

Бен Фаррелл

Веб-компоненты в действии

Web Components

in Action

BEN FARRELL

Foreword by Gray Norton

Веб-компоненты
в действии

БЕН ФАРРЕЛЛ
Предисловие Грея Нортона

Москва, 2020

УДК 004.42
ББК 32.972

Ф25

Фаррелл Б.
Ф25 Веб-компоненты в действии / пер. с англ. Д. А. Беликова. – М.: ДМК Пресс,

2020. – 462 с.: ил.

ISBN 978-5-97060-856-2

Один из основных факторов, способствующих трансформации интернета в по-
следние годы, – широкое внедрение разработки пользовательского интерфейса на
основе компонентов. В этой книге подробно описываются рабочие процессы, которые
дают вам полный контроль над стилями и поведением компонентов и существенно
упрощают их создание, совместное и повторное использование в проектах.

В первой части рассмотрено получение простого компонента с нуля. Вторая часть
посвящена улучшению организации проекта. В третьей части освещаются принципы
совместной работы с несколькими компонентами, позволяющей решать более слож-
ные задачи. Для всех примеров предоставляется исходный код.

Издание предназначено для веб-разработчиков, имеющих опыт работы с HTML,
CSS и JavaScript.

УДК 004.42
ББК 32.972

Original English language edition published by Manning Publications USA, USA. Copyright © 2019
by Manning Publications Co. Russian-language edition copyright © 2020 by DMK Press. All rights
reserved.

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой
бы то ни было форме и какими бы то ни было средствами без письменного разрешения вла-
дельцев авторских прав.

ISBN 978-1-617-29577-5 (англ.) Copyright © 2019 by Manning Publications Co.
ISBN 978-5-97060-856-2 (рус.) © Оформление, издание, перевод, ДМК Пресс, 2020

Моей удивительной жене,
которая пишет гораздо более захватывающие книги,

по сравнению с книгами о веб-разработке,
посвященные драконам и катастрофам

Оглавление

	 Часть	I  Первые шаги ...26
 1  Фреймворк без фреймворка ..27
 2  Ваш первый веб-компонент ..45
 3  Делаем так, чтобы ваш компонент можно было использовать
 повторно ...75
 4  Жизненный цикл компонента ..106
 5  Реализация более качественного веб-приложения
 с помощью модулей ...128

 Часть	II  Способы улучшить рабочий процесс вашего компонента154
 6  Управление разметкой ...155
 7  Шаблонирование контента с помощью HTML 182
 8  Теневая модель DOM ..206
 9  Shadow CSS ..222
 10  Проблемы Shadow CSS ..251

 Часть	III  Объединяем компоненты воедино ...274
 11  Реальный компонент пользовательского интерфейса275
 12  Сборка и поддержка старых браузеров ...309
 13  Тестирование компонентов ...341
 14  События и поток данных приложения ..363
 15  Сокрытие сложностей ..396

Содержание

Предисловие ...15
От автора ...17
Благодарности ..19
Об этой книге ..20
Об авторе ..24
Об иллюстрации на обложке ...25

ЧАСТЬ I ПЕРВЫЕ ШАГИ .. 26

1 Фреймворк без фреймворка ...27

1.1 Что такое веб-ком по нен ты? ...30
1.1.1 Календарь с возможностью выбора даты30
1.1.2 Теневая модель DOM ..31
1.1.3 Что имеют в виду, когда говорят «веб-ком по нен ты»?33
1.1.4 Проблемная история импорта HTML33
1.1.5 Библиотеки Polymer и X-Tag ..35
1.1.6 Современные веб-ком по нен ты ..36

1.2 Будущее веб-ком по нен тов ..37
1.3 За пределами одного компонента ...38

1.3.1 Веб-компоненты как и любой другой элемент DOM.............39
1.3.2 От отдельного компонента к приложению40

1.4 Ваш проект, ваш выбор ..43
Резюме ...43

2 Ваш первый веб-компонент ..45

2.1 Знакомство с HTMLElement ..46
2.1.1 Ускоренный курс по наследованию ...46
2.1.2 Наследование в ваших любимых элементах47

8 Содержание

2.2 Правила именования вашего элемента48
2.3 Определение вашего пользовательского элемента
 (и обработка столкновений) ...50
2.4 Расширение HTMLElement для создания логики
 пользовательского компонента ...51
2.5 Использование вашего пользовательского элемента
 на практике ...56
2.6 Создание (полезного) первого компонента59

2.6.1 Настраиваем свой веб-сервер ...59
2.6.2 Пишем свой HTML-тег ...61
2.6.3 Создаем свой класс ...62
2.6.4 Добавляем содержимое в наш компонент63
2.6.5 Добавляем стили ...64
2.6.6 Логика компонента ..65
2.6.7 Добавляем интерактивности ...67
2.6.8 Последние штрихи ...69
2.6.9 Улучшение компонента ...73

2.7 Примечания относительно поддержки в браузерах73
Резюме ...74

3 Делаем так, чтобы ваш компонент можно
 было использовать повторно ..75

3.1 Реальный компонент ..76
3.1.1 Пример использования поиска в 3D76
3.1.2 Начнем с HTTP-запроса ...77
3.1.3 Обертываем свою работу в пользовательский компонент ...77
3.1.4 Отображение результатов поиска80
3.1.5 Стилизация нашего компонента ..81

3.2 Делаем наш компонент настраиваемым83
3.2.1 Создание API компонента с помощью устанавливающих
 методов ..84
3.2.2 Используя наш API извне ..84

3.3 Использование атрибутов для конфигурирования86
3.3.1 Аргумент против API компонента86
3.3.2 Реализация атрибутов ..87
3.3.3 Чувствительность к регистру символов88

3.4 Прослушивание изменений в атрибутах89
3.4.1 Добавление поля ввода текста ..89
3.4.2 Метод attributeChangedCallback ..90
3.4.3 Атрибуты, за которыми ведется наблюдение91

3.5 Делаем другие вещи еще более настраиваемыми94
3.5.1 Использование метода hasAttribute для проверки
 существования атрибута ...94
3.5.2 Полная настройка URL-адреса HTTP-запроса
 для разработки ..95

9Содержание

3.5.3 Руководство по передовым методикам96
3.5.4 Избегайте использования атрибутов для расширенных
 данных ..96
3.5.5 Отражение свойств и атрибутов ..97

3.6 Обновление компонента-ползунка ..99
Резюме ...105

4 Жизненный цикл компонента..106

4.1 API веб-ком по нен тов ...106
4.2 Обработчик connectedCallback ...107

4.2.1 Конструктор в сравнении с методом connectedCalback111
4.3 Остальные методы жизненного цикла веб-компонента ...114

4.3.1 Метод disconnectedCallback ...114
4.3.2 Метод adoptedCallback ..117

4.4 Сравнение с жизненным циклом React 118
4.5 Сравнение с жизненным циклом игрового движка120
4.6 Жизненный цикл компонента v0 ..126
Резюме ...127

5 Реализация более качественного веб-приложения
 с помощью модулей ...128

5.1 Использование тега <script> для загрузки ваших
 веб-ком по нен тов ..129

5.1.2 Крошечные сценарии более организованы,
 но усугубляют проблему со ссылками 131
5.1.3 Включение стилей CSS для самостоятельных
 компонентов ..132
5.1.4 Ад зависимостей ..134

5.2 Использование модулей для решения проблем
 зависимости ...134

5.2.1 Создание музыкального инструмента
 с использованием веб-ком по нен тов и модулей JS135
5.2.2 Начинаем с самого маленького компонента138
5.2.3 Импорт и вложение веб-компонента в веб-компонент139
5.2.4 Использование веб-компонента для обертки всего
 веб-приложения ..141

5.3 Добавляем интерактивности в наш компонент143
5.3.1 Прослушивание событий движения мыши144
5.3.2 Передача данных в дочерние компоненты144
5.3.3 Заставляем наши компоненты вибрировать
 с помощью CSS ..146

5.4 Обертывание сторонних библиотек в виде модулей148
5.4.1 Инструменты пользовательского интерфейса
 для обертывания модуля с помощью Node.js148

10 Содержание

5.4.2 Не идеально, но работает ...149
5.4.3 Использование обернутого модуля для воспроизведения
 нот ...149
5.4.4 Больше никакого автовоспроизведения аудио151
5.4.5 Игра на веб-арфе ..153

Резюме ...153

ЧАСТЬ II СПОСОБЫ УЛУЧШИТЬ РАБОЧИЙ
 ПРОЦЕСС ВАШЕГО КОМПОНЕНТА 154

6 Управление разметкой ...155

6.1 Строки. Теория ...156
6.1.1 Когда innerHTML становится уродливым156

6.2 Использование шаблонных литералов 157
6.2.1 Приложение для создания визиток 158

6.3 Импорт шаблонов ...161
6.3.1 Хранение разметки вне логики основного компонента162
6.3.2 Модуль для HTML и CSS ..162

6.4 Логика шаблона ...165
6.4.1 Создание меню из данных ...166
6.4.2 Больше логики генерации и более жесткая
 автоматизация ...167

6.5 Кеширование элементов ...168
6.5.1 Не заставляйте меня использовать метод
 querySelector в моем компоненте ...169

6.6 Умные шаблоны ...171
6.6.1 Использование lit-html ..172
6.6.2 Модуль repeat ..172
6.6.3 Нужно ли вам использовать это? 174
6.6.4 Внедрение слушателей событий в разметку175

6.7 Обновление ползунка ..177
Резюме ...181

7 Шаблонирование контента с помощью HTML182

7.1 Покойся с миром, HTML-импорт ...183
7.1.1 Полифилинг ..184
7.1.2 Что внутри ..185

7.2 Тег <template> ..187
7.2.1 Фрагменты документа ..188
7.2.2 Использование содержимого шаблона 190

7.3 Выберите свой вариант шаблона ...193
7.4 Динамически загружаемые шаблоны 196
7.5 Вход в теневую модель DOM с помощью тега <slot>200

11Содержание

7.5.1 Тег <slot> без имени ..203
Резюме ...205

8 Теневая модель DOM ..206

8.1 Инкапсуляция ..207
8.1.1 Защита API вашего компонента ...208
8.1.2 Защита DOM вашего компонента 209

8.2 Использование теневой модели DOM 211
8.2.1 Корень теневого дерева ..213
8.2.2 Закрытый режим ...215
8.2.3 Конструктор вашего компонента и метод
 connectedCallback: сравнение ...218

Резюме ...221

9 Shadow CSS ...222

9.1 Утечка стилей ...222
9.1.1 Утечка стилей в нижестоящие компоненты224
9.1.2 Утечка стилей в ваш компонент .. 225

9.2 Проблема утечки стилей решается с помощью
 теневой модели DOM ...228

9.2.1 Когда происходит утечка стилей .. 231
9.3 План тренировок ...233

9.3.1 Оболочка приложения ..234
9.3.2 Селекторы host и ID ...236
9.3.3 Сетка упражнений и список планов 238

9.4 Адаптируемые компоненты ...242
9.4.1 Создание компонента упражнения 243
9.4.2 Стили компонента упражнений ...245

9.5 Обновляем ползунок ..248
Резюме ...250

10 Проблемы Shadow CSS ...251

10.1 Контекстные селекторы ...251
10.1.1 Немного интерактивности...252
10.1.2 Контекстные стили ..256
10.1.3 Обходной путь ..260

10.2 Темы компонента ..262
10.2.1 Селекторы ::shadow и /deep/ ..263
10.2.2 CSS-переменные ...265
10.2.3 Применяем CSS-переменные в нашем примере267

10.3 Использование теневой модели DOM на практике
 (сегодня) ..269

10.3.1 Поддержка со стороны браузеров .. 269
10.3.2 Полизаполнение ..270

12 Содержание

10.3.3 Дизайн-системы ..271
Резюме ...273

ЧАСТЬ III ОБЪЕДИНЯЕМ КОМПОНЕНТЫ
 ВОЕДИНО .. 274

11 Реальный компонент пользовательского
 интерфейса ..275

11.1 Создаем палитру цветов ..276
11.1.1 Компоненты нашего компонента 278

11.2 Компонент выбора координат ...280
11.2.1 Класс инструмента выбора координат280
11.2.2 HTML-код и стили инструмента для выбора
 координат ..284
11.2.3 Демостраницы для компонентов .. 285

11.3 Палитра цветов ..287
11.3.1 Наблюдение за изменениями атрибутов
 для взаимодействия ...292
11.3.2 Реакция на изменения в полях ввода 294
11.3.3 Реакция на изменения атрибутов 296

11.4 Работаем над внешним видом палитры298
11.4.1 Загрузка CSS-переменных для улучшения дизайна299
11.4.2 Использование импорта для более сложных стилей302

Резюме ...307

12 Сборка и поддержка старых браузеров309

12.1 Обратная совместимость ...310
12.1.1 Включение теневой модели DOM ...311
12.1.2 Сравнение с полифилами ...315
12.1.3 Shadow CSS и дочерние элементы .. 316

12.2 Наименьший общий знаменатель...319
12.3 Процессы сборки ...321

12.3.1 Использование сценариев NPM ..322
12.4 Сборка компонентов ..323

12.4.1 Почему мы выполняем сборку ..324
12.4.2 Компоновка модулей с помощью Rollup326
12.4.3 Запуск сборки с помощью npm ...330

12.5 Транспиляция для IE ..332
12.5.1 Babel ...333
12.5.2 CSS-vars-ponyfill ...337

Резюме ...339

13Содержание

13 Тестирование компонентов ..341

13.1 Модульное тестирование и разработка через
 тестирование ..342
13.2 Web Component Tester ..343

13.2.1 Пишем тесты ..347
13.3 Сравнение со стандартной тестовой конфигурацией
 при использовании Karma ..352

13.3.1 Плагин karma-web-components ..359
13.3.2 Несколько тестов в одном проекте 361
13.3.3 Замечание относительно Safari ..362

Резюме ...362

14 События и поток данных приложения363

14.1 Использование фреймворков ...364
14.2 События ...365

14.2.1 Нативные события и WebComponentsReady365
14.2.2 Когда определяются пользовательские элементы367
14.2.3 Пользовательские события ...368
14.2.4 Всплытие пользовательского события370

14.3 Передача событий через веб-ком по нен ты372
14.3.1 Распространение нативных событий с помощью
 теневой модели DOM ...373
14.3.2 Распространение пользовательских событий
 с помощью теневой модели DOM...374

14.4 Разделение данных ...376
14.4.1 Модель–представление–контроллер 377
14.4.2 Локальное хранилище ...380
14.4.3 Подключение пользовательского интерфейса
 к модели данных ...383

14.5 Воспроизведение упражнений ..386
14.6 Передача событий с помощью шины 390

14.6.1 Статические методы чтения и типы событий393
14.6.2 Шаблоны проектирования как рекомендация394

Резюме ...395

15 Сокрытие сложностей ...396

15.1 Взгляд в будущее веб-компонентов .. 397
15.2 3D и смешанная реальность ...399

15.2.1 A-Frame ..402
15.2.2 Компонент model-viewer ..406
15.2.3 model-viewer и поиск с помощью Poly 408
15.2.4 Дополненная реальность и model-viewer410
15.2.5 Ваш собственный 3D-компонент .. 413

15.3 Видеоэффекты ...422

14 Содержание

15.3.1 Обработка пикселей с помощью JavaScript..........................423
15.3.2 Шейдеры WebGL ...426

15.4 Отслеживание движений рук и машинное обучение429
Резюме ...435

Приложение ES2015 для веб-компонентов ..436

Указатель ... 460

Предисловие

Интернет прошел долгий путь. То, что началось три десятилетия назад
как относительно простое средство публикации, совместного использо-
вания, обнаружения и потребления контента, превратилось в мощную
и гибкую платформу приложений, поддерживающую невероятное ко-
личество вариантов использования. Между тем сфера его присутствия
расширилась, и теперь выход в интернет осуществляется не только с на-
стольных компьютеров, но и с устройств всех типов.

В результате этого постепенного преобразования мы, веб-разра бот-
чи ки, преследуем постоянно меняющуюся цель. Сегодняшние веб-сайты
на несколько порядков сложнее по сравнению с их ранними предшест-
венниками, и ожидания, связанные с пользовательским интерфейсом,
значительно выросли.

К счастью, наш инструментарий также не стоял на месте. Сама веб-
платформа приобрела сотни новых возможностей, а последующие по-
коления библиотек, фреймворков и инструментов постоянно совер-
шенствуют современный уровень развития технологий, помогая нам
удовлетворять растущие требования.

Одним из основных факторов, способствующих трансформации ин-
тернета в последние годы, стало широкое внедрение разработки поль-
зовательского интерфейса на основе компонентов. Разделение нашей
работы на компоненты, каждый из которых отвечает за структуру, стиль
и поведение части пользовательского интерфейса, помогло нам управ-
лять сложностью и создавать более сложные сайты.

Компоненты можно повторно использовать в каком-либо проекте
или совместно в разных проектах, что повышает нашу эффективность.
Дизайн-системы можно выразить в виде наборов готовых к использо-
ванию компонентов, обеспечивающих согласованность, которые позво-
ляют командам сосредоточиться на конкретных потребностях продукта.

Популярные фреймворки помогли осуществить революцию компо-
нентов, и сегодня большинство компонентов специфичны для конкрет-
ного фреймворка или библиотеки. Но параллельно предпринимались
многолетние усилия по созданию мощной, нативной модели компонен-
тов для веб-платформы.

Веб-компоненты – это общий термин для нового семейства функций
веб-платформ, предлагающих прямую поддержку разработки на ос-
нове компонентов. Пользовательские элементы позволяют расширять
словарь HTML, определяя собственные теги, которые легко работают со
встроенными в браузер тегами и могут использоваться в одних и тех же
местах, независимо от фреймворка. Технология Shadow DOM позволяет
вам применять инкапсуляцию в нативном стиле, гарантируя, что CSS-
пра вила компонента не будут непреднамеренно нарушать – и не будут
нарушаться – форматирование страницы.

16 Предисловие

Вам, наверное, интересно, какие преимущества дают веб-ком по нен ты
по сравнению с компонентными моделями. С одной стороны, веб-ком-
по нен ты обещают повысить совместимость, упрощая обмен компонен-
тами даже между комплектами технологий. Модель общих компонентов
также снижает риск блокировки, позволяя вам выполнять больше рабо-
ты по мере изменения набора инструментов с течением времени.

Книга, которую вы сейчас держите в руках, исключительно своевре-
менна. Путь к стандартизации и поддержка веб-ком по нен тов претерпе-
вали взлеты и падения, но я рад сообщить, что цель уже видна: все, кроме
одного из популярных браузеров, уже поддерживают веб-ком по нен ты,
а когда состоится официальный релиз следующей версии Microsoft Edge,
головоломка будет завершена.

Пользовательские элементы, Shadow DOM и другие функции веб-ком-
по нен тов по своей природе являются низкоуровневыми примитивами.
Некоторые разработчики будут использовать эти функции только кос-
венно, поскольку поддержка веб-ком по нен тов во фреймворках увели-
чилась с ростом поддержки браузеров. Многие из самых популярных
фреймворков теперь облегчают разработку и совместное использование
веб-ком по нен тов, и стал появляться целый новый класс инструментов,
ориентированных на веб-ком по нен ты.

Но вы также можете использовать функции веб-ком по нен тов на-
прямую, по отдельности или сочетая их. Читая эту книгу, вы подробно
изучи те каждую функцию и то, как они связаны друг с другом, что даст
вам возможность сделать правильный выбор для себя и своей команды.

Бен Фаррелл использовал веб-ком по нен ты с момента их возникно-
вения в самых разных приложениях. В ходе своей работы он накопил
огромное количество ценных знаний и обнаружил множество эффек-
тивных шаблонов, которыми он поделится с вами на этих страницах.

Бен приводит примеры, демонстрируя разные концепции с помощью
убедительных проектов, которые освещают реалистичные варианты ис-
пользования. Вы, конечно, многому научитесь, но также непременно
найдете здесь идеи и код, которые можно применить непосредственно
в своих собственных проектах.

Решив заняться веб-ком по нен та ми и взяв эту книгу, вы сделали хоро-
ший выбор. Наслаждайтесь этим путешествием!

Грей Нортон,
технический руководитель /

менеджер проекта Polymer, GOOGLE

От автора

Для меня знакомство с веб-ком по нен та ми началось в 2013 году. Я пом-
ню, что работал над забавным небольшим проектом с использованием
Angular версии 1 и изучал некоторые аспекты управления CSS и класса-
ми, которые Angular в то время плохо обрабатывал. Я знал, что мог бы
легко сделать то, что мне нужно, в простом HTML, CSS и JavaScript, но
Angular затруднял это только потому, что то, что я делал, находилось за
пределами проторенных троп.

Примерно в это же время я почувствовал, что действительно начинаю
овладевать Angular, поэтому написал в блоге несколько постов о неко-
торых интересных, нетипичных подходах. Тогда же волнение по поводу
Angular стало угасать, и только начиналось волнение по поводу React.

Честно говоря, я был разочарован. Я долго смотрел на цикл, в котором
чувствовал себя пойманным в ловушку. В течение всего двух или трех
лет я постоянно учился и получал хорошие знания по фреймворкам JS.
Ни один из этих фреймворков не был совместим друг с другом. Я дошел
до того, что почувствовал, что действительно могу сосредоточиться на
своем проекте без фреймворка на заднем плане, но затем неожиданно
появилось нечто новое, что заставило меня почувствовать, что мне нуж-
но вернуться на круги своя.

В то же самое время Google была выпущена библиотека Polymer как
очень ранняя и нестабильная версия. Создание отдельных компонентов,
которые могли бы существовать где угодно, звучало как удивительное
обещание. Первоначально мне нравилось то, чего она пыталась достичь,
но API, предшествующий первой версии, который постоянно менялся,
и тот факт, что я заменял свой рабочий процесс еще одним фреймвор-
ком, заставил меня все переосмыслить. Я начал изучать предлагаемые
веб-стандарты, которые сделали возможным создание библиотеки Poly-
mer, и увидел огромный потенциал. Я понял, что это была не библиотека
Polymer, которой я восхищался, – в действительности это были веб-ком-
по нен ты.

Я начал вести блог и дискуссии о веб-компонентах. Примерно в это же
время присоединился к Adobe. Это было важно, потому что моя коман-
да работала над небольшими прототипами с одним, может быть, двумя
разработчиками проекта. Это означало, что я мог экспериментировать
с технологией и инструментами по своему выбору. Почти для каждого
проекта я продолжал продвигать веб-ком по нен ты, экспериментируя
и постоянно улучшая рабочий процесс для работы с ними.

Конечно, это было непросто. Иногда я полностью был лишен почвы
под ногами! Поскольку веб-ком по нен ты стали стандартом, которым
они являются сегодня, мы увидели, что изменение API и функции ста-
ли устаревшими, но у меня не было выбора, потому что мне действи-
тельно нравится работать как можно ближе к браузеру, используя только

18 От автора

HTML, JS и CSS, и я рассматривал веб-ком по нен ты как средство обеспе-
чения структуры своих проектов, а не для того, чтобы они превратились
в спагетти-код.

Я еще не был полностью убежден в жизнеспособности веб-ком по нен-
тов. С одной стороны, я пока не использовал Shadow DOM. Я не хотел
увлекаться чем-то, что поддерживала только Google, у которой была со-
мнительная поддержка полифилов. Но затем веб-ком по нен ты появились
в браузере Safari, и Mozilla также пообещал, что будет поддерживать их.
Вишенкой на торте стал момент, когда браузеры начали поддерживать
модули JS и импорт нативно, и я смог правильно разделить код и, что
более важно, HTML и CSS. Когда все это произошло, я знал, что веб-ком-
по нен ты начинают реализовывать свой потенциал.

Конечно, все происходило очень медленно в течение нескольких лет.
Многие разработчики, которые изначально были в восторге от веб-
ком по нен тов, потеряли терпение, и я не виню их. Сначала я обратился
к издательству Manning по поводу книги о веб-компонентах – до того,
как произошли некоторые важные ключевые события, например когда
крупные компании-разработчики популярных браузеров объединились,
чтобы завершить версию спецификации номер 1. В то время Manning не
было уверено, особенно из-за того, что книги в этой области не публико-
вались, поскольку было неизвестно, чем все это закончится.

Был ли я настроен слишком оптимистично или просто провел с ними
достаточно времени, чтобы узнать потенциал веб-ком по нен тов, но из-
дательство связалось со мной через год, чтобы сделать еще одно пред-
ложение. Даже тогда, в начале 2018 года, дело все равно могло бы при-
нять дурной оборот, если бы другие компании-разработчики браузеров
решили пойти на попятную. Кроме того, в то время я не подходил к раз-
работке веб-ком по нен тов так, как это делало большинство разработчи-
ков, используя импорт HTML в качестве отправной точки. Тем не менее
на протяжении этой книги класс LitElement от команды Polymer начал
действовать в очень похожей со мной манере, используя шаблонные
литералы для хранения разметки и стиля. Это, в сочетании с поддерж-
кой веб-ком по нен тов, когда над ними работала и компания Microsoft,
осенью 2018 года позволило мне вздохнуть с облегчением, зная, что
подходы, описанные в моей книге, идут в ногу с настоящим и будущим
веб-ком по нен тов. Я определенно продолжу совершенствовать свой ра-
бочий процесс, по мере того как новые функции появляются в браузере
и придумываются сообществом, но я очень рад нынешнему положению
веб-ком по нен тов, поскольку моя книга скоро будет опубликована. И ко-
нечно же, мне не терпится поделиться всем этим с читателями!

Благодарности

Данная книга была бы невозможна без всех тех удивительных людей, ко-
торые помогали мне на протяжении этого пути. Я хочу поблагодарить
своих друзей из Северной Каролины и замечательных людей, которые
проводят и посещают конференцию NCDevCon, за то, что они почти по-
стоянно слушали мои доклады о веб-компонентах в Yammer. В частно-
сти, я хотел бы поблагодарить Эдриана Помилио за то, что он поразил
меня своим выступлением в 2011 году, в котором были показаны поль-
зовательские элементы, прежде чем они стали чем-то особенным.

Я также хотел бы поблагодарить членов команды GE Design System за
то, что они были моими «сообщниками» в этом деле, в то время когда
веб-ком по нен ты были абсолютным новшеством, и мы были уверены,
что все остальные считают нас безумцами. В частности, я хотел бы по-
благодарить Мартина Рэгга, Джеффа Райхенберга и Джона Роджерсона
за то, что они копались со мной в деталях при написании этой книги
о новом способе создания сайтов. Еще хотел бы поблагодарить команду
Google Polymer за помощь и руководство в течение этого времени, а так-
же их технического руководителя Грея Нортона за написание предисло-
вия к книге.

В Adobe я хотел бы поблагодарить всю команду Adobe Design (и за ее
пределами) за поддержку и искреннюю радость по поводу публикации
моей первой книги.

Конечно, моя жена Ребекка Гомес Фаррелл не только поддерживала
меня, но и сама оказалась замечательным писателем и редактором. По-
мимо того что она принесла мне крепкий напиток, когда он мне понадо-
бился, она помогла новому писателю стать лучше, давая стоящие, про-
фессиональные советы.

Я хотел бы поблагодарить редакционную команду издательства Man-
ning, в которую входят редакторы-консультанты по аудитории Кристен
Уоттерсон, Кевин Харрелд и Ребекка Райнхарт, а также редактор-кон-
сультант по технической аудитории Дуглас Дункан, технический коррек-
тор Мэтью Уэлк, редактор по производству Энтони Калькара, редактор
Ребекка Деуэль-Гальегос и корректор текста Тиффани Тейлор. Наконец,
я хотел бы поблагодарить рецензентов, чьи отзывы и понимание сыгра-
ли важную роль в формировании этой книги, в том числе Альберто Чар-
ланти, Алисию Бейкер, Бирну Себарте, Клайва Харбера, Дэниела Купе-
ра, Эрнана Гарсия, Джеймса Карелла, Джона Ларсена, Хуана Асенсио,
Джастина Каллеха, Оливера Ковача, Пьетро Маффи, Рональда Бормана,
Рассела Доуна Кахолес, Райана Барроуз, Серхио Арбео, Стефана Троста,
Томаса Оверби Хансена, Тимоти Р. Кейна и Кумара С. Унникришнана (TR
Technology & Ops).

Об этой книге

Книга «Веб-компоненты в действии» не диктует, какие подходы должны
использовать разработчики. Вместо того чтобы рассказывать читателям,
что делать, я использую более исследовательский подход, чтобы охва-
тить основы веб-ком по нен тов. Вы должны признать, что хотя эксперты
могут сказать вам, что такое хороший рабочий процесс на сегодняшний
день, захватывающий момент касательно стандартов состоит в том, что
их можно создавать таким образом, которого никто не ожидает.

В этой книге я стремлюсь дать вам отличные идеи и рабочие процессы
для начала работы. Я также надеюсь дать вам знания для дальнейшего
использования веб-ком по нен тов, способами, которые я еще не рассмат-
ривал, и для проектов, с которыми я не сталкивался.

Кому следует прочитать эту книгу
Данная книга предназначена для веб-разработчиков, которые интересу-
ются веб-ком по нен та ми и хотят узнать больше о стоящих за ними стан-
дартах и о том, как они объединяются с другими веб-технологиями для
создания автономных компонентов или приложений.

Она также подходит для разработчиков, которым нужны идеи о том,
как освободиться от сложных фреймворков или библиотек и вернуться
к написанию простого HTML, JS и CSS без каких-либо шагов сборки.

Как организована эта книга: дорожная карта
Эта книга состоит из трех частей, охватывающих 15 глав и приложение.

В первой части приводятся первые шаги, описывающие получение
простого компонента с нуля:

� в первой главе описывается, что имеется в виду, когда речь идет
о веб-компонентах и различных стандартах, которые объединяют-
ся для их создания;

� вторая глава рассказывает о создании самого первого веб-
компонента, а также знакомит вас с концепциями минимума, не-
обходимыми для создания чего-то полезного;

� третья глава выводит минимальный компонент на следующий уро-
вень, делая его многоразовым;

� в четвертой главе подробно описывается API веб-ком по нен тов
и жизненный цикл в сравнении их с другими API и жизненными
циклами, с которыми вы, возможно, сталкивались;

� в пятой главе вы познакомитесь с модулями для более подходящего
повторного использования кода и организации проекта.

21О коде

Вторая часть основана на минимальном компоненте и охватывает
концепции улучшения рабочего процесса разработчика и организации
проекта:

� шестая глава подробно описывает использование модулей для раз-
деления и импорта логики представления, такой как HTML и CSS,
для лучшей организации вашего компонента;

� седьмая глава посвящена альтернативному, но не предпочтитель-
ному способу организации вашего компонента с помощью HTML-
импорта, разбивая его на части, которые также относятся к другим
аспектам веб-ком по нен тов;

� восьмая глава знакомит вас с технологией Shadow DOM и рассказы-
вает о ее пользе для защиты и инкапсуляции вашего компонента;

� в девятой главе мы продолжаем изучение Shadow DOM, чтобы охва-
тить его CSS-аспекты;

� в десятой главе исследуются проблемы, которые могут возникнуть
у разработчиков веб-ком по нен тов с CSS в Shadow DOM, и способы
избежать их или преодолеть.

Третья и последняя часть посвящена совместной работе с нескольки-
ми компонентами, чтобы создать нечто большее:

� в одиннадцатой главе рассматриваются освещенные ранее концеп-
ции, которые используются для создания нового, более отточенного
компонента, основанного на уже созданных дочерних компонентах;

� в двенадцатой главе мы продвигаем этот абсолютно новый компо-
нент, чтобы быть более готовым к промышленной эксплуатации
благодаря применению инструментов сборки, которые позволяют
использовать его в старых браузерах, не поддерживающих веб-ком-
по нен ты;

� в тринадцатой главе мы дополняем этот компонент, написав для
него тесты, которые выполняются в трех разных контекстах, чтобы
изучить различные варианты, доступные для разработчиков веб-
ком по нен тов;

� в четырнадцатой главе обсуждается передача сообщений между ва-
шими компонентами и подробно рассматривается распространен-
ный шаблон проектирования;

� в пятнадцатой главе рассказывается о будущем веб-ком по нен тов,
а также о возможностях, которые они могут предоставить сегодня,
скрывая сложность и делая все, от видеоэффектов в реальном вре-
мени до смешанной реальности, более простым в использовании.

Наконец, в приложении рассказывается о новых функциях Jаva Script
(ES6/ES2015) и о том, как они помогают веб-компонентам.

О коде
Исходный код предоставляется для всех примеров в этой книге и досту-
пен для скачивания с веб-сайта издательства Manning по адресу www.
manning.com/books/web-components-in-action и из репозитория GitHub,

22 Глава Об этой книге

который можно найти по адресу https://github.com/bengfarrell/webcom-
ponentsinaction. Репозиторий организован в папки для каждой главы,
и в них обычно находятся вложенные папки для каждого раздела. Ис-
ключения составляют случаи работы над большим примером, охватыва-
ющим всю главу.

Код можно выполнить только с помощью браузера, и его не нужно
компилировать до тех пор, пока вы не дойдете до следующих глав, по-
священных инструментам сборки. Как правило, для запуска соответству-
ющего HTML-файла, который служит примером, понадобится простой
HTTP-сервер, но только для того, чтобы решить проблемы, связанные
с разными источниками.

В этой книге содержится множество примеров исходного кода, как
в виде пронумерованных листингов, так и встроенных в обычный текст.
В обоих случаях исходный код форматируется шрифтом фиксированной ширины,
подобным этому, чтобы отделить его от обычного текста. Иногда код также
выделяется жирным шрифтом, чтобы выделить код, который изменился по
сравнению с предыдущими шагами в этой главе, например когда к су-
ществующей строке кода добавляется новая функция.

Во многих случаях оригинальный исходный код переформатируется;
мы добавили разрывы строк и переработали отступы, чтобы обеспечить
доступное пространство страницы в книге. В редких случаях даже это-
го было недостаточно, и списки содержат маркеры продолжения строки
(➥). Кроме того, комментарии в исходном коде часто удаляются из лис-
тингов, когда описание кода есть в тексте. Аннотации к коду сопровож-
дают многие листинги, выделяя важные понятия.

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы ду-
маете об этой книге – что понравилось или, может быть, не понравилось.
Отзывы важны для нас, чтобы выпускать книги, которые будут для вас
максимально полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.com,
зайдя на страницу книги, и оставить комментарий в разделе «Отзывы
и рецензии». Также можно послать письмо главному редактору по адресу
dmkpress@gmail.com, при этом напишите название книги в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересованы
в написании новой книги, заполните форму на нашем сайте по адресу
http://dmkpress.com/authors/publish_book/ или напишите в издательство
по адресу dmkpress@gmail.com.

Скачивание исходного кода примеров
Скачать файлы с дополнительной информацией для книг издательства
«ДМК Пресс» можно на сайте www.dmkpress.com или www.дмк.рф на
странице с описанием соответствующей книги.

23Нарушение авторских прав

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы удостовериться
в качестве наших текстов, ошибки все равно случаются. Если вы найдете
ошибку в одной из наших книг – возможно, ошибку в тексте или в коде, –
мы будем очень благодарны, если вы сообщите нам о ней. Сделав это,
вы избавите других читателей от расстройств и поможете нам улучшить
последующие версии этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите
о них главному редактору по адресу dmkpress@gmail.com, и мы испра-
вим это в следующих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Из-
дательства «ДМК Пресс» и Manning очень серьезно относятся к вопросам
защиты авторских прав и лицензирования. Если вы столкнетесь в интер-
нете с незаконно выполненной копией любой нашей книги, пожалуйста,
сообщите нам адрес копии или веб-сайта, чтобы мы могли применить
санкции.

Пожалуйста, свяжитесь с нами по адресу dmkpress@gmail.com со ссыл-
кой на подозрительные материалы.

Мы высоко ценим любую помощь по защите наших авторов, помогаю-
щую нам предоставлять вам качественные материалы.

Об авторе

Бен Фаррелл – опытный старший разработчик в компании Adobe, рабо-
тающий в команде разработчиков прототипов Adobe Design. Бен вместе
со своей командой помогает формировать и реализовывать пользова-
тельский опыт продуктов и функций на промежуточном уровне между
проектированием и разработкой. Всю свою карьеру он занимался веб-
технологиями, но также работал над отмеченными наградами проекта-
ми с использованием самых разных платформ и языков.

Об иллюстрации
на обложке

Рисунок на обложке книги «Веб-компоненты в действии» озаглавлен как
Bourgeois de Londre (лондонский буржуа). Эта иллюстрация взята из кол-
лекции костюмов разных стран Жака Грассе де Сен-Совёра (1757–1810)
под названием Costumes Civils Actuels de Tous le Peuples Connus, опублико-
ванной во Франции в 1788 году. Каждая иллюстрация прекрасно нарисо-
вана и раскрашена вручную. Богатое разнообразие коллекции Грассе де
Сен-Совёра ярко напоминает нам о том, как культурно были отделены
города и регионы мира всего 200 лет назад. Изолированные друг от друга
люди говорили на разных диалектах и языках. На улицах или в сельской
местности было легко определить, где они жили и какова была их про-
фессия или положение в жизни, по их одежде.

С тех пор наш стиль одежды изменился, и разнообразие по регионам,
столь богатое в то время, исчезло. Сейчас трудно отличить жителей раз-
ных континентов, не говоря уже о разных городах, регионах или странах.
Возможно, мы обменяли культурное разнообразие на более разнообраз-
ную личную – определенно, на более разнообразную и динамичную тех-
нологическую жизнь.

В то время когда трудно отличить одну компьютерную книгу от дру-
гой, издательство Manning празднует изобретательность и инициативу
компьютерного бизнеса с помощью обложек книг, основанных на бога-
том разнообразии региональной жизни двух веков назад, возвращенной
к жизни рисунками Грассе де Сен-Совёра.

Часть I

Первые шаги

В последнее время вы, наверное, все чаще и чаще слышали о веб-ком-
понентах. Во многом это связано со всеми популярными, современ-

ными браузерами, которые стали поддерживать их в последние месяцы.
Это относится и к Microsoft Edge, поскольку вы уже можете скачать пред-
варительный просмотр для разработчиков, пока мы ожидаем официаль-
ного релиза с поддержкой Chromium. Впрочем, это может немного сбить
с толку, если вы посмотрите глубже, чтобы увидеть, что такое веб-ком-
по нен ты!

Мало того что набор стандартов, составляющих веб-ком по нен ты,
немного изменился с течением времени, в действительности веб-ком-
по нент можно создать с помощью пользовательских элементов как
таковых! Вы можете создать собственный элемент, который будет на-
ходиться на вашей HTML-странице, как и любой другой элемент, предо-
ставляемый браузером. Что еще более важно, с помощью API пользова-
тельских элементов ваш элемент может получить специальную логику,
чтобы стать полнофункциональным, крошечным интерактивным ком-
понентом, который выглядит простым снаружи и может работать вместе
с любым другим элементом на странице.

В первой части этой книги мы расскажем, как создать свои первые
пользовательские элементы, а также о некоторых передовых практиках,
касающихся них. В конце первой части, даже просто исследуя эту един-
ственную концепцию, вы создадите веб-ком по нен ты, которые действи-
тельно полезны в реальных ситуациях, позволяя им быть обернутыми
как единый фрагмент, управляя своими собственными зависимостями,
возможно, включая другие вложенные веб-ком по нен ты, готовые для
размещения на HTML-странице.

1
Фреймворк без фреймворка

Эта глава охватывает следующие темы:
� что такое веб-компонент;
� теневая модель DOM;
� пользовательские элементы;
� библиотеки Polymer и X-Tag;
� функции ES6/ES2015.

Привет, и спасибо за то, что читаете эту книгу! Вот уже несколько лет я ис-
пользую веб-ком по нен ты практически во всех проектах веб-разработки,
которые у меня были.

Будучи веб-разработчиками, наша работа заключается в выборе пра-
вильных инструментов для любого конкретного проекта. Это может
стать сложной задачей, потому что важны не только насущные потреб-
ности проекта. Потребности вашей команды также важны, а еще важен
вопрос о том, является ли проект частью более обширной экосистемы
в вашей компании, как он будет поддерживаться и как долго его нужно
поддерживать. Список можно продолжить.

Конечно, эти решения не являются уникальными для веб-разра бот-
чи ков, но одним из основных отличий между нами и многими разра-

28 Глава 1 Фреймворк без фреймворка

ботчиками программного обеспечения является то, что веб-сообщество
выпустило изумительное количество инструментов, библиотек и фрейм-
ворков. Может быть, трудно не отставать от них всех – настолько, что уже
давно обсуждается «усталость от фреймворков».

Принятие этих новых инструментов, кажется, происходит с молние-
носной скоростью. Отложив на мгновение фреймворки, даже что-то
такое же нишевое, как и исполнители задач для создания JavaScript-
про ек тов, за последние несколько лет кардинально изменилось. Я был
свидетелем перехода от Grunt в 2012 году к Gulp всего пару лет спустя,
и теперь наблюдается тенденция действовать по минимуму при ис-
пользовании Node.js NPM (Node Package Manager) для запуска сценари-
ев сборки. Говоря о менеджерах пакетов, мы, разработчики, колебались,
делая выбор между NPM, Bower и Yarn, для запуска наших зависимостей
пользовательского интерфейса.

Инструменты сборки и менеджеры пакетов – это одно. Это небольшие,
но важные части нашего процесса веб-разработки. Тем не менее такая
же ситуация происходит с тем, как мы на самом деле создаем свои при-
ложения и пользовательский интерфейс, что, возможно, является самой
главной и важной частью веб-разработки.

Определенным разработчикам может быть трудно поспеть за этим,
хотя изучать новый фреймворк или библиотеку интересно. Некоторые
из них имеют более крутую кривую обучения, чем другие, и во многих
случаях вы изучаете «систему» фреймворка, а не фундаментальные кон-
цепции HTML, JS и CSS.

Если речь идет о разработчике в команде или компании, тут есть
дополнительные проблемы. В начале проекта вам нужно будет дого-
вориться о том, какие инструменты вы будете использовать для раз-
работки в течение жизненного цикла проекта. Это включает в себя
инструменты сборки, тестирования и, конечно же, любые фреймворки
или библиотеки. Не каждый согласится с лучшим вариантом. Если ко-
манда большая и работает над большим количеством проектов, может
быть заманчиво позволить разработчикам выбирать свои собственные
инструменты для каждого проекта. В конце концов, полезно проана-
лизировать потребности проекта и использовать соответствующие ин-
струменты. Но таким образом мы также игнорируем неизбежное, ког-
да разработчики должны работать сообща, чтобы создать общие части
пользовательского интерфейса или интегрировать недавно принятую
дизайн-систему, обязательную для всей компании. В конце концов, ис-
пользование различных инструментов и фреймворков может выйти
вашей команде боком.

Если все соглашаются, охотно или нет, использовать один и тот же
фреймворк, какое-то время все может быть замечательно. Даже тогда,
спустя два или три года, фреймворки могут устаревать. Использование
старых технологий начинает сказываться, особенно для начинающих
разработчиков в вашей команде, которые хотят, чтобы их навыки со-
ответствовали всему остальному веб-сообществу. В этот момент ваша
организация сталкивается с выбором: переделать весь комплекс тех-

29Нарушение авторских прав

нологий, используя новый фреймворк, или оставить старый и столк-
нуться с ощущением, что это не является инновационным местом для
работы.

Это несомненно сложная проблема и решение! Конечно, возникает
вопрос: «Какова альтернатива?» Я говорил с довольно многими людьми,
которые хотят освободиться от этой постоянной мешанины с фрейм-
ворками по ряду причин. «Почему нельзя просто использовать про-
стой HTML, JS и CSS?» Это распространенный вопрос. Одним из главных
преимуществ отказа от фреймворка является возможность сосредо-
точиться на основных концепциях веб-разработки, а не на изучении
специфических для фреймворка навыков, которые можно или нельзя
перенести в следующий популярный фреймворк. Еще одним огромным
преиму ществом является возможность опробовать небольшие библио-
теки и микрофреймворки, которые решают конкретные задачи в вашем
проекте. Барьер входа в эти и даже новые инструменты сборки пользо-
вательского интерфейса намного ниже, учитывая, что вы не боретесь
с конкретной средой разработки, предоставляемой последним популяр-
ным фреймворком.

Современные фреймворки чрезвычайно полезны и решают большие
проблемы, но почему мы больше не слышим об использовании так назы-
ваемого «чистого JavaScript», учитывая желание разработчиков попро-
бовать что-то другое? В некоторой степени слышим. Рассмотрим резуль-
таты опроса, проведенного State of JavaScript в 2017 году: https://2017.
stateofjs.com/2017/front-end/results/. Вы увидите, что разработка без
применения фреймворков занимает второе место по популярности,
уступая только React.

Тем не менее мы не знаем, почему люди утверждают, что предпочи-
тают не использовать фреймворк, а чистый JS. Что создают эти разра-
ботчики? Какие инструменты/процессы они используют? Мне было бы
любопытно узнать, создают ли они что-то вроде фреймворка для реше-
ния проблемы отсутствия структуры и организации кода, что обычно
предоставляют современные фреймворки.

Этот последний момент, касающийся структуры и организации кода,
заключается в том, что веб-разработка без фреймворка была для меня
незапланированной в прошлом, и именно поэтому я всегда обращался
к последним фреймворкам. Без структуры ваш код превращается в спа-
гетти. Сохранение и написание новых функций может стать безумием
без предсказуемой организации проекта. Тем не менее мне хотелось ос-
вободиться от больших, полномасштабных фреймворков; когда я впер-
вые увидел веб-ком по нен ты, я увидел огромную возможность, позволя-
ющую сделать именно это.

Итак… как это сделать? Чтобы действительно решить этот вопрос,
нужно понять, что такое веб-ком по нен ты. Прежде чем углубиться в де-
тали, мы будем использовать календарь с возможностью выбора даты
в качестве примера, с которым мы все, вероятно, сталкивались. Хотя это
и не веб-компонент, по сути, это аналогичная концепция, если заглянуть
внутрь.

30 Глава 1 Фреймворк без фреймворка

1.1 Что такое веб-ком по нен ты?
Современные популярные фреймворки сегодня в основном предлагают
возможность многократного использования кода в виде компонентов,
или модулей. В целом это совместно используемые и автономные фраг-
менты кода (HTML/JS/CSS), которые предлагают визуальный стиль и ин-
терактивность и, возможно, имеют API или параметры, которые можно
настраивать.

Подумайте о том, что уже есть в вашем браузере. И учтите, что у нас
уже есть многократно используемые модульные элементы, которые
предлагают стиль и интерактивность и поставляются с API.

Конечно, я говорю о тегах HTML, или элементах DOM. Они отобража-
ются в DOM и имеют определенный тип функциональности. Теги <div>
или достаточно универсальны и используются для хранения тек-
ста или смеси элементов. Элементы <button> или <input> более специфич-
ны по функциональности и стилю. Когда вы помещаете кнопку в свой
HTML-код, она выглядит как стандартная кнопка, а когда вы нажимаете
на нее, она ведет себя как кнопка. Это похоже на различные стили <in-
put>, независимо от того, хотите ли вы создать календарь с возможно-
стью выбора даты, ползунок или поле ввода текста.

1.1.1 Календарь с возможностью выбора даты
Возьмем, к примеру, календарь с возможностью выбора даты. Чтобы соз-
дать его, просто поместите приведенный ниже тег в HTML-код:

<input type="date">

Выглядит легко, не так ли? Так и есть! То, что вы на самом деле получае-
те из этого простого тега, довольно сложно, но все это обрабатывается
вашим браузером. Этот тег (при использовании типа "date") предлагает
поле для ввода текста, и вы можете щелкнуть по месяцу, дню или году
и перейти вверх или вниз. Кроме того, если щелкнуть по стрелке, указы-
вающей вниз, откроется представление календаря, с которым пользо-
ватель может взаимодействовать, чтобы выбрать дату, как показано на
рис. 1.1. Следует отметить, что на мобильном телефоне он действует не-
много иначе. Он не будет открываться, как это происходит в настольном
браузере. Вместо этого появится модальное окно.

Более того, этот календарь имеет свойства, которые можно запросить,
включив значение. В этом можно убедиться, зарегистрировав свойство
в консоли JS:

console.log(document.querySelector('input').value);

Когда я регистрирую его, то вижу текущее значение календаря в своей
консоли. Он также отправляет события, которые я могу прослушать, ког-
да значение изменяется или отправляется. Я также могу вызывать мето-
ды для календаря для перехода по датам.

31Что такое веб-ком по нен ты?

Рис. 1.1 Расширенный
пользовательский интерфейс
календаря с возможностью выбора
даты

Календарь с возможностью выбора даты является отличным при-
мером повторно используемых компонентов или модулей с довольно
сложным визуальным стилем и шаблонами взаимодействия, которые
должны программироваться компаниями-разработчиками браузеров.
Они работают в разных ситуациях. Также этот календарь представляет
собой отличный пример популярной концепции веб-ком по нен тов под
названием Shadow DOM (Теневая модель DOM).

1.1.2 Теневая модель DOM
Теневая модель DOM – это способ изолировать ваш веб-ком по нент
и предотвратить непреднамеренные последствия более крупного при-
ложения. Когда вы откроете инструменты разработчика для просмотра
DOM, то просто увидите тег <input type="date">. Однако если вы исполь-
зуете браузер Chrome и активируете пункт «Показывать теневую модель
DOM агента пользователя» в настройках инструментов разработчика,
тот же самый тег <input> приобретает иной вид и выглядит, как показано
на рис. 1.2.

Под #shadow-root намного больше разметки! Лично первое, на что я об-
ращаю внимание при изучении этого кода, – всплывающее окно кален-
даря. Хотя было бы замечательно увидеть этот фрагмент в HTML и CSS,
его там нет, потому что этот фрагмент пользовательского интерфейса
является частью вашей собственной ОС, которую ваш браузер просто по-
казывает посредством элемента.

Тем не менее у нас есть значительное количество элементов, скрытых
в нашей «теневой» DOM, которые все появляются в элементе поля ввода.

Если присмотреться, можно заметить, что в нашей теневой модели
DOM размещены теги <div> и . Вам может прийти в голову, что
это опасно! Почему? Что же, в таблице стилей CSS своего приложения
я вполне мог бы сделать так, чтобы во всех тегах <div> был указан синий
фон с очень большим размером шрифта, а все теги отображались
с прозрачностью 10 %. Если бы вы не знали о существовании этой до-
полнительной разметки, вы могли бы случайно испортить все календа-
ри с возможностью выбора даты, за исключением одной важной вещи:
теневая DOM защищает внутреннюю работу вашего веб-компонента из-

32 Глава 1 Фреймворк без фреймворка

вне. Стили ваших синих/больших тегов <div> не будут проникать в те-
невую DOM. Более того, вы не сможете написать код Java Script, чтобы
попытаться заполучить кнопку календаря clear и манипулировать ей:

let myElement = document.getElementById('clear');

Рис. 1.2 Активирование соответствующих настроек в инструментах разработчика
Chrome позволяет нам увидеть скрытую теневую модель DOM тега input

Когда мы пытаемся получить этот элемент, потому что он находится
в пределах теневой DOM, оказывается, что элемент не найден, и наша
переменная myElement имеет значение null. На рис. 1.3 показаны различ-
ные попытки с CSS и JS.

Таким образом, Shadow DOM защищает область видимости корня те-
невого дерева (shadow root). Да, вы можете использовать его, где угодно.
Но это имеет огромное значение в пользовательском элементе, который
вы создали, чтобы избежать непреднамеренной поломки, когда разра-
ботчик устанавливает правило CSS, имя которого совпадает с именем,
которое вы использовали в своем компоненте, или когда тот же разра-
ботчик запрашивает элемент по классу и что-то в вашем пользователь-
ском элементе выбирается случайно.

Как вы можете себе представить, календарь с возможностью выбора
даты является полезным элементом для дополнения нескольких дру-
гих полезных элементов, которые мы применяем ежедневно. Многие
элементы используются в семантических целях, например тег <footer>,
а другие имеют определенный API и стиль, например теги <button>, <op-
tion> и <video>.

33Что такое веб-ком по нен ты?

<div>

 <h1>header</h1>

 <button>click me</button>

</div>

<style>

 div { background-color: yellow; }

</style>

querySelector('h1')

querySelector('div')

comp.method();

comp.property = 5;

div { color: blue; }

h1 { font-size: 1px; }

Мой веб-компонент

Свойства

Корень теневого дерева

Методы

Отклонено!

Отклонено!

Успешно!

Стили
прило-
жения

JS-код
прило-
жения

Рис. 1.3 Теневая DOM защищает ваш компонент от непреднамеренных последствий,
когда CSS или JS может повлиять на стили и узлы внутри, не подлежащие изменению.
Вместо этого у вашего компонента будет пользовательский API, с которым можно будет
взаимодействовать, применяя методы и свойства

1.1.3 Что имеют в виду, когда говорят «веб-ком по нен ты»?
Каким бы чудесным ни был календарь с возможностью выбора даты
и любой другой элемент, разве не было бы удивительно, если бы мы мог-
ли создавать свои собственные элементы с собственным визуальным
стилем, внутренней логикой, возможностью повторного использования
и инкапсуляцией?

Это то, что люди имеют в виду, когда говорят о веб-компонентах. В до-
полнение к инкапсуляции, предоставляемой Shadow DOM, мы можем ис-
пользовать API пользовательских элементов для создания собственных
компонентов, которые выполняют функции, соответствующие нашим
потребностям.

Для меня это обещание веб-ком по нен тов. Я хочу взять что-то, что
меня интересует, и создать многократно используемый фрагмент, ко-
торым могу поделиться со всем миром, своей командой или просто
с самим собой, чтобы использовать его в нескольких проектах там, где
мне это нужно. С другой стороны, может существовать фрагмент ин-
терфейса, который я нахожу скучным создавать снова и снова. С по-
мощью веб-ком по нен тов я могу создать его один раз, использовать
в нескольких проектах и дополнять по мере необходимости. И даже
лучше: возможно, кто-то еще создал веб-ком по нент для того, что нуж-
но мне, и у меня нет времени или опыта, чтобы воссоздать его. Он
может поделиться им со мной, и я могу просто использовать его как
обычный элемент DOM.

1.1.4 Проблемная история импорта HTML
К сожалению, некоторые в сообществе веб-разработчиков считают обе-
щание веб-ком по нен тов нарушенным. Я, конечно, не могу винить их
за это. Говоря о конкретных технических функциях, предлагаемых веб-

34 Глава 1 Фреймворк без фреймворка

ком по нен та ми, видение начало разваливаться после того, как первона-
чальная шумиха вокруг веб-ком по нен тов поутихла несколько лет назад.

Приблизительно в 2015 году было широко известно, что стандарт-
ный веб-ком по нент будет создаваться с использованием трех новых
функций:

� пользовательские элементы;
� Shadow DOM;
� импорт HTML.

Пока я еще даже не упомянул об импорте HTML. Эта концепция так
и не была принята в качестве стандарта. Фактически вначале Google была
в значительной степени ответственна за создание рабочих проектов веб-
ком по нен тов. Google взяла на себя задачу создавать API-интерфейсы
и отправлять их в Chrome в качестве обнадеживающего эксперимента,
чтобы посмотреть, будут ли запущены веб-ком по нен ты. Однако ничего
не получилось; другие разработчики браузеров в то время не планирова-
ли поставлять эту функцию. Firefox, в частности, хотел подождать, чтобы
увидеть, насколько большую сенсацию произведут модули ES6/ES2015,
и, возможно, когда-нибудь импортировать не только JS, но и HTML.

Импорт HTML был довольно большой потерей. С самого начала планы
Google по доставке веб-ком по нен тов зависели от него. Импорт HTML, как
показано на рис. 1.4, был фрагментом HTML-кода для объявления раз-
метки или структуры компонента, а также включал в себя код JS, опреде-
ляющий логику компонента. Импорт HTML был основной точкой входа
для веб-ком по нен тов, и без них мы были в растерянности относительно
того, как использовать веб-ком по нен ты с разметкой и стилем вообще.

<link rel="import" href="myfile.html">

<script src="mycomponent.js">

<template>

 <h1>header</h1>

 <button>click me</button>

</template>
<my-component>

Веб-страница/приложение

Визуальный контент

myfile.html

Рис. 1.4 С помощью импорта HTML-файл, содержащий определение вашего компонента
и его разметку, можно импортировать прямо в ваш документ

Shadow DOM был не намного лучше в то время. Chrome был един-
ственным браузером, принявшим его. Firefox принял его только в октяб-

35Что такое веб-ком по нен ты?

ре 2018 года, и мы ожидаем, что Microsoft Edge выпустит его, хотя уже
доступна предварительная версия для разработчиков.

Shadow DOM и API пользовательских элементов также перешли с вер-
сии 0 на 1. Для пользовательских элементов это было несколько проблем-
ным, учитывая, что разработчикам, которые были знакомы с веб-ком по-
нен та ми в это непростое время, было предложено перейти на новый API.

Учитывая все это, вряд ли можно критиковать разработчиков, которые
называли веб-ком по нен ты «нарушенным обещанием» и переключались
на фреймворк. Могу заверить, что в 2015 году было немного сложно пра-
вильно с ними работать, особенно при работе с браузерами, отличными
от Chrome.

1.1.5 Библиотеки Polymer и X-Tag
Еще одним аспектом того, что имеется в виду, когда речь идет о веб-
компонентах, были библиотеки, появившиеся в то время, когда исполь-
зовали веб-ком по нен ты в качестве основы. Из-за нестабильности, свя-
занной с простыми компонентами без использования фреймворков в то
время, библиотеки Polymer от компании Google (https://polymer-library.
polymer-project.org) и X-Tag от Mozilla (https://x-tag.github.io) были тем,
что люди считали веб-ком по нен та ми, или, по крайней мере, единствен-
ным способом работы с ними.

Библиотека Polymer проделала большую работу по продвижению стан-
дартов и рабочих процессов, и теперь похоже, что 3.0 является послед-
ней официальной версией функции, поскольку она переходит в режим
обслуживания. Вместо этого команда разработчиков разбивает некото-
рые основные инструменты на гораздо более мелкие и более целевые
решения, такие как lit-html и LitElement в рамках проекта Polymer. Эти
основные инструменты и функции хорошо согласуются с подходом, не
предусматривающим использование фреймворков, который я описал
в этой книге.

Несмотря на то что команда проделала отличную работу над серией
надежных выпусков и сейчас работает над тем, чтобы сосредоточиться
на более мелких и дополнительных функциях, в первые дни библиотека
Polymer до выхода версии 1.0 была слегка шаткой. Как и ожидалось с лю-
бой библиотекой до версии 1.0, API-интерфейсы немного изменились,
тем более что они пытались не отставать от меняющихся спецификаций
и отсутствия Shadow DOM в каждом браузере, кроме Chrome. С Shadow
DOM было особенно трудно иметь дело. Полнофункциональные полифи-
лы, включающие инкапсуляцию CSS, были слишком трудными и влия-
ли на производительность. Чтобы компенсировать это, в качестве об-
легченной реализации был придуман Shady DOM, который можно было
использовать для полизаполнения.

Это было непростое время для веб-ком по нен тов в целом, и библиоте-
ка Polymer казалась еще одним фреймворком или библиотекой, которая
должна была конкурировать с более надежными библиотеками, не имев-
шими отношения к промежуточным веб-стандартам.

36 Глава 1 Фреймворк без фреймворка

1.1.6 Современные веб-ком по нен ты
Несмотря на эти тяжелые времена, я остановился на веб-компонентах.

Я успешно использовал их для проектов, но не был полностью удовле-
творен, пока не начал использовать некоторые новые функции языка
JS. Функция жирной стрелки оказалась отличным способом управления
областью видимости при работе с событиями мыши или таймерами.
Что еще более важно, ключевое слово import и концепция модулей были
огромными.

С помощью этого ключевого слова я смог отойти от хрупкого бес-
порядка, когда мне нужно было убедиться, что каждый JS-файл, кото-
рый я хотел использовать, был привязан к тегу <script> на моей главной
HTML-странице. Каждый веб-ком по нент может нести полную ответ-
ственность за импорт собственного кода. Это означало, что на главной
HTML-странице я мог заставить один тег <script> на основе модуля им-
портировать веб-компонент, который содержал все мое приложение.
Каждый дочерний компонент просто импортирует все, что ему нужно.

Это открыло возможности для многократно используемых модулей
кода, написанных на чистом JS, и дало мне возможность создавать не-
сколько уровней наследования, когда я хотел, чтобы мои компоненты
имели общий API и были немного умнее базового API HTMLElement. Нако-
нец, я мог хранить свой HTML/CSS в отдельном файле template.js, кото-
рый мог импортировать, отделяя свои визуальные проблемы от логики
контроллера компонента.

Последней огромной функцией JS, которая сделала работу с веб-ком по-
нен та ми приятным удовольствием, был шаблонный литерал. Я не только
мог хранить свой HTML/CSS в отдельном файле шаблона, но и мог заме-
нить выражения-заполнители в своей разметке переменными и вклады-
вать несколько шаблонов вместе, используя функции Java Script.

Эти функции ES6/ES2015 неожиданно сделали веб-ком по нен ты при-
ятными для работы.

Даже ранее, работая с ныне устаревшим HTML-импортом, я считаю,
что сочетание модулей и шаблонных литералов – гораздо лучший путь,
если сравнивать.

Как я уже говорил, Shadow DOM поддерживается на 99 %. На это ушло
какое-то время, но все разработчики популярных браузеров поддержи-
вают эту технологию. Мы просто ждем, когда Microsoft выпустит пред-
варительную версию Edge для всех. Лично я только что начал работать
с Shadow DOM, после того как ее стал поддерживать Firefox.

В то же время какой бы хорошей ни была технология Shadow DOM,
она также не является обязательной. Правда, она дает дочерним элемен-
там нашего компонента хорошую защиту от проникновения стилей и JS,
что приводит к неблагоприятным последствиям, но это новое решение
проблемы, которая всегда у нас была. Поэтому, если нам нужно подо-
ждать поддержки браузера несколько месяцев или просто отказаться от
него в краткосрочной перспективе, это еще не конец света. Тем не менее
я достаточно долго сдерживал свое волнение относительно Shadow DOM

37Будущее веб-ком по нен тов

из-за предыдущей поддержки в браузере; теперь, когда мы собираемся
пересечь финишную черту, я взволнован, потому что оказывается, что
это так здорово – использовать данную технологию.

Как бы я ни волновался за будущее веб-ком по нен тов, я не слышал ни
о каком современном видении относительно них, особенно что касается
разработчиков, которых ранее они приводили в смятение. Если бы мне
пришлось переопределить «обещание веб-ком по нен тов» на 2019 год, это
бы уже не были те три обязательных свойства: пользовательские элемен-
ты, Shadow DOM и импорт HTML.

Для меня видение веб-ком по нен тов 2019 года складывается из набора
инструментов функций ES6/ES2015 и тега <template>, когда, и если вам это
нужно, все они служат пользовательскому элементу в качестве основной
функции. Как только технология Shadow DOM будет поддерживаться во
всех браузерах в ближайшем будущем, она также станет важным допол-
нением к нашему набору инструментов. Это видение того, как я буду
подходить к веб-компонентам в данной книге. Мы подробно рассмот-
рим пользовательский элемент, а затем изучим рабочие процессы во-
круг всех дополнительных инструментов в нашем наборе.

1.2 Будущее веб-ком по нен тов
Предсказывать будущее всегда непросто, особенно это касается интер-
нета, где все меняется в безумном темпе. Тем не менее у нас есть не-
сколько убедительных подсказок, указывающих на то, что может про-
изойти с веб-ком по нен та ми после 2019 года.

Мы уже видели эксперименты с React, Angular (https://angular.io/
guide/elements) и Vue (https://vuejsdevelopers.com/2018/05/21/vue-js-web-
component/), где показана компиляция компонентов в каждом из этих
фреймворков в отдельный веб-компонент, работающий абсолютно не-
зависимо от фреймворка, который сделал эти компоненты. Кроме того,
такие инструменты, как StencilJS (https://stenciljs.com) и Svelte (https://
svelte.technology), позволяют использовать фреймворк и выполнять
компиляцию в автономные веб-ком по нен ты.

Что это значит? Вскоре мы все можем создавать компоненты без ка-
кого-либо фреймворка или с помощью фреймворка на свой выбор. Мы
будем использовать веб-компонент, созданный React в Angular, или
веб-компонент, созданный Vue, на веб-странице без фреймворка. Ис-
кусственные стены между разработчиками и их фреймворками могут
относительно скоро разрушиться, как показано на рис. 1.5. И все это бла-
годаря веб-компонентам.

Эта концепция может даже распространяться на совместную рабо-
ту совершенно разных языков. Одно приложение может иметь разные
компоненты, разработанные в JS, Typescript и CoffeeScript; учитывая,
что каждый из них является модульным компонентом, предоставляю-
щим API, это не имеет значения. Что еще более безумно, с появлением
WebAssembly мы могли видеть, что в таких языках, как C ++, Lua, Go и т. д.,

38 Глава 1 Фреймворк без фреймворка

код, скомпилированный в байт-код и обернутый веб-компонентом, вы-
глядит как совершенно нормальный элемент извне, одновременно по-
зволяя получать высокопроизводительную графику, которая может ра-
ботать быстрее, чем обычно в JS.

Приложение на React

Компонент React

Компонент React

Приложение на Angular

Компонент Angular

Компонент Angular

Простой
веб-компонент,
написанный без
использования

фреймворка

Рис. 1.5 Веб-компоненты могут в будущем преодолеть разрыв между популярными
фреймворками. В этих фреймворках можно использовать не только веб-ком по нен ты
без фреймворка, но уже существующие экспериментальные проекты по компиляции
компонентов в React, Angular или Vue для независимого запуска компонентов,
которые можно применять где угодно

Я также думаю, что использование модулей ES6/ES2015 и импорта из-
менит наш взгляд на библиотеки и фреймворки. Мы уже видим два по-
хожих инструмента, lit-html и hyperHTML, для расширенного управле-
ния разметкой. Оба из них имеют модули, которые разработчики могут
импортировать и вместо того загружать целую библиотеку для решения
целевой проблемы. Вам разрешается участвовать или отказаться от учас-
тия в любое время, когда захотите, на протяжении своего проекта.

В этой связи я думаю, мы увидим гораздо больше удивительных биб-
лиотек. Вы будете импортировать только то, что вам нужно и когда вам
это нужно. Людям может быть скучно с веб-ком по нен та ми как новой
блестящей парадигмой, но я вижу, как мы опираемся на эти основы с по-
мощью импортируемых скриптов и библиотек. Новый подход проекта
Polymer, когда команда переводит свою исходную библиотеку в режим
обслуживания, кажется, точно соответствует этому. Время покажет, будут
ли основные фреймворки разделять функции, как это сделала команда
Polymer в случае с lit-html, на отдельные операции импорта, которые
можно использовать вне фреймворка. Но мне это кажется неизбежным,
особенно если смотреть на другие языки, которые всегда обладали функ-
ционалом импорта.

1.3 За пределами одного компонента
До сих пор я много говорил о веб-компонентах как об отдельных компо-
нентах, но как бы я ни любил автономные веб-ком по нен ты, они не будут

39За пределами одного компонента

особенно полезны, если не будут работать вместе для создания вашего
приложения.

Задолго до того, как появились веб-ком по нен ты, у нас были отличные
способы взаимодействия с обычными элементами DOM. Мы можем ис-
пользовать те же методы, чтобы придать структуру всему, что мы соз-
даем с помощью веб-ком по нен тов, так же как делаем это с обычными
тегами <div>, <video> или <input>.

1.3.1 Веб-компоненты как и любой другой элемент DOM
Для начала каждый элемент имеет своего рода публичный API. Под этим
я подразумеваю, что вы можете получать и устанавливать свойства для
своего элемента и вызывать функции. Например, в случае с элементом
video вы можете вызывать функции pause() и play() для управления вос-
произведением видео. Вы также можете уточнить продолжительность
видео, проверив свойство duration. Наконец, для того чтобы перескочить
на определенный момент в своем видео, можно настроить свойство cur-
rentTime.

Очевидно, что методы и функции для объектов распространены по-
всеместно в программировании. Элементы DOM ничем не отличаются,
как можно увидеть по рис. 1.6; более того, пользовательские веб-ком по-
нен ты также не являются исключением.

call method();
get

element.property

set

element.property

<input type="date" step="2">

Атрибуты тега

Типичный элемент DOM

Визуальный контент

Свойства Методы

Со
бы

ти
я

Сл
уш

ат
ел

и
со

бы
ти

й

Веб-приложение/JS

Рис. 1.6 DOM-элементы имеют различные свойства, методы, события
и атрибуты, которые используются, чтобы сообщать элементу,
как действовать и взаимодействовать с внешним миром

Несколько похожими на свойства являются атрибуты. Вы видите их
все время в HTML-коде. У такого простого тега, как , есть атрибут src,
который указывает на местоположение изображения. Атрибуты представ-
ляют собой простую концепцию, но они удобны для предоставления ва-
шему веб-компоненту различного поведения в зависимости от того, как
вы хотите, чтобы он работал. Более того, у веб-ком по нен тов есть API-ин-
тер фейс, позволяющий внутренне прослушивать изменения в атрибутах.

40 Глава 1 Фреймворк без фреймворка

В предыдущем примере с элементом video атрибуты, предоставляе-
мые тегом, не соответствуют свойствам, предоставляемым API. Хотя
мы можем настроить свойство currentTime, мы не можем установить тот
же атрибут для тега. В противовес этому неоднократно в случае с веб-
ком по нен та ми, которые вы создаете, у вас будет возникать желание
использовать передовой метод отражения. При настройке свойств вам
понадобится обновить атрибут (и наоборот), чтобы эти атрибуты и свой-
ства были синхронизированы. Конечно, это не жесткое правило, а всего
лишь общепринятый передовой метод. До появления веб-ком по нен тов
не обязательно было придерживаться отражения. Хорошим примером
того, когда что-то может пойти не так, является атрибут value тега <input>.
Здесь этот атрибут устанавливает начальное значение, но при его изме-
нении атрибут остается прежним. Запрос свойства value посредством JS
вернет самое последнее значение, при условии что оно было изменено.
Это сбивает с толку! Но мы просто принимаем это, потому что так всег-
да работал тег <input>. При создании новых веб-ком по нен тов, вероятно,
лучше избегать этой путаницы и отражать атрибуты и свойства. В этом
смысле атрибут или свойство muted элемента video является хорошим
примером отражения.

Наконец, возможно, вам понадобится прослушать изменения из ва-
шего пользовательского веб-компонента. Мы постоянно используем со-
бытия в других сценариях. Возьмем, к примеру, нажатие на кнопку. Как
правило, для прослушивания клика мы делаем следующее:

mybutton.addEventListener('click', functionToCall);

Вы также можете создавать и отправлять собственные пользователь-
ские события. Это можно делать из любого места, но они особенно удоб-
ны, когда вам нужно, чтобы ваше приложение или другие компоненты
внутри него слушали события, поступающие от вашего веб-компонента.

1.3.2 От отдельного компонента к приложению
Говорить об отдельных компонентах – это одно, но что делать, когда
вам нужно создать целое веб-приложение? Веб-компоненты могут быть
настолько большими или маленькими, как вам нужно. Вы можете соз-
дать несколько чрезвычайно детализированных компонентов, таких как
кнопки, а затем вложить их в более крупный веб-компонент, например
в пользовательскую панель инструментов.

Ваш компонент панели инструментов может обрабатывать более мел-
кие детали работы с кнопками, возможно, включать и выключать их или
отключать определенные кнопки при определенных обстоятельствах.

Нашу панель инструментов наряду с другими компонентами, пока-
занными на рис. 1.7, можно дополнительно вложить в другой родитель-
ский компонент и т. д. Это может продолжаться до тех пор, пока в вашем
теге <body> не будет единственного веб-компонента.

Веб-компоненты и JavaScript без фреймворка могут многое предло-
жить для разработки веб-приложений. Но по мере роста вашего прило-

41За пределами одного компонента

жения растет и его сложность. Координировать взаимодействие ваших
компонентов друг с другом становится все труднее.

Веб-приложение (также может быть компонентом)

Заголовок и навигация (компонент) Раскрывающееся меню
(компонент)

Панель
инструментов
(компонент)

Область содержимого
(компонент)

«Подвал» страницы (компонент)

Основное
приложение
(компонент)

Кнопки
(компонент)

Рис. 1.7 Пример веб-приложения, состоящего из веб-ком по нен тов, которые
сами состоят из большего количества веб-ком по нен тов. Эта иерархия может
распространяться на нечто маленькое, как пользовательская кнопка,
или быть таким же большим, как все приложение, обернутое как веб-компонент

Иногда можно обнаружить, что даже с присущей вам структурой, ко-
торую дают веб-ком по нен ты, этого недостаточно для создания вашего
комплексного приложения. Возможно, вы захотите обратиться к попу-
лярным фреймворкам и библиотекам, чтобы они помогли вам со струк-
турированием. Такие фреймворки, как Angular, предлагают привязку
данных, шаблоны MVC и многое другое. Конечно, они могут быть полез-
ны при создании традиционного веб-приложения. С другой стороны, мы
можем написать и импортировать простой код JS на базе проверенных
временем шаблонов проектирования, которые уже давно используются,
избегая этих более крупных фреймворков.

Например, собственные события DOM могут не сработать в вашем
случае. Зачастую вам нужно, чтобы одна часть вашего веб-приложения
передавала сообщение совершенно другой части вашего приложения,
и вам не нужно беспокоиться о том, как происходит событие в DOM. Вы
могли бы обратиться к такой библиотеке, как RXjs или Redux, но это мо-
жет быть излишним. Вместо этого можно написать простую шину собы-
тий с небольшим количеством кода. На рис. 1.8 и 1.9 сравниваются два
этих подхода.

На рис. 1.8 у вас могут, например, быть компоненты ввода формы, со-
держащиеся в веб-компоненте. Эти компоненты ввода могут иницииро-
вать изменения ввода текста, выпадающие изменения и многое другое,
все для этого родительского компонента. Хорошим примером этого мо-
жет быть компонент палитры цветов с вводом цвета RGB и ползунками.
Родительский веб-компонент (палитра цветов), в котором размещены
эти входные компоненты, должен будет передать цвет своему родитель-
скому веб-компоненту в другом событии, чтобы сообщить шестнадцате-
ричное значение цвета.

42 Глава 1 Фреймворк без фреймворка

Компонент № 1

Компонент № 2

Компонент № 3

Рис. 1.8 События естественным
образом всплывают
из вложенных элементов

Это естественное всплывание событий может прекратиться, если то,
чей цвет вы решили изменить, находится на другой стороне вашего DOM
в ином разделе дерева DOM. В таком случае вам нужно будет использо-
вать иную стратегию, например шину событий (рис. 1.9).

Компонент № 1

Компонент № 3

Компонент № 4

Компонент № 5

Шина
событий

Рис. 1.9 Если обычное всплывание событий нежелательно,
используя небольшое количество кода, вы можете создать систему
шины событий для маршрутизации событий туда, куда вы хотите

Также можно найти золотую середину, используя микрофреймворки.
Микрофреймворки могут быть отличным минималистичным способом
организации вашего приложения и добавления определенных функций,
не слишком обдумывая его, как это делает более крупный фреймворк.
Беспокойство по поводу мельчайших деталей в ваших пользовательских

43Резюме

веб-компонентах, а также организация более крупного приложения
с помощью этих небольших библиотек может быть прекрасным спосо-
бом. Даже минималистичные решения для привязки данных и маршру-
тизации можно найти и через NPM.

1.4 Ваш проект, ваш выбор
В конце концов, несмотря на то что для использования веб-ком по нен-
тов без фреймворка есть веские аргументы, ваш проект и ваша команда
в конечном итоге будут влиять на то, что вы используете при создании
чего-либо для интернета. Как и любой новый стандарт, веб-ком по нен ты
пока не дают ответов на все вопросы. Равно как и ни один популярный
фреймворк.

Бывают случаи, когда у вас имеется чрезвычайно простое веб-при ло-
же ние, и современный фреймворк может быть идеальным ответом, по-
скольку он справляется со всем, что вам нужно сделать. В других случаях
вы можете работать над типом проекта, в котором фреймворки просто
мешают. Решения, которые вы можете выбрать, охватывают широкий
спектр вариантов, причем некоторые из них перекрываются.

Даже если веб-ком по нен ты без фреймворка не являются правильным
решением для вас, однажды ваш любимый фреймворк, скорее всего, бу-
дет создан с их использованием, хотя это может быть и неочевидно. Зна-
комство с основами на базе веб-стандартов любого фреймворка – это
всегда хорошая идея, даже если вы не используете их напрямую.

Несмотря на несколько запутанный перерыв в работе веб-ком по-
нен тов несколько лет назад, сейчас мы находимся в том месте, где они
являются реальным вариантом для создания вашего следующего про-
екта.

Я уверен, что в ближайшие годы мы увидим новые идеи и методы для
вашего рабочего процесса веб-ком по нен тов, но эти идеи будут основаны
на стандартах, которые я буду рассматривать в данной книге, а также на
новейших и появляющихся текущих рабочих процессах. Мы будем изу-
чать веб-ком по нен ты на атомарном уровне, вплоть до приложений, соз-
данных из множества компонентов, а также рассмотрим, как управлять
вашим HTML и CSS, организовывать проекты, и многое другое. Я наде-
юсь, что вы так же волнуетесь, как и я, о будущем интернета!

Резюме
Из этой главе вы узнали:

� что за последние несколько лет веб-ком по нен ты превратились из
рабочего проекта, принадлежащего Google, в настоящий веб-стан-
дарт, принятый всеми современными браузерами;

� о Shadow DOM как дополнительной, но важной функции, находя-
щейся на грани принятия всеми браузерами;

44 Глава 1 Фреймворк без фреймворка

� о месте веб-ком по нен тов в современных фреймворках, а также не-
зависимой части любой экосистемы;

� о потенциальном будущем веб-ком по нен тов с постоянно расширя-
ющимся сообществом модулей JS в духе библиотек Polymer Project,
таких как lit-html и litelement, а также других библиотек, таких как
hyperHTML;

� об отдельном веб-компоненте в сравнении с целым приложением,
состоящим из веб-ком по нен тов.

2
Ваш первый веб-компонент

Эта глава охватывает следующие темы:
� основа практически каждого элемента, который вы используете:
HTMLElement;

� расширение классов для создания пользовательских элементов;
� предоставление логики и интерактивности пользовательским

элементам;
� использование пользовательских элементов после определения

их с помощью метода customElements.define.

Как я и обещал в начале этой книги, мы начнем с малого. К счастью, в слу-
чае с веб-ком по нен та ми, даже когда мы начинаем с малого, все равно
можно сделать что-то значимое. После прочтения этой главы вы узнае-
те, как создать свой первый веб-ком по нент и просматривать его прямо
в браузере! В последующих главах данной книги мы рассмотрим клю-
чевые концепции более подробно, а здесь начинаются основы. В конце
этой главы мы обсудим варианты, когда ваш браузер не поддерживает
пользовательские элементы, как в случае последнего выпуска Edge для
потребителя (на момент написания этих строк) или IE. Однако до тех
пор, пожалуйста, используйте браузеры Chrome, Firefox или Safari, если
хотите работать с примерами кода.

46 Глава 2 Ваш первый веб-компонент

2.1 Знакомство с HTMLElement
До изучения основ веб-ком по нен тов я на самом деле не знал, что такое
HTMLElement. Возможно, и вы тоже – его не так просто встретить, потому
что, хотя это основная концепция работы DOM, мы, как правило, никогда
не работали с ней напрямую до сих пор, потому что когда вы добавляете
элемент на свою страницу, он просто работает. Вам не обязательно знать,
как тег <input> связан с тегом <button> или как тег <div> связан с тегом .

Чтобы было понятно, нам нужно разобраться с концепцией наследо-
вания. Это популярная концепция в объектно-ориентированном про-
граммировании, с которой мы познакомимся позже в данной книге,
исследуя возможность повторного использования кода, но в качестве
краткого объяснения позвольте мне начать с примера.

2.1.1 Ускоренный курс по наследованию
ПРИМЕЧАНИЕ Если вы уже знакомы с наследованием в объектно-
ориентированном программировании, перейдите к разделу 2.1.2,
чтобы изучить наследование в отношении вашего любимого эле-
мента DOM.

Представьте, что вы в зоопарке. Находясь там, вы замечаете, что у всех
животных есть нечто общее. Животные должны есть, дышать, спать и пе-
редвигаться. Конечно, одни животные отличаются от других. У млекопи-
тающих есть мех, они рожают потомство, а не откладывают яйца, и они
теплокровные. Млекопитающие имеют все основные характеристики
животных, но существуют дополнительные правила, когда вы называе-
те кого-то млекопитающим. Можно пойти еще дальше и рассматривать
таких млекопитающих, как тигры, львы и пантеры, как виды семейства
кошачьих. У кошачьих также есть некие общие черты, например усы, ког-
ти, и они плотоядные.

В объектно-ориентированном программировании можно сказать,
что представитель семейства кошачьих наследует от млекопитающего,
а млекопитающее наследует от животного. Если бы вы писали код, то
могли бы начать с определения объекта Animal (или класса, чтобы быть
более конкретным), как показано на рис. 2.1. У него могут быть функ-
ции, которые вы можете вызвать, чтобы заставить его дышать (breath()),
спать (sleep()) и есть (eat()).

Затем можно создать объект Mammal. Было бы утомительно снова и сно-
ва писать код функций breath(), sleep() и eat() для объекта Mammal. По-
скольку все это похоже на Animal, мы можем применять наследование;
при создании объекта Mammal мы говорим, что Mammal расширяет Animal.
Mammal автоматически получает все функциональные возможности объ-
екта Animal, но мы можем добавить более специфические функциональ-
ные возможности, например функцию growFur(). Мы можем даже создать
объект Feline, который наследует от Mammal, и поскольку Mammal наследует
от Animal, Feline будет обладать всеми функциями Mammal и Animal.

47Знакомство с HTMLElement

Животное

Рептилия Млекопитающее Птица

Кошка

Тигр Лев Пантера

Рис. 2.1 Не совсем научный пример наследования в животном мире

Наследование является основной функцией объектно-ориентирован-
ного программирования, обычно используемой в других языках, а теперь
и в JavaScript (JS), через классы. Если вы незнакомы с этой новой функци-
ей JS, прочтите о ней в приложении «ES2015 для веб-ком по нен тов».

2.1.2 Наследование в ваших любимых элементах
Наш пример наследования очень похож на HTMLElement. За некоторыми
исключениями, такими как SVG, любой элемент, который вы помещаете
в HTML или DOM, наследуется от HTMLElement.

Хотя HTMLElement не является нижней ступенью цепочки наследования
в том, что касается браузера (точно так же, как мы можем продолжать
переходить от «животного» к «многоклеточному организму», к «живому
существу» и т. д.), он служит отправной точкой для веб-ком по нен тов.

В качестве реального примера наследования для реально существу-
ющих элементов можно привести теги , <div> и <button>, которые
создаются из HTMLSpanElement, HTMLDivElement и HTMLButton-Element соответ-
ственно. В свою очередь, все они наследуются от HTMLElement. На самом
деле вы сами можете убедиться в этом. Откройте консоль браузера и вве-
дите это:

document.createElement('div').constructor

В ответ вы получите следующее:

ƒ HTMLDivElement() { [native code] }

48 Глава 2 Ваш первый веб-компонент

Здесь мы создаем новый элемент <div> и спрашиваем, что это за кон-
структор. Конструктор – это то, что вызывается первым, когда вы соз-
даете подобный объект. Вам сообщают, что конструктор является функ-
цией-создателем определенного класса, в данном случае HTMLDivElement.

Не стесняйтесь экспериментировать с вашими любимыми элемента-
ми! Еще один вариант, который можно попробовать, – кнопка:

document.createElement('button').constructor

что дает нам

ƒ HTMLButtonElement() { [native code] }

Как видно из наших экспериментов и из рис. 2.2, элементы, которые
мы используем постоянно, получены из общего источника: HTMLElement.

Рис. 2.2 Хотя существует большое количество классов, которые наследуют
от HTMLElement, здесь приводятся три класса, производящих распространенные
элементы DOM, используемые нами постоянно, с фактическими тегами,
которые мы пишем в нашем HTML-коде

2.2 Правила именования вашего элемента
Есть один интересный момент касательно HTML, который заключается
в том, что вы можете создать любое имя для тега и добавить его на свою
страницу, и он будет работать как <div>.

Попробуйте использовать это на своей странице:

<randomElement>Hi!</randomElement>

Вы увидите текст «Hi!», как если бы использовали тег <div>. Теперь во-
прос в том, от кого мы наследуем здесь. Попробуем ввести приведенный
ниже код в нашей консоли:

document.createElement('randomElement').constructor;

49Правила именования вашего элемента

 В ответ мы получим:

ƒ HTMLUnknownElement() { [native code] }

Вы ожидали увидеть HTMLUnknownElement? Вероятно, нет! Мы только что
создали недопустимый элемент. Поскольку он недействителен, он насле-
дует от особого класса Unkown, и мы не можем расширить его функцио-
нальность.

Почему он недопустим? Не потому, что мы не можем придумывать
собственные имена элементов при создании собственных компонентов,
а потому, что существует соглашение об именах, которому необходи-
мо следовать. Это соглашение является простым жестким требованием
для спецификации пользовательского элемента, а именно использовать
знак тире (–) в имени вашего элемента. Это позволяет браузеру разли-
чать пользовательские и собственные элементы. Если подумать, это не
лишено смысла.

Не только такие же читатели, как и вы, будут создавать собственные
пользовательские компоненты, но и сами браузеры, скорее всего, также
будут предлагать новые элементы.

Обычно веб-ком по нен ты, вероятно, будут использоваться в качестве
крошечных фрагментов общего пользовательского интерфейса. Если
что-то полезное, например индикатор выполнения, было создано не
только вами, но и другими разработчиками веб-ком по нен тов и это стало
в браузерах нативной функцией, можете представить себе, какой будет
беспорядок, если все создадут что-то с именем <progressbar>.

Просто добавьте знак тире (–) в имя своего элемента. Если желаемое
имя элемента – <progressbar>, попробуйте другой вариант с тире: <prog-
ress–bar>. В идеале можно было бы дать ему пространство имен. Про-
странство имен используется для обозначения какой-то группы, к ко-
торой принадлежит ваш компонент. Например, в коллекции элементов
Polymer любой компонент пользовательского интерфейса, созданный
с помощью дизайн-системы Material, имеет пространство имен paper.
Если вы зайдете в репозиторий GitHub (https://github.com/PolymerEle-
ments), то найдете там paper-tooltip, paper-dropdown-menu и paper-toggle-
button (рис. 2.3). У некоторых из них есть два знака тире, и это совершен-
но нормально. Вам нужен один или несколько таких знаков, чтобы имя
было допустимым. Здесь можно сделать важный вывод: Google определя-
ет пространство имен для обозначения набора связанных компонентов,
а затем именует конкретный компонент после знака тире. Вы, конечно
же, не обязаны следовать той же логике – вам просто нужен этот знак.

Давайте вернемся к randomElement, но на этот раз используйте в его на-
звании знак тире, чтобы следовать соглашению:

document.createElement('random-element').constructor;

Хорошие новости! Вот что мы увидим в нашей консоли:

ƒ HTMLElement() { [native code] }

50 Глава 2 Ваш первый веб-компонент

Рис. 2.3 Небольшая выборка элементов paper от Google. Обратите внимание,
что эти связанные веб-ком по нен ты пользовательского интерфейса имеют
префикс paper. Google также использует префикс iron для основных элементов
и neon для элементов, связанных с анимацией

2.3 Определение вашего пользовательского
элемента (и обработка столкновений)
Конечно, одно дело – придумать имя для тега и создать его, и совсем
другое – фактически предоставить логику и определение тега перед его
созданием. Было бы довольно бесполезно создавать собственный тег без
какого-либо пользовательского поведения. Нам понадобится выйти за
пределы HTMLElement и переопределить его, используя собственную логи-
ку.

К счастью, это легко сделать! На мой взгляд, это самая большая и по-
лезная часть API веб-ком по нен тов. С помощью одной простой строки
кода JS и пустого класса, расширяющего HTMLElement, мы можем взять же-
лаемое имя элемента и дать ему значение:

customElements.define('my-custom-tag', class extends HTMLElement {});

Однако тут есть одна загвоздка, и она не повлияет на вас, пока вы не
займетесь более сложными вещами. Тем не менее хорошо бы поднять
этот вопрос сейчас: метод customElements.define выдаст ошибку, если вы
уже определили тег. Это обязательно произойдет позже, когда мы бу-
дем использовать более новую функцию JS под названием import, где мы
включаем наш элемент везде, где нам нужно, чтобы ссылаться на что-то
в нем.

Пока же можно сымитировать подобное плохое поведение, вызывая
метод customElements.define два раза подряд:

customElements.define('my-custom-tag', class extends HTMLElement {});
customElements.define('my-custom-tag', class extends HTMLElement {});

51Расширение HTMLElement для создания логики пользовательского компонента

Мы получаем следующую ошибку:

Failed to execute 'define' on 'CustomElementRegistry': this name has already
been used with this registry

К счастью, с этим достаточно легко справиться. Мы можем устано-
вить, был ли наш пользовательский элемент уже определен, спросив,
возвращает ли customElements.get('my-custom-tag') что-либо. Оборачивая
его в оператор if/then, мы гарантируем, что наш элемент определяется
только при первом вызове:

if (!customElements.get('my-custom-tag')) {

 customElements.define('my-custom-tag', class extends HTMLElement {});
}

Теперь расширение HTMLElement для определения пользовательского
элемента является очень мощным, но не пускайтесь во все тяжкие. Вы,
наверное, думаете, что в случае с HTMLDivElement или HTMLButtonElement рас-
ширение также сработает. Было бы неплохо создать кнопку для функций,
которые у нее уже есть, например возможность отключить ее или легко
работать с формами. К сожалению, ни в одном из браузеров это пока не
представляется возможным. В то время как спецификация customElement
говорит, что все в порядке, Safari еще не реализовал эту функциональ-
ность, и поэтому лучше подходить к расширению других элементов
с осторожностью либо вообще этого не делать. HTMLElement – единствен-
ное определение нативных элементов, которое в настоящее время раз-
решено расширять и создавать пользовательские элементы откуда угод-
но. Все остальное будет выглядеть так, как будто оно работает, но когда
вы будете использовать свой элемент, то получите ошибку:

Uncaught TypeError: Illegal constructor: autonomous custom elements must

 extend HTMLElement

Также обратите внимание на слова «must extend» (должны расширять)
в тексте ошибки. Даже если передать HTMLElement без расширения его
в customElements.define, как в customElements.define('my-element', HTMLEle-
ment), это приведет к такому поведению, когда вы будете использовать
свой новый элемент.

2.4 Расширение HTMLElement для создания
логики пользовательского компонента
Как вы только что видели, проще всего написать свой пользовательский
компонент, применяя более новую функцию JS, называемую классом.
Классы JS предоставляют отличный и понятный способ показать, как ра-
ботает наш пользовательский элемент, а также как он наследует от HTM-
LElement.

Давайте начнем с совсем пустого класса, который наследует от HTMLEle-
ment. Чтобы сделать что-то простое, что станет более полезным по ходу
чтения книги, мы начнем с ползунка. Ползунок прост в использовании,

52 Глава 2 Ваш первый веб-компонент

и его также просто создать. По окончании пользователь сможет перетас-
кивать рукоятку ползунка, чтобы выбрать значение:

class Slider extends HTMLElement {}

Если подумать над названием элемента, то наиболее очевидным вы-
бором будет silder, но нам ведь нужно пространство имен! Поскольку
эта книга называется «Веб-компоненты в действии», а ползунок должен
представлять собой общий компонент пользовательского интерфейса,
который можно использовать где угодно, назовем наш ползунок wcia-
slider. Теперь, когда ваше новое определение элемента сопоставлено
с другими распространенными элементами, как видно на рис. 2.4, вы
можете создать что-то особенное:

customElements.define('wcia-slider', Slider);

Рис. 2.4 Диаграмма наследования HTMLElement изменена, чтобы включить
ваши пользовательские элементы на том же уровне, что и собственные

Конечно, тут нет никакой пользовательской логики, потому что наш
элемент основан на пустом классе. На данный момент он будет действо-
вать так же, как и HTMLElement, но мы можем это исправить, используя
в этом классе метод connectedCallback.

Данный метод является первым из нескольких методов жизненного
цикла, предлагаемых API пользовательского элемента и запускаемых
при добавлении компонента в DOM.

Давайте изменим наш класс, как показано в приведенном ниже лис-
тинге, чтобы дать как-то указать на то, что мы влияем на него. Вот фраг-
мент, который мы можем включить в нашу страницу, чтобы определить
свой элемент.

53Расширение HTMLElement для создания логики пользовательского компонента

Листинг 2.1 Предоставление собственной логики нашему
пользовательскому тегу

<script>

 class Slider extends HTMLElement {

 connectedCallback() {
 alert('hi from Slider');

 }

 }

 if (!customElements.get('wcia-slider')) {

 customElements.define('wcia-slider', Slider);
 }

</script>

Чтобы увидеть это в действии, просто добавьте собственный тег в тело
вашего HTML-кода:

<body>

 <wcia-slider></wcia-slider>

</body>

Когда вы это сделаете, фактически вы не увидите ничего на своей
странице, кроме всплывающего диалогового окна с предупреждением.
Теперь, когда мы убедились, что можем внедрить логику в наш новый
веб-компонент, давайте создадим наш веб-компонент, чтобы сделать
его более заметным.

Для этого я должен упомянуть об области видимости и о том, чем она
может быть полезна для нас в нашем веб-компоненте. В типичном кон-
тексте JS можно легко упустить, на какую область видимости ссылается
this.

В случае с веб-ком по нен та ми и классами мы можем использовать this
несколькими простыми и понятными способами. За некоторыми замет-
ными исключениями, такими как события обратного вызова и таймеры,
this в вашем компоненте будет ссылаться на сам элемент. Сюда входят
пользовательские методы и свойства, которые вы вводите для элемента,
а также любые методы или свойства, которые уже есть у элемента. Други-
ми словами, любой метод или свойство, которое вы можете использовать
из обычного, непользовательского элемента, может применяться в этой
области, и на него может ссылаться this. Ключевое слово this – область
видимости нашего нового пользовательского элемента.

Примеры того, что вы можете вызвать из this внутри своего класса
пользовательского элемента, включают в себя все, что наследуется от HT-
MLElement, например получение CSS элемента с помощью this.style, по-
лучение высоты элемента с помощью this.offsetHeight или добавление
слушателя событий, когда пользователь кликает на ваш компонент с по-
мощью this.addEventListener('click', callback).

Чтобы дать нашему элементу некое содержимое, в частности фон и ру-
коятку, давайте начнем со свойства innerHTML. Опять-таки, innerHTML можно
использовать для любого элемента, и он служит для установки содержи-
мого HTML внутри элемента. Аналогично его можно использовать и здесь:

Предупреждение, что компонент
находится на странице
и работает

54 Глава 2 Ваш первый веб-компонент

this.innerHTML = '<div class="bg-overlay"></div><div class="thumb"></div>';

В качестве демонстрации подойдет и такой код. Позднее мы опреде-
ленно улучшим его.

Давайте также добавим в компонент-ползунок стили. При добавлении
стилей и определении работы компонента важно подумать о том, как он
будет использоваться и для чего мы его создаем. Учитывая, что у нас уже
есть ползунок, изначально предоставленный браузером, как показано на
рис. 2.5, и созданный с помощью элемента <input typ ="range">, наш пол-
зунок должен служить несколько иной цели.

Рис. 2.5 Уже готовый ползунок,
предоставляемый элементом input

Наш ползунок будет работать так же, по нему будет перетаскиваться
рукоятка. Тем не менее мы сделаем нашу дорожку намного больше. Фак-
тически это будет скорее фон, нежели дорожка. Причина создания более
крупной дорожки состоит в том, что мы можем лучше визуализировать
то, что пользователь будет перетаскивать. Этот ползунок будет исполь-
зоваться для изменения прозрачности определенного цвета. На рис. 2.6
показан ползунок (слайдер) прозрачности, который мы создадим.

Рис. 2.6 Наш новый компонент слайдер прозрачности цвета

Теперь, когда мы определились с тем, как будет выглядеть ползунок,
можно приступить к добавлению стилей! Как упоминалось ранее, можно
использовать ключевое слово this в качестве области видимости нашего
компонента, которое мы затем можем подключить к свойству style, как
и любой другой элемент:

this.style.display = 'inline-block';

this.style.position = 'relative';

this.style.width = '500px';

this.style.height = '50px';

Помимо обращения к свойству style в области видимости компонен-
та, мы можем использовать еще одно свойство HTMLElement: querySelector.
Обычно мы могли бы использовать query- Selector для нашего докумен-
та (document), чтобы найти дочерний элемент внутри. Например, если бы
нам нужно было найти где-нибудь элемент с классом myelement на стра-
нице, можно было бы сделать следующее:

let myElement = document.querySelector('.myelement');

Функция querySelector не должна выполнять поиск по ширине доку-
мента. Вместо этого он может быть ограничен любым обычным элемен-

55Расширение HTMLElement для создания логики пользовательского компонента

том для запроса и выбора его дочерних элементов. Учитывая, что наш
компонент является обычным элементом, мы можем запросить и вы-
брать его дочерние элементы и также применить к ним стили. В при-
веденном ниже листинге показано, как можно получить доступ к веб-
компоненту, используя область видимости this для изменения стиля
дочерних элементов компонента.

Листинг 2.2 Запрос и выбор внутренних компонентов и настройка
их стиля

this.querySelector('.bg-overlay').style.width = '100%';

this.querySelector('.bg-overlay').style.height = '100%';

this.querySelector('.bg-overlay').style.position = 'absolute';

this.querySelector('.bg-overlay').style.backgroundColor = 'red';

this.querySelector('.thumb').style.marginLeft =

 '100px';

this.querySelector('.thumb').style.width = '5px';

this.querySelector('.thumb').style.height = 'calc(100% – 5px)';

this.querySelector('.thumb').style.position = 'absolute';

this.querySelector('.thumb').style.border = '3px solid white';

this.querySelector('.thumb').style.borderRadius = '3px';

Собрав все воедино, у нас получается то, что показано в этом листинге.

Листинг 2.3 Полный, но простой пример веб-компонента

<html>

<head>

 <title>Slider</title>

<script>

 class Slider extends HTMLElement {

 connectedCallback() {
 this.innerHTML =

 '<div class="bg-overlay"></div><div class="thumb"></div>';

 this.style.display =

 'inline-block';

 this.style.position = 'relative';

 this.style.width = '500px';

 this.style.height = '50px';

 this.querySelector('.bg-overlay').style.width = '100%';

 this.querySelector('.bg-overlay').style.height = '100%';

 this.querySelector('.bg-overlay').style.position = 'absolute';

 this.querySelector('.bg-overlay').style.backgroundColor = 'red';

 this.querySelector('.thumb').style.marginLeft = '100px';

 this.querySelector('.thumb').style.width = '5px';

 this.querySelector('.thumb').style.height = 'calc(100% – 5px)';

 this.querySelector('.thumb').style.position = 'absolute';

 this.querySelector('.thumb').style.border = '3px solid white';

 this.querySelector('.thumb').style.borderRadius = '3px';
 }

Добавление стиля
к элементу
наложения фона
внутри компонента

Добавление стиля к элементу
рукоятки внутри компонента

Настройка HTML-содержимого
нашего веб-компонента

Настройка общего стиля
нашего веб-компонента

56 Глава 2 Ваш первый веб-компонент

 }

 if (!customElements.get('wcia-slider')) {

 customElements.define('wcia-slider', Slider);
 }

</script>

</head>

<body>

 <wcia-slider></wcia-slider>

</body>

</html>

Конечно, теперь вместо простого предупреждения мы видим, что
у нашего компонента на странице есть надлежащее содержимое!

2.5 Использование вашего пользовательского
элемента на практике
На этом этапе, если вы продолжаете, у вас есть собственный пользова-
тельский элемент, работающий на вашей странице. В дополнение к пра-
вилу, которое гласит, что в вашем пользовательском теге должно быть
тире, ранее существовало дополнительное правило, касающееся исполь-
зования тега. Пользовательские элементы подпадают под тип элемента,
который не может быть выражен как пустой или самозакрывающийся
тег. Другими словами, приведенные ниже варианты до недавнего вре-
мени не работали:

<wcia-slider /> или <wcia-slider>

Однако теперь в последних версиях браузеров работают даже эти
варианты. Таким образом, кроме требования тире, ваш элемент мо-
жет использоваться всеми способами, которыми могут использоваться
и другие элементы. Когда вы будете иметь дело с более сложными ком-
понентами, логика кликов, вероятно, будет находиться внутри вашего
компонента, но мы, безусловно, можем связать событие клика с нашим
веб-компонентом, как и с любым другим элементом:

<wcia-slider onclick="alert('clicked')"></wcia-slider>

Атрибуты также удобны в использовании, но, конечно, существует не
так много ситуаций, когда в вашем компоненте было бы полезно исполь-
зовать атрибут без логики. Давайте изменим способ визуализации наше-
го компонента с помощью нескольких разных атрибутов: цвета и значе-
ния. Эти атрибуты можно встроить в тег компонента:

<wcia-slider backgroundcolor="#0000ff" value="180"></wcia-slider>

Затем мы можем изменить цвет фонового элемента, поменяв «крас-
ный» цвет на значение атрибута:

this.querySelector('.bg-overlay').style.backgroundColor =
this.getAttribute('backgroundcolor');

57Использование вашего пользовательского элемента на практике

Между тем атрибут value может изменить положение рукоятки пол-
зунка:

this.querySelector('.thumb').style.marginLeft = this.getAttribute('value') + 'px';

Проделав эти небольшие изменения, мы можем теперь изменить цвет
и положение ползунка на что угодно. К сожалению, компонент выглядит
несколько неприглядно, как показано на рис. 2.7, и это не совсем то, что
я показывал вначале.

Рис. 2.7 Ползунок (теперь он синий, и рукоятка сдвинута влево),
на который влияют атрибуты value и color

Возможно, вы также заметили, что я использовал JS для настройки
свойств стиля вместо того, что я должен был использовать: CSS. Как
и в случае с любым другим элементом, мы можем поместить наш эле-
мент и внутренние дочерние элементы в блок <style> и сделать все так,
как я обещал изначально.

