor",
 "url": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest",
 "deploy": {
 "facebook": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/
 latest/facebook",
 "slackSlashCommand": "https://wvztkdiz8c.execute-api.eu-central-1.
 amazonaws.com/latest/slack/slash-command",
 "telegram": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/
 latest/telegram",
 ...
 }
}

Попробуйте послать сообщение чат-боту, и вы увидите новый ответ, как по-
казано на рис. 8.3.

8.4. Ускорение развертывания
Как вы уже, наверное, заметили, обновление чат-бота занимает чуть больше
времени, чем обновление API. Это объясняется тем, что Claudia Bot Builder не
знает, изменилась ли конфигурация API, и поэтому перестраивает маршруты
к точкам входа для всех поддерживаемых платформ. Подробнее о том, как ра-
ботает Claudia Bot Builder, рассказывается в разделе 8.6.

К счастью, есть возможность пропустить этап перестройки маршрутов и
ускорить процесс развертывания. Для этого нужно передать команде claudia

Вернуть несколько
сообщений в виде

массива.

Первое сообщение –
список пицц.

Второе сообщение – предложение
выбрать понравившуюся пиццу.

Имя функции Lambda.

Роль для функции.

Адрес URL для API Gateway.

Версия окружения Node.js,
в котором выполняется функция.

ARN функции Lambda.

Адреса URL точек входа для всех
поддерживаемых платформ.

 5 / 40

8.4. Ускорение развертывания    165

update параметр --cache-api-config с именем переменной, где будет хранить-
ся конфигурация API. При вызове команды с этим параметром библиотека
Claudia создаст хеш конфигурации API Gateway и сохранит его в переменной с
указанным именем. При каждом последующем развертывании claudia update
будет проверять наличие этой переменной и сравнивать хеш, чтобы опреде-
лить, необходимо ли обновить конфигурацию API Gateway. Это ускоряет раз-
вертывание, если маршруты API не изменились.

Рис. 8.3. Новый ответ чат-бота

Мы рекомендуем добавить команду claudia update с параметром --cache-
api-config как сценарий NPM в файл package.json. После этого вам также следует
определить библиотеку Claudia как зависимость dev (см. приложение A). Ваш
файл package.json должен выглядеть примерно так, как показано в листин-
ге 8.5.

Листинг 8.5. Файл package.json со сценарием обновления

{
 "name": "pizza-fb-chatbot",
 "version": "1.0.0",
 "description": "A pizzeria chatbot",
 "main": "bot.js",
 "scripts": {
 "update": "claudia update --cache-api-config apiConfig"

Добавить команду claudia
update как сценарий NPM.

 6 / 40

166    Глава 8. Заказ пиццы одним сообщением: чат-боты

 },
 "license": "MIT",
 "dependencies": {
 "claudia-bot-builder": "^2.15.0"
 },
 "devDependencies": {
 "claudia": "^2.13.0"
 }
}

Параметр --cache-api-config удобно использовать, когда API изменяется не-
часто, потому что он значительно ускоряет развертывание. Но Claudia Bot
Builder создает точки входа для всех платформ, и если вы создаете чат-бота
только для одной платформы, эти точки входа не нужны. Начиная с версии 2.7.0
Claudia Bot Builder позволяет включать поддержку только определенного кру-
га платформ. Для этого нужно передать функции botBuilder второй аргумент –
объект с параметрами, перечисляющий поддерживаемые платформы. Напри-
мер, чтобы включить только платформу Facebook Messenger, добавьте в объект
с параметрами ключ platforms с массивом, содержащим строку "facebook", как
показано в листинге 8.6.

Узнать больше о выборе платформ можно по адресу: https://github.com/
claudiajs/claudia-bot-builder/blob/master/docs/API.md.

Листинг 8.6. Чат-бот, поддерживающий только платформу Facebook Messenger

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return [
 'Hello, here's our pizza menu: ' + pizzas.map(pizza => pizza.name).
 join(', '),
 'Which one do you want?'
]
}, {
 platforms: ['facebook']
})

module.exports = api

Если теперь выполнить команду npm run update, вы увидите, что развертыва-
ние произойдет намного быстрее.

Определить Claudia
как зависимость dev.

Передать функции botBuilder объект
с параметрами во втором аргументе.

Перечислить в массиве поддерживаемые платформы.
В данном случае поддерживается только Facebook.

 7 / 40

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md

8.5. Шаблоны для взаимодействий    167

8.5. Шаблоны для взаимодействий
Теперь чат-бот для пиццерии тетушки Марии посылает клиентам список
пицц, которые они могут заказать. Однако клиенты могут не понимать, что
делать дальше.

Создать хороший чат-бот сложно. Текстовый интерфейс непривычен для
большинства пользователей, а кроме того, в чат-боте необходимо предусмот-
реть некоторую обработку естественного языка и реализацию искусственного
интеллекта – и то, и другое сложно настроить правильно. Для некоторых раз-
говорных языков в настоящее время это практически невозможно. Эта проб
лема давно известна, поэтому многие платформы для чат-ботов предлагают
поддержку элементов интерфейса, напоминающих графический интерфейс
приложений, таких как кнопки и списки.

Facebook Messenger – одна из таких платформ, и ее элементы пользователь-
ского интерфейса называются шаблонами. Она предлагает несколько разных
шаблонов, в том числе:

�� универсальный – посылает сообщение в форме списка с горизонтальной
прокруткой, включающего карточки, каждая из которых имеет заголо-
вок, подзаголовок/описание, изображение и до трех кнопок;

�� кнопка – посылает сообщение с простыми кнопками (до трех) под текстом;
�� список – посылает сообщение в форме вертикального списка с названия

ми, описаниями, изображениями и кнопкой;
�� квитанция – посылает подтверждение заказа (квитанцию) после оформ-

ления заказа.

Полный список поддерживаемых шаблонов можно найти на странице
https://developers.facebook.com/docs/messenger-platform/send-messages/tem-
plates/.

В нашем случае можно использовать шаблон списка или универсальный
шаблон. Но шаблон списка имеет ограничение по размеру – чтобы исполь-
зовать его, мы должны представить список не менее чем с двумя и не более
чем с четырьмя элементами. Универсальный шаблон более гибкий; он может
отображать от 1 до 10 элементов. Поскольку нам нужно отображать более че-
тырех пицц, используем универсальный шаблон.

Чтобы вместо текста со списком пицц вернуть шаблон, ответ следует офор-
мить в виде объекта JSON с определенной структурой. На первый взгляд ка-
жется, что все просто, но эти объекты JSON могут быть довольно большими,
и, поскольку мы собираемся отображать до 10 пицц, это ухудшит удобочитае-
мость кода.

Чтобы улучшить удобочитаемость и упростить работу с шаблонами, Claudia
Bot Builder предлагает классы-обертки шаблонов для некоторых из поддер-
живаемых платформ (включая Facebook, Telegram и Viber). Построитель со-
общений для Facebook доступен как botBuilder.fbTemplate и предлагает набор
классов для каждого из поддерживаемых шаблонов.

 8 / 40

https://developers.facebook.com/docs/messenger-platform/send-messages/templates/
https://developers.facebook.com/docs/messenger-platform/send-messages/templates/

168    Глава 8. Заказ пиццы одним сообщением: чат-боты

ПРИМЕЧАНИЕ. Полный список классов в Claudia Bot Builder в построителе
сообщений можно найти на странице https://github.com/claudiajs/clau-
dia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md.

Как упоминалось выше, универсальный шаблон отображает список элемен-
тов с горизонтальной прокруткой. Каждый элемент включает изображение,
заголовок, необязательное описание и кнопки для ввода ответа пользовате-
ля. Кнопки в универсальном шаблоне могут выполнять различные действия,
такие как открытие URL-адреса или отправка ответа клиента в точку входа.
Полный список действий, поддерживаемых кнопками, и подробную инфор-
мацию о шаблоне можно найти на странице https://developers.facebook.com/
docs/messenger-platform/send-messages/template/generic.

В Claudia Bot Builder универсальный шаблон доступен в виде класса
botBuilder.fbTemplate.Generic. Нам нужно инициализировать класс, вызвав
конструктор без аргументов, и сохранить экземпляр в константе message.

Затем для каждой пиццы нужно добавить свой элемент в список, также из-
вестный как пузырь. Для этого выполним обход массива пицц и для каждой
добавим элемент вызовом метода message.addBubble класса fbTemplate.Generic.
Этот метод принимает текст заголовка для элемента.

Далее для каждой пиццы добавим изображение и кнопку с помощью методов
addImage и addButton соответственно. Методу addImage необходимо передать дейст
вительный URL-адрес изображения, а методу addButton – имя кнопки и значение,
которое будет передано обработчику в случае ее нажатия. Для начала добавим
только кнопку Details (Подробности), которая отправит идентификатор пиццы
в качестве значения. Логику кнопок мы реализуем в следующей главе.

Вызовы всех методов класса можно объединить в цепочку, как показано ниже:

message.addBubble(pizza.name).addImage(pizza.image).addButton('Details', pizza.id)

В конце цепочки следует вызвать метод message.get, чтобы преобразовать
элемент списка (пузырь) в объект JSON, который ожидает получить Facebook.
Поскольку для оформления заказа пользователи будут применять шаблон
кнопки (эта возможность будет реализована в следующей главе), мы можем
заменить надпись «Which one do you want?» («Какую желаете?») вызовом
message.get.

Измененный код в файле bot.js показан в листинге 8.7.

Листинг 8.7. Функция Bot Builder, возвращающая ответ в виде универсального
шаблона

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')

 9 / 40

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic

8.5. Шаблоны для взаимодействий    169

const fbTemplate = botBuilder.fbTemplate

const api = botBuilder(() => {
 const message = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 message.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', pizza.id)
 })

 return [
 'Hello, here's our pizza menu:',
 message.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

После изменения файла bot.js выполните команду npm run update. Как она
завершится, вы сможете отправить новое сообщение своему чат-боту. Ответ
должен выглядеть примерно так, как показано на рис. 8.4.

Рис. 8.4. Ответ чат-бота, оформленный
с универсальным шаблоном

Добавить элемент списка
для каждой пиццы.

Создать константу fbTemplate для хранения
экземпляра построителя сообщений для Facebook.

Обход списка пицц.

Создать новый экземпляр класса
шаблона Generic.

Добавить изображение
пиццы.

Добавить кнопку для каждой пиццы и указать
идентификатор пиццы, который нужно передать
после нажатия кнопки пользователем.

 10 / 40

170    Глава 8. Заказ пиццы одним сообщением: чат-боты

8.6. Как работает Claudia Bot Builder?
Теперь, после создания чат-бота, возвращающего список пицц, можно посмот
реть, как работает Claudia Bot Builder.

Большинство популярных платформ для чат-ботов использует точки входа
для уведомления сервера о получении нового сообщения. Но каждая плат-
форма отправляет данные с разной структурой, а также ожидает, что ответ
будет соответствовать конкретной платформе.

Главная цель Claudia Bot Builder – абстрагировать структуру, характерную
для той или иной платформы, и дать возможность приема и отправки сооб-
щений с использованием простого API. Он использует Claudia API Builder для
создания точек входа для каждой поддерживаемой платформы. На момент
написания этих строк Claudia Bot Builder поддерживал 10 платформ (включая
Facebook Messenger, Slack, Amazon Alexa и Telegram).

Как показано на рис. 8.5, жизненный цикл сообщение–ответ в Claudia Bot
Builder выглядит следующим образом:

1)	 пользователь посылает сообщение, используя платформу обмена сооб-
щениями;

2)	 платформа передает сообщение в точку входа через API Gateway, кото-
рую вы указали в настройках;

3)	 API Gateway запускает вашу функцию Lambda, передавая запрос конеч-
ной точке API для конкретной платформы;

4)	 запрос преобразуется в универсальный формат с использованием пар-
сера для конкретной платформы;

5)	 преобразованное сообщение передается логике вашего чат-бота;
6)	 ответ чат-бота преобразуется в формат для данной платформы;
7)	 Claudia Bot Builder вызывает API платформы и передает ответ;
8)	 API платформы возвращает ответ приложению обмена сообщениями

пользователя.
Вы уже знаете, что функция botBuilder принимает функцию-обработчик со-

общений и объект с дополнительными параметрами. Функция-обработчик –
это логика чат-бота, а объект с параметрами используется только для опреде-
ления поддерживаемых платформ, чтобы ускорить развертывание.

Функция-обработчик вызывается с двумя аргументами: объектом сообще-
ния и объектом запроса Claudia API Builder.

Объект преобразованного сообщения имеет следующие свойства:

�� 	text – текст сообщения. Чтобы реализовать ответы на текстовые сообще-
ния, достаточно использовать это единственное свойство;

�� 	type – название платформы, через которую получено сообщение; список
платформ можно найти на странице https://github.com/claudiajs/clau-
dia-bot-builder/blob/master/docs/API.md;

 11 / 40

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md

8.6. Как работает Claudia Bot Builder?    171

�� 	sender – идентификатор отправителя. Зависит от платформы, но в боль-
шинстве случаев это идентификатор пользователя;

�� 	postback – булево свойство. Имеет значение true, если сообщение явля-
ется результатом отправки ответа клиента в Facebook (например, если
пользователь нажал кнопку в универсальном шаблоне). Для новых сооб-
щений или если платформа не поддерживает ответов, содержит значе-
ние false;

�� 	originalRequest – оригинальный объект сообщения, полученный точ-
кой входа. Может пригодиться для выполнения некоторых операций, в
зависимости от платформы, которые не поддерживаются модулем Clau-
dia Bot Builder.

8.6 How does Claudia Bot Builder work?
Now that you have a nice-looking chatbot, it’s time to see what Claudia Bot Builder did
for you under the hood.

Most of the popular chatbot platforms use webhooks to notify your server that a new
message was received. But each platform sends the data with a different structure, and
also expects you to answer in a platform-specific way.

The main goal of Claudia Bot Builder is to abstract away the receiving and send-
ing messages' platform-specific structure to a simple API. It uses Claudia API Builder
to create webhooks for each supported platform. At the time of writing, Claudia Bot
Builder supports 10 platforms (including Facebook Messenger, Slack, Amazon Alexa,
and Telegram).

As shown in figure 8.5, the Claudia Bot Builder message-reply lifecycle looks like this:

1 The user sends a message via a messenger platform.

2 The platform API hits API Gateway via the webhook you provided in the platform
settings.

3 API Gateway triggers your Lambda function, where the request is routed to the
platform-specific API endpoint.

4 The request is parsed to a common format using the platform-specific message
parser.

5 The parsed message is passed to your chatbot logic.

6 The answer from your chatbot logic is wrapped in a platform-specific format.

7 Claudia Bot Builder invokes the platform API with a wrapped reply.

8 The platform API sends the reply back to the user’s messenger application.

You saw that the botBuilder function expects a message handler function, and you
can also pass it an object with options as an extra parameter. The handler function
is your chatbot logic, and the options object is used only for specifying the platforms
used, to speed up the deployment.

The handler function is invoked with two arguments: the message object and the
original Claudia API Builder request object.

The parsed message object contains the following properties:

¡	text—The text of the received message, extracted from a platform-specific mes-
sage format. In most cases, if you want to reply to text messages, this is the only
piece of information you’ll need.

¡	type—The platform that received the message. For list of platforms, see https://
github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md.

¡	sender—The identifier of the sender. It depends on the platform, but it is the
user ID in most cases.

API Gateway

Функция Lambda чат-бота
пиццерии

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

API

Telegram
APISlack API

Пользователь посылает
сообщение с помощью одной
из поддерживаемых платформ
обмена сообщениями.

API Gateway получает запрос
и передает его вашей функции
Lambda.

Затем запрос обрабатывается
точкой входа, соответствующей
платформе,

и преобразуется в
универсальный формат
парсером для этой платформы.

После преобразования в
универсальный формат
сообщение обрабатывается
вашей логикой Bot Builder.

Наконец, ответ чат-бота
преобразуется в формат
платформы

и посылается в API
платформы,

Точка входа
для Slack

Точка входа
для Telegram

Парсер для Slack Парсер для Telegram

Логика чат-бота

Ответ для Facebook Ответ для Slack Ответ для Telegram

который, в свою очередь,
передаст его пользователю.

Парсер для
Facebookу

Точка входа
для Facebook

Рис. 8.5. Процесс преобразования сообщения в Claudia Bot Builder

 12 / 40

172    Глава 8. Заказ пиццы одним сообщением: чат-боты

Наконец, вернуть ответ на сообщение из Claudia Bot Builder так же просто,
как из Claudia API Builder: чтобы ответить текстовым сообщением, нужно
вернуть строку. Также можно ответить шаблоном для выбранной платформы,
воспользоваться построителем сообщений из шаблонов или вернуть объект
JSON. Чтобы отправить ответ асинхронно, верните текст или объект в конце
цепочки Promise.

8.7. Опробование!
В этой главе вы познакомились с основами реализации чат-ботов для Facebook
Messenger с использованием AWS Lambda. Наш чат-бот не способен выиграть
приз Лебнера, но может доставить немало приятных минут. Как и во всех
предыдущих главах, мы подготовили для вас упражнение.

8.7.1. Упражнение
Цель первого упражнения – показать вам, насколько просто создаются

чат-боты. Используя ту же страницу и приложение Facebook, создайте чат-бо-
та, который будет отображать текст полученного сообщения в обратном по-
рядке.

Вот несколько советов:

�� исследуйте параметр message, познакомьтесь со всеми его атрибутами
и реализуйте возврат перевернутого текста сообщения, отправленного
пользователем;

�� для переворачивания текста используйте встроенные методы.

8.7.2. Решение
Это задание имеет простое и очевидное решение, представленное в лис

тинге 8.8.

Листинг 8.8. Простой чат-бот, возвращающий перевернутый текст полученного
сообщения

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder((message) => {
 return message.text.split('').reverse().join('')
}, {
 platforms: ['facebook']
})

module.exports = api

Передать объект с параметрами, определяющий
поддержку только платформы Facebook Messenger.

Вызвать функцию botBuilder
с функцией-обработчиком,
принимающей атрибут message.

Импортировать
Claudia Bot Builder.

Вернуть текст полученного
сообщения.

Экспортировать экземпляр Claudia API Builder,
созданный функцией botBuilder.

 13 / 40

В заключение    173

Этот чат-бот прост, но не надейтесь, что остальные будут такими же прос
тыми!

В заключение
�� Библиотека Claudia позволяет развернуть чат-бот для нескольких плат-

форм одной командой.
�� Claudia Bot Builder – это обертка вокруг Claudia API Builder, которая

возвращает экземпляр API.
�� Claudia Bot Builder упаковывает текстовый ответ в формат, поддержи

ваемый платформой, которой посылается сообщение.
�� Используя Bot Builder, можно создавать шаблоны сообщений для конк

ретной платформы.

 14 / 40

Глава 9
Ввод... асинхронные

и отложенные ответы

Эта глава охватывает следующие темы:

	подключение бессерверного чат-бота к AWS DynamoDB;
	отправка отложенных сообщений пользователю, когда пицца будет

готова;
	интегрирование простой обработки естественного языка.

Возможность быстро создавать и развертывать различные приложения труд-
но переоценить. Как вы уже видели, Claudia Bot Builder существенно упрощает
создание чат-ботов, и вы можете создать простой чат-бот типа запрос/ответ
всего за несколько минут.

Но в реальном мире чат-боты должны выполнять более сложные операции,
чем просто возвращать статические сообщения. Вам, вероятно, понадобится
хранить информацию о клиенте и запрашивать дополнительные данные, а
также делать некоторые расчеты или даже отвечать на некоторые несвязан-
ные вопросы. Обо всем этом мы расскажем в данной главе: здесь вы узнае-
те, как создавать заказы на пиццу по запросам пользователей, как отправить
сообщение в службу доставки, когда заказ будет готов, и как интегрировать
простые алгоритмы обработки естественного языка (Natural Language Pro-
cessing, NLP) для анализа ввода пользователя.

9.1. Добавление интерактивности в чат-бот
Ваша двоюродная сестра Джулия следила за вашими успехами и была обра-
дована, увидев, что вы создали прокручиваемый список доступных пицц. Она
уже начала распространять в школе информацию об удивительном чат-боте
для заказа пиццы, который гораздо лучше, чем в пиццерии Chess. Это ставит

 15 / 40

9.1. Добавление интерактивности в чат-бот    175

вас в тупик, но тетя Мария счастлива, потому что она уже заметила увеличе-
ние трафика на ее веб-сайте в результате этого слуха.

Но не будем разочаровывать их и закончим чат-бот для заказа пиццы, до-
бавив несколько улучшений, чтобы наш бот превзошел бота пиццерии Chess.

9.1.1. Выбор заказа: получение ответа от пользователя
Отображение списка с фотографиями пиццы в ответе чат-бота – отличная

идея, потому что клиенты предпочитают визуальный интерфейс простому
текстовому ответу. В предыдущей главе каждая пицца отображалась в своем
визуальном блоке, в котором также присутствует кнопка Details (Подробнос
ти). Однако если нажать ее, это ничего не изменит.

Так как наша главная цель – дать возможность заказать пиццу, мы сделаем
следующее:

1)	 добавим кнопку Order (Заказать) под кнопкой Details (Подробности),
как показано на рис. 9.1;

Рис. 9.1. Чат-бот откликается на нажатие кнопок
Details (Подробности) и Order (Заказать)

2)	 реализуем оформление заказа пиццы, сохранив информацию для зака-
за в базе данных после нажатия кнопки Order (Заказать);

3)	 запланируем выполнение заказа;
4)	 добавим в чат-бот обработку текста на естественном языке, чтобы на-

делить наш чат-бот некоторым интеллектом и сделать для клиентов об-
щение с ним более привлекательным. К концу он сможет отвечать на
любые вопросы одноклассников Джулии.

 16 / 40

176    Глава 9. Ввод... асинхронные и отложенные ответы

Обработка естественного языка
Обработка естественного языка (Natural Language Processing, NLP) – это раздел
искусственного интеллекта, который занимается анализом и созданием текстов
и речи на естественных языках, которые люди могут использовать для взаимо-
действия с компьютерами.
Желающим заняться изучением NLP мы рекомендуем книгу Хобсона Лейна
(Hobson Lane) «Natural Language Processing in Action», изданную издательством
Manning: https://www.manning.com/books/natural-language-processing-
in-action.

Далее мы продолжим разработку чат-бота с того места (листинг 9.1), на
котором остановились в главе 8.

Листинг 9.1. Текущая функция botBuilder, возвращающая универсальный шаблон

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')
const fbTemplate = botBuilder.fbTemplate

const api = botBuilder(message => {
 const messageTemplate = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 messageTemplate.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', pizza.id)
 })

 return [
 'Hello, here\'s our pizmenu:',
 messageTemplate.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Подготовить шаблон меню Facebook
для выбора пиццы.

Создать новый экземпляр класса Generic
универсального шаблона для отправки
сообщения в Facebook.

Послать приветственное сообщение
с меню для выбора пиццы.

 17 / 40

https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/natural-language-processing-in-action

9.1. Добавление интерактивности в чат-бот    177

Как можно заметить в листинге 9.1, аргумент message функции botBuilder со-
держит полезную информацию о запросе, полученном чат-ботом, например:
является ли сообщение результатом нажатия кнопки или это текстовое сооб-
щение, написанное пользователем.

Чтобы сделать чат-бот более полезным, мы должны вернуть подробное опи-
сание пиццы, когда клиент нажмет кнопку Details (Подробности). Нажатие
кнопки Order (Заказать) клиентом должно запустить процедуру оформления
заказа выбранной пиццы.

Теперь процесс обработки запросов в чат-боте разделится на три ветви
(рис. 9.2):

�� пользователь может посмотреть подробности о выбранной пицце;
�� пользователь может заказать выбранную пиццу;
�� в любых других случаях чат-бот должен вернуть начальное сообщение

с меню.

Была нажата
кнопка?

Сообщение

Это кнопка
«DETAILS»?

Это кнопка
«ORDER»?

Что-то
другое?

Меню

Подробности
о пицце

Заказ на
пиццу

Ответ
на

вопрос

Распознается
средствами

NLP?

Нет

Нет

Нет

Нет

Да

Да

Заказать

Назад

Да

Затем показать

Щелчок

Да

Рис. 9.2. Алгоритм работы чат-бота

Запросы, сгенерированные нажатием кнопок, отличаются значением в
свойстве postback сообщений.

Для реализации алгоритма, представленного на рис. 9.2, прежде всего нуж-
но проверить, является ли сообщение ответом пользователя, результатом на-
жатия кнопки, сравнив message.postback со значением true.

 18 / 40

178    Глава 9. Ввод... асинхронные и отложенные ответы

Если сообщение является ответом пользователя (postback имеет значение
true), далее нужно проверить, пожелал ли пользователь посмотреть подроб-
ное описание пиццы или заказать ее (назовем это действием), и извлечь
идентификатор выбранной пиццы. Чтобы сохранить оба значения, можно
обновить значение нажатой кнопки, сериализовав значение JSON, или сфор-
мировать строку, перечисляющую действие и идентификатор пиццы через
символ вертикальной черты (|). В случае с чат-ботом последний вариант вы-
глядит проще. Мы можем сохранить строку в формате ДЕЙСТВИЕ | ИДЕНТИФИКАТОР,
где ДЕЙСТВИЕ – название выполненного действия (например, ORDER или DETAILS),
а ИДЕНТИФИКАТОР – идентификатор пиццы.

Если сообщение является ответом пользователя, его значение будет хра-
ниться в message.text. Извлечь имя действия и идентификатор пиццы в этом
случае можно, разбив строку по символу вертикальной черты (|) с помощью
встроенного метода String.split:

const values = message.text.split('|')

Новый массив values будет хранить действие в первом элементе, а иден-
тификатор пиццы – во втором. Но поддержка деструктуризации в ES6 может
сделать этот код проще. Если заменить const values на const [action, pizzaId],
действие сохранится непосредственно в константе action, а идентификатор
пиццы – в pizzaId.

После извлечения действия и идентификатора пиццы нужно проверить, ка-
кое действие выбрано – ORDER или DETAILS.

Идентификатор пиццы нам потребуется в любом случае, чтобы найти пиццу
в массиве pizzas. Для этого можно использовать встроенный метод Array.find:

const pizza = pizzas.find(pizza => pizza.id == pizzaId)

Обратите внимание, что в этом примере используется оператор == вместо
===. Это объясняется тем, что pizzaId имеет тип String, так как мы получили
идентификатор с помощью функции String.split, а идентификаторы в масси-
ве pizzas – целые числа.

Поиск пиццы по идентификатору должен выполняться в обеих инструкци-
ях if. Это может показаться избыточным, но дело в том, что позднее может
быть добавлено действие, не требующее идентификатора пиццы.

ПРИМЕЧАНИЕ. Если вы переместили список пицц в таблицу DynamoDB, то мо-
жете остановиться на этом и попробовать подключить своего чат-бота к таблице в
DynamoDB – подобно тому, как мы подключили свой API в главе 3. Если у вас это
не получится сделать самостоятельно, не волнуйтесь, мы займемся подключением
к DynamoDB далее в этой главе.

Когда ваш чат-бот получит действие DETAILS, мы должны составить список
ингредиентов, перечислив их через запятую, и вернуть этот список клиенту.
Но что далее должен сделать клиент, получив список ингредиентов?

 19 / 40

9.1. Добавление интерактивности в чат-бот    179

В отличие от веб-приложений, где пользователь может видеть на экране
следующие доступные действия, в потоке чата следующий шаг не всегда оче-
виден для пользователя. Если вернуть только список ингредиентов, пользо-
ватель, скорее всего, не поймет, что делать дальше, и в результате вы можете
получить массу неожиданных пользовательских сообщений, таких как «Фу-у!
Козий сыр!», или «Какую пиццу вы предпочитаете?», или даже «Я люблю вас»,
потому что человеческая фантазия бесконечна.

Даже обладая поддержкой анализа естественного языка, чат-боты все еще
очень далеки от возможности общаться на человеческом уровне, поэтому
лучшее, что можно сделать, – это добавить обработку ошибок и попытаться
направить пользователя в русло, с которым наш чат-бот сможет справиться.
Проектирование чат-ботов – интересная тема, но ее обсуждение выходит за
рамки этой книги.

Самый простой способ направить пользователя к следующему действию –
показать меню с доступными вариантами. Это не гарантирует, что пользова-
тель нажмет одну из кнопок, но меню поможет получить более однозначные
результаты, чем простой вопрос.

Мы должны показать два варианта: возможность заказать пиццу, которую
только что просмотрел пользователь, или вернуться к списку пицц. Для этого
используем класс Button из fbTemplate. Класс Button позволяет отобразить шаб
лон с тремя кнопками, которые выглядят как кнопки из универсального шаб
лона и отображают текстовый ответ. Этот класс используется подобно классу
Generic, поэтому наш ответ должен выглядеть примерно так:

return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.join(', '),
 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizzaId}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]

Как видите, вторая кнопка имеет значение ALL_PIZZAS, поэтому этот вариант
отвергнут обе инструкции if и клиенту вернется меню со списком пицц. Позже
вы сможете изменить этот порядок действий, чтобы показать какое-то другое
сообщение, в зависимости от предыдущего диалога, например: «Не любите
грибы? Тогда вот еще несколько пицц, которые могут вам понравиться».

ПРИМЕЧАНИЕ. За дополнительной информацией о классе Button обращайтесь к
документации по адресу: https://github.com/claudiajs/claudia-bot-build-
er/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md.

Если клиент выбрал действие ORDER, чат-бот должен отыскать пиццу по
идентификатору и сообщить пользователю, что заказ принят. Мы реализуем
этот вариант чуть позже, в этой же главе.

 20 / 40

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md

180    Глава 4. Контроллер репликации и другие контроллеры: развертывание управляемых...

Наконец, если сообщение не является ответом пользователя (то есть не яв-
ляется результатом нажатия кнопки) или если указано действие, отличное от
DETAILS и ORDER, можно вернуть универсальный ответ, подобный тому, что мы
возвращали в главе 8.

Единственное отличие заключается в дополнительной кнопке Order (Зака-
зать):

pizzas.forEach(pizza => {
 reply.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
})

Обновленный файл bot.js теперь должен выглядеть, как показано в листин-
ге 9.2.

Листинг 9.2. Чат-бот, принимающий заказы и возвращающий подробную информа-
цию о выбранной пицце

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')
const fbTemplate = botBuilder.fbTemplate

const api = botBuilder((message) => {
 if (message.postback) {
 const [action, pizzaId] = message.text.split('|')
 if (action === 'DETAILS') {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.
 join(', '),
 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizzaId}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]
 } else if (action === 'ORDER') {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return `Thanks for ordering ${pizza.name}! I will let you know as soon

Если это ответ, разбить
текст сообщения по символу
вертикальной черты.

Добавить параметр message
в функцию-обработчик.

Вернуть список
ингредиентов
выбранной пиццы.

Первая часть сообщения DETAILS?

Проверить, является ли сообщение
ответом пользователя.

Если да, получить
идентификатор пиццы
из массива.

И снова получить
идентификатор пиццы.

Первая часть
сообщения ORDER?

Также вернуть меню,
чтобы пользователю
было куда пойти дальше.

 21 / 40

9.1. Добавление интерактивности в чат-бот    181

as your pizza is ready.`
 }
 }

 const reply = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 reply.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
 })

 return [
 `Hello, here's our pizza menu:`,
 reply.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Теперь выполните команду claudia update или npm run update, чтобы развер-
нуть чат-бот, и попробуйте побеседовать с ним (рис. 9.3).

Рис. 9.3. Скриншот, демонстрирующий работу трех ветвей диалога

Затем вернуть идентификатор,
чтобы подтвердить заказ.

Если это не ответ пользователя,
сгенерированный нажатием кнопки,
показать главное меню.

 22 / 40

182    Глава 4. Контроллер репликации и другие контроллеры: развертывание управляемых...

9.2. Улучшение масштабируемости чат-бота
Как и в случае с API, поток выполнения чат-бота, организованный в одном
файле, плохо масштабируется. Можно ли улучшить его организацию?

Чат-бот не имеет маршрутизатора, но у нас есть инструкции if...else, ко-
торые действуют подобно маршрутизатору, а операции внутри них выглядят
как обработчики. Самый простой способ улучшить структуру чат-бота – со-
хранить маршрутизацию в главном файле и переместить обработчики в от-
дельные файлы. То есть мы должны оставить основной файл bot.js и создать
папку handlers с тремя файлами обработчиков, по одному для каждой ветви
диалога. Соответствующая структура папок проекта показана на рис. 9.4.

js

pizza-fb-bot

bot.js

json package.json

js pizza-details.js

json pizzas.json

js order-pizza.js

json claudia.json

js pizza-menu.js

data

handlers

Корневая папка
проекта чат-бота.

Точка входа в чат-бот –
содержит все ветви
диалога.

Чат-бот – это обычный
проект Node.js, поэтому
в нем присутствует файл
package.json.

Конфигурационный
файл, созданный
библиотекой Claudia.

Список пицц.

Каталог для обработчиков,
вызываемых из разных
ветвей диалога.

Рис. 9.4. Структура папок проекта чат-бота

Создайте папку handlers в папке проекта pizza-fb-chatbot и три файла с ис-
ходным кодом на JavaScript:

�� 	order-pizza.js;
�� 	pizza-details.js;
�� 	pizza-menu.js.

 23 / 40

9.2. Улучшение масштабируемости чат-бота    183

Затем измените содержимое файла bot.js:

�� удалите инструкцию импорта объекта fbTemplate, потому что он не по-
требуется в этом файле;

�� импортируйте три новые функции из только что созданных файлов;
�� замените логику, возвращающую информацию о пицце и оформляю-

щую заказ вызовами функций pizzaDetails и orderPizza с аргументом
pizzaId;

�� замените логику, которая генерирует меню со списком пицц вызовом
обработчика pizzaMenu.

После внесения изменений файл bot.js должен выглядеть, как показано в
листинге 9.3.

Листинг 9.3. Главный файл с исходным кодом чат-бота

'use strict'

const botBuilder = require('claudia-bot-builder')

const pizzaDetails = require('./handlers/pizza-details')
const orderPizza = require('./handlers/order-pizza')
const pizzaMenu = require('./handlers/pizza-menu')

const api = botBuilder((message) => {
 if (message.postback) {
 const [action, pizzaId] = message.text.split('|')

 if (action === 'DETAILS') {
 return pizzaDetails(pizzaId)
 } else if (action === 'ORDER') {
 return orderPizza(pizzaId)
 }
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Импортировать
функции-обработчики.

Если сообщение сгенерировано нажатием
кнопки и в нем указано действие DETAILS,
вызвать обработчик pizzaDetails.

Если сообщение сгенерировано нажатием
кнопки и в нем указано действие ORDER,
вызвать обработчик orderPizza.

Если сообщение не определяет
действия, вернуть главное меню.

 24 / 40

184    Глава 4. Контроллер репликации и другие контроллеры: развертывание управляемых...

Теперь откройте файл handlers/pizza-details.js. Сначала импортируйте
список пицц из файла pizza.json и fbTemplate из Claudia Bot Builder:

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

Затем объявите функцию pizzaDetails с одним параметром pizzaId. Эта
функция должна отыскать пиццу по идентификатору в массиве pizzas и вер-
нуть ее ингредиенты, используя шаблон кнопки, который позволит пользова-
телю заказать пиццу или вернуться обратно в главное меню.

В конце экспортируйте функцию-обработчик pizzaDetails, добавив строку

module.exports = pizzaDetails

В конечном итоге файл handlers/pizza-details.js должен выглядеть, как по-
казано в листинге 9.4.

Листинг 9.4. Функция-обработчик, возвращающая подробности о выбранной пицце

'use strict'

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

function pizzaDetails(id) {
 const pizza = pizzas.find(pizza => pizza.id == id)

 return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.join(',
 '),
 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizza.id}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]
}

module.exports = pizzaDetails

Далее откройте файл handlers/order-pizza.js и проделайте то же самое:

�� импортируйте список пицц из файла pizzas.json;
�� реализуйте функцию-обработчик orderPizza, которая принимает пара-

метр с идентификатором пиццы;
�� отыщите пиццу по ее идентификатору и верните текстовое сообщение

из функции orderPizza;

Получить пиццу по идентификатору.

Импортировать
fbTemplate из
Claudia Bot Builder.

Экспортировать функцию-обработчик.

Вернуть сообщение для
ответа с двумя кнопками,
создав экземпляр
fbTemplate.Button
с текстом ответа и двумя
кнопками под ним.

Объявление функции-обработчика.

Вернуть список ингредиентов и меню.

Импортировать
список пицц.

 25 / 40

9.2. Улучшение масштабируемости чат-бота    185

�� экспортируйте функцию orderPizza.

Файл order-pizza.js должен выглядеть, как показано в листинге 9.5.

Листинг 9.5. Функция-обработчик, оформляющая заказ

'use strict'

const pizzas = require('../data/pizzas.json')

function orderPizza(id) {
 const pizza = pizzas.find(pizza => pizza.id == id)

 return `Thanks for ordering ${pizza.name}! I will let you know as soon as
 your pizza is ready.`
}

module.exports = orderPizza

После реализации обработчика, оформляющего заказ, откройте файл han-
dlers/pizza-menu.js и выполните следующие действия:

�� импортируйте список пицц и fbTemplate;
�� объявите функцию-обработчик pizzaMenu;
�� внутри функции создайте новый универсальный шаблон;
�� выполните цикл по всем пиццам в файле pizza.json и для каждой добавь-

те визуальные блоки (пузыри) в универсальный шаблон;
�� верните получившееся сообщение;
�� экспортируйте функцию pizzaMenu.

Обработчик главного меню должен выглядеть, как показано в листинге 9.6.

Листинг 9.6. Обработчик главного меню

'use strict'

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

function pizzaMenu() {
 const message = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 message.addBubble(pizza.name)
 .addImage(pizza.image)

Получить пиццу по идентификатору.

Экспортировать функцию-обработчик.

Объявление функции-обработчика.

Вернуть список ингредиентов и меню.

Импортировать
список пицц.

Импортировать
fbTemplate из
Claudia Bot Builder.

Объявление функции-обработчика.

Импортировать
список пицц.

Создать сообщение
с универсальным шаблоном.

 26 / 40

186    Глава 9. Ввод... асинхронные и отложенные ответы

 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
 })

 return message.get()
}

module.exports = pizzaMenu

После добавления кода во все файлы выполните команду npm run update или
claudia update, чтобы развернуть чат-бот. После отправки сообщения чат-боту
через Facebook Messenger вы должны получить тот же ответ, что и раньше, но
теперь чат-бот имеет более масштабируемую организацию.

Другие способы организации работы чат-бота
Организовать процесс работы чат-бота не так-то просто. Код в примерах ор-
ганизован наиболее простым способом, но он не масштабируется из-за мно
жества условий if ... else и операторов switch.
Есть много альтернативных решений – например, с использованием внешней
библиотеки. Некоторые из внешних библиотек позволяют управлять процессом
выполнения чат-бота, например библиотека Dialogue Builder, реализованная
поверх Claudia Bot Builder. За дополнительной информацией об этой библиоте-
ке обращайтесь по адресу: https://github.com/nbransby/dialogue-builder.
Другой вариант – использовать средства обработки естественного языка
(NLP). Создание библиотеки NLP – непростая задача, но, к счастью, существует
множество доступных решений NLP, и некоторые из них относительно деше-
вы. Внедрив NLP, можно организовать свой код вокруг различных сущностей
и действий вместо повторяющихся инструкций if ... else (которые можно
рассматривать как своего рода маршрутизатор для диалогового интерфейса).
Некоторые из библиотек NLP также имеют встроенное хранилище сеансов.
Подробнее о NLP мы поговорим в разделе 9.6.

9.3. Подключение чат-бота к базе данных
DynamoDB
Чтобы сделать наш чат-бот более полезным для клиентов, добавим в него со-
хранение заказов на пиццу в DynamoDB-таблицу pizza-orders.

Как показано на рис. 9.5, когда чат-бот получает сообщение, он должен под-
ключиться к той же таблице в базе данных DynamoDB, которую использует
Pizza API, и сохранить в ней принятый заказ. И только после этого вернуть
сообщение, подтверждающее получение заказа.

Экспортировать функцию-обработчик.

Вернуть сообщение.

 27 / 40

https://github.com/nbransby/dialogue-builder

9.3. Подключение чат-бота к базе данных DynamoDB    187

Заказ на пиццу

Вызов обработчика

Сохранить заказ
в таблице pizza-orders

Код 200, OK

Ответ

Заказ сохранен

Сообщение
«Order confirmed»

(заказ принят)

Facebook
Messenger

Платформа
Facebook

Чат-бот
пиццерии

Таблица
DynamoDB

Рис. 9.5. Алгоритм работы чат-бота, подключенного к базе данных DynamoDB

Для простоты в этой главе мы покажем только, как сохранить заказ в табли-
це. В настоящем чат-боте также желательно дать пользователю возможность
просмотреть его текущие заказы и отменить их.

Чтобы сохранить заказ, нужно внести несколько изменений в обработчик
order-pizza.js.

Во-первых, нужно с помощью DocumentClient подключиться к DynamoDB.
Для этого мы должны установить модуль aws-sdk из NPM как зависимость (или
как необязательную зависимость, чтобы оптимизировать скорость разверты-
вания). Затем импортировать aws-sdk и создать экземпляр DocumentClient, как
показано ниже:

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

Далее следует вызвать метод docClient.put, чтобы сохранить заказ в таблице
DynamoDB.

Основное отличие чат-бота от Pizza API – отсутствие адреса доставки на
момент отправки запроса с заказом. Это означает, что мы должны записать
неполные данные в таблицу DynamoDB, а затем запросить у пользователя
адрес. Платформа Facebook Messenger не сохраняет состояния между после-
довательными сообщениями, поэтому в таблице pizza-orders или в какой-то
другой (в этом разделе мы выбрали первый вариант) следует сохранить приз
нак неполного заказа с некоторыми дополнительными параметрами.

По той же причине мы не можем использовать идентификатор заказа, воз-
вращаемый службой доставки Some Like It Hot, а значит, нам вновь придется
прибегнуть к помощи модуля uuid.

В DynamoDB мы сохраним следующие данные:

�� 	orderId – идентификатор заказа, сгенерированный с помощью модуля
uuid;

 28 / 40

188    Глава 9. Ввод... асинхронные и отложенные ответы

�� 	pizza – идентификатор выбранной пиццы;
�� 	orderStatus – в это поле мы запишем состояние заказа in-progress (вы-

полняется), потому что заказ еще не выполнен;
�� 	platform – укажем fb-messenger-chatbot в качестве идентификатора плат-

формы, потому что в будущем, возможно, мы решим добавить поддерж-
ку других платформ обмена сообщениями;

�� 	user – идентификатор пользователя, отправившего сообщение.

После записи заказа в таблицу мы запросим у пользователя адрес для до-
ставки. Для этого можно послать простой вопрос, например: «Куда доставить
вашу пиццу?» Мы реализуем эту операцию ниже.

Также мы должны предусмотреть обработку ошибок, чтобы иметь возмож-
ность послать пользователю сообщение, если что-то пойдет не так, и снова
показать ему главное меню.

После внесения всех изменений содержимое файла order-pizza.js должно
выглядеть, как показано в листинге 9.7.

Листинг 9.7. Обработчик заказа на пиццу с подключением к базе данных DynamoDB

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const pizzas = require('../data/pizzas.json')
const pizzaMenu = require('./pizza-menu')
const uuid = require('uuid/v4')

function orderPizza(pizzaId, sender) {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizzaId,
 orderStatus: 'in-progress',
 platform: 'fb-messenger-chatbot',
 user: sender
 }
 }).promise()
 .then((res) => {
 return 'Where do you want your pizza to be delivered?'
 })

Импортировать
модуль uuid.

Сохранить заказ в таблице DynamoDB.

Импортировать
AWS SDK. Создать экземпляр

DocumentClient.

Сохранить идентификатор платформы,
с помощью которой сделан заказ.

Использовать функцию uuid, чтобы сгенерировать
уникальный идентификатор lzk заказа.

Сохранить идентификатор
пользователя, сделавшего заказ.

Установить статус заказа in-progress.

Запросить у пользователя
адрес доставки.

 29 / 40

9.3. Подключение чат-бота к базе данных DynamoDB    189

 .catch((err) => {
 console.log(err)

 return [
 'Oh! Something went wrong. Can you please try again?',
 pizzaMenu()
]
 })
}

module.exports = orderPizza

Кроме обработчика order-pizza.js, также нужно изменить содержимое глав-
ного файла bot.js, добавив передачу идентификатора отправителя в функцию
orderPizza. Идентификатор отправителя доступен в объекте message как message.
sender; в случае с Facebook Messenger в этом атрибуте передается уникальный
идентификатор пользователя, взаимодействующего со страницей мессенд
жера.

ПРИМЕЧАНИЕ. Идентификатор пользователя, взаимодействующего со стра-
ницей Facebook Messenger (page-scoped user ID), отличается от обычного иден-
тификатора пользователя Facebook, потому что Facebook стремится обеспечить
конфиденциальность своих пользователей. Узнать больше об идентификаторах
в Facebook Messenger можно по адресу: https://developers.facebook.com/
docs/messenger-platform/identity.

В листинге 9.8 приводится только измененная часть файла bot.js. Этот код
выполняется лишь при анализе значений, возвращаемых в ответах пользова-
телей. Остальной код в файле остался без изменений.

Листинг 9.8. Изменившийся код в файле bot.js

if (values[0] === 'DETAILS') {
 return pizzaDetails(values[1])
} else if (values[0] === 'ORDER') {
 return orderPizza(values[1], message.sender)
}

Теперь нужно создать политику, которая позволит пользователю, вызы-
вающему функцию Lambda, взаимодействовать с базой данных DynamoDB.
Создайте папку roles в папке проекта pizza-fb-chatbot и добавьте в нее файл
dynamodb.json.

Как показано в листинге 9.9, файл dynamodb.json должен содержать разреше-
ния, позволяющие пользователям сканировать, читать, добавлять и изменять
элементы в DynamoDB. В настоящий момент чат-бот не поддерживает изме-

В случае ошибки показать дружественное
сообщение и повторно отправить главное меню.

Передать сообщение отправителя
функции orderPizza во втором
аргументе.

 30 / 40

https://developers.facebook.com/docs/messenger-platform/identity
https://developers.facebook.com/docs/messenger-platform/identity

190    Глава 9. Ввод... асинхронные и отложенные ответы

нения или отмены заказов, но мы должны добавить действие dynamodb:Update-
Item, потому что заказ будет изменяться (дополняться) после того, как пользо-
ватель пришлет свой адрес.

Листинг 9.9. Политика DynamoDB

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:Scan",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Наконец, выполним команду aws iam put-role-policy в AWS CLI, чтобы до-
бавить политику из файла roles/dynamodb.json. После этого можно заметить
появление атрибута role-name в файле claudia.json. Как вы наверняка помни-
те, при первом развертывании Claudia создает файл claudia.json в корневом
каталоге проекта, куда сохраняет некоторые данные. Библиотека Claudia ис-
пользует эти данные в последующих командах update, чтобы избавить нас от
необходимости указывать дополнительные параметры. Файл claudia.json так-
же хранит исполнитель Lambda, который нужен для вновь созданной полити-
ки. Загляните в этот файл и отыщите атрибут role-name.

Полная команда aws iam put-role-policy показана в листинге 9.10.

Листинг 9.10. Добавление политики доступа к DynamoDB для чат-бота пиццерии

aws iam put-role-policy \
 --role-name pizza-fb-chatbot-executor \
 --policy-name PizzaBotDynamoDB \
 --policy-document file://./roles/dynamodb.json

В случае успешного завершения команда aws iam put-role-policy вернет пус
той ответ. Теперь чат-бот готов к развертыванию.

ПРИМЕЧАНИЕ. В случае неудачи команда aws iam put-role-policy вернет со-
общение об ошибке, описывающее суть проблемы. Наиболее распространенные

Путь к файлу с определением
политики.

Разрешить выполнять действия Scan, GetItem,
PutItem и UpdateItem в DynamoDB.

Имя роли для исполнителя Lambda.

Имя политики.

 31 / 40

9.4. Получение адреса доставки заказа в чат-боте     191

ошибки: роль не существует или policy-document отсутствует в указанном файле.
Если роль не существует, попробуйте снова запустить claudia create с уже упо-
мянутыми параметрами. Если не найден policy-document, измените путь к файлу,
чтобы команда aws iam put-role-policy смогла найти его.

Выполните команду npm run update или claudia update, чтобы развернуть чат-
бот, и попробуйте послать ему сообщение.

СОВЕТ. С ростом кодовой базы частое развертывание может занимать довольно
много времени и превратиться в утомительное занятие. Вы, наверное, заметили,
что часто выполняете операцию развертывания в этой книге. Но Claudia предлага-
ет один интересный трюк – она способна ускорить процесс развертывания. Чтобы
воспользоваться этой возможностью, добавьте флаг --no-option-dependencies в
сценарий update, который сообщает библиотеке Claudia, что та не должна раз-
вертывать любые необязательные зависимости, такие как AWS SDK, которые уже
доступны в AWS Lambda:

"update": "claudia update --no-optional-dependencies"

9.4. Получение адреса доставки
заказа в чат-боте
Как уже говорилось, после отправки заказа пользователем в нем отсутствует
адрес доставки. В реальном проекте мы должны предусмотреть все необходи-
мое, чтобы обеспечить надежную работу чат-бота, поэтому, возможно, имеет
смысл добавить обработку естественного языка для распознавания адресов,
присылаемых пользователями. Но, исключительно ради простоты, в этой гла-
ве мы используем кнопку, встроенную в Facebook Messenger, позволяющую
сообщить свое местонахождение.

Facebook Messenger имеет замечательную функцию, дающую возможность
пользователям сообщать о своем текущем местоположении одним нажатием
кнопки. Эта кнопка посылает ответ с текущими географическими координа-
тами пользователя. Claudia Bot Builder включает поддержку данной кнопки
в fbTemplate. Добавить эту кнопку в запрос можно вызовом метода .addQuick-
ReplyLocation класса fbTemplate.

Давайте изменим код обработчика order-pizza.js. Сначала импортируем fb-
Template из Claudia Bot Builder, добавив строку

const fbTemplate = require('claudia-bot-builder').fbTemplate

в начало файла.
Затем заменим ответ, где мы запрашиваем у пользователя его адрес, клас-

сом fbTemplate.Text и вызовом метода .addQuickReplyLocation, как показано в
листинге 9.11.

 32 / 40

192    Глава 9. Ввод... асинхронные и отложенные ответы

Листинг 9.11. Запрос местоположения после сохранения заказа в таблице DynamoDB

.then((res) => {
 return new fbTemplate.Text('Where do you want your pizza to be delivered?')
 .addQuickReplyLocation()
 .get()
})

Когда клиент нажмет кнопку, чат-бот получит его текущие координаты:
широту и долготу. Кроме обычного адреса, служба доставки Some Like It Hot
принимает также географические координаты. (В реальном примере нам
пришлось бы добавить кое-какую дополнительную информацию, например
этаж, номер квартиры или хотя бы текстовое примечание для курьера.)

Для обработки координат создадим новую функцию-обработчик. С этой
целью создайте файл save-location.js в папке handlers. Этот обработчик дол-
жен принимать параметры userId и coordinates и использовать их для измене-
ния заказа в базе данных.

Чтобы получить возможность изменить заказ, мы должны импортировать
AWS SDK, создать экземпляр DocumentClient и выполнить следующие действия:

�� с помощью метода DocumentClient.scan найти в базе данных заказ со ста-
тусом in-progress (выполняется), принадлежащий данному клиенту;

�� использовать метод DocumentClient.update и полученное значение orderId,
чтобы изменить статус заказа.

Для примера изменим статус заказа на pending и добавим в него широту и
долготу места доставки.

В листинге 9.12 показано, как должен выглядеть обработчик save-location.js.

Листинг 9.12. Обработчик сохранения координат клиента

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function saveLocation(userId, coordinates) {
 return docClient.scan({
 TableName: 'pizza-orders',
 Limit: 1,
 FilterExpression: `user = :u, orderStatus: :s`,
 ExpressionAttributeNames: {
 ':u': { S: userId },
 ':s': { S: 'in-progress' }
 }

Добавить кнопку, позволяющую
сообщить текущее местоположение.

Импортировать AWS SDK и создать
экземпляр DocumentClient.

Преобразовать шаблон
в формат JSON.

Создать экземпляр класса
fbTemplate.Text.

Определить функцию-обработчик,
принимающую идентификатор и
координаты пользователя.

Сканировать таблицу pizza-orders.
Ограничить количество результатов
единственным элементом.

Искать только заказы, отправленные
указанным пользователем и
имеющие указанный статус.

Определить клиента
(это отправитель) и
статус (in-progress) для
выражения фильтра.

 33 / 40

9.4. Получение адреса доставки заказа в чат-боте     193

 }).promise()
 .then((result) => result.Items[0])
 .then((order) => {
 const orderId = order.orderId
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set orderStatus = :s, coords=:c',
 ExpressionAttributeValues: {
 ':s': 'pending',
 ':c': coordinates
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 })
}

module.exports = saveLocation

Наконец, мы должны изменить содержимое файла bot.js:

1)	 импортировать новый обработчик save-location.js;
2)	 вызвать новую функцию saveLocation, когда клиент пришлет свои коор-

динаты.

Чтобы импортировать новый обработчик save-location.js, добавьте следую
щий фрагмент в начало файла bot.js (например, после функции pizzaMenu):

const saveLocation = require('./handlers/save-location')

Прежде чем обрабатывать координаты клиента, сначала нужно убедиться,
что сообщение не является ответом (postback == false). Затем извлечь коор-
динаты из message.originalRequest, если они существуют. Координаты переда-
ются как вложение, поэтому они доступны как объект message.originalRequest.
message.attachments[0].payload.coordinates.

В листинге 9.13 приводится несколько последних строк из файла bot.js.

Листинг 9.13. Обработка координат в главном файле чат-бота

 if (
 message.originalRequest.message.attachments &&
 message.originalRequest.message.attachments.length &&
 message.originalRequest.message.attachments[0].payload.coordinates &&
 message.originalRequest.message.attachments[0].payload.coordinates.lat &&

Извлечь только первый элемент из ответа.

Запомнить идентификатор заказа
в локальной переменной.

Изменить элемент в таблице pizza-orders.

Указать идентификатор заказа,
который требуется изменить. Определить выражение,

осуществляющее
изменение.

Определить значения
для изменения.

Вернуть все измененные данные.

Экспортировать функцию-обработчик.

Проверить, прислал ли
клиент свои координаты.

 34 / 40

194    Глава 9. Ввод... асинхронные и отложенные ответы

 message.originalRequest.message.attachments[0].payload.coordinates.long
) {
 return saveLocation(message.sender, message.originalRequest.message.
 attachments[0].payload.coordinates)
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Изменив содержимое файла bot.js, разверните чат-бот командой npm run up-
date и опробуйте его. Результат должен выглядеть, как показано на рис. 9.6.

Рис. 9.6. Чат-бот, позволяющий клиенту сообщить свои текущие координаты

9.5. Планирование доставки
Последний фрагмент мозаики, который поможет «сделать чат-бот полез-
ным», – подключение его к API службы доставки Some Like It Hot. Как показа-
но на рис. 9.7, после интеграции с этим API порядок работы чат-бота должен
выглядеть следующим образом:

Вызвать функцию saveLocation
и передать ей идентификатор
отправителя и координаты.