Кое-что из CSS, который мы используем, выглядит довольно сложным.
По этой причине пока я удалил атрибуты – мы вернемся к этому в после-
дующих главах, используя фактический код, чтобы сделать компонент
функциональным как нечто, что вы действительно бы использовали.

Мы добавим позади компонента фон с клеточками с помощью не-
много полусумасшедших стилей (фоновое изображение, расположение
и размер). Если честно, сам я не создавал его – я нашел его в интерне-
те! Правила линейного градиента для цвета и свойство box-shadow для
рукоятки также немного длинные, но эти мелкие детали в приведенном
ниже листинге могут в дальнейшем украсить пользовательский интер-
фейс.

Листинг 2.4 Извлекаем выгоду от встроенных стилей CSS

<html>

<head>

 <title>Slider</title>

 <script>

 class Slider extends HTMLElement {

 connectedCallback() {
 this.innerHTML =

 '<div class="bg-overlay"></div><div class="thumb"></div>';

 }

 }

 if (!customElements.get('wcia-slider')) {

 customElements.define('wcia-slider', Slider);
 }

58 Глава 2 Ваш первый веб-компонент

 </script>

 <style>

 wcia-slider {

 display: inline-block;

 position: relative;

 border-radius: 3px;

 height: 50px;

 width: 500px;

 background-image: linear-gradient(45deg, #ccc 25%,
 transparent 25%),linear-gradient(-45deg, #ccc 25%,
 transparent 25%),linear-gradient(45deg, transparent 75%,
 #ccc 75%),linear-gradient(-45deg, transparent 75%, #ccc 75%);
 background-size: 16px 16px;

 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }

 .bg-overlay {

 width: 100%;

 height: 100%;

 position: absolute;

 border-radius: 3px;

 background: linear-gradient(to right, #ff0000 0%, #ff000000 100%);
 }

 .thumb {

 margin-top: -1px;

 left: 250px;

 width: 5px;

 height: calc(100% – 5px);

 position: absolute;

 border-style: solid;

 border-width: 3px;

 border-color: white;

 border-radius: 3px;

 pointer-events: none;

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2),
 0 6px 20px 0 rgba(0, 0, 0, 0.19);
 }

 </style>

</head>

<body>

 <wcia-slider></wcia-slider>

</body>

</html>

В этом случае мы можем легко настроить все стили прямо в нашем CSS.
Вы, возможно, заметили, что мы действуем немного дезорганизованно,
просто поместив блоки скриптов и стилей в HTML-код. Не волнуйтесь,
мы разберемся с этим, чтобы все выглядело намного чище, по ходу кни-
ги. На данный момент, даже для простого компонента, это выглядит как
вполне стилизованный ползунок (рис. 2.8), который может быть полезен
для более глубокого изучения позже.

Добавление довольно сложного CSS
в наш компонент, чтобы получить
правильный стиль

59Создание (полезного) первого компонента

Рис. 2.8 Стилизованный слайдер с использованием CSS

2.6 Создание (полезного) первого компонента
Посмотрим правде в глаза: исходя из того, что мы пока узнали о поль-
зовательских элементах и создании пользовательской логики в вашем
первом компоненте, это был не очень полезный компонент (например,
рукоятка не двигается). Не волнуйтесь! По мере продвижения в этой
книге мы будем дорабатывать его, добавляя интерактивность, исследуя
некоторые стандартные методы, позволяя ему работать с другими ком-
понентами.

Однако сейчас пришло время взять то, что мы уже изучили, а также
некоторые из наших предыдущих знаний в области веб-разработки
и создать простой веб-компонент, который сразу же может быть полезен
и значим как самостоятельный компонент.

Первое, что приходит на ум при простом случае использования, –
это то, что создателям веб-сайтов всегда было нужно, и оно было сде-
лано и переделано бесчисленное количество раз в jQuery. Его с пользой
можно применять во всех веб-контекстах, начиная от блогов и заканчи-
вая веб-приложениями. Я говорю о карусели фотографий или изобра-
жений.

Идея здесь состоит в том, чтобы создать компонент, который можно
поместить в любое место на странице и который позволит нам указать
название альбома и автора и пролистать альбом фотографий с помощью
кнопок «Вперед» и «Назад». Для этого я выбрал несколько фотографий
с популярного хостинга изображений imgur.com (я скопировал их в свой
репозиторий на GitHub, чтобы они не исчезли со временем) в качестве
мест, которые, как я думаю, было бы весело посетить и поместить их
в альбом. Мой компонент «будущие фотографии из отпуска» в итоге вы-
глядит, как показано на рис. 2.9.

Без сомнения, я мог бы потратить больше времени на стилизацию
и создание графики, особенно для кнопок «Вперед» и «Назад», но здесь
мы оставим простые кнопки. Давайте рассмотрим все более подробно
и шаг за шагом создадим эту фотокарусель.

2.6.1 Настраиваем свой веб-сервер
Есть простые вещи, которые можно делать без использования веб-сер ве-
ра. Одна только загрузка простого HTML-файла в вашей локальной фай-
ловой системе в выбранном вами браузере вам не поможет. При попытке
загрузить настройки, файлы CSS или JS при отсутствии сервера эти фай-
лы будут заблокированы. Что делать?

60 Глава 2 Ваш первый веб-компонент

Рис. 2.9 Результат следующей демонстрации, где мы создаем фотокарусель

Лично мне нравится использовать интегрированную среду разработ-
ки (IDE), такую как WebStorm от компании JetBrains, которая автомати-
чески создает сервер за вас, когда вы загружаете свой HTML-файл через
ее пользовательский интерфейс. Многие веб-разработчики используют
простой текстовый редактор и HTTP-сервер. Поскольку это бесплатный
вариант, давайте так и сделаем! Node.js – отличный выбор, особенно по-
тому, что он используется для множества других вещей, связанных с ин-
струментами внешнего интерфейса. Если вы еще не установили Node.js,
перейдите по ссылке https://nodejs.org, скачайте его и установите.

После установки мы можем использовать менеджер пакетов Node.js,
NPM, для установки модулей по своему выбору. Обычно в случае с Node
модули устанавливаются специально для своего проекта. На этот раз мы
передадим флаг -g, чтобы установить модуль http-server, который можно
использовать откуда угодно. Откройте терминал командной строки (не
важно, в каком каталоге вы находитесь) и наберите это:

npm install http-server -g

Когда вы закончите и не будет никаких ошибок, у вас будет прос-
той веб-сервер, который можно запускать из любого места на вашем
компью тере. Теперь, когда у вас есть установленный инструментарий,
вы можете создать папку проекта, где вам будет угодно. Я назову свой
проект «photocarousel» и создам для него пустую папку на рабочем столе.
Как только папка будет создана, я создам пустой HTML-файл с именем
test.html, чтобы убедиться, что мой сервер работает и мой файл загружа-
ется. В своем любимом текстовом редакторе напишите HTML-код в сле-
дующем листинге (опять же, это просто для того, чтобы сделать что-то,
что можно просмотреть в своем браузере).

61Создание (полезного) первого компонента

Листинг 2.5 Простая веб-страница для тестирования нашего сервера

<html>

 <head>

 <title>Photo Carousel Demo</title>
 </head>

 <body>

 <h3>Hi, from your webserver</h3>
 </body>

</html>

Теперь в своем терминале перейдите к созданной вами папке проекта
и наберите

http-server

Поскольку модуль http-server устанавливается глобально, везде, где вы
выполняете эту команду, запускается веб-сервер. В случае успеха вы уви-
дите такие результаты:

Starting up http-server, serving ./
Available on:

 http://127.0.0.1:8080
 http://10.0.0.17:8080
Hit CTRL-C to stop the server

Теперь в вашем браузере (давайте будем использовать Chrome или Sa-
fari) вы можете перейти по любому из этих адресов, добавив /test.html,
и увидеть свой HTML-файл в действии.

Потрясающе! Если вы видите что-то вроде того, что изображено на
рис. 2.10, это означает, что теперь у вас есть среда разработки!

Рис. 2.10 Запуск нашей простой HTML-страницы с веб-сервера

2.6.2 Пишем свой HTML-тег
Итак, мы собираемся написать свой пользовательский тег для карусели
фотографий в теле нашей HTML-страницы. На самом деле это не срабо-
тает, но поможет нам подумать над тем, какие функции мы хотим реали-
зовать, когда дело доходит до работы с веб-ком по нен та ми.

Я выберу для этого компонента пространство имен wcia, сокращение
от Web Components in Action. Итак, имя моего тега – wcia-photo-carousel.
Я мог бы просто добавить этот тег в код страницы:

62 Глава 2 Ваш первый веб-компонент

<body>

 <wcia-photo-carousel></wcia-photo-carousel>

</body>

Теперь у нас есть возможность поразмыслить над разными вещами,
которые мы могли бы изменить, когда речь заходит о нашем компоненте
извне. Лично я думаю, что нам понадобится дать нашей карусели назва-
ние альбома, которое будет отображаться над фотографией, а также имя
автора, который создал фотоальбом. Однако наиболее важными являют-
ся фотографии, которые мы хотим показать в своем альбоме. Для этого
мы передадим список разделенных запятыми URL-адресов. Это означа-
ет, что наш тег выглядит не так, как предыдущий пустой тег, а так, как
показано в приведенном ниже листинге.

Листинг 2.6 Наш компонент фотокарусели,
используемый на веб-странице

<body>

 <wcia-photo-carousel

 title="Future Vacation Photos"

 author="Ben Farrell"

 photos="images/fBmIASF.jpg,images/3zxD6rz.jpg,images/
 nKBgeLOr.jpg,images/yVjJZ1Yr.jpg"
 ></wcia-photo-carousel>

</body>

Теперь, когда мы разобрались с входными данными нашего веб-ком-
по нента, можно начать думать о реализации.

2.6.3 Создаем свой класс
Как я уже говорил ранее в этой главе, есть более подходящие способы
организовать свой код. Однако сейчас мы просто добавим тег <script>
в наш заголовок HTML-кода, чтобы зарегистрировать наш компонент
и запустить наш метод connectedCallback.

Сразу после тега <title> в нашем заголовке можно добавить блок
скрипта, показанный в приведенном ниже листинге.

Листинг 2.7 Добавляем блок скрипта с классом
для определения нашего компонента

<head>

 <title>Photo Carousel</title>

 <script>

 class PhotoCarousel extends HTMLElement {
 connectedCallback() {
 }

 if (!customElements.get(

 ➥'wcia-photo-carousel')) {

Атрибут title
Атрибут author

Еще один атрибут, содержащий
разделенный запятыми список
фотографий для отображения

Класс для определения
нашего компонента

Определяем тег для нашего компонента,
если он еще не был определен

63Создание (полезного) первого компонента

 customElements.define('wcia-photo-carousel', PhotoCarousel);
 }

 </script>

</head>

Здесь мы создали класс с именем PhotoCarousel, расширяющий HTMLEle-
ment. Мы создали пустой метод connectedCallback, который можно запол-
нить мгновенно. Далее ниже мы проверяем, определен ли наш тег wcia-
photo-carousel, и если нет, определяем его как пользовательский элемент.

2.6.4 Добавляем содержимое в наш компонент
Теперь можно начать думать о том, какие элементы добавить в наш ком-
понент, чтобы получить карусель, которая нам нужна. Лично я думаю,
что подзаголовки title и author будут иметь смысл. Это могут быть теги
заголовков <h2> и <h4> соответственно. Нам также понадобятся две кноп-
ки – одна для перехода к следующей фотографии и одна для перехода
к предыдущей. Наконец, нам нужен тег <div> для размещения наших
фотографий.

Мы поговорим о шаблонных литералах позже, что поможет нам лучше
построить HTML-код, а пока мы просто установим для свойства innerHTML
значение в виде длинной строки, содержащей все упомянутые элемен-
ты. Мы сделаем это, когда наш компонент будет добавлен на страницу
внутри нашего метода connectCallback, как показано в этом листинге.

Листинг 2.8 Установка HTML-содержимого нашего компонента

this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +

 '<h4>by '+ this.getAttribute('author') + '</h4>' +

 '<div class="image-container"></div>' +

 '<button class="back"><</button>' +

 '<button class="forward">></button>';

Обратите внимание, что мы используем атрибуты наших тегов title
и author для отображения этой пользовательской информации. Как вид-
но по рис. 2.11, у нас неплохое начало.

Рис. 2.11 Наш компонент карусели с кнопками title,
author и forward/back

64 Глава 2 Ваш первый веб-компонент

Видно, что здесь есть почти все, что мы добавили, – заголовок, подза-
головок, две кнопки, – но не контейнер изображений. Это связано с тем,
что, хотя контейнер изображения и был добавлен, внутри контейнера
ничего нет, и мы не указали его размер.

Поэтому хотя он и был добавлен в DOM, его просто не видно. Это под-
ходящее время, чтобы приступить к стилизации нашего содержимого.

2.6.5 Добавляем стили
Сразу после нашего тега <script> в приведенном ниже листинге мы до-
бавим блок стилей.

Листинг 2.9 Добавление CSS для стилизации нашего компонента

. . .

</script>

<style>

 wcia-photo-carousel {

 width: 500px;

 height: 300px;

 display: flex;

 padding-top: 10px;

 flex-direction: column;

 border-color: black;

 border-width: 1px;

 border-style: solid;

 }

 wcia-photo-carousel h2, h4 {
 margin-bottom: 0;

 margin-top: 0;

 margin-left: 10px;

 }

 wcia-photo-carousel .image-container {

 margin-top: 15px;

 flex: 1;

 background-color: black;

 }

</style>

Сначала мы устанавливаем общий стиль нашего контейнера компо-
нентов для карусели фотографий. Я произвольно решил, что эти ширина
и высота будут составлять 500 и 300 пикселей соответственно. Вы можете
изменить эти параметры на свое усмотрение. Мне также нужен простой
в использовании макет, поэтому я использовал модуль CSS Flexbox с на-
правлением столбца, чтобы расположить свои элементы вертикально.
Я также поместил рамку вокруг своего компонента и отступ сверху, что-
бы у заголовка было пространство.

Затем я обнуляю величину отступа от нижнего и верхнего краев эле-
мента для заголовков h2 и h4. Заголовки обычно имеют довольно большое
расстояние сверху и снизу, и здесь мне это не нужно. Я также сместил за-

Стилизация всего компонента

Стилизация двух заголовков (title и author)

Стилизация элемента div,
содержащего наши изображения

65Создание (полезного) первого компонента

головки на 10 пикселей влево, чтобы они не касались левой части моего
компонента.

Наконец, я установил величину отступа от верхнего края для элемента
<div>, контейнера изображения, равной 15 пикселям, чтобы между ним
и заголовками было пространство, и сделал ему черный фон. Значе-
ние, равное 1, для flex здесь означает, что этот контейнер изображений
займет все оставшееся пространство, которое я оставлю вокруг элемен-
тов, у которых уже есть высота, например кнопки и заголовки.

Теперь все начинает обретать форму! Наша ограниченная стилизация
дает нам нечто похожее на то, что изображено на рис. 2.12.

Рис. 2.12 Прогресс, достигнутый после добавления стилей

Здесь достаточно макета, чтобы теперь мы могли сосредоточиться на
логике компонента.

2.6.6 Логика компонента
Раздумывая о том, что делать дальше, вы, возможно, помните, что мы
еще не использовали список URL-адресов изображений, которые есть
у нас в нашем теге в теле страницы. У нас также нет счетчика, значение
которого начинается с 0 и увеличивается или уменьшается, и кнопок, ко-
торые используются в качестве указателя того, на какой фотографии мы
находимся.

Давайте начнем. В методе connectCallback, перед настройкой innerHTML,
как мы уже делали, добавим следующее:

connectedCallback() {
 this._photoIndex = 0;

 this._photos = this.getAttribute('photos').split(',');
 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' + . . .

66 Глава 2 Ваш первый веб-компонент

Здесь мы берем наш список фотографий и превращаем его в массив,
используя запятые в качестве разделителей. Наряду с указателем фото-
графии, на которой мы находимся, для этого массива фотографий уста-
новлены внутренние свойства «экземпляра» нашего класса. Доступ к об-
ласти видимости внутри каждого метода нашего класса можно получить
c помощью ключевого слова this.

Давайте также создадим метод для отображения нашей фотографии
в приведенном ниже листинге, а также вызовем его после того, как на-
строим наш innerHTML.

Листинг 2.10 Добавление метода showPhoto

connectedCallback() {
 this._photoIndex = 0;

 this._photos = this.getAttribute('photos').split(',');

 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +

 '<h4>by '+ this.getAttribute('author') + '</h4>' +

 '<div class="image-container"></div>' +

 '<button class="back"><</button>' +

 '<button class="forward">></button>';

 this.showPhoto();

}

showPhoto() {

 this.querySelector('.image-container').style.backgroundImage =

 'url(' + this._photos[this._photoIndex] + ')';

}

Наш метод showPhoto находит контейнер изображений путем запроса
и выбора чего-либо с помощью класса image-container, но только в рамках
нашего компонента, поскольку мы применяем this.querySelector вместо
document.querySelector, который вы, возможно, используете обычно. За-
тем он устанавливает фоновое изображение для нашей текущей фото-
графии. Чтобы увидеть это в действии, убедитесь, что у вас есть папка
с изображениями, названная так, как вы указали в исходном атрибуте
photos для компонента. В репозитории на GitHub для этой книги эта пап-
ка уже настроена, чтобы вам было проще.

Однако тут есть проблема. Хотя технически это работает и показыва-
ется нужное фото, мои фотографии слишком большие! Все, что я вижу, –
это голубое небо, а остальное не видно. В приведенном ниже листинге да-
вайте добавим еще пару свойств стиля в наш контейнер изображений.

Листинг 2.11 Добавляем стили для правильного отображения
текущего изображения

wcia-photo-carousel .image-container {

 margin-top: 15px;

 flex: 1;

 background-color: black;

 background-size: contain;

Вызываем метод showPhoto,
как только запустится компонент

Метод showPhoto, который устанавливает
фоновое изображение элемента div

Делает так, чтобы наше изображение
помещалось в содержащий элемент

67Создание (полезного) первого компонента

 background-repeat: no-repeat;

 background-position: 50%;

}

Давайте более детально рассмотрим эти три правила, которые мы
только что добавили. background-size: contain; означает, что мы устанав-
ливаем размер так, чтобы изображение помещалось в контейнер, чтобы
убедиться, что мы показываем всю фотографию целиком. background-
repeat: no-repeat; переопределит поведение, при котором изображение
повторяется снова и снова. Обычно при повторяющемся действии по
умолчанию оно заполняет все оставшееся пространство, потому что
изображение не точно соответствует размеру контейнера, который мы
ему даем (пока нам не повезет). Здесь no-repeat деактивирует подобное
поведение. Наконец, background-position: 50%; означает, что мы центри-
руем изображение как по вертикали, так и по горизонтали в нашем кон-
тейнере. После этого мы можем увидеть первую фотографию в альбоме,
у нее отличный размер, и она располагается по центру, как показано на
рис. 2.13.

Рис. 2.13 Отображение текущего изображения

2.6.7 Добавляем интерактивности
Думаю, что следующий очевидный шаг – заставить наши кнопки рабо-
тать, чтобы они показывали следующую или предыдущую фотографию.
Мы начнем с добавления двух строк в конец нашего метода connected-
Callback:

Не повторять изображение
и не заполнять контейнер

Центрируем изображение

68 Глава 2 Ваш первый веб-компонент

Листинг 2.12 Добавляем слушателей клика к нашим кнопкам

. . .'<button class="back"><</button>' +

 '<button class="forward">></button>';

this.showPhoto();

this.querySelector('button.back').addEventListener('click', event =>
 this.onBackButtonClick(event));

this.querySelector('button.forward').addEventListener('click', event =>
 this.onForwardButtonClick(event));
}

С помощью этих строк мы находим кнопки «назад» и «вперед» и до-
бавляем к ним слушателя событий, чтобы при клике они вызывали ме-
тоды onBack или onForward-ButtonClick.

Вы, наверное, заметили толстую стрелку: =>. Если вы никогда ее не
видели, не волнуйтесь. Это более новая функция JS, описание которой
приводится в приложении. Обычно вы бы сделали следующее:

this.querySelector('button.forward').addEventListener('click',
 this.onForwardButtonClick));

Толстая стрелка позволяет нам сохранять ту же область видимости,
что и экземпляр нашего класса, когда вызывается функция. Мы можем
получить доступ к свойствам и методам экземпляра класса (this) из об-
ратного вызова, показанного в приведенном ниже листинге.

Листинг 2.13 Обработка наших слушателей события click

/**

 * Обработчик, когда пользователь нажимает кнопку "назад";
 * @param event

 */

onBackButtonClick(event) {
 this._photoIndex --;

 if (this._photoIndex < 0) {

 this._photoIndex = this._photos.length-1;

 }

 this.showPhoto();

}

/**

 * Обработчик, когда пользователь нажимает кнопку "вперед";
 * @param event

 */

onForwardButtonClick(event) {
 this._photoIndex ++;

 if (this._photoIndex >= this._photos.length) {

 this._photoIndex = 0;

 }

 this.showPhoto();

}

Слушает клики
по предыдущей/задней кнопке

Слушает щелчки по кнопке вперед/назад

Обработчик для кнопки «назад»

Если мы находимся на первом
изображении, перебирает фото
до последнего изображения

Обработчик для кнопки «вперед»

Если мы находимся на последнем
изображении, перебирает фото
до первого изображения

69Создание (полезного) первого компонента

Эти методы увеличивают или уменьшают текущий указатель нашей
фотографии, а затем проверяют, находится ли указатель за пределами
нашего массива. Если это так, мы будем перебирать фото, идя к нача-
лу или концу нашего массива. Наконец, мы вызываем наш предыдущий
метод, чтобы показать текущую фотографию, учитывая новый this._pho-
toIndex.

Несмотря на то что внешний вид нашего компонента не изменился,
теперь мы можем кликать на эти кнопки, чтобы перейти к предыдущей
фотографии или вернуться назад!

2.6.8 Последние штрихи
Все готово? Не совсем. Мне не нравятся кнопки «вперед» и «назад». Да-
вайте разместим их по бокам, чтобы наш веб-ком по нент выглядел как
настоящая карусель.

Сперва давайте добавим еще несколько стилей в приведенный ниже
листинг, на этот раз для наших кнопок.

Листинг 2.14 Добавляем стили для кнопок

wcia-photo-carousel button {

 cursor: pointer;

 background: transparent;

 border: none;

 font-size: 48px;

 color: white;

 position: absolute;

 top: 50%;

}

wcia-photo-carousel button.back {

 left: 10px;

}

wcia-photo-carousel button.forward {

 right: 10px;

}

Назад или вперед, мы хотим, чтобы наши кнопки отображали курсор
указателя при наведении его на них. Мы также хотим избавиться от внеш-
него вида кнопок браузера по умолчанию, поэтому удалим фон и рамку
с наших кнопок. Далее мы сделаем очень большой размер для шриф-
та и цвет текста белым. Наконец, позволим кнопкам выйти за пределы
столбца flex, чтобы они появлялись над изображением, установив для
свойства position значение absolute. Мы также расположим их по цент-
ру по вертикали, установив для свойства top значение 50 %. Для каждой
кнопки мы укажем расстояние от левого и правого края в 10 пикселей.

Если бы вы посмотрели на то, что сейчас у вас получилось, вы, веро-
ятно, даже и не увидели бы свои кнопки, потому что если вы похожи на
меня, окно вашего браузера открыто довольно большое, а кнопки при
значении absolute для свойства position центрированы по всей странице,

Общие стили для обеих кнопок
(кнопки пока не будут видны)

Стиль для кнопки «назад»

Стиль для кнопки «вперед»

70 Глава 2 Ваш первый веб-компонент

а не на компоненте. Поскольку это белые кнопки на белой странице, вы
их не увидите. Нам нужно добавить еще одно свойство CSS, чтобы рас-
положить кнопки относительно компонента, а не страницы:

<style>

 wcia-photo-carousel {

 position: relative;

Здесь мы устанавливаем для расположения всего нашего компонента
значение relative. Оно ничего не делает с нашим компонентом, но лю-
бой элемент внутри с position: absolute теперь относится к компоненту,
а не к странице.

На случай, если вы где-то что-то пропустили, весь наш демонстраци-
онный код можно увидеть в этом листинге.

Листинг 2.15 Повторение демонстрационного кода

<html>

<head>

 <title>Photo Carousel</title>

 <script>

 class PhotoCarousel extends HTMLElement {
 connectedCallback() {
 this._photoIndex = 0;

 this._photos = this.getAttribute('photos').split(',');

 this.innerHTML = '<h2>'+ this.getAttribute('title') + '</h2>' +

 '<h4>by '+ this.getAttribute('author') + '</h4>' +

 '<div class="image-container"></div>' +

 '<button class="back"><</button>' +

 '<button class="forward">

 >

 </button>';

 this.showPhoto();

 this.querySelector('button.back').addEventListener('click',
 event => this.onBackButtonClick(event));

 this.querySelector('button.forward').addEventListener('click',
 event =>

 this.onForwardButtonClick(event));
 }

 /**

 * обработчик, когда пользователь нажимает кнопку «Назад»
 * @param event

 */

 onBackButtonClick(event) {
 this._photoIndex --;

 if (this._photoIndex < 0) {

 this._photoIndex = this._photos.length-1;

 }

 this.showPhoto();

 }

Класс, определяющий
наш компонент

HTML-содержимое
компонента

Слушатели событий
нажатия кнопки

Обработчик нажатия кнопки «Вперед»

71Создание (полезного) первого компонента

 /**

 * обработчик, когда пользователь нажимает кнопку «Вперед»
 * @param event

 */

 onForwardButtonClick(event) {
 this._photoIndex ++;

 if (this._photoIndex >= this._photos.length) {

 this._photoIndex = 0;

 }

 this.showPhoto();

 }

 showPhoto() {

 this.querySelector('.image-container').style.backgroundImage

 = 'url(' + this._photos[this._photoIndex] + ')';

 }

 }

 if (!customElements.get(

 ➥'wcia-photo-carousel')) {

 customElements.define('wcia-photo-carousel', PhotoCarousel);
 }

 </script>

 <style>

 wcia-photo-carousel {

 position: relative;

 width: 500px;

 height: 300px;

 display: flex;

 padding-top: 10px;

 flex-direction: column;

 border-color: black;

 border-width: 1px;

 border-style: solid;

 }

 wcia-photo-carousel h2, h4 {
 margin-bottom: 0;

 margin-top: 0;

 margin-left: 10px;

 }

 wcia-photo-carousel .image-container {

 margin-top: 15px;

 flex: 1;

 background-color: black;

 background-size: contain;

 background-repeat: no-repeat;

 background-position: 50%;

 }

 wcia-photo-carousel button {

 cursor: pointer;

Обработчик нажатия кнопки «Вперед»

Показывает текущую фотографию,
установив фоновое изображение
элемента контейнера

Назначает класс
компонента тегу

Стилизация компонентов с помощью стилей CSS

72 Глава 2 Ваш первый веб-компонент

 background: transparent;

 border: none;

 font-size: 48px;

 color: white;

 position: absolute;

 top: 50%;

 }

 wcia-photo-carousel button.back {

 left: 10px;

 }

 wcia-photo-carousel button.forward {

 right: 10px;

 }

 </style>

</head>

 <body>

 <wcia-photo-carousel

 title="Future Vacation Photos"

 author="Ben Farrell"

 photos="images/fBmIASF.jpg,images/3zxD6rz.jpg,images/
 nKBgeLOr.jpg,images/yVjJZ1Yr.jpg">
 </wcia-photo-carousel>

 </body>

</html>

Теперь мы обратимся к рис. 2.14, чтобы увидеть окончательный вид
нашего компонента.

Рис. 2.14 Готовый компонент фотокарусели

Фотокарусель
на нашей HTML-странице

73Примечания относительно поддержки в браузерах

2.6.9 Улучшение компонента
Несмотря на создание довольно полезного первого веб-компонента,
есть множество способов, с помощью которых его можно улучшить. Са-
мое главное – нам нужно упаковать нашу карусель как отдельный веб-
компонент. В ее нынешнем виде использование ее в более крупном
проекте вызвало бы путаницу с HTML, CSS и JS, встроенными прямо в ос-
новной HTML-код. В главе 5 мы подробно рассмотрим, как упаковать все
это в один модуль JS.

Во-вторых, было бы здорово сделать наш компонент настраиваемым.
Мы могли бы включать и выключать функции с помощью API или атри-
бутов в дополнение к нашему списку изображений. Мы рассмотрим их
в главе 3.

Наконец, есть гораздо лучшие способы организовать наш HTML-код
и таблицы стилей CSS, которые нужно включить в компонент, и даже за-
щитить их от непреднамеренного изменения стилей и DOM. Шаблонные
литералы и Shadow DOM будут рассмотрены позже.

2.7 Примечания относительно поддержки
в браузерах
В начале этой главы я упоминал, что мы исключаем некоторые браузе-
ры. Это происходит потому, что, хотя пользовательские элементы и под-
держиваются в Chrome, Firefox и Safari, разработка Edge по-прежнему
продолжается. Тем не менее вы можете использовать тестовую версию,
предназначенную для разработчика. Я надеюсь, что скоро мы увидим
финальную версию Edge.

Это просто-напросто оставляет IE без поддержки пользовательских
элементов. К счастью, у нас есть для этого полифилы! Один из таких по-
лифилов можно скачать здесь: https://unpkg.com/@webcomponents/cus-
tom-elements@1.2.4/custom-elements.min.js.

Кроме того, если у вас есть Node.js и вы можете использовать NPM,
воспользуйтесь этим:

npm install @webcomponents/custom-elements

Какой бы метод вы ни выбрали, как только у вас появится полифил,
просто включите этот файл сценария в свою страницу:

<script src="path/to/custom-elements.min.js"></script>

В дополнение к спецификации пользовательских элементов IE не под-
держивает более новые функции языка JS, такие как классы. Не волнуй-
тесь, все это легко решаемо, но мы не будем вдаваться в подробности,
пока не поговорим о процессах сборки. Если быть точным, я покажу вам
способ перенести ваши версии ES2015/ES6 JS в ES5 JS, чтобы обеспечить
поддержку в старых браузерах, или только в тех браузерах, которые еще
не поддерживают их.

74 Глава 2 Ваш первый веб-компонент

Использование Custom Elements v1
В этой главе и на протяжении всей книги мы будем использовать специфика-
цию Custom Elements v1. Не волнуйтесь, это самая последняя и лучшая вер-
сия, и я сомневаюсь, что ее основы изменятся в ближайшие годы. Я упоминаю
об этом, потому что версия 1 вышла довольно недавно, и поиск информации
о веб-компонентах может сказать вам, что для создания пользовательского
элемента следует использовать это:

document.registerElement('my-custom-tag', MyCustomTag);

Просто знайте, что в целом веб-ком по нен ты претерпели недавние измене-
ния и теперь в спецификации v1 они более устойчивы. Подробнее об этом
и, в частности, о том, что изменилось,	см. главу 4, в которой подробно описы-
вается жизненный цикл компонента.

Резюме
Из этой главе вы узнали:

� как теги, которые мы используем каждый день в базовой веб-раз-
ра ботке, наследуют от HTMLElement (даже если мы этого никогда не
знали!);

� правила именования и использования вашего пользовательского
элемента на странице (которые необходимы), а также стандартные
правила (которым вы не обязаны следовать) для именования ваше-
го элемента с помощью пространства имен;

� «попробовали на вкус» API веб-ком по нен тов с помощью метода
connectedCallback;

� как добавлять или настраивать HTMLElement с использованием рас-
пространенной методики объектно-ориентированного програм-
мирования, называемой наследованием, и создавать примеры, ис-
пользующие наш новый пользовательский элемент.

3
Делаем так, чтобы ваш
компонент можно было
использовать повторно

Эта глава охватывает следующие темы:
� использование методов получения и установки для работы с дан-

ными в вашем компоненте;
� применение метода attributeChangedCallback для прослушивания

изменений в атрибуте;
� как определить, какие атрибуты прослушивать на предмет нали-

чия изменений, используя метод observedAttributes;
� работа с атрибутами с использованием методов hasAttribute(),
getAttribute() и setAttribute().

В предыдущей главе мы подробно рассказали о простых способах соз-
дания вашего первого веб-компонента. В частности, мы рассмотрели
создание вашего собственного пользовательского элемента и назначе-
ние ему некой минимальной пользовательской логики, чтобы ваш ком-
понент работал определенным образом. Но что, если вы хотите, чтобы

76 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

ваш компонент работал по-разному в зависимости от того, какие пара-
метры вы используете для его настройки? Что, если вы хотите, чтобы
ваш компонент был адаптируемым? Обычно целью любой платформы,
языка или фреймворка является создание повторно используемого кода,
который можно просто настроить в соответствии с самым широким диа-
пазоном вариантов использования.

Конечно, когда мы говорим, что хотим создавать повторно использу-
емые и настраиваемые веб-ком по нен ты, – это одно. Это почти бессмыс-
ленно, пока речь не будет идти о конкретном примере!

3.1 Реальный компонент
Один из моих недавних интересов – 3D для интернета. Меня особенно
интересует, как виртуальная и дополненная реальность попадает в брау-
зеры. Углубляться в изучение WebGL и Three.js или Babylon – это немного
чересчур (и не по теме), но мы можем сделать что-нибудь простое, чтобы
продемонстрировать возможности повторно используемых и настраи-
ваемых компонентов.

3.1.1 Пример использования поиска в 3D
У 3D есть небольшая проблема с контентом. Мне нравится эксперимен-
тировать с решениями 3D для интернета, но я определенно не эксперт
в создании 3D-моделей с использованием сложного программного обес-
печения для 3D. В последнее время моя любимая вещь в виртуальной
реальности – это стремительный рост инструментов для 3D-рисования
и моделирования. Примечательно, что компания Google делает отлич-
ные вещи с помощью Blocks и TiltBrush, своих инструментов виртуаль-
ной реальности для моделирования и рисования в 3D. Более того, Google
создала площадку, где авторы могут публиковать свои работы, под на-
званием Poly.

Перейдя на сайт poly.google.com, вы можете просматривать и искать
3D-модели, выбирать любимые модели для использования их в своем
приложении (многие из них можно свободно использовать и изменять).
Что прекрасно подходит для наших целей, так это то, что у Poly есть API
на базе REST, к которому мы можем подключиться и использовать для
создания собственного веб-компонента трехмерного поиска! Опять же,
подробно говорить только о 3D – это чересчур, особенно для книги по
веб-компонентам, но все результаты, которые мы получаем, – это ми-
ниа тюры изображений, поэтому нам не нужно усложнять процесс поис-
ка и просмотра.

Как и во многих сервисах, таких как Poly, для доступа необходимо по-
лучить API-ключ. Если вы не хотите этого делать, вы по-прежнему може-
те изучать данный пример, потому что я предоставлю файл в формате
JSON, который можно использовать вместо этого ключа, и вы можете за-
пустить пример на собственном сервере.

Обо всем по порядку. Перейдите на страницу https://developers.google.
com/poly/develop/web и следуйте инструкциям, чтобы получить ключ

77Реальный компонент

API. Как только он у вас будет, поместите его в безопасное место, чтобы
воспользоваться им позже.

3.1.2 Начнем с HTTP-запроса
Давайте теперь протестируем этот сервис и создадим HTTP-запрос
в приведенном ниже листинге (в котором мы ищем попугая).

Листинг 3.1 Создание HTTP-запроса к сервису Poly

const url =

 'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=
 <your_api_key>';

const request = new XMLHttpRequest();
request.open('GET', url, true);
request.addEventListener('load', (event) => {
 console.log(JSON.parse(
 event.target.response

));

});

request.send();

При выполнении этого кода вы должны увидеть все результаты, ко-
торые возвращаются прямо в консоли инструментов разработчика. Он
также будет красиво отформатирован, учитывая, что мы преобразовали
необработанный текст ответа обратно в формат JSON, как и предполага-
лось: JSON.parse(event.target.response).

Когда мы посмотрим на вывод console.log, то увидим объект JSON, воз-
вращенный сервисом. Конечно, со временем эти результаты изменят-
ся, но тем не менее я вижу большое количество попугаев в результатах
поиска! Это именно то, что мы указали в поиске по ключевому слову.
Если мы расширим объект assets и посмотрим на возвращаемый мас-
сив 3D-моделей на рис. 3.1, то увидим, что у каждого ресурса есть объект
миниатюры, который можно развернуть, чтобы посмотреть URL-адрес
миниатюры. Этот URL-адрес – то, что мы и ищем!

Конечно, есть множество других данных, которые вы могли бы ис-
пользовать, особенно если вы открыли массив «formats» для отображе-
ния фактических ссылок на 3D-объекты. Для наших целей мы просто
будем использовать и отображать эти миниатюры.

3.1.3 Обертываем свою работу в пользовательский компонент
Давайте обернем HTTP-запрос, который мы только что сделали, в новый
веб-компонент, который позволяет нам искать 3D-модели по ключевым
словам и отображать результаты. Хотя усложнять не стоит. Нет необхо-
димости перегружать каждый веб-компонент, чтобы делать слишком
много, – мне нравится думать, что мы можем вести себя чрезвычай-
но детально с каждым компонентом, а для более крупных фрагментов
функциональных возможностей мы можем объединить два или более
компонентов. Вот почему мы не собираемся использовать ключевое сло-

API для поиска в Poly
(вставьте свой собственный
API-ключ)

Создаем новый HTTP-запрос
Обратный вызов, где мы регистрируем ответ API

78 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

во / поисковый ввод вне компонента. Наш веб-ком по нент будет отобра-
жать результаты поиска только на основе данных, которые мы передаем
из ввода.

Рис. 3.1 HTTP-ответ от Poly с 3D-моделями и детальной информацией о них

Чтобы превратить наш фрагмент кода HTTP-запроса в веб-компонент,
можно использовать то, что мы уже узнали о пользовательских элемен-
тах и методе connectedCallback из API веб-ком по нен тов.

Листинг 3.2 Создание веб-компонента из нашего HTTP-запроса

<html>

<head>

 <meta charset="UTF-8">

 <title>Google Poly Search</title>

 <script>

 class PolySearch extends HTMLElement {

 connectedCallback() {
 this.doSearch();

 }

 doSearch() {

 const url =

 'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=
 <your_api_key>';

Вызывает функцию поиска,
когда добавляется компонент

79Реальный компонент

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 console.log(JSON.parse(event.target.response));
 });

 request.send();

 }

 }

 customElements.define(

'poly-search', PolySearch);
 </script>

</head>

<body>

<poly-search></poly-search>

</body>

</html>

Надеюсь, в этом листинге нет ничего из ряда вон выходящего. Я вы-
делил фактический HTTP-запрос в метод doSearch(). Сейчас я вызываю
его для метода connectedCallback, когда компонент добавляется в DOM.
Поскольку у меня нет большого проекта, включающего множество ком-
понентов в этом примере, я выбрал простое имя элемента, отражаю-
щее задачу, которую я выполняю: poly-search. Если бы я делал несколько
компонентов для большого приложения, возможно, я бы назвал его как-
нибудь вроде <myappname-poly-search>.

Вы, возможно, заметили, что сейчас наш компонент ищет только по-
пугаев. Согласен, это не особо полезно. Однако сначала давайте покажем
наши результаты. На рис. 3.2 показан наш компонент, обращающийся
к API Google Poly и возвращающий список ресурсов, который затем ото-
бражает наш компонент.

Компонент poly-search

doSearch()

Ключ API,
поисковый запрос

Cписок 3D-моделей

API сервиса Poly

Рис. 3.2 Наш пользовательский веб-ком по нент poly-search обращается
к API Google Poly, используя API-ключ и поисковый запрос «parrot» (попугай).
После чего мы возвращаемся к списку 3D-моделей и миниатюр

HTTP-запрос из последнего примера

Определяет наш компонент Poly search

Использует элемент Poly search на странице

80 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

3.1.4 Отображение результатов поиска
Мы можем начать с замены console.log(JSON.parse(event.target.respon se));,
вызвав другой метод, который принимает все запрашиваемые нами
3D-модели:

this.renderResults(JSON.parse(event.target.response).assets);

Затем, внутри нашего класса, мы добавим этот метод рендеринга для
отображения всех миниатюр на нашей странице, как показано в приве-
денном ниже листинге.

Листинг 3.3 Отображение результатов HTTP-запроса
в нашем компоненте

renderResults(assets) {
 let html = '';

 for (let c = 0; c < assets.length; c++) {

 html += '<img src="' + assets[c].thumbnail.url + '" width="200"

 height="150" />';

 }

 this.innerHTML = html;

}

Все, что мы здесь делаем, – это перебираем наш массив ресурсов, захва-
тываем URL-адреса миниатюр, превращаем его в источник элемента изо-
бражения и добавляем его в длинную строку HTML. Когда мы закончим, то
добавим эту длинную HTML-строку в innerHTML нашего компонента.

Конечно, есть и другие способы сделать это, чтобы не создавать строк.
Мы могли бы создавать новый элемент изображения с каждым циклом.

Листинг 3.4 Альтернативный способ отображения результатов

renderResults(assets) {
 for (let c = 0; c < assets.length; c++) {

 const img = document.createElement('img');

 img.src = assets[c].thumbnail.url;

 this.appendChild(img);
 }

}

В таких случаях мне лично больше нравится строковый подход. Вы мо-
жете создать большой кусок HTML-кода и одновременно заставить его
обращаться к DOM, вместо того чтобы иметь по одному элементу на ите-
рацию. Кроме того, HTML-код немного легче для чтения, особенно когда
мы позже займемся шаблонными литералами. Большим недостатком
создания каждого элемента по одному в цикле является то, что с каж-
дым из них вы заставляете браузер повторно парсить и визуализировать
весь этот блок. То же самое произошло бы, если бы вы добавляли каждое
изобра жение по одному и каждый раз указывали бы значение для свой-

Список результатов передается
в нашу функцию рендеринга
Перебираем список результатов

Для каждого ресурса добавляем
миниатюру изображения

После того как строка HTML собрана,
добавляем все это в компонент

Перебираем наш список результатов
ресурсов таким же образом,
как и прежде

Создаем элемент изображения
каждый раз, вместо того чтобы
использовать строку HTMLДобавляем каждый элемент в DOM,

по одному за раз

81Реальный компонент

ства innerHTML. Вероятно, будет лучше придерживаться HTML-строки, ко-
торая формируется со временем, а затем установить все сразу в innerHTML.

3.1.5 Стилизация нашего компонента
Если вы запустите этот пример сейчас, то увидите несколько довольно
больших изображений, расположенных вертикально в списке, как пока-
зано на рис. 3.3. Это не то, что нам непременно нужно для визуально-
го отображения результатов, поэтому давайте уменьшим изображения
и поместим их в красивые обертывающие строки, используя стили, как
в приведенном ниже листинге.

Изображение

Изображение

Изображение
Рис. 3.3 Наши результаты, полученные с сайта
poly.google.com, до применения стилей.
Изображения просто идут потоком вниз по странице,
и мы вынуждены прокручивать ее, чтобы увидеть их все,
потому что они слишком большие

Листинг 3.5 Стили для нашего компонента poly-search

<style>

 poly-search {

 border-style: solid;

 border-width: 1px;

 border-color: #9a9a9a;
 padding: 10px;

 background-color: #fafafa;

 display: inline-block;

 text-align: center;

 }

 poly-search img {

 margin: 5px;

 }

</style>

Для этого листинга я просто поместил стили в наш тег <head>, как вы
обычно делаете при работе с CSS. Связывание стилей в рамках каждого

Устанавливает красивую тонкую рамку
вокруг всего нашего элемента

Разрыв между краями нашего элемента
и внутренними результатами,
которые мы отображаем

Цвет фона, который будет сочетаться
с рамкой, отделяющей элемент от страницы

Позволяет элементам располагаться
горизонтально и переходить на следующую
строку, когда они выходят за пределы
установленного пространства

Расстояние между изображениями

82 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

веб-компонента – это, безусловно, то, к чему мы придем позже, но сей-
час пока не будем ничего усложнять.

Хотя мы уже нацеливаемся на наш элемент poly-search с помощью CSS-
селектора, что совершенно допустимо! Когда вы создаете собственный
пользовательский элемент, в действительности вы создаете элемент, ко-
торый работает так же, как и любой другой элемент.

При запуске этого примера вы получите наиболее подходящее пред-
ставление относительно того, что делает этот стиль, но рис. 3.4 – это ви-
зуальное приближение к тому, чего мы достигли, с последующим объ-
яснением того, что мы сделали, используя стили.

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Изображение

Рис. 3.4 Наша красиво стилизованная и центрированная сетка изображений.
Изображения меньше по размеру, между ними правильное расстояние,
и они располагаются на едва заметном белом фоне с сероватым оттенком
в обрамлении серой рамки

Это наш стилизованный пример в полном варианте:

Листинг 3.6 Наш работающий веб-ком по нент со всеми стилями

<html>

<head>

 <meta charset="UTF-8">

 <title>Google Poly Search</title>

 <script>

 class PolySearch extends HTMLElement {

 connectedCallback() {
 this.doSearch();

 }

 doSearch() {

 const url =

 'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=

Определение веб-компонента

Вызов функции поиска

83Делаем наш компонент настраиваемым

 <your_api_key>';

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse
 (event.target.response).assets);

 });

 request.send();

 }

 renderResults(assets) {
 let html = '';

 for (let c = 0; c < assets.length; c++) {

 html += '<img src="' + assets[c].thumbnail.url +

 '" width="200" height="150" />';

 }

 this.innerHTML = html;

 }

 }

 customElements.define('poly-search', PolySearch);
 </script>

 <style>

 poly-search {

 border-style: solid;

 border-width: 1px;

 border-color: #9a9a9a;
 padding: 10px;

 background-color: #fafafa;

 display: inline-block;

 text-align: center;

 }

 poly-search img {

 margin: 5px;

 }

 </style>

</head>

<body>

<poly-search></poly-search>

</body>

</html>

Теперь мы разобрались с основами, и у нас есть нечто, что работает
визуально, но пока не очень полезно в качестве поискового компонента.

3.2 Делаем наш компонент настраиваемым
Давайте сейчас вернемся к нашей вопиющей проблеме и сути этой главы.
Этот компонент нельзя использовать повторно. Во-первых, даже если бы
я дал вам свой API-ключ, невозможно правильно установить его в ком-
поненте. Во-вторых, мы все время ищем «попугаев». Невозможно пере-

Визуализируем результаты

Стили компонента

Использует компонент на странице

84 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

дать этот поисковый запрос нашему компоненту, поэтому если кто-то из
вашей команды использовал бы созданный вами компонент, он должен
был бы зайти и напрямую изменить строку, содержащую URL-адрес:

const url =

 'https://poly.googleapis.com/v1/assets?keywords=parrot&format=OBJ&key=<y
 our_api_key>';

3.2.1 Создание API компонента
с помощью устанавливающих методов
Давайте начнем с того, что разобьем эту строку. Мы сделаем это двумя
различными способами, которые в конечном итоге будут дополнять друг
друга. Первый метод, который мы рассмотрим, – это создание методов
чтения (геттеров) и устанавливающих методов (сеттеров) API-ключа
и поискового запроса.

Можно добавить этот листинг в наш класс.

Листинг 3.7 Методы чтения и устанавливающие методы
настраиваемых параметров нашего компонента

set apiKey(value) {

 this._apiKey = value;

 this.doSearch();

}

set searchTerm(value) {

 this._searchTerm = value;

 this.doSearch();

}

Без соответствующего метода чтения JS выдаст ошибку, если мы по-
пытаемся прочитать или «получить» свойство. Тем не менее мы также
можем легко создать его:

get searchTerm() {

 return this._searchTerm;

}

Пока, однако, геттеры на самом деле не нужны; нам просто нужно
вставить поисковый запрос и переменные API-ключа в наш компонент,
как показано на рис. 3.5.

Такое разбиение имеет смысл. Скорее всего, вам нужно будет настро-
ить API-ключ только один раз, но поскольку пользователь продолжает
искать разные вещи, поисковый запрос будет довольно часто обнов-
ляться.

3.2.2 Используя наш API извне
Имея код, приведенный в листинге 3.7, когда мы установим это свой-
ство извне, будет запущена функция. В связи с этим, если бы вы не знали
код этого класса, вы бы подумали, что работаете с простой переменной,

Сеттер для API-ключа

Сеттер для поискового запроса

85Делаем наш компонент настраиваемым

благодаря нашим устанавливающим методам. Вы также могли заметить,
что я использую символ нижнего подчеркивания (_) в именах своих пе-
ременных. Это не означает ничего особенного, но поскольку в JavaScript
нет понятия «закрытых» переменных (кроме потрясающей новой функ-
ции полей класса в последней версии Chrome) или переменных, к кото-
рым у вас нет доступа вне вашего класса, я использую нижнее подчер-
кивание, чтобы указать на то, что мы не планируем осуществлять доступ
к этим переменным извне. Использование нижнего подчеркивания для
кого-то может быть предметом спора и рассматривается как устаревшая
практика. Если вы хотите глубже изучить эту концепцию, обратитесь
к приложению. Независимо от этого в данном случае _searchTerm – наша
внутренняя переменная, которую мы используем, а searchTerm – устанав-
ливающий метод этой переменной.

Компонент poly-search

Устанавливаем
внутреннее значение

и используем
функцию

поиска doSearch()

Set apiKey

set searchTerm

Веб-страница
или приложение

Рис. 3.5 Использование сеттеров для нашего компонента извне
позволяет нам выполнять логику и задавать значение, при этом API-интерфейс
компонента будет оставаться простым

Используя сеттер, мы не просто устанавливаем свойство searchTerm.
Когда вы устанавливаете его вне нашего класса компонентов, это то, как
он выглядит для пользователя API нашего компонента. Используя уста-
навливающий метод, мы вводим некую логику, чтобы установить это
внутреннее свойство и запустить наш метод doSearch() для выполнения
HTTP-запроса.

Теперь, если вы хотите написать какой-то код JS в теге скрипта вне
класса компонента, можно написать следующее, чтобы сначала выбрать
компонент, а затем установить каждое свойство (конечно, только после
того как компонент будет правильно создан):

document.querySelector('poly-search').apiKey = '<your_api_key>';

document.querySelector('poly-search').searchTerm = 'parrot';

Безусловно, если бы мы запустили поиск без API-ключа или поисково-
го запроса, то потерпели бы неудачу, поэтому в приведенном ниже лис-
тинге мы можем обернуть наш метод поиска в оператор if, чтобы убе-
диться, что обе переменные присутствуют, перед тем как начать поиск.

86 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

Листинг 3.8 Оборачивание метода поиска с использованием оператора if

doSearch() {

 if (this._apiKey && this._searchTerm) {

 const url = 'https://poly.googleapis.com/v1/assets?keywords=' +

 this._searchTerm + '&format=OBJ&key=' + this._apiKey;
 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });

 request.send();

 }

}

Предоставление нашим компонентам API-интерфейса, подобного это-
му, – неплохое упражнение, но для этого конкретного случая использова-
ния существует другой метод передачи данных: атрибуты. Мы постоянно
применяем атрибуты в веб-разработке. Фактически атрибут src для уста-
новки URL-адреса миниатюр в каждом изображении является лишь од-
ним из примеров. Даже обычная установка стилей элемента с помощью
слова class или ссылки href для тега ссылки является примером атрибута.

3.3 Использование атрибутов
для конфигурирования
Использование атрибутов в веб-компонентах настолько очевидно, что
вы можете игнорировать их в пользу подхода, при котором используют-
ся методы чтения и устанавливающие методы. Мы так часто используем
атрибуты, что, возможно, и не думаем о них как о чем-то, что можно
применять для внутренней работы вашего веб-компонента.

3.3.1 Аргумент против API компонента
При использовании подхода с методами чтения и устанавливающи-
ми методами возникает некоторая сложность, которая на самом деле
не нужна. С одной стороны, оборачивание метода поиска с помощью
конструкции if/then, для того чтобы проверить, установлены ли apiKey
и searchTerm –, – хорошая практика, когда разработчик забывает устано-
вить то одно, то другое, но было бы хорошо, если бы оба свойства были
доступны сразу, когда компонент используется по назначению.

Еще одна неприятность заключается в применении JS для установки
этих свойств. Если бы эти свойства были атрибутами в теге HTML, нам не
пришлось бы устанавливать apiKey и search-Term в двух отдельных стро-
ках. В более сложных приложениях может быть трудно отследить, где вы
установили их в коде. Кроме того, могут возникнуть проблемы с син-
хронизацией с вашим компонентом. Возможно, ваш компонент еще не
создан должным образом, когда вы вызываете эти сеттеры. Если такое
произойдет, ваши значения, возможно, будут просто потеряны!

Проверяем наличие API-ключа
и поискового запроса

87Использование атрибутов для конфигурирования

Определенно, это решаемые проблемы, но сейчас давайте сосредото-
чимся на атрибутах.

3.3.2 Реализация атрибутов
Давайте немного изменим ситуацию. Во-первых, избавимся от наших
сеттеров и кода JS, необходимого для того, чтобы использовать их. Нам
они не нужны. Далее мы добавим наши атрибуты в тег пользовательско-
го элемента:

<poly-search apiKey="<your_api_key>"

 searchTerm="parrot">

</poly-search>

Теперь заменим кое-какой код JS, чтобы использовать атрибуты вмес-
то наших переменных. Давайте сохраним проверку с использованием
конструкции if/then в приведенном ниже листинге на случай, если поль-
зователь нашего компонента забудет использовать тот или иной атрибут.

Листинг 3.9 Использование атрибутов для настраиваемых параметров
в нашем методе поиска

doSearch() {

 if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {

 const url = 'https://poly.googleapis.com/v1/assets?keywords=' +

 this.getAttribute('searchTerm') + '&format=OBJ&key=' +
 this.getAttribute('apiKey');

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });

 request.send();

 }

}

Наконец, поскольку атрибуты становятся доступны сразу после соз-
дания элемента, мы можем сразу же выполнить начальный поиск, когда
наш компонент добавлен в DOM, используя метод connected-Callback:

connectedCallback() {
 this.doSearch();

}

Для краткости я опускаю стили, когда мы рассматриваем текущее со-
стояние нашего компонента в следующем листинге.

Листинг 3.10 Наш полный (за исключением стилей) пример компонента
с использованием атрибутов

<html>

<head>

 <title>Google Poly Search</title>

Используем атрибуты вместо свойств
для параметров конфигурации

88 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

 <script>

 class PolySearch extends HTMLElement {

 connectedCallback() {
 this.doSearch();

 }

 doSearch() {

 if (this.getAttribute('apiKey') &&

 this.getAttribute('searchTerm')) {

 const url =

 'https://poly.googleapis.com/v1/assets?keywords=' +

 this.getAttribute('searchTerm') + '&format=OBJ&key=' +
 this.getAttribute('apiKey');

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(
 JSON.parse(event.target.response).assets);
 });

 request.send();

 }

 }

 renderResults(assets) {
 let html = '';

 for (let c = 0; c < assets.length; c++) {

 html += '<img src="' + assets[c].thumbnail.url +

 '" width="200" height="150" />';

 }

 this.innerHTML = html;

 }

 }

 customElements.define('poly-search', PolySearch);
 </script>

</head>

<body>

<poly-search apiKey="<your_api_key>"

searchTerm="parrot">

</poly-search>

</body>

</html>

Теперь компонент выглядит довольно работоспособным, но того, что
мы сделали, пока еще недостаточно. Этот поисковый запрос, вероятно,
будет часто меняться; нам нужно будет отслеживать изменения.

3.3.3 Чувствительность к регистру символов
Обратите внимание, что хотя я использовал прописную букву «K» в apiKey
и прописную букву «T» в search-Term, сами атрибуты не чувствительны
к регистру. Мы могли бы полностью переписать наш тег, как показано

После добавления компонента
запускается функция поиска

Если заданы поисковый
запрос и API-ключ,
добавляем их в конечную
точку поиска

Отправка HTTP-запроса

Добавляем элемент
изображения в HTML-строку
для каждого ресурса

Устанавливаем значение в виде
сгенерированной строки

Объявляем компонент на странице
с API-ключом и поисковым запросом

89Прослушивание изменений в атрибутах

ниже, и это не повлияло бы на вещи вообще (хотя есть веская причина
сохранить все в нижнем регистре, о чем мы поговорим чуть позже):

<poly-search apikey="<your_api_key>"

 searchterm="parrot">

</poly-search>

3.4 Прослушивание изменений в атрибутах
Однако есть еще одна проблема, связанная с нашим вариантом ис-
пользования. Это правда, что наш API-ключ, скорее всего, никогда не
изменится в нашем веб-приложении, но нам нужно, чтобы пользовате-
ли вводили текст и что-то искали. Прежде чем приступить к решению
этой проблемы, давайте создадим типичный текстовый ввод, который
позволяет пользователю вводить поисковый запрос. Данный аспект на-
ходится за пределами нашего веб-компонента, поэтому это не урок по
веб-компонентам как таковым, а просто нечто, что поможет нам про-
демонстрировать и решить нашу проблему с атрибутами.

3.4.1 Добавление поля ввода текста
Учитывая это, давайте изменим содержимое нашего тега <body>.

Листинг 3.11 Поле для ввода текста для нашего компонента

<body>

 <label>Enter search term: </label>

 <input type="text" onchange="updatePolySearch(event)" />

 <script>

 function updatePolySearch(event) {

 document.querySelector('poly-search').setAttribute('searchterm',
 event.target.value);

 }

 </script>

 <poly-search apikey="<your_api_key>" searchterm="parrot">

Сейчас мы добавили поле для ввода текста со слушателем событий on-
change. Перед этим у нас идет тег <label>, просто чтобы объяснить в нашем
пользовательском интерфейсе, что фактически делает это поле. Обычно
я не использую в теге встроенный код JS, подобный этому, но для такой
простой демонстрации проще показать это таким образом. Событие on-
change происходит только тогда, когда пользователь «отправляет» текст,
то есть когда он нажимает клавишу Enter.

Функция, которую оно вызывает, updatePolySearch, захватывает отправ-
ляемое событие, которое включает в себя цель или какой элемент отпра-
вил событие. Мы можем запросить event.target.value, чтобы получить
новый поисковый запрос, введенный пользователем. Оттуда можем
установить атрибут searchterm нашего веб-компонента.

90 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

Не стесняйтесь опробовать это прямо сейчас! Если вы откроете ин-
струменты разработки в своем браузере, чтобы увидеть, как выглядят
элементы на странице, то увидите, что наш атрибут <poly-search> search-
term меняется в реальном времени после того, как мы изменили наше
поле для текстового ввода.

К сожалению, простое обновление атрибута не приводит к повторно-
му запуску поиска и обновлению наших результатов. Мы должны сделать
это сами, что приводит нас ко второму методу жизненного цикла веб-
компонента: attributeChangedCallback. Нашим первым методом жизнен-
ного цикла был connectCallback, но теперь мы готовы пойти дальше.

3.4.2 Метод attributeChangedCallback
Метод attributeChangedCallback похож на любой другой метод жизненного
цикла веб-компонента. Вы просто добавляете метод в свой класс, чтобы
переопределить пустой метод HTMLElement, и он будет запущен при изме-
нении атрибута.

Этот метод принимает три параметра: имя атрибута, который изме-
нился, старое значение атрибута и его новое значение:

attributeChangedCallback(attrName, oldVal, newVal)

Давайте интегрируем это в наш веб-ком по нент и посмотрим, что про-
изойдет. Здесь я буду немного зловредным, но предупреждаю вас зара-
нее. Мы интегрируем этот метод, но он не сработает из-за одной недо-
стающей детали, которую я объясню позже.

Первое, что нужно сделать, – это избавиться от метода connectedCallback
в нашем классе. Мы делаем это потому, что в нашем конкретном случае
наш метод connectedCallback инициирует поиск. Тем не менее теперь метод
attributeChangedCallback фактически также будет делать это. Говоря техни-
чески, наш атрибут действительно меняется, превращаясь в нечто, когда
запускается наш компонент, поэтому запускается attributeChangedCallback.
Кроме того, у нас нет никакой логики, чтобы отменить наш HTTP-запрос
перед его повторным запуском в нашем компоненте – для простоты и от-
сутствия ошибок, когда обе эти функции обратного вызова срабатывают
практически одновременно, давайте просто избавимся от connectedCallback.

Далее добавим наш метод attributeChangedCallback.

Листинг 3.12 Метод attributeChangedCallback, используемый
для прослушивания изменений в searchterm

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {

 this.doSearch();

 }

}

Здесь обратный вызов действительно выглядит просто. Если изменяе-
мое имя атрибута – searchterm, снова запустите поиск. Этот аспект чув-
ствителен к регистру. Имя будет всегда в нижнем регистре. Это может

91Прослушивание изменений в атрибутах

немного сбивать с толку, если вы пишете свой атрибут в HTML в стиле
camel case («верблюжий регистр»), а затем будете писать здесь имя та-
ким же образом. Во избежание путаницы лучше всегда писать атрибуты
в нижнем регистре.

Когда я писал эти строки, то случайным образом все усложнил, прежде
чем обнаружил это. Изначально я написал следующий код:

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm' && oldval !== newval) {

 this.doSearch();

 }

}

Я подумал, что мне нужно вызывать поиск, только если старое зна-
чение отличалось от нового. Нет смысла перезапускать поиск и тратить
сетевой запрос, если значение не меняется, верно? Что же, если значение
не изменилось, данный метод не нужно вызывать в первую очередь, по-
этому выполнять этот дополнительный шаг излишне.

Теперь, когда мы зафиксировали изменения атрибутов и приняли
меры, когда они меняются, все должно работать, верно? Еще нет! Тут
я упустил одну маленькую деталь, касающуюся того, как работает этот
метод. Прежде чем объясню, о чем идет речь, немного истории.

3.4.3 Атрибуты, за которыми ведется наблюдение
В начале этой главы я немного рассказал о том, как распространенные
атрибуты связаны со всем, что мы делаем в HTML. У каждого элемента
есть множество потенциальных атрибутов, которые он может использо-
вать и которые на самом деле что-то значат. Как минимум у элементов,
вероятно, всегда будет элемент class для стилей. И конечно же, мы можем
придумать любой атрибут, который захотим. Когда эти потенциальные
атрибуты повсюду, при вызове метода attributeChangedCallback каждый
раз, когда что-то меняется, если нас не волнуют эти изменения, будет
тратиться много времени на выполнение кода.

В версии 0 API веб-ком по нен тов с методом attributeChangedCallback
происходило именно это: он вызывался каждый раз, когда менялось
что-то общее, как, например, атрибут class. Первые пользователи веб-
ком по нен тов считали это несколько раздражающим и нерациональным.
Поэтому теперь, в версии 1 этого API, мы должны указать нашему компо-
ненту, что конкретно нужно слушать.

Листинг 3.13 Сообщаем нашему компоненту,
за изменениями каких атрибутов следует наблюдать

static get observedAttributes() {

 return ['searchterm'];

}

Если вы незнакомы с ключевым словом static для метода класса, об-
ратитесь к приложению. Говоря кратко, это метод, который вызывается
для определения класса, а не для созданного экземпляра.

92 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

В этом статическом методе мы установили для нашего геттера observe-
dAttributes массив, содержащий searchterm. Если бы мы хотели, чтобы
наблю дение велось за бóльшим количеством атрибутов, можно было бы
просто добавить в массив больше элементов:

static get observedAttributes() {

 return ['searchterm', 'apikey', 'anotherthing', 'yetanotherthing'];
}

После добавления этого последнего фрагмента в наш пример в лис-
тинге 3.14 наш код должен заработать. Этот новый код, используемый
для наблюдения за нашим атрибутом searchTerm, изображен на рис. 3.6.
Теперь мы автоматически загружаем результаты с первым поисковым
запросом «попугай», но когда пользователь отправляет другие запросы,
результаты обновляются.

<poly search apiKey="xxxx" searchTerm="parrot">

observedAttributes

attributeChangedCallback

Имя атрибута
есть в этом

списке?

Да!

Рис. 3.6 Прежде чем метод
attributeChangedCallback
будет запущен внутри вашего
компонента в результате
изменения атрибута в разметке
вашего компонента, имя этого
атрибута должно быть в списке
observedAttributes

Листинг 3.14 Полный компонент с атрибутами

<html>

<head>

 <title>Google Poly Search</title>

 <script>

 class PolySearch extends HTMLElement {

 static get observedAttributes() {

 return ['searchterm'];

 }

 attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {

 this.doSearch();

 }

 }

 doSearch() {

 if (this.getAttribute('apiKey') &&

 this.getAttribute('searchTerm')) {

 const url =

 'https://poly.googleapis.com/v1/assets?keywords=' +

 this.getAttribute('searchTerm') + '&format=OBJ&key=' +

Класс компонента

Атрибут, находящийся под наблюдением

Когда атрибут, находящийся под наблюдением,
изменяется, запускается поисковый запрос

Поисковый запрос, который
использует API-ключ
и поисковый запрос...

93Прослушивание изменений в атрибутах

 this.getAttribute('apiKey');

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse
 (event.target.response).assets);

 });

 request.send();

 }

 }

 renderResults(assets) {
 let html = '';

 for (let c = 0; c < assets.length; c++) {

 html += '<img src="' + assets[c].thumbnail.url +

 '" width="200" height="150" />';

 }

 this.innerHTML = html;

 }

 }

 customElements.define(

 'poly-search', PolySearch);
 </script>

 <style>

 poly-search {

 border-style: solid;

 border-width: 1px;

 border-color: #9a9a9a;
 padding: 10px;

 background-color: #fafafa;

 display: inline-block;

 text-align: center;

 }

 poly-search img {

 margin: 5px;

 }

 input {

 font-size: 18px;

 }

 </style>

</head>

<body>

<label>Enter search term: </label><input type="text"

 onchange="updatePolySearch(event)" />

<script>

 function updatePolySearch(event) {

 document.querySelector('poly-search').setAttribute('searchTerm',
 event.target.value);

 }

Визуализирует все 3D-модели

Отображает имя тега в класс компонента

Стили компонента

Поле ввода, чтобы пользователь
мог ввести поисковый запрос

При изменении поля ввода устанавливает
атрибут searchTerm для нашего компонента

94 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

</script>

<poly-search apikey="<your_api_key>"

 searchterm="parrot">

</poly-search>

</body>

</html>

Благодаря этому мы позволили нашему компоненту реагировать на
изменения. Для нас не имеет смысла реагировать на изменения API-
ключа, потому что этот ключ, как правило, никогда не меняется. Поиско-
вый запрос будет постоянно меняться, поэтому нам определенно нужен
был способ отреагировать на это.

3.5 Делаем другие вещи
еще более настраиваемыми
Теперь давайте поэкспериментируем с настройками! Мы можем приме-
нить ряд стилей, например установить размер изображения и цвет фона
компонента.

3.5.1 Использование метода hasAttribute для проверки
существования атрибута
В листинге 3.15 я веду себя как ленивый разработчик. Я не ожидаю, что
размеры изображения или цвет фона нужно будет менять во время вы-
полнения – а только тогда, когда мы изначально пишем HTML-код. По-
этому я не слушаю изменения в атрибутах; вместо этого просто устанав-
ливаю эти свойства, когда компонент добавляется в DOM.

Листинг 3.15 Добавление атрибутов размера и цвета фона

connectedCallback() {
 if (this.hasAttribute('thumbheight')) {

 this._thumbheight = this.getAttribute('thumbheight');

 this._thumbwidth = (this.getAttribute('thumbheight') *

 1.3333 /*aspect ratio*/);

 } else {

 this._thumbheight = 150;

 this._thumbwidth = 200;

 }

 if (this.hasAttribute('backgroundcolor')) {

 this.style.backgroundColor = this.getAttribute('backgroundcolor');
 }

}

Я также не заставляю пользователя компонента иметь эти атрибуты.
Вместо этого проверяю, использовал ли разработчик атрибут в своей

Компонент, добавленный на страницу
с установленным API-ключом и начальным
поисковым запросом

Если установлен атрибут thumbheight,
он используется для определения размера
изображения и вычисления ширины

В противном случае используются значения
по умолчанию / жестко заданные значения

Если установлен атрибут
backgroundcolor, сразу же
настраивается стиль компонента

95Делаем другие вещи еще более настраиваемыми

разметке с помощью метода hasAttribute, и, если это так, задаю эти свой-
ства. Если нет, у нас есть альтернативные значения либо с использова-
нием JS для размера, либо с применением уже существующего стиля для
цвета фона.

Чтобы использовать свойства размера, я отредактировал метод ренде-
ринга изображений, как показано в этом листинге.

Листинг 3.16 Рендеринг наших миниатюр с настраиваемыми размерами

renderResults(assets) {
 let html = '';

 for (let c = 0; c < assets.length; c++) {

 html += '<img src="' + assets[c].thumbnail.url + '" width="' +

 this._thumbwidth + '" height="' +

 this._thumbheight + '"/>';

 }

 this.innerHTML = html;

}

Поскольку мы добавили настройку с применением стилей, у вас, веро-
ятно, разыгралось воображение! Конечно, мы могли бы настроить рам-
ки, интервалы и т. д. Есть еще одна вещь, которую мы настроим, а имен-
но конечная точка поиска.

3.5.2 Полная настройка URL-адреса HTTP-запроса
для разработки
Это также тот момент, когда я порадую читателей, которые не захотели
регистрироваться, чтобы получить API-ключ. В приведенном ниже лис-
тинге мы разобьем URL-адрес HTTP-запроса. Мы сделаем это, выделив
основу URL-адреса, а также формат 3D-объекта.

Листинг 3.17 Мы разбиваем наш URL-адрес HTTP-запроса,
чтобы сделать его еще более настраиваемым

doSearch() {

 if (this.getAttribute('apiKey') && this.getAttribute('searchTerm')) {

 const url = this.getAttribute('baseuri') +

'?keywords=' + this.getAttribute('searchTerm') + '&format=' +

this.getAttribute('format') + '&key=' + this.getAttribute('apiKey');

 const request = new XMLHttpRequest();
 request.open('GET', url, true);
 request.addEventListener('load', (event) => {
 this.renderResults(JSON.parse(event.target.response).assets);
 });

 request.send();

 }

}

С помощью приведенного ниже тега мы можем начать использовать
все наши параметры настройки.

Используем свойства height и width
для управления размером изображения

Добавляем базовый URI в качестве
настраиваемого параметра, чтобы

разрешить вызов другого сайта

96 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

Листинг 3.18 Добавляем атрибут baseuri в тег компонента

<poly-search apikey="<your_api_key>"

 format="OBJ"
 thumbheight="50"

 backgroundcolor="red"

 baseuri=

 "https://poly.googleapis.com/v1/assets"

 searchterm="parrot">

</poly-search>

Теперь мы можем настроить атрибут baseuri на что-то другое. Конеч-
но, у разных поисковых сервисов будут разные API и форматы резуль-
татов, но мы можем протестировать нашу настройку без Google, указав
путь к файлу в формате JSON, который мы размещаем:

baseuri="http://localhost:8080/assets.json"

Конечно, будут отличия, в зависимости от того, как вы настроили свой
сервер разработки (это может быть localhost либо что-то другое, а порт
8080 является общим, но он сильно отличается в зависимости от ваших
настроек).

3.5.3 Руководство по передовым методикам
Поскольку теперь мы рассмотрели методы чтения, устанавливающие
методы и атрибуты для работы с данными, встает вопрос: что из них сле-
дует использовать? На самом деле все зависит от вас, но существует ряд
новых передовых методик. Пока слишком рано принимать эти передо-
вые практики как обязательные к исполнению, но здесь есть несколько
хороших идей, особенно если вы собираетесь использовать свои компо-
ненты совместно с другими людьми. Один из ресурсов – это неполный
рабочий проект: https://github.com/webcomponents/goldstandard/wiki.
Google также опубликовала несколько передовых методик: https://devel-
opers.google.com/web/fundamentals/web-components/best-practices.

3.5.4 Избегайте использования атрибутов
для расширенных данных
В руководстве по веб-компонентам Google есть несколько рекомендаций
для атрибутов. Одна из таких рекомендаций – не использовать атрибуты
для расширенных данных, таких как массивы и объекты.

Допустим, например, что у вас очень сложное приложение, а для не-
которых ваших веб-ком по нен тов установка безумно сложна. Возможно,
у вас есть 50 или более свойств, которые можно использовать для кон-
фигурирования, или же ваши данные конфигурации должны быть пред-
ставлены в виде вложенной структуры:

{

 Tree: {

 Branches: [

Определяет конечную
точку поиска в атрибутах
компонента

97Делаем другие вещи еще более настраиваемыми

 { branch: {

 leaves: [

 { leaf: "leaf"},
 { leaf: "leaf"},
 { leaf: "leaf"},
]

 }

 }

]

 }}

В любом случае, выделение этих свойств для отдельных атрибутов
было бы обременительно или невозможно.

На самом деле можно преобразовать объект JSON в строку и вставить
ее в атрибут нашего тега:

<my-element data="{"Tree": {"Branches": [{"branch": {"leaves": [{"leaf":

 "leaf"},{"leaf": "leaf"},{ "leaf": "leaf"}]}}]}}
 " my-element>

Однако, вероятно, проще сделать это с помощью кода:

myElement.setAttribute('data', JSON.stringify(data));

Чтобы извлечь данные, вам нужно будет сериализовать эту строку
в JSON:

JSON.parse(this.getAttribute('data'));

Однако в конце, когда у вас в DOM появится эта массивная, пугающего
вида строка, ваши инструменты разработки станут намного сложнее для
чтения, создавая препятствия для понимания структуры DOM. В этом
случае, возможно, лучше использовать метод или сеттер, чтобы передать
свои данные в компонент и избежать использования атрибутов для рас-
ширенных данных.

3.5.5 Отражение свойств и атрибутов
Еще одна рекомендация, предложенная Google, – выполнить то, что
называется отражением ваших атрибутов и свойств. Отражение – это
практика использования геттеров и сеттеров, а также и атрибутов ва-
ших данных, при которой они всегда синхронизированы друг с другом.
Особенно при передаче вашего компонента другим разработчикам или
его совместного использования с другими людьми пользователи могут
ожидать согласованного API-компонента.

С атрибутами, как правило, легче работать при написании HTML-кода,
в то время как с помощью кода JS настройка свойств компонента более
краткая и простая в использовании. Другими словами, разработчики
JS предпочтут написать yourcomponent.property = 'something'; и, вероятно,
вряд ли напишут yourcomponent.setAttribute('property', 'something');. В то
же время тот, кто пишет HTML-код, предпочел бы просто установить
атрибут в разметке.

98 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

Если эти два метода не делают одно и то же или один из них поддержи-
вается, а другой нет, это может привести в замешательство пользователя
вашего компонента. Вот почему при установке свойства через JS соот-
ветствующий атрибут должен меняться в элементе, и наоборот. Когда
атрибут изменяется, получение свойства после этого должно отражать
новейшее значение.

Одна из ловушек, которую Google определила в своем руководстве, –
это использование метода attribute-ChangedCallback для обновления сет-
тера. Google называет это реентерабельностью; вот как это реализуется.

Листинг 3.19 Подводный камень для размышлений из руководства
по передовым методам работы с веб-ком по нен та ми Google

// Когда атрибут [checked] изменится, установите свойство checked для соответствия;
attributeChangedCallback(name, oldValue, newValue) {
 if (name === 'checked')

 this.checked = newValue;

}

set checked(value) {

 const isChecked = Boolean(value);
 if (isChecked)
 // Упс! Это приведет к запуску бесконечного цикла, потому что будет инициирован
 // метод attributeChangedCallback(), который затем снова устанавливает
 // это свойство.
 this.setAttribute('checked', '');
 else

 this.removeAttribute('checked');

}

В этом примере, который я взял непосредственно из документации
Google для разработчиков, возникает бесконечный цикл. Тут исполь-
зуется сеттер. Он устанавливает атрибут, но это приводит к запуску at-
tributeChangedCallback, который снова использует сеттер, который затем
изменяет атрибут… Вы уловили суть – это бесконечный цикл, и поток
можно увидеть на рис. 3.7.

Возможно, более подходящий способ – использовать атрибут в качестве
так называемого «источника истины». Я добавил отражение к свойству
searchTerm в нашем примере поиска по сайту Google Poly, с дополнитель-
ным геттером и сеттером, как показано в приведенном ниже листинге.

Листинг 3.20 Добавление геттера и сеттера в дополнение
к существующим атрибутам для отражения

static get observedAttributes() {

 return ['searchterm'];

}

get searchTerm() {

 return this.getAttribute('searchTerm');

}

set searchTerm(val) {

Когда атрибут изменяется,
вызывается сеттер

При вызове сеттера атрибут обновляется,
приводя к появлению бесконечного цикла

Геттер просто вернет доступ
и вернет атрибут

99Обновление компонента-ползунка

 this.setAttribute('searchTerm', val);
}

attributeChangedCallback(name, oldval, newval) {
 if (name === 'searchterm') {

 this.doSearch();

 }

}

Веб-компонент

Устанавливаем
внутреннее значение

и используем
функцию setAttribute

attributeChangedCallback:
настройка свойства
с помощью сеттера

Изменяем свойство,
используя сеттер

<poly search apiKey="xxxx" searchTerm="parrot">

Рис. 3.7 Реентерабельность – плохой способ для реализации отражения свойств
или атрибутов. Установка атрибута при использовании геттера приводит к запуску
attributeChangedCallback, который затем может установить это свойство снова,
продолжая бесконечный цикл

В этом примере наш метод получения просто возвращает текущий
атрибут, а наш устанавливающий метод устанавливает его. Конечно, су-
ществуют дополнительные способы достижения рефлексии, но важный
вывод заключается в том, что если вы хотите максимизировать опыт
разработчика в случае с вашим компонентом, сделайте так, чтобы ваши
атрибуты и свойства оставались согласованными и синхронизирован-
ными друг с другом!

3.6 Обновление компонента-ползунка
Теперь, когда мы понимаем, как работать с атрибутами, чтобы создать
повторно используемый компонент, и знаем, как использовать отра-
жение атрибутов в своих интересах, пришло время обновить компо-
нент-ползунок из предыдущей главы, чтобы сделать его интерактивным
и реа гирующим на атрибуты, которые мы ему предоставляем, или свой-
ства JS, которые мы для него устанавливаем. Сейчас наш класс компо-
нента довольно тонкий, особенно после того, как мы переместили все
стили в тег <style>. Все, что он делает, – это отображает HTML-код (два
тега <div>); в приведенном ниже листинге показан ползунок без длинно-
го списка стилей CSS.

Сеттер установит атрибут

При настройке запускается
attributeChangeCallback
и начинается поиск

100 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

Листинг 3.21 Компонент-ползунок (без стилей)

<html>

<head>

 <title>Slider</title>

 <script>

 class Slider extends HTMLElement {

 connectedCallback() {
 this.innerHTML = '<div class="bg-overlay"></div>

 <div class="thumb"></div>';

 }

 }

 if (!customElements.get('wcia-slider')) {

 customElements.define('wcia-slider', Slider);
 }

 </script>

 <style><!—- CSS was here --></style>
</head>

<body>

 <wcia-slider></wcia-slider>

</body>

</html>

Напомним, что мы временно использовали два свойства для управле-
ния некоторыми функциями компонента или, другими словами, его API.
Давайте оформим этот API и перечислим здесь эти свойства:

� value – текущее процентное значение ползунка от 0 до 100;
� backgroundcolor – шестнадцатеричный код цвета самого верхнего

фонового слоя.
Теперь, когда мы определили эти свойства, мы можем сделать две

вещи. Во-первых, прослушать эти атрибуты на предмет наличия изме-
нений. Мы будем добавлять все эти функции прямо в класс Slider.

Листинг 3.22 Прослушивание изменений в атрибутах

static get observedAttributes() {

 return ['value', 'backgroundcolor'];
}

attributeChangedCallback(name, oldVal, newValue) {
 switch (name) {

 case 'value':

 this.refreshSlider(newValue);

 break;

 case 'backgroundcolor':

 this.setColor(newValue);
 break;

 }

}

Прослушиваем изменения в атрибутах
value и backgroundcolor

Реагируем на изменения в значении
ползунка, если оно установлено
снаружи компонента

Реагируем на изменение цвета фона

101Обновление компонента-ползунка

Второе, что нужно сделать, – связать эти атрибуты с надлежащим JS
API, используя рефлексию, с которой мы только что познакомились. Ког-
да одно из этих свойств задается с помощью сеттера JS, атрибут обнов-
ляется в компоненте. Аналогично, когда атрибут установлен для тега, это
значение можно получить с помощью соответствующего геттера. В при-
веденном ниже листинге показана рефлексия в нашем компоненте для
двух этих атрибутов.

Листинг 3.23 Геттеры и сеттеры для свойств backgroundcolor и value

set value(val) {

 this.setAttribute('value', val);
}

get value() {

 return this.getAttribute('value');

}

set backgroundcolor(val) {

 this.setAttribute('backgroundcolor', val);
}

get backgroundcolor() {

 return this.getAttribute('backgroundcolor');

}

Помните, что при использовании рефлексии наши атрибуты являются
«источником истины», поэтому эти методы просто устанавливают или
получают атрибут напрямую.

Мы и вправду почти готовы продемонстрировать работу ползунка!
Возвращаясь к листингу 3.22, в котором содержится определение класса
компонента, вспомните о attributeChangedCallback. У нас есть два метода,
которые еще не существуют. При получении нового значения ползунка
мы видим это:

case 'value':

 this.refreshSlider(newValue);

 break;

Аналогично, при получении нового значения цвета фона у нас есть
это:

case 'backgroundcolor':

 this.setColor(newValue);
 break;

Чтобы мы могли начать видеть результаты нашей работы, нужно соз-
дать эти функции в классе компонентов.

Листинг 3.24 Функции для установки цвета фона и значения ползунка

setColor(color) {
 if (this.querySelector('.bg-overlay')) {

Устанавливает цвет фона (плавный переход от непрозрачного
сплошного цвета к тому самому прозрачному цвету)

102 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

 this.querySelector('.bg-overlay').style.background =

 `linear-gradient(to right, ${color} 0%, ${color}00 100%)`;
 }

}

refreshSlider(value) {

 if (this.querySelector('.thumb')) {

 this.querySelector('.thumb').style.left = (value/100 *

 this.offsetWidth – this.querySelector('.thumb').offsetWidth/2)

 + 'px';

 }

}

Обе функции, вероятно, нуждаются в небольшом объяснении, даже если
они совсем маленькие. Вначале проверяем, существует ли элемент DOM,
который мы меняем. У attributeChangedCallback есть некоторая проблема
с синхронизацией: он будет запускаться первым еще до connectedCallback,
если в самом начале есть атрибуты компонента. Таким образом, этих эле-
ментов DOM, возможно, еще не существует. Как только мы обновим дан-
ный компонент для использования Shadow DOM позже, данной проблемы
больше не будет. По этой же причине нам нужно добавить пару строк к con-
nectedCallback, чтобы убедиться, что работаем с начальными атрибутами:

this.setColor(this.backgroundcolor);
 this.refreshSlider(this.value);

Затем, при настройке цвета, получаемое нами значение цвета явля-
ется шестнадцатеричным (со знаком решетки вначале). Вначале, или на
позиции 0 %, мы можем использовать это значение цвета как обычно.
В нашем примере это красный цвет, или # ff0000. Второй узел градиента,
на позиции 100 %, должен быть того же цвета, но полностью прозрач-
ным. За исключением Edge, каждый современный браузер поддерживает
добавление двух дополнительных нулей «00» в конце для указания про-
зрачности, чтобы дополнить двузначные значения красного, зеленого
и синего цветов в более крупном шестнадцатеричном коде. Мы будем
беспокоиться об Edge позже!

Функция refreshSlider – это довольно простая математика. Мы рас-
считываем горизонтальное расположение рукоятки, взяв долю (процент,
деленный на 100) от общей ширины компонента. Небольшая хитрость
состоит в том, что на самом деле нам не нужен крайний левый край.
Расположение рукоятки ровно посередине должно указывать значение.
Чтобы отцентрировать ее, нам нужно отнять половину от ширины.

После этих последних обновлений, даже если у нас и нет интерактив-
ности, по крайней мере, наши атрибуты приводят к обновлению компо-
нента. Теперь мы можем загрузить HTML-файл и увидеть нечто похожее
на то, что изображено на рис. 3.8.

Круто то, что даже если у нас еще нет интерактивности, атрибуты в на-
шем примере можно изменить. Когда страница обновится, вы увидите
новый цвет и другое число в процентах. Как насчет синего фона на по-
зиции 70 %?

<wcia-slider backgroundcolor="#0000ff" value="70"></wcia-slider>

Устанавливает текущее местоположение
рукоятки ползунка на основе ее значения

103Обновление компонента-ползунка

Рис. 3.8. На данный момент компонент-ползунок выглядит так

Мы почти закончили! Следующий шаг – сделать так, чтобы рукоятку
можно было перетаскивать.

Давайте закончим наш компонент, добавив несколько слушателей
событий мыши к компонентам. Этих трех слушателей можно увидеть
в приведенном ниже листинге.

Листинг 3.25 Добавление трех слушателей событий для управления
перемещением мыши, когда кнопка мыши нажата
и когда она отпущена

connectedCallback() {
 this.innerHTML = '<div class="bg-overlay"></div><div

 class="thumb"></div>';

 document.addEventListener('mousemove',
 e => this.eventHandler(e));

 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
 this.refreshSlider(this.value);

 this.setColor(this.backgroundcolor);
}

Когда речь идет о событиях мыши, при которых кнопка мыши нажа-
та, в действительности нам важно только, когда пользователь кликает
на компонент. Даже когда он кликает за пределами рукоятки, должна
быть привязка к горизонтальному положению в ползунке. События,
при которых кнопка мыши отпущена, должны фиксироваться на всей
веб-стра нице. Если пользователь щелкает внутри компонента, но затем
мышь перетаскивается наружу, он по-прежнему должен иметь возмож-
ность отпустить кнопку мыши, отпуская рукоятку. Точно так же, когда
речь идет о перемещениях мыши, даже когда мышь перетаскивается за
пределы компонента, положение ползунка все равно должно обновиться
(как можно лучше в пределах границ ползунка).

Осталось только добавить код для нашего нового метода eventHandler.

Листинг 3.26 Функция для обработки событий и функция
для обновления процентного показателя ползунка

updateX(x) {

 let hPos =

 x – this.querySelector('.thumb') .offsetWidth/2;

 if (hPos > this.offsetWidth) {

 hPos = this.offsetWidth;

 }

Слушатели событий мыши, чтобы
активировать перетаскивание ползунка

Из-за проблем с синхронизацией
у attributeChangedCallback, когда он
запускается первым, обновляем ползунок
и раскрашиваем его

Смещает горизонтальное положение,
чтобы использовать центр рукоятки

Ограничивает горизонтальное положение
границами компонентов

104 Глава 3 Делаем так, чтобы ваш компонент можно было использовать повторно

 if (hPos < 0) {

 hPos = 0;

 }

 this.value = (hPos / this.offsetWidth) * 100;

}

eventHandler(e) {

 const bounds = this.getBoundingClientRect();
 const x = e.clientX – bounds.left;

 switch (e.type) {

 case 'mousedown':

 this.isDragging = true;

 this.updateX(x);

 this.refreshSlider(this.value);

 break;

 case 'mouseup':

 this.isDragging = false;

 break;

 case 'mousemove':

 if (this.isDragging) {

 this.updateX(x);

 this.refreshSlider(this.value);

 }

 break;

 }

}

Благодаря этому последнему дополнению наш компонент-ползунок
полностью функционален! Мы можем даже открыть инструменты раз-
работчика, как показано на рис. 3.9, чтобы наблюдать за изменениями
атрибута value при перетаскивании рукоятки.

Рис. 3.9 Использование компонента-ползунка и наблюдение за тем,
как обновляется атрибут value в инструментах разработчика

Вычисляет горизонтальное положение
в процентах и устанавливает атрибут

value через API сеттера

Вычисляет горизонтальное положение
относительно левого края компонента

Когда кнопка мыши нажата, устанавливает
логическое значение, указывающее на то,
что пользователь перетаскивает рукоятку,
обновляет атрибут «value» и положение
ползунка

Когда кнопка мыши отпущена, устанавливает
логическое значение false, чтобы указать, что
пользователь больше не перетаскивает рукоятку

При перемещении мыши, если
логическое значение указывает на
то, что пользователь перетаскивает
рукоятку, атрибут «value»
и положение ползунка обновляются

105Резюме

Однако наш компонент еще не готов! Им нельзя поделиться, если кто-
то еще в вашей команде захочет использовать его. Для этого потребует-
ся добавить в компонент соответствующие стили CSS (в виде реальных
стилей CSS, а не настройки в стиле JS, как это было в предыдущей главе)
и отделить эти визуальные проблемы от основного класса компонента.

Резюме
В этой главе мы расширили наш репертуар методов API пользователь-
ских элементов, используя методы connectedCallback и attributeChanged-
Callback. В следующей главе мы подробно рассмотрим остальную часть
жизненного цикла веб-компонента и сравним его с аналогичными жиз-
ненными циклами компонентов как в сети, так и за ее пределами. Также
из этой главы вы узнали:

� как использовать атрибуты для вызова конечной точки для службы
поиска, учитывая мысли о том, какие атрибуты нужно отслеживать,
а какие нет, в том числе о том, как на самом деле следить за атрибу-
тами на практике с помощью API веб-ком по нен тов;

� что такое отражение и как оно может сделать ваш компонент более
устойчивым, чтобы его можно было использовать с помощью тега,
а также через пользовательский API JS, и как избежать проблемы
реентерабельности;

� стратегии того, когда использовать атрибуты по сравнению с на-
страиваемым API, а когда использовать и то, и другое, чтобы обес-
печить более подходящий опыт разработчика для пользователей
вашего компонента.

4
Жизненный цикл

компонента

Эта глава охватывает следующие темы:
� использование метода connectedCallCallback для прослушивания,

когда ваш компонент добавляется в DOM;
� как узнать, когда и как использовать метод конструктора, особен-

но потому, что это происходит до того, как компонент получает
доступ к DOM;

� применение метода desconnectedCallback, чтобы прибрать за сво-
им компонентом;

� редко используемый метод adoptedCallback.

4.1 API веб-ком по нен тов
До сих пор мы исследовали несколько различных методов из API веб-
ком по нен тов, но на самом деле мы не говорили об API в целом. Эти
методы являются основными строительными блоками для построения
всего, от пользовательских компонентов до целых приложений. Поэтому
неплохо было бы рассмотреть их все подробно. В последней главе мы

107Обработчик connectedCallback

рассмотрели метод attributeChangedCallback и статический сеттер observe-
dAttributes. В этой главе мы рассмотрим все остальное так же детально.

Кроме того, мы должны учитывать, что теперь, когда веб-ком по нен ты
поставляются в браузерах, эта спецификация должна считаться постоян-
ной частью рабочего процесса веб-разработки на долгие годы. Учитывая
это, мы должны быть уверены, что веб-ком по нен ты могут использовать-
ся в различных ситуациях.

Наиболее очевидный сценарий использования веб-ком по нен тов
пересекается с теми сценариями, на которые ориентированы большие
фреймворки, такие как Angular, React и Vue. Вообще говоря, этот вари-
ант использования представляет собой ориентированное на данные веб-
при ложение, которое может взаимодействовать с API на базе REST. На
другой стороне спектра, когда мы видим более интенсивное использова-
ние графики для сети, например игры, 3D, видео и т. д., мы должны знать,
что API веб-ком по нен тов может справиться и с ними.

Чтобы иметь такую уверенность, я хочу подробно рассмотреть весь
API, а также сравнить его с парой различных жизненных циклов компо-
нентов. В случае с более традиционными веб-приложениями мы можем
рассмотреть типичный жизненный цикл компонента React. Что касается
более интенсивных графических приложений, можно взглянуть на жиз-
ненный цикл компонента чрезвычайно успешного (не сетевого) игрово-
го движка с поддержкой 3D под названием Unity.

4.2 Обработчик connectedCallback
Ранее мы использовали метод connectedCallback в примерах из последних
двух глав. Давайте вернемся к нему. На этот раз, однако, добавим опо-
вещение в общий компонент, которое будет точно предупреждать нас,
когда наш компонент запускается.

Листинг 4.1 Проверка, когда вызывается наш метод connectedCallback

<script>

 class MyCustomTag extends HTMLElement {
 connectedCallback() {
 alert('hi from MyCustomTag');
 this.innerHTML = '<h2>'+ this.getAttribute('title') +

 '</h2><button>click me</button>';

 }

 }

 if (!customElements.get('my-custom-tag')) {

 customElements.define('my-custom-tag', MyCustomTag);
 }

</script>

<style>

 my-custom-tag {

 background-color: blue;

 padding: 20px;

Оповещение, добавленное
в connectedCallback
из предыдущего примера

108 Глава 4 Жизненный цикл компонента

 display: inline-block;

 color: white;

 }

</style>

<body>

<my-custom-tag title="Another title"></my-custom-tag>

</body>

Конечно, то, что мы должны увидеть при запуске этого кода в нашем
браузере, даже еще более простое по сравнению с тем, что мы видели
в последних двух главах: простой, уродливый веб-ком по нент с заголов-
ком и кнопкой с надписью «щелкни по мне». После добавления опове-
щения вы также сразу увидите модальное окно с надписью «Привет от
MyCustomTag».

Теперь вопрос, основанный на ограниченном количестве кода, кото-
рый у нас есть, заключается в том, когда вызывается метод connectedCall-
back. Подсказка кроется в названии этого метода, но давайте исследуем
его, удалив <my-custom-tag title="Another title"></my-custom-tag> из тела на-
шей страницы.

Теперь у нас полностью пустая страница, но мы по-прежнему делаем
что-то на ней. Наш блок со скриптами все еще работает, поэтому мы все
еще регистрируем этот пользовательский компонент в качестве того, что
мы могли бы использовать. Просто пока мы не размещаем его на стра-
нице.

Учитывая это и удалив наш элемент из тела, давайте обновим стра-
ницу: нет элемента, и нет оповещения. Воспользуемся конструктором
нашего компонента, чтобы взглянуть на это немного подробнее. Если вы
помните, в главе 2 мы определили конструктор как функцию, которая
запускается при создании экземпляра класса.

Обратите внимание, что поскольку мы используем конструктор
в унаследованном классе, то должны вызвать super(); в качестве первой
строки. При этом также вызывается конструктор HTMLElement. Обычно
при вызове унаследованного метода можно вызывать super.myInherited-
Method() в любой строке, но здесь, в конструкторе, это просто super(); на
первой строке в конструкторе.

Листинг 4.2 Оповещение из нашего конструктора
и нашего метода connectedCallback

<script>

 class MyCustomTag extends HTMLElement {
 constructor() {

 super();

 alert('hi from MyCustomTags
 ➥ constructor');

 }

 connectedCallback() {
 alert('hi from MyCustomTag
 ➥connected callback');

Оповещение, добавленное в конструктор

Оповещение, остающееся в connectedCallback
для сравнения синхронизации

109Обработчик connectedCallback

 this.innerHTML = '<h2>'+ this.getAttribute('title') +

 '</h2><button>click me</button>';

 }

 }

 if (!customElements.get('my-custom-tag')) {

 customElements.define('my-custom-tag', MyCustomTag);
 }

</script>

Хорошо, итак, если мы обновим эту страницу… опять ничего не про-
исходит. Обратите внимание, что хотя мы полностью определили наш
элемент, мы еще не создали его экземпляр или не привели его в дей-
ствие! Чтобы проверить нашу теорию относительно того, что конструк-
тор вызывается при создании, а connectedCallback начинает действовать
при добавлении в DOM, давайте немного поработаем с DOM вручную
с помощью JS.

После загрузки пустой страницы мы откроем инструменты разработ-
ки браузера и консоль. В консоли введите следующее:

x = document.createElement('my-custom-tag');

Здорово! Оповещение нашего конструктора запускается, и мы видим
сообщение «привет от конструктора MyCustomTags». Создавая элемент,
мы неявно вызвали new MyCustomTag();, в результате вызывается конструк-
тор. Однако в то же время метод connectedCallback не был вызван, потому
что мы не добавили его в наш DOM. Давайте сделаем это сейчас! В той
же консоли, теперь, когда наша переменная x установлена, выполните
приведенный ниже код:

document.body.appendChild(x);

Как и ожидалось, вызывается оповещение от connectedCallback. Кроме
того, теперь вы должны увидеть компонент в теле страницы. Этот поток,
от создания элемента до connectedCallback, зафиксирован на рис. 4.1.

Что, если мы попробуем что-нибудь менее прямолинейное? То, что
мы только что сделали, вызывает вопрос относительно того, был ли за-
пущен метод connectedCallback, потому что мы добавляли его в любой
элемент или это был вопрос добавления его в DOM нашей страницы. Да-
вайте проверим это, обновив страницу, и снова создадим наш элемент
в консоли:

myEl = document.createElement('my-custom-tag');

Конечно, оповещение конструктора все равно сработает и покажет
нам сообщение. Далее создадим еще один элемент, который будет дей-
ствовать как контейнер:

myContainer = document.createElement('div');

Теперь наступает момент истины. Предупредит ли нас connectedCall-
back, когда мы добавим myEl в myContainer? Давайте попробуем:

myContainer.appendChild(myEl);

110 Глава 4 Жизненный цикл компонента

Создается
элемент

Вызывается конструктор

Элемент
добавляется

в DOM

Вызывается функция
connectedCallback

Рис. 4.1 Начало жизненного цикла
веб-компонента: сначала конструктор,
а затем connectedCallback после
добавления в DOM

Ответ – нет! Добавление пользовательского компонента просто к лю-
бому элементу, еще не присоединенному к DOM, не будет инициировать
метод connectedCallback. У нас есть изолированный узел в переменной my-
Container. Вот как он выглядит:

<div>

 <my-custom-tag></my-custom-tag>

</div>

Хотя мы доказали, что наш метод connectedCallback не запускается, ког-
да мы добавляем его в то, что не подключено к DOM, мы еще не доказали,
что косвенное добавление в DOM инициирует этот метод. Давайте про-
должим в консоли и попробуем это:

document.body.appendChild(myContainer);

Подтверждено! Вместо того чтобы добавлять наш пользовательский
элемент непосредственно на страницу, сначала мы добавили его в дру-
гой контейнер (<div>). Затем добавили этот контейнер в DOM, и наш ме-
тод connectedCallback по-прежнему вызывается, доказывая, что функция
обратного вызова вызывается, только когда она добавляется в страницу,
и больше нигде, даже если она не добавлена туда напрямую.

Кроме того, если мы удаляем элемент, а затем повторно добавляем
его, то видим, что метод connectedCallback вызывается каждый раз:

document.body.removeChild(myContainer);
document.body.appendChild(myContainer);

На самом деле это означает, что если вы добавляете, удаляете, а затем
снова добавляете свой компонент, вы должны быть осторожны, чтобы
выполнить любую разовую настройку только один раз.

111Обработчик connectedCallback

На рис. 4.2 представлено наше объяснение с четырьмя сценариями.
Компонент может находиться непосредственно на странице или даже
внутри другого компонента. Если компонент, либо внешний компонент
(а это может быть внешний, внешний, внешний компонент), находится
на главной HTML-странице, будет вызываться метод connectedCallback.

Вызывается Не вызывается

HTML-страница

HTML-страница

Веб-компонент

Веб-компонент

Веб-компонент

Веб-компонент
Внешний элемент

Внешний элемент

connectedCallback

connectedCallback

connectedCallback

connectedCallback

Рис. 4.2 Четыре различных сценария создания вашего веб-компонента

С другой стороны, даже если компонент добавляется внутри другого
элемента, connectedCallback не будет работать, если внешний элемент на
главной странице отсутствует. В целом, для того чтобы метод connected-
Callback был инициирован, у компонента должен быть предок на главной
HTML-странице.

4.2.1 Конструктор в сравнении с методом connectedCalback
Какое значение все это имеет для практических целей? Какой логике
мес то в конструкторе по сравнению с методом connectedCallback? Было
бы разумно подумать, что можно запихнуть все в конструктор и оставить
метод connectedCallback пустым. К сожалению, нет – здесь есть некоторые
нюансы.

Важным аспектом того, что вы хотите сделать при создании компо-
нента, является настройка содержимого вашего элемента. Вы, вероятно,
захотите установить innerHTML для разметки. Так, в нашем простом при-
мере мы добавляем заголовок и кнопку. Также вы, возможно, захотите
получить атрибут своего компонента. К сожалению, при запуске кон-
структора элемент еще не готов к взаимодействию таким образом.

Это можно продемонстрировать, переместив строку с innerHTML
в конст руктор:

112 Глава 4 Жизненный цикл компонента

Листинг 4.3 (Неудачная) попытка установить innerHTML из конструктора

class MyCustomTag extends HTMLElement {
 constructor() {

 super();

 this.innerHTML = '<h2>'+ this.getAttribute('title') +

 '</h2><button>click me</button>';

 }

 connectedCallback() {}
}

Когда наша страница перезагрузится, можно попытаться снова соз-
дать элемент с помощью функции create-Element, но в нашей консоли по-
является ошибка:

DOMException: Failed to construct 'CustomElement': The result must not have
 Children

Браузер сообщает нам, что при первоначальном создании нашего
пользовательского элемента ему запрещено иметь дочерние элементы.
Кроме того, мы можем проверить наш атрибут title, который мы ис-
пользовали для заполнения нашего тега заголовка, используя конструк-
тор и метод connectedCallback.

Листинг 4.4 Попытка доступа к атрибутам из конструктора
и из метода connectedCallback

class MyCustomTag extends HTMLElement {
 constructor() {

 super();

 console.log('From constructor',
 this.getAttribute('title'));

 }

 connectedCallback() {
 console.log('From connectedCallback',
 this.getAttribute('title'));

 }

}

Когда мы перейдем к предыдущему листингу и перезагрузим нашу
страницу, консоль укажет на то, что конструктор еще не знает о заголов-
ке, регистрируя значение null. Хотя с нашим методом connectedCallback
все в порядке.

Просто взглянув на это и увидев, что работает, а что нет, мы можем
начать понимать, как нам организовать наш компонент. Метод connected-
Callback должен содержать всю логику для визуального заполнения наше-
го элемента. Для типичного компонента большая часть логики, например
добавление событий, взаимодействий и т. д., будет зависеть от наличия
этих визуальных элементов. Из-за этого конструктор может остаться до-
вольно пустым или лишенным значимого кода для многих ситуаций.

Однако в зависимости от вашего компонента в конструкторе могут су-
ществовать исключения. Одним из таких исключений является логика,

Доступ к атрибуту этого компонента
из конструктора (неудачно)

Доступ к атрибуту этого компонента
из метода connectedCallback
(успешно)

113Обработчик connectedCallback

которая может возникнуть после инициализации вашего элемента, но до
того, как он будет добавлен на страницу. Вы можете, например, создать
элемент заранее и выполнить сетевой запрос на получение информации
из интернета, прежде чем присоединить свой компонент к DOM. Таким
образом, если у вашего компонента имеются все данные, которые он
должен отобразить, он может сделать это мгновенно, находясь на стра-
нице. В этом случае, поскольку никаких зависимостей от визуальных
элементов в вашем компоненте нет, конструктор может стать подходя-
щим местом для этого кода.

Листинг 4.5 Прекрасно отформатированный список свойств
в конструкторе

class MyCustomTag extends HTMLElement {
 constructor() {

 super();

 /**

 * URL-адрес, чтобы получить данные для заполнения нашего гипотетического списка;
 */

 this.serviceURL =
'http://company.com/service.json';

 /**

 * Внутренний счетчик для отслеживания чего-либо;
 */

 this.counter = 0;

 /**

 * Последнее сообщение об ошибке;
 */

 this.error;

 }

 connectedCallback() { . . . }
}

Как я упоминал в начале главы, одним из замечательных применений
конструктора может быть объявление свойств. Действительно удобно,
когда в верхней части вашего класса есть конструктор и у вас есть воз-
можность легко читать все свойства, которые вы используете, как видно
из листинга 4.5. Я обнаружил, что даже если вы еще не настроили свои
свойства, конструктор все равно отлично подходит для удобства чтения
компонентов. Однако я должен еще раз упомянуть, что с появлением по-
следней версии Chrome, которая поддерживает общедоступные и закры-
тые поля классов, мы можем объявлять наши свойства в самом классе,
что гораздо приятнее и является более встраиваемым в любой другой
язык, поддерживающий классы. Как только другие браузеры получат та-
кую поддержку, описанный мною подход, скорее всего, станет плохой
практикой.

Если вы используете Shadow DOM, возникает одно серьезное предо-
стережение относительно применения конструктора в сравнении с ме-
тодом connectedCallback для связанной с DOM логики, о чем пойдет речь

Метод конструктора

Добавляет удобочитаемые
свойства в конструктор

114 Глава 4 Жизненный цикл компонента

в главе 7. При использовании технологии Shadow DOM вы создаете от-
дельную мини-модель DOM, которая является внутренней для вашего
компонента. В этом случае Shadow DOM доступен всякий раз, когда вы
создаете его, – даже в конструкторе.

Вот почему вы будете становиться свидетелем того, что многие со-
временные веб-ком по нен ты используют конструктор практически для
всего в компоненте, в то время как метод connectedCallback может вообще
не использоваться.

Будете ли вы использовать теневую модель DOM? До недавнего вре-
мени я бы не рекомендовал это делать, но Firefox только что выпустил
обновление с поддержкой для нее (наряду со всеми функциями веб-ком-
по нен тов), и Edge должен вскоре выпустить соответствующий релиз.

Какой бы потрясающей ни была теневая модель DOM, вам нужно взве-
сить, нужна ли она вам и поддерживается ли она в выбранном вами брау-
зере. Конечно, будут ситуации, когда использовать ее для своего проекта
просто не имеет смысла – важно будет знать нюансы метода connected-
Callback и конструктора.

4.3 Остальные методы жизненного цикла
веб-компонента
Мы обсудили четыре из шести методов жизненного цикла нашего ком-
понента (конструктор, connectedCallback, attributeChangedCallback и ob-
servedAttributes). Осталось два метода: disconnectedCallback и adoptedCall-
back.

4.3.1 Метод disconnectedCallback
Метод disconnectedCallback служит очень важной цели, которая состоит
в том, чтобы дать компоненту возможность прибрать после себя. Этот
метод запускается, когда компонент удаляется из DOM.

На то есть две причины. Во-первых, вы не хотите запускать случай-
ный код, когда вам это не нужно. Второе – дать возможность запустить
сбор мусора. Если вы незнакомы со сбором мусора, посмотрите на язык
C++. Если вы храните данные в переменной, они никуда не исчезнут, или,
если использовать правильную терминологию, переменные не будут вы-
свобождены. Поскольку вы являетесь разработчиком, то должны надле-
жащим образом избавиться от них, когда закончите работу. Если вы не
будете осторожны, все переменные, которые вы больше не используете,
могут начать добавлять и использовать огромное количество памяти!
К счастью, в случае с более современными языками, такими как JS, ваши
неиспользуемые переменные будут «собираться как мусор». Время от
времени, когда движок (в нашем случае движок JS) знает, что для очист-
ки достаточно времени простоя, он войдет и высвободит переменные,
которые вы не используете. Однако он не экстрасенс и не может угадать,
что вам не нужно.

115Остальные методы жизненного цикла веб-компонента

Вместо этого, если он обнаружит, что вы не ссылаетесь на что-либо
в памяти, как показано на рис. 4.3, он высвободит это. Вот почему метод
disconnectedCallback – хорошая возможность для сброса или обнуления
всех переменных, которые могут быть связаны с другими объектами.

Слушатель
событий мыши

Слушатель
событий мыши

Таймер

Таймер

Переменная

Переменная

Никаких ссылок нет,
поэтому она собирает мусор

Рис. 4.3 Ссылки на ячейки памяти внутри веб-компонента

Беспокойство по поводу этих мелких деталей может быть непростой
задачей, когда ваш компонент просто работает. Иногда, если мы точно
знаем, как используем наш компонент, мы можем игнорировать некото-
рые из них. Например, если вы знаете, что ваше приложение никогда не
будет удалено из DOM, вы можете игнорировать очистку. Конечно, кон-
текст проектов может измениться, и от компонента, который вы никогда
и не думали удалять, возможно, потребуется избавиться.

Чтобы привести пример столь необходимой очистки, рассмотрим
ситуацию, когда вы запрашиваете сервер каждые 30 секунд, чтобы по-
лучить обновленные данные. Если вы используете метод removeChild,
чтобы удалить дочерний элемент из родительского контейнера (re mo ve-
Child(вашэлемент);)), этот таймер по-прежнему будет запускаться, и по-
прежнему будет выполняться запрос к серверу. Давайте попробуем про-
вести упрощенный эксперимент на примере таймера обратного отсчета.

Листинг 4.6 Демонстрация кода, который выполняется
после удаления элемента

<html>

<head>

 <meta charset="UTF-8">

 <title>Cleanup Component</title>
 <script>

 class CleanupComponent extends HTMLElement {
 connectedCallback() {
 this.counter = 100;

 setInterval(() =>

116 Глава 4 Жизненный цикл компонента

 this.update(), 1000);
 }

 update() {

 this.innerHTML = this.counter;

 this.counter --;

 console.log(this.counter);

 }

 }

 customElements.define('cleanup-component', CleanupComponent);
 </script>

</head>

<body>

 <cleanup-component></cleanup-component>

 <button onclick="document.body.removeChild(document.querySelector
 ('cleanup-component'))">remove</button>

</body>

</html>

В этом примере мы также регистрируем значение нашего счетчика:

console.log(this.counter);

Я также добавил кнопку с встроенным кодом JS. При нажатии на кноп-
ку «Удалить» компонент таймера обратного отсчета удаляется из DOM.

При запуске этого примера таймер начинает обратный отсчет време-
ни, как обычно. После нажатия на кнопку «Удалить» вы больше не ви-
дите таймер, но если вы откроете журнал консоли, то увидите, что он
по-прежнему ведет обратный отсчет! Оставить этот таймер включен-
ным – крайне плохая идея. Еще хуже, если мы будем засорять консоль-
ный журнал элементами, которые нам больше не нужны. Было бы еще
хуже, если бы мы делали сетевые запросы, которые нам не нужны, или
выполняли бы что-то затратное в вычислительном отношении для эле-
мента, который нам не нужен.

Таким образом, мы можем использовать метод disconnectedCallback для
очистки нашего таймера. Скорее всего, нам также понадобится очистить
все добавленные слушатели событий, например события мыши. Давайте
попробуем очистить наш таймер при удалении элемента в приведенном
ниже листинге.

Листинг 4.7 Использование метода disconnectedCallback
для очистки таймера

class CleanupComponent extends HTMLElement {
 connectedCallback() {
 this.counter = 100;

 this.timer = setInterval(() => this.update(), 1000);
 }

 update() {

 this.innerHTML = this.counter;

 this.counter --;

Запускает таймер обратного отсчета

Консоль записывает текущее
значение таймера
(который все еще работает
после удаления компонента!)

Кнопка для удаления
компонента

117Остальные методы жизненного цикла веб-компонента

 console.log(this.counter);

 }

 disconnectedCallback() {
 clearInterval(this.timer);

 }

}

Теперь мы заключили наш таймер в переменную:

this.timer = setInterval(() => this.update(), 1000);

Таким образом, когда нам нужно выполнить очистку с использовани-
ем метода disconnectedCallback, мы можем сделать это, применив ту же
переменную:

disconnectedCallback() {
 clearInterval(this.timer);

}

При повторной проверке журналов видно, что у нас больше нет со-
общений, и наш элемент должен быть надлежащим образом убран на
следующем этапе.

4.3.2 Метод adoptedCallback
Несмотря на то что даже мне нужно засучить рукава и чаще использовать
метод disnectedCallback для написания более качественных и универ-
сальных компонентов, в действительности я не видел, чтобы большин-
ству людей он когда-либо был нужен. Метод жизненного цикла adopted-
Callback запускается, когда ваш веб-ком по нент перемещается в другой
документ.

Не волнуйтесь, если это не имеет смысла, потому что такого обыч-
но не происходит. Обычно у вас будет только по одному документу на
HTML-страницу. Исключением является применение плавающих (или
встроенных) фреймов, которые в действительности перестали исполь-
зоваться в большинстве случаев. По сути, с помощью такого фрейма у вас
получается мини-HTML-страница во фрейме на вашей главной HTML-
странице.

Можно взять элементы из плавающего фрейма и поместить их в окру-
жающую страницу, или наоборот. Для этого вам нужно получить ссылку
на элемент, а затем переместить ее в новый документ:

const frame = document.getElementsByTagName("iframe")[0]
const el = frame.contentWindow.document.getElementsByTagName(
 "my-custom-component")[0];

const adopted = document.adoptNode(el);

После этого будет запущен метод жизненного цикла adoptedCallback.
Но опять же, я редко работаю с плавающими фреймами. Мне никогда не
приходилось перемещать узлы из одного документа в другой. Возможно,
вы найдете применение этому методу, и если у вас это получится, знай-
те, что ваш компонент может слушать!

Убирает таймер,
когда компонент удаляется

118 Глава 4 Жизненный цикл компонента

4.4 Сравнение с жизненным циклом React
Давайте теперь поговорим о жизненном цикле веб-компонента в при-
вязке к жизненному циклу React. В конце концов, при наличии всего
лишь нескольких методов жизненного цикла может показаться, что веб-
ком по нен ты неполноценны. Учитывая популярность React и его широ-
кую аудиторию разработчиков, он отлично подходит для сравнения веб-
ком по нен тов с целью выяснить, как они состыковываются.

React немного своенравен, как и все фреймворки и библиотеки. Он
предлагает определенный жизненный цикл компонента, который под-
ходит для разработчиков React и их вариантов использования. Конечно,
в этом нет абсолютно ничего плохого, но дело в том, что мы рассматри-
ваем жизненный цикл, который может или не может быть применим
к тому, как вы хотите работать. Я хотел бы повторить, что это именно то,
что мне нравится в работе с веб-ком по нен та ми – у них достаточно воз-
можностей, чтобы покрыть необходимый минимум того, что вам нужно,
а все, что сверх этого, можно создать с помощью собственного кода или
существующих микрофреймворков либо библиотек.

В документации по React его методы жизненного цикла разбиты на
четыре основные категории: монтирование, обновление, размонтиро-
вание и обработка ошибок. Метод обработки ошибок – метод, с которым
мы еще не сталкивались, и действительно, в веб-компонентах нет ниче-
го подобного.

Философия React (по крайней мере, начиная с версии 16) заключается
в том, чтобы установить «границы ошибок», чтобы при возникновении
ошибки в одном компоненте она не сводила бы на нет остальные ком-
поненты или приложение.

Хотя и верно, что ошибка в JS потенциально может делать действи-
тельно плохие и неожиданные вещи где-нибудь в приложении на основе
веб-ком по нен тов, в случае с React ситуация была бы немного хуже. До
выхода версии 16 ошибка могла бы размонтировать все ваше приложе-
ние! Ошибки в чистом JS обычно более покорные – неожиданные вещи
будут случаться, но, как правило, ваше приложение не будет поставлено
на колени. В результате этого в версии 16 были созданы границы оши-
бок, чтобы каждый компонент мог справиться с любой ошибкой и не
влиять на остальное. Веб-компоненты немного более децентрализова-
ны, поэтому проблемы React не так схожи.

В React понятие монтирование означает создание фрагмента HTML-ко-
да, представляющего ваш компонент, а затем вставку этого кода в DOM.
Для монтирования существует несколько соответствующих методов.

Как и веб-ком по нен ты (и большинство всего остального), React по-
зволяет переопределить конструктор. Это очень напоминает веб-ком по-
нен ты, в том смысле, что вы, скорее всего, не захотите размещать здесь
огромное количество логики компонентов и в идеале инициализирова-
ли бы вещи, которые будете использовать позже. Методы componentWill-
Mount и componentDid-Mount позволяют вам работать до и после добавления
компонента в DOM.

119Сравнение с жизненным циклом React

В то время как метод componentDidMount во многом схож с методом веб-
ком по нен тов connectedCallback, похоже, что для метода componentWillMount
здесь не так много вариантов использования. Здесь нет ничего, чего
нельзя было бы сделать с помощью конструктора. Фактически версия 16
уже показывает предупреждающие сообщения о том, что этот метод бу-
дет устаревшим в следующей основной версии.

До вызова метода componentDidMount (или когда компонент изменяет-
ся каким-либо образом) вы можете переопределить метод render. С по-
мощью этого метода можно в основном возвращать HTML-код, чтобы
представить внутреннюю разметку вашего компонента.

В случае с веб-ком по нен та ми метод render просто не требуется в ка-
честве стандартного метода жизненного цикла, хотя LitElement и другие
добавили его в свои веб-ком по нен ты, чтобы сделать обновление HTML-
кода более упорядоченным. Используя базовый жизненный цикл как он
есть, мы можем контролировать innerHTML нашего компонента в любое
время и не ограничены жизненным циклом нашего компонента в от-
ношении того, когда устанавливать содержимое нашего компонента,
или даже того, какие фрагменты обновляются. В этой связи лучше не
быть связанными жесткими правилами, которые говорят, где и когда
мы можем создавать внутреннюю работу своего компонента! В случае
с LitElement и различными фреймворками вы ведетесь на шаблон про-
ектирования и делаете выбор, чтобы быть связанными правилами, ко-
торые определяют, когда ваш компонент визуализируется. Если вы вы-
бираете именно это, отлично, но в качестве стандарта, который должен
соответствовать различным вариантам использования, я думаю, что го-
раздо лучше выбрать нечто вроде метода render.

Для обновления компонента в React также есть несколько методов:
componentWillReceiveProps, shouldComponentUpdate, componentWillUpdate, get-

Snap shotBeforeUpdate и componentDidUpdate. Помимо метода componentWillRe-
ceiveProps, который скоро устареет, остальные могут быть полезны, когда
в вашем компоненте что-то меняется и его нужно обновить. Они менее
актуальны для веб-ком по нен тов, потому что React как система отслежи-
вает кучу всего, что выходит за рамки вашего реального HTML-элемента.
Состояние, свойства и т. д. – это все, что изменяется и запускает измене-
ние вашего компонента. На самом деле React рекомендуется использо-
вать совершенно иначе.

Вы должны изменить состояние или свойства, а ваш компонент дол-
жен… «реагировать» на эти изменения.

С другой стороны, когда вы взаимодействуете с веб-ком по нен та ми,
вы, скорее всего, будете поступать так же, как и с обычным элементом
DOM: используя пользовательский API или атрибуты. При такой разни-
це необходимость в этих дополнительных методах отпадает. Некоторые
могут утверждать, что способ, которым работает React, предлагает боль-
ше помощи, но при применении веб-ком по нен тов у вас больше свободы
и вы можете делать все, как вы хотите, как это нужно именно для вашего
проекта.

120 Глава 4 Жизненный цикл компонента

4.5 Сравнение с жизненным циклом
игрового движка
Говоря о свободе реализации того, что мы хотим в зависимости от про-
екта, не стоит рассматривать традиционные веб-приложения как един-
ственный вариант использования для создания чего-либо в сети. По-
стоянно создается все больше и больше проектов с большим объемом
графических операций. Неплохой вариант использования, на который
стоит обратить внимание, – игровой движок. В связи с этим я думаю, что
справедливо будет сравнить жизненный цикл веб-компонента с Unity.
Unity 3D – один из самых популярных инструментов для создания 3D-гра-
фики в реальном времени для игр, приложений и даже дополненной или
виртуальной реальности.

В Unity разработчик, как правило, работает с каким-либо 3D-объектом,
к которому прикреплен базовый класс Monobehavior. Подобно тому, как
наш веб-ком по нент расширяет HTMLElement, настраиваемое поведение
в Unity расширяет поведение Monobehavior.

У Monobehavior есть два метода жизненного цикла, используемых для
запуска поведения. Awake похож на наш конструктор веб-ком по нен тов.
Он вызывается при создании Monobehavior, независимо от того, активи-
рован он или нет. В Unity поведения не обязательно активны и работают,
если отключены.

Точно так же наш веб-ком по нент в действительности не «активиро-
ван», если он не был добавлен в DOM, потому что он не отображается
на странице. В Unity есть методы OnEnable и OnDisable, чтобы следить за
этим. Поведение можно активировать несколько раз, так же как и наш
веб-ком по нент можно добавить в DOM несколько раз. Таким образом,
здесь метод OnEnable очень напоминает метод нашего веб-компонента
connectedCallback.

Метод Unity Start вызывается при первой активации поведения, в том
числе если оно активируется при запуске приложения. У веб-ком по нен-
тов нет аналогичного вызова, и, как я уже сказал, если мы добавляем
один и тот же элемент в нашу модель DOM более одного раза, нам нужно
защитить себя от повторной инициализации, если это навредит нашим
компонентам. К счастью, это легко преодолеть – мы можем просто уста-
новить для переменной значение true в первый раз, пройдя наше con-
nectedCallback, и не вызывать ту же самую инициализацию с помощью
конструкции if/then.

Эти тонкие различия имеют значение, только если вы решите не ис-
пользовать свой веб-компонент, просто написав разметку в HTML-коде,
как при создании, добавлении и удалении элементов с помощью JS. На-
пример, при создании прототипа или конкретного приложения вы, веро-
ятно, будете точно знать, как должны использоваться ваши веб-ком по-
нен ты, и сможете настроить их по мере необходимости. Если вы создаете
библиотеку веб-ком по нен тов, которой вы собираетесь поделиться с кем-
то еще, можно рассмотреть все эти варианты использования.

121Сравнение с жизненным циклом игрового движка

Идем далее. В жизненном цикле Monobehavior у Unity 3D есть несколько
методов, которые называются каждый кадр рендеринга. Это означает,
что они вызываются много раз в секунду, чтобы дать разработчику воз-
можность обновлять то, что отображается на экране при обновлении
графики. Эти методы обрабатывают определенные вещи, такие как фи-
зика, различные проходы визуализации и т. д. В нашем случае я сведу
их к методу Unity update, потому что они в действительности не будут
применяться к веб-компонентам, только если речь не идет о WebGL или
других конкретных случаях.

Хотя у веб-ком по нен тов нет аналогичного метода обновления в ка-
честве части API жизненного цикла или даже множества методов обнов-
ления, которые я описал ранее, нам, возможно, он и не нужен. Нам не
обязательно делать игры или какие-то вещи с большим объемом графи-
ческих операций, которые должны запускать каждый кадр с JS, поэтому
в таких случаях нам это не нужно. В случае когда нам нужен метод обнов-
ления, можно воспользоваться несколькими способами.

Первое, что можно попробовать, – это таймер. Давайте возьмем тот
таймер из предыдущего примера и начнем с него.

Листинг 4.8 Компонент таймер обратного отсчета

<html>

<head>

 <meta charset="UTF-8">

 <title>Countdown Timer</title>
 <script>

 class CountdownTimer extends HTMLElement {
 connectedCallback() {
 this.counter = 100;

 setInterval(() =>

 this.update(), 1000);
 }

 update() {

 this.innerHTML = this.counter;

 this.counter --;

 }

 }

 customElements.define('countdown-timer', CountdownTimer);
 </script>

</head>

<body>

 <countdown-timer></countdown-timer>

</body>

</html>

В листинге 4.8 мы создали простой пример с компонентом таймер об-
ратного отсчета (практически такой же, как ранее в этой главе). Когда
наш компонент добавляется в DOM, мы используем метод connectedCall-
back для инициализации свойства counter и устанавливаем для него зна-

Создает наш внутренний таймер
(вызовы обновляются каждую секунду)

Отображает текущее
значение таймера

Уменьшает каждое
обновление таймера

122 Глава 4 Жизненный цикл компонента

чение, равное 100. Также мы запускаем стандартный таймер JS и присо-
единяем его к внутреннему методу update:

setInterval(() => this.update(), 1000);

Если вы использовали таймер раньше, то знаете, что последний па-
раметр 1000 заставляет таймер срабатывать каждые 1000 миллисекунд
(или каждую секунду). В самом методе Update мы просто устанавливаем
содержимое нашего компонента с помощью innerHTML и уменьшаем нашу
переменную на единицу.

Когда вы запустите это в браузере, то увидите числовой дисплей, кото-
рый начинается со 100 и ведет обратный отсчет, отсчитывая по единице
каждую секунду. Метод setInterval отлично подходит для таких ситуа-
ций, когда вам нужен обычный таймер; но для анимации или графики,
которую необходимо менять каждую 1/30 секунды, например, более но-
вая функция requestAnimationFrame от JS даст более плавные результаты,
которые фактически связаны с циклом рендеринга браузера.

Давайте поменяем метод setInterval на requestAnimationFrame и сделаем
что-нибудь более анимированное в приведенном ниже листинге.

Листинг 4.9 Замена setInterval на requestAnimationFrame

<html>

<head>

 <title>Visual Countdown Timer</title>
 <script>

 class VisualCountdownTimer extends HTMLElement {
 connectedCallback() {
 this.timer = 200;

 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';

 this.style.height = '50px';

 requestAnimationFrame (() =>

 this.update());

 }

 update() {

 this.timer --;

 if (this.timer <= 0) {

 this.timer = 200;

 }

 this.style.width =

 this.timer + 'px';

 requestAnimationFrame (() =>

 this.update());

 }

 customElements.define('countdown-timer', VisualCountdownTimer);
 </script>

</head>

<body>

Используем метод
requestAnimationFrame
вместо setInterval

Плавно анимируем ширину
нашего компонента

Метод requestAnimationFrame
вызывается при каждом вызове update

123Сравнение с жизненным циклом игрового движка

 <countdown-timer></countdown-timer>

</body>

</html>

За исключением того, что метод requestAnimationFrame встречается
только один раз, что заставляет нас вызывать его при каждом вызове
update, реализация здесь в основном та же, что и в случае с setInterval:

requestAnimationFrame (() => this.update());

Опять же, у меня есть счетчик, но сейчас я называю его timer, потому
что мы будем уменьшать наш компонент с каждым кадром анимации,
чтобы имитировать таймер обратного отсчета. У меня также есть стили
CSS для установки цвета фона, высоты и значения inline-block свойства
display. Неудивительно, что здесь я устанавливаю стили, используя код,
когда могу использовать CSS, но я не хочу усложнять этот пример:

this.style.backgroundColor = 'green';
this.style.display = 'inline-block';

this.style.height = '50px';

В методе update мы уменьшаем наш таймер и также проверяем, равен
ли он 0 или меньше его. Если это так, то мы сбрасываем его до 200, просто
чтобы сохранить наш компонент в бесконечном демоцикле. После всего
этого мы устанавливаем высоту и ширину компонента в свойство timer.
Наконец, мы вызываем следующий кадр анимации и снова запускаем
наш метод update. В итоге получаем визуальный компонент зеленого
цвета, который сжимает каждый кадр до тех пор, пока он не достигнет
нуля, а затем снова сбрасывается до ширины в 200 пикселей.

В дополнение к методам setInterval и requestAnimationFrame другие
фреймворки и библиотеки, которые мы можем использовать, могут иметь
собственные способы вызова метода update по времени, подобные этому.
Например, если вы применяете 3D-библиотеку, такую как Three.js или
Babylon, у них есть свои приемы рендеринга, которые вы можете ис-
пользовать, следовательно, ваш компонент будет реализован несколько
иначе.

Дело в том, что жизненный цикл веб-компонента не поставляется
с методом update, как многие другие жизненные циклы компонентов,
которые вы, возможно, встречали. Поскольку веб-технологии могут ис-
пользоваться для самых разных вещей, неразумно будет диктовать вам,
как следует это делать.

Большую часть времени при моей работе мне никогда не бывает ну-
жен метод update. Даже простую анимацию пользовательского интер-
фейса можно обработать с помощью стилей CSS. И конечно, когда я это
делаю, мне нравится выбирать, какой метод использовать.

Возможно, в ваших личных случаях использования вам всегда нужен
какой-то метод update, подобный тому, что есть в Unity. Безусловно, это
имеет смысл, если вы занимаетесь разработкой игр или чем-то подоб-
ным и вам нужен метод render или update для управления игрой и ани-
мацией.

124 Глава 4 Жизненный цикл компонента

Веб-компоненты поддерживают наследование, и мы можем пойти
еще на один уровень дальше и надстроить существующий жизненный
цикл компонента. Давайте возьмем код из нашего примера с анимаци-
ей таймера обратного отсчета и используем вызов requestAnimationFrame,
чтобы активировать его.

Листинг 4.10 Создание наследуемой базы компонентов
для обновления каждого кадра

<html>

<head>

 <script>

 class GameComponentBase
 extends HTMLElement {

 constructor() {

 super();

 this.onUpdate();

 }

 update() {}

 onUpdate() {

 this.update();

 requestAnimationFrame (() => this.onUpdate());

 }

 }

 class VisualCountdownTimer
 extends GameComponentBase {
 connectedCallback() {
 this.timer = 200;

 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';

 this.style.height = '50px';

 }

 update() {

 this.timer --;

 if (this.timer <= 0) {

 this.timer = 200;

 }

 this.style.width = this.timer + 'px';

 }

 }

 customElements.define('countdown-timer', VisualCountdownTimer);
 </script>

</head>

<body>

 <countdown-timer></countdown-timer>

</body>

</html>

Класс обеспечивает основу для создания
компонентов в игровом стиле

Метод update, который должен быть заполнен
компонентом с использованием базового класса

Внутренний метод
обновления, чтобы
поддерживать
работу функции
requestAnimationframe

Фактический класс компонента,
который расширяет базовый компонент

125Сравнение с жизненным циклом игрового движка

Итак, в примере из листинга 4.10 мы по-прежнему выполняем ту же
самую простую анимацию: уменьшаем графический индикатор обрат-
ного отсчета. Но мы извлекли логику, связанную с созданием события
обновления каждого кадра в своем собственном классе. Обратите вни-
мание, что я говорю класс, а не компонент, потому что мы сделали все,
чтобы создать новый компонент, кроме определения пользовательского
элемента и отображения его в тег.

Вместо этого мы создаем базовый класс GameComponentBase, от которого
компоненты могут наследовать. На рис. 4.4 показана эта цепочка насле-
дования. Источником всего является класс HTMLElement.

Конструктор

HTMLElement

connectedCallback

attributeChangedCallback

GameComponentBase
(расширяет класс
HTMLElement)

Унаследованные методы
жизненного цикла

Унаследованные методы
жизненного цикла

update (созданный нами
метод жизненного цикла)

GameComponent
(расширяет класс
GameComponentBase)

Пользовательская логика
и методы

Рис. 4.4 Использование наследования для создания подкласса HTMLElement,
чтобы активировать обновления кадров, как в игровом движке

Хотя я поступил по-хитрому. Вместо того чтобы вызывать метод update
напрямую, у меня есть другой метод – onUpdate:

onUpdate() {

 this.update();

 requestAnimationFrame (() => this.onUpdate());

}

Причину лучше всего объяснить так, как я бы не предложил сначала.
Давайте не будем использовать оба метода, а только update.

Листинг 4.11 Пример попроще с одним переопределяемым методом
update

class GameComponentBase extends HTMLElement {
 constructor() {

 super();

 this.update();

 }

 update() {

 requestAnimationFrame (() =>

 this.update());

 }

 }

Новый класс GameComponentBase по-прежнему хорош, и его можно исполь-
зовать почти таким же образом, но давайте посмотрим, как это сделать.

Единичный метод update

126 Глава 4 Жизненный цикл компонента

Листинг 4.12 Использование более простого базового класса

class VisualCountdownTimer extends GameComponentBase {
 connectedCallback() {
 this.timer = 200;

 this.style.backgroundColor = 'green';
 this.style.display = 'inline-block';

 this.style.height = '50px';

 }

 update() {

 this.timer --;

 if (this.timer <= 0) {

 this.timer = 200;

 }

 this.style.width = this.timer + 'px';

 super.update();

 }

}

Обратите внимание, что мы слегка упростили класс GameComponentBase.
Мы объединили два метода update в один, но в нашем компоненте Visual-
CountdownTimer теперь мы заставляем всех, кто использует класс GameCompo-
nentBase, вызывать каждый раз super.update();! Конечно, когда речь идет
о наследовании, мы не будем вызывать метод update для нашего базово-
го класса GameComponentBase, только если не используем super.update(). Не
знаю, как вы, но я бы создал новый компонент и большую часть времени
забывал бы вызывать super.update(). Такое небольшое предварительное
планирование может сделать опыт разработчика более счастливым.

В Unity есть еще два метода жизненного цикла, OnDisable и OnDestroy,
которые служат той же цели, что и метод disconnectedCallback в веб-ком-
по нентах: очистка после отключения или уничтожения компонента.

4.6 Жизненный цикл компонента v0
Теперь API веб-ком по нен тов выглядит довольно солидно, не так ли?
Мы сравнили и сопоставили его с жизненными циклами других компо-
нентов, и я надеюсь, что у вас достаточно хорошее чувство, что он будет
хорошо работать везде, где вы его используете. Я не жду, что вы буде-
те знать на память каждый метод, особенно вначале. Все мы время от
времени используем синтаксис Google. Одно из предостережений при
использовании веб-ком по нен тов состоит в том, что это относительно
новый стандарт, и он уже прошел одну ревизию.

Это означает, что при просмотре синтаксиса вы можете случайно на-
ткнуться на старые методы. В настоящее время мы используем API веб-
ком по нен тов версии 1. Предыдущая версия имела обозначение v0, и она
не будет работать нигде, кроме того места, где она была реализована из-
начально: Chrome. Даже там, с течением времени, она будет становиться
все более и более нестабильной.

Теперь требуется
вызвать super.update()

127Резюме

ВАЖНО API веб-ком по нен тов изменился!

На самом деле мало что изменилось (см. табл. 4.1), хотя первое, что
нужно отметить, – это то, что, вместо того чтобы позволить вам исполь-
зовать конструктор в версии 1, вы используете метод createdCallback.

Таблица 4.1 Изменения API пользовательских элементов и веб-ком по нен тов
Вызовы методов Как он изменился
Ранее: createdCallback
Теперь: constructor

В версии 1 метод createdCallback заменен более стандартным
конструктором

Ранее: AttachedCallback
Теперь: connectedCallback

В версии 1, чтобы прослушивать, когда ваш элемент был
добавлен в DOM, вы используете метод connectedCallback;
в версии 0 это был метод attachedCallback

Ранее: detachedCallback
Теперь: disconnectedCallback

Старый способ прослушивания, когда элемент удаляется из DOM,
теперь в версии 1 используется метод disconnectedCallback,
в версии 0 это был метод disconnectedCallback

Ранее:
AttributechangedCallback
Теперь:
attributeChangedCallback
и observedAttributes

Последнее изменение – метод attributeChangedCallback
в версии 1.
Название на самом деле не изменилось, а вот использование –
да. Теперь необходимо убедиться, что вы задали наблюдаемые
атрибуты (observed Attribute), как мы обсуждали в предыдущей
главе, чтобы сообщить компоненту, какие атрибуты вы хотите
прослушивать. Ранее эта функция обратного вызова просто
слушала все

Ранее:
document.registerElement

Теперь:
customElements.define

Наконец, вне API жизненного цикла компонента способ
регистрации вашего элемента тоже изменился. В настоящее
время мы используем это:
customElements.define('my-web-component', MyWebComponent);

Раньше в версии 0 мы использовали это:
document.registerElement('my-web-component', MyWebComponent);

Резюме
Из этой главы вы узнали:

� как завершить изучение методов жизненного цикла, о которых вы
уже узнали, с помощью оставшихся двух методов: disconnectedCall-
back и acceptCallback;

� о концепции сбора мусора, и почему нужно убирать за своим ком-
понентом;

� как создать подкласс из веб-компонента и использовать его в ка-
честве основы для предоставления общих функций, таких как по-
кадровая анимация, другим компонентам;

� о различиях и сходствах с методами жизненного цикла React и игро-
вого движка, а также что, несмотря на то что оба они располагают
бóльшим числом методов для своих API, веб-ком по нен ты не от-
стают.

5
Реализация

более качественного
веб-приложения

с помощью модулей

Эта глава охватывает следующие темы:
� модули ES2015 как альтернатива тегам <script> в вашем HTML-коде;
� создание самостоятельных веб-ком по нен тов;
� использование веб-компонента для хранения всего своего прило-

жения;
� управление областью видимости для функций обратного вызова при

помощи толстой стрелки из ES2015.

До сих пор в упражнениях, приведенных в этой книге, мы помещали
наши классы и определения компонентов в теги <head> на нашей глав-
ной HTML-странице. Как правило, вы ни за что не захотите делать это

129Использование тега <script> для загрузки ваших веб-ком по нен тов

в реальном проекте, и, возможно, вам захочется быть более организо-
ванным, когда речь идет о теге <script>, где указан путь к файлу JS для
каждого имеющего у вас компонента. На первый взгляд это прекрасно.
Если ваш проект использует веб-ком по нен ты только в ограниченном
виде, это работает! С таблицами стилей CSS похожая ситуация – у каж-
дого компонента может иметься собственный CSS-файл, на который
есть ссылка на главной странице. Однако когда вам нужно управлять
большим количеством компонентов в своем проекте, можно потерять
контроль. В этой главе мы рассмотрим модули ES2015 в качестве более
подходящей альтернативы.

5.1 Использование тега <script> для загрузки
ваших веб-ком по нен тов
Чтобы объяснить, почему ссылки на несколько JS- или CSS-файлов на на-
шей главной HTML-странице могут стать проблемой, давайте вернемся
к нашему веб-компоненту из главы 2. Если вы помните, этот компонент
представлял собой карусель фотографий, которая позволила нам за-
дать список фотографий для навигации по ним, а также метаданные для
отобра жения, такие как заголовок и автор, как показано на рис. 5.1.

Рис. 5.1 Возвращаясь к компоненту карусели для фотографий из главы 2

В этом примере весь наш код JS и CSS находился в файле index.html без
внешних ссылок. Конечно, все становится более удобным, если перемес-
тить этот код во внешние файлы, ссылки на которые мы можем указать.
Это довольно типично для веб-проекта без излишеств. Когда мы делаем
это, наш HTML-файл становится более управляемым и простым для чте-
ния, как показано в приведенном ниже листинге.

130 Глава 5 Реализация более качественного веб-приложения с помощью модулей

Листинг 5.1 Пример загрузки веб-ком по нен тов с помощью тега <script>

<html>

<head>

 <meta charset="UTF-8">

 <title>Script Source for Loading Web Components</title>
 <script src="photocarousel.js"></script>

 <link href="photocarousel.css"

 rel="stylesheet"

 type="text/css"/>

</head>

<body>

 <wcia-photo-carousel

 title="Future Vacation Photos"

 author="Ben Farrell"

 photos="https://i.imgur.com/fBmIASF.jpg,https://i.imgur.com/
 3zxD6rz.jpg,https://i.imgur.com/nKBgeLOr.jpg,https://
 i.imgur.com/yVjJZ1Yr.jpg">
 </wcia-photo-carousel>

</body>

</html>

Теперь, если у вас есть дополнительные веб-ком по нен ты в этом про-
екте, вы можете добавлять все больше и больше тегов <script> и <link>.
В этом нет ничего плохого. Когда мы разрабатываем большой проект, то
неоднократно добавляем кучу библиотек, и в качестве последнего шага
перед выпуском объединяем это в один файл для JS и один файл для CSS.

Часто, опираясь на ссылки на скрипты в моем HTML-коде, я поддер-
живаю два отдельных HTML-файла. Один для разработки, а другой для
выпуска моего фактического проекта. В случае когда у нас есть много
веб-ком по нен тов, которые мы собираемся добавить, наш тег <head> мо-
жет выглядеть так, как показано в приведенном ниже листинге. Здесь
приводится пример со множеством гипотетических ссылок на JS- и CSS-
файлы в более полнофункциональном приложении для фотоальбомов.

Листинг 5.2 Пример файла index.html для разработки

<head>

 <meta charset="UTF-8">

 <script src="photocarousel.js"></script>

 <link href="photocarousel.css" rel="stylesheet" type="text/css"/>

 <script src="photoalbumbrowser.js"></script>

 <link href=" photoalbumbrowser.css" rel="stylesheet" type="text/css"/>

 <script src="loginpanel.js"></script>

 <link href="loginpanel.css" rel="stylesheet" type="text/css"/>

 <script src="socialsharing.js"></script>

 <link href="socialsharing.css" rel="stylesheet" type="text/css"/>

 <script src="photouploader.js"></script>

 <link href=" photouploader.css" rel="stylesheet" type="text/css"/>

</head>

Код JavaScript был помещен
в связанный файл

Стили были помещены
в связанный файл

Компонент
photocarousel
(CSS/JS)

Гипотетический компонент
photoalbumbrowser (CSS/JS)

Гипотети-
че ский
компонент
loginpanel
(CSS/JS)

Гипотетический компонент socialsharing (CSS/JS)

Гипотетический компонент photouploader (CSS/JS)

131Использование тега <script> для загрузки ваших веб-ком по нен тов

В то же время наша цель – поместить как можно меньше зависимостей
в наш готовый к работе HTML-файл. Мы могли бы запустить задачу с по-
мощью Grunt, Gulp или даже просто NPM, чтобы объединить весь код JS
и все стили, чтобы наш готовый к использованию тег <head> выглядел так:

<head>

 <meta charset="UTF-8">

 <script src="build.js"></script>

 <link href="build.css" rel="stylesheet" type="text/css"/>

</head>

Честно говоря, меня пока здесь не совсем все устраивает. Во-первых,
мне нужно позаботиться об импорте для каждого веб-компонента, ко-
торый я использую (CSS и JS). Во-вторых, здесь ничего не делается, что-
бы добиться максимальной степени повторного использования кода.
Да, я могу указать путь к внешним файлам, содержащим код для моих
веб-ком по нен тов, но что, если сами эти файлы должны указывать путь
к внешним файлам? Например, в главе 4 мы рассмотрели расширение
класса HTMLElement для создания игрового базового компонента, дающе-
го нам метод update, который запускается с каждым кадром. Нам нужно
как-то импортировать класс GameComponentBase.

Вы можете сказать: «Ну что же, импортировать этот класс очень прос-
то: мы просто добавим его в список JS-файлов, на которые ссылаемся
в нашем теге <head>». Опять же, в зависимости от вашего варианта ис-
пользования этим можно управлять. Контраргумент здесь состоит в том,
что вы принимаете вызов, чтобы отслеживать каждую зависимость
в своем проекте. Если у вас есть только одна или две зависимости, отлич-
но! Если у вас их 10, или 20, или еще больше, это может стать проблемой.

5.1.2 Крошечные сценарии более организованы, но усугубляют
проблему со ссылками
Зависимости могут иметь множество форм. Наш класс GameComponentBase
является основной зависимостью, но вы также можете рассмотреть ме-
нее крупные зависимости. Зависимости могут быть такими же неболь-
шими, как вспомогательные методы для управления своим HTML-кодом,
или даже очень крохотным конфигурационным объектом. Например,
мы могли бы поддерживать модель данных всего проекта, которую мы
импортируем в любой веб-ком по нент или файл JS, нуждающийся в ней:

appConfig = {
 rootURL: 'yourserver.com',
 apiVersion: 2,
 login: 'username'

}

Это всего лишь простой объект, содержащий данные о том, как мы хо-
тим войти на наш сервер (если мы его используем), но потенциально его
можно применять в любом веб-компоненте, который получает данные
с этого сервера. Это кусок повторно используемого кода, который необ-

132 Глава 5 Реализация более качественного веб-приложения с помощью модулей

ходим нам везде. Это такой крошечный фрагмент кода JS, – который мо-
жет быть связан с 20 или 50 другими крошечными кусочками кода, – что
если вам все время нужно будет следить за тем, чтобы не забыть вклю-
чить все это в тег <head>, это может стать проблемой.

5.1.3 Включение стилей CSS
для самостоятельных компонентов
Прежде чем мы решим эту проблему, давайте сделаем наш класс веб-
ком понента еще более самостоятельным, заставив его управлять сти-
лями. Мы просто исключим необходимость указывать путь к внешнему
файлу CSS, вставляя правила <style> в свойство innerHTML вместе с раз-
меткой HTML. Этот пример, как видно из приведенного ниже листинга,
ничего не меняет в нашем компоненте, кроме как оставляет нам только
один файл для ссылки при использовании компонента в нашем проекте.

Листинг 5.3 Добавление стилей в innerHTML нашего компонента

this.innerHTML = '<h2>' + \

 this.getAttribute('title') + '</h2> \

 <h4>by '+ this.getAttribute('author') + '</h4> \

 <div class="image-container"></div> \

 <button class="back"><</button> \

 <button class="forward">></button> \

 <style> \

 wcia-photo-carousel { \

 width: 500px; \

 height: 300px; \

 display: flex; \

 padding-top: 10px; \

 flex-direction: column; \

 position: relative; \

 border-color: black; \

 border-width: 1px; \

 border-style: solid; \

 } \

 wcia-photo-carousel h2, h4 { \
 margin-bottom: 0; \

 margin-top: 0; \

 margin-left: 10px; \

 } \

 wcia-photo-carousel .image-container { \

 margin-top: 15px; \

 flex: 1; \

 background-color: black; \

 background-size: contain; \

 background-repeat: no-repeat; \

 background-position: 50%; \

 } \

 wcia-photo-carousel button { \

 cursor: pointer; \

HTML-разметка, которая была
ранее в нашем компоненте

Стили CSS, добавленные в наш компонент,
ранее во внешнем файле CSS

133Использование тега <script> для загрузки ваших веб-ком по нен тов

 background: transparent; \

 border: none; \

 font-size: 48px; \

 color: white; \

 position: absolute; \

 top: 50%; \

 } \

 wcia-photo-carousel button.back { \

 left: 10px; \

 } \

 wcia-photo-carousel button.forward { \

 right: 10px; \

 }\

</style>';

На данный момент у нас получилось нечто очень неплохое – полно-
стью самостоятельный компонент, который нужно включать в код, ис-
пользуя только один тег <script>. Справедливости ради стоит отметить,
что наш inner-HTML становится немного длиннее. В качестве критическо-
го замечания можно указать на то, что мы просто переместили некую
сложность извне внутрь и сделали эту внутреннюю часть менее управ-
ляемой. Не волнуйтесь, мы обсудим это в следующей главе, расширив
концепцию модулей, которую изучаем здесь.

Листинг 5.4 Сокращение зависимостей без ссылок на стили

<head>

 <meta charset="UTF-8">

 <script src="photocarousel.js"></script>

</head>

<body>

 <wcia-photo-carousel

 title="Future Vacation Photos"

 author="Ben Farrell"

 photos="https://i.imgur.com/fBmIASF.jpg,https://
 i.imgur.com/3zxD6rz.jpg,https://i.imgur.com/nKBgeLOr.jpg,https://
 i.imgur.com/yVjJZ1Yr.jpg">
 </wcia-photo-carousel>

</body>

Честно говоря, глядя на листинг 5.4, все выглядит довольно чисто. Вы
никогда не узнаете о том, насколько сложен компонент внутри; вы просто
используете его. При наличии всего лишь одного тега <script>, использу-
емого для включения определения веб-компонента, здесь практически
нечем управлять. Даже если бы тут был только отдельный CSS-файл, как
это было раньше, тех, кто использует этот компонент, это могло бы не-
много сбить с толку. Они могут и не знать, что требуется CSS-файл, или
даже где он находится или как называется.

Опять же, наличие одной этой зависимости для использования своего
компонента и ее правильная работа, а также управление собственными
зависимостями упрощают работу пользователям компонента.

Число зависимостей компонентов
сократилось. Вместо двух строк (CSS и JS)
теперь только одна – JS

134 Глава 5 Реализация более качественного веб-приложения с помощью модулей

5.1.4 Ад зависимостей
Теперь, если вы считаете, что наша цель, чтобы сделать наш веб-ком по нент
полностью самостоятельным, – это добавить больше проблем, чем нужно,
я бы не стал вас винить. Прежде чем я продемонстрирую следующую функ-
цию, хочу сказать, что использование тегов <script> и ссылки на файлы CSS
были именно тем, что я и сделал, и это довольно хорошо сработало.

Проблемы начинаются, когда вам нужно сделать свои веб-ком по нен-
ты немного умнее и организованнее. Помимо тех небольших зависимо-
стей JS, о которых я упоминал ранее, как лучше всего управлять HTML-
кодом внутри своего компонента? Было бы идеально, особенно если
кода много, оставлять его за пределами своего класса и вставлять его.
Может быть, полезно сохранить разметку как отдельную задачу, не толь-
ко чтобы она не загромождала ваш класс веб-компонента, но и чтобы
несколько участников команды могли работать с одним компонентом,
вместо того чтобы использовать один и тот же файл при работе с раз-
личными задачами, такими как разметка, логика контроллера или стиль.

Еще одна большая проблема возникает, когда у вас есть собственный
веб-ком по нент внутри вашего веб-компонента. Как лучше всего спра-
виться с этим? Подумайте, что произойдет, если вы создадите прило-
жение, управляемое одним компонентом на вашей странице index.html.
У этого компонента может быть восемь компонентов, а, в свою очередь,
у каждого из них может иметься еще несколько компонентов.

В этой ситуации вам неожиданно придется:
� отслеживать каждый компонент, используемый в вашем проекте;
� убедиться, что у вас есть теги <script> для каждого компонента в ва-

шем файле index.html;
� удалить ссылки на все компоненты, которые больше не использу-

ются;
� вести полный список всех компонентов зависимостей, включая их

в файл index.html;
� управлять порядком загрузки каждого компонента и зависимости

компонента, обеспечивая загрузку сценариев до того, как они по-
надобятся;

� находиться в тесном контакте с членами команды, учитывая, что
все вы будете редактировать один и тот же файл index.html, чтобы
управлять всем этим.

Есть множество причин, чтобы выбрать более подходящий способ,
чем та неразбериха, которая показана на рис. 5.2, и, к счастью, во всех
популярных современных браузерах можно использовать модули JS!

5.2 Использование модулей для решения проблем
зависимости
Если вы незнакомы с концепцией модулей и хотите получить более по-
дробную информацию, пожалуйста, обратитесь к приложению. Если го-

135Использование модулей для решения проблем зависимости

ворить кратко, мы собираемся отказаться от этого беспорядка с тегами
<script>, который вынуждены поддерживать, и вместо этого загружать
сценарии и компоненты, используя новое ключевое слово import. Бла-
годаря этому мы можем уменьшить хрупкость включения JS в наш ос-
новной HTML-файл и сделать наши веб-ком по нен ты ответственными
за управление собственными зависимостями. Это чрезвычайно чистый
и организованный способ работы с пользовательскими компонентами.
Чтобы продемонстрировать его, давайте создадим простое приложение
на основе веб-ком по нен тов, содержащее несколько различных пользо-
вательских компонентов, чтобы подчеркнуть этот сдвиг в стратегии.

В итоге у нас будет архитектура, подобная той, что представлена на
рис. 5.3, управлять которой гораздо проще, чем тем, что показано на
рис. 5.2, и которая решает многие наши проблемы.

HTML-страница

<script src=

<script src=

<script src=

<script src=

<script src=

<script src=

<script src=

JS-зависимости в проекте

Несвязанные файлы,
о которых забыли

Рис. 5.2 Использование тегов <script> на главной HTML-странице означает, что вы
не должны забывать добавлять каждый JS-файл, который используете

HTML-страница

<script src=

Одна ссылка для
использования
одного
компонента

Компонент
управляет
зависимостью
для другого
компонента

То же самое,
но со множеством
зависимостей

Рис. 5.3 Страница index.html ссылается только на один компонент, что делает наш код проще,
но по-прежнему допускает наличие множества зависимостей

5.2.1 Создание музыкального инструмента с использованием
веб-ком по нен тов и модулей JS
В этом примере я хочу создать в нашем браузере струнный инструмент.
Я назову его веб-арфой! Каждая струна создается веб-компонентом,
и когда ее трогают, она вибрирует и издает звук. Чтобы ничего не услож-

136 Глава 5 Реализация более качественного веб-приложения с помощью модулей

нять, она будет выглядеть просто, как показано на рис. 5.4, но с функцио-
нальной точки зрения с ней должно быть весело поэкспериментировать.

Рис. 5.4 Вот как выглядит наша веб-арфа. Каждая белая линия –
это струна, которая вибрирует и издает шум

Мы будем использовать модули JS для управления всеми нашими за-
висимостями, так что загрузим только один файл JS в наш index.html,
несмотря на тот факт, что мы используем несколько веб-ком по нен тов.
Однако мы не будем писать собственный аудиодвижок – вместо этого
импортируем уже существующий прямо в веб-компонент, которому он
необходим.

Еще одна замечательная вещь, касающаяся децентрализации наших
зависимостей, заключается в том, что наша исходная HTML-страница
очень проста. У нее имеется только один компонент, на который есть
ссылки, как показано в приведенном ниже листинге.

Листинг 5.5 Минимальный HTML-файл приложения для нашей веб-арфы

<html>

 <head>

 <title>Web Harp</title>

 <script type="module"

 src="./components/app/app.js">

 </script>

 <link href="csshake.min.css"

 type="text/css" rel="stylesheet">

 <link href="main.css"

 type="text/css" rel="stylesheet">

 </head>

 <body>

 <webharp-app strings="8"></webharp-app>

 </body>

</html>

Наша единственная зависимость веб-компонента,
которая отвечает за все другие зависимости
компонента в приложении

Сторонняя CSS-библиотека csshake,
используемая для того, чтобы придать
нашим струнам эффект вибрации

CSS для управления стилями
на нашей HTML-странице

137Использование модулей для решения проблем зависимости

Сейчас я немного сплутовал со стилями, потому что использую биб-
лиотеку для управления анимацией. Таким образом, в этом отношении
компоненты данного проекта не самостоятельны, но во всех других
аспектах они являются таковыми. HTML-код в каждом компоненте также
очень прост. Поскольку мы просто создаем несколько вертикальных ли-
ний для обозначения струн в нашей арфе, разметки очень мало. Вся эта
простота позволяет нам сосредоточиться на изучении JS-зависимостей
с использованием модулей. В следующей главе мы рассмотрим исполь-
зование модулей для управления HTML и CSS, чтобы сделать все намного
чище, когда проекту требуется большее количество стилей и разметки,
в отличие от этого.

В этом проекте мы будем управлять тремя компонентами:
� <webharp-app> будет содержать все наше приложение и управлять

вводом с помощью мыши;
� <webharp-strings> будет содержать струны в нашем приложении;
� <webharp-string> будет каждой отдельной струной, по которой можно

ударять.
Каждый из этих компонентов будет находиться в отдельной папке

внутри главной папки компонентов. Это показано на рис. 5.5, где вы так-
же заметите несколько дополнительных файлов, которые помогут нам
управлять звуком и анимацией. Мы дойдем до этих дополнений по мере
продвижения.

Утилита для обертывания
нашей аудиобиблиотеки

Основное приложение (компонент)

Библиотека CSShake
для создания анимации

Главная страница и легкие стили

Исходная аудиобиблиотека
и файл midijs.wrapper.js

Рис. 5.5 Файловая структура веб-арфы

Также обратите внимание, что сначала мы создадим все эти компо-
ненты, чтобы установить минималистичный визуальный макет нашего

138 Глава 5 Реализация более качественного веб-приложения с помощью модулей

приложения. После этого мы наконец поместим компонент <webharp-app>
на страницу index.html, после чего сможем предварительно просмотреть
приложение, прежде чем перейти к добавлению интерактивности, ани-
мации и звука.

5.2.2 Начинаем с самого маленького компонента
Давайте начнем с самого малого и сосредоточимся на компоненте <web-
harp-string>. Это будет простая вертикальная линия, которую мы созда-
дим с помощью тега <div>. Мы применим стили, чтобы ее высота совпа-
дала с высотой контейнера, а ширина составляла 2 пикселя, и она была
белого цвета, как показано на рис. 5.6. Наш компонент берет начало
в приведенном ниже листинге.

Рис. 5.6 Отцентрированный компонент
<webharpstring> на черном фоне

Листинг 5.6 Веб-компонент, определяющий отдельную струну
нашего инструмента

// file: components/string/string.js

export default class WebHarpString

extends HTMLElement {

 strum(params) {}

 stopStrum() {}

 connectedCallback() {
 this.innerHTML = '<div class="line"></div> \

 <style>\

 webharp-string > .line { \

 background-color: white;\

 height: 100%; \

 width: 2px; \

 }\

 </style>';

 }

}

if (!customElements.get('webharp-string')) {

 customElements.define(

'webharp-string', WebHarpString);
}

Обратите внимание, что перед определением класса мы используем
ключевые слова export default. Таким образом мы помечаем наш класс
как модуль JS, который можно импортировать в другое место. Наш метод

Экспортируем класс в качестве модуля
Пустые заполнители, которые будут заполнены позже

innerHTML нашего компонента

Регистрирует наш пользовательский
элемент <webharp-string>

139Использование модулей для решения проблем зависимости

connectedCallback, который появляется, когда наш компонент добавляет-
ся в DOM, не должен вас удивлять, учитывая то, что вы уже прочитали
в других главах. Мы просто устанавливаем для innerHTML значение в виде
тега <div> со стилями, о которых я упоминал выше.

Мы смутно знаем, что хотим иметь возможность ударить по этой стру-
не. Если вы когда-либо видели гитарную струну, то, возможно, помните,
что она немного вибрирует, но в конце концов останавливается. Итак,
поскольку у нас нет реального плана, давайте просто остановимся на
методе strum. Можно догадаться, что он принимает какие-то параметры
в зависимости от того, какую ноту мы играем и насколько сильно ударя-
ют по струне. Мы вернемся к этому позже, но мы также можем догадать-
ся, что через некоторое время нам нужно перестать играть; следователь-
но, мы можем добавить пустой метод stopStrum.

5.2.3 Импорт и вложение веб-компонента в веб-компонент
Давайте перейдем к компоненту <webharp-strings> (листинг 5.7). Этот
компонент будет служить контейнером макета для струн, которые мы
планируем разместить горизонтально в приложении. Учитывая, что наш
компонент <webharp-app> – это всего лишь тонкая обертка вокруг этого ос-
новного визуального компонента, компонент <webharp-strings> – это то,
как будет выглядеть конечное приложение, как показано на рис. 5.4.

Листинг 5.7 Веб-компонент, содержащий несколько струн веб-арфы

// file: components/strings/strings.js

import WebHarpString from '../string/string.js';

export default class WebHarpStrings extends HTMLElement {

 connectedCallback() {
 let strings = '<div class="spacer"></div>';

 for (let c = 0; c < this.getAttribute('strings'); c++) {

 strings +=

 `<webharp-string></webharp-string>`;

 }

 strings += '<style>\

 webharp-strings { \

 height: 100%; \

 display: flex; \

 } \

 webharp-strings > webharp-string, div.spacer { \
 flex: 1; \.

 } \

 </style>';

 this.innerHTML = strings;

 this.stringsElements =

 this.querySelectorAll('webharp-string');

 }

}

Импортируем отдельный
компонент <webharp-string>

Перебираем и добавляем желаемое
количество строк, указанное

атрибутом strings

Каждая <webharp-string> устанавливается
посредством flex-контейнера

Получаем список всех наших струн
с помощью querySelector

140 Глава 5 Реализация более качественного веб-приложения с помощью модулей

if (!customElements.get('webharp-strings')) {

 customElements.define('webharp-strings', WebHarpStrings);
}

В нашем методе connectedCallback мы создадим компоненты <webharp-
string> в цикле for, где количество циклов – это количество строк, ко-
торое нам нужно. Этот компонент принимает атрибут с именем strings,
который передается в цикл for. В результате мы можем сделать арфу
с необходимым нам количеством струн.

К счастью, у нас есть модуль CSS flexbox, позволяющий нам очень легко
спланировать наш контейнер. Если дать каждой струне правило гибко-
сти flex: 1, наши струны будут равномерно располагаться горизонтально
по всему контейнеру, величина которого составляет 100 % от размера
нашего приложения. Я также добавил разделитель <div>; в противном
случае наша первая струна начиналась бы на самом краю контейнера
и была бы практически не видна. Мы также используем querySelectorAll,
чтобы поместить все элементы <webharp-string>, которые мы только что
добавили в массив, который мы можем использовать позже, когда доба-
вим интерактивности в наш компонент.

Самое главное, наша самая первая строка:

import WebHarpString from '../string/string.js';

Из этой книги мы узнали много интересного о веб-компонентах, но
мне кажется, что идея импортировать еще один веб-ком по нент в уже
существующий полностью с помощью JS, по сути, поднимает всю экоси-
стему на один уровень вверх. С помощью этого импорта мы позволили
нашему приложению узнать, что такое <webharp-string>, и когда мы до-
бавляем его в innerHTML, наш пользовательский элемент действует ровно
так, как и должен. Более того, нам не нужно ничего делать в нашем файле
index.html, чтобы ссылаться на наш веб-ком по нент или каким-либо об-
разом регистрировать его. Это просто работает как зависимость компо-
нента, которому она нужна.

Несмотря на то что это простой пример, могут возникнуть ситуации,
когда нам нужно использовать здесь <webharp-string>, также внутри дру-
гого компонента. При импорте, даже если один и тот же файл импорти-
руется в несколько мест, запрос выполняется только один раз, а последу-
ющий запрос на импорт просто использует первый результат.

Кроме того, мы можем защитить наши веб-ком по нен ты, не пытаясь
зарегистрировать их снова, если они уже использовались где-то еще, на-
пример:

if (!customElements.get('webharp-string')) {

 customElements.define('webharp-string', WebHarpString);
}

Учитывая это, мы можем с легкостью импортировать наши веб-ком-
по нен ты куда угодно.

Давайте теперь обернем наши <webharp-strings> конечным компонен-
том приложения, <webharp-app>, в котором будет находиться все наше

141Использование модулей для решения проблем зависимости

приложение и который будет единственным компонентом, включенным
в нашу страницу index.html.

5.2.4 Использование веб-компонента для обертки всего
веб-приложения
При создании такого веб-приложения можно легко разместить отдель-
ные компоненты на главной HTML-странице. Возможно, вы могли бы
поместить их в свой тег <body> и написать небольшой код в теге <script>,
чтобы связать все это воедино.

Вероятно, ваше приложение будет увеличиваться в размерах, вы буде-
те продолжать добавлять компоненты, и логика приложения будет расти.
Когда это произойдет, ваш файл index.html с каждым разом будет все
сложнее и сложнее поддерживать. Когда придет время извлечь основные
элементы и повторно упаковать их в более мелкие компоненты, вероят-
но, будет иметь место рефакторинг.

Мне бы хотелось предложить что-то еще. Давайте создадим веб-ком-
понент, представляющий все ваше приложение. У него будет та же струк-
тура и жизненный цикл, что и у остальных ваших компонентов, и он
будет импортировать любые необходимые вам зависимости. Когда этот
компонент начнет становиться слишком большим в процессе разработ-
ки вашего приложения, вы сможете легко разбить его на более мелкие
веб-ком по нен ты. Поскольку они будут иметь структуру, аналогичную
остальным вашим компонентам, рефакторинг, вероятно, будет мини-
мальным.

Листинг 5.8 Веб-компонент приложения «веб-арфа»

// file: components/app/app.js

import Strings from '../strings/strings.js';

export default class WebHarpApp extends HTMLElement {

 connectedCallback() {
 this.innerHTML = '<webharp-strings strings="' +

 this.getAttribute('strings') + '"></webharp-strings>';

 }

}

if (!customElements.get('webharp-app')) {

 customElements.define('webharp-app', WebHarpApp);
}

Наш прикладной компонент довольно прост. Как и в случае с нашим
последним компонентом, мы импортируем любые дочерние компо-
ненты, которые нам нужны. В этом случае мы импортируем компонент
<webharpstrings>. Опять же, это контейнер, в котором содержатся все стро-
ки нашей веб-арфы. Подобно последнему компоненту, мы принимаем
атрибут с именем strings, чтобы указать, сколько струн есть у нашей веб-
арфы, и передать его компоненту <webharp-strings>. И снова мы исполь-
зуем ключевые слова export default перед определением нашего класса,

142 Глава 5 Реализация более качественного веб-приложения с помощью модулей

чтобы определить этот компонент как компонент, который можно им-
портировать. Между тем наш файл index.html безупречен и его легко чи-
тать, как показано в приведенном ниже листинге.

Листинг 5.9 Как сейчас выглядит наш HTML-файл

<html>

 <head>

 <title>Web Harp</title>

 <script type="module"

 src="./components/app/app.js">

 </script>

 <link href="main.css" type="text/css" rel="stylesheet">

 </head>

 <body>

 <webharp-app strings="12"></webharp-app>

 </body>

</html>

Просматривая этот файл index.html, обратите внимание: единствен-
ное, что находится в теге <script>, – это наш компонент <webharp-app>. Все
остальное является зависимостью нижестоящих компонентов, как вид-
но на рис. 5.7, и, к счастью, здесь нам не нужно волноваться по их поводу.
Еще раз важно отметить, что это возможно, потому что наш тег <script>
имеет тип module, что позволяет загружать модули. Это, в свою очередь,
дает возможность использовать ключевое слово import в рамках всего,
что загружается в качестве результата.

Струна (компонент)Струна (компонент)

Струны (компонент)

Струна (компонент)Струна (компонент)

Струна (компонент)Струна (компонент)

Приложение «Веб-арфа»
(компонент) HTML-страница

Импорт модуля WebHarpApp

<webharp-app>

</webharp-app>

Рис. 5.7 Вложенные веб-ком по нен ты внутри веб-компонента приложения.
Все они импортированы в виде модуля с нашей главной HTML-страницы

В файле main.css нет ничего особенного: только код для установки
размера и цвета нашего приложения и удаления полей, чтобы наше при-
ложение работало по краям окна браузера, как показано в листинге 5.10,
и отображалось в нашем браузере, как на рис. 5.8.

Одна зависимость компонента приложения

Компонент приложения

143Добавляем интерактивности в наш компонент

Рис. 5.8 Текущее состояние нашей веб-арфы

Листинг 5.10 Простые стили для body и webharp-app

body {

 background-color: black;

 margin: 0;

 padding: 0;

}

webharp-app {

 height: 100vh;

 width: 100vw;

}

На данный момент мы создали основную структуру нашего прило-
жения. Необходимые компоненты на месте, поэтому мы можем про-
смотреть их в нашем браузере (не забудьте использовать какой-нибудь
локальный веб-сервер, поскольку эти модули могут быть недоступны
для загрузки, если вы просто применяете свою файловую систему). Ее
внешний вид отныне не будет меняться, но нам нужно добавить немного
функционала и интерактивности!

5.3 Добавляем интерактивности
в наш компонент
Следующий шаг – заставить наше приложение работать! Забегая вперед,
скажу, что наша цель – добавить анимацию и звук. Все это будет появ-
ляться, когда мы будем играть по струнам арфы с помощью мыши. Для
этого мы будем слушать события ввода с использованием мыши, над-
строив наш метод connectedCallback в компоненте <webharpapp>, опреде-
ленном в components/app/app.js.

144 Глава 5 Реализация более качественного веб-приложения с помощью модулей

Листинг 5.11 Добавление обработчика событий
с помощью жирной стрелки

// file: components/app/app.js

connectedCallback() {
 this.innerHTML = '<webharp-strings strings="' +

 this.getAttribute('strings') + '"></webharp-strings>';

 this.stringsElement =

 this.querySelector('webharp-strings');

 this.addEventListener('mousemove',
 e => this.onMouseMove(e));

}

Чтобы использовать этот элемент позже, мы запрашиваем и сохра-
няем ссылку на наш компонент <webharpstrings> с помощью this.query-
Selector('webharp-strings');, как видно из листинга 5.11. Самое главное,
что мы добавляем слушателя событий к самому компоненту (this) для
прослушивания событий движения мыши:

this.addEventListener('mousemove', e => this.onMouseMove(e));

Слушатель, которого мы добавили, использует жирную стрелку, чтобы
сохранить область видимости экземпляра класса в onMouseMove.

5.3.1 Прослушивание событий движения мыши
Конечно, функция, на которую мы указываем, еще не существует. Нам
нужно добавить в наш класс onMouseMove, чтобы перехватить это событие:

onMouseMove(event) {

 this.stringsElement.points = {

 last: this.lastPoint,
 current: { x: event.pageX, y: event.pageY } };
 this.lastPoint = { x: event.pageX, y: event.pageY };
}

Здесь мы одновременно фиксируем текущие координаты мыши в пе-
ременной и перед этим отправляем текущую и последнюю координаты
мыши в наш элемент <webharp-strings>. Отправка обеих этих координат
позволяет нам получить расстояние, пройденное между нашими движе-
ниями, которое мы затем можем использовать, чтобы определить, на-
сколько сильно или быстро мышь бьет по струнам.

5.3.2 Передача данных в дочерние компоненты
Обратите внимание, что мы отправляем эти точки с помощью метода
чтения из нашего компонента <webharpstrings>, поэтому давайте запол-
ним сеттер из файла component/strings.js кодом из этого листинга.

Сохраняет ссылку на элемент
<webharpstrings> для последующего

использования

Добавляет слушателя события mousemove
в наш компонент приложения

145Добавляем интерактивности в наш компонент

Листинг 5.12 Отправка точек в компонент <webharpstrings>

// file: components/strings/strings.js

set points(pts) {

 if (!this.stringsElements) { return; }

 if (!pts.last || !pts.current) { return; }

 let magnitude =

 Math.abs(pts.current.x – pts.last.x);

 let xMin

 Math.min(pts.current.x, pts.last.x);
 let xMax = Math.max(pts.current.x, pts.last.x);

 for (let d = 0;

 d < this.stringsElements.length; d++) {

 if (xMin <= this.stringsElements[d].offsetLeft && xMax >=

 this.stringsElements[d].offsetLeft) {

 let strum = {

 power: magnitude,
 string: d

 };

 this.stringsElements[d].strum(strum);

 }

 }

}

Итак, этот листинг немного сложный, но его можно объяснить. Во-пер-
вых, вы, наверное, помните из первых шагов данного примера, что мы
посмотрели каждый из наших компонентов <webharp-string> или каждую
визуальную струну и сохранили их все в массив, который можно будет
использовать позже. Вот теперь мы их используем.

Во-первых, нам, вероятно, следует признать, что теоретически мы мог-
ли бы получить событие мыши, поступающее до того, как все настрое но,
поэтому сначала мы проверим, заполнен ли наш массив, и выйдем из
функции, если это не так:

if (!this.stringsElements) { return; }

Мы также проверим, заполнены ли текущие и последние координаты,
особенно потому, что во время первого события mouse-move у нас не
будет этой последней координаты:

if (!pts.last || !pts.current) { return; }

Далее мы будем фиксировать скорость удара по струнам, получая рас-
стояние между двумя x, или горизонтальными координатами мыши,
также фиксируя самые низкие и самые высокие значения наших теку-
щих и последних координат:

let magnitude = Math.abs(pts.current.x – pts.last.x);

let xMin = Math.min(pts.current.x, pts.last.x);
let xMax = Math.max(pts.current.x, pts.last.x);

Проверяет, существует ли
stringsElements

Проверяет, что текущие и последние
координаты заполнены

Фиксирует
скорость удара Фиксирует самые низкие и самые

высокие значения текущей
и последней точек

Ударяет по соответствующим
струнам, перебирая их

146 Глава 5 Реализация более качественного веб-приложения с помощью модулей

Используя три этих полезных значения, мы можем перебрать элемен-
ты массива компонентов <webharp-string>. Если крайний левый край на-
шей струны попадает между последней и текущей координатами x, мы
знаем, что нужно ударить по этой конкретной струне. Мы можем отпра-
вить числовой индекс того, по какой струне ударили, а также магнитуду,
или то, насколько сильно это было сделано:

for (let d = 0; d < this.stringsElements.length; d++) {

 if (xMin <= this.stringsElements[d].offsetLeft && xMax >=

 this.stringsElements[d].offsetLeft) {

 let strum = {

 power: magnitude,
 string: d

 };

 this.stringsElements[d].strum(strum);

 }

}

Теперь у нас есть какая-то интерактивность! К сожалению, наша стру-
на на самом деле пока еще ничего не делает, когда по ней ударяют. Од-
нако мы можем проверить, что все работает, добавив console.log в файл
components/string/string.js:

strum(params) {

 if (this.timer) { clearTimeout(this.timer); }

 this.timer = setTimeout(() => this.stopStrum(), 1000);
 console.log(params);

}

Теперь если вы запустите код и откроете свой журнал консоли, то смо-
жете увидеть, по какой именно струне мы ударяем, а также насколько
сильно она звучит, непосредственно в консоли.

5.3.3 Заставляем наши компоненты вибрировать с помощью
CSS
Как и следовало ожидать, нужно добавить две последние вещи: визу-
альную и звуковую обратную связь (в конце концов, это музыкальный
инструмент). Сначала давайте добавим визуальный элемент с оговоркой
о том, что на самом деле это не урок по веб-компонентам или модулям
JS, а просто нечто, что мы хотим добавить, чтобы заставить этот пример
работать. Для этого мы задействуем CSS-проект под названием CSShake,
который можно найти по адресу http://elrumordelaluz.github.io/csshake/.

Цель CSShake – создать эффект тряски, что я постарался изобразить
на рис. 5.9. Есть множество разных способов, с помощью которых эта би-
блиотека позволяет вам трясти что-либо. Это одна из тех хороших биб-
лиотек, которые вы и не думали использовать, но теперь, когда она нам
нужна, просто здорово, насколько она продумана до мелочей! Для этой
демонстрации мы просто дадим ссылку на CSS-файл и позволим стилям
влиять на элементы в нашем компоненте, как обычно. В главе 7 мы из-

147Добавляем интерактивности в наш компонент

меним это понятие и защитим наш веб-ком по нент от проникновения
стилей с помощью Shadow DOM.

<элемент>

Рис. 5.9 CSShake берет элемент
на вашей странице и анимирует
его разными способами

Сперва давайте добавим в наш HTML-файл это:

<head>

 <title>Web Harp</title>

 <script type="module" src="./components/app/app.js"></script>

 <link href="main.css" type="text/css" rel="stylesheet">

 <link href="csshake.min.css" type="text/css" rel="stylesheet">

</head>

Чтобы использовать CSShake, мы просто добавляем классы и удаляем
их из элементов, которые хотим потрясти:

Листинг 5.13 Добавляем классы CSShake, чтобы создать эффект
вибрирования для наших струн, когда по ним ударяют

// file: components/string/string.js

strum(params) {

 if (this.timer) { clearTimeout(this.timer); }

 let dur = params.power * 10 + 250;

 this.classList.add(

 'shake',
 'shake-constant',
 'shake-horizontal');

 if (dur < 500) {

 this.classList.add('shake-little');

 }

 this.timer = setTimeout(() => this.stopStrum(), dur);
}

stopStrum() {

 this.classList.remove('shake', 'shake-constant', 'shake-horizontal',
 'shake-little');

}

Как уже упоминалось, здесь мы начинаем с очистки таймера, если та-
ковой существует. Мы также рассчитываем переменную duration в мил-

Добавляем классы CSShake:
базовый эффект «тряски»,
класс для запуска беспрерывной
анимации и горизонтальный тип
тряски

Если удар по струнам несильный,
тряска будет слабой

Удаляем все классы после того,
как по струнам перестают ударять

148 Глава 5 Реализация более качественного веб-приложения с помощью модулей

лисекундах, учитывая коэффициент мощности (или скорость, с которой
ударяли по струне) и добавляя минимальную линию отсчета в 250 мил-
лисекунд, или четверть секунды.

Для визуализации можно добавить несколько классов CSS, чтобы опи-
сать тряску струн.

Здесь используется базовый класс shake, а мы хотим, чтобы струна дро-
жала постоянно и горизонтально. Если удар не очень сильный, мы доба-
вим стиль shake-little, чтобы сильный удар отличался от слабого.

Наш удар будет таким же долгим, как и рассчитанная нами продолжи-
тельность. Мы остановим удар, когда таймер остановится, и в этот мо-
мент удалим все классы, добавленные в компонент <webharp-string>.

5.4 Обертывание сторонних библиотек
в виде модулей
Последнее, что нужно сделать, чтобы завершить наш эксперимент с веб-
арфой, – это звук! Web Audio API – сложная тема, и то же самое можно ска-
зать о любой генерации аудио- и тональных сигналов в режиме реального
времени. К счастью, у нас есть библиотеки JS, которые можно использовать,
чтобы скрыть всю эту сложность. Одна из таких библиотек, с которой мне
нравилось экспериментировать, – это MIDI.js (https://github.com/mudcube/
MIDI.js/). Если вы знакомы со стандартом MIDI, то знаете, что в основном
он используется для подключения музыкальных устройств, а не для созда-
ния самого звука, но эта библиотека также предлагает генерацию тональ-
ных сигналов в реальном времени. Если посмотреть на историю фиксаций,
то можно заметить, что последняя фиксация была в 2015 году. Определен-
но нет ничего плохого в том, чтобы создавать хорошую библиотеку, подоб-
ную этой, а затем переходить к другим вещам, после того как она станет
достаточно хорошей. Недостатком является то, что в этом проекте не ис-
пользуются новейшие функции языка JS, такие как модули, поэтому мы не
можем импортировать эту библиотеку в наш веб-компонент.

5.4.1 Инструменты пользовательского интерфейса
для обертывания модуля с помощью Node.js
Или все-таки можем? Хотя само по себе это не похоже на подходящий
проект, в 2017 году Оуэн Денсмор опубликовал на сайте medium.com
статью, в которой обсуждается обертывание JS-зависимостей в виде мо-
дулей. В одном из его проектов есть скрипт wraplib.js (https://github.com/
backspaces/as-app3d/blob/master/bin/wraplib.js). Как видно на рис. 5.10,
этот скрипт берет стороннюю библиотеку и оборачивает ее как модуль,
который можно импортировать в ваш проект.

Я вытащил этот скрипт в папку проекта bin. Нам также требуется ак-
туальная библиотека MIDI.js. Обычно мы бы установили MIDI.js из npm,
что вы, безусловно, можете сделать, запустив это:

npm install midi.js

149Обертывание сторонних библиотек в виде модулей

Сторонняя библиотека
Сторонняя библиотека

Обернутая библиотека

export default {

}

Утилита-обертка
Node.js

Рис. 5.10 Использование утилиты Node.js для обертывания сторонней библиотеки
в качестве импортируемого модуля

Однако чтобы было удобнее, я поместил минифицированный файл
MIDI.js в папку проекта в репозитории GitHub для этой книги, и мы мо-
жем использовать его непосредственно оттуда. Предполагая, что у вас
уже установлен Node.js, перейдите в каталог вашего проекта в термина-
ле и наберите это:

node ./bin/wraplib.js midi.min.js MIDI > midijs.wrapper.js

Файл wraplib.js, содержащий всего 33 строки кода, довольно прост,
если вы его откроете. По сути, с помощью первого аргумента вы сооб-
щаете ему, какой файл вы хотите обернуть; второй аргумент – это имя
глобальной переменной, в которой хранится библиотека, а затем пере-
дается в выходной файл.

5.4.2 Не идеально, но работает
Возможно, вы не поверили своим глазам, когда я описал второй па-
раметр. Wraplib – это что-то вроде приема, и распространенным аргу-
ментом является то, что он не должен загромождать глобальное про-
странство имен, как он это делает. В нашем примере, как только мы
запустим библиотеку, если вы откроете инструменты разработчика
и window.MIDI, то увидите библиотеку, которую мы оборачиваем. Такая
схема размещения вещей в глобальном пространстве имен немного
беспорядочная; но, с другой стороны, это прием, который позволяет
нам импортировать биб лиотеку, не обновлявшуюся в течение несколь-
ких лет. И конечно, данный узловой скрипт для обертывания библио-
теки может легко превратить это в процесс сборки пользовательского
интерфейса с помощью Gulp, Grunt или даже простого запуска npm. Мы
рассмотрим это в главе 12.

5.4.3 Использование обернутого модуля
для воспроизведения нот
Обернув файл midi.js в качестве модуля, давайте импортируем его и ис-
пользуем! В файле /string/string.js мы инициализируем и загружаем зву-
ковой шрифт пианино в дополнение к нашей предыдущей разметке.

150 Глава 5 Реализация более качественного веб-приложения с помощью модулей

Листинг 5.14 Инициализация MIDI.js и подготовка к игре на фортепиано

// file: components/string/string.js

connectedCallback() {
 MIDI.loadPlugin({

 soundfontUrl: './',
 instrument: 'acoustic_grand_piano',
 onsuccess: () => this.onLoaded()

 });

 this.innerHTML = '<div class="line"></div> \

 <style>\

 webharp-string > .line { \

 background-color: white;\

 height: 100%; \

 width: 2px; \

 }\

 </style>';

}

onLoaded() {

 this._ready = true;

}

Как и midi.js, я включил его в корень проекта. Кроме того, вы можете
найти его и скопировать из исходного репозитория: https://github.com/
mudcube/MIDI.js/tree/master/examples/soundfont. В этом же файле мы до-
бавим функцию playSound и запустим ее из нашего метода strum.

Листинг 5.15 Добавляем воспроизведения нот из функции strum

// file: components/string/string.js

strum(params) {

 if (this.timer) { clearTimeout(this.timer); }

 let dur = params.power * 10 + 250;

 this.classList.add('shake', 'shake-constant', 'shake-horizontal');
 if (dur < 500) {

 this.classList.add('shake-little');

 }

 this.timer = setTimeout(() => this.stopStrum(), dur);
 this.playSound(params);

}

playSound(params) {

 if (!this._ready) { return; }

 let note = 60 + params.string * 5;

 MIDI.setVolume(0, 127);
 MIDI.noteOn(0, note, params.power, 0);
 MIDI.noteOff(0, note, 0.75);
}

Инициализируем плагин MIDI с помощью
инструмента acoustic_grand_piano

Устанавливаем флаг, чтобы указать, что мы готовы,
когда плагин будет инициализирован

Вызываем функцию playSound во время удара по струнам

Возвращаемся, если сторонняя
библиотека еще не готова

Устанавливает ноту, которую мы хотим
сыграть, в зависимости от выбранной струны

Начинает воспроизведение ноты
с той же силой, с какой пользователь
ударил по струнеУстанавливает продолжительность

воспроизведения на ¾ секунды

151Обертывание сторонних библиотек в виде модулей

Здесь есть некоторые мелкие детали, касающиеся нот, которые мы
играем, а именно: мы начнем с ноты си в четвертой октаве и будем под-
ниматься на пять с половиной шагов для каждого индекса струны, по
которой ударили. Поскольку мы немного углубляемся в теорию музыки,
если вам это не понятно, не страшно, но не стесняйтесь поэксперимен-
тировать с числами.

Кроме того, при воспроизведении ноты мы используем силу удара
по струне в качестве скорости (представьте себе клавишу пианино и то,
как сильно вы ударяете по ней). Наконец, мы установим длительность
ноты в 0,75 секунды (или как долго она будет звучать после нажатия).
Я использую здесь постоянное число, потому что звук пианино не имеет
большой изменчивости в длине, прежде чем упасть.

5.4.4 Больше никакого автовоспроизведения аудио
К сожалению, после того как я изначально написал эту главу, Chrome
начал поставлять версии, в которых фоновое аудио не могло воспро-
изводиться, пока пользователь не предпринимал какие-либо действия,
например кликал мышью. Хотя я, конечно, могу понять, насколько раз-
дражает воспроизведение звука, когда об этом не просят, в таких забав-
ных экспериментах, как этот, это несколько угнетает.

Тем не менее нам придется заняться этим, чтобы наша веб-арфа ра-
ботала! Для этого мы просто заставим пользователя кликнуть по экрану
с тегом <div>, занимающим начальную страницу. Наш измененный файл
index.html показан в приведенном ниже листинге.

Листинг 5.16 Файл index.html

<html>

 <head>

 <title>Web Harp</title>

 <script type="module" src="./components/app/app.js"></script>

 <link href="csshake.min.css" type="text/css" rel="stylesheet">

 <link href="main.css" type="text/css" rel="stylesheet">

 <script>

 function clicktostart() {

 document.querySelector('.audio-fix').style.display = 'none';

 document.querySelector('webharp-app').style.display =

 'inline-block';

 }

 </script>

 </head>

 <body>

 <webharp-app strings="12"></webharp-app>

 <div class="audio-fix"

 onclick="clicktostart()">

 Click Me To Start
 </div>

 </body>

</html>

При щелчке мышью приложение веб-арфы
отображается нормально

Добавляет элемент div, который занимает
всю страницу, заставляя пользователя
сделать щелчок мышью

152 Глава 5 Реализация более качественного веб-приложения с помощью модулей

И наконец, нам просто нужно применить стили к этому тегу <div>,
а также позволить ему и приложению накладываться друг на друга с по-
мощью абсолютного позиционирования. В этом листинге показаны сти-
ли, которые мы добавили к тому, что у нас было ранее.

Листинг 5.17 Новые стили CSS

body {

 background-color: black;

 margin: 0;

 padding: 0;

}

.audio-fix {

 position: absolute;

 width: 100vw;

 height: 100vh;

 background-color: #2a2a2a;

 color: white;

 font-size: xx-large;

 display: flex;

 justify-content: center;

 align-items: center;

}

webharp-app {

 height: 100vh;

 width: 100vw;

 display: none;

 position: absolute;

}

Теперь пользователь увидит то, что изображено на рис. 5.11, прежде
чем сможет запустить веб-арфу.

Рис. 5.11 Пользователь должен кликнуть мышью для запуска веб-арфы,
чтобы включить звук и не быть заблокированным Chrome

Стилизуем и позиционируем элемент

Изначально делает так,
чтобы веб-арфа не отображалась

Используем абсолютное позиционирование

153Резюме

5.4.5 Игра на веб-арфе
После этого мы можем перезагрузить нашу веб-арфу, навести мышку на
струны и сыграть на ней! Некоторые вещи, безусловно, можно улучшить
с помощью этого примера. Наши встроенные HTML-код и стили CSS вы-
глядят довольно уродливо. Кроме того, было бы лучше, если бы мы могли
сосредоточиться на логике наших веб-ком по нен тов в классе и поместить
CSS и HTML отдельно где-нибудь еще. Все это, безусловно, сделает наш
компонент более читабельным и организованным. В следующей главе
мы рассмотрим еще одну концепцию ES2015 под названием шаблонные
литералы, которая поможет нам разобраться с этим!

Резюме
Из этой главы вы узнали:

� как веб-ком по нен ты могут управлять своими зависимостями, в том
числе и другими веб-ком по нен та ми, с помощью модулей, а также
как можно избежать путаницы в отношении того, как включить
компонент в вашу страницу при наличии одного импорта для ис-
пользования вашего веб-компонента;

� что веб-ком по нен ты могут быть немного более самостоятельными,
помещая стили CSS внутри компонента и избегая необходимости
управлять большим количеством CSS-файлов или правилами для
множества компонентов в одном CSS-файле;

� как обертывать сторонние библиотеки в виде модуля с использова-
нием Node.js, даже если первоначальный автор никогда не предпо-
лагал, что библиотека будет использоваться таким образом, избегая
необходимости делать исключение для другого самостоятельного
компонента;

� как создать музыкальный инструмент в браузере с использованием
веб-ком по нен тов, причем основным приложением является веб-
ком понент, содержащий дочерние элементы, при этом файл index.
html будет оставаться очень маленьким и управляемым.

Часть II

Способы улучшить
рабочий процесс

вашего компонента

С оздание собственного HTML-элемента с помощью API пользователь-
ских элементов – довольно удивительная вещь. Снаружи это выгля-

дит как любой другой тег на странице, но внутри он настолько сложен или
прост, насколько вам нужно! Теперь пришло время сосредоточиться на ра-
боте и погрузиться в процесс создания мощного веб-компонента. Именно
здесь мы выходим за пределы пользовательских элементов и рассмотрим
остальную часть набора стандартов, образующих веб-ком по нен ты.

Как и в случае с любой новой технологией, веб-ком по нен ты столкну-
лись с некоторыми ошибками, как, например, ныне устаревшие HTML-
импорты; но здесь мы воcпользуемся этой ошибкой и разобьем ее на со-
ответствующие части, с которыми вы можете идти дальше. Мы сравним
одну из этих частей, шаблонный тег, с другими способами написания
внутреннего HTML-кода и CSS-стилей для создания пользовательского
интерфейса вашего компонента.

Наконец, в конце этой части мы поговорим о самой известной функ-
ции веб-компонента: Shadow DOM. Хотя она и не является обязательной
частью веб-ком по нен тов, это существенный сдвиг в отношении того, как
мы работаем с DOM браузера. Создание отдельной мини-модели DOM
только для вашего компонента чрезвычайно эффективно, поскольку из-
бавляет от разочарований, которые веб-разработчики испытывали на
протяжении многих лет, создавая защитный слой вокруг компонента,
куда случайным образом не закрадываются стили, а ваши внутренние
элементы не изменяются по причине неправильного JS-кода.

Поскольку Shadow DOM является таким мощным свойством и таким
изменением по сравнению с тем, что мы делали раньше, стоит упомя-
нуть о нескольких важных предостережениях. Эти предостережения
включают в себя полифилинг во все более редкой ситуации, когда ваш
браузер не поддерживает веб-ком по нен ты, а также в ситуациях, когда
вам действительно нужно проникновение стилей, например при ис-
пользовании дизайн-системы. Бóльшая часть этого раздела посвящена
Shadow DOM, потому что это поистине переломный момент.

6
Управление разметкой

Эта глава охватывает следующие темы:
� многострочные строки и их синтаксис;
� шаблонные литералы ES2015 (с переменными);
� шаблонирование HTML/CSS с использованием логики и функций JS;
� шаблонирование с использованием lit-html;
� шаблоны с тегами.

В этой главе мы продолжим опираться на то, что узнали из предыду-
щих глав, особенно из последней, в которой познакомились с модулями.
До сих пор нам удавалось создавать самостоятельные веб-ком по нен ты,
которые загружают собственные зависимости, включая другие веб-ком-
по нен ты. При этом наш файл index.html минимален. Между тем, изучая
использование атрибутов и создавая собственный API-компонент в гла-
ве 4, мы, по сути, упростили применение веб-ком по нен тов извне.

Тем не менее внутри у нас получился неряшливого вида компонент.
Вставка большого количества разметки и CSS-стилей в innerHTML ком-
понента работает хорошо, но это не очень удобно для чтения, особенно
в части работы с многострочными строками. В этой главе мы рассмот-
рим эту проблему, и в конце у нас будут безупречные и организованные
компоненты как внутри, так и снаружи.

156 Глава 6 Управление разметкой

6.1 Строки. Теория
Строки являются одной из самых основных вещей в JS. Вы, несомнен-
но, постоянно используете их в каждом аспекте веб-разработки. Зачем
переходить к такой простой концепции? Все дело в том, что в ES2015 по-
явилась новая функция JS, которая значительно очищает наши веб-ком-
по нен ты.

Так в чем же дело? До появления ES2015 существовало несколько раз-
ных строковых синтаксисов, которые делали то же самое, – двойные
и одинарные кавычки:

"Hi I am a string"

или

'Hi I am a string'

Если вы помните из предыдущих примеров, мы пытались засунуть
весь наш HTML-код в строку, а затем с помощью этой строки настроить
innerHTML нашего компонента. Когда HTML-кода немного, то все в по-
рядке:

this.innerHTML = '<div class="какой-то класс"></div>';

6.1.1 Когда innerHTML становится уродливым
Проблема в том, что HTML-код, который вы хотите добавить, начинает
увеличиваться. Даже таким кодом с трудом можно управлять:

this.innerHTML = '<div><input type="text"/><button>Submit</button></div>';

Однако в какой-то момент, если разместить все в одной строке, это
станет нечитаемым и трудноуправляемым, поэтому мы начинаем рас-
ширять нашу строку, чтобы охватить несколько строк. Давайте рассмот-
рим форму ввода данных из документации Mozilla по MDN.

Листинг 6.1 Пример формы ввода в строке JS

this.innerHTML = '<form> \

 <div> \

 <label for="example">Let's submit some text</label> \

 <input id="example" type="text" name="text"> \

 </div> \

 <div> \

 <input type="submit" value="Send"> \

 </div> \

 </form>';

Альтернативный способ создания многострочных строк в этом лис-
тинге немного более многословен:

Каждая строка имеет обратную косую черту
для перехода к следующей

157Использование шаблонных литералов

Листинг 6.2 Альтернативный способ создания многострочных строк

this.innerHTML = '<form>' +

 '<div>' +

 '<label for="example">Let's submit some text</label>' +

 '<input id="example" type="text" name="text">' +

 '</div>' +

 '<div>' +

 '<input type="submit" value="Send">' +

 '</div>' +

 '</form>';

Каждый из этих примеров далек от идеала. Желательно, чтобы HTML-
код выглядел как на реальной HTML-странице. Это означает наличие
нескольких строк, отступов и, что наиболее важно, отсутствие дополни-
тельных издержек при использовании чего-то особенного, например об-
ратной косой черты или знака +, которые используются для обозначения
перехода на следующую строку.

Позвольте мне познакомить вас с немного иным способом написания
строки в приведенном ниже листинге: символом обратного штриха (`).

Листинг 6.3 Заключение строк HTML в символы обратного штриха

this.innerHTML = `<form>

 <div>

 <label for="example">Let's submit some text</label>

 <input id="example" type="text" name="text">

 </div>

 <div>

 <input type="submit" value="Send">

 </div>

 </form>`;

Такой способ написания строк называется шаблонными литералами,
в противоположность способу с использованием строкового литерала,
который мы применяли раньше. В то время как предыдущий пример ре-
шает наши проблемы с читаемостью и рабочим процессом, шаблонные
литералы делают гораздо больше, что обычная помощь! Если вы незна-
комы с использованием шаблонных литералов или выражений внутри
них, обратитесь к приложению.

6.2 Использование шаблонных литералов
Используя этот более подходящий способ написания строк, можно себе
представить, что могут существовать отличные способы извлечения
HTML-кода из разных источников. Возможно, у вас есть какой-то HTML-
код, который вы написали в другом HTML-файле. Вы изменили разметку
и стили, чтобы они выглядели именно так, как вы хотите, и теперь при-
шло время интегрировать их. Сейчас мы рассмотрим несколько спосо-
бов вставки этого HTML-кода.

Каждая строка заключена
в одинарные кавычки
и сопровождается знаком +
в качестве продолжения

Символы обратного
штриха допускают наличие
многострочных строк
без дополнительного
форматирования

158 Глава 6 Управление разметкой

6.2.1 Приложение для создания визиток
Давайте попробуем выполнить небольшое упражнение и сделаем при-
ложение для создания визиток на базе браузера. Идея состоит в том, что
мы предоставим несколько различных параметров, которые пользова-
тель может настроить; тогда теоретически они будут готовы и их можно
будет печатать. Внутри самой визитки не будет никакой логики или ин-
терактивности; мы просто хотим отобразить статическую визитку с не-
сколькими значениями, такими как имя, должность, адрес электронной
почты и т. д., которые можно менять в зависимости от того, какие пере-
менные используются. В отличие от предыдущих упражнений, мы со-
средоточимся на макете и стилях заранее. Как только мы закончим, у нас
будут результаты, подобные тем, что показаны на рис. 6.1.

Рис. 6.1 Итоговый результат: визитная карточка,
которая позволяет нам настраивать такие значения,
как имя, должность и т. д.

Давайте подумаем о том, что мы делали с веб-ком по нен та ми до сих
пор. Любая визуальная обработка выполняется путем помещения наше-
го HTML-кода в JS и настройки свойства inner-HTML нашего компонента.
Это хорошо, если мы знаем HTML-код и стили CSS, которые хотим ис-
пользовать, но если макет и стили имеют первостепенное значение, это
не лучший способ создания разметки и итерации.

Нет, самый подходящий способ – просто вернуться к основам веб-
разработки и создать что-то прямо в HTML-файле с разметкой и стиля-
ми CSS. Его легко просматривать и настраивать, не беспокоясь ни о каких
веб-компонентах или сложностях, связанных с JS. С точки зрения зна-
чений, которые мы хотим заменить, мы можем использовать синтаксис
шаблонных литералов прямо в HTML-коде, как показано в листинге 6.5
и в нашем браузере на рис. 6.2.

159Использование шаблонных литералов

Рис. 6.2 Первоначальный макет визитки без стилей

Листинг 6.4 Разметка для визитной карточки
со встроенными выражениями

<div class="biz-card">

 <div class="logo"></div>

 <div class="top-text">

 <h1>${first_name} ${last_name}</h1>
 <h3>${title}</h3>
 </div>

 <div class="bottom-text">

 <h3>phone: ${phone}</h3>
 <h3>${email} / ${website}</h3>
 </div>

</div>

Это довольно простая разметка для HTML-файла, но постепенно она
начинает усложнять ваш класс веб-компонента вместе со всем осталь-
ным. В нашей визитке есть контейнер <div> для всей карточки, состоя-
щий из логотипа, за которым следуют имя и название должности. Текст
в нижней части визитки содержит номер телефона, адрес электронной
почты и веб-сайт.

Что действительно объединяет в одно целое, так это стили CSS. Прави-
ла стилей можно увидеть в листинге 6.5, а конечный результат изобра-
жен на рис. 6.3.

Рис. 6.3 Визитная карточка, созданная с использованием HTML и CSS
перед интеграцией веб-ком по нен тов

Здесь идет имя и фамилия
Здесь идет название должности

Здесь идут номера телефона

Здесь идут адрес электронной
почты и веб-сайт

160 Глава 6 Управление разметкой

Листинг 6.5 Стили для визитной карточки

<style>

 .biz-card {

 font-size: 16px;

 font-family: sans-serif;

 color: white;

 width: 700px;
 height: 400px;

 display: inline-block;

 border-color: #9a9a9a;
 background-size: 5%;

 background-image:

 ➥url("background-pattern.png");

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba
 ➥(0, 0, 0, 0.19);
 }

 .biz-card .logo {

 height: 100px;

 margin-top: 10%;

 text-align: center;

 background-image:

 ➥url("biz-card-logo.png");

 background-size: contain;

 background-position-x: center;

 background-repeat: no-repeat;

 }

 .biz-card .top-text {

 text-align: center;

 }

 .biz-card .top-text h1 {

 font-size: 2.5em;

 margin-bottom: 0;

 }

 .biz-card .top-text h3 {

 margin: 0;

 }

 .biz-card .bottom-text {

 text-align: center;

 margin-top: 10%;

 }

 .biz-card .bottom-text h3 {

 margin: 0;

 }

</style>

Конечно, я потратил какое-то время на итерацию и настройку раз-
метки и стилей, чтобы получить окончательный результат, но в этом

Основной стиль карточки

При копировании этого кода вставьте сюда
собственное фоновое изображение

Стиль логотипа

При копировании этого кода вставьте сюда
свое изображение логотипа

Стили для остальной части текста

161Импорт шаблонов

и суть! Если мы будем держать наш визуальный дизайн подальше от веб-
компонента и всего нашего проекта, то сможем сосредоточиться на его
правильном проектировании и оформлении.

В нашем браузере мы видим сырой синтаксис шаблонных литералов,
например ${first_name}, в контексте эти выражения выглядят несколь-
ко уродливо. Несмотря на это, мы можем опробовать различные имена,
адреса электронной почты и т. д., чтобы убедиться, что наш дизайн под-
ходит для разных контекстов, прежде чем в конечном итоге поместить
в него выражение заполнителя. Таким образом, мы сосредоточились на
нашей разметке и стилях вне области видимости, гипотетического при-
ложения и даже самого веб-компонента. При отсутствии JS в поле зрения
мы могли бы даже передать это дизайнеру или frontend-разработчику,
который, возможно, немного боится кода. Если мы довольны нашей раз-
меткой и стилями, как можно использовать эту визитную карточку в на-
шем веб-компоненте?

6.3 Импорт шаблонов
Это тот момент, когда новые функции JS, которые мы изучали, прекрас-
ным образом объединяют свои усилия. В частности, я говорю о комбина-
ции шаблонных литералов с модулями JS.

Давайте начнем новый проект для размещения веб-компонента ви-
зитной карточки. Наш файл index.html, показанный в приведенном ниже
листинге, снова будет предельно прост. Он служит лишь для размещения
веб-компонента в нашей модели DOM и загрузки JS-модуля.

Листинг 6.6 Новая страница, на которой размещен наш компонент
визитной карточки

<html>

 <head>

 <title>Business Card</title>
 <script

 type="module"

 src="components/bizcard/bizcard.js">

 </script>

 </head>

 <body>

 <biz-card></biz-card>

 </body>

</html>

Когда мы закончим – и как только наш компонент выполнит свою
работу по размещению HTML-кода и стилей, предоставив нам возмож-
ность указать значения, которые мы хотели бы поменять местами для
наших выражений-заполнителей, – мы получим результат, изображен-
ный на рис. 6.1 в начале этой главы.

Включает в себя модуль
определения веб-компонента

Объявляет веб-ком по нент на странице

162 Глава 6 Управление разметкой

6.3.1 Хранение разметки вне логики основного компонента
Далее, конечно же, стоит поработать над нашим классом определения
компонента, но с небольшим изменением: мы не будем включать HTML-
код или стили в приведенный ниже листинг.

Листинг 6.7 Компонент «настройщика» визитной карточки

import Template from './template.js';

class BizCard extends HTMLElement {
 connectedCallback() {
 this.innerHTML = Template.render({

 first_name: 'Emmett',
 last_name: 'Brown',
 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux'

 });

 }

}

if (!customElements.get('biz-card')) {

 customElements.define('biz-card', BizCard);
}

Поскольку сейчас у нас нет интерактивности и мы просто отобража-
ем визитную карточку – <biz-card> с параметризованным текстом, нам
просто нужно установить значения для свойства innerHTML нашего ком-
понента.

До того, как приступить к изучению этой главы, мы просто устанав-
ливали для innerHTML значения в виде уродливой строки в самом компо-
ненте. Если бы у нас были переменные для вставки в строку, как сейчас,
с именем, адресом электронной почты и т. д., было бы еще страшнее!
Чтобы сделать наши проекты более четкими и организованными, давай-
те импортируем наш HTML-код посредством модуля JS.

Вы можете спросить себя: почему модуль JS? Учитывая, что наша цель
здесь состоит в том, чтобы наш компонент отображал HTML-код, почему
бы не импортировать этот код? К сожалению, JS является единственным
допустимым типом модуля, поддерживаемым в настоящее время, но,
возможно, в будущем мы сможем импортировать и другие типы. Фак-
тически сейчас Chrome похоже намеревается реализовать модули CSS
и HTML, но нужно немного подождать. В следующей главе я вкратце рас-
скажу о теперь уже не существующих HTML-импортах как ранней по-
пытке решить эту проблему, хотя они были импортированы только из
другой директивы HTML, а не через JS, как мы пытаемся сделать сейчас.

6.3.2 Модуль для HTML и CSS
Все это говорит о том, что использование JS для хранения нашего HTML-
кода – довольно сильная вещь и позволяет вставлять логику, когда нам

Импортирует наш шаблонный модуль

Использует шаблон для визуализации
HTML и CSS в innerHTML компонента

163Импорт шаблонов

это нужно. Для начала давайте пойдем простым путем и создадим мо-
дуль, который содержит наш шаблон, как показано в этом листинге.

Листинг 6.8 Определение нашего модуля шаблона

export default {

 render(props) {

 return `${this.html(props)}
 ${this.css(props)}`;
 },

 html(p) { return ``; },
 css(p) { return ``; }

}

Вы сразу заметите, что здесь у меня еще нет HTML-кода или стилей,
потому что я хочу поговорить о структуре без разметки, которая бы ме-
шала.

Во-первых, вы могли заметить, что это не класс, в отличие от любого
другого модуля, который мы использовали. Конечно, можно свободно
использовать здесь класс, если хотите, но на самом деле для этого нет
причин, и он просто добавляет дополнительный этап создания экзем-
пляра и его сохранения, если вам нужно использовать этот модуль не-
сколько раз в классе.

Вместо этого, не делая его классом, мы можем сразу использовать
его в нашем веб-компоненте, вызвав импорт и содержащуюся в нем
функцию:

Template.render(. . .

Мой метод render объединяет как HTML, так и CSS из соответствующих
методов.

Конечно, я мог бы просто собрать все разметки в одну; но я думаю,
что их удобнее отделять и предлагать немного больше гибкости относи-
тельно того, как мы хотим вставлять и использовать любую из них, как
показано на рис. 6.4.