 35 / 40

9.5. Планирование доставки    195

Facebook
Messenger

Ответ с координатами

Создать заявку на доставку

Заявка на доставку принята

Заказ принят для доставки

Заказ доставлен

Обновить заказ

Заказ обновлен

API службы
доставки

Some Like It Hot

Заказ на пиццу

Вызов обработчика

Сохранить заказ
в таблице pizza-orders

Код 200, OK

Ответ

Заказ сохраненСообщение
«Пожалуйста,

сообщите ваше
местонахождение»

Сообщение
«Ваша пицца будет
доставлена через

X минут»

Сообщение
«Ваша пицца

в пути»

Платформа
Facebook

Чат-бот
пиццерии

Таблица
в базе данных

DynamoDB

Вызов обработчика

Код 200, OK

Ответ

Ответ

Ответ
Сообщение

«Ваша пицца
доставлена, приятного

аппетита!»

Ответ PHP

Рис. 9.7. Порядок работы чат-бота, определяющего местонахождение клиента
и взаимодействующего со службой доставки Some Like It Hot

1)	 клиент касается кнопки Order (Заказать), чтобы заказать пиццу;
2)	 заказ сохраняется в базе данных со статусом in-progress (выполняется);
3)	 чат-бот запрашивает у клиента его текущее местонахождение;
4)	 клиент сообщает свои координаты;
5)	 чат-бот подключается к API службы доставки;
6)	 заявка на доставку принимается, и чат-бот обновляет состояние заказа

в базе данных и уведомляет клиента;
7)	 после передачи заказа службе доставки ее API вызывает обработчик в

чат-боте;
8)	 чат-бот посылает уведомление клиенту;

 36 / 40

196    Глава 9. Ввод... асинхронные и отложенные ответы

9)	 после вручения заказа клиенту API службы доставки вновь вызывает об-
работчик в чат-боте входа;

10)	 чат-бот посылает заключительное сообщение клиенту.

Как можно заметить на рис. 9.7, мы должны внести в чат-бот два изменения:

�� добавить в обработчик save-location.js отправку заявки на доставку;
�� создать новую точку входа, которой будет пользоваться API службы до-

ставки.

Начнем с самого простого – с обработчика save-location.js. Изменения
в этом обработчике напоминают код, который мы добавляли в главе 4,
когда связывали Pizza API со службой доставки. Мы должны послать за-
прос POST по адресу https://some-like-it-hot-api.effortless-serverless.com/
delivery. Единственное отличие – мы должны послать deliveryCoords вместо
deliveryAddress.

Другое важное отличие – мы не можем изменить первичный ключ зака-
за. Так как мы не можем использовать deliveryId в роли orderId, то должны
сохранить идентификатор заявки на доставку в таблице DynamoDB. Как вы,
наверное, помните из главы 3, мы использовали deliveryId в роли orderId,
чтобы увеличить эффективность поиска заказов для изменения состояния
доставки.

В листинге 9.14 показана измененная версия обработчика save-location.js,
в которую добавлено взаимодействие с API службы доставки Some Like It Hot.

Листинг 9.14. Обработчик save-location.js

// Первая половина файла осталась прежней
 .then((result) => result.Items[0])
 .then((order) => {
 return rp.post('https://some-like-it-hot-api.effortless-serverless.com/
 delivery', {
 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria's Pizzeria',
 deliveryCoords: coordinates,
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.
 com/latest/delivery',
 })
 })

Послать POST-запрос в API
службы доставки.

Преобразовать тело запроса в строку.
Заполнитель для времени.

Передать URL обработчика для
вызова службой доставки.

Добавить pickupTime, pickupAddress
и deliveryCoords в тело.

Добавить заголовки в
запрос, включая заголовок
Authorization с ключом
авторизации.

 37 / 40

https://some-like-it-hot-api.effortless-serverless.com/delivery
https://some-like-it-hot-api.effortless-serverless.com/delivery

9.5. Планирование доставки    197

 .then(rawResponse => JSON.parse(rawResponse.body))
 .then((response) => {
 order.deliveryId = response.deliveryId
 return order
 })
 })
 .then((order) => {
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.orderId
 },
 UpdateExpression: 'set orderStatus = :s, coords=:c, deliveryId=:d',
 ExpressionAttributeValues: {
 ':s': 'pending',
 ':c': coordinates,
 ':d': order.deliveryId
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 })
}

module.exports = saveLocation

Теперь, сохранив идентификатор заявки на доставку в DynamoDB, мы
должны создать точку входа для Some Like It Hot Delivery API. Но как добавить
маршрут в чат-бот?

Как отмечалось выше, Claudia Bot Builder экспортирует экземпляр Claudia
API Builder. Это означает, что функция botBuilder в нашем файле bot.js возвра-
щает полноценный экземпляр Claudia API Builder.

Перед добавлением нового маршрута нужно создать новую функцию-об-
работчик для него. Для этого создайте в папке handlers файл с именем deliv-
ery-webhook.js. Внутри этого обработчика нужно найти заказ по идентификато-
ру заявки на доставку, который передаст API службы доставки, затем изменить
статус в этом заказе и послать сообщение клиенту, чтобы уведомить его об
изменении статуса заказа. Порядок работы этого обработчика показан на
рис. 9.8.

Поиск и изменение заказа выполняются точно так же, как в обработчике
save-location.js. Единственная сложность – отправка сообщения клиенту.

Чтобы послать сообщение в Facebook Messenger, нужно отправить запрос
платформе Facebook Messenger. В каждом таком запросе требуется указать
идентификатор пользователя, текст сообщения и ключ доступа к Facebook
Messenger.

Сохранить идентификатор заявки
на доставку в таблицу DynamoDB.

Выполнить парсинг
строкового тела ответа.

Сохранить данные
в таблицу DynamoDB.

Добавить идентификатор заявки
на доставку в объект order.

Вернуть объект order для правильной
работы цепочки объектов Promise.

 38 / 40

198    Глава 9. Ввод... асинхронные и отложенные ответы

Когда статус заявки
изменяется, служба

доставки Some Like It
Hot вызывает наш

обработчик.

API Gateway вызывает
нашу функцию Lambda.

В заключение
обработчик отвечает
API службы доставки

через API Gateway.

Обработчик изменяет
статус заказа.

Затем Lambda посылает
сообщение об изменении

статуса заказа клиенту
через Facebook Messenger.

Веб-службы
Some Like It Hot

Обработчик
для службы

доставки
в AWS Lambda

Facebook Messenger

Таблица
DynamoDB

API
Gateway

Обработчик подключается
к таблице DynamoDB и получает

информацию о заказе по
deliveryId, потому что нам нужен

первичный ключ, чтобы
изменить заказ.

Рис. 9.8. Порядок работы обработчика для службы доставки

Послать подобный запрос можно точно так же, как в API службы доставки,
или можно воспользоваться библиотекой claudia-bot-builder. Это внутренняя
библиотека, но ее можно подключить, импортировав файл reply.js:

const reply = require(‘claudia-bot-builder/lib/facebook/reply’)

В этом случае импортируется только файл reply.js, а не весь пакет Claudia
Bot Builder, и функция сохраняется в константе reply.

Эта функция reply принимает три параметра: идентификатор отправителя,
текст сообщения и ключ доступа.

Идентификатор отправителя можно получить из базы данных. Текст сооб-
щения – это простой текст в стандартном формате Claudia Bot Builder, кото-
рый нужно послать клиенту. Можно послать один объект шаблона или массив
из нескольких сообщений. Наконец, ключ доступа к Facebook Messenger мож-
но получить из объекта request.env. Вы можете передать ключ в функцию-об-
работчик во втором аргументе.

ПРИМЕЧАНИЕ. Facebook Messenger накладывает определенные ограничения
на отправку сообщений: вы не сможете послать сообщение клиенту иначе, как
в ответ на его сообщение, а кроме того, ответ можно послать только в течение
24 часов. Узнать больше об ограничениях можно по адресу: https://developers.
facebook.com/docs/messenger-platform/send-messages#messaging_types.

 39 / 40

https://developers.facebook.com/docs/messenger-platform/send-messages#messaging_types
https://developers.facebook.com/docs/messenger-platform/send-messages#messaging_types

9.5. Планирование доставки    199

В листинге 9.15 показан полный код обработчика сообщений от службы
доставки.

Листинг 9.15. Обработчик сообщений от службы доставки

'use strict'

const reply = require('claudia-bot-builder/lib/facebook/reply')

function deliveryWebhook(request, facebookAccessToken) {
 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

 return docClient.scan({
 TableName: 'pizza-orders',
 Limit: 1,
 FilterExpression: `deliveryId = :d`,
 ExpressionAttributeNames: {
 ':d': { S: deliveryId }
 }
 }).promise()
 .then((result) => result.Items[0])
 .then((order) => {
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.orderId
 },
 UpdateExpression: 'set orderStatus = :s',
 ExpressionAttributeValues: {
 ':s': request.status
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 })
 .then((order) => {
 return reply(order.user, `The status of your delivery is updated to:
 ${order.status}.`, facebookAccessToken)
 })
}

module.exports = deliveryWebhook

Теперь добавим маршрут к этому обработчику в файл bot.js. Для этого им-
портируем обработчик delivery-webhook.js в начале файла:

Импортировать
функцию reply из
Claudia Bot Builder.

Ответить клиенту, указав идентификатор
пользователя, сообщение и ключ доступа
к Facebook Messenger.

Изменить статус заказа
в таблице DynamoDB.

Проверить запрос.

Найти в таблице DynamoDB запись
с данным идентификатором заявки.

Определение функции-обработчика
deliveryWebhook, принимающей

объект request и ключ доступа.

Извлечь из массива с результатами
только первый элемент.

Экспортировать
функцию-обработчик.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

200    Глава 9. Ввод... асинхронные и отложенные ответы

const deliveryWebhook = require('./handlers/delivery-webhook')

Затем добавим новый маршрут POST /delivery в конец файла, непосред-
ственно перед инструкцией module.exports = api. Этот маршрут будет вызы-
вать функцию-обработчик deliveryWebhook с телом запроса и ключом доступа
к Facebook Messenger и в случае успеха возвращать код 200 или в случае ошиб-
ки – код 400.

В листинге 9.16 показано несколько последних строк из файла bot.js.

Листинг 9.16. Маршрут к обработчику запросов со стороны службы доставки

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

api.post('/delivery', (request) => deliveryWebhook(request.body, request.env.
 facebookAccessToken), {
 success: 200,
 error: 400
})

module.exports = api

Теперь разверните чат-бот командой npm run update или claudia update и убе-
дитесь, что он выполняет все функции.

9.6. Добавление простой обработки
естественного языка
Для создания более сложного чат-бота не обойтись без реализации обработки
сообщений на естественном языке (NLP). Создание библиотеки NLP «с нуля» –
сложная задача, которая под силу далеко не всем. Но, к счастью, существует
большое количество библиотек, которые вы с успехом сможете использовать
для совершенствования своих чат-ботов. Например:

�� Wit.ai (https://wit.ai) – разработка Facebook; предлагает средства пре-
образования естественного языка (речи или текста) в данные, пригод-
ные для обработки;

�� DialogFlow (прежде называлась API.ai; https://dialogflow.com) – разработ-
ка Google; фактически является диалоговой платформой, обеспечиваю

Определить маршрут POST /delivery и
вызвать обработчик deliveryWebhook.

Вернуть код 400
в случае ошибки.

Вернуть код 200 в случае
успешной обработки запроса.

 1 / 40

https://wit.ai
https://dialogflow.com

9.6. Добавление простой обработки естественного языка    201

щей взаимодействие с устройствами, приложениями и службами на
естественном языке;

�� IBM Watson (https://www.ibm.com/watson/) – суперкомпьютер IBM, соче
тающий в себе искусственный интеллект и сложное аналитическое про-
граммное обеспечение, который предлагает инструменты для создания
машины типа «вопрос–ответ». Кроме того, Watson предлагает инстру-
менты для продвинутого анализа текста.

Библиотеки Wit.ai и DialogFlow можно использовать бесплатно, хотя и с не-
которыми ограничениями; IBM Watson предоставляет бесплатный пробный
период.

Интеграция этих библиотек в чат-боты не вызывает сложностей. Все они
хороши, и все можно рекомендовать к использованию на практике, но каждая
из них имеет свои сильные и слабые стороны, которые, впрочем, не особенно
важны для этой книги. Claudia Bot Builder не ограничивает и никак не мешает
использованию этих библиотек.

В Facebook Messenger тоже есть встроенная библиотека NLP, но, к сожале-
нию, она предлагает только самые простые инструменты. С ее помощью мож-
но научить чат-бот распознавать приветствия, благодарности и прощания,
определять даты, время, координаты, денежные суммы, номера телефонов
и адреса электронной почты. Например, фраза «tomorrow at 2pm» (завтра в
2 часа дня) будет преобразована в значение времени.

ПРИМЕЧАНИЕ. За дополнительной информацией о библиотеке NLP, встроенной
в Facebook Messenger, обращайтесь по адресу: https://developers.facebook.
com/docs/messenger-platform/built-in-nlp.

Несмотря на ограниченные возможности, библиотека NLP, встроенная в
Facebook Messenger, включает все необходимое, чтобы позволить клиентам
заказать пиццу на определенное время или день. Поскольку это и без того
длинная глава, мы используем данную библиотеку, чтобы чат-бот мог отве-
тить на «спасибо».

Для этого нужно следующее:

1)	 установить и настроить встроенную библиотеку NLP, как описывается в
приложении B;

2)	 добавить в файл bot.js проверку, является ли сообщение ответом клиен-
та. Если нет, мы не будем использовать средства NLP в главном меню;

3)	 если сообщение является ответом клиента, используем библиотеку NLP,
чтобы распознать выражение благодарности в тексте. Если благодар-
ность имеет место, ответим сообщением «You’re welcome!» («Пожалуй-
ста!»); иначе покажем главное меню.

Встроенная библиотека NLP добавляет опознанные сущности в атрибут nlp
объекта message. Сущности возвращаются в виде массива, и каждая сущность

 2 / 40

https://www.ibm.com/watson/
https://developers.facebook.com/docs/messenger-platform/built-in-nlp
https://developers.facebook.com/docs/messenger-platform/built-in-nlp

202    Глава 9. Ввод... асинхронные и отложенные ответы

имеет оценку достоверности в атрибуте confidence и значение в атрибуте value.
Оценка достоверности определяет степень уверенности парсера в опознании
(вероятность, что сущность опознана верно) и имеет значение в диапазоне
от 0 до 1. Атрибут value определяет значение опознанной сущности. В случае
с сущностью «thanks» («спасибо»), если она присутствует в сообщении, этот
атрибут всегда будет иметь значение true. Мы проверим существование сущ-
ности «thanks», и если ее оценка уверенности превышает 0,8 (80 %), вернем
сообщение «You’re welcome!» («Пожалуйста!»).

В листинге 9.17 показаны последние несколько строк в измененном файле
bot.js.

Листинг 9.17. Ответ на сообщение с благодарностью

 if (
 message.originalRequest.message.nlp &&
 message.originalRequest.message.nlp.entities &&
 message.originalRequest.message.nlp.entities['thanks'] &&
 message.originalRequest.message.nlp.entities['thanks'].length &&
 message.originalRequest.message.nlp.entities['thanks'][0].confidence > 0.8
) {
 return `You're welcome!`
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

9.7. Опробование!
Сделать чат-бот чуть более интерактивным и чуть более интеллектуальным
совсем несложно, но чтобы клиенты испытывали удовольствие от общения с
ним, он должен быстро и эффективно удовлетворять их потребности.

9.7.1. Упражнение
Ваша основная задача в этом упражнении – показать каждому клиенту те-

тушки Марии его последний заказ в приветственном сообщении. Выполняя
заказ в сети ресторанов, клиенты часто заказывают одну и ту же еду. В этом
упражнении вы должны поприветствовать клиента и напомнить ему о его по-

Если атрибут nlp или сущность «thanks»
отсутствует, вернуть главное меню.

Если в сообщении присутствует атрибут nlp и сущность
«thanks», ответить на выражение благодарности.

 3 / 40

9.7. Опробование!    203

следнем заказе. Если вы чувствуете, что способны на большее, после решения
основного упражнения мы предложим вам решить более сложную задачу.

9.7.2. Решение
Это упражнение решается просто. Нужно просмотреть список заказов, най-

ти последний заказ клиента по идентификатору отправителя в объекте mes-
sage и вернуть название последней заказанной им пиццы, выразив надежду,
что она ему понравилась.

Листинг 9.18. Реализация приветствия клиента в главном файле чат-бота

'use strict'

const botBuilder = require('claudia-bot-builder')

const pizzaDetails = require('./handlers/pizza-details')
const orderPizza = require('./handlers/order-pizza')
const pizzaMenu = require('./handlers/pizza-menu')
const saveLocation = require('./handlers/save-location')
const getLastPizza = require('./handlers/get-last-pizza')

const api = botBuilder((message) => {
 if (message.postback) {
 const values = message.text.split('|')

 if (values[0] === 'DETAILS') {
 return pizzaDetails(values[1])
 } else if (values[0] === 'ORDER') {
 return orderPizza(values[1], message)
 }
 }

 if (
 message.originalRequest.message.attachments &&
 message.originalRequest.message.attachments.length &&
 message.originalRequest.message.attachments[0].payload.coordinates &&
 message.originalRequest.message.attachments[0].payload.coordinates.lat
 &&
 message.originalRequest.message.attachments[0].payload.coordinates.long
) {
 return saveLocation()
 }

 return getLastPizza().then((lastPizza) => {

Импортировать
модуль get-last-pizza.

Вызвать функцию из модуля
и получить информацию о
пицце, заказанной клиентом
в прошлый раз.

 4 / 40

204    Глава 9. Ввод... асинхронные и отложенные ответы

 let lastPizzaText = lastPizza ? `Glad to have you back! Hope you liked
 your ${lastPizza} pizza` : ''
 return [
 `Hello, ${lastPizzaText} here's our pizza menu:`,
 pizzaMenu()
]
 })
}, {
 platforms: ['facebook']
})

module.exports = api

Изменений в главном файле чат-бота немного, потому что основная логика
решения находится в новом файле get-last-pizza.js.

Эта логика приводится в листинге 9.19.

Листинг 9.19. Обработчик, возвращающий пиццу, которую заказывал клиент
в прошлый раз

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const pizzaMenu = require('./pizza-menu')
const pizzas = require('../data/pizzas.json')

function getLastPizza(sender) {

 return docClient.scan({
 TableName: 'pizza-orders',
 ScanIndexForward: false,
 Limit: 1,
 FilterExpression: `sender = #{sender}`,
 }).promise()
 .then((lastPizzaOrder) => {
 let lastPizza
 if (lastPizzaOrder){
 lastPizza = pizzas.find(pizza => pizza.id == lastPizzaOrder.pizzaId)
 }
 return lastPizza
 })
 .catch((err) => {
 console.log(err)

Если раньше клиент уже заказывал пиццу,
сконструировать текст сообщения с названием пиццы.

Вернуть текст приветствия.

Получить список пицц.

Найти последнюю заказанную пиццу
по ее идентификатору из заказа.

Ограничить операцию
сканирования единственным
результатом.

Импортировать AWS SDK.
Создать экземпляр DocumentClient.

Сканировать таблицу pizza-orders.

Сформировать операцию
сканирования, чтобы отыскать
последний заказ, то есть
последнюю запись в базе данных.

Проверять только
записи, принадлежащие
указанному клиенту.

Вернуть последнюю
заказанную пиццу.

Вернуть последний найденный заказ.
Сбросить значение переменной lastPizza. Проверить, имелся ли

заказ в прошлом.

 5 / 40

В заключение    205

 return [
 'Oh! Something went wrong. Can you please try again?',
 pizzaMenu()
]
 })
}

module.exports = getLastPizza

ПРИМЕЧАНИЕ. Это решение основного упражнения для данной главы. Для
усложненного упражнения мы не предлагаем готового решения, чтобы сделать
данное упражнение более интересным.

9.7.3. Усложненное задание
Наиболее азартным читателям мы предлагаем решить более сложную за-

дачу. Это упражнение послужит вам хорошим испытанием. Его основная
цель – дать клиенту возможность повторить последний заказ. В начальном
приветствии, если клиент ранее уже заказывал пиццу, вы должны предложить
повторить предыдущий заказ и предоставить две дополнительные кнопки
для быстрого ответа. Если клиент нажмет кнопку «Да, повторить заказ», вы
должны оформить заказ на ту же пиццу с тем же адресом доставки. Если кли-
ент нажмет кнопку «Нет, покажите мне меню», вы должны вывести список
доступных пицц.

В заключение
�� Для анализа сообщений, возвращаемых клиентом в ответ на вопрос

чат-бота, исследуются поля message.text и message.postback. Если сообще-
ние действительно является ответом, поле message.postback будет содер-
жать значение true.

�� Логику работы чат-бота желательно разбить на более мелкие задачи,
реализованные в разных файлах, вместо использования простой услов-
ной инструкции if...else.

�� Чат-боты, реализованные с применением Claudia Bot Builder, можно
подключать к базе данных DynamoDB с помощью DocumentClient.

�� Чтобы узнать текущее местоположение клиента, можно воспользовать-
ся шаблоном быстрого ответа.

В случае ошибки
вернуть дружественное
сообщение и меню
выбора пиццы.

 6 / 40

Глава 10
Джарвис, то есть Алекса,

закажи мне пиццу

Эта глава охватывает следующие темы:

	cоздание бессерверного SMS-чат-бота;
	проблемы несовместимости разных бессерверных чат-ботов;
	использование голосового помощника Алекса с помощью Claudia

и AWS Lambda.

Чат-боты выгодны для бизнеса, потому что значительно снижают потреб-
ность в поддержке клиентов, позволяя им самим взаимодействовать с ваши-
ми приложениями удобным и интересным способом. Бессерверные чат-боты
дают дополнительные выгоды, помогая справляться с большим наплывом
клиентов без дополнительной настройки сервера. Единственное ограниче-
ние чат-ботов – они привязаны к соответствующим платформам обмена со-
общениями, которые сильно отличаются друг от друга. Например, Facebook
существует уже более 10 лет, но значительный процент людей по-прежнему
не пользуется им, а они тоже могут быть вашими клиентами. Как решить эту
проблему?

С другой стороны, компьютеры все глубже проникают в нашу жизнь, и в по-
следнее время наблюдается бурный рост числа голосовых помощников, таких
как Apple Siri, Amazon Alexa, Google Home, Microsoft Cortana и многих других.
Теперь не требуется писать текст и посылать его чат-боту – можно просто по-
говорить с ним. И эта технология широко используется нашими клиентами из
другой категории: технически подкованных, легко перенимающих и продви-
гающих новые технологии. Чтобы охватить эти две категории потребителей,
недостаточно написать одного чат-бота. В этой главе мы покажем, как удов-
летворить нужды особенно продвинутых клиентов, создав чат-боты для SMS
(Short Message Service – служба коротких сообщений) и голосового помощни-
ка Amazon Alexa в виде бессерверных служб на основе Claudia.js.

 7 / 40

10.1. Не могу сейчас говорить: отправка SMS с помощью службы Twilio    207

10.1. Не могу сейчас говорить: отправка SMS
с помощью службы Twilio
Бизнес тетушки Марии начал набирать обороты, и это хорошая новость! Пьер,
ее разработчик мобильного приложения, сообщил об увеличении числа за-
грузок приложения, а школьные друзья Джулии распространили новость о
появлении чат-бота в Facebook, в результате чего число заказов значительно
увеличилось. Тетушка Мария счастлива, потому что мы помогли ее бизнесу
прочно встать на ноги, и она пригласила нас на бесплатный обед, чтобы встре-
титься с ней и дядюшкой Фрэнком.

Дядюшка Фрэнк – брат Марии – немолодой, невысокий и грузный мужчина,
обычно ходит в темной рубашке с рукавами, закатанными до локтей. Он вла-
деет известным баром, расположенным на той же улице, недалеко от пицце-
рии. Он любит вкусно поесть и часто звонит Марии, чтобы заказать пиццу для
себя или своих клиентов. Но он человек старой закалки и не спешит осваивать
новые технологии.

Мы пришли в пиццерию на встречу с тетушкой Марией и дядюшкой Фрэн-
ком. Они довольны, и дядюшка Фрэнк поздравляет нас. Он наслышан о на-
ших успехах, особенно с чат-ботом в Facebook Messenger. Но в ходе празд-
ничного обеда мы начинаем понимать, что бесплатный сыр бывает только в
мышеловке. Тетушка Мария и дядюшка Фрэнк, рассыпаясь в благодарностях
за нашу большую работу по привлечению молодежи, выражают пожелание
привлечь людей старших поколений, таких как клиенты и друзья дядюшки
Фрэнка, не имеющих учетной записи в Facebook. Некоторые из них вообще
не имеют учетных записей в социальных сетях. Пиццерия тетушки Марии
в настоящее время не может нанять новых работников, чтобы отвечать на
звонки, поэтому они спрашивают, сможем ли мы создать SMS-чат-бота. Все
ее клиенты владеют мобильными телефонами и знают, как отправлять тек-
стовые сообщения, поэтому такой чат-бот мог бы стать хорошим решением.
Но с чего начать?

В настоящее время доступно множество облачных платформ для обмена со-
общениями, но одной из самых известных и широко используемых является
Twilio. Она позволяет клиентам совершать и принимать телефонные звонки
и текстовые сообщения с использованием ее API.

ПРИМЕЧАНИЕ. В этой главе рассматривается только возможность отправки тек-
стовых сообщений (SMS) в Twilio. Телефонные звонки выходят далеко за рамки
этой книги. Узнать больше о Twilio можно на сайте http://twilio.com.

К счастью, Claudia Bot Builder поддерживает SMS-чат-боты Twilio. Настро-
ить чат-бот для Twilio так же просто, как чат-бот для Facebook. Для начала мы
реализуем SMS-чат-бот, приветствующий клиента пиццерии тетушки Марии,
чтобы усвоить основные идеи, а затем реализуем отправку полного списка
пицц и оформление заказа.

 8 / 40

http://twilio.com

208    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Прежде всего создайте отдельную папку sms-chatbot для проекта. Перейдите
в нее и создайте файл sms-bot.js.

ПРИМЕЧАНИЕ. Может показаться странным, почему мы создаем отдельный чат-
бот. Неужели в нем не будет логики, повторяющей логику чат-бота для Facebook?
На то есть две причины. Во-первых, SMS-чат-бот существенно отличается от
чат-бота для Facebook. В нем не будет интерактивных кнопок, только простые тек-
стовые сообщения, поэтому повторно использовать ту же логику будет проблема-
тично. Другая причина: мы хотели бы, чтобы наши службы были независимыми
и более простыми в обслуживании. Наличие двух чат-ботов увеличит сложность
всего проекта и сделает его обслуживание менее удобным. Обновление одного
может повлиять на работу другого. Разделение служб также означает, что SMS-чат-
бот будет находиться в другой функции Lambda. Если бы они оба находились в
одной функции Lambda и чат-бот для Facebook потерпел крах, тогда SMS-чат-бот
тоже прекратил бы работу.

Итак, выше мы решили написать простой чат-бот, возвращающий простое
приветствие, например: «Hello from Aunt Maria’s pizzeria!» («Вас приветствует
пиццерия тетушки Марии!»). Чтобы реализовать его, сначала импортируем
модуль Claudia Bot Builder, который поможет нам создать чат-бота. Затем соз-
дадим программный интерфейс чат-бота, который будет использовать функ-
цию обратного вызова для обработки сообщений. Внутри этой функции мы
будем получать однострочный текст "Hello from Aunt Maria's pizzeria!". После
определения функции мы должны определить объект с атрибутом platforms,
содержащим массив платформ, поддерживаемых чат-ботом. Поскольку мы
должны поддерживать только Twilio, добавим в массив единственную строку
'twilio'. По окончании наш файл sms-bot.js должен выглядеть, как показано
в листинге 10.1.

Листинг 10.1. Простой SMS-чат-бот, возвращающий приветствие

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return `Hello from Aunt Maria's pizzeria!`
}, { platforms: ['twilio'] })

module.exports = api

Код довольно прост, но, прежде чем увидеть его в действии, необходимо
создать учетную запись Twilio и указать номер телефона, с которого можно
отправлять и получать SMS-сообщения. После этого нужно настроить услугу

Импортировать модуль
Claudia Bot Builder.

Подготовить функцию-обработчик для Claudia Bot Builder
function и сохранить экземпляр Claudia API Builder.

Объявить о поддержке платформы Twilio.
Вернуть простой текст.

Экспортировать экземпляр
Claudia API Builder.

 9 / 40

10.1. Не могу сейчас говорить: отправка SMS с помощью службы Twilio    209

программируемых SMS в панели управления Twilio и назначить ей этот но-
мер телефона. Инструкции по созданию и настройке учетной записи Twilio
вы найдете в приложении B.

После этой настройки нужно с помощью Claudia создать новую функцию
в AWS Lambda и развернуть в ней SMS-чат-бот. Для этого выполните следую-
щую команду: claudia create --region <ваш-регион> --api-module sms-bot.

Как вы наверняка помните, эта команда вернет URL вновь созданного
чат-бота. Он должен заканчиваться на /twilio. Скопируйте этот URL, открой-
те страницу службы программируемых SMS-сообщений Twilio и вставьте ее в
поле Inbound URL (Входящий URL). Не забудьте сохранить новую конфигура-
цию службы программируемых SMS.

Последний шаг, который нужно выполнить перед опробованием SMS-чат-
бота, – выполнить команду claudia update --configure-twilio-sms-bot. Эта коман-
да настроит Twilio как платформу для нашего чат-бота. Вот и все!

Теперь попробуйте послать сообщение «Hello» на номер телефона, настро-
енный в Twilio.

ПРИМЕЧАНИЕ. Если мобильная сеть сильно загружена, до получения ответа от
SMS-чат-бота может пройти до 30 секунд.

10.1.1. Список пицц в SMS
В двух предыдущих главах наш чат-бот для Facebook сначала возвращал

приветственное сообщение клиентам. А когда клиент запрашивал меню, чат-
бот отображал список пицц с горизонтальной прокруткой. Клиент выбирал
нужную ему пиццу и запускал процесс оформления заказа.

Эта модель выглядит вполне пригодной и для других чат-платформ, но
в SMS используется иной протокол связи, не поддерживающий отправку
изображений. Поэтому мы должны отправить список пицц в текстовом виде,
явно указав, каким должен быть ответ для заказа той или иной пиццы. Напри-
мер, чтобы заказать пиццу с грибами, нужно вернуть ответ FUNGHI.

ПРИМЕЧАНИЕ. Мы не можем отправлять изображения в SMS-сообщениях;
для этого нужно использовать службу мультимедийных сообщений (Multimedia
Messaging Service, MMS). Twilio поддерживает MMS-сообщения, но ограничива-
ется телефонными номерами в Соединенных Штатах и Канаде. Кроме того, под-
держка MMS не рассматривается в этой книге. Узнать больше о поддержке MMS
в Twilio можно на сайте https://www.twilio.com/mms.

Иногда отправка SMS сопряжена с определенными расходами. Причем в не-
которых странах это довольно дорогостоящая услуга. Если вы ожидаете, что
этим чат-ботом будут пользоваться тысячи клиентов, расходы на сообщения
могут быстро возрасти. Поэтому старайтесь минимизировать количество от-
правляемых SMS, но не в ущерб ясности диалога для клиента.

 10 / 40

https://www.twilio.com/mms

210    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

В нашем случае SMS-чат-бота для пиццерии подразумевается строгое вы-
полнение определенной последовательности действий. Например, в начале
диалога следует совместить приветствие со списком предлагаемых пицц в
одном сообщении. Это довольно удобно для клиента. Для этого мы должны
просто выполнить обход списка пицц, объединить их названия с вариантами
ответов в один многострочный текст и отправить его клиенту.

В предыдущих главах вы узнали, что желательно разделить обработчики
для лучшей организации приложения, поэтому с самого начала выделим об-
работчика, конструирующего текст приветствия и список пицц, и поместим
его в отдельный файл в папке handlers. Итак, создайте папку handlers в корне-
вой папке проекта, а внутри нее – файл с именем pizza-menu.js. В этом файле
сначала импортируйте статический список пицц из файла pizzas.json в пере-
менную pizzas. Затем объявите функцию pizzaMenu, а внутри нее переменную
greeting с текстом "Hello from Aunt Maria's pizzeria! Would you like to order a
pizza? This is our menu:" («Вас приветствует пиццерия тетушки Марии! Хо-
тите заказать пиццу? Вот наш прейскурант:»). Затем выполните обход всех
элементов в массиве pizzas и добавьте его содержимое в переменную greeting
с коротким кодом для ответа в отдельной строке. В заключение верните пере-
менную greeting из функции pizzaMenu и экспортируйте эту функцию. Полный
код показан в листинге 10.2.

Листинг 10.2. Приветствие с меню для выбора пиццы

'use strict'

const pizzas = require('../data/pizzas.json')

function pizzaMenu() {
 let greeting = `Hello from Aunt Maria's pizzeria!
 Would you like to order a pizza?
 This is our menu:`

 pizzas.forEach(pizza => {
 greeting += `\n - ${pizza.name} to order reply with ${pizza.shortCode}`
 })

 return greeting
}

module.exports = pizzaMenu

Этот обработчик всегда возвращает список пицц при обращении к нему.
В списке перечисляются названия пицц и короткие коды. Чтобы заказать вы-
бранную пиццу, вместо нажатия кнопки клиент должен отправить текстовую

Загрузить список пицц
из файла pizzas.json.

Функция pizzaMenu.

Добавить каждый элемент из списка
pizzas с коротким кодом shortCode

в отдельной строке, который клиент
должен использовать для заказа пиццы.

Экспортировать
обработчик pizzaMenu.

Сконструировать меню для возврата
клиенту из SMS-чат-бота.

 11 / 40

10.1. Не могу сейчас говорить: отправка SMS с помощью службы Twilio    211

команду, потому что взаимодействие с SMS-чат-ботом ограничено текстовы-
ми сообщениями.

Затем нужно изменить файл sms-bot.js и добавить вызов обработчика piz-
zaMenu в ответ на получение SMS от клиента. Поскольку на данный момент у
нас нет других команд, мы можем просто вернуть импортированный обработ-
чик pizzaMenu, как показано в листинге 10.3.

Листинг 10.3. Точка входа в SMS-чат-бот

'use strict'

const botBuilder = require('claudia-bot-builder')
const pizzaMenu = require('./handlers/pizza-menu')

const api = botBuilder((message, originalApiRequest) => {
 return [
 pizzaMenu()
]
}, { platforms: ['twilio'] })

module.exports = api

Теперь повторно разверните проект командой claudia update. Если после
этого попробовать послать SMS чат-боту, он должен вернуть приветствие со
списком пицц и их короткими кодами.

10.1.2. Оформление заказа
В настоящий момент, если клиент отправит SMS-сообщение нашему чат-бо-

ту, тот вернет текст приветствия и список пицц. Но если клиент отправит один
из коротких кодов, SMS-чат-бот снова вернет приветствие со списком пицц.
В этом разделе мы добавим в чат-бот распознавание коротких кодов и обра-
ботку заказа пиццы.

Для начала проверим, содержит ли ответ клиента короткий код. С этой
целью загрузим список пицц в файле sms-bot.js и проверим содержимое со-
общения на наличие короткого кода. Если код присутствует в сообщении, за-
просим у клиента адрес доставки.

Файл sms-bot.js с этими изменениями должен выглядеть, как показано в
листинге 10.4.

Листинг 10.4. Распознавание намерения заказать пиццу

'use strict'

const botBuilder = require('claudia-bot-builder')

Импортировать Claudia Bot Builder.

Объявить о поддержке
платформы Twilio.

Просто вернуть pizzaMenu.

Импортировать обработчик,
возвращающий меню.

 12 / 40

212    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

const pizzas = require('./data/pizzas.json')
const pizzaMenu = require('./handlers/pizza-menu'),
 orderPizza = require('./handlers/order-pizza')

const api = botBuilder((message, originalApiRequest) => {

 let chosenPizza
 pizzas.forEach(pizza => {
 if (message.indexOf(pizza.shortCode) != -1) {
 chosenPizza = pizza
 }
 })

 if (chosenPizza) {
 return orderPizza(chosenPizza, message.sender)
 }

 return [
 pizzaMenu()
]
}, { platforms: ['twilio'] })

module.exports = api

Этот код завершает первый этап, проверяя присутствие короткого кода в
сообщении клиента и передавая пиццу и отправителя (клиента) обработчику,
реализующему оформление заказа. Теперь мы должны написать эту функ
цию-обработчик. Обработчик order-pizza.js должен получить объект выбран-
ной пиццы и отправителя и сохранить новый заказ в таблице pizza-orders. Для
создания нового заказа мы используем модуль uuid, с помощью которого соз-
дадим идентификатор заказа orderID, и идентификатор пиццы pizza. В поле
orderStatus мы запишем статус in-progress, потому что заказ не должен пере
даваться для доставки до того, как мы узнаем адрес клиента. Кроме того, в
атрибуте platforms мы укажем twilio-sms-chatbot, чтобы как-то различать за-
казы, хранящиеся в одной таблице. Наконец, сохраним отправителя в атрибу-
те user, чтобы иметь возможность узнать, кто сделал заказ. Код обработчика
order-pizza.js показан в листинге 10.5.

Листинг 10.5. Обработчик, оформляющий заказ

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

Импортировать список доступных пицц.

Импортировать обработчик,
оформляющий заказ.

Выполнить обход коротких кодов
и проверить присутствие каждого
в ответе клиента.

Если клиент выбрал пиццу, вызвать
обработчик оформления заказа и передать
ему пиццу и отправителя сообщения.

Импортировать AWS SDK. Создать экземпляр
DocumentClient.

 13 / 40

10.1. Не могу сейчас говорить: отправка SMS с помощью службы Twilio    213

const uuid = require('uuid/v4')

function orderPizza(pizza, sender) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza.id,
 orderStatus: 'in-progress',
 platform: 'twilio-sms-chatbot',
 user: sender
 }
 }).promise()
 .then((res) => {
 return 'Where do you want your pizza to be delivered? You can write
 your address.'
 })
 .catch((err) => {
 console.log(err)

 return [
 'Oh! Something went wrong. Can you please try again?'
]
 })
}

module.exports = orderPizza

Здесь message.sender представляет номер телефона, с которого был сделан
заказ. На данный момент нам не хватает только адреса клиента.

Обработка SMS-сообщений – не самая простая задача. Эти сообщения со-
держат простой текст, поэтому из них нельзя просто получить адрес. Учиты-
вая это ограничение, вам действительно придется поломать голову над тем,
как получить адрес.

В настоящее время заказ не может получить другого состояния, кроме
in-progress. Не зная адреса клиента, мы не можем передать заказ компании,
осуществляющей доставку. Нам нужно получить адрес и сохранить его, но
пока, если сообщение не содержит короткого кода, обозначающего пиццу,
наш SMS-чат-бот всегда будет отвечать приветствием и списком пицц. Нам
нужно переопределить это поведение и суметь правильно обработать ввод
адреса.

К счастью, эта проблема имеет решение. Мы сохранили номер телефона от-
правителя в заказе со статусом in-progress, поэтому, получив ответ с предпо-
лагаемым адресом клиента, мы можем сначала проверить наличие в базе дан-

Импортировать модуль uuid.

Сохранить заказ в таблице
DynamoDB.

Сохранить идентификатор пользователя,
пославшего сообщение.

Указать, что заказ создан с использованием
платформы Twilio SMS.

С помощью uuid сгенерировать
уникальный идентификатор заказа.

Установить статус заказа
равным in-progress.

Вернуть дружественное
сообщение в случае ошибки.

Экспортировать
обработчик orderPizza.

Запросить адрес доставки.

 14 / 40

214    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

ных заказа in-progress с номером отправителя. Если такой заказ есть и в нем
отсутствует адрес, мы можем сохранить отправленное сообщение как адрес.
На рис. 10.1 показан процесс парсинга сообщения.

Оформить
заказ

Код пиццы
присутствует? Новое сообщение

Есть заказ
в статусе

in-progress?

Да

Нет

Нет

Сохранить
сообщение
как адрес

Вернуть
список пицц

Да

Рис. 10.1. Процесс парсинга сообщения в бессерверном SMS-чат-боте

Понять идею – важно, но не менее важно знать, как реализовать ее.

ПРИМЕЧАНИЕ. В действующем приложении вы, вероятно, не должны сразу ме-
нять статус заказа, поскольку клиент мог ошибиться или забыл ответить и теперь
может пожелать сделать новый заказ. Чтобы обработать эту ситуацию, можно за-
просить подтверждение у клиента. Если в ответ будет получено «YES» («ДА»), вы
сможете изменить статус заказа на pending; если клиент ответит «NO» («НЕТ»), вы
удалите заказ из базы данных. Однако мы не будем рассматривать эту процедуру
в книге.

Сначала найдем заказ со статусом in-progress. C этой целью создадим от-
дельную функцию-обработчик check-order-progress.js в папке handlers. Внутри
файла добавим логику сканирования таблицы DynamoDB, чтобы найти за-
каз, принадлежащий отправителю и имеющий статус in-progress. Поскольку
команда scan в DynamoDB всегда возвращает массив найденных элементов,
мы должны проверить, есть ли в результатах какие-либо элементы. Если есть,

 15 / 40

10.1. Не могу сейчас говорить: отправка SMS с помощью службы Twilio    215

вернем первый из них. Если нет, вернем значение undefined как признак, что
ничего не найдено. Содержимое файла check-order-progress.js показано в лис
тинге 10.6.

Листинг 10.6. Проверка заказа без адреса доставки

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function checkProgressOrder(sender) {

 return docClient.scan({
 ExpressionAttributeValues: {':user': sender, ':status': 'in-progress'},
 FilterExpression: 'user = :user and orderStatus = :status',
 Limit: 1,
 TableName: 'pizza-orders'
 }).promise()
 .then((result) => {
 if (result.Items && result.Items.length > 0) {
 return result.Items[0]
 } else {
 return undefined
 }
 })
 .catch((err) => {
 console.log(err)
 return [
 'Oh! Something went wrong. Can you please try again?'
]
 })
 });
}

module.exports = checkProgressOrder

Теперь добавим изменения в основной файл sms-bot.js, чтобы проверить
наличие заказа в статусе in-progress и сохранить в нем адрес для доставки.
Если заказ не будет найден, вернем меню. Для начала импортируем обработ-
чики save-address.js и check-order-progress.js. Затем используем их для про-
верки статуса заказа. Содержимое файла sms-bot.js должно выглядеть, как по-
казано в листинге 10.7.

Импортировать AWS SDK. Создать экземпляр
DocumentClient.

Сканировать таблицу.

Инициировать фильтр
для сканирования
таблицы – нам нужно
отыскать заказ по
отправителю и статусу
заказа (in-progress).

Ограничить число результатов, потому
что нам нужно лишь узнать, есть ли заказ.

Вернуть дружественное
сообщение в случае
ошибки.

Экспортировать обработчик
checkProgressOrder.

Вернуть заказ, соответствующий
критериям поиска, или undefined,
если такого заказа не найдено.

Определить фильтр
для выбора записей.

Задать таблицу DynamoDB для сканирования.

 16 / 40

216    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Листинг 10.7. Обновленный файл sms-bot.js

'use strict'

const botBuilder = require('claudia-bot-builder')
const pizzas = require('./data/pizzas.json')
const pizzaMenu = require('./handlers/pizza-menu'),
 orderPizza = require('./handlers/order-pizza'),
 checkOrderProgress = require('./handlers/check-order-progress'),
 saveAddress = require('./handlers/save-address')

const api = botBuilder((message, originalApiRequest) => {

 let chosenPizza
 pizzas.forEach(pizza => {
 if (message.indexOf(pizza.shortCode) != -1) {
 chosenPizza = pizza
 }
 })

 if (chosenPizza) {
 return orderPizza(chosenPizza, message.sender)
 }

 return checkOrderProgress(message.sender)
 .then(orderInProgress => {
 if (orderInProgress) {
 return saveAddress(orderInProgress, message)
 } else {
 return pizzaMenu()
 }
 })
}, { platforms: ['twilio'] })

module.exports = api

Теперь нам не хватает только обработчика save-address.js. Создайте файл
save-address.js в папке handlers, откройте и добавьте код, обновляющий заказ
в таблице DynamoDB, используя указанный идентификатор заказа в качестве
ключа. Также следует обновить адрес доставки и заменить статус in-progress
на pending. Содержимое файла save-address.js показано в листинге 10.8.

Листинг 10.8. Обработчик save-address

'use strict'

Проверить наличие заказа в статусе in-progress,
принадлежащем текущему отправителю.

Импортировать обработчик
save-address.js.

Если такого заказа нет,
вернуть список пицц.

Если такой заказ есть,
сохранить сообщение
клиента как адрес доставки.

Импортировать обработчик
check-order-progress.js.

 17 / 40

10.2. Эй, Алекса!    217

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function saveAddress(order, message) {

 return docClient.put({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.id
 },
 UpdateExpression: 'set orderStatus = :o, address = :a',
 ExpressionAttributeValues: {
 ':n': 'pending',
 ':a': message.text
 },
 ReturnValues: 'UPDATED_NEW'
 }).promise()
}

module.exports = saveAddress

Теперь выполните команду claudia update и пошлите сообщение на номер
телефона чат-бота. Вот и все!

Вы только что создали свой первый бессерверный SMS-чат-бот с помощью
Claudia.js и Twilio.

10.2. Эй, Алекса!
Наш SMS-чат-бот сделал свое дело, и теперь еще больше людей заказывают
пиццу у тетушки Марии! Её пиццерия переполнена даже по понедельникам,
и она начала подумывать о том, чтобы открыть второе заведение в другом
районе. Дядюшка Фрэнк тоже счастлив, даже притом что после игр с SMS-ча-
том его счет за телефон поднялся до небес.

И вроде бы все хорошо, но вдруг к нам приходит Юлия, племянница тетуш-
ки Марии, и вручает нам подарок – Amazon Echo.

Amazon Echo
Amazon Echo – это домашнее устройство с голосовым управлением. Оно управ-
ляется голосовым помощником Алекса (Alexa). С ним можно разговаривать, да-
вать команды и даже совершать покупки в интернете.

Задать выражение
для изменения.

Задать идентификатор orderId
заказа для изменения.

Задать значения для
сохранения в заказе.

Определить значение, возвращаемое
в случае успеха.

Экспортировать обработчик
saveAddress.

 18 / 40

218    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Юлия объясняет, что получила его в подарок на Рождество и оно ей поряд-
ком наскучило, пока она не поняла, что его можно использовать для зака-
за пиццы. Она хочет, чтобы тетушка Мария заняла лидирующие позиции на
рынке и превзошла даже пиццерию Chess (возможно, потому что они не дают
пиццу бесплатно, как тетушка Мария, но не будем углубляться в ее мотивы).
Юлия считает, что, внедрив голосовые команды для заказа пиццы с помощью
Echo раньше, чем это сделает пиццерия Chess, поможет в развитии бизнеса
тетушки Марии и привлечет много новых клиентов. Это неплохая идея, по
этому мы решили помочь ей.

Но как работает Amazon Echo и как им пользоваться? Юлия показывает, что
к устройству нужно обратиться по имени «Алекса».

Доступность Amazon Alexa
Впервые голосовой помощник Алекса начал использоваться в устройствах
Amazon Echo и Amazon Echo Dot в 2014 году. Идеей для его реализации ста-
ла компьютерная голосовая и диалоговая система на борту космического ко-
рабля «Enterprise» из фантастического сериала «Star Trek» («Звездный путь»).
Теперь голосовой помощник Алекса доступен на многих устройствах, включая
семейство Amazon Echo и Amazon Fire TV, а также в мобильных приложениях
для основных популярных платформ, таких как iOS и Android. Чтобы начать
разговор с Алексой, необходимо специальное «пробуждающее слово», но на
некоторых устройствах для этого требуется нажать кнопку.

Самой интересной и мощной особенностью Алексы является возможность
создания своих сценариев (skills) – команд, распознаваемых Алексой, – кото-
рые можно опубликовать на Amazon Marketplace. На момент написания этих
строк в Amazon Marketplace было зарегистрировано более 20 000 сценариев.
Эти сценарии аналогичны компьютерным приложениям.

Создать свой сценарий довольно просто. Как показано на рис. 10.2, устройст
во с поддержкой голосового помощника Алекса пересылает аудиофайл в об-
лако, где Алекса анализирует его, преобразует в намерения и слоты и затем
передает результаты в формате JSON вашей функции Lambda или веб-обра-
ботчику. Намерения описывают, чего пытается добиться пользователь, а сло-
ты – это переменные или динамические части данного намерения. В ответ
функция Lambda или веб-обработчик должны вернуть файл JSON, описываю
щий голосовой ответ Алексы, который услышит пользователь. Прежде чем
создать наш первый сценарий, посмотрим, как они работают и чем отлича-
ются от чат-ботов для Facebook Messenger и Twilio.

Устройство сценария для голосового помощника Алекса
Алекса и другие голосовые помощники работают немного иначе, чем боль-

шинство платформ чат-ботов. Вот некоторые основные отличия:

 19 / 40

10.2. Эй, Алекса!    219

�� голосовое сообщение не просто передается веб-обработчику, а снача-
ла попадает во встроенный механизм обработки естественного языка,
который проанализирует аудиозапись и передаст результаты вашему
веб-обработчику в формате JSON;

�� общение с Алексой основано на командах и, в отличие от большинства
платформ чат-ботов, не допускает бесплатных разговоров. Чтобы Алек-
са могла распознать и обработать команду, она должна быть определена
заранее;

�� обычно перед командой необходимо произнести специальное слово,
активирующее голосового помощника и приводящее его в готовность
принять команду.

Устройство
с голосовым
помощником

Алекса

Облако

Алекса
Функция AWS
Lambda или

веб-обработчик

1 Пользователь произносит команду,
например: «Алекса, запроси в пиццерии
тетушки Марии список пицц».

2 Устройство с поддержкой голосового
помощника Алекса, такое как Amazon Echo,
посылает голосовую команду в облако.

3 Голосовая команда
анализируется, преобразуется
в намерения и слоты и передается
в формате JSON веб-обработчику
или функции Lambda.

5 На основе JSON генерируется голосовой
ответ и передается на устройство пользователя.

6 Устройство с поддержкой голосового
помощника Алекса задает пользователю
вопрос: «Вы можете заказать: Капричоза,
Четыре сыра, Наполетана или Маргарита.
Какую вы хотели бы заказать?»

4 Веб-обработчик возвращает ответ в
формате JSON, описывающий
голосовой ответ пользователю.

Рис. 10.2. Как Алекса выполняет сценарии

Как показано на рис. 10.3, типичная команда для Алексы включает следую-
щие элементы:

�� специальное слово, активирующее голосового помощника;
�� фразу запуска;
�� имя вызова;
�� высказывание с дополнительными параметрами (слотами).

Алекса запроси в пиццерии тетушки Марии список пицц

Имя вызова ВысказываниеАктивирующее
слово

Фраза запуска

Рис. 10.3. Вызов сценария для Алексы

 20 / 40

220    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Другими примерами могут служить голосовые команды: «Алекса, начать
работу с пиццерией тетушки Марии» и «Алекса, сообщи в пиццерию тетушки
Марии заказ на пиццу».

По умолчанию используется активирующее слово «Алекса», но его можно
изменить в настройках устройства. На момент написания этих строк можно
было выбрать следующие слова: «Алекса», «Амазон», «Эхо» и «Компьютер».

Фраза запуска говорит Алексе активировать определенный сценарий. В чис-
ло фраз запуска входят1: «ask» («запросить»), «launch» («запустить»), «start»
(«начать»), «show» («показать») и многие другие.

Имя вызова – это имя сценария, который требуется запустить. Конструируя
свой сценарий, важно выбрать хорошее имя.

ПРИМЕЧАНИЕ. Некоторые рекомендации по выбору имени вызова вы найдете
на сайте http://mng.bz/T6ly.

Наконец, при использовании фразы запуска «начать» нужно сообщить
Алексе, что должен сделать сценарий. Эти инструкции известны как выска
зывания. Наличие статических высказываний не дает большой гибкости, по
этому Алекса позволяет добавлять в инструкции динамические элементы, ко-
торые называют слотами.

Пользователь произносит команду, а Алекса анализирует ее и передает ре-
зультаты функции AWS Lambda или веб-обработчику.

Как показано на рис. 10.4, голосовая команда преобразуется механизмом
анализа естественного языка в намерение. Если в команде есть какие-либо
слоты, они преобразуются в объекты, содержащие имя и значение слота. Пос
ле успешного анализа голосовой команды Алекса создает объект JSON, кото-
рый содержит тип запроса, имя намерения и значения слотов, а также другие
данные, такие как атрибуты сеанса и метаданные.

Алекса может принимать запросы нескольких типов (табл. 10.1).

Таблица 10.1. Типы запросов, распознаваемые Алексой

Тип запроса Описание
LaunchRequest Посылается, когда сценарий вызывается фразой «start»

(«начать») или «launch» («запустить»), например: «Алекса,
начать работу с пиццерией тетушки Марии»; не поддер-
живает дополнительных слотов

IntentRequest Посылается, когда голосовая команда распознается как
содержащая намерение

SessionEndedRequest Посылается, когда пользователь завершает сеанс

AudioPlayer or PlaybackController
(префиксы)

Посылается, когда пользователь использует аудиоплеер
или функцию воспроизведения, такую как приостановка
или переход к следующей песне

1	 На момент публикации книги (2019 год) голосовой помощник Алекса поддерживал только английс
кий и немецкий языки. Имейте это в виду при опробовании примеров. – Прим. перев.

 21 / 40

http://mng.bz/T6ly

10.2. Эй, Алекса!    221

Опознанная
команда

Намере-
ние OrderPizza

Слот
Имя Пицца

Значение Капричоза

Устройство с голосовым помощником Алекса

Алекса

Алекса запроси в пиццерии тетушки Марии заказ на Капричоза

Активирующее
слово

Голосовая команда
анализируется
устройством, таким
как Amazon Echo.

Алекса вызывает
функцию AWS
Lambda или
веб-обработчик
и передает
результаты анализа.

Имя
вызова

Опознанное значение слота Опознанное имя
слота

Опознанное
намерение

Высказывание Значение слота
Фраза

запуска

Голосовая
команда

Рис. 10.4. Процесс передачи и анализа голосовой команды

Другой важной частью голосовых команд является сеанс. В отличие от
Facebook Messenger, Алекса сохраняет некоторые данные между командами,
но вы должны явно сохранять их в своем сеансе. Сеанс Алексы – это диалог с
пользователем. Если сеанс активен, Алекса будет ждать следующей команды
пользователя после ее ответа. Пока сеанс активен, последующие команды не
обязательно должны начинаться с активирующего слова, потому что Алекса
ждет ответа в течение следующих нескольких секунд.

Перед созданием сценария для Алексы его нужно спроектировать. Проек-
тирование сценариев для голосового помощника, конечно же, связано не с
пользовательским интерфейсом, а с проектированием взаимодействий и схе-
мы намерений. Далее мы посмотрим, как это делается.

10.2.1. Подготовка сценария
Проектирование – самый важный этап в создании сценария. Голосовых по-

мощников часто называют «умными помощниками», но на самом деле они
все еще далеки от фантастического компьютера HAL 9000 из фильма «2001:
Космическая одиссея», а возможности анализа естественного языка по-преж-
нему весьма ограничены.

 22 / 40

222    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Проектирование интерактивных взаимодействий выходит далеко за рам-
ки этой книги, но в интернете есть много хороших ресурсов, посвященных
данной теме. Хорошей отправной точкой может послужить официальное
руководство по проектированию голосовых команд на сайте Amazon https://
developer.amazon.com/designing-for-voice/.

Сценарий, который мы реализуем в этой главе, очень прост. Он:

1)	 даст пользователю возможность получить список пицц;
2)	 позволит заказать выбранную пиццу;
3)	 спросит у пользователя адрес доставки.

Базовый алгоритм работы сценария, который мы создадим, показан на
рис. 10.5.

LaunchRequest

IntentRequest (OrderPizza)
слот pizza: Capricciosa

Я хочу Капричоза

Отправка ответа пользователю

SessionEndedRequest

IntentRequest (DeliveryAddress)
слот address: 221b Baker Street

221Б Бейкер-стрит

Вы можете заказать:
Капричоза, Четыре сыра,

Наполетана или Маргарита.
Какую вы хотели бы заказать?

Сообщите адрес, куда
доставить пиццу

Капричоза.

Спасибо за ваш заказ.
Пицца будет приготовлена

и доставлена в самое
ближайшее время.

Пользователь Устройство Алекса

Отправка ответа пользователю
и сохранение сеанса

Отправка ответа пользователю
и сохранение сеанса

Алекса, начать работу с
пиццерией тетушки Марии

Рис. 10.5. Алгоритм сценария для оформления заказа в пиццерии
тетушки Марии с помощью голосового помощника Алекса

 23 / 40

https://developer.amazon.com/designing-for-voice/
https://developer.amazon.com/designing-for-voice/

10.2. Эй, Алекса!    223

Чтобы создать сценарий для Алексы, нам понадобится определить:

�� схему намерений;
�� типы слотов, если они существуют;
�� список образцов выражений.

ПРИМЕЧАНИЕ. Инструкции по настройке нового сценария для Алексы, его
подключению к AWS Lambda и вводу схемы намерений, пользовательских слотов
и образцов высказываний вы найдете в приложении B.

Схема намерений – это объект JSON, в котором перечислены все намерения
(действия), соответствующие устному запросу пользователя. Каждое намере-
ние может иметь слоты, и каждый слот должен иметь один тип. Типы слотов
могут быть пользовательскими или встроенными. Компания Amazon пред-
лагает множество встроенных типов слотов, таких как имена, даты и адре-
са. Полный список встроенных типов слотов можно найти по адресу https://
developer.amazon.com/docs/custom-skills/slot-type-reference.html.

В дополнение к встроенным типам слотов есть возможность определить
свои типы. Для этого нужно определить имя и список возможных значений.
Список значений определяется как текстовый файл, в котором каждая строка
представляет одно возможное значение слота.

Список образцов высказываний – это набор вероятных разговорных фраз,
соответствующих намерениям. Он должен включать как можно больше репре
зентативных фраз, которые Алекса будет использовать для обучения своего
механизма анализа естественного языка. Подобно пользовательским типам
слотов, образцы высказываний определяются в виде текстового файла, в ко-
тором каждый образец занимает отдельную строку. Каждая строка начинает-
ся с намерения, в которое должен быть преобразован текст, с последующим
пробелом и текстом высказывания, как показано на рис. 10.6.

Намерение

OrderPizza Я хочу заказать {Pizza}

Высказывание Слот

Рис. 10.6. Образцы высказываний в сценариях
для голосового помощника Алекса

Теперь подготовим все, что нам понадобится, начав со схемы намерений.
Как вы помните, это объект JSON, содержащий массив объектов намерений.
Каждый объект намерения имеет ключ intent с именем намерения в качестве
значения.

Наш сценарий должен включать намерения OrderPizza и DeliveryAddress,
оба со своими слотами. Намерение OrderPizza должно иметь слот с названием
пиццы, а DeliveryAddress – слот с адресом. Для представления адресов имеет-

 24 / 40

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

224    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

ся встроенный тип слотов, но для названия пиццы нам придется определить
свой тип. Мы определим его позже и дадим ему имя LIST_OF_PIZZAS.

Для поддержки слотов оба объекта намерений должны иметь ключ slots с
массивом слотов в качестве значения. Массив slots в обоих случаях будет со-
держать только один объект с атрибутом, определяющим имя и тип слота.

Для намерения OrderPizza добавим слот Pizza с типом LIST_OF_PIZZAS. Для
намерения DeliveryAddress добавим слот Address со встроенным типом AMAZON.
PostalAddress, который определяет значения почтовых адресов.

Встроенные типы слотов
Пакет Alexa Skills Kit – коллекция классов, инструментов и документации для
создания сценариев – поддерживает несколько встроенных типов слотов, кото-
рые определяют, как должны распознаваться и обрабатываться данные в сло-
тах. Типы, входящие в пакет, делятся на следующие основные категории:

�� числа, даты и время;
�� 	списки.

К первой категории относятся типы слотов, помогающие распознавать числа,
например AMAZON.NUMBER и AMAZON.FOUR_DIGIT_NUMBER, и значения даты
и времени, например AMAZON.DATE и AMAZON.DURATION.
Все типы слотов во второй категории представляют списки элементов, таких
как адреса, имена актеров, названия городов, виды животных и многое другое.
Например, тип AMAZON.Animal распознает виды животных, тип AMAZON.Book
распознает названия книг, а тип AMAZON.PostalAddress распознает адреса
с номерами зданий.
За дополнительной информацией обращайтесь по адресу https://developer.
amazon.com/docs/custom-skills/slot-type-reference.html.

Добавим дополнительно еще одно намерение: ListPizzas. У этого наме-
рения не будет слотов – с его помощью пользователь сможет запрашивать у
Алексы список пицц. Оно будет вызывать то же действие, что и LaunchRequest.

По завершении схема намерений должна выглядеть, как показано в листин-
ге 10.9.

Листинг 10.9. Схема намерений

{
 "intents": [
 {
 "intent": "ListPizzas"
 }, {
 "intent": "OrderPizza",

Массив намерений.

Намерение ListPizzas.

Намерение OrderPizza.

 25 / 40

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

10.2. Эй, Алекса!    225

 "slots": [
 {
 "name": "Pizza",
 "type": "LIST_OF_PIZZAS"
 }
]
 }, {
 "intent": "DeliveryAddress",
 "slots": [
 {
 "name": "Address",
 "type": "AMAZON.PostalAddress"
 }
]
 }
]
}

Следующий шаг – определение типа слота LIST_OF_PIZZAS. Как уже отмеча-
лось выше, свои типы слотов определяются в виде простых текстовых фай-
лов, в которых перечисляются все возможные значения, по одному в строке.
Наш слот LIST_OF_PIZZAS должен быть списком пицц, как показано в листин-
ге 10.10.

Листинг 10.10. Тип слота LIST_OF_PIZZAS

Capricciosa
Quattro Formaggi
Napoletana
Margherita

Последний шаг – подготовка списка образцов высказываний. И снова этот
список определяется как простой текстовый файл, где каждое высказывание
занимает отдельную строку.

Каждая строка должна начинаться с имени намерения, за которым следует
пробел и образец фразы; например, ListPizzas Pizza menu. Чем больше простых
фраз будет определено, тем лучше, чтобы у Алексы была возможность про
анализировать множество других простых фраз. Например, если определить
высказывание ListPizzas Pizza menu, Алекса будет распознавать такие простые
фразы, как «Show me the pizza menu» (Показать меню пиццы) или «What’s on
the pizza menu?» (Что есть в меню пиццы?).

Мы в нашем примере используем список высказываний, представленный
в листинге 10.11. При желании вы можете оставить пустые строки для удобо-
читаемости.

Слот Pizza для намерения OrderPizza.

Свой тип слота: LIST_OF_PIZZAS.

Намерение DeliveryAddress.

Слот Address для намерения DeliveryAddress.

Слот Address имеет встроенный тип
AMAZON.PostalAddress.

 26 / 40

226    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Листинг 10.11. Образцы высказываний

ListPizzas Pizza menu
ListPizzas Which pizzas do you have
ListPizzas List all pizzas

OrderPizza {Pizza}
OrderPizza order {Pizza}
OrderPizza I want {Pizza}
OrderPizza I would like to order {Pizza}

DeliveryAddress {Address}
DeliveryAddress Deliver it to {Address}
DeliveryAddress address is {Address}

10.2.2. Оформление заказа с помощью Алексы
Теперь, имея схему намерений и список образцов высказываний, можно

приступать к сценарию для Алексы.
Как упоминалось выше, Алекса может вызывать веб-обработчик или функ-

цию AWS Lambda. Claudia Bot Builder поддерживает сценарии для голосового
помощника Алекса, и у нас есть возможность повторно использовать функ-
цию AWS Lambda, реализующую чат-бот для Facebook Messenger или Twilio.
Но при этом придется добавить слой API Gateway между Алексой и функцией
Lambda, что увеличивает сложность и ухудшает производительность. (Однако
такое решение может упростить обслуживание за счет повторного использо-
вания части кода.)

Наш сценарий для Алексы очень прост, поэтому создадим для него отдель-
ную функцию AWS Lambda. Создание дополнительной функции Lambda не
увеличит первоначальную стоимость услуги, в отличие от традиционных сер-
веров, когда нужно оплатить и настроить экземпляр, – затраты на установку и
развертывание равны нулю.

Еще одно большое преимущество использования Claudia Bot Builder заклю-
чается в том, что этот пакет автоматически анализирует входные данные и
передает их в простом формате, а также избавляет от необходимости писать
шаблонный код для возврата ответа. Входные данные для сценария автома-
тически преобразуются в формат JSON, а для форматирования ответного со-
общения можно использовать те же инструменты, которые использует Claudia
Bot Builder: модуль alexa-message-builder, который доступен как отдельный мо-
дуль NPM и не требует импортировать весь пакет Claudia Bot Builder.

Создайте еще одну папку на одном уровне с папками pizza-api и pizza-fb-
bot. Для единообразия назовем ее pizza-alexa-skill.

Затем перейдите в эту папку и инициализируйте проект NPM. Также уста-
новите alexa-message-builder как зависимость, выполнив команду npm install

Образцы высказываний
для намерения OrderPizza.

Образцы высказываний
для намерения ListPizzas.

Образцы высказываний
для намерения DeliveryAddress.

 27 / 40

10.2. Эй, Алекса!    227

alexa-message-builder --save. Затем создайте файл skill.js и откройте его в
текстовом редакторе.

Файл skill.js будет содержать стандартную функцию AWS Lambda и экспор
тировать ее как функцию-обработчик с параметрами event, context и callback.
Он также должен импортировать только что установленный модуль alexa-
message-builder.

Поскольку мы решили не использовать Claudia Bot Builder, необходимо
убедиться, что событие event, полученное функцией-обработчиком, являет-
ся действительным запросом голосового помощника. Для этого можно про-
верить наличие атрибута event.request и его соответствие типу LaunchRequest,
IntentRequest или SessionEndedRequest. Наш сценарий не будет управлять вос-
произведением аудиофайлов, поэтому нам не требуется проверять event.
request на соответствие этим типам запросов.

Если событие event недопустимое, нужно вернуть признак ошибки, передав
его в функцию обратного вызова callback.

Затем нужно добавить инструкции if...else и с их помощью выяснить, ка-
кое намерение вызвало обработчик. Мы должны проверить следующие усло-
вия и вернуть соответствующие ответы:

1)	 если event.request.type соответствует LaunchRequest или IntentRequest с на-
мерением ListPizzas, мы должны вернуть список пицц;

2)	 если получено намерение OrderPizza со слотом Pizza, содержащим назва-
ние одной из пицц, мы должны запросить адрес доставки;

3)	 если получено намерение DeliveryAddress со слотом Address, мы должны
сообщить пользователю, что его заказ принят к исполнению;

4)	 в любом другом случае следует сообщить пользователю, что произошла
ошибка.

Если request.type имеет значение IntentRequest, имя намерения можно по-
лучить из event.request.intent.name. Если намерение имеет слоты, они будут до-
ступны в объекте event.request.intent.slots.

Например, вот как можно проверить получение намерения DeliveryAddress
и наличие слота Address в нем:

if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'DeliveryAddress' &&
 event.request.intent.slots.Address.value
) { /* ... */ }

Перед инструкциями if...else можно создать экземпляр AlexaMessageBuilder,
как показано ниже:

const AlexaMessageBuilder = require('alexa-message-builder')

Это позволит только один раз вызвать функцию callback после инструкций
if...else:

 28 / 40

228    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

callback(null, message)

В каждый блок if...else нужно добавить создание возвращаемого сообще-
ния. Для намерений LaunchRequest и ListPizzas мы должны вернуть список всех
пицц, предложить пользователю выбрать одну из них и сохранить сеанс от-
крытым. Имейте в виду, что вопрос, задаваемый пользователю, должен быть
простым и ясным, чтобы пользователь мог ответить однозначно, а голосовой
помощник – правильно разобрать ответ. Ниже показано, как это можно реа-
лизовать:

const message = new AlexaMessageBuilder()
 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or
 Margherita. Which one do you want?')
 .keepSession()
 .get()

Это не лучший пример вопроса, потому что пользователь может ответить
на него «the first one» («первую»), и тогда Алекса не поймет ответа. Однако
он достаточно наглядно иллюстрирует, как работают сценарии для голосового
помощника Алекса.

Подобно шаблонам в Facebook Messenger, AlexaMessageBuilder является клас-
сом, и его методы возвращают ссылку this, что позволяет объединять их в
цепочки. Чтобы оставить сеанс открытым, можно вызвать метод .keepSession,
а в конце следует вызвать метод .get, чтобы преобразовать ответ в простой
объект JavaScript в формате, который понимает Алекса.

Ответ на намерение OrderPizza конструируется аналогично. Мы можем
вернуть текст «What’s the address where your pizza should be delivered?»
(«Сообщите адрес, куда доставить пиццу») и оставить сеанс открытым. Ос-
новное отличие от обработки предыдущего намерения состоит в том, что
мы должны сохранить выбранную пиццу в атрибутах сеанса. Сделать это
можно так:

.addSessionAttribute('pizza', event.request.intent.slots.Pizza.value)

По окончании содержимое файла skill.js должно выглядеть, как показано
в листинге 10.12.

Листинг 10.12. Сценарий для голосового помощника Алекса

‘use strict'

const AlexaMessageBuilder = require('alexa-message-builder')

function alexaSkill(event, context, callback) {
 if (
 !event ||

Импортировать библиотеку
Alexa Message Builder.

Определение
функции Lambda.

 29 / 40

10.2. Эй, Алекса!    229

 !event.request ||
 ['LaunchRequest', 'IntentRequest', 'SessionEndedRequest'].indexOf(event.
 request.type) < 0
) {
 return callback('Not valid Alexa request')
 }

 const message = new AlexaMessageBuilder()

 if (
 event.request.type === 'LaunchRequest' ||
 (event.request.type === 'IntentRequest' && event.request.intent.name ===
 'ListPizzas')
) {
 message
 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or
 Margherita. Which one do you want?')
 .keepSession()
 } else if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'OrderPizza' &&
 ['Capricciosa', 'Quattro Formaggi', 'Napoletana',
 'Margherita'].indexOf(event.request.intent.slots.Pizza.value) > -1
) {
 const pizza = event.request.intent.slots.Pizza.value

 message
 .addText(`What's the address where your ${pizza} should be delivered?`)
 .addSessionAttribute('pizza', pizza)
 .keepSession()
 } else if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'DeliveryAddress' &&
 event.request.intent.slots.Address.value
) {
 // Сохранить заказ

 message
 .addText(`Thanks for ordering pizza. Your order has been processed
 and the pizza should be delivered shortly`)
 } else {
 message
 .addText('Oops, it seems there was a problem, please try again')

Создать экземпляр
AlexaMessageBuilder.

Сообщить пользователю,
что его заказ принят.

Получено намерение OrderPizza?

Проверить, является ли сообщение от Алексы
действительным событием, и если условие не
выполняется – вернуть сообщение об ошибке.

Получено намерение LaunchRequest или ListPizzas?

Вернуть список пицц.

Сохранить выбранную
пиццу в сеансе.Запросить адрес доставки.

Сохранить заказ в DynamoDB.

Получено намерение DeliveryAddress?
Иначе сообщить, что

возникла ошибка.

 30 / 40

230    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

 }

 callback(null, message.get())
}

export.handler = alexaSkill

Далее следует развернуть функцию Lambda командой claudia create. На этот
раз операция развертывания имеет две основные особенности:

�� для развертывания поддерживаются только регионы eu-west-1, us-east-1
и us-west-1;

�� версия latest, используемая по умолчанию, не поддерживается, поэто-
му нужно выбрать какое-то другое имя версии, например skill.

В листинге 10.13 показана полная команда развертывания.

Листинг 10.13. Развертывание сценария для голосового помощника с помощью
Claudia

claudia create \
 --region eu-west-1 \
 --handler skill.handler \
 --version skill

После развертывания функции Lambda нужно разрешить Алексе вызывать
ее. Сделать это можно с помощью команды claudia allow-alexa-skill-trigger.
Не забудьте указать версию, которую указали в команде claudia create, – в на-
шем примере это skill, то есть вы должны выполнить команду claudia allow-
alexa-skill-trigger --version skill.

После того как вы загрузите свою функцию Lamda и разрешите Алексе вы-
зывать сценарий, выполните настройки, как описано в приложении B. За-
кончив с настройками, вы сможете просто сказать «Alexa, start Aunt Maria’s
Pizzeria» («Алекса, начать работу с пиццерией тетушки Марии»)2.

10.3. Опробование!
Чат-боты и голосовые помощники добавляют уникальные возможности! А те-
перь попробуйте усовершенствовать свой сценарий.

10.3.1. Упражнение
Ваша задача: отправить приветственное сообщение в ответ на намерение

LaunchRequest, например такое: «Welcome to Aunt Maria’s Pizzeria! You can order
2	 На момент публикации книги (2019 год) голосовой помощник Алекса поддерживал только англий-

ский и немецкий языки. Имейте это в виду при опробовании примеров. – Прим. перев.

Экспортировать
функцию-обработчик.

Вернуть сообщение из
функции AWS Lambda.

Определить регион (здесь используется
eu-west-1, соответствующий Ирландии).

Определить версию функции AWS Lambda
(здесь используется skill).

Определить путь к обработчику.

Создать функцию Lambda.

 31 / 40

10.3. Опробование!    231

pizza with this skill. We have Capricciosa, Quattro Formaggi, Napoletana, and Mar-
gherita. Which pizza do you want?» («Добро пожаловать в пиццерию тетушки
Марии! С помощью голосового помощника вы можете заказать у нас пиццу.
Мы можем предложить Капричоза, Четыре сыра, Наполетана и Маргарита. Ка-
кую вы предпочитаете?»)

Чтобы усложнить задачу и сделать ее немного интереснее, добавьте повтор-
ную отправку вопроса после получения намерений LaunchRequest и ListPizzas.
Повторный вопрос посылается, когда сеанс все еще открыт, но клиент не от-
ветил на первый вопрос в течение нескольких секунд.

Подсказки:

�� разделите намерения LaunchRequest и ListPizzas на две инструкции if...
else;

�� проверьте, открыт ли сеанс;
�� чтобы узнать, как организовать повторную отправку вопроса, прочи-

тайте документацию для alexa-message-builder по адресу: https://github.
com/stojanovic/alexa-message-builder.

10.3.2. Решение
Как показано в листинге 10.14, чтобы выполнить упражнение, достаточно

изменить небольшой фрагмент кода в файле skill.js. Вы должны разделить
намерения LaunchRequest и ListPizzas на два отдельных блока if и использовать
метод .addRepromptText для повторной отправки вопроса.

Листинг 10.14. Изменения в файле skill.js

if (event.request.type === 'LaunchRequest') {
 message
 .addText('Welcome to Aunt Maria's Pizzeria! You can order pizza with
 this skill. We have: Capricciosa, Quattro Formaggi, Napoletana, or
 Margherita. Which pizza do you want?')
 .addRepromptText('You can order: Capricciosa, Quattro Formaggi,
 Napoletana, or Margherita. Which pizza do you want?')
 .keepSession()
} else if (event.request.type === 'IntentRequest' && event.request.intent.
 name === 'ListPizzas') {
 message
 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or
 Margherita. Which pizza do you want?')
 .addRepromptText('You can order: Capricciosa, Quattro Formaggi,
 Napoletana, or Margherita. Which pizza do you want?')
 .keepSession()
}

LaunchRequest теперь обрабатывается
в отдельном блоке if...else.

Определить текст вопроса.

Настроить повторную отправку
вопроса для LaunchRequest.

ListPizzas теперь обрабатывается
в отдельном блоке if...else.

Настроить повторную
отправку вопроса для
ListPizzas.Остальной код в файле не изменился.

 32 / 40

https://github.com/stojanovic/alexa-message-builder
https://github.com/stojanovic/alexa-message-builder

232    Глава 10. Джарвис, то есть Алекса, закажи мне пиццу

Изменив код, разверните его командой claudia update – и ваш сценарий бу-
дет готов для тестирования.

10.4. Конец второй части: специальное
упражнение
Мы подошли к концу второй части этой книги. Теперь, когда вы многое узна-
ли о бессерверных приложениях и чат-ботах, пришло время объединить эти
знания. Мы предлагаем вам специальное упражнение: подключить SMS-чат-
бот и сценарий для голосового помощника Алекса к базе данных и службе до-
ставки. Имейте в виду, что когда заказ оформляется с помощью голосового
помощника, у вас не будет возможности уведомить пользователя об измене-
нии статуса доставки пиццы.

ПРИМЕЧАНИЕ. Мы не даем подсказок к специальным упражнениям.

В заключение
�� Claudia Bot Builder предлагает простой и быстрый способ создания SMS-

чат-ботов с использованием Twilio.
�� Из-за свойственных ограничений SMS-чат-боты должны предлагать

пользователям простой и ясный способ вернуть ответ.
�� Код чат-бота можно повторно использовать на разных платформах, но

иногда проще разделить его на несколько функций Lambda.
�� Claudia Bot Builder поддерживает сценарии для голосового помощника

Алекса, но, так как Алекса способен вызывать функции Lambda самостоя
тельно, вы можете сэкономить деньги и уменьшить задержку, развернув
сценарий без API Gateway.

�� Несмотря на простоту разработки сценариев для голосового помощника
Алекса, проектирование надежных голосовых взаимодействий – не са-
мая простая задача.

 33 / 40

Часть III
Дальнейшие шаги

Благодаря нашей работе пиццерия тетушки Марии снова процветает. Но, не-
смотря на то что все хорошо работает, частые изменения в коде начали вы-
зывать появление случайных ошибок в приложении. Настало время узнать,
как автоматизировать тестирование бессерверных приложений и как органи-
зовать тестирование Pizzeria API (глава 11). Кроме того, многие клиенты уже
не раз спрашивали про возможность выполнения онлайн-платежей, поэтому
мы должны внедрить поддержку платежной системы Stripe с помощью AWS
Lambda (глава 12).

Однажды, когда вся наша большая семья собралась за одним столом, те-
тушка Мария похвасталась своим новым онлайн-бизнесом. Ее брат, дядюшка
Роберто, поинтересовался, сможем ли мы перенести его существующее при-
ложение на бессерверную основу. Он пользуется услугами Express.js, и у него
нет претензий к качеству обслуживания, но платит за это гораздо больше,
чем тетушка Мария, а кроме того, у него наблюдаются некоторые проблемы с
масштабированием. Мы должны будем изучить и запустить его приложение
Express.js в AWS Lambda (глава 13). Затем рассмотрим приемы миграции более
сложных приложений в бессерверное окружение (глава 14).

В заключение посмотрим, как другие компании используют бессерверное
окружение и как переносят в него свои приложения, и узнаем, какие преиму-
щества они получили от этого (глава 15).

 34 / 40

Глава 11
Тестирование, тестирование

и еще раз тестирование

Эта глава охватывает следующие темы:

	подходы к тестированию бессерверных приложений;
	приемы разработки бессерверных функций, упрощающие их тес

тирование;
	автоматическое тестирование на локальной машине.

Разработка приложений – сложный и иногда болезненный процесс. Даже при
тщательной проверке ошибки в программном обеспечении могут усколь-
знуть от взгляда проверяющего и подвергнуть риску вашу компанию или ва-
ших пользователей. За последние два десятка лет предотвращение ошибок и
тестирование программного обеспечения превратились в насущную необхо-
димость. Как гласит старая пословица: болезнь легче предупредить, чем лечить.

Теперь, с появлением бессерверных окружений, при тестировании про-
граммного обеспечения приходится сталкиваться с новыми сложностями.
Отсутствие сервера и использование AWS Lambda и API Gateway могут сделать
тестирование приложений пугающим. Цель этой главы – показать, как с не-
значительными изменениями в подходе к тестированию приложений можно
тестировать бессерверные приложения с той же легкостью, что и обычные,
выполняющиеся на сервере.

11.1. Тестирование обычных и бессерверных
приложений
Недавно тетушка Мария заметила, что у некоторых клиентов не получается
заказать пиццу, а Пьер, ее разработчик мобильного приложения, сообщил о
«странных» ошибках, иногда возникающих даже при отображении списка
пицц. Тетушка Мария обеспокоена тем, что теряет клиентов, и попросила нас
найти и устранить проблему. Мы можем попробовать отладить Pizza API, что-

 35 / 40

11.1. Тестирование обычных и бессерверных приложений    235

бы выяснить причины проблемы, но ошибка также может быть на веб-сайте
или в мобильном приложении. Тестировать все службы вручную каждый раз,
когда возникает проблема, утомительно и требует слишком много времени.
Поэтому было бы неплохо автоматизировать тестирование. Автоматическое
тестирование требует первоначальных трудозатрат, чтобы написать код, ко-
торый будет тестировать приложение, но затем его можно запускать снова
и снова, чтобы проверить Pizza API после внесения изменений, добавления
новых функций или устранения вновь обнаруженной проблемы.

Автоматизированное тестирование – обширная тема. Существует масса
разных типов автоматических тестов, каждый из которых использует свой
подход: от тестирования небольших фрагментов (или модулей) кода до полной
проверки всех функций приложения.

Возьмем для примера Pizza API: маленькие модульные тесты будут про-
верять работу отдельных функций в обработчиках, тогда как тесты для всего
приложения (также известные как сквозные тесты) проверят всю цепочку, от
вывода списка пицц до обработки заказов.

Существует много других типов автоматических тестов. Они часто группи-
руются в три слоя, в зависимости от используемого подхода, снизу вверх:

�� слой модульных тестов – эти тесты проверяют небольшие фрагменты
(модули) кода приложения, например отдельные функции;

�� слой интеграционных тестов – эти тесты проверяют совместную работу
небольших фрагментов кода, упомянутых в предыдущем пункте;

�� слой тестов пользовательского интерфейса (ПИ) – эти тесты проверяют
поведение приложения целиком с точки зрения пользователя.

В дополнение к этим трем слоям автоматизированного тестирования
существует еще один слой – слой тестов, выполняемых вручную, – которые
обычно выполняются группами контроля качества.

Этим уровням сопутствуют разные затраты на тестирование. Визуальное
представление слоев с соответствующими затратами часто называют пирами-
дой тестирования. Обычно в пирамиду включают только три слоя, но чтобы
лучше понять значение и стоимость каждого типа тестов, мы добавим в нее
слой ручного тестирования. Со всеми четырьмя слоями пирамида тестиро-
вания выглядит, как показано на рис. 11.1. Стоимость тестирования на этом
рисунке приводится для обычных приложений, размещаемых на сервере.

Пирамида автоматизированных тестов
Впервые трехуровневая пирамида автоматизированного тестирования была
упомянута Майком Коном (Mike Cohn) в своей книге «Succeeding with Agile»
(Addison Wesley, 2009). Мы настоятельно рекомендуем эту книгу желающим
больше узнать об автоматизации тестирования. (Кон Майк. Scrum. Гибкая разра-
ботка ПО. М.: Вильямс, 2011. ISBN 978-5-8459-1731-7. – Прим. перев.)

 36 / 40

236    Глава 11. Тестирование, тестирование и еще раз тестирование

На рис. 11.1 видно, что высокоуровневые тесты пользовательского интер-
фейса обходятся дороже модульных тестов, потому что проверяют поведение
всего приложения с точки зрения пользователя, работу визуальных элемен-
тов, правильность ввода входных данных, отображение значений и т. д. Одна-
ко тесты пользовательского интерфейса не только более дорогие, но и более
медленные из-за количества проверок и объема выполняемого кода.

Сеансы тестирования вручную

Автоматизированные тесты ПИ

Автоматизированные модульные тесты

Автоматизированные тесты API
Автоматизированные интеграционные тесты
Автоматизированные тесты компонентов

Тесты
ПИ

Интеграционные
тесты

$$$

¢
Модульные тесты

Ручное
тестиро-

вание

Рис. 11.1. Пирамида тестирования

В обычных приложениях, размещаемых на сервере, для запуска автомати-
зированных тестов чаще требуется использовать отдельный сервер тестиро-
вания, чтобы в ходе тестирования не уничтожить производственные данные.
В результате значительная часть затрат на тестирование сопряжена с органи-
зацией тестовой инфраструктуры, включая настройку сервера, идентичного
промышленному, импортирование базы данных, затраты на разработку и т. д.

В бессерверном окружении затраты на проведение испытаний существен-
но снижаются, в основном из-за отсутствия необходимости развертывать и
настраивать отдельные серверы. В результате сокращаются трудозатраты раз-
работчиков. Это сэкономленное время можно использовать для разработки
дополнительных тестов и охвата большего объема кода. Обновленная пира-
мида тестирования для бессерверных приложений, показывающая разницу
в стоимости тестирования, представлена на рис. 11.2. Назовем ее пирамидой
бессерверного тестирования.

11.2. Подходы к тестированию бессерверных
приложений
Выбор в пользу разработки бессерверного приложения – отличная идея, пото-
му что отпадает необходимость в создании инфраструктуры. Но с точки зре-
ния тестирования эта выгода превращается в проблему. Отсутствие контроля
над инфраструктурой требует переосмысления способов тестирования. На

 37 / 40

11.2. Подходы к тестированию бессерверных приложений    237

первый взгляд может показаться, что отсутствие контроля над инфраструк-
турой означает отсутствие ответственности за работу служб AWS или за сбои
в работе сети. Но это неправильно. Отсутствие контроля над инфраструкту-
рой не означает отсутствия ответственности, если она работает неправиль-
но. Наши клиенты не понимают разницы между сбоем службы AWS и сбоем
нашего приложения. Мы несем ответственность за все и обязаны проверить,
насколько хорошо наше приложение обрабатывает эти ситуации.

$$$

¢

Сеансы тестирования вручную

Автоматизированные тесты ПИ

Автоматизированные модульные тесты

Автоматизированные тесты API
Автоматизированные интеграционные тесты
Автоматизированные тесты компонентов

Тесты
 ПИ

Интегра-
ционные

тесты

Модульные
тесты

Ручное
тестирование

Рис. 11.2. Пирамида бессерверного тестирования

Следующие пошаговые инструкции помогут вам вспомнить эти ситуации
при разработке тестов. Некоторые из вас, возможно, уже использовали их в
какой-нибудь другой форме.

1.	 Составить список всех отдельных задач.
	 Под задачей понимается одна функция или один фрагмент кода, отве-

чающий за одну операцию. В нашем примере это может быть вычисле-
ние скидки.

2.	 Протестировать каждую задачу в отдельности.
3.	 Протестировать, как эти задачи работают вместе (их интеграцию). На-

пример, проверить, как скидка влияет на сумму, которую вы списываете
с кредитной карты клиента.

4.	 Протестировать каждую группу взаимодействующих задач отдельно.
5.	 Составить список всех сквозных процессов.
	 Под сквозным процессом понимается один полный процесс, выполня-

емый приложением. Примером может служить процесс, включающий
загрузку сайта, вывод списка пицц, выбор одной из них, оформление
заказа и оплату. Составление такого списка поможет вам получить бо-
лее полное представление о приложении.

6.	 Протестировать каждый из процессов в списке.

 38 / 40

238    Глава 11. Тестирование, тестирование и еще раз тестирование

Такой подход может показаться логичным, но количество ошибок в совре-
менных приложениях говорит нам, что логичные подходы не всегда исполь-
зуются в повседневной практике.

ПРИМЕЧАНИЕ. Сквозное тестирование бессерверных приложений производит-
ся точно так же, как обычных приложений. Поэтому последние два шага оказы-
ваются за рамками этой книги. У нас нет доступа к веб-сайту тетушки Марии или
мобильному устройству пользователя, соответственно, разработка комплексных
сквозных тестов не входит в наши обязанности. Однако эти тесты играют очень
важную роль, потому что проверяют работу бессерверного приложения в целом.
Узнать больше о сквозном тестировании можно по адресу https://medium.free-
codecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7e-
b0ec1504.

11.3. Подготовка
Бессерверное приложение Node.js все еще остается приложением Node.js, а
это означает, что для тестирования Pizza API можно использовать те же ин-
струменты, которые применяются для тестирования приложений Node.js.
В этой главе мы используем Jasmine, один из самых популярных фреймворков
тестирования для Node.js, но вообще вы можете использовать любые другие
инструменты, например Mocha, Tape или Jest.

Фреймворк тестирования Jasmine
Jasmine – это фреймворк тестирования для JavaScript. Он не зависит от других
JavaScript-фреймворков и не требует использовать объектную модель доку-
мента (Document Object Model, DOM), поэтому его можно применять для тести-
рования сценариев в браузере и приложений Node.js. Jasmine имеет ясный и
очевидный синтаксис, упрощающий тестирование. Узнать больше о нем можно
по адресу https://jasmine.github.io.

Тесты для Jasmine называют спецификациями, поэтому мы тоже будем на-
зывать их так далее в этой главе. Спецификация (тест) – это функция на Ja-
vaScript, которая определяет, что должна вернуть проверяемая часть прило-
жения. Спецификации объединяются в наборы, что позволяет организовать
группы спецификаций. Например, для проверки поведения формы можно
определить набор для проверки ввода и сгруппировать в нем спецификации,
проверяющие ввод в отдельные поля.

Для запуска спецификаций в Jasmine используются сценарии запуска (run-
ner). Запустить можно все спецификации, выбранные или входящие в опре-
деленный набор. Перед разработкой тестов необходимо подготовить проект

 39 / 40

https://medium.freecodecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504
https://medium.freecodecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504
https://medium.freecodecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504
https://jasmine.github.io

11.3. Подготовка    239

для модульного тестирования. Для этого нужно создать папку, где будут хра-
ниться спецификации, и написать сценарий, который будет запускать специ
фикации.

Следуя соглашениям об именах в Jasmine, создайте папку spec в проекте
Pizza API. В ней будут храниться все спецификации, включая спецификации
для модульного и интеграционного тестирований. Здесь же будет храниться
конфигурация для сценария запуска и некоторых вспомогательных сцена-
риев, например генерирующих фиктивные HTTP-запросы. Структура папки
приложения со спецификациями, которые мы создадим в этой главе, показа-
на на рис. 11.3.

js

pizza-api

api.js

json package.json

json claudia.json

data

handlers

Корневая папка Pizza API

Точка входа в API;
содержит все маршруты

Наше приложение – это
обычный проект Node.js,
поэтому оно содержит
файл package.json

Конфигурационный файл,
созданный библиотекой
Claudia

Все статические данные
приложения хранятся в
папке data

Каталог для всех
обработчиков маршрутов

spec
Каталог для всех
автоматизированных
тестов

support

handlers

Конфигурация для
сценария запуска Jasmine

Модульные и
интеграционные тесты для
проверки обработчиков

Рис. 11.3. Структура каталогов проекта Pizza API со спецификациями

Чтобы настроить сценарий запуска Jasmine, создайте папку support в папке
specs. Внутри этой папки создайте файл jasmine.json. В нем будут храниться
настройки для сценария запуска.

Как показано в листинге 11.1, мы должны определить местоположение
спецификаций относительно корневой папки проекта и шаблон, который
Jasmine будет использовать для поиска файлов спецификаций. В нашем слу-
чае это может быть любой файл с именем, оканчивающимся на «spec.js» или
«Spec.js».

Powered by TCPDF (www.tcpdf.org)

 40 / 40

240    Глава 11. Тестирование, тестирование и еще раз тестирование

Листинг 11.1. Конфигурация Jasmine

{
 "spec_dir": "specs",
 "spec_files": [
 "**/*[sS]pec.js"
]
}

Теперь определим, как Jasmine будет выполнять тестирование. Нам нужно,
чтобы фреймворк брал настройки из файла jasmine.json и позволял запускать
отдельные спецификации или их наборы. Наконец, нам нужно, чтобы фрейм
ворк работал в многословном режиме и в процессе работы выводил полную
информацию о каждой конкретной спецификации.

Для этого создайте еще один файл с именем jasmine-runner.js в той же папке
и откройте его в текстовом редакторе.

В начале файла импортируйте jasmine и SpecReporter из NPM-пакета jas-
mine-spec-reporter. Затем создайте экземпляр класса Jasmine.

Следующий шаг – цикл по аргументам командной строки. Мы можем про-
пустить первые два аргумента, потому что они определяют пути к Node.js и
к текущему файлу сценария. Для всех остальных проверяем, является ли те-
кущий аргумент строкой 'full', и в этом случае замещаем генератор отчетов
по умолчанию генератором отчетов спецификации. Если аргумент является
фильтром, запускаем только спецификации, содержащие указанный фильтр.

В заключение загружаем конфигурацию вызовом метода loadConfigFile и за-
пускаем тестирование с указанными фильтрами.

Содержимое файла jasmine-runner.js показано в листинге 11.2.

Листинг 11.2. Сценарий запуска Jasmine

'use strict'

const SpecReporter = require('jasmine-spec-reporter').SpecReporter
const Jasmine = require('jasmine')
const jrunner = new Jasmine()
let filter

process.argv.slice(2).forEach(option => {
 if (option === 'full') {
 jrunner.configureDefaultReporter({ print() {} })
 jasmine.getEnv().addReporter(new SpecReporter())
 }

 if (option.match('^filter='))

Путь к папке со спецификациями
относительно корневой папки проекта.

Импортировать библиотеку jasmine.

Импортировать
библиотеку
SpecReporter.

Если получен аргумент filter, сохранить
значение фильтра в переменной filter.

Создать переменную filter, которая
будет использоваться позже.

Имена файлов всех спецификаций
оканчиваются на «spec.js» или «Spec.js».

Создать экземпляр Jasmine.

Получить все аргументы
командной строки, кроме
двух первых, и выполнить
цикл по ним.

Если получен аргумент full, заменить
генератор отчетов по умолчанию
генератором отчетов спецификации.

 1 / 40

11.4. Модульные тесты    241

 filter = option.match('^filter=(.*)')[1]
})

jrunner.loadConfigFile()
jrunner.execute(undefined, filter)

Теперь мы можем запустить свои спецификации командой node spec/sup-
port/jasmine-runner.js. Она выведет результаты работы спецификаций в окно
терминала и добавит зеленую точку для каждой успешно выполнившейся
спецификации. Чтобы вместо зеленых точек увидеть сообщения, генериру-
емые спецификациями, можно выполнить команду node spec/support/jas-

mine-runner.js full.
Чтобы упростить запуск спецификаций, можно добавить в файл package.json

сценарий test. Это позволит запускать спецификации более короткой коман-
дой npm test или даже npm t. Добавьте следующий сценарий в файл package.json:

"test": "node specs/support/jasmine-runner.js"

Чтобы запустить спецификации в режиме вывода подробных сообщений,
выполните команду npm t-- full. Два минуса (--) являются обязательными, и
за ними должен следовать пробел, потому что следующий за ними параметр –
в данном случае full – не является параметром NPM и должен передаваться
непосредственно в Jasmine.

СОВЕТ. Есть возможность усовершенствовать код, добавив еще два сценария
NPM. Во-первых, если у вас установлена утилита eslint, ее можно автоматиче-
ски запускать перед тестами, добавив в файл package.json сценарий pretest,
например так:

"pretest": "eslint lib spec *.js"

Также, если вы пользуетесь отладчиком Node.js, вам очень даже может пригодить-
ся сценарий debug:

"debug": "node debug spec/support/jasmine-runner.js"

Этот сценарий будет запускать тесты в отладчике Node.js. Более подробную ин-
формацию ищите по адресу https://nodejs.org/api/debugger.html.

11.4. Модульные тесты
В основании пирамиды тестирования лежит слой модульного тестирования,
который состоит из модульных тестов. Цель модульного тестирования – изо-
лировать каждую часть приложения и показать, что каждая в отдельности ра-
ботает должным образом.

Размер единицы тестирования зависит от приложения; она может быть
такой же маленькой, как функция, или большой, как класс или весь модуль.

Загрузить конфигурацию
из файла jasmine.json.

Запустить тестирование, передав
полученные фильтры.

 2 / 40

https://nodejs.org/api/debugger.html

242    Глава 11. Тестирование, тестирование и еще раз тестирование

Наименьшая единица кода в Pizza API, которую имеет смысл изолировать и
тестировать, – функция-обработчик. Начнем с обработчика getPizzas.

Единственное, что связывает обработчик getPizzas с внешним миром, – это
файл pizzas.json. Даже притом что это статический файл, он является частью
внешнего мира и не должен участвовать в модульном тестировании. Что-
бы подготовить обработчик к модульному тестированию, нужно разрешить
функции получать произвольный список пицц, который будет использовать-
ся взамен списка из pizzas.json. Тем самым мы гарантируем, что ваш модуль-
ный тест будет работать даже после изменения файла pizzas.json.

Как показано в листинге 11.3, для этого следует добавить параметр pizzas
в обработчик getPizzas, который по умолчанию получает содержимое файла
pizzas.json.

Листинг 11.3. Измененный обработчик getPizzas

'use strict'

const listOfPizzas = require('../data/pizzas.json')

function getPizzas(pizzaId, pizzas = listOfPizzas) {

Теперь обработчик готов к тестированию, и мы можем начать писать специ
фикации. Для этого создайте файл с именем get-pizzas.spec.js в папке spec/
handlers.

В этом файле импортируйте обработчик и создайте массив пицц. Он дол-
жен содержать как минимум две пиццы с именами и идентификаторами и
может выглядеть, как показано ниже:

const pizzas = [{
 id: 1,
 name: 'Capricciosa'
}, {
 id: 2,
 name: 'Napoletana'
}]

Теперь опишите спецификацию, используя функцию describe. Описание
должно быть коротким и простым для понимания; например:

describe('Get pizzas handler', ()
 => { })

СОВЕТ. Фреймворк Jasmine не требует явно импортировать функции describe, it
и expect, потому что они автоматически внедряются как глобальные переменные.
Но если вы используете утилиту eslint, не забудьте сообщить ей, что функции

Импортировать список пицц.

Передать список во втором
аргументе и по умолчанию
присвоить ему значение listOfPizzas.

 3 / 40

11.4. Модульные тесты    243

Jasmine являются глобальными и не надо выводить предупреждения, что они не
определены.

Блок describe должен содержать несколько спецификаций. В случае с такой
простой функцией, как getPizzas, мы должны проверить:

�� получение списка всех пицц;
�� получение одной пиццы по идентификатору;
�� ошибку получения пиццы по несуществующему идентификатору.

Каждая спецификация – это отдельный блок, определяемый путем вызова
функции it. Эта функция принимает два параметра: описание спецификации
и функцию, определяющую эту спецификацию. Помните: описания должны
быть короткими, но четкими, чтобы можно было легко понять, что тестиру-
ется.

Каждая спецификация содержит одно или несколько ожиданий, которые
проверяют состояние кода. Ожидания проверяют соответствие текущего зна-
чения ожидаемому. Ожидания определяются с использованием инструкций
expect.

ПРИМЕЧАНИЕ. Дополнительную информацию об использовании Jasmine вместе
с Node.js можно найти в официальной документации по адресу https://jas-
mine.github.io/api/2.8/global.html.

В своей первой спецификации мы убедимся, что обработчик возвращает
список всех пицц, когда идентификатор пиццы не указан. Для этого вызовем
обработчик без первого аргумента, но при этом мы должны передать список
пицц во втором аргументе. Сделать это можно, передав обработчику undefined
и список пицц соответственно. Вот соответствующая спецификация:

it('should return a list of all pizzas if called without pizza ID', () => {
 expect(underTest(undefined, pizzas)).toEqual(pizzas)
})

Чтобы проверить получение пиццы по существующему идентификатору,
нужно передать оба идентификатора (1 и 2) и список пицц и сопоставить ре-
зультаты с ожидаемыми значениями – первой и второй пиццами из фиктив-
ного массива пицц. Вот соответствующая спецификация:

it('should return a single pizza if an existing ID is passed as the first
 parameter', () => {
 expect(underTest(1, pizzas)).toEqual(pizzas[0])
 expect(underTest(2, pizzas)).toEqual(pizzas[1])
})

 4 / 40

https://jasmine.github.io/api/2.8/global.html
https://jasmine.github.io/api/2.8/global.html

244    Глава 11. Тестирование, тестирование и еще раз тестирование

В последней спецификации для модульного тестирования обработчика get-
Pizzas можно проявить творческий подход и передать любой несуществующий
идентификатор. Например, некоторые крайние значения, то есть числа, кото-
рые меньше и больше любых существующих идентификаторов, а также прове-
рить некоторые другие значения, такие как строки, массивы или объекты.

Ниже показано, как могла бы выглядеть такая спецификация:

it('should throw an error if nonexistent ID is passed', () => {
 expect(() => underTest(0, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(3, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(1.5, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(42, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest('A', pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest([], pizzas)).toThrow(
 'The pizza you requested was not found')
})

В листинге 11.4 показан результат объединения всех этих спецификаций в
модульные тесты для обработчика getPizzas.

Листинг 11.4. Модульные тесты для обработчика getPizzas

'use strict'

const underTest = require('../../handlers/get-pizzas')
const pizzas = [{
 id: 1,
 name: 'Capricciosa'
}, {
 id: 2,
 name: 'Napoletana'
}]

describe('Get pizzas handler', () => {
 it('should return a list of all pizzas if called without pizza ID', () => {
 expect(underTest(undefined, pizzas)).toEqual(pizzas)
 })

 it('should return a single pizza if an existing ID is passed as the first

Импортировать
обработчик getPizzas.

Создать фиктивный
список пицц.

Описание группы
спецификаций.

Спецификация для
проверки случая

вызова getPizzas без
идентификатора.

Ожидается, что в случае вызова без идентификатора
getPizzas вернет список всех пицц.

 5 / 40

11.4. Модульные тесты    245

 parameter', () => {
 expect(underTest(1, pizzas)).toEqual(pizzas[0])
 expect(underTest(2, pizzas)).toEqual(pizzas[1])
 })

 it('should throw an error if nonexistent ID is passed', () => {
 expect(() => underTest(0, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(3, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(1.5, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest(42, pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest('A', pizzas)).toThrow(
 'The pizza you requested was not found')
 expect(() => underTest([], pizzas)).toThrow(
 'The pizza you requested was not found')
 })
})

Перейдите в папку проекта и выполните команду npm test в терминале. Вы-
вод этой команды, как показано листинге 11.5, указывает, что одна из специ-
фикаций потерпела неудачу.

Листинг 11.5. Вывод команды npm test

> node spec/support/jasmine-runner.js

Started
..F

Failures:
1) Get pizzas handler should throw an error if nonexistent ID is passed
 Message:
 Expected function to throw an exception.
 Stack:
 Error: Expected function to throw an exception.
 at UserContext.it (~/pizza-api/spec/handlers/get-pizzas-spec.
 js:26:40)

3 specs, 1 failure
Finished in 0.027 seconds

Спецификация для проверки случая
вызова getPizzas с действительным
идентификатором.

Спецификация для
проверки случая
вызова getPizzas с
недействительным
идентификатором.

 6 / 40

246    Глава 11. Тестирование, тестирование и еще раз тестирование

Спецификация, потерпевшая неудачу, определяет появление ошибки в
функции AWS Lambda, создающей проблему в работе. Всегда важно проверять
крайние случаи в спецификациях, потому что это может сэкономить массу
времени, расходуемого на отладку и исследование журналов CloudWatch.

Получив идентификатор с нулевым значением, обработчик getPizzas воз-
вращает список всех пицц вместо ошибки, потому что 0 в JavaScript – это лож-
ное значение и соответствует условию:

if (!pizzaId)
 return pizzas

Чтобы устранить эту проблему, нужно изменить условие и проверять в нем
аргумент на равенство значению undefined, как показано ниже:

if (typeof pizzaId === 'undefined')
 return pizzas

Теперь, внеся изменение в обработчик getPizzas, повторно запустим специ-
фикации командой npm test. На этот раз все они должны выполняться успеш-
но, а вывод команды должен выглядеть, как показано в листинге 11.6.

Листинг 11.6. Результат выполнения спецификаций после внесения исправлений
в обработчик

> node spec/support/jasmine-runner.js

Started
...

3 specs, 0 failures
Finished in 0.027 seconds

Имейте в виду, что успешное выполнение спецификаций не гарантирует
отсутствия ошибок в коде, однако при достаточном количестве значимых
спецификаций, охватывающих существенную часть кода, количество ошибок,
перекочевавших в действующую версию, будет значительно меньше. Но как
протестировать обработчики, которые нельзя легко изолировать, например
подключающиеся к таблице в DynamoDB? В таких случаях вам помогут фик-
тивные функции.

11.5. Использование имитаций
для тестирования бессерверных функций
В отличие от getPizzas, большинство других обработчиков в Pizza API взаимо-
действует с базой данных или отправляет HTTP-запросы. Чтобы протестиро-
вать эти обработчики изолированно, нужно смоделировать внешние взаимо-
действия.

 7 / 40

11.5. Использование имитаций для тестирования бессерверных функций    247

Прием моделирования широко используется в модульном тестировании
и заключается в создании фиктивных объектов, имитирующих поведение
действительных объектов. Используя имитации вместо внешних объектов и
функций, которые применяет тестируемый обработчик, мы можем изолиро-
вать обработчик и проверить его поведение.

Для примера попробуем протестировать более сложный обработчик, такой
как createOrder. Для этого нам понадобятся две имитации:

�� первое, что следует сымитировать, – это отправка HTTP-запроса служ-
бе доставки Some Like It Hot, потому что крайне нежелательно посылать
настоящий запрос в процессе тестирования. Служба Some Like It Hot – это
внешняя зависимость, неподконтрольная нам, и у нас нет доступа к ее тес
товой версии. Любой запрос на доставку, который мы отправим в процессе
тестирования, может вызвать реальные производственные проблемы;

�� также, чтобы полностью изолировать createOrder от всех внешних зави-
симостей, нам нужно сымитировать класс DocumentClient. Если вы реши-
те протестировать интегрированный обработчик, вам придется настро-
ить тестовую базу данных.

Имитации важны, потому что модульные тесты должны выполняться быст
рее интеграционных и сквозных тестов. На выполнение всего комплекта
спецификаций должно уходить лишь несколько секунд, а не минут и тем бо-
лее часов. Кроме того, модульное тестирование обходится намного дешевле,
потому что не нужно платить за инфраструктуру, чтобы проверить, работает
ли логика обработчиков, как ожидалось.

После подготовки имитаций HTTP-запросов и взаимодействий с DynamoDB
тестирование обработчика будет выглядеть, как показано на рис. 11.4.

Jasmine

Some Like It Hot
Delivery API

Таблица pizza-orders
в Amazon DynamoDB

Обработчик createOrder

Спецификации, выполняемые на локальном
компьютере или тестовом сервере

Сторонние службы Amazon Web Services

1. Jasmine выполняется
на локальном
компьютере или
тестовом сервере
и вызывает
обработчик
createOrder внутри
спецификаций.

2. Обработчик
запускается с данными,
полученными от
Jasmine, но никогда не
контактирует с Some Like
It Hot Delivery API,
потому что HTTP-запрос
не выполняется, а
только имитируется.

3. Отправив запрос
в Some Like It Hot
Delivery API и получив
сымитированный
ответ, обработчик
createOrder
продолжает работу,
но взаимодействие
с DynamoDB тоже
имитируется, поэтому
обработчик никогда
не контактирует
с фактической
инфраструктурой
AWS.

4. Обработчик
возвращает
результат, который
проверяется
спецификацией на
соответствие
ожиданиям.

Рис. 11.4. Процесс модульного тестирования обработчика createOrder

 8 / 40

248    Глава 11. Тестирование, тестирование и еще раз тестирование

Чтобы реализовать спецификацию для модульного тестирования обработ-
чика createOrder, создайте файл create-order.spec.js в папке specs/handlers,
внутри проекта Pizza API. Внутри файла импортируйте обработчик и добавь-
те блок describe, чтобы объединить нужные спецификации в группу.

Пока файл должен выглядеть, как показано ниже:

const underTest = require('../../handlers/create-order')

describe('Create order handler', () => {
 // Здесь будут находиться спецификации
})

Теперь сымитируем HTTP-запрос. В Node.js это можно сделать нескольки-
ми способами. Например, можно использовать полноценный модуль, такой
как Sinon (http://sinonjs.org) или Nock (https://github.com/node-nock/nock), или
даже написать свой модуль.

Занимающимся разработкой приложений на основе Node.js и бессерверных
функций мы всегда рекомендуем использовать небольшие и специализиро-
ванные модули. Модуль fake-http-request – как раз такой небольшой модуль
Node.js, имитирующий отправку запросов HTTP и HTTPS. Его можно устано-
вить из NPM и сохранить как зависимость для разработки, выполнив команду
npm install fake-http-request --save-dev.

В нашем новом модульном тесте нам также потребуется модуль https, потому
что fake-http-request использует его для выявления имитируемых HTTP-запро-
сов.

ПРИМЕЧАНИЕ. Модуль https необходим для имитации HTTPS-соединения со
службой доставки Some Like It Hot. Для имитации HTTP-запросов вместо HTTPS
следует использовать модуль http.

Чтобы задействовать модуль fake-http-request, нужно использовать функции
Jasmine beforeEach и afterEach, позволяющие выполнить операции до и после
запуска каждой спецификации. Чтобы установить и удалить модуль, добавьте
следующий фрагмент в блок describe:

beforeEach(() => fakeHttpRequest.install('https'))
afterEach(() => fakeHttpRequest.uninstall('https'))

Теперь, организовав тестирование HTTPS-запросов, смоделируем класс Doc-
umentClient. Для этого импортируем aws-sdk, а затем заменим класс DocumentCli-
ent функцией-шпионом из Jasmine. Не забудьте связать функцию Promise.re-
solve, иначе будет использоваться другая ссылка this, что приведет к неудаче.

Так как для создания объектов DocumentClient в AWS SDK используется про-
тотип, есть возможность заменить DocumentClient своей функцией-шпионом,
добавив следующий код в блок beforeEach:

AWS.DynamoDB.DocumentClient.prototype = docClientMock

 9 / 40

http://sinonjs.org
https://github.com/node-nock/nock

11.5. Использование имитаций для тестирования бессерверных функций    249

Функции-шпионы в Jasmine
Согласно документации к фреймворку Jasmine, «в Jasmine поддерживаются
тестовые функции, которые называют шпионами. Функция-шпион может под-
менить любую функцию и отслеживать любые обращения к ней и ее аргументы.
Функции-шпионы существуют только в блоках describe и it, где они определены,
и автоматически исчезают по завершении выполнения спецификаций». Узнать
больше о функциях-шпионах в Jasmine можно по адресу https://jasmine.
github.io/2.0/introduction.html#section-Spies.

Теперь содержимое файла create-order.spec.js должно выглядеть, как пока-
зано в листинге 11.7.