Следим за тем, чтобы размер
этого класса оставался небольшим…

…сохраняя весь HTML-код
и стили здесь

Класс веб-компонента Шаблонный модуль

Жизненный цикл компонента

Краткая логика компонента

Рендеринг HTML/CSS

Функция render
вытягивает
HTML-код и стили

<div>lots of html</div>

<style>

 .lots-of-css { . . . }

</style>

Рис. 6.4 Сохраняем класс вашего веб-компонента маленьким
с помощью еще одного модуля

Комбинированный HTML и CSS
для визуализации

Функция для возврата
будущего HTML-кода

Функция для возврата будущего CSS

164 Глава 6 Управление разметкой

Теперь вопрос: как заполнить эти пустые шаблонные литералы содер-
жимым? Очевидный ответ – открыть HTML-файл, который мы создали
ранее в этой главе, просто скопировать то, что нам нужно, и вставить.
Если вы работаете с одной или несколькими подобными разметками,
скопировать и вставить их довольно просто. Но что, если бы вы рабо-
тали с большой командой производственных ассистентов, которые не
касались бы JS-кода или системы управления исходным кодом и произ-
водили бы десятки HTML- и CSS-шаблонов, постоянно взаимодействуя
с командой проектировщиков? Некоторым это может показаться пре-
увеличением, но я работал над проектами, в которых мы создавали обо-
лочку приложения для размещения множества страниц. Это было что-то
вроде опросника, где у всех страниц были достаточно разные макеты,
чтобы иметь возможность использовать единый шаблон.

В таких случаях у вас может возникнуть желание автоматизировать
процесс, когда вы берете HTML-код, который можно предварительно
просматривать автономно в браузере вплоть до подготовки вашего мо-
дуля на основе JS. Именно это я и сделал в репозитории на GitHub для
этого раздела. Там я создал автоматическую утилиту на базе Node.js, ко-
торая берет исходный HTML-файл и автоматически заполняет модуль
шаблона, который мы будем использовать в нашей визитной карточке
(рис. 6.5).

Затем утилита Node.js преобразует
HTML/CSS в JS-код для шаблона

Утилита Node.js

Шаблонный модуль

Исходный HTML-код
и CSS

Обычный HTML-код и CSS
принимается утилитой Node.js

Рис. 6.5 Пример утилиты на основе Node.js для автоматизации заполнения
JS-модуля с помощью существующего HTML-файла

Недостатком является то, что эти варианты использования, вероят-
но, настолько отличаются друг от друга, что мой пример служит лишь
отправной точкой. Независимо от того, откуда взялся HTML/CSS, авто-
матизированная эта утилита или нет, наша визитная карточка выглядит
как на рис. 6.6.

165Логика шаблона

Рис. 6.6 Результаты интегрированного шаблона на данный момент

6.4 Логика шаблона
HTML и CSS под управлением JS обладают большим потенциалом, кото-
рый может остаться незамеченным при использовании больших блоков
разметки (будь то копирование и вставка или же все будет делаться авто-
матически). Чтобы понять, что я имею в виду, давайте немного порабо-
таем с нашей визиткой. Мы дадим пользователю возможность выбирать
нужный вариант из списка логотипов и мозаичного фона для персона-
лизации своей карточки, как показано на рис. 6.7.

Рис. 6.7 Возможность настройки внешнего вида визитной карточки
с помощью логотипа и фона

Для этого я хотел бы кратко коснуться подхода, который более соот-
ветствует стилю «сделай сам», а затем перейти к более позднему классу
вариантов с большим потенциалом.

166 Глава 6 Управление разметкой

6.4.1 Создание меню из данных
Начнем с написания кода для генерации списков опций, показанных на
рис. 6.8.

Рис. 6.8 Два списка опций, которые мы добавим в наш компонент,
чтобы настроить визитку

Мы просто продолжим надстраивать наш компонент, не изменяя сге-
нерированный шаблон template.js. Для этого мы добавим дополнитель-
ные данные, чтобы передать их в метод Template.render в нашем опре-
делении веб-компонента bizcard.js, как показано в приведенном ниже
листинге.

Листинг 6.9 Передача параметров меню в шаблон

this.innerHTML = Template.render({

 first_name: 'Emmett',
 last_name: 'Brown',
 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux',

 backgroundChoices: [
 { name: 'big dots', uri: './images/big-dot-pattern.png'},
 { name: 'little dots', uri: './images/tiny-dot-pattern.png'},
 { name: 'squares', uri: './images/square-pattern.png'},
 { name: 'stripes', uri: './images/stripes-pattern.png'},
 { name: 'diamond', uri: './images/diamond-pattern.png'},
],
 logoChoices: [
 { name: 'mobius strip', uri: './images/mobius-logo.png'},
 { name: 'shopping bag', uri: './images/bag-logo.png'},
 { name: 'copper splash', uri: './images/splash-logo.png'},
 { name: 'star', uri: './images/star-logo.png'},
 { name: 'cone', uri: './images/cone-logo.png'},
],
});

В частности, мы добавили два массива: один для мозаичного фона
карточки и один для логотипа в центре. Мы будем использовать их, что-
бы заполнить два раскрывающихся списка, обозначенных тегами <se-
lect> для настройки визитки.

Варианты фона визитки

Выбор логотипа

167Логика шаблона

Чтобы заполнить эти списки, мы добавим немного HTML-кода в наш
модуль template.js, как показано в приведенном ниже листинге.

Листинг 6.10 Вызов выражения на базе функции
для отображения наших меню

html(p) {

 return `

 <div class="logo-picker">

 Logo: ${this.options(p.logoChoices)}
 </div>

 <div class="background-picker">Background:

 ${this.options(p.backgroundChoices)}</div>

 <div class="biz-card">

 <div class="logo"></div>

 <div class="top-text">

 <h1>${p.first_name} ${p.last_name}</h1>
 <h3>${p.title}</h3>
 </div>

 <div class="bottom-text">

 <h3>phone: ${p.phone}</h3>
 <h3>${p.email} / ${p.website}</h3>
 </div>

 </div>`;

},

Обратите внимание, что хотя мы используем эти массивы, изначально
определенные в определении веб-компонента, простая передача масси-
ва ничего не даст, кроме визуализации необработанного массива. Здесь
вступает в дело пользовательский метод options.

6.4.2 Больше логики генерации
и более жесткая автоматизация
С этими новыми меню с тегом <select> мы делаем нечто иное, используя
шаблонные литералы.

Вместо того чтобы просто использовать переменную для заполнения,
мы используем функцию из нашего шаблона с возвращаемым значени-
ем, содержащим строку с меню, как показано на рис. 6.9. Мало того, мы
используем одну и ту же функцию для создания обоих меню, отличаю-
щихся только списком параметров, которые мы передаем, как показано
в приведенном ниже листинге.

Листинг 6.11 Функция для преобразования массива параметров
в параметры меню

options(list) {

 let choices = ``;

 for (let c = 0; c < list.length; c++) {

Заполнение HTML-кода
вариантами логотипа

Заполнение HTML-кода
вариантами фона

Перебираем список вариантов

168 Глава 6 Управление разметкой

 choices += `<option value="${list[c].uri}">${list[c].name}</option>`;
 }

 return `<select>${choices}</select>`;
}

Рис. 6.9 Вызов функции JS из HTML-шаблона для генерации пунктов меню из массива

Далее нам нужно, чтобы компонент нашей визитной карточки реа-
гировал на изменения в выпадающих меню. Это окольным путем при-
водит нас к последней вспомогательной функции, которую я хотел бы
добавить в свои файлы template.js.

6.5 Кеширование элементов
Учтите, что нам нужно будет добавить слушателей событий в наши меню
для прослушивания изменений в них. Для этого нам, естественно, по-
надобятся ссылки на них. Конечно, после настройки свойства innerHTML
в функции connectedCallback из нашего определения веб-компонента до-
статочно просто сделать следующее:

Листинг 6.12 Добавляем слушателей событий, чтобы реагировать
на изменения в выпадающих меню

this.querySelector('.logo-picker select').addEventListener('change', e =>
 this.updateGraphics());

this.querySelector('.background-picker select').addEventListener(

 'change', e => this.updateGraphics());

Однако этот метод далеко не идеален. Во-первых, выбор запроса от-
нимает время у ЦП.

Добавляем тег option
с вариантом к строке

Возвращаем меню, заполненное пунктами

Добавляем слушателя событий
для отслеживания изменений логотипа

Добавляем слушателя событий
для наблюдения за изменениями фона

169Кеширование элементов

Эти две строки вряд ли являются проблемой и появляются только один
раз, чтобы добавить слушателя событий. С другой стороны, давайте по-
смотрим на функцию updateGraphics в классе веб-компонента bizcard.js,
которая показана в приведенном ниже листинге.

Листинг 6.13 При смене логотипа или фона выполняется
повторная визуализация обоих

updateGraphics() {

 this.querySelector('.biz-card')

 .style.backgroundImage = `url("${this.querySelector(
 '.background-picker select').value}")`;

 this.querySelector('.logo')

 .style.backgroundImage =`url("${this.querySelector(
 '.logo-picker select').value}")`;

}

Эти две строки кода появляются при изменении любого из меню. Сна-
чала мы выбираем элемент контейнера визитной карточки и присваи-
ваем backgroundImage значение фонового меню, выбранного запросом.
И еще раз мы делаем это для логотипа.

Да, мы выполняем дополнительную обработку, выбирая запрос четыре
раза при каждом изменении меню. Если бы все было намного сложнее, это,
вероятно, было бы серьезной проблемой. В частности, с этим примером
нет никаких особых проблем, но при наличии ситуаций, когда вам нужна
оптимизация, безусловно, стоит изучить эту дополнительную обработку!

6.5.1 Не заставляйте меня использовать метод querySelector
в моем компоненте
Обратите внимание на отсутствие читабельности в этих операторах
и помните, что разметка находится в модуле template.js, а не здесь,
в классе веб-ком по нен тов. Также учтите, что разметка неизбежно изме-
нится, когда мы будем снова и снова возвращаться к нашему проекту,
и, что еще хуже, выбор запросов может стать более сложным, когда наш
HTML-код станет сложнее.

Из-за всех этих проблем мне нравится кешировать свои DOM-эле мен-
ты, используя метод внутри самого модуля template.js. Когда функция
находится рядом с функцией html() { . . . }, я могу легко ссылаться на
разметку для создания своих селекторов. Простой пример с тегами <form>
показывает это отображение на рис. 6.10.

В нашем примере с визиткой я могу поместить в модуль template.js
это:

Листинг 6.14 Используем метод querySelector один раз
и сохраняем ссылки для последующего применения

mapDOM(scope) {

 return {

Еще один метод querySelector
для получения карточки

И еще один метод querySelector
для получения логотипа

Параметр scope – это ссылка на веб-компонент

170 Глава 6 Управление разметкой

 logoPicker: scope.querySelector(

 '.logo-picker select'),
 backgroundPicker: scope.querySelector('.background-picker select'),
 logo: scope.querySelector('.logo'),
 background: scope.querySelector('.biz-card')

 }

},

Объект JavaScript

Рис. 6.10 Отображение и кеширование элементов из метода querySelector
в объект JS для удобства

Здесь мы одновременно кешируем элементы и создаем простые ссыл-
ки на них.

Кроме того, эти простые ссылки могут быть настолько постоянны-
ми, насколько вам нужно! То есть, например, если мне нужно поменять
селектор на logoPicker, я могу сделать это прямо здесь. Может быть, он
поменяется на scope.querySelector('.card-container > div.logo-chooser se-
lect'). Мой селектор стал немного сложнее, но мой веб-ком по нент мо-
жет и дальше ссылаться на свойство logoPicker.

Единственная небольшая сложность здесь заключается в том, что-
бы перейти в scope. Поскольку функция mapDOM находится в другом мо-
дуле и не является экземпляром класса, у нее нет ссылки на класс веб-
компонента. Чтобы решить эту проблему, можно просто передать ссылку
на наш веб-ком по нент или this в функцию mapDOM, как это делается в при-
веденном ниже листинге.

Листинг 6.15 Убираем метод querySelector из логики контроллера
компонента

import Template from './template.js';

class BizCard extends HTMLElement {
 connectedCallback() {
 this.innerHTML = Template.render({. . . });

 this.dom = Template.mapDOM(this);

 this.dom.backgroundPicker.addEventListener(

 'change', e => this.updateGraphics());
 this.dom.logoPicker.addEventListener(

 'change', e => this.updateGraphics());
 this.updateGraphics();

 }

Используем метод querySelector
один раз и сохраняем ссылки в объект

Параметры не изменились
и были опущены для краткости

Отображает наши элементы в объект JS

Добавляет слушателя
к элементу logoPicker,
на который ссылается
наш объект элемента

171Умные шаблоны

 updateGraphics() {

 this.dom.background.style.backgroundImage =

 `url("${this.dom.backgroundPicker.value}")`;
 this.dom.logo.style.backgroundImage =

 `url("${this.dom.logoPicker.value}")`;
}

if (!customElements.get('biz-card')) {

 customElements.define('biz-card', BizCard);
}

Видно, что в нашей функции connectedCallback мы присваиваем this.
dom объекту, где находятся наши кешированные элементы, и можем ссы-
латься на него где угодно в нашем классе. С помощью простых имен
свойств, которые имеют смысл для нашего контекста, мы избегаем ко-
рявого кода, а также (минимального) снижения производительности при
использовании метода querySelector().

В последнее время я поддерживаю более автоматизированные под-
ходы, которые используют атрибут, чтобы «пометить» каждый элемент,
а затем используют скрипт для итерации и создания подобного сопостав-
ления, не определяя его явно в вашем коде. С этим подходом можно по-
знакомиться в моем репозитории на GitHub, посвященном этому разделу.

6.6 Умные шаблоны
Когда я пишу эту книгу, в проекте Polymer происходит нечто очень инте-
ресное. Напомню, что библиотека Polymer от компании Google, чьи вер-
сии выходили в период с 2013 по 2018 год, была разработана для работы
с веб-ком по нен та ми. В то время веб-ком по нен ты были настолько «не-
отесанными», и вам действительно нужна была библиотека или фрейм-
ворк, которые помогли бы вам идти в ногу с меняющимися достижения-
ми и спецификациями.

Интересно, что после трех основных выпусков библиотека Polymer
устарела и перешла в режим обслуживания. Этот проект в целом сущест-
вует и очень активен, поскольку команда отделяет от проекта более мел-
кие и более целевые инструменты и библиотеки.

Два ярких примера тому – lit-html и LitElement. Оба они готовы к про-
мышленной эксплуатации и имеют версию 1.0 (хотя технически версия
LitElement была указана как 2.0, чтобы не вступать в конфликт с другим
проектом LitElement, когда команда сменила название на NPM). Я не
буду вдаваться в детали касательно LitElement, потому что, как ни кру-
ти, это тонкая обертка для всего, что мы узнали из данной книги! Итак,
концепции в основном одни и те же. Команда Polymer добавила неко-
торые детали, такие как расширенный API жизненного цикла, а также
автоматическая рефлексия (где свойства и атрибуты всегда синхрони-
зированы).

Один из более сложных наборов функций в LitElement фактически
выполняется через lit-html. Проект lit-html – это набор импортируе-
мых модулей для управления вашим HTML-кодом и стилями CSS, как

Устанавливает фоновое изображение
элемента логотипа, на который

ссылается наш объект элемента

172 Глава 6 Управление разметкой

те, что мы использовали начиная с пятой главы. Из-за этого его трудно
назвать «библиотекой». Когда я думаю о JS-библиотеке, такой как React,
или фреймворке, таком как Angular, обычно имею в виду большой моно-
литный файл, который мог бы взять на себя весь мой проект, и о том, что
я должен был бы работать в стиле React или Angular.

Нет, и lit-html, и LitElement относятся к типу «opt-in per component».
Это означает, что я могу использовать их для одного компонента, но,
возможно, остальные мои компоненты в моем проекте их использовать
не будут. В случае с lit-html, если есть функция, которой я не буду поль-
зоваться, я просто не буду импортировать этот модуль, и он не будет уве-
личивать размер файла моего проекта.

Я думаю, что за этим подходом будущее веб-ком по нен тов (а возможно,
и интернета): легкие библиотеки типа «opt-in», которые легко можно за-
менить, в отличие от больших монолитных фреймворков или библиотек,
заставляющих вас делать какие-то вещи, как удобно им. На самом деле
подобных инструментов много; но с учетом того, насколько значимой
является команда Polymer в пространстве веб-ком по нен тов, мы, скорее
всего, увидим какое-то серьезное применение для lit-html и LitElement
со стороны разработчиков веб-ком по нен тов, особенно потому, что они
прокладывают путь к максимальной кросс-браузерной поддержке всех
функций веб-ком по нен тов, вплоть до IE11.

6.6.1 Использование lit-html
В случае с lit-html, как и любой другой JS-библиотекой, существует кри-
вая обучения. У lit-html хорошо получается визуализировать HTML и CSS
для вашего компонента, который вы определили в строке, как мы это
делали до сих пор. Одним из преимуществ использования lit-html яв-
ляется то, что она заменяет только то, что изменилось при рендеринге,
а это может привести к повышению производительности. Вспомните
наш предыдущий пример настройки свойства innerHTML нашего компо-
нента, где мы заменяем все содержимое. При наличии больших деревьев
DOM это может привести к сбоям в производительности, если не про-
явить смекалку. Помимо простой визуализации ваших строк HTML-кода
и стилей CSS, lit-html предлагает расширенные возможности для работы
с шаблонами. Давайте кратко рассмотрим некоторые из этих функций.

Вначале вы обычно используете команду npm install для установки
проекта:

npm install lit-html

Однако, чтобы было проще, я просто скопировал все это в каталог веб-
компонента bizcard-lithml в репозитории на сайте GitHub для этой книги.

6.6.2 Модуль repeat
Первое, что нужно попробовать сделать, – это избавиться от нашей поль-
зовательской JS-функции для создания наших меню с тегом <select>. Для
этого мы будем использовать модуль lit-html repeat наряду со стандарт-

173Умные шаблоны

ным модулем html. При этом мы можем извлечь массив данных и по-
вторно заполнить HTML-код, как показано на рис. 6.11. Мы сделаем это,
добавив импорты lit-html в наш модуль template.js и изменив нашу раз-
метку, чтобы включить в нее повторяющийся блок HTML, как показано
в листинге 6.16.

<select>

 <option value="${i.uri}">

 ${i.name}

 </option>

 <option . . .

 <option . . .

 <option . . .

 <option . . .

</select>

Item: name, URI

Item: name, URI

Item: name, URI

Item: name, URI

Item: name, URI

Повтор
с использованием
перечисленных
элементов

Рис. 6.11 Используем массив элементов для повторения фрагмента HTML-кода,
заполняя меню

Листинг 6.16 Использование lit-html для повтора HTML-кода меню

import {html} from './lit-html/lit-html.js';

import {repeat} from './lit-html/directives/repeat.js';

export default {

 render(props) {

 return html`

 <div class="logo-picker">Logo:

 <select>

 ${repeat(
 props.logoChoices,
 (i) => i.id, (i, index) => html`
 <option value="${i.uri}">${i.name}</option>`)}
 </select>

 </div>

 <div class="background-picker">Background:

 <select>

 ${repeat(
 props.backgroundChoices,
 (i) => i.id, (i, index) => html`
 <option value="${i.uri}">${i.name}</option>`)}
 </select>

 </div>

 ${this.html(props)}
 ${this.css(props)}`;
 },

Обратите внимание, что наша структура практически не изменилась!
Мы по-прежнему указываем на функции html() и css(), чтобы использо-
вать нашу исходную разметку. Однако нам пришлось немного изменить

Повторяет пункты меню,
чтобы создать меню для выбора логотипа

Повторяет пункты меню,
чтобы создать меню
для выбора фона

174 Глава 6 Управление разметкой

эти методы. Чтобы рассматривать разметку как HTML-код, а не как необ-
работанный текст в lit-html, нам нужно использовать более продвинутую
функцию шаблонных литералов под названием шаблоны с тегами. Эти
шаблоны объединяют шаблонный литерал и функцию в кратком синтак-
сисе, который позволяет функции осуществлять парсинг литерала, как
показано на рис. 6.12.

Тегированная функция,
которая принимает
шаблонный литерал

функция `некий текст и $ {переменная}`

Шаблонный литерал

Рис. 6.12 Элементы тегированной функции и принцип ее работы
с шаблонным литералом

В этом примере html – функция, предоставляемая lit-html, а наш шаб-
лонный литерал – это наша разметка или стили CSS. На рис. 6.13 видно,
что мы вкладываем эти тегированные шаблоны в нашу пользователь-
скую функцию render.

Создание html` с помощью:

Повторитель для выбора пунктов меню

Повторитель для выбора пунктов меню

Вложенный html` для остальных элементов

Вложенный html` для CSS Рис. 6.13 Наш шаблонный модуль,
использующий lit-html

6.6.3 Нужно ли вам использовать это?
Таким образом мы полностью убрали нашу пользовательскую функцию
генерации меню! Вопрос, который нужно задать себе при использова-
нии любого стороннего модуля или библиотеки, состоит в том, стоило
ли оно того.

Теперь вы зависите от внешнего проекта, хотя он недавно и стал ста-
бильным, учитывая, что он только что достиг версии 1.0. Кажется, что его
синтаксис немного подвержен ошибкам, пока вы не поработаете с ним до-
статочно, и потенциально его сложновато отладить. Тем не менее у lit-html
есть один большой плюс – это простая функция render. При использовании
lit-html для визуализации HTML-кода обновляются только те фрагменты,
которые были изменены. Сравните это c обычной настройкой innerHTML,
которую мы делали раньше, – налицо более высокие затраты на произво-
дительность, для того чтобы перенести всю эту разметку в DOM, поэтому
в случаях, когда необходимо обновить большое количество HTML-кода
(особенно если это происходит часто или вы не уверены, что требуется
обновление), lit-html может предоставить реальное преимущество.

175Умные шаблоны

Как и в случае с любым сторонним модулем или библиотекой, чем
больше вы используете его, тем больше оно становится вашей второй
натурой. Взятый отдельно, lit-html определенно не стоил бы того, чтобы
создавать с его помощью наши меню в этом крошечном веб-компоненте.
Что, если бы у нас были десятки или сотни веб-ком по нен тов, у многих
из которых были бы повторяющиеся элементы, созданные с помощью
данных? Также что, если бы вы могли передать эти шаблоны разметки
другому frontend-разработчику, который не хочет трогать логику вашего
приложения или писать собственный JS-код для обработки этих сгене-
рированных данными элементов? Все это может быть хорошей причи-
ной для использования только такой функциональности с «повтором».

6.6.4 Внедрение слушателей событий в разметку
Еще одна возможность, которую предлагает lit-html, – это добавление
слушателей в свою разметку. Из нашего примера с визиткой вы, навер-
ное, помните, что мы добавляем слушателей событий в наш класс веб-
ком по нен тов вручную:

this.dom.backgroundPicker.addEventListener('change', e =>
 this.updateGraphics());

this.dom.logoPicker.addEventListener('change', e => this.updateGraphics());

Если бы у нас был длинный список элементов, к которым нам нужно
было бы добавить слушателей событий, это мог бы быть довольно боль-
шой кусок кода, который можно использовать только для настройки. Мы
можем позволить lit-html помочь нам в этом, добавив слушателей со-
бытий прямо в шаблон и вызвав функцию в нашем веб-компоненте, как
показано на рис. 6.14.

<select

onchange="${(e) => {
 controller.updateGraphics()

}}">

updateGraphics() {

 . . .

}

Веб-компонент

Рис. 6.14 Встроенный слушатель событий, используемый для прослушивания
изменений в меню и вызов функции в нашем веб-компоненте

Для начала давайте настроим метод connectedCallback в нашем классе
веб-ком по нен тов, используя код из листинга 6.17.

Листинг 6.17 Удаление слушателей событий в нашем компоненте
для подготовки к lit-html

connectedCallback() {
 render(Template.render(this, {
 first_name: 'Emmett',
 last_name: 'Brown',

Создаем шаблонный литерал
для передачи его в функцию render

176 Глава 6 Управление разметкой

 title: 'Student of all Sciences',
 phone: '555-4385',
 email: 'emmett@docbrown.flux',
 website: 'www.docbrown.flux',

 backgroundChoices: [
 { name: 'big dots', uri: './images/big-dot-pattern.png'},
 { name: 'little dots', uri: './images/tiny-dot-pattern.png'},
 { name: 'squares', uri: './images/square-pattern.png'},
 { name: 'stripes', uri: './images/stripes-pattern.png'},
 { name: 'diamond', uri: './images/diamond-pattern.png'},
],
 logoChoices: [
 { name: 'mobius strip', uri: './images/mobius-logo.png'},
 { name: 'shopping bag', uri: './images/bag-logo.png'},
 { name: 'copper splash', uri: './images/splash-logo.png'},
 { name: 'star', uri: './images/star-logo.png'},
 { name: 'cone', uri: './images/cone-logo.png'},
],
 }), this);

 this.dom = Template.mapDOM(this);

 this.updateGraphics();

}

Здесь есть только два изменения. Сначала мы удалили добавление
слушателей событий. После добавления слушателей событий в нашу раз-
метку с использованием lit-html, как показано в листинге 6.15, они нам
больше не понадобятся. Во-вторых, мы хотим дать lit-html ссылку на наш
веб-компонент, чтобы запустить нашу функцию updateGraphics, поэтому
передаем this в качестве первого параметра в функцию Template.render,
где вторым параметром являются все данные, которые мы передаем.

Теперь перейдем к магии lit-html. В листинге 6.18 мы хотим использо-
вать стандартное событие change для прослушивания изменений в меню;
но в сочетании с lit-html мы будем использовать выражение @ из этой биб-
лиотеки для создания правильных привязок. Таким образом, мы можем
вставить встроенную функцию, указывающую на наш веб-компонент, на
который ссылается переменная с именем controller.

Листинг 6.18 Внедрение слушателей событий в разметку
с использованием lit-html

render(controller, props) {
 return html`

 <div class="logo-picker">Logo:

 <select @change="${(e) => {
 controller.updateGraphics()} }">

 ${repeat(props.logoChoices, (i) => i.id, (i, index) =>
 html`<option value="${i.uri}">${i.name}</option>
 `)}</select>

 </div>

 <div class="background-picker">Background:

Передаем область видимости (this),
чтобы lit-html знал, куда писать содержимое

Слушатель для меню с логотипом,
добавленный с помощью lit-html

177Обновление ползунка

 <select @change="${(e) => {
 controller.updateGraphics()} }">

 ${repeat(props.backgroundChoices, (i) => i.id, (i, index) =>
 html`<option value="${i.uri}">${i.name}</option>
 `)}</select>

 </div>

 ${this.html(props)}
 ${this.css(props)}`;
},

Однако в нашем простом примере мы снова уменьшили код в нашем
веб-компоненте только на две строки, когда удалили слушателей событий.
Стоило ли оно того? Наверное, нет, но для более масштабных проектов
с участием команды разработчиков это определенно стоило бы сделать!

Кроме того, по мере продвижения работы команды Polymer над про-
ектом Polymer (www.polymer-project.org) можно увидеть, что lit-html
вместе с LitElement становится довольно распространенным решением
для веб-ком по нен тов.

6.7 Обновление ползунка
Прошло немного времени с тех пор, как мы обновили компонент-пол-
зунок, над которым начали работать еще во второй главе. Теперь, имея
возможность импортировать шаблон и элементы кеша, мы можем не-
много улучшить его и сделать так, чтобы он был пригоден для совмест-
ного использования как настоящий полноценный компонент!

Мы можем начать с выделения нескольких файлов. До настоящего мо-
мента HTML-код, JS-скрипты и стили CSS ползунка были заключены в один
HTML-файл. Наша цель – создать демонстрационный HTML-файл, чтобы
продемонстрировать работу ползунка, JS-файл исходного класса компо-
нента и, наконец, шаблонный модуль для хранения HTML-кода и стилей
компонента. На рис. 6.15 показана файловая структура нового проекта.

Рис. 6.15 Три файла
для нашего компонента

Вероятно, имеет смысл начать с модуля template.js, используя идеи,
которые мы только что рассмотрели. Мы извлечем HTML-код компо-
нента, который ранее был в классе компонента, и стили, которые ранее
находились в комплексном HTML-файле ползунка. В приведенном ниже
листинге этот модуль показан в полном объеме.

Листинг 6.19 Шаблонный модуль компонента

export default {

 render() {

 return `${this.css()}

Слушатель для фонового
меню, добавленный
с помощью lit-html

178 Глава 6 Управление разметкой

 ${this.html()}`;
 },

 mapDOM(scope) {

 return {

 overlay: scope.querySelector('.bg-overlay'),
 thumb: scope.querySelector('.thumb'),
 }

 },

 html() {

 return `<div class="bg-overlay"></div>

 <div class="thumb"></div>`;

 },

 css() {

 return `<style>

 wcia-slider {

 display: inline-block;

 position: relative;

 border-radius: 3px;

 }

 .bg-overlay {

 width: 100%;

 height: 100%;

 position: absolute;

 border-radius: 3px;

 }

 .thumb {

 margin-top: -1px;

 width: 5px;

 height: calc(100% – 5px);

 position: absolute;

 border-style: solid;

 border-width: 3px;

 border-color: white;

 border-radius: 3px;

 pointer-events: none;

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px
 20px 0 rgba(0, 0, 0, 0.19);
 }

 </style>`;

 }

}

Вы, возможно, не видели стили этого компонента начиная со второй
главы, поэтому можете не заметить, что некоторые вещи отсутствуют.
Здесь нет ширины и высоты компонента, а также (безумно сложных) сти-
лей для создания клетчатого фона.

Причина состоит в том, что он делает компонент немного более на-
страиваемым извне. Если вы задумаетесь над этим, то вам понадобится,
чтобы общий компонент пользовательского интерфейса, подобный это-

Кеширует элементы компонента

Перемещает HTML-код из класса
компонента в этот модуль

Перемещает стили из старого HTML-файла
в этот компонент/модуль

179Обновление ползунка

му, демонстрировал разные размеры в разных контекстах. Вы бы исполь-
зовали стили, чтобы сделать это с любым другим элементом, и с этим
компонентом не должно быть по-иному. Что касается клетчатого фона,
я заранее предвижу, что нам понадобится использовать этот компонент
в другом контексте, помимо настройки прозрачности. Установка стилей
для фона снаружи позволяет нам легко и просто менять любой другой
фон. В приведенном ниже листинге показана демонстрационная стра-
ница нашего ползунка со стилями для обозначения размера и фона, как
уже обсуждалось.

Листинг 6.20 Демостраница ползунка

<html>

<head>

 <title>Slider Demo</title>

 <script

 type="module"

 src="slider.js">

 </script>

 <style>

 wcia-slider {

 height: 50px;

 width: 500px;

 background-image: linear-gradient(45deg, #ccc 25%,
 transparent 25%),linear-gradient(-45deg, #ccc 25%,
 transparent 25%),linear-gradient(45deg,
 transparent 75%, #ccc 75%),linear-gradient(-45deg,
 transparent 75%, #ccc 75%);
 background-size: 16px 16px;

 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }

 </style>

</head>

<body>

 <wcia-slider

 backgroundcolor="#ff0000"

 value="50">

 </wcia-slider>

</body>

</html>

И последнее – это модуль slider.js. Да, теперь это модуль! Мы можем
изменить class Slider на export default class Slider, чтобы его можно было
импортировать. В приведенном ниже списке показан новый модуль. Он
не включает детали, которые не были изменены.

Листинг 6.21 Модуль Slider (slider.js)

import Template from './template.js';

export default class Slider extends HTMLElement {

 connectedCallback() {

Модуль класса компонента

Дополнительные стили, чтобы контролировать
размер и фон компонента

Компонент-ползунок на странице
с настройками по умолчанию

Импортируем файл template.js

180 Глава 6 Управление разметкой

 this.innerHTML = Template.render();

 this.dom = Template.mapDOM(this);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));

 this.refreshSlider(this.getAttribute('value'));

 this.setColor(this.getAttribute('backgroundcolor'));
 }

 static get observedAttributes() { . . . unchanged . . . }

 attributeChangedCallback(name, oldVal, newValue) { . . . unchanged . . . }
 set value(val) { . . . unchanged . . . }

 get value() { . . . unchanged . . . }

 set backgroundcolor(val) { . . . unchanged . . . }

 get backgroundcolor() { . . . unchanged . . . }

 setColor(color) {
 if (this.dom) {

 this.dom.overlay.style.background = `linear-gradient(

 ➥to right, ${color} 0%, ${color}00 100%)`;
 }

 }

 refreshSlider(value) {

 if (this.dom) {

 this.dom.thumb.style.left = (value / 100 * this.offsetWidth -

 ➥this.dom.thumb.offsetWidth / 2) + 'px';

 }

 }

 updateX(x) {

 let hPos = x – this.dom.thumb.offsetWidth/2;

 . . . unchanged . . .

 }

 eventHandler(e) { . . . unchanged . . . }

}

if (!customElements.get('wcia-slider')) {

 customElements.define('wcia-slider', Slider);
}

Теперь наш компонент является совместно используемым фрагмен-
том пользовательского интерфейса, который и правда можно использо-
вать как часть любого другого проекта. В следующей главе мы сделаем
последнюю вещь – заставим его использовать теневую модель DOM. Ис-
пользование Shadow DOM не является непременным условием, но это
потрясающая функция с точки зрения инкапсуляции компонентов. Я по-
зволю вам быть судьей, когда вы прочитаете все об этом, и мы обновим
ползунок в последний раз.

Разгружаем
HTML-код
в шаблонный
модуль

Делаем класс
импортируемым

модулем

Кешируем элементы

Использует кешированные элементы

Использует кешированные элементы

Использует кешированные
элементы

181Резюме

Резюме
Из этой главы вы узнали:

� о новом способе записи строк с использованием символа `, что по-
зволяет создавать шаблонные литералы. Это новая функция ES2015.
Шаблонные литералы не только допускают использование много-
строчных строк без неудобного синтаксиса, но также позволяют
вставлять переменные в шаблонную строку, что идеально подходит
для вставки HTML-кода и стилей прямо в наш код JS без необходи-
мости подстройки;

� как использовать кеширование элементов, а также разделение кода
и разметки для лучшей читабельности и удобства сопровождения
компонентов;

� о сгенерированных логикой шаблонах с использованием пользова-
тельского JS, а также библиотеке lit-html от проекта Polymer для по-
вторения разметки из данных, дополнительно используя lit-hml для
добавления слушателей событий в ваш HTML-код;

� как в качестве примера создать проект веб-компонента с настрой-
щиком визиток, ориентируясь на визуальный макет и стили, что
позволяет нам исследовать рабочие процессы с более сложными
HTML-кодом и CSS.

7
Шаблонирование контента

с помощью HTML

Эта глава охватывает следующие темы:
� концепции (ныне устаревшего) HTML-импорта;
� фрагменты документа;
� тег <template>;
� использование шаблонов для замены HTML-кода и стилей CSS

в веб-компоненте;
� загрузка шаблонов из файла index.html или с помощью сете-

вого запроса;
� именованные и безымянные слоты.

Мы уже прошли длинный путь, изучая веб-ком по нен ты! Помимо созда-
ния некоторых относительно простых приложений на основе веб-ком-
по нен тов, мы довольно подробно рассмотрели стратегии использования
HTML-кода и стилей CSS в наших веб-компонентах.

Конечно, до сих пор эти стратегии касались хранения разметки в стро-
ках JS. Несмотря на большое разделение проблем, которые мы получаем,
сохраняя наш HTML-код и стили в импортируемых JS-модулях, как вид-

183Покойся с миром, HTML-импорт

но из главы 6, несомненно, будут возникать ситуации, когда предпочти-
тельнее сохранять HTML-код как HTML.

7.1 Покойся с миром, HTML-импорт
В действительности веб-ком по нен ты начинались со стратегии «HTML-
first». Под этим я подразумеваю, что если бы вы начали работать с веб-
ком по нен та ми несколько лет назад, вы вряд ли бы рассчитывали на то,
что вам придется импортировать JS-модули для управления своими
компонентами – вместо этого вы бы полагали, что будете импортиро-
вать фактический HTML-код.

Импортированный HTML-код будет содержать тег <script>, в кото-
ром находится определение вашего класса веб-ком по нен тов. Этот класс
будет извлекать HTML-код и стили CSS из документа владельца, чтобы
использовать их для содержимого пользовательского компонента. По-
скольку это немного сложный вопрос, взгляните на рис. 7.1, и давайте
разберем в качестве примера файл index.html из приведенного ниже
лис тинга.

Веб-страница/приложение myfile.html

Визуальный контент

Импорт
HTML-файла

Логика скрипта,
с помощью

которой

загружается
шаблон и

заполняется
компонент

Рис. 7.1 HTML-импорт позволяет загружать веб-ком по нен ты посредством HTML-файла

Листинг 7.1 Использование HTML-импорта

<html>

 <head>

 <title>HTML Import Demo</title>

 <script src="html-imports.min.js"></script>

 <link rel="import" href="samplecomponent.html"></link>

 <style>

 button {

 background-color: #c09853;

HTML-импорт, который загружает
образец веб-компонента

184 Глава 7 Шаблонирование контента с помощью HTML

 }

 </style>

 </head>

 <body>

 <sample-component></sample-component>

 </body>

</html>

Вы заметите, что тег <sample-component> используется так же, как мы
обычно применяем веб-ком по нен ты. Просто это еще один пользова-
тельский элемент, который мы определили. Разница, конечно, состоит
в том, как мы определяем этот веб-компонент.

В теге <head> мы ссылаемся на две вещи. Первая – это полифил:

<script src = "html-imports.min.js"> </ script>

Вторая – это фактический HTML-файл, который мы пытаемся импор-
тировать:

<link rel = "import" href = "samplecomponent.html">

Конечно же, причина использования полифила заключается в том, что
хотя Chrome был единственным браузером, который когда-либо поддер-
живал HTML-импорт, в последних версиях эта функция теперь считается
устаревшей.

7.1.1 Полифилинг
Веб-компоненты в целом были изобретены под руководством компа-
нии Google. Рабочий проект спецификации был реализован в Chrome,
чтобы вызвать интерес, прокладывая путь в надежде, что все браузеры
последуют за ним. Пользовательские элементы оказались относительно
бесспорной спецификацией. Другие разработчики браузеров работали
с Google, чтобы внести свой вклад, и спецификация перешла из версии 0
в версию 1 в сотрудничестве с другими компаниями. Технология Shadow
DOM, хотя и намного более сложная и, следовательно, более медленная
для принятия, находилась на аналогичном пути и в конечном итоге была
принята, как и пользовательские элементы.

С другой стороны, HTML-импорт, кажется, не пользуется популяр-
ностью. В частности, Firefox не хотел использовать нечто, подобное JS-
модулям. Можно предположить, что когда-нибудь модули смогут им-
портировать больше, чем просто JS. Возможно, когда-нибудь мы сможем
использовать модули для импорта файлов других типов, таких как HTML,
и Chrome уже рассматривает это.

Несмотря на отсутствие поддержки, у веб-компонента на базе HTML-
импорта есть несколько приличных идей. В случае с полифилом это,
безусловно, выполнимый рабочий процесс, даже если большинство раз-
работчиков веб-ком по нен тов, вероятно, не будут использовать все это.

Чтобы еще больше сбить вас с толку, скажу, что официальный поли-
фил от Google (https://github.com/webcomponents/html-imports) перешел
с версии 0 (теперь она больше не поддерживается нативно ни в одном

Пример веб-компонента
объявляется здесь

185Покойся с миром, HTML-импорт

браузере) на очень похожую реализацию версии 1. Он обеспечивает
прос тую поддержку в любом браузере. Реализация версии 1 – это то,
о чем пойдет речь здесь.

7.1.2 Что внутри
Теперь, когда мы знаем, с чем имеем дело, давайте заглянем в импорти-
рованный HTML-файл.

Конечно, в действительности это может быть любой HTML-код, но
в целях создания веб-компонента мы делаем некоторые очень специфи-
ческие вещи.

Листинг 7.2 Содержимое веб-компонента на базе HTML-импорта

<script src="samplecomponent.js"></script>

<template>

 <style>

 span {

 padding: 20px;

 background-color: yellow;

 }

 </style>

 Hi from an HTML Import component

</template>

Обратите внимание на тег <template> из предыдущего листинга. Этот
тег имеет последствия, выходящие далеко за рамки умирающего HTML-
импорта, и его можно непосредственно применять к современной раз-
работке веб-ком по нен тов, поэтому я подробно расскажу о нем в следу-
ющем разделе этой главы. Пока просто отметим, что в теге <template>
находится содержимое, которым мы бы хотели заполнить наш компо-
нент.

Перед тегом <template> в первой строке листинга у нас идет ссылка
в виде JS-скрипта на класс определения нашего веб-компонента:

<script src="samplecomponent.js"></script>

Это определение веб-компонента очень похоже на другие определе-
ния компонентов, которые мы рассматривали ранее, за некоторыми не-
большими исключениями.

Листинг 7.3 Заполнение разметки веб-компонента
из шаблона HTML-импорта

class SampleComponent extends HTMLElement {
 connectedCallback() {
 HTMLImports.whenReady(() => {
 const template =

 ownerDoc.querySelector('template');

 const clone =

 template.content.cloneNode(true);

Импорт класса веб-компонента

HTML-содержимое, предоставляемое
тегом <template>

Немодульный (без экспорта
и неимпортируемый) класс веб-компонентов

Создает ссылку на шаблон

Клонирует содержимое

186 Глава 7 Шаблонирование контента с помощью HTML

 this.appendChild(clone);
 });

 }

}

const ownerDoc =

 HTMLImports.importForElement(document.currentScript);

if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
}

Как и другие определения компонентов, в листинге 7.3 мы определяем
класс, расширяющий HTMLElement. Поскольку мы не импортируем его как
<script type = "module">, он не начинается со слов export default SampleCom-
ponent.

Мы также по-прежнему используем тот же API пользовательского
элемента для определения имени тега, как и во всех созданных ранее
компонентах. Однако прямо над этой строкой есть нечто странное. Мы
получаем «документ-владелец» этого скрипта. Помните, что мы не рабо-
таем с нашей страницей index.html, как обычно. Сейчас мы говорим об
импорте другого HTML-документа целиком в нашу страницу index.html.

При участии еще одной (импортированной) HTML-страницы было
бы неплохо, чтобы скрипт на этой импортированной странице знал, на
какой из двух страниц он фактически запускается. В данном случае мы
можем использовать метод querySelector для шаблона из импортирован-
ного HTML-кода, как мы это делаем в методе connectedCallback в листин-
ге 7.3. Конечно, для этого скрипту необходимо знать, на какой странице
он работает – документ-владелец.

Вот как выглядит общий поток HTML-импорта:
1 импортируем HTML-страницу;
2 заставляем импортированный HTML-/JS-код найти свой документ-

владелец;
3 определяем веб-ком по нент на этой импортированной странице;
4 получаем и клонируем ссылки на шаблон на импортированной

странице;
5 добавляем клонированный шаблон в веб-компонент.
Этот поток показан на рис. 7.2, и это тот же процесс, который мы ис-

пользуем в листинге 7.3.
Как только наш импортированный HTML будет полностью готов, как

определено нашей функцией обратного вызова HTMLImports.whenReady, мы
можем использовать для шаблона из этого документа-владельца метод
querySelector, скопировать его, а затем добавить его в качестве дочернего
элемента нашего компонента. В результате при предварительном про-
смотре в нашем браузере мы видим то, что изображено на рис. 7.3.

Итак, это было довольно легко, верно? Если бы не отсутствие у браузе-
ра HTML-импорта, это был бы довольно хороший рабочий процесс! Для
тех, кто хочет держаться подальше от JS как способа написания HTML-
кода и стилей CSS, это могло бы иметь потенциал.

Добавляет содержимое в наш компонент

Получает ссылку на документ-владелец

187Тег <template>

Документ-владелец

Определение веб-компонента

Шаблон

Визуальный контент

Клон контента

Используем ссылку на документ-владелец

Новый экземпляр компонента

Рис. 7.2 Типичный поток HTML-импорта. В документе-владельце содержится
наше определение веб-компонента и шаблон требуемого HTML-кода и стилей CSS.
Компонент отвечает за клонирование этого шаблона и вставку клона в качестве
содержимого

Рис. 7.3 Вывод из нашего простого компонента

Опять же, вы заметите, что я ничего не упомянул о работе с тегом
<template>. Это связано с тем, что, несмотря на то что HTML-импорт
не имеет каких-либо преимуществ, тег <template> доступен во всех со-
временных браузерах, и некоторые считают его важной частью совре-
менного рабочего процесса веб-компонента. Таким образом, он за-
служивает надлежащего объяснения, которое должно идти отдельно от
HTML-импорта.

7.2 Тег <template>
Сам по себе тег <template> очень прост. Тем не менее его использование
требует небольшого объяснения.

Давайте посмотрим на обычный, привычный HTML-код:

<p>

 This is content that's not in a template tag.

</p>

188 Глава 7 Шаблонирование контента с помощью HTML

После удаления этого абзаца и его содержимого на HTML-странице
просто отобразится содержимое. С другой стороны, мы могли бы исполь-
зовать тег <template>:

<template>

 This is content that IS in a template tag.

</template>

Теперь содержимое нигде не отображается! Что произошло? Если
изучить этот элемент в Chrome, как показано на рис. 7.4, элемент су-
ществует. Внутри него можно увидеть слова «document fragment». За-
тем вы можете развернуть фрагмент, чтобы увидеть фактический текст.
Firefox показывает пустой тег <template>, но если вы щелкнете правой
кнопкой мыши, чтобы просмотреть свойства DOM, то сможете увидеть
свойство content, где находится фрагмент документа, содержащий текст.

Рис. 7.4 Проверка тега <template> в Chrome

На самом деле это не дает ответа ни на какие вопросы, а просто меняет
вопрос: что такое фрагмент документа?

7.2.1 Фрагменты документа
Чтобы узнать, что такое фрагмент документа, давайте просто создадим
его с помощью JS, как показано в приведенном ниже листинге.

Листинг 7.4 Использование фрагмента документа

<html>

<head>

 <title>Document Fragment Demo</title>

</head>

<body>

<script>

 const fragment =

 document.createDocumentFragment();

 for (let c = 0; c < 5; c++) {

 const li = document.createElement('p');

 li.innerText = 'paragraph ' + c;

 fragment.appendChild(li);
 }

 document.body.appendChild(fragment);
</script>

</body>

</html>

Создаем фрагмент документа

Добавляем дочерние узлы
во фрагмент (абзацы)

Добавляем фрагмент в тело страницы

189Тег <template>

Здесь мы сначала создаем фрагмент документа, а затем используем
цикл for, чтобы добавить пять абзацев, содержащих некий текст. После
добавления фрагмента к телу наше дерево DOM выглядит так:

<p>paragraph 0</p>

<p>paragraph 1</p>

<p>paragraph 2</p>

<p>paragraph 3</p>

<p>paragraph 4</p>

Довольно просто, как показано на рис. 7.5, но зачем заморачиваться по
поводу фрагмента документа, когда можно просто использовать метод
createElement?

Элементы Фрагмент документа DOM страницы

Рис. 7.5 Добавляем элементы в DOM с помощью фрагмента документа

Ну, во-первых, если бы мы хотели выполнить одну и ту же операцию,
добавляя элементы к телу одним вызовом appendChild с помощью метода
createElement, нам нужно было бы создать родительский элемент для хра-
нения своих абзацев, как на рис. 7.6. Наш DOM выглядел бы так:

<div>

<p>paragraph 0</p>

<p>paragraph 1</p>

<p>paragraph 2</p>

<p>paragraph 3</p>

<p>paragraph 4</p>

</div>

Если это то, что нам нужно, отлично; но если нет, иной альтернативой
будет добавление каждого тега <p> одного за другим в тело страницы, как
показано на рис. 7.7. Все прекрасно, но каждый раз, когда вы это делаете,
это приводит к пересчету всего DOM страницы. Чем меньше вы это де-
лаете, тем лучше будет ваша производительность.

Еще один нюанс фрагментов документа заключается в том, что после
добавления этих элементов к DOM из фрагмента они исчезают из само-
го фрагмента. В предыдущем примере, если бы мы записали в консоль
нашу переменную fragment перед document.body.appendChild(fragment);, мы
бы увидели #documentFragment, который может расширяться и показывать
свои дочерние элементы. После добавления этот зарегистрированный

190 Глава 7 Шаблонирование контента с помощью HTML

#documentFragment будет пустым. Имейте это в виду, потому что это будет
важно позже, когда мы начнем работать с шаблонами.

Рис. 7.6 Добавляем элементы в родительский элемент
перед добавлением в DOM страницы

Элементы Фрагмент документа

Рис. 7.7 Добавление элементов по одному в DOM страницы каждый раз
будет приводить к плачевному эффекту повторной визуализации DOM

Фрагмент документа, похоже, не является широко известным; конеч-
но, если вы никогда не использовали его раньше, это не будет шокиру-
ющим. Похоже, что он подходит для очень ограниченного варианта ис-
пользования, но тег <template> сделал его чуть более популярным.

7.2.2 Использование содержимого шаблона
Учитывая все, что мы уже рассмотрели, вы могли бы догадаться, что тег
<template> является своего рода областью хранения содержимого, кото-
рый фактически не отображается на странице. Идея состоит в том, что
ваша HTML-страница содержит различные теги <template>, в каждом из
которых находится некий фрагмент HTML-кода или стилей CSS, который
вы хотели бы использовать позже, скопировав его и добавив в основную
модель DOM.

Давайте заполним HTML-файл несколькими чрезвычайно простыми
шаблонами, как показано в приведенном ниже листинге.

191Тег <template>

Листинг 7.5 Добавляем несколько шаблонов на страницу

<html>

<body>

 <template id="button">

 <button>Click Me</button>
 <p>

 This is a template with a button

 </p>

 </template>

 <template id="textfield">

 <label>Enter</label>

 <input type="text">

 <p>

 This is a template with a text input

 </p>

 </template>

 <template id="list">

 Item 1

 Item 2

 Item 3

 Item 4

 </template>

<script>

 const template =

 document.getElementById('button');

 const clone =

 template.content.cloneNode(true);
 document.body.appendChild(clone);
</script>

</body>

</html>

Конечно, если мы откроем эту HTML-страницу в нашем браузере без
этого блока скрипта, ничего не отобразится. Но наши шаблоны ждут
и готовы к использованию. Однако с помощью этого блока мы можем
получить один из шаблонов, и на нашей странице появится содержимое,
как показано на рис. 7.8.

Рис. 7.8 Один из наших шаблонов
добавлен в браузер

Получить тег <template>, который мы хотели бы использовать, очень
просто! Он такой же, как и любой другой элемент. Мы можем исполь-

Первый пример шаблона из трех

Получаем ссылку на шаблон «button»

Клонируем шаблон

Добавляем клонированное содержимое
на нашу страницу

192 Глава 7 Шаблонирование контента с помощью HTML

зовать методы querySelector, querySelectorAll или getElementById. В этом
примере мы воспользуемся этим document.getElementById('button');. По-
пробуйте выбрать один из двух других шаблонов и добавьте его на свою
страницу, если вы внимательно изучили код. Как только тег <template> бу-
дет сохранен в нашей переменной template, мы сможем получить фраг-
мент документа через свойство content. Чтобы использовать шаблон, мы
должны сначала его клонировать, чтобы он не был пустым после добавле-
ния: template.content.cloneNode(true). После этого мы можем добавить его
на страницу с помощью document.body.append-Child(clone). Передача значе-
ния true методу cloneNode просто означает, что нам нужно глубокое клони-
рование, т. е. нужно клонировать элемент, а также все его дочерние узлы.

Давайте сначала рассмотрим этот передовой метод клонирования,
чтобы объяснить, как можно очистить шаблон. В частности, в этом огра-
ниченном примере нам не нужно ничего клонировать. Мы можем прос-
то добавить содержимое на нашу страницу с помощью document.body.
appendChild(template.content). Однако после добавления фрагмента доку-
мента к другому элементу ваш фрагмент будет пустым...

Это означает, что мы можем добавить тег <template> один и только
один раз! Последующие попытки приведут к добавлению пустого содер-
жимого. На рис. 7.9 показаны наши элементы в движении. Они переходят
из фрагмента документа/шаблона в DOM страницы.

Фрагмент документа DOM страницы

Рис. 7.9 Присоединение к DOM страницы из фрагмента документа внутри шаблона
означает, что эти элементы фактически выходят из шаблона/фрагмента

Если мы клонируем наш тег <template>, вместо того чтобы добавить его
напрямую, то можем использовать один и тот же тег снова и снова, как
в приведенном ниже листинге.

Листинг 7.6 Многократное клонирование

const template = document.getElementById('button');

const clone = template.content.cloneNode(true);
document.body.appendChild(clone);
const clone2 = template.content.cloneNode(true);
document.body.appendChild(clone2);

Клонируем первый раз

Добавляем клон на нашу страницу
в первый раз

Клонируем второй раз
Добавляем клон во второй раз

193Выберите свой вариант шаблона

7.3 Выберите свой вариант шаблона
В последней главе мы занимались настройкой визитки на основе веб-
компонента. Если вы помните, мы смогли поменять местами разные
фоны и логотипы. Что, если бы мы могли выбирать между разными ма-
кетами карточек? Давайте создадим три отдельных шаблона и макеты,
как показано на рис. 7.10.

Рис. 7.10 Три разных макета визитки (начиная с пустого)

Для этого давайте упростим процесс и уберем настройки логотипа
и фона, которые у нас были ранее, чтобы мы могли сосредоточиться на
общем HTML-коде и стилях визитки.

Листинг 7.7 Упрощенный пример визитки с использованием шаблонов
для управления HTML-кодом и стилями CSS

export default class BizCard extends HTMLElement {
 static get observedAttributes() { return ['layout']; }

 attributeChangedCallback(
 name, oldvalue, newvalue) {
 this.innerHTML = '';

 const template = document.getElementById(newvalue);

 const clone = template.content.cloneNode(true);
 this.appendChild(clone);
 }

}

if (!customElements.get('biz-card')) {

 customElements.define('biz-card', BizCard);
}

Говоря просто и коротко, это определение класса веб-компонента
существует как bizcard.js в той же файловой структуре, которую мы ис-
пользовали ранее в нашем примере с настройщиком визитных карточек.
Напомним, что это на рис. 7.11.

Кроме того, чтобы не усложнять, мы будем просто стирать весь in-
nerHTML компонента каждый раз, когда хотим загрузить новый макет
визитки. Учитывая это, обратите внимание, что теги <template> макета
карточки находятся в основном файле index.html вне этого компонента.
Эти шаблоны выбираются по идентификатору, клонируются, а затем до-
бавляются в наш веб-компонент. Теперь мы присоединяемся к пустому

Упрощенная функция attributeChangedCallback
с упором на содержимое

194 Глава 7 Шаблонирование контента с помощью HTML

узлу, учитывая, что мы только что очистили innerHTML компонента с по-
мощью этого кода: this.innerHTML = ''. Это простота простой замены все-
го внутреннего HTML – именно поэтому наше новое меню в следующем
разделе для выбора макета карты не будет находиться в компоненте.
В противном случае это меню также было бы уничтожено!

Рис. 7.11 Приложение для создания
визиток с использованием шаблона

Вся эта логика содержится в функции компонента attributeChangedCall-
back. Это сделано для изменения имени макета, который мы хотели бы
использовать, на основе атрибута компонента layout. Это, конечно, озна-
чает, что нам нужно объявить атрибут layout в геттере observedAttributes:

static get observedAttributes() { return ['layout']; }

Мы поместим в компонент пустой макет с именем «none», поскольку
объявляем сам тег компонента в index.html. Но этот пустой макет, пока-
занный на рис. 7.12, пока еще не представляет особого интереса:

<biz-card layout="none"></biz-card>

Опять же, учитывая то, как атрибуты работают в жизненном цикле
веб-компонента, это начальное значение «none» инициирует функцию
attributeChangedCallback и заполнит компонент этим конкретным маке-
том. Помимо этого, однако, чтобы фактически изменить макеты, мы
можем реализовать раскрывающееся меню на странице с событием из-
менения, которое обновляет атрибут layout (см. листинг 7.8).

Рис. 7.12 Начинаем с макета пустой/белой визитки

195Выберите свой вариант шаблона

Листинг 7.8 Установка атрибута layout из меню за пределами
нашего компонента

<body>

 <p>

 <select onchange="updateLayout(event)">

 <option value="none">none</option>

 <option value="default-card">default</option>

 <option value="variation">variation</option>

 </select>

 </p>

 <biz-card layout="none"></biz-card>

 <script>

 function updateLayout(event) {

 document.querySelector('biz-card').setAttribute('layout',
 ➥event.target.value);

 }

 </script>

</body>

Конечно, помимо тега <head>, в котором содержится ссылка на наш
модуль скрипта, существуют и реальные шаблоны для использования.
В приведенном ниже листинге показана верхняя часть файла index.html
и заполнители для трех разных шаблонов.

 Листинг 7.9 HTML-страница с шаблоном визитки

<head>

 <title>Business Card</title>
 <script

 type="module"

 src="components/bizcard/bizcard.js">

 </script>

</head>

<template id="default-card"> . . . </template>

<template id="variation"> . . . </template>

<template id="none"> . . . </template>

Чтобы сжать здесь код на странице, в особенности длинный список
стилей CSS в шаблонах, я включил только теги <template> без внутреннего
содержимого. Обратитесь к моему репозиторию на Github, если хотите
увидеть все это целиком (https://github.com/bengfarrell/webcomponen-
tsinaction/blob/master/chapter7/7.3-businesscardtemplates/index.html).
Как показано на рис. 7.13, наш компонент обращается к документу, вы-
бирает каждый шаблон по этому идентификатору и, как мы уже видели,
заполняет компонент.

Сейчас, хотя все это прекрасно подходит, для того чтобы быть по-
мещенным в наш файл index.html, это выглядит немного неряшливым
и длинным. Я еще не определился относительно того, действительно ли
он не организован, – длинный список из тегов <template> легко исполь-

Меню для выбора макета визитки

Cобытие изменения для обновления
атрибута веб-компонента

Импорт модуля веб-компонента

Три наших шаблона (заполнители)

196 Глава 7 Шаблонирование контента с помощью HTML

зовать, поскольку он не мешает фактической отображаемой структуре
DOM страницы. С другой стороны, когда есть несколько пользователь-
ских компонентов, не ясно, какой тег <template> какому компоненту при-
надлежит. В связи с этим такой код кажется сложным для управления
в зависимости от вашего конкретного случая использования. Кроме того,
при наличии множества компонентов, используемых в проекте, может
быть слишком много шаблонов, чтобы ваша HTML-страница оставалась
управляемой.

index.html

Добавляем
содержимое шаблона

Получаем шаблон
и клонируем

Рис. 7.13 Компонент, обращающийся к HTML-странице
и получающий шаблон по идентификатору

Учитывая эти оговорки, мне бы хотелось, чтобы код был чище. Как
вы, наверное, помните, HTML-импорт содержал все в чистоте! Можно ли
придумать другой способ динамической загрузки шаблонов без него?

7.4 Динамически загружаемые шаблоны
В этом примере давайте подумаем над двумя моментами. Во-первых,
я бы хотел оставить наши различные теги <template> внутри нашего ком-
понента в качестве дочерних узлов. Сделав это, вы поймете, что шабло-
ны на самом деле принадлежат данному веб-компоненту. Во-вторых,
я хотел бы загружать наши шаблоны откуда-то еще, вместо того чтобы
загромождать компонент.

Вы, наверное, подумали, что это можно было бы сделать с помощью
шаблонных литералов и модулей, как мы это делали в предыдущих гла-
вах, и это, безусловно, так! Да, могли бы. Но я буду избегать подхода
«HTML-в-JS» только потому, что мы это уже делали. Кроме того, может
быть интересно загружать шаблоны в качестве еще одного удаленного
ресурса, который можно извлечь с сервера.

Интересный момент, касающийся хранения тегов <template> внутри
нашего компонента, заключается в том, что мы должны поддерживать

197Динамически загружаемые шаблоны

относительно постоянную разметку внутри компонента, а также очи-
щать большие куски HTML-кода и стилей CSS при каждом обновлении
макета.

Это означает, что если мы сразу же настроим this.innerHTML, этого бу-
дет недостаточно. Если мы заменим весь наш HTML-код, то, по сути, вы-
бросим наши загруженные шаблоны. В приведенном ниже листинге ме-
тод нашего компонента connectedCallback должен отражать это.

Листинг 7.10 Загрузка шаблонов с помощью сетевого запроса

connectedCallback() {
 this.cardElement =

 document.createElement('div');

 this.templates =

 document.createElement('div');

 this.appendChild(this.cardElement);
 this.appendChild(this.templates);
 const request = new XMLHttpRequest();
 request.open('GET', 'templates.html', true);
 request.addEventListener('load', (event) => {
 this.templates.innerHTML =

 event.target.response;

 this.populateCard();
 });

 request.send();

}

Мы сразу же создаем и добавляем два элемента <div>, this.cardElement
и this.templates. Они будут действовать как контейнеры для визитной
карточки и наших загруженных шаблонов соответственно.

Затем мы выполняем сетевой запрос на загрузку файла templates.html,
содержащий все теги <template>, которые раньше находились в нашем
файле index.html. После загрузки мы можем просто установить значение
для свойства innerHTML для this.templates <div>, как показано на рис. 7.14.

index.html

Текущий макет

Хранилище шаблонов
Сервер

Рис. 7.14 Обращаемся к серверу, чтобы извлечь шаблоны
для нашего веб-компонента

Создаем контейнер макета визитки

Создаем контейнер шаблона

Сетевой запрос для извлечения
шаблонов

Заполняем контейнер шаблонов
загруженными шаблонами

198 Глава 7 Шаблонирование контента с помощью HTML

И эта функция обратного вызова, и наш метод attributeChangedCallback
вызывают функцию populateCard();, чтобы загрузить текущий макет, как
указано в нашем атрибуте layout. Но в этом случае неплохо было бы про-
верить: возможно, this.templates уже существует, учитывая, что attrib-
uteChangedCallback может сработать до метода connectedCallback, как пока-
зано в приведенном ниже листинге.

Листинг 7.11 Вызов метода для заполнения макета нашей карты

static get observedAttributes() { return ['layout']; }

attributeChangedCallback(name, oldvalue, newvalue) {
 if (this.templates) {

 this.populateCard();
 }

}

Как бы вы это не называли – сетевой запрос для загрузки файла
template.html или результат изменения атрибута, – у функции populate-
Card(); из приведенного ниже листинга есть довольно простой метод
добавления в тот же класс, чтобы поменять местами наш новый макет
визитки.

Листинг 7.12 Содержимое функции populateCard

populateCard() {
 const template = this.templates.querySelector(

 ➥'template.' + this.getAttribute('layout'));

 if (template) {

 const clone =

 template.content.cloneNode(true);
 this.cardElement.innerHTML = '';

 this.cardElement.appendChild(clone);
 }

}

Первое, что мы делаем, – это берем шаблон из компонента. Напомню,
что я переместил шаблоны из файла index.html в отдельный файл tem-
plates.html и сделал немного по-другому. Вместо того чтобы использо-
вать идентификаторы для имен шаблонов, я теперь использую классы.
Если раньше было <template id = "default-card">, то теперь вы видите это:
<template class="default-card">.

Как правило, когда вы будете искать в интернете информацию о том,
как использовать тег <template>, то увидите, что люди применяют атрибут
id для идентификации и получения своего тега <template> из DOM. В этом
упражнении, поскольку мы хотим сохранить наши шаблоны в качестве
дочернего узла компонента, не имеет особого смысла использовать id.
Помните, что каждый отдельный идентификатор можно использовать
только один раз на всей HTML-странице. Когда шаблоны находятся на
странице вне структуры DOM, идентификаторы имеют смысл, потому
что мы рассматриваем пул шаблонов на всей странице, каждый из кото-
рых вызывается по своему уникальному идентификатору.

Вызываем метод для заполнения контейнера
нашей визитки в components/bizcards/bizcard.js

Метод populateCard в components/bizcards/bizcard.js

Получаем ссылку на шаблон

Клонирует шаблон
Очищаем текущий шаблон

Добавляем клон и заполняем HTML/CSS
для текущего макета

199Динамически загружаемые шаблоны

Теперь, вместо того чтобы выполнять запрос ко всей странице на
предмет уникального идентификатора, мы запрашиваем не только до-
черние элементы нашего компонента, но, в частности, дочерние элемен-
ты контейнера this.templates. Если они будут найдены (а могут быть и не
найдены из-за того, что файл template.html еще не загружен), содержи-
мое контейнера нашей визитки будет очищено с помощью this.cardEle-
ment.innerHTML = '', шаблон будет клонирован, а затем новый дочерний
элемент будет добавлен к this.cardElement.

С точки зрения шаблонов, поскольку содержимое в них такое же, как
и раньше, мы лишь заменили идентификаторы на классы:

<template class="default-card">

. . .

</template>

Конечно, после того как мы убрали шаблоны, наш файл index.html ста-
новится намного проще.

Листинг 7.13 После удаления шаблонов наш файл index.html
снова становится управляемым

<html>

 <head>

 <title>Business Card</title>
 <script type="module" src=

 ➥"components/bizcard/bizcard-template-loading.js"></script>

 </head>

 <body>

 <p>

 <select onchange="updateLayout(event)">

 <option value="none">none</option>

 <option value="default-card">default</option>

 <option value="variation">variation</option>

 </select>

 </p>

 <biz-card layout="none"></biz-card>

 <script>

 function updateLayout(event) {

 document.querySelector('biz-card').setAttribute

 ➥('layout', event.target.value);
 }

 </script>

 </body>

</html>

При всем при этом наш пример выглядит точно так же, как и раньше,
просто он намного чище. Кроме того, мы могли бы пойти дальше и ука-
зать другой HTML-файл для загрузки. Мы даже могли бы использовать
атрибут для компонента, чтобы указывать на конкретные файлы HTML,
заполненные шаблонами для конкретного случая использования:

request.open('GET', this.getAttribute('templatefile'), true);

Гораздо более короткое содержимое тега <body>
с шаблонами, которые загружаются компонентом

200 Глава 7 Шаблонирование контента с помощью HTML

Готово? Не совсем. Вы, наверное, обратили внимание на один момент.
У наших новых визиток в этой главе (когда мы использовали шаблоны)
отсутствует пользовательская информация, такая как имя, фамилия, на-
звание должности и т. д.

Возможно, одно из решений – более тщательное обеспечение того,
чтобы каждый элемент, содержимое для которого нам бы хотелось заме-
нить, был помечен соответствующим классом. Затем мы можем запро-
сить наш макет для элемента, помеченного классом, и заменить свой-
ство innerHTML.

Например, если мы гарантируем, что каждый элемент, который со-
держит заполнитель firstname, имеет класс firstname, то можно сделать
следующее:

this.cardElement.querySelector('firstname').innerHTML = someObject.firstname;

Однако у этого метода есть некоторые сложности. Давайте обратимся
к нашему шаблону по умолчанию, где адреса электронной почты и веб-
сайта перечислены в теге заголовка <h3>:

<div class="bottom-text">

 <h3>phone: #xxx.xxx.xxxx</h3>

 <h3>email@email.com / http://website.com</h3>

</div>

Как заменить содержимое этого комбинированного поля, особенно
если оно может быть разделено на отдельные элементы в других шаб-
лонах? Кроме того, в этом шаблоне косая черта разделяет значения
электронной почты и веб-сайта. Устанавливая значение для свойства in-
nerHTML тега <h3>, вам нужно знать, что эта черта является проектным ре-
шением данного шаблона и вы обязательно должны включить и ее тоже!

Дело усложняется. В качестве одного из решений можно было бы вста-
вить теги , чтобы отметить каждое значение, которое вы хотите за-
менить, и использовать их для выбора запроса:

<div class="bottom-text">

 <h3 class="phone">phone: #xxx.xxx.xxxx</h3>

 <h3>email@email.com / <span

 class="website">http://website.com</h3>

</div>

Это хорошее решение, но мы добавляем немного больше сложности
в наш HTML-код, когда в действительности нам это не нужно. К счастью,
существует более свежее решение, предназначенное только для этой
проблемы. Я говорю о теге <slot>!

7.5 Вход в теневую модель DOM
с помощью тега <slot>
В самом деле, тег <slot> является идеальным решением для нашей ди-
леммы, связанной с полями, но перед тем, как заняться этим детально,

201Вход в теневую модель DOM с помощью тега <slot>

нужно кое о чем сказать. Тег <slot> работает только в сочетании с теневой
моделью DOM. Это обширная тема, и я думаю, что лучше начать углуб-
ленное изучение Shadow DOM в следующей главе. А пока давайте рас-
смотрим тег <slot>! В результате мы получим визитную карточку с по-
лями, заполненными пользовательскими значениями вместо значений
заполнителей, как показано на рис. 7.15.

Рис. 7.15 Визитная карточка, где используется шаблонный макет
и слоты для вставки пользовательских значений

Тег <slot> немного похож на тег <template> в том смысле, что он фак-
тически не отображается в макете DOM. В отличие от тега <template>, мы
ничего не копируем из него. Вместо этого содержимое автоматически
помещается внутрь. По сути, слоты являются целями для замены кон-
тента. Давайте возьмем один из наших макетов с тегами <template> и соз-
дадим несколько слотов для содержимого, которое мы можем поменять,
как показано в листинге 7.14.

Листинг 7.14 Помещаем теги <slot> в наш шаблон
для замены содержимого

<div class="biz-card">

 <div class="logo"></div>

 <div class="top-text">

 <h1><slot name="firstname">First</slot>

 <slot name="lastname">LastName</slot></h1>
 <h3>

 <slot name="title">Job Title</slot>
 </h3>

 </div>

 <div class="bottom-text">

 <h3>phone:

 <slot name="phone">#xxx.xxx.xxxx</slot>

 </h3>

 <h3><slot name="email">email@email.com</slot> /

Первые теги <slot>,
содержащие имя и фамилию

Третий тег <slot>, содержащий
название должности

Четвертый тег <slot>
с номером телефона

202 Глава 7 Шаблонирование контента с помощью HTML

 <slot name="website">http://website.com</slot></h3>

 </div>

</div>

Здесь я обернул каждое отдельное значение заполнителя в тег <slot>.
У каждого такого тега также есть атрибут name, чтобы определить, как
ссылаться на слот. Итак, как же заменить содержимое? Как я уже сказал,
для того чтобы это действительно сработало, нужно использовать в на-
шем компоненте теневую модель DOM. К счастью, нужно сделать лишь
несколько изменений, как показано в приведенном ниже листинге, что-
бы использовать ее.

Листинг 7.15 Изменение метода createdCallback
для использования теневой модели DOM

connectedCallback() {
 this.root = this.attachShadow({mode: 'open'});

 this.cardElement = document.createElement('div');

 this.templates = document.createElement('div');

 this.root.appendChild(this.cardElement);
 this.root.appendChild(this.templates);

В нашем методе connectCallback мы присоединяем корень теневого де-
рева. Рассматривайте его как отдельное защищенное дерево DOM, до-
ступное только для внутренней работы нашего компонента. Затем мы
можем сохранить этот корень как this.root (вы можете использовать
любое другое имя переменной) и добавить к нему любые дочерние эле-
менты. Несмотря на то что this.cardElement и this.templates находятся
внутри корня теневого дерева, они уже добавлены в новую теневую мо-
дель DOM, поэтому их использование абсолютно не меняется. Мы можем
использовать эти ссылки на элементы так же, как и всегда, и установить
значение для их свойства innerHTML или добавить дополнительные дочер-
ние элементы.

Теперь, чтобы фактически заполнить наши слоты-заполнители, пока-
занные на рис. 7.16, мы можем поместить соответствующие именован-
ные значения прямо в наш компонент <biz-card>, как показано в приве-
денном ниже листинге.

Листинг 7.16 Заполнение слотов значениями внутри тега компонента

<biz-card layout="none">

 Ben

 Farrell

 555.555.5555

 ben@benfarrell.com

</biz-card>

Взглянув на результат, приведенный на рис. 7.15, видно, что мы забы-
ли создать значение для «website». Обратите внимание, что, вместо того
чтобы выдать какую-нибудь ошибку, в теге <slot> для «website» остается

Последние теги <slot>, содержащие адреса
электронной почты и сайта

Создаем теневую модель DOM
для использования тегов <slot>

Добавляем элементы в теневую
модель DOM вместо компонента

Один из четырех слотов, которые
мы заполняем значением firstname

203Вход в теневую модель DOM с помощью тега <slot>

содержимое по умолчанию. Также имейте в виду, что тег целиком
вставляется в тег <slot>. Это легко может быть <button slot="firstname">Ben</
button> или даже еще один тег <slot>, где будет отображаться только его
содержимое: <slot slot="firstname">Ben</slot>.

Слот firstname

Слот email

Слот lastname

Слот website

Слот title

Слот phone

<biz-card>

</biz-card>

slot=lastname

slot=phone

Рис. 7.16 Использование именованных слотов в качестве заполнителей
в веб-компоненте визитки

Я закончу этот пример с визиткой парой нерешенных проблем. Пер-
вая – это, конечно, добавление тега <slot> для адреса сайта, чтобы запол-
нить последний заполнитель. Что еще более важно, мы потеряли немало
функциональных возможностей начиная с предыдущей главы. Наш фон
и логотип больше не являются настраиваемыми. Если вы готовы принять
вызов, возможно, вы захотите попытаться включить их снова!

7.5.1 Тег <slot> без имени
Теги <slot> могут быть даже более обобщенными. В нашем примере мы
используем именованные теги, но им вообще не нужно давать имена –
вы просто потеряете возможность указывать и использовать несколько
тегов <slot> в одном и том же компоненте, как в приведенном ниже лис-
тинге с результатами, выводящимися в браузере, которые показаны на
рис. 7.17.

Рис. 7.17 Результаты, появляющиеся
в браузере (см. листинг 7.17)

Листинг 7.17 Использование тегов <slot> без имени

<script>

 class SlotsDemo extends HTMLElement {

 connectedCallback() {
 this.root = this.attachShadow({mode: 'open'});

204 Глава 7 Шаблонирование контента с помощью HTML

 this.root.innerHTML = `<div>

 <button>A Button</button>

 <p>

 Some Text

 <slot>placeholder text</slot>

 </p>

 </div>`;

 }

 }

 if (!customElements.get('slots-demo')) {

 customElements.define('slots-demo', SlotsDemo);
 }

</script>

<body>

 <slots-demo>

 Text to put in the slot

 </slots-demo>

</body>

Конечно, именованные теги <slot> лучше подходят для нашей визит-
ки, потому что мы можем вставлять несколько значений во все нужные
места. Однако мне нравится простота использования тега <slot> без име-
ни. Добавление простого текста в качестве содержимого вашего тега –
что может быть проще!

Немного странно то, что мы создали защищенную модель DOM, ко-
торая недоступна за пределами нашего компонента, но мы делаем это
для создания заполнителей со значениями, которые заменяются извне.
Это выглядит несколько нелогично, но не лишено смысла, если учесть,
что корень теневого дерева слегка меняет использование нашего ком-
понента.

В этой книге я довольно часто использовал API JS для настройки свой-
ства innerHTML нашего компонента изнутри. Не менее правильным явля-
ется установка innerHTML напрямую при использовании вашего компо-
нента на странице:

<my-component>This text is the innerHTML</my-component>

Однако при применении теневой модели DOM свойство innerHTML
больше не отображается, поскольку этот тип внешнего содержимого не
будет проникать в нее. Отображается только innerHTML внутри корня те-
невого дерева. Это создает прекрасную возможность для использования
этого содержимого внутри вашего тега иным образом. Конечно, в этом
ином способе используются теги <slot>. Этим тегам разрешено проби-
ваться сквозь теневую модель DOM очень специфическими способами,
описанными здесь. Если бы мы не использовали эту модель, то было бы
немного двусмысленно, если бы содержимое должно было отображаться
как фактическое содержимое вашего компонента или для того, чтобы за-
полнить тег <slot>.

Создаем тег <slot> без имени

Заполняем тег <slot>

205Резюме

Как мы увидим в последующих нескольких главах, теневая модель
DOM – это действительно мощная вещь. В сочетании с тегами <slot> она
отлично работает, но, вероятно, это не та причина, по которой вы захо-
тите использовать эту модель. В последующих главах мы подробно рас-
смот рим, что такое теневая модель DOM и что она может сделать для
вашего рабочего процесса разработки компонентов, потому что пока мы
лишь поверхностно коснулись этой темы.

Резюме
Планируете вы использовать шаблоны или нет, здорово, когда у вас есть
еще один инструмент в своем наборе. Лично у меня был замечательный
опыт использования шаблонных литералов для хранения HTML-кода
и стилей CSS в JS, о чем мы говорили в предыдущих главах, но не все си-
туации одинаковы. Это приложение является отличным примером того,
где шаблоны могут действительно оказаться полезными, особенно когда
нам нужно создать множество взаимозаменяемых шаблонов и не навя-
зывать frontend-разработчикам из нашей команды, которые, возможно,
не знают JS настолько хорошо, чтобы помочь нам.

Из этой главы вы узнали:
� как работать с HTML-импортом, несмотря на то что он уже устарел,

а также с тем, как он работает, что может иметь отношение к раз-
работке современных веб-ком по нен тов;

� что такое тег <template>, что вы будете неоднократно использовать
эти теги при первом клонировании их содержимого и что фрагмен-
ты документа являются основным драйвером для них;

� как использовать шаблоны на практическом примере, в котором мы
полностью поменяли HTML-код и стили CSS, чтобы познакомиться
с новыми макетами и стилями в одном и том же компоненте, загру-
женном со страницы index.html или удаленно через сервер;

� как заменить определенное содержимое или содержимое из не-
скольких заполнителей в одном и том же компоненте с именован-
ным тегом <slot> или одним заполнителем в теге <slot>, но без ис-
пользования имен.

8
Теневая модель DOM

Эта глава охватывает следующие темы:
� инкапсуляция компонентов и классов;
� как Shadow DOM защищает DOM вашего компонента;
� открытая и закрытая теневая модель DOM;
� терминология Shadow DOM: корень теневого дерева, теневые

границы и элемент, размещающий в себе теневое дерево;
� полифилинг и Shady DOM.

В предыдущей главе мы кратко коснулись теневой модели DOM, чтобы
познакомиться с концепцией тега <slot>. Если вы помните, тег <slot>
используется для получения шаблонного содержимого и добавления
значений заполнителей, которые конечный пользователь вашего веб-
компонента может заменить. Мы отметили области, которые могут при-
нимать новое HTML-содержимое в качестве тегов <slot>.

Хотя тег <template> является автономной концепцией и доступен во
всех современных браузерах, c тегом <slot> дело обстоит иначе. На са-
мом деле тег зависит от теневой модели DOM. На данный момент мы
рассмотрели все основные функции веб-ком по нен тов, кроме теневой
модели DOM.

Есть причина, по которой я рассказываю о ней в последнюю очередь.
Дело в том, что я хочу показать, что она не является абсолютно необхо-

207Инкапсуляция

димой для веб-ком по нен тов, какой бы удивительной она ни была. В пре-
дыдущих главах мы рассмотрели пользовательские элементы, шаблоны
и HTML-импорт, а также методы, не основанные на веб-компонентах,
такие как модули ES2015 и шаблонные литералы. Все эти концепции сей-
час либо доступны для всех современных браузеров, либо здесь можно
с легкостью использовать полизаполнение.

Теневая модель DOM немного сложнее. Что касается поддержки со
стороны браузеров, мы только сейчас видим практически универсаль-
ный охват в современных браузерах, когда Microsoft выпускает свою по-
следнюю версию Edge с поддержкой Chrome в качестве предварительной
версии для разработчиков. Это происходит после выпуска Firefox в ок-
тябре 2018 года с полной поддержкой веб-ком по нен тов.

Даже несмотря на неповсеместное использование этой концепции
до недавнего времени, в последние годы вокруг веб-ком по нен тов было
немало шумихи с активной рекламой теневой модели DOM. Я согла-
сен, что это революционная функция браузера для рабочих процессов
веб-разработки, но веб-ком по нен ты – это гораздо больше, чем одна эта
функция. Несмотря на это, сообщество разработчиков веб-ком по нен тов
отчасти было разочаровано медлительностью внедрения Shadow DOM
в сочетании с тем, насколько проблематичным является полифилинг.

Вот почему я не рассматривал теневую модель DOM до настоящего
момента. Для меня это дополнительная функция в моей повседневной
работе, которую я использую, только когда не беспокоюсь о поддержке
со стороны браузера, и мне хотелось отразить это здесь. За последние
несколько месяцев эта озабоченность значительно уменьшилась, учиты-
вая, что мы ждем только одного браузера (Edge); тем временем команда
Polymer усердно работает над LitElement и lit-html, которые обещают ин-
теграцию и поддержку полифилов даже в IE11.

Вы можете быть разработчиком веб-ком по нен тов и выбирать, какие
функции использовать, включая теневую модель DOM. Тем не менее,
пос ле того как она будет поставляться со всеми современными браузе-
рами, я планирую использовать ее постоянно – и этот день быстро при-
ближается и, скорее всего, уже наступит к тому времени, когда эта книга
будет опубликована!

8.1 Инкапсуляция
Что касается шумихи в отношении теневой модели DOM, я видел утверж-
дения относительно того, что она устраняет хрупкость при создании веб-
приложений и, наконец, ускоряет веб-разработку на других платформах.
Соответствует она этим требованиям?

Я позволю вам решать, так это или нет, потому что, как и везде, ответ
зависит от вашего проекта и потребностей. Однако оба этих заявления
сделаны с уклоном на один центральный элемент: инкапсуляцию.

Когда речь идет об инкапсуляции, обычно имеются в виду две вещи.
Первая – это возможность обернуть объект так, чтобы он выглядел прос-

208 Глава 8 Теневая модель DOM

то снаружи, но внутри он может быть сложным и управлять своими внут-
ренним устройством и поведением.

Пока все, что мы узнали о веб-компонентах, поддерживает все выше-
сказанное, являясь отличным примером данного определения инкапсу-
ляции. Веб-компоненты предлагают:

� простой способ включить себя в HTML-страницу (пользовательские
элементы);

� множество способов управления собственными зависимостями
(модули, шаблоны ES2015 и даже устаревшая теперь функция HTML-
импорта, где можно легко использовать полизаполнение);

� пользовательский API для управления ими с помощью атрибутов
или методов на основе классов, геттеров и сеттеров.

Все это замечательно, но часто, говоря об инкапсуляции, мы придаем
ей более широкое определение. Инкапсуляция – это то, что мы только
что обсудили; но она также может означать, что ваш инкапсулирован-
ный объект защищен от конечных пользователей, взаимодействующих
с ним, даже непреднамеренно, таким образом, каким вы и не предпола-
гали. Это показано на рис. 8.1.

Запланированные
точки входа объекта
разрешают доступ

Отказ в доступе к объекту,
когда не используются
спроектированные API

Объект

Рис. 8.1 Инкапсуляция означает сокрытие внутреннего устройства объекта,
но часто включает в себя выбор того, как и где обеспечить доступ извне

8.1.1 Защита API вашего компонента
В приложении я упоминаю несколько способов сделать ваши перемен-
ные закрытыми (private) в вашем классе веб-ком по нен тов. Важно то, что
вы, будучи разработчиком, задумывались над тем, как используется ваш
класс, и приложили некоторые усилия, чтобы ограничить внешнее ис-
пользование ваших свойств и методов только тем, как вы собираетесь их
использовать.

Одно важное различие заключается в фактическом ограничении
свойств и методов и ограничении их только условным соглашением. Хо-
рошим примером ограничения по соглашению является использование
нижнего подчеркивания для свойств и переменных в вашем классе.

209Инкапсуляция

Например, кто-то из вашей команды может передать вам компонент,
у которого есть метод для добавления нового элемента списка в его
пользовательский интерфейс:

addItemToUI(item) {

 this.appendChild(`${item.name}`);
}

Когда вы впервые используете этот компонент, вы можете подумать:
«Эй, я просто воспользуюсь данной функцией, чтобы добавить новый
элемент в свой список!» Но вы не знаете, что у класса компонента есть
внутренний массив данных элементов. Будучи пользователем этого
компонента, вы должны использовать метод add(), который добавляет
элемент в модель данных, а затем вызывает функцию addItemToUI, чтобы
добавить элемент :

add(item) {

 this.items.push(item);

 this.addItemToUI(item);

}

Когда размер компонента изменяется или он сворачивается/скрыва-
ется и отображается снова, эти элементы списка уничтожаются, а за-
тем создаются снова с использованием внутренней модели данных.
Как человек, применяющий этот компонент впервые, вы не знали, что
такое произойдет! Когда вы использовали метод addItemToUI вместо add,
компонент был воссоздан заново, а добавленный элемент теперь от-
сутствует.

В этом примере метод addItemToUI не должен использоваться пользо-
вателем компонента; его нужно применять только внутри компонен-
та. Если бы первоначальный разработчик компонента потратил время
и усилия на то, чтобы сделать метод закрытым, его вообще было бы не-
возможно вызвать.

С другой стороны, разработчик компонента может сделать метод за-
крытым по соглашению. Самый популярный способ сделать это – ис-
пользовать нижнее подчеркивание, и в этом случае метод назывался бы
_addItemToUI. Вы по-прежнему можете вызывать метод как пользователь
компонента, но при виде нижнего подчеркивания вы знаете, что в дей-
ствительности не должны этого делать.

И это еще не все. Инкапсуляция веб-ком по нен тов – это понятие за-
щиты вашего компонента на самом деле, или просто сделайте это по
соглашению, которое вступает в игру за пределами определения класса
вашего компонента.

8.1.2 Защита DOM вашего компонента
Защита пользовательских методов и свойств класса веб-компонента, ве-
роятно, меньше всего вас беспокоит! Что еще в вашем компоненте долж-
но быть защищено? Давайте рассмотрим компонент из приведенного
ниже листинга.

210 Глава 8 Теневая модель DOM

Листинг 8.1 Пример простейшего компонента

<head>

 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML =

 ➥`<div class="inside-component">My Component</div>`
 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

 </script>

</head>

<body>

 <sample-component></sample-component>

</body>

Как вы, возможно, заметили, в этом компоненте нет ничего особенно-
го. Он просто отображает тег <div> с текстом «My component» внутри, как
показано на рис. 8.2.

Рис. 8.2 Простой веб-компонент,
отображающий короткую строку в браузере

Насколько защищен тег <div> снаружи c точки зрения инкапсуляции?
Оказывается, совсем не защищен. Мы можем добавить тег <script> сразу
же после нашего компонента:

<script>

 document.querySelector('.inside-component').innerHTML +=

 ' has been hijacked';

</script>

На рис. 8.3 из вывода нашего браузера явствует, что свойство innerHTML
нашего компонента в действительности было задано извне. Если про-
анализировать то, что произошло, становится ясно, что кто-то посто-
ронний успешно воспользовался методом querySelector внутри нашего
компонента и установил HTML-содержимое элемента <div>.

Рис. 8.3 Установка свойства innerHTML DOM нашего компонента извне

Прежде чем мы поговорим о том, что можно сделать для решения этой
проблемы, нужно разбить ее на две части. В первой части я притворяюсь,

Простейший веб-компонент,
размещенный на веб-странице

211Использование теневой модели DOM

что у меня есть злой умысел при использовании этого компонента таким
образом, чтобы его нельзя было использовать, преднамеренно нарушая
его функциональность и структуру извне. В этом примере я точно знаю,
что существует тег <div> с классом inside-component. Я знаю, что у него есть
какой-то текст, который он отображает, и я специально изменяю его.

Вторая часть носит менее злонамеренный характер. Что, если бы мы
сделали нечто подобное случайно? Когда на странице есть простой поль-
зовательский тег, например <sample-component>, легко позабыть, что он
может содержать любое количество элементов, например дополнитель-
ную кнопку, с именами классов, которые вы использовали снова и снова.
Например, что, если бы на вашей странице был бы такой HTML-код и вы
бы хотели добавить к кнопке слушателя события по клику, когда у ваше-
го компонента уже есть кнопка?

<sample-component></sample-component>

<button>Click Me</button>

Учитывая, что в этом коротком фрагменте кода Click Me – это кнопка
в исходном коде страницы, у вас может возникнуть соблазн сделать сле-
дующее:

document.querySelector('button').addEventListener('click', . . .);

В гипотетической ситуации, изображенной на рис. 8.4, наш тег <sample-
component> уже содержит кнопку, и, что еще хуже, он стилизован так, что
даже не выглядит как кнопка! В результате вы использовали метод query-
Selector не для той кнопки и совершенно запутались, не понимая, поче-
му ничего не работает, когда вы пытаетесь нажать на кнопку в браузере.

querySelector('button')

Веб-компонент

Кнопка

Кнопка

Фактический
вариант

Ожидаемый вариант

Рис. 8.4 Ошибочное использование метода querySelector
для кнопки на странице, в результате чего кнопка не работает

8.2 Использование теневой модели DOM
Теневая модель DOM пытается решить обе проблемы, но для злонаме-
ренных пользователей это не очень удобно. Чтобы объяснить, о чем идет
речь, давайте опробуем ее!

212 Глава 8 Теневая модель DOM

Сначала можно попробовать защитить тег <div> из нашего предыду-
щего примера от взлома. Используя теневую модель DOM, можно легко
заблокировать обычный доступ к этому тегу, и для этого нам просто нуж-
но изменить две строки в нашем методе connectedCallback:

Листинг 8.2 Использование теневой модели DOM в простом компоненте

connectedCallback() {
 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
}

Здесь не так много кода, но он требует объяснения. Первое, что мы
делаем, – создаем корень теневого дерева и присоединяем этот корень
к нашему компоненту. В этом примере мы используем режим open, что-
бы создать его. Обратите внимание, что это обязательный параметр. По-
скольку разработчики браузеров не могут договориться о том, какой ре-
жим должен быть по умолчанию, open или closed, они возложили это на
вас, вместо того чтобы занять какую-то позицию. Разницу между этими
режимами легче объяснить, изучив то, что происходит в коде.

Помимо того, является он закрытым или открытым, что такое корень
теневого дерева? Не забудьте вернуться к главе 7 и нашему обсуждению
тега <template>. Напомню, что основой шаблона стал фрагмент докумен-
та. Фрагмент документа – это совершенно отдельное дерево DOM, кото-
рое не отображается как часть вашей главной страницы. Корень теневого
дерева, по сути, является фрагментом документа. Это означает, что это
совершенно отдельная модель DOM! На самом деле это не та же самая
модель DOM, что и остальная часть вашей страницы.

В этом примере можно увидеть корень теневого дерева в действии,
открыв инструменты разработчика в браузере Chrome, как показано на
рис. 8.5. Чего вы вряд ли ожидали, так это того, что элементы, которые
вы используете ежедневно, имеют собственный корень теневого дерева.

Рис. 8.5 Просмотр теневой модели DOM и связанного с ней
корня теневого дерева в инструментах разработчика Chrome

Давайте посмотрим на тег <video>. Нам не нужно соответствующим об-
разом задавать значение элемента <source> для этого тега, чтобы увидеть
его корень теневого дерева и остальную часть его теневой модели DOM.
Просто добавьте тег <video></video> в свой HTML-код. Если проверить его

Создаем открытую теневую модель DOM
и присоединяем ее к нашему компоненту

Устанавливаем в качестве значения
HTML-код нашего компонента

213Использование теневой модели DOM

в Chrome, используя настройки по умолчанию, это мало что даст. Чтобы
увидеть его теневую модель DOM, нужно активировать пункт «Show user
agent shadow DOM», как показано на рис. 8.6. По сути, Chrome отобразит
любую созданную вами теневую модель DOM, но по умолчанию будет
скрывать ее в обычных элементах браузера, которые ее используют. <se-
lect> – еще один тег с собственной теневой моделью DOM, который мож-
но просматривать таким образом.

Настройки Chrome для просмотра теневой
модели DOM стандартных элементов

Просмотр корня теневого дерева с помощью инспектора
элементов в инструментах разработчика браузера Chrome

Рис. 8.6 Просмотр теневой модели DOM и корня теневого дерева повседневно используемых
элементов

8.2.1 Корень теневого дерева
Поскольку мы переходим к соответствующей терминологии, такой как
«корень теневого дерева», ознакомьтесь с терминами, показанными на
рис. 8.7:

� корень теневого дерева – фрагмент документа, содержащий отдель-
ную модель DOM;

� теневое дерево – дерево из DOM-узлов, самый верхний из которых
является теневым корнем;

� теневой хост – DOM-узел вашей страницы, в котором размещается
теневое дерево и его корень. В нашем случае это ваш веб-компонент,
хотя его можно легко использовать за пределами пользовательского
элемента;

� теневая граница – представьте, что это линия между вашим тене-
вым хостом и теневым деревом. Например, если мы попадем в те-
невое дерево из нашего компонента и зададим текст для кнопки,
можно сказать, что мы пересекаем «теневую границу».

Помимо терминологии, важным выводом является то, что мы имеем
дело с новой моделью DOM внутри фрагмента документа. В отличие от
фрагмента документа, используемого тегом <template>, этот фрагмент
фактически отображается в браузере, но при этом сохраняет свою неза-
висимость.

Мы можем использовать новое и автоматически созданное свойство
нашего компонента shadowRoot, чтобы обращаться к любому из свойств

214 Глава 8 Теневая модель DOM

нашего элемента, например innerHTML. Вот что мы сделали в нашем
примере:

this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`

DOM-дерево HTML-страницы
Дочерний элемент

(с собственной внутренней моделью DOM)

DOM страницы

Дочерний
элемент

Дочерний
элемент

Дочерний
элемент

Обычные элементы

Веб-компонент
(теневой хост)

Теневая модель DOM

Корень теневого
дерева

Теневая
граница

Рис. 8.7 Теневая модель DOM, хост, корень и граница (пунктирная линия)

С помощью этого изменения мы защитили наш компонент от случай-
ных вторжений. Теперь, когда мы используем тот же метод querySelector
и пытаемся установить значение для свойства innerHTML, то терпим не-
удачу:

document.querySelector('.inside-component').innerHTML +=

 ' has been hijacked';

Ошибка гласит:

Uncaught TypeError: Cannot read property 'innerHTML' of null

Что происходит? Использование метода querySelector (document.query-
Selector('.inside-component')) ничего не дает, а настройка свойства in-
nerHTML предпринимается для пустого объекта, как показано на рис. 8.8,
потому что мы изолировали HTML-код внутри нашего компонента с по-
мощью Shadow DOM.

.inside-component

querySelector('.inside-component')
Отвергнуто

Рис. 8.8 Попытка использовать метод querySelector внутри теневой модели DOM

215Использование теневой модели DOM

8.2.2 Закрытый режим
Но вот в чем дело. Если бы мы хотели действовать как злоумышленники,
у нас по-прежнему была бы такая возможность. То же свойство shadow-
Root доступно снаружи. Мы могли бы настроить метод querySelector, что-
бы сделать его более сложным, и при этом установить значение свойства
innerHTML для этого тега <div>:

document.querySelector('sample-component').shadowRoot.querySelector
➥ ('.inside-component').innerHTML += ' has been hijacked';

Здесь мы показываем JS-код, с помощью которого мы легко устанав-
ливаем значение для свойства innerHTML нашего компонента. Можно ли
помешать этим злонамеренным пользователям заходить и манипулиро-
вать нашим компонентом? Похоже, что нет, но тут-то и вступает в дело
закрытый режим. Ограничить действия таких лиц – вот цель обоих режи-
мов. Чтобы было понятно, давайте установим режим в состояние closed,
как показано в приведенном ниже листинге.

Листинг 8.3 Установка теневого режима в состояние closed

connectedCallback () {
 this.attachShadow({mode: 'closed'});

 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
}

Однако это не сработает так, как задумано, если не поменять еще кое-
что! Когда корень теневого дерева закрыт, свойство shadowRoot не сущест-
вует (он равен null), поэтому мы не можем установить значение для
свойства innerHTML с его помощью. Тогда как же нам взаимодействовать
с нашим собственным компонентом, работая изнутри?

Вызов метода attachShadow возвращает ссылку на корень теневого де-
рева, независимо от того, находитесь ли вы в открытом или закрытом
режиме. Если вам нужна ссылка только в той же функции, в которой вы
создали корень теневого дерева, можно просто объявить переменную
следующим образом.

Листинг 8.4 Использование переменной для ссылки
на корень теневого дерева

connectedCallback () {
 const root = this.attachShadow(

 {mode: 'closed'});

 root.innerHTML = `<div class="inside-component">My Component</div>`
}

Если это единственная точка взаимодействия с теневой моделью DOM
вашего компонента, проблема решена! Вы предприняли шаги, чтобы
закрыть свой компонент от злонамеренных пользователей… за исклю-
чением еще одной вещи. Притворимся, что мы злоумышленники и не
остановимся ни перед чем, чтобы саботировать данный компонент. Мы

Устанавливаем теневой режим
в состояние closed

Устанавливаем значение для переменной

216 Глава 8 Теневая модель DOM

можем изменить определение функции attachShadow после объявления
класса компонента:

SampleComponent.prototype.attachShadow = function(mode) { return this; };

Это действительно очень сложно, но мы изменили функцию attach-
Shadow, чтобы она фактически не создавала корень теневого дерева
и ничего не делала, а только передавала обратно естественную область
видимости веб-компонента. Первоначальный создатель компонента,
который намеревался создать закрытую теневую модель DOM, вообще
не создает ее. Ссылка на корень – это то, что он намеревался получить,
но в действительности это просто область видимости компонента. Эта
хитрость по-прежнему работает так же, потому что и у this, и у корня
теневого дерева примерно одинаковый API.

И теперь мы возвращаемся к нашему исходному и простому способу
получения контроля над компонентом:

document.querySelector('.inside-component').innerHTML +=

 ' has been hijacked';

Стоит ли ожидать, что те, кто используют ваш компонент, попытаются
взломать его таким образом? Возможно, нет. Но они могли бы это сде-
лать. Это не настоящая защита, потому что ее очень легко обойти.

Вспомните, что в начале этой главы мы говорили о том, как защитить
ваш компонент по-настоящему или сделать это по соглашению. Там мы
обсуждали использование нижнего подчеркивания для защиты закры-
тых переменных и методов в вашем классе, вместо того чтобы использо-
вать более безопасные способы. Здесь то же самое, но вместо перемен-
ных и методов мы говорим о DOM вашего компонента.

Вот почему в документации Google по веб-компонентам говорится,
что не стоит использовать закрытый режим (https://developers.google.
com/web/fundamentals/web-components/shadowdom). Вы закрываете те-
невую модель DOM, чтобы обезопасить свой компонент, но уверены, что
те, кто используют его, не обойдут защиту простыми способами. В конце
концов, вы защищаете свой компонент по соглашению независимо от
того, что вы делаете; просто закрытый режим усложняет разработку.

Google утверждает, что при закрытом режиме ваш компонент постра-
дает по двум причинам. Во-первых, пуская пользователей компонента
в Shadow DOM своего компонента с помощью свойства shadowRoot, вы по
меньшей мере создаете лазейку. Независимо от того, используете ли вы
нижнее подчеркивание или оставляете теневую модель DOM открытой,
ваш класс или компонент защищен по соглашению.

Несмотря на свои лучшие намерения в отношении компонента, ве-
роятно, вы вряд ли будете постоянно учитывать все варианты исполь-
зования. Возможность попасть в свой компонент дает некую гибкость,
но также важно понимать, что это противоречит более взвешенным ре-
шениям с вашей стороны как разработчика компонента. Это сигнал для
того, кто использует ваш компонент, к тому, что он должен делать это на
свой страх и риск. Конечно, это опрометчиво, но когда сроки поджима-

217Использование теневой модели DOM

ют, а веб-приложение должно быть отправлено завтра, было бы неплохо
указать, в каком направлении двигаться, используя свойство shadowRoot
для доступа к вещам, которые в настоящее время вам не нужны. Вы так-
же увидите, что лазейка, предоставляемая при использовании открыто-
го режима, довольно удобна для выполнения автоматического тестиро-
вания, о чем мы поговорим в главе 13.

Второй недостаток, связанный с закрытым режимом, – утверждение,
согласно которому он делает теневую модель DOM недоступной изнутри
вашего собственного компонента. Но все несколько сложнее. Свойство
shadowRoot больше не доступно в закрытом режиме, но мы можем легко
сделать ссылку на него.

В нашем примере есть локальная переменная, как показано в этом
лис тинге.

Листинг 8.5 Локальная переменная корня теневого дерева

connectedCallback() {
 const root = this.attachShadow(

 {mode: 'closed'});

 root.innerHTML = `<div class="inside-component">My Component</div>`
}

Теперь давайте изменим ее.

Листинг 8.6 Открытое свойство, содержащее корень теневого дерева

connectedCallback () {
 this.root = this.attachShadow(

 {mode: 'closed'});

 this.root.innerHTML = `<div class="inside-component">My Component</div>`
}

С другой стороны, превращение переменной в открытое свойство
противоречит самой сути. И снова у вас есть открытая ссылка на тене-
вую модель DOM; она носит имя root (это может быть любое другое имя
на ваш выбор) вместо свойства shadowRoot, созданное открытой теневой
моделью DOM. И опять же, с ее помощью легко получить доступ к DOM
вашего компонента. Тем не менее если бы вы использовали более на-
дежный способ защиты свойств вашего класса, например ассоциативные
массивы со слабыми ссылками (weak maps), чтобы сделать ваши свойства
закрытыми, это все равно не было бы надежным, но очень хорошо за-
крывало бы все и разрешало бы внутренний доступ к вашей закрытой
модели DOM. Возможно, стоит предположить, что по-настоящему за-
крытую теневую модель DOM можно получить, когда у нас будут натив-
ные закрытые поля классов, доступные во всех браузерах, но пока такого
еще нет.

Понятно, что закрытая теневая модель DOM в большинстве случаев
того не стоит. Абсолютно надежного способа полной блокировки вашего
компонента не существует, и защита компонента по соглашению с ис-
пользованием открытой теневой модели DOM – это выход.

Локальная переменная корня теневого дерева

Корень теневого дерева сохранен
в качестве открытого свойства

218 Глава 8 Теневая модель DOM

8.2.3 Конструктор вашего компонента
и метод connectedCallback: сравнение
Еще в главе 4 при обсуждении API компонента я предупреждал, что кон-
структор не очень полезен при инициализации вашего компонента. Это
связано с тем, что, когда он запускается, у него по-прежнему нет доступа
к свойству и методам, связанным с DOM вашего компонента, таким как
innerHTML.

Теперь с Shadow DOM ничего не изменилось по отношению к DOM
страницы.

При использовании теневой модели DOM у вашего компонента по-
прежнему не будет доступа к свойствам и методам, связанным с DOM
вашего элемента, пока он не будет добавлен в DOM страницы с помощью
метода connectedCallback.

Несмотря на все это, больше это не проблема. Мы больше не полагаем-
ся на DOM страницы, а создаем отдельную мини-модель DOM для наше-
го компонента, когда вызываем функцию attachShadow. Эта мини-модель
становится доступной сразу же, и мы можем сразу написать ее свойство
innerHTML!