Листинг 11.7. Основа модульного теста для обработчика createOrder

'use strict'

const underTest = require('../../handlers/create-order')
const https = require('https')
const fakeHttpRequest = require('fake-http-request')
const AWS = require('aws-sdk')
let docClientMock

describe('Create order handler', () => {
 beforeEach(() => {
 fakeHttpRequest.install('https')

 docClientMock = jasmine.createSpyObj('docClient', {
 put: { promise: Promise.resolve.bind(Promise) },
 configure() { }
 })
 AWS.DynamoDB.DocumentClient.prototype = docClientMock
 })

 afterEach(() => fakeHttpRequest.uninstall('https'))

 // Здесь будут находиться спецификации

 })

Обработчик createOrder сложнее getPizzas, поэтому для его тестирования
требуется больше спецификаций. Но мы ограничимся спецификациями, тес
тирующими наиболее важные аспекты поведения createOrder:

Переменная для хранения
имитации объекта DocumentClient.

Импортировать модули
https и fake-http-request.

Импортировать aws-sdk.

Импортировать обработчик.

Установить библиотеку fake-http-
request для имитации запросов https.

Создать объект-шпион для
имитации DocumentClient.

Имитации функций
put и configure.

Заменить DocumentClient
объектом-шпионом.

Удалить библиотеку
fake-http-request.

 10 / 40

https://jasmine.github.io/2.0/introduction.html#section-Spies
https://jasmine.github.io/2.0/introduction.html#section-Spies

250    Глава 11. Тестирование, тестирование и еще раз тестирование

�� отправка запроса POST службе доставки Some Like It Hot;
�� реакция на успех и неудачу выполнения запроса к Some Like It Hot De-

livery API;
�� вызов DocumentClient для сохранения заказа только в случае успешного

ответа от Some Like It Hot Delivery;
�� завершение Promise с признаком успеха, если оба запроса – к Some Like It

Hot Delivery API и DocumentClient – выполнились благополучно;
�� завершение Promise с признаком ошибки, если какое-то из взаимо

действий потерпело неудачу;
�� проверка ввода.

Желающие могут добавить свои спецификации и проверить дополнитель-
ные крайние ситуации. Чтобы не увеличивать число страниц в этой главе до
неразумных пределов, мы обсудим только наиболее важные моменты, а пол-
ный код create-order.spec.js вы найдете в примерах исходного кода к книге.

Первая спецификация, которую мы добавим в блок it, проверит отправку
запроса POST службе доставки Some Like It Hot. Определим для нее короткое
и понятное описание; например, «should send POST request to Some Like It Hot
Delivery API» (в Some Like It Hot Delivery API должен быть отправлен запрос
POST).

В этой спецификации вызовем обработчик createOrder с допустимыми дан-
ными и с помощью модуля https проверим, был ли отправлен запрос с ожида-
емыми телом и заголовками.

Модуль fake-http-request добавляет метод pipe в https.request, который мож-
но использовать для проверки всех свойств HTTPS-запроса. Например, мож-
но убедиться, что число отправленных запросов равно 1, потому что службе
доставки должен отправляться только один запрос. Также можно проверить
правильность атрибутов в https.request, включая метод, путь, тело и заголовки.

ПРИМЕЧАНИЕ. Имейте в виду, что тело запроса содержит самый обычный текст
и его нужно преобразовать в строковый объект перед проверкой; иначе специ-
фикация потерпит неудачу, попытавшись сравнить данные разных типов: объект
и строку.

Спецификация, выполняющая эти проверки, показана в листинге 11.8.

СОВЕТ. Если потребуется проверить лишь несколько свойств в большом объекте,
вместо прямой проверки этих свойств используйте функцию jasmine.objectCon-
taining, позволяющую проверить указанное подмножество свойств.

Листинг 11.8. Имитация запроса POST

it('should send POST request to Some Like It Hot Delivery API', (done) => {
Блок it с описанием спецификации.

 11 / 40

11.5. Использование имитаций для тестирования бессерверных функций    251

 underTest({
 body: {
 pizza: 1,
 address: '221b Baker Street'
 }
 })

 https.request.pipe((callOptions) => {
 expect(https.request.calls.length).toBe(1)
 expect(callOptions).toEqual(jasmine.objectContaining({
 protocol: 'https:',
 slashes: true,
 host: 'some-like-it-hot-api.effortless-serverless.com',
 path: '/delivery',
 method: 'POST',
 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: '221b Baker Street',
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.
com/latest/delivery'
 })
 }))
 done()
 })
})

Следующая важная проверка – вызов DocumentClient должен состояться толь-
ко после успешного завершения HTTP-запроса. Для этого нужно сымитиро-
вать получение сообщения об успехе от Some Like It Hot Delivery API, добавив
строку https.request.calls[0].respond(200, 'Ok', '{}') в метод https.request.
pipe.

Обработчик createOrder возвращает объект Promise, поэтому для проверки
вызова имитации DocumentClient можно использовать .then.

Не забудьте добавить вызов done() после инструкции expect и вызвать done.
fail(), если выполнение объекта Promise завершилось с ошибкой; иначе специ
фикация будет продолжать выполняться, пока не будет прервана фреймвор-
ком Jasmine по тайм-ауту.

Спецификация для проверки вызова DocumentClient представлена в листин-
ге 11.9.

Сравнить параметры в
запросе с ожидаемыми.

Использовать
https.request.pipe
для проверки
отправки запроса.

Вызвать тестируемый обработчик.

Убедиться, что отправлен
только один запрос.

Сообщить фреймворку Jasmine,
что выполнение асинхронной
спецификации завершилось.

Сравнить параметры
в запросе с ожидаемыми.

 12 / 40

252    Глава 11. Тестирование, тестирование и еще раз тестирование

Листинг 11.9. Тестирование вызова DocumentClient

it('should call the DynamoDB DocumentClient.put
 if Some Like It Hot Delivery API request was successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 })
 .then(() => {
 expect(docClientMock.put).toHaveBeenCalled()
 done()
 })
 .catch(done.fail)
 https.request.pipe((callOptions) => https.request.calls[0].respond(200,
 'Ok', '{}'))
})

Другая похожая спецификация должна проверить, что DocumentClient никог-
да не вызывается, если HTTP-запрос потерпит неудачу. Вот основные отличия
этой спецификации от предыдущей:

�� спецификация должна завершаться с ошибкой, если выполнение Promise
завершится успехом;

�� спецификация должна проверить, что docClientMock.put не вызывается;
�� библиотека fake-http-request должна вернуть ошибку (с кодом HTTP

больше или равно 400).

Спецификация, выполняющая эти проверки, показана в листинге 11.10

Листинг 11.10. Проверка отсутствия обращений к DocumentClient в случае
неудачного выполнения HTTP-запроса

it('should not call the DynamoDB DocumentClient.put
 if Some Like It Hot Delivery API request was not successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 })
 .then(done.fail)
 .catch(() => {
 expect(docClientMock.put).not.toHaveBeenCalled()
 done()
 })

 https.request.pipe((callOptions) => https.request.calls[0].respond(500,
 'Server Error', '{}'))
})

Убедиться, что docClientMock.put
вызывается в случае успешного
выполнения Promise.

Вызвать тестируемый обработчик
с допустимыми данными.

Сообщить фреймворку Jasmine, что
асинхронная спецификация завершилась
ошибкой, если Promise завершился с ошибкой.

Сообщить фреймворку Jasmine, что асинхрон-
ная спецификация завершилась успехом.

Убедиться, что docClientMock.
put не вызывался, если Promise
завершился с ошибкой.

Вернуть код ответа 500.

Сообщить фреймворку Jasmine, что
асинхронная спецификация завершилась
ошибкой, если Promise завершился успехом.

Сымитировать успешное выполнение
HTTP-запроса с кодом 200.

 13 / 40

11.6. Интеграционные тесты    253

Если теперь выполнить команду npm test или npm t, спецификации должны
выполниться благополучно.

ПРИМЕЧАНИЕ. Полный код спецификаций можно найти в примерах исходного
кода к книге.

11.6. Интеграционные тесты
Интеграционные тесты – еще один вид тестов; они даже более важны для бес-
серверных функций, размер которых превышает несколько строк кода. Интег
рационные тесты, в отличие от модульных, используют фактические связи с
другими частями системы. Но при этом они все еще могут и должны исполь-
зовать имитации сторонних библиотек, неподконтрольных вам. Например,
едва ли кто-то из вас пожелает, чтобы ваши автоматизированные тесты взаи-
модействовали с платежной системой.

Как показано на рис. 11.5, интеграционные тесты для обработчика create-
Order могут имитировать работу внешней службы Some Like It Hot, потому что
отправка HTTP-запросов сторонней службе может отрицательно сказаться
на реальных людях. Но фактическое взаимодействие с таблицей в DynamoDB
вполне допустимо и даже желательно.

Jasmine

Some Like It Hot
Delivery API

Amazon Web Services

Тестовая таблица в
Amazon DynamoDB

Обработчик createOrder

Спецификации, выполняемые на локальном
компьютере или тестовом сервере

Сторонние службы

1. Jasmine выполняется
на локальном
компьютере или
тестовом сервере
и вызывает
обработчик
createOrder внутри
спецификаций.

2. Обработчик
запускается с данными,
полученными от
Jasmine, но никогда не
контактирует с Some Like
It Hot Delivery API,
потому что HTTP-запрос
не выполняется, а
только имитируется.

3. Отправив запрос в
Some Like It Hot
Delivery API и получив
сымитированный
ответ, обработчик
createOrder
продолжает работу.
На этот раз
выполняется
полноценное
взаимодействие с
DynamoDB, то есть
обработчик будет
контактировать с
фактической
инфраструктурой
AWS.

4. Обработчик
возвращает
результат, который
проверяется
спецификацией на
соответствие
ожиданиям.

Рис. 11.5. Последовательность шагов интеграционного
тестирования обработчика createOrder

Ниже перечислена последовательность шагов, которые могли бы выпол-
няться в ходе интеграционного тестирования обработчика createOrder:

1)	 создать новую таблицу в DynamoDB перед запуском каждой специфи-
кации;

 14 / 40

254    Глава 11. Тестирование, тестирование и еще раз тестирование

2)	 создать имитацию соединения со службой доставки Some Like It Hot пе-
ред запуском каждой спецификации;

3)	 запустить спецификацию;
4)	 удалить имитацию соединения со службой доставки Some Like It Hot и

выполнить следующую спецификацию (перейдя к шагу 2);
5)	 удалить тестовую таблицу из DynamoDB по завершении всех специфи-

каций.

СОВЕТ. Создание и удаление таблицы в DynamoDB тоже можно выполнять до и
после каждой спецификации, но поскольку эта операция может потребовать до
нескольких секунд, для экономии времени предпочтительнее использовать одну
и ту же таблицу для всех спецификаций из набора интеграционных тестов.

Поскольку имеется всего несколько обработчиков, модульные и интеграци-
онные тесты можно хранить в одной папке. Просто давайте им такие имена,
чтобы их легко можно было отличить друг от друга. Например, интеграцион-
ные тесты для обработчика createOrder могут находиться в файле create-or-
der-integration.spec.js.

Как показано в листинге 11.11 ниже, подготовка к интеграционному тести-
рованию обработчика createOrder выполняется в несколько этапов.

Первый этап – импортирование всех необходимых модулей: тестируемо-
го обработчика, aws-sdk (чтобы получить доступ к классу DynamoDB), https и
fake-http-request.

Затем вам нужно сгенерировать имя для тестовой таблицы в DynamoDB. Ко-
нечно, можно придумать и каждый раз использовать одно и то же имя, но слу-
чайно сгенерированное имя будет иметь больше шансов оказаться уникальным.
Также нужно увеличить тайм-аут в Jasmine, хотя бы до одной минуты, потому
что создание и удаление тестовой таблицы в DynamoDB может занять некото-
рое время, а пятисекундный тайм-аут по умолчанию недостаточно длинный.

ПРИМЕЧАНИЕ. По умолчанию Jasmine ждет завершения асинхронной специ-
фикации пять секунд, после чего возбуждает ошибку тайм-аута. Если время ожи-
дания истечет до вызова done, текущая спецификация будет отмечена как потер-
певшая неудачу и выполнение набора продолжится, как если бы была вызвана
функция done.

Затем в функции Jasmine beforeAll нужно перед всеми тестами создать таб
лицу в DynamoDB. Имейте в виду, таблицы в DynamoDB создаются асинхрон-
но, поэтому обязательно используйте функцию обратного вызова done, чтобы
сообщить Jasmine о завершении операции. Если этого не сделать, выполнение
спецификации начнется до того, как таблица будет готова.

Создать таблицу можно с помощью метода createTable класса DynamoDB. Ему
нужно передать то же определение ключа, что и при создании таблицы pizza-
orders, то есть использовать orderId в роли ключа.

 15 / 40

11.6. Интеграционные тесты    255

Так как createTable возвращает объект Promise, который должен завершить
выполнение до использования таблицы в DynamoDB, можно вызвать метод
waitFor класса DynamoDB и дождаться создания таблицы до вызова функции done.

Удаление таблицы после тестирования должно производиться в функции
afterAll вызовом метода deleteTable класса DynamoDB с последующим вызовом
метода waitFor, чтобы дождаться завершения операции удаления таблицы.
После этого можно вызвать функцию done.

Имитация HTTP-запросов к службе доставки Some Like It Hot выполняет-
ся точно так же, как в модульных тестах. Единственное отличие – имитиро-
вать следует только запросы к конкретному API; остальные запросы должны
выполняться как есть, потому что класс DynamoDB использует их для взаимо-
действия с инфраструктурой AWS infrastructure. Для этого нужно передать в
функцию fakeHttpRequest.install объект, содержащий тип запроса (в данном
случае https), и объект регулярного выражения для сопоставления с домен-
ным именем.

На данный момент содержимое файла create-order-integration.spec.js
должно выглядеть, как показано в листинге 11.11.

Листинг 11.11. Интеграционный тест для обработчика createOrder

'use strict'

const underTest = require('../../handlers/create-order')
const AWS = require('aws-sdk')
const dynamoDb = new AWS.DynamoDB({
 apiVersion: '2012-08-10',
 region: 'eu-central-1'
})
const https = require('https')
const fakeHttpRequest = require('fake-http-request')

const tableName = `pizzaOrderTest${new Date().getTime()}`
jasmine.DEFAULT_TIMEOUT_INTERVAL = 60000

describe('Create order (integration)', () => {
 beforeAll((done) => {
 const params = {
 AttributeDefinitions: [{
 AttributeName: 'orderId',
 AttributeType: 'S'
 }],
 KeySchema: [{
 AttributeName: 'orderId',
 KeyType: 'HASH'

Сгенерировать имя для тестовой
таблицы в DynamoDB.

Увеличить тайм-аут для Jasmine
до одной минуты.

Импортировать модули https
и fake-http-request.

Создать экземпляр класса DynamoDB.

Импортировать тестируемый
обработчик.

Импортировать aws-sdk.

 16 / 40

256    Глава 11. Тестирование, тестирование и еще раз тестирование

 }],
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1
 },
 TableName: tableName
 }

 dynamoDb.createTable(params).promise()
 .then(() => dynamoDb.waitFor('tableExists', {
 TableName: tableName
 }).promise())
 .then(done)
 .catch(done.fail)
 })

 afterAll(done => {
 dynamoDb.deleteTable({
 TableName: tableName
 }).promise()
 .then(() => dynamoDb.waitFor('tableNotExists', {
 TableName: tableName
 }).promise())
 .then(done)
 .catch(done.fail)
 })

 beforeEach(() => fakeHttpRequest.install({
 type: 'https',
 matcher: /some-like-it-hot-api/
 }))

 afterEach(() => fakeHttpRequest.uninstall('https'))

 // Здесь будут находиться спецификации

})

Теперь, когда интеграционные тесты готовы к использованию, нужно обно-
вить обработчик createOrder, чтобы организовать возможность динамическо-
го получения имени таблицы в DynamoDB. Сделать это можно, передавая имя
таблицы во втором аргументе или определив имя в переменной окружения.

Проще всего передать имя таблицы во втором аргументе. Для этого из-
мените обработчик createOrder так, чтобы он принимал имя таблицы, но не

Создать новую таблицу в DynamoDB
перед выполнением всех спецификаций.

Дождаться статуса tableExists.

Удалить таблицу в DynamoDB после
выполнения всех спецификаций.

Дождаться статуса tableNotExists
перед остановкой всех тестов.

Установить модуль fake-http-request
для имитации запросов только к
Some Like It Hot Delivery API.

 17 / 40

11.6. Интеграционные тесты    257

забудьте назначить имя по умолчанию pizza-orders, чтобы не нарушить ра-
ботоспособность существующего кода. Аргументы функции-обработчика cre-
ateOrder должны выглядеть, как показано ниже:

function createOrder(request, tableName = 'pizza-orders') {

Последний и самый сложный шаг – добавление интеграционных специфи-
каций. Спецификации должны проверять все критические части интеграции
обработчика с любыми другими компонентами системы или инфраструктуры.

Для экономии места в этой главе мы покажем только самую важную специ
фикацию, проверяющую запись данных в таблицу. Полный код специфика-
ций вы найдете в файле create-order-integration.spec.js в примерах исходного
кода.

Как показано в листинге 11.12, чтобы проверить сохранение заказа в базе
данных после получения положительного ответа от службы доставки Some
Like It Hot, необходимо:

1)	 вызвать обработчик createOrder с допустимыми данными и именем тес
товой таблицы в DynamoDB;

2)	 сымитировать положительный ответ от службы доставки Some Like It
Hot и вернуть deliveryId;

3)	 когда объект Promise, возвращаемый обработчиком createOrder, завер-
шится успехом, воспользоваться экземпляром класса DynamoDB и прове-
рить присутствие в тестовой таблице записи с идентификатором, полу-
ченным от службы Some Like It Hot;

4)	 проверить правильность информации, возвращаемой методом dynamoDb.
getItem;

5)	 отметить тест как выполнившийся успешно.

Листинг 11.12. Тестирование сохранения заказа в таблице DynamoDB

it('should save the order in the DynamoDB table
 if Some Like It Hot Delivery API request was successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 }, tableName)
 .then(() => {
 const params = {
 Key: {
 orderId: {
 S: 'order-id-from-delivery-api'
 }
 },
 TableName: tableName

Вызвать обработчик с допустимыми
данными и именем тестовой таблицы.

 18 / 40

258    Глава 11. Тестирование, тестирование и еще раз тестирование

 }
 dynamoDb.getItem(params).promise()
 .then(result => {
 expect(result.Item.orderId.S).toBe('order-id-from-delivery-api')
 expect(result.Item.address.S).toBe('221b Baker Street')
 expect(result.Item.pizza.N).toBe('1')
 done()
 })
 })
 .catch(done.fail)

 https.request.pipe((callOptions) => https.request.calls[0].respond(200,
 'Ok', JSON.stringify({
 deliveryId: 'order-id-from-delivery-api'
 })))
})

Если теперь выполнить команду npm test, вы заметите, что она выполняется
довольно долго, но при этом все тесты, в том числе и интеграционные, долж-
ны завершиться успехом.

СОВЕТ. При большом количестве интеграционных тестов можно создать тестовую
таблицу DynamoDB заранее (до запуска тестов) и тем самым уменьшить время
выполнения тестов.

Также можно заглянуть в веб-консоль AWS и убедиться, что таблица была
успешно удалена из DynamoDB. Даже после добавления еще нескольких ин-
теграционных тестов ваш ежемесячный счет на оплату услуг AWS для вашего
приложения, созданного в этой книге, все равно должен составлять всего не-
сколько центов.

11.7. Другие типы автоматизированных тестов
Выше вы видели, что модульные и интеграционные тесты в бессерверных
приложениях аналогичны тестам в обычных, серверных приложениях Node.
js. Как и ожидалось, основными отличительными чертами являются быстрота
настройки тестовой инфраструктуры (настройка производится быстрее бла-
годаря отсутствию необходимости настраивать сервер) и низкая стоимость
услуг инфраструктуры (вам не придется платить за услуги, когда вы ими не
пользуетесь).

Существует много других типов автоматизированных тестов, на которые
также влияет бессерверный характер окружения. Например, нагрузочные и
стресс-тесты теряют смысл в бессерверной архитектуре, потому что она ав-
томатически масштабируется в установленных пределах. Такие тесты имеют

Отметить тест как потерпевший неудачу,
если объект Promise завершился с ошибкой.

Проверить правильность
данных и отметить тест как

выполненный успешно.

Получить запись из базы
данных по идентификатору.

Сымитировать ответ от Some Like It Hot Delivery
API и вернуть идентификатор deliveryID.

 19 / 40

11.8. В дополнение к тестам: приемы разработки бессерверных функций...    259

смысл, только если ваше приложение не является полностью бессерверным
или вы не доверяете провайдеру услуг бессерверного окружения, но обсужде-
ние этой проблемы выходит за рамки данной книги.

Еще один тип автоматизированных тестов, на которые может повлиять
бессерверный характер окружения, – это тесты графического интерфейса
пользователя. Хотя это и не очевидно, но бессерверная архитектура способ-
на помочь ускорить тестирование графического интерфейса пользователя за
счет применения консольных браузеров, таких как консольная версия Chrome
и Phantom.js. Консольные браузеры – это обычные веб-браузеры, но не имею
щие графического интерфейса; они запускаются из командной строки. Воз-
можность запуска автоматических тестов графического интерфейса пользо-
вателя в Google Chrome на AWS Lambda уже привела к появлению множества
новых инструментов, упрощающих тестирование графического интерфейса.
Но, что еще более важно, эти инструменты на порядок ускоряют тесты и рез-
ко снижают их стоимость. Одним из инструментов, позволяющих запускать
тесты графического интерфейса в AWS Lambda, является Appraise, использую-
щий консольную версию Chrome для создания снимка экрана, а затем сравни-
вающий его с ожидаемым результатом. Узнать больше об этом инструменте
можно на сайте http://appraise.qa.

11.8. В дополнение к тестам: приемы
разработки бессерверных функций
для упрощения их тестирования
Вы познакомились с основами тестирования бессерверных приложений, но это
не значит, что вы познакомились со всеми возможными крайними случаями.
Давайте вернемся к нашему обработчику сохранения заказов в базе данных.

Листинг 11.13. Текущий обработчик сохранения заказов в базе данных

function createOrder(request, tableName) {
 tableName = tableName || 'pizza-orders'

 const docClient = new AWS.DynamoDB.DocumentClient({
 region: process.env.AWS_DEFAULT_REGION
 })
 let userAddress = request && request.body && request.body.address;
 if (!userAddress) {
 const userData = request && request.context && request.context.authorizer
 && request.context.authorizer.claims;
 if (!userData)
 throw new Error()
 // console.log('User data', userData)

Загрузить DynamoDB.

 20 / 40

http://appraise.qa

260    Глава 11. Тестирование, тестирование и еще раз тестирование

 userAddress = JSON.parse(userData.address).formatted
 }

 if (!request || !request.body || !request.body.pizza || !userAddress)
 throw new Error('To order pizza please provide pizza type and address
 where pizza should be delivered')

 return rp.post('https://some-like-it-hot-api.effortless-serverless.com/
 delivery', {
 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: userAddress,
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.com/
 latest/delivery',
 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: tableName,
 Item: {
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,
 address: userAddress,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)
 return res
 })
 .catch(saveError => {
 console.log(`Oops, order is not saved :(`, saveError)
 throw saveError
 })
}

Получить userAddress
для доставки пиццы.

Проверить наличие обязательных
параметров в заказе.

Послать запрос на доставку в
Some Like It Hot Delivery API.

Сохранить заказ в DynamoDB
с помощью DocumentClient.

Вернуть ответ после сохранения.

 21 / 40

11.8. В дополнение к тестам: приемы разработки бессерверных функций...    261

Обработчик выглядит безупречно. Он хранится в отдельном файле, прост и
понятен. Все операции он выполняет последовательно, друг за другом, но есть
одна загвоздка. Как вы уже видели, автоматическое тестирование практиче-
ски невозможно без вызова AWS DynamoDB. В общем и целом это хорошее
решение, но мы не рассмотрели некоторые крайние случаи. Например, что,
если какая-то часть службы AWS DynamoDB резко изменится и операция со-
хранения потерпит неудачу? Или что, если случится сбой в службе DynamoDB?
Вероятность появления этих проблем очень низкая, но нам важно исключить
данные риски из уравнения. Кроме того, есть еще много рисков, которые мож-
но было бы учесть. Их можно разделить на четыре типа. Возможно, вы удиви-
тесь, узнав, какие виды рисков охватывают эти типы. Например, вот краткий
список таких рисков для примера сохранения одного заказа в DynamoDB:

�� конфигурационные риски – сохранение производится в правильную таб
лицу? Обеспечивает ли роль, выбранная для функции Lambda, все необ-
ходимые права доступа к таблице в DynamoDB?

�� технические риски – как производится парсинг входящих запросов? Пра-
вильно ли вы обрабатываете ответы, сообщающие об успехе и об ошибке?

�� риски бизнес-логики – правильно ли структурирован заказ?
�� интеграционные риски – правильно ли читается структура входящего

запроса? Правильно ли сохраняется заказ в DynamoDB?

Вы можете протестировать каждый из этих рисков в своих интеграцион-
ных тестах, но настройка и подготовка службы перед каждым тестом – не
самое оптимальное решение. Представьте, что было бы, если бы испытание
автомобилей проводилось подобным образом. Каждый раз, чтобы проверить
в машине один винт или даже зеркало, вам придется собирать, а затем разби-
рать весь автомобиль. Поэтому, чтобы упростить тестирование, бессерверную
функцию следует разбить на несколько более мелких частей.

Тем, кто впервые начинает заниматься этой проблемой, трудно разбить
службу на более мелкие функции. К счастью, многие разработчики уже ми-
новали этот этап и разработали архитектурную практику, которая называется
гексагональная архитектура, или шаблон портов и адаптеров.

Термин «гексагональная архитектура» кажется сложным и пугающим, но на
самом деле он описывает довольно простой шаблон проектирования, в кото-
ром фрагменты кода, составляющие службу, взаимодействуют не с внешними
ресурсами непосредственно, а со слоем граничных интерфейсов. Внешние
службы подключаются к этим интерфейсам и преобразуют свои понятия в
понятия вашего приложения. Например, обработчик createOrder в гексаго-
нальной архитектуре не будет напрямую получать запрос; он получит объект
OrderRequest в конкретном прикладном формате, который содержит объекты
pizza и deliveryAddress, описывающие пиццу и адрес доставки. За преобразо-
вание между форматом запроса и форматом createOrder будет отвечать адап-
тер. На рис. 11.6 наглядно показано, как будет выглядеть этот обработчик в
гексагональной архитектуре.

 22 / 40

262    Глава 11. Тестирование, тестирование и еще раз тестирование

Запрос к API

DynamoOrderRepository

Доставка

OrderRequest

orderRepository

De
liv

er
yR

ep
os

ito
ry

Обработка
заказа

Обработка
запросов к API
выполняется
отдельно

Граничные
интерфейсы

Взаимодействие
с DynamoDB
выполняется
отдельно

Сл
уж

ба
 д

ос
та

вк
и

So
m

e
Li

ke
 It

 H
ot

Рис. 11.6. Гексагональная архитектура

Применение этой архитектуры также означает, что функция createOrder не
будет вызывать DynamoDB непосредственно. Вместо этого она будет обра-
щаться к граничным интерфейсам, отвечающим вашим потребностям. На-
пример, вы можете определить интерфейс OrderRepository с функцией put и
затем определить отдельный объект DynamoOrderRepository, реализующий этот
интерфейс и взаимодействующий с базой данных DynamoDB. То же самое
можно организовать в отношении службы доставки Some Like It Hot.

Эта архитектура позволяет тестировать интеграцию с внешними API и Dy-
namoDB, не беспокоясь о том, как в действительности ваша служба взаимо
действует с DynamoDB или службой доставки. Даже если DynamoDB пол
ностью изменит свой API или вы решите заменить DynamoDB какой-либо
другой службой баз данных в AWS, основной код вашего обработчика не изме-
нится, изменится только объект DynamoOrderRepository. Это упрощает проверку
ответов и обработку ошибок, а также обеспечивает безопасность и согласо-
ванность кода в вашем приложении. Кроме того, такой подход помогает яснее
понять, что нужно смоделировать в интеграционных тестах.

Для реализации этой архитектуры нужно разбить обработчик createOrder
на несколько функций. Здесь мы рассмотрим только одну из них – взаимо-
действующую с DynamoDB. Прежде всего мы должны передать в функцию
createOrder объект orderRepository как дополнительный параметр. Вместо не-
посредственного использования DocumentClient из AWS DynamoDB мы будем
вызывать метод put объекта orderRepository. Необходимые изменения в обра-
ботчике createOrder показаны в листинге 11.14.

 23 / 40

11.8. В дополнение к тестам: приемы разработки бессерверных функций...    263

Листинг 11.14. Добавление в обработчик сохранения заказа поддержки
объекта orderRepository

function createOrder(request, orderRepository) {

 // мы удалили код инициализации AWS DynamoDB, потому что он
 // перекочевал в orderRepository

 let userAddress = request && request.body && request.body.address;
 if (!userAddress) {
 const userData = request && request.context && request.context.authorizer
 && request.context.authorizer.claims;
 if (!userData)
 throw new Error()
 // console.log('User data', userData)
 userAddress = JSON.parse(userData.address).formatted
 }

 // остальной код не изменился
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => orderRepository.createOrder({
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,
 address: userAddress,
 orderStatus: 'pending'
 })
).promise()
 })
 // остальной код не изменился
}

Листинг 11.14 наглядно показывает, как изменился обработчик createOrder.
Теперь, если вы решите выполнить рефакторинг или заменить службу базы
данных, вам не придется править код обработчика createOrder. Кроме того,
смоделировать orderRepository намного проще, чем DocumentClient. Осталось
только реализовать orderRepository. Его лучше определить в отдельном моду-
ле, чтобы получить возможность использовать в других обработчиках. Код or-
derRepository показан в листинге 11.15.

Листинг 11.15. Определение объекта orderRepository

var AWS = require('aws-sdk')

Добавлен параметр orderRepository.

Код инициализации AWS DynamoDB
DocumentClient был удален.

Вместо docClient.put
теперь вызывается
orderRepository.createOrder.

Импортировать aws-sdk.

 24 / 40

264    Глава 11. Тестирование, тестирование и еще раз тестирование

module.exports = function orderRepository() {
 var self = this
 const tableName = 'pizza-orders',
 docClient = new AWS.DynamoDB.DocumentClient({
 region: process.env.AWS_DEFAULT_REGION
 })
 self.createOrder = function (orderData) {
 return docClient.put({
 TableName: tableName,
 Item: {
 cognitoUsername: orderData.cognitoUsername,
 orderId: orderData.orderId,
 pizza: orderData.pizza,
 address: orderData.address,
 orderStatus: orderData.orderStatus
 }
 })
 }
}

Реализация граничных интерфейсов, таких как orderRepository, помогает
отделить специфическую логику взаимодействия с AWS DynamoDB от логики
сохранения заказов. Теперь вы можете попробовать сами реализовать другие
граничные интерфейсы (для обработки запросов к службе доставки и API на-
шего приложения).

Реализация бессерверных функций с учетом возможности их тестирования
делает код проще и легче для чтения и отладки, а также устраняет потенци-
альные риски изменения внешних служб. Думая о тестировании перед нача-
лом разработки, можно избавиться от многих потенциальных проблем и соз-
давать высококачественные бессерверные приложения.

Мы надеемся, что в этой главе вы почерпнули достаточно сведений, чтобы
хотя бы начать тестировать ваши бессерверные функции. Теперь пришло вре-
мя перейти к упражнениям!

11.9. Опробование!
Автоматизированные тесты – важнейшая часть любого приложения. Бессер-
верные приложения не являются исключением. Мы подготовили для вас не-
большое упражнение, но призываем вас не останавливаться на этом. Пойдите
дальше и напишите другие тесты, превратив тестирование ваших бессервер-
ных приложений в обычный этап рабочего процесса.

11.9.1. Упражнение
В приложениях Node.js разработчики часто тестируют маршруты API. То же

самое можно реализовать с использованием Claudia API Builder. Итак, ваша

Настройка объекта orderRepository.

Инициализация класса DocumentClient
из AWS DynamoDB.

Назначить имя таблицы pizza-orders.

Объявление метода createOrder
для объекта orderRepository.

Вызов docClient.put для сохранения orderData.

 25 / 40

11.9. Опробование!    265

задача – проверить правильность настройки маршрутов библиотекой Claudia
API Builder. Вот несколько советов, которые могут вам пригодиться:

�� используйте метод .apiConfig из библиотеки Claudia API Builder, чтобы по-
лучить конфигурацию API с массивом routes;

�� есть возможность динамического создания спецификаций, перебирая
содержимое массива routes в цикле.

Для тех, кому это упражнение покажется недостаточно сложным, мы пред-
лагаем изменить Pizza API в соответствии с рекомендациями по организации
гексагональной архитектуры, а затем протестировать оставшиеся части Pizza
API. Эта дополнительная задача не обсуждается в следующем разделе, но вы
можете заглянуть в исходный код примеров, чтобы увидеть наше решение.

11.9.2. Решение
Для проверки маршрутов API создайте файл api.spec.js в папке specs. Обра-

тите внимание: этот файл не должен находиться в папке handlers, потому что
он не тестирует обработчики.

В этом файле импортируйте главный файл api.js и используйте функцию
describe из фреймворка Jasmine, чтобы добавить описание, например такое:
"API" или "API routes".

Затем определите массив объектов с маршрутами и соответствующими им
методами. Маршруты должны определяться без начального слеша (/), потому
что именно так их хранит Claudia API Builder.

Далее организуйте обход элементов массива в цикле и для каждого вызови-
те функцию it из фреймворка Jasmine. С помощью underTest.apiConfig().routes
проверьте наличие всех маршрутов и соответствие их методов.

Содержимое файла api.spec.js приводится в листинге 11.16.

Листинг 11.16. Тестирование маршрутов API

'use strict'

const underTest = require('../api')

describe('API', () => {
 [
 {
 path: '',
 methods: ['GET']
 }, {
 path: 'pizzas',
 methods: ['GET']
 }, {

Импортировать обработчик.

Определить массив существующих маршрутов.

 26 / 40

266    Глава 11. Тестирование, тестирование и еще раз тестирование

 path: 'orders',
 methods: ['POST']
 }, {
 path: 'orders/{id}',
 methods: ['PUT', 'DELETE']
 }, {
 path: 'delivery',
 methods: ['POST']
 }, {
 path: 'upload-url',
 methods: ['GET']
 }
].forEach(route => {
 it(`should setup /${route.path} route`, () => {
 expect(Object.keys(underTest.apiConfig().routes[route.path])).
 toEqual(route.methods)
 })
 })
})

Если теперь выполнить команду npm test, все тесты должны пройти успеш-
но. Если вы пожелаете протестировать только маршруты, выполните команду
npm t filter="should setup".

В заключение
�� Автоматизированные тесты являются важнейшей частью любого бес-

серверного приложения.
�� Бессерверная архитектура способна положительно повлиять на тради-

ционно медленные и дорогостоящие интеграционные тесты и тесты
графического интерфейса пользователя, увеличивая скорость их выпол-
нения за счет распараллеливания и снижения затрат на организацию
тестовой инфраструктуры.

�� Модульное тестирование бессерверных приложений Node.js осуществ
ляется практически так же, как обычных приложений.

�� Интеграционные тесты в бессерверных архитектурах могут подклю-
чаться к действующим службам AWS, потому что стоимость услуги бес-
серверных вычислений достаточно низкая.

�� Взаимодействия с некоторыми сторонними службами все еще необхо-
димо имитировать. К таким сторонним службам можно отнести пла-
тежные системы или, в случае с Pizza API, службу доставки Some Like
It Hot.

Вызвать функцию it для каждого
маршрута из массива.

Проверить присутствие маршрута
и соответствие его метода.

 27 / 40

В заключение    267

�� Бессерверная архитектура меняет способ тестирования программного
обеспечения, потому что затраты на инфраструктуру и риски смещают-
ся в область интеграции бессерверных компонентов.

�� При проектировании бессерверных функций важно учитывать воз-
можность и простоту последующего их тестирования, и гексагональная
архитектура поможет вам в этом.

 28 / 40

Глава 12
Получение платы за пиццу

Эта глава охватывает следующие темы:

	обработка платежей в бессерверных приложениях;
	реализация приема платы в нашем бессерверном API;
	основы безопасности данных в обработке платежей.

Введите номер вашей карты и срок ее действия. Теперь введите секретный код
карты. Все знают эту последовательность. Оплата товаров или услуги кредит-
ной картой является наиболее ценным шагом практически для любого бизне-
са. До сих пор мы в основном изучали особенности разработки бессерверных
приложений, которые предоставляют полезные услуги, такие как заказ пиццы
и ее доставка. Но вы также должны знать, как получать платежи от клиентов
тетушки Марии.

В этой главе мы посмотрим, как реализовать возможность приема он-
лайн-платежей в программном обеспечении для пиццерии тетушки Марии.
Вы увидите, как платеж поступает в наш обработчик платежей, а затем на счет
компании тетушки Марии. Затем вы узнаете, как реализовать прием плате-
жей для тетушки Марии. А потом познакомитесь с основами безопасности
приема платежей в бессерверных приложениях и узнаете, как в этом помогает
соблюдение стандартов.

12.1. Платежные транзакции
По словам тетушки Марии, «все должно вращаться вокруг потребностей кли-
ентов». Ее бизнес начал расширяться, и она получила от клиентов более ста
предложений организовать возможность онлайн-оплаты в мобильном и
веб-приложении. Поэтому она попросила нас помочь ей в этом.

ПРИМЕЧАНИЕ. Кому-то из вас реализация онлайн-платежей может показаться
сложной и пугающей задачей, потому что вы никогда не делали этого раньше,

 29 / 40

12.1. Платежные транзакции    269

а также из-за высокой ответственности за возможные ошибки. Цель этой главы
состоит в том, чтобы развеять эти страхи и рассказать, как происходит обработка
платежей, как взаимодействовать с платежной системой и как создать бессервер-
ную функцию, принимающую онлайн-платежи.

Перед реализацией приема платежей в нашем приложении кратко рассмот
рим, как выполняются платежные транзакции.

Платеж – это финансовая операция между покупателем и продавцом. Поку-
патель платит продавцу деньги за товары или услуги. Если у клиента нет денег,
операция невозможна. Если у покупателя есть необходимая сумма, денежные
средства переводятся продавцу, после чего приобретенный товар или услуга
передается или оказывается покупателю. Ход операции показан на рис. 12.1.

Клиент Товар/услуга

Деньги

Продавец

Customer

Card
Reader

Product / Service

Verification
response

Card data

Card
Transferred

funds Transferred
funds

Seller

Bank

Figure 12.2 A diagram illustrating
a credit card transaction between a
customer and a seller

Рис. 12.1. Процесс оплаты наличными

Процесс оплаты кредитной или дебетовой картой немного отличается
от процедуры оплаты наличными. Клиент вставляет карту в считывающее
устройство продавца. Устройство проверяет действительность карты, считы-
вает ее номер, отображает сумму платежа и предлагает клиенту ввести кон-
фиденциальный пин-код, чтобы подтвердить согласие на выполнение опера-
ции. Затем устройство отправляет запрос в банк клиента на перевод средств
со счета клиента на счет продавца. Если на карте достаточно свободных
средств, банк резервирует сумму со счета клиента. Процесс «резервирования»
также называют «взиманием» платы с клиента. Вместо немедленного списа-
ния средств со счета клиента банк сначала резервирует нужную сумму, чтобы
организовать задержку на случай возникновения ошибок с обеих сторон. Ход
операции по кредитной или дебетовой карте показан на рис. 12.2.

12.1 Payment transactions
According to Aunt Maria, “Everything should revolve around customer needs.” Her
business has begun to expand, and she has received more than a hundred requests
from customers to enable online payments in both the mobile and web applications.
Therefore, she has asked you to help her implement accepting payments with the
serverless Pizza API.

NOTE For some of you, enabling payments might sound scary because you’ve
never done it before, whereas others may fear even a slight error causing havoc.
This chapter’s goal is to alleviate those fears and get you more comfortable
with enabling payments, by teaching how payment processing works, how to
interact with a payment processor, and how to create your serverless payment
function.

Before implementing a payment service in your application, let’s briefly touch on how
payment transactions work internally.

A payment is a financial transaction between a customer and a seller. The customer
pays money to the seller for needed products or services. If the customer doesn’t have
any money, the transaction isn’t possible. If the customer has the needed amount, the
cash is transferred to the seller, after which the purchased product or service is trans-
ferred to the customer. The transaction flow is shown in figure 12.1.

For credit and debit cards, the process is slightly different, because you’re not dealing
with raw funds (cash). A customer connects a payment card to the seller’s card-reading
device. The device checks if it’s a valid credit card, reads the card number, displays
the charge amount, and asks the customer for the card’s confidential pin number to
certify that the intended transaction is authorized. Then the device sends a request to
the customer’s bank to transfer the funds from the customer’s account to the seller’s. If
there are sufficient available funds, the bank reserves the amount from the customer’s
account. This “reserving” process is also known as “charging” the customer. The bank
creates a charge instead of immediately taking the money out of the account because
there needs to be a delay in case a problem or an error occurs on either side. The flow
for a credit or debit card transaction is shown in figure 12.2.

Online payments are different from in-person credit card payments processed with a
card reader. First, because you can’t use a physical card reader, you need a payment pro-
cessor that can perform online payment processing. Second, again because you don’t
have a card reader, you need to verify the card with the payment processor directly. The
verification process is necessary because you need to ensure that the card is valid and
that it belongs to a valid authority (a bank, for example). Therefore, you need to send
sensitive customer data to the payment processor for verification. If it’s valid, you then

Customer
Product / Service

Money

Seller Figure 12.1 A diagram illustrating a cash
transaction between a customer and a seller

Клиент

Считы-
вающее

устройство

Товар/услуга

Результаты
проверки

Данные о карте

Карта Перевод
средств Перевод

средств

Продавец

Банк

Рис. 12.2. Процесс оплаты кредитной картой с использованием
считывающего устройства продавца

 30 / 40

270    Глава 12. Получение платы за пиццу

Онлайн-платежи отличаются от оплаты картой с использованием считы-
вающего устройства. Во-первых, из-за невозможности использовать физиче-
ское считывающее устройство необходимо использовать платежную систему,
осуществляющую обработку онлайн-платежей. Во-вторых, опять же из-за
невозможности использовать физическое считывающее устройство нужно
проверить карту в платежной системе. Процесс проверки необходим, потому
что важно убедиться, что карта действительна и принадлежит действующему
органу (например, банку). Поэтому конфиденциальные данные клиента не-
обходимо отправить в платежную систему для проверки. Если данные верны,
выполняется запрос на оплату. Третье отличие заключается в том, что теперь
есть возможность проследить возможные изменения статуса платежа, так как
некоторые платежи могут проверяться банком клиента и отклоняться в тече-
ние нескольких минут (рис. 12.3), но мы не будем рассматривать этот аспект
ради экономии места.

Данные
о карте

Клиент

Форма
ввода

платежной
информации

Платежная
система

Бессервер-
ная служба

приема
платежей

DynamoDB
Данные
о карте

Изменение заказа
в базе данных

Перевод
средств

Результаты
проверки

Резерви-
рование

Уведомления
об изменении

состояния платежа
1. Клиент вводит данные в
форму, которые
автоматически
отправляются в платежную
систему для проверки.

2. После получения
результатов проверки от
платежной системы на счете
клиента резервируется
требуемая сумма.

3. После отправки запроса
на резервирование может
поступить несколько
уведомлений об изменении
состояния платежа, таких
как «обработано» или
«отвергнуто».

12.1 Payment transactions
According to Aunt Maria, “Everything should revolve around customer needs.” Her
business has begun to expand, and she has received more than a hundred requests
from customers to enable online payments in both the mobile and web applications.
Therefore, she has asked you to help her implement accepting payments with the
serverless Pizza API.

NOTE For some of you, enabling payments might sound scary because you’ve
never done it before, whereas others may fear even a slight error causing havoc.
This chapter’s goal is to alleviate those fears and get you more comfortable
with enabling payments, by teaching how payment processing works, how to
interact with a payment processor, and how to create your serverless payment
function.

Before implementing a payment service in your application, let’s briefly touch on how
payment transactions work internally.

A payment is a financial transaction between a customer and a seller. The customer
pays money to the seller for needed products or services. If the customer doesn’t have
any money, the transaction isn’t possible. If the customer has the needed amount, the
cash is transferred to the seller, after which the purchased product or service is trans-
ferred to the customer. The transaction flow is shown in figure 12.1.

For credit and debit cards, the process is slightly different, because you’re not dealing
with raw funds (cash). A customer connects a payment card to the seller’s card-reading
device. The device checks if it’s a valid credit card, reads the card number, displays
the charge amount, and asks the customer for the card’s confidential pin number to
certify that the intended transaction is authorized. Then the device sends a request to
the customer’s bank to transfer the funds from the customer’s account to the seller’s. If
there are sufficient available funds, the bank reserves the amount from the customer’s
account. This “reserving” process is also known as “charging” the customer. The bank
creates a charge instead of immediately taking the money out of the account because
there needs to be a delay in case a problem or an error occurs on either side. The flow
for a credit or debit card transaction is shown in figure 12.2.

Online payments are different from in-person credit card payments processed with a
card reader. First, because you can’t use a physical card reader, you need a payment pro-
cessor that can perform online payment processing. Second, again because you don’t
have a card reader, you need to verify the card with the payment processor directly. The
verification process is necessary because you need to ensure that the card is valid and
that it belongs to a valid authority (a bank, for example). Therefore, you need to send
sensitive customer data to the payment processor for verification. If it’s valid, you then

Customer
Product / Service

Money

Seller Figure 12.1 A diagram illustrating a cash
transaction between a customer and a seller Рис. 12.3. Процедура онлайн-оплаты кредитной картой

Обработка онлайн-платежа сложнее, но с нашей точки зрения она выглядит
простой. Мы должны:

1)	 обеспечить безопасную передачу платежной информации в систему об-
работки платежей;

2)	 зарезервировать средства на карте;
3)	 после резервирования обновить информацию о состоянии платежа.

Как видите, все довольно просто. А теперь, когда вы получили общее пред-
ставление о процессе, давайте посмотрим, как его реализовать в пиццерии
тетушки Марии.

12.1.1. Реализация онлайн-платежей
Как объяснила тетушка Мария, сейчас клиент может заплатить, только ког-

да получит пиццу. Большинство клиентов было бы радо иметь возможность
внести предоплату с помощью карты. Чтобы реализовать эту возможность, в

 31 / 40

12.1. Платежные транзакции    271

веб-приложение нужно добавить страницу с платежной формой, куда клиент
сможет ввести необходимую информацию. После заполнения формы клиент
нажимает кнопку Оплатить, веб-страница отправляет данные в платежную
систему, и та списывает с его кредитной карты необходимую сумму.

Попробуйте представить шаги, реализующие операцию оплаты в приложе-
нии:

1)	 показать клиенту платежную форму с причитающейся суммой;
2)	 после того как клиент нажмет кнопку Оплатить, вызвать функцию для

резервирования средств со счета клиента с помощью платежной систе-
мы;

3)	 после резервирования средств изменить состояние заказа в базе дан-
ных.

ПРИМЕЧАНИЕ. Имейте в виду, что мы создаем минимально работоспособный
продукт, поэтому логика оплаты максимально упрощена. В действующем прило-
жении реализация оплаты должна учитывать множество других особенностей,
возможно, даже хранить историю платежей.

Этот процесс изображен на рис. 12.4.

Показать форму
оплаты.

Послать данные
карты.

Обработка
конфиденциальной
информации
осуществляется
платежной системой.

Проверка карты
также осуществляется
платежной системой.

Проверка
данных карты.

Зарезервировать
средства.

Изменить
состояние заказа

в базе данных.
Рис. 12.4. Диаграмма, иллюстрирующая
процедуру выполнения онлайн-платежа

 32 / 40

272    Глава 12. Получение платы за пиццу

Прежде чем приступить к реализации службы оплаты, нужно выбрать пла-
тежную систему. На выбор есть множество таких систем; в некоторых случаях
ваш банк может ограничивать ваш выбор. Но наиболее известными и наибо-
лее используемыми являются Stripe и Braintree. Мы могли бы использовать
любую из них, но решили остановиться на Stripe: это быстрая и простая в на-
стройке система, и она обеспечивает поддержку нескольких платформ.

ПРИМЕЧАНИЕ. Тех из вас, кто предпочел бы систему Braintree, мы уверяем,
что различия в реализации минимальны, они заключаются только в именах ис-
пользуемых библиотек и параметров. Если вы решите выбрать эту систему, просто
мысленно подставляйте название Braintree вместо Strip – в остальном процесс
будет тем же самым.

Теперь, определившись с выбором платежной системы, нам нужно настро-
ить свою учетную запись в Stripe и получить ключи Stripe API (как описано в
приложении C, в разделе «Настройка учетной записи Stripe и получение клю-
чей Stripe API»). Если у вас уже есть учетная запись Stripe, продолжайте чте-
ние; если нет, создайте ее прямо сейчас.

После настройки учетной записи Stripe войдите в нее и откройте в брау-
зере страницу Stripe Test (или введите в адресную строку браузера https://
dashboard.stripe.com/test/dashboard). Щелкните на ссылке Accept your first
payment («Принять свой первый платеж»), чтобы открыть документацию с
описанием Stripe, объясняющую, как настроить платежи по карте.

Как описывается на этой странице, мы должны выполнить два важных
шага:

1)	 безопасно собрать информацию о платеже и получить ключ;
2)	 использовать ключ для резервирования средств.

ПРИМЕЧАНИЕ. Описание этих шагов может отличаться, но суть остается той
же: безопасно собрать платежную информацию и использовать ее для взимания
платы с клиента.

Эти шаги фактически изменяют процедуру оплаты, описанную ранее. Мы
не будем запрашивать платежные реквизиты клиента и отправлять их в Stripe,
а просто покажем ему форму оплаты Stripe, которая отправит конфиденци-
альную платежную информацию прямо в Stripe. После проверки и сохранения
информации о платеже Stripe вернет вам ключ – шестнадцатеричную строку,
представляющую эту информацию. Срок действия ключа ограничен несколь-
кими минутами, и его можно использовать только один раз. Мы не будем хра-
нить одноразовый ключ, но используем его для взимания платы. Измененная
процедура показана на рис. 12.5.

 33 / 40

https://dashboard.stripe.com/test/dashboard
https://dashboard.stripe.com/test/dashboard

12.1. Платежные транзакции    273

Показать форму
оплаты.

Послать
и проверить

данные карты.

Платежная форма
Stripe автоматически
отправит и проверит
данные карты.

Ключ Strip необходим,
потому что теперь
у нас нет данных
о карте клиента.Зарезервировать

средства
с использованием

ключа, присланного
системой Stripe.

Изменить
состояние заказа

в базе данных.

Рис. 12.5. Процедура приема онлайн-
платежа с использованием платежной

системы Stripe

Как видите, наша ответственность сведена к минимуму. Теперь перечис-
лим, что мы должны реализовать.

1.	 Показать платежную форму и отправить информацию в Stripe – это
означает, что нам не нужно отображать свою HTML-страницу, а значит,
не нужно создавать свой HTML-документ.

	 Обычно это делается в пользовательском интерфейсе веб-приложе-
ния, но мы напишем свою простенькую страницу, чтобы можно было
протестировать свою службу и увидеть, как она действует. Stripe пред-
лагает несколько способов создать свою платежную форму – с исполь-
зованием:

�� Mobile SDK;
�� Checkout;
�� Stripe.js and Elements.

	 Поскольку нам нужно, чтобы форма отображалась в браузере, вари-
ант с использованием Mobile SDK не подходит. Checkout – это готовая
HTML-форма, быстрая и простая в применении, а Stripe.js и Elements
позволяют создать форму в своем стиле. Поскольку форма нам нужна
только для тестирования, выберем вариант с использованием Checkout.

2.	 Получить секретный ключ от системы платежей Stripe – платежная фор-
ма Stripe, в нашем случае Checkout, требует настройки конечной точки
веб-службы. Это означает, что кроме платежной формы нам также по-
требуется реализовать бессерверный API для приема конфиденциаль-
ных данных от Stripe. Поэтому мы создадим бессерверную функцию,
которая будет принимать ключ.

 34 / 40

274    Глава 12. Получение платы за пиццу

3.	 Послать запрос с ключом для взимания платы – получив ключ, наша бес-
серверная платежная функция должна вызвать Stripe API, чтобы списать
деньги с карты клиента, послав сумму, валюту и ключ.

4.	 Изменить информацию о заказе, исходя из состояния платежа – если списа-
ние прошло успешно, необходимо отыскать заказ в таблице DynamoDB
и изменить состояние заказа (рис. 12.6).

Теперь, зная, что мы должны реализовать, приступим к работе.

DynamoDB

2. 4.

3.

Данные
о карте

Клиент

Платежная
система

Данные
о карте

Списание

Ответ

Ключ от
системы

Stripe

Обновить
заказ

Бессервер-
ная служба

приема
платежей

Форма
ввода

платежной
информации

 С использованием ключа
создается запрос на списание
и отправляется в Stripe.

 Если списание прошло
успешно, обновляется
состояние заказа в базе
данных.

 После проверки Stripe возвращает
безопасный ключ, представляющий
данные клиента в вашей платежной
службе, а также другую информацию,
необходимую для оформления
платежа.

1. Клиент вводит данные
на вашей странице, и форма
Stripe Checkout автоматически
посылает их в Stripe.

Рис. 12.6. Диаграмма, иллюстрирующая процесс оплаты
с использованием платежной системы Stripe

12.2. Реализация платежной службы
Для приема платежей мы должны написать платежную службу и HTML-доку-
мент. То есть мы сразу оказываемся перед выбором – с чего начать. Начнем
с платежной службы, потому что нам потребуется указать URL развернутой
службы в форме Stripe Checkout, находящейся в HTML-документе.

Прежде всего создайте папку pizzeria-payments для нового проекта и перейди
те в нее в терминале.

ПРИМЕЧАНИЕ. Возможно, вам интересно, почему мы создаем новый отдель-
ный проект. При использовании бессерверного окружения AWS Lambda мы сове-
туем оформлять службы как независимые функции или компоненты. Отсутствие
тесной связи между службами дает следующие преимущества:

�� высокая надежность – если одна из служб выйдет из строя, остальные про-
должат работу, тогда как в монолитном приложении сбой одной службы
часто приводит к сбою всего приложения;

 35 / 40

12.2. Реализация платежной службы    275

�� простота сопровождения – чем меньше служба, тем уже круг решаемых ею
задач, благодаря чему она проще для понимания и сопровождения;

�� возможность повторного использования – любую функцию можно позднее
немного изменить и повторно использовать в других проектах.

Внутри папки создайте NPM-файл package.json, выполнив команду npm init -y.
Затем установите библиотеки Claudia API Builder и AWS SDK командой npm in-
stall -S claudia-api-builder aws-sdk. Поскольку мы решили использовать пла-
тежную систему Stripe, также выполните команду npm install -S stripe, чтобы
установить Stripe SDK для Node.js – библиотеку, упрощающую отправку за-
просов в Stripe.

Наша платежная служба подготовит запрос к системе Stripe, добавив в него
ключ, полученный ранее, и другую информацию, необходимую для взима-
ния платы с клиента, такую как вид валюты, сумма и идентификатор заказа.
Затем отправит этот запрос в Stripe с помощью Stripe SDK и получит в ответ
информацию о состоянии платежа. Если оплата прошла успешно, наша служ-
ба должна выполнить запрос к базе данных DynamoDB и обновить состояние
заказа в таблице pizza-orders. После этого служба должна вернуть сообщение
об успехе.

Прежде чем приступить к фактической реализации, потратим немного вре-
мени и подумаем о применении гексагональной архитектуры, чтобы потом
нам проще было протестировать нашу бессерверную платежную службу. Ка-
кие граничные объекты вам понадобятся?