Вот почему вы увидите, что в большинстве примеров веб-ком по нен-
тов для выполнения всей работы по инициализации используется кон-
структор вместо метода connectedCallback, который мы использовали до
сих пор. В дальнейшем по ходу книги, скорее всего, я все буду делать
в конструкторе, потому что буду использовать Shadow DOM. Но важно
помнить об этом различии, учитывая, что теневая модель DOM – всего
лишь одна из частей головоломки, связанной с веб-ком по нен та ми, и, как
таковая, не является обязательной (даже если вы, вероятно, захотите ис-
пользовать ее здесь и далее).

Давайте немного изменим наш предыдущий простой пример, чтобы
продемонстрировать это.

Листинг 8.7 Использование конструктора
вместо метода connectedCallback

<html>

<head>

 <script>

 class SampleComponent extends HTMLElement {
 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML =
 `<div class="inside-component">My Component</div>`
 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

Конструктор

Необходимо вызвать метод
super(), так как мы расширяем
HTMLElement

Устанавливаем значение для свойства
innerHTML в конструкторе

219Использование теневой модели DOM

 </script>

</head>

<body>

 <sample-component></sample-component>

</body>

</html>

Хотя теневая модель DOM выглядит довольно потрясающе, она мо-
жет быть ненадежна. Я говорю не о ее реализации или спецификации,
а о медленном включении ее в качестве поддерживаемой функции во
всех современных браузерах, о чем я упоминал в начале этой главы. Лич-
но я до недавнего времени находился в режиме ожидания. Когда в октяб-
ре прошлого года Firefox включил поддержку веб-ком по нен тов, и, зная,
что Edge готовится к этому, теперь я с радостью использую Shadow DOM
в своих новых проектах.

Что делать, если ваш браузер не поддерживает Shadow DOM? Очевид-
ный ответ – использовать полифил, как и в случае с любой другой функ-
цией. К сожалению, данный вариант представляет некоторые сложности
для Shadow DOM.

Самая большая проблема при использовании полифилов – тема сле-
дующей главы. Что касается защиты от случайных вторжений в ваш
компонент, мы рассмотрели API вашего компонента и его локальную
модель DOM, когда доступ осуществляется через JS. Их прекрасно мож-
но защищать с помощью инкапсуляции, которую нам предоставляет те-
невая модель DOM. Однако я мог бы поспорить и сказать, что защита
от проникающих CSS-правил является абсолютным лучшим вариантом
использования Shadow DOM. Причина, по которой я так люблю ее, со-
стоит в том, что веб-разработчики боролись с этой проблемой, поскольку
CSS широко распространен и известен, и ситуация только ухудшилась,
т. к. веб-разработка стала более сложной. Существуют довольно новые
обходные пути, но Shadow DOM полностью снимает эту проблему.

В настоящее время усилия по полизаполнению теневой модели DOM
разделены на эти два варианта использования. Мы поговорим о CSS
и полифилах в следующей главе. Однако полизаполнение доступа с ис-
пользованием JS к вашей модели DOM действительно простое. В главе 2,
когда мы применяли полизаполнение для пользовательских элементов,
то использовали полифил для пользовательского элемента.

Можно пойти немного шире и охватить все, что не поддерживается.
Полифилы, о которых идет речь на странице www.webcomponents.org/
polyfills, предлагают интеллектуальные функции обнаружения и, при
необходимости, заполняют функции. Сюда входят как пользовательские
элементы, так и Shadow DOM.

В качестве одного из вариантов можно использовать это:

npm install @webcomponents/webcomponentsjs

а затем добавить на свою страницу тег <script>:

<script src="node_modules/@webcomponents/webcomponentsjs/

 ➥webcomponents-bundle.js"></script>

220 Глава 8 Теневая модель DOM

Кроме того, доступен вариант с CDN. В конце у нас должен получить-
ся код, который работает во всех современных браузерах, как показано
в приведенном ниже листинге.

Листинг 8.8 Компонент с полифилом

<html>

<head>

 <script src="https://unpkg.com/@webcomponents/webcomponentsjs@2.0.0/

 ➥webcomponents-loader.js"></script>

 <script>

 class SampleComponent extends HTMLElement {
 constructor() {

 super();

 this.root = this.attachShadow({mode: 'open'});

 }

 connectedCallback() {
 if (!this.initialized) {

 this.root.innerHTML = 'setting some HTML';

 this.initialized = true;

 }

 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

 </script>

</head>

<body>

<sample-component></sample-component>

<script>

 setTimeout(function() {

 document.querySelector('sample-component').innerHTML =

 ➥'Component is hijacked';
 }, 500);
</script>

</body>

</html>

Мы используем полифил, а затем тестируем его, пытаясь установить
значение для свойства innerHTML нашего компонента. Для этого я ис-
пользовал здесь таймер, чтобы убедиться, что мы пытаемся перехватить
компонент, после того как он попытается установить собственный текст
в методе connectedCallback. При использовании теневой модели DOM
в большинстве браузеров установка значения для свойства innerHTML сна-
ружи компонента оканчивается неудачей. При использовании полифи-
ла и «Shady DOM» в браузерах, которые не поддерживают Shadow DOM,
например Microsoft Edge (в ближайшее время поддержка появится) и IE,
происходит то же самое.

Полифил, загруженный из CDN

Устанавливаем значение для свойства
innerHTML нашего компонента снаружи

221Резюме

Однако, как я упоминал ранее, Shady DOM довольно хорошо работает
в случае доступа к DOM с помощью JS. Shady CSS – это отдельная история,
о которой мы поговорим в следующей главе!

Резюме
Из этой главе вы узнали:

� что такое инкапсуляция и что отдельный объект – это только поло-
вина дела. Также важно обеспечивать защиту и предлагать контро-
лируемый доступ к своему объекту;

� что Shadow DOM предлагает защиту внутренней модели DOM ваше-
го компонента, и она наиболее полезна при случайных вторжениях
извне;

� что хотя Shadow DOM предлагает закрытый режим, это нецелесо-
образно, и защита вашего компонента по соглашению с открытой
теневой моделью DOM – это путь вперед, особенно потому, что он
предлагает способ обойти свою защитную границу в крайнем слу-
чае;

� о различиях между конструкторами и методом connectedCallback для
работы с DOM вашего компонента при использовании или неис-
пользовании теневой модели DOM;

� как использовать полифилы с Shady DOM и о том, что существует
отдельное решение для инкапсуляции CSS.

9
Shadow CSS

Эта глава охватывает следующие темы:
� сохранение внешних стилей за пределами ваших

веб-ком по нен тов;
� теневая модель DOM для инкапсуляции CSS;
� CSS-селекторы теневой модели DOM;
� повторное обнаружение атрибута идентификатора

веб-ком по нен тов.

Давайте продолжим изучение теневой модели DOM! В предыдущей гла-
ве мы сосредоточились на действительно прекрасном аспекте Shadow
DOM. Каким бы замечательным ни было инкапсулирование DOM, CSS
еще лучше! Несмотря на то что в течение многих лет мы разрабатыва-
ли умные способы борьбы с утечкой стилей в нашей веб-разработке, это
всегда было проблемой.

9.1 Утечка стилей
Иногда утечка стилей может стать головной болью в процессе веб-раз-
работки. Если говорить кратко, речь идет о явлении, когда правила CSS
влияют на элементы, которых вы не и собирались касаться. Возможно,

223Утечка стилей

вы работаете над стилизацией элемента где-то в одном месте, но неко-
торые правила стилей, которые вы определили в своем CSS-файле для
другого элемента на своей странице, подгружаются непреднамеренно,
потому что селекторы CSS совпадают. Хотя утечка стилей не ограничи-
вается веб-ком по нен та ми, давайте рассмотрим в качестве примера веб-
компонент, чтобы увидеть, как это влияет на нас.

На рис. 9.1 показан простой маленький веб-компонент, который, по
сути, представляет собой стилизованный числовой счетчик с возможно-
стью увеличения или уменьшения значения.

Рис. 9.1 Стилизованный счетчик с двумя кнопками
и текстовым интервалом

Для этого гипотетического варианта использования допустим, что не-
зависимо от того, как выглядят другие кнопки в нашем веб-приложении,
важно, чтобы этот счетчик был красного цвета, а кнопки «плюс» и «ми-
нус» находились вровень по бокам от цифры посередине. Посмотрите на
приведенный ниже листинг.

Листинг 9.1 Счетчик без логики, только стили

<html>

<head>

 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML = `

 <button class="big-button">-</button>

 5

 <button class="big-button">+</button>

 <style>

 sample-component {

 display: flex;

 }

 sample-component .increment-number {

 font-size: 24px;

 background-color: #770311;
 color: white;

 font-family: Helvetica;

 display: inline-block;

 padding: 11px;

 border: none;

 }

 sample-component button {

 border-radius: 0 50px 50px 0;

 border: none;

 width: 50px;

 height: 50px;

 font-size: 36px;

Кнопка «минус»
Текущее значение

Кнопка «плюс»
Стили компонента

Стили компонентов, продолжение

224 Глава 9 Shadow CSS

 font-weight: bold;

 background-color: red;

 color: white;

 }

 sample-component button:first-child {

 border-radius: 50px 0 0 50px;

 }

 sample-component .big-button:active {

 background-color: #960000;
 }

 sample-component .big-button:focus {

 outline: thin dotted;

 }

 </style>`;

 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

 </script>

</head>

<body>

<sample-component></sample-component>

</body>

</html>

Обратите внимание, как каждому правилу стиля предшествуют сло-
ва sample-component. В таком простом примере с одним компонентом на
странице не обязательно писать .sample-component button. В конце концов,
у нашего компонента здесь есть все кнопки на странице. Однако кноп-
ка – это такой распространенный элемент, что, как только мы начнем
добавлять на нашей странице другое содержимое, стили этой кнопки
начнут влиять на это содержимое. Создавая правило, конкретно для
.sample-component, мы предотвращаем утечку стилей из этого компонента
в другие элементы.

Полезно освежить в памяти то, как работают такие глобальные сти-
ли. На рис. 9.2 видно, что правила CSS, которые мы определяем в нашем
компоненте, становятся частью глобального пространства стилей стра-
ницы. В свою очередь, эти стили будут влиять на все элементы нашей
страницы.

9.1.1 Утечка стилей в нижестоящие компоненты
Даже с учетом этой специфики утечка может произойти и другим спосо-
бом. Что, если бы у нас был еще один компонент внутри этого компонен-
та с собственными кнопками? У этих кнопок по-прежнему где-то есть
тег <sample-component>, поэтому здесь стили будут утекать во все нижесто-
ящие компоненты.

Пример компонента на странице

225Утечка стилей

Веб-страница

Глобальные стили,
которые будут применены на всей странице

На другие элементы DOM
влияют все глобальные стили

Правила CSS
становятся частью

глобального
пространства стилей

Веб-компонент
с CSS

Рис. 9.2 Без использования
теневой модели DOM
стили, определенные
в вашем веб-компоненте,
будут применяться ко всей
странице

Вы неизбежно столкнетесь с утечкой стилей, независимо от того,
насколько специфичны ваши селекторы, и вам придется приступать
к отладке. Но опять же веб-разработчики всегда сталкивались с этой
проблемой. Тем не менее при использовании веб-ком по нен тов легче
пропустить подобные проблемы, потому что мы склонны рассматривать
компоненты, с которыми работаем, как отдельные, инкапсулированные
объекты и пропускать внутреннее содержимое при сканировании DOM
в инструментах отладки.

9.1.2 Утечка стилей в ваш компонент
Итак, допустим, вы учли все. Вы тщательно спланировали имена своих
классов и правила CSS, чтобы быть хорошим разработчиком компонен-
тов и не допустить утечки стилей из своих компонентов. Это только пол-
дела – стили по-прежнему могут проникать в ваш компонент со страни-
цы и других родительских компонентов.

Давайте представим, что ваше веб-приложение управляется некой ди-
зайн-системой. Такие системы, как Bootstrap, определяют единый внеш-
ний вид ваших веб-страниц или приложений. Например, вы, вероятно,
захотите, чтобы большинство кнопок в вашем приложении приняли
единый вид, как показано на рис. 9.3.

Рис. 9.3 Пример глобально стилизованной кнопки,
предлагаемый дизайн-системой

В этом листинге мы добавим эту кнопку на нашу страницу с помощью
простого элемента кнопки и стилей на уровне страницы.

226 Глава 9 Shadow CSS

Листинг 9.2 Стилизованная кнопка, сосуществующая на нашей странице
с веб-компонентом

<head>

 <style>

 button {

 border-top: 1px solid #96d1f8;
 background: #65a9d7;
 background: linear-gradient(90deg, #3e779d, #65a9d7);
 padding: 5px 10px;

 border-radius: 8px;

 box-shadow: rgba(0,0,0,.5) 0 8px 8px;
 text-shadow: rgba(0,0,0,.4) 0 2px 2px;
 color: white;

 font-size: 14px;

 font-family: Helvetica;

 text-decoration: none;

 vertical-align: middle;

 }

 button:hover {

 border-top-color: #28597a;
 background: #28597a;
 color: #ccc;

 }

 button:active {

 border-top-color: #1b435e;

 background: #1b435e;

 }

 </style>

 <script>

 . . . такое же определение компонента, как и раньше
 </script>

</head>

<body>

<sample-component></sample-component>

<button>Button from Design System</button>

</body>

</html>

Глядя на результаты, показанные на рис. 9.4, уже можно увидеть, что
стили кнопки проникают в наш компонент и ведут себя не очень хорошо.

Приступим к адаптации внешнего вида кнопки в нашем счетчике.
У нас есть тень и синий градиентный фон. Конечно, теперь они не со-
впадают с цифрой посередине. Когда вы нажимаете на кнопку, все ста-
новится еще хуже – цвет фона меняется на красный. В общем, получается
путаница!

Все это вызвано тем, что в общих стилях кнопок есть несколько дру-
гих правил, по сравнению с кнопкой нашего компонента. Цвета фона
счетчика переопределяются фоном универсальной кнопки. И конечно
же, у кнопки счетчика не должно быть свойств text-shadow или box-shadow,
как у обычной кнопки.

Cтили, не относящиеся к компоненту

Элемент кнопки,
не относящийся к компоненту

227Утечка стилей

Рис. 9.4 Как глобальные стили кнопки
могут негативно повлиять на наш компонент

Мы даже не вдавались в специфику правил! Представьте, что у нашей
универсальной кнопки также есть вариант «big-button», что точно соот-
ветствует названию правила внутри нашего компонента.

Давайте вернемся и сделаем такой вариант, увеличив размер шриф-
та и отступ для этой кнопки, чтобы она стала «большой кнопкой». Наша
цель – получить нечто похожее на наши предыдущие универсальные
кнопки, изображенные на рис. 9.3 и 9.4, просто размером побольше.

Однако реальность такова, что когда мы определяем эту разновид-
ность, меняя все наши правила кнопок в стилях вне компонента с button{}
на button.big-button{}, то получаем неожиданные результаты. Используя
дополнительную специфичность правил, подобную этой, и одинаковое
название «big button» для обеих кнопок (внутри нашего компонента
и снаружи), мы только что создали ситуацию, при которой правила, ко-
торые мы определили за пределами нашего компонента, являются более
специфичными, чем те, что находятся внутри. В действительности это
отрицательно сказывается на форме кнопок нашего счетчика, показан-
ных на рис. 9.5, которые мы тщательно определили с помощью правила
border-radius.

Рис. 9.5 Дополнительная
специфичность и одноименные
классы еще больше портят
внешний вид компонента

Разумеется, это можно исправить. Мы можем добавить еще больше
специфичности в наши CSS-селекторы внутри компонента, так же как
мы это сделали для универсальной кнопки, и перейти от button{} к but-
ton.big-button{}. Однако, кроме того, мы должны отказаться от свойств,
которые не охвачены в нашем компоненте, определенных в нашей уни-
версальной кнопке:

sample-component button.big-button {

 box-shadow: none;

228 Глава 9 Shadow CSS

 text-shadow: none;

 padding: 0;

}

После этих изменений мы возвращаемся к нашему компоненту, ко-
торый выглядит просто отлично. Теперь очевидно, что следует быть
начеку, когда речь идет о проблемах подобного рода. Насколько наче-
ку, в действительности зависит от того, как вы можете контролировать
окружающее приложение и предвидеть, что эти стили могут просочить-
ся и навредить вам. Ситуация «кнопка против счетчика» действительно
помогла бы, если бы правила для элемента <button> в целом не определя-
лись в глобальных стилях. Также было бы полезно создать дополнитель-
ные уникальные имена.

Как бы это ни было похоже на беспорядок, а это он и есть, нам, веб-
разработчикам, постоянно приходилось сталкиваться с этим. Учитывая
все вышесказанное, теневая модель DOM обещает исправить ситуацию!

9.2 Проблема утечки стилей решается
с помощью теневой модели DOM
В предыдущей главе мы увидели, что создание корня теневого дерева
в нашем компоненте привело к появлению отдельной и независимой мо-
дели DOM: доступ к ней был ограничен, и JS-вызовы не могли проникать
туда, чтобы менять элементы или использовать метод querySelector для
компонентов. Учитывая все сказанное и сделанное, это было суперпросто!

Мы можем защитить DOM нашего веб-компонента таким же образом
и здесь. С помощью приведенного ниже листинга мы можем вернуться
к нашему счетчику и использовать теневую модель DOM.

Листинг 9.3 Использование теневой модели DOM
для защиты стилей нашего счетчика

class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root =

 this.attachShadow({mode: 'open'});

 root.innerHTML = `<button class="big-button">-</button>

 5

 <button class="big-button">+</button>

 <style>

 sample-component {

 display: flex;

 }

 span {

 font-size: 24px;

 background-color: #770311;
 color: white;

 font-family: Helvetica;

 display: inline-block;

Создаем корень теневого дерева
для использования Shadow DOM

При наличии менее крупной
и более управляемой
модели DOM CSS-селекторы
не должны быть такими
специфичными

229Проблема утечки стилей решается с помощью теневой модели DOM

 padding: 11px;

 border: none;

 }

 button {

 border-radius: 0 50px 50px 0;

 border: none;

 width: 50px;

 height: 50px;

 font-size: 36px;

 font-weight: bold;

 background: none;

 background-color: red;

 color: white;

 }

 button:first-child {

 border-radius: 50px 0 0 50px;

 }

 button:active {

 background-color: #960000;
 }

 button:focus {

 outline: thin dotted;

 }

 </style>`;

 }

}

Я не только ввел теневую модель DOM в наш компонент, но также
немного взволнован и удалил все свои специфические правила. Мои
CSS-селекторы теперь задают только правила для общих тегов <button>
и . После всего того, с чем нам пришлось иметь дело в этом при-
мере, а также долгих лет этих проблем с CSS, возникающих при веб-раз-
ра ботке, это выглядит медлительным и склонным к поломке, не так ли?

Но дело в том, что теперь, когда у нас есть отдельная модель DOM и мы
знаем, что наш компонент очень прост, как наш счетчик, мы можем со-
вершенно спокойно применить стили к своим элементам здесь, и это
прекрасно! Стили не будут просачиваться, как показано на рис. 9.6, и не
будут утекать и влиять на дочерние компоненты, которые также исполь-
зуют теневую модель DOM.

Однако листинг 9.3 еще не идеален. По большей части рис. 9.7 выгля-
дит нормально, но у счетчика присутствуют нежелательные отступы.

Что здесь случилось? У нашего компонента было свойство display:
flex. Оно осталось, но не работает:

sample-component {

 display: flex;

}

230 Глава 9 Shadow CSS

Веб-страница

Глобальные стили применяются
на странице повсюду

Другие элементы DOM

Стиль отклонен

Веб-компонент,
использующий

теневую модель DOM

Рис. 9.6 Веб-компоненты, использующие теневую модель DOM,
не подвержены влиянию CSS-стилей на уровне страницы

Рис. 9.7 Почти исправленный счетчик
находится рядом с кнопкой, к которой
применены глобальные стили

Это объясняется тем, что тег <sample-component> теперь находится за
пределами нашей теневой модели DOM. Говоря технически, тег, который
обозначает наш компонент, является теневым хостом, а в этом хосте со-
держится корень теневого дерева, где находится наша теневая модель
DOM. Поскольку стили не могут утечь в нее, правило с использованием
sample-component теперь не имеет смысла, чтобы добиться того, что нам
здесь нужно.

Вместо этого для стилизации теневой модели DOM применяются но-
вые способы использования CSS-селекторов. Первый – это новый се-
лектор :host. Селектор :host служит для стилизации того, что находится
внутри теневого хоста, как показано на рис. 9.8. Когда мы меняем наш
селектор на

:host {

 display: flex;

}

это приводит в действие свойство display: flex.

231Проблема утечки стилей решается с помощью теневой модели DOM

Веб-компонент Теневой хост

my-component {
 ...style...
}

:host {
 ...style...
}

Корень теневого дерева

Стиль отклонен

Рис. 9.8 CSS-стили для теневого хоста (или использование
тега компонента в качестве селектора) не проникнут в корень
теневого дерева или теневую модель DOM

9.2.1 Когда происходит утечка стилей
Однако в такого рода инкапсуляции есть некоторые нюансы. Теневая
модель DOM прекрасно подходит для защиты от внешних стилей, по-
падающих в компонент, который находится под защитой Shadow DOM.
Нюанс состоит в том, что мы защищаемся от утечки стилей, когда речь
идет об определении с помощью селектора, а не стилей в целом. Чтобы
объяснить, что я имею в виду, давайте опробуем еще один пример из
приведенного ниже листинга, где мы определим стили для тега <body>
вне теневой модели DOM.

Листинг 9.4 Стили, влияющие на теневую модель DOM

<html>

<head>

 <style>

 .text {

 font-size: 24px;

 font-weight: bold;

 color: green;

 }

 </style>

 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root = this.attachShadow({mode: 'open'});

 root.innerHTML = `Some Text`;

 }

 }

Cтили для текста на внешней странице

Тег , в котором содержится текст внутри
теневой модели DOM нашего компонента

232 Глава 9 Shadow CSS

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

 </script>

</head>

<body class="text">

 <sample-component></sample-component>

</body>

</html>

Итак, что вы ожидаете здесь увидеть? Я обещал, что теневая модель
DOM защитит вас от стилей, проникающих в ваш компонент, но при за-
пуске примера, как видно на рис. 9.9, тег содержит текст зеленого
цвета, набранный жирным шрифтом!

Рис. 9.9 Крупный жирный текст зеленого цвета
указывает на то, что внешний стиль влияет
на содержимое нашей теневой модели DOM

Это связано с тем, что нюанс, о котором я говорю, заключается в том,
что мы действительно защищаемся от CSS-селекторов извне, которые
могут прилипнуть к классам внутри. Тем не менее когда к предку вашего
компонента (используется теневая модель DOM или нет), которому не
нужно ничего выбирать внутри вашего компонента, применяется какой-
то стиль, эти стили все равно будут влиять на дочерние элементы. Те-
перь, если мы удалим класс text из тела следующим образом:

<body>

и поместим его в тег внутри нашего компонента:

root.innerHTML = `Some Text`;

то увидим, что стили не имеют никакого эффекта, как показано на
рис. 9.10.

Рис. 9.10 Когда мы помещаем класс прямо в тег
, теневая модель DOM успешно блокирует стили

Селектор "text" не может проникнуть в теневую модель DOM, но те же
правила, как стили извне, могут это сделать. Тем не менее даже что-то
столь же простое, как внешние стили тега <button>, не будет просачиваться
таким же образом, потому что "button" по-прежнему является селектором
(хотя и универсальным). Это может быть очень полезно и имеет большой
смысл. Если весь текст на вашей странице стилизован определенным об-
разом или ваша страница имеет определенный цвет фона, вам не нужно,
чтобы ваши компоненты отклонялись от этих основных стилей.

Что, если вы не хотите, чтобы просочились даже эти стили? Мы можем
сделать небольшую хитрость, используя селектор :host.

Применяем стили текста ко всему телу страницы

233План тренировок

Листинг 9.5 Сброс стилей в теневой модели DOM

<script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const root = this.attachShadow({mode: 'open'});

 root.innerHTML = `Some Text

 <style>

 :host {

 all: initial;

 }

 </style>`;

 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

</script>

Хотя мы, безусловно, можем установить для каждого отдельного пра-
вила стилей значение "initial", чтобы сбросить их, более важно сбросить
все в нашем корне теневого дерева, используя свойство all и совершен-
но новый селектор :host.

Чтобы выйти за пределы селектора :host и исследовать дальше, давай-
те запустим новый демопроект, чтобы надлежащим образом опробовать
теневую модель DOM!

9.3 План тренировок
Итак, это проект двойного значения. Да, мы будем проходить упражне-
ния с теневой моделью DOM, чтобы познакомиться с новыми концеп-
циями, но то, что мы будем делать, также является приложением для
просмотра упражнений и создания тренировок.

Конечный продукт в этой главе не будет настолько интерактивным,
каким он мог бы быть, потому что мы продолжим работать с этим де-
мопроектом в главе 14, когда будем рассказывать о событиях для реали-
зации остальной части функционала. В этой главе в итоге у нас появит-
ся библиотека упражнений слева и ваш собственный план тренировок
справа, как показано на рис. 9.11. При нажатии кнопки мыши на каждое
упражнение в библиотеке оно будет добавляться в ваш план.

Типы упражнений делятся на «силовые» или «кардио» и обозначаются
синими или зелеными полосками соответственно. Чтобы страница вы-
глядела проще, и поскольку у меня нет личной подборки видеороликов
с упражнениями, которыми я могу поделиться с вами, мои миниатюры
и фон будут серого цвета. Однако в репозитории GitHub для этой книги
я включил ссылки на изображения в формате GIF из моей модели дан-
ных, определенной в файле components/exerciselibrary/exerciselibrary.js,
чтобы каждое упражнение отображалось с миниатюрой движения, что
позволит вам правильно просмотреть упражнение.

Применяем первоначальные стили
ко всем элементам в корне теневого дерева

234 Глава 9 Shadow CSS

Рис. 9.11 Демонстрационное приложение для просмотра упражнений из библиотеки
и создания собственного плана тренировок

9.3.1 Оболочка приложения
В качестве первого шага давайте создадим общую структуру приложе-
ния вместе с заполнителями для дочерних компонентов. В частности,
мы создадим HTML-страницу, CSS-файл и компонент <wkout-creator-
app>, где файловая структура выглядит, как показано на рис. 9.12. Если вы
подписаны, пожалуйста, не забудьте использовать какой-нибудь прос-
той веб-сервер, учитывая, что у нас есть зависимости, загруженные из
нашего файла index.html, которые, возможно, не будут работать при ис-
пользовании одной только файловой системы.

Рис. 9.12 Базовая файловая
структура, когда мы приступаем
к созданию приложения

Как и в других наших примерах, файл index.html будет очень простым,
как показано в приведенном ниже листинге.

Листинг 9.6 Файл index.html нашего приложения

<html>

<head>

 <title>Workout Creator</title>

235План тренировок

 <script type="module"

 src="components/workoutcreatorapp/workoutcreatorapp.js">

 </script>

 <link rel="stylesheet" type="text/css" href="main.css">

</head>

<body>

 <wkout-creator-app></wkout-creator-app>

</body>

</html>

Наши стили еще проще. Мы просто обнуляем отступы и поля у всех
элементов на странице, в то же время изменяя размер компонента
<wkout-creator-app>, чтобы он занимал всю страницу с небольшим от-
ступом.

Листинг 9.7 Файл main.css для нашего приложения

body {

 margin: 0;

 padding: 0;

}

wkout-creator-app {

 height: calc(100vh – 20px);

 padding: 10px;

}

Что касается самого компонента <workout-creator-app>, его код, пока-
занный в приведенном ниже листинге, также очень прост.

Листинг 9.8 Основной компонент нашего приложения

import Template from './template.js';

export default class WorkoutCreatorApp extends HTMLElement {
 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 }

}

if (!customElements.get('wkout-creator-app')) {

 customElements.define('wkout-creator-app', WorkoutCreatorApp);
}

Обратите внимание, что, в отличие от предыдущих примеров, сейчас
мы используем теневую модель DOM. Кроме того, в отличие от того, что
мы делали ранее, теперь мы выполняем все настройки нашего компо-
нента в конструкторе и напрямую используем свойство shadowRoot для
доступа к нашей локальной теневой модели DOM.

Наконец, я буду использовать функции стилей этой модели, а также
делать вещи, которые вы никогда бы не сделали без нее. От этого нелегко
отказаться! Итак, я ставлю все на Shadow DOM, и пути назад нет.

Импорт компонента

Компонент, объявленный в HTML-коде

Обнуляем поля и отступы на странице

Устанавливаем размеры приложения,
чтобы оно занимало всю страницу

Используем Shadow DOM
в нашем компоненте

236 Глава 9 Shadow CSS

9.3.2 Селекторы host и ID
Продолжая работу над нашим модулем WorkoutCreatorApp, который опре-
деляет компонент <wkout-creatorapp>, давайте взглянем на модуль templa-
te.js, содержащий наш HTML-код и стили, в приведенном ниже листинге.

Листинг 9.9 Модуль шаблона приложения,
определяющий HTML-код и стили

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 html() {

 return `<wkout-exercise-lib>

 </wkout-exercise-lib>

 <div id="divider-line"></div>

 <wkout-plan></wkout-plan>`;

 },

 css() {

 return `<style>

 :host {

 display: flex;

 }

 wkout-exercise-lib,
 wkout-plan {

 flex: 1;

 height: 100%;

 background-color: #eaeaea;

 }

 #divider-line {

 width: 1px;

 height: 100%;

 margin-right: 25px;

 background-color: black;

 }

 </style>`;

 }

}

Прежде всего мы создаем три дочерних элемента. Два из них – это ком-
поненты, которые еще не определены, поэтому они будут отображаться
как пустые элементы <div>; они оформлены в цвете фона, поэтому на
данный момент мы можем визуализировать их размещение, как пока-
зано на рис. 9.13. Посередине находится черная разделительная линия.

Даже имея этот код, у нас есть два момента для обсуждения касатель-
но теневой модели DOM. Во-первых, мы используем ранее упомянутый
CSS-селектор :host, чтобы назначить стили нашему хост-компоненту.

Контейнер слева
для библиотеки упражнений

Разделительная линия
с атрибутом ID

Контейнер справа
для списка тренировок

237План тренировок

В этом случае мы просто хотим использовать тип отображения "flex" для
разметки трех наших элементов.

Второй момент является важным. Он выглядит незначительным, но
на самом деле очень серьезен. Нашей разделительной линии присваи-
вается идентификатор "divider-line" в <div id="dividerline"></div>. Затем
мы используем этот идентификатор, чтобы назначить стили: #divider-
line {}.

Рис. 9.13 Так выглядит наше приложение в браузере на данный момент

Почему это так важно? В каждом веб-разработчике укоренилось мне-
ние, что нужно использовать атрибут ID экономно. Причина состоит
в том, что во всей DOM может быть только один элемент с таким иден-
тификатором. Если вы ошиблись и назначили второй элемент с одним
и тем же идентификатором, у вас могут возникнуть проблемы со стиля-
ми или методом querySelector, когда вы cможете выбрать или стилизовать
только один из нескольких элементов с одинаковым идентификатором.

Как правило, наши селекторы представляют собой несколько классов,
объединенных вместе, для того чтобы получить специфичность, необ-
ходимую для точного выбора или стилизации элемента. Для нашей раз-
делительной линии мы могли бы использовать CSS-селектор, который
выглядит так:

wkout-creator-app div.divider-line.center.thin {}

Да, сейчас я выгляжу немного смешно, используя .center и .thin, но
я просто пытаюсь подчеркнуть, что можно переусердствовать в отноше-
нии специфичности, которая обычно необходима.

Однако теперь мы можем использовать теневую модель DOM. Возвра-
щаясь к вопросу о том, что каждый идентификатор во всей вашей моде-

238 Глава 9 Shadow CSS

ли DOM должен быть уникальным, помните, что сейчас мы используем
несколько моделей DOM!

Ваш идентификатор должен быть уникальным только внутри области
видимости вашего веб-компонента. Элемент с идентификатором #di-
vider может легко находиться в другом месте на странице или в других
веб-компонентах, и никакого конфликта не будет.

Еще лучше, учитывая, что в этом веб-компоненте всего три элемента,
и только разделительная линия использует тег <div>, можно было бы не
беспокоиться об идентификаторе, вместо этого используя такой селек-
тор: div {}.

Лично я думаю, что это действительно захватывающе. Возвращаясь
к моменту, когда я познакомил вас с теневой моделью DOM в преды-
дущей главе, я сказал, что она устраняет хрупкость веб-разработки. Это
яркий тому пример. Мы можем сосредоточиться на структуре и стилях
нашего компонента и не беспокоиться о конфликтах где-либо еще. Наши
селекторы могут быть настолько просты и легки для чтения, насколько
это позволяет внутренняя структура нашего компонента.

9.3.3 Сетка упражнений и список планов
Сейчас мы продолжим работу с концепциями, которые только что изучи-
ли, чтобы создать сетку упражнений и наш список планов тренировок.
Это еще два компонента, благодаря которым структура нашего проекта
выглядит как на рис. 9.14.

Новый компонент
workout plan

Новый компонент
exercise library

Ранее добавленный компонент
workout creator app

Рис. 9.14 Файловая структура проекта, после того как в нее были добавлены
два компонента: библиотека упражнений и план тренировок

Помните, что мы фактически отображаем компоненты <wkout-plan>
и <wkout-exerciselib>, которые уже есть в компоненте приложения; прос-

239План тренировок

то они еще не определены, поэтому отображаются как элементы <div>.
Таким образом, наш первый шаг после создания новых файлов и папок
компонентов состоит в том, чтобы импортировать эти модули во главе
workoutcreatorapp/template.js:

import ExerciseLibrary from '../exerciselibrary/exerciselibrary.js';

import Plan from '../plan/plan.js';

Определившись с этим, давайте приступим к конкретизации данных
компонентов!

На самом деле оба они довольно простые. Во многом это связано с тем,
что мы еще не уделяем никакого внимания интерактивности. В приве-
денном ниже листинге показаны наши файлы plan/plan.js и plan/tem-
plate.js.

Листинг 9.10 Файлы компонента «план тренировки»

// Plan.js

import Template from './template.js';

export default class Plan extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML =
 Template.render();

 }

}

if (!customElements.get('wkout-plan')) {

 customElements.define('wkout-plan', Plan);
}

// Template.js

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 html() {

 return `<h1>My Plan</h1>

 <div id="container"></div>

 <div id="time">Total Time:</div>`;

 },

 css() {

 return `<style>

 :host {

 display: flex;

 flex-direction: column;

 }

 #time {

 height: 30px;

Назначаем HTML-код и стили
нашему компоненту

HTML-код, который будет отображаться

Стили, которые будут отображаться

240 Глава 9 Shadow CSS

 }

 #container {

 background: linear-gradient(90deg, rgba(235,235,235,1)
 0%, rgba(208,208,208,1) 100%);
 height: calc(100% – 60px);

 overflow-y: scroll;

 }

 </style>`;

 },
}

Поскольку наш список из плана тренировок пока еще пуст, не отобра-
жается ничего, кроме контейнера, текста заголовка и нижнего колонти-
тула, чтобы показать общую продолжительность плана.

И снова мы используем теневую DOM, что позволяет нам применять
идентификаторы элементов для тегов <div id="container"></div> и <div
id="time"></div> с целью стилизации. В обоих случаях мы просто устанав-
ливаем размер и цвет заливки фона, а также делаем так, чтобы контей-
нер для списка упражнений прокручивался, когда он становится слиш-
ком высоким. Кроме того, мы снова используем селектор :host, чтобы
теневой корень нашего компонента отображался с использованием вер-
тикального выравнивания.

Компонент <wkout-exerc-lib> не сильно отличается, за исключением
того, что нам нужно заполнить его данными. Цель этого компонента –
показывать список упражнений на выбор, поэтому все они должны при-
сутствовать при загрузке приложения. Таким образом, мы будем отобра-
жать заголовок и контейнер, как и последний компонент, но также будем
заполнять контейнер нашими упражнениями. В приведенном ниже лис-
тинге показаны файлы exerciselibrary/exerciselibrary.js и exerciselibrary/
template.js.

Листинг 9.11 Файлы компонента «библиотека упражнений»

// exerciselibrary.js

import Template from './template.js';

export default class ExerciseLibrary extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render([
 { label: 'Jump Rope', type: 'cardio', thumb: '', time: 300, sets: 1},
 { label: 'Jog', type: 'cardio', thumb: '', time: 300, sets: 1},
 { label: 'Pushups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5 },
 { label: 'Pullups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5},
 { label: 'Chin ups', type: 'strength', thumb: '', count: 5, sets: 2,
 estimatedTimePerCount: 5},
 { label: 'Plank', type: 'strength', thumb: '', time: 60, sets: 1}
]);

Модуль определения компонента для библиотеки упражнений

241План тренировок

 }

}

if (!customElements.get('wkout-exercise-lib')) {

 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

// template.js

export default {

 render(exercises) {

 return `${this.css()}
 ${this.html(exercises)}`;
 },

 html(exercises) {

 let mkup = `<h1>Exercises</h1>

 <div id="container">`;

 for (let c = 0; c < exercises.length; c++) {

 mkup +=

 `<wkout-exercise class="${exercises[c].type}" ></wkout-exercise>`;
 }

 return mkup + `</div>`;

 },

 css() {

 return `<style>

 host {

 display: flex;

 flex-direction: column;

 }

 #container {

 overflow-y: scroll;

 height: calc(100% – 60px);

 }

 </style>`;

 }

}

Вы сразу же заметите большой список упражнений, которые мы вво-
дим в функцию Template .render. Каждое упражнение имеет метку, а так-
же тип: cardio или strength. В зависимости от того, учитываете ли вы
количество повторений или просто выполняете упражнение в течение
определенного промежутка времени, в упражнении будет указано число
для count и sets или time. Если мы отслеживаем количество и настройки,
единственный способ оценить общее время нашей тренировки – вычис-
лить, сколько времени занимает каждое повторение нашего упражне-
ния, поэтому мы используем еще одно свойство с именем estimatedTime-
PerCount.

Наконец, в каждом упражнении есть пустое свойство thumb. Как я уже
говорил в начале этой главы, мы оставим его пустым, чтобы не пока-
зывать миниатюру в этой книге. Вы можете поискать свои собственные
изображения или GIF-файлы в интернете, чтобы вставить их, или найти

Шаблонный модуль для библиотеки упражнений,
в котором хранится наш HTML-код и стили

Перебираем
упражнения
и отображаем их

242 Глава 9 Shadow CSS

на GitHub репозиторий для данной книги, чтобы просмотреть те изобра-
жения, которые нашел я. Также в моем репозитории есть дополнитель-
ные упражнения для нашей модели данных.

Наш файл exerciselibrary/template.js в основном совпадает с предыду-
щим файлом plan/template.js. Конечно, главное отличие в том, что мы при-
нимаем список упражнений и отображаем каждое из них. Опять же, нам
еще предстоит определить компонент <wkout-exercise>, а пока мы сосредо-
точимся на том, что дает нам нечто похожее, изображенное на рис. 9.15.

Рис. 9.15 Заполнение компонентов в левой и правой частях приложения

Вы заметите, что хотя мы отобразили наши упражнения, они не по-
являются. Все дело в том, что хотя они есть в DOM, у них нет размера
или фона – поэтому, несмотря на то что они присутствуют, их высота со-
ставляет 0 пикселей и они не отображаются визуально. Мы решим этот
вопрос с помощью компонента <wkout-exercise>. Это последнее, о чем
нужно рассказать, и это довольно интересный компонент.

9.4 Адаптируемые компоненты
Почему я нахожу компонент <wkout-exercise> таким интересным? Пото-
му, что мы приступаем к компоненту, который должен выглядеть немно-
го иначе, в зависимости от того, как он используется, и изучим альтер-
нативный способ использования селектора :host. В следующей главе мы
более подробно рассмотрим этот адаптируемый компонент и сделаем
так, чтобы он выглядел совершенно иначе в контейнере плана трени-
ровки.

243Адаптируемые компоненты

9.4.1 Создание компонента упражнения
Поскольку нашему плану тренировок нужна интерактивность, давайте
сначала сосредоточимся на библиотеке упражнений, поскольку выпол-
нять итерацию по стилю для того, что появляется при загрузке страни-
цы, проще, нежели требовать дополнительного шага нажатия кнопки
«Добавить». Нам, конечно, понадобится создать файлы компонентов,
и в итоге мы получим файловую структуру, показанную на рис. 9.16.

Компонент exercise library

Компонент exercise

Основные страницы с HTML-кодом
и стилями

Компонент workout plan

Компонент workout creator app

Рис. 9.16 Конечная файловая структура приложения

Поскольку и план тренировки, и библиотека упражнений отобража-
ют компонент упражнения, мы должны поместить этот импорт в модули
plan/template.js и exerciselibrary/template.js:

import Exercise from '../exercise/exercise.js';

Давайте посмотрим на определение веб-компонента для <wkout-exer-
cise> в приведенном ниже листинге.

Листинг 9.12 Файлы для компонента упражнения

import Template from './template.js';

export default class Exercise extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 const params = {

 label: this.getAttribute('label'),

244 Глава 9 Shadow CSS

 type: this.getAttribute('type'),
 thumb: this.getAttribute('thumb'),
 time: this.getAttribute('time'),
 count: this.getAttribute('count'),
 estimatedTimePerCount: this.getAttribute('estimatedtimepercount'),
 sets: this.getAttribute('sets'),
 };

 this.shadowRoot.innerHTML = Template.render(params);
 }

 get label() { return this.getAttribute('label'); }

 set label(val) { this.setAttribute('label', val); }

 // Дополнительные геттеры и сеттеры для свойств thumb, type, time, count,
 // estimateTimePerCount и sets;
 serialize() {

 return {

 label: this.label,
 type: this.type,
 thumb: this.thumb,
 time: this.time,
 count: this.count,
 estimatedTimePerCount: this.estimatedTimePerCount,
 sets: this.sets,
 }

 }

 static toAttributeString(obj) {

 let attr = '';

 for (let key in obj) {

 if (obj[key]) {

 attr += key + '="' + obj[key] + '" ';

 }

 }

 return attr;

 }

}

if (!customElements.get('wkout-exercise')) {

 customElements.define('wkout-exercise', Exercise);
}

В целях экономии пространства я убрал все, кроме одного, из моих
методов получения/установки. В этом определении компонента мы ис-
пользуем то, что у нас было в главе 3. Мы применяем рефлексию, чтобы
использовать атрибуты и свойства взаимозаменяемо. Мы можем ис-
пользовать либо element.setAttribute(property, value) для элемента, либо
element.property = value для настройки свойства. В любом случае, получа-
ем или устанавливаем данные, которые внутренне основаны на атрибу-
те элемента. Если бы я не сократил код, у нас были бы методы получения/
установки для thumb, type, time, count, estimateTimePerCount и sets.

Два других метода используются для сбора данных. Во-первых, у нас
есть метод serialize. Он просто собирает наши данные в один объект,

Геттеры и сеттеры
для каждого свойства

Функция для сериализации всех свойств в объект

Функция, чтобы выполнить сборку строки атрибута
для клонированного компонента упражнения

245Адаптируемые компоненты

который мы можем легко передать. Другой статический метод toAttrib-
uteString действует похожим образом. Он собирает все наши данные, как
это делает serialize, но создает строку, которую можно использовать для
заполнения атрибутов. В итоге мы получим строку в формате

свойство="значение" свойство2=" значение2" свойство3=" свойство3"

Этот дополнительный метод может и не показаться необходимым, но
мы хотим отсеять неопределенные свойства. Помните, что из-за разли-
чий в упражнениях некоторые из них будут иметь свойство подсчета по-
вторений, например когда вы поднимаете вес, в то время как другие будут
иметь свойство продолжительности, например когда вы бегаете трусцой.
Поэтому это хорошая альтернатива вместо наличия property="undefined"
в качестве атрибута в нашем теге, когда фактическое неопределенное
значение преобразуется в строку, или необходимости проверять наличие
слова undefined для каждого свойства в наших шаблонах, делая их длиннее
и труднее для чтения. Все это объясняет, почему в файле exerciselibrary/
template.js мы изменим наш цикл в функции html() на:

for (let c = 0; c < exercises.length; c++) {

 mkup += `<wkout-exercise class="${exercises[c].type}"
 ${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;
}

Таким образом, мы можем создавать атрибуты в нашем новом эле-
менте для каждого действительного свойства в наших данных. Посколь-
ку это статический метод (доступ к которому осуществляется из класса,
а не из экземпляра класса), мы можем использовать его либо для объек-
тов необработанных данных, которые у нас есть в файле exerciselibrary/
exerciselibrary.js перед созданием компонента, либо для уже созданно-
го компонента <wkoutexercise>, чтобы скопировать эти значения. Будь то
простой объект или компонент, все свойства присутствуют и могут ис-
пользоваться одним и тем же способом этим методом. Тег, который мы
получаем в итоге, выглядит как один из приведенных ниже вариантов,
в зависимости от упражнения:

<wkout-exercise class="cardio" label="Jog" type="cardio" time="300"
 sets="1"></wkout-exercise>

<wkout-exercise class="strength" label="Pushups" type="strength" count="5"

 sets="2" estimatedtimepercount="5"></wkout-exercise>

9.4.2 Стили компонента упражнений
Разобравшись со всеми необходимыми нам атрибутами и создав опреде-
ление компонента, остается сделать последнее: создать HTML-код и сти-
ли, представленные в этом листинге:

Листинг 9.13 Первый проход компонента тренировки

export default {

 render(exercise) {

246 Глава 9 Shadow CSS

 return `${this.css(exercise)}
 ${this.html(exercise)}`;
 },

 html(exercise) {

 return `<div id="info">

 ${exercise.label}
 x

 </div>`;

 },

 css(exercise) {

 return `<style>

 :host {

 display: inline-block;

 background: radial-gradient(circle,
 rgba(235,235,235,1) 0%, rgba(208,208,208,1) 100%);
 /*background-image:

 ➥url('${exercise.thumb}');*/
 border-left-style: solid;

 border-left-width: 5px;

 }

 :host(.cardio) {

 border-left-color: #28a7ff;
 }

 :host(.strength) {

 border-left-color: #75af01;
 }

 #info {

 font-size: small;

 display: flex;

 align-items: center;

 background-color: black;

 color: white;

 }

 :host {

 width: 200px;

 height: 200px;

 background-size: cover;

 }

 :host #info {

 padding: 5px;

 }

 </style>`;

 }

}

Теперь, когда все это собрано воедино, наш компонент <wkout-exerc-
lib> отображает все имеющиеся у нас компоненты <wkout-exercise>. На
рис. 9.17 первое, что следует отметить, – это фоны наших компонентов:

Стили для всего компонента

Закомментированный фон
с миниатюрой

Общий стиль компонента
с вариацией для класса
в теге компонента

247Адаптируемые компоненты

background: radial-gradient(circle, rgba(235,235,235,1) 0%,
 rgba(208,208,208,1) 100%);
/*background-image: url('${exercise.thumb}');*/

Рис. 9.17 Компоненты упражнений с новыми стилями

Я закомментировал фоновое изображение, но если вы нашли в ин-
тернете отличные миниатюры для каждого упражнения и добавили их
к данным в компоненте <wkoutexercise-lib>, можете раскомментировать
эту строку. Если мы этого не сделали, то просто показываем градиент-
ный серый фон.

Также обратите внимание на то, насколько прост HTML-код. Мы по-
казываем блок размером 200×200 пикселей с черной полосой вверху. Для
библиотеки это нормально, но вы, наверное, представляете себе, что для
отображения в виде представления списка в плане упражнений все это
может быть немного проблематично.

И снова мы используем концепции, которые рассматривали ранее
в этой главе. Мы идентифицируем и выбираем элементы с помощью
атрибута ID, а также с помощью селектора :host в контексте теневого
корня нашего компонента.

Однако обратите внимание на то, что у нас есть небольшая разновид-
ность селектора :host:

 :host(.cardio) {

 border-left-color: #28a7ff;
 }

 :host(.strength) {

248 Глава 9 Shadow CSS

 border-left-color: #75af01;
 }

Вернувшись при рендеринге каждого из этих компонентов, мы доба-
вили класс strength или cardio для каждого компонента:

mkup += `<wkout-exercise class="${exercises[c].type}"
 ${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;

Эта разновидность селектора :host позволяет нам рассматривать лю-
бые классы самого тега компонента и использовать его для большей
спе цифичности стилей. Чтобы было понятнее, если говорить коротко,
:host(.cardio) позволяет нам стилизовать элемент <wkout-training class=
"cardio"> на основе класса cardio. На практике эти разные цвета границ
дают возможность пользователю различать два разных типа упражне-
ний при просмотре библиотеки. Есть еще несколько CSS-селекторов, ко-
торые вы, возможно, видели в сети и о которых я здесь не рассказывал,
но они не поддерживаются либо устарели. Мы закончим делать компо-
нент <wkout-exercise> адаптируемым к различным контекстам в следую-
щей главе, а пока поговорим о проблемах, связанных с Shadow DOM.

9.5 Обновляем ползунок
Перед тем как приступить к изучению проблем, связанных с Shadow
DOM, и обновлению приложения Workout Creator, мы узнали достаточ-
но, чтобы обновить наш ползунок, над которым мы работали на про-
тяжении всей этой книги. Приятный момент – менять нужно не так уж
и много!

Прежде всего давайте используем теневую модель DOM. Ранее код
инициализации компонента находился в функции connectedCallback, но
теперь мы знаем, что можно использовать конструктор, потому что есть
теневая модель DOM. Этот конструктор показан в приведенном ниже
лис тинге. Имейте в виду: мы полностью удалили метод connectedCallback,
переместив установочный код сюда.

Листинг 9.14 Конструктор ползунка

constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML =
 Template.render();

 this.dom = Template.mapDOM(this.shadowRoot);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

Кроме того, поскольку конструктор запускается до функции attrib-
uteChangedCallback, проблемы с синхронизацией, с которой мы сталкива-

Функционал метода connectedCallback перенесен в конструктор

Присоединяем
теневое
дерево DOM

Используем свойство shadowRoot
вместо this для области видимости

249Обновляем ползунок

лись ранее при использовании метода connectedCallback, больше не воз-
никает. Вы заметите, в коде установки нашего конструктора больше нет
этих строк:

this.refreshSlider(this.getAttribute('value'));

this.setColor(this.getAttribute('backgroundcolor'));

Также нам больше не нужно проверять, существует ли свойство this.
dom, как мы делали ранее:

setColor(color) {
 if (this.dom) { . . .

Конечно, такая проверка не повредит. Но поскольку вся инициализа-
ция происходит до изменения входящего атрибута при запуске компо-
нента, это просто не нужно.

Модуль template.js также может немного измениться. Помимо ис-
пользования селектора :host для корня компонента, теперь мы можем
использовать идентификаторы вместо классов для применения стилей
и выбора. Как я уже упоминал, использование идентификаторов – это
роскошь, которую мы не могли себе позволить раньше, когда у нас не
было инкапсулированной модели DOM. В приведенном ниже листин-
ге показан новый файл template.js для ползунка.

Листинг 9.15 Новый модуль шаблона ползунка

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {

 return {

 overlay: scope.getElementById(

'bg-overlay'),
 thumb: scope.getElementById('thumb'),
 }

 },

 html() {

 return `<div id="bg-overlay"></div>

 <div id="thumb"></div>`;

 },

 css() {

 return `<style>

 :host {

 display: inline-block;

 position: relative;

 border-radius: 3px;

 }

 #bg-overlay {

Теперь, применяя идентификаторы,
мы будем использовать метод
getElementById вместо querySelector

Ссылаемся на элементы
по идентификатору вместо класса

Используем селектор :host
для стилизации всего компонента

Используем идентификаторы
для стилей вместо классов

250 Глава 9 Shadow CSS

 width: 100%;

 height: 100%;

 position: absolute;

 border-radius: 3px;

 }

 #thumb {

 margin-top: -1px;

 width: 5px;

 height: calc(100% – 5px);

 position: absolute;

 border-style: solid;

 border-width: 3px;

 border-color: white;

 border-radius: 3px;

 pointer-events: none;

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px
 20px 0 rgba(0, 0, 0, 0.19);
 }

 </style>`;

 }

}

Теперь, когда в нашем компоненте работает теневая модель DOM, мы
сделали почти все, что нужно было сделать с этим конкретным компо-
нентом. Хотя пока мы не будем оставлять его в покое! Этот ползунок
станет неотъемлемой частью более крупного компонента, который мы
создадим в последних главах данной книги, где также рассмотрим тести-
рование, процесс сборки и запуск веб-ком по нен тов в IE11.

Резюме
Из этой главы мы узнали:

� как CSS-стили могут проникать в ваш веб-ком по нент и выходить из
него, если не использовать теневую модель DOM;

� что Shadow DOM полностью защищает DOM вашего компонента от
внешних стилей;

� что при применении Shadow DOM можно использовать меньше
конкретики в отношении наших CSS-селекторов, полностью пола-
гаясь на преимущества отдельной модели DOM;

� как использовать определенные CSS-селекторы Shadow DOM для
стилизации вашего компонента, делая это по-разному в разных
контекстах.

10
Проблемы Shadow CSS

Эта глава охватывает следующие темы:
� не пользующийся широкой поддержкой селектор
host-context();

� устаревшие селекторы ::shadow и /deep/;
� CSS-переменные;
� полизаполнение теневой модели DOM;
� дизайн-системы.

В предыдущих двух главах я нарисовал довольно радужную картину
Shadow DOM. Не волнуйтесь, я не изменю своего мнения! Как бы хороша
ни была теневая модель DOM, есть несколько предостережений, о кото-
рых следует знать. К сожалению, эти предостережения, вероятно, являют-
ся наиболее запутанной частью веб-ком по нен тов. Устаревшие функции,
функции, которые не поддерживаются в определенных браузерах, или
просто необходимость знать, как работать в браузерах, которые вообще
не поддерживают Shadow DOM, – все это может быть несколько сложно.

10.1 Контекстные селекторы
Первое, о чем нужно знать, – это селектор :host-context(). Сам по себе
он не является устаревшим – просто он не поддерживается ни в одном

252 Глава 10 Проблемы Shadow CSS

браузере, кроме Chrome. Дальше хуже. Разработчики браузера Safari,
основанного на свободно распространяемом коде движка WebKit, еще
в 2016 году заявили, что никогда больше не будут поддерживать его, по-
тому что считают его антипаттерном (https://bugs.webkit.org/show_bug.
cgi?id=160038). Разработчики Firefox также полагают, что реализация его
в движке Gecko – не очень хорошая идея, из-за того, что это влияет на
производительность, и даже открыли тикет на странице https://github.
com/w3c/csswg-drafts/issues/1914.

Итак, у нас остался симпатичный маленький селектор, который никто,
кроме Chrome, похоже, не хочет поддерживать, но он по-прежнему яв-
ляется частью спецификации Shadow DOM. Хуже того, чтобы узнать, что
происходит на самом деле, вам нужно выполнить поиск в общедоступ-
ных списках рассылки каждого браузера или отслеживать проблемы!

Что это значит? Если бы мне пришлось делать ставки, я бы сказал, что
селектор :host-context() будет исключен из спецификации Shadow DOM,
а Chrome, вероятно, удалит его когда-нибудь в далеком будущем, хотя
бы для поддержания здравого смысла и общего набора функций Shadow
DOM в браузерах.

Интересно, что Angular поддерживает селектор :host-context(), и, учи-
тывая, что это фреймворк, ему не требуется поддержка со стороны брау-
зера, чтобы использовать его. В общем и целом ситуация с этим селекто-
ром немного запутанная. Лично я думаю, что важно подумать о том, что
предлагает этот селектор и как преодолеть проблему, если он недосту-
пен, когда мы хотим использовать его. Если согласны, читайте дальше!
Если нет, переходите к разделу 10.2.

ПРЕДУПРЕЖДЕНИЕ В оставшейся части раздела 10.1 говорится
о селекторе:host-context(), который хотя и не считается устарев-
шим, скорее всего, станет таковым в будущем.

10.1.1 Немного интерактивности
Чтобы приступить к использованию этого нового, но злополучного се-
лектора, давайте вернемся к нашему приложению Workout Creator.
В главе 9, когда мы закончили, дела у нас шли довольно хорошо. Каждое
упражнение в нашем наборе данных было визуализировано с помощью
миниатюрного изображения в представлении библиотеки слева, в то
время как справа у нас – пустой контейнер, ожидающий использования,
как показано на рис. 10.1.

Как вы можете себе представить, следующий очевидный шаг – позво-
лить пользователю добавлять упражнения из библиотеки слева в свой
план тренировок справа. Поскольку в предыдущей главе мы начали с бо-
лее тонких контекстных стилей, мы будем использовать тот же компонент
упражнения для обеих областей. Теперь разница состоит в том, что вместо
разноцветных линий для обозначения типов упражнений наш компонент
<wkout-exercise> будет выглядеть совершенно по-разному в двух разных
контейнерах.

253Контекстные селекторы

Рис. 10.1 На чем мы остановились в главе 9

Учитывая это, нам нужно активировать некое взаимодействие. Давай-
те сделаем пару вещей, чтобы привести в действие компонент <wkout-
creator-app>. Для начала мы можем кешировать ссылки на элементы для
обоих контейнеров (библиотеки и плана).

Внутри файла workoutcreatorapp/template.js давайте добавим это:

mapDOM(scope) {

 return {

 library: scope.querySelector('wkout-exercise-lib'),
 plan: scope.querySelector('wkout-plan')

 };

},

Следует помнить, что метод mapDOM – просто мой любимый способ со-
хранения ссылок на элементы, при этом метод querySelector остается за
пределами основного класса компонента.

Пока мы находимся в этом файле, напомню, что для облегчения про-
смотра вначале мы добавили цвет фона для обоих используемых здесь
компонентов, чтобы их можно было видеть по мере продвижения. Те-
перь, когда мы разобрались со всем этим, давайте удалим этот цвет:

wkout-exercise-lib,
wkout-plan {

 flex: 1;

 height: 100%;

 background-color: #eaeaea;

}

Когда ссылки на элементы отобразятся в этом модуле, мы можем вер-
нуться в файл workoutcreatorapp/workoutcreatorapp.js и добавить слуша-
теля событий по клику, как показано в приведенном ниже листинге.

Листинг 10.1 Добавление слушателя событий по клику,
чтобы разрешить выбирать упражнения

import Template from './template.js';

import Plan from "../../plan/plan.js";

Удалите эту строку

254 Глава 10 Проблемы Shadow CSS

import Exercise from "../../exercise/exercise.js";

export default class WorkoutCreatorApp extends HTMLElement {
 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom =

 Template.mapDOM(this.shadowRoot);
 this.shadowRoot.addEventListener('click',
 e => this.onClick(e));
 }

 onClick(e) {
 const path = e.composedPath().reverse();

 for (let c = 0; c < path.length; c++) {

 if (path[c] instanceof Plan) {

 return;

 }

 if (path[c] instanceof Exercise) {

 const exercise = path[c];

 this.dom.plan.add(exercise);

 }

 }

 }

}

if (!customElements.get('wkout-creator-app')) {

 customElements.define('wkout-creator-app', WorkoutCreatorApp);
}

В конструкторе есть всего два небольших дополнения. Во-первых, мы
вызываем метод mapDOM, который только что добавили из шаблона, поэто-
му теперь this.dom содержит все наши ссылки на элементы. Во-вторых,
мы добавляем слушателя событий по клику в наш компонент.

Когда вы посмотрите на содержимое функции onClick и увидите, что
слушатель событий по клику находится в компоненте <wkout-creator-app>,
а не в компоненте библиотеки упражнений, то можете подвергнуть со-
мнению мои методы. И будете правы! Причина, по которой я все делаю
таким грязным способом, заключается в том, что мы можем надлежа-
щим образом изучить события и дизайн приложений с помощью этого
примера в главе 14.

Даже если вы знакомы с событиями и пользовательскими событиями,
которые я должен был использовать здесь, у теневой модели DOM дей-
ствительно есть некоторые недостатки. На данный момент это быст рый
и грязный способ, чтобы слушать события и реагировать на них. Здесь
мы проходим все элементы, через которые прошло событие click, чтобы
добраться до этой функции, и если оно пришло из компонента, опре-
деленного классом Plan, мы выходим из функции. Но если оно пришло
откуда-то еще и есть компонент, определенный классом Exercise, мы
знаем, что его можно добавить в компонент <wkout-plan>.

Сохраняем ссылки на элементы
в объект для последующего
использования

Назначаем слушателя событий
по клику нашему компоненту

Метод-обработчик
кликов

255Контекстные селекторы

Тем не менее строка this.dom.plan.add(exercise); пока еще ничего не
делает. Нам нужно добавить этот функционал в компонент <wkout-plan>.
Для этого можно начать с модуля шаблона в файле plan/template.js и до-
бавить содержимое приведенного ниже листинга.

Листинг 10.2 Добавляем новые упражнения в компонент
«план тренировок» (шаблонный модуль)

mapDOM(scope) {

 return {

 exercises: scope.querySelector('#container')

 }

},

renderExercise(exercise) {

 return `<wkout-exercise class="${exercise.type}"
 ${Exercise.toAttributeString(exercise.serialize())}></wkout-exercise>`
}

И снова мы используем метод mapDOM для сохранения ссылки на эле-
мент. На этот раз все наши упражнения должны содержаться в контей-
нере, когда мы добавляем их в план тренировки. Метод renderExercise
просто создает новый компонент <wkout-exercise>, как мы делали в ком-
поненте библиотеки ранее. Однако на этот раз источником данных яв-
ляется еще один компонент <wkout-exercise>, из которого мы копируем
атрибуты. Это делается в улучшенном классе в файле plan/plan.js и от-
ражено в приведенном ниже листинге.

Листинг 10.3 Добавляем новые упражнения в компонент
«план тренировок» (компонентный модуль)

import Template from './template.js';

export default class Plan extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 }

 add(exercise) {

 this.dom.exercises.innerHTML += Template.renderExercise(exercise);

 }

}

if (!customElements.get('wkout-plan')) {

 customElements.define('wkout-plan', Plan);
}

В этом обновленном классе мы добавили только две строки: первая –
для того, чтобы получить объект, содержащий ссылки на наши элемен-
ты, как видно из примечания  в листинге 10.3. Вторая – чрезвычайно

Используем метод
querySelector

Отображает каждое упражнение
(возвращает строку шаблонного литерала)

 Сохраняем ссылку
на элемент в объект
для последующего
использования

 Добавляем каждое упражнение
в наш элемент контейнера списка

256 Глава 10 Проблемы Shadow CSS

простая функция add, показанная в примечании , которая добавляет
новое упражнение к свойству innerHTML нашего контейнера, вначале ви-
зуализируя HTML-код из шаблонного модуля. После всего этого, обно-
вив наш браузер и щелкнув мышью на упражнении Jump Rope (Прыжки
со скакалкой) из библиотеки, наше приложение теперь выглядит как на
рис. 10.2.

10.1.2 Контекстные стили
Пока все идет нормально! Сейчас мы показываем библиотеку упражне-
ний и позволяем пользователю кликать на упражнения и добавлять их
в личный план тренировок. Проблема, однако, состоит в том, что на са-
мом деле нам нужно показывать личный план тренировок в виде спис-
ка. Мы также хотим, чтобы пользователи могли настраивать продолжи-
тельность или количество повторений/наборов, связанных с выбранным
упражнением.

Не было бы большим преувеличением считать, что в этих двух разных
контекстах использование компонента упражнения слишком разное,
и нам следует создать два разных компонента для каждого контекста,
что было бы обидно; в конечном итоге мы продублируем значительный
объем кода, в особенности код, не связанный с визуальным оформлени-
ем. Мы также можем использовать эту возможность для изучения селек-
тора :host-context().

Кликаем
сюда

Здесь
упражнение
добавляется
в список

Рис. 10.2 Состояние приложения после добавления упражнений в план тренировок

Давайте сначала еще немного округлим HTML-код в файле exercise/
template.js с помощью полей для ввода текста, чтобы поддержать идею
настройки вашего упражнения:

257Контекстные селекторы

Листинг 10.4 Добавление дополнительных функций в компонент
упражнения для представления плана

html(exercise) {

 return `<div id="info">

 ${exercise.label}

 <div id="customize">

 <label

 class="${exercise.time?'visible':'hidden'}">
 <input type="number" max="999" style="width:35px;"
 value="${Number(exercise.time)}"> seconds
 </label>

 <label class="${exercise.count?'visible':'hidden'}">
 <input type="number" max="99" style="width:25px;"
 value="${Number(exercise.count)}">
 </label>

 <label class="${exercise.sets?'visible':'hidden'}">x
 <input type="number" max="9" style="width:20px;"
 value="${Number(exercise.sets)}"> set(s)
 </label>

 </div>

 x

 </div>`;

},

Мы оставили элементы с идентификаторами "info" и "label" такими
же, как и раньше. Они не будут меняться. Однако мы добавили контей-
нер <div id="customize">, где содержится несколько элементов <input>,
а также кликабельный тег x, чтобы в конечном
итоге удалить этот элемент из нашего плана тренировок.

У каждого поля <input> есть тег <label>, который в зависимости от
того, существует ли свойство в упражнении, будет иметь CSS-правило,
где установлены свойства visible или hidden. Теперь, после того как мы
добавили эту разметку, компонент выглядит довольно неопрятно неза-
висимо от того, в каком контексте он находится. Это можно исправить,
и для этого мы будем использовать селектор :host-context! Этот селектор
позволяет нам определять различные правила CSS, которые учитывают
расположение компонента на странице, как показано на рис. 10.3.

В качестве примера давайте посмотрим на HTML-код, который мы
только что добавили. Теги <div> и не должны быть видны, когда
компонент <wkout-exercise> находится в компоненте <wkoutexercise-li-
brary>. Поэтому мы можем добавить эти стили:

:host-context(wkout-exercise-lib) #customize {

 display: none;

}

:host-context(wkout-exercise-lib) #delete {

 display: none;

}

Название упражнения

Проверяем, существует ли
свойство, и если нет,
скрываем теги <label>
и <input>

Кнопка Delete

258 Глава 10 Проблемы Shadow CSS

host-context(.container-a) { color: green }

host-context(.container-b) { color: blue }

Веб-страница

div.container-a div.container-b

<my-component> <my-component>

Рис. 10.3 При использовании селектора :host-context стили по-разному зависят
от контекста компонента

Мы даже можем начать стилизацию теневого хоста компонента, ис-
пользуя новые правила определения размера, когда он появляется
в компоненте <wkout-plan>:

:host-context(wkout-plan) {

 width: 100%;

 height: 50px;

 margin-bottom: 1px;

 background-size: contain;

}

Здесь вместо компонента в виде квадрата размером 200×200 пиксе-
лей мы сообщаем, что в контексте элемента <wkout-plan> мы хотим, чтобы
ширина и высота составляли 100 % и 50 пикселей соответственно.

Теперь, имея возможность применять стили в соответствии с контекс-
том нашего компонента, мы можем создать набор общих CSS-правил,
набор правил, когда мы находимся в компоненте <wkout-plan>, и набор
правил, когда находимся в компоненте <wkout-exercise-lib>, как показано
в приведенном ниже листинге.

Листинг 10.5 Контекстные стили для компонента упражнения

 <style>

 :host {

 display: inline-block;

 background: radial-gradient(circle, rgba(235,235,235,1) 0%,
 rgba(208,208,208,1) 100%);
 background-image: url('${exercise.thumb}');
 border-left-style: solid;

 border-left-width: 5px;

 }

 :host(.cardio) {

 border-left-color: #28a7ff;
 }

Стили компонента не зависят от контекста

259Контекстные селекторы

 :host(.strength) {

 border-left-color: #75af01;
 }

 #info {

 font-size: small;

 background-color: black;

 color: white;

 display: flex;

 align-items: center;

 }

 :host-context(wkout-exercise-lib) {

 width: 200px;

 height: 200px;

 background-size: cover;

 }

 :host-context(wkout-exercise-lib) #info {

 padding: 5px;

 }

 :host-context(wkout-exercise-lib) #customize {

 display: none;

 }

 :host-context(wkout-exercise-lib) #delete {

 display: none;

 }

 :host-context(wkout-plan) {

 width: 100%;

 height: 50px;

 margin-bottom: 1px;

 background-size: contain;

 }

 :host-context(wkout-plan) input {

 background-color: #505050;

 padding: 5px;

 color: white;

 border: none;

 }

 :host-context(wkout-plan) #delete {

 width: 30px;

 height: 100%;

 line-height: 50px;

 font-size: 12px;

 font-family: Arial;

 text-align: center;

 background-color: #404040;

 cursor: pointer;

 }

 :host-context(wkout-plan) #delete:hover {

Стили компонента в контексте
библиотеки упражнений

Стили компонента в контексте
списка плана тренировок

260 Глава 10 Проблемы Shadow CSS

 background-color: #797979;
 }

 :host-context(wkout-plan) #info {

 width: calc(100% – 80px);

 height: 100%;

 margin-left: 75px;
 background-size: 75px 75px;
 }

 :host-context(wkout-plan) #customize {

 display: inline-block;

 flex: 1;

 }

 :host-context(wkout-plan) #label {

 padding-left: 10px;

 font-size: 16px;

 font-weight: bold;

 display: inline-block;

 flex: 1;

 }

 :host-context(wkout-plan) label.hidden {

 display: none;

 }

 </style>

После того как мы разобрались со стилями, наш компонент, наконец,
начинает приобретать законченную форму! Нужно сделать еще кое-что,
например подключить взаимодействие для полей <input>, кнопку Delete
и т. д., но с точки зрения визуального стиля и использования компонента
упражнения в разных контекстах мы преуспели! В приложении, пока-
занном на рис. 10.4, не хватает лишь пары мелких деталей: типа шрифта
и его цвета.

10.1.3 Обходной путь
Что мне действительно нравится в селекторе :host-context(), так это то,
что он заставляет нас задуматься над тем, как использовать один и тот
же компонент самыми разными способами. Но, в конце концов, нам на
самом деле не нужен селектор, чтобы достичь уровня другого макета или
стиля. Конечно, чтобы добиться того же самого, нужно немного больше
работы, но, учитывая состояние этого селектора, которое не поддержи-
вается никем, кроме Chrome, вероятно, разумно сделать вид, что его не
существует. Что же делать?

Один из вариантов – просто вернуться к использованию селектора
:host() с той же целью и добавить контекст в качестве класса для самого
компонента. Чтобы было понятнее, мы вернемся к шаблонному модулю
компонента библиотеки упражнений из файла component/exerciselibrary/
template.js.

261Контекстные селекторы

Одинаковые компоненты
внутри двух разных
контейнеров с разными
стилями и макетом

Рис. 10.4 Компонент упражнения имеет другой стиль, макет
и элементы управления в разных контекстах

При отображении нашего HTML-кода давайте добавим еще один класс,
как показано в приведенном ниже листинге.

Листинг 10.6 Добавление контекста с помощью имени класса

html(exercises) {

 let mkup = `<h1>Exercises</h1>

 <div id="container">`;

 for (let c = 0; c < exercises.length; c++) {

 mkup += `<wkout-exercise

class="${exercises[c].type} library"
${Exercise.toAttributeString(exercises[c])}></wkout-exercise>`;
 }

 Return

Давайте сделаем то же самое с нашим планом тренировок из фай-
ла components/plan/template.js. Напомним, что, добавляя упражнение
в наш план, мы отображаем некий HTML-код для каждого из них. Мы
добавим класс plan, как показано в приведенном ниже листинге.

Листинг 10.7 Добавляем другой контекст в план тренировок

renderExercise(exercise) {

 return `<wkout-exercise

class="${exercise.type} plan"

Добавляем класс library,
чтобы указать на то, что компонент
находится в библиотеке упражнений

Добавляем класс plan, чтобы указать на то,
что компонент находится в плане тренировок

262 Глава 10 Проблемы Shadow CSS

${Exercise.toAttributeString(exercise.serialize())}>
</wkout-exercise>`

},

Теперь давайте вернемся к компоненту тренировки из файла com po-
nents/exercise/template.js, чтобы избавиться от всех селекторов :host-con-
text(). Мы сделаем это в приведенном ниже листинге, но покажем лишь
несколько измененных CSS-правил, чтобы не повторять всю таблицу
стилей.

Листинг 10.8 Меняем селекторы host-context на селекторы host

:host(.library) #customize {

 display: none;

}

:host(.library) #delete {

 display: none;

}

:host(.plan) {

 width: 100%;

 height: 50px;

 margin-bottom: 1px;

 background-size: contain;

}

:host(.plan) input {

 background-color: #505050;

 padding: 5px;

 color: white;

 border: none;

}

Конечно, в этом примере было легко добавить класс .library или .plan
к компонентам, чтобы дать им другой контекст. Это становится немного
сложнее, если нам нужно заменить селектор :host-context(), когда кон-
текст, который мы хотим использовать, является родителем родителя ро-
дителя компонента. В этом случае вы просто не можете зайти так далеко,
как этот селектор. Итак, вам нужно получить какой-то сигнал для вашего
компонента через иерархию DOM, чтобы добавить желаемый класс, или,
возможно, просто создать какой-нибудь API (может быть, сеттер, атри-
бут или и то, и другое) в вашем приложении для переключения режима.

10.2 Темы компонента
Как правило, когда мы говорим о темизации веб-приложения, речь идет
об использовании стилей CSS, которые проникают во все аспекты на-
шего пользовательского интерфейса. В последней главе мы обсуждали
кнопку, предлагаемую дизайн-системой.

Теперь возвращаемся на круги своя. Когда мы обсуждали эту кнопку
ранее, вопрос заключался в том, как не дать дизайн-системе и правилам

Мы поменяли два селектора, чтобы использовать
класс library непосредственно в компоненте

То же самое для класса plan

263Темы компонента

CSS, стоящим за ней, испортить внешний вид кнопок в нашем счетчике,
как показано на рис. 10.5.

Рис. 10.5 Рисунок из главы 9,
напоминающий об опасности
утечки стилей в наш компонент

Теперь, когда мы используем Shadow DOM и успешно блокируем эти
стили, возникает вопрос: «Что, если мы действительно хотим, чтобы эти
стили появлялись?» Ответ не так прост.

10.2.1 Селекторы ::shadow и /deep/
ПРЕДУПРЕЖДЕНИЕ В этом разделе обсуждаются устаревшие
функции. Селекторы ::shadow и /deep/ основательно устарели, в от-
личие от селектора :host-context() из раздела 10.1. Хотя, возмож-
но, это может немного сбивать с толку, потому что они устарели
сравнительно недавно. В результате вы можете пойти по невер-
ному пути. К сожалению, подходящей замены им нет, поэтому,
даже если вам не нужны устаревшие функции, здесь мы обсудим
несколько вариантов.

Я вас предупредил – то, что мы здесь рассматриваем, устарело, но не-
много истории будет полезно.

Чтобы решить проблему применения стилей к содержимому внутри
корня теневого дерева, когда нам это действительно нужно, раньше ис-
пользовалось два CSS-селектора: ::shadow и /deep/. Эти селекторы были
разработаны для преодоления границы Shadow DOM в первой версии
Shadow DOM (v0). Они так и не попали в версию 1 и были окончательно
удалены из Chrome в версии 63.

Селектор ::shadow погружался в Shadow DOM и стилизовал все, что бы-
ло внутри.

Например, с помощью этого

::shadow .example {

 color: red;

}

мы бы сделали текст шрифта в теге <div> внутри приведенного ниже ком-
понента (при условии использования Shadow DOM) красным:

264 Глава 10 Проблемы Shadow CSS

<my-component>

 <div class="example">Some red text</div>

</my-component>

Однако если бы вы также использовали div-элемент с классом example
где-то за пределами Shadow DOM, правило не было бы применено:

<div class="example">This text is not red</div>

<my-component>

 <div class="example">Some red text</div>

</my-component>

Чтобы стилизовать оба варианта, независимо от того, появляются они
внутри Shadow DOM или нет, можно использовать селектор /deep/:

/deep/ .example {

 color: red;

}

Когда в Chrome отказались от поддержки этих селекторов, по извест-
ным причинам никто не понимал, что делать дальше. Причины отказа,
безусловно, благие. Эти селекторы в основном являются своего рода лей-
копластырем – они позволяют вам вернуться к применению собствен-
ных CSS-правил для инкапсулированного компонента. Сам компонент
теряет контроль над собственными стилями, как это было до появления
Shadow DOM.

Одним из предлагаемых в настоящее время решений является проект
Shadow Parts рабочей группы по разработке спецификаций каскадных
таблиц стилей CSS (CSSWG). Здесь я не буду вдаваться в подробности,
потому что он был представлен только в Chrome, вместе со связанным
с ним селектором ::theme и, вероятно, будет развиваться. Тем не менее
если вы хотите следить за этим проектом, можете делать это на странице
https://drafts.csswg.org/css-shadow-parts/.

Я хотел бы процитировать один отрывок:

Важно отметить, что селектор ::part() предлагает абсолютно ну-
левую теоретическую мощность. Это не переделывание комбина-
тора >>> на новый лад, это просто более удобный и согласованный
синтаксис для того, что авторы уже могут делать с пользователь-
скими свойствами.

Данная цитата заслуживает внимания, поскольку текущая рекоменда-
ция касательно использования пользовательских свойств в настоящее
время является единственным способом проникновения в Shadow DOM.
Эти пользовательские свойства, также известные как CSS-переменные,
могут сочетаться с селекторами ::part и ::theme, что приводит к совер-
шенно новым способам управления CSS, преодолевая устаревшие функ-
ции, упомянутые в данной главе.

Это пространство, за которым вы наверняка захотите следить, пото-
му что, как только оно получит признание, я верю, что оно даст новые
способы сделать ваши компоненты стилизуемыми и проложит путь для

265Темы компонента

дизайн-систем в будущем. Однако сейчас еще слишком рано строить ка-
кие-либо прогнозы относительно того, как все это будет развиваться.

10.2.2 CSS-переменные
Если вы пропустили последний раздел из-за обсуждения устаревших
функций, то мы обсуждаем небольшую проблему. В настоящее время не
существует подходящего механизма передачи правил CSS в ваш компо-
нент, если это действительно то, что вам нужно. Лучшее, что у нас есть, –
это CSS-переменные.

Возможно, вы уже знакомы с CSS-переменными или пользовательски-
ми свойствами. Фактически они поддерживаются всеми современными
браузерами (извините, для IE нужен полифил) и не имеют ничего общего
с Shadow DOM, кроме того факта, что могут пересекать теневую границу.

Вы, вероятно, представляете себе, что это такое. Они позволяют вам
определять переменную, которая обозначает некое CSS-свойство, и ис-
пользовать эту переменную еще где-то в одном или нескольких местах.
Взять, к примеру, этот листинг.

Листинг 10.9 Использование CSS-переменных

<head>

<style>

 body {

 --text-color: blue;

 }

 .container {

 --text-color: red;

 }

 .child {

 color: var(--text-color);

 }

</style>

</head>

<body>

 <div class="container">

 <div class="child">Some Text</div>

 </div>

</body>

Мы можем определить переменную, относящуюся к классу container,
объявив, что переменная text-color имеет красный цвет. Переменные
также имеют понятие наследования. Это означает, что у нас может быть
та же самая переменная text-color, определенная для чего-то менее
конкретного, например body. Переменная класса container по-прежнему
имеет приоритет, но если ее удалить, наша переменная для body срабо-
тает, и цвет текста теперь будет синим. Это поведение можно увидеть на
рис. 10.6.

Переменная цвета, определенная
для тела страницы

Более конкретная переменная цвета,
определенная для CSS-класса

Использование переменной цвета

266 Глава 10 Проблемы Shadow CSS

Веб-страница

Рис. 10.6 Использование одной и той же CSS-переменной на нескольких уровнях
в DOM

Это прекрасно работает и в Shadow DOM! В приведенном ниже лис-
тинге показано правило, определяемое пользовательским компонен-
том снаружи. Здесь мы наблюдаем прохождение мимо теневой границы
в компонент.

Листинг 10.10 Использование CSS-переменных в теневой модели DOM
веб-компонента

 <style>

 sample-component {

 --text-color: blue;

 }

 </style>

 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `<div class="inside-component">
 My Component
 </div>

 <style>

 .inside-component {

 color: var(--text-color);

 }

 </style>`

 }

 }

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

Объявляем CSS-переменную цвета текста

Используем CSS-переменную
цвета текста

267Темы компонента

 </script>

</head>

<body>

<sample-component></sample-component>

</body>

CSS-переменные не обязательно должны находиться в локальной
области видимости – они могут становиться глобальными с помощью
псевдоселектора :root {...}, который фактически имеет даже более низ-
кую специфичность, чем html { . . . }. Поэтому, когда нам не нужно беспо-
коиться по поводу специфичности или мы просто устанавливаем эталон
переменных, можно совершено спокойно использовать селектор :root.

10.2.3 Применяем CSS-переменные в нашем примере
Давайте начнем с простой темы на нашем примере с Workout Creator!
Сейчас мы можем сосредоточиться только на нескольких переменных,
но, основываясь на этом, можно легко представить себе более крупную
дизайн-систему.

Во-первых, я хотел бы использовать другой шрифт для нашего при-
ложения, поэтому мы должны изменить тег <head> в нашем файле index.
html, чтобы загрузить шрифт, как показано в приведенном ниже листин-
ге.

Листинг 10.11 Загрузка шрифта

<head>

 <title>Workout Creator</title>
 <script type="module"

 src="components/workoutcreatorapp/workoutcreatorapp.js"></script>

 <link rel="stylesheet" type="text/css" href="main.css">

 <link href=

 "https://fonts.googleapis.com/css?family=Roboto+Slab" rel="stylesheet">
</head>

Во-вторых, мы можем определить глобальные переменные внутри
файла main.css.

Листинг 10.12 Определение глобальных переменных в CSS
для цвета и размера текста

:root {

 --inverted-text-color: #eaeaea;

 --text-color: #3a3a3a;

 --label-color: #2a2a2a;

 --header-font-size: 21px;

 --font: 'Roboto Slab', serif;
}

Наконец, мы можем обновить стили каждого компонента, как видно
из этого листинга (показаны только правила, которые изменились).

Ссылка
на шрифт

Переменные находятся в глобальной области
видимости: root и определяют некоторые
ключевые свойства, которые будут использоваться
повсеместно

268 Глава 10 Проблемы Shadow CSS

Листинг 10.13 Разрешаем легкую темизацию в Workout Creator
с помощью CSS-переменных

// exercise/template.js

:host {

 font-family: var(--font);

 display: inline-block;

 background: radial-gradient(circle, rgba(235,235,235,1) 0%,
 ➥rgba(208,208,208,1) 100%);
 background-image: url('${exercise.thumb}');
 border-left-style: solid;

 border-left-width: 5px;

}

#info {

 font-size: small;

 background-color: var(--label-color);

 color: var(--inverted-text-color);

 display: flex;

 align-items: center;

}

// exerciselibrary/template.js

:host {

 display: inline-block;

 font-family: var(--font);

 color: var(--text-color);

}

h1 {

 font-size: var(--header-font-size);

}

Обновление каждого компонента продолжается до следующего лис-
тинга, где CSS-переменные добавляются к предыдущему.

Листинг 10.14 Облегченная темизация с помощью CSS-переменных
в компоненте Workout plan

// plan/template.js

:host {

 display: flex;

 flex-direction: column;

 font-family: var(--font);

 color: var(--text-color);

}

h1 {

 font-size: var(--header-font-size);

}

// workoutcreatorapp/template.js

#divider-line {

 width: 1px;

 height: 100%;

Темизация с использованием CSS-переменных
в файле exercise/template.js

Темизация с использованием CSS-переменных
для файла plan/template.js

269Использование теневой модели DOM на практике (сегодня)

 margin-right: 25px;

 background-color: var(--text-color);

}

После этих изменений стилей текста мы можем дополнительно на-
строить CSS-переменные нашей простой темы. Например, можно было
бы выбрать цвет позеленее, как показано в следующем листинге, исполь-
зуемом для темизации нашего приложения. Результат можно увидеть на
рис. 10.7.

Листинг 10.15 Изменение переменных для перехода на другой цвет

:root {

 --inverted-text-color: #daf8a1;

 --text-color: #47730c;
 --label-color: #59b624;
 --header-font-size: 18px;

 --font: 'Roboto Slab', serif;
}

Рис. 10.7 Простое изменение CSS-переменных на уровне корня для изменения цвета темы
с черного на зеленый

10.3 Использование теневой модели DOM
на практике (сегодня)
Не так давно я подходил к использованию теневой модели DOM с осто-
рожностью – настолько, что рекомендовал не использовать ее совсем
и разрабатывать свои веб-ком по нен ты без нее. С тех пор произошли
удивительные вещи, и мы наконец-то получили действительно хорошую
возможность их использовать. Конечно, прежде чем идти ва-банк, нужно
учесть некоторые вещи!

10.3.1 Поддержка со стороны браузеров
Это главная и самая очевидная проблема. Поначалу теневая модель DOM
поддерживалась только браузером Chrome, а затем к нему присоединился
Safari. На протяжении некоторого времени это все, что у нас было! Затем,

Два CSS-правила для изменения исходных оттенков
серого на зеленый цвет

270 Глава 10 Проблемы Shadow CSS

в октябре 2018 года, Firefox выпустил веб-ком по нен ты, которые, конечно
же, включают в себя Shadow DOM. Мы знали, что Microsoft Edge работает
над веб-ком по нен та ми (https://developer.microsoft.com/en-us/microsoft-
edge/platform/status/shadowdom). Я очень ценю приведенное здесь упо-
минание о том, что Shadow DOM будет поддерживаться в семействах
устройства XBOX, мобильных устройствах и устройствах смешанной ре-
альности. Когда же это произойдет? Сейчас готовится предварительная
версия для разработчиков, поэтому, возможно, мы увидим подходящий
выпуск как раз к тому времени, когда будет опубликована эта книга! Ко-
нечно, это только предположение, но тем не менее похоже, что все по-
следние версии современных браузеров (будут) иметь поддержку.

Поэтому, разумеется, нужно просто идти в ногу с Edge, прежде чем
у всех пользователей появится возможность выполнить обновление
и получить новую версию с поддержкой Chromium. Если ваш проект нуж-
дается в его поддержке и вы не хотите играть на дату поставки Microsoft
Shadow DOM, то на данный момент вы можете создавать свои веб-ком-
по нен ты без Shadow DOM.

10.3.2 Полизаполнение
Конечно, в предыдущем разделе я говорил о нативной поддержке. Чаще
всего можно с легкостью использовать полизаполнение. Это также от-
носится и к веб-компонентам, за исключением CSS-реализации Shadow
DOM.

Проблема здесь состоит в том, что мини-инкапсулированную модель
DOM трудно эмулировать. Защитить DOM от использования метода que-
rySelctor и манипулирования легче, чем от просачивания CSS-правил.
В первом случае можно использовать полифил ShadyDOM. Во втором
случае, когда речь идет о CSS, – полифил ShadyCSS.

К сожалению, в то время как в большинстве случаев полифил можно
просто вставить и все будет готово, в случае с ShadyCSS необходима руч-
ная фиксация. Тем не менее последние разработки усилили мой опти-
мизм.

Полизаполнение ShadyCSS было создано компанией Google, чтобы ис-
пользовать его с библиотекой Polymer для создания веб-ком по нен тов.
Нужно отдать Google должное: компания сделала все возможное, чтобы
не запирать эти полизаполнения в библиотеке. Все их можно найти на
странице https://www.webcomponents.org и на GitHub по адресу https://
github.com/webcomponents.

В случае с ShadyCSS полизаполнение было слишком привязано к биб-
лиотеке Polymer, которая в значительной степени была основа на ныне
устаревшем рабочем процессе HTML-импорта. В результате документа-
ция по ShadyCSS и предлагаемый рабочий процесс были очень сфокуси-
рованы на том, как использовать полизаполнение с помощью шаблона,
который нужно было реализовать с помощью HTML-импорта.

С тех пор команда Polymer прекратила разработку функциональных
средств для библиотеки Polymer и теперь рекомендует более мелкие

271Использование теневой модели DOM на практике (сегодня)

и целевые библиотеки, которые были написаны и заброшены, и все это
под эгидой проекта Polymer. Мы уже обсуждали lit-HTML в качестве од-
ной из них. Еще один пример – проект LitElement, https://litelement.poly-
mer.project.org, который использует lit-html за кулисами. К счастью для
нас, этот новый рабочий процесс веб-компонента с LitElement, который
они предлагают, работает точно так же, как мы уже видели в этой книге:
шаблонные литералы в вашем JS-коде для управления HTML-разметкой
и стилями CSS – все это управляется с помощью простого API жизнен-
ного цикла веб-ком по нен тов. В результате их использование ShadyDOM
совпадает с нашим. Там, где раньше нам нужен был шаблон для нашего
HTML-кода, он по-прежнему необходим нам, но обо всем этом автома-
тически заботится lit-html. То, что мы поместили бы в корень теневого
дерева, теперь оборачивается в качестве шаблона. В качестве шаблона
ShadyCSS затем переписывает наши неспецифичные CSS-правила в не-
что более уникальное, которое действует как инкапсулированная тене-
вая модель DOM. Затем ShadyCSS добавляет этот шаблон в качестве до-
чернего элемента нашего компонента.

В конечном результате наши компоненты с поддержкой Shadow DOM
работают во всех популярных браузерах (да, даже в IE). У ShadyCSS есть
список известных проблем, о которых следует знать, поэтому не жди-
те, что все будет работать: https://github.com/webcomponents/shadycss.
В следующей главе мы создадим готовый к бою компонент с учетом этих
проблем, используя полизаполения, где это уместно.

10.3.3 Дизайн-системы
Даже простое оформление вашего приложения потребует переосмыс-
ления того, как мы сегодня используем дизайн-системы. Если вы не-
знакомы с дизайн-системами, они, как правило, представляют собой
CSS-библиотеку для обеспечения единообразного просмотра вашего
проекта, в том числе для часто используемых элементов пользователь-
ского интерфейса, таких как кнопки, ползунки, контейнеры содержимо-
го и т. д. Одна из самых популярных дизайн-систем, например Bootstrap,
просто не будет работать с Shadow DOM как есть.

Сами дизайн-системы обычно довольно монолитные, то есть вы, ве-
роятно, включите один основной (и огромный) CSS-файл в свою главную
страницу. Этот файл будет проходить через вашу страницу и стилизовать
все ваши элементы, как и должно быть.

Проблема, конечно же, состоит в том, что теневая модель DOM за-
блокирует все стили, определенные для вашей страницы, защищая все
элементы, вложенные в компонент. Хорошая новость заключается в том,
что дизайн-система, скорее всего, будет состоять из отдельных компо-
нентов. Снэпшот компонентов Bootstrap показан на рис. 10.8.

В конце концов, все эти CSS-компоненты встраиваются в этот моно-
литный CSS-файл, но в дизайн-системах, подобных этим, существует
возможность выделить каждый компонент в качестве собственных им-
портируемых стилей, которые будут использоваться именно тем веб-

272 Глава 10 Проблемы Shadow CSS

компонентом, которому они нужны. Все становится немного сложнее,
потому что в примере с Bootstrap карусель может зависеть от кнопки,
которая зависит от базовых стилей текста, пробелов и цвета. Таким об-
разом, необходимо управлять зависимостями, чтобы все получилось.

Тем не менее некоторые трудолюбивые люди уже приступили к соз-
данию разновидностей веб-ком по нен тов для таких популярных дизайн-
систем, как Bootstrap. То же самое мы уже наблюдали в случае с Angular
и React. Уже запущен процесс разработки разновидностей веб-ком по-
нен тов для Marerial (https://github.com/material-components/material-
componentsweb-components). Наверняка здесь будет предпринято мно-
жество усилий, учитывая, что команда Polymer перешла от библиотеки
Polymer на более универсальные библиотеки веб-ком по нен тов.

Проблемы определенно будут. Во многих случаях, когда речь идет
о дизайн-системах, вы будете сталкиваться с тем, что стиль элемента за-
висит от контекста того, кто является его родительским элементом или
идет дальше по цепочке предков. Конечно, здесь будет полезен селектор
:host-context, но вместо этого просто следует быть осторожными при соз-
дании или преобразовании существующей дизайн-системы.

Конечно, пока делаются только первые шаги в использовании ди-
зайн-систем в веб-компонентах, но уже виден существенный прогресс.
По мере продвижения вперед я ожидаю увидеть гораздо более частое
использование CSS-переменных и, возможно, даже CSS Shadow Parts,
как только это предложение будет утверждено и будет поддерживаться
браузерами.

Рис. 10.8 Bootstrap состоит из этих
и многих других компонентов

273Резюме

Резюме
В этой главе мы увидели множество преимуществ, которые дает теневая
модель DOM в плане борьбы со стилями. Но, с другой стороны, поскольку
он еще поддерживается не полностью и никогда не будет поддерживать-
ся в IE, мы знаем, что следует действовать с осторожностью. Продвигаясь
вперед по мере обновления браузеров, мы берем на вооружение непло-
хие основополагающие приемы.

Из этой главы вы также узнали:
� как остерегаться селекторов, которые уже устарели, по мере стан-

дартизации спецификации Shadow DOM;
� что к теневой модели DOM не так просто применить полизапол-

нение при использовании стилей. Поэтому если вы используете ее
с CSS, будьте осторожны и следите за поддержкой со стороны брау-
зеров, обращайте внимание на полизаполнение и нереализован-
ные функции;

� дизайн-системы двигаются вперед в направлении поддержки тене-
вой модели DOM, но на это потребуется время. Хотя сейчас и су-
ществует несколько проектов, разработанных для Shadow DOM, вам,
возможно, придется закатать рукава и самостоятельно поработать
над адаптацией.

Часть III

Объединяем
компоненты воедино

В последней части этой книги мы возьмем все, что изучили, и убедим-
ся, что наши компоненты готовы к промышленной эксплуатации,

протестированы и работают вместе как единое целое – везде.
Начиная со второй главы мы создавали и совершенствовали очень

прос той компонент. В первой главе третьей части мы снова вернемся
к этому компоненту, чтобы создать нечто большее, используя его в ка-
честве более мелкого вложенного фрагмента более крупного веб-ком по-
нента. Мы опробуем этот новый компонент, познакомившись с процес-
сом сборки и тестирования, и, наконец, воспользуемся рефакторингом,
чтобы убедиться, что он работает во всех версиях браузеров вплоть до
IE11.

Организация взаимодействия и обмена сообщениями в приложении
тоже не простая задача, и как таковая она очень важна для диалога, осо-
бенно при принятии решения об использовании веб-ком по нен тов вмес-
то основного фреймворка. В этой части обсуждаются соответствующие
стратегии, прежде чем окончательно остановиться на новых технологи-
ях, в которых могут быть полезны веб-ком по нен ты, такие как Web 3D,
смешанная реальность и машинное обучение, и будут даны простые
примеры для изучения этих футуристических понятий.

11
Реальный компонент

пользовательского
интерфейса

Эта глава охватывает следующие темы:
� мы создадим новый компонент и освежим в памяти полученные знания, включая

теневую модель DOM, модули, API пользовательского элемента и рефлексию;
� разобьем дизайн на несколько компонентов и сосредоточимся на возможности по-

вторного применения компонента, чтобы использовать один, менее крупный ком-
понент двойного назначения в более широком контексте;

� воспользуемся объектом MutationObserver для отслеживания изменений атрибутов;
� познакомимся со всплыванием событий внутри вашего компонента;
� изучим передовые практики работы с компонентами, связанные с использованием

теневой модели DOM;
� поговорим о применении согласованных и универсальных правил дизайна, предо-

ставляемых CSS-переменными и импортируемыми CSS-модулями.

Сейчас самое время сделать шаг назад и подвести итог. В этой книге мы
много сделали с веб-ком по нен та ми. В то же время у нас было не так мно-

276 Глава 11 Реальный компонент пользовательского интерфейса

го замечательных примеров компонентов пользовательского интерфейса,
которыми можно поделиться с другими. Один из примеров компонента
пользовательского интерфейса, над которым мы работали, – это ползунок.

Рисунок 11.1 вкратце напоминает о том, на что он способен. С самого
начала этот компонент создавался с целью совместного использования
в более широком контексте. Он прост, поэтому применение его в качест-
ве небольшого фрагмента более крупного, полезного и общедоступного
компонента пользовательского интерфейса – отличная цель для даль-
нейших действий!

Такие свойства, как border-radius, можно
настроить за пределами компонента
с помощью CSS-переменных

Перетаскиваемая рукоятка
для установки атрибута/свойства «value»

Для цветного/исчезающего фонового слоя
можно установить любой цвет, используя
атрибут/свойство «backgroundcolor»

Клетчатый фон (на самом деле
он не является частью компонента
и настраивается в любом контексте)

Рис. 11.1 Компонент пользовательского интерфейса, который мы создавали на
протяжении всей книги

11.1 Создаем палитру цветов
Итак, чем мы займемся? Каков тот более широкий контекст, в который
мы поместим наш компонент? Часто, когда мне нужен градиент в своих
стилях, я использую некоторые простые, но удивительные инструменты,
предлагаемые онлайн. Я думаю, что приложение для создания градиента
на сайте https://cssgradient.io, показанное на рис. 11.2, хорошо спроекти-
ровано и просто в использовании. Я также считаю, что было бы прекрас-
но, если бы мы сократили его функциональность и убрали оттуда аспект
создания градиента.

Возможно, вы знаете, что уже существует простая в использовании
палитра цветов, предоставляемая тегом <input>. Мы можем просто до-
бавить этот элемент в наш HTML-код:

<input type="color" value="#ff0000">

В результате мы получаем красивую, компактную, кликабельную
кнопку, при нажатии на которую появляется диалоговое окно, как по-
казано на рис. 11.3.

Как бы удобно это ни было, мне довелось работать над проектом, в ко-
тором эта палитра цветов была слишком компактной. Кроме того, мне
бы хотелось, чтобы она всегда оставалась на экране, чтобы я мог посто-
янно настраивать объект, который раскрашиваю. Наконец, объект, кото-

277Создаем палитру цветов

рый я раскрашиваю, может быть прозрачным, поэтому было бы неплохо
иметь контроль над прозрачностью в дополнение к цветам.

Отметка, на которой
останавливается рукоятка
ползунка

Отметка, на которой
останавливается рукоятка
ползунка

Поля для ввода значений альфа-канала
красного, зеленого и синего цветов

Выбираем координаты
яркости и насыщенности

Ползунки для выбора
тона и прозрачности

Рис. 11.2 Приложение для создания градиента на сайте cssgradient.io

Запуск палитры цветов в окне
(в данном случае используется MacOS)

Поле для указания цвета

Рис. 11.3 Использование палитры цветов, созданной с помощью элемента input

Учитывая все вышесказанное, давайте создадим великолепную па-
литру цветов, вдохновленную сайтом cssgradient.io, с помощью веб-ком-
по нен тов!

278 Глава 11 Реальный компонент пользовательского интерфейса

11.1.1 Компоненты нашего компонента
Вначале мы разобьем на части то, что нам нужно. Нам не нужно, чтобы
наш компонент палитры цветов был слишком сложным, поэтому следу-
ет подумать о том, какие части пользовательского интерфейса являются
его отдельными компонентами.

Если посмотреть на рис. 11.4, можно увидеть два похожих функцио-
нирующих ползунка, один для выбора тона и один для выбора прозрач-
ности. Это замечательно, поскольку мы создавали этот простой, много-
кратно используемый ползунок специально для выбора прозрачности!
Единственное реальное различие – это изображения и цвета, использу-
емые в качестве фона в этих двух ползунках. Напомню, что внутри ком-
понента есть элемент <div>, который отображает один цвет с прозрачно-
стью от 100 % до 0 %. Если цвет фона не установлен, этот элемент никогда
не отображается, что дает нам полностью стилизуемый компонентный
фон. В файле ползунка demo.html мы используем клетчатый бело-серый
узор для обозначения прозрачности, но его легко можно заменить на
фон с цветами радуги.

Ползунок для выбора тона

Ползунок для выбора прозрачности

Рис. 11.4 Два очень похожих ползунка, для которых можно создать
один веб-компонент

Здесь есть еще один элемент пользовательского интерфейса, который
во многом похож на ползунок, но работает как в горизонтальном на-
правлении, так и в вертикальном. На рис. 11.5 показан инструмент для
выбора насыщенности и яркости цвета. Перетаскивая указатель слева
направо, мы регулируем насыщенность или интенсивность цвета, а при
перетаскивании его в вертикальном направлении регулируется яркость.
Пользователь может одновременно перемещаться в обоих направлени-
ях, выбирая идеальное сочетание двух переменных.

В отличие от ползунка, нам нужен только один из этих инструментов;
но, как и в случае с ползунком, мы должны быть очень внимательны
к тому, как пользователь взаимодействует с ним. Чтобы инструмент вы-
бора и ползунок правильно реагировали на взаимодействие с пользова-
телем, необходимо позаботиться о крайних случаях; этот двунаправлен-
ный инструмент для выбора насыщенности и яркости цвета идеально
подходит для использования в качестве собственного веб-компонента,
поэтому нам не нужно перегружать свой основной компонент, палитру
цветов, слишком большим количеством логики.

Какие еще элементы можно выбрать? У вас могут быть собственные
идеи, но я думаю, что на этом можно и остановиться. Помните, что, несмот-
ря на то что мы ориентируемся на приложение на сайте cssgradient.io,
мы не создаем градиенты, а просто выбираем цвета. Остальные соответ-

279Создаем палитру цветов

ствующие элементы пользовательского интерфейса – это поля для ввода
текста и чисел. Мы, конечно, можем пойти дальше и обернуть их все или
их наборы как различные компоненты.

Перетаскиваемая рукоятка

Ум
еньш

ение яркости

Увеличение насыщенности

Рис. 11.5 Инструмент для выбора
насыщенности и яркости цвета
как кандидат на место веб-компонента

Например, мы могли бы сделать числовую запись для полей красного,
зеленого и синего цветов одним компонентом. Я не уверен, что здесь от
этого можно получить большую выгоду, особенно потому, что когда вы
делаете шаг назад, каждый элемент пользовательского интерфейса име-
ет простой способ взаимодействия с ним и предлагает выходное значе-
ние после взаимодействия (или два, если рассматривать инструмент для
выбора по горизонтали и вертикали).