Немного поразмыслив, вы придете к выводу, что нужны три граничных
объекта:

�� 	PaymentRequest – объект с данными, возвращаемыми в ответ на запрос о
списании средств;

�� 	PaymentRepository – объект с методом createCharge для создания запроса
на списание;

�� 	PizzaOrderRepository – объект с методом updateOrderStatus для обновления
заказа в таблице pizza-orders.

Разместим реализацию службы в четырех файлах:

�� 	payment.js – главный запускаемый файл службы, содержащий конеч-
ную точку для приема запросов POST, созданную с помощью Claudia API
Builder;

�� 	create-charge.js – файл с бизнес-логикой создания запроса на списание;
�� 	payment-repository.js – файл, реализующий взаимодействия с платежной

системой Stripe и определяющий единственный метод createCharge;
�� 	order-repository.js – файл, реализующий взаимодействия с базой дан-

ных AWS DynamoDB и обновляющий состояние заказа с учетом инфор-
мации о состоянии платежа.

 36 / 40

276    Глава 12. Получение платы за пиццу

Сначала создайте файл payment.js. Определите в нем объект запроса к Stripe
на оплату, содержащий ключ Stripe, сумму и валюту, а также идентификатор
заказа из атрибута metadata. Это необходимо, потому что Stripe не поддержива-
ет отправку дополнительных параметров через свои вызовы, но дает возмож-
ность послать свойство metadata со строковым значением. Stripe не использует
это свойство. Затем нужно вызвать функцию createCharge, импортированную
из файла create-charge.js. Если все прошло успешно, отправьте сообщение об
успехе. Иначе отправьте сообщение с описанием ошибки. Содержимое файла
payment.js показано в листинге 12.1.

Листинг 12.1. Файл payment.js с конечной точкой для запросов POST, посылаемых
платежной системой Stripe

'use strict'

const ApiBuilder = require('claudia-api-builder')
const api = new ApiBuilder()
const createCharge = require('./create-charge')

api.post('/create-charge', request => {

 let paymentRequest = {
 token: request.body.stripeToken,
 amount: request.body.amount,
 currency: request.body.currency,
 orderId: request.body.metadata
 }

 return createCharge(paymentRequest)
 .then(charge => {
 return { message: 'Payment Initiated!', charge: charge }
 }).catch(err => {

 return { message: 'Payment Initialization Error', error: err }
 })
})

module.exports = api

Затем создайте файл create-charge.js в корневой папке проекта. Он дол-
жен сначала импортировать файлы payment-repository.js (для работы с Stripe
API) и order-repository.js (для обновления заказов в AWS DynamoDB), а затем
определять функцию для приема запроса на оплату. Мы должны определить
описание платежа, а затем вызвать функцию paymentRepository.createCharge с

Импортировать экземпляр
Claudia API Builder.

Импортировать файл create-charge.js
с бизнес-логикой.

Вызвать функцию createCharge.

Определить конечную точку /create-charge.

Инициализировать атрибут orderId
значением атрибута metadata.

Создать граничный объект paymentRequest.

В случае успеха вернуть сообщение об успехе.

В случае ошибки вернуть
сообщение с ее описанием.

Экспортировать API
платежной службы.

 37 / 40

12.2. Реализация платежной службы    277

указанными ключом, суммой и валютой, чтобы фактически выполнить пла-
теж. После этого нужно вызвать метод orderRepository.updateOrderStatus с по-
лученным идентификатором оплаченного заказа orderId. Содержимое файла
create-charge.js показано в листинге 12.2.

Листинг 12.2. Файл create-charge.js с бизнес-логикой

'use strict'

const paymentRepository = require('./repositories/payment-repository.js')
const orderRepository = require('./repositories/order-repository.js')

module.exports = function (paymentRequest) {
 let paymentDescription = 'Pizza order payment'
 return paymentRepository.createCharge(paymentRequest.token,
 paymentRequest.amount,
 paymentRequest.currency, paymentDescription)
 .then(() => orderRepository.updateOrderStatus(paymentRequest.orderId))
}

Теперь перейдем к методу createCharge в файле payment-repository.js. Но пе-
ред этим немного реорганизуем проект: создайте папку repositories в корне-
вом каталоге проекта и перейдите в нее. Затем создайте файл payment-reposi-
tory.js. Внутри файла определите объект с единственным методом, который
создает запрос на списание средств вызовом метода stripe.charges.create.
Методу stripe.charges.create необходимо передать stripeToken (ключ, соответ-
ствующий транзакции клиента), сумму для списания со счета клиента, валюту
(сумма amount указывается в центах, если в параметре вида валюты currency
передается значение usd или eur) и описание транзакции. Содержимое файла
показано в листинге 12.3.

Листинг 12.3. Файл payment-repository.js, определяющий метод createCharge

'use strict'

const stripe = require('stripe')(process.env.STRIPE_SECRET_KEY)

module.exports = {
 createCharge: function (stripeToken, amount, currency, description){
 return stripe.charges.create({
 source: stripeToken,
 amount: amount,
 currency: currency,
 description: description
 })

Импортировать граничный
объект orderRepository.

Импортировать граничный
объект paymentRepository.

Вызвать функцию stripe.charges.create,
чтобы создать запрос.

Определить описание платежа.

Вызвать метод updateOrderStatus.

Вызвать метод createCharge.

Создать экземпляр Stripe SDK с ключом
доступа из STRIPE_SECRET_KEY.

 38 / 40

278    Глава 12. Получение платы за пиццу

 }
}

Реализацию протокола Stripe в файле payment-repository.js легко заменить
реализацией для Braintree или любой другой платежной системы. Оставляем
это читателю в качестве упражнения.

Теперь добавим последнюю часть: файл order-repository.js, реализующий
обновление состояния заказа в таблице pizza-orders.

Листинг 12.4. Файл order-repository.js, обновляющий состояние заказа в базе
данных DynamoDB

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = {
 updateOrderStatus: function (orderId) {
 return docClient.put({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set orderStatus = :s',
 ExpressionAttributeValues: {
 ':s': 'paid'
 }
 }).promise()
 }
}

Применив принципы гексагональной архитектуры, мы не только упрости-
ли тестирование этой платежной службы, но и облегчили возможность заме-
ны DynamoDB на Amazon Aurora или даже Amazon Relational Database Service
(Amazon RDS).

Последний шаг в реализации нашей платежной службы – ее развертывание
с помощью Claudia. В терминале, находясь в корневой папке проекта, выпол-
ните следующую команду, чтобы получить URL недавно созданного API:

claudia create --region us-east-1 --api-module payment \
 --set-env STRIPE_SECRET_KEY=<ваш-ключ-доступа-к-stripe>

Скопируйте и сохраните URL во временном файле, чтобы потом можно
было вставить его в HTML-форму, которую еще предстоит создать. Единствен-
ное, что нам осталось, – создать HTML-документ с формой.

Импортировать класс
DocumentClient.

Определение функции updateOrderStatus,
принимающей идентификатор заказа.

Изменить состояние заказа
с указанным идентификатором.

Записать в атрибут значение
paid (оплачен).

 39 / 40

12.2. Реализация платежной службы    279

Заключив, что эта бессерверная платежная служба должна быть универ-
сальной и решать единственную задачу, мы теперь не можем просто вставить
в нее HTML-документ. Поэтому создайте отдельную папку для нового проек-
та с именем payment-form и внутри нее создайте HTML-документ payment-form.
html. В элемент body добавьте элемент form с атрибутом action, ссылающимся
на URL недавно созданной бессерверной платежной службы. Внутри элемента
form создайте элемент script, загружающий форму Stripe Checkout. В элементе
script нужно определить следующие атрибуты:

�� 	data-key (начинающийся с pk_test_);
�� 	data-amount, представляющий сумму платежа (в центах для валют USD и

EUR);
�� 	data-name с текстом для отображения в заголовке окна оформления пла-

тежа;
�� 	data-description с текстом описания платежа;
�� 	data-image, если вы решите включить URL своего логотипа или изображе-

ния для вывода в форме;
�� 	data-locale с языковыми настройками (можно присвоить значение auto,

чтобы автоматически выбрать язык, настроенный в браузере);
�� 	data-zip-code с признаком необходимости запросить у пользователя

почтовый индекс (логическое значение);
�� 	data-currency с кодом валюты.

Содержимое файла payment-form.html показано в листинге 12.5.

Листинг 12.5. Файл payment-form.html со страницей для оплаты

<html>
<head>
</head>
<body>
<form action="<paste-your-function-url-here>" method="POST">
 <script
 src="https://checkout.stripe.com/checkout.js" class="stripe-button"
 data-key="<ваш-ключ-доступа-к-stripe>"
 data-amount="100"
 data-name="Demo Site"
 data-description="2 widgets"
 data-image="https://stripe.com/img/documentation/checkout/marketplace.png"
 data-locale="auto"
 data-zip-code="true"
 data-currency="usd">
 </script>

Элемент form.

Ваш ключ доступа к Stripe.

Элемент script для загрузки
формы Stripe Checkout.

Текст для вывода в заголовке окна.
Сумма платежа.

Описание платежа.

URL-адрес логотипа
или изображения для

вывода в форме.Код валюты.
Признак необходимости ввода почтового индекса.

Выбор языка.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

280    Глава 12. Получение платы за пиццу

</form>
</body>
</html>

Создав файл payment-form.html, откройте его в браузере. Вы увидите кнопку
Pay (Оплатить) в форме, загруженной из платежной системы Stripe. Щелкните
на ней, и появится форма оплаты Stripe с суммой $1, как определено в приме-
ре (data-amount = "100"). Форма должна выглядеть примерно так, как показано
на рис. 12.7.

Рис. 12.7. Платежная форма

ПРИМЕЧАНИЕ. Если вы не увидите кнопку Pay (Оплатить), проверьте еще раз
все шаги, описанные в этой главе. Если вы еще не получили ключи доступа к Stripe
API, обратитесь к разделу «Настройка учетной записи Stripe и получение ключей
Stripe API» в приложении C. Если у вас уже есть учетная запись, войдите в па-
нель мониторинга Stripe и перейдите на страницу «API keys» по адресу https://
dashboard.stripe.com/account/apikeys.

Для проверки платежной системы введите следующие данные:

�� тестовый номер карты 4242 4242 4242 4242 (загляните на страницу
https://stripe.com/docs/testing#cards);

�� дату (месяц и год) истечения срока действия карты в будущем;
�� любое трехзначное число в качестве секретного кода;
�� любой случайный почтовый индекс;
�� любой адрес электронной почты.

 1 / 40

https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://stripe.com/docs/testing#cards

12.3. Можно ли взломать нашу платежную службу?    281

Затем нажмите кнопку Pay (Оплатить).
Вот и все. Через несколько секунд ваш платеж должен быть обработан. За-

глянув в таблицу pizza-orders, вы увидите, что заказ получил статус paid (опла-
чено). Также обязательно загляните в панель мониторинга Stripe Dashboard
(https://dashboard.stripe.com/test/dashboard), чтобы увидеть платеж. Еще мож-
но просмотреть журналы в CloudWatch, чтобы увидеть, прошел или не прошел
платеж.

Как видите, использование Claudia.js и Claudia API Builder существенно
упрощает разработку и поддержку бессерверной платежной службы. Но как
насчет безопасности?

12.3. Можно ли взломать нашу платежную
службу?
Отсутствие полного контроля над инфраструктурой или окружением выпол-
нения может вызывать беспокойство. Как знать, может быть, в фоновом режи-
ме работает какая-то вредоносная служба, которая крадет данные о кредит-
ных картах ваших клиентов? А как насчет риска взлома или мошенничества,
которые могут уничтожить наш бизнес?

Мы не можем знать, что происходит на серверах поставщика услуг бессер-
верных вычислений. Эти опасения оправданны, потому что успешные по-
пытки взлома провайдера могут нанести ущерб нашему предприятию. Но мы
часто упускаем из виду два фактора, играющих важную роль в обеспечении
безопасности:

�� стандарты;
�� компетентность.

12.3.1. Стандарты
Безопасность и надежность службы обработки платежей имеют большое

значение не только для нас, но и для наших клиентов. Поэтому безопасность –
один из главных приоритетов почти в каждой компании, по крайней мере на
бумаге. Безопасность постоянно укрепляется, каждый день обнаруживаются
новые проблемы. Естественно, что с течением времени многие передовые
практики образовали единый стандарт, а также появился орган по стандар-
тизации.

Органом по стандартизации является совет по стандартам безопасности в
индустрии платежных карт (Payment Card Industry Security Standards Council,
PCI SSC), отвечающий за определение и обеспечение безопасности платежей
и методов обработки данных клиентов. Основным стандартом обеспечения
безопасности платежей является стандарт безопасности данных индустрии
платежных карт (Payment Card Industry Data Security Standard, PCI DSS,).

Услуги, соответствующие стандарту, называют PCI DSS-совместимыми.

 2 / 40

https://dashboard.stripe.com/test/dashboard

282    Глава 12. Получение платы за пиццу

Что такое PCI DSS-совместимость?
Стандарт PCI DSS устанавливает требования к организациям и продав-

цам по безопасному и надежному приему, хранению, обработке и передаче
данных о держателе карты во время транзакций с кредитной картой, чтобы
предотвратить мошенничество и утечку данных. Совместимость с PCI DSS
означает, что вы безопасно обрабатываете данные держателя карты во время
транзакции.

Для соответствия стандарту PCI DSS необходимо выполнить множество
требований, таких как настройка брандмауэра, шифрование транзакций,
ограничение физического доступа к данным, реализация внутренних поли-
тик безопасности компании и т. д. Текст стандарта можно найти по адресу
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf.

В настоящее время почти все поставщики услуг бессерверных вычислений
обеспечивают совместимость с PCI DSS, в том числе:

�� AWS Lambda;
�� Microsoft Azure Functions;
�� Google Cloud Functions;
�� IBM OpenWhisk.

Узнать больше о совместимости с PCI DSS можно на главном портале https://
www.pcisecuritystandards.org.

ПРИМЕЧАНИЕ. Несмотря на то что AWS Lambda совместима с PCI DSS, это не
означает, что ваша служба автоматически становится совместимой с PCI DSS. Сов
местимость провайдера со стандартом означает лишь, что вам не нужно думать о
соответствии с PCI DSS на уровне инфраструктуры. Но вам все равно нужно поза-
ботиться о совместимости своей кодовой базы и способов обработки конфиден
циальной информации при выполнении платежей.

12.3.2. Компетентность
Уязвимости в системе безопасности возможны почти всегда. Многие ком-

пании и инженеры ставят под сомнение компетентность поставщиков инфра-
структуры или, в данном случае, поставщиков услуг бессерверных вычислений.
Некоторые даже пытаются сами разрабатывать свои системы безопасности,
несмотря на строгость, необходимую для достижения соответствия PCI.

В некоторых случаях эти усилия могут давать определенный эффект, но
если у вас возникнет искушение сделать это, подумайте – действительно ли
вы или ваша компания более компетентны в защите ваших данных, чем из-
вестные поставщики услуг бессерверных вычислений, такие как Amazon AWS,
Microsoft Azure, Google Cloud или другие.

Ответственность за обеспечение безопасной обработки платежей огром-
на, и неправильная реализация может нанести большой урон вам или вашим

 3 / 40

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org

12.4. Опробование!    283

клиентам. Поэтому наличие компетентного поставщика услуг бессерверных
вычислений, обеспечивающего совместимость с PCI, должно быть одним из
главных приоритетов при разработке бессерверных приложений.

12.4. Опробование!
Как было показано в этой главе, реализация бессерверной платежной службы
не требует много труда и времени. А теперь пришло время проверить ваши
знания!

12.4.1. Упражнение
Ваша задача: создать новую бессерверную функцию, возвращающую спи-

сок ранее созданных платежей. Реализуйте ее с применением гексагональной
архитектуры. Но прежде чем приступить к выполнению упражнения, позна-
комьтесь с дополнительной информацией о Stripe API:

�� чтобы получить все ранее выполненные платежи, используйте ме-
тод listCharges; дополнительную информацию о нем ищите по адресу
https://stripe.com/docs/api#list_charges;

�� вам потребуется настроить в своей бессерверной функции использова-
ние ключа доступа STRIPE_SECRET_KEY и развернуть ее командой claudia
create --set-env;

�� в отсутствие платежей служба charge-listing должна возвращать пустой
список.

Если этой информации вам покажется недостаточно, попробуйте найти
дополнительные сведения самостоятельно. Вот несколько советов, которые
могут вам пригодиться:

�� с помощью Claudia API Builder создайте конечную точку API с именем
GET /charges;

�� создайте объект ChargeRepository.

Если этого вам будет недостаточно, подсмотрите готовое решение в следую
щем разделе.

12.4.2. Решение
А теперь рассмотрим наше решение. Сначала обсудим общий алгоритм.
Когда запрос поступает в конечную точку GET /charges, мы должны проанали

зировать его и вызвать метод getAllCharges объекта ChargesRepository. Метод
getAllCharges должен вызвать stripe.charges.create без параметров, затем про-
анализировать объект с ответом системы Stripe и вернуть список из атрибута
data. Этот список должен отправляться клиенту в виде массива.

Прежде всего создайте папку проекта charges. Внутри этой папки выпол-
ните команду npm init -y и затем команду npm install -S claudia-api-builder
stripe. Потом создайте два файла:

 4 / 40

https://stripe.com/docs/api#list_charges

284    Глава 12. Получение платы за пиццу

�� 	payment.js в корневой папке проекта;
�� 	payment-repository.js в папке repositories внутри папки проекта.

В следующих двух листингах приводится полный код службы charge-listing.
В листинге 12.6 приводится содержимое файла payment.js с конечной точкой
GET /charges для приема входящих запросов Stripe. Обработчик конечной точ-
ки должен вызвать метод paymentRepository.getAllCharges, чтобы получить все
платежи. В случае успеха он должен вернуть список без какой-либо дополни-
тельной обработки. В случае ошибки отправьте клиенту сообщение со свойст
вом error, содержащим описание ошибки.

Листинг 12.6. Файл payment.js

'use strict'

const ApiBuilder = require('claudia-api-builder')
const api = new ApiBuilder()
const paymentRepository = require('./repositories/payment-repository')

api.get('/charges', request => {

 return paymentRepository.getAllCharges()
 .catch(err => {

 return { message: 'Charges Listing Error', error: err }
 })
})

module.exports = api

В листинге 12.7 показано содержимое файла payment-repository.js, отвечаю
щего за получение всех платежей, произведенных пользователем. Он реа-
лизует метод getAllCharges, который вызывает метод stripe.charges.list без
параметров.

Листинг 12.7. Файл payment-repository.js

'use strict'

const stripe = require('stripe')(process.env.STRIPE_SECRET_KEY)

module.exports = {
 getAllCharges: function (){
 return stripe.charges.list()
 .then(response => response.data)

Вызвать метод stripe.charges.list.
Вернуть response.data
со списком платежей.

Создать экземпляр
Stripe SDK с ключом
доступа
из STRIPE_SECRET_KEY.

Импортировать файл
paymentrepository.js.

Импортировать экземпляр
Claudia API Builder.

В случае неудачи вернуть сообщение об ошибке.

Вызвать метод paymentRepository.getAllCharges.

Экспортировать
службу charge-listing.

Определение конечной
точки GET /charges.

 5 / 40

В заключение    285

 }
}

В заключение
�� Знать, как осуществлять платежи, необходимо для разработки любых

приложений, независимо от того, являются оно бессерверными или нет.
�� Обработку платежей лучше реализовать в виде независимой бессер-

верной службы, чтобы она работала стабильно и не зависела от других
служб в вашем приложении.

�� Интегрировать платежную систему Strip в платежную службу на основе
AWS Lambda очень просто.

�� Тщательно проработанная и независимая платежная служба может
впоследствии использоваться другими вашими продуктами или услуга-
ми.

�� Отсутствие контроля над инфраструктурой не является оправданием
для снижения уровня безопасности.

�� Хорошим показателем безопасности вашей платежной службы может
быть совместимость вашего поставщика услуг бессерверных вычисле-
ний со стандартом PCI DSS.

�� Совместимость с PCI – обязательное требование при выборе поставщика
услуг бессерверных вычислений, потому что она обеспечивает необхо
димый уровень безопасности.

 6 / 40

Глава 13
Миграция существующих

приложений Express.js
в окружение AWS Lambda

Эта глава охватывает следующие темы:

	запуск приложений Express.js в бессерверной экосистеме AWS
Lambda;

	обслуживание статического контента приложений Express.js;
	подключение бессерверных приложений Express.js к MongoDB;
	ограничения и риски использования приложений Express.js в бес-

серверной экосистеме.

Express.js – наиболее важный и широко используемый фреймворк в экосисте-
ме Node.js. И тому есть веские причины: Express.js прост в использовании и
имеет обширную экосистему вспомогательного программного обеспечения,
способствующего в создании серверных API и веб-приложений. Но для ис-
пользования Express.js по-прежнему требуется сервер, на котором будет раз-
мещаться приложение, а это значит, что мы вернулись к проблемам, которые
пытается решить эта книга с помощью бессерверных технологий. Есть ли спо-
соб сохранить существующее приложение Express.js и при этом пользоваться
всеми преимуществами бессерверных вычислений?

Веб-фреймворк Express.js по сути является HTTP-сервером. Бессерверным
приложениям не нужны HTTP-серверы, потому что HTTP-запросы обрабаты-
ваются шлюзом API Gateway. Но, к счастью, AWS Lambda предлагает возмож-
ность выполнять существующие приложения Express.js с небольшими изме-
нениями. В этой главе рассказывается, как это сделать, а также описываются
некоторые наиболее существенные ограничения для выполнения приложе-
ний Express.js в бессерверном окружении.

 7 / 40

13.2. Запуск приложения Express.js в AWS Lambda     287

13.1. Приложение для таксомоторной компании
дядюшки Роберто
На последнем семейном совете тетушка Мария похвасталась своим новым
онлайн-бизнесом. По ее словам, она получила то, о чем и мечтать не смела, и
самое замечательное, что новое приложение просто работает – оно отлично
справляется с любым количеством заказов.

Ее брат, дядюшка Роберто, отметил, что ей здорово повезло, потому что
сам давно страдает от проблем в приложении для его таксомоторной ком-
пании. Пока клиентов немного, оно работает, но когда заявок поступает
больше, чем обычно, например в дождь, приложение падает. К сожалению,
его IT-команда не может справиться с проблемами, и он теряет клиентов
и деньги.

Роберто спросил, как нам удалось создать такое чудесное приложение для
тетушки Марии и можно ли что-то сделать для увеличения надежности его
приложения. Мы объяснили ему, что многое зависит от технологии, которую
использует приложение.

Через несколько дней мы получили сообщение, что приложение в таксо-
моторной компании использует Express.js и MongoDB. Оно действует на не-
большом виртуальном частном сервере, который обслуживает RESTful API для
мобильного приложения, а его административная часть реализована в виде
набора HTML-страниц. То есть это самое обычное приложение Express.js. Мы
согласились провести исследования и через несколько дней сообщить дядюш-
ке Роберто, сможем ли чем-нибудь помочь ему.

13.2. Запуск приложения Express.js
в AWS Lambda
Прежде чем приступать к исследованиям, создадим простое приложение Ex-
press.js – мы используем его для проверки работы Express.js в AWS Lambda.
Для этого создайте новую папку проекта simple-express-app. Затем инициали-
зируйте в ней новый проект NPM и установите Express.js как зависимость, вы-
полнив команду npm i express -S.

Первым делом создадим один файл с маршрутом Express.js и попробуем за-
пустить его под управлением AWS Lambda. Итак, создайте файл app.js в папке
проекта simple-express-app.

Внутри файла импортируйте модуль express и с его помощью создайте но-
вое приложение Express. Затем добавьте маршрут GET /, возвращающий текст
«Hello World». Наконец, определите порт приложения и запустите сервер вы-
зовом функции server.listen.

На данный момент содержимое файла app.js должно выглядеть, как пока-
зано в листинге 13.1.

 8 / 40

288    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

Листинг 13.1. Приложение Express.js

'use strict'

const express = require('express')
const app = express()

app.get('/', (req, res) => res.send('Hello World'))

const port = process.env.PORT || 3000
app.listen(port, () => console.log(`App listening on port ${port}`))

Теперь запустите это простое приложение Express.js командой

node app.js

Эта команда запустит локальный сервер, который будет прослушивать
порт 3000, если переменная окружения PORT не определена. Открыв страницу
http://localhost:3000 в веб-браузере, вы должны увидеть текст «Hello World».

Самый простой способ запустить существующее приложение Express.js в
окружении AWS Lambda – воспользоваться модулем aws-serverless-express из
Node.js. Для использования этого модуля не требуется вносить существенных
изменений в приложение Express.js.

Итак, чтобы подготовить приложение к выполнению под управлением AWS
Lambda и API Gateway, откройте файл app.js и замените вызов функции app.
listen простой инструкцией импортирования, как показано в листинге 13.2.
Это позволит обертке Express.js в AWS Lambda загрузить ваше приложение.

Листинг 13.2. Приложение Express.js, подготовленное для выполнения
в окружении AWS Lambda

'use strict'

const express = require('express')
const app = express()

app.get('/', (req, res) => res.send('Hello World'))

module.exports = app

Но теперь это приложение не получится запустить на локальном компью-
тере командой node app.js.

Чтобы исправить эту проблему, создайте в папке проекта файл app.local.js.
Этот файл должен импортировать приложение Express.js из файла app.js и вы-
зывать функцию app.listen для запуска локального сервера, прослушивающе-
го указанный порт.

Создать приложение Express.js.

Создать маршрут GET, возвращающий
текст «Hello World».

Запустить
приложение
на указанном
порту.

Настроить порт, указанный в
переменой окружения PORT,
или 3000, если эта переменная
не определена.

Вместо вызова функции app.listen нужно
экспортировать экземпляр приложения.

 9 / 40

13.2. Запуск приложения Express.js в AWS Lambda     289

Содержимое файла app.local.js приводится в листинге 13.3.

Листинг 13.3. Выполнение приложения Express.js, подготовленного для работы
в среде AWS Lambda, на локальном компьютере

'use strict'

const app = require('./app')
const port = process.env.PORT || 3000

app.listen(port, () => console.log(`App listening on port ${port}`))

Чтобы убедиться, что локальная версия приложения Express.js по-прежне-
му работает в соответствии с нашими ожиданиями, выполните команду

node app.local.js

После этого, открыв страницу http://localhost:3000 в веб-браузере, вы долж-
ны увидеть все тот же текст «Hello World».

Теперь, убедившись, что локальная версия работает, сгенерируем обертку
для приложения Express.js. Для этого достаточно выполнить команду claudia
generate-serverless-express-proxy. Эта команда требует передать ей параметр
--express-module и указать путь к главному файлу без расширения .js. Напри-
мер, для файла app.js команда должна выглядеть так:

claudia generate-serverless-express-proxy --express-module app

ПРИМЕЧАНИЕ. Для опробования примеров в этой главе у вас должна быть уста-
новлена версия Claudia не ниже 3.3.1.

Эта команда сгенерирует файл lambda.js и установит модуль aws-server-
less-express как зависимость времени разработки.

Файл, созданный командой, – это обертка, которая запускает приложение
Express.js в окружении AWS Lambda. Она использует функцию awsServerless-
Express.createServer, чтобы запустить приложение Express.js внутри функции
Lambda. Затем вызывает функцию awsServerlessExpress.proxy, чтобы преобра-
зовать запрос API Gateway в HTTP-запрос и передать его в приложение Ex-
press.js, а потом преобразовать и вернуть ответ в API Gateway.

Содержимое файла показано в листинге 13.4.

Листинг 13.4. Обертка AWS Lambda для приложений Express.js

'use strict'
const awsServerlessExpress = require('aws-serverless-express')
const app = require('./app')

Настроить порт и запустить
приложение.

Импортировать приложение
из файла app.js.

Импортировать модуль
aws-serverless-express.

Импортировать приложение из файла app.js.

 10 / 40

290    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

const binaryMimeTypes = [
 'application/octet-stream',
 'font/eot',
 'font/opentype',
 'font/otf',
 'image/jpeg',
 'image/png',
 'image/svg+xml'
]
const server = awsServerlessExpress.createServer(app, null, binaryMimeTypes)
exports.handler = (event, context) => awsServerlessExpress.proxy(server,
 event, context)

Следующий шаг: развертывание API в AWS Lambda и API Gateway. Сделать
это можно с помощью команды claudia create, но здесь есть одно важное отли-
чие от команд, которые использовались для развертывания API в предыдущих
главах: мы должны использовать параметр --handler вместо --api-module, а
также добавить параметр --deploy-proxy-api. Эти параметры обеспечат интег
рацию с оберткой и непосредственную передачу всех запросов к API Gateway
в нашу функцию Lambda.

Чтобы развернуть приложение Express.js, выполните следующую команду:

claudia create --handler lambda.handler --deploy-proxy-api --region eu-central-1

В случае успеха эта команда должна вывести отчет, как показано в листин-
ге 13.5.

Листинг 13.5. Результат развертывания

{
 "lambda": {
 "role": "simple-express-app-executor",
 "name": "simple-express-app",
 "region": "eu-central-1"
 },
 "api": {
 "id": "8qc6lgqcs5",
 "url": "https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest"
 }
}

Как видите, обычный ответ команды развертывания дополнен параметром
url. И если открыть этот URL в браузере (в данном случае https://8qc6lgqcs5.
execute-api.eu-central-1.amazonaws.com/latest), то вы должны увидеть текст
«Hello World».

Список разрешенных MIME-типов запросов,
которые будут преобразовываться и
передаваться в приложение Express.js.

Создать HTTP-сервер.

Экспортировать функцию-обработчик,
пересылающую запросы в приложение

Express.js.

Адрес URL обертки.

 11 / 40

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest

13.2. Запуск приложения Express.js в AWS Lambda     291

13.2.1. Интеграция с оберткой
Как рассказывалось в главе 2, API Gateway можно использовать в двух ре-

жимах:

�� с моделями и шаблонами запросов и ответов;
�� в интеграции с оберткой.

Первый режим больше подходит для типизированных языков, таких как
Java и .Net, но поскольку библиотека Claudia ориентирована исключительно
на JavaScript, она всегда использует второй режим. В этом случае API Gateway
всегда передает запросы непосредственно в функцию AWS Lambda, которая
сама должна обеспечить маршрутизацию и обработку запросов.

Когда выполняется развертывание обертки для приложения Express.js, биб
лиотека Claudia выполняет следующие операции:

�� создает ресурс обертки с переменной пути {proxy+};
�� настраивает метод ANY для ресурса обертки;
�� интегрирует ресурс и метод с помощью функции Lambda.

Узнать больше об интеграции обертки можно по адресу https://docs.aws.am-
azon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html.

13.2.2. Как работает serverless-express
Фактически приложение Express.js – это небольшой HTTP-сервер внутри

функции AWS Lambda, а модуль serverless-express действует в роли прокси
между API Gateway и этим HTTP-сервером.

Когда пользователь посылает HTTP-запрос, API Gateway передает его в
функцию AWS Lambda. Внутри функции модуль serverless-express запускает
сервер Express.js и кеширует его для обработки повторных запросов, а затем
преобразует событие API Gateway в HTTP-запрос, который передает приложе-
нию Express.js.

Не является ли запуск HTTP-сервера
внутри AWS Lambda антишаблоном?

Бессерверные приложения все еще считаются новинкой, поэтому шаблоны и
методы программирования пока сформировались не полностью. Они меняются
с появлением каждой новой особенности. Запуск HTTP-сервера внутри AWS
Lambda выглядит как антишаблон, и этот подход имеет несколько недостатков,
например увеличение времени выполнения и размера функций. Но он имеет
также множество положительных сторон, таких как возможность использова-
ния существующей кодовой базы и избежание привязки к поставщику. Еще
одна причина, по которой этот подход нельзя назвать антишаблоном, заключа-
ется в том, что AWS Lambda со средой выполнения GoLang использует анало-
гичный подход для запуска функции.

 12 / 40

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

292    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

После этого приложение Express.js выполняет обычную для него после-
довательность действий – маршрутизатор выбирает обработчик и приме-
няет все промежуточные функции. Когда приложение Express.js посылает
ответ, модуль serverless-express преобразует его в формат, понятный API
Gateway, и затем он возвращается пользователю. Этот процесс изображен
на рис. 13.1.

Маршру-
тизатор

Обработчик

Приложение
Express.js

API Gateway

Браузер

Функция AWS Lambda

Бессер-
верная
обертка
Express

1. Браузер посылает
HTTP-запрос.

2. API Gateway получает запрос,
анализирует его и передает
функции AWS Lambda.

3. Функция Lambda получает запрос,
запускает приложение Express.js и
передает ему запрос.

4. Express.js в
бессерверном
приложении
действует точно
так же, как любое
другое приложение
Express.js; оно
использует
маршрутизатор
для выбора
функции-
обработчика и
затем
обрабатывает
запрос, попутно
применяя все
промежуточные
функции.

5. …6. …
7. Браузер получает
HTTP-ответ.

Рис. 13.1. Последовательность действий, выполняемых
в бессерверном приложении Express.js

13.3. Обслуживание статического контента
Еще один сценарий, который мы должны проверить, – это обслуживание
статического контента из приложения Express.js, потому что именно так
организована работа административного раздела в приложении дядюшки
Роберто.

Для проверки нам понадобится простая статическая HTML-страница. По-
дойдет любая страница, включающая хотя бы одно изображение и простой
файл CSS, – это позволит нам проверить работу с файлами разных типов.

Прежде всего создадим новую папку static внутри проекта Express.js.
Затем добавим в эту папку файл index.html, который загружает style.css,
отображает некоторый заголовок и изображение, например логотип Clau-
dia (claudiajs.png). Оба файла, style.css и claudiajs.png, будут загружаться из
папки static.

В листинге 13.6 показано содержимое файла index.html.

 13 / 40

13.3. Обслуживание статического контента    293

Листинг 13.6. Файл index.html

<!doctype html>
<html>
 <head>
 <title>Static site</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <h1>Hello from serverless Express.js app</h1>

 </body>
</html>

Теперь добавьте в папку static логотип Claudia (его можно найти в приме-
рах исходного кода к книге или на веб-сайте проекта Claudia) и файл style.css.

Нет нужды добавлять в файл CSS что-то необычное, но при желании вы мо-
жете проявить творческий подход. Однако в книге мы ограничимся определе-
нием простого стиля, оформляющего заголовок синим цветом, добавляющего
тень и располагающего текст по центру страницы. Содержимое нашего файла
CSS показано в листинге 13.7.

Листинг 13.7. Файл style.css

body {
 margin: 0;
}

h1 {
 color: #71c8e7;
 font-family: sans-serif;
 text-align: center;
 text-shadow: 1px 2px 0px #00a3da;
}

img {
 display: block;
 margin: 40px auto;
 width: 80%;
 max-width: 400px;
}

Далее добавим в файл app.js обслуживание статического содержимого из
папки static. Для этого следует использовать промежуточную функцию ex-
press.static, как показано в листинге 13.8.

Загрузить файл CSS.

Показать на странице
изображение claudiajs.png.

Это заголовок.

 14 / 40

294    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

Листинг 13.8. Обслуживание статического контента из приложения Express.js

'use strict'

const express = require('express')
const app = express()

app.use('/static', express.static('static'))

app.get('/', (req, res) => res.send('Hello World'))

module.exports = app

Теперь можно проверить работу локальной версии приложения Express.js,
выполнив команду node app.local.js и открыв в браузере страницу http://lo-
calhost:3000/static.

Если локальная версия работает нормально, обновите приложение коман-
дой claudia update.

Дождитесь завершения команды и откройте страницу https://8qc6lgqcs5.ex-
ecute-api.eu-central-1.amazonaws.com/latest/static/. Вы должны увидеть свою
статическую HTML-страницу с логотипом Claudia, как показано на рис. 13.2.

ПРИМЕЧАНИЕ. Завершающий слеш (/) в этом URL является обязательным. Если
опустить его (ввести адрес https://8qc6lgqcs5.execute-api.eu-central-1.
amazonaws.com/latest/static), попытка открыть страницу завершится неудачей.

Рис. 13.2. Статическая HTML-страница из приложения Express.js в AWS Lambda

Извлекать статический
контент из папки static.

 15 / 40

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static

13.4. Подключение к MongoDB    295

13.4. Подключение к MongoDB
До сих пор все шло как по маслу – нам понадобилось внести лишь весьма не-
значительные изменения. Но получится ли у нас так же легко и просто связать
приложение с базой данных MongoDB?

Функцию AWS Lambda можно связать с любой базой данных, но если база
данных не является бессерверной, могут возникнуть проблемы, когда при
масштабировании функции будет выполнена попытка установить с базой
данных слишком много соединений (не забывайте, что база данных не мас-
штабируется автоматически).

Чтобы обеспечить нормальную работу базы данных с функцией AWS Lamb-
da, можно:

�� выбрать базу данных, которая легко и быстро масштабируется;
�� ограничить масштабируемость функции AWS Lambda до пределов, не

превышающих возможностей базы данных;
�� использовать управляемую базу данных.

Первый вариант требует большого опыта практической работы и хорошего
знания особенностей разных баз данных, однако и то, и другое находится за
рамками этой книги.

Второй вариант имеет право на жизнь, но ограничение масштабируемости
не позволит приложению справляться с наплывом пользователей в пиковые
периоды. Больше узнать об управлении масштабируемостью в окружении
AWS можно по адресу https://docs.aws.amazon.com/lambda/latest/dg/concur-
rent-executions.html.

Последний вариант самый простой и, пожалуй, самый лучший, поэтому
остановим свой выбор на нем. Для поддержки базы данных MongoDB, кото-
рую использует приложение дядюшки Роберто, можно использовать проект
MongoDB Atlas, предлагаемый MongoDB, Inc. Он размещает базу данных на
одном из нескольких облачных ресурсов, включая AWS. Более подробную ин-
формацию о MongoDB Atlas можно найти по адресу https://www.mongodb.com/
cloud/atlas.

13.4.1. Использование управляемой базы данных MongoDB
с бессерверным приложением Express.js
Прежде всего вам нужно зарегистрировать учетную запись в MongoDB Atlas

и создать базу данных, как описывается в приложении C.
Также нужно настроить подключение к базе данных в файле app.js. Для это-

го установите NPM-модули mongodb и body-parser как зависимости в своем про-
екте Express.js. Первый позволит устанавливать соединения с базой данных
MongoDB, а второй даст приложению Express.js возможность анализировать
запросы POST.

Установив модули, создадим соединение с базой данных. Функции AWS
Lambda на самом деле способны сохранять состояние между вызовами, потому

 16 / 40

https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas

296    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

что если функция будет повторно вызвана в течение следующих нескольких
минут, для ее выполнения может использоваться тот же самый контейнер. Это
означает, что все, что находится за пределами функции-обработчика, будет
сохранено, и вы сможете повторно использовать то же соединение MongoDB.

Например, сохранив соединение с базой данных за пределами функции-
обработчика, вы сможете проверить его активность, вызвав:

cachedDb.serverConfig.isConnected()

Если соединение все еще активно, вы должны использовать его. Если соеди
нение неактивно, можно создать новое, вызвав функцию MongoClient.connect
и сохранив установленное соединение в переменной перед дальнейшим ис-
пользованием. Затем нужно активировать модуль body-parser.

Старайтесь повторно использовать активное соединение, потому что любая
база данных имеет ограничение на максимальное число активных соедине-
ний. Например, бесплатный экземпляр MongoDB Atlas поддерживает не более
100 активных соединений. Это означает, что одновременно к нему может об-
ратиться не более 100 функций Lambda. Повторное использование активно-
го соединения поможет вам не превысить это ограничение и одновременно
уменьшить задержки, потому что для установки нового соединения с базой
данных требуется некоторое время.

Процесс подключения функции Lambda к базе данных MongoDB изображен
на рис. 13.3.

Функция
AWS Lambda

Создать
соединение
с MongoDB

Запрос
к MongoDB Вызвать

Кешировать
соединение
с MongoDB

активно?

API Gateway
вызывает

функцию AWS
Lambda.

AWS Lambda
проверяет наличие

соединения с
MongoDB в кеше.

Если соединение
отсутствует,

создается новое
соединение.

Кешировать соединение.

Выполнить
запрос к
MongoDB.

Вернуть ответ
MongoDB в AWS
Lambda.

Ответ функции
AWS Lambda.

Рис. 13.3. Процесс подключения к базе данных MongoDB
и кеширования активного соединения

На данный момент начало файла app.js должно выглядеть, как в листин-
ге 13.9.

 17 / 40

13.4. Подключение к MongoDB    297

Листинг 13.9. Начало файла app.js

const express = require('express')
const app = express()
const { MongoClient } = require('mongodb')
const bodyParser = require('body-parser')

let cachedDb = null

function connectToDatabase(uri) {
 if (cachedDb && cachedDb.serverConfig.isConnected()) {
 console.log('=> using cached database instance')
 return Promise.resolve(cachedDb)
 }

 return MongoClient.connect(uri)
 .then(client => {
 cachedDb = client.db('taxi')
 console.log('Not cached')
 return cachedDb
 })
}

app.use(bodyParser.json())

Теперь проверим соединение функции Express.js с базой данных MongoDB.
Самый простой способ сделать это – записать что-нибудь в коллекцию в базе
данных, а затем прочитать содержимое коллекции, чтобы убедиться, что
данные действительно были записаны. С этой целью добавим два маршру-
та: один будет выполнять запись в базу данных MongoDB, а другой – чтение.
Например:

�� маршрут POST /orders, который будет добавлять новый заказ;
�� маршрут GET /orders, который будет возвращать список всех имеющихся

заказов.

Вот как будет выглядеть процесс выполнения этих двух новых маршрутов.

1.	 Запрос POST /orders достигнет API Gateway и будет передан в функцию
AWS Lambda.

2.	 Функция Lambda запустит приложение Express.js.
3.	 Затем функция Lambda преобразует запрос API Gateway в HTTP-запрос

и отправит его в приложение Express.js.
4.	 Приложение Express.js проверит наличие соединения с MongoDB и при

необходимости создаст новое соединение.

Импортировать модуль mongodb.

Кеш для соединения с базой данных.

Соединиться с базой данных.

Активировать
модуль body-parser.

Проверить наличие
соединения с базой данных
в кеше, и если оно имеется
и активно – вернуть его.

Иначе создать новое
соединение и сохранить в кеше.

Импортировать модуль body-parser.

 18 / 40

298    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

5.	 Обработчик в приложении Express.js сохранит заказ в MongoDB и вернет
ответ.

6.	 Функция Lambda преобразует ответ приложения Express.js в формат, ко-
торый ожидает получить API Gateway.

7.	 API Gateway вернет ответ пользователю.
8.	 Получив ответ, пользователь тут же отправит запрос GET /orders, и API

Gateway передаст его в функцию Lambda.
9.	 Функция Lambda преобразует запрос API Gateway в HTTP-запрос и

отправит его в уже существующий экземпляр приложения Express.js.
10.	 Приложение Express.js проверит наличие соединения с MongoDB и, по-

скольку оно установлено, использует его для получения всех заказов из
базы данных.

11.	 Функция Lambda преобразует ответ приложения Express.js и передаст
его в API Gateway.

12.	 Пользователь получит ответ от API Gateway со списком всех заказов.

ПРИМЕЧАНИЕ. Соединение с MongoDB и экземпляр приложения Express.js со-
храняются в кеше. Это происходит один раз, в момент холодного запуска функции.

Описанный процесс изображен на рис. 13.4.
Для подключения обработчиков новых маршрутов к базе данных MongoDB

используем функцию connectToDatabase, созданную выше. Передадим ей стро-
ку соединения с MongoDB, хранящуюся в переменной окружения.

Далее, чтобы получить все записи из коллекции orders и преобразовать ре-
зультат в простой массив JavaScript, маршрут GET /orders должен вызвать функ-
цию db.collection('orders').find().toArray(). Эта команда вернет объект Promise,
и когда он завершит выполнение, мы сможем вызвать функцию res.send из
фреймворка Express.js, чтобы послать результат или сообщение об ошибке.

Маршрут POST /orders отличается от GET /orders только тем, что должен
записать новый элемент в базу данных, а не прочитать элементы из нее. Что-
бы выполнить запись, используем функцию db.collection('orders').insertOne и
передадим ей объект JSON, содержащий только адрес доставки.

Фактическая реализация маршрутов показана в листинге 13.10.

Листинг 13.10. Маршруты для чтения и записи новых заказов на такси

app.get('/orders', (req, res) => {
 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').find().toArray()
 })
 .then(result => {
 return res.send(result)

Добавить маршрут GET.

Получить соединение
с базой данных.

Получить все заказы и
преобразовать их в массив.В случае успеха

вернуть результат.

 19 / 40

13.4. Подключение к MongoDB    299

 })
 .catch(err => res.send(err).status(400))
})

app.post('/orders', (req, res) => {
 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').insertOne({
 address: req.body.address
 })
 })
 .then(result => res.send(result).status(201))
 .catch(err => res.send(err).status(400))
})

API Gateway

Получен запрос
POST /orders

HTTP-ответ

Получение
GET /orders

Запустить приложение
Express.js

Подключиться
к MongoDB

Создать новое
соединение

Сохранить заказ

Прочитать заказы

Записать заказ
в MongoDB

Заказ сохранен

Использовать имею-
щееся соединение

с MongoDB

Читать заказы
из MongoDB

Список заказов

Вызвать приложение
Express.js

Преобразовать
ответ Express.js

AWS Lambda
Приложение

Express.js MongoDB Atlas

HTTP-ответ

Вызвать приложение
Express.js

Преобразовать
ответ Express.js

Рис. 13.4. Процесс записи и чтения заказов из MongoDB

Получить соединение
с базой данных.

В случае успеха вернуть
результат.

Если что-то пошло не так,
вернуть ошибку с кодом 400.

Если что-то пошло не так, вернуть
ошибку с кодом 400.

Добавить маршрут POST.

Записать заказ
в базу данных.

 20 / 40

300    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

Добавив обработчики, проверим подключение к MongoDB на локальном
компьютере командой node app.local.js, но не забудьте перед этим инициа-
лизировать переменную окружения MONGODB_CONNECTION_STRING. Например:

MONGODB_CONNECTION_STRING=mongodb://localhost:27017 node app.local.js

Если проверка на локальном компьютере прошла успешно, выполните ко-
манду claudia update с параметром --set-env или --set-env-from-json, в котором
передайте переменную MONGODB_CONNECTION_STRING. Например, вот как могла бы
выглядеть такая команда:

claudia update --set-env MONGODB_CONNECTION_STRING=mongodb://<пользователь>:
<пароль>@robertostaxicompany-shard-00-00-rs1m4.mongodb.net:27017,
robertostaxicompany-shard-00-01-rs1m4.mongodb.net:27017,robertostaxicompany
-shard-00-02-rs1m4.mongodb.net:27017/taxi?ssl=true&replicaSet=
RobertosTaxiCompany-shard-0&authSource=admin

ПРИМЕЧАНИЕ. В примерах исходного кода для этой книги мы использовали
другой способ, чтобы показать доступные возможности: строка соединения с Mon-
goDB определена в файле env.json и передается функции AWS Lambda командой
claudia update --set-env-from-json env.json.
У нас определена только одна переменная окружения, поэтому подойдут оба ва-
рианта. Но на будущее, если вам понадобится несколько переменных, мы совету-
ем создавать файл JSON с их определениями, потому что такой подход уменьшает
длину команды и вероятность ошибиться при ее вводе.

После развертывания приложения можете попробовать добавить заказ,
послав запрос POST на адрес https://8qc6lgqcs5.execute-api.eu-central-1.ama-
zonaws.com/latest/orders. Аналогично можно посетить тот же адрес https://8q-
c6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders и увидеть в брау
зере список заказов.

13.5. Ограничения бессерверных приложений
Express.js
Теперь, проверив все важные стороны работы приложения, можно сообщить
дядюшке Роберто, что его приложение Express.js вполне можно перенести на
платформу AWS Lambda. Уверены, он будет рад услышать это, а мы получим в
награду множество бесплатных поездок на такси.

Но прежде давайте поговорим о некоторых наиболее важных ограничени-
ях, стоящих на пути приложений Express.js к бессерверному окружению.

Первое и, пожалуй, самое очевидное ограничение – бессерверные при-
ложения Express.js не смогут использовать веб-сокеты. Если в приложении
дядюшки Роберто используются веб-сокеты для общения с клиентами в режи-
ме реального времени, оно будет работать не так, как ожидалось. Некоторую

 21 / 40

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders

13.6. Опробование!    301

ограниченную поддержку веб-сокетов в AWS Lambda может обеспечить AWS
IoT MQTT через протокол WebSockets. Более подробную информацию о про-
токоле MQTT ищите по адресу https://docs.aws.amazon.com/iot/latest/devel-
operguide/protocols.html#mqtt. Пример проекта на основе Claudia вы найдете
по адресу https://github.com/claudiajs/serverless-chat.

Другое ограничение связано с выгрузкой файлов. Если приложение попыта-
ется выгрузить файл в любую папку, кроме /tmp, оно потерпит неудачу, потому
что все дисковое пространство в AWS Lambda, кроме этой папки, доступно
только для чтения. Но даже если вы выгрузите файл в папку /tmp, он просу-
ществует в ней очень недолгое время. Чтобы организовать выгрузку файлов,
используйте AWS S3.

Следующее ограничение – аутентификация. Аутентификацию в бессер-
верных приложениях Express.js можно реализовать, например, используя
библиотеку Passport.js, но вам придется обеспечить сохранение сеансов вне
локальной файловой системы. Или, если вы пользуетесь библиотеками Node.
js, вам придется упаковать их в статические файлы с использованием машины
EC2, выполняющейся под управлением Amazon Linux. Больше информации о
таких библиотеках вы найдете по адресу https://nodejs.org/api/addons.html.

Кроме того, API Gateway накладывает свои ограничения для приложений
Express.js. Например, Node.js и Express.js позволяют послать запрос GET с те-
лом; API Gateway не поддерживает такой возможности.

Помимо всего перечисленного, существуют определенные ограничения
времени выполнения, например максимальное время ожидания API Gateway
составляет 30 секунд, а максимальное время выполнения функции AWS
Lambda ограничено 5 минутами. Если приложению Express.js требуется боль-
ше 30 секунд для ответа, запрос не будет выполнен. Кроме того, если приложе-
ние Express.js должно ответить на HTTP-запрос и продолжить выполнение, из
этого тоже ничего не выйдет, потому что выполнение функции AWS Lambda
будет остановлено сразу после отправки HTTP-ответа. Это поведение зави-
сит от свойства callbackWaitsForEmptyEventLoop контекста Lambda; по умолча-
нию оно имеет значение true. Это означает, что обратный вызов будет ждать,
пока цикл событий не исчерпает все события, прежде чем остановить процесс
и вернуть результаты вызывающей стороне. В это свойство можно записать
значение false, чтобы запросить AWS Lambda приостановить процесс сразу
после обратного вызова, даже если в буфере еще есть события.

Если ни одно из этих ограничений не нарушается, приложение дядюшки
Роберто вполне сможет работать в окружении AWS Lambda.

13.6. Опробование!
А теперь выполните небольшое упражнение.

13.6.1 Exercise
Добавьте маршрут DELETE /order/:id, который удалит заказ по идентифика-

тору, указанному в URL.

 22 / 40

https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html#mqtt
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html#mqtt
https://github.com/claudiajs/serverless-chat
https://nodejs.org/api/addons.html

302    Глава 13. Миграция существующих приложений Express.js в окружение AWS Lambda

Вот несколько советов, которые могут вам помочь:

�� параметры URL определяются в стиле Express.js (например, :id), а не в
стиле API Gateway и Claudia API Builder (например, {id});

�� удалить запись из MongoDB можно вызовом функции collection.delete-
One;

�� не забудьте преобразовать идентификатор заказа в идентификатор
MongoDB вызовом новой функции mongodb.ObjectID.

Если вам это задание покажется слишком простым, попробуйте реализо-
вать аутентификацию в приложении Express.js. (Можете также попробовать
запустить существующее приложение Express.js в AWS Lambda, если у вас оно
есть. Для этого дополнительного задания мы не дадим никаких советов.)

13.6.2. Решение
Решение этого упражнения напоминает реализацию маршрута POST /orders.
Вы должны добавить новый маршрут DELETE в файл app.js в виде метода app.

delete. Внутри этого метода нужно подключиться к базе данных и с помощью
функции db.collection('orders').collection.deleteOne удалить запись из кол-
лекции orders.

Так как идентификатор заказа передается в виде строки, его следует
преобразовать в идентификатор MongoDB с помощью функции mongodb.
ObjectID(req.params.id).

Новый маршрут должен выглядеть, как показано в листинге 13.11.

Листинг 13.11. Маршрут удаления заказа

app.delete('/orders/id', (req, res) => {

 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').collection.deleteOne({
 _id: new mongodb.ObjectID(req.params.id)
 })
 })
 .then(result => res.send(result))
 .catch(err => res.send(err).status(400))
})

После развертывания функции командой claudia update проверьте работу
метода delete с помощью curl или Postman.

ПРИМЕЧАНИЕ. Не забудьте настроить строку соединения с MongoDB командой
claudia update с параметром --set-env или --set-env-from-json.

Подключиться
к базе данных. Добавить маршрут

DELETE /order/:id.
Удалить запись
из базы данных.

Преобразовать идентификатор
заказа в идентификатор MongoDB.

Вернуть результат.
Или код ошибки 400, если
что-то пошло не так.

 23 / 40

В заключение    303

В заключение
�� Приложения Express.js можно запускать в окружении AWS Lambda с по-

мощью библиотеки Claudia и модуля serverless-express.
�� Для поддержки статического контента в бессерверных приложениях Ex-

press.js не требуется никаких модификаций.
�� Используйте управляемый экземпляр MongoDB, если только не собирае

тесь реализовать свой механизм управления масштабированием.
�� Сохраняйте соединение с базой данных в переменной за пределами

функции-обработчика.
�� Для приложений Express.js в окружении AWS Lambda существуют опре-

деленные ограничения, например ограничена возможность использо-
вания веб-сокетов, а запросы не должны обрабатываться дольше 30 се-
кунд.

 24 / 40

Глава 14
Миграция в бессерверное

окружение

Эта глава охватывает следующие темы:

	порядок миграции в бессерверное окружение;
	приведение структуры приложения в соответствие с характеристи-

ками провайдера услуг бессерверных вычислений;
	организация архитектуры приложения с учетом требований биз-

неса и возможности дальнейшего развития;
	архитектурные различия между бессерверными и традиционными

серверными приложениями.

Рано или поздно наступит момент, когда вам придется задуматься об изме-
нении своих бессерверных приложений, о переносе существующих приложе-
ний в бессерверное окружение и о том, как такой перенос скажется на вашем
бизнесе.

Вас начнут волновать вопросы организации и поддержки большого коли-
чества бессерверных функций. Вы можете также задуматься об ограничениях
вашего провайдера услуг бессерверных вычислений, таких как «холодный за-
пуск», и как они могут повлиять на приложение. В этой главе мы сначала по-
говорим об архитектуре бессерверных приложений, а затем рассмотрим не-
которые из этих проблем, чтобы вы могли понять, как правильно переносить
приложения в бессерверное окружение и как запускать их в эксплуатацию.