Подведем итог. Вот какие части пользовательского интерфейса у нас
есть:

� ползунок для выбора тона обеспечивает взаимодействие с мышью
и выводит одно значение;

� ползунок для выбора прозрачности обеспечивает взаимодействие
с мышью и выводит одно значение;

� инструмент для выбора насыщенности и яркости цвета обеспечива-
ет взаимодействие с мышью и выводит два значения;

� поля для красного, зеленого, синего цветов и поля для ввода букв
и цифр обеспечивают взаимодействие с клавиатурой и мышью
и выводят одно значение;

� поле для ввода шестнадцатеричного кода цвета обеспечивает взаи-
модействие с клавиатурой и выводит одно значение.

Как мы уже говорили, мы можем объединить тон и ползунок в один,
повторно используемый компонент, а также сделаем компонентом ин-
струмент для выбора насыщенности и яркости цвета. Остальное – поль-
зовательский интерфейс текстовой/числовой записи – будет распола-
гаться рядом с нашими пользовательскими компонентами в главном

280 Глава 11 Реальный компонент пользовательского интерфейса

компоненте цветовой палитры. Учитывая этот план, давайте создадим
структуру проекта, как показано на рис. 11.6.

Рис. 11.6 Начальная структура
нашего проекта

Скорее всего, по мере продвижения файлов будет больше, но можно
предположить, что у каждого из этих трех компонентов – ползунка, ин-
струмента выбора координат и основной палитры цветов – должно быть
по три файла. Нам понадобится класс для определения компонента,
шаб лон, в котором будет содержаться весь HTML-код и стили, и, наконец,
HTML-файл для демонстрации работы автономного компонента. По-
скольку мы работали над ползунком на протяжении всей книги, у меня
есть для вас хорошая новость: все готово! Код можно скопировать прямо
сейчас в папку компонентов.

11.2 Компонент выбора координат
Давайте кратко рассмотрим компонент выбора координат. Причина, по
которой мы не делаем это подробно, заключается в том, что, помимо
того что это довольно простой компонент, он функционирует почти так
же, как и ползунок. Единственное отличие состоит в том, что рукоятку
можно перетаскивать как вертикально, так и горизонтально, как пока-
зано на рис. 11.5.

Я называю это инструментом выбора координат, потому что вы пере-
таскиваете и выбираете что-то по осям x (в горизонтальном направлении)
и y (в вертикальном направлении). В частности, мы будем использовать
ось y, чтобы в конечном итоге управлять яркостью в главном компоненте,
палитре цветов, в то время как насыщенность контролируется осью x.

11.2.1 Класс инструмента выбора координат
Учитывая их сходство, давайте поговорим об одном различии между
ползунком и инструментом выбора координат. Вместо атрибута value

281Компонент выбора координат

теперь у нас есть два разных значения, которые используются для обо-
значения процентов в горизонтальном и вертикальном направлениях.
Мы будем использовать имена атрибутов x и y для их обозначения. Кро-
ме того, при обновлении визуального эскиза нам нужно принимать во
внимание как вертикальное положение, так и горизонтальное. Мы будем
использовать приведенный ниже листинг, чтобы выделить первую часть
класса с похожими, но слегка измененными атрибутами и соответству-
ющим отражением.

Листинг 11.1 API инструмента выбора координат

import Template from './template.js';

export default class CoordPicker extends HTMLElement {
 static get observedAttributes() {

 return ['x', 'y', 'backgroundcolor'];
 }

 attributeChangedCallback(
 name, oldVal, newValue) {
 switch (name) {

 case 'x':

 case 'y':

 this.refreshCoordinates();
 break;

 case 'backgroundcolor':

 this.style.backgroundcolor = newValue;

 break;

 }

 }

 set x(val) {

 this.setAttribute('x', val);
 }

 get x() {

 return this.getAttribute('x');

 }

// Геттеры и сеттеры для y и backgroundcolor для краткости опущены

Вы, возможно, заметили, что много места занято рефлексией. Кроме
того, это очень скучный, повторяющийся код, тем более если учесть, что
разница между этим компонентом, последним компонентом или… лю-
бым другим компонентом очень мала. Вот почему вы, вероятно, будете
все реже наблюдать явную рефлексию в компонентах, которые будете
встречать на практике.

Появляются библиотеки и утилиты, стремящиеся сделать подобное
отражение функцией, которую вам не нужно реализовывать самостоя-
тельно (помимо других вещей). Этого можно добиться с помощью базо-
вого класса, который сам расширяет HTMLElement, или – если руководство-
ваться личными предпочтениями – с помощью смешанного подхода,
при котором вы можете расширять свой класс, используя ключевое слово

Импортируем шаблонный
модуль для HTML и CSS

Определяем, за какими атрибутами
нужно наблюдать

Следим за изменениями этих атрибутов
и отвечаем соответственно

Метод чтения и устанавливающий метод
для свойств x, y и backgroundcolor

282 Глава 11 Реальный компонент пользовательского интерфейса

prototype, поэтому можете свободно расширять еще один базовый класс.
Здесь, однако, я думаю, что будет полезно показать все необходимое, не
скрывая более скучных частей.

Еще одна сложность, которая часто скрывается при использовании
последних библиотек веб-ком по нен тов, таких как LitElement из проек-
та Polymer (https://lit-element.polymerproject.org/), – это первоначальная
настройка компонента и HTML-рендеринг. Действительно, конструктор
компонента из листинга 11.2 выглядит точно так же, как и компонент-
ползунок, вплоть до слушателей событий, учитывая, что мы дублируем
ту же возможность перетаскивания рукоятки. При написании большо-
го количества собственных компонентов вы также можете попытать-
ся скрыть эту сложность с помощью собственного базового класса или
вспомогательных утилит.

Листинг 11.2 Конструктор и обработчик событий мыши

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
 }

 eventHandler(e) {

 const bounds = this.getBoundingClientRect();
 const coords = {

 x: e.clientX – bounds.left,
 y: e.clientY – bounds.top
 };

 switch (e.type) {

 case 'mousedown':

 this.isDragging = true;

 this.updateXY(coords.x, coords.y);
 this.refreshCoordinates();
 break;

 case 'mouseup':

 this.isDragging = false;

 break;

 case 'mousemove':

 if (this.isDragging) {

 this.updateXY(coords.x, coords.y);
 this.refreshCoordinates();
 }

 break;

 }

 }

Оборачивая компонент, мы снова увидим очень похожий код на пол-
зунок в приведенном ниже листинге. И снова единственное реальное

Настройка компонента: Shadow DOM, рендеринг
HTML/CSS и кеширование элементов

Добавляем слушателей
событий мыши

для перетаскивания

Фиксируем координаты мыши
относительно компонента

Обновляем атрибуты компонента
x, y в процентах и перемещаем
рукоятку

283Компонент выбора координат

отличие заключается в обработке двух значений, x и y, вместо одного
значения.

Листинг 11.3 Обновление атрибутов x и y и положения рукоятки

 updateXY(x, y) {
 let hPos =

 x – this.dom.thumb.offsetWidth/2;

 let vPos = y – this.dom.thumb.offsetHeight/2;

 if (hPos > this.offsetWidth) {

 hPos = this.offsetWidth;

 }

 if (hPos < 0) {

 hPos = 0;

 }

 if (vPos > this.offsetHeight) {

 vPos = this.offsetHeight;

 }

 if (vPos < 0) {

 vPos = 0;

 }

 this.x = (hPos / this.offsetWidth) * 100;

 this.y = (vPos / this.offsetHeight) * 100;

 }

 refreshCoordinates() {
 this.dom.thumb.style.left = (

 this.x/100 * this.offsetWidth – this.dom.thumb.offsetWidth/2) + 'px';

 this.dom.thumb.style.top =

 (this.y/100 * this.offsetHeight – this.dom.thumb.offsetWidth/2) + 'px';

 }

}

if (!customElements.get('wcia-coord-picker')) {

 customElements.define(

 'wcia-coord-picker', CoordPicker);
}

Вы заметите, что в верхней части класса наш метод установки фоново-
го цвета просто обновляет цвет фона всего компонента. Мы изучим код,
который будет далее, чтобы увидеть, как создать идеальный двунаправ-
ленный градиент, но установить общий цвет так же просто, как и то, что
мы поместили в обработчик attributeChangedCallback:

this.style.backgroundcolor = newValue;

Зачем делать эту часть API, если можно установить CSS-правило для
цвета фона вне компонента? Все просто: мы заставляем API инструмен-
та для выбора координат работать так же, как API ползунка. Намного
проще одновременно установить свойство background-color и для ползун-
ка, и для этого компонента, используя похожий API, вместо того чтобы
взаимодействовать с ними по-разному, особенно когда у них очень схо-
жие функциональные возможности.

Получаем центрированные
(относительно рукоятки)
координаты для x и y

Ограничиваем x (или значение по горизонтали)
внутри границ компонента

Ограничиваем y (или значение по вертикали)
внутри границ компонента

Обновляем атрибуты x и y
через JS API компонента

Обновляем горизонтальное
и вертикальное положения рукоятки

Определяем элемент и тег
из класса компонента

284 Глава 11 Реальный компонент пользовательского интерфейса

11.2.2 HTML-код и стили инструмента для выбора координат
Перейдя к нашему файлу template.js, в котором содержится HTML-код
и стили для инструмента выбора координат, вы снова не заметите боль-
шой разницы между ним и ползунком. В приведенном ниже листин-
ге показан импорт.

Листинг 11.4 Файл template.js инструмента для выбора координат

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {

 return {

 thumb: scope.getElementById('thumb')

 }

 },

 html() {

 return `<div id="bg-overlay-a"></div>

 <div id="bg-overlay-b"></div>

 <div id="thumb"></div>`;

 },

 css() {

 return `<style> . . . style to be continued . . . </style>`;

 }

}

Как обычно, стили оказались немного длинными, поэтому мы продол-
жим в следующем листинге:

Листинг 11.4 Файл template.js инструмента для выбора координат
(продолжение)

:host {

 display: inline-block;

 position: relative;

}

#bg-overlay-a {

 width: 100%;

 height: 100%;

 border-radius: 3px;

 position: absolute;

 background: linear-gradient(to right, #fff 0%, rgba(255,255,255,0) 100%);
}

#bg-overlay-b {

 width: 100%;

 height: 100%;

 border-radius: 3px;

Возвращаем весь HTML-код и стили
для визуализации компонента

Класс должен получить доступ
только к одному элементу: рукоятке

HTML-код компонента включает в себя
двухслойный фон и рукоятку

Первый фон содержит белый градиент,
который становится прозрачным слева направо

Второй фон содержит градиент, который постепенно переходит
от прозрачного к черному в вертикальном направлении

285Компонент выбора координат

 position: absolute;

 background: linear-gradient(to bottom, transparent 0%, #000 100%);
}

#thumb {

 width: 5px;

 height: 5px;

 position: absolute;

 border-style: solid;

 border-width: 3px;

 border-color: white;

 border-radius: 6px;

 pointer-events: none;

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0,
 0.19);
}

Как я уже говорил, общий цвет устанавливается в качестве фонового
цвета компонента. Чтобы добиться эффекта увеличения насыщенности
слева направо, мы используем тег <div> с белым цветом фона, который
постепенно переходит из непрозрачного в прозрачный при перемеще-
нии слева направо. Поверх этого слоя расположен похожий градиент, ко-
торый постепенно переходит от абсолютно прозрачного в черный цвет
при движении сверху вниз. Поместите оба этих слоя поверх полностью
сплошного фона (цвет фона нашего компонента), и у нас получится от-
личная небольшая карта насыщенности и яркости! Но стоит отметить:
как и в случае с фоном ползунка, я заимствовал этот подход на сайте
https://cssgradient.io.

11.2.3 Демостраницы для компонентов
Давайте закончим этот компонент, создав для него демонстрационную
страницу. На самом деле учитывая, что все эти демостраницы очень по-
хожи, давайте выберем сразу две. В приведенном ниже листинге показан
код страницы для инструмента для выбора координат.

Листинг 11.5 Демонстрационная страница инструмента
для выбора координат

<html lang="en">

<head>

 <title>Coordinate Picker Demo</title>
 <script type="module"

 src="coordpicker.js">

 </script>

 <style>

 wcia-coord-picker {

 width: 400px;

 height: 400px;

 }

 </style>

Стили для рукоятки

Импортируем класс нашего компонента

Устанавливаем определенный размер
для компонента с помощью стилей

286 Глава 11 Реальный компонент пользовательского интерфейса

 </head>

<body>

 <wcia-coord-picker

 backgroundcolor="#ff0000">

 </wcia-coord-picker>

</body>

</html>

Я не буду приводить такой же код для палитры цветов и еще одну
очень похожую демостраницу. Давайте создадим страницу для нашего
последнего компонента, пока мы работаем над этим. Вспомним, как вы-
глядит структура проекта, с помощью рис. 11.7 и создадим файл demo.
html в папке components/colorpicker.

Рис. 11.7 Вспомним, как выглядит структура
файлов и папок нашего компонента
при добавлении новой демостраницы

Неудивительно, что мы можем просто скопировать и вставить содер-
жимое из одного файла в другой, а потом просто внести некоторые из-
менения. Сначала содержимое тегов <title> и <script> меняется с

 <title>Coordinate Picker Demo</title>
 <script type="module" src="coordpicker.js">

 </script>

на

 <title>Color Picker Demo</title>
 <script type="module" src="colorpicker.js">

 </script>

Размер довольно произвольный, и размер 400×400 пикселей подойдет
для демонстрации палитры цветов. Только CSS-селектор нужно будет
изменить. Просто замените wcia -ordin-picker на wcia-color-picker в блоке
<style>.

И конечно же, последнее: компонент объявляется на странице по-
другому. Вместо

<wcia-coord-picker backgroundcolor="#ff0000"></wcia-coord-picker>

Помещаем инструмент для выбора координат
на страницу с исходным красным цветом фона

287Палитра цветов

появляется

<wcia-color-picker></wcia-color-picker>

Однако, прежде чем двигаться дальше, важно проанализировать то,
что мы имеем на данный момент. Мы сделали первые шаги для создания
палитры цветов или любого количества компонентов пользовательского
интерфейса, которые могут использовать ползунок или инструмент для
выбора координат. Нечто столь же простое, как и любой из них, являет-
ся прекрасным примером чрезвычайно простого компонента, который
можно использовать во всей библиотеке.

Мы вполне можем запустить библиотеку компонентов, используя даже
еще более простой компонент пользовательского интерфейса: кнопку.
Однако, с чего бы вы ни начали, важно действовать предусмотрительно,
чтобы все можно было использовать повторно и оно было адаптируемо
к большинству сценариев. Наши стартовые компоненты продемонстри-
ровали это здесь. В слайдере мы оставили основной фон вне компонен-
та, чтобы иметь возможность сделать радужный градиент для ползунка
с тонами или клетчатого рисунка для ползунка с выбором прозрачности.
Но как насчет фона в тегах <div> внутри компонента? Он работает только
как градиент с затуханием, хотя его цвет можно настраивать.

Возможно, нам понадобится ползунок в другом контексте, где нам
нужно, чтобы этот фоновый слой делал что-то другое, или, может быть,
нам нужно больше фоновых слоев! То же самое относится к инструменту
для выбора координат. Возможно, вместо того чтобы сделать фон посто-
янной частью нашего компонента, лучше добавить фоны через слоты.
Ползунок даже можно превратить в градиентный слайдер, которым мы
изначально вдохновлялись, у которого будет несколько рукояток.

Запуск этих компонентов в качестве начального этапа набора компо-
нентов пользовательского интерфейса требует долгого планирования
и рефакторинга, по мере того как выявляются различные варианты ис-
пользования. В этой книге мы рассматриваем только два варианта ис-
пользования для ползунка и лишь один для инструмента выбора коор-
динат, но если бы мы продолжили работу с библиотекой компонентов,
их могло бы быть намного больше. Учитывая это, давайте перейдем к на-
шему основному варианту использования: палитре цветов.

11.3 Палитра цветов
Теперь перейдем к третьему и последнему компоненту, который содер-
жит два других компонента, ползунок и инструмент для выбора коорди-
нат, а также поля ввода. Вместе они образуют общую палитру цветов, как
показано на рис. 11.8.

Создав файл demo.html, давайте сосредоточимся на том, чтобы запус-
тить что-то визуально, даже если мы пока не можем взаимодействовать
с ним. Кроме того, позже мы займемся API компонента, чтобы сосредо-
точиться на его внутренней работе. Первое, что мы должны сделать, – это
создать класс компонента (components/colorpicker/colorpicker.js).

288 Глава 11 Реальный компонент пользовательского интерфейса

Рис. 11.8 Палитра цветов

Листинг 11.6 Определение компонента для палитры цветов

import Template from './template.js';

export default class ColorPicker extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 }

}

if (!customElements.get('wcia-color-picker')) {

 customElements.define('wcia-color-picker', ColorPicker);
}

Теперь этого достаточно, чтобы переключиться на модуль template.js
для работы с HTML и CSS. Что касается HTML-кода в следующем листин-
ге, мы продолжим и создадим разметку для ползунка, инструмента для
выбора координат и полей ввода с метками.

Листинг 11.7 HTML-код для палитры цветов

import Slider from '../slider/slider.js';

import CoordinatePicker from '../coordpicker/coordpicker.js';

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 html() {

 return `<div class="container">

 <div class="row">

 <div class="slider-container">

 <wcia-slider

 id="hue-slider"

 value="50">

 </wcia-slider>

 <wcia-slider

 id="transparency-slider"

Импортируем модуль шаблона HTML/CSS

Конструктор, который создает Shadow DOM, отображает HTML-код
и стили и кеширует нужные нам элементы

Определяем компонент,
отображая его в тег
<wcia-color-picker>

Импортируем ползунок
и инструмент для выбора координат

Возвращаем полную строку разметки HTML/CSS

Два экземпляра ползунка,
один для выбора тона и второй
для выбора прозрачности

289Палитра цветов

 value="0">

 </wcia-slider>

 </div>

 <wcia-coord-picker x="50" y="50"

 id="saturation-brightness"></wcia-coord-picker>

 </div>

 <div class="row">

 <div class="text-inputs">

Продолжая работать с HTML-кодом, мы сталкиваемся с полями ввода.
Хотя они не являются пользовательскими веб-ком по нен та ми, мы будем
обращать внимание на то, что вводит пользователь, почти так же, как
и в случае с ползунком и инструментом для выбора координат.

Листинг 11.7 HTML-код палитры цветов (продолжение)

 <div>

 <label class="top" for="textInputR">Red</label>
 <input id="textInputR"
 type="number" value="0"

 max="255" size="4" min="0">

 </div>

 <div>

 <label class="top" for="textInputG">Green</label>

 <input id="textInputG"

 type="number" value="0"

 max="255" size="4" min="0">

 </div>

 <div>

 <label class="top" for="textInputB">Blue</label>

 <input id="textInputB"

 type="number" value="0"

 max="255" size="4" min="0">

 </div>

 <div>

 <label class="top" for="textInputA">Alpha</label>

 <input id="textInputA"

 type="number" value="0"

 max="100" min="0" size="4">

 </div>

 <div>

 <label class="top" for="textInputHex">Hex</label>

 <input id="textInputHex"

 type="text" width="50px" size="8">

 </div>

 </div>

 </div>

 </div>`

 }

}

Инструмент для выбора
координат

Поля для ввода значений цвета:
красный, зеленый и синий
(принимаются значения
от 0 до 255)

Поле для ввода значений
альфа-канала и прозрачности
(принимаются значения
от 0 до 100)

Поле для ввода
шестнадцатеричного кода цвета

290 Глава 11 Реальный компонент пользовательского интерфейса

В качестве последнего шага, чтобы увидеть, с чем мы работаем, мы
добавляем стили в этот модуль импорта.

Листинг 11.8 CSS для палитры цветов

css() {

 return `<style>

 :host {

 width: 100%;

 display: inline-block;

 }

 .container {

 padding: 10px;

 }

 .text-inputs {

 display: flex;

 width: 100%;

 justify-content: center;

 }

 .row {

 display: flex;

 }

 .slider-container {

 flex: 1;

 padding-right: 10px;

 }

Продолжая работать с CSS, нужно отметить, что предыдущие стили
были для макета для стандартных, повседневных элементов. Приведен-
ные далее стили предназначены для наших пользовательских компо-
нентов и также служат для того, чтобы ползунки можно было различать
по фону.

Листинг 11.8 CSS для палитры цветов (продолжение)

 #hue-slider, #transparency-slider {
 width: 100%;

 height: 40px;

 margin-bottom: 5px;

 border-radius: 3px;

 }

 #saturation-brightness {

 width: 90px;
 height: 90px;
 border-radius: 3px;

 }

 #hue-slider {

 background: linear-gradient(to right, red 0%, #ff0 17%,
 lime 33%, cyan 50%, blue 66%, #f0f 83%, red 100%);

Стили для обычных элементов, используемых для макета

Специальный радужный фон
для ползунка с выбором тона

291Палитра цветов

 }

 #transparency-slider {

 background-image: linear-gradient(45deg, #ccc 25%,
 transparent 25%),linear-gradient(-45deg, #ccc 25%,
 transparent 25%),linear-gradient(45deg, transparent 75%,
 #ccc 75%),linear-gradient(-45deg, transparent 75%,
 #ccc 75%);
 background-size: 16px 16px;

 background-position: 0 0, 0 8px, 8px -8px, -8px 0px;
 }

 </style>`;

}

На рис. 11.9 показано, как будут выглядеть эти ползунки после под-
ключения логики на следующих этапах для управления этими цветными
слоями.

Одиночный фон
с линейным градиентом
с цветами радуги

Фон с градиентным
изменением
прозрачности наложен
на клетчатый фон

Рис. 11.9 Фоны ползунков с возможностью выбора тона и прозрачности

В качестве последнего шага в этом модуле импорта мы будем кеширо-
вать элементы, которые важны для организации взаимодействия. В этом
листинге показаны эти восемь элементов, когда мы возвращаем ссылки
на них.

Листинг 11.9 Важные элементы для кеширования и возврата ссылок,
используемых для взаимодействия

mapDOM(scope) {

 return {

 hue: scope.getElementById('hue-slider'),
 transparency: scope.getElementById('transparency-slider'),
 satbright: scope.getElementById('saturation-brightness'),
 textInputR:
scope.getElementById('textInputR'),
 textInputG: scope.getElementById('textInputG'),
 textInputB: scope.getElementById('textInputB'),
 textInputA: scope.getElementById('textInputA'),
 textInputHex: scope.getElementById('textInputHex'),
 }

}

Специальный клетчатый
фон для ползунка
с выбором прозрачности

Три наших элемента
веб-компонента кешированы

Кешируются элементы
полей для ввода
цвета в формате RGBA
и шестнадцатеричного
кода цвета

292 Глава 11 Реальный компонент пользовательского интерфейса

Здесь мы работаем с еще несколькими элементами, а не только с пол-
зунком или инструментом для выбора координат. Мы хотим кешировать
ссылки для этих компонентов, но нам нужно будет взаимодействовать
с каждым отдельным текстовым полем, а также слушать и отвечать, ког-
да пользователи вводят цифры и текст в качестве значений.

11.3.1 Наблюдение за изменениями атрибутов
для взаимодействия
Множество раз при работе над таким сложным компонентом я буду до-
бавлять слушателей событий к каждому элементу и соединять их с об-
работчиком, чтобы предпринять что-то, когда это событие происходит.
Хотя так и можно было бы сделать, пользовательские события не были
добавлены в компоненты ползунка и инструмента для выбора коорди-
нат. Мы рассмотрим использование пользовательских событий в веб-
компонентах ближе к концу книги, а сейчас есть другой способ, с по-
мощью которого можно следить за изменениями и отвечать на них.

Не часто встретишь упоминание о Mutation Observer, но я думаю, что
веб-ком по нен ты – идеальный вариант для этого. При настройке объекта
MutationObserver вы предоставляете ему определенный фрагмент HTML-
кода для наблюдения, как показано на рис. 11.10. Вы также устанавливае-
те обработчик, который нужно вызвать, когда эти изменения происходят.

 Атрибуты
меняются
(не важно,
как)

Оба
изменения

отправляются
в функцию

Прослушивание элемента
(включая атрибуты поддерева и наблюдения)

Блок HTML-кода
Объект MutationObserver <div class="div-to-observe">

 <div>
 <my-component
 someattribute="value1"
 anotherattribute="value2"
 </my-component>
 </div>
</div>

onMutationChanges(records) {
 ... делаем что-либо
 с изменениями
}

Рис. 11.10 Mutation Observer в действии

Хотя нам не нужно просматривать внутреннее текстовое содержи-
мое наших HTML-тегов, атрибуты нашего веб-компонента постоянно
обновляются по мере их использования. С помощью некоторых поль-
зовательских параметров мы можем отслеживать изменения атрибутов
и реагировать на них. Возвращаясь к классу компонентов (components/
colorpicker/colorpicker.js) в приведенном ниже листинге, мы можем на-
строить MutationObserver для отслеживания этих изменений.

Листинг 11.10 Прослушивание изменений атрибутов
с помощью MutationObserver

constructor() {

 super();

293Палитра цветов

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.shadowRoot, { attributes: true, subtree: true });
}

onMutationChange(records) {
 records.forEach(rec => {

 this.data = Handlers.update({

 model: this.data,
 dom: this.dom,
 component: this,
 element: rec.target,
 attribute: rec.attributeName,
 });

 });

}

Теперь, каждый раз, когда атрибут значения ползунка меняется или
изменяется значение x или y инструмента для выбора координат, мы
будем получать уведомления! Мы также будем получать уведомления
о других вещах, которые нам не нужны, таких как атрибут class или даже
атрибуты backgroundcolor, но эти изменения можно игнорировать.

Чтобы обрабатывать эти события изменений, я разместил логику вне
класса компонента, чтобы она не была слишком сложной и громоздкой.
Функция Handlers.update находится в другом модуле импорта. Этой функ-
ции передаются две вещи, которые нам дает Mutation-Observer: ссылка на
измененный элемент и то, какой атрибут изменился. Мы также передаем
этому обработчику ссылку на this или на сам компонент палитры цветов,
а также на this.dom или кешированные элементы, созданные в модуле
template.js. Имея доступ ко всем необходимым элементам, эта функция
обновления может изменять атрибуты и свойства любого из элементов.
Например, при изменении тона этот новый модуль может реагировать
на изменение, устанавливая цвет фона для ползунка с выбором прозрач-
ности, как и для инструмента выбора координат, и может обновлять все
поля ввода, отражающие новый цвет.

Наконец, свойство этого класса веб-ком по нен тов this.data передается
в функцию Handlers.update и возвращается. В основном оно накапливает
данные.

Снова используя тон в качестве примера, значение будет сохранено
и будет находиться в этих данных. При изменении яркости или насы-
щенности мы не хотим терять значение тона, поэтому сохраняем свой-
ство this.data в качестве постоянного объекта.

Конечно, ничего из этого не будет работать, если мы не импортируем
модуль. Добавив импорт вместе с модулем template.js в начало класса,
мы тем самым сделаем свою работу:

import Template from './template.js';

import Handlers from './handlers.js';

Создаем новый MutationObserver
с обработчиком для прослушивания

изменений

Наблюдаем за теневой моделью DOM
компонента, определяя, как следить

за атрибутами, а также наблюдать
за всеми элементами внутри

MutationObserver может сообщать о множестве
изменений, поэтому нам нужно перебрать
элементы массива, чтобы обработать их

Пользовательский
обработчик еще
не обсуждался

294 Глава 11 Реальный компонент пользовательского интерфейса

При импорте handlers фактически импортируется еще один отдель-
ный модуль для выполнения всех необходимых цветовых вычислений.
Он предлагает преобразование из шестнадцатеричного кода в RGB, RGB
в шестнадцатеричный код и другие полезные утилиты. Я не буду расска-
зывать о логике, находящейся внутри этих модулей. Ни один из них не
учит концепциям веб-ком по нен тов; они просто предоставляют код для
контроля состояния нашего пользовательского интерфейса. Однако если
вам интересно, обратитесь к репозиторию для этой книги на GitHub.

Благодаря этим дополнительным функциональным возможностям
структура нашего проекта увеличилась на два файла. На рис. 11.11 по-
казаны все модули в нашем компоненте и более подробная информация
о том, как осуществляется взаимодействие.

Цветовые преобразования
математических утилит

Класс компонента «палитра цветов»

Обработчики для объекта
MutationObserver, атрибуты компонента
и событие изменений полей ввода

Палитра цветов

Вычисление цвета

Обработчики

• Поле ввода изменяется
• MutationObserver изменяется
• attributeChangedCallback

Устанавливаем значения
для полей цвета и альфа-канала

Импорт handlers.js Импорт colors.js

RGB <-> Hex
HSV <-> RGB

Рассчитываем цвет
и альфа-канал

Обновляем компонент DOM

Возвращаем значение цвета
и альфа-канала

Рис. 11.11 Структура проекта с новыми модулями

11.3.2 Реакция на изменения в полях ввода
Было бы просто чудесно, если бы при изменении значения каждого эле-
мента <input> также менялся бы и атрибут. К сожалению, это работает
по-другому; атрибут value просто не обновляется, когда пользователь

295Палитра цветов

изменяет содержимое поля ввода. Поэтому нам нужен еще один слуша-
тель – слушатель простого изменения. Вы, наверное, подумали о том,
чтобы связать каждый элемент <input> с собственным слушателем со-
бытий, но на самом деле мы можем прослушивать события изменений,
которые всплывают к нашему корню теневого дерева с помощью одного
слушателя, как показано на рис. 11.12. В листинге 11.11 продемонстриро-
вана работа одного из таких слушателей событий на практике.

<my-component>

 <#shadow-root>

 <input type="text">

 <input type="number">

 <input type="text">

 </#shadow-root>

</my-component>

doSomething(event) {

}

HTML-код компонента

Слушатель событий
Изменения в поле

ввода «всплывают»
к корню теневого дерева

Добавляем событие слушателя
изменения события в корень
теневого дерева

Рис. 11.12 Всплывание событий

Листинг 11.11 Прослушивание событий изменения внутри теневой
модели DOM компонента

constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.shadowRoot, { attributes: true, subtree: true });
 this.shadowRoot.addEventListener('change', e =>
 this.onInputValueChanged(e));
}

onInputValueChanged(e) {
 this.data = Handlers.update({

 model: this.data,
 dom: this.dom,
 component: this,
 element: e.target,
 });

}

Обратите внимание, что мы отправляем те же самые объекты в функ-
цию Handlers.update (за исключением имени атрибута, поскольку здесь
оно неприменимо). Все входящие данные из события изменения или
MutationObserver могут обрабатываться одинаково, что делает функцию
Handlers.update довольно простой. После всей проделанной работы по на-
стройке неплохо было бы попытаться реализовать этот модуль самостоя-
тельно наряду с цветовыми вычислениями (http://www.easyrgb.com/en/

Cлушатель событий изменений
для полей ввода

Обработчик событий изменений

296 Глава 11 Реальный компонент пользовательского интерфейса

math.php), который я использовал в качестве полезного ресурса для на-
писания функций преобразования. Опять же, детали этих модулей им-
порта были бы несколько длинными, для того чтобы описывать их здесь,
и они не являются специфичными для веб-ком по нен тов; поэтому хотя
они и не включены сюда, они доступны в репозитории для этой книги
на GitHub.

11.3.3 Реакция на изменения атрибутов
Существует одна последняя концепция, связанная с веб-ком по нен та ми,
используемая для обеспечения функциональности палитры цветов. Наш
компонент должен обновлять значения цвета и прозрачности для своих
собственных атрибутов. Цвет будет представлен в виде шестнадцатерич-
ного значения, а прозрачность будет выражаться в процентах от 0 до 100.
Атрибуты будут называться hex и alpha соответственно.

Чтобы обновить эти значения после изменения какого-либо аспекта
цвета, будь то ползунок с выбором тона, красное поле для ввода значе-
ния цвета Red (Красный) или инструмент выбора координат, функция
Handlers.update принимает ссылку на компонент, поэтому она может
легко обновить эти атрибуты. Однако нам нужно добиться того, чтобы
мы могли слушать изменения извне. Другая часть приложения, в кото-
рой находится палитра цветов, могла бы установить цвет компонента,
и должен последовать ответ, при этом все применимые элементы поль-
зовательского интерфейса будут изменены (будут обновлены поля для
ввода значений, ползунки и инструмент для выбора координат). Хотя
конкретная логика для достижения этой цели может находиться в функ-
ции Handlers.update, нам все равно нужно реагировать на изменения и от-
правлять информацию в модуль.

Поскольку мы уже определили, что у API есть свойства hex и alpha, оче-
видно, что нам нужно слушать и реализовывать для рефлексии. В при-
веденном ниже листинге показана реализация обратных вызовов изме-
нения атрибутов и методов получения и установки в файле components/
colorpicker/colorpicker.js:

Листинг 11.12 Реализация API нашего компонента

static get observedAttributes() {

 return ['hex', 'alpha'];
}

attributeChangedCallback(name, oldVal, newValue) {
 switch (name) {

 case 'hex':

 case 'alpha':

 if (oldVal !== newValue) {

 this.data = Handlers.update({

 model: this.data,
 dom: this.dom,
 component: this,
 element: this,

Определяем, какие атрибуты необходимо
прослушивать на предмет изменений

Прослушиваем изменения атрибутов

297Палитра цветов

 attribute: name,
 });

 }

 break;

 }

}

set hex(val) {

 this.setAttribute('hex', val);
}

get hex() {

 return this.getAttribute('hex');

}

set alpha(val) {

 this.setAttribute('alpha', val);
}

get alpha() {

 return this.getAttribute('alpha');

}

Хотя теперь все в порядке, нужно решить еще одну проблему, связан-
ную с API. Палитра цветов работает неправильно при загрузке, потому
что нет никакого значения цвета или прозрачности, с которого можно
было бы начать, если атрибут не был указан! Чтобы завершить функ-
циональную реализацию компонента, давайте определим значения по
умолчанию. Мы можем использовать два статических метода чтения
в верхней части класса ColorPicker:

export default class ColorPicker extends HTMLElement {
 static get DEFAULT_HEX() { return '#77aabb'; }
 static get DEFAULT_ALPHA() { return 100; }

Значения по умолчанию, которые я здесь использовал, несколько
произвольны. Вы можете использовать любые значения. Затем мы мо-
жем заполнить эти значения при добавлении компонента на страницу.
В приведенном ниже листинге для этой цели добавляется метод connect-
edCallback:

Листинг 11.13 Установка цвета и прозрачности при запуске,
если они не определены

connectedCallback() {
 if (!this.hex) {

 this.hex = ColorPicker.DEFAULT_HEX;
 }

 if (!this.alpha) {

 this.alpha = ColorPicker.DEFAULT_ALPHA;
 }

}

Поскольку компонент палитры цветов поддерживает рефлексию, эти
свойства легко установить с помощью JS API. При прослушивании изме-

Реагируем на изменения с помощью
модуля импорта Handlers, передавая
имя атрибута

Геттеры и сеттеры для атрибутов hex и alpha

Если атрибут шестнадцатеричного
кода цвета не существует,
используется значение по умолчанию

Если атрибут alpha не существует,
используется значение по умолчанию

298 Глава 11 Реальный компонент пользовательского интерфейса

нений атрибутов при настройке этих двух параметров будут вноситься все
соответствующие изменения в каждый элемент пользовательского интер-
фейса в компоненте. Также важно отметить, что речь идет об обработчике
connectedCallback, а не конструкторе. При вызове конструктора атрибутам
еще слишком рано находиться в жизненном цикле компонента!

11.4 Работаем над внешним видом палитры
Пока мы сделали немного! Три компонента готовы, и все они работают
сообща, обслуживая палитру цветов, которую можно использовать в ре-
альном проекте. Хотя было бы здорово иметь демонстрационный ком-
понент, как во всех трех случаях, еще лучше увидеть финальный ком-
понент в более реальном контексте. Вот почему я подумал, что было бы
неплохо настроить тестовую страницу с установленным компонентом,
изменить цвет фона страницы и установить степень прозрачности для
текста. Приведенный ниже листинг делает это за нас, чтобы дать нам бо-
лее полную демоверсию. Мы просто создадим ее в корне нашего проекта
в виде файла index.html.

Листинг 11.14 Демоверсия палитры цветов,
которая может влиять на элементы на странице

<html lang="en">

<head>

 <title>Color Picker Component</title>
 <script type=

 "module" src="components/colorpicker/colorpicker.js"></script>

 <style>

 h1 {

 font-family: sans-serif;

 font-weight: bolder;

 color: white;

 text-shadow:

 -1px -1px 0 #000,
 1px -1px 0 #000,
 -1px 1px 0 #000,
 1px 1px 0 #000;

 }

 </style>

</head>

<body>

 <wcia-color-picker

 hex="#7687db"
 alpha="75">
 </wcia-color-picker>

 <h1>Transparency</h1>

 <script>

 document.body.style.backgroundColor =
 document.querySelector('wcia-color-picker').getAttribute('hex');

Импортируем палитру цветов

Делаем черную рамку для текста
на потенциальном темном фоне,
когда используем палитру цветов

Добавляем компонент на страницу

Используем исходные значения палитры
цветов, чтобы установить прозрачность

текста и цвет фона страницы

299Работаем над внешним видом палитры

 document.querySelector('h1').style.opacity =

 document.querySelector('wcia-color-picker').getAttribute('alpha');

 const observer = new MutationObserver(

 function(records) {

 records.forEach(rec => {

 switch (rec.attributeName) {
 case 'hex':

 document.body.style.backgroundColor = rec.target.hex;
 break;

 case 'alpha':

 document.querySelector('h1').style.opacity =

 rec.target.alpha / 100;

 }

 });

 });

 observer.observe(document.querySelector('wcia-color-picker'),
 { attributes: true });

 </script>

</body>

</html>

Хотя новая демонстрация позволяет нам более осмысленно взаимо-
действовать с палитрой цветов, она также подчеркивает еще кое-что –
уродливый внешний вид! На рис. 11.13 видно, что не так много внима-
ния уделено деталям дизайна.

Рис. 11.13 Новая палитра цветов, где можно изменять цвет страницы
и прозрачность текста

11.4.1 Загрузка CSS-переменных для улучшения дизайна
Хотя с ползунком и инструментом для выбора координат не так много
проблем, поскольку движущихся частей немного, поля для ввода значе-
ний абсолютно не стилизованы, а многие более мелкие детали, напри-
мер закругленные углы, довольно произвольны.

Подобные детали в действительности должны определяться на обще-
системном уровне. Если рассуждать с точки зрения более крупного при-
ложения, вы должны убедиться, что все эти детали согласованы.

Наблюдаем за изменениями атрибутов
в палитре цветов и обновляем текст
и фон страницы

300 Глава 11 Реальный компонент пользовательского интерфейса

Здесь может быть не только палитра цветов, но и широкий спектр
компонентов. Если все эти компоненты имеют разные стили, все будет
выглядеть еще хуже!

Современные дизайн-системы сейчас только догоняют веб-ком по-
нен ты. Многие системы, такие как Bootstrap, сделаны таким образом,
что теневая модель DOM полностью блокирует их стили от компонента.
Вместо этого давайте пойдем более легким путем и создадим собствен-
ные общие стили с помощью импорта JS. Эти правила можно импорти-
ровать в любой компонент, которому они нужны!

Прежде чем сделать это, давайте изложим основные правила, исполь-
зуя CSS-переменные в листинге 11.15. Это может быть модуль импорта
JS, если мы хотим, чтобы это был он, но, учитывая, что в нашем случае
более широкий контекст приложения или дизайн-система отсутствует,
мы просто поместим его в корень нашего проекта в файл vars.css.

Листинг 11.15 CSS-переменные, которые будут использоваться
в гипотетическом приложении и наших компонентах

:root {

 --text-xsmall: .5em;

 --text-small: .7em;
 --text-medium: 1em;

 --text-large: 1.3em;

 --text-xlarge: 1.5em;

 --color-pureblack: black;

 --color-black: #2a2a2a;

 --color-lightblack: #4a4a4a;

 --color-darkgrey: #6a6a6a;

 --color-grey: #7a7a7a;
 --color-lightgrey: #9a9a9a;
 --color-darkwhite: #dadada;

 --color-white: #fafafa;

 --color-purewhite: #ffffff;

 --text-color: var(--color-lightblack);

 --text-inverted-color: var(--color-white);

 --border-color: var(--color-lightblack);

 --border-color-light: var(--color-darkwhite);

 --border-inverted-color: var(--color-white);

 --background-color: var(--color-white);

 --background-inverted-color: var(--color-lightblack);

 --border-radius: 6px;

 --border-width-thick: 3px;

 --border-width: 1px;

 --padding-medium: 5px;

}

Я, вероятно, немного переборщил, определяя не только то, что может
понадобиться нашим существующим компонентам, но это неплохие
примеры правил, из которых можно построить общий язык дизайна для

Определяем различные размеры текста

Различные цветовые переменные

Отображаем цветовые переменные
в определенные элементы,
такие как текст, рамка и фон

Устанавливаем величину поля
и ширину рамок

301Работаем над внешним видом палитры

вашего приложения. Мы даже можем начать заменять жестко закодиро-
ванные значения в ползунке (components/slider/template.js), как показа-
но в приведенном ниже листинге.

Листинг 11.16 Замена значений CSS-переменными в ползунке

css() {

 return `<style>

 :host {

 ...

 border-radius: var(--border-radius);

 ...

 }

 #bg-overlay {

 ...

 border-radius: var(--border-radius);

 ...

 }

 #thumb {

 ...

 border-width: var(--border-width-thick);

 border-color: var(--border-inverted-color);

 border-radius: var(--border-radius);

 ...

 }

 </style>`;

}

Теперь мы можем сделать то же самое для инструмента выбора коор-
динат (components/coordpicker/ template.js):

Листинг 11.17 Замена значений CSS-переменными в инструменте
для выбора координат

css() {

 return `<style>

 #bg-overlay-a {

 ...

 border-radius: var(--border-radius);

 ...

 }

 #bg-overlay-b {

 ...

 border-radius: var(--border-radius);

 ...

 }

 #thumb {

 ...

 border-width: var(--border-width-thick);

 border-color: var(--border-inverted-color);

 border-radius: var(--border-radius);

Используем CSS-переменные для самого
компонента, чтобы управлять рамкой

Используем CSS-переменные для тега
фона <div>, чтобы управлять рамкой

Используем CSS-переменные для рукоятки,
чтобы управлять рамкой

Используем CSS-переменные
для двух фонов, чтобы управлять рамкой

Используем CSS-переменные для рукоятки,
чтобы управлять рамкой

302 Глава 11 Реальный компонент пользовательского интерфейса

 ...

 }

 </style>`;

}

Наконец, то же самое можно сделать и для палитры цветов (components/
colorpicker/template.js).

Листинг 11.18 Замена значений CSS-переменными в палитре цветов

css() {

 return `<style>

 ...

 #hue-slider,
 #transparency-slider {

 ...

 border-radius: var(--border-radius);

 }

 #saturation-brightness {

 ...

 border-radius: var(--border-radius);

 }

 ...

 </style>`;

}

Как видно на примере этих правил, согласованность дизайна про-
ходит долгий путь. Больше нет риска использования несовместимых
цветов или закругленных углов. Эти маленькие детали действительно
имеют смысл. Хотя с помощью CSS-переменных мы достигли не очень
многого, поскольку можем использовать по одному CSS-правилу за раз.

11.4.2 Использование импорта для более сложных стилей
Возвращаясь к импортируемым модулям, можно заняться всем осталь-
ным. На рис. 11.14 показана структура нового проекта, включая весь им-
порт «дизайн-системы».

Рис. 11.14 Файловая структура нашего проекта,
включая CSS-переменные и импорт
дизайн-системы

Используем CSS-переменные
для двух ползунков, чтобы управлять рамкой

Используем CSS-переменные
для инструмента выбора координат,
чтобы управлять рамкой

303Работаем над внешним видом палитры

Сперва в приведенном ниже листинге мы можем начать с того, что
определим несколько универсальных правил.

Листинг 11.19 Универсальные текстовые правила в designsystem/text.js

export default {

 normal() {

 return `

 font-family: sans-serif;

 font-size: 1em;

 line-height: 1.2em;

 color: black;`;

 },

 inverted() { return `color: white;`; }

}

Этот небольшой набор текстовых правил можно затем импортировать
в модуль, предназначенный для использования в качестве базового на-
бора правил для любого компонента (designsystem/base.js):

import Text from './text.js';

export default {

 common() { return `${Text.normal()}`; }
}

Поскольку крайне ограниченное количество правил здесь не приме-
нимо к уже довольно солидно выглядящему ползунку или инструмен-
ту выбора координат, мы можем просто использовать этот импорт ба-
зовых стилей компонента в компоненте палитры цветов (components/
colorpicker/template.js):

import Base from '../../designsystem/base.js';

Использовать его просто – это похоже на применение любого другого
шаблонного литерала:

:host {

 ${Base.common()};
 width: 100%;

 display: inline-block;

}

Хотя и неплохо разобраться с основами, то немногое, что у нас есть,
окажет лишь небольшое влияние на наш довольно минимальный ком-
понент. Нет, большую часть того, что нужно стилизовать, составляют
поля для ввода значений с соответствующими им метками. С этим мож-
но справиться, определив конкретные правила в модуле designsystem/
inputfields.js, как показано в приведенном ниже листинге.

Листинг 11.20 Модуль, содержащий правила для полей ввода

// designsystem/inputfields.js

import Text from './text.js';

Определяем обычные текстовые правила,
используя свойства color, size и font

Изменяем цвет, когда он кажется
инвертированным на темном фоне

Импортируем модуль text.js, поэтому мы можем
использовать специфические CSS-правила

304 Глава 11 Реальный компонент пользовательского интерфейса

export default {

 css() {

 return `

 .ds-form-input {

 margin-right: 5px;

 }

 .ds-form-input

 ➥.ds-input-field-label {

 border-top-left-radius: var(--border-radius);

 border-top-right-radius: var(--border-radius);

 background-color: var(--background-inverted-color);

 padding: var(--padding-medium);

 display: block;

 font-size: var(--text-xsmall);

 ${Text.inverted()}
 }

 .ds-form-input

 ➥.ds-input-field-label.top {

 display: block;

 }

 .ds-form-input input {

 border-style: solid;

 border-width: var(--border-width);

 border-color: var(--border-color-light);

 padding: var(--padding-medium);

 font-size: var(--text-large);

 } `;

 }

}

Как и ранее, мы должны импортировать этот модуль в модуль
components/colorpicker/template.js:

import InputFields from '../../designsystem/inputfields.js';

import Base from '../../designsystem/base.js';

Мы также можем добавить его в стили в том же модуле:

 css() {

 return `<style>

 ${InputFields.css()}

Обратите внимание, что мы импортируем полные CSS-правила с се-
лекторами, поэтому вызов функции может быть встроен прямо в тег
<style>, а не внутри селектора или блока, как это было раньше при ис-
пользовании селектора :host. И поскольку мы используем новые селек-
торы, нам нужно будет добавить их в HTML-код в том же файле. Это прос-
тое добавление, которое применяется одинаково для всех наших полей
ввода, поэтому я покажу только первое поле:

<div class="ds-form-input">

 <label class="ds-input-field-label top" for="textInputR">Red</label>

Устанавливаем интервал для входного контейнера

Стили метки для поля ввода

В случае темного
инвертированного
цвета фона используйте
функцию inverted()

Мы помещаем метку поверх поля ввода,
поэтому укажите top, если в будущем
хотите продолжить работу с изменениями

Стили фактического поля ввода

305Работаем над внешним видом палитры

 <input id="textInputR" type="number" value="0" max="255" size="4" min="0">
</div>

Давайте взглянем на наши стилизованные поля ввода на рис. 11.15.

Рис. 11.15 Стилизованные поля ввода после применения
простой дизайн-системы

Почти готово! Мне не нравится, что все элементы пользовательско-
го интерфейса как будто плывут в пространстве. Я бы предпочел, чтобы
у компонента был белый модальный фон, чтобы визуально соединять
элементы и создавать ощущение зависания над страницей. Итак, давай-
те сделаем последний модуль импорта CSS, designsystem/modal.js, как
показано в приведенном ниже листинге:

Листинг 11.21 Модальный CSS-модуль

// designsystem/modal.js

export default {

 css() {

 return `

 .ds-modal {

 ${this.rules()}
 }

 `;

 },

 rules() {

 return `

 background-color: var(--background-color);

 border-radius: var(--border-radius);

 box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2),
 0 6px 20px 0 rgba(0, 0, 0, 0.19);
 `;

 }

}

Здесь я немного выделяю вещи. Селектор .ds-modal указывает на функ-
цию rules() для встраивания фактических CSS-правил. Причина в том,
что в идеале я бы предпочел просто прикрепить этот селектор к палитре
цветов и покончить с этим:

<wcia-color-picker class="ds-modal" hex="#7687db" alpha="75">
 </wcia-color-picker>

Селектор и шаблонный литерал,
содержащий CSS-правила

Всего лишь CSS-правила

Тень вокруг элемента, чтобы было похоже,
что он как будто висит над страницей

306 Глава 11 Реальный компонент пользовательского интерфейса

К сожалению, эти CSS-правила не пробьют теневую границу со сторо-
ны компонента (да, даже непосредственно на самом теге компонент все
еще находится за пределами теневой границы) и не сделают ничего для
стилизации компонента.

Тем не менее в других ситуациях, в которых нет теневой границы,
было бы неплохо иметь этот селектор, поэтому мы оставим его в нашей
дизайн-системе. Нарушение этих правил делает вещи двоякими, потому
что в контексте нашего компонента теперь мы можем просто избегать
вызова функции Modal.css() и вместо этого использовать свой собствен-
ный CSS-селектор, как в этом листинге:

Листинг 11.22 Добавление CSS-правил

css() {

 return `<style>

 ${InputFields.css()}

 :host {

 ${Base.common()};
 width: 100%;

 display: inline-block;

 }

 :host(.modal) {

 ${Modal.rules()}
 }

Как и во всех наших дополнительных CSS-модулях, обязательно до-
бавьте импорт в файл components/colorpicker/template.js:

import InputFields from '../../designsystem/inputfields.js';

import Base from '../../designsystem/base.js';

import Modal from '../../designsystem/modal.js';

Обратите внимание, как мы вставили модальные правила в наш ком-
понент. Мы сделали модальное лечение необязательным. Теперь мо-
дальный стиль применяется только в том случае, если моадльный класс
присутствует в компоненте. Мы сделаем это в корневом файле index.
html, чтобы увидеть его в полном контексте, когда меняем цвет фона
страницы с помощью палитры цветов:

<wcia-color-picker class="modal" hex="#7687db" alpha="75"></wcia-color-picker>

Наконец, у нас есть стилизованный компонент палитры цветов, как
показано на рис. 11.16.

Мало того, что мы сделали компонент более привлекательным, мы
можем настраивать все глобально, чтобы придать компоненту (и окру-
жающему приложению, если бы оно у нас было) другой внешний вид.
Давайте сделаем так, чтобы он выглядел более забавно, как показано
на рис. 11.17, просто увеличив значение для свойства border-radius. Это
можно сделать прямо в файле vars.css, изменив значение в 6 пикселей
до 12.

Стилизует любой компонент с классом .modal,
назначенным с помощью CSS-правил

307Резюме

Рис. 11.16 Стили палитры цветов, полученные с помощью наспех созданной
дизайн-системы на базе модулей

Рис. 11.17 Дизайн палитры цветов легко настраивается путем изменения
CSS-модулей или CSS-переменных

Если вас волнуют только современные браузеры, которые поддержи-
вают веб-ком по нен ты, миссия выполнена! Мы создали красивую палит-
ру цветов благодаря дизайну и техническому вдохновению, которое
черпали с сайта cssgradient.io. Конечно, созданная нами дизайн-система
имеет много возможностей для совершенствования, если нам необхо-
димо создать более крупное приложение или платформу, но для компо-
нента палитры цветов здесь достаточно пространства для стилизации
снаружи, не меняя ни единой строки ни в одном из наших компонентов.

В следующей главе мы рассмотрим, что происходит, когда дело обсто-
ит не так радужно, а целевой браузер, который нам нужен, изначально не
предлагает поддержку веб-ком по нен тов.

То, насколько браузер устарел, будет определять, как далеко мы долж-
ны зайти. Не волнуйтесь, эта палитра цветов будет работать практически
везде!

Резюме
Из этой главе вы узнали:

� как спланировать полукомплексный компонент пользовательского
интерфейса, разбив наш дизайн на несколько частей, некоторые из

308 Глава 11 Реальный компонент пользовательского интерфейса

которых становятся собственными компонентами размером по-
меньше;

� как разбить компонент на входы и выходы и спланировать API во-
круг них, включая использование концепции рефлексии для обес-
печения общего API при использовании атрибутов тегов или JS;

� как создавать отдельные и универсальные правила стилевого оформ-
ления с помощью CSS-переменных или импортируемых модулей,
которые можно использовать в своих компонентах и в более круп-
ной системе, чтобы обеспечить согласованность дизайна.

12
Сборка и поддержка старых

браузеров

Эта глава охватывает следующие темы:
� комплектация модулей с помощью Rollup;
� транспиляция с использованием Babel, чтобы обеспечить под-

держку веб-ком по нен тов в IE11;
� запуск и объединение сценариев с помощью npm и package.json;
� использование зависимостей для разработки в package.json;
� полизаполнение CSS-переменных для IE11.

В предыдущей главе мы закончили создание компонента палитры цве-
тов с возможностью повторного использования, состоящего из несколь-
ких различных пользовательских компонентов. Он работает довольно
хорошо, но теперь вопрос состоит в том, подходит ли этот компонент для
всех ваших целевых пользователей. Конечно, это возможно, и на этом
мы могли бы и остановиться. Компонент, который мы создали, работа-
ет в Chrome, Firefox и Safari. Остается только один современный браузер:
Microsoft Edge.

На данный момент в этой книге мы рассмотрели практически все воз-
можные концепции веб-ком по нен тов. Наши знания позволили нам соз-

310 Глава 12 Сборка и поддержка старых браузеров

дать веб-ком по нен ты с помощью только пользовательских элементов,
в завершение мы применили удивительную теневую модель DOM.

Есть веская причина, по которой мы решаем вопросы в таком поряд-
ке, и она состоит в том, что будут ситуации, когда вы просто не сможете
или у вас не будет желания использовать теневую модель DOM. Я рад со-
общить, что такие ситуации случаются все реже и реже! Конец 2018 года
принес нам отличные новости на этом фронте. Веб-компоненты стали
поддерживаться в Firefox, в результате чего Edge является единственным
популярным браузером, которого мы терпеливо ждем. Мы знали, что ко-
манда Microsoft Edge была занята работой над поддержкой веб-ком по-
нен тов, но затем, в апреле 2019 года, команда выпустила предваритель-
ную версию для разработчиков на базе Chromium. Помимо разнообразия
браузеров, это выглядит как отличная новость для веб-ком по нен тов, по-
тому что новая версия Edge поддерживает веб-ком по нен ты так же, как
и Chrome (не беспокоясь о странных вещах, которые Microsoft реализо-
вала немного по-другому).

Общая картина здесь заключается в том, что в настоящее время су-
ществуют два популярных браузера, которые изначально не поддержи-
вают веб-ком по нен ты: pre-Chromium Edge и IE11. Для некоторых счаст-
ливчиков, которые занимаются веб-разработкой, эти браузеры не имеют
значения. В случае с IE11 это связано с тем, что на компьютерах, где не
установлена Windows10, его срок службы уже истек. На более новых ком-
пьютерах с Windows 10 Microsoft рекомендует использовать Edge, не-
смотря на то что доступен IE11. Что касается Edge, сейчас легко пред-
положить, что это всего лишь вопрос нескольких месяцев, прежде чем
большинству обычных пользователей будет доступна версия браузера,
которая имеет те же возможности, что и Chrome.

Однако не всем из нас так повезло. IE11 по-прежнему остается пробле-
мой для многих веб-разработчиков. Pre-Chromium Edge также может су-
ществовать некоторое время, пока пользователи медленно обновляются.

Независимо от причины, при создании компонентов полезно иметь
план действий для решения этих проблем. Итак, в этой главе мы возь-
мем реальный компонент пользовательского интерфейса из предыду-
щей главы и немного поработаем над ним, чтобы он работал на Edge, ис-
пользуя полизаполнение и некоторые небольшие изменения. Наконец,
мы поговорим о конкретных инструментах сборки, чтобы заставить наш
компонент работать в IE11.

12.1 Обратная совместимость
Итак, вы ждете поддержки? Несмотря на то что версия Edge для раз-
работчиков на базе Chromium доступна уже сегодня, сколько еще вре-
мени пройдет, прежде чем он будет выпущен для всех пользователей
Windows? Сколько времени потребуется текущим пользователям, чтобы
обновиться до последней версии? В настоящее время на эти вопросы
нет подходящих ответов, поэтому стоит обсудить стратегию, которая за-

311Обратная совместимость

ставит палитру цветов из предыдущей главы работать в текущей версии
Edge. Благодаря этому мы пройдем большую часть пути к поддержке со
стороны IE11, если вам абсолютно необходим этот браузер. Для IE11 су-
ществует этап сборки/транспиляции, но сейчас давайте сосредоточимся
на гипотетическом современном браузере, который не поддерживает
веб-ком по нен ты.

Одним из замечательных ресурсов, которые помогут в этом, являют-
ся различные полизаполнения, представленные на сайте www.webcom-
ponents.org/polyfills. Честно говоря, я не такой уж и большой поклонник
полизаполнения Shadow DOM. Это слишком похоже на магию, то есть за
кулисами совершается множество вещей, о которых вы даже не подо-
зреваете, например копирование и перезапись элементов DOM вашего
компонента с использованием различных уникальных классов. Все было
бы хорошо, если бы полизаполнение обрабатывало все без проблем и не
имело ограничений. Реальность такова, что даже при использовании
полизаполнения теневой модели DOM вам действительно нужно знать
об ограничениях, которые возникают, когда теневая модель DOM недо-
ступна изначально, и обходить их. Учитывая это, мы можем сделать не-
сколько изменений, чтобы включать и выключать теневую модель DOM
для нашего компонента, что будет делать его совместимым с Edge, не
прибегая к полизаполнению этой функциональной возможности.

Несмотря на то что полизаполнения теневой модели DOM следует
избегать, первым шагом является полизаполнение еще одного аспекта
веб-ком по нен тов: пользовательских элементов. По сути, это готовое ре-
шение. Когда мы добавляем полизаполнение в наш компонент, нам не
нужно беспокоиться о предупреждениях или неподдерживаемых функ-
циях. Пользовательские элементы будут работать только в тех браузерах,
которые пока еще поддерживают их.

Полизаполнение можно найти по адресу https://github.com/webcom-
ponents/custom-elements. Согласно документации, вы можете создать
его самостоятельно, установить из NPM или, как мы это сделаем сейчас,
просто использовать его из сети доставки содержимого (CDN). Чтобы
действовать досконально, мы должны добавить полизаполнение во все
наши три файла demo.html, чтобы все они работали. Просто добавьте
в каждый из них ссылку на сценарий – в файле index.html, например:

<title>Color Picker Component</title>
<link rel="stylesheet" type="text/css" href="vars.css">

<script type="module" src="components/colorpicker/colorpicker.js"></script>

<script src="https://unpkg.com/@webcomponents/custom-elements"></script>

12.1.1 Включение теневой модели DOM
Если теневая модель DOM использовалась, но затем была отключена,
одна из замечательных вещей заключается в том, что корень теневого
дерева не был создан; вместо этого вы можете вернуться к области ви-
димости вашего компонента (this). Это отлично работает, потому что со
свойством shadowRoot можно взаимодействовать так же, как и с компо-

312 Глава 12 Сборка и поддержка старых браузеров

нентом. Это означает, что с точки зрения использования JS с целью взаи-
модействия с ними ни один из ваших кодов не нужно менять, если вы
используете простое свойство для взаимозаменяемого представления
любой из областей видимости.

Основным исключением здесь является то, что мы рассмотрели ра-
нее. Это использование конструктора для выполнения тяжелой работы
по инициализации. Помните, что при использовании теневой модели
DOM вы создаете отдельную мини-модель DOM внутри своего компо-
нента. Итак, учитывая, что вы создаете ее прямо в конструкторе, эта
мини-модель становится доступной мгновенно. Когда теневая модель
DOM не используется, вы полагаетесь на DOM, предоставленный HTML-
страницей, на которой вы находитесь. Доступа к этой модели DOM
в функции-конструкторе пока нет, поэтому функция connectedCallback –
лучшее место для взаимодействия с DOM, например для получения
и установки атрибутов и настройки значения для свойства компонента
innerHTML.

Прежде чем мы перейдем к обходному пути, есть вероятность, что вы
занимаетесь разработкой, используя браузеры Chrome, Firefox или Safari.
Вместо того чтобы переходить на Edge для тестирования вещей, которые
не поддерживаются веб-ком по нен та ми, вы можете выполнять бóльшую
часть работы в своем любимом браузере, создав переключатель для клас-
са, который включает и отключает теневую модель DOM. Он будет очень
хорошо имитировать Edge, и вы можете просто выполнить надлежащее
тестирование в этом браузере, когда закончите.

Используя ползунок в качестве исходного примера, мы добавим ста-
тический метод чтения, чтобы контролировать, подключаемся ли мы
к теневой модели DOM:

export default class Slider extends HTMLElement {

 static get USE_SHADOWDOM_WHEN_AVAILABLE() { return false; }

Мы сделаем это в файле components/slider/slider.js, а также в двух дру-
гих компонентах, находящихся в файлах components/coordinatepicker/
coordinatepicker.js и components/colorpicker/ colorpicker.js.

С помощью этого переключателя мы можем теперь обратить наше
внимание на конструктор. Помните, что здесь мы не можем взаимодей-
ствовать с DOM, если не используем теневую модель DOM, поэтому нам
придется кое-что переделать. В листинге 12.1 показано, с чего мы на-
чали, а в листинге 12.2 – как это можно изменить, чтобы включать и вы-
ключать DOM.

Листинг 12.1 Компонент ползунок до того, как включение теневой
модели DOM станет возможным

constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

Создаем корень теневого дерева

Визуализация HTML-кода
и стилей в innerHTML

313Обратная совместимость

 document.addEventListener('mousemove', e => this.eventHandler(e));
 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

Чтобы изменить это, можно переместить кое-какой код в конструктор
и создать (или не создавать) теневую модель DOM.

Листинг 12.2 Активация переключателя для теневой модели DOM

constructor() {

 super();

 if (Slider.USE_SHADOWDOM_WHEN_AVAILABLE &&
 this.attachShadow) {

 this.root = this.attachShadow({mode: 'open'});

 } else {

 this.root = this;

 }

 document.addEventListener('mousemove',
 e => this.eventHandler(e));

 document.addEventListener('mouseup', e => this.eventHandler(e));
 this.addEventListener('mousedown', e => this.eventHandler(e));
}

connectedCallback() {
 if (!this.initialized) {

 this.root.innerHTML = Template.render({

 useShadowDOM: Slider.USE_SHADOWDOM_WHEN_AVAILABLE &&
 this.attachShadow });

 this.dom = Template.mapDOM(this.root);

 this.initialized = true;

 if (this.backgroundcolor) {

 this.setColor(this.backgroundcolor);
 }

 if (this.value) {

 this.refreshSlider(this.value);

 }

 }

}

Самое первое, что мы здесь делаем, – создаем свойство для класса под
названием this.root. При использовании теневой модели DOM устано-
вите для этого свойства значение корня теневого дерева. В противном
случае просто установите его как ссылку на наш компонент (this). Теперь
мы можем использовать this.root везде, где нам нужно манипулировать
содержимым нашего компонента, независимо от того, используем мы
теневую модель DOM или нет.

На самом деле нам не нужно перемещать слушателей событий. Мы бы
могли это сделать, если бы они были более специфичными. Например,
если бы мы создали слушателя событий для рукоятки или какого-то эле-

Слушатели
событий

Если выбрано использование теневой модели DOM и она поддерживается,
создаем корень теневого дерева; в противном случае устанавливаем

ссылку на компонент (this)

Слушателям событий не нужно
перемещаться, потому что компонент
и документ доступны из конструктора

Функция connectedCallback может появляться несколько раз
(всякий раз, когда компонент добавляется на страницу), поэтому

убедитесь, что инициализация происходит только один раз

Указываем шаблонному модулю
HTML/CSS, используется ли

теневая модель DOM

Обновляем компонент
на базе текущих атрибутов

314 Глава 12 Сборка и поддержка старых браузеров

мента, которого еще нет в DOM, здесь он бы не работал. В этом примере
просто так получается, что то, что мы слушаем, – документ и сам ком-
понент – доступно изначально. Код инициализации перемещен в новую
функцию connectedCallback, но помните, что этот обработчик запускается
каждый раз, когда компонент добавляется на страницу. Чтобы сделать
компонент действительно надежным, мы должны проверить, был ли он
уже инициализирован, с помощью специального свойства this.initial-
ized, и запускать код, только если он еще не был запущен. Для насущных
потребностей при работе с палитрой цветов эта проверка нам не нужна,
но, опять же, если мы хотим, чтобы компоненты работали в различных
ситуациях, это должно стать приоритетным.

Работать с нашим модулем импорта Template довольно просто. Вместо
того чтобы установить для shadowRoot.innerHTML значение в виде HTML/
CSS-строки, возвращаемой из импорта, мы просто используем this.root.
innerHTML. Является this.root корнем теневого дерева или компонентом,
он будет работать независимо от этого. Аналогично, при получении ке-
шированных ссылок на элементы с помощью Template.mapDOM this.root ра-
ботает независимо от того, какую ссылку он содержит.

Наконец, мы должны добавить еще кое-что касательно наших атри-
бутов. Стратегия рефлексии (атрибуты/геттеры/сеттеры) не меняется,
но здесь существует проблема синхронизации. Когда мы использовали
теневую модель DOM, мы могли инициализировать все, включая рен-
деринг всего нашего HTML-кода, получение ссылок на элементы и т. д.
в конструкторе. К тому времени когда метод attributeChangedCallback за-
пустится с нашими начальными атрибутами, мы будем готовы к работе.
Однако теперь он срабатывает перед обработчиком connectedCallback, по-
этому наши изменения теряются без возможности отреагировать.

На самом деле нам нужно обеспечить безотказность этого метода.
Хуже, чем потеря этих изменений, может быть получение ошибки. По-
скольку эта функция обратного вызова приводит к запуску кода, кото-
рый изменяет рукоятку и фон, которые еще не существуют, приведенная
ниже строка, например, выдаст ошибку при запуске компонента:

refreshSlider(value) {

 this.dom.thumb.style.left = (value/100 * this.offsetWidth -

 this.dom.thumb.offsetWidth/2) + 'px';

}

Чтобы решить эту проблему, можно просто проверить, был ли ком-
понент уже установлен в attributeChangedCallback, и выйти, если этого не
было:

attributeChangedCallback(name, oldVal, newValue) {
 if (!this.dom) { return; }

Но тогда, конечно, начальные атрибуты нашего компонента не ис-
пользовались из-за этой проблемы синхронизации, поэтому мы прове-
рили, присутствовали ли они, и работали с ними в последних нескольких
строках листинга 12.2.

315Обратная совместимость

Хотя мы только что сфокусировались на компоненте ползунка, два
других компонента можно изменить точно так же. Я не буду здесь все
описывать, но вы можете заполнить их самостоятельно, и это будет не-
плохим упражнением. Если возникнет проблема, эти компоненты в гото-
вом виде можно найти в репозитории для данной книги на сайте GitHub.

Тем не менее в конкретной реализации палитры цветов есть одно
крошечное соображение. Я имею в виду обработчика onMutationChange из
файла components/colorpicker/colorpicker.js:

onMutationChange(records) {
 records.forEach(rec => {

 this.data = Handlers.update({

Здесь мы обрабатываем любые изменения атрибутов наших внут-
ренних элементов DOM. Первоначально мы наблюдали за изменения-
ми атрибутов в shadowRoot и всех элементов внутри него. Теперь мы
просто слушаем изменения в this.root. Когда теневая модель DOM не
используется, мы наблюдаем за изменениями атрибутов в самом ком-
поненте! Проблема в том, что мы уже делаем это с помощью функции
attributeChangedCallback. Поэтому теперь мы дважды слушаем события
и реагируем на них. Чтобы решить эту проблему, мы просто проигно-
рируем изменения атрибутов, поступающие от компонента внутри об-
работчика onMutationChange:

onMutationChange(records) {
 records.forEach(rec => {

 if (rec.target !== this) {

Здесь мы просто говорим, что если целевой элемент, идентифицируе-
мый записью об изменении (каждая запись – это изменение, записанное
MutationObserver), не является палитрой цветов, делаем все как обычно.
Если целевой элемент является палитрой цветов, никаких действий не
предпринимается.

12.1.2 Сравнение с полифилами
Хотя было не слишком сложно позволить компонентам работать без те-
невой модели DOM, это не банальность. Нельзя просто применить по-
лифил и пойти дальше. Фактически единственная вещь, которую по-
лизаполнение могло бы дать нам здесь, – это возможность продолжать
использовать this.shadowRoot в компоненте, а также оно могло бы предло-
жить инкапсуляцию, чтобы не дать стороннему JS-коду манипулировать
DOM компонента, как это делала бы настоящая теневая модель DOM.
Если для вас это важно, возможно, стоит обратить внимание на полиза-
полнение ShadyDOM (https://github.com/webcomponents/shadydom).

Остальная часть работы, которую мы проделали, особенно в том, что
касается разбиения конструктора для перемещения инициализации
в функцию connectedCallback, должна быть выполнена независимо от это-
го. Этот аспект, вероятно, объясняет, почему спецификация W3C реко-
мендует вообще не иметь подобного кода инициализации в конструкто-

316 Глава 12 Сборка и поддержка старых браузеров

ре (даже когда все остальные похоже игнорируют это правило). Гораздо
проще настроить все правильно с самого начала и отключить теневую
модель DOM, если это необходимо. Не имеет значения, если ваши це-
левые браузеры изначально поддерживают веб-ком по нен ты, но, когда
они этого не делают, полезно запускать свой компонент с учетом этих
передовых методик.

12.1.3 Shadow CSS и дочерние элементы
Вероятно, самая раздражающая часть возвращения в мир без теневой
модели DOM – это HTML-код и стили CSS. При создании нашей HTML-
разметки я был слишком увлечен и использовал идентификаторы
вместо классов для ссылки на элементы. Опять же, полизаполнение
нас здесь не спасет. Используя шаблон компонента-ползунка в качест-
ве примера (components/slider/template.js), нам просто нужно войти
и убрать все идентификаторы. Это изменение показано в приведенном
ниже листинге:

Листинг 12.3 Изменение ID-ссылок на классы

mapDOM(scope) {

 return {

 // OLD //

 overlay: scope.getElementById(

 'bg-overlay'),
 thumb: scope.getElementById('thumb')

 // NEW //
 overlay: scope.querySelector(

 '.bg-overlay'),
 thumb: scope.querySelector('.thumb')

 }

},

html() {

 // OLD //

 return `<div id="bg-overlay"></div>

 <div id="thumb"></div>`;

 // NEW //
 return `<div class="bg-overlay"></div>

 <div class="thumb"></div>`;

},

Для ограниченного контекста нашего компонента на демонстрацион-
ной странице нам вообще-то не нужен этот этап. Просто так получилось,
что ни один из идентификаторов, которые мы использовали, не кон-
фликтовал – все они были уникальными. Поэтому, если вы пропустили
этот шаг, ничего страшного; все будет работать нормально. Проблема со-
стоит в том, что если бы мы продолжали ссылаться по идентификатору
и забыли об этом, это стало бы бомбой замедленного действия в наших
руках. Использование данного компонента в более крупном приложе-

С теневой моделью DOM мы могли бы
спокойно выполнять запросы по ID

Без теневой модели DOM это больше
небезопасно, поэтому мы должны
переключиться на классы

Элементы, использующие
идентификаторы для ссылки ранее

Переходим на использование классов,
если теневая модель DOM отсутствует

317Обратная совместимость

нии с другими ID-ссылками может переопределить то, какой элемент
здесь возвращается, если два и более элементов используют один и тот
же идентификатор, что может иметь серьезные (и таинственным обра-
зом действующие) последствия.

И снова у нас есть пример передовой методики, и нам нужно беспоко-
иться, только если мы планируем использовать наши компоненты в кон-
тексте, где нет теневой модели DOM. Если это возможно, лучше всего
вообще избегать использования идентификаторов. Если это невозмож-
но – ну, честно говоря, я наслаждаюсь роскошью использования иденти-
фикаторов, чтобы делать то, для чего они и были придуманы: ссылаться
на уникальные элементы!

Последнее препятствие, которое нужно преодолеть, – это CSS. В этом
случае полифил ShadyCSS действительно помогает, но в нем есть много
всего, и мне кажется, что в таких случаях это того не стоит. Проблема со-
стоит в том, что селектора :host не существует. На самом деле в Edge он
фактически ломает ваши стили, если вы даже пытаетесь его использо-
вать! Кроме того, простые автономные селекторы, такие как .thumb, кото-
рые раньше работали только в вашей теневой модели DOM, теперь могут
влиять на все ваше приложение.

Полифил ShadyCSS подходит для этого как нельзя лучше. Вы, будучи
разработчиком, несете ответственность за размещение своей разметки
и стилей в теге <template>. Затем вступает в дело полифил и переписы-
вает ваши элементы и стили для использования уникальных селекто-
ров, поэтому кажется, что теневая модель DOM по-прежнему работает.
Я склонен думать, что требуемая здесь настройка представляет собой
то же самое или даже большее усилие, чем простое решение проблем.
Да, теневая модель DOM обеспечивает защиту от проникновения стилей
в наш компонент, но полифил этого не делает. Поэтому в действитель-
ности его использование не несет особой пользы, когда можно сделать
что-то более простое.

Здесь нам пригодится применение шаблонных литералов. Вернитесь
в класс компонента, где мы вызываем метод Template.render:

this.root.innerHTML = Template.render({ useShadowDOM:

 Slider.USE_SHADOWDOM_WHEN_AVAILABLE && this.attachShadow });

Здесь передача логического значения указывает функции render на то,
используем мы теневую модель DOM или нет, а затем мы можем изме-
нить стили, чтобы использовать соответствующие селекторы. Например,
если мы изначально применяли :host в качестве селектора, теперь мы
должны использовать имя компонента. В частности, в случае с ползун-
ком

:host { . . . } becomes wcia-slider { . . . }

:host .thumb { . . . } or .thumb { . . . } becomes wcia-slider .thumb { . . . }

Учитывая это и сосредоточив внимание на шаблонном модуле пол-
зунка (components/slider/template.js), мы можем создать в приведенном
ниже листинге код, чтобы использовать тот или иной селектор.

318 Глава 12 Сборка и поддержка старых браузеров

Листинг 12.4 Переключение между селекторами теневой
и нетеневой моделей DOM

render(opts) {

 return `${this.css(opts.useShadowDOM)}
 ${this.html()}`;
},

createHostSelector(useshadow, host) {
 if (useshadow) {

 return ':host';

 } else {

 return host;

 }

},

css(useShadowDOM) {

 const comp = 'wcia-slider';

 return `<style>

 ${this.createHostSelector(
 useShadowDOM, comp)} {
 display: inline-block;

 position: relative;

 border-radius: var(--border-radius);

 }

 ${this.createHostSelector(useShadowDOM, comp)} .bg-overlay {
 width: 100%;

 height: 100%;

 position: absolute;

 border

Точно то же самое можно сделать в инструменте для выбора коорди-
нат и палитре цветов. Однако в палитре цветов есть один селектор, кото-
рый немного отличается:

:host(.modal)

Помните, что этот селектор просто утверждает, что если у палитры
цветов есть класс с именем modal, фон и будет стилизован соответству-
ющим образом. Чтобы получить то, что нам нужно, без теневой модели
DOM, нам понадобится следующий селектор:

wcia-color-picker.modal

В этом случае мы добавим дополнительную функцию для обработки
этого случая в файле components/colorpicker/template.js, как видно из
приведенного ниже листинга.

Листинг 12.5 Обработка особого случая класса в компоненте

createHostContextSelector(
 useshadow, host, clazz) {
 if (useshadow) {

 return `:host(${clazz})`;

Передаем логическое значение функции
css, чтобы указать, используется ли
теневая модель DOM

Возвращаем соответствующую строку
селектора для использования теневой
или нетеневой модели DOM

Объявляем тег компонента,
чтобы использовать его

при генерации селектора Динамически создаем селектор
в зависимости от того, используется
ли теневая модель DOM и название
компонента

Новая функция, которая принимает логическое
значение Shadow DOM, имя компонента и класс
для использования в компоненте

319Наименьший общий знаменатель

 } else {

 return host + clazz;

 }

},

css(useShadowDOM) {

 const comp = 'wcia-color-picker';

 return `<style>

 ...

 ${this.createHostContextSelector(useShadowDOM, comp, '.modal')}
 {

 ${Modal.rules()}
 }

В качестве неплохого домашнего задания по JS можно придумать еди-
ную функцию, которая обрабатывает все варианты селектора :host, а за-
тем встроить ее в базовый класс, из которого мы можем расширить шаб-
лонный модуль любого веб-компонента. Опять же, когда мы смотрим
в будущее, говоря о веб-компонентах, именно с этими видами оптими-
зации будет проделываться много интересной работы, и нам не понадо-
бятся для этого новые функциональные возможности браузера!

12.2 Наименьший общий знаменатель
Как видите, при создании компонента, который потенциально может
быть использован, когда нативные веб-ком по нен ты недоступны, нуж-
но много чего учесть. Хорошо, что с API пользовательского элемента так
легко использовать полизаполнение, но на этом простота не заканчива-
ется. Вероятно, становится очевидным, что компоненты и, собственно,
веб-разработка в целом играют по разным правилам, используя или не
используя теневую модель DOM.

При создании, будь то применение полифила или нет, вам нужно бу-
дет разработать свой компонент в качестве наименьшего общего зна-
менателя. Если вы не используете теневую модель DOM или не уверены,
что применяете ее, то должны планировать свой компонент так, как
если бы вы его не использовали. Также необходимо принять во внима-
ние, что в отношении полифилов существует ряд серьезных оговорок.
Самый захватывающий аспект теневой модели DOM – это инкапсуляция
CSS, но полифилы не решают эту проблему. CSS-правила по-прежнему
могут просачиваться. Они могут вытекать и из вашего компонента, если
ваши селекторы не настроены должным образом, чтобы предотвратить
подобную ситуацию, сделав их специфичными для вашего компонен-
та. Повторюсь: не используйте просто .thumb; используйте my-component
.thumb.

При подготовке компонента к переходу на нетеневую модель DOM
было много сходства и повторяющегося кода. При рассмотрении это-
го кода в сочетании с повторяющимся кодом для рефлексии атрибутов
и свойств в ваших компонентах может возникнуть искушение попробо-
вать фреймворк или библиотеку.

Создаем селектор :host(.modal)
или wciacolor-picker.modal в зависимости

от того, используется ли ShadowDOM

320 Глава 12 Сборка и поддержка старых браузеров

LitElement (https://lit-element.polymer-project.org), созданная коман-
дой Polymer, обещает стать мощным базовым классом веб-ком по нен тов,
обеспечивающим все эти функции. Это определенно заставляет вас ис-
пользовать несколько шаблонов разработки и расширяет API веб-ком-
по нен тов с помощью дополнительных функциональных возможностей.
Возможно, вы пытаетесь забыть о некоторых из этих проблем и ограни-
чений, поэтому LitElement может быть прекрасным вариантом, особен-
но потому, что она обещает поддержку вплоть до IE11. StencilJS (https://
stenciljs.com) от команды Ionic предлагает несколько иной подход. Раз-
работчик может создать компонент с помощью этого фреймворка, и он
будет скомпилирован в чистый веб-компонент.

Я уверен, что в будущем мы увидим еще больше решений и устой-
чивые версии LitElement и StencilJS. Лично я бы предпочел избегать
этих решений в своих попытках уберечься от сложностей, связанных
с фреймворками и библиотеками, используя только то, что нужно. Мне
также нравится разрабатывать компоненты без шага сборки и компи-
ляции до их выпуска, который оба этих решения применяют в процессе
разработки.

В конце концов, вы должны просто использовать то, что подходит для
вашего проекта. Тем не менее вся сложность, которую мы рассмотрели,
не является необходимой при выполнении разработки для современных
браузеров со встроенной поддержкой веб-ком по нен тов. Надеюсь, что
в скором времени Edge будет меньше беспокоить вас, если принять во
внимание то, что все больше разработчиков не учитывают IE11, когда
речь идет о требованиях к браузеру.

Но что происходит, когда нам нужно продвигать и поддерживать IE11?
Полизаполнение пользовательских элементов по-прежнему работает,
поэтому создание собственных элементов, как мы это делали, не явля-
ется проблемой. Основной проблемой остается отсутствие поддержки
новых функций JS, таких как Class. Чтобы позабыть об этом, необходимо
выполнить транспиляцию и сборку! Мы поговорим об этом далее.

Конечно, всегда будут несоответствия, связанные с браузерами, кото-
рые необходимо устранить. На самом деле наша палитра цветов пока
еще не очень хорошо работает в Edge. Чтобы закончить, давайте испра-
вим эту проблему, чтобы палитра цветов прекрасно работала во всех со-
временных браузерах. Вернитесь к классу компонента ползунка из фай-
ла components/slider/slider.js:

setColor(color) {
 this.dom.overlay.style.background = `linear-gradient(to right, ${color}
 0%, ${color}00 100%)`;
}

В этой функции можно использовать шестнадцатеричный код цвета
прямо в линейном градиенте, когда прозрачность исчезает. Все другие
современные браузеры поддерживают добавление двух дополнитель-
ных цифр для обозначения кода цвета из восьми символов. Последние
две цифры обозначают прозрачность 0 %. К сожалению, в Edge это не

321Процессы сборки

поддерживается. Нам нужно будет использовать цветовую модель RGBA
и получить справочную информацию по преобразованию из модуля ути-
лит Color, который мы можем импортировать.

Листинг 12.6 Исправление линейного градиента для Edge

import Template from './template.js';

import Color from '../colorpicker/color.js';

export default class Slider extends HTMLElement {

...

setColor(color) {
 const rgb = Color.hexToRGB(color);
 this.dom.overlay.style.background = `linear-gradient(to right,
 rgba(${rgb.r}, ${rgb.g}, ${rgb.b}, 1) 0%, rgba(${rgb.r}, ${rgb.g},
 ${rgb.b}, 0) 100%)`;
}

После добавления этих изменений наш компонент можно протести-
ровать в любом современном браузере, включая Edge!

12.3 Процессы сборки
До сих пор мы все делали без использования какого-либо фреймворка
и сложных рабочих процессов, которые выполняют кучу разной работы
под капотом, о которой вы и не знаете. Был только браузер и немного
HTML- и JS-кода и стили.

В случае со многими современными рабочими процессами в сети дело
обстоит иначе. Вы не будете запускать один и тот же код в своем брау-
зере, как вы пишете его в редакторе, и такое будет происходить не раз.
Между ними может находиться шаг сборки. Существует множество при-
чин для выполнения сборки, начиная от использования таких инстру-
ментов, как Sass и LESS для компиляции стилей, до генерации большого
HTML-файла из различных фрагментов, которые вы рассортировали по
нескольким разным файлам.

Я мог бы продолжить объяснять причины использования одного или
нескольких шагов сборки, даже не говоря о JS. Подобные задачи внеш-
него интерфейса, будь то HTML, CSS или JS, почти всегда выполняются
с помощью Node.js. Но какую конкретную систему нужно использовать?
Среди основных систем, которые обещают сделать все это, можно упо-
мянуть Grunt и Gulp, но даже более специфичные системы, которые обе-
щают сделать что-то одно, имеют тенденцию перекрываться. Например,
Webpack предназначен для компоновки ресурсов, но в случае со мно-
жеством задач он может перекрываться с теми задачами, которые Grunt
и Gulp могут выполнять самостоятельно.

Когда существует сообщество веб-разработчиков, выпускающее новые
инструменты каждый день, и множество действительно надежных систем
сборки, которые могут все это делать, может возникнуть путаница отно-

Изменяем правило стиля для IE/Edge

322 Глава 12 Сборка и поддержка старых браузеров

сительно того, какие инструменты нужно включить в свой набор и какие
системы использовать для управления всем этим. В последнее время все
же наблюдается уклон в сторону простого варианта, когда это возможно.

12.3.1 Использование сценариев NPM
Прежде чем углубляться и выяснять, почему у нас может возникнуть же-
лание включить процесс сборки в свой рабочий процесс веб-компонента,
давайте поговорим о простом способе запуска задач. Вы, вероятно, ис-
пользовали Node.js, даже если только для установки чего-либо. Чтобы
освежить вашу память, напомню, что npm – это часть экосистемы Node.js
для установки выбранного вами пакета JS.

Например, если вы хотите установить полизаполнения веб-ком по нен-
та, перейдите в корневой каталог вашего проекта, запустите терминал
и выполните команду

npm install @webcomponents/webcomponentsjs

Этот пакет будет установлен в корне вашего проекта в папке node_
modules. Конечно, по мере того как вы добавляете все больше и боль-
ше пакетов, можно легко запутаться, поэтому вам понадобится какая-
то запись, которая будет отслеживать ваши зависимости, подобно этой,
равно как и другие детали вашего проекта. Вот для чего существует файл
package.json. Создать новый такой файл с нуля легко. Снова в терминале,
в корне своего проекта, выполните команду

npm init

Вам нужно будет ответить на несколько вопросов, чтобы предоставить
информацию по своему проекту, такую как имя, адрес электронной поч-
ты, название пакета и т. д. Когда файл package.json будет готов, если вам
нужно будет выполнить предыдущую команду для установки webcompo-
nentsjs, она будет добавлена в список зависимостей в JSON.

Или, если это зависимость, предназначенная только для рабочего про-
цесса разработчика вашего проекта, и это не часть вашей рабочей вер-
сии, нужно выполнить команду

npm install @webcomponents/webcomponentsjs --save-dev

Помимо зависимостей, у файла package.json есть еще один довольно
мощный аспект. Мы можем добавить объект script для запуска всего, что
нам нужно. Можно попробовать запустить что-то простое, и это доволь-
но легко.

Листинг 12.7 Простой скрипт для файла package.json

{

 "name": "wcia",
 "version": "1.0.0",
 "scripts": {

 "test": "echo 'Hello from package.json'"

 }

}

Скрипт для запуска

323Сборка компонентов

По сути, все, что можно запустить в терминале, можно добавить сюда.
В простом тесте, приведенном в листинге 12.7, используется коман-
да Linux echo, которая выводит любое сообщение, которое вы ей даете,
в виде строки в вашем терминале. Пользователям Windows также не
нужно чувствовать себя обделенными благодаря Windows Subsystem for
Linux (WSL; https://docs.microsoft.com/en-us/windows/wsl/install-win10).
При этом пользователи Windows могут выполнять те же команды Linux,
что и пользователи Mac или Linux. Даже до появления WSL, которая
определенно не идеальна, простая установка Git для Windows (https://
gitforwindows.org) позволяла использовать ограниченный набор команд
Bash, которого вполне могло быть достаточно.

Причина этого заключается в том, что сценарии npm все чаще и чаще
становятся частью рабочего процесса разработчика вместо больших,
сложных систем сборки, таких как Grunt или Gulp. Когда речь идет
о сложных и многочисленных задачах как части рабочего процесса, в та-
ких системах сборки нет ничего плохого. Однако при выполнении не-
скольких простых задач вся эта сложность не нужна. Системами сбор-
ки легко овладеть. Выполнение множества различных задач потребует
изучения необходимых плагинов и устранения недостатков, когда они
не работают вместе, но это также означает, что вам не нужно прописы-
вать каждую небольшую задачу, такую как копирование файлов, запуск
препроцессоров CSS, загрузка на сервер, конкатенация файлов, HTML-
шаблонирование и т. д. Но если вам нужно всего несколько задач, и их
очень легко написать самостоятельно, нет никаких причин, по которым
вы можете отказаться от простого пути.

В следующих двух главах мы рассмотрим несколько основных спосо-
бов выполнения сборки и тестирования. Хотя сами инструменты сборки
и тестирования имеют различные уровни сложности, команды для их
запуска невероятно просты. Даже если вы работаете в Windows без вы-
шеупомянутого WSL и просто используете эмуляцию Git Bash, команды,
которые мы запускаем, будут работать с одним предостережением при
запуске тестов, о чем я упомяну в следующей главе. Следовательно, здесь
мы будем избегать систем сборки при изучении соответствующих про-
цессов, что позволит нам сосредоточиться на конкретных задачах, кото-
рые мы выполняем, избегая при этом множества настроек, не имеющих
прямого отношения к тому, что нам нужно для запуска. Самое главное –
вам решать, какую систему сборки выбрать, если вы захотите ее исполь-
зовать.

12.4 Сборка компонентов
На самом деле веб-ком по нен ты ничем не отличаются от других понятий
с точки зрения того, как и почему мы будем использовать этап сборки
для нашего JS-кода. И так же, как и во всех остальных случаях, сложность
может возрастать по мере роста потребностей нашего проекта или ком-
понента. Что нам пока не ясно, так это зачем вообще выполнять сборку.

324 Глава 12 Сборка и поддержка старых браузеров

12.4.1 Почему мы выполняем сборку
Существует множество причин для запуска процесса сборки JS. Одна из
получающих все большее распространение причин заключается в том,
что разработчик может предпочесть другой язык, помимо JS, для напи-
сания кода. Много лет назад CoffeeScript был популярным языком для
написания веб-приложений, хотя в наши дни TypeScript от компании
Microsoft является наиболее популярным языком для создания веб-
приложений. Однако TypeScript – это не полностью другой язык – это
надмножество JS с добавлением типизированных переменных. Он так-
же предлагает новейшие функции JS, которые еще не вошли в браузеры.
На самом деле у издательства Manning есть две действительно солидные
книги по TypeScript, которые недавно вышли в свет:

� Angular Development with TypeScript (https://www.manning.com/
books/angular-development-with-typescript-second-edition);

� TypeScript Quickly (https://www.manning.com/books/typescript-
quickly).

Также TypeScript становится все более и более актуальным языком для
работы веб-ком по нен тов. Помимо того что это популярный язык для ра-
боты в целом, нужно отметить, что на нем написаны проекты LitElement
и lit-html от команды Polymer. Хотя написание кода с использованием
новых языковых функций, таких как декораторы, не обязательно, это на-
стоятельно рекомендуется, поскольку большинство примеров написаны
именно так.

Есть не только CoffeeScript и TypeScript – также существует огромное
количество языков, которые разработчики используют для запуска кода
в интернете. Однако все эти языки имеют одну общую черту. В действи-
тельности они не запускаются в браузере. Ваш код пишется на выбран-
ном вами языке, но затем транспилируется в JS, чтобы он мог работать.

Если слово «транспиляция» звучит как чужеродная концепция, можно
сказать, что она очень похожа на компиляцию. И то, и другое позволяют
писать код и преобразовывать его в нечто, работающее на нужной вам
платформе, например в сети. Компиляция означает, что вы нацелены на
более низкий уровень абстракции, такой как байт-код. Вывод компиля-
тора в основном нельзя прочитать.

Компиляцию можно рассматривать почти как если бы мы взяли уст-
ную речь и сохранили ее в виде звукового файла. Невозможно разобрать-
ся в том, кто что говорит, посмотрев на запись в своем любимом аудио-
редакторе, но вы, безусловно, можете воспроизвести ее и абсолютно
прекрасно понять, что говорят.

Транспиляцию можно рассматривать как перевод, например, с испан-
ского на английский. Если вы ими владеете, на испанском и английском
можно прекрасно читать тексты, а если нет, перевод поможет вам про-
читать текст на вашем родном языке.

Транспиляция – это даже не написание чего-либо на совершенно но-
вом языке. За прошедшие годы в JS было добавлено много новых и инте-
ресных функций, особенно в 2015 году, когда был выпущен стандарт ES6/

325Сборка компонентов

ES2015. Однако разработчики не могли сразу использовать эти функции.
Даже если их любимый браузер поддерживал их, это относилось не ко
всем браузерам. Даже сейчас, хотя основные современные браузеры
имеют отличную поддержку функций ES6/ES2015, у разработчиков мо-
жет возникнуть желание использовать более старые браузеры, такие как
IE. Даже если это не так, существуют замечательные, совершенно новые
функции языка JS или даже экспериментальные функции, которые раз-
работчики хотят использовать и которые пока не имеют никакой под-
держки со стороны браузеров. Для таких случаев Babel (https://babeljs.
io), вероятно, является наиболее широко используемым на сегодняшний
день JS-транспилятором.

Еще одна важная причина для изменения JS-кода – взять много раз-
ных исходных файлов и поместить их в один больший. Когда исходный
код вашего приложения начинает расти, превращаясь в сотни или ты-
сячи строк кода, не рекомендуется помещать весь свой JS-код в один
большой файл. Во-первых, при работе в команде легче наступать друг
другу на пальцы при изменении одного и того же файла. Во-вторых,
ваш проект лучше организован, когда JS-код разделен правильно.
Фрагменты функционала легче найти, когда вам не нужно отправлять-
ся на охоту, используя один огромный файл. Кроме того, когда они ор-
ганизованы в менее крупные файлы с подходящим названием, легче
взглянуть на файловую структуру проекта и понять, что он делает и как
все работает.

Несмотря на улучшения рабочего процесса разработчиков из неболь-
ших файлов, для браузера лучше, чтобы все было вместе в одном файле
или, что еще лучше, было разумно объединено в файлы, которые загру-
жаются, когда нужны функциональные возможности. Когда все объеди-
нено, браузеру нужно обрабатывать меньше сетевых запросов. Это важ-
но, потому что у браузеров имеется максимальное количество запросов,
которые можно выполнить одновременно. Кроме того, из-за состояния
сети сценарии могут загружаться медленно. Вы можете начать пред-
ставлять себе, какие странные вещи могут происходить с вашим при-
ложением, когда для его загрузки имеется какой-то функционал, но не
доступен другой скрипт, потому что сетевой запрос занимает слишком
много времени.

До появления модулей ES6/ES2015 и игнорирования аналогичных ре-
шений, таких как RequireJS, JS-код в отдельных файлах просто связывался
воедино с помощью средств конкатенации. По сути, конкатенация – это
просто помещение содержимого каждого JS-файла в более крупный файл
в указанном вами порядке. Мы по-прежнему делаем нечто подобное, но
в случае с модулями все должно быть немного умнее. Автоматизирован-
ные инструменты должны пройти через ваш код, отследить модули, на
которые вы ссылаетесь, используя ключевое слово import, и связать их,
чтобы представить окончательный вывод. Есть и более умный способ.
Некоторые инструменты используют метод под названием встряхивание
дерева. Если вы импортируете модуль и не используете его где-либо в сво-
ем коде, он не будет объединять этот конкретный модуль. Встряхивание

326 Глава 12 Сборка и поддержка старых браузеров

дерева – умный способ гарантировать наличие более мелких наборов, ко-
торые включают в себя только тот код, который вам нужен.

Такие инструменты, как Webpack (https://webpack.js.org), отличаются
друг от друга еще больше, позволяя создавать несколько выходных набо-
ров и компоновать больше типов файлов, нежели просто JS. Эти пакеты
организованы по функциональности, которая необходима для запуска
определенных областей вашего приложения. Веб-приложения могут
быть огромными, и, возможно, стоит подумать над тем, чтобы разделить
свое приложение на разные секции.

Например, если вы работаете над веб-приложением для банковского
сектора, пользователь может просматривать свои последние транзакции
в одном разделе, но никогда не станет посещать другой раздел, чтобы
увидеть информацию о своем аккаунте. При таком сценарии нет при-
чин заставлять пользователя загружать набор, содержащий JS-код, свя-
занный с информацией об учетной записи. Поэтому хотя банковское
приложение может представлять собой один большой модуль, разумнее
разделить его на несколько наборов для каждого раздела приложения.
На рис. 12.1 показаны основные различия между более простыми ин-
струментами, такими как Rollup, и более сложными, такими как Webpack.

И снова мы вернулись ко множеству инструментов, которые мы можем
использовать! В любом случае, и транспиляция, и компоновка являются
двумя основными мотиваторами процесса сборки для вашего JS-кода.

12.4.2 Компоновка модулей с помощью Rollup
Хотя существует множество инструментов для компоновки модулей,
Webpack традиционно был довольно сложным в настройке для самых
простых задач, в то время как Rollup был простой, но не настолько на-
страиваемой альтернативой. Недавние версии Webpack изменили то, на-
сколько крутой является кривая обучаемости для выполнения простых
вещей, в то время как новичок Parcel.js (https://parceljs.org) также при-
обрел популярность!

Нам просто нужно выбрать что-то одно, чтобы двигаться дальше;
учитывая три этих замечательных варианта, я бы хотел выбрать Rollup
(https://rollupjs.org), поскольку с ним у меня больше опыта и я ценю его
за простоту, благодаря которой его можно быстро запустить и присту-
пить к работе. Как и в случае с любой командой npm install, обязательно
создайте файл package.json в корне своего проекта. Затем в терминале
с помощью команды cd перейдите в корневой каталог вашего проекта
и выполните команду

npm install --save-dev rollup

Обратите внимание, что здесь мы использовали параметр --save-dev.
Rollup будет добавлен в ваш пакет.json в качестве dev dependency, т. е.
зависимости, которая нужна вам только во время разработки. Это озна-
чает, что вы не собираетесь ничего делать с Rollup, кроме того что он по-
может вам в процессе разработки и сборки. Это не код, который предна-

327Сборка компонентов

значен для поставки вместе с вашим компонентом. Когда вы закончите,
ваш файл package.json будет выглядеть так, как показано в приведенном
ниже листинге (конечно, в зависимости от того, как вы назвали свой про-
ект и какую версию указали).

Файлы с исходным
JS-кодом

Файлы с исходным
JS-кодом

Скомпонованный
файл

Rollup

Webpack

Используется «встряхивание
дерева», чтобы исключить

неиспользуемый JS-код

Используется
«встряхивание дерева»,

чтобы исключить
неиспользуемый JS-код

Другие ресурсы,
такие как
изображения,
шрифты и т. д.

Скомпонованные файлы настраиваются
в соответствии с тем, как они будут

использоваться в приложении

Рис. 12.1 Rollup в сравнении с Webpack

Листинг 12.8 Файл package.json после установки Rollup

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {

 "rollup": "^1.0.2"

 }

}

Интересно отметить, что можно установить Rollup (или любой другой
пакет в целом) глобально с помощью параметра -g:

npm install rollup -g

При глобальной установке Rollup можно запускать непосредственно
со своего терминала, где угодно на компьютере, просто выполнив ко-
манду rollup с некоторыми параметрами. Здесь мы установили его ло-
кально, как часть проекта. При локальной установке Rollup по-прежнему
можно запускать на терминале с помощью сокращенной команды rollup,

Зависимость, необходимая
во время разработки

328 Глава 12 Сборка и поддержка старых браузеров

так как путь установки, вероятно, будет добавлен к вашим переменным
среды. Я до сих пор не верю этому! Если бы у вас было несколько разных
установок Rollup в разных проектах, вы бы гадали, где вы на самом деле
используете его. Вместо этого мне нравится действовать немного точнее
и выполнять его из моего проекта: node_modules/.bin/rollup. Выглядит
немного сложнее, но такой вариант более распространен, нежели гло-
бальная установка.

Причина, объясняющая, почему так будет лучше, состоит в том, что
если бы вы захотели, чтобы члены команды работали с вашим проектом
и инструментами глобально, вам нужно было бы предоставить им руко-
писный список всего, что нужно установить для работы с вашим проек-
том, и они должны были бы устанавливать все это по одному. При нали-
чии большого числа зависимостей некоторые вещи легко позабыть,
и отлаживать причину неисправности в процессе сборки будет сложно.
При локальной установке все, что нужно, находится непосредственно
в файле package.json и может быть установлено за один раз с помощью
команды npm install.

Сложно набирать на клавиатуре этот путь каждый раз, когда вы хо-
тите запустить сборку. Команда становится еще длиннее, когда мы до-
бавляем параметры, чтобы указать, где находится основная точка входа
JS, где должен находиться выходной файл и какое у него имя. Вот почему

мы можем сделать запись в нашем объекте сценариев
package.json и добавить команду туда.

Однако, прежде чем мы это сделаем, мы должны совсем
немного изменить структуру нашего веб-компонента.
В качестве примера давайте начнем с ползунка из пре-
дыдущей главы, который был небольшой частью компо-
нента палитры цветов. На рис. 12.2 показана его простая
файловая структура вместе с другими компонентами
и модулями дизайн-системы.

Опять же, хотя ползунок отлично работал в нашей ло-
кальной среде разработки (честно говоря, он настолько
мал, что, вероятно, отлично работает и в сети), нам нуж-
но создать набор, чтобы конечный пользователь загру-
жал все модули (slider.js, template.js и все соответству-
ющие куски нашей дизайн-системы). Эти файлы теперь
следует рассматривать как исходные файлы, которые
не используются напрямую конечными пользователя-
ми. Таким образом, мы создадим папку src в каталоге
каждого компонента и поместим туда файлы slider.js
и template.js. Мы сделаем это и для других компонентов.
На рис. 12.3 показана новая структура папок.

Благодаря новой структуре папок входной файл для Rollup теперь на-
ходится по адресу component/slider/src/slider.js. Ничего в коде внутри
этого файла не меняется, кроме одной маленькой детали. Хорошая но-
вость заключается в том, что наши пути импорта в основном связаны
с компонентом, поэтому их не нужно менять. Когда мы импортируем

Рис. 12.2 Файлы ползунка

329Сборка компонентов

модуль Template, он по-прежнему находится по адресу./template.js. Раз-
дражает то, что когда мы исправили прозрачность для Edge, то исполь-
зовали модуль Color из компонента палитры цветов. Поэтому теперь
вместо

import Color from '../../colorpicker/color.js';

нужно использовать

import Color from '../../colorpicker/src/color.js';

Новые папки src для хранения файлов
с исходным кодом каждого компонента

Рис. 12.3 Ползунок и другие файлы компонентов с папкой src

В конце концов, вывод может быть создан там, где когда-то был исход-
ный файл slider.js. Эти два параметра являются основными для работы
Rollup! Вот команда, которую мы будем выполнять:

./node_modules/.bin/rollup chapter12and13/components/slider/src/slider.

 js --file chapter12and13/components/slider/slider.js --format umd

 --name slider -m

Полный путь к каталогу включает в себя «chapter12and13», чтобы со-
ответствовать репозиторию для этой книги на GitHub. Самый первый
параметр – это расположение файла компонента ползунка с исходным
кодом. В качестве единственного обязательного параметра этот первый
параметр также является единственным, для которого флаг не требуется.