14.1. Анализ текущего бессерверного
приложения
Перед миграцией в бессерверное окружение желательно сначала рассмотреть
существующее бессерверное приложение и особенности организации его

 25 / 40

14.2. Миграция существующего приложения в бессерверное окружение    305

основных служб. На протяжении всей книги вы помогали тетушке Марии и
способствовали процветанию ее пиццерии, создав следующие бессерверные
службы:

�� прикладной интерфейс (API) – этот прикладной интерфейс возвращает
список доступных пицц, принимает заказы и сохраняет заказы в бес-
серверной базе данных. Он соединяется со службой доставки, хранит
изображения пицц в бессерверном хранилище, а также поддерживает
авторизацию;

�� служба обработки изображений – уменьшает фотографии пицц, создавая
миниатюры для отображения в веб- или мобильном приложении;

�� чат-бот для Facebook Messenger – чат-бот способен по запросу клиента
представить список пицц, принять заказ и отправить запрос в службу
доставки. Он также предусматривает упрощенную обработку естествен-
ного языка, что позволяет ему вести короткие диалоги с клиентами;

�� чат-бот для Twilio SMS – этот чат-бот тоже может вернуть список пицц
и принять заказ;

�� сценарии для голосового помощника Alexa – поддержка голосового помощ-
ника Alexa позволяет клиенту с помощью его устройства Echo запросить
список пицц и заказать выбранную пиццу;

�� платежная служба – эта независимая платежная служба связывается с
платежной системой Stripe и позволяет клиенту оплатить заказ;

�� приложение для таксомоторного парка дядюшки Роберто – мы рассмот
рели возможность миграции приложения Express.js дядюшки Роберто в
бессерверное окружение. Это приложение никак не связано с тетушкой
Марией, но для нас было полезно познакомиться с одним из возможных
решений миграции существующих приложений.

Получился довольно обширный список, но чтобы лучше понять приложе-
ние и взаимоотношения между его службами, предпочтительнее иметь перед
глазами нарисованную диаграмму. Полная схема служб, разработанных для
тетушки Марии, показана на рис. 14.1. Поскольку приложение дядюшки Ро-
берто не имеет отношения к системе тетушки Марии, мы опустили его.

Диаграмма наглядно показывает, как работают и как разделены наши бес-
серверные службы. Но вам может быть интересно узнать, почему службы те-
тушки Марии организованы именно так, а не иначе, потому что это знание
поможет вам перенести в бессерверное окружение свои существующие при-
ложения.

14.2. Миграция существующего приложения
в бессерверное окружение
Создание бессерверных приложений с нуля требует изменить свой взгляд на
задачу. Но как только вы начинаете думать в терминах бессерверных вычис-

 26 / 40

306    Глава 14. Миграция в бессерверное окружение

лений, все быстро становится на свое место. С помощью таких инструмен-
тов, как Claudia, циклы разработки и развертывания становятся короткими и
простыми.

14.1 Analyzing your current serverless application
Before any migration to serverless, a good starting point is to look at an existing server-
less application and the organization of its underlying services. Throughout the book,
you’ve helped Aunt Maria and her pizzeria flourish, mostly due to the following server-
less services you’ve created:

¡	An API—This API lists pizzas, takes pizza orders, and stores them in a serverless data-
base. It connects to a delivery service, stores pizza images in a serverless storage, and
also enables authorization.

¡	An image-processing service—This service converts pizza photos from large scale
into thumbnails, preparing them for potential web or mobile usage.

¡	A Facebook Messenger chatbot—The chatbot can, on customer request, list pizzas, make
pizza orders, and create delivery requests. It also has natural language processing,
which you enabled, so it can respond to small talk initiated by your customers.

¡	A Twilio SMS chatbot—This chatbot can also list pizzas and take pizza orders.
¡	An Alexa skill—This Alexa skill enables the customer’s Echo device to list Aunt

Maria’s pizzas and helps customers order pizzas.
¡	A payment service—This independent payment service is connected to Stripe and

allows you to charge your online pizza customers for pizza orders.
¡	Uncle Roberto’s taxi application—You migrated your Uncle Roberto’s Express.js

taxi application to serverless with ease. This application is not connected to Aunt
Maria’s, but it’s worthwhile looking at its migration as a possible solution for one
or more of your current applications.

Having a list like this is great, but to have a better understanding of an application and
its service relationships, seeing them in a diagram is always more convenient. A complete
diagram of the serverless services you’ve developed for Aunt Maria is shown in figure 14.1.
Because Uncle Roberto’s application is outside of Aunt Maria’s system, it’s not displayed.

The diagram shows exactly how your serverless services are working and how they are
separated. But you may be wondering why Aunt Maria’s services are structured like that,
and how you can migrate your existing applications to serverless.

14.2 Migrating your existing application to serverless
Building serverless applications from scratch requires a mind shift. But once you start
thinking in a serverless way, all the dots connect quickly. With the help of tools such as
Claudia, development and deployment cycles are short and easy.

If you already have an application running and serving customers, it’s unlikely that
you’ll just start from scratch. Instead, you have an app with a few thousand lines of code
and a couple thousand daily active users, with a history of decisions caused by business
requests or other issues that shaped your code in a specific way.

Can you and should you migrate such an application to serverless? The answer is not
a simple one, because it depends on the specifics of your application, the structure of
your team, and many other things. But in most cases, serverless can be beneficial for
legacy applications.

Обработка
списка пицц

и заказов

База данных DynamoDB
Хранилище S3

для
изображений

и файлов

Маршрутиза-
тор / Шлюз

Слой
хранения

Слой
бизнес-логики

API

Обработка
платежей

Чат-бот
Facebook

Messenger

Чат-бот
Twilio SMS

Обработка
изображений

Поддержка
Alexa

Мобильное
и веб-приложения
взаимодействуют

с основным
приложением через API.

Платежная система
тоже использует API

для обработки
результатов
транзакции.

Чат-боты используют
разные API.

Alexa
взаимодействует
с функцией AWS

Lambda напрямую.

Маршрути-
затор /
Шлюз

Маршрути-
затор /
Шлюз

Маршрути-
затор /
Шлюз

Рис. 14.1. Диаграмма, иллюстрирующая бессерверные службы
в приложении для тетушки Марии и отношения между ними

Если у вас уже есть приложение, которое работает и обслуживает клиентов,
вы, скорее всего, захотите использовать существующий код, чтобы не начи-
нать с нуля. У вас уже есть приложение с тысячами активных пользователей и
тысячами строк кода, сформировавшихся под воздействием бизнес-требова-
ний и других проблем.

Можно ли и должны ли вы переносить такое приложение в бессерверное
окружение? Ответить на этот вопрос непросто, потому что многое зависит
от специфики приложения, структуры вашей команды и многого другого. Но
в большинстве случаев миграция в бессерверное окружение может положи-
тельно сказаться на приложении.

После миграции бессерверная архитектура будет подталкивать вас к под-
держанию приложения в хорошей форме. Она поощряет дальнейшую реорга-

 27 / 40

14.2. Миграция существующего приложения в бессерверное окружение    307

низацию с целью уменьшения затрат; надежный и эффективный код станет
хорошим бизнес-решением.

После принятия решения об использовании бессерверных вычислений воз-
никает следующий вопрос: как правильно перенести приложение в бессер-
верное окружение. Прежде всего начните с малого, с наименее важных ком-
понентов приложения, которые легко отделить от монолита.

У одного из наших клиентов имелась служба, которая преобразовывала ка-
талоги PDF в изображения JPG, чтобы их можно было подписывать, связывать
и обслуживать в мобильных приложениях. Служба была частью большего мо-
нолитного приложения. После загрузки файла PDF служба обрабатывала его,
для каждой страницы генерировала изображение JPG и рассылала мобильные
push-уведомления почти 100 000 пользователей, сообщая о доступности но-
вого каталога.

Проблема возникала при попытке выгрузить второй большой каталог PDF
сразу вслед за первым. Пользователи, получившие push-уведомление, откры-
вали приложение, и в результате один и тот же сервер вынужден был решать
сразу две задачи: обслуживать запросы пользователей и преобразовывать
файлы. Так как преобразование документов PDF в изображения JPG является
довольно ресурсоемкой процедурой, а процесс автоматического масштаби-
рования действовал с интервалом в две-три минуты, запросы пользователей
часто терялись в самый неподходящий момент – когда пользователь нажимал
на push-уведомление.

У клиента имелось несколько вариантов решения проблемы, в том числе
установить отдельный сервер для обработки PDF (который будет простаивать
большую часть времени) или запускать автоматическое масштабирование
до того, как это понадобится. Но стоимость инфраструктуры и без того была
слишком высока, поэтому клиент решил перенести эту службу на AWS Lambda
и сделать ее бессерверной на 100 %.

Всего несколько дней спустя они получили полностью работоспособную
службу преобразования PDF в JPG, не зависящую от сервера API. Они могли
загружать PDF-файлы прямо в AWS Simple Storage Service (S3) – бессерверную
службу хранения статических файлов – из своей панели инструментов. После
этого S3 запускала функцию AWS Lambda, которая преобразовывала PDF-фай-
лы в изображения JPG с помощью ImageMagick. Больше об интеграции S3 с
AWS Lambda можно прочитать в главе 7, а дополнительную информацию о
службе S3 можно узнать на официальном сайте https://aws.amazon.com/s3/.

Поскольку преобразование PDF в JPG происходит довольно медленно, а
некоторые каталоги PDF содержат по нескольку сотен страниц, они исполь-
зовали шаблон проектирования «Ветвление»: первая функция Lambda полу-
чает запрос и загружает файл PDF, а затем для каждой страницы запускает
другую функцию Lambda, используя рассылку событий через службу простых
уведомлений (Simple Notification Service, SNS). После преобразования всех
страниц первая функция соединялась с API для отправки push-уведомлений
всем пользователям. Порядок работы службы преобразования показан на
рис. 14.2.

 28 / 40

https://aws.amazon.com/s3/

308    Глава 14. Миграция в бессерверное окружение

Обычная
серверная

панель
управления

Обычный
серверный API

Функция
AWS Lambda

подсчета
страницКорзина

AWS S3

Функция AWS
Lambda

преобразования
страницы

AWS SNS

Панель управления
выгружает файл PDF

в корзину AWS S3.

После преобразования всех
страниц PDF в изображения JPG
функция AWS Lambda
сообщит API, что можно
разослать push-уведомления
(это может произойти несколько
раз, API примет и обработает
только первое событие).

Каждая функция Lambda
преобразует только одну
страницу PDF, выгружает
полученное изображение

JPG в S3 и проверяет, все
ли страницы

преобразованы.

В ответ на каждое
событие AWS SNS
запускает новую

функцию Lambda.

AWS S3 вызывает
функцию AWS Lambda.

Функция AWS Lambda подсчитывает страницы и для
каждой посылает отдельное SNS-уведомление,

чтобы параллельно запустить несколько функций
преобразования (это и есть шаблон «Ветвление»).

Рис. 14.2. Перенос малой части приложения в бессерверное окружение:
преобразование PDF в JPG с использованием функций Lambda

и шаблона проектирования «Ветвление»

Шаблон проектирования «Ветвление»
В бессерверной архитектуре функции – это узкоспециализированные компо-
ненты, имеющие ограниченную область ответственности и выполняющие одно
или небольшое количество действий. Они не подходят для выполнения про-
должительных операций или фоновых процессов.

Поскольку нашим приложениям часто требуется обрабатывать большие объ
емы данных или выполнять продолжительные операции, вокруг бессерверных
функций начал развиваться новый набор шаблонов проектирования. Одним из
наиболее полезных является шаблон «Ветвление». Ветвление ускоряет продол-
жительные операции и может моделировать фоновые процессы, распределяя
работу между многими функциями. Идея заключается в том, что одна функция
получает запрос, а затем вызывает несколько других функций и каждой деле-
гирует свою порцию работы.

Этот шаблон может пригодиться для реализации медленных операций, таких
как преобразование файлов PDF в изображения JPG или для пакетной обра-
ботки данных и во многих других случаях. Инициировать ветвление в AWS
можно с помощью AWS SDK или другой службы, например AWS SNS.

 29 / 40

14.3. Общий взгляд на платформу    309

Если перенос одной службы в бессерверное окружение прошел успешно,
следуйте дальше тем же путем, разделяя монолитное приложение на отдель-
ные службы шаг за шагом. Также можно использовать прием, описанный в
главе 13, и попробовать запустить все приложение Express.js в AWS Lambda.
Это хороший способ начать использовать бессерверные вычисления, но не
стоит рассматривать такой шаг как окончательное решение. Перенос моно-
литного приложения в AWS Lambda целиком не сделает его быстрее и дешев-
ле, все может получиться с точностью до наоборот. Миграция на бессервер-
ную платформу потребует от вас изменить свои привычки. И в этой главе мы
рассмотрим некоторые из основных сложностей, таких как холодный запуск.

Другой подход заключается в том, чтобы поместить API Gateway перед
приложением и заменять маршруты по одному с использованием функций
AWS Lambda или других бессерверных компонентов, соответствующих ва-
шим потребностям (рис. 14.3). После этого вы сможете понаблюдать за своими
службами и оптимизировать их.

API Gateway

Обычное монолитное приложение AWS Lambda AWS Lambda

1. Все запросы к API сначала
попадают в Amazon API
Gateway.

4. Ответ возвращается
пользователю через API
Gateway.

3. Если миграция
маршрута еще
не выполнена,
API Gateway
вызовет
монолитное
приложение и
дождется ответа.

2. Если миграция маршрута в AWS Lambda
уже выполнена, API Gateway вызовет
функцию Lambda и дождется ответа.

Рис. 14.3. Пошаговая миграция API в бессерверное окружение

Переход от маршрутов к функциям AWS Lambda относительно прост; труд-
нее реализовать другие части приложения, такие как аутентификацию и авто
ризацию или доступ к базам данных. Чтобы перевести все ваше приложение
на бессерверную основу, потребуется охватить все его составляющие, а не
только функции.

14.3. Общий взгляд на платформу
Бессерверная архитектура обещает определенные выгоды, такие как низкая
стоимость, скорость и стабильность. Но чтобы получить эти выгоды, недоста-

 30 / 40

310    Глава 14. Миграция в бессерверное окружение

точно использовать ограниченное подмножество бессерверных технологий
и продолжать применять те же принципы, что применяются при разработке
традиционных серверных приложений. Вам придется пойти ва-банк и орга-
низовать приложение так, чтобы оно включало только бессерверные службы
и позволяло пользователям подключаться к ним напрямую.

Если пользователь подключается напрямую к базе данных или к хранили-
щу файлов, это антишаблон. Но в бессерверной среде в сочетании с другими
службами, такими как Cognito, этот подход становится шаблоном, способным
значительно снизить стоимость вашей инфраструктуры.

В этом разделе обсуждаются некоторые вопросы, которые мы часто слы-
шим от людей, пытающихся перенести свои существующие приложения в
бессерверное окружение.

14.3.1. Обслуживание статических файлов
Так же как традиционные серверные приложения (как было показано в гла-

ве 13), API Gateway и AWS Lambda способны обслуживать статические файлы,
такие как документы HTML и изображения. Но статические файлы значитель-
но увеличивают стоимость (и иногда задержки) услуги бессерверных вычис-
лений из-за масштабирования, потому что каждый раз, когда пользователь
запрашивает файл, вы будете платить за использование API Gateway для по-
лучения запроса и возврата ответа, а также за использование AWS Lambda для
обработки запроса и передачи данных.

Стоимость может показаться небольшой, но API Gateway обходится намно-
го дороже, чем Amazon S3. Кроме того, обработка статических файлов по-
средством API Gateway и AWS Lambda может повлиять на ваши ограничения
и помешать обработке более важных запросов. Итак, как лучше обслуживать
статические файлы в бессерверной архитектуре?

Вы должны дать пользователю возможность напрямую взаимодействовать
с Amazon S3, когда это возможно. Если потребуется ограничить доступ для
определенных пользователей, используйте Cognito. Чтобы позволить выгру-
жать файлы только определенным пользователям, применяйте предвари-
тельно подписанный URL (см. главу 7).

14.3.2. Сохранение состояния
Другой важный вопрос касается управления состоянием в бессерверных

приложениях. Существует распространенное заблуждение, что функции
AWS Lambda не имеют состояния. Но это не так, и обращение с ними как с
компонентами, не имеющими состояния, может привести вас к дополни-
тельным затратам как с точки зрения времени выполнения, так и величины
оплаты.

По словам Гойко Адзича (Gojko Adzic), создателя Claudia и MindMup, попу-
лярного инструмента для создания интеллект-карт, бессерверное окружение
следует рассматривать не как окружение без состояния, а как архитектуру без
совместно используемых ресурсов. Под каждой бессерверной функцией есть

 31 / 40

14.3. Общий взгляд на платформу    311

виртуальная машина (ВМ), но вы не знаете, как долго она будет существовать
и будет ли эта же ВМ обрабатывать ваш следующий запрос.

Архитектура без совместно используемых ресурсов
Архитектура без совместно используемых ресурсов (shared-nothing (SN)
architecture) – это архитектура распределенных вычислений, в которой каж-
дый узел является независимым и самодостаточным и нет единственной точки,
где возникает конкуренция. Проще говоря, никакие узлы не используют об-
щую память или дисковое пространство. Люди часто сравнивают SN-систе-
мы с системами, хранящими большое количество информации о состоянии в
централизованном хранилище – в базе данных, на сервере приложений или в
любой другой подобной точке конкуренции. Узнать больше об архитектуре без
совместно используемых ресурсов можно по адресу https://en.wikipedia.
org/wiki/Shared-nothing_architecture.

Служба AWS Lambda не позволяет хранить состояние, ее главная зада-
ча – оптимизация выполнения. Например, в главе 13 мы запускали прило-
жение Express.js за пределами функции-обработчика и тем самым повысили
производительность обработки запросов, которые повторно попадают в одну
и ту же виртуальную машину. Для долговременного хранения состояния сле-
дует использовать другую службу, такую как DynamoDB или даже S3, в зависи-
мости от сложности состояния, которое требуется сохранить.

Если вы реализуете машину, действующую в зависимости от текущего
состояния (конечный автомат), вам может пригодиться AWS Step Functions.
С помощью этой службы вы легко сможете координировать работу компонен-
тов распределенных приложений и микросервисов, используя визуальные
инструменты, и иметь возможность сохранения промежуточных состояний.
Узнать больше об AWS Step Functions можно по адресу https://aws.amazon.com/
step-functions/.

14.3.3. Журналы
Как рассказывалось в главе 5, CloudWatch имеет встроенную интеграцию с

другими компонентами бессерверного окружения, такими как AWS Lambda и
API Gateway. Но CloudWatch не самое лучшее решение для журналирования.

К счастью, есть и другие варианты, улучшающие работу с журналами в бес-
серверном окружении, например сторонние решения или запуск функций
Lambda или Elasticsearch из CloudWatch.

В числе наиболее популярных сторонних решений можно назвать IOpipe
(https://www.iopipe.com), службу мониторинга, которая позволяет видеть
параметры производительности функций, рассылать оповещения в реаль-
ном времени и выполнять трассировку распределенного стека. Настроить
IOpipe довольно просто: вы регистрируетесь в службе, получаете идентифи-

 32 / 40

https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://www.iopipe.com

312    Глава 14. Миграция в бессерверное окружение

катор клиента, устанавливаете модуль IOpipe из NPM командой npm install @
iopipe / iopipe --save, а затем заключаете свой обработчик в функцию iopipe,
как показано в листинге 14.1.

Листинг 14.1. Заключение обработчика в функцию iopipe

const iopipe = require('@iopipe/iopipe')

const iopipeWrapper = iopipe({
 clientId: process.env.CLIENT_TOKEN
})

exports.handler = iopipeWrapper(
 function(event, context, callback) {
 // Здесь должен находиться код обработчика
 }
)

Интеграцию IOpipe с Claudia API Builder можно реализовать, как показано
в листинге 14.2.

Листинг 14.2. Интеграция IOpipe с Claudia API Builder

const iopipe = require('@iopipe/iopipe')

const iopipeWrapper = iopipe({
 clientId: process.env.CLIENT_TOKEN
})

// Определения маршрутов

api.proxyRouter = iopipeWrapper(api.proxyRouter)
module.exports = api

Другой вариант – потоковая передача журналов в функцию AWS Lambda
или службу Amazon Elasticsearch. Это решение позволяет организовать по-
токовую передачу всех журналов и подключить журналы к другим обычным
инструментам, таким как стек Elastic. Стек Elastic, также известный как стек
ELK, – это комбинация из трех программных продуктов с открытым исходным
кодом (Elasticsearch, Logstash и Kibana), которые помогают организовать ана-
лиз и визуализацию журналов. Узнать больше о стеке Elastic можно по адресу
https://www.elastic.co/elk-stack.

СОВЕТ. Организовать потоковую передачу журналов в функцию AWS Lambda или
службу Amazon Elasticsearch в единственный поток журналов или в группу мож-

Импортировать модуль IOpipe.

Интеграция IOpipe с функцией AWS
Lambda с помощью api.proxyRouter.

Сгенерировать функцию-обертку с
использованием идентификатора клиента.

Заключить обработчик
в функцию-обертку IOpipe.

 33 / 40

https://www.elastic.co/elk-stack

14.3. Общий взгляд на платформу    313

но с помощью настроек журналирования CloudWatch в веб-консоли AWS. Узнать
больше о потоковой передаче журналов в службу Amazon Elasticsearch можно
по адресу https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
CWL_ES_Stream.html.

Какой вариант лучше?
Ответ на этот вопрос зависит от вашего приложения, используемых инстру-

ментов и ваших личных предпочтений. Сторонние библиотеки журналирова-
ния предлагают более широкие возможности и доступ к данным, отсутству-
ющим в CloudWatch. Но, как показано на рис. 14.4, они также увеличивают
время задержки вашей функции. В большинстве случаев время выполнения
увеличивается ненамного, но так как стоимость услуги бессерверных вычис-
лений определяется за 100-миллисекундные интервалы, это может увеличить
ваш счет.

Время выполнения AWS Lambda

Запрос

Задержки
в сети

Время
выполнения

вашей
функции

Сторонняя
библиотека
журналирования

Время выполнения
API Gateway

Рис. 14.4. Продолжительность обработки запроса
с использованием сторонних библиотек журналирования

Возможно, хорошей идеей будет начать со сторонней библиотеки жур-
налирования, понаблюдать за эффектом и оптимизировать использование
библиотеки или заменить ее встроенными средствами журналирования либо,
может быть, стеком Elastic.

14.3.4. Непрерывная интеграция
Одним из больших преимуществ бессерверной инфраструктуры является

возможность заставить всех членов вашей команды выполнять развертыва-
ние одной командой. Правда, при этом возникает несколько потенциальных
проблем, таких как тестирование или откат в случае сбоя.

Традиционно некоторые проблемы с частыми развертываниями решают-
ся путем непрерывной интеграции. Непрерывная интеграция – это практи-
ка разработки, требующая от разработчиков интегрировать код в общий ре-
позиторий несколько раз в день. После каждой отправки кода выполняется
автоматическая сборка, что позволяет командам обнаруживать проблемы на
ранних этапах. Иначе говоря, непрерывная интеграция позволяет быстро об-
наруживать ошибки и исправлять их.

 34 / 40

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html

314    Глава 14. Миграция в бессерверное окружение

Вот несколько популярных инструментов для непрерывной интеграции:

�� Jenkins (https://jenkins.io);
�� Travis CI (http://travis-ci.org);
�� Semaphore CI (http://semaphoreci.com).

Все эти инструменты прекрасно работают с бессерверными приложениями
в AWS. Для интеграции с ними вам потребуется сохранить файл claudia.json в
вашей системе управления версиями и выполнить команду claudia update пос
ле успешного выполнения всех комплектов тестов. Но не забудьте сохранить
свои ключи доступа к AWS в переменных окружения.

Кроме перечисленных выше популярных инструментов, AWS предлагает
ряд своих инструментов поддержки непрерывной интеграции, которые вы
можете использовать в своих бессерверных приложениях:

�� CodePipeline – используется для моделирования, визуализации и автома
тизации этапов развертывания бессерверных приложений (http://docs.
aws.amazon.com/codepipeline/latest/APIReference/);

�� CodeBuild – используется для сборки, локального тестирования и упа-
ковки бессерверных приложений (http://docs.aws.amazon.com/codebuild/
latest/userguide/);

�� AWS CloudFormation – используется для развертывания бессерверных
приложений (http://docs.aws.amazon.com/AWSCloudFormation/latest/User-
Guide/);

�� CodeDeploy – используется для пошагового развертывания обновлений
бессерверных приложений (https://docs.aws.amazon.com/codedeploy/lat-
est/userguide/welcome.html).

ПРИМЕЧАНИЕ. Некоторые из инструментов, доступных на платформе AWS, пло-
хо работают с Claudia. Например, AWS CloudFormation – бесплатная служба, пред-
лагающая инструменты для создания и управления инфраструктурой AWS. Это
конкретное приложение должно быть запущено в Amazon Web Services. Оно раз-
вертывает функции AWS Lambda и другие части вашего серверного приложения.
Если ваше приложение состоит из большого количества разных компонентов, об-
ратите внимание на CloudFormation как на потенциальное решение для управ-
ления приложением.

14.3.5. Управление окружениями: промышленное
окружение и окружение для разработки
Каждый раз, когда публикуется функция Lambda, ей присваивается поряд-

ковый номер сборки. Вы можете вызвать определенную версию и настроить
триггеры для запуска определенной версии, что упрощает откат развертыва-
ния и одновременное использование нескольких версий.

 35 / 40

https://jenkins.io
http://travis-ci.org
http://semaphoreci.com
http://docs.aws.amazon.com/codepipeline/latest/APIReference/
http://docs.aws.amazon.com/codepipeline/latest/APIReference/
http://docs.aws.amazon.com/codebuild/latest/userguide/
http://docs.aws.amazon.com/codebuild/latest/userguide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

14.3. Общий взгляд на платформу    315

Кроме числовых номеров сборки, в AWS Lambda также поддерживаются
псевдонимы – именованные указатели на конкретный числовой номер вер-
сии, – позволяющие использовать одну функцию Lambda в окружениях для
эксплуатации, разработки и тестирования.

Например, во время разработки можно развернуть новую версию функции
Lambda и отметить ее псевдонимом development, а затем присвоить ей псевдо-
ним testing и тщательно протестировать. Наконец, убедившись, что функция
работает должным образом, вы можете присвоить тому же числовому номеру
версии псевдоним production и запустить эту версию в производство.

Поскольку триггеры позволяют настраивать запуск функций по псевдони-
мам, как только ваш флаг production начнет ссылаться на новую версию, триг
геры в промышленном окружении начнут вызывать ее без дополнительных
настроек.

ПРИМЕЧАНИЕ. Некоторые источники событий, такие как триггер CloudFront для
Lambda@Edge, не поддерживают псевдонимы и требуют явно указывать число-
вую версию функции Lambda. В большинстве этих случаев библиотека Claudia
автоматически определит числовую версию для псевдонима и настроит триггер.
Дополнительную информацию о Lambda@Edge ищите по адресу https://docs.
aws.amazon.com/lambda/latest/dg/lambda-edge.html. Инструкции по развер-
тыванию Lambda@Edge с помощью Claudia ищите по адресу https://claudiajs.
com/news/2018/01/04/claudia-3.html.

При создании бессерверных функций с поддержкой различных окруже-
ний важно помнить, что функция не зависит от окружения. Вы никогда не
должны писать код, жестко определяющий используемые службы, такие как
S3 или имя таблицы в DynamoDB. Вместо этого применяйте ту же корзину,
откуда пришло событие, или получайте имя таблицы из переменной окру-
жения.

14.3.6. Совместное использование конфиденциальных
данных
Одной из ключевых составляющих успеха бессерверных приложений с

поддержкой нескольких окружений является управление ключами доступа.
В этой книге мы управляли ключами двумя способами: в переменных стадий
API Gateway и переменных окружения AWS Lambda. Оба имеют свои сильные
и слабые стороны, и какой из них использовать, будет зависеть от вашей си-
туации и предпочтений.

Если вы используете псевдонимы для управления этапами тестирования/
эксплуатации, переменные окружения Lambda будут привязаны к число-
вой версии функции Lambda, а не к псевдонимам, а значит, все псевдонимы,
указывающие на одну и ту же версию сборки, будут использовать одни и те же
переменные окружения. Например, если вы настроили псевдонимы production
и development для версии 42 функции Lambda, они будут использовать одну и

 36 / 40

https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://claudiajs.com/news/2018/01/04/claudia-3.html
https://claudiajs.com/news/2018/01/04/claudia-3.html

316    Глава 14. Миграция в бессерверное окружение

ту же переменную окружения TABLE_NAME. На рис. 14.5 наглядно показано, как
работают переменные окружения Lambda.

В отличие от переменных окружения Lambda, переменные стадий API Gate-
way привязаны к стадиям API Gateway, поэтому, как показано на рис. 14.6, две
стадии API Gateway могут ссылаться на один и тот же номер сборки Lambda и
иметь разные значения переменных.

Because you can set most of the triggers to invoke an alias, as soon as your production
flag is pointing to the new numeric version, production triggers will invoke it directly
without additional changes.

NOTE Some of the event sources, such as a CloudFront trigger for Lambda@
Edge, don’t support aliases and require that you point to the numeric version
of your Lambda function. In most of those cases, Claudia will automatically get
the numeric version of your alias and assign the trigger to it. For more informa-
tion about Lambda@Edge, see https://docs.aws.amazon.com/lambda/latest/
dg/lambda-edge.html. If you want to deploy Lambda@Edge using Claudia, see
https://claudiajs.com/news/2018/01/04/claudia-3.html.

One of the most important things to keep in mind when you’re building serverless
functions that support different environments is to keep your function environment-
agnostic. You should never hardcode the services your function accesses—for example,
an S3 bucket or a DynamoDB table name. Instead, try to use the same bucket that sent
the event or get the table name from the environment variables.

14.3.6 Sharing secrets

One of the key parts of successful serverless applications with multiple environments
is managing app secrets. Throughout this book, we’ve managed secrets in two ways:
as API Gateway stage variables and AWS Lambda environment variables. Both have
their strengths and weaknesses, and which one you use will depend on your use case
and preferences.

If you’re using aliases to manage testing/production stages, Lambda environment
variables are tied to a numeric version of your Lambda function, not the aliases, which
means that all aliases that point to that same build version share the same environment
variables. For example, if you point both production and development aliases to build 42
of your Lambda function, they can’t have a different TABLE_NAME environment variable.
See visual representation of how Lambda environment variables work in figure 14.5.

As opposed to Lambda environment variables, API Gateway stage variables are tied
to the API Gateway stage so, as shown in figure 14.6, two API gateway stages can point to
the same Lambda build number and have different variable values.

On a new deployment, Lambda environment variables are reused from previous
versions, unless you provide the new set of variables. That means that variables from
your development environment will be passed to production if you deploy it using
claudia update --version production without overriding them using --set-env
or --set-env-from-json flags. Also, to update Lambda environment variables,
you need to provide all the active variables again, because each update overrides
all existing variables. For example, if you want to change TABLE_NAME but keep the
S3_BUCKET variable, you’ll need to provide both of them again, or the S3_BUCKET
variable will be lost. On the other hand, Claudia helps with that situation: it has an
additional command --update-env you can use to update a single environment vari-
able without having to specify the other environment variables.

Стадия разработки
в API Gateway

AWS Lambda
с меткой development

Функция
AWS Lambda, сборка 1

Переменные окружения

Стадия эксплуатации
в API Gateway

AWS Lambda
с меткой production

Стадия «development»
вашего API ссылается
на метку «development»
в AWS Lambda.

Обе метки, «development»
и «production», в AWS
Lambda ссылаются на одну
и ту же числовую версию.

Переменные окружения Lambda
связаны с номером версии, то
есть оба окружения – для
разработки и эксплуатации –
используют один и тот же набор
переменных окружения.

Стадия «Production»
вашего API ссылается
на метку «production»
в AWS Lambda.

Рис. 14.5. Как работают переменные окружения Lambda

Because you can set most of the triggers to invoke an alias, as soon as your production
flag is pointing to the new numeric version, production triggers will invoke it directly
without additional changes.

NOTE Some of the event sources, such as a CloudFront trigger for Lambda@
Edge, don’t support aliases and require that you point to the numeric version
of your Lambda function. In most of those cases, Claudia will automatically get
the numeric version of your alias and assign the trigger to it. For more informa-
tion about Lambda@Edge, see https://docs.aws.amazon.com/lambda/latest/
dg/lambda-edge.html. If you want to deploy Lambda@Edge using Claudia, see
https://claudiajs.com/news/2018/01/04/claudia-3.html.

One of the most important things to keep in mind when you’re building serverless
functions that support different environments is to keep your function environment-
agnostic. You should never hardcode the services your function accesses—for example,
an S3 bucket or a DynamoDB table name. Instead, try to use the same bucket that sent
the event or get the table name from the environment variables.

14.3.6 Sharing secrets

One of the key parts of successful serverless applications with multiple environments
is managing app secrets. Throughout this book, we’ve managed secrets in two ways:
as API Gateway stage variables and AWS Lambda environment variables. Both have
their strengths and weaknesses, and which one you use will depend on your use case
and preferences.

If you’re using aliases to manage testing/production stages, Lambda environment
variables are tied to a numeric version of your Lambda function, not the aliases, which
means that all aliases that point to that same build version share the same environment
variables. For example, if you point both production and development aliases to build 42
of your Lambda function, they can’t have a different TABLE_NAME environment variable.
See visual representation of how Lambda environment variables work in figure 14.5.

As opposed to Lambda environment variables, API Gateway stage variables are tied
to the API Gateway stage so, as shown in figure 14.6, two API gateway stages can point to
the same Lambda build number and have different variable values.

On a new deployment, Lambda environment variables are reused from previous
versions, unless you provide the new set of variables. That means that variables from
your development environment will be passed to production if you deploy it using
claudia update --version production without overriding them using --set-env
or --set-env-from-json flags. Also, to update Lambda environment variables,
you need to provide all the active variables again, because each update overrides
all existing variables. For example, if you want to change TABLE_NAME but keep the
S3_BUCKET variable, you’ll need to provide both of them again, or the S3_BUCKET
variable will be lost. On the other hand, Claudia helps with that situation: it has an
additional command --update-env you can use to update a single environment vari-
able without having to specify the other environment variables.

Стадия «development»
вашего API ссылается
на метку «development»
в AWS Lambda.

Стадия «development»
определяет свои переменные,
доступные в любой функции
AWS Lambda, на которую
ссылается API Gateway,
независимо от номера версии
и метки.

Обе метки, «development»
и «production», в AWS

Lambda ссылаются на одну
и ту же числовую версию.

Стадия «production» определяет
свои переменные, доступные в
любой функции AWS Lambda, на
которую ссылается API Gateway,
независимо от номера версии и
метки.

Стадия «Production»
вашего API ссылается
на метку «production»
в AWS Lambda.Стадия разработки

в API Gateway

AWS Lambda
с меткой development

Функция
AWS Lambda, сборка 1

Переменные стадии

Стадия эксплуатации
в API Gateway

AWS Lambda
с меткой production

Переменные стадии

Рис. 14.6. Как работают переменные стадий в API Gateway

 37 / 40

14.3. Общий взгляд на платформу    317

В новом развертывании повторно используются переменные окружения
Lambda из предыдущих версий, если вы не определите новый набор пере-
менных. Это означает, что переменные из вашей среды разработки будут
переданы в эксплуатационную среду, если выполнить развертывание с по
мощью claudia update --version production без использования флагов --set-env
или --set-env-from-json. Кроме того, чтобы изменить переменные окружения
Lambda, необходимо снова определить все активные переменные, пото-
му что каждое изменение переопределяет все существующие переменные.
Например, если вы решите изменить TABLE_NAME, но оставить переменную
S3_BUCKET, вам придется снова определить обе переменные, иначе переменная
S3_BUCKET будет потеряна. С другой стороны, библиотека Claudia способна по-
мочь в этой ситуации: она поддерживает дополнительную команду --update-
env, которую можно использовать для изменения одной переменной окруже-
ния без необходимости повторно определять другие.

Переменные стадии API Gateway сохраняются для каждой стадии. Это
означает, что если отправить новую версию в стадию разработки, она по-
лучит все переменные этой же стадии из предыдущей версии. При желании
можно добавить одну переменную стадии, и она не повлияет на другие пере
менные.

API Gateway позволяет изменить единственную переменную стадии без по-
вторного определения остальных.

Но переменные окружения Lambda имеют свои сильные стороны. На-
пример, они хранятся в зашифрованном виде, что делает их более безопас
ными, чем переменные стадии API Gateway, которые не шифруются. Их
также можно использовать независимо от события, вызвавшего функцию
AWS Lambda.

Общим недостатком переменных стадий API Gateway и окружения Lambda
является невозможность их совместного использования разными функциями
Lambda. Если у вас много функций, которые используют общие конфиден
циальные данные, например имя таблицы в DynamoDB, вы вынуждены будете
передать одну и ту же переменную каждой из них. Например, таблица piz-
za-orders в DynamoDB используется в Pizza API, а также сценарием голосового
помощника Alexa, поэтому мы были вынуждены передать имя таблицы обеим
функциям Lambda.

Этот недостаток можно устранить с помощью хранилища параметров AWS
Systems Manager Parameter Store, которое обеспечивает доступ к центрально-
му, безопасному, надежному и высокодоступному хранилищу, предназначен-
ному для хранения конфигураций приложений и конфиденциальных данных.
Оно легко интегрируется с AWS Identity and Access Management (IAM), чтобы
обеспечить точное управление доступом к отдельным параметрам или вет-
вям иерархического дерева. Одним из недостатков хранилища параметров
является дополнительная задержка. Дополнительную информацию об AWS
Systems Manager Parameter Store можно найти на странице https://docs.aws.
amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html.

 38 / 40

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html

318    Глава 14. Миграция в бессерверное окружение

14.3.7. Виртуальное частное облако
Принимая решение о переходе на бессерверные вычисления, можно столк

нуться с проблемой соблюдения определенных законов и правил – например,
правил хранения и обработки персональных данных или даже специальных
правил безопасности сети в самой компании. Эти ограничения могут поме-
шать использовать AWS Lambda или другие бессерверные ресурсы.

К счастью, как раз для таких случаев поставщики услуг бессерверных вы-
числений выработали решение, которое называется виртуальным частным
облаком (Virtual Private Cloud, VPC). VPC – это услуга, позволяющая создавать
бессерверные ресурсы в виртуальной частной сети. Она дает возможность
полностью контролировать свое сетевое окружение, например диапазоны
IP-адресов, сетевые шлюзы и т. д. Нахождение ваших бессерверных ресурсов
в виртуальной частной сети обеспечит повышенную безопасность и поможет
вашей компании разместить свои ресурсы в определенных областях, регио-
нах или странах. Например, если вы имеете дело с конфиденциальными дан-
ными клиентов (которые должны храниться в стране проживания клиента),
VPC позволит вам разместить ваши бессерверные ресурсы в той же сети, что
и ваш центр обработки данных в этой стране.

Проще говоря, VPC позволяет организовать виртуальную частную сеть с ре-
сурсами вашего поставщика услуг бессерверных вычислений (например, AWS
Lambda) и ограничивать доступ к этим ресурсам, чтобы они были доступны
только экземплярам или ресурсам в вашем облаке VPC.

Однако VPC имеет свои недостатки. Закрытая сеть имеет определенные проб
лемы с холодным запуском, потому что AWS Lambda требует создания сетевых
интерфейсов Elastic Network Interfaces (ENI) для VPC. Создание ENI по одно-
му запросу легко может добавить до 10 секунд к холодному старту. Кроме того,
функция Lambda в VPC по умолчанию не имеет доступа к интернету, который
можно настроить с помощью шлюза преобразования сетевых адресов (Network
Address Translation, NAT). Поэтому будьте осторожны при их использовании.

14.4. Оптимизация приложения
Переход на использование бессерверных вычислений действительно может
снизить стоимость инфраструктуры для вашего приложения, но только если
все сделано правильно. Самое важное, о чем следует помнить, – бессерверные
вычисления все еще являются довольно новой технологией, и некоторые пе-
редовые методы проектирования и программирования теряют свою актуаль-
ность при ее использовании и могут даже привести к обратным результатам.
Экономия затрат на бессерверное приложение видна не только в счетах от
AWS; бессерверное приложение может также обеспечить значительную эко-
номию за счет более короткого времени выхода на рынок, повышения эффек-
тивности и сокращения времени реакции на изменения на рынке.

Несмотря на появление новых удачных приемов и шаблонов проектиро-
вания, единственный способ создать хорошее бессерверное приложение –

 39 / 40

14.4. Оптимизация приложения    319

это непрерывное наблюдение и оптимизация, которая поможет снизить
затраты на поддержку вашего приложения и повысит удобство для пользо-
вателей.

14.4.1. Связанные и узкоспециализированные функции
Взгляните на диаграмму бессерверного приложения для тетушки Марии

(рис. 14.1) и обратите внимание, что для получения прейскуранта и заказа
пиццы используется одна и та же бессерверная функция. Эта функция реша-
ет несколько задач. Разве это не монолитное решение, завернутое в функ-
цию? Многие могут сказать, что это пример неправильного использования
бессерверных функций. Такие утверждения основаны на идее FaaS (Function
as a Service – функция как услуга), согласно которой каждая функция должна
иметь единственную цель и в бессерверных функциях не должно быть моно-
литов, потому что при монолитной организации теряются преимущества сла-
бой связанности, возможности повторного использования и более простого
обслуживания.

Другие, напротив, могут утверждать, что некоторые независимые службы
(например, платежную службу) можно было бы объединить в один API. По-
скольку эти службы используются не так часто, их работа может замедляться
из-за холодных запусков; было бы лучше иметь «подогретую» бессерверную
функцию и не заставлять пользователя ждать, пока запустится ваша платеж-
ная служба.

Обе точки зрения имеют право на жизнь. Но какой подход выбрать? Преж
де всего помните известную поговорку «на вкус и цвет товарищей нет».
Ваша цель – реализовать услугу, удобную для клиента. Выбирайте наиболее
рациональный подход, который часто зависит от типа приложения.

Первоначально разделите функции по сферам ответственности, как это
было сделано, например, в бессерверном приложении тетушки Марии. Вы-
делите функции, связанные с пиццей и с оплатой, а затем выделите функции
для каждой из дополнительных услуг, таких как чат-боты или обработка изо-
бражений. Позднее, когда ваша система начнет расти, попробуйте выделить
узкоспециализированные функции, например попробуйте разделить службу
вывода прейскуранта и оформления заказа на две функции. С ростом числа
клиентов холодные запуски будут происходить все реже, и приложение будет
откликаться быстрее.

14.4.2. Выбор правильного объема памяти
для функции Lambda
Каждой бессерверной функции выделяется некоторый объем памяти с

определенной организацией. Да, бессерверная архитектура не требует на-
стройки сервера, но для решения некоторых задач может потребоваться боль-
ше памяти или вычислительной мощности. Поэтому поставщики услуг бес-
серверных вычислений дают возможность указать, сколько памяти выделить
функции. Обратите внимание, что мы ничего не говорим о вычислительной

Powered by TCPDF (www.tcpdf.org)

 40 / 40

320    Глава 14. Миграция в бессерверное окружение

мощности, потому что она прямо связана с объемом памяти, а это значит, что
если вам понадобится увеличить вычислительную мощность, вы должны уве-
личить объем выделяемой памяти. Например, если вы настроили выделение
функции Lambda 2 Гб памяти вместо 1 Гб, она наверняка получит в свое рас-
поряжение больше процессорного времени. За более точной информацией об
этом и возможных изменениях в будущем мы предлагаем обратиться к доку
ментации AWS, описывающей настройку Lambda: https://docs.aws.amazon.com/
lambda/latest/dg/resource-model.html.

Но увеличение объема памяти увеличивает стоимость услуги. Этот бес-
платный миллион запросов в месяц может легко превратиться в сотню тысяч,
если увеличить объем памяти для функции Lambda до 1 Гб. Выбор правиль-
ного объема памяти для функции Lambda – сложная задача. Решая ее, легко
попасть в одну из следующих ловушек:

�� минимизация объема памяти для функции Lambda с целью уменьшить
стоимость услуги, пытаясь угадать, сколько памяти или вычислитель-
ной мощности необходимо;

�� максимизация объема памяти для функции Lambda, чтобы ускорить
обработку запросов и сопутствующие вычисления, а также чтобы под-
готовиться к любым возможным всплескам в потреблении памяти.

И снова вспомните поговорку «на вкус и цвет товарищей нет». Попробуй-
те использовать инструменты журналирования и/или мониторинга для сбора
информации об использовании памяти. Например, в журналах CloudWatch,
кроме всего прочего, можно узнать, сколько памяти использовала функция
и сколько времени потребовалось ей для выполнения. Основываясь на этих
цифрах, вы сможете правильно оценить потребности, но всегда старайтесь
учитывать показатели за разное время суток, а также учитывать конкретные
события.

14.5. Преодоление проблем
Новая архитектура влечет за собой новый набор проблем, но и старые проб
лемы никуда не исчезают – они все еще могут встречаться, хотя и немного в
другом обличье. Новые проблемы, характерные для бессерверных вычисле-
ний, – это тайм-ауты и холодные запуски. Но вам также придется столкнуться
с некоторыми старыми проблемами, такими как привязка к производителю,
безопасность и распределенные атаки типа «отказ в обслуживании» (Distrib-
uted Denial of Service, DDoS). В этом разделе рассматриваются некоторые из
наиболее серьезных проблем, с которыми вы наверняка столкнетесь при пе-
реходе на бессерверную архитектуру.

14.5.1. Тайм-ауты
Одна из первых проблем, с которыми вы можете столкнуться при переходе, –

ограничения бессерверных функций, к числу которых относится и тайм-аут.

 1 / 40

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

14.5. Преодоление проблем    321

Тайм-ауты позволяют функциям безопасно останавливать работу, чтобы не
тратить деньги и время, если по какой-то причине они зависают или блоки-
руются. Ограничение времени ожидания заставит вас задуматься о том, как
завершить обработку запроса в указанные сроки. Это само по себе может быть
проблемой, но настоящая проблема заключается в том, как выявлять и отлажи-
вать проблемы превышения тайм-аута. Кроме того, функция может работать
безошибочно, но требовать больше времени на выполнение, чем ожидалось.

Есть несколько способов преодолеть проблему превышения тайм-аута:
первый и самый простой – просмотреть журналы CloudWatch, в которых ре-
гистрируются все такие случаи. Однако в этом мало проку, потому что этот
подход не предполагает ничего для обработки таких ситуаций. Есть лучший
способ, позволяющий обрабатывать случаи превышения тайм-аута и хотя бы
зафиксировать, какой службе потребовалось слишком много времени на вы-
полнение, или выявить причину. Решение заключается в создании стороже-
вого таймера, единственная цель которого состоит в том, чтобы дать возмож-
ность определить, когда истекает время тайм-аута для вашего приложения.
Это простой таймер, который нужно добавить в свою функцию Lambda, чтобы
с его помощью можно было узнать, сколько времени осталось до принуди-
тельного прерывания функции. Он рассчитывает оставшееся время, исходя
из настройки времени тайм-аута, которая определяется в панели управления
на веб-сайте AWS Console.

Сторожевой таймер определяет, когда функция приближается к границе
тайм-аута. В этом случае таймер вызывает другую функцию Lambda, которая
регистрирует это событие или обрабатывает его как-то иначе. Чтобы реали-
зовать сторожевой таймер, вам нужно создать функцию таймера, которая
постоянно проверяет наступление момента, когда до истечения тайм-аута
останется менее одной секунды, вызывает другую функцию Lambda и пере-
сылает ей текущий контекст функции. После этого вы сможете зафиксировать
информацию о событии в журнале или предпринять что-то еще.

Вместо другой функции AWS Lambda можно также использовать сторонние
службы обработки ошибок, такие как Bugsnag (https://www.bugsnag.com) или
Sentry (https://sentry.io).

14.5.2. Холодный запуск
Еще одна проблема, с которой вы столкнетесь при использовании бессер-

верных приложений, – это задержки, вызванные холодным запуском. AWS ав-
томатически управляет масштабированием и созданием новых контейнеров,
поэтому первый вызов каждой функции происходит с небольшой задержкой.
Это связано с необходимостью запустить контейнер и инициализировать
вашу функцию. После первого вызова функция будет оставаться горячей в те-
чение определенного времени (не более нескольких минут), благодаря чему
сможет быстрее обрабатывать последующие запросы (рис. 14.7).

Однако холодный запуск происходит не только при первом вызове функ-
ции. Если потребуется параллельно (или почти параллельно) запустить не-

 2 / 40

https://www.bugsnag.com
https://sentry.io

322    Глава 14. Миграция в бессерверное окружение

сколько экземпляров функции, для каждого будет выполнена процедура хо-
лодного запуска, потому что AWS может понадобиться запустить несколько
виртуальных машин для обработки всех ваших запросов (рис. 14.8).

Когда происходит
холодный запуск,
для вашей функции
создается

после чего запускается
сама функция.

и инициализируется
новый контейнер,

Функция остается
горячей какое-то
время и ждет
следующего вызова.

Горячий старт происходит,
когда контейнер уже готов.
В этом случае функция
запускается немедленно.

Создание Инициализация Выполнение функции

Время вызова функции

Холодный
запуск

Горячий
запуск

Время вызова функции

Выполнение функции

Рис. 14.7. Холодный и горячий запуски функции

Когда функция
вызывается впервые,
выполняется процедура
холодного запуска.

Параллельные или почти
параллельные запросы также
вызывают процедуру холодного
запуска.

В течение нескольких минут AWS сохраняет и
повторно использует запущенные виртуальные
машины (ВМ) или контейнеры, чтобы оптимизировать
скорость обработки последующих запросов.

ВМ 1 холодный запуск Создание Инициализация Выполнение функции

Создание Инициализация Выполнение функции

Выполнение функции

Выполнение функции

ВМ 2 холодный запуск

ВМ 1 горячий запуск

ВМ 2 горячий запуск

Рис. 14.8. Холодный запуск имеет место, когда возникает
необходимость параллельной обработки запросов

Есть ли методы борьбы с холодными запусками? Увы, вы не сможете из-
бежать их полностью. Можно попытаться предварительно подогреть опреде-
ленное количество своих функций, но это увеличивает сложность реализации
и заставляет попытаться предсказать количество запросов, которые функция
получит при пиковой нагрузке. Другой и, вероятно, лучший вариант – сохра-
нить функции как можно более короткими и быстрыми (не более нескольких
мегабайт), потому что холодный запуск коротких функций происходит быст
рее.

Кроме того, выбор языка программирования и используемых библиотек
напрямую влияет на стоимость размещения бессерверного приложения, что
делает этот выбор важным бизнес-решением. Функции на Node.js или Golang

 3 / 40

14.5. Преодоление проблем    323

обойдутся вам значительно дешевле, чем функции на Java, из-за более быст
рой инициализации.

14.5.3. Атаки DDoS
Бессерверное окружение полностью меняет бизнес-модель, потому что

плата взимается за использованное время, а не за зарезервированное. Это
здорово! Но у вас может возникнуть вопрос о противодействии DDoS-ата-
кам. Выполняя такие атаки, злоумышленник отправляет в приложение боль-
шой объем бессмысленных данных, из-за чего приложение оказывается не в
состоянии достаточно быстро отвечать на действительные запросы клиентов
и тем самым препятствует оказанию услуг вашим клиентам. Так как ваш по-
ставщик услуг бессерверных вычислений обеспечивает автоматическое мас-
штабирование и балансировку нагрузки, у вас может возникнуть опасение,
что DDoS-атака способна обанкротить вас. Однако на самом деле шансы на
это практически отсутствуют, потому что ваш провайдер бессерверных услуг
(например, AWS) способен намного лучше противостоять таким атакам, чем
типичные провайдеры, предлагающие хостинг на серверах.

Кроме того, у вас есть возможность определить следующие настройки:

�� максимальный объем трафика на уровне API Gateway level (дополни-
тельные подробности ищите по адресу https://docs.aws.amazon.com/
apigateway/latest/developerguide/api-gateway-request-throttling.html);

�� максимальная степень параллелизма для ваших функций AWS Lambda
(дополнительные подробности ищите по адресу https://docs.aws.amazon.
com/lambda/latest/dg/concurrent-executions.html);

�� настройка предупреждений CloudWatch для отправки уведомлений о
необъяснимых пиках активности.

ПРИМЕЧАНИЕ. В бессерверных вычислениях DDoS-атаки называют DDoW-ата-
ками (Distributed Denial of Wallet – распределенный отказ кошелька). Поставщики
услуг бессерверных вычислений взимают плату за каждый запрос, поэтому увели-
чение вашего счета можно интерпретировать как «отказ вашего кошелька».

14.5.4. Привязка к производителю
При использовании бессерверных вычислений одной из основных проблем

является привязка к производителю. Легко стать зависимым от ресурсов ва-
шего поставщика услуг бессерверных вычислений и его API. На первый взгляд
в этом нет ничего плохого, но когда вы решите перейти к другому поставщику
услуг, возникнет проблема. Ресурсы первого поставщика услуг станут для вас
недоступными, что может потребовать полного рефакторинга вашего прило-
жения или даже создания его заново.

Иногда это может стать серьезным препятствием. Многие компании стре-
мятся избежать попадания в зависимость от какого-то одного поставщика

 4 / 40

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

324    Глава 14. Миграция в бессерверное окружение

ресурсов. Главный аргумент в пользу обычных приложений, размещаемых на
сервере, заключается в том, что независимо от поставщика услуг всегда мож-
но установить на свои серверы одни и те же версии необходимых баз данных
или инструментов.

Но многие часто путают разные проблемы. Анализируя зависимость от
производителя, иногда путают два разных уровня:

�� инфраструктура;
�� услуга.

Зависимость на уровне инфраструктуры подразумевает привязку вашего
приложения к конкретной инфраструктуре, тогда как зависимость на уровне
услуги подразумевает привязку к определенной программной службе (базе
данных, хранилищу файлов, службе поиска и т. д.).

В процессе размышлений о переходе на использование бессерверных вы-
числений у вас может возникнуть соблазн сравнить поставщиков серверных
и бессерверных вычислений (таких как AWS Lambda). Но будьте осторожны,
потому что в действительности вы будете сравнивать яблоки с апельсинами;
бессерверные вычисления – это уровень услуги, тогда как серверные вычис-
ления – это инфраструктурный уровень. Вы можете спросить себя, в чем раз-
ница или почему это так важно. Суть в том, что AWS Lambda не поддерживает
традиционную роль сервера.

Даже понимая такое деление, некоторые могут подумать: «Но я все еще
привязан к производителю. Это ничего не меняет, потому что я все еще дол-
жен использовать ресурсы AWS при применении AWS». Все верно, но понима-
ние вскрывает два преимущества:

�� переход от одного поставщика услуг бессерверных вычислений к дру-
гому можно сравнить с переходом с базы данных MySQL на PostgreSQL;

�� использование гексагональной архитектуры вместо прямого взаимо-
действия с бессерверными ресурсами может практически полностью
избавить от проблем, вызываемых привязкой к производителю.

При переходе от одного поставщика услуг бессерверных вычислений к дру-
гому используются те же правила, что и при переходе от использования одной
службы к другой, и вы сможете безопасно выполнить такой переход, просто
изменив взаимодействие с API поставщика услуг.

Существуют бессерверные платформы, которые абстрагируют специфику
бессерверных провайдеров, но, используя их, вы окажетесь в зависимости уже
от этого бессерверного фреймворка. Кроме того, вы все равно будете зависеть
от своего бессерверного провайдера, потому что будете ожидать, что отве-
ты и сообщения, приходящие от службы, будут иметь определенный формат.
Например, используя AWS Kinesis, вы будете ожидать получения сообщений
в формате Kinesis; вы не сможете просто перейти на использование услуг
Google или другого провайдера.

 5 / 40

В заключение    325

По этой причине библиотека Claudia.js не абстрагирует деталей, характер-
ных для бессерверного провайдера, и поэтому является специфичной для
AWS.

Для смягчения этой «привязки к производителю» мы советуем использо-
вать гексагональную архитектуру, в которой вы сами будете определять гра-
ничные объекты, единственной целью которых является взаимодействие со
специфическим API бессерверного провайдера. Ваша бизнес-логика останет-
ся неизменной, а это означает, что для перехода к другому провайдеру потре-
буется просто изменить логику протокола граничных объектов.

14.6. Опробование!
В этой главе вам предлагается простое, но не самое легкое упражнение: вы-
полните миграцию своего приложения Node.js в бессерверное окружение.

К сожалению, для этого упражнения не существует типового решения. Но
мы уверены, что вам не будет скучно и, что еще более важно, это окажет боль-
шое влияние на ваш бизнес и ваши взгляды на подходы к разработке прило-
жений в будущем. Удачи!

СОВЕТ. Перед выполнением этого упражнения посетите репозиторий прило-
жений AWS Serverless Application Repository – открытый интернет-магазин бес-
серверных приложений и компонентов. Возможно, вам удастся найти компонент,
который вы сможете просто подключить к своему новому бессерверному прило-
жению. Узнать больше о репозитории приложений можно по адресу https://aws.
amazon.com/serverless/serverlessrepo/.

В заключение
�� Перенос существующего приложения в AWS Lambda и API Gateway яв-

ляется хорошим началом для перехода на использование бессерверных
вычислений, но может вызвать лишние расходы, если использовать не
все возможности платформы.

�� Миграцию можно выполнить, поместив приложение за API Gateway, а
затем перенося маршруты один за другим.

�� Чтобы получить все преимущества бессерверных вычислений, такие как
низкая стоимость и высокая скорость разработки, необходимо исполь-
зовать все бессерверные службы.

�� При переходе на бессерверные вычисления выбор языка программи-
рования, библиотек и времени проведения рефакторинга становится
бизнес-решением с определенными рисками, поскольку этот выбор
напрямую влияет на стоимость вашей инфраструктуры. Поэтому для
успешного применения бессерверных вычислений важны непрерывное
наблюдение и оптимизация.

 6 / 40

https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/

326    Глава 14. Миграция в бессерверное окружение

�� Бессерверные вычисления предлагают новую архитектуру, требующую
применения новых шаблонов и методов программирования.

�� Переход на бессерверные вычисления влечет за собой новые проблемы,
такие как холодный запуск и время ожидания. При этом некоторые ста-
рые проблемы никуда не исчезают, а иные даже усиливаются, как, на-
пример, привязка к производителю.

 7 / 40

Глава 15
Примеры из практики

Эта глава охватывает следующие темы:

	использование бессерверных вычислений в препроцессорах
CodePen;

	организация клиентских API и инструментов преобразований
файлов в MindMup.

Вот и подошло концу наше путешествие по миру бессерверных вычислений.
Прочитав эту книгу, вы узнали, что такое бессерверные вычисления, как их ис-
пользовать для создания новых приложений и как перенести существующие
приложения в бессерверное окружение. Но остался еще один важный вопрос,
который, как мы понимаем, заинтересует вас: кто использует бессерверные
вычисления на практике?

Всегда полезно знать о компаниях, использующих новый подход на прак-
тике, а также о проблемах, с которыми они сталкивались, и о том, как они их
преодолевали. Другой интересный вопрос: почему эти компании решили, что
использование бессерверных вычислений вкупе с Claudia.js является верным
выбором?

Чтобы ответить на эти вопросы, мы выбрали две компании, на примере ко-
торых познакомим вас с проблемами, с которыми они столкнулись, почему
они решили перейти на использование бессерверных вычислений и как те-
перь оценивают свое решение.

Многие компании используют бессерверные вычисления в своей практике,
и нам было довольно трудно выбрать двух наиболее ярких представителей. Но
поскольку в блоге AWS вы можете прочитать множество историй успеха ком-
паний, использующих бессерверные системы, мы выбрали две из них, создав-
шие успешные продукты с небольшими командами. Мы считаем, что бессер-
верные вычисления позволят вам быстро двигаться вперед с привлечением
небольшой команды разработчиков при относительно невысоких затратах на
инфраструктуру, поэтому решили показать вам, как CodePen и MindMup де-
лают это.

 8 / 40

328    Глава 15. Примеры из практики

15.1. CodePen
CodePen (https://codepen.io) – популярное веб-приложение для создания,
демонстрации и тестирования фрагментов HTML, CSS и JavaScript. Это он-
лайн-редактор кода и среда обучения с открытым исходным кодом, в кото-
рой разработчики могут создавать фрагменты кода (которые в терминологии
CodePen называются «сочинениями» или «набросками»), тестировать их и де-
литься ими с другими разработчиками.

Разработчики CodePen уже выпустили видеоролик в своем видеоблоге,
посвященном их бессерверным приложениям с Node и Claudia.js. Алекс Васкес
(Alex Vazquez), один из основателей CodePen, сказал, что они широко исполь-
зуют AWS Lambda с Claudia для своих препроцессоров, поэтому мы связались с
Алексом и попросили дать нам интервью. Далее приводится то, что мы узнали.

15.1.1. До перехода на бессерверные вычисления
Приложение CodePen позволяет разработчикам писать и компилировать

HTML, CSS и JavaScript прямо в редакторе. Для этого оно должно иметь воз-
можность отображать код разработчика; если разработчик использует пре-
процессоры (такие как SCSS, Sass, LESS для CSS или даже Babel для JavaScript),
оно должно предварительно обработать его.

Поэтому исходная архитектура CodePen была основана на двух монолит-
ных приложениях Ruby on Rails – главном веб-сайте и другом приложении,
предназначенном для препроцессоров, – и одной, относительно небольшой
службе баз данных.

Архитектура CodePen до перехода на использование бессерверных вычис-
лений показана на рис. 15.1.

Веб-приложение
Ruby on Rails

База данных

Веб-служба препроцессоров

Препроцессор Sass …

Препроцессор Babel

Браузер взаимодействует
непосредственно с главным
приложением Ruby on Rails.

Также главное приложение
взаимодействует с выделенным
сервером, где находятся все
препроцессоры.

Изолированные
препроцессоры

Главное приложение
взаимодействует с
сервером баз данных.

Препроцессор Pug

Рис. 15.1. Архитектура CodePen до перехода на использование
бессерверных вычислений

 9 / 40

https://codepen.io

15.1. CodePen    329

Главная цель CodePen – дать пользователям возможность запускать свой
код так часто, как они пожелают. Еще одна цель CodePen – позволить людям
находить примеры кода на сайте, которые могли бы привести их в восхище-
ние. Естественно, некоторые «сочинения» пользуются огромным интересом,
который, как вы понимаете, невозможно предсказать. В таких ситуациях при-
ложение CodePen должно быстро масштабироваться. Кроме того, большин-
ство пользователей CodePen использует приложение бесплатно, поэтому ему
нужен быстрый и недорогой способ гарантировать обслуживание всех поль-
зователей.

Команда CodePen небольшая, ее члены разбросаны по всему миру, и у них
есть всего один инженер, отвечающий за сопровождение и эксплуатацию.
Поскольку CodePen выполняет код других людей, приложение должно обес
печить максимальную безопасность. По этой причине разработчики начали
искать возможности отделить выполнение кода пользователя от приложения.
Именно тогда они впервые услышали о AWS Lambda: их инженер сопровожде-
ния и эксплуатации – Тим Сабат (Tim Sabat) – предложил воспользоваться этой
услугой как возможным решением. Первоначально разработчики CodePen от-
вергли эту идею, так как не видели в ней большого смысла, думая, что переход
к ее использованию окажется хлопотным делом. У них уже были настроенные
серверы, и им не особенно хотелось заниматься дополнительными проблема-
ми отдельных служб Lambda.

Но однажды им потребовалось организовать форматирование кода по тре-
бованию с использованием нового инструмента, и тогда «идея использования
Lambda» показалась им идеальным решением для этой задачи, особенно в со-
вокупности с Claudia.js в качестве инструмента развертывания. Алекс сказал,
что они многое узнали о возможностях, предлагаемых бессерверными функ-
циями, таких как использование API Gateway для настройки полного HTTP
API, подключение к S3 и настройка заданий cron. Внезапно до команды дошло,
насколько мощными могут быть бессерверные приложения.

15.1.2. Миграция на бессерверные вычисления
Приложение CodePen использует много препроцессоров, каждый из кото-

рых предназначен для обработки определенного типа кода: HTML, CSS или
JavaScript. Они действуют по-разному, имеют разные требования к вычисли-
тельной мощности и памяти и должны работать асинхронно. На рис. 15.2 вы
можете увидеть, как работают препроцессоры.

Как видите, каждый препроцессор решает свою задачу, и работа одного мо-
жет повлиять на работу другого. Поэтому, проанализировав текущую архи-
тектуру приложения, разработчики поняли, что разделение препроцессоров
позволит поднять не только производительность, но и безопасность. Когда
все препроцессоры выполняются на одном же сервере, их очень сложно опти
мизировать и выявлять ошибки. Они решили, что имеет смысл разделить их
и запускать в отдельных функциях AWS Lambda, по аналогии с упомянутой
выше услугой «форматирования кода по требованию».

 10 / 40

330    Глава 15. Примеры из практики

Вывод,
сгенерированный
асинхронно и
отображаемый
перед
пользователем.

Препроцессоры

Рис. 15.2. Препроцессоры CodePen

Члены команды решили полностью реорганизовать свое монолитное при-
ложение с препроцессорами, выделив его в отдельную бессерверную функ-
цию – маршрутизатор – и создав множество отдельных бессерверных функ-
ций для препроцессоров. Задача маршрутизатора – вызывать необходимые
функции препроцессоров, каждая из которых имеет целью предварительную
обработку кода определенного типа.

Используя библиотеку Claudia, члены команды поняли, что с миграцией
могут помочь даже их инженеры, занимающиеся разработкой пользователь-
ского интерфейса, и тем самым снять нагрузку с единственного инженера
сопровождения. Рэйчел Смит (Rachel Smith), ведущий разработчик CodePen,
смогла в одиночку создать маршрутизатор в AWS Lambda, что позволило
CodePen обслуживать более 200 000 запросов одновременно в пиковые перио
ды. В то же время Алекс и другие разработчики выполнили перенос отдельных
препроцессоров. Получившаяся у них архитектура показана на рис. 15.3.

После перехода на бессерверные вычисления в CodePen по-прежнему оста-
валось основное монолитное приложение на Ruby on Rails, но теперь вместо
монолитного приложения с препроцессорами имелась бессерверная функция
маршрутизатора и около десятка бессерверных функций препроцессоров.
Доступ к маршрутизатору осуществляется через API Gateway, и в нем исполь-
зуется AWS SDK для вызовов нужных бессерверных функций препроцессоров.
В теле запроса маршрутизатор получает массив заданий. Например, одно из
заданий требует использовать препроцессор Babel; в этом случае маршрутиза
тору посылается версия Babel по умолчанию, которую следует использовать.
Маршрутизатор знает, какие версии Babel доступны, потому что каждая функ-
ция Lambda препроцессора имеет соответствующий номер версии. Дизайн со-
ответствует шаблону проектирования «Команда», согласно которому переда-
ется команда для запуска, и маршрутизатор знает, какие функции Lambda он
должен вызывать.

 11 / 40

15.1. CodePen    331

Веб-
приложение
Ruby on Rails

API
Gateway

Главная
функция
Lambda

Препроцессор
Babel v5

…
База данных

Браузер, как и прежде,
посылает задания
главному приложению
Ruby on Rails.

Главное приложение
посылает все
необходимые данные
в API Gateway.

Каждый препроцессор теперь изолирован
в отдельной функции Lambda; при этом для каждой

версии препроцессора созданы отдельные функции.

Главное приложение
взаимодействует с
сервером баз данных.

API Gateway передает
данные в функцию Lambda
маршрутизатора. Функция Lambda

маршрутизатора
вызывает нужный

препроцессор.
Функции Lambda

используют
AWS SDK.

Препроцессор
 Babel v6

Препроцессор
 Sass

Рис. 15.3. Архитектура бессерверной версии CodePen

ПРИМЕЧАНИЕ. Шаблон проектирования «Команда» – это шаблон, предполага-
ющий использование объекта для инкапсуляции всей информации, необходимой
для выполнения некоторого действия. Это один из шаблонов проектирования,
описанных в популярной книге «Design Patterns: Elements of Reusable Object-
Oriented Software»1. Больше информации о шаблоне «Команда» можно найти
здесь: https://ru.wikipedia.org/wiki/Команда_(шаблон_проектирования).

Тандем AWS Lambda и Claudia
Алекс отметил, что тандем AWS Lambda и Claudia оказался идеальным реше
нием для CodePen. Большинство проблем разработки было устранено, и комби-
нация AWS Lambda/Claudia позволила им сделать намного больше с их сущест
вующими навыками. Раньше разработчикам пользовательского интерфейса
приходилось ждать, пока инженер сопровождения напишет сценарии, настроит
серверы и инструменты и автоматизирует все задачи, необходимые для раз-
вертывания. Благодаря AWS Lambda и Claudia разработчики пользовательско-
го интерфейса теперь могут делать все сами. Основатель CodePen заявил, что
уровень интеграции варьируется от «Мы любим Claudia и AWS Lambda» до
«Мы жить не можем без Claudia и AWS Lambda». Это поднимает разработку на
совершенно другой уровень.

1	 Джонсон Ральф, Хелм Ричард, Влиссидес Джон, Гамма Эрих. Приемы объектно-ориентированного
проектирования. Паттерны проектирования. СПб.: Питер, 2019. ISBN: 978-5-4461-1213-5, 978-5-
4590-1720-5, 978-5-469-01136-1, 978-5-496-00389-6. – Прим. перев.

 12 / 40

https://ru.wikipedia.org/wiki/Команда_(шаблон_проектирования

332    Глава 15. Примеры из практики

Кроме высокой производительности и безопасности, разделение моно-
литного приложения с препроцессорами на бессерверные функции обеспе-
чило простую возможность добавления в CodePen новых препроцессоров в
виде бессерверных функций. Для разработчиков CodePen это самое большое
преимущество: раньше все упиралось в «мини-монолит», как они называли
свое прежнее приложение с препроцессорами на Ruby on Rails, и изменение
или добавление новых возможностей было непростым делом.

15.1.3. Затраты на инфраструктуру
Затраты команды CodePen значительно уменьшились после перехода на

бессерверные вычисления, поскольку отпала необходимость резервировать
экземпляры заранее; теперь они платят только за фактически выполненную
работу. Нагрузка меняется, поэтому в периоды невысокого трафика команде
CodePen не приходится платить за простаивающие экземпляры. Кроме того,
благодаря кешированию API Gateway удалось сэкономить еще больше денег.
По сравнению с оплатой за зарезервированные серверы, AWS Lambda обхо-
дится очень дешево.

Еще одно важное соображение, которое большинство не учитывает, – ко-
личество времени, затрачиваемое на управление серверами, и внутренняя
сложность. Чтобы увидеть разницу, в CodePen даже попробовали выделить
всем своим функциям Lambda максимальный объем памяти (3 Гб). Они стали
работать еще быстрее, потому что выполнялись на превосходном оборудова-
нии (даже лучшем, чем требовалось). Ежемесячная плата выросла на 1000 дол-
ларов, что очень много, но даже на этом уровне она все еще была доступной и,
по словам Алекса Васкеса, даже с дополнительными расходами на максималь-
ную конфигурацию AWS Lambda, стоимость обслуживания не выдерживала
сравнения с затратами на настройку и развертывание серверов.

Выбор правильного размера функции Lambda
В CodePen отсутствует стандарт для определения правильного размера бес-

серверной функции. Монолиты и функции (при увеличении размеров) делят-
ся с использованием понятия логической единицы. Например, если потребуется
реализовать операцию с изображением, будет создана бессерверная функция,
включающая в себя все, что для этого необходимо.

Аналогично, для выполнения операций с аудиозаписями будет создана бес-
серверная функция, предназначенная для обработки аудиозаписей.

В CodePen логические единицы – это препроцессоры: Babel, Autoprefixer,
Sass, LESS и др. Для каждого создана отдельная бессерверная функция Node.js.
Это позволяет развернуть несколько версий одного и того же препроцессора.
Разбивать функциональность еще дальше не имеет смысла, потому что более
дробным делением сложнее управлять.

Кроме того, каждая бессерверная функция в CodePen имеет определенное
распределение памяти. В общем случае для бессерверной функции выделяет-

 13 / 40

15.2. MindMup    333

ся 512 Мб памяти. Babel – единственный препроцессор, который запускается
очень долго, поэтому для него выделено 1024 Мбайт.

15.1.4. Тестирование и проблемы
Основное тестирование CodePen осуществляется с применением модуль-

ных тестов, выполняющихся под управлением фреймворка Jest. Так как бес-
серверные функции в составе CodePen написаны на Node.js с Claudia, тесты
для них писали те же инженеры, разрабатывавшие эти функции. Интеграци-
онных тестов немного, но существует много тестов, используемых для отлад-
ки или тестирования всей системы вручную.

Увеличение степени масштабирования
По умолчанию AWS Lambda ограничивает степень масштабирования 1000

одновременно выполняемых экземпляров, но из-за непредсказуемости тра-
фика приложение CodePen быстро достигло этого предела.

После отправки простого запроса-просьбы в AWS степень масштабирова-
ния для CodePen почти сразу была увеличена до 5000 одновременных запро-
сов.

Холодные запуски
Асинхронный характер препроцессоров CodePen смягчает влияние холод-

ных запусков на бессерверные функции. Это не влияет на их работу. CodePen
также сильно зависит от кеша в API Gateway. Они создали уникальный URL
для каждого определенного набора данных, потому что API Gateway может
кешировать только уникальные URL.

Мониторинг
Для мониторинга своей бессерверной системы команда CodePen исполь-

зует лишь CloudWatch. Для получения отчетов об ошибках они использу-
ют HoneyBadger и его Node.js SDK. Вся система находится под постоянным
наблюдением, и всякий раз, когда возникает тайм-аут или ошибка, сообщение
об этом посылается в HoneyBadger.

Безопасность
Для обеспечения безопасности в CodePen используется JSON Web Token

(JWT). Монолит генерирует ключ и передает его клиенту, чтобы клиент мог
легко аутентифицировать запросы, отправляемые им бессерверной функции
маршрутизатора.

15.2. MindMup
MindMup (https://www.mindmup.com) – популярное веб-приложение для состав
ления интеллект-карт (mind map), написанное преимущественно на JavaScript.
По словам Гойко Адзича (Gojko Adzic), одного из основателей компании,

 14 / 40

https://www.mindmup.com

334    Глава 15. Примеры из практики

MindMup обслуживает почти полмиллиона активных пользователей, при этом
сопровождение и развитие приложения осуществляет команда всего из двух
человек. Такого успеха они смогли добиться благодаря широкому использо-
ванию бессерверных служб в AWS, что позволило им значительно сократить
расходы. Что еще более важно, применение бессерверных вычислений под-
толкнуло их к совершенствованию архитектуры и теперь позволяет им быст
рее двигаться дальше и больше экспериментировать.

Интеллект-карты
Интеллект-карта (mind map) – это диаграмма с визуальным представлением
информации. Она имеет иерархическую организацию и показывает отношения
между частями целого. Интеллект-карта часто создается вокруг единого поня-
тия, нарисованного в центре пустой страницы, к которому потом добавляются
представления связанных идей, таких как изображения, слова и части слов.
Основные идеи напрямую связаны с центральным понятием, а другие идеи
вытекают из них. Узнать больше можно по адресу https://ru.wikipedia.org/
wiki/Диаграма_связей.

15.2.1. До перехода на бессерверные вычисления
С момента основания в 2013 году проект MindMup был оптимизирован для

разработки небольшой командой и использования относительно недорогой
инфраструктуры. Вначале разработчики решили объединить Heroku с AWS,
чтобы получить масштабируемую инфраструктуру, требующую минимально-
го обслуживания.

Heroku
Heroku – это облачная платформа как услуга (Platform as a Service, PaaS), под-
держивающая несколько языков программирования, на которой развертыва-
ются веб-приложения. Она появилась в июне 2007 года и стала одной из первых
облачных платформ. Тогда Heroku поддерживала только язык программиро-
вания Ruby, но теперь она поддерживает Java, Node.js, Scala, Clojure, Python,
PHP и Golang. Как многоязычная платформа, Heroku позволяет разработчикам
одинаковым образом создавать, запускать и масштабировать приложения на
всех языках.
Узнать больше о Heroku можно на сайте проекта https://www.heroku.com.

В MindMup имелось одно приложение на Heroku, которое было ядром систе
мы; оно обслуживало одностраничное веб-приложение и API. API отвечал за
аутентификацию, авторизацию, предоставление данных и подписку. Проект

 15 / 40

https://ru.wikipedia.org/wiki/Диаграма_связей
https://ru.wikipedia.org/wiki/Диаграма_связей
https://www.heroku.com

15.2. MindMup    335

MindMup начинался как бесплатная служба, но спустя почти два года создате-
ли добавили платную версию с поддержкой совместной работы. Для поддерж-
ки платных пользователей им потребовалась простая и масштабируемая база
данных, поэтому они добавили AWS DynamoDB.

Помимо одностраничного приложения для создания интеллект-карт, одной
из наиболее важных частей MindMup являются экспортеры – инструменты,
позволяющие экспортировать интеллект-карты в различные форматы, такие
как PDF, Word и даже презентации PowerPoint. Для этой цели применялось
большое число конвертеров, и каждый отличался своими особенностями ис-
пользования и потребления памяти. Например, экспортер в формат PDF ис-
пользовался все время и требовал много вычислительной мощности и памяти.
Экспортер в простой текстовый формат был намного менее требовательным к
ресурсам, а экспортер в формат Markdown использовался очень редко. Кроме
того, разные экспортеры требовали наличия в системе разных приложений:

�� для преобразования в формат PDF требовалось наличие Ghostscript –
программного пакета для работы с форматом PDF;

�� для преобразования в формат Word использовалась Apache POI – библио
тека на Java для чтения и записи документов в формате Microsoft Office;

�� для преобразования в другие форматы требовались языки программи-
рования Ruby и Python.

Для преобразования интеллект-карт в разные форматы использовалось
хранилище файлов AWS S3. Но вместо выгрузки файлов из API была реализо
вана выгрузка из браузера непосредственно в корзину AWS S3, с использо-
ванием подписанных URL. Уведомления о вновь выгруженных файлах поме-
щались в очередь AWS Simple Queue Service (SQS). Для каждого типа файла
была организована своя очередь SQS и запускалось несколько приложений,
читающих задания из очереди и выполняющих преобразование в указанный
формат.

Приложения-конвертеры выполнялись на платформе Heroku, но для под-
держки большого количества независимых экспортеров требовалось почти
30 динов2 (легких контейнеров на основе Linux), что было слишком дорого.
Чтобы снизить стоимость, они объединили экспортеров в несколько прило-
жений Heroku, после чего каждое приложение стало представлять собой груп-
пу экспортеров, которым требовался один и тот же язык программирования,
потому что дины в Heroku требуют выбора языка программирования при на-
стройке. На тот момент приложение MindMup имело архитектуру, изображен-
ную на рис. 15.4.

Объединение экспортеров уменьшило затраты на инфраструктуру, но поро
дило некоторые другие проблемы:

�� ухудшилась изоляция и выросло число конфликтов между библиотека-
ми;

2	 Название dino переводится на русский язык как «динозавр» или «динозаврик». – Прим. перев.

 16 / 40

336    Глава 15. Примеры из практики

�� добавление нового экспортера требовало значительных усилий по
координации, потому что необходимо было создать новое приложение,
организовать новую очередь SQS. Сами очереди SQS были довольно лег-
ковесными, но они добавляли дополнительный уровень сложности;

�� так как экспортеры объединялись в большие пакеты, проводить экспе-
рименты было трудно;

�� было сложно обновлять пакеты для разных приложений Heroku с разны-
ми языками программирования.

Кроме того, случился скандал с механизмом маршрутизации запросов в
Heroku – запросы передавались случайному дино, а не свободному, даже если
случайно выбранный дино был уже занят. Узнать больше об этом инциденте
можно по адресу https://genius.com/James-somers-herokus-ugly-secret-annotated.

На тот момент экспортеры были главной проблемой архитектуры MindMup.

for each of them varied. For example, the PDF exporter was used all the time and
required a lot of CPU and memory for file generation. The text exporter required
only a small amount of resources, and the Markdown exporter was used much less fre-
quently. Also, different exporters required different applications:

¡	For PDF, they needed Ghostscript, a software suite for PDF manipulation.
¡	For Word, they used Apache POI, a library that provides Java libraries for reading

and writing files in Microsoft Office formats.
¡	For other exporters, they needed Ruby and Python.

To export mind maps in different formats, they used AWS S3 file storage. But instead
of uploading files from the API, they uploaded files directly from the browser to an
AWS S3 bucket, using signed URLs generated by the API. Notifications about newly
uploaded conversion request files were then pushed to an AWS Simple Queue Service
(SQS) queue. They had one SQS queue per conversion file type and a few applications
to read from the queue and convert the file to the specified file type.

The converter applications were Heroku apps, but supporting lots of independent
exporters required almost 30 dynos (Heroku’s lightweight Linux-based containers), which
was too expensive. To reduce the cost, they bundled the exporters into a few Heroku apps;
each app was a group of all the exporters that required the same programming language,
because Heroku dynos require programming language selection on setup. The MindMup
architecture at that point was similar to figure 15.4.

Bundling exporters reduced the cost of the infrastructure, but it also brought cer-
tain issues, such as the following:

¡	There was less isolation and more situations where different libraries could
collide.

¡	Adding a new exporter required a lot of coordination because it required a new
app and a new SQS queue. SQS queues were not too expensive, but they were an
additional layer of complexity.

¡	Because it was all bundled, performing small experiments was difficult.
¡	Updating packages for different Heroku apps with different programming lan-

guages was difficult to manage.

Also, there was bit of a scandal with the way Heroku was doing routing—it routed
requests to a random dyno instead of to a free one, even if the random dyno was
already busy. To learn more about this incident, see https://genius.com/James
-somers-herokus-ugly-secret-annotated.

At that time, exporters were the biggest pain point of the MindMup architecture.

15.2.2 Serverless migration

In January 2016, the developers were planning to add a new exporter, and they were
looking at AWS Lambda because they had seen that files saved in S3 could invoke
Lambda functions. As an experiment, Gojko created an exporter in Node.js with a bash
script to automate the deployment of a new Lambda function. They liked how it worked,

База данных
AWS DynamoDB

2. API взаимо-
действует с базой
данных AWS
DynamoDB, где
хранятся учетные
записи и
транзакции.

7. Приложения Heroku для
преобразования в разные
форматы сгруппированы
по используемому языку
программирования для
оптимизации стоимости.

4. Затем он посылает
полученный ранее подписан-
ный URL, чтобы загрузить
преобразованный файл.

3. Каждый раз, запуская экспортирование,
пользователь сохраняет JSON непосредственно
в корзину AWS S3, используя предварительно
подписанный URL.

HTML

Приложение Heroku
Корзина
AWS S3

для файлов
Все конвертеры на Node.js

находятся в отдельном
приложении Heroku

Все конвертеры на Ruby
находятся в отдельном

приложении Heroku

Все конвертеры на Java
находятся в отдельном

приложении Heroku

API

AWS SNS

Очередь для преоб-
разования в PNG

AWS SQS

1. Браузер взаимодействует с
одностраничным приложением
Heroku, обслуживающим стра-
ницу HTML и API. Этот API также
возвращает предварительно
подписанные URL для записи и
чтения файлов в корзине S3.

5. Затем для
каждого выгружен-
ного файла AWS S3
генерирует собы-
тие AWS SNS.

6. Далее AWS SNS запускает
отправку выгруженного

файла в соответствующую
очередь SQS.

8. Приложения Heroku
извлекают запросы на
преобразование из очередей
AWS SQS и обрабатывают их.

Очередь для преоб-
разования в PDF

Очередь для преоб-
 разования в Word

Рис. 15.4. Архитектура MindMup перед миграцией на бессерверные вычисления

 17 / 40

https://genius.com/James-somers-herokus-ugly-secret-annotated

15.2. MindMup    337

15.2.2. Миграция на бессерверные вычисления
В январе 2016 года разработчики планировали добавить нового экспортера

и, изучая возможности AWS Lambda, заметили, что сохранение файлов в S3
может вызывать функции Lambda. Для эксперимента Гойко написал экспор-
тера в Node.js и сценарий на bash для автоматизации развертывания новой
функции Lambda. Им понравилось, что из этого получилось: в отличие от He
roku, которая требовала резервирования вычислительных ресурсов заранее,
AWS Lambda предлагала платить только за время использования. Это озна-
чало, что для каждого экспортера можно написать отдельную функцию. Во
одушевленные результатами эксперимента, они решили начать постепенный
перенос всех экспортеров в AWS Lambda.

Гойко заметил, что для реализации первого экспортера ему потребовалось
написать 30 строк кода в Node.js и более 200 строк в сценарии bash. Он осо
знал, что риск сместился с кода на развертывание и что ему нужен проверен-
ный инструмент для миграции в бессерверное окружение. Однако экосистема
бессерверных инструментов была недостаточно развита, поэтому он решил
реализовать свое решение, которое позже было открыто и опубликовано как
Claudia.js.

Поскольку веб-сайт MindMup был монолитом, который обслуживал API
и выполнял отображение на стороне сервера, разработчики решили начать
миграцию в AWS Lambda с перевода службы API. Миграцию API можно было
осуществить через API Gateway, но они воспользовались удобной возмож
ностью переписать и реорганизовать часть старого кода и привести в порядок
трехлетнюю базу кода, которая, по словам Гойко, развивалась «порой самыми
неожиданными путями».

В процессе миграции они создали в Heroku одно приложение, отвечавшее
за отображение файла index.html. Заменили прежнее приложение статическим
сайтом в корзине AWS S3 с AWS CloudFront в качестве слоя CDN и кеширова-
ния. Единственным экспортером, который остался на Heroku, был экспортер
в формат PowerPoint, написанный на Java. Некоторое время он работал нор-
мально, но в конце концов его тоже перенесли в AWS Lambda.

Вся миграция заняла около года неторопливой работы, и в феврале 2017 го
да MindMup превратился в полностью бессерверное приложение. Весь код
распределился по небольшим функциям Lambda, организованным в логичес
кие единицы. В текущей архитектуре веб-сайт MindMup загружается из AWS
S3 и CloudFront. Браузер напрямую взаимодействует с так называемым Gold
API, который является функцией Lambda за API Gateway. Gold API подключен
к базе данных DynamoDB и используется платежными системами Stripe и
PayPal.

Gold API также генерирует предварительно подписанные URL, которые поз
воляют браузеру выгружать файлы непосредственно в корзину S3 и проверять
ее в поисках результатов преобразования. Когда файл выгружается в корзину
S3, она посылает уведомление SNS, которое, в свою очередь, запускает кон-
вертеры.

 18 / 40

338    Глава 15. Примеры из практики

Самое большое отличие новых экспортеров состоит в том, что теперь каж-
дый из них – независимо от количества обрабатываемых им запросов – нахо-
дится в отдельной функции Lambda.

СОВЕТ. Реализация каждого экспортера в виде отдельной функции Lambda также
позволила MindMup оптимизировать затраты: некоторые экспортеры находятся
в функциях Lambda с минимальным объемом памяти (128 Мб), а некоторые –
в функциях с большим объемом памяти.

Закончив преобразование, экспортер выгружает результат непосредствен-
но в корзину S3, а браузер загружает его к себе.

Еще больше функций Lambda используется для аналитических целей и вы-
зывается различными компонентами системы (например, API или одним из
экспортеров) посредством уведомлений SNS. Эти функции Lambda обраба
тывают данные и сохраняют их в нескольких разных службах, таких как кор-
зины S3 и таблицы DynamoDB.

Кроме API, имеется компонент авторизации, который взаимодействует со
статическим веб-сайтом и функцией Lambda в Gold API. Для поддержки учет-
ных записей Google в MindMup используется Cognito, но в приложении есть
также собственный компонент авторизации, используемый остальной частью
приложения.

В настоящий момент приложение MindMup имеет архитектуру, изображен-
ную на рис. 15.5.

Несмотря на то что теперь MindMup является полностью бессерверным
приложением, команда постоянно работает над улучшениями. Например, в
ближайшее время они предполагают добавить масштабируемую поддержку
совместной работы в реальном времени с использованием потоков Kinesis и
функций AWS Lambda.

15.2.3. Затраты на инфраструктуру
Одним из самых удивительных результатов, полученных проектом MindMup

от миграции на бессерверные вычисления, стала оптимизация расходов на
инфраструктуру. Сравнение затрат и количества пользователей за декабрь
2016 года и декабрь 2015 года показало, что число пользователей выросло
примерно на 50 %, тогда как затраты снизились примерно на 50 %. Воодуше-
вившись такими показателями, разработчики решили полностью отказать-
ся от Heroku и SQS; они перенесли все компоненты в AWS, сократили объ-
ем передаваемых данных и время ожидания. Пользуясь Heroku, они платили
за зарезервированные мощности. Ситуация изменилась, когда они перешли
на бессерверные вычисления. Gold API был единственной точкой доступа к
остальным компонентам приложения, и это было их главным узким местом.
Превратившись в бессерверную функцию, Gold API стал масштабироваться
автоматически и перестал быть узким местом.

 19 / 40

15.2. MindMup    339

As the migration progressed, they ended up with a single application on Heroku
that was responsible for rendering the index.html file. They replaced it with a static
site on an AWS S3 bucket, with AWS CloudFront as a CDN and caching layer. The only
exporter that was left on Heroku was the PowerPoint exporter, written in Java. It ran
fine for some time, but they eventually moved that to AWS Lambda, too.

The entire migration took about a year of slow rewriting, and MindMup was a fully
serverless application in February 2017. Everything was divided into small Lambda func-
tions that are organized in logical units, and a single function is not necessarily doing just
one small thing. In the current architecture, the MindMup website is loaded from AWS S3
and CloudFront. A browser communicates directly with the so-called Gold API, which is a
Lambda function behind an API Gateway. The Gold API is connected to the DynamoDB
database, and it is used by Stripe and PayPal webhooks.

The Gold API also generates presigned URLs that allow a browser to write files
directly to an S3 bucket and to poll the bucket to check if the files were generated.
When a file is uploaded to the S3 bucket, it triggers an SNS notification, which then
triggers the converters.

The biggest difference is with the exporters, because each exporter—regardless of
how many requests it handles—is in its own Lambda function.

TIP Isolating each exporter in its own Lambda function also allows MindMup
to optimize costs: they can have some of the exporters in Lambda functions
with minimum memory (128 MB) but use more memory for exporters that
require it.

When a file is converted, an exporter directly stores the result to an S3 bucket, and the
browser gets the converted file.

Even more Lambda functions are used for analytics purposes, triggered by the dif-
ferent parts of the system (for example, by an API or by one of the exporters) via SNS
notifications. Those Lambda functions process the data and store it to a few different
services, such as S3 buckets and DynamoDB tables.

There’s also an authorization component in front of an API that communicates with
the static website and the Gold API Lambda function. MindMup uses Cognito for Google
sign-in, but they also have a custom authorizer for the rest of the app.

The current MindMup architecture is shown in figure 15.5.
Although MindMup is fully serverless now, the team is constantly working on

improvements. For example, one of the next steps is to add scalable real-time collabora-
tion support, using Kinesis streams and AWS Lambda functions.

15.2.3 Cost of the infrastructure

One of the most amazing things about MindMup’s serverless migration was the
improvement in application infrastructure cost. A comparison of the infrastructure
costs and the number of users for December 2016 and December 2015 showed that the
user base had grown by about 50%, whereas the costs had decreased by about 50%. At

База данных
DynamoDB

1. Браузер загружает
статические файлы
(HTML и JavaScript)
из AWS S3 и AWS
Cloud Front.

2. Также браузер напрямую
взаимодействует с API, который,
кроме всего прочего, генерирует
предварительно подписанные URL
для работы с файлами в AWS S3.

4. Закончив создание файла,
функция AWS Lambda выгру-
жает его сразу в корзину S3,
а браузер читает его оттуда,
используя предварительно
подписанный URL.

3. Затем AWS S3 посы-
лает SNS-уведомление
для каждого файла.
Каждое SNS-уведомле-
ние вызывает функцию
AWS Lambda для преоб-
разования выгруженно-
го файла.

8. Уведомления SNS
используются в MindMup
также для сбора аналитики
из разных компонентов
системы. Теперь
аналитическая
информация посылается
нескольким разным
службам, таким как
DynamoDB и S3.

7. API устанавли-
вает соединение
с базой данных
DynamoDB.

6. Веб-сайт, API Gateway и
AWS Lambda используют
Cognito для аутентифика-
ции пользователей с учет-
ными записями Google, а
также свой механизм
аутентификации.

5. Платежные системы
используют веб-обра-
ботчики для взаимо-
действий с функциями
API Lambda через API
Gateway.

Корзина S3
для веб-сайта

Cognito

Функции Lambda
для «Gold API» Уведомления

SNS

Уведомления
SNS для

аналитики

Преобразо-
ватель

Lambda в
формат PDF

AWS S3,
DynamoDB

и другие службы

API Gateway Корзина S3
для файлов

Stripe
и

Paypal

Cloud
Front

Преобразо-
ватель

Lambda в
формат PNG

Преобразо-
ватель

Lambda в
формат SVG

Рис. 15.5. Архитектура бессерверной версии MindMup

В сентябре 2017 года проект MindMup имел около 400 000 активных поль-
зователей. Их ежемесячный счет за услуги AWS составил 102.92 долл. США.
В табл. 15.1 показано, как эта сумма складывается из платежей за разные услуги.

Таблица 15.1. Приложения

Ресурс AWS Ежемесячный платеж

Lambda $0.53

API Gateway $16.41

DynamoDB $0

CloudFront $65.20

S3 $5.86

Передача данных $4.27

Им удалось снизить стоимость, потому что они позволили пользовательско-
му интерфейсу напрямую взаимодействовать с некоторыми службами, такими
как S3, минуя API между браузером и S3. Это влияет на стоимость, поскольку
разные службы AWS имеют разные модели ценообразования. Например:

 20 / 40

340    Глава 15. Примеры из практики

�� AWS взимает плату за количество запросов, продолжительность выпол-
нения и потребление памяти;

�� API Gateway взимает плату за количество запросов и передачу данных;
�� Amazon S3 взимает плату только за передачу данных.

В традиционном приложении выгрузка изображений происходит через API,
вследствие чего вы платите за передачу данных в S3 и API Gateway, а также на
количество запросов, продолжительность их обработки и потребление памяти
в AWS Lambda. В бессерверной версии можно получить предварительно
подписанный URL для S3 из API, что занимает меньше 100 мс и почти не
требует памяти. Затем вы можете выгрузить файл напрямую в корзину S3 из
пользовательского интерфейса и оплатить только эту передачу данных.

15.2.4. Тестирование, журналирование и проблемы
Зная, что библиотека Claudia хорошо охвачена автоматизированными тес

тами, было интересно услышать от Гойко, как они тестируют MindMup. Как и
ожидалось, MindMup имеет множество модульных и интеграционных тестов.
Все приложение разделено на библиотеки, и в нем широко используется гек-
сагональная архитектура.

Тесты написаны с использованием фреймворка Jasmine. Для каждой функ-
ции Lambda имеется множество модульных и несколько интеграционных
тестов, если необходимо. Для большинства функций Lambda имеется файл
lambda.js, который почти ничего не делает и отвечает только за подключение
других компонентов. Эти файлы lambda.js почти не охвачены тестами, пото-
му что содержат всего по три-четыре строки кода. Также для каждой функ-
ции имеется файл main.js, являющийся основным файлом данной функции
Lambda; он получает событие из lambda.js и обрабатывает его. Файл main.js
подключает различные библиотеки (например, FileRepository), перечислен-
ные в файле lambda.js.

Наибольший объем имеют модульные тесты для файла main.js. Имеются
также интеграционные тесты, которые подключают main.js к MemoryRepository.
Библиотека FileRepository тестируется модульными и интеграционными тес
тами, но отдельно, потому она стоит особняком.

Ход тестирования типичной функции AWS Lambda изображен на рис. 15.6.
Для некоторых экспортеров также выполняются визуальные тесты с ис-

пользованием Appraise, инструмента для визуального тестирования, о кото-
ром мы упоминали в главе 11. Узнать больше об Appraise можно на странице
проекта http://appraise.qa/.

Для журналов в MindMup используется CloudWatch. С его помощью также
отслеживаются ошибки, информация об оплате и доступе; например, исклю-
чения в пользовательском интерфейсе отслеживаются через Google Analytics.
Некоторые события сохраняются в S3, чтобы потом их можно было отыскать.
Приложение не нуждается в журналировании в реальном времени с широки-
ми возможностями поиска.

 21 / 40

http://appraise.qa/

В заключение    341

They managed to reduce the cost because they let the front-end application talk to
some services, such as S3, directly, without putting an API between the browser and
S3. This affects the cost because different AWS services have different pricing models.
For example:

¡	AWS charges for the number of requests, execution duration, and memory
consumption.

¡	API Gateway charges for the number of requests and for data transfer.
¡	Amazon S3 charges only for data transfer.

In a traditional application, you would upload images through the API, but by doing
this, you would incur costs for data transfer in S3 and API Gateway and for the number
of requests, request duration, and memory consumption in AWS Lambda. In a server-
less application, you can get the presigned URL for S3 from an API, which takes less
than 100 ms and requires minimal memory. You can then upload the file directly to an
S3 bucket from the front end and pay for only that data transfer.

15.2.4 Testing, logs, and challenges

Knowing that Claudia is well covered with automated tests, it was interesting to hear
from Gojko how they test MindMup. As expected, MindMup has a lot of unit and inte-
gration tests. Everything is separated into libraries, and they use Hexagonal Architec-
ture extensively.

Tests are written using the Jasmine framework. Each of the Lambda functions has
many unit tests, and a few integration tests where needed. For most of the Lambda
functions, they have a lambda.js file that does almost nothing, and is responsible just
for wiring other components. This lambda.js file is rarely covered with tests because it
contains only three to four lines of code. Then they have the main.js file, which is the
main file for that Lambda function; it receives an event from lambda.js and processes
it. This main.js file is connected to different libraries (for example, FileRepository),
configured, and passed from the lambda.js file.

The biggest chunk of their testing is unit tests for the main.js file. They also have inte-
gration tests that connect main.js with the MemoryRepository. The FileRepository is
tested with both unit and integration tests, but separately, because it’s a separate library.

The testing flow of the typical AWS Lambda function is depicted in figure 15.6.
For some of the exporters, they also conduct visual tests using Appraise, a tool for

visual approval testing that we mentioned in chapter 11. To learn more about Appraise,
see http://appraise.qa/.

For logs, MindMup uses CloudWatch. They also track errors, payment information,
and access; for example, front-end exceptions are tracked through Google Analytics.
They store some events in S3 so they can search them. They do not need real-time log-
ging with extensive search capabilities.

It’s important to note that MindMup uses labels for the environments, which is a bit
contrary to AWS best practices. MindMup labels functions for development; those func-
tions then talk to a development S3 bucket, DynamoDB table, and so on. Moving from

Модульные тесты

Интеграционные тесты
с Amazon S3

Модульные тесты

lambda.js FileRepository

main.js

Типичная функция Lambda

Для типичной функции
Lambda создаются файлы
lambda.js и main.js.

Файл lambda.js просто
передает события и
репозитории в main.js
и обычно не охватыва-
ется тестами.

Репозитории – это отдельные
библиотеки Node.js, и для них
имеются свои модульные
и интеграционные тесты.

Для файла main.js имеются
свои модульные и
интеграционные тесты,
но в интеграционном
тестировании используется
MemoryRepository.

Файл main.js содержит бизнес-логику
функции Lambda и получает события
и репозитории.

Интеграционные тесты
с MemoryRepository

Рис. 15.6. Процесс тестирования типичной функции AWS Lambda

Важно отметить, что MindMup использует метки для разных окружений,
что немного противоречит рекомендациям AWS. Метки используются в
MindMup для маркировки функций в стадии разработки; эти функции взаи-
модействуют с корзиной S3 для разработки, таблицей в DynamoDB и т. д. Что-
бы перенести функцию из окружения разработки в окружение эксплуатации,
достаточно лишь изменить метку. Безопаснее было бы иметь разные учетные
записи для разных окружений, но небольшой размер команды делает описан-
ный подход вполне приемлемым, а его использование позволяет развивать
MindMup быстрее.

В заключение
�� Бессерверная архитектура позволяет быстро создать масштабируемый

продукт с помощью небольшой команды и недорогой инфраструкту-
ры.

�� Тандем Claudia и AWS Lambda дает возможность разрабатывать и раз-
вертывать готовые к работе службы без обширных знаний внутренних
особенностей.

�� Переход на бессерверные вычисления может дать значительное сниже-
ние затрат, если правильно оптимизировать приложение с учетом всех
особенностей платформы.

�� В бессерверном окружении риски смещаются в область развертывания и
интеграции, поэтому важно покрыть эти операции тестами.

�� Использование гексагональной архитектуры уменьшает сложность кода
и упрощает тестирование бессерверного приложения.

 22 / 40

342    Глава 15. Примеры из практики

�� Переход на бессерверные вычисления можно использовать для полного
рефакторинга имеющегося приложения.

Помимо всего того, что вы узнали о преимуществах бессерверных вычис-
лений в этой книге, мы надеемся, что вам понравилась компания тетушки
Марии и вы не слишком проголодались, читая о ней. Приятного вам аппе-
тита!

 23 / 40

Приложение A
Установка и настройка

В этом приложении подробно описывается, как установить и настроить Clau-
dia и другие библиотеки экосистемы: Claudia API Builder и Claudia Bot Builder.

В данном приложении, как и во всей книге, предполагается, что вы зна-
комы с основами платформы AWS и имеете учетную запись. Если это не так,
настоятельно рекомендуем создать учетную запись и познакомиться с AWS в
целом и системой управления учетными записями и разрешениями в частно-
сти, прежде чем читать дальше. Создать учетную запись можно на веб-сайте
AWS: https://aws.amazon.com. Желающим лучше понять суть учетных записей
и ролей рекомендуем обратиться к официальной документации: http://docs.
aws.amazon.com/IAM/latest/UserGuide/id.html.

A.1. Установка Claudia
Claudia – это обычный модуль для Node.js, доступный в NPM.

Чтобы установить Claudia и получить доступ к команде claudia в терминале,
выполните команду

npm install claudia -g

Другая возможность: установить Claudia в проект Node.js как зависимость
времени разработки с помощью следующей команды:

npm install claudia --save-dev

В этом случае Claudia будет установлена локально, то есть вы не сможете
использовать ее в терминале. Вместо этого вы вынуждены будете запускать
сценарий NPM. В листинге A.1 показана минимальная версия файла package.
json, который добавляется в проект при установке библиотеки Claudia в виде
зависимости времени разработки, с необходимыми сценариями NPM.

Листинг A.1. Пример файла package.json с локальной версией Claudia

{
 "name": "pizza-api",
 "version": "1.0.0",
 "description": "",

 24 / 40

https://aws.amazon.com
http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

344    Приложение A. Установка и настройка

 "main": "api.js",
 "scripts": {
 "create": "claudia create --region eu-central-1 --api-module api",
 "update": "claudia update"
 },
 "keywords": [],
 "license": "MIT",
 "devDependencies": {
 "claudia": "^4.0.0"
 },
}

После добавления файла package.json с содержимым из листинга A.1 создать
функцию Lambda и определение API Gateway можно командой npm run create,
которая должна выполняться в терминале, в папке проекта, а обновить – ко-
мандой npm run update.

Полное описание процедуры установки Claudia можно также найти на
веб-сайте Claudia: https://claudiajs.com/tutorials/installing.html.

A.1.1. Настройка зависимостей Claudia
При всей простоте установки библиотека Claudia имеет одну важную зави-

симость: ключи доступа к профилю AWS.
Если вы еще не создали профиль AWS, обращайтесь к следующему раз-

делу.
Для работы с AWS библиотека Claudia использует пакет AWS SDK для Node.

js, а этот пакет SDK, в свою очередь, требует передать ему ключи для доступа к
профилю AWS. Передать ключи можно несколькими способами. Самый прос
той – создать папку .aws в домашнем каталоге пользователя в операционной
системе и внутри этой папки создать файл credentials без расширения и со
следующим содержимым:

[default]
aws_access_key_id=YOUR_ACCESS_KEY
aws_secret_access_key=YOUR_ACCESS_SECRET

ПРИМЕЧАНИЕ. Не забудьте заменить YOUR_ACCESS_KEY и YOUR_ACCESS_SECRET фак-
тическими значениями ключей.

Если вы присвоили своему профилю имя, отличное от имени по умолча-
нию, то должны передать это имя в Claudia. Сделать это можно, передав флаг
--profile с именем профиля (например, claudia update --profile yourProfileName)
или определив переменную среды AWS_PROFILE (например, AWS_PROFILE = your-
ProfileName; update claudia).

Сценарий NPM
для обновления API.

Сценарий NPM для создания
API в регионе eu-central-1.

Закрытый ключ доступа
к профилю AWS.

Claudia сохраняется как зависимость
времени разработки.

Имя профиля в AWS. Открытый ключ доступа
к профилю AWS.

 25 / 40

https://claudiajs.com/tutorials/installing.html

A.1. Установка Claudia    345

Исчерпывающее руководство по настройке AWS SDK для Node.js находит-
ся по адресу http://docs.aws .amazon.com/sdk-for-javascript/v2/developer-guide/
configuring-the-jssdk.html.

A.1.2. Создание профиля AWS и получение ключей
Чтобы создать новый профиль AWS для Claudia, откройте веб-консоль AWS

(https://console.aws.amazon.com) и зарегистрируйтесь.
Затем перейдите на вкладку Users (Пользователи) в разделе IAM (https://

console.aws.amazon.com/iam/home#/users). Щелкните на кнопке Add User (Доба-
вить пользователя), как показано на рис. A.1.

Рис. A.1. Вкладка Users (Пользователи) в разделе IAM
в веб-консоли AWS

Чтобы добавить нового пользователя, нужно выполнить процедуру, состо-
ящую из четырех шагов. Прежде всего выберите имя пользователя (для пер-
вого вашего пользователя прекрасно подойдет имя claudia) и определите для
него тип доступа. Так как пользователь будет применяться только в AWS CLI
и AWS SDK для Node.js, выберите вариант Programmatic Access (Программ-
ный доступ). Щелкните на кнопке Next: Permissions (Далее: Разрешения), см.
рис. A.2.

На втором шаге необходимо определить разрешения для пользователя. Вы-
берите вкладку Attach Existing Policies Directly (Добавить существующие по-
литики непосредственно), как показано на рис. A.3. Затем используйте поле
ввода для поиска политик для добавления.

 26 / 40

http://docs.aws .amazon.com/sdk-for-javascript/v2/developer-guide/configuring-the-jssdk.html
http://docs.aws .amazon.com/sdk-for-javascript/v2/developer-guide/configuring-the-jssdk.html
https://console.aws.amazon.com
https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/iam/home#/users

346    Приложение A. Установка и настройка

Рис. A.2. Первый шаг в процедуре добавления пользователя AWS:
настройка свойств пользователя

Рис. A.3. Второй шаг в процедуре добавления пользователя AWS:
настройка разрешений

Для опробования примеров в этой книге нужно добавить следующие поли-
тики:

�� IAMFullAccess – необходима, чтобы Claudia могла автоматически соз-
давать роли выполнения для функций Lambda (рекомендуется для на-

 27 / 40

A.1. Установка Claudia    347

чинающих). Альтернативный вариант заключается в том, чтобы пере-
давать имя существующей роли команде claudia create в параметре
--role;

�� AWSLambdaFullAccess – нужна для развертывания Claudia;
�� AmazonAPIGatewayAdministrator – необходима для работы Claudia API

Builder и Claudia Bot Builder;
�� AmazonDynamoDBFullAccess – нужна для управления базой данных Dy-

namoDB;
�� AmazonAPIGatewayPushToCloudWatchLogs – необязательна; используется

для журналирования запросов и ответов в API Gateway.

В промышленном окружении к выбору ролей нужно подходить особенно
внимательно; обсуждение этого вопроса выходит далеко за рамки книги,
но мы советуем тщательно изучить все, что связано с ролями и политиками
AWS, прежде чем приступать к развертыванию приложений в промышленном
окружении.

Третий шаг – обзор выполненных настроек, как показано на рис. A.4. Если
все настройки содержат правильные значения, щелкните по кнопке Create
User (Создать пользователя) внизу страницы.

Рис. A.4. Третий шаг в процедуре добавления пользователя AWS: обзор

В ответ вам будет предложено подтвердить свое решение, как показано на
рис. A.5. Этот последний шаг очень важен, потому что именно здесь дается
доступ к открытому и закрытому ключам доступа.

 28 / 40

348    Приложение A. Установка и настройка

Рис. A.5. Получение ключей для пользователя

Теперь, получив ключи, можете вернуться в предыдущий раздел и подста-
вить их.

A.1.3. Установка Claudia API Builder
Библиотека Claudia API Builder доступна как пакет NPM. Она не требует на-

стройки, поэтому для установки достаточно сохранить ее как зависимость в
проекте Node.js, выполнив команду

npm install claudia-api-builder --save

В примерах в этой книге использовалась версия 4.0.0.

A.1.4. Установка Claudia Bot Builder
Так же как и API Builder, библиотека Claudia Bot Builder доступна в виде

обычного пакета NPM и не требует специальной настройки. Для установки
достаточно сохранить ее как зависимость в проекте Node.js, выполнив ко-
манду

npm install claudia-bot-builder --save

В примерах в этой книге использовалась версия 4.0.0.

A.2. Установка AWS CLI
Интерфейс командной строки AWS (AWS Command Line Interface, CLI) – это
универсальный инструмент для управления службами AWS. В этой книге

 29 / 40

A.2. Установка AWS CLI    349

инструмент AWS CLI использовался для решения самых разных задач, вклю-
чая создание ролей и разрешений, а также для доступа к таблицам DynamoDB.

Чтобы установить AWS CLI в Windows, перейдите на страницу https://aws.
amazon.com/cli/ и загрузите установочный пакет для Windows.

Если вы пользуетесь Mac или Linux, вам понадобится Python версии 2.6.5
или выше с диспетчером пакетов pip. Установка AWS CLI с помощью этого
диспетчера выполняется командой

pip install awscli

Дополнительную информацию о AWS CLI можно найти на странице https://
aws.amazon.com/cli/.

Чтобы убедиться, что клиент командной строки установился без ошибок,
выполните команду aws --version.

В примерах в этой книге использовалась версия

aws-cli/1.11.138 Python/2.7.10 Darwin/16.7.0 botocore/1.6.5

 30 / 40

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

Приложение B
Настройка Facebook Messenger,

Twilio и Alexa

В этом приложении описывается порядок настройки следующих компонен-
тов, используемых в главах 8, 9 и 10:

	страница и приложение Facebook Messenger;
	учетная запись Twilio;
	учетная запись Amazon Alexa.

ПРИМЕЧАНИЕ. Все перечисленные службы продолжают активно развиваться, и
в какой-то момент пользовательский интерфейс или даже некоторые этапы мо-
гут измениться. Если пользовательский интерфейс, который вы видите, отличается
от скриншотов в этом приложении, загляните в официальную документацию для
данной службы. Ссылки приведены в тексте.