330 Глава 12 Сборка и поддержка старых браузеров

Во-вторых, нам нужно указать выходной файл, передаваемый перед
параметром --file. Далее идет выходной формат, обозначаемый с по-
мощью параметра --format. Здесь нет правильного ответа, но я предлагаю
использовать универсальное определение модуля (UMD). При компо-
новке в виде UMD JS-код можно загружать различными способами. Два
из них – CommonJS и асинхронное определение модуля (AMD), которые
можно использовать в различных сценариях, в том числе и с RequireJS.
Последний метод, который активирует UMD, заключается в простом
глобальном определении, где не предполагается никаких механизмов
загрузки JS. UMD прикрепляет ползунок к window в качестве глобальной
переменной, доступной из любого места на вашей странице.

Какое имя у этой глобальной переменной? На этот вопрос легко от-
ветить, используя параметр --name. Назовем нашу переменную slider.
Теперь у нас есть window.slider в качестве глобальной переменной, но
мы, вероятно, никогда не будем ее использовать, поскольку наш компо-
нент настраивается автоматически. Возможно, вы захотите действовать
более осторожно и используете имя, с которым в вашем приложении
никогда не будет конфликтов. Пространство имен вашего компонента
может быть хорошим кандидатом на включение в этот код, например My-
NamespaceSlider, или можно использовать имя вашего приложения – прос-
то что-то, чтобы сделать его уникальным.

Очевидный вопрос заключается в том, отказываемся ли мы от возмож-
ности использовать ползунок в качестве обычного модуля ES6/ES2015,
как это было раньше. Нет! Если более крупное приложение, содержащее
ползунок, хочет импортировать модуль, оно может с легкостью импор-
тировать файл src/slider.js и использовать его, игнорируя сгенерирован-
ный набор. Это более крупное приложение может затем скомпоновать
само приложение и все компоненты внутри него, используя Rollup или
любой другой компоновщик модулей, который он предпочитает.

Самый последний флаг -m включает генерацию «карт кода». Если вы
незнакомы с картами кода, они связывают сгенерированный вывод
с оригинальными файлами с исходным кодом. Фрагмент «карты» пред-
ставляет собой нечитабельный файл с расширением.map. Он содержит
информацию для поиска, позволяющую осуществить это связывание.
Это может звучать бессмысленно, пока не увидишь это в действии. Вы
можете попробовать сами после запуска сборки, но на рис. 12.4 показаны
карты кода в действии. В моем коде есть ошибка. Хотя мы используем
выходной набор, который будем генерировать далее, мы видим точную
строку, где произошла ошибка.

12.4.3 Запуск сборки с помощью npm
Теперь, когда мы знаем, как выполнять сборку с помощью Rollup, ког-
да распланировали более подходящую файловую структуру компонен-
та и знаем, чего ожидать от скомпонованного вывода, давайте сделаем
процесс компоновки с помощью Rollup более простым. Как уже говори-
лось ранее, мы можем легко добавить команду компоновки в наш файл

331Сборка компонентов

package.json. Обычно достаточно чего-то простого. Можно просто на-
звать задачу build и двигаться дальше, как показано в приведенном ниже
листинге.

Рис. 12.4 Карты кода показывают, где произошла ошибка в ваших исходных
файлах, даже при компоновке вывода

Листинг 12.9 Добавляем скрипт Rollup в файл package.json

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {

 "rollup": "^1.0.2"

 },
 "scripts": {

 "build": "./node_modules/.bin/rollup chapter12and13/components/slider/src/

 slider.js --file chapter12and13/components/slider/slider.js –format

 umd --name slider -m"

}

Поэтому теперь, вместо того чтобы вводить длинную и сложную ко-
манду сборки, мы можем просто выполнить новую команду build в тер-
минале в корне проекта:

npm run build

В идеале весь проект должен быть одним компонентом ползунка. За-
тем мы можем выполнить команду npm install и использовать его в лю-
бом проекте (например, в палитре цветов).

Однако, как я настроил проект палитры цветов для этой книги, все
компоненты находятся в одном проекте (и в одной и той же папке гла-
вы 12). Таким образом, планирование стратегии, позволяющей учесть
это, может показаться немного странным вызовом, но на самом деле это
предоставляет удобный способ запуска сценариев.

Мы можем начать с добавления еще двух сценариев сборки в файл
package.json, как показано в приведенном ниже листинге. Поскольку те-
перь их три, мы должны быть более точными относительно того, как мы
их называем, а не просто «build».

Скрипт
сборки
Rollup

332 Глава 12 Сборка и поддержка старых браузеров

Листинг 12.10 Скрипты для запуска каждой сборки компонента

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {},
 "devDependencies": {

 "rollup": "^1.0.2"

 },
"scripts": {

 "build-slider": "./node_modules/.bin/rollup

 chapter12and13/components/slider/src/slider.js --file

 chapter12and13/components/slider/slider.js --format umd

 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup

 chapter12and13/components/coordpicker/src/coordpicker.js --file

 chapter12and13/components/coordpicker/coordpicker.js --format umd

 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup

 chapter12and13/components/colorpicker/src/colorpicker.js --file

 chapter12and13/components/colorpicker/colorpicker.js --format umd

 --name colorpicker -m"

}

Теперь вы, наверное, думаете, что у нас есть три команды для запуска
вместо одной, но мы можем комбинировать сценарии! Знак одиночного
или двойного амперсанда не является чем-то, чему необходимо стро-
го следовать при работе с npm. Это всего лишь стандартный Linux, и мы
можем использовать амперсанды для объединения команд в скриптах
package.json. Одиночный амперсанд запускает команды параллельно,
а двойной запускает их одну за другой. Кроме того, мы можем ссылаться
на другие скрипты по имени во всех новых командах. Мы добавим еще
одну задачу сборки после того, как закончим с Rollup, поэтому давайте
пока не будем вызывать этот новый скрипт build. Вместо этого мы на-
зовем его build-rollup:

"build-rollup": "npm run build-slider && npm run build-coordpicker && npm

 run build-colorpicker"

Теперь все три компонента можно собрать, просто выполнив команду

npm run build-rollup

Однако обратите внимание, что если вы работаете в Windows, этот
подход с амперсандами не будет работать без использования WSL, эму-
лятора Git Bash или чего-то подобного.

12.5 Транспиляция для IE
Я упомянул о дополнительном шаге сборки для наших компонентов. На
данный момент палитра цветов и два дочерних компонента работают
во всех популярных браузерах, включая Edge, если мы отключаем тене-

Задача Rollup
для инструмента

выбора координат

Задача Rollup для палитры цветов

333Транспиляция для IE

вую модель DOM. Как упоминалось ранее, Edge скоро будет обновлен до
уровня Chrome и будет нативно поддерживать веб-ком по нен ты.

У нас остается один проблемный браузер: IE11. Нас беспокоит его
возраст и отсутствие обновлений. Современные браузеры обновляются
автоматически, и веб-разработчикам обычно приходится беспокоиться
только по поводу последних версий каждого браузера. Таким образом,
обычно мы используем самые последние функциональные возможности
в довольно короткие сроки, при условии что все браузеры идут в ногу
друг с другом. IE здесь как бельмо на глазу. Поскольку IE11 является по-
следней версией, которая когда-либо будет выпущена, мы застряли на
функциях, имеющихся у него в настоящее время. Некоторые из нас,
веб-разработчиков, оказались в состоянии игнорировать его в качестве
необходимого требования, потому что его использование очень невели-
ко, и сейчас компания Microsoft рекомендует пользователям Windows
браузер Edge. Но не всем веб-разработчикам так повезло, и им он по-
прежнему необходим.

IE не только не поддерживает веб-ком по нен ты, в отличие от текущей
версии Edge, но также и не поддерживает языковые функции ES6/ES2015,
такие как классы и жирные стрелки. Ранее в этой главе мы обсуждали
транспиляцию как способ делать что-то вроде перевода с одного язы-
ка на другой, например переводя TypeScript или CoffeScript в JS, но сей-
час мы можем использовать ее для решения проблемы, связанной с IE,
транспилируя более новый JS-код в более старый.

12.5.1 Babel
Самым популярным инструментом для решения этих проблем является
Babel (https://babeljs.io). Нам понадобится установить несколько пакетов
с помощью команды npm install, чтобы заставить Babel работать:

� @babel/core – основной набор функций Babel;
� @babel/cli – инструментарий для использования Babel в командной

строке;
� @babel/preset-env – работа с Babel может стать сложной; пресет, ко-

торый позволяет указать среду и автоматически активирует необ-
ходимые плагины.

Давайте продолжим и установим их как dev-зависимости в корне
проекта, потому что, как и в Rollup, это всего лишь инструментарий для
сборки, и они не будут частью выпуска компонента:

npm install --save-dev @babel/core

npm install --save-dev @babel/cli

npm install --save-dev @babel/preset-env

После установки, поскольку они были сохранены, эти зависимости до-
бавляются в файл package.json. В приведенном ниже листинге показано,
как он выглядит на данный момент.

334 Глава 12 Сборка и поддержка старых браузеров

Листинг 12.11 Самая последняя версия файла package.json,
включая зависимости Babel

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": { },
 "devDependencies": {

 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "rollup": "^1.0.2",
 },
 "scripts": {

 "build-slider": "./node_modules/.bin/rollup

 chapter12and13/components/slider/src/slider.js --file

 chapter12and13/components/slider/slider.js --format umd

 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup

 chapter12and13/components/coordpicker/src/coordpicker.js --file

 chapter12and13/components/coordpicker/coordpicker.js --format umd

 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup

 chapter12and13/components/colorpicker/src/colorpicker.js --file

 chapter12and13/components/colorpicker/colorpicker.js --format umd

 --name colorpicker -m",
 "build-rollup": "npm run build-slider && npm run build-coordpicker && npm

 run build-colorpicker",
 }

}

После этой установки Babel очень прост в использовании. Опять же,
как и в Rollup, поскольку мы установили локальную, а не глобальную за-
висимость, исполняемый файл Babel можно найти в файле node_mod-
ules/.bin/babel.

Однако Babel не решает вопрос компоновки модулей. Для этого нам
нужен дополнительный этап. Для того чтобы позаботиться об этом
в рамках Rollup, существуют плагины. Однако здесь мы осмеливаемся
зайти на территорию, где все не так просто и зависит от потребностей
вашего проекта. Я считаю, что для этих компонентов мы должны соз-
дать для IE сборку, отличную от той, что используется для современных
браузеров. Причина, по которой я думаю, что у нас должны быть разные
сборки, заключается в том, что нет необходимости перегружать совре-
менные браузеры громоздким транспилируемым кодом, когда для этого
нет причин. Но, возможно, наличие нескольких сборок вредит вам и ва-
шей команде, когда речь идет о простоте доставки компонентов. В ко-
нечном счете выбор за вами, но сейчас я принимаю решение о поставке
двух версий.

Поскольку набор Rollup уже существует, мы можем просто использо-
вать его в качестве предварительно скомпонованного источника, ко-
торый подается в Babel, при условии что будем осторожны и сначала

Инструменты для работы
с Babel в командной строке

Пакет @babel/core

Пакет @babel/preset-env
для легкой настройки

335Транспиляция для IE

выполним его сборку. Если вы придерживаетесь другого мнения и счи-
таете, что эти компоненты будут лучше обслуживаться одним выходным
файлом, можно настроить Rollup для добавления этого шага с дополни-
тельными настройками. В действительности все зависит от вашего вари-
анта использования и от того, как будет применяться ваш компонент. На
рис. 12.5 показан наш вариант конвейера сборки.

Rollup Babel

Файлы с исходным
JS-кодом

Скомпонованный
файл

Транспилированный
набор

Сборка № 1
для современных

браузеров

Сборка № 2
для IE11

Используется «встряхивание дерева»,
чтобы исключить неиспользуемый JS-код

Рис. 12.5 Конвейер сборки палитры цветов включает в себя две сборки:
одну для современных браузеров и другую для IE11

Однако для использования настроек preset-env необходим конфигура-
ционный файл Babel. Хотя он и довольно простой. В корне проекта прос-
то создайте файл.babelrc следующего содержания:

{

 "presets": ["@babel/preset-env"]

}

Эта последняя часть – настройки, необходимые для запуска транс-
пиляции Babel. Мы просто говорим ему использовать предустановлен-
ные настройки Babel в одной строке. Затем, чтобы выполнить команду
с этим параметром, вам нужно просто запустить команду Babel, исполь-
зуя входной и выходной файлы:

./node_modules/.bin/babel chapter12and13/components/slider/slider.js

 --out-file chapter12and13/components/slider/slider.build.js

Первый параметр – это входные данные и, опять же, это скомпонован-
ный вывод из Rollup. Мы поместим вывод в то же самое место, у которого
просто будет немного другое название, например slider.build.js. Удиви-
тельно, но, в отличие от многих команд, которые вы можете выполнять,
это не приведет к появлению вывода на вашем терминале. Вы можете
легко убедиться в том, что она работает по файлу, который создает.

Как и в случае с тремя сценариями для Rollup в файле package.json, мы
можем добавить сценарии для транспиляции с помощью Babel. В при-
веденном ниже листинге показаны три новых сценария сборки.

Листинг 12.12 Шаг транспиляции Babel для каждого компонента

"build-slider-ie": "./node_modules/.bin/babel

 chapter12and13/components/slider/slider.js --out-file

 chapter12and13/components/slider/slider.build.js",

336 Глава 12 Сборка и поддержка старых браузеров

"build-coordpicker-ie": "./node_modules/.bin/babel

 chapter12and13/components/coordpicker/coordpicker.js --out-file

 chapter12and13/components/coordpicker/coordpicker.build.js",
"build-colorpicker-ie": "./node_modules/.bin/babel

 chapter12and13/components/colorpicker/colorpicker.js --out-file

 chapter12and13/components/colorpicker/colorpicker.build.js",

Опять же, как это было с Rollup, эти команды можно объединить в один
шаг с помощью знаков амперсанда:

"build-ie": "npm run build-slider-ie && npm run build-coordpicker-ie &&

npm run build-colorpicker-ie"

Конечно, чтобы транспилировать все три, мы могли бы использовать
терминал и выполнить команду

npm run build-ie

Более того, давайте создадим один скрипт для компоновки и транс-
пиляции. В приведенном ниже листинге показан файл package.json це-
ликом с новым скриптом «build».

Листинг 12.13 Текущий файл package.json с компоновкой от Rollup
и транспиляцией от Babel

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": { },
 "devDependencies": {

 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "rollup": "^1.0.2",
 },
 "scripts": {

 . . . предварительно добавленные скрипты . . .
 "build": "npm run build-rollup

 ➥&& npm run build-ie"

 }

}

Теперь мы вернулись к нормальному и легко запоминающемуся про-
цессу сборки. Просто используйте команду npm run build в своем терми-
нале, и все три компонента будут скомпонованы и транспилированы,
чтобы не было никаких проблем с IE!

Поскольку я принял решение, что у меня будет два разных вывода,
есть смысл иметь в наличии два разных HTML-файла, один для IE, а дру-
гой для всего остального. Конечно, после добавления папки с исходным
кодом файловая структура изменилась. Лично я думаю, что имеет смысл
использовать оригинальные исходные файлы вместо скомпонованного
вывода Rollup, чтобы мы могли получать мгновенный отклик во время
разработки. Если добавить задачу «наблюдения» Rollup, это также может

Новый скрипт сборки, который компонует
и транспилирует все компоненты

337Транспиляция для IE

сработать в случае с более сложной системой, которая постоянно рабо-
тает во время разработки, но, чтобы ничего не усложнять, мы просто не-
много изменим путь в файле demo.html:

<script type="module" src="src/slider.js"></script>

Чтобы запустить демонстрацию с IE, тег <script> необходимо дополни-
тельно изменить. Поскольку модули не поддерживаются, в нем больше
не может содержаться фраза type = "module". Мы создадим другой демон-
страционный файл для IE, который будет называться demo-ie.html. Пока
тег <script> будет единственным, что изменится:

<script src="slider.build.js"></script>

Конечно, мы повторим этот шаг и для двух других компонентов. На
рис. 12.6 показана структура одного из компонентов с выходными фай-
лами.

Транспилировано и собрано

Карта кода

HTML-файл demo ie

Рис. 12.6 Файловая структура проекта со скомпонованными
и транспилированными данными. Такие инструменты, как Webstorm,
изображенные здесь, делают JS-файл похожим на каталог, чтобы скрыть сложность
сгенерированных файлов, таких как исходные карты, даже если на самом деле это
плоская файловая структура

12.5.2 CSS-vars-ponyfill
При дальнейшем рассмотрении компонентов во время тестирования
в IE11 с использованием нового демофайла видно, что дела обстоят не-
многим менее чем идеально. На рис. 12.7 показаны некоторые визуаль-
ные расхождения. В остальном все работает просто отлично.

Это отнюдь не проблема веб-ком по нен тов, но мы использовали CSS-
переменные, чтобы сделать компоненты гибкими с точки зрения стилей.
Эти переменные позволили нам настроить глобальное округление гра-
ниц, цвет текста и т. д. и влиять на все, что есть на странице. Недостаток
в том, что это более новая функция. Даже при широко распространенной

338 Глава 12 Сборка и поддержка старых браузеров

поддержке CSS-переменных со стороны браузеров IE11 просто не доба-
вил соответствующие функции, поэтому он не сможет их использовать.
Значит ли это, что нам нужно отказаться от CSS-переменных? Нет, мы
справимся. Обычно я бы сказал «полифил», но в этом случае я буду ис-
пользовать термин «понифил».

Рис. 12.7 В браузере IE11 палитра цветов выглядит немного иначе

Честно говоря, я не слышал о понифилах до того, как приступить
к изуче нию обработки CSS-переменных в IE11. Полифилы имеют тенден-
цию изменять среду выполнения браузера. Например, при полизаполне-
нии пользовательских элементов веб-компонента создается глобальный
объект, customElements, чтобы соответствовать современным браузерам,
в которых он уже присутствует. Добавление этого объекта означает, что
мы модифицируем браузер, в частности добавляем функции, предостав-
ляемые его глобальному пространству. Понифилы обещают, что не будут
изменять среду браузера, когда заставляют работать неподдерживаемые
функции.

CSS-vars-ponyfill не является полностью готовым решением, а это зна-
чит, что для его запуска нам потребуется вызвать функцию, чтобы запус-
тить его. Во-первых, теперь, когда у нас есть файл package.json, давайте
установим понифил с помощью npm. Поскольку это зависимость на сто-
роне клиента, мы сохраним ее, но не как dev-зависимость, как в случае
с другими инструментами сборки:

npm install css-vars-ponyfill

После установки понифил можно добавлять в каждый файл demo-ie.
html:

<script src="https://unpkg.com/@webcomponents/custom-elements"></script>

<script src="https://cdn.jsdelivr.net/npm/css-vars-ponyfill@1"></script>

<script src="slider.build.js"></script>

Отмечу, что в своем теге <script> я использую онлайн-версию просто
для того, чтобы предоставить информацию о том, что он существует, но
вы можете использовать ее или заменить на ту, которая только что была
установлена на node_ modules/css-vars-ponyfill/dist/css-vars-ponyfill.js.

Как уже упоминалось, css-vars-ponyfill не является полностью гото-
вым решением. Нам все еще нужно вызвать функцию, чтобы он присту-
пил к работе. Это работает путем обработки тегов <style> на странице
и замены стилей, что будет понятно для IE. Поскольку стили компонента

339Резюме

недоступны до тех пор, пока в каждом из них не будет настроено свой-
ство innerHTML, мы запустим понифил после этого.

В приведенном ниже листинге показана функция connectedCallback
компонента ползунка с установленным понифилом.

Листинг 12.14 Добавляем CSS vars ponyfill, чтобы позволить
существующим CSS-переменным работать в IE

connectedCallback() {
 if (!this.initialized) {

 this.root.innerHTML = Template.render({ useShadowDOM:

 Slider.USE_SHADOWDOM_WHEN_AVAILABLE && this.attachShadow });
 this.dom = Template.mapDOM(this.root);

 if (typeof cssVars !== 'undefined') {

 cssVars();

 }

 this.initialized = true;

 if (this.backgroundcolor) {

 this.setColor(this.backgroundcolor);
 }

 if (this.value) {

 this.refreshSlider(this.value);

 }

 }

}

Поскольку мы только что поместили скрипт на страницу, наше исполь-
зование просто диктует, что функция cssVars присоединена к глобально-
му пространству (в противоположность тому, как я описывал понифил).
Однако это решение существует в виде модуля, который мы могли бы
импортировать и запускать таким образом. Здесь мы даем пользовате-
лям компонентов возможность использовать или не использовать по-
нифил, основываясь на том, добавили они скрипт или нет. Обратите
внимание, что синтаксис проверки немного странный. Если бы я просто
использовал !cssVars, в случае если она не существует, мы бы получи-
ли сообщение о том, что функция cssVars не определена, поскольку она
не является свойством чего-либо и может быть просто неопределенной
переменной в области видимости, которую мы проверяем. Поэтому мы
действуем более осторожно, чтобы избежать появления ошибки при рас-
сматривании ее типа.

Резюме
Из этой главе вы узнали:

� о простом способе запуска сценариев с использованием npm и файла
package.json без необходимости полагаться на более сложные систе-
мы сборки, которые требуют долгой настройки;

Проверяем, существует ли понифил
и был ли он добавлен с помощью тега
<script> на демонстрационной странице

Вызываем
функцию cssVars
для замены
CSS-переменных
в браузере

340 Глава 12 Сборка и поддержка старых браузеров

� о причинах этапа сборки, будь то компоновка кода для промыш-
ленной эксплуатации или транспиляция, чтобы новые функции JS
работали в старых браузерах;

� что компоновка полезна для объединения вашего кода в один или
несколько файлов, в то же время разумно исключая неиспользуе-
мый импорт.

13
Тестирование компонентов

Эта глава охватывает следующие темы:
� выполнение тестов с помощью тестировщика веб-ком по-

нен тов (WCT);
� использование фреймворка Mocha и библиотеки Chai для

создания тестов;
� альтернативный запуск тестов с использованием Karma

и Karma Web Components.

Прежде чем считать палитру цветов законченной, необходимо сделать
еще кое-что, что следует принять во внимание. Это не тот шаг, к которому
все прилагают усилия, но тестирование может иметь большое значение
с точки зрения того, насколько можно доверять компоненту и насколько
легко его поддерживать. То же самое можно сказать почти обо всем, что
вы делаете, занимаясь разработкой программного обеспечения.

Тестирование можно делить по-разному, но один из способов – это
функциональное тестирование в сравнении с модульным. Границы меж-
ду ними могут быть довольно размытыми, но модульное тестирование,
как правило, включает в себя взятие фрагмента кода, который делает
что-то одно, или модуля, и выполнение серии тестов над ним, чтобы убе-
диться, что он не рушится в каком-либо крайнем случае, который не был
учтен при разработке. С другой стороны, функциональное тестирование

342 Глава 13 Тестирование компонентов

включает в себя тестирование определенной части функционала, ожи-
даемого пользователем, – это не гарантирует, что код делает все делает
правильно, только то, что делает приложение.

13.1 Модульное тестирование и разработка
через тестирование
В палитре цветов утилиты для конвертации цветов из файла compo nent/
colorpicker/sr/color.js являются идеальными кандидатами для модуль-
ного тестирования. Например, в этом модуле существует функция для
конвертации цвета в виде RGB в шестнадцатеричное значение. Одиноч-
ный тест может гарантировать, что объект, который выглядит как {r: 255,
g: 0, b: 0}, на выходе дает # ff0000. Он может работать идеально всеми
правильными способами, но не исправляет ошибку, когда передаются
недопустимые значения (например, если это число больше 255 или чис-
ла отрицательные). Практика написания модульных тестов – отличный
способ подумать об этих крайних случаях.

Модульные тесты можно использовать в ряде случаев, и если какой-
либо из них окажется неудачным, вы как разработчик будете знать, что
нужно что-то исправить. Конечно, если вы все исправили и внесли для
этого много изменений, возможно, вы захотите удостовериться, что
больше ничего не сломали. Поэтому вы перезапускаете модульные тес-
ты. Если они все прошли успешно, вы уверены в том, что этот фрагмент
функционала работает как обычно.

Во время тестирования также можно отслеживать покрытие кода. На-
пример, если в вашем коде был блок if/then, а ваши модульные тесты не
охватили случай, который имел место при таких условиях, будет создан
отчет, указывающий на то, что вы не покрыли эти конкретные строки
кода.

Когда обычно идет речь о модульном тестировании, особенно вне веб-
разработки, модульные тесты часто не включают в себя пользователь-
ский интерфейс. Современная веб-разработка – то место, где эти грани-
цы склонны быть расплывчатыми. Если взять, к примеру, какой-нибудь
компонент, будь то веб-ком по нент или компонент в React, Vue, Angular
и т. д., у него будет API. Этот API можно рассматривать как модуль, ко-
торый можно протестировать. Более того, значительная часть функцио-
нальных возможностей JS, подобных этой, должны быть протестирова-
ны, и их нельзя запускать без DOM.

Появившееся недавно и ставшее популярным решение этой пробле-
мы состоит в полной виртуализации DOM. JSDOM (https://github.com/
jsdom/jsdom) предлагает полностью виртуальную модель DOM, которая
работает без браузера или даже графического интерфейса прямо в Node.
js или браузере. К сожалению, веб-ком по нен ты пока еще не поддержива-
ются в JSDOM, поэтому это не то решение, которое можно использовать,
если вы не разобрали и не протестировали части своего веб-компонента,
фактически не запустив его в качестве компонента.

343Web Component Tester

Из-за этого, особенно при тестировании веб-ком по нен тов, нам не-
обходимо будет использовать браузеры для запуска тестов. Несмотря на
введение браузера и пользовательского интерфейса в процесс тестиро-
вания, мы по-прежнему можем тестировать отдельные «модули» функ-
циональности.

Еще один момент, связанный с размытыми границами, возникает,
когда речь идет о функциональном тестировании. Данные типы тестов
можно рассматривать с точки зрения пользователя. Когда пользователь
нажимает кнопку, происходит нечто значимое для него, и результат
можно протестировать. Иногда, при желании, эти тесты можно смеши-
вать с модульными, и если для запуска теста используется браузер, сде-
лать это гораздо проще.

Причина этого заключается в том, что существует множество различ-
ных методик и инструментов тестирования. Мы будем обсуждать здесь
инструменты и методы, которые обычно рассматриваются как модуль-
ные тесты, или тесты, которые разработчик чаще пишет с точки зрения
разработки через тестирование (TDD). Это тесты, которые разработчик
пишет при создании кода. В идеальной ситуации разработчик создал бы
какую-то часть функционала и написал бы тесты для резервного копи-
рования этой части.

Тестирование – это обширная тема, и о его различных аспектах напи-
сано множество книг. Однако, что касается веб-ком по нен тов, я думаю,
что разработка через тестирование и модульные тесты являются наи-
более актуальными темами для обсуждения, учитывая нюанс, что в на-
стоящее время мы должны полагаться на браузер, хотя можно ожидать
использования какого-то решения, подобного JSDOM.

13.2 Web Component Tester
Еще одна причина для изучения этого типа тестирования заключается
в том, что команда Polymer создала собственный инструмент тестиро-
вания для веб-ком по нен тов, который носит название Web Component
Tester (WCT). Его можно найти по адресу https://github.com/Polymer/
tools/tree/master/packages/web-component-tester. По умолчанию в него
встроено множество вещей, и с ним действительно легко начать рабо-
тать.

Подобные инструменты тестирования часто разбиты на несколько
разных частей. В WCT автоматизация браузера выполняется Selenium.
Автоматизация браузера просто означает, что браузеры, в которых вы
собираетесь разместить свои тесты, должны автоматически запускаться
из терминала с помощью HTML- и JS-кода и стилей, и эти браузеры долж-
ны докладывать в ваш терминал о результатах.

Фреймворк для тестирования – Mocha, в случае с WCT это то, что вы
используете как разработчик для организации и написания своих тестов.
С помощью Mocha вы создадите наборы, или группы тестов, в которых каж-
дая группа заполнена фактическими единичными тестами. Mocha предо-

344 Глава 13 Тестирование компонентов

ставляет хуки для настройки перед тестами, хуки для того, чтобы сносить
все по окончании тестов, поэтому вы можете запускать следующий тест
с чистого листа, и множество других функциональных возможностей.

Последним важным элементом WCT является библиотека для про-
верки утверждений, в данном случае Chai. Библиотеки для проверки
утверждений – это небольшая, но важная часть любого решения для
тестирования. По сути, утверждение – это вопрос, который вы задаете
и ожидаете, что ответ будет верным. Простой пример: «Я ожидаю, что 1
+ 2 будет равно 3». Это утверждение можно перефразировать с помощью
Chai, если написать:

assert.equal(1 + 2, 3);

Конечно, 1 + 2 в сумме всегда дает 3, поэтому это утверждение никогда
не будет ошибочным. На практике вы не увидите жестко закодированные
значения (по крайней мере, с обеих сторон утверждения). Скорее всего,
вам придется проверять, что переменная или результат функции равна
другой переменной или другому результату. Например, у вас может быть
простая функция, которая удваивает числа. Ваша функция doubleNum(num)
может принимать значение и удваивать его. Чтобы знать, что это рабо-
тает, вам нужно выполнить ряд утверждений, таких как:

assert.equal(doubleNum(2), 4);

Более сложные функции могут и не сработать по разным причинам,
и тестирование – отличный способ выявить такие случаи.

Chai предлагает различные способы делать утверждения, но если го-
ворить в двух словах, эта библиотека делает что-то одно, и делает это
хорошо. На рис. 13.1 показан весь поток WCT.

WCT

Selenium

Запускает страницу программы для
проведения тестов с одним или несколькими
экземплярами Chrome, Firefox, Safari и т. д.

Ваша пользовательская HTML-страница
фреймворка тестирования

Клиентская библиотека WCT
(включает в себя Mocha и Chai)

Скрипты компонента, CSS и HTML

Наборы с тестами внутри

Набор тестов (запускаемый Mocha)

Индивидуальные тесты (запускаемые Mocha)

assert.equals (значение, другое значение)
(Chai)

Рис. 13.1 Поток WCT

Установить WCT просто:

npm install --save-dev web-component-tester

345Web Component Tester

Это еще одна зависимость, используемая только в период разработки,
которую нам понадобится запускать локально из папки node_modules/
bin. Однако я должен отметить, что поскольку Selenium является зави-
симостью и использует Java, один из наблюдательных технических ре-
цензентов этой книги обнаружил, что на его компьютере с Windows 10
запуск WCT был невозможен, пока он не воспользовался версией Java 8.
У меня есть ощущение, что запуск разных версий Java будет своего рода
движущейся целью на разных платформах при обновлении нескольких
зависимостей, когда выходят новые версии WCT и Selenium. В идеале
вам повезет, как и мне, и вам даже не нужно будет думать о Java при
установке WCT – в противном случае нужно будет обратить внимание на
установленную у вас версию Java.

Однако нам потребуется запускать тесты для файлов, поэтому сейчас
самое время создать тестовую папку с тестовым HTML-файлом для каж-
дого компонента. На рис. 13.2 показана новая структура папок с новыми
тестовыми файлами.

Недавно добавленные
тестовые файлы для WCT

Рис. 13.2 Структура проекта с тестовыми файлами

HTML-файл в новой тестовой папке обычно называется как-то вро-
де index.html или index.test.html. Но в этой главе мы будем рассматри-

346 Глава 13 Тестирование компонентов

вать несколько разных способов тестирования; чтобы было понятно,
какой именно, я назвал этот первый HTML-файл wct-test.html. Прежде
чем приступить к созданию реальных тестов в файле, давайте добавим
скрипт в файл package.json. В приведенном ниже листинге показана по-
следняя версия файла package.json, после того как мы установили WCT
и добавили скрипт.

Листинг 13.1 Добавляем WCT в файл package.json нашего проекта

{

 "name": "wcia",
 "version": "1.0.0",
 "dependencies": {

 "css-vars-ponyfill": "^1.16.2"

 },
 "devDependencies": {

 "@babel/cli": "^7.2.3",
 "@babel/core": "^7.2.2",
 "@babel/preset-env": "^7.2.3",
 "mocha": "^5.2.0",
 "rollup": "^1.0.2",
 "rollup-plugin-babel": "^4.2.0",
 "web-component-tester": "^6.9.2"
 },
 "scripts": {

 "wcttest": "./node_modules/.bin/wct

--npm chapter12and13/components/**/test/wct-test.html",
 "build-slider": "./node_modules/.bin/rollup

 chapter12and13/components/slider/src/slider.js --file

 chapter12and13/components/slider/slider.js --format umd

 --name slider -m",
 "build-coordpicker": "./node_modules/.bin/rollup

 chapter12and13/components/coordpicker/src/coordpicker.js --file

 chapter12and13/components/coordpicker/coordpicker.js --format umd

 --name coordpicker -m",
 "build-colorpicker": "./node_modules/.bin/rollup

 chapter12and13/components/colorpicker/src/colorpicker.js --file

 chapter12and13/components/colorpicker/colorpicker.js --format umd

 --name colorpicker -m",
 "build-rollup": "npm run build-slider && npm run build-coordpicker &&

 npm run build-colorpicker",
 "build-slider-ie": "./node_modules/.bin/babel

 chapter12and13/components/slider/slider.js --out-file

 chapter12and13/components/slider/slider.build.js",
 "build-coordpicker-ie": "./node_modules/.bin/babel

 chapter12and13/components/coordpicker/coordpicker.js --out-file

 chapter12and13/components/coordpicker/coordpicker.build.js",
 "build-colorpicker-ie": "./node_modules/.bin/babel

 chapter12and13/components/colorpicker/colorpicker.js --out-file

 chapter12and13/components/colorpicker/colorpicker.build.js",
 "build-ie": "npm run build-slider-ie && npm run build-coordpicker-ie &&

Пакет WCT

Сценарий WCT

347Web Component Tester

 npm run build-colorpicker-ie",
 "build": "npm run build-rollup && npm run build-ie"

 }

}

WCT – чрезвычайно простая команда для запуска. Просто запустите
исполняемый файл WCT, используя путь к одному или нескольким тес-
там. В случае с нашей тестовой конфигурацией HTML-файлы всегда на-
ходятся в определенном месте в каждой папке компонента. Поскольку
нам нужно запустить все компоненты с помощью одной команды, мы
поменяем имя компонента, используя символы подстановки: compo-
nents/**/test/wct-test.html. Наконец, поскольку для запуска используется
npm, WCT нужен флаг --npm.

13.2.1 Пишем тесты
Каждый тестовый HTML-файл будет иметь очень знакомую структуру.
Сейчас, когда тестов нет, структура в приведенном ниже листинге ничем
не отличается от любого другого HTML-файла. Единственной зависимо-
стью от нашего компонента являются файлы browser.js, которые предо-
ставляют все функции и загрузку WCT на стороне клиента.

Листинг 13.2 Структура тестового файла для WCT

<html>

<head>

 <script src="../../../../node_modules/web-component-tester/browser.js">

 </script>

 <script

 type="module"

 src="../src/slider.js">

 </script>

 <style>

 wcia-slider {

 width: 500px;

 }

 </style>

</head>

<body>

<wcia-slider value="50"></wcia-slider>

<script>

// Здесь идут тесты;
</script>

</body>

</html>

Когда мы начинаем писать тесты, помните, что здесь мы используем
конкретный фреймворк для тестирования и библиотеку утверждений,
Mocha и Chai. У Mocha на самом деле имеется два разных стиля: разра-
ботка через тестирование и разработка через поведение (или функцио-
нальный стиль). Стиль по умолчанию в WCT – разработка через тестиро-

Необходимые сценарии тестирования
Импорт компонента ползунка

Устанавливаем ползунку ширину
для запуска зависимых от размера тестов

Компонент ползунка

Место для тестов

348 Глава 13 Тестирование компонентов

вание. В идеале это модульные тесты, которые вы пишете при создании
компонента. Теперь давайте определим группу или набор тестов для
ползунка.

Листинг 13.3 Начало тестового набора компонента ползунка

suite('slider value getting/setting', function() {
 const sliderWidth = 500;

 const thumbCenterOffset = 5/2 + 3; // width/2 + left border
 const slider = document.body.querySelector('wcia-slider');

Первым параметром, передаваемым в функцию suite в Mocha, являет-
ся имя набора тестов. Здесь нужно быть конкретным, что очень удобно.
Чем более подходящим будет название теста, тем легче его будет найти,
когда тест и набор сообщат о сбое в вашем терминале.

Второй параметр – это функция, содержащая тесты. Хотя мы пока еще
не добрались до определения одиночного теста, нужно сделать еще кое-
что. Это хорошая возможность сделать шаг назад и подумать о том, ка-
кой функционал нужно протестировать. Компонент ползунка на самом
деле не так уж и много делает. Учитывая, что это веб-ком по нент и мы по-
тратили время на поддержку рефлексии, у нас должна быть возможность
установить значение ползунка с помощью атрибута или JS API. Кроме
того, компонент в действительности связывает только свое визуальное
состояние (положение рукоятки) с числовым процентным значением.
Мы можем проверить этот аспект, но положение рукоятки (в пикселях)
будет зависеть от размера компонента.

Это то, что активируют эти две переменные. Сначала мы указываем
ширину ползунка, которая уже была определена в таблице стилей на
странице HTML. Во-вторых, мы определим, насколько смещен ползунок,
чтобы отцентрировать его по положению, вычитая половину его шири-
ны и размер левой границы. Наконец, мы возьмем ссылку на ползунок
для проведения тестов.

Мы пометим первый тест как «slider get initial value». Компонент, как
установлено на странице, имеет атрибут value, равный 50:

<wcia-slider value="50"></wcia-slider>

Таким образом, если 50 % – это начальное значение ползунка, рукоят-
ка должна появиться в центре. В первом тесте, показанном в приведен-
ном ниже листинге, можно утверждать три вещи:

Листинг 13.4 Одиночный тест для ползунка

test('slider get initial value', function () {
 assert.equal(slider.value, 50);
 assert.equal(

Определяем ширину ползунка
при подготовке к тестам

Определяем центр ползунка,
что поможет нам в будущих тестах

Проверяем, что значение ползунка
в соответствии с JS составляет 50

Проверяем, что значение ползунка
в соответствии с атрибутом равно 50

349Web Component Tester

 slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *
 50/100 – thumbCenterOffset + 'px');
});

Сначала мы проверяем, что при получении значения с помощью JS
возвращается 50. Нам также нужно, чтобы Chai подтвердила, что мы по-
лучаем то же значение из атрибута, чтобы доказать, что рефлексия ра-
ботает. Далее мы проверим положение ползунка. Учитывая значение 50,
мы можем вычислить, где должна быть рукоятка, учитывая компонент,
рукоятку и размер границы. Поскольку мы знакомы с внутренней рабо-
той ползунка, нам известно, что значение свойства left должно состав-
лять 500 * 50/100 – (5/2 + 3), или 244,5 пикселя.

Здесь есть кое-что очень интересное. Вспомните тот момент, когда мы
изучали теневую модель DOM. Мы обсуждали режимы корня теневого
дерева «open» и «closed». Вы помните, что когда корень закрыт, как бы
мы ни старались, нам так и не удалось добраться до компонента и рабо-
тать с DOM. Открытый режим был немного более щадящим, потому что
мы могли войти с помощью свойства компонента shadowRoot, зная, что
эта задняя дверь не входила в планы разработчика компонента. Такая
дверь здесь весьма кстати. Если мы не можем пробить теневую границу
веб-компонента, то не можем использовать метод querySelector для руко-
ятки и протестировать ее.

В приведенном ниже листинге даны оставшиеся тесты для этого ком-
понента.

Листинг 13.5 Набор тестов для ползунка

 suite('slider value getting/setting', function() {
 const sliderWidth = 500;

 const thumbCenterOffset = 5/2 + 3; // width/2 + left border

 const slider = document.body.querySelector('wcia-slider');

 test('slider get initial value',
 function () {

 assert.equal(slider.value, 50);
 assert.equal(slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 50/100 – thumbCenterOffset + 'px');
 });

 test('set slider value with JS',
 function () {

 slider.value = 20;

 assert.equal(slider.value, 20);
 assert.equal(slider.getAttribute('value'), 20);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 20/100 – thumbCenterOffset + 'px');
 });

Проверяем, что рукоятка находится
в центре компонента

Проверяем начальное значение
ползунка

Проверяем установку нового
значения с помощью JS API

350 Глава 13 Тестирование компонентов

 test('set slider value with attributes',
 function () {

 slider.setAttribute('value', 30);
 assert.equal(slider.value, 30);
 assert.equal(slider.getAttribute('value'), 30);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 30/100 – thumbCenterOffset + 'px');
 });

});

Теперь мы можем запустить эти тесты с помощью команды npm run wct-
test. На рис. 13.3 показан пример того, что вы увидите в терминале при
запуске еще нескольких тестов, которые мы добавим немного. Обратите
внимание, что проходящие тесты хороши и зеленые!

Успешное прохождение теста
отмечено зеленым цветом в терминале

Рис. 13.3 Прохождение тестов для компонента ползунка

Также полезно показать неудавшиеся тесты! Практика написания этих
тестов в процессе разработки заставляет задуматься о тестировании
странных крайних случаев. Ползунок – простой случай, но существует
несколько легких способов сделать так, что он потерпит неудачу. Поду-
майте, что случилось бы, если бы мы установили для ползунка значение
больше 100 или меньше 0. Это не имеет смысла с точки зрения визуаль-
ного отображения ползунка, поэтому в идеале мы должны ограничить
ползунок максимальными и минимальными значениями. Давайте доба-
вим еще два теста в приведенный ниже листинг, чтобы тесты не прошли,
при условии что это ограничение уже действует.

Проверяем установку нового
значения с помощью атрибутов

351Web Component Tester

Листинг 13.6 Неудачные результаты тестирования,
поскольку максимальные и минимальные значения
еще не реализованы

test('set slider value too big', function () {
 slider.setAttribute('value', 110);
 assert.equal(slider.value, 100);
 assert.equal(slider.getAttribute('value'), 100);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *
 100/100 – thumbCenterOffset + 'px');
});

test('set slider value too small', function () {
 slider.setAttribute('value', -10);
 assert.equal(slider.value, 0);
 assert.equal(slider.getAttribute('value'), 0);
 assert.equal(slider.root.querySelector('.thumb').style.left, sliderWidth *
 0/100 – thumbCenterOffset + 'px');
});

Поскольку тесты провалились, как показано на рис. 13.4, мы опре-
делили функционал, который нам необходимо реализовать. В качестве
упражнения можете попробовать настроить компонент таким образом,
чтобы все эти и предыдущие тесты прошли успешно.

Помимо домашнего задания, которое я только что вам дал, есть еще
три компонента, которыми можно заняться! В случае если вы застряли,
я написал несколько тестов. Если подобное произошло, не стесняйтесь
зайти в репозиторий для этой книги на сайте GitHub.

Неудачное прохождение теста
отмечено красным цветом

Рис. 13.4 Тесты завершились неудачно

Значение ползунка больше
100, поэтому оно должно быть
приведено к 100

Значение ползунка меньше
0, поэтому оно должно быть
приведено к 0

352 Глава 13 Тестирование компонентов

13.3 Сравнение со стандартной тестовой
конфигурацией при использовании Karma
С WCT довольно приятно работать! Настройка была чрезвычайно ми-
нимальной и позволила нам сосредоточиться на написании тестов, не
перебирая сложные конфигурации, хотя какую-нибудь конфигурацию
и можно было бы добавить, при наличии значений по умолчанию, ко-
торые вас не волновали. Более подробную информацию можно найти
на странице https://github.com/Polymer/tools/tree/master/packages/web-
component-tester.

Суть в том, что WCT предназначен для веб-ком по нен тов и компонует
некоторые ключевые вещи для их тестирования. Например, полифилы
веб-компонента входят в комплект и автоматически включаются, если
они необходимы в ваших тестовых приспособлениях HTML. WCT тоже
ожидает готовности ваших компонентов, ожидая события браузера Web-
Components-Ready. Также предоставляется помощник для использования
тегов <template> в тестах.

Тем не менее WCT пока еще является новичком и находится в стадии
разработки. Если вам это подходит, отлично! Если нет, и вы предпочи-
таете использовать что-то другое, это тоже нормально. Хорошо то, что
у современных браузеров, поддерживающих веб-ком по нен ты, нет ника-
ких проблем с простыми тестами веб-ком по нен тов. Они просто работа-
ют, как и любая другая веб-функция.

Учитывая это, давайте попробуем поменять инструменты тестирова-
ния. Мы заменим Selenium на Karma, но оставим Mocha и Chai. Таким об-
разом все наши тесты останутся теми же, и это даст нам всю ту гибкость
и плагины, которые поставляются с экосистемой Karma. На рис. 13.5 по-
казана новая цепочка действий с использованием Karma.

Karma

Karma
runner

Запускает страницу программы для
проведения тестов с одним или несколькими
экземплярами Chrome, Firefox, Safari и т. д.

Ваш пользовательский тестовый JS-файл

Клиентская библиотека Karma
(включает в себя Mocha и Chai)

Разрешены только наборы
с тестами внутри

Набор тестов (запускаемый Mocha)

Индивидуальные тесты (запускаемые Mocha)

assert.equals (значение, другое значение)
(Chai)

Рис. 13.5 Новая цепочка действий с использованием Karma

353Сравнение со стандартной тестовой конфигурацией при использовании Karma

Недостаток установки на базе Karma состоит в том, что она немного
сложна. Для начала давайте установим несколько вещей с помощью npm:

npm install --save-dev karma

npm install --save-dev mocha

npm install --save-dev chai

Mocha и Chai не будут работать в Karma без плагина, чтобы устранить
разрыв, поэтому мы также установим и их:

npm install --save-dev karma-mocha

npm install --save-dev karma-chai

Karma тоже нужны плагины для запуска браузеров и выполнения тес-
тов:

npm install --save-dev karma-chrome-launcher

npm install --save-dev karma-firefox-launcher

По мере продвижения будут и другие зависимости, а это основные.
Последнее, что нужно сделать, – снова установить Karma, но уже глобаль-
но, и я объясню, для чего:

npm install -g karma

Эта глобальная установка не имеет ничего общего с запуском ваших
тестов. Она предоставляет утилиту командной строки для создания кон-
фигурационного файла. При выполнении команды karma init из корнево-
го каталога вашего проекта после установки вам предлагается ряд под-
сказок и вопросов, как показано на рис. 13.6.

Не обязательно делать все в точности так, как делал я, потому что мы
будем менять некоторые параметры по ходу дела. Хорошо, что у нас есть
базовый файл karma.conf.js для работы. В приведенном ниже листин-
ге показана начальная конфигурация.

Листинг 13.7 Начальная конфигурация Karma (сокращенный вариант;
пустые строки и комментарии были удалены)

module.exports = function(config) {

 config.set({

 basePath: '',
 frameworks: ['mocha'],
 files: [],
 exclude: [],
 preprocessors: {},
 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: false,
 browsers: ['Chrome', 'Firefox'],
 singleRun: false,
 concurrency: Infinity

 })

}

354 Глава 13 Тестирование компонентов

Рис. 13.6 Вопросы и подсказки

Первое, о чем нужно беспокоиться, – это использование модулей в на-
ших веб-компонентах. WCT позволил нам игнорировать эту часть на-
стройки, но когда мы сами запускаем тестовую конфигурацию, это уже
наша проблема. С работой модулей и импорта не все так гладко, потому
что за кулисами для нас работает Node.js, чтобы справиться с большим
количеством тестов. Сама Node пока не поддерживает модули. Итак, нам
понадобится выполнить шаг «предварительной обработки», прежде чем
компоненты будут загружены на страницу, и запустить тесты.

Мы говорили о Rollup в предыдущей главе, поэтому давайте снова вос-
пользуемся им! Когда я пишу эти строки, номер последней версии Rollup
уже перевалил за 1.0. Обычно я бы рекомендовал установить karma-rol-
lup-preprocessor. К сожалению, у нас возникли неудобства: этот модуль
не поддерживает последнюю версию Rollup. Подобное может случать-
ся время от времени, когда пакеты не синхронизируются друг с другом,
особенно при таком количестве рабочих частей.

К счастью, мне удалось поохотиться и обнаружить, что кто-то разветв-
лял этот исходный проект и создал кое-что, что работает с последней

355Сравнение со стандартной тестовой конфигурацией при использовании Karma

версией. Возможно, скоро нам не придется использовать это ответвле-
ние, но до тех пор можно установить это:

npm install --save-dev @metahub/karma-rollup-preprocessor

Из-за пространства имен пакета @metahub загрузка по умолчанию лю-
бого плагина с именем, начинающимся с «karma-», здесь не подходит.
Как бы досадно это ни было, это знакомит нас с нестандартной настрой-
кой, что представляет собой обычное явление при работе с конфигура-
цией Karma с нуля. Учитывая это, в конфигурационный файл нужно до-
бавить запись plugins:

plugins: ['@metahub/karma-rollup-preprocessor', 'karma-*']

Поскольку здесь мы переопределяем значения по умолчанию, karma-*
также необходимо добавить обратно в список. Мы добавим в список пре-
процессоров и запись, чтобы отображать JS-файлы в Rollup:

preprocessors: {

 './chapter12and13/components/**/*.js': ['rollup']

}

Здесь мы, вероятно, немного переусердствовали, поскольку JS-файлов
несколько, а точка входа для каждого компонента только одна. Путь мог
бы быть более точным, но я не слишком беспокоюсь о том, чтобы сокра-
тить время предварительной обработки на несколько микросекунд.

Rollup или плагины в целом также необходимо настроить. В приве-
денном ниже листинге показана конфигурация Rollup, которая подойдет
нам, в файле karma.conf.js.

Листинг 13.8 Конфигурация плагина Rollup в Karma

rollupPreprocessor: {

 options: {

 output: {

 // Чтобы включить встроенные карты кода в качестве URI данных
 sourcemap: true,
 format: 'iife',
 name: 'testing'

 }

 }

},

Карты кода здесь могут показаться необязательными, но только если
ваши тесты прошли успешно. Если они провалились и нуждаются в от-
ладке, вам понадобится узнать, какая строка в вашем первоначальном,
нескомпонованном коде привела к такому результату. IIFE букваль-
но означает «функция-выражение, вызываемая сразу после создания»
(immediately invoked function expression). Мы хотим, чтобы наш набор вызы-
вался сразу же после загрузки и создания определения веб-компонента?
Да, пожалуйста. Это прекрасно подходит для тестирования и включает
в себя то, как компонент был собран ранее с помощью Rollup. Прежде
при использовании компоновки в стиле UMD (universal module defini-

Включаем карты кода
Формат iife

Название пакета

356 Глава 13 Тестирование компонентов

tion) эта опция и многое другое были разрешены (отсюда и слово «uni-
versal» в названии). Имя набора здесь не имеет большого значения, но
оно обязательно, и «testing» отлично подходит.

Два последних простых дополнения – это Chai для фреймворков, кото-
рые нам нужно использовать:

frameworks: ['mocha', 'chai'],

а также указание для Mocha использовать тестирование в стиле TDD:

client: { mocha: { ui: 'tdd' } }

Теперь, когда мы возвращаемся не к таким простым вещам, необ-
ходимо составить план для файлов, которые Karma будет обслуживать.
В случае с WCT было просто отлично, что тесты можно запускать из
HTML-файла. Мы вернемся к этому чуть позже, но, как таковая, Karma
поддерживает только HTML-тесты, подобные этому. Проблема состоит
в том, что Karma загружает HTML-файлы с помощью HTML-импорта. По-
скольку Chrome – единственный браузер, который пока поддерживает
эту устаревшую функцию (а скоро он перестанет это делать), это также
единственный браузер, который может запускать наши тестовые HTML-
страницы. Учитывая это, если никакие другие плагины не используются,
нам понадобятся тесты в виде JS-файлов, и шаблоны файлов, используе-
мые для обслуживания, будут выглядеть так:

files: [

 './chapter12and13/components/**/test/karma-test.js',
 './chapter12and13/components/**/*.js'

],

Данный шаблон файла обслуживает все JS-файлы компонентов, а так-
же тесты компонентов с именем karma-test.js, которые нам еще нужно
создать. Несмотря на то что мы используем другой инструмент, у нас по-
прежнему есть Mocha и Chai, поэтому все ранее сделанные тесты мож-
но скопировать. В приведенном ниже листинге показан тестовый файл
только для JS, чтобы программным путем присоединить скрипты ком-
понента, создать компонент и добавить все это в тело страницы.

Листинг 13.9 Тестовый файл только для JS, создаваемый
в тестовой папке для каждого компонента

suite('slider value getting/setting', function() {
 const sliderWidth = 500;

 const thumbCenterOffset = 5/2 + 3; // width/2 + left border
 const container = document.createElement('div');

 container.innerHTML = `<script type="module" src="../src/slider.js">

 </script>

 <wcia-slider style="width: ${sliderWidth}px"
 value="50"></wcia-slider>`;

 document.body.appendChild(container);
 const slider = container.querySelector('wcia-slider');

 test('slider get initial value', function () {
 assert.equal(slider.value, 50);

Помещаем компонент и скрипт
компонента в контейнер

Добавляем все
в тело страницы
для тестирования

357Сравнение со стандартной тестовой конфигурацией при использовании Karma

 assert.equal(slider.getAttribute('value'), 50);
 assert.equal(slider.root.querySelector('.thumb').style.left,
 sliderWidth * 50/100 – thumbCenterOffset + 'px');
 });

});

Вы можете обратиться к репозиторию для этой книги на GitHub, что-
бы увидеть все эти новые JS-тесты на месте для всех компонентов, но
в листинге 13.9 показаны только реальные различия с использованием
ползунка в качестве примера.

Сейчас самое время попробовать запустить тесты! Как и прежде, имя
test для скрипта, добавленного в файл package.json, будет более подхо-
дящим именем, но поскольку мы имеем дело с несколькими типами тес-
тов, его можно назвать karmatest:

"karmatest": "./node_modules/karma/bin/karma start karma.conf.js"

Этот скрипт просто дает Karma указание начать тестирование для кон-
фигурационного файла, который мы только что создали. Нам нужно по-
менять кое-что в конфигурации, чтобы все работало нормально. Прежде
чем мы это сделаем, выполняя команду npm start karmatest, мы запуска-
ем браузеры в записи browsers в конфигурации Karma. Появляется изо-
бражение, подобное тому, которое мы видим на рис. 13.7, когда браузер
останавливается после запуска тестов.

Рис 13.7 Страница Karma

Причина приостановки заключается в том, что это дает нам возмож-
ность нажать кнопку Debug (Отладка) и увидеть тесты, запущенные
в контексте. Мы можем открыть инструменты разработчика в браузере,
как обычно, и увидеть результаты теста, просмотреть элементы на стра-
нице и отладить все обнаруженные ошибки. Этот режим отладки показан
на рис. 13.8, хотя, опять же, в действительности это просто браузер с от-
крытыми инструментами разработчика.

Предположим, что все работает и нам не нужно ничего отлаживать.
Желательно, чтобы Karma запустила браузеры, выполнила тест и на этом
все. Для этого нам просто нужно исправить значение записи singleRun
в конфигурации Karma и вместо false указать true:

singleRun: true

Более того, у нас есть возможность вообще не видеть, как браузеры
всплывают на экране, если «headless»-версии поддерживаются средства-
ми запуска Karma, такими как Chrome и Firefox. Обратите внимание, что
не только Karma поддерживает это. Обе обычным образом установлен-
ные версии этих браузеров предлагают режим «headless», а средства за-
пуска Karma просто используют его:

browsers: ['FirefoxHeadless', 'ChromeHeadless'],

358 Глава 13 Тестирование компонентов

Рис. 13.8 Страница отладки Karma

В этом листинге рассматриваются все параметры, которые мы изме-
нили в конфигурации Karma, чтобы провести тесты с использованием
Karma, Mocha и Chai.

Листинг 13.10 Конечная конфигурация Karma

module.exports = function(config) {

 config.set({

 basePath: '',
 plugins: [

 '@metahub/karma-rollup-preprocessor',
 'karma-*'],
 frameworks: ['mocha', 'chai'],
 files: [

 './chapter12and13/components/**/test/karma-test.js',
 './chapter12and13/components/**/*.js'

],
 exclude: [],

 preprocessors: {

 './chapter12and13/components/**/*.js': ['rollup']

 },

 rollupPreprocessor: {

 options: {

 output: {

 sourcemap: true,
 format: 'iife',
 name: 'testing'

 }

 }

 },

Добавлены плагины для Rollup,
и повторно добавлено karma-* по умолчанию

Добавлена библиотека Chai
Добавлены конкретные файлы для нашей настройки

Добавлены препроцессор
и конфигурация Rollup

359Сравнение со стандартной тестовой конфигурацией при использовании Karma

 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: false,
 browsers: [

 'FirefoxHeadless',
 'ChromeHeadless'],
 singleRun: true,
 concurrency: Infinity,
 client: {

 mocha: {

 ui: 'tdd'

 }

 }

 })

};

Теперь будем надеяться, что при запуске команды npm start karmatest
везде в вашем терминале будет зеленый цвет – это значит успешные
результаты! Здесь было довольно много подвижных частей, и, действуя
методом проб и ошибок, мы настроили все это самостоятельно; но пре-
имущество по сравнению WCT состоит в том, что у вас гораздо больше
контроля и значительное количество совместимых плагинов с такой на-
стройкой тестирования, которая уже давно существует.

Единственное, что немного огорчает, – это отсутствие возможности
использовать тестовый HTML-файл, как в WCT. Лично для меня это моя
любимая часть экосистемы WCT. К счастью, существует специальный
плагин Karma для веб-ком по нен тов!

13.3.1 Плагин karma-web-components
Плагин karma-web-components делает разные вещи, но в основном он по-
зволяет нам снова использовать тестовые HTML-файлы, как это делает
WCT. До сих пор мы успешно справлялись с проблемами синхронизации
нагрузки в тестах; но данный плагин также слушает событие WebCompo-
nentsReady в вашем браузере перед запуском тестов, чтобы убедиться, что
все готово для успешного тестирования.

Первое, что нужно сделать, – это установить плагин:

npm install --save-dev karma-web-components

Затем мы можем добавить в тестовую папку каждого компонента до-
полнительный файл karma-test.html. Для компонента-ползунка приве-
денный ниже листинг показывает, что находится внутри.

Листинг 13.11 Тестовый HTML-файл, который будет использоваться
плагином karma-web-components

<html>

<head>

 <script

Версии браузеров заменены на headless

Значение изменено на true

Добавлено тестирование в стиле TDD

Импорт модуля компонента

360 Глава 13 Тестирование компонентов

 type="module"

 src="../src/slider.js">

 </script>

 <script src="../../../../node_modules/karma-web-components/framework.js">

 </script>

 <style>

 wcia-slider {

 width: 500px;

 }

 </style>

</head>

<body>

<wcia-slider value="50"></wcia-slider>

<script>

// Те же самые тесты и набор тестов, которые у нас уже были ранее;
</script>

</body>

</html>

Как и WCT, плагин karma-web-components должен загружаться на стороне
клиента. Но этот единственный файл скрипта – единственное, что нужно
изменить на этой странице, в отличие от тестовой страницы WCT. Это
другая библиотека для загрузки, но вся тестовая конфигурация может
остаться прежней. На рис. 13.9 показан обновленный рабочий поток пла-
гина karma-web-components. Очень напоминает WCT.

Karma Web
Components

Karma
runner

Запускает страницу программы для
проведения тестов с одним или несколькими
экземплярами Chrome, Firefox, Safari и т. д.

Ваша пользовательская HTML-страница
фреймворка тестирования

Клиентская библиотека
Karma Web Components

(включает в себя Mocha и Chai)

Скрипты компонента, CSS и HTML

Наборы с тестами внутри

Набор тестов (запускаемый Mocha)

Индивидуальные тесты (запускаемые Mocha)

assert.equals (значение, другое значение)
(Chai)

Рис. 13.9 Рабочий поток karma-web-components

Вернемся в конфигурационный файл Karma. Нам понадобится доба-
вить плагин в существующий список:

frameworks: ['mocha', 'chai', 'web-components'],

Единственное другое отличие состоит в том, что файлы нужно будет
обслуживать немного иначе, как показано в приведенном ниже листинге.

Фреймворк, предоставляемый плагином

Компонент ползунок на странице

361Сравнение со стандартной тестовой конфигурацией при использовании Karma

Листинг 13.12 Конфигурирование Karma для использования плагина
karma-web-components

files: [

 './chapter12and13/components/**/src/*.js',
 './node_modules/karma-web-components/framework.js',
 {

 pattern: './chapter12and13/components/**/test/karma-wc-test.html',
 watched: true,
 included: false

 }

],

Конечно, существующие файлы веб-ком по нен тов еще нужно обслу-
живать. Также требуется фреймворк с karma-web-components на стороне
клиента. Наконец, необходимо обслуживать HTML-файл, содержащий
тесты, но нам также нужно будет настроить пару параметров. Для флага
included должно быть установлено значение false, чтобы HTML-файлы не
загружались в браузер автоматически. Предыдущие примеры были не-
много медлительными и неточными, включая файлы, которые не нужно
загружать раньше. Отличие здесь состоит в том, что если файл включен,
запуск теста будет прерван.

13.3.2 Несколько тестов в одном проекте
Последний пример с karma-web-components подразумевает незначительное
изменение конфигурации Karma. Вместо того чтобы изменить настрой-
ку по умолчанию, я хотел оставить обе конфигурации. В репозитории для
этой книги на GitHub вы сможете запускать WCT, Karma и Karma с плаги-
ном karma-web-components из одного и того же проекта.

Эту тему еще долго можно обсуждать, и, хотя одного из приведенных
примеров будет достаточно, единого стандартного способа настрой-
ки тестирования не существует. У каждого проекта свои потребности,
и, скорее всего, вам понадобится поработать, чтобы настроить все по
своему вкусу. Рассказывая о различных методах, описанных в этой гла-
ве, я надеюсь, что ваши настройки будут достаточно продолжительны-
ми, чтобы вы, по крайней мере, смогли изучить все изменения, которые
вам нужно сделать.

Вот почему в моем репозитории конфигурация karma-web-components
находится в файле с именем karma.conf.webcomponents.js. У сценария
npm для его запуска – другое имя с указанием на новую конфигурацию
в параметрах:

"karma-wc-test":

 "./node_modules/karma/bin/karma start karma.conf.webcomponents.js",

У вас не будет всех этих похожих тестов в одном проекте, но у вас могут
быть разные типы тестов с разными вещами. Например, в случае только
модульных тестов с чистым JS, без необходимости полагаться на брау-
зер, мне нравится использовать Tape и JSDOM. И я мог бы использовать

362 Глава 13 Тестирование компонентов

Karma, Mocha и Chai для тестов, которые мне нужно запускать в браузере.
Моя точка зрения заключается в том, что хотя я изо всех сил старался
включить в этот проект избыточные тесты, наличие нескольких отдель-
ных тестовых прогонов в одном проекте вполне нормально.

13.3.3 Замечание относительно Safari
И последнее, на что здесь стоит обратить внимание. Разработчики, ра-
ботающие на Windows, не смогут запускать тесты в Safari в любом слу-
чае, а вот у пользователей MacOS это должно получиться. В своих при-
мерах я не устанавливал karma-safari-launcher. Как правило, «Safari» – это
еще один браузер, который можно добавить в конфигурационный файл
Karma. В настоящее время это средство запуска Karma работает не так
идеально, если запускать его на компьютерах под управлением ОС
macOS Mojave. Safari запустится, но, для того чтобы дать разрешение на
загрузку Karma, потребуется вмешательство пользователя. На момент
написания этой главы данный вопрос открыт (https://github.com/karma-
runner/karma-safari-launcher/issues/29). В репозитории для этой книги
на GitHub сейчас вместо karma-safari-launcher я использую karma-safarina-
tive-launcher в качестве обходного пути. Чтобы использовать этот поль-
зовательский плагин, единственное, что необходимо добавить в файл
karma.conf.js, – это следующее:

customLaunchers: {

 Safari: {

 base: 'SafariNative'
 }

},

Теперь вы можете проводить тестирование с Safari в своем списке
брау зеров в файле karma.conf.js:

browsers: ['FirefoxHeadless', 'ChromeHeadless', 'Safari'],

В идеале, однако, этот обходной путь не понадобится, поскольку проб-
лема будет решена в исходном пакете плагина. До тех пор можно исполь-
зовать это!

Резюме
Из этой главе вы узнали:

� о различных стилях тестирования и преимуществах TDD при напи-
сании компонентов;

� о трех разных способах запуска тестов, чтобы продемонстрировать
разнообразие доступных опций;

� о способах «думать модулями» и о том, как разрабатывать тесты для
каждого из них.

14
События и поток данных

приложения

Эта глава охватывает следующие темы:
� создание собственных пользовательских событий в сравнении

с использованием нативных событий DOM;
� всплывание событий для двух типов событий, включая исполь-

зование параметра composed для прохождения сквозь теневую
модель DOM;

� событие WebComponentsReady и customElements.isDefined для об-
работки синхронизации;

� использование централизованной модели данных и шины со-
бытий для обработки потока данных в приложении.

По мере того как мы приближаемся к концу нашего путешествия по веб-
компонентам, остается не так много тем для освещения с точки зрения
возможностей веб-ком по нен тов. Тем не менее если сравнивать то, что
мы уже узнали, с современным фреймворком, может показаться, что
в некоторых областях их недостаточно.

364 Глава 14 События и поток данных приложения

14.1 Использование фреймворков
Хотя функции веб-ком по нен тов теперь являются частью стандартных
веб-спецификаций, такие вещи, как привязка данных, маршрутизация
и шаблоны проектирования приложений в стиле «модель–представле-
ние–контроллер» (MVC), таковыми не являются! Если честно, было бы
глупо, если бы это было так. Сеть – это огромное пространство, и не все
мы делаем приложения. Даже если бы это было так, разработчики при-
ложений обычно выбирают подходящий шаблон проектирования для
конкретного проекта. Встроенные средства, которые поддерживают
определенные способы разработки приложений, вряд ли будут привет-
ствоваться.

Фактически у нас почти были до невероятия базовые основы для
связывания данных, когда мы использовали метод Object.observe, по-
зволявший прослушивать изменения в JS-объекте (рис. 14.1). Однако
популярные фреймворки в итоге не приняли его, потому что он не соот-
ветствовал их конкретным решениям для связывания данных и управ-
ления состоянием приложений.

Рис. 14.1 Устаревшая функция связывания данных: Object.observe

Несмотря на то что эти типы функций не являются частью веб-ком по-
нен тов, написанных на чистом JS, и это имеет смысл, фреймворк может
и будет выбирать излюбленный способ предлагать их, особенно когда
типичному пользователю, ориентированному на приложения, нужны
все или некоторые из них. Это позволяет создавать отличные учебные
пособия и удивительные примеры, которые тесно связаны друг с другом
и отлично подходят для начинающих.

Учитывая разнородный характер использования веб-ком по нен тов,
единого шаблона проектирования приложения, который бы управлял
ими всеми, вероятно, никогда не будет. Вы не увидите, как огромное
количество блогов использует те же шаблоны проектирования, кото-
рые применяются для веб-ком по нен тов, по крайней мере в ближайшее
время. Это отсутствие кристально чистого направления – причина, по
которой веб-ком по нен ты могут чувствовать, что им чего-то не хватает,
особенно при принятии проектного решения и неизбежном сравнении
фреймворка с любым решением, не использующим фреймворки, вклю-
чая веб-ком по нен ты.

Однако есть и хорошие новости. Общие функции современных
фреймворков теперь более взаимозаменяемы, чем когда-либо. Взять,
к примеру, Redux, библиотеку, предназначенную для управления состо-
янием приложения. Redux настолько сильно связана с React, что вы мо-

365События

жете поверить, что их нельзя разделять. Некоторые считают, что если вы
используете React, то должны использовать и Redux. И наоборот, можно
предположить, что Redux нельзя использовать нигде, кроме React. Это –
артефакт тех удивительных демонстраций, постов в блогах и учебных
пособий, созданных сообществом React, соединяющих их. На самом деле
некоторые разработчики React начали применять другие библиотеки
для управления состоянием, такие как MobX.

Я хочу сказать, что существует широкий спектр взаимозаменяемых
решений, которые популярные фреймворки уже используют; просто это
не сразу видно при изучении фреймворка. Постоянная попытка заста-
вить библиотеку вроде Redux работать в React, Angular, Vue и чистом JS
только поможет нам, разработчикам веб-ком по нен тов.

Более того, вам может и не понадобиться сложная библиотека, на-
подобие Redux, для управления приложением. В этой главе мы усовер-
шенствуем планировщик упражнений из главы 10, чтобы использовать
чрезвычайно простые и специально разработанные шаблоны проекти-
рования приложений. Вам, наверное, интересно, зачем вообще замо-
рачиваться шаблонами проектирования или с чего начать. Как и любое
решение, все начинается с проблемы, которую нужно решить.

14.2 События
Я думаю, было бы справедливо сказать, что в любой сложной архитек-
туре приложения или фреймворке существует некий особый обмен со-
общениями. Поверх этого может быть построено намного больше дви-
жущихся частей, но на самом базовом уровне все начинается с какого-то
события, такого как нажатие кнопки или изменение поля ввода. Чтобы
сообщить об этом изменении, генерируется сообщение, а затем в резуль-
тате этого события что-то происходит. Итак, начнем с самого начала.

14.2.1 Нативные события и WebComponentsReady
Не так много нужно сказать о нативных событиях. Мы использовали их
на протяжении всей книги, когда слушали нажатия кнопок, изменения
элементов ввода и т. д. Это события, которые браузер генерирует сам
с помощью DOM.

Поскольку вы уже знакомы с нативными событиями, я хочу привести
сомнительный пример такого события, относящийся к коду, который
можно найти при изучении веб-ком по нен тов. Я не упоминал о нем, по-
тому что он не особо нужен для ежедневного использования; офици-
ально это даже не функция веб-компонента, и он доступен только через
полизаполнение. Тем не менее он используется как нативное событие,
поэтому давайте рассмотрим его! В приведенном ниже листинге приво-
дится чрезвычайно простой пример для тестирования события WebCompo-
nentsReady.

366 Глава 14 События и поток данных приложения

Листинг 14.1 Событие WebComponentsReady

<html>

<head>

 <title>Web Components Ready</title>
 <script src="https://unpkg.com/@webcomponents/webcomponentsjs@2.0.0/

 webcomponents-loader.js"></script>

 <script>

 document.addEventListener(

 'WebComponentsReady', function(e) {
 console.log('components ready');

 });

 </script>

</head>

</html>

Это событие просто позволяет вам получать уведомления, когда веб-
ком по нен ты в целом готовы на странице. На самом деле готовность
озна чает, что любые созданные определения веб-ком по нен тов могут
быть применены к элементам на странице. Например, созданный вами
пользовательский элемент <sample-component> – это HTMLUnknownElement без
определения с помощью метода customElements.define.

Однако я сказал, что это сомнительный пример. По-настоящему на-
тивные события генерируются браузером. Хотя это событие использует-
ся так, как если бы оно было сгенерировано браузером, это не так. Оно
генерируется полифилом. Можно ли назвать его нативным, если оно ис-
пользуется как таковое и выглядит так же? Более того, оно так похоже на
базовую функцию веб-компонента, когда используется, и это может сби-
вать с толку – можно ли ожидать, что оно будет срабатывать даже при от-
сутствии полифила. Почему оно доступно только при полизаполнении?

Когда браузер нативно поддерживает веб-ком по нен ты, в частности
API пользовательских элементов, компоненты готовы сразу. Однако
когда такой поддержки нет и используется полифил, требуется время,
чтобы загрузить полифил и разрешить веб-компонентам определять
себя. Ситуация была еще хуже, когда HTML-импорт был предпочтитель-
ным способом создания веб-ком по нен тов. Для загрузки необходимого
HTML-импорта также требуется время. В ожидании всего этого, возмож-
но, было бы неразумно взаимодействовать с компонентами на странице.
Событие WebComponentsReady позволяет узнать, когда это безопасно.

Звучит полезно, но на самом деле это редко используется. С одной сто-
роны, при использовании современного браузера, где полифилы не нуж-
ны, веб-ком по нен ты будут готовы незамедлительно. Во-вторых, такие
проблемы с синхронизацией, похоже, возникают нечасто. В этой книге
мы организовали наши веб-ком по нен ты, создав один большой компо-
нент, который представляет приложение и включает в себя дочерние
компоненты. Хотя мы взаимодействуем с этими дочерними веб-ком по-
нен та ми и предполагаем, что они готовы с самого начала, они даже не
существовали бы, если бы основной компонент приложения еще не был

Полифил

Слушатель событий WebComponentsReady

367События

создан. И конечно же, этот основной компонент создается только тогда,
когда готовы веб-ком по нен ты.

Кроме того, событие WebComponentsReady не является частью специфи-
кации веб-ком по нен тов. Без включения полифила готовое событие не
будет инициировано просто потому, что обычно его не существует!

Несмотря на то что оно не несет особой пользы при повседневном ис-
пользовании (хотя оно было полезно для некоторых настроек тестиро-
вания), я хотел рассказать о нем по нескольким причинам. Во-первых,
это событие довольно часто встречается при поиске в сети и в некото-
рой степени сбивает с толку, когда нужно определить, является ли оно
событием реального веб-компонента или оно просто из полифила. Во-
вторых, это демонстрирует «нативное событие». Хотя было бы немного
странно называть его нативным из-за того, что оно было сгенерировано
из полифила, оно по-прежнему исходит из DOM, в частности из объекта
document в нашем примере. Далее мы сопоставим его с пользовательски-
ми событиями. Наконец, это дает нам возможность перейти к связанной
функции веб-компонента (на этот раз реальной).

14.2.2 Когда определяются пользовательские элементы
Я немного растягиваю, чтобы включить тему «промисов» в раздел о со-
бытиях. Но если вы знаете, что такое промис, он выполняет то же самое,
что и событие; это позволяет нам говорить о более подходящем спосо-
бе решения проблем синхронизации веб-ком по нен тов, если мы с ними
столкнемся.

Промисы – весьма базовая функциональность JS. Создать их с нуля
легко, а использовать уже существующий еще проще. В этой книге мы
рассмотрели две из трех функций API пользовательских элементов:

� customElements.define(<имя тега>, <класс>, <параметры>) позволяет нам
дать жизнь и назначить поведение имени пользовательского эле-
мента;

� customElements.get(<имя тега>) возвращает класс, ассоциированный
с существующим пользовательским тегом. Мы использовали его,
чтобы установить, был ли пользовательский элемент уже опреде-
лен. Подсказка: если возвращено undefined, он не определен;

� customElements.whenDefined – последний метод, и сейчас мы его обсу-
дим.

Вместо того чтобы получить готовое событие к тому моменту, когда
веб-ком по нен ты в целом готовы, возможно, более целесообразно слу-
шать, когда конкретный веб-ком по нент определен, особенно когда мож-
но отложить загрузку JS-модулей или целых наборов, поскольку пока мы
не используем определенный набор компонентов. Возможно, мы за-
хотим получить уведомление, когда определенные компоненты будут
готовы, даже если другие компоненты работали в течение достаточно
долгого времени.

Учитывая это, можно посмотреть на customElements.whenDefined в дей-
ствии в приведенном ниже листинге.

368 Глава 14 События и поток данных приложения

Листинг 14.2 Использование промиса, чтобы установить,
когда определен конкретный компонент

<html>

<head>

 <title>Custom Elements When Defined</title>
 <script>

 class SampleComponent
 extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = 'my component';
 }

 }

 setTimeout(function() {

 if (!customElements.get('sample-component')) {

 customElements.define('sample-component', SampleComponent);
 }

 }, 2000);

 customElements.whenDefined(

 'sample-component').then(()=>{

 console.log('defined now!');

 });

 </script>

</head>

<body>

<sample-component></sample-component>

</body>

</html>

Благодаря этой последней функции customElements у нас есть реальный
способ предпринять или отложить действие, пока мы не узнаем, что
определенный веб-ком по нент работает должным образом.

14.2.3 Пользовательские события
Нативные события – отличная вещь, но если вы занимаетесь веб-раз ра-
боткой, то, вероятно, уже давно используете их в повседневной работе
для таких простых вещей, как прослушивание события щелчка мыши.
Поэтому в них нет ничего захватывающего.

Пользовательским событиям уже несколько лет отроду, и они ни для
кого не секрет; но если они не являются частью вашей веб-разработки,
вероятно, следует воспользоваться ими! Прежде чем перейти к изуче-
нию обмена сообщениями в приложении, где мы будем использовать
пользовательские события, давайте кратко рассмотрим некоторые ос-
новные способы использования.

Что именно они позволяют вам делать? Равно как и нативные собы-
тия, они позволяют получать сообщения и принимать меры. Как и собы-
тие щелчка мышью, пользовательское событие можно слушать и что-то

Очень простой класс компонента

Ждем 2 секунды, а затем определяем компонент

Создаем промис, который предупреждает
нас об определении веб-компонента

369События

делать, когда оно срабатывает. В отличие от нативных событий, мы мо-
жем сами генерировать и инициировать событие. Например, в палитре
цветов, с которой мы работали в предыдущей главе, вместо того чтобы
наблюдать за изменениями атрибутов, как мы это делали, мы могли бы
создать собственное событие, которое запускается, когда цвет или аль-
фа-канал компонента изменяются в результате использования нами
компонента. С помощью пользовательских событий мы контролируем
содержимое события, имя события, которое нужно слушать, и синхро-
низацию при запуске.

При работе с пользовательскими событиями необходимо выполнить
три основных действия. Первое – создать событие. Мы будем делать это
с помощью конструктора CustomEvent. Конструктор принимает имя собы-
тия в качестве первого параметра, а затем еще один, необязательный
объект с параметрами события и подробностями в качестве второго па-
раметра:

const event = new CustomEvent('myevent', { detail: { message: 'hi', number: 5 } });

Так же, как и в нативных событиях, у нас имеется тот же самый объ-
ект detail для пользовательских пар типа «ключ/значение». Свойство
detail, по-видимому, нечасто используется большинством людей, когда
речь идет о нативных событиях. Поскольку браузер генерирует натив-
ные события, все планируется заранее с помощью конкретных пар типа
«ключ/значение» в самом объекте события. Например, можно получить
местоположение клика из свойств clientX и clientY с помощью обычного
нативного события клика:

document.addEventListener('click', function(e) {
 console.log(e.clientX, e.clientY)
})

Мы также можем получить свойство e.detail. Это свойство, особен-
но в случае со щелчком мышью, содержит количество нажатий на эле-
мент. Кажется случайностью, что это значение находится в переменной
с именем detail, но это именно то, чем оно и является: случайным. Мо-
жет показаться, что свойство detail содержит все необходимые данные
о пользовательских свойствах и, возможно, не было должным образом
спланировано с самого начала.

В случае с нативными событиями это кажется немного странным, ведь
тут все контролирует браузер. Но свойство detail является основной кон-
цепцией для пользовательских событий, где у нас есть пользовательские
данные, которые необходимо передать, как, например, наши предыду-
щие данные.

После того как событие было создано, оно никуда не денется, пока
мы не запустим или, выражаясь более формально, не отправим его. Как
и нативные события, пользовательские события отправляются из DOM
(документа или элементов внутри). Учитывая это, давайте отправим со-
бытие из документа:

document.dispatchEvent(event);

370 Глава 14 События и поток данных приложения

Последний базовый этап для работы с пользовательскими события-
ми – это прослушивание события. Здесь его можно рассматривать как
любое нативное событие, с которым вы когда-либо работали, только
с уникальным именем и пользовательскими данными в объекте detail.
Мы должны настроить слушателя до того, как отправим событие, чтобы
он уже был готов, когда событие будет инициировано. В приведенном
ниже листинге показан весь пример целиком.

Листинг 14.3 Создание, диспетчеризация и прослушивание
пользовательского события

<html>

<head>

 <title>Custom Events</title>
 <script>

 document.addEventListener(

 'myevent', function(e) {
 console.log('The message', e.detail.message, 'with number',
 e.detail.number);

 });

 const event = new CustomEvent(
 'myevent', {
 detail: {

 message: 'hi',
 number: 5 }

 });

 setTimeout(function() {

 document.dispatchEvent(event);

 }, 2000);

 </script>

</head>

<body>

</body>

</html>

Поскольку в этом примере мы регистрируем выходные данные в нашу
консоль, если вы попытаетесь запустить этот код, откройте его в инстру-
ментах разработчика вашего браузера. Пользовательские свойства mes-
sage: 'hi' и number: 5 переносятся вплоть до console.log, когда иниции-
руется обратный вызов события. Мы также можем отправить событие,
используя таймер. Просто в этом примере он лучше доказывает нам, что
обработчик события фактически запускается из самого события.

14.2.4 Всплытие пользовательского события
Отправка и прослушивание события из одного элемента – это прекрас-
но, но один нюанс, касающийся пользовательских событий, заключается
в том, что по умолчанию они не «всплывают». Когда мы говорим всплыва-

Слушатель событий и функция обратного вызова

Создаем новое пользовательское событие

Пользовательский объект detail, содержащий
свойства, через которые мы проходим

Инициируем/отправляем событие, но ждем
2 секунды, чтобы доказать, что обратный
вызов ждет его

371События

ет, это означает, что событие проходит через множество уровней DOM,
и любой из них можно прослушать. Например, при нажатии на кнопку
щелчок проходит через кнопку, а затем к родителю, к родителю родите-
ля, вплоть до корня страницы. Каждый элемент, через который проходит
щелчок, может генерировать собственное событие щелчка, если вы ре-
шите его прослушать.

Нативные события, такие как событие щелчка, делают это по умолча-
нию. Пользовательские события – нет. Поэтому нужно помочь им в этом.
Мы продемонстрируем это на практике в приведенном ниже листинге,
добавив дополнительный элемент для пользовательского события, через
который нужно пройти.

Листинг 14.4 Всплывание пользовательского события

<html>

<head>

 <title>Custom Event Bubbling</title>
 <script>

 document.addEventListener('myevent', function(e) {
 console.log('The message', e.detail.message, 'with number',
 e.detail.number);

 });

 const event = new CustomEvent('myevent', {
 bubbles: true,
 detail: {

 message: 'hi',
 number: 5

 }

 });

 setTimeout(function() {

 document.getElementById('target')

 .dispatchEvent(event);

 }, 2000);

 </script>

</head>

<body>

 <div id="target"></div>

</body>

</html>

Код в листинге 14.4 будет работать, но только потому, что мы добавили
опцию bubbles: true ко второму параметру пользовательского события.
Без этого, если вы решите закомментировать это в данном примере, со-
бытие запустится и остановится на теге <div> с идентификатором "tar-
get". Если бы мы добавили слушателя событий к этому тегу <div> вместо
документа, все бы работало прекрасно, потому что событию не нужно
было всплывать, чтобы мы его перехватили.

Включаем всплывание

Отправляем элемент
через другой тег <div>

Дополнительный тег <div> для передачи события

372 Глава 14 События и поток данных приложения

14.3 Передача событий через веб-ком по нен ты
Хотя нативные и пользовательские события – понятия довольно прос-
тые, если рассматривать их на уровне функций, стратегии передачи со-
бытий в целом могут быть многочисленными и сложными. Одна из этих
сложностей возникает при работе с веб-ком по нен та ми и теневой мо-
делью DOM.

Приведенный ниже листинг начинается с простого примера веб-ком-
понента, в котором не используется теневая модель DOM. Здесь есть
только кликабельная кнопка.

Листинг 14.5 Веб-компонент со слушателем щелчков

<html>

<head>

 <title>Web Component Events</title>
 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 this.innerHTML =

 '<button>Click me</button>';
 }

 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener(

 'click', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());

 });

 </script>

</head>

<body>

<sample-component></sample-component>

</body>

</html>

Как правило, в этой книге мы слушали события щелчка и подобные
вещи внутри самого компонента. Однако в листинге 14.5 мы слушаем
событие клика для всего документа, но это событие возникло внутри
компонента. Мы полагаемся на способность события щелчка проходить
через компонент к документу.

Нажатие кнопки мыши в любом месте страницы инициирует обрат-
ный вызов. Но если событие может прийти откуда угодно, может ли этот
крайне неспецифичный слушатель событий быть полезным, если вы не
знаете, откуда пришел щелчок?

Оказывается, можно точно узнать, где он был инициирован. При на-
жатии на кнопку в нашем веб-компоненте свойство event.target регист-
рируется как <button>Click me</button>. target – первая остановка клика,
прежде чем событие всплывет в остальных местах.

Кнопка внутри веб-компонента

Cлушатель событий щелчка

Консоль регистрирует источник
и путь события

373Передача событий через веб-ком по нен ты

Также не всегда полезно знать, откуда пришел щелчок, – скорее, нам
нужно знать фактический элемент, к которому мы добавили событие.
Мы можем получить это, используя свойство event.currentTarget. В на-
шем примере мы добавляем событие в документ, и это именно то, что
мы получаем, когда регистрируем event.currentTarget.

Метод event.composedPath() также представляет интерес. Обратите вни-
мание, что это функция, а не свойство. При вызове этой функции мы
вернем полный путь, через который проходит событие. В нашем при-
мере мы получим это:

[button, sample-component, body, html, document, Window]

Обратите внимание, что оно начинается с кнопки, которую мы нажа-
ли, проходит через веб-компонент, через элементы body и html и объект
document и заканчивается в корне всего: объекте Window. Опять же, обра-
тите внимание, что мы пока еще не используем теневую модель DOM!

14.3.1 Распространение нативных событий
с помощью теневой модели DOM

Вспомните два режима теневой модели DOM, упомянутых ранее, за-
крытый и открытый. Если вы помните, закрытый режим не рекоменду-
ется, потому что он только все усложняет, не предлагая при этом ника-
кой реальной безопасности, как предполагалось. Несмотря на это, стоит
упомянуть еще одну небольшую разницу между закрытым и открытым
режимами.

В приведенном ниже листинге мы немного изменили простой веб-
компонент, чтобы добавить теневую модель DOM. Все остальное то же
самое, включая кнопку и слушателя событий.

Листинг 14.6 Веб-компонент с теневой моделью DOM
и слушателем события щелчка

<html>

<head>

 <title>Shadow DOM Events</title>

 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const shadow = this.attachShadow(

 {mode: 'open'});

 shadow.innerHTML = '<button>Click me</button>';
 }

 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener('click', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());

 });

 </script>

На этот раз используется
теневая модель DOM

374 Глава 14 События и поток данных приложения

</head>

<body>

<sample-component></sample-component>

</body>

</html>

Теперь, глядя на журнал консоли, видно, что event.currentTarget остал-
ся тем же: это документ, к которому мы добавили слушателя событий.
А вот event.target выглядит иначе. Он отображается как элемент веб-
компонента <sample-component>. Теневая модель DOM скрывает тот факт,
что щелчок исходил от кнопки внутри компонента, хотя и делает это не
полностью. Когда мы смотрим на функцию event.composedPath(), то видим
это:

[button, document-fragment, sample-component, body, html, document, Window]

За исключением дополнительного слоя фрагмента документа, кото-
рый представляет теневую границу, все то же самое. Мы видим, что со-
бытие происходит на теге <button> внутри компонента и распространя-
ется через него.

Однако если мы изменим режим теневой модели DOM на closed, то
даже не получим полный вариант метода composedPath. Он начинается
с элемента <sample-component>:

[sample-component, body, html, document, Window]

Когда мы имеем дело с закрытым, а не открытым режимом Shadow
DOM, это кажется совершенно нормальным, верно? Открытый режим все
закрывает, чтобы случайно не сделать ничего плохого, но он достаточно
открыт, чтобы иметь обходные пути, если вы знаете, что идете против
намеченного рабочего процесса. Напомним, что у нас нет возможности
использовать метод querySelector для элементов внутри теневой моде-
ли DOM извне, кроме случаев, когда мы проходим через свойство shad-
owRoot. Выглядит довольно похоже. Можно посмотреть на event.target,
чтобы увидеть, где происходит событие, но когда теневая модель DOM
не позволяет нам получить полную картину, мы можем посмотреть на
функцию event.composedPath(). Закрытый режим усложняет все это, хотя
на самом деле он не является безопасным.

14.3.2 Распространение пользовательских событий
с помощью теневой модели DOM
У пользовательских событий есть еще одна вещь, чтобы скрыться от те-
невой модели DOM. Помимо необходимости установить для bubbles зна-
чение true, чтобы событие всплывало через DOM, нам также нужно уста-
новить для свойства composed значение true. Без этого событие просто не
всплывет из теневой модели DOM и не будет обращаться к родительским
компонентам или элементам.

Приведенный ниже листинг основан на последнем примере, где мы
передали событие щелчка через теневую модель DOM. Вместо того что-

375Передача событий через веб-ком по нен ты

бы передавать событие напрямую, мы будем слушать его в компоненте
и генерировать пользовательское событие, которое и будем передавать.

Листинг 14.7 Передача пользовательского события
через теневую модель DOM

<html>

<head>

 <title>Shadow DOM Custom Events</title>
 <script>

 class SampleComponent extends HTMLElement {
 connectedCallback() {
 const shadow = this.attachShadow({mode: 'open'});

 shadow.innerHTML = '<button>Click me</button>';
 shadow.querySelector('button').addEventListener(

 'click', e => {
 const customEvent = new CustomEvent('myclick', {
 bubbles: true,
 composed: true,
 detail: {

 message: 'hi',
 number: 5

 }

 });

 shadow.dispatchEvent(customEvent);

 })

 }

 }

 customElements.define('sample-component', SampleComponent);

 document.addEventListener(

 'myclick', function(e) {
 console.log('was clicked', e.target, e.currentTarget,
 e.composedPath());

 });

 </script>

</head>

<body>

<sample-component></sample-component>

</body>

</html>

Хотя этот пример работает просто отлично и сообщение регистриру-
ется, если bubbles: true или composed: true удалить, все отключится. Ранее
в этой главе я рассказывал о bubbles: true. Поскольку пользовательские
события не всплывают по умолчанию, они никогда не выберутся из веб-
компонента, используется теневая модель DOM или нет.

Свойство composed требуется в дополнение к bubbles. То, что событие
всплывает, не означает, что оно пройдет через теневую границу. Это
свойство позволяет прорвать границу.

Фактически регистрируется точно то же, что и раньше, за исключе-
нием составного пути при использовании открытого режима теневой

При нажатии кнопки генерируется новое
пользовательское событие для отправки

Прослушиваем пользовательское событие myclick

376 Глава 14 События и поток данных приложения

модели DOM. Конечно, кнопка больше не является частью пути, потому
что пользовательское событие теперь генерируется из теневого корня
компонента. Поэтому сейчас зарегистрированный метод event.composed-
Path() – это

[document-fragment, sample-component, body, html, document, Window]

Всплытие событий – отличная вещь, но у него могут иметься серьез-
ные недостатки при попытке передачи сообщений объектам, которые не
являются частью одной и той же родословной. Мы рассмотрим это чуть
позже, поскольку в действительности это проблема архитектуры прило-
жения. В качестве первого шага давайте усовершенствуем приложение
Workout Creator из главы 10, чтобы сделать его пригодным для использо-
вания в качестве реального приложения.

14.4 Разделение данных
Давайте вспомним, что нам уже удалось сделать, работая над приложе-
нием Workout Creator из главы 10. Как подчеркивалось в этой главе, при
работе с теневой моделью DOM и стилями функционал внутри был в ос-
новном визуальным. Мы создали список с упражнениями на выбор в ле-
вой половине приложения. Каждое упражнение из списка представляло
собой веб-ком по нент упражнения, заполненный уникальными данны-
ми. При нажатии мышью на любом из них упражнение добавляется
в план в правой части приложения.

Слева: список упражнений
на выбор

Справа: создаем
индивидуальный план
тренировок

Рис. 14.2 Вспомним, как выглядит приложение Workout Creator

377Разделение данных

Попадая в план тренировок, каждое упражнение получало некий
пользовательский интерфейс для настройки количества раз выполне-
ния каждого повторения или задания либо настройки общего количест-
ва секунд, необходимого для выполнения упражнения. Также справа от
упражнения была кнопка, чтобы удалить его из вашего плана. Хотя и не
так много из этого интерфейса было функциональным!

Если вернуться к компоненту exerciselibrary, показанному в левой
части рис. 14.2, он не делает ничего особенного. Он просто представил
список доступных упражнений. Все щелчки мышью, которые делаются,
чтобы добавить упражнение, здесь также не обрабатывались – событие
передавалось компоненту workoutcreatorapp. Мы скоро это изменим и об-
работаем событие должным образом, но дело в том, что компонент exer-
ciselibrary почти ничего не делает. Он показан в приведенном ниже лис-
тинге. Длинный список упражнений мы сократили.

Листинг 14.8 Компонент exerciselibrary

import Template from './template.js';

export default class ExerciseLibrary extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render([
 { label: 'Jump Rope', type: 'cardio', thumb: '', time: 300, sets: 1},
 ... more exercises ...]);

 }

}

if (!customElements.get('wkout-exercise-lib')) {

 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

Хотя размещение этого огромного массива упражнений в качестве па-
раметра функции, которая отображает HTML-код, работает, это плохая
практика. Если вы хотите добавить другое упражнение или изменить то,
что у вас есть, как человек, не знакомый с проектом, узнает, где искать?
Почему этот список обязательно должен быть в этом конкретном компо-
ненте, а не в workoutcreatorapp или существовать как статический метод
чтения из компонента упражнения?

14.4.1 Модель–представление–контроллер
Ни один из этих компонентов особо не подходит для хранения подоб-
ных данных. Концепция такого шаблона проектирования, как MVC, за-
ключается в том, что данные приложения, пользовательский интерфейс
и управляющая логика разделяются на три основных компонента: мо-
дель, представление и контроллер. Хотя в этой книге мы не уделяли при-
стального внимания MVC, мы уже отделили представление от логики на-
шего контроллера.

Дадим определение этих терминов. Представление является презен-
тационным. Это визуальный аспект вашего приложения, компонента

Сокращенный список упражнений

378 Глава 14 События и поток данных приложения

или т. д. Учитывая, что мы имеем дело с веб-приложением, представле-
ние, вероятно, будет HTML-кодом и стилями. Мы использовали отдель-
ный импорт шаблонов в нашем недавнем веб-компоненте, который со-
держит только HTML-код и стили или представление.

Контроллер – это фрагмент посередине. Он будет обрабатывать всю
логику, находящуюся между вашей моделью и представлением. Он реа-
гирует на изменения в пользовательском интерфейсе, такие как нажатия
кнопок или изменения полей ввода, и обновляет модель соответствую-
щим образом. Модель в данном случае – просто наш список упражнений.

Модели обычно содержат набор данных, обеспечивают доступ к этим
данным или делают и то, и другое. Объект JSON может быть моделью
данных, но тогда разработчик должен знать, как взаимодействовать
с базовыми данными. Например, перечисление всех имен пользовате-
лей из гипотетической модели может показаться простой задачей, пока
вы не поймете, что объект JSON немного странный, и вам нужно будет
перебрать множество объектов и дочерних объектов, найти объект name,
а затем объединить свойства first name и last name. В этом случае модель
данных может предоставить вам хорошую функцию для этого. Или, если
данные должны поступать удаленно через REST API, модель данных мо-
жет обрабатывать сетевые запросы, чтобы вы получили именно то, что
вам нужно, посредством какой-нибудь асинхронной функции, которая
выглядит как простая намеченная функция.

MVC и шаблоны проектирования в целом не всегда (или обычно, по
моему опыту) так четко выражены. Мы используем их в качестве ссы-
лок для извлечения, придаем стимул архитектуре нашего приложения
и передаем эти идеи нашей команде, но никогда не придерживаемся их
любой ценой или в ущерб здравому смыслу.

Например, в этом компоненте наш контроллер не реагирует ни на
какие изменения пользовательского интерфейса (пока). Наши данные
тоже не меняются. Так что на самом деле в этом конкретном примере
контроллер не делает ничего особенного с видом или моделью, кроме
как передает его. Однако это не означает, что мы не можем черпать вдох-
новение из шаблона проектирования MVC. Мы можем удалить данные
из нашего контроллера или класса компонента для правильного разде-
ления.

Давайте создадим новую папку в нашем источнике проекта с именем
data. Здесь мы создадим новый JS-файл с именем exerciselibrary.js. На
рис. 14.3 показана новая структура проекта, а в листинге 14.9 приведена
новая модель данных exerciselibrary.js.

Листинг 14.9 Модель данных для библиотеки упражнений

export default {

 get all() {

 return [

 {

 label: 'Jump Rope',
 type: 'cardio',

Метод чтения для извлечения упражнений
Актуальный (сокращенный) список данных

379Разделение данных

 thumb: '',
 time: 300,
 sets: 1

 }

 ... другие упражнения ...
]

 }

}

Новая папка данных
с модулем модели данных

Рис. 14.3 Структура проекта с новой папкой data

Когда мы выделяем этот файл в новую папку data, становится со-
вершенно очевидно, куда отправится другой разработчик, чтобы ре-
дактировать упражнения. Также важно то, что мы могли бы расширять
компонент, добавляя новые функции по мере необходимости, и он не
превратился бы в спагетти-код из логики и данных. Мы также можем
свободно размещать что-то в файле данных, используя больше строк.
Поскольку файл теперь просто содержит данные, читабельность этих
данных здесь важнее, в отличие от того, что было ранее, когда настройка
компонентов и логика были наиболее важными вещами.

Вам, наверное, интересно, почему это должен быть JS. Почему это не
может быть файл в формате JSON, который мы загружаем во время вы-
полнения? Конечно же, это мог быть и он! Тем не менее мы уже немного
коснулись API, применяя метод чтения all(). Если бы у нас было намного
больше упражнений, мы могли бы использовать эту модель данных, что-

380 Глава 14 События и поток данных приложения

бы включить фильтры, поиск, разбиение на страницы и многое другое.
Кроме того, учитывая, что это не класс и он доступен глобально, мы мо-
жем легко использовать эту модель данных в качестве единого источни-
ка библиотеки упражнений из любой точки приложения.

Мы также можем включить функцию загрузки в этот модуль, чтобы
загрузить этот JSON-файл, или даже извлечь данные из API на базе REST.
Хотя мы не будем вводить здесь эти дополнительные функции, это от-
крывает нам путь для редактирования нашего плана тренировок.

14.4.2 Локальное хранилище
Хотя дополнительные функции могут быть полезны в библиотеке упраж-
нений, это выходит за рамки простой демонстрации. Чтобы заставить
наше приложение функционировать, это действительно может быть ста-
тический, неизменяемый список. С другой стороны, планировщик тре-
нировок требует дополнительного внимания.

Напомню, что планировщик тренировок – это редактируемый и на-
страиваемый список, содержащий персональную программу трени-
ровок. Учитывая, что эти данные представляют собой всего лишь оди-
ночную процедуру тренировки для всего приложения, это также может
быть единой централизованной моделью данных, доступной везде, как
и библиотека упражнений. Требуется дополнительное внимание, чтобы
обеспечить способы добавления, удаления и редактирования элементов,
а также сохранения всего списка, что позволяет перезагрузить ранее со-
храненный план после выхода из браузера.

Чтобы сделать возможным сохранение и загрузку, мы будем исполь-
зовать уже давно существующую функцию под названием локальное, или
интернет-, хранилище. Использовать его просто. Мы берем строку дан-
ных (да, только строки) и сохраняем ее, используя определенное имя или
ключ:

localStorage.setItem("mykey", "a string");

Чтение так же просто:

localStorage.getItem("mykey");

Любое применяемое имя ключа является уникальным для источни-
ка. В качестве примера можно привести сайт http://mysite.com, который
включает в себя протокол, имя домена и номер порта (порт по умолча-
нию, если тот не указан). Ключ с именем mykey будет возвращать другие
данные, если используется на http://mysite.com, в сравнении с http://an-
othersite.com. Это означает, что мы также можем перечислить все ключи
для текущего сайта и не получим обратно кучу ненужных нам вещей:

Object.keys(localStorage);

Учитывая это, давайте создадим модель данных, подобную библиоте-
ке тренировок, которая позволит нам сохранять, редактировать, загру-
жать, добавлять и удалять данные. В листинге 14.10 есть все эти функции,
но самое главное, он отслеживает текущий список базовых упражнений,

381Разделение данных

который используется в любом месте приложения, в котором он нужда-
ется. Скоро этот аспект станет очень важным, когда мы добавим возмож-
ность просмотра и воспроизведения тренировки.

Листинг 14.10 Центральная модель данных для плана тренировок

export default {

 get saved() {

 const savedplans = [];

 Object.keys(localStorage).forEach(function(key){

 savedplans.push(key);

 });

 return savedplans;

 },

 save(name) {

 localStorage.setItem(name, JSON.stringify(this._currentWorkout));
 },

 load(key) {

 this._currentWorkout = JSON.parse(localStorage.getItem(key));
 },

 edit(id, key, value) {
 let exercise;

 for (let c = 0; c < this._currentWorkout.length; c++) {

 if (id === this._currentWorkout[c].id) {

 exercise = this._currentWorkout[c];

 exercise[key] = value;

 }

 }

 },

 add(exercise) {

 if (!this._currentWorkout) {

 this._currentWorkout = [];

 }

 exercise.id = this.createID();

 this._currentWorkout.push(exercise);

 },

 remove(id) {

 if (!this._currentWorkout) { return; }

 for (let c = 0; c < this._currentWorkout.length; c++) {

 if (this._currentWorkout[c].id === id) {

 const deleted = this._currentWorkout.splice(c, 1);
 return;

 }

 }

 }

}

Давайте также добавим еще несколько удобных методов, которые по-
могут в других частях приложения.

Метод для получения списка всех
сохраненных планов упражнений

Сохраняем текущий план тренировок
в локальное хранилище

Загружаем план тренировок
из локального хранилища по имени

Редактируем конкретный план тренировок,
используя уникальный идентификатор для ссылки

Добавляем упражнение в план тренировок и присваиваем
ему уникальный идентификатор для последующего
использования

Удаляем упражнение из плана, на которое
указывает идентификатор

382 Глава 14 События и поток данных приложения

Листинг 14.10 Центральная модель данных для плана тренировок
(продолжение)

 clear() {

 this._currentWorkout = [];

 },

 get exercises() {

 if (!this._currentWorkout) {

 this._currentWorkout = [];

 }

 return this._currentWorkout;

 },

 createID() {

 return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/[xy]/g,
 function(c) {

 var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
 return v.toString(16);

 });

 },

get totalDuration() {

 let ttlTime = 0;

 for (let c = 0; c < this._currentWorkout.length; c++) {

 ttlTime += this.getDurationOfExercise(this._currentWorkout[c]);

 }

 return ttlTime;

},

formatTime(seconds) {

 return new Date(1000 * seconds).toISOString().substr(11, 8);
}

Предыдущие функции сохранения, редактирования, удаления и за-
грузки были довольно стандартным набором функций, которые помо-
гают управлять списком. Следующий набор функций в продолжении
листинга предназначен для добавления некоторых дополнительных
справочных функций, используемых как внутри, так и вне этой модели
данных.