B.1. Настройка Facebook Messenger
Для настройки чат-бота для Facebook Messenger в главах 8 и 9 требуется вы-
полнить следующие шаги:

1)	 создать страницу Facebook;
2)	 создать приложение Facebook;
3)	 создать чат-бота для Facebook Messenger с помощью Claudia Bot Builder;
4)	 включить обработку естественного языка (Natural language processing,

NLP).

B.1.1. Создание страницы Facebook
Чтобы создать страницу Facebook, перейдите на страницу https://www.face-

book.com/pages/create/. Здесь вы увидите список категорий, как показано на
рис. B.1. Выберите тип нужной вам страницы.

 31 / 40

https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/

B.1. Настройка Facebook Messenger    351

Выберите.

Рис. B.1. Создание страницы Facebook

ПРИМЕЧАНИЕ. Если скриншоты, показанные здесь, не совпадают с тем, что вы ви-
дите, обращайтесь к справочной статье, где описывается создание страниц, доступ-
ной по адресу https://www.facebook.com/business/help/104002523024878.

Вы можете выбрать любую категорию; мы выбрали Cause or Community
(Общая идея или сообщество), потому что эта категория требует меньше всего
настроек. После выбора Cause or Community (Общая идея или сообщество)
вам будет предложено ввести имя страницы. Назовите страницу Aunt Maria’s
pizzeria, как это сделали мы (см. рис. B.2), и щелкните по кнопке Get Started
(Приступить).

Введите имя
и щелкните по
кнопке Get Started.

Рис. B.2. Выберите категорию и имя страницы

 32 / 40

https://www.facebook.com/business/help/104002523024878

352    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

После ввода имени страницы Facebook предложит выгрузить профиль и ти-
тульное изображение, а также заполнить несколько дополнительных полей.
Выполнив эти шаги (или пропустив их), вы получите страницу, как показано
на рис. B.3.

Рис. B.3. Страница Facebook для пиццерии тетушки Марии

B.1.2. Создание приложения Facebook
Следующий шаг – создание приложения Facebook. Для этого перейдите на

страницу https://developers.facebook.com и в меню My Apps (Мои приложения)
выберите пункт Add a New App (Добавить новое приложение), как показано
на рис. B.4.

ПРИМЕЧАНИЕ. Если скриншоты, показанные здесь, не совпадают с тем, что вы
видите, обращайтесь к справочной статье, где описывается создание приложений,
доступной по адресу https://developers.facebook.com/docs/apps/register.

Появится диалог Create a New App ID (Создать идентификатор нового при-
ложения), как показано на рис. B.5, где вы должны ввести имя приложения
и ваш адрес электронной почты. Заполните форму (используйте имя прило-
жения «Aunt Maria’s pizzeria») и щелкните на кнопке Create App ID (Создать
идентификатор приложения), чтобы создать новое приложение Facebook.

На экране появится список некоторых рекомендуемых продуктов. При на-
ведении указателя мыши на любой из них появятся две кнопки: Read Docs

 33 / 40

https://developers.facebook.com
https://developers.facebook.com/docs/apps/register

B.1. Настройка Facebook Messenger    353

(Прочитать описание) и Set Up (Установить). Найдите продукт Messenger, на-
ведите на него указатель мыши, как показано на рис. B.6. Щелкните на кнопке
Set Up (Установить).

Щелкните.

Рис. B.4. Портал разработчиков Facebook

2. Щелкните.

1. Заполните.

Рис. B.5. Создание нового приложения Facebook

 34 / 40

354    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Наведите
указатель мыши

и щелкните.

Рис. B.6. Список рекомендуемых продуктов

После щелчка откроется форма с настройками Messenger Platform, как по-
казано на рис. B.7.

Рис. B.7. Форма с настройками Messenger Platform

Не закрывайте эту страницу в браузере, она вам вскоре понадобится.

B.1.3. Создание чат-бота Facebook Messenger
с использованием Claudia Bot Builder
После создания страницы и приложения можно приступать к созданию

чат-бота.

ПРИМЕЧАНИЕ. Приступая к выполнению следующего шага, имейте в виду, что
библиотека Claudia должна быть установлена глобально, как описано в прило-

 35 / 40

B.1. Настройка Facebook Messenger    355

жении A. Также у вас должен быть инициализирован проект NPM и установлена
библиотека Claudia Bot Builder как зависимость (как описывается в том же при-
ложении A).
Наконец, вам понадобится код с реализацией чат-бота из листинга главы 8.

Откройте терминал и перейдите в папку проекта. Затем выполните коман-
ду из листинга A.1, чтобы создать функцию AWS Lambda и настроить чат-бот.

claudia create \
 --region eu-central-1 \
 --api-module bot \
 --configure-fb-bot

ПРИМЕЧАНИЕ. Многострочные команды, такие как в следующем листинге, могут
не поддерживаться в некоторых системах. Если у вас они не поддерживаются,
вводите команду в одну строку, удаляя обратные слеши (\), которые сообщают
командной строке, что команда продолжается на следующей строке.

В отличие от обычного развертывания Claudia, команда с параметром
--configure-fb-bot имеет интерактивный характер. После развертывания кода в
функции AWS Lambda команда выведет URL веб-обработчика и ключ провер-
ки, необходимые для настройки чат-бота, как показано на рис. B.8. Эти значе-
ния понадобятся вам на следующем шаге.

Скопируйте.

Рис. B.8. Настройка чат-бота Facebook Messenger
с использованием Claudia Bot Builder

Оставьте окно терминала открытым, потому что процесс еще не завершен.
Вернитесь в форму настройки Messenger Platform в браузере (рис. B.7) и

Сообщить библиотеке Claudia, что требуется
настроить чат-бот Facebook Messenger.

Выберите свой регион. Выберите главный файл (здесь
предполагается, что файл имеет имя
bot.js, как описывалось в главе 8).

 36 / 40

356    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

щелкните на кнопке Setup Webhook (Настроить веб-обработчик) в разделе
Webhooks (Веб-обработчики). После этого откроется диалог, как показано на
рис. B.9. Заполните поля с URL веб-обработчика и ключом проверки, исполь-
зуя значения из окна терминала, полученные на предыдущем шаге. В разделе
Subscription Fields (Поля подписки) установите флажки messages (сообще-
ния) и messaging_postbacks (отправка ответов). Затем щелкните на кнопке
Verify and Save (Проверить и сохранить).

Щелкните.

Выберите.

Вставьте.

Рис. B.9. Настройка веб-обработчика и ключа проверки

Через короткое время диалог закроется, и вы увидите настроенный веб-
обработчик, как показано на рис. B.10.

Рис. B.10. Подтверждение активации веб-обработчика

Следующий шаг – получение ключа доступа к странице Facebook. Чтобы
получить ключ, перейдите в раздел Token Generation (Создание ключа), в
раскрывающемся меню выберите страницу и скопируйте ключ, как показано
на рис. B.11.

Вернитесь в терминал и вставьте ключ доступа, скопированный на преды-
дущем шаге, нажмите клавишу Enter, как показано на рис. B.12.

После этого команда предложит вам ввести закрытый ключ приложения
Facebook. Этот ключ необходим, потому что с его помощью Facebook прове-

 37 / 40

B.1. Настройка Facebook Messenger    357

ряет, действительно ли сообщение получено от вашего чат-бота, а не из ка-
кого-то другого источника. Секретный ключ будет сохранен в переменной
стадии в API Gateway.

Выберите. Скопируйте.

Рис. B.11. Создание ключа доступа к странице

Скопируйте.

Рис. B.12. Настройка ключа страницы

Чтобы увидеть закрытый ключ приложения Facebook, вернитесь в браузер
и выберите вкладку Dashboard (Дашборд) в меню слева. Щелкните на кнопке
Show (Показать) рядом с полем App Secret (Закрытый ключ приложения), как
показано на рис. B.13. Скопируйте это значение и вернитесь в окно термина-
ла.

 38 / 40

358    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Показать.

Скопируйте.

Рис. B.13. Копирование закрытого ключа приложения

Вставьте ключ и нажмите клавишу Enter, как показано на рис. B.14.

Вставьте.

Рис. B.14. Настройка закрытого ключа приложения

Когда команда завершится, вы должны увидеть ответ, как показано в лис
тинге B.1.

Листинг B.1. Ответ команды после завершения создания чат-бота

{
 "lambda": {
 "role": "pizza-fb-bot-executor",
 "name": "pizza-fb-bot",
 "region": "eu-central-1"

Информация о AWS Lambda.

 39 / 40

B.1. Настройка Facebook Messenger    359

 },
 "api": {
 "id": "wvztkdiz8c",
 "module": "bot",
 "url": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest",
 "deploy": {
 "facebook": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/
 latest/facebook",
 "slackSlashCommand": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.
 com/latest/slack/slash-command",
 "telegram": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/
 latest/telegram",
 "skype": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 skype",
 "twilio": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 twilio",
 "kik": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 kik",
 "groupme": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/
 latest/groupme",
 "line": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 line",
 "viber": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 viber",
 "alexa": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest/
 alexa"
 }
 }
}

В своем ответе команда перечислит все веб-обработчики, но они вам не
понадобятся, потому что Claudia позаботится обо всем автоматически. Кроме
того, Claudia автоматически подпишет чат-бот на получение событий от стра-
ницы, как показано на рис. B.15.

Страница
выбирается
автоматически.

Рис. B.15. Чат-бот автоматически подписывается
на получение событий от страницы

Веб-обработчики для всех поддерживаемых
платформ, включая Facebook Messenger.

Информация о API Gateway.

Powered by TCPDF (www.tcpdf.org)

 40 / 40

360    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Теперь попробуйте найти свою страницу в Facebook Messenger. Вы должны
получить результат, изображенный на рис. B.16.

Введите сообщение.

Рис. B.16. Начальная страница чат-бота

в Facebook Messenger

И если вы пошлете сообщение боту, он должен ответить, как показано на
рис. B.17.

Ответ
чат-бота.

Рис. B.17. Ответ чат-бота

Facebook Messenger

 1 / 35

B.2. Настройка Twilio    361

B.1.4. Подключение встроенного механизма NLP
Чтобы подключить встроенный механизм NLP, вернитесь в форму с на-

стройками Messenger Platform на портале разработчиков Facebook и прокру-
тите ее вниз, до раздела Built-In NLP (Встроенный механизм NLP). Затем вы-
берите свою страницу Facebook в списке Select a Page to Customize Built-In
NLP (Выбор страницы для настройки встроенного механизма NLP), как пока-
зано на рис. B.18.

Выберите свою
страницу.

Рис. B.18. Выбор страницы для подключения встроенного механизма NLP

Теперь вы можете подключить встроенный механизм NLP: выберите язык
по умолчанию и выполните дополнительные появившиеся настройки. Для
приложения пиццерии в этой книге используется английcкий язык, поэтому
настройки встроенного механизма NLP выполнены, как показано на рис. B.19.

Подключите
встроенный

механизм NLP.

Рис. B.19. Подключение встроенного механизма NLP

B.2. Настройка Twilio
Чтобы настроить чат-бот Twilio SMS для опробования примеров в главе 10,
нужно выполнить следующие шаги:

1)	 зарегистрировать учетную запись Twilio;
2)	 получить номер Twilio;
3)	 настроить свою службу Twilio Programmable SMS;
4)	 создать чат-бота Twilio SMS с использованием Claudia Bot Builder.

ПРИМЕЧАНИЕ. Twilio предоставляет пробный бесплатный период, поэтому в те-
чение некоторого времени вам не придется платить за услугу, но спустя установ-
ленный период вам будет предложено заплатить за обслуживание.

 2 / 35

362    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

B.2.1. Создание учетной записи Twilio
Если у вас уже есть учетная запись Twilio, переходите к следующему разделу

«Получение номера Twilio».
Чтобы зарегистрировать новую учетную запись Twilio, откройте страни-

цу https://www.twilio.com/try-twilio. Введите информацию о себе в форме
регистрации. Там же вы увидите четыре раскрывающихся списка, как пока-
зано на рис. B.20.

Рис. B.20. Регистрация новой учетной записи Twilio

В этих раскрывающихся списках:

1)	 в списке выбора продукта выберите SMS;
2)	 в списке выбора цели выберите SMS Support (SMS-поддержка);
3)	 в списке выбора языка выберите Node.js;
4)	 в списке выбора количества планируемых операций выберите Less

Than 100,000 (Меньше 100 000) или, если вы планируете большее число
операций, можете выбрать любое другое значение из предложенных.

После заполнения всех полей служба Twilio пожелает убедиться, что обща
ется с человеком, и пошлет вам проверочное сообщение SMS. Вы должны
ввести свой номер мобильного телефона, на который придет SMS с кодом
аутентификации. Введите этот код на следующем появившемся экране.

В случае успешной проверки вашего номера Twilio предложит создать но-
вый проект, как показано на рис. B.21.

Укажите название проекта и щелкните на кнопке Create Project (Создать
проект). Далее вы увидите страницу проекта Programmable SMS, как показано
на рис. B.22.

 3 / 35

https://www.twilio.com/try-twilio

B.2. Настройка Twilio    363

Рис. B.21. Создание нового проекта Twilio

Рис. B.22. Страница проекта Programmable SMS

B.2.2. Получение номера Twilio
Если у вас уже есть номер Twilio, переходите к следующему разделу «На-

стройка службы Twilio Programmable SMS».
Иначе на странице проекта щелкните на кнопке Get a Number (Получить

номер). В ответ появится диалог с предложенным номером. Если он вам не по-
нравится или вы просто захотите какой-нибудь другой номер, просто щелк
ните на ссылке Search for a Different Number (Найти другой номер) в диало-
ге. Если номер вас удовлетворяет, щелкните на ссылке Choose This Number
(Выбрать этот номер).

 4 / 35

364    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Завершив обработку запроса на получение нового номера, Twilio выведет
диалог Congratulations (Поздравляем) с выбранным вами телефонным номе-
ром. Щелкните на кнопке Done (Завершить), и Twilio откроет страницу ваше-
го проекта Programmable SMS с выбранной вкладкой Learn & Build (Обучение
и настройка).

B.2.3. Настройка службы Twilio Programmable SMS
Чат-бот для Twilio SMS должен автоматически посылать и получать сообще-

ния. Для этого нужно настроить проект Programmable SMS как Messaging Ser-
vice (Служба обмена сообщениями). Пункт Messaging Service (Служба обмена
сообщениями) находится в навигационном меню слева на странице проекта
(см. рис. B.23).

Рис. B.23. Пункт Messaging Service (Служба обмена сообщениями)
в навигационном меню

Откройте эту вкладку и щелкните на кнопке Create New Service (Создать
новую службу). Появится диалог, в котором вы должны ввести название вашей
службы и указать вариант использования. Введите название «Aunt Maria’s Piz-
zeria chatbot» и выберите вариант использования «Mixed» (Разное).

Далее откроется страница с настройками вновь созданной службы обмена
сообщениями, как показано на рис. B.24.

На этой странице установите флажок Process Inbound Messages (Обраба-
тывать входящие сообщения). После этого появятся два поля ввода:

�� 	Request URL (URL для отправки запросов);
�� 	Fallback URL (URL для обработки ошибок).

 5 / 35

B.2. Настройка Twilio    365

Установите флажок,
чтобы включить
обработку входящих
сообщений, а в поле
«Request URL» введите
URL вашей бессерверной
функции, реализующей
чат-бот Twilio SMS.

Название службы
обмена сообщениями.

Идентификатор
службы; запомните его
для последующего
использования.

Рис. B.24. Настройка службы обмена сообщениями

В поле Request URL (URL для отправки запросов) введите URL своей бес-
серверной функции, реализующей чат-бот для Twilio SMS, созданный с ис-
пользованием Claudia Bot Builder. Затем щелкните на кнопке Save (Сохра-
нить).

Потом добавьте в эту службу номер Twilio, полученный в предыдущем
разделе. Для этого щелкните на ссылке Numbers (Номера) в навигационном
меню слева, на вкладке Messaging Service (Служба обмена сообщениями).

На странице Numbers (Номера) щелкните на кнопке Add an Existing Num-
ber (Добавить существующий номер). В ответ откроется диалог, изображен-
ный на рис. B.25.

Чтобы выбрать
этот номер,
щелкните здесь.

Ваш номер Twilio.

Рис. B.25. Добавление номера Twilio в службу обмена сообщениями

В этом диалоге вы увидите список своих номеров Twilio. Если список пуст,
вернитесь к предыдущему разделу «Получение номера Twilio».

Чтобы добавить один или несколько номеров, установите флажки напротив
нужных, а затем щелкните на кнопке Add Selected (Добавить выбранные). Но-
мера появятся в списке на странице Numbers (Номера).

Если выше вы уже ввели URL бессерверного чат-бота для Twilio SMS в поле
Request URL (URL для отправки запросов), тогда можете считать настройку
проекта Programmable SMS и учетной записи Twilio завершенной. Поздрав-
ляем! Теперь вы можете опробовать свой чат-бот для SMS, отправив короткое
сообщение на свой номер Twilio.

 6 / 35

366    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

B.3. Настройка Alexa
Чтобы настроить поддержку Alexa, перейдите на страницу https://developer.
amazon.com/alexa и выполните вход, используя свои учетные данные в Amazon.
Затем щелкните на ссылке Add Capabilities to Alexa (Добавить возможности
в Alexa), как показано на рис. B.26.

Щелкните.

Рис. B.26. Дашборд Amazon Alexa

Откроется страница Alexa Skills Kit, где вы сможете найти документацию и
руководства по проектированию, конструированию и запуску сценариев для
Alexa. Здесь же вы сможете создавать новые сценарии. Для этого щелкните
на кнопке Start a Skill (Запустить сценарий), как показано на рис. B.27, после
чего откроется экран Create a New Alexa Skill (Создание нового сценария для
Alexa).

Щелкните.

Рис. B.27. Страница Alexa Skills Kit

 7 / 35

https://developer.amazon.com/alexa
https://developer.amazon.com/alexa

B.3. Настройка Alexa    367

Процесс создания начинается в разделе Skill Information (Информация о
сценарии). В этом разделе вы можете выбрать тип сценария, определить на-
звание и имя вызова для сценария, а также настроить глобальные параметры,
такие как Audio Player (Аудиоплеер), Video App (Видеоприложение) и Render
Template (Шаблон отображения).

В качестве типа сценария по умолчанию выбрано Custom Interaction Mo
del (Своя модель взаимодействий); оставьте этот выбор как есть, потому что
это позволит вам создать свой новый сценарий. Кроме этого типа, на выбор
также доступны: Smart Home Skill (Умный дом), Flash Briefing Skill (Корот-
кая встреча) и Video Skill (Видеосценарий), последний из которых предна-
значен для Amazon Echo Show и других видеоустройств с поддержкой Alexa.

В оба поля, с названием и именем вызова, введите «Aunt Maria’s Pizzeria»,
убедитесь, что все остальные поля выключены, и щелкните на кнопке Save
(Сохранить), как показано на рис. B.28. Щелкните на кнопке Next (Далее), что-
бы перейти к следующему разделу.

Сохраните.

Заполните.

Рис. B.28. Настройка сценария

В следующем разделе Interaction Model (Модель взаимодействий) нуж-
но определить схему намерений, слот и образцы выражений, которые мы
предопределили в главе 10.

 8 / 35

368    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Сначала вставьте схему намерений (листинг 10.9) в поле Intent Schema
(Схема намерений). Затем заполните форму Custom Slot Types (Свои типы
слотов), добавив имя своего слота (LIST_OF_PIZZAS) и значения из главы 10
(листинг 10.10). Далее щелкните на кнопке Add (Добавить), как показано на
рис. B.29.

Введите схему
намерений.

Заполните.

Значения для
слота.

Щелкните.

Рис. B.29. Настройка модели взаимодействий

 9 / 35

B.3. Настройка Alexa    369

После добавления своего типа слота введите образцы выражений из гла-
вы 10, затем щелкните на кнопке Next (Далее), как показано на рис. B.30.

Заполните.

Щелкните.

Рис. B.30. Добавление образцов выражений

Откроется раздел Configuration (Настройки), где нужно настроить веб-
обработчик для поддержки сценария или указать URL функции AWS Lambda.
Перед выполнением этого шага разверните функцию Lambda, если вы это-
го еще не сделали, а пока будете заниматься развертыванием, оставьте окно
браузера открытым, потому что вам еще придется вернуться в раздел Confi
guration (Настройки).

Чтобы развернуть функцию Lambda, откройте терминал, перейдите в папку
с кодом поддержки сценария для Alexa и запустите следующую команду:

claudia create --region eu-west-1 --handler skill.handler --version skill

 10 / 35

370    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Эта команда развернет функцию AWS Lambda в регионе eu-west-1 (только
два региона, us-east-1 и eu-west-1, поддерживаются голосовым помощником
Alexa) и настроит версию сценария.

Спустя несколько мгновений вы увидите стандартный ответ команды clau-
dia create:

{
 "lambda": {
 "role": "pizza-alexa-skill-executor",
 "name": "pizza-alexa-skill",
 "region": "eu-west-1"
 }
}

Прежде чем появится возможность использовать функцию Lambda, нужно
разрешить голосовому помощнику Alexa вызывать ее. Для этого выполните
следующую команду:

claudia allow-alexa-skill-trigger --version skill

Эта команда позволит голосовому помощнику Alexa вызывать версию skill
вашей функции Lambda. Спустя несколько мгновений вы увидите ответ:

{
 "Sid": "Alexa-1518380119842",
 "Effect": "Allow",
 "Principal": {
 "Service": "alexa-appkit.amazon.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:eu-west-1:721177882564:function:pizza-alexa-skill:skill"
}

Скопируйте Lambda ARN (значение поля Resource в JSON-ответе), верни-
тесь на страницу с настройками сценария в браузере. Выберите радиокноп-
ку AWS Lambda ARN в поле Service Endpoint Type (Тип конечной точки
службы) и вставьте ARN своей функции Lambda в поле ниже, как показано
на рис. B.31.

Здесь мы не собираемся создавать несколько конечных точек для разных
географических регионов (например, для США и Соединенного Королевства),
поэтому выберите No (Нет) в ответ на вопрос «Provide geographical region end-
points?» (Определить конечные точки для географических регионов?) и щелк
ните на кнопке Next (Далее).

После настройки сценария появится экран Test (Тестирование). Здесь вы
можете проверить работу своего сценария, например введите выражение в
поле Service Simulator (Имитатор службы) и прослушайте ответ, щелкнув

 11 / 35

B.3. Настройка Alexa    371

на кнопке Listen (Слушать), как показано на рис. B.32. Ваш сценарий досту-
пен также на вашем устройстве Alexa, поэтому вы можете сказать: «Alexa,
start Aunt Maria’s Pizzeria» («Алекса, начать работу с пиццерией тетушки
Марии»)1.

Сценарий теперь доступен на вашем устройстве Alexa, но если вы решите
сделать его доступным для всех, то должны отправить его на проверку, как
описывается на странице https://developer.amazon.com/docs/custom-skills/sub-
mit-an-alexa-skill-for-certification.html.

Выберите.

Заполните.

Щелкните.

Выберите.

Рис. B.31. Настройка сценария

1	 На момент публикации книги (2019 год) голосовой помощник Алекса поддерживал только англий-
ский и немецкий языки. Имейте это в виду при опробовании примеров. – Прим. перев.

 12 / 35

https://developer.amazon.com/docs/custom-skills/submit-an-alexa-skill-for-certification.html
https://developer.amazon.com/docs/custom-skills/submit-an-alexa-skill-for-certification.html

372    Приложение B. Настройка Facebook Messenger, Twilio и Alexa

Заполните.

Щелкните.

Щелкните.

Рис. B.32. Тестирование сценария

 13 / 35

Приложение C
Настройка Stripe и MongoDB

В этом приложении описывается порядок:

	настройки учетной записи Stripe и получения ключей Stripe API;
	установки и настройки MongoDB.

C.1. Настройка учетной записи Stripe
и получение ключей Stripe API
Создание и настройка учетной записи Stripe и получение ключей API необхо-
димы для опробования примеров в главе 12, где рассказывается о создании
своей бессерверной платежной службы. Процесс состоит из следующих шагов:

1)	 регистрация учетной записи Stripe;
2)	 получение ключей Stripe API;
3)	 создание бессерверной платежной службы Stripe с использованием

Claudia API Builder.

Если у вас уже есть учетная запись Stripe, но пока нет ключей, переходите к
разделу «Получение ключей Stripe API».

C.1.1. Создание учетной записи Stripe
Учетная запись Stripe создается легко и быстро. Откройте браузер и перейди

те по адресу https://stripe.com. Щелкните на кнопке Create Account (Создать
учетную запись), после чего откроется форма регистрации в Stripe.

Введите свой адрес электронной почты, полное имя и пароль. После отправ-
ки формы Stripe предложит вам добавить номер телефона для восстановления
пароля. Мы советуем сделать это на всякий случай.

После этого будет создана ваша учетная запись, но не забудьте подтвердить
адрес электронной почты – Stripe не будет принимать платежи на ваш счет,
если этого не сделать. Теперь у вас есть своя учетная запись Stripe!

C.1.2. Получение ключей Stripe API
Если вы предполагаете применять Stripe для приема платежей в своих

приложениях, вам необходимо использовать Stripe API. Платежная система

 14 / 35

https://stripe.com

374    Приложение C. Настройка Stripe и MongoDB

Stripe должна иметь возможность идентифицировать вас при использовании
ее API. Для целей идентификации Stripe предоставит вам пару хешированных
ключей, которые предназначены для применения во всех взаимодействиях с
ее API. Эти ключи автоматически генерируются при создании учетной записи
Stripe.

После создания учетной записи, как описывалось в предыдущем разделе,
вы должны получить ключи API. Для этого откройте страницу https://dash-
board.stripe.com.

В навигационном меню выберите пункт API (см. рис. C.1).

Рис. C.1. Дашборд Stripe

На странице API вы увидите две таблицы: со стандартными и ограничен-
ными ключами API (рис. C.2). Вам нужно сохранить стандартные ключи API;
они чаще всего используются в бессерверных платежных службах.

Открытый
и закрытый
ключи.

Таблица
стандартных
ключей API.

Скопируйте
открытый
ключ.

Щелкните,
чтобы получить
и скопировать
закрытый ключ.

Рис. C.2. Таблица стандартных ключей API

Как отмечалось выше, вместе с учетной записью автоматически создаются
два стандартных ключа API: открытый и закрытый. Открытый ключ может
использоваться в ваших интерфейсных мобильных или веб-приложениях. Его
можно безопасно публиковать, так как он является чем-то, напоминающим
ваш адрес электронной почты.

 15 / 35

https://dashboard.stripe.com
https://dashboard.stripe.com

C.2. Установка и настройка MongoDB    375

Закрытый ключ обеспечивает доступ ваших приложений или API к ресур-
сам Stripe. Благодаря ему Stripe будет знать, что именно вы используете ре-
сурсы платежной системы. Он играет роль пароля, и вы должны хранить его
в тайне от всех, но не волнуйтесь: если у вас появится подозрение, что кто-то
мог его украсть, вы сможете изменить открытый и закрытый ключи.

Скопируйте оба ключа в пустой документ на своем компьютере, чтобы
иметь возможность быстрого доступа к ним, но не забудьте удалить этот до-
кумент, закончив читать главу 12.

ВНИМАНИЕ. Храните свой закрытый ключ в надежном месте и в скрытом виде.
Будьте очень осторожны, обращаясь со своим закрытым ключом, потому что он
может использоваться для доступа или даже манипулирования вашей учетной
записью Stripe.

C.2. Установка и настройка MongoDB
MongoDB Atlas – это облачная служба базы данных MongoDB, разработанная и
поддерживаемая той же командой, которая создала саму базу данных. В этом
разделе вы создадите и настроите бесплатный экземпляр MongoDB, которого
достаточно для опробования примеров кода из главы 13 и для работы с не-
большим действующим приложением.

C.2.1. Создание учетной записи
Чтобы узнать больше о продукте и создать учетную запись MongoDB Atlas,

откройте страницу https://www.mongodb.com/cloud/atlas в браузере (см. рис. C.3).

Щелкните.

Рис. C.3. Начальная страница проекта MongoDB Atlas

 16 / 35

https://www.mongodb.com/cloud/atlas

376    Приложение C. Настройка Stripe и MongoDB

Щелкните на вкладке Pricing (Тарифы), чтобы открыть ее, где вы сможете
выбрать провайдера облачных услуг, регион и размер экземпляра. Выберите
AWS, как показано на рис. C.4, и затем прокрутите страницу вниз.

Затем
прокрутите вниз.

Выберите AWS.

Рис. C.4. Выбор облачного провайдера на вкладке Pricing (Тарифы)

Под разделом для выбора провайдера облачных услуг выберите регион ва-
шей функции Lambda (мы используем eu-central-1). Затем выберите экзем-
пляр M0 с суммой платежа $0 в месяц и щелкните на кнопке Get Started Free
(Начать бесплатное обслуживание), как показано на рис. C.5.

Выберите
eu-central-1.

Выберите
экземпляр
M0.

Экземпляр M0
обслуживается
бесплатно.

Щелкните,
чтобы начать
обслуживание.

Рис. C.5. Выбор региона и размера экземпляра

 17 / 35

C.2. Установка и настройка MongoDB    377

В появившейся форме регистрации заполните обязательные поля и щелкни
те на кнопке Continue (Продолжить), как показано на рис. C.6. Когда выбира-
ется бесплатный тариф, MongoDB Atlas не требует данных вашей кредитной
карты, поэтому, щелкнув на кнопке Continue (Продолжить), вы создадите
учетную запись и перейдете на страницу настройки.

Заполните
форму.

Затем отправьте форму.

Согласитесь с условиями.

Рис. C.6. Создание учетной записи MongoDB Atlas

C.2.2. Настройка кластера
После создания учетной записи вам нужно создать свой первый кластер.

Кластер баз данных – это набор баз данных, который управляется единствен-
ным экземпляром сервера баз данных. Как показано на рис. C.7, нужно доба-
вить имя кластера (например, «RobertosTaxiCompany»). Убедитесь, что цена
по-прежнему составляет $0, а затем щелкните на кнопке Confirm & Deploy
(Подтвердить и развернуть).

После создания кластера появится дашборд MongoDB Atlas. Теперь вам
нужно создать нового пользователя для вашей базы данных MongoDB. Для
этого выберите вкладку Security (Безопасность) и щелкните на кнопке Add
New User (Добавить нового пользователя), как показано на рис. С.8.

В диалоге Add New User (Добавить нового пользователя) введите имя поль-
зователя (например, «roberto») и пароль. Затем перейдите в раздел User Pri
vileges (Привилегии пользователя). Здесь вы сможете более точно настроить

 18 / 35

378    Приложение C. Настройка Stripe и MongoDB

разрешения для вашего нового пользователя. Добавляя пользователя для
единственной базы данных, выберите readWrite в раскрывающемся списке
слева, а затем введите имя базы данных в поле ввода, как показано на рис. C.9.
Поскольку ваша база данных фактически еще не создана, вы можете ввести
«taxi», и база данных будет создана автоматически. Закончив, щелкните на
кнопке Add User (Добавить пользователя).

Убедитесь, что цена
все еще равна $0.

Не изменяйте.

Введите название
кластера.

Подтвердите ввод и
разверните кластер.

Рис. C.7. Создание кластера

Выберите
вкладку.

Щелкните.

Рис. C.8. Вкладка Security (Безопасность) в дашборде MongoDB Atlas

 19 / 35

C.2. Установка и настройка MongoDB    379

Введите имя
пользователя.

Введите пароль.

Щелкните.

Введите
имя базы
данных.

Выберите
пункт
readWrite.

Откройте
раздел
с дополни-
тельными
парамет-
рами.

Рис. C.9. Создание нового пользователя

После создания нового пользователя вновь откроется вкладка Security
(Безопасность) в дашборде MongoDB Atlas. Последний шаг в настройке базы
данных – получение строки подключения. Для этого выберите вкладку Over-
view (Обзор) и щелкните на ссылке с названием кластера RobertosTaxiCom-
pany, как показано на рис. C.10.

Щелкните.

Выберите.

Рис. C.10. Вкладка Overview (Обзор)

 20 / 35

380    Приложение C. Настройка Stripe и MongoDB

Как показано на рис. C.11, щелкните на кнопке Connect (Подключиться),
чтобы открыть диалог подключения.

Щелкните.

Рис. C.11. Обзор кластера RobertosTaxiCompany

Чтобы создать строку подключения, необходимо внести в белый список
хотя бы один IP-адрес, который будет подключаться к вашему кластеру Mon-
goDB. Для этого щелкните на кнопке Add Entry (Добавить запись), как пока-
зано на рис. С.12.

Щелкните.

Рис. C.12. Подключение к кластеру

 21 / 35

C.2. Установка и настройка MongoDB    381

Но так как IP-адреса функций AWS Lambda заранее неизвестны, откройте
кластер MongoDB для всех IP-адресов, указав значение 0.0.0.0/0 в поле IP-
адреса. Затем добавьте описание и щелкните на кнопке Save (Сохранить), как
показано на рис. C.13.

Щелкните.

Введите.

Рис. C.13. Добавьте в белый список все IP-адреса,
потому что адреса функций AWS Lambda заранее неизвестны

Наконец, нужно выбрать метод подключения. Выберите Connect Your
Application (Подключить ваше приложение), как показано на рис. C.14, пото-
му что сейчас вам нужно получить строку подключения к MongoDB.

Выберите.

Рис. C.14. Получение строки подключения (шаг 1)

 22 / 35

382    Приложение C. Настройка Stripe и MongoDB

Выберите.

Скопируйте.

Рис. C.15. Получение строки подключения (шаг 2)

Просле этого откроется диалог со строкой подключения (см. рис. С.15).
Щелкните по кнопке I Am Using Driver 3.4 or Earlier (Я использую драйвер
версии 3.4 или ниже), потому что именно эта версия драйвера использует-
ся в главе 13, а затем скопируйте строку подключения. Не забудьте изменить
имя пользователя в строке подключения на «roberto» (или другое, которое вы
использовали), а значение пароля на пароль, который вы вводили при созда-
нии нового пользователя.

Теперь, получив строку подключения к MongoDB, вы сможете развернуть и
протестировать приложение Express.js из главы 13.

 23 / 35

Приложение D
Рецепт пиццы

Обычно при приготовлении пиццы используется несколько ингредиентов.
Каждый из них добавляется в определенный момент в процессе приготовле-
ния. Ингредиенты для пиццы можно разделить на три категории:

�� ингредиенты для теста;
�� начинка;
�� специи/соусы.

На первый взгляд тесто приготовить проще простого, достаточно смешать
воду и муку, разве не так? Нет, не так! Как оказывается, тесто для пиццы – са-
мая важная и сложная часть. Оно может иметь самые разные:

�� форму;
�� толщину;
�� цвет;
�� мягкость
�� и другие характеристики (например, бортик с начинкой из плавленого

сыра, что, впрочем, у итальянцев считается чуть ли не богохульством).

Чтобы приготовить тесто для одной пиццы по этому рецепту, вам понадо-
бятся следующие ингредиенты:

�� 2 стакана муки (250 г);
�� 1 чайная ложка дрожжей (5 г);
�� 1/2 стакана чуть теплой воды (120 мл);
�� щепотка соли;
�� 1/2 столовой ложки сахара (6 г);
�� 1/2 столовой ложки оливкового масла (7 мл).

Размешайте дрожжи, сахар и ложку муки в четверти стакана теплой воды.
Тщательно перемешайте и дайте подняться при комнатной температуре в те-
чение получаса.

Смешайте соль, оливковое масло, смесь воды и дрожжей, а также оставшие
ся четверть стакана воды и муку. Все это хорошо перемешайте. Месите тесто

 24 / 35

384    Приложение D. Рецепт пиццы

в течение приблизительно 10 минут. Месить можно вручную или в машине,
если она у вас есть.

Положите горсть муки в чистую кастрюлю. Равномерно распределите муку,
а затем переложите тесто в кастрюлю.

Включите духовку на разогрев до максимальной температуры.

ВНИМАНИЕ. Если вы не уверены, как поведет себя ваша духовка при максималь-
ной температуре, поставьте ее на 220 °C. Некоторые духовки могут вести себя
непредсказуемо при максимальном разогреве – мы не хотим, чтобы вы сожгли
кухню.

Пока духовка нагревается, приготовьте противень. Отрежьте кусок перга-
ментной бумаги (бумага для выпечки) по размеру противня. Уложите ее на
противень. Поставьте кастрюлю и противень с пергаментной бумагой в ду-
ховку по отдельности. Когда тесто хорошо прогреется, можно продолжить го-
товить его.

Не мешая тесто, растяните его по размеру листа пергаментной бумаги, а
затем положите на бумагу. Смажьте оливковым маслом. Теперь положите на
него начинку. Когда дело доходит до начинки, можете изобретать до беско-
нечности, но вот как готовится пицца в пиццерии тетушки Марии. Сначала
идет знаменитый томатный соус тетушки Марии.

ПРИМЕЧАНИЕ. Мы не будем рассказывать, как готовит соус тетушка Мария. Это
семейный секрет, который никогда не будет раскрыт! Вы же можете использовать
обычный томатный соус.

В центр положите несколько кусочков сыра моцарелла, а затем по кругу не-
сколько кусочков пеперони, оливок и немного орегано.

ВНИМАНИЕ. Не кладите слишком много ингредиентов на пиццу!

Выньте разогретый противень и переложите пиццу на пергаментную бума-
гу. Быстро поставьте противень обратно в духовку.

Выпекайте пиццу 5–10 минут. Правильное время зависит от вашей духовки,
но обращайте внимание на края пиццы, они должны быть золотистыми или
коричневатыми. Если хотите, налейте немного оливкового масла.

 25 / 35

Предметный указатель

Символы
--api-module, параметр 47
--api-module, флаг 161
--bucket, флаг 151
--cache-api-config, флаг 165
--configure-fb-bot, флаг 162
--config, параметр 54
--express-module, параметр 289
--handler, флаг 150
--no-optional-dependencies, флаг 152
--output, параметр 72
--prefix, флаг 151
--query, параметр 72
--region, параметр 47
--region, флаг 139
--timeout, параметр 106
--use-local-dependencies, параметр 59
--username-attributes, параметр 126
\\ обратный слеш 48

А
автоматизированное тестирование 258
автоматизированные тесты 235
авторизации функция, Lambda 127
авторизация, бессерверная 122
Алекса, голосовой помощник

обзор 217
сценарии

подготовка 221
программирование 226
устройство 218

анализ естественного языка 220
асинхронные взаимодействия, типичные

проблемы 101
вызов внешней службы не завернут

в Promise 104

забыли вернуть Promise 102
не передали значение из Promise 102
превышение врамени ожидания 105

асинхронные операции
извлечение заказов из базы данных 83
обещания (Promise) 76
объединение в цепочки 77
параллельное выполнение 77
превышение времени ожидания 105
прерывание 77
сохранение заказов 69
тестирование 79

аутентификация, бессерверная 122

Б
безопасность платежных служб 281

стандарты 281
бессерверная архитектура

AWS 32
виртуальное частное облако 318
журналы 311
когда и где использовать 41
конфиденциальные данные 315
непрерывная интеграция 313
обзор 31
обслуживание статических файлов 310
общий взгляд 309
объем памяти для функции Lambda 319
основные понятия 31
преодоление проблем 320
связанные и узкоспециализированные

функции 319
сохранение состояния 310
управление окружениями 314

бессерверные API
API Gateway 61
недостатки 62
развертывание 59

 26 / 35

386    Предметный указатель

сборка 43
GET, запросы 47
POST, запрос 56
структурирование 49

бессерверные приложения 236
отладка 111
тестирование 234
 хранение статических файлов 138

В
ветвление, шаблон проектирования 308
виртуальное частное облако 318
внешние службы

подключение к 91
API компании доставки 93
асинхронные взаимодействия, типичные

проблемы 101
возврат нестандартных ошибок 135
восстановление после ошибки 77
встроенные типы слотов 224
высказывание 219

Г
гексагональная архитектура 261,  275
глобально-уникальные идентификаторы

(GUID) 83

Ж
журналы 311

И
идентификация 123
идентификация и управление доступом (Iden-

tity and Access Management, IAM) 61
извлечение заказов из базы данных 83
изображения

преобразование в миниатюры 148
имитация бессерверных функций 246
имя вызова 219
интеграционные риски 261
интеграционные тесты 253
интеграция с оберткой 291
интерактивные взаимодействия

с чат-ботами 175
интернет вещей (Internet of Things, IoT) 28
интеллект-карты 334
источники событий 28

К
конечные точки 96
консольные браузеры 259
конфигурационные риски 261
конфиденциальные данные

совместное использование 315
корзины 139

М
маршрутизаторы 61
маршрутизация запросов 61
масштабируемость чат-ботов 182
местонахождение клиента 191
миграция

существующего приложения в бессерверное
окружение 305

анализ текущего бессерверного
приложения 304

миниатюры 143
модульные тесты 241
монолитные приложения 30

Н
наборы тестов 238
намерение 220
намерения 218
настройка

Alexa 366
Facebook Messenger 350

подключение NLP 361
создание приложения Facebook 352
создание страницы Facebook 350
создание чат-бота 354

MongoDB 375
настройка кластера 377
создание учетной записи 375

Stripe 373
Twilio 361

 27 / 35

Предметный указатель    387

получение номера 363
службы Twilio Programmable SMS 364
создание учетной записи 362

непрерывная интеграция 313
нестандартные механизмы авторизации 127

О
обещания (Promise) 76
обработка естественного языка (Natural Lan-

guage Processing, NLP) 174,  176,  200
объем памяти для функции Lambda 319
обычные серверные приложения 234
ожидания 243

AWS X-Ray, инструмент 117
бессерверных приложений 111
функций Lambda 113

П
пирамида тестирования 236
платежи

онлайн, реализация 270
транзакции 268

платежные службы
безопасность 281

стандарты 281
реализация 274

платформа как услуга (Platform as a Service,
PaaS) 26

подписанного URL, создание 141
получение ответа от пользователя 175
портов и адаптеров, шаблон 261
права доступа 140
преодоление проблем 320

атаки DDoS 323
привязка к производителю 323
тайм-ауты 320
холодный запуск 321

привилегии 61,  123
приемники событий 28
приложения 111,  138,  236,  300,  304

Express.js
миграция в AWS Lambda 287

бессерверные
виртуальное частное облако 318
журналы 311
конфиденциальные данные 315
непрерывная интеграция 313
обслуживание статических файлов 310
объем памяти для функции Lambda 319
оптимизация 318
преодоление проблем 320
связанные и узкоспециализированные

функции 319
сохранение состояния 310
управление окружениями 314

монолитные 30
примеры практического использования

CodePen 328
до перехода на бессерверные

вычисления 328
затраты на инфраструктуру 332
миграция на бессерверные вычисления 329
проблемы 333

MindMup 333
до перехода на бессерверные вычисления 334
затраты на инфраструктуру 338
миграция на бессерверные вычисления 337
проблемы 340
тестирование 340

прокси-маршрутизатор 62
пул идентификации 130
пулы идентификации 124
пулы пользователей 124

Р
развертывание

API 59
разрешения 61
рецепт пиццы 383
риски бизнес-логики 261
роли 61,  79,  127

С
сеансы, Алекса 220
сервер как услуга (Backend as a Service,

BaaS) 27

 28 / 35

388    Предметный указатель

слово активации голосового помощника 219
слоты 218,  219,  220

встроенные типы 224
служба простых уведомлений (Simple Notifica-

tion Service, SNS) 307
события 28
создание подписанного URL 141
сохранение

заказов 69
спецификации 238
список управления доступом (Access Control

List, ACL) 141
статические файлы

хранение в бессерверных приложениях 138
статический контент 292
cтоимость бессерверных вычислений 37
сторожевой таймер 321
сценарии, для голосового помощника Алекса

подготовка 221
программирование 226
устройство 218

Т
тестирование

API 79
автоматизированное 258
бессерверных приложений 234,  236
бессерверных функций 259
имитация бессерверных функций 246
интеграционные тесты 253
модульные тесты 241
обычных серверных приложений 234
подготовка к 238

тестов наборы 238
технические риски 261
точки входа 96
трехуровневая архитектура 29

У
универсально-уникальные идентификаторы

(UUID) 83
управление окружениями 314

Ф
файлы, статические

обслуживание 310
хранение в бессерверных приложениях 138

файлы, хранение 139
федеративная идентификация 124
фраза запуска, Алекса 219
функции

бессерверные
имитация 246
упрощение тестирования 259

функции Lambda
отладка 113

функция как услуга (Function as a Service,
FaaS) 27

Х
хеш-ключ 72

Ч
чат-боты 158,  164

для Facebook Messenger 160,  162
и SMS 208
интерактивные взаимодействия 175
планирование доставки 194
подключение к базе данных DynamoDB 186
получение адреса доставки заказа 191
развертывание 164
улучшение масштабируемости 182

Ш
шаблон портов и адаптеров 261
шаблоны

для взаимодействий 167
квитанция 167
кнопка 167
список 167
универсальный 167

 29 / 35

Предметный указатель    389

A
ACL (Access Control List список управления

доступом) 141
addBubble, метод 168
addButton, метод 168
addImage, метод 168
addQuickReplyLocation, метод 191
afterEach, функция 248
Alexa

настройка 366
alexa-message-builder, модуль 226
Alexa Skills Kit 224
Alexa, голосовой помощник

обзор 217
сценарии

подготовка 221
программирование 226
устройство 218

A.L.I.C.E. (Artificial Linguistic Internet
Computer Entity – искусственное
лингвистическое интернет-
компьютерное существо) 159

AmazonAPIGatewayAdministrator, политика 347
AmazonAPIGatewayPushToCloudWatchLogs,

политика 347
Amazon AWS Lambda 32
Amazon CloudWatch, служба 118
AmazonDynamoDBFullAccess, политика 347
Amazon Echo 217
Amazon S3 150
API

подключение к 93
структурирование 49
тестирование 79
управление доступом с помощью Cognito 130

api.delete, функция 63,  66
API Gateway 61
api.get, функция 53
api.post, функция 56
api.put, функция 63,  65
ApiResponse, метод 135
app.listen, функция 288

Appraise 340
Array.join, функция 163
attach-role-policy, команда 118
Authorization, заголовок 98
AWS (Amazon Web Services)

создание профиля 345
установка AWS CLI 348

AWS CloudFormation 314
AWS Cognito 130
aws cognito-identity create-identity-pool,

команда 128
aws cognito-identity set-identity-pool-role,

команда 129
aws cognito-idp create-user-pool-client,

команда 127
aws cognito-idp create-user-pool, команда 126
aws dynamicodb create-table, команда 72
aws dynamodb scan, команда 81
aws iam put-role-policy, команда 190
AWS Lambda 32,  118

запуск приложений Express.js 287
интеграция с оберткой 291
обслуживание статического контента 292
подключение к MongoDB 295

AWSLambdaFullAccess, политика 347
aws logs filter-log-events, команда 120
AWS_PROFILE, переменная окружения 344
aws-sdk, модуль 187
AWS Serverless Application Repository 325
awsServerlessExpress.createServer, функция 289
awsServerlessExpress.proxy, функция 289
aws-serverless-express, модуль 289
aws-xray-sdk-core, модуль 119
AWS X-Ray, инструмент 117
Azure Functions 32

B
BaaS (Backend as a Service, BaaS) 27
Babel 330
beforeAll, функция 254
beforeEach, функция 248
body-parser, модуль 295

 30 / 35

390    Предметный указатель

botBuilder.fbTemplate.Generic, класс 168
Bot Builder, модуль 160
botBuilder, функция 163,  166,  176,  197
Braintree, платежная система 272
Bugsnag 321
Button, класс 179

C
cachedDb.serverConfig.isConnected(),

функция 296
callbackWaitsForEmptyEventLoop, свойство 301
claudia allow-alexa-skill-trigger, команда 230
Claudia API Builder, библиотека

установка 348
claudia-api-builder, модуль 46
Claudia Bot Builder

обзор 170
Claudia Bot Builder, библиотека

установка 348
claudia create, команда 47,  59
claudia generate-serverless-express-proxy,

команда 289
claudia update --configure-twilio-sms-bot,

команда 209
claudia update, команда 54,  61,  67,  79,  84,

  100,  200,  211
Claudia, библиотека

настройка зависимостей 344
обзор 38
установка 343
установка Claudia API Builder 348
установка Claudia Bot Builder 348

Cloud Functions 32
CloudWatch, служба 112,  118
CodeBuild 314
CodeDeploy 314
CodePen 328

до перехода на бессерверные вычисления 328
затраты на инфраструктуру 332
миграция на бессерверные вычисления 329
мониторинг 333
проблемы 333

увеличение степени масштабирования 333
холодные запуски 333

CodePipeline 314
Cognito 130
cognitoAuthorizer, атрибут 130
collection.deleteOne, функция 302
connectToDatabase, функция 298
context, объект 35
coordinates, параметр 192
createCharge, метод 277
createOrder, функция 55,  93
createTable, метод 254

D
data-amount, атрибут 279
data-currency, атрибут 279
data-description, атрибут 279
data-image, атрибут 279
data-key, атрибут 279
data-locale, атрибут 279
data-name, атрибут 279
data-zip-code, атрибут 279
deleteOrder, функция 65,  109
deleteTable, метод 255
DELETE, метод 63,  107
deliveryWebhook, обработчик 200
describe-log-groups, команда 114
DialogFlow, библиотека 200
docClient.put, метод 187
DocumentClient.scan, метод 192
DocumentClient.update, метод 192
DocumentClient, класс 73,  83,  187,  248
done.fail(), метод 251
done(), метод 251
DynamoDB, база данных 186
DynamoDB, класс 255

E
exec, метод 148
expect, инструкция 243
ExpressionAttributeValues, атрибут 88

 31 / 35

Предметный указатель    391

Express.js
интеграция с оберткой 291
и управляемая базой данных MongoDB 295
обслуживание статического контента 292
ограничения бессерверных приложений 300
подключение к MongoDB 295

F
FaaS (Function as a Service) 27
Facebook Messenger

настройка 350
подключение NLP 361
создание приложения Facebook 352
создание страницы Facebook 350
создание чат-бота 354

чат-боты 160,  162
шаблоны 167

fakeHttpRequest.install, функция 255
fake-http-request, библиотека 252
fake-http-request, модуль 248
fbTemplate.Text, класс 191

G
getAllCharges, метод 284
getSignedUrl, метод 141
GET, запросы 47
get, метод 84
Google Cloud Functions 32
GUID (глобально-уникальные

идентификаторы) 83

H
handler, метод 35
Heroku 334
https.request.pipe, метод 251

I
iam attach-role-policy, команда 118
IAMFullAccess, политика 346
IAM (Identity and Access Management –

идентификация и управление
доступом) 61

IBM Watson 201
ImageMagick 143
iopipe, функция 312
IoT (Internet of Things) 28

J
jasmine-spec-reporter, пакет 240
Jasmine, фреймворк 238
Jenkins 314

K
keepSession, метод 228

L
lambda update-function-configuration,

команда 118
logs filter-log-events, команда 114

M
message.addBubble, метод 168
message, атрибут 177
Microsoft Azure Functions 32
MindMup 333

до перехода на бессерверные
вычисления 334

затраты на инфраструктуру 338
миграция на бессерверные вычисления 337
проблемы 340
тестирование 340

minimal-request-promise, модуль 97,  109
MongoClient.connect, функция 296
MongoDB

настройка 375
настройка кластера 377
создание учетной записи 375

MONGODB_CONNECTION_STRING, переменная
окружения 300

mongodb.ObjectID, функция 302
MongoDB, база данных

подключение 295
с бессерверным приложением Express.js 295

mongodb, модуль 295

 32 / 35

392    Предметный указатель

N
NLP (Natural Language Processing – обработка

естественного языка) 174,  176,  200
node app.js, команда 288
npm install --production, команда 60
npm install -S stripe, команда 275
npm run update, команда 169,  200
npm test, команда 241

O
objectContaining, функция 250
orderId, атрибут 72
orderRepository.updateOrderStatus, метод 277
originalRequest, свойство 171

P
PaaS (Platform as a Service) 26
paymentRepository.createCharge, метод 276
paymentRepository.getAllCharges, метод 284
PCI DSS-совместимость 282
platforms, ключ 166
postback, атрибут 177
postback, свойство 171
Postman, приложение 58
POST, запрос 56
Promise, объекты

особенности 77
putObject, метод 141
put-role-policy, команда 80
PUT, метод 63

R
registerAuthorizer, метод 130
ReturnValues, атрибут 88
RFC 4122 83

S
SAM (Serverless Application Model) 40
saveLocation, функция 193
scan, метод 84
Semaphore CI 314
sender, свойство 171

Sentry 321
Serverless Application Model (SAM) 40
serverless-express, модуль 291
server.listen, функция 287
Simple Queue Service (SQS), услуга простой

очереди 92
SMS (Short Message Service – служба коротких

сообщений) 206
отправка с помощью Twilio 207
чат-боты 208

SNS (Simple Notification Service служба
простых уведомлений) 307

spawn, метод 148
Storage Service (S3), услуга хранения 92
String.split, функция 178
stripe.charges.create, метод 277
stripe.charges.list, метод 284
Stripe, платежная система 272

настройка 373
получение ключей API 373
создание учетной записи 373

success, параметр 57

T
text, свойство 170
Travis CI 314
Twilio

настройка 361
получение номера 363
службы Twilio Programmable SMS 364
создание учетной записи 362

twilio-sms-chatbot, команда 212
Twilio, платформа

отправка SMS 207
type, свойство 170

U
UpdateExpression, атрибут 88
updateOrder, функция 63
update, команда 165
URL, подписанный, создание 141
userAuthentication, функция 142

 33 / 35

Предметный указатель    393

userId, параметр 192
uuid, модуль 187
UUID (универсально-уникальные

идентификаторы) 83
uuid, функция 82

W
waitFor, метод 255
webhookURL, точка входа 98
Wit.ai, библиотека 200

 34 / 35

Слободан Стоянович
Александар Симович

Бессерверные приложения на JavaScript

	 Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

	 Перевод с английского	 Киселев А. Н.
	 Корректор	 Синяева Г. И.
	 Верстка	 Паранская Н. В.
	 Дизайн обложки	 Мовчан А. Г.

Формат 70×1001/16. Печать цифровая.
Усл. печ. л. 54,6. Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

Книги издательства «ДМК Пресс» можно заказать в торгово-издательском холдинге
«Планета Альянс» наложенным платежом, выслав открытку или письмо по почтовому
адресу: 115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью), по которому должны быть
высланы книги; фамилию, имя и отчество получателя. Желательно также указать свой
телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.a-planeta.ru.
Оптовые закупки: тел. +7(499) 782-38-89.
Электронный адрес: books@alians-kniga.ru.

Powered by TCPDF (www.tcpdf.org)

 35 / 35

mailto:dmkpress@gmail.com
http://www.dmkpress.com
http://www.a-planeta.ru
mailto:books@alians-kniga.ru

	besservernye_prilozenia_na_javascript_1-4
	besservernye_prilozenia_na_javascript_5-40
	besservernye_prilozenia_na_javascript_41-80
	besservernye_prilozenia_na_javascript_81-120
	besservernye_prilozenia_na_javascript_121-160
	besservernye_prilozenia_na_javascript_161-200
	besservernye_prilozenia_na_javascript_201-240
	besservernye_prilozenia_na_javascript_241-280
	besservernye_prilozenia_na_javascript_281-320
	besservernye_prilozenia_na_javascript_321-360
	besservernye_prilozenia_na_javascript_361-395