Создание уникального идентификатора – важная вещь, потому что
при добавлении нескольких упражнений, которые могут быть абсолютно
одинакового типа, важно иметь возможность различать их при удале-
нии или редактировании определенного упражнения – таким образом
мы генерируем уникальный идентификатор каждый раз при добавле-
нии упражнения. Чтобы создать уникальный идентификатор, я просто
скопировал из сети код, который генерирует UUID (универсальные уни-
кальные идентификаторы). Эти идентификаторы имеют стандартный
формат и чрезвычайно высокую вероятность быть уникальными незави-
симо от того, сколько ID вы генерируете. Наличие такого длинного кода
и такого точного форматирования, вероятно, излишне для этого прило-
жения, но его достаточно легко скопировать и включить сюда.

Убираем все упражнения из плана

Метод чтения для списка плана текущих упражнений

Метод для создания уникального
идентификатора для каждого упражнения

Метод общей продолжительности списка
упражнений для отображения времени
в пользовательском интерфейсе

Форматируем количество секунд в более
удобный для чтения формат, включая часы,
минуты и секунды

383Разделение данных

Такие удобные методы, как получение общей продолжительности на-
бора упражнений и последовательное форматирование времени, также
важны для централизации. Нет, их не так сложно сделать, но они будут
сделаны совсем из разных мест. Важно не повторять подобный код, ина-
че разные реализации могут случайно стать непоследовательными, по-
скольку код со временем изменяется. Кроме того, если бы мы вдруг за-
хотели использовать другой формат времени, можно было бы изменить
его один раз в этом центральном месте.

Очистка данных кажется слишком простым процессом, для того что-
бы иметь здесь отдельную функцию, притом что все, что она делает, –
устанавливает данные в пустой массив. Но это дает возможность делать
более сложные вещи в функции clear, по мере того как ваше приложение
будет разрастаться, в то же время позволяя пользователям этой модели
данных выполнять те же действия.

Теперь, когда базовая модель данных создана, самое время улучшить
наш пользовательский интерфейс для взаимодействия с ней! Чтобы сэ-
кономить время и место, я скажу, что это отличная возможность, для
того чтобы самостоятельно добавить класс компонента, хотя если вы за-
стрянете, окончательный проект будет доступен в репозитории для этой
книги на сайте GitHub. Тем не менее о главных моментах я расскажу пря-
мо сейчас.

14.4.3 Подключение пользовательского интерфейса
к модели данных
Кнопки для сохранения, загрузки и очистки списка упражнений мож-
но добавить в HTML-код этого компонента, который находится в фай-
ле components/plan/template.js. Кроме того, мы можем даже отобразить
меню, чтобы позволить пользователю выбирать из доступных планов тре-
нировок в этом же файле шаблона. Импортируя модуль WorkoutPlanData
из '../../data/workoutplan.js', функция может генерировать все названия
сохраненных планов и помещать их в список для выбора пользователем,
как показано в приведенном ниже листинге.

Листинг 14.11 Функция для генерации сохраненных планов
из модели данных

renderSavedPlans() {

 const saved =

 WorkoutPlanData.saved;

 let options = '<option value="none">Load a saved plan</option>';

 for (let c = 0; c < saved.length; c++) {

 options += `<option value="${saved[c]}">${saved[c]}</option>`;
 }

 return `<select id="menu">

 ${options}
 </select>`;

},

Получаем список сохраненных названий
планов тренировок

Перебираем каждое название
и создаем опцию

Возвращаем окончательное
меню с опциями

384 Глава 14 События и поток данных приложения

Как только кнопки и меню станут доступны в HTML-коде, мы можем
добавить к ним слушателей событий в файле component/plan/plan.js. Им-
портируя модуль WorkoutPlanData из '../../data/workoutplan.js', мы можем
добавить события щелчка в приведенном ниже листинге.

Листинг 14.12 Слушатели событий клика для сохранения, загрузки
и очистки плана

this.dom.saveButton.addEventListener(

 'click', e => {
 WorkoutPlanData.save(this.dom.planName.innerText);
});

this.dom.clearButton.addEventListener(

 'click', e => {
 WorkoutPlanData.clear();

});

this.dom.menu.addEventListener('change', e => {
 WorkoutPlanData.load(this.dom.menu.value);

});

На рис. 14.4 показано состояние плана тренировок, после того как мы
добавили дополнительный пользовательский интерфейс, но что не из-
менилось, так это то, как упражнение добавляется в визуальный список.
При нажатии на упражнение оно добавляется к компоненту, но посколь-
ку модель новая, она не синхронизирована с визуальными элементами.
Например, при попытке удалить добавленное упражнение на самом
деле ничего не произойдет, потому что этого упражнения там нет. В этой
модели все различные части нашего приложения связаны друг с другом,
поэтому обязательно нужно сделать так, чтобы все проходило через это
центральное место!

Это легко исправить. Ранее компонент workoutcreatorapp (component/
workoutcreatorapp/workoutcreatorapp.js) содержал слушателя событий
клика и метод onClick, который использовал функцию add в компонен-
те плана тренировки, чтобы добавить новое упражнение. Еще в главе 10
я сказал, что это временно. Займемся этим прямо сейчас.

Давайте добавим этого слушателя кликов к компоненту exerciseli-
brary и на этот раз воспользуемся для этого моделью данных. Этот но-
вый компонент показан в приведенном ниже листинге (components/
exerciselibrary/exerciselibrary.js):

Листинг 14.13 Прослушивание событий кликов для упражнений
и добавление их в план

import Template from './template.js';

import Library from

'../../data/exerciselibrary.js';

import WorkoutPlanData from '../../data/workoutplan.js';

export default class ExerciseLibrary extends HTMLElement {

 constructor() {

Сохраняем текущий список
упражнений с определенным
названием, указанным
пользователем

Очищаем текущий список всех упражнений

Когда пользователь выбирает пункт
меню из списка сохраненных планов,

мы загружаем этот план

Импортируем модель данных «библиотека упражнений»

385Разделение данных

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render(Library.all);
 this.shadowRoot.addEventListener(
 'click', e => {
 if (e.target.constructor.name === 'Exercise') {

 WorkoutPlanData.add(

 e.target.serialize());

 }

 })

 }

}

if (!customElements.get('wkout-exercise-lib')) {

 customElements.define('wkout-exercise-lib', ExerciseLibrary);
}

Рис. 14.4 Дополнительный пользовательский интерфейс для управления списком планов

Давайте на секунду остановимся и поразмышляем над тем, что мы сде-
лали. Создание централизованной модели данных, к которой можно по-
лучить доступ откуда угодно, – это замечательно, но можно ли обойтись
без нее? Разумеется! У каждого компонента могут быть собственные дан-
ные, как и раньше. Вы хотите запросить все доступные упражнения в биб-
лиотеке? Обратитесь к компоненту exerciselibrary. Равно как и в случае со
списком плана тренировок и компонентом плана тренировок.

Пока что в нашем приложении, где есть несколько компонентов, про-
слушивать события и взаимодействовать с API каждого компонента

Прослушиваем события
кликов из библиотеки
упражнений, которые

всплывают к теневому
корню этого компонента

Сериализуем данные из упражнения,
по которому кликнули мышью,
и добавляем в модель данных

386 Глава 14 События и поток данных приложения

очень легко. На рис. 14.5 показано, с какой легкостью передаются дан-
ные между существующими компонентами благодаря своей природе
в иерархии DOM.

Компонент WorkoutCreatorApp

Компонент Plan напрямую контролирует
внутренние компоненты упражнения

Компонент ExerciseLibrary напрямую контролирует
внутренние компоненты упражнения

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

События всплывают
к родительским
компонентам

События всплывают
к родительским
компонентам

Рис. 14.5 Простой поток данных с иерархией существующих компонентов

Однако ситуация может и будет становиться сложной. Что, если бы
у нас был еще один компонент, которому нужны те же данные, но он не
является частью той же иерархии?

14.5 Воспроизведение упражнений
К чему создавать план тренировок, если его нельзя воспроизвести и вы-
полнить какое-нибудь упражнение? Нам нужен один последний ком-
понент, чтобы предложить режим воспроизведения упражнения. Как
показано на рис. 14.6, мы превратим плеер в модальное окно, которое
появляется при активации.

Поскольку этот компонент является элементом, который должен пе-
рекрывать все, что есть на странице, возможно, имеет смысл полностью
исключить его из существующего приложения. Наш новый файл index.
html всего проекта может выглядеть следующим образом.

Листинг 14.14 Файл index.html нового проекта с плеером
для воспроизведения тренировок

<html>

<head>

 <title>Workout Creator</title>

387Воспроизведение упражнений

 <script type="module"

 src="components/workoutcreatorapp/workoutcreatorapp.js"></script>

 <script type="module" src="components/playback/playback.js"></script>

 <link rel="stylesheet" type="text/css" href="main.css">

 <link href="https://fonts.googleapis.com/css?family=

 Roboto+Slab" rel="stylesheet">
</head>

<body>

 <wkout-creator-app></wkout-creator-app>

 <wkout-playback></wkout-playback>

</body>

</html>

Рис. 14.6 Модальное окно для воспроизведения тренировок

Внутренняя работа компонента воспроизведения зависит от возмож-
ности воспроизводить и приостанавливать весь список упражнений
последовательно, как это делается в списке музыкальных композиций.
Чтобы это работало, нужно добавить элементы управления воспроизве-
дением в модель данных плана тренировок (data/workoutplan.js). Эти до-
полнительные функции показаны в приведенном ниже листинге.

Листинг 14.15 Дополнительные методы поддержки воспроизведения

play() {

 if (!this._seconds) {

 this._seconds = 0;

 }

 this._timer = setInterval(() => {

 this._seconds ++;

 this.updateTime(this._seconds);

Определение компонента
воспроизведения

тренировок

Воспроизведение тренировки на странице

Начинаем воспроизведение с помощью таймера

388 Глава 14 События и поток данных приложения

 }, 1000);
},

stop() {

 this._seconds = 0;

 clearInterval(this._timer);

},

pause() {

 clearInterval(this._timer);

},

updateTime(seconds) {

 let exercise = this.getExerciseForTime(seconds);

 let exerciseChanged = false;
 if (this._currentExercise !== exercise) {

 this._currentExercise = exercise;

 exerciseChanged = true;
 }

},

Приведенные выше функции являются основными для обеспечения
элементов управления воспроизведением, чтобы запускать и воспроиз-
водить упражнение. При проигрывании запускается таймер, заставляя
более сложную функцию updateTime выяснить, какое упражнение вы-
полняется в настоящее время. Во время паузы таймер останавливается.
Функция stop останавливает таймер и сбрасывает время.

Далее нам нужно будет предоставить общие функциональные воз-
можности, чтобы получить базовую информацию в любом месте, где
она нужна. Даже функции updateTime нужно знать, какое упражнение
в данный момент выполняется в течение определенного времени. И эта
функция, в свою очередь, должна знать продолжительность конкретного
упражнения. Итак, давайте приступим.

Листинг 14.15 Дополнительные методы для поддержки
воспроизведения плана тренировок (продолжение)

getExerciseStartTime(exercise) {

 let time = 0;

 for (let c = 0; c < this._currentWorkout.length; c++) {

 if (this._currentWorkout[c].id === exercise.id) {

 return time;

 }

 time += this.getDurationOfExercise(this._currentWorkout[c]);

 }

},

getExerciseForTime(seconds) {

 let startTime = 0;

 for (let c = 0; c < this._currentWorkout.length; c++) {

 let duration = this.getDurationOfExercise(this._currentWorkout[c]);

 if (seconds <= startTime + duration && seconds >= startTime) {

 return this._currentWorkout[c];

Останавливаем воспроизведение, отключаем таймер
и устанавливаем текущее время на 0

Приостанавливаем воспроизведение
путем отключения таймера

Функция обратного вызова таймера для обновления
текущего времени и упражнения

Получаем общее время запуска
упражнения, в секундах

Функция для поиска упражнения
на определенное время

389Воспроизведение упражнений

 }

 startTime += duration;

 }

},

get currentExercise() {

 if (!this._currentExercise) {

 this._currentExercise = this._currentWorkout[0];

 }

 return this._currentExercise;

},

getDurationOfExercise(exercise) {

 if (exercise.time) {

 return exercise.time * exercise.sets;

 } else {

 return exercise.estimatedTimePerCount * exercise.count *
 exercise.sets;

 }

}

Обновив модель данных, чтобы разрешить воспроизведение, мы мо-
жем легко использовать эти функции из компонента воспроизведения.
Импортируя модель данных плана тренировок в этот компонент, можно
вызывать функции WorkoutPlan.play(), WorkoutPlan.pause() и Workout-Plan.
stop(). См. репозиторий для этой книги на сайте GitHub, чтобы найти
исходный код компонента целиком.

Учитывая размещение этого нового компонента в DOM – за предела-
ми основного приложения прямо на странице, – эта единая и глобальная
модель данных имеет большой смысл.

Теперь все стало немного сложнее! На рис. 14.7 показано, как нам нуж-
но прослушивать события и взаимодействовать с API-компонентами
с помощью проигрывателя тренировок, изображенного на рисунке.

Работать таким образом вполне возможно, но это определенно раз-
дражает. Без теневой модели DOM мы могли бы передавать события на
главную страницу, а затем использовать метод querySelector, чтобы вы-
брать правильный компонент для выполнения действий. При наличии
теневой модели DOM мы не можем использовать этот метод внутри до-
черних компонентов. Чтобы обойти это, можно было бы создать API для
каждого компонента, который должен дать доступ к своим дочерним
компонентам, что довольно ненадежно, потому что каждый раз, когда
мы выполняем реорганизацию в DOM для внесения визуальных измене-
ний, мы следим за тем, чтобы API соответствовал новой структуре DOM.

Для этого варианта использования и аналогичных сценариев модель
глобальных данных может стать неплохим решением! Модель данных
определенно не обязательно должна быть глобальной. У каждого компо-
нента может быть собственная модель данных, если это имеет смысл для
вашего приложения. До сих пор в простых упражнениях, приведенных
в этой книге, не было настоятельной необходимости отделять данные,
как сейчас, но, безусловно, ваши компоненты могут быть намного более

Метод чтения для текущего упражнения

Получаем продолжительность упражнения,
передаваемую в качестве параметра

390 Глава 14 События и поток данных приложения

сложнее, и именно тогда, в зависимости от вашего проекта, может иметь
смысл действительно начать применять MVC или подобный шаблон на
уровне компонентов.

Компонент WorkoutCreatorApp

Компонент Plan напрямую контролирует
внутренние компоненты упражнения

Компонент ExerciseLibrary напрямую контролирует
внутренние компоненты упражнения

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

Компонент Exercise

События всплывают
к родительским
компонентам

События всплывают
к родительским
компонентам

Компонент Playback

Эти компоненты должны
взаимодействовать друг
с другом, несмотря на то
что в DOM они отключены

Рис. 14.7 Взаимодействие компонентов без глобальной модели данных после добавления
проигрывателя

Как я уже говорил ранее в этой главе, использование более надежных
решений, таких как Redux или MobX, также может быть отличным вари-
антом. Как и в случае с любым решением по типу «сделай сам», по мере
того как у вас появляется потребность в большем количестве функций,
становится все больше смысла использовать решения, проверенные на
практике. Однако в нашем простом примере модели данных почти до-
статочно.

14.6 Передача событий с помощью шины
Обратите внимание: я сказал, что модели данных почти достаточно.
Конечно, мы можем напрямую взаимодействовать с моделью данных,
но возьмем, к примеру, воспроизведение. Мы можем вызвать функцию
WorkoutPlan.play(), но как только включится таймер и начнется воспро-
изведение, истекшие секунды изменятся, и текущее упражнение будет
меняться очень часто. Это не просто воспроизведение, а почти каждый
аспект приложения. Изменение продолжительности одного упражнения

391Передача событий с помощью шины

должно привести к обновлению общего времени вашей тренировки, так
же как добавление и удаление упражнений из плана. Список событий,
которые мы должны слушать, длинный.

Ранее в данной главе мы обсуждали передачу пользовательских со-
бытий через DOM. Опять же, до появления плеера, все в принципе было
в порядке. Так получилось в нашем приложении, что события, которые
нам нужно было слушать, всплывали там, где они были нам нужны, по-
тому что иерархия DOM, которой мы следовали, соответствовала необ-
ходимому нам потоку данных.

С появлением плеера все усложнилось. Нам нужно было, чтобы все
события всплывали вплоть до страницы index.html и каким-то образом
передавались своему компоненту, поскольку события не передаются до-
черним элементам. Возможно, создание API для плеера тренировок по-
зволит достичь этой цели.

В качестве альтернативы можно сделать нечто похожее на нашу гло-
бальную модель данных. Шина событий – это единый глобальный объ-
ект для передачи событий по всему приложению. Кроме того, мы можем
использовать те же пользовательские события, которые уже применяли.
Вместо вызова dispatch-Event(mycustomevent) из компонента мы можем
вызвать EventBus.dispatchEvent(Mycustomevent).

Шине событий, как минимум, нужен способ подписки на события
и способ их отправки. В приведенном ниже листинге показаны оба этих
способа в новом модуле, сохраненном в файле data/ventbus.js.

Листинг 14.16 Простая шина событий

export default {

 addEventListener(type, cb) {
 if (!this._listeners) {

 this._listeners = [];

 }

 let listener = { type: type, callback: cb };
 this._listeners.push(listener);

 return listener;

 },
 dispatchEvent(ce) {

 this._listeners.forEach(function(l) {

 if (ce.type === l.type) {

 l.callback.apply(this, [ce]);
 }

 });

 }

}

Имена функций, которые я использовал, addEventListener и dispatch-
Event, должны выглядеть знакомо. У них те же имена, что и у методов,
которые вы применяли бы для выполнения тех же действий с DOM. Ис-
пользуются те же параметры и возвращаемые значения. Несмотря на то
что это нестандартное решение, я думаю, что важно соблюдать после-

Добавляем слушателя событий; передаем
тип события и функцию обратного вызова

Добавляем данные слушателя в массив
для ссылки при отправке событий

Перебираем всех слушателей

Если тип пользовательского события
совпадает с типом слушателя, вызываем
функцию и передаем событие

392 Глава 14 События и поток данных приложения

довательность при применении шины событий или событий, которые
происходят в DOM; просто так намного легче запомнить использование.
В приведенном ниже листинге показан фрагмент кода из плеера трени-
ровок, в который добавляется слушатель событий после импорта модуля
EventBus.

Листинг 14.17 Добавляем слушателя событий в плеер
для получения обновлений временных показателей

EventBus.addEventListener(

 'onPlaylistTimeUpdate', e => {
 if (e.detail.exercise) {

 if (e.detail.exerciseChanged) {
 this.dom.currentExercise.innerHTML = e.detail.exercise.label;

 this.dom.window.style.backgroundImage =

 `url("${e.detail.exercise.thumb}")`;
 }

 this.dom.timer.innerHTML =

 Template.renderTime(e.detail.time, e.detail.exercise);
 }

});

Конечно, событие нужно отправить откуда-то. Учитывая, что вся логи-
ка воспроизведения находится в модели данных плана тренировок, при-
веденный ниже листинг показывает, что она добавлена туда.

Листинг 14.18 Отправка событий в шину событий из модели данных
плана тренировок

play() {

 if (!this._seconds) {

 this._seconds = 0;

 }

 this._timer = setInterval(() => {

 this._seconds ++;

 this.updateTime(this._seconds);

 }, 1000);
},

updateTime(seconds) {

 let exercise =

 this.getExerciseForTime(seconds);

 let exerciseChanged = false;
 if (this._currentExercise !== exercise) {

 this._currentExercise = exercise;

 exerciseChanged = true;
 }

 let ce = new CustomEvent(
 'onPlaylistTimeUpdate', {
 detail: {

 exercise: this._currentExercise,
 exerciseChanged: exerciseChanged,

Добавляем
слушателя
событий
в шину
событий

Просматриваем пользовательское свойство
для event.detail, чтобы увидеть, изменилось ли
упражнение, и обновляем показатели времени

Обновляем средство индикации
времени в компоненте

Вызываем функцию таймера для внутреннего
обновления прошедших секунд

Вычисляем текущее упражнение
и изменилось ли оно

Создаем событие и отправляем его
из шины событий

393Передача событий с помощью шины

 exerciseIndex: this._currentWorkout.indexOf(this._currentExercise),
 time: seconds,
 }});

 EventBus.dispatchEvent(ce);

},

Мы не будем переписывать здесь все приложение, но в репозитории
для этой книги на сайте GitHub будут показаны все события, которые
были добавлены. Помимо событий, связанных с пользовательским ин-
терфейсом, таких как щелчки мышью, приложение подверглось рефак-
торингу, чтобы использовать шину событий для передачи всех событий.
Однако у меня есть одно последнее улучшение, связанное с типами со-
бытий.

14.6.1 Статические методы чтения и типы событий
В предыдущем примере, отправляя временные обновления, тип события
использовал строку. Точная строка выглядела так: 'onPlaylistTimeUpdate'.
Имя наподобие onUpdate тоже подойдет, но поскольку сложность вашего
приложения растет, а через шину или даже просто DOM проходит мно-
жество событий, поддерживать уникальность своих типов пользователь-
ских событий становится все труднее. Если ссылаться на крайний при-
мер, то давать название вроде change немного опасно, потому что это
нативное событие DOM, которое регулярно происходит по окончании
изменения значения элемента формы; поэтому ваша функция обрат-
ного вызова может прийти в замешательство относительно того, какое
событие она на самом деле получает, если вы назовете свой тип пользо-
вательского события change.

Точно так же у вас может быть несколько пользовательских событий,
которые происходят, когда в приложении что-то обновляется. Можно
просто назвать их все onUpdate, и это звучит заманчиво, но это также при-
ведет к путанице. Вот почему полезно иметь типы событий, которые не-
много длиннее и более конкретные.

С другой стороны, возможно, не имеет значения, что ваш тип события
дифференцирован. Прослушивание change можно осуществлять незави-
симо от того, пользовательское это событие или нативное, и, просто зная
элемент, вызвавший событие, используя event.current-Target или event.
target, можно получить всю необходимую информацию. В любом случае,
типы событий могут быть неспецифичными, как этот, или настолько
специфичными, насколько это помогает вашему варианту использо-
вания. Помните, что это просто строки, которые представляют тип со-
бытия, а не сами функции, поэтому они могут быть настолько гибкими,
насколько вам нужно, и при этом не нужно беспокоиться по поводу API.

Наличие уникальных событий, которые не приводят к путанице, –
именно и есть та причина, по которой мы использовали имя onPlay-
listTimeUpdate. Проблема с такими более длинными именами событий
заключается в том, что при работе с компонентами может быть труд-
но запомнить, как называется каждое событие. Хуже того, легко можно

394 Глава 14 События и поток данных приложения

сделать ошибку в написании! Проблема с неправильным написанием
заключается в том, что события не выдают ошибку. Предполагаемый
слушатель просто не будет вызван, потому что вы отправляете или про-
слушиваете не то событие.

Мы познакомились со статическими методами чтения в главе 3, когда
обсуждали функцию веб-ком по нен тов observedAttributes. Пользователь-
ские события – еще одно идеальное место для их использования. По-
скольку модель данных – это не класс и уже является статической, мы
можем просто использовать здесь простой метод чтения:

get PLAYLIST_UPDATE_EVENT() { return 'onPlaylistTimeUpdate'; },

Если бы это был класс, как класс компонента, из которого мы отправ-
ляем пользовательские события, можно было бы пометить его как ста-
тический:

static get PLAYLIST_UPDATE_EVENT() {return onPlaylistTimeUpdate '; },

Теперь, отправляя события или прослушивая их, мы можем избежать
строки с опечатками. Слушатель может измениться на

let ce = new CustomEvent(WorkoutPlanData.PLAYLIST_UPDATE_EVENT, {

Добавить слушателей можно аналогичным способом:

EventBus.addEventListener(WorkoutPlanData.PLAYLIST_UPDATE_EVENT

Поскольку эти методы чтения являются статическими, экземпля-
ру класса или компонента не нужно находиться нигде в поле зрения,
чтобы иметь возможность использовать геттер. Эти типы событий до-
ступны глобально. Теперь, если вы сделаете опечатку, появится ошибка
с предупреж дением. Более того, если вы используете интегрированную
среду разработки, такую как VS Code или WebStorm, редактор кода авто-
матически предложит вам имя статического метода чтения, чтобы вы
с самого начала не сделали ошибку.

14.6.2 Шаблоны проектирования как рекомендация
Не могу не подчеркнуть, что шаблоны проектирования, такие как шина
событий, – всего лишь рекомендация. Если они помогут вашему при-
ложению, отлично! Если нет, не используйте их. Всегда существует спор
относительно существующих и старых шаблонов приложений и интерес
к ним. И эти дебаты могут разгораться. Новые и популярные фрейм-
ворки имеют тенденцию усиливать определенные шаблоны. Некоторые
разработчики могут работать с новыми для них способами и рассматри-
вать их как единственный способ решения проблемы.

Подобно тому, как эти шаблоны не являются окончательным отве-
том на вопрос, шаблоны, представленные в этой главе, также не явля-
ются окончательным решением. Например, чрезмерное использование
шины событий также может повредить, что может вызвать неразбериху
в вашем приложении. Передача событий пользовательского интерфейса
посредством глобальной шины, которые имеют отношение только к ва-

395Резюме

шему компоненту, может серьезно повлиять на его способность к со-
вместному использованию и на то, насколько он может функциониро-
вать отдельно.

Существуют и ресурсы получше, в которых обсуждаются проектиро-
вание приложений и шаблоны. Наша цель здесь – просто показать, что
веб-ком по нен ты не ограничены по сравнению с другими современными
фреймворками. Не все функции встроены в браузер, но существует бес-
численное множество JS-библиотек, которые могут помочь – если прос-
того пользовательского решения, подобного тому, что изложено в этой
главе, недостаточно.

Резюме
Из этой главы вы узнали:

� как создавать пользовательские события и чем они отличаются от
нативных событий при прохождении через DOM, в особенности че-
рез теневую модель DOM;

� как работать с синхронизацией веб-ком по нен тов, прослушивая,
когда они готовы или определены;

� как использовать статические методы чтения, чтобы избежать опе-
чаток при работе с пользовательскими событиями;

� о некоторых шаблонах проектирования, с акцентом на работу с па-
радигмой MVC.

15
Сокрытие сложностей

Эта глава охватывает следующие темы:
� использование фреймворка A-Frame для создания сцены с эф-

фектом присутствия с поддержкой виртуальной реальности;
� использование компонента model-viewer от компании Google для

предварительного просмотра 3D-моделей на экране и в допол-
ненной реальности;

� управление трансляцией с камеры с помощью WebGL;
� использование фреймворка Babylon.js для создания компонента

сцены в 3D-формате;
� отслеживание движения рук с помощью библиотек Tensorflow.js

и handtrack.js.

Хотя эта книга подходит к концу, наше путешествие по веб-компонентам
в действительности только начинается. Потребовалось некоторое время,
чтобы создать основу для них, и еще больше времени, чтобы получить
поддержку со стороны браузеров, но тем не менее последний из совре-
менных браузеров (Microsoft Edge) скоро будет обеспечивать их полную
поддержку.

Проделанный путь был порой чреват препятствиями и тупиками. Мы
были свидетелями того, как некоторые функции появляются и исчезают.

397Взгляд в будущее веб-компонентов

Среди устаревших – HTML-импорт, а также Polymer, первая библиотека
веб-ком по нен тов. Я уверен, что это не было совпадением, поскольку эта
библиотека находилась под сильным влиянием HTML-импорта как от-
правной точки для каждого нового веб-компонента.

Было грустно видеть, что HTML-импорт уходит, но именно так и про-
исходит при работе над веб-стандартом при наличии заинтересован-
ных сторон от разных производителей браузеров. Как бы я ни любил JS-
модули и шаблонные литералы для хранения HTML-кода и стилей, это не
идеальное решение, которое подойдет всем. Для меня как разработчика
это здорово, но не всем нравится HTML-код и стили внутри JS-кода.

15.1 Взгляд в будущее веб-компонентов
На протяжении долгих лет мы могли делать удивительные вещи в интер-
нете, применяя лишь HTML-код и стили. Требование использовать JS как
способ создания визуальных аспектов в компоненте – немного больное
место. Вот почему я рад, что команда Chrome объявила о своем намере-
нии выпустить модули HTML и CSS!

Я лично чувствую, что эти новые типы модулей станут одним из не-
многих больших шагов для веб-ком по нен тов. Возможность создания
небольшого фрагмента HTML- и CSS-кода за пределами вашего более
крупного приложения и сложности вашего веб-компонента позволит
значительно расширить возможности разработки веб-ком по нен тов для
тех, кто может быть не в курсе последних технологий JS. Это даст воз-
можность лучше сосредоточиться на структуре и стиле компонентов,
оставляя логику и интерактивность отдельной задачей.

Если вы похожи на меня и вам одинаково нравится HTML, CSS и JS,
возможно, для вас это не имеет большого значения. Но позволить людям
сосредоточиться на том, что у них хорошо получается, и использовать
свои индивидуальные таланты для создания того же компонента в ка-
честве команды будет удивительно!

Модули CSS могут быть еще важнее. Разрешение импорта небольших
таблиц стилей в компоненты начинает учитывать то, что я считаю са-
мым острым вопросом для компонентов с поддержкой Shadow DOM. Без
стилей, способных пробить теневую модель DOM, годы рабочих процес-
сов прошли впустую. Самым большим рабочим процессом CSS, которого
нам не хватает, является концепция общей дизайн-системы, способной
стилизовать ваш компонент или набор компонентов.

Дизайн-системы уже являются достаточно модульными в своем ис-
ходном коде. Только после сборки они становятся монолитным или по-
лумонолитным CSS-файлом, предназначенным для стилизации всего
приложения сверху донизу. Поскольку модули CSS входят в наши рабо-
чие процессы, возможно, мы будем напрямую полагаться на крошечные
модульные файлы с исходным кодом. Соедините это с (уже выпущен-
ными в Chrome) теневыми фрагментами и теневыми темами, которые
скоро появятся, и в ближайшем будущем у нас может быть чрезвычайно

398 Глава 15 Сокрытие сложностей

надежное решение, которое создает еще лучший рабочий процесс для
дизайн-систем в целом.

Я прогнозирую, что дизайн-системы и темизация приложений с ис-
пользованием этих новых функций станут еще одним очередным пере-
ломным моментом для веб-ком по нен тов. Хотя на самом деле это при-
несет пользу не только им. Учитывая, что большинство современных
фреймворков в той или иной форме работают с компонентами (некото-
рые даже используют веб-ком по нен ты), эти функции могут быть одина-
ково актуальны для всех из них.

Это и правду фантастическая новость для всех. Мы уже наблюдаем тен-
денцию к использованию решений, не зависящих от фреймворка. Redux,
MobX, lit-html и многие другие библиотеки решают небольшую целевую
проблему. Хотя Redux популярна среди пользователей React, а lit-html –
среди пользователей LitElement, эти решения можно использовать, где
угодно. Забегая вперед, я вижу, что это будет продолжаться. Мы все мо-
жем использовать одни и те же решения для схожих проблем, независимо
от того, на каком фреймворке (или его отсутствии) построен наш проект.
Более того, сами веб-ком по нен ты являются независимыми и могут ис-
пользоваться в других фреймворках, как и любой иной элемент.

Если говорить о LitElement, то эта библиотека, похоже, завоевывает
популярность. Совсем недавно появилась версия 1.0, готовая для про-
мышленной эксплуатации… или, скорее, версия 2.0. И уже было заяв-
лено, что пакет lit-element работает с NPM (www.npmjs.com/package/
lit-element). Хотя разработчики из команды Polymer сумели «умыкнуть»
название, оставшееся от предыдущего автора, они также хотели избе-
жать путаницы, чтобы их версию 1.0 не путали с предыдущим проектом.
Итак, LitElement была наконец выпущена как версия 2.0, пропуская вер-
сию 1.0. Не говоря о том, что Ionic уже некоторое время использует ком-
пилятор StencilJS. Stencil имеет собственную экосистему, но генерирует
нативный веб-ком по нент без зависимостей.

Смотреть в будущее может быть захватывающим, но также важно по-
нимать, что мы можем сделать прямо сейчас и как будущие изменения
в веб-компонентах будут влиять на нас по мере продвижения вперед. Вот
что является захватывающим. Похоже, что фундаментальные основы
веб-ком по нен тов в ближайшее время не изменятся. Все, что изложено
в этой книге, должно оставаться актуальным на протяжении долгих лет.

Вещи, которые изменятся, – это не фундаментальные строительные
блоки; вместо этого изменения будут приходить с рабочим процессом
разработчика, когда речь идет о работе с макетом, стилями, шаблонами
проектирования приложения и т. д. Тем не менее все эти детали не будут
видны разработчикам, которые просто хотят использовать ваш компо-
нент. Даже если вы будете использовать устаревшие методы 2019 года
в своем компоненте в 2025 году, он все равно должен работать, потому
что сложности внутри вашего компонента не очень важны для использо-
вания вне вашего компонента.

В феврале 2019 года я услышал статистику от команды Polymer, каса-
ющуюся использования веб-ком по нен тов. Согласно этой статистике при

3993D и смешанная реальность

просмотре страниц в Chrome в 10 % из них так или иначе используются
веб-ком по нен ты. Эта цифра подчеркивает для меня самый большой по-
сыл и то, почему я такой большой поклонник веб-ком по нен тов.

Чтобы было понятно: 10 % – это слегка удивительный показатель, если
честно. Это означает, что мы все, вероятно, используем веб-ком по нен ты
и даже не знаем об этом. Веб-компонент – это просто еще один элемент
на странице. Они удивительно просты в использовании, но внутри ком-
поненты могут делать невероятно сложные вещи!

Скрытая сложность веб-ком по нен тов – это именно то, что так будо-
ражит меня. Мы можем обернуть нечто потенциально безумно сложное
и представить его пользователям в виде элемента с хорошо документи-
рованным API или несколькими атрибутами. Инкапсуляция, обеспечи-
ваемая теневой моделью DOM, позволяет нам спать по ночам, зная, что,
несмотря на все сложности, лежащие внутри, внешняя страница не при-
несет никаких сюрпризов.

Справедливости ради стоит сказать, что компоненты в любом совре-
менном фреймворке могут предлагать это. Когда появилась первая вер-
сия Angular, я написал несколько изящных «директив», по сути, компо-
нентов того времени. Проблема в том, что когда Angular версии 1 вышел
из моды, компоненты и директивы, которые у меня были, просто пере-
стали быть актуальными, и мне пришлось переписывать их, если я хотел
продолжать использовать тот же функционал.

Итак, понятие скрытых сложностей – тема, которой я бы хотел закон-
чить эту книгу. Созданные нами проекты и компоненты были интерес-
ными, но я приложил все усилия, чтобы они были небольшими, чтобы
мы могли обсудить большую часть, если не весь код, на страницах этой
книги. Однако теперь я бы хотел раздвинуть эти искусственные границы
и исследовать еще несколько тем!

15.2 3D и смешанная реальность
Я не уверен, что сегодня в интернете есть что-то более сложное, чем 3D
и смешанная реальность! Держу пари, мы все знакомы с 3D. Используя
3D в реальном времени, мы можем смотреть на объект или сцену под лю-
бым углом. До недавнего времени большинству из нас удавалось взаи-
модействовать с 3D-сценой только с помощью традиционных модаль-
ностей пользовательского интерфейса, возможно, используя клавиши
со стрелками для перемещения по игре или мышь для перетаскивания
и вращения объекта, чтобы смотреть на него под разным углом.

Ситуация стала меняться в 2013 году с появлением виртуальной ре-
альности. Я был одним из тех, кто участвовал в кампании, целью которой
являлось финансирование проекта по созданию видеоочков Oculus Rift
DK1 на сайте Kickstarter, и именно в 2013 году появились первые ком-
плекты. Кроме того, примерно в это же время можно было приобрести
небольшое недорогое картонное приспособление, которое удерживало
ваш телефон прямо перед глазами, занимая всю область просмотра.

400 Глава 15 Сокрытие сложностей

Кроме того, поскольку вы уже пристегнули телефон к лицу, можно
было отслеживать относительное движение вашей головы. Когда вы
смотрите вокруг в реальном мире, эту информацию можно отправить
в 3D-сцену. Поэтому теперь, вместо того чтобы оглядываться, проводя
мышью по плоскому интерфейсу, как мы это делали во времена шутеров
от первого лица, в видеоиграх 90-х, ваш собственный взгляд и голова –
это то, как вы смотрите вокруг.

Как такое возможно? Как телефон узнает о движениях головы? Сейчас
акселерометр, гироскоп и магнитометр являются стандартными датчи-
ками для любого телефона. Акселерометр определяет, насколько быстро
ваш телефон движется в определенном направлении, а гироскоп может
определить, насколько быстро ваш телефон вращается в определенном
направлении. Магнитометр – это датчик, чаще всего известный как ком-
пас. Он может определять направление вашего телефона в пространстве
с точки зрения сторон света: север, восток, запад или юг. Алгоритмы
сбора и обобщения данных от сенсоров объединяют все их воедино и мо-
гут точно определить движения вашей головы! В сочетании с 3D-сценой
с разделенным экраном, в которой левая точка обзора слегка смещается
вправо, а затем наводится на глаза, вы получаете эффект трехмерного
стереоизображения, словно на самом деле находитесь в этом виртуаль-
ном мире.

Вам, наверное, интересно, какое отношение это имеет к интернету
и веб-компонентам. Все эти возможности какое-то время были частью
сети в виде отдельных частей, даже без виртуальной реальности, и веб-
ком по нен ты определенно могут инкапсулировать и скрывать эти слож-
ности.

Оставляя в стороне огромное количество математических вычисле-
ний и кода для слежения за движениями головы с использованием сбо-
ра и обобщения данных от датчиков, 3D – в целом очень сложная тема!
Хотя трехмерная графика с использованием обычного кода на вашем
процессоре возможна, она довольно медленная. Вот почему при любой
современной и серьезной работе, связанной с 3D в реальном времени,
используется графический процессор. В интернете единственный спо-
соб использовать графический процессор – это WebGL.

WebGL – это невероятно низкоуровневый код, и это не JavaScript.
В приведенном ниже листинге показан пример шейдера WebGL, с по-
мощью которого можно взять изображение и сделать радиальное зату-
хание до черного цвета по центру.

Листинг 15.1 Шейдер WebGL

attribute vec2 a_position;

attribute vec2 a_texCoord;
uniform vec2 u_resolution;

varying vec2 v_texCoord;
uniform vec2 offset;

void main() {

Входящие и общие переменные,
помогающие вычислить точки вершины

Основная функция для расчета и установки
вершин на основе размера холста

4013D и смешанная реальность

 vec2 zeroToOne = a_position / u_resolution;

 vec2 zeroToTwo = zeroToOne * 2.0;

 vec2 clipSpace = zeroToTwo – 1.0 + offset;

 gl_Position = vec4(clipSpace.x * 1.0, clipSpace.y * -1.0, 0.0, 1.0);
 v_texCoord = a_texCoord;
}

Обратите внимание, что вышеупомянутый шейдер является так на-
зываемым «вершинным» шейдером. Вершины активно используются
в трехмерной модели в качестве взаимосвязанных точек в пространстве.
Для нас, поскольку у нас все очень просто и мы используем это только
для манипулирования пикселями, наши точки в пространстве – просто
квадрат с точным размером нашего холста.

Приведенный ниже фрагментный шейдер дополняет вершинный
шейдер. Если раньше мы рисовали вершины и создавали нечто вроде
плоского холста в контексте WebGL, то теперь мы можем настроить каж-
дый цвет пикселя, который рисуем на этом холсте.

Листинг 15.1 Шейдер WebGL (продолжение)

precision mediump float;

varying vec2 v_texCoord;

uniform sampler2D u_image0;

void main(void) {

 vec4 sourcePixel =

 ➥texture2D(u_image0, v_texCoord);
 float multiply = 1.0;

 vec2 center = vec2(0.5, 0.5);

 float dist = distance(v_texCoord, center);
 gl_FragColor = (0.6-dist) * sourcePixel;
}

Конечно, такой простой эффект очень далек от сцены, наполненной
трехмерными моделями. Тем не менее предыдущий код является непло-
хим примером того, с чем вы должны работать для визуализации своей
графики. Здесь задействовано много 3D-математики, и управляет всем
этим HTML-элемент <canvas> и JavaScript. Учитывая всю эту сложность,
обычно используется трехмерная библиотека более высокого уровня, на-
пример Three.js (https://threejs.org) или Babylon.js (www.babylonjs.com).
По крайней мере, при наличии этих библиотек вам не придется обраба-
тывать рендеринг графики, писать шейдеры, которые намного сложнее,
чем те, что приводятся в листинге 15.1. Вместо этого вы можете работать
с такими виртуальными объектами, как сферы, кубы, и любыми трех-
мерными моделями, которые вы загружаете.

Но даже тогда перемещать вещи в трехмерном пространстве по-
прежнему сложно! Мы имеем дело с матрицами преобразования, ква-
тернионами и многим другим. Веб-компоненты могут помочь вам при
работе с конкретными вещами, чтобы скрыть всю эту безумную слож-
ность, в зависимости от вашего варианта использования.

Координата пикселя, над которым мы работаем

Поступающая текстура (как на фотографии,
которую мы предоставили шейдеру)

Получаем пиксель из текстуры в текущем
местоположении пикселя

Устанавливаем темноту пикселя
в зависимости от того, как далеко
он находится от центра

402 Глава 15 Сокрытие сложностей

15.2.1 A-Frame
Говоря технически, A-Frame не использует надлежащие веб-ком по нен-
ты. Если посмотреть на его исходный код, можно понять, насколько дей-
ствительно это утверждение с технической точки зрения. Однако я хочу
рассказать о нем как о необычном, но чрезвычайно актуальном случае
использования веб-компонента.

На сайте A-Frame (https://aframe.io) он описывается как «веб-фрейм-
ворк для создания виртуальной реальности». Здорово, но для меня это
нечто большее. Я думаю, что мощь и привлекательность A-Frame заклю-
чаются в том, что он позволяет разработчикам и не разработчикам соз-
давать 3D-сцены в интернете, которые также работают в виртуальной
реальности.

Причина, по которой это так легко делать с помощью A-Frame, заклю-
чается в том, что на самом деле вы не программируете, когда приступае-
те к работе с ним. Эта библиотека позволяет создавать сцены с тегами
на HTML-странице. Взять, к примеру, приведенный ниже листинг. Это
простая 3D-сцена в стиле «Привет, мир», которая есть на сайте AFrame
в качестве первого примера.

Листинг 15.2 Cцена Hello WebVR

<html>

<head>

 <title>Hello, WebVR! • A-Frame</title>
 <script src="aframe.min.js"></script>

</head>

<body>

<a-scene background="color: #ECECEC">
 <a-box position="-1 0.5 -3" rotation="0 45 0" color="#4CC3D9" shadow>
 </a-box>

 <a-sphere position="0 1.25 -5" radius="1.25" color="#EF2D5E" shadow>

 </a-sphere>

 <a-cylinder position="1 0.75 -3" radius="0.5" height="1.5" color=
 "#FFC65D" shadow></a-cylinder>
 <a-plane position="0 0 -4" rotation="-90 0 0" width="4" height="4"
 color="#7BC8A4" shadow></a-plane>
</a-scene>

</body>

</html>

Этот небольшой фрагмент HTML-кода дает нам целую 3D-сцену! На
рис. 15.1 показано все, что отображается в браузере. Кроме того, можно
увидеть маленькую иконку в виде очков виртуальной реальности в пра-
вом нижнем углу.

При нажатии на этот значок вы переходите в режим погружения. На
настольном компьютере это не так интересно – вы просто переходите
в полноэкранный режим. На телефоне становится интереснее. Обычно
при входе в режим погружения A-Frame разделяет экран, чтобы показы-
вать немного разное содержимое слева и справа для стереоскопического

Подключаем библиотеку A-Frame

Элемент, который содержит
всю трехмерную сцену целиком

Пример
3D-объекта;
a-box/куб

4033D и смешанная реальность

изображения. Также здесь вы столкнетесь с искажением – может пока-
заться, что это чем-то напоминает очки Google Cardboard, где объективы
увеличивают обзор, чтобы охватить все ваше поле зрения, когда телефон
находится в нескольких миллиметрах от ваших глаз.

Элемент a-sphere

Элемент
a-box

Элемент a-plane

Элемент a-cylinder

Кнопка режима погружения

Рис. 15.1 Пример сцены в A-Frame

Если на вашем телефоне установлена платформа Daydream от компа-
нии Google, режим погружения становится еще интереснее, ведь теперь
поддерживается Bluetooth-контроллер Daydream. Daydream – это плат-
форма виртуальной реальности, разработанная Google. Она работает
на смартфонах с сопутствующей гарнитурой и контроллером. Здесь по
умолчанию при входе в режим погружения Daydream запускается авто-
матически.

Интернет-браузеры для настольных компьютеров также поддер-
живаются, равно как и новые браузеры для настольных компьютеров,
ориентированные на виртуальную реальность, такие как Supermedium
и Firefox Reality. Это немного сложнее, чем телефон, потому что теперь
ваш браузер должен поддерживать ряд VR-гарнитур и контроллеров. Но
все же режим погружения здесь работает аналогичным образом, исполь-
зуя реальную гарнитуру и контроллеры, такие как Oculus Rift, Oculus Go,
HTC Vive и Vive Focus.

WebVR – стандарт, который уже можно считать устаревшим. По сути,
WebVR определяет API, написанный на JavaScript, который реализуют
браузеры, чтобы отображать виртуальную реальность и принимать дан-
ные о расположении и повороте, сообщая, где находятся ваши контрол-
леры и гарнитура. Учитывая новый ажиотаж вокруг дополненной реаль-
ности, следующая версия WebVR теперь называется WebXR. Она должна

404 Глава 15 Сокрытие сложностей

включать в себя как можно больше разных способов погружения. Это
напоминает ситуацию с веб-ком по нен та ми, которая была несколько
лет назад. Некоторые компании-разработчики браузеров пошли даль-
ше и попытались реализовать то, что, по их мнению, будет отличным
стандартом. Эксперименты с WebVR, проведенные сообществом веб-
разработчиков, доказали, что что-то работает, а что-то нет, и теперь мы
вступаем в новый раунд стандартов с WebXR.

Какое отношение A-Frame имеет к веб-компонентам? Что же, давай-
те вернемся к разметке. Объявление 3D-сцены выполняется довольно
прос то с помощью того, что похоже на веб-ком по нент a-scene:

<a-scene background="color: #ECECEC"></a-scene>

При открытии инспектора DOM в инструментах разработки, как по-
казано на рис. 15.2, видно, что этот компонент включает в себя элементы
сцены, а также тег <canvas> для рендеринга трехмерной сцены. Интерес-
но, что такие элементы, как <a-box>, которые обозначают куб или прямо-
угольник в трехмерной сцене, имеют нулевую высоту и ширину и нигде
конкретно не расположены.

a-cylinder визуально не находится в DOM

a-scene содержит 3D-холст наряду
с несколькими другими визуальными
элементами

Рис. 15.2 Изучение сцены из A-Frame

Это объясняется тем, что эти элементы, обозначающие объекты в эле-
менте <a-scene>, фактически не используются визуально. A-Frame ис-
пользует HTML-элементы в качестве невизуальных моделей данных,
которые будут созданы в 3D. Интересно, не правда ли? С одной сторо-

4053D и смешанная реальность

ны, у нас есть компонент <a-scene>, который обрабатывает невероятную
сложность полноценной 3D-сцены, позволяя ей работать при различных
настройках виртуальной реальности и оборудования.

С другой стороны, в <a-scene> у нас есть множество невизуальных
компонентов, которые ничего не делают, кроме как помогают создать
3D-сцену. Я думаю, что понятие невизуальных компонентов суперин-
тересно. У меня есть сомнения относительно того, полезны они или
нет. Будучи хорошим JavaScript-разработчиком, я думаю, что все, что
не является визуальным, должно делаться с использованием JS, остав-
ляя HTML-код снаружи. Тем не менее существует хорошая доступность
к невизуальным веб-компонентам. Любой человек, не обладающий зна-
ниями JavaScript, может просто разместить на странице что-нибудь не-
визуальное, например фоновый аудиоплеер, не заботясь об инстанциро-
вании, JS-библиотеках или каких-либо других проблемах.

Здесь, поскольку эти невизуальные компоненты и визуальный тег <a-
scene> помогают друг другу создавать всю сцену, чтобы все это выглядело
согласованно в вашей HTML-разметке, я определенно приветствую это!
Просто интересно начать редактировать сцену вживую с помощью ин-
струментов разработчика и наблюдать, как 3D-сцена мгновенно меняет-
ся, как показано на рис. 15.3, где я меняю цвет куба и вращение.

Объект a-cube

Редактирование вращения
и цвета элемента вживую

Рис. 15.3 Изменение объектов A-Frame вживую в инструментах разработчика браузера

Таким образом, у нас есть создание пользовательских элементов,
функции attributeChangedCallback, connectedCallback и многое другое.
В самом начале я утверждал, что это не веб-ком по нент с технической
точки зрения. Причина проста. На этом этапе A-Frame не использует API
пользовательских элементов. Он использует старый API document.regis-
ter- Element с полифилом, чтобы он работал везде. Один из ведущих ав-

406 Глава 15 Сокрытие сложностей

торов A-Frame заявил, что скоро они начнут использовать API пользова-
тельских элементов (https://github.com/aframevr/aframe/issues/3923), но
не всегда и везде. Я все же считаю, что A-Frame – это отличный вариант
применения для веб-ком по нен тов. Кроме того, тут нет теневой модели
DOM. Здесь действительно нет причин для этого, поскольку у элемен-
тов нет стилей, и предпочтительнее разрешить неограниченный доступ
к внутренней модели DOM внутри тега <a-scene> для манипулирования
сценой, какой хочет разработчик. В результате нам не нужно управлять
невизуальными внутренними дочерними узлами никак иначе, кроме
как обычными элементами. При использовании теневой модели DOM
эти дочерние узлы должны управляться как слоты.

15.2.2 Компонент model-viewer
Одним из специфических, но популярных вариантов использования 3D
в интернете является возможность предварительного просмотра 3D-мо-
де ли, позволяющая пользователю перетаскивать ее, вращать и увеличи-
вать. Google создала веб-ком по нент специально для этого под названи-
ем model-viewer. Документацию и примеры можно посмотреть по адресу
https://googlewebcomponents.github.io/model-viewer, но я думаю, что сто-
ит немного поэкспериментировать с ним.

В репозитории для данной книги на сайте GitHub я сделал именно это.
В файле simpledemo.html можно увидеть этот компонент в действии. Мы
будем наращивать интерактивность и добавим цвет фона, как в демон-
страции, по мере продвижения. На самом деле здесь не нужно делать ни-
чего особенного. Мы просто разместим ссылку на JS-файл компонента,
добавим немного стилей для установки размера компонента и, наконец,
разместим компонент на странице, как показано в приведенном ниже
листинге.

Листинг 15.3 Демонстрация работы компонента model-viewer

<html>

<head>

 <script src="model-viewer.js"></script>

 <title>Simple Demo for Model Viewer</title>

 <style>

 body {

 margin: 0;

 }

 model-viewer {

 width: 100vw;

 height: 100vh;

 }

 </style>

</head>

<body>

 <model-viewer src="Astronaut.glb"></model-viewer>

</body>

</html>

JS-файл компонента model-viewer

Устанавливаем размеры компонента,
чтобы он занимал всю страницу

Добавляем компонент
на страницу

4073D и смешанная реальность

Самостоятельно вы здесь мало что сделаете, но для вашего удобства
я загрузил 3D-модель астронавта и JS-код компонента в репозиторий для
этой книги на сайте GitHub, чтобы вы могли продолжить работу, не те-
ряя времени. 3D-модель – совершенно новый 3D-формат под названием
glTF. Сжатый как бинарный пакет, ее формат файла имеет расширение
.glb. Это еще одна сложность, поскольку 3D-форматы нужно распаковать
и проанализировать для создания 3D-модели в 3D-движке.

После запуска и начала работы он не выглядит так впечатляюще без
взаимодействия! Это также может быть и изображение. Компонент model-
viewer дает нам целый набор атрибутов для работы. Вероятно, наименее
впечатляет возможность добавить цвет фона, показанный на рис. 15.4.
Давайте начнем с лавандового фона:

<model-viewer src="Astronaut.glb" background-color="#9999bb"></model-viewer>

Рис. 15.4 Модель космонавта
на цветном фоне

Далее сделаем этот 3D-контекст полезным. Компонент model-viewer по-
зволяет выполнять автоповорот, как если бы астронавт стоял на медлен-
но вращающемся диске:

<model-viewer src="Astronaut.glb"

 auto-rotate

 background-color="#9999bb"></model-viewer>

Или, возможно, вы хотите, чтобы он стал еще немного более интерак-
тивным, позволяя ему вращаться, перетаскивая:

<model-viewer src="Astronaut.glb"

 controls

 background-color="#9999bb"></model-viewer>

Обратите внимание на детализацию, когда вы перетаскиваете его,
чтобы он вращался. При перетаскивании происходит небольшое ускоре-
ние, и оно довольно быстро пропадает после отпускания, но поскольку
в конце оно ослабевает, то не кажется слишком резким.

Примите во внимание эту крошечную деталь юзабилити, когда будете
думать о других мелочах, которую делает этот компонент, от рендеринга
геометрии до использования холста WebGL и загрузки трехмерной моде-

408 Глава 15 Сокрытие сложностей

ли с использованием геометрии, материалов и текстур. Создание такого
компонента требует времени, поэтому здорово, что Google уже создала
его и поделилась с нами его открытым исходным кодом.

В конечном итоге model-viewer – это просто еще один компонент, кото-
рый мы можем включить в нашу страницу, не вникая во все сложности,
что дает нам возможность обратить внимание на другие аспекты нашего
приложения.

15.2.3 model-viewer и поиск с помощью Poly
Помните, в главе 3 мы создавали поиск 3D-моделей с помощью площад-
ки 3D-объектов Poly от компании Google? Тогда было лишним детально
освещать такие темы, как демонстрация 3D-модели и возможность взаи-
модействия с ней, да и сейчас тоже. Но нам не нужно вдаваться в эти
подробности; мы можем просто сделать нашу функцию поиска и найти
реальный результат, предварительно просмотренный целиком в 3D с по-
мощью компонента model-viewer.

В приведенном ниже листинге показан пример поиска, дополненный
URL-адресом glTF в качестве атрибута каждой миниатюры изображения.
Мы можем прослушивать события клика на каждой миниатюре, брать
этот URL-адрес и обновлять компонент model-viewer.

Листинг 15.4 Компонент для поиска на сайте Poly и компонент
model-viewer для предварительного просмотра

<html>

<head>

 <title>Poly Search with Preview</title>

 <script src="model-viewer.js"></script>

 <script src="poly-search.js" type="module"></script>

 <style>

 model-viewer {

 width: 50vw;

 height: 50vh;

 }

 </style>

</head>

<body>

<model-viewer src="../Astronaut.glb" controls></model-viewer>

<label>Enter search term: </label>

<input type="text" onchange="updatePolySearch(event)" />

<poly-search apikey="<enter your API key here>"

 format="GLTF2"

 thumbheight="50"

 backgroundcolor="#99ffff"
 baseuri="https://poly.googleapis.com/v1/assets"

 searchterm="parrot">

</poly-search>

Импортируем компонент poly-search
и подключаем файл компонента
model-viewer

Не забудьте ввести собственный API-ключ
из главы 3, чтобы этот пример работал

Даем указание poly-search, чтобы он включал только
результаты в формате glTF (для совместимости

с компонентом model-viewer)

4093D и смешанная реальность

<script>

 function updatePolySearch(event) {

 document.querySelector('poly-search').searchTerm = event.target.value;

 }

 document.querySelector('poly-search').addEventListener('click', e => {
 const model =

 e.target.getAttribute('gltf');

 document.querySelector('model-viewer').setAttribute('src', model);
 });

</script>

</body>

</html>

Для краткости я обернул компонент poly-search как его собственный
модуль и использовал шаблонный литерал внутри для управления его
стилями. Раньше мы этого не делали, потому что глава 3 идет до введе-
ния этих концепций. Не стесняйтесь и попробуйте сделать это самостоя-
тельно или посетите репозиторий для данной книги на сайте GitHub.

Единственное изменение в логике – фильтрование этих результатов
для включения только файлов в формате glTF и получение URL-адреса
результата. Это изменение показано в приведенном ниже листинге.

Листинг 15.5 Фильтрация результатов по glTF, включая URL-адрес
элемента изображения результата

for (let c = 0; c < assets.length; c++) {

 for (let d = 0; d < assets[c].formats.length; d++) {

 if (assets[c].formats[d].formatType ===

 this.getAttribute('format')) {

 html += '<img gltf="' +

 assets[c].formats[d].root.url +

 '" src="' +

 assets[c].thumbnail.url +

 '" width="' +

 this._thumbwidth + '" height="' + this._thumbheight + '"/>';

 }

 }

}

В получившейся демоверсии мы изначально загружаем модели попу-
гаев, но, скорее всего, мы найдем 3D-модель для всего, что вводим в это
окно поиска. Конечно, при нажатии на каждый результат вы получаете
полный интерактивный предварительный просмотр. На рис. 15.5 я ввел
слово «spaceship», а в компоненте poly-search из главы 3 показывает со-
ответствующие результаты. При нажатии на любой результат переда-
ет событие в окружающую HTML-страницу, которая устанавливает для
атрибута src значение в виде URL-адреса в качестве результата.

Подумайте о том, что мы только что сделали! Мы взяли простой ком-
понент, прежде чем достаточно узнали о чем-то, связанном с веб-ком-
по нен та ми, объединили его со сложным веб-компонентом Google – на

При щелчке мышью получаем URL-адрес glTF
и обновляем компонент model-viewer

Выполняем фильтрацию
по формату (glTF, как указано
в атрибуте компонента)

Добавляем специальный атрибут
к результату изображения
для URL-адреса glTF

410 Глава 15 Сокрытие сложностей

самом деле мы и понятия не имеем, как он работает, – и сделали нечто
суперполезное очень простым способом. Сокрытие сложности внутри
нескольких простых тегов и создание нечто большего, чем сумма его
фрагментов, – моя любимая часть веб-ком по нен тов.

Компонент model-viewer

Результаты поиска
от компонента
poly-search

Рис. 15.5 Компонент poly-search с компонентом model-viewer

15.2.4 Дополненная реальность и model-viewer
Несмотря на сложность 3D, можно пойти еще дальше. Дополненная ре-
альность – это следующий захватывающий этап после реальности вир-
туальной. В то время как виртуальная реальность позволяет вам видеть
полностью искусственный и виртуальный мир, дополненная реальность
позволяет размещать виртуальные объекты в реальном мире. Это чрез-
вычайно сложно с точки зрения аппаратного обеспечения.

Экраны, сквозь которые вы не видите, повсюду вокруг нас. С другой
стороны, создание экрана, через который пользователь может видеть,
пока он монтируется у него на голове, – большая проблема, с которой
сейчас пытаются справиться некоторые крупные, хорошо финансируе-
мые компании.

Примечательно, что самые большие усилия по созданию подобного
оборудования предпринимаются Magic Leap и Microsoft HoloLens. Их
устройства стоят тысячи долларов и, честно говоря, не соответствуют
тому, что вы можете себе представить, ввиду ограниченного поля зре-

4113D и смешанная реальность

ния. Под этим я подразумеваю, что когда вы испытываете одно из этих
устройств, виртуальные объекты в вашей сцене ограничены областью ва-
шего обзора, аналогичной тому, как если бы вы держали лист бумаги раз-
мером 8,5×11 на расстоянии вытянутой руки, как показано на рис. 15.6.
Если смотреть на эти виртуальные объекты на расстоянии, прос то уди-
вительно, что можно увидеть и как эти объекты существуют в реальном
мире. Тем не менее когда вы приближаетесь и объекты больше этого
ограниченного поля зрения, они обрезаются!

Поле зрения глазами человека

Поле зрения очков
дополненной реальности

Рис. 15.6 Пример поля зрения в очках дополненной реальности

Эта и аналогичные проблемы наряду с ценой являются причиной, по-
чему люди отказываются от таких устройств и активно используют до-
полненную реальность на своих телефонах, пока мы ждем гарнитуру. От-
дельно от этого (или, возможно, в сочетании с футуристическими очками
в своих секретных аппаратных лабораториях) компании Apple и Google
работают над библиотеками для своих смартфонов – ARKit и ARCore, –
чтобы дать разработчикам возможность создавать интерфейсы с допол-
ненной реальностью в смартфонах.

Сложность, которую решают эти библиотеки, заключается в попытке
«увидеть» мир.

Используя компьютерное зрение, библиотеки ARKit и ARCore находят
интересные «функции» в реальном мире с помощью камеры вашего те-
лефона. Эти функции проявляются как трехмерные точки, которые они
находят. Когда эти трехмерные точки найдены, их можно связать вместе,
и они проявляются как найденная поверхность, например пол, стол или
стена. Когда поверхность найдена, на нее можно поместить 3D-объект
или сцену, как показано на рис. 15.7, благодаря ARCore Quickstart от ком-
пании Google (https://developers.google.com/ar/develop/java/quickstart).

Эти скрытые сложности продолжают накапливаться! Компонент model-
viewer также пытается взяться за это. К сожалению, на момент написания

412 Глава 15 Сокрытие сложностей

данной главы чистая дополненная реальность на базе веб-интерфейса
не поддерживается в вашем телефоне. Это связано с тем, что для это-
го требовалась экспериментальная версия Chrome (Chrome Canary)
с WebVR. Сейчас, когда WebXR находится в стадии разработки, Chrome
Canary больше не поддерживает функции, которые использовал model-
viewer, чтобы предоставить нам дополненную реальность.

Рис. 15.7 Размещение виртуального объекта в реальном мире
с использованием ARCore

Вы все равно можете попробовать дополненную реальность с компо-
нентом model-viewer, если у вас есть устройство Magic Leap или более но-
вый iPhone с iOS версии 12 и выше. Если у вас есть подобная возможность,
то попробовать очень легко (хотя, признаюсь, я не пробовал Magic Leap).

В случае с Magic Leap это так же просто, как настроить соответству-
ющий атрибут <modelviewer src = "Astronaut.glb" magic-leap> и включить
биб лиотеку @magicleap/prismatic в свою страницу. Поскольку у меня нет
устройства Magic Leap, и у вас, вероятно, тоже, вариант с iPhone является
наиболее доступным для нас.

Напомню, что я сказал, что чистая дополненная реальность на базе
веб-интерфейса в настоящее время не поддерживается model-viewer, по-
тому что в своем текущем виде этот компонент немного жульничает,
когда речь идет о iOS. Для активации дополненной реальности он ис-
пользует функцию быстрого предварительного просмотра Quick Look,
разработанную Apple, которая теперь поддерживает 3D и дополненную
реальность.

При входе в режим погружения с веб-страницы открывается прило-
жение Quick Look с вашей 3D-моделью. Несмотря на разные ухищрения,
через которые прошел компонент, его очень легко опробовать, если у вас
более новый iPhone. В приведенном ниже листинге показано простое из-
менение нашего последнего примера.

Листинг 15.6 Дополненная реальность с компонентом model-viewer

<model-viewer src="Astronaut.glb"

 background-color="#45aa22"

 ios-src="Astronaut.usdz">

</model-viewer>

Новый атрибут ios-src с файлом с расширением
USDZ для активации дополненной реальности
на телефоне с iOS версии 12 и выше

4133D и смешанная реальность

Для поддержки Quick Look модель должна быть представлена в новом
3D-формате Apple, USDZ. Я скачал и предоставил эту модель в репозито-
рии для этой книги на сайте GitHub, чтобы вы могли легко посмотреть ее.

15.2.5 Ваш собственный 3D-компонент
Конечно, бывают случаи, когда вы отлично знаете, как работает слож-
ный компонент, потому что сами его писали. Скрыть эту сложность от
остальной части приложения, чтобы вы могли беспокоиться о разработ-
ке одного компонента за раз, может быть полезно. Разработка для 3D –
совсем иной контекст, и она определенно может доставить вам непри-
ятностей, когда остальная часть вашего приложения представляет собой
2D-интерфейс.

Оборачивание того, что вы делаете, в компонент, содержащий тег
<canvas> для отображения и весь код JavaScript, необходимый для запуска
полной 3D-сцены с циклом рендеринга, может быть отличным спосо-
бом. Смешение 3D и 2D напоминает прекрасное использование палитры
цветов, которую мы создали в прошлых главах!

Эта демонстрация, в частности, будет иметь трехмерную сцену, кото-
рая содержит простой примитив, такой как сфера, куб или низкополи-
гональная сфера. Эта сцена будет включать в себя настраиваемую каме-
ру и источники света, а также функцию перетаскивания, позволяющую
пользователю вращать камеру, чтобы смотреть на сцену под любым
углом.

На стороне двумерного пользовательского интерфейса палитра цве-
тов позволит изменять цвет и прозрачность 3D-примитива. Кроме того,
у нас есть несколько простых кнопок, позволяющих пользователю вы-
брать любой 3D-примитив, который он хочет просмотреть. На рис. 15.8
показано, что мы получим в итоге.

414 Глава 15 Сокрытие сложностей

Компонент «палитра цветов»

Кнопки переключения объектов
3D-объект для редактирования цвета

Рис. 15.8 Палитра цветов с использованием 3D

Всего будет три компонента, включая палитру цветов, которую мы уже
сделали. Два других – это компонент 3D-сцены и компонент приложе-
ния, который содержит и 3D-сцену, и палитру цветов. На рис. 15.9 пока-
зана структура папок всего приложения.

3D-сцена

Палитра цветов

Приложение

CSS-переменные
для стилизации палитры

Рис. 15.9 Структура палитры

4153D и смешанная реальность

Есть несколько вещей, которые могут показаться необычными. В этой
книге мы использовали два файла для каждого компонента – один для
класса компонента и один для хранения HTML-кода и стилей. Это по-
прежнему так. У компонента scene есть дополнительный файл, содержа-
щий библиотеку Babylon.js.

Как я упоминал ранее в этой главе, 3D сложно сделать, а WebGL слиш-
ком низкоуровневый, чтобы мы могли с ним работать. Именно поэтому
3D-библиотека – довольно стандартная плата при работе над подобны-
ми вещами. Three.js, вероятно, является популярной 3D-библиотекой
в настоящее время и фактически используется как в компоненте model-
viewer, так и в A-Frame.

Это отличная библиотека, но в последнее время я предпочитаю
Babylon.js. Впрочем, это дело вкуса. Мне нравится, что представляет со-
бой полный пакет Babylon.js, тогда как Three.js больше основана на пла-
гинах, если вам нужно что-то, помимо простого функционала.

В этом нет абсолютно ничего плохого – всему свое время и место,
и я бы сказал, что обе эти библиотеки одинаково потрясающие.

Помимо дополнительной библиотеки, папки компонента палитры
цветов не существует! Я просто скопировал файл сборки компонента,
который мы создали в главе 12 с помощью Rollup.

Единственное, что вы, возможно, забыли, – это CSS-файл в корне про-
екта, содержащий CSS-переменные, которые помогли стилизовать па-
литру цветов.

Начнем с простого. Вначале в приведенном ниже листинге показана
базовая HTML-страница с приложением.

Листинг 15.7 Файл index.html трехмерной палитры цветов

<head>

 <title>Material Coloring</title>
 <script

 type="module"

 src="components/app/app.js">

 </script>

 <script

 src="components/scene/babylon.custom.js">

 </script>

 <script

 src="components/colorpicker.js">

 </script>

 <link

 rel="stylesheet"

 type="text/css"

 href="vars.css"/>

 <style>

 body {

 margin: 0;

 padding: 0;

 overflow: hidden;

Подключаем основное приложение

Подключаем 3D-библиотеку Babylon.js

Подключаем палитру цветов

Подключаем CSS-переменные для темизации палитры цветов

416 Глава 15 Сокрытие сложностей

 }

 mc-app {

 width: 100vw;

 height: 100vh;

 }

 </style>

</head>

<body>

 <mc-app></mc-app>

</body>

</html>

Здесь есть две ссылки на скрипты, которые немного выделяются. Во-
первых, мы подключили библиотеку Babylon.js здесь, а не в компоненте,
где она используется. Я бы предпочел импортировать ее в качестве мо-
дуля, но брать весь исходный код Babylon и работать с ним – для нашего
простого примера – это чересчур. С другой стороны, было бы неплохо
подключить теги <script> при настройке свойства компонента 3D-сцены
innerHTML. К сожалению, из-за проблем, связанных с безопасностью,
скрипты нельзя загружать подобным образом. Вместо этого нам при-
шлось бы создать новый элемент <script>, установить исходник и доба-
вить его вручную. Вариант в листинге 15.7 выглядит проще.

Во-вторых, вы заметите, что палитра цветов не импортируется как
модуль. Повторюсь, это сделано для удобства. Вместо того чтобы копи-
ровать весь исходный код компонента или импортировать исходник, где
нам пришлось бы иметь дело с несколькими уровнями, и снова прохо-
дить целую главу в этом репозитории, проще скопировать файл сборки,
который мы упаковали.

Переходя к компоненту приложения в components/app, мы начнем
с файла template.js, чтобы просмотреть HTML-код и стили. Эти подроб-
ности показаны в приведенном ниже листинге.

Листинг 15.8 Файл template.js

import Scene from '../scene/scene.js';

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {

 return {

 scene:

 scope.querySelector('mc-scene'),
 colorpicker: scope.querySelector('wcia-color-picker')

 }

 },

 html() {

 return `<mc-scene

Делаем так, чтобы приложение занимало всю страницу

Размещаем приложение на странице

Кешируем ссылки на компонент scene
и палитру цветов

Компонент 3D-сцены с объектом-примитивом
по умолчанию – кубом

4173D и смешанная реальность

 object="cube">

 </mc-scene>

 <div id="model-buttons">

 <button class="object-button">cube</button>

 <button class="object-button">sphere</button>

 <button class="object-button">geodesic</button>

 </div>

 <wcia-color-picker class="modal" hex="#99224A">
 </wcia-color-picker>`;

 },

 css() {

 return `<style>

 . . . CSS here
 </style>`;

 }

}

Стили довольно просты, однако это немного отличается от нашего
обычного макета, поскольку мы накладываем все элементы поверх сце-
ны посредством абсолютного позиционирования, как показано ниже.

Листинг 15.9 Абсолютное позиционирование элементов над 3D-сценой

:host {

 display: inline-block;

}

#model-buttons {

 position: absolute;

 width: 100%;

 bottom: 10px;

 left: 10px;

}

#model-buttons button {

 font-size: 20px;

}

mc-scene {

 position: absolute;

 width: 100%;

}

wcia-color-picker {

 position: absolute;

 width: calc(100% – 20px);

 margin: 10px;

}

Далее, поскольку мы связываем только два этих компонента (палитру
цветов и 3D-сцену), код JavaScript в файле component/app/app.js также
очень прост. Он ничем не отличается от любого другого компонента, ко-
торый мы сделали, и в приведенном ниже листинге показаны фрагмен-
ты, которые не являются стандартной установкой веб-компонента.

Кнопки для клика и изменения примитива,
который показывает 3D-сцена

Палитра цветов с уже установленным
цветом по умолчанию

Кнопки модели находятся внизу
и над 3D-сценой

3D-сцена занимает весь компонент,
но находится под всем остальным

Палитра цветов находится в верхней части страницы,
над 3D-сценой и с отступами со всех сторон

418 Глава 15 Сокрытие сложностей

Листинг 15.10 Код JavaScript компонента приложения

import Template from './template.js';

export default class App extends HTMLElement {

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);

 const observer = new MutationObserver(e => this.onMutationChange(e));
 observer.observe(this.dom.colorpicker, { attributes: true });
 this.shadowRoot.addEventListener('click', e => this.onClick(e));
 this.dom.scene.color =

 this.dom.colorpicker.hex;

 this.dom.scene.alpha = this.dom.colorpicker.alpha;

 }

 onClick(e) {
 if (e.target.classList.contains(

 'object-button')) {

 this.dom.scene.object = e.target.innerText;

 }

 }

 onMutationChange(changes) {
 for (let c = 0; c < changes.length; c++) {

 switch (changes[c].attributeName) {
 case 'hex':

 this.dom.scene.color = this.dom.colorpicker.hex;

 break;

 case 'alpha':

 this.dom.scene.alpha = this.dom.colorpicker.alpha;

 break;

 }

 }

 }

}

if (!customElements.get('mc-app')) {

 customElements.define('mc-app', App);
}

Необходимость снова использовать MutationObserver для такой простой
задачи причиняет неудобства. Это слишком сложно, поэтому я хотел бы,
чтобы в палитре цветов было встроенное пользовательское событие, как
мы рассматривали в предыдущей главе. Это может быть отличным до-
машним заданием для вас. Вы можете вернуться назад и сделать все са-
мостоятельно, а также выполнить рефакторинг предыдущего кода, что-
бы использовать его.

Двигаемся дальше. Теперь мы переходим к компоненту 3D-сцены.
Учитывая, насколько мало здесь HTML-кода и стилей, потому что мы

Прослушиваем
изменения
атрибутов

Прослушиваем события клика,
чтобы перехватить их

при нажатии на кнопки
3D-объекта

Изначально устанавливаем цвет и альфа-канал 3D-сцены
на основе значений по умолчанию для палитры цветов

После того как все события клика
перехвачены из компонента,

выполняем фильтрацию по классу,
слушая только события кнопок

3D-объекта

Устанавливаем цвет
или альфа-канал
в зависимости
от изменения

4193D и смешанная реальность

просто используем элемент <canvas> для отображения 3D, сначала мы по-
кажем файл components/scene/template.js.

Листинг 15.11 HTML-код и стили 3D-сцены

export default {

 render() {

 return `${this.css()}
 ${this.html()}`;
 },

 mapDOM(scope) {

 return {

 scene: scope.querySelector('canvas')

 }

 },

 html() {

 return `<canvas touch-action="none">

 </canvas>`;

 },

 css() {

 return `<style>

 :host {

 display: inline-block;

 width: 100%;

 height: 100%;

 }

 canvas {

 width: 100%;

 height: 100%;

 }

 </style>`;

 }

}

Как я уже говорил, это действительно просто. Здесь нам только нуж-
но показать тег <canvas>. С точки зрения написания кода для 3D в целом,
в классе компонентов из файла components/scene/scene.js мы не делаем
ничего слишком сложного. Тем не менее нужно еще разобраться с на-
стройками для сцены, освещения и камеры. Разделив JS-модуль, давайте
сначала рассмотрим фрагменты стандартного веб-компонента в приве-
денном ниже листинге.

Листинг 15.12 Настройка веб-компонента для 3D-сцены

import Template from './template.js';

export default class Scene extends HTMLElement {

 static get observedAttributes() {

 return ['object', 'color', 'alpha'];
 }

Кешируем элемент canvas
для использования в классе
компонента

Единственным элементом здесь
является canvas, а touch-action =
«none» активирует взаимодействие
с мышью в Babylon

CSS здесь служит только для установки размера
компонента, а canvas – для заполнения страницы

Атрибуты, за которыми мы
наблюдаем (3D-объект, цвет
и альфа-канал)

420 Глава 15 Сокрытие сложностей

 set color(val) {

 this.setAttribute('color', val);
 }

 get color() { return this.getAttribute('color'); }

 set alpha(val) { this.setAttribute('alpha', val); }
 get alpha() { return parseFloat(this.getAttribute('alpha')); }

 set object(val) { this.setAttribute('object', val); }
 get object() { return this.getAttribute('object'); }

 attributeChangedCallback(
 name, oldVal, newValue) {
 switch (name) {

 case 'alpha':

 this.updateColor();
 break;

 case 'color':

 this.updateColor();
 break;

 case 'object':

 this.switchMesh(newValue);

 break;

 }

 }

 constructor() {

 super();

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = Template.render();
 this.dom = Template.mapDOM(this.shadowRoot);
 this.initScene();

 }

}

if (!customElements.get('mc-scene')) {

 customElements.define('mc-scene', Scene);
}

И снова видно, что у нас есть много места, съеденного рефлексией.
Я сжал код немного больше, чем обычно, потому что он занимает много
места. Как я уже говорил в предыдущей главе, этот скучный, повторя-
ющийся код – именно то, что решит хорошая утилита или библиотека!

Теперь в приведенном ниже листинге мы рассмотрим JS-код для на-
стройки 3D-сцены. Это просто дополнительные функции в том же классе.

Листинг 15.13 Код настройки 3D-сцены

initScene() {

 this.engine = new BABYLON.Engine(
 this.dom.scene, true);
 this.scene = new BABYLON.Scene(this.engine);
 this.scene.clearColor = new BABYLON.Color3(0.894, 0.894, 0.894);

 const camera = new BABYLON.ArcRotateCamera(

JS-методы для поддержки рефлексии компонентов

Функция attributeChangedCallback обрабатывает
изменения цвета и альфа-канала и трехмерного
объекта с помощью методов, которые еще не показаны

Инициализируем еще
не показанную 3D-сцену

Настройка движка Babylon.js и сцены

Настройка камеры и освещения

4213D и смешанная реальность

 "Camera",
 Math.PI / 2,
 Math.PI / 2, 4,
 BABYLON.Vector3.Zero(), this.scene);
 const light1 = new BABYLON.HemisphericLight("light1",
 new BABYLON.Vector3(1, 1, 0), this.scene);
 const light2 = new BABYLON.PointLight("light2",
 new BABYLON.Vector3(0, 1, -1), this.scene);
 camera.attachControl(this.dom.scene, true);

 this.engine.runRenderLoop(
 () => this.render());

 window.addEventListener(

 'resize', () => this.onResize());
}

render() {

 this.scene.render();

}

onResize() {
 this.engine.resize();

}

Вероятно, что вы никак не ожидали увидеть здесь, если привыкли
к традиционной веб-разработке, – это функция render. Эта распростра-
ненная функция в игровых движках для 3D и 2D. Рендеринг сцены дол-
жен происходить каждые несколько миллисекунд. Функция scene.ren-
der() в основном собирает все в сцене, преобразовывает это, материалы
и все остальное и повторно отображает все в <canvas> на основе данного
момента времени. Если это не делать несколько раз, все просто застрянет
на месте, не двигаясь. Эта функция также является неплохим местом, для
того чтобы добавить пользовательский код, который постоянно обнов-
ляет каждый кадр. Например, если бы вы перемещали объект из точки A
в точку B, то могли бы постоянно увеличивать расположение. Поэтому
создается впечатление, что он плавно перемещается.

Последнюю часть кода можно увидеть ниже, где мы обновляем объ-
ект-примитив (или сетку) на новый тип при изменении, а также все из-
менения цвета или альфа-канала.

Листинг 15.14 Функции для обновления трехмерного объекта, цвета
и альфа-канала

updateColor() {
 if (!this.currentMesh) {

 return;

 }

 const material = new BABYLON.StandardMaterial('material', this.scene);
 if (this.color) {

 material.diffuseColor = new
 BABYLON.Color3.FromHexString(this.color);
 }

 if (this.alpha) {

Прикрепляем элементы управления
взаимодействием к камере
для перетаскивания и поворота

Babylon нужен цикл рендеринга
для постоянного повторного рендеринга
и обновления сцены, когда происходят
изменения

Изменяем размер 3D-сцены при изменении
размера всей страницы

Создаем совершенно новый материал
(или что-то вроде 3D-стиля) для объекта

Устанавливаем цвет материала,
используя текущее свойство цвета
компонента

422 Глава 15 Сокрытие сложностей

 material.alpha = this.alpha/100;

 }

 this.currentMesh.material = material;

}

switchMesh(mesh) {

 if (this.currentMesh) {

 this.currentMesh.dispose();

 }

 switch (mesh) {

 case 'sphere':

 this.currentMesh = BABYLON.MeshBuilder.CreateSphere
 ("sphere", {}, this.scene);
 break;

 case 'cube':

 this.currentMesh = BABYLON.MeshBuilder.CreateBox
 ("cube", {}, this.scene);
 break;

 case 'geodesic':

 this.currentMesh = BABYLON.MeshBuilder.CreateSphere
 ("sphere", { segments: 2 }, this.scene);
 break;

 }

 this.updateColor();
}

С этими последними изменениями мы только что создали симпа-
тичное маленькое 3D-приложение! Возможно, вы хотите пойти дальше
и добавить дополнительные функции, такие как текстуры, отражения,
рельефные карты, импорт сцен и выбор объектов и т. д. Это больше, чем
может здесь поместиться, но начало неплохое.

Мы, безусловно, хорошо разбираемся в некоторых совершенно раз-
ных 3D-сценариях. Недавно я сам довольно много занимался разработ-
кой 3D-приложений, и веб-ком по нен ты сыграли важную роль в органи-
зации проекта и разделении ответственностей. Будучи разработчиком
прототипа, мне нужно было постоянно менять эти приложения изо дня
в день по мере редизайна. Во многих случаях это так же просто, как пе-
реместить компонент из одного места в моей HTML-разметке в другое.
Даже если этот компонент представляет собой всю трехмерную сцену
целиком, это не имеет большого значения. И конечно же, когда мне нуж-
но поработать над некой основной 3D-функцией, я могу мысленно пере-
ключить контексты со своего двумерного пользовательского интерфей-
са, открыть структуру проекта 3D-компонента и работать там.

15.3 Видеоэффекты
В смешанной реальности мне нравится то, что у меня есть окно, чтобы ви-
деть мир по-другому. Хотя дополненная реальность добавляет виртуаль-
ные объекты в реальный мир, мне всегда нравилось, что можно полностью

Устанавливаем значение для альфа-канала
и прозрачности материала

Устанавливаем материал сетки (3D-объекта),
используя новый материал, который
мы создали

При создании новой сетки избавляемся
от текущей, которая есть у нас в сцене

Создаем новую сетку, добавляя ее в сцену

После появления новой сетки
материал также нужно обновить

423Видеоэффекты

изменять то, как мы видим мир. В течение долгого времени у нас были
видеоэффекты в кино и на телевидении, и возможность делать это в циф-
ровом виде не является чем-то новым. Настраивать трансляцию в прямом
эфире причудливыми способами может быть действительно забавно.

Обработка пикселей сама по себе может быть сложной, но если для
вас это удовольствие, настраивать трансляцию видеоизображения снова
и снова может быть непросто. Таким образом, мы сталкиваемся с дву-
мя различными типами сложности. Управление пикселями из видео –
сложность, которую мы не скрываем. Вместо этого мы скрываем скуч-
ную сложность, заключающуюся в том, чтобы заставить поток работать
и показать данные кадра.

15.3.1 Обработка пикселей с помощью JavaScript
Некоторое время назад я заинтересовался экспериментами с видео
и создал собственный видеокомпонент. Я не буду здесь подробно рас-
сматривать базовый код, а просто использую его в качестве финального
компонента книги, чтобы поэкспериментировать и немного развлечься!
Я поместил этот компонент в репозиторий для данной книги на сайте
GitHub.

Для этого есть два компонента. Первый – это простой видеокомпо-
нент, который использует обычный однопоточный JS для манипулиро-
вания видеопикселями. Приведенный ниже листинг представляет собой
копию файла videofx/demos/video-simple.html.

Листинг 15.15 Простая демонстрация воспроизведения видео

<html>

<head>

 <title>Demo: Simple Video Playback</title>

 <script

 type="module"

 src="../video.js">

 </script>

 <style>

 wcia-video {

 width: 500px;

 height: 500px;

 }

 </style>

</head>

<body>

<h2>Demo: Simple Video Playback</h2>

<p>

 Simple video playback

</p>

<wcia-video useCamera></wcia-video>
</body>

</html>

Импортируем модуль компонента

Задаем размеры компонента

Вставляем компонент на страницу

424 Глава 15 Сокрытие сложностей

Несмотря на то что компонент может принимать атрибут src=path/to/
video, гораздо проще (и веселее) вести трансляцию в реальном времени
со своего компьютера, вместо того чтобы загружать куда-то большое ви-
део, а это именно то, что и делает атрибут useCamera. Прямая трансляция
с камеры – как раз то, что вы увидите при загрузке страницы.

Хотя технически компонент работает, он пока не меняет видеокадры.
Для этого давайте переключим рендеринг на внутренний холст компо-
нента и дадим ему указание, как часто нужно рендерить каждый кадр.
Установим еще пару атрибутов:

<wcia-video useCamera useCanvasForDisplay canvasRefreshInterval="50">
</wcia-video>

Здесь мы решили обновлять холст каждые 50 миллисекунд. Если уста-
новить значение вроде 500, то мы увидим очень изменчивое видео. Если
значение будет слишком низким, нашему браузеру будет сложно угнать-
ся за нами. В любом случае, теперь, когда мы используем внутренний
холст, мы можем перемещаться по нему!

Я включил сюда набор фильтров, которые довольно просты в исполь-
зовании. Всего лишь установите фильтр для компонента с помощью еще
одного блока <script> на странице, как показано ниже.

Листинг 15.16 Настройка видеофильтра

<wcia-video useCamera useCanvasForDisplay canvasRefreshInterval="50">
</wcia-video>

<script type="module">

 import Filters from

 '../filters/canvas/filters.js';

 document.querySelector('wcia-video').canvasFilter =

 Filters.toBlackAndWhite;

</script>

Черно-белый фильтр рендерит каждый пиксель либо в черный, либо
в белый цвет и создает потоковое видео в режиме реального времени,
как на рис. 15.10, хотя вживую оно намного круче!

Рис. 15.10 Прямая трансляция
с камеры с черно-белым фильтром

Добавляем видеокомпонент на страницу
с помощью камеры

Импортируем библиотеку фильтров,
предоставленную в компоненте

Настраиваем фильтр компонента

425Видеоэффекты

Файл videofx/demos/video-filters.html содержит черно-белый фильтр
плюс еще несколько, но я думаю, что лучше сделать данные кадра доступ-
ными прямо на странице. В листинге 15.17 показаны изменения в демо-
версии, которую можно найти в файле videofx/demos/videocustomfilter.
html.

Листинг 15.17 Эффект снега

<wcia-video

 frameDataMode="imagedata"

 canvasRefreshInterval="50"
 useCamera
 useCanvasForDisplay>
</wcia-video>

<p>Amount of snow</p>

<input type="range" min="0" step=".01" max="1" value="0.7"
 oninput="snow = event.target.value">

<script>

 var snow = .7;
 const customfilter = function(pxs) {

 for (var c = 0; c < pxs.data.length; c+=4) {

 if (Math.random() < snow) {

 pxs.data[c] = Math.random() * 255;

 pxs.data[c+1] = Math.random() * 255;

 pxs.data[c+2] = Math.random() * 255;

 }

 }

 return pxs;

 };

 document.querySelector('wcia-video').addEventListener

 ('frameupdate', function(event) {
 var data = event.detail;

 data.canvascontext.putImageData(

 customfilter(data.framedata), 0, 0, 0, 0, data.width, data.height);
 });

</script>

Таким образом, эти видеокадры довольно легко обрабатывать – мы
просто перебираем данные. Каждый пиксель использует четыре значе-
ния, по одному для красного, зеленого, синего цветов и альфа-канала.
Хотя альфа-канал (pxs.data [c + 3]) здесь не используется, было бы здоро-
во поэкспериментировать с ним, если бы понадобилось изменить ком-
понент таким образом, чтобы у него не было черного фона.

В любом случае, этот пользовательский фильтр используется просто
для того, чтобы добавлять случайно окрашенные пиксели в случайных
местах в каждом кадре. Сколько этих случайно окрашенных пикселей –
определяется значением ползунка. Результат показан на рис. 15.11. Это
похоже на то время, когда телевизионный сигнал был еще аналоговым
и на экране появлялся «снег» или шум, когда сигнал был слабым.

Устанавливаем атрибут, чтобы разрешить
событие frameData из видеокомпонента

Ползунок, чтобы изменять
количество «снега»

Пользовательская функция
для обработки и изменения
пикселей в каждом видеокадре

Прослушиваем события обновления
кадра и обрабатываем пиксели

426 Глава 15 Сокрытие сложностей

Рис. 15.11 Прямая трансляция
с камеры с эффектом «снега»

Получение реальных данных видеокадров может быть мощной шту-
кой! Мы вернемся к этому в самом конце, используя реальное прило-
жение, которое не просто меняет пиксели. Однако, прежде чем мы это
сделаем, стоит отметить, что хотя обработка пикселей с помощью JS про-
ходит достаточно аккуратно, она также и довольно медленная. Хотя мой
браузер легко справлялся с обновлением холста каждые 50 мс, наша об-
работка изображений была удивительно простой. В целом использова-
ние процессора – не лучший способ для этого. Еще хуже – делать это в JS
в своем браузере. Поскольку JavaScript является однопоточным языком
(пока вы не познакомитесь с Web Workers – https://developer.mozilla.org/
en-US/docs/Web/API/Web_Workers_API/Using_web_workers), выполнение
этих интенсивных операций может привести к блокировке вашего поль-
зовательского интерфейса, и будет казаться, что все работает вяло.

15.3.2 Шейдеры WebGL
Выгрузка пикселей в графический процессор – именно тот способ, с по-
мощью которого можно избежать этой медлительности при необходи-
мости запуска обработки изображений, подобной этой. Теперь, когда
графические процессоры являются стандартными для каждого устрой-
ства, все большее распространение здесь получает разгрузка отрисовки
графики. На самом деле еще несколько лет назад многие CSS-эффекты
получили более мощный графический процессор, чтобы все работало
намного плавнее.

Чтобы получить доступ к графическому процессору в своем браузе-
ре, используйте WebGL. Возможно, вы помните, что в начале этой главы
я упоминал, что 3D в сети, включая виртуальную и дополненную реаль-
ность, работает на WebGL, но он слишком низкоуровневый, чтобы быть
продуктивным для обычного человека.

Я по-прежнему придерживаюсь этой точки зрения! Но я расширил
видеокомпонент для использования WebGL. Опять же, что хорошо при
работе с классами веб-ком по нен тов, так это то, что в то время, как ваш
класс расширяет HTMLElement, вы можете расширить свой класс веб-ком-
по нента. В случае с WebGL-версией видеокомпонента я добавил не-
сколько дополнительных функций для обработки низкоуровневого кода

427Видеоэффекты

шейдера, а также изменил внутренний холст на контекст WebGL вместо
типичного двумерного холста. Ниже показана демоверсия, которая на-
ходится в файле videofx/demos/videogl-filters.html и содержит несколько
разных фильтров WebGL.

Листинг 15.18 Демоверсия видеокомпонента с WebGL

<html>

 <head>

 <title>Demo: Copy to Canvas</title>
 <script

 type="module"

 src="../glvideo.js">

 </script>

 <style>

 wcia-glvideo {

 width: 250px;

 height: 250px;

 }

 </style>

 </head>

 <body>

 <h2>Demo: Apply WebGL Filter</h2>

 <p>

 Apply WebGL Filter – possible glfilters are "sepia",
 "greyscale", "sobel_edge_detection", "freichen_edge_detection",
 "freichen_inverted", and "sobel_inverted"
 </p>

 <wcia-glvideo

 useCamera
 useCanvasForDisplay
 canvasRefreshInterval="10"
 useWebGL='{"filter": "freichen_inverted"}'>

 </wcia-glvideo>

 </body>

</html>

С технической точки зрения, шейдер Freichen и Sobel используется
для обнаружения краев объектов в видео. Стирая все, кроме краев, вы
начинаете приближаться к основам компьютерной визуализации, когда,
если пойти дальше, объекты могут начать распознаваться в ваших ви-
деокадрах. Это намного сложнее, чем можно здесь описать. Но в своей
непосредственной форме, если не сказать ничего другого, он прекрас-
но передает эффект штриховки, таким образом, у вас может получиться
собственная версия музыкального клипа «Take On Me» группы A-ha, как
показано на рис. 15.12!

Написание шейдеров WebGL (крошечных программ, которые манипу-
лируют пикселями) – в действительности сложный процесс, и это иног-
да приводит в бешенство. Шейдеры написаны как простые строки на
JavaScript, без подходящего способа отладки. Также может быть доволь-

Ссылка, намекающая на использование WebGL

Обязательно используйте новый
CSS-селектор для разных тегов компонента

Добавляем видеокомпонент на страницу

Определяем параметры WebGL,
включая фильтр

428 Глава 15 Сокрытие сложностей

но сложно настроить среду, в которой можно писать свои собственные
шейдеры. Однако повторюсь: такие веб-ком по нен ты могут упростить
эту задачу. Этот же компонент также позволяет писать собственные шей-
деры, как показано ниже.

Рис. 15.12 Эффект обнаружения
краев с помощью видеокомпонента
на базе WebGL

Листинг 15.19 Пользовательские шейдеры,
используемые в видеокомпоненте на базе WebGL

<html>

<head>

 <script type="module" src="../glvideo.js"></script>

 <script

 id="2d-vertex-shader"

 type="x-shader/x-vertex">

// Используйте здесь любой шейдер или вершинный шейдер, включенный в листинг 15.1.
 </script>

 <script

 id="2d-fragment-shader"

 type="x-shader/x-fragment">

// Используйте здесь любой шейдер или фрагментный шейдер, включенный в листинг 15.1.
 </script>

 <style>

 wcia-glvideo {

 width: 640px;

 height: 480px;

 }

 </style>

</head>

<body>

<wcia-glvideo

 useCamera
 useWebGL

 useCanvasForDisplay
 canvasRefreshInterval="10">
</wcia-glvideo>

Тег script, где хранится пользовательский вершинный шейдер

Тег script, где хранится фрагментный шейдер

Устанавливаем размеры видеокомпонента

Размещаем компонент на странице

429Отслеживание движений рук и машинное обучение

<script type="module">

 import Shaders from '../filters/webgl/shaders.js';

 import Constants from '../filters/webgl/constants.js';

 var video = document.querySelector('wcia-glvideo');

 video.webglProperties.vertexShader =

 document.getElementById('2d-vertex-shader').text;

 video.webglProperties.fragmentShader =

 document.getElementById('2d-fragment-shader').text;

 </script>

</body>

</html>

Результат еле заметен, но у нас получился эффект, показанный на
рис. 15.13; объект в центре фотографии (моя кошка) имеет идеальную
четкость, но по мере того, как фотография все дальше удаляется от внеш-
них краев, она постепенно становится черной.

Рис. 15.13 Радиальное
затухание по краям

15.4 Отслеживание движений рук
и машинное обучение
Когда я писал эту последнюю главу, я знал, что хочу сделать еще кое-что
с веб-арфой, о которой шла речь в главе 5. У меня было несколько идей
касательно компьютерного зрения и отслеживания движений, но затем
была опубликована довольно захватывающая статья об отслеживании
движений рук с помощью JavaScript: https://hackernoon.com/handtrackjs-
677c29c1d585.

Эта относительно новая область машинного обучения включает в себя
обучение набора данных или модели, чтобы определять, что правиль-
но, а что нет. В случае отслеживания движения рук эту модель обучали
распознавать изображения рук. Хотя все обучение в этом эксперименте
проводилось с помощью TensorFlow, программной библиотеки для ма-
шинного обучения, разработанной компанией Google, которая напи сана
на Python, обученную модель можно использовать в нашем браузере
с помощью Tensorflow.js.

Устанавливаем в качестве
значения для шейдеров
WebGL содержимое тега
script

430 Глава 15 Сокрытие сложностей

Детали не имеют большого значения. Нужно только объяснить, как
все это работает «под капотом». Кроме того, из-за той тяжелой работы,
которую потребовалось проделать, автору действительно нужно отдать
должное. Его зовут Виктор Дибия, а библиотеку Handtrack.js вместе с от-
личной демонстрацией можно найти здесь: https://github.com/victordib-
ia/handtrack.js.

Отдавая должное автору и знакомясь с этой технологией, мы можем
скрыть его удивительную библиотеку и все сложности этого проекта,
создав веб-ком по нент для отслеживания движений рук! На самом деле,
учитывая, что эта библиотека использует исходное видео и отображает
детали отслеживания в другой холст, Handtrack.js во многом похожа на
внутреннюю работу видеокомпонента, над которым мы работали. Так
же, как и в случае с WebGL, класс видеокомпонента можно расширить,
чтобы создать специализированный компонент handtracker. Это относи-
тельно простое расширение показано в приведенном ниже листинге.

Листинг 15.20 Веб-компонент для отслеживания движения рук

import Video from './video.js';

export default class HandTracker extends Video {

 static get HAND_LOCATION() { return 'onHandLocation'; }
 constructor() {

 super();

 const modelParams = {

 flipHorizontal: true, // поворот, например, видео
 maxNumBoxes: 20, // Максимальное количество обнаруживаемых ящиков
 iouThreshold: 0.5, // Порог IOU для подавления не-максимумов
 scoreThreshold: 0.6, // Порог достоверности для предсказаний
 };

 handTrack.load(modelParams)

 .then(lmodel => {

 this._model = lmodel;

 });

 }

 runDetection() {

 if (!this._model) { return; }

 this._model.detect(this.dom.video).then(predictions => {

 const pts = [];

 for (let c = 0; c < predictions.length; c++) {

 const centerpoint = {};

 centerpoint.x = (predictions[c].bbox[0] +

 (predictions[c].bbox[2] / 2));

 centerpoint.y = (predictions[c].bbox[1] +

 (predictions[c].bbox[3] / 2));

 pts.push(centerpoint);

 }

 this._model.renderPredictions(predictions, this.dom.canvas,
 this.canvasContext, this.dom.video);

 const ce = new CustomEvent(HandTracker.HAND_LOCATION,
 { detail: { points: pts }, bubbles: true, composed: true });

Расширяем базовый
класс видеокомпонента

Загружаем модель Handtrack.js Tensorflow

431Отслеживание движений рук и машинное обучение

 this.dispatchEvent(ce);

 });

 }

 init() {

 super.init();

 handTrack.startVideo(this.dom.video).then((status) => {

 this.onResize();
 console.log(this.visibleVideoRect)
 if (status) { this.runDetection(); }

 });

 }

 getCurrentFrameData(mode, noredraw) {
 this.runDetection();

 }

}

if (!customElements.get('wcia-handtracker')) {

 customElements.define('wcia-handtracker', HandTracker);
}

Вы можете спросить: «И это все?» Ну, определенно здесь не так уж
и много всего, но есть недостающий фрагмент. Библиотека, которую рас-
пространяет автор, не является модулем (исходный код – да, но у нее есть
зависимости Tensor-Flow, а я хочу, чтобы этот пример оставался про-
стым); поэтому, вместо того чтобы изощряться, для включения ее в этот
компонент мы просто подключим ее на демонстрационной HTML-стра-
нице, которую я покажу ниже.

Листинг 15.21 Демонстрационный HTML-файл Handtracker

<html>

<head>

 <script

 type="module"

 src="../handtracker.js">

 </script>

 <script src="../handtrack.min.js"></script>

 <style>

 wcia-handtracker {

 width: 500px;

 height: 500px;

 }

 </style>

</head>

<body>

 <h2>Demo: Hand Tracker </h2>

 <wcia-handtracker useCamera useCanvasForDisplay
 canvasRefreshInterval="50"></wcia-handtracker>

 <script>

 document.addEventListener('onHandLocation', function(e) {

Отправляем пользовательские события
для найденной центральной точки
расположения рук

Запускаем обычную инициализацию
видеокомпонента и отслеживание

движений рук

Продолжаем обнаружение каждого
кадра, не забывая про перерисовку холста
исходного компонента

Импортируем веб-ком по нент handtracker

Подключаем библиотеку Handtrack.js

Размещаем компонент
handtracker на странице

432 Глава 15 Сокрытие сложностей

 if (e.detail.points.length > 0) {

 document.getElementById('loc')

 ➥.innerText = e.detail.points[0].x + ',' + e.detail.points[0].y;
 }

 })

 </script>

</body>

</html>

Не так уж и много для такой сложной и полезной вещи, но она работа-
ет как по волшебству! На рис. 15.14 показана демостраница в действии.

Как прекрасно все это ни было, у Виктора эта демоверсия уже запу-
щена и работает. Сама по себе моя демонстрация компонента ничего не
добавляет к этому разговору. Тем не менее в качестве веб-компонента
с пользовательским событием, отправляемым для уведомления слуша-
телей о расположении рук, теперь мы можем использовать этот компо-
нент в приложении «Веб-арфа» из главы 5.

Рис. 15.14 Демонстрация работы веб-компонента
для отслеживания движений рук

Мало того, что мы можем использовать его, для его интеграции тре-
буется не так уж много усилий! Для начала перейдите в файл index.html
приложения «Веб-арфа» и добавьте библиотеку:

<script src="../videofx/handtrack.min.js"></script>

Обновляем текст в заголовке, чтобы показать,
где находится первая рука

433Отслеживание движений рук и машинное обучение

Поскольку я скопировал код веб-арфы прямо в папку главы 15 из ре-
позитория для этой книги, мы можем создать ссылку внутри папки ви-
деокомпонента, которую только что использовали. Оттуда нам просто
нужно изменить webharp/components/app/app.js.

Помните, глава 5 была до того, как мы начали разделять стили и HTML-
код в файл template.js, поэтому мы добавим его в строку, с помощью ко-
торой устанавливаем значение для свойства innerHTML. Еще одно неболь-
шое изменение заключается в том, чтобы теперь мы больше не слушаем
событие перемещения мыши, а вместо этого напрямую подключаемся
к пользовательскому событию отслеживания движения рук компонента.
В приведенном ниже листинге показано, как изменился этот класс ком-
понента.

Листинг 15.22 Веб-арфа, интегрированная с компонентом handtracker

import Strings from '../strings/strings.js';

import HandTracker from '../../../videofx/handtracker.js';

export default class WebHarpApp extends HTMLElement {

 connectedCallback() {
 this.innerHTML = `

 <style>

 wcia-handtracker {

 position: absolute;

 background: none;

 width: 100%;

 height: 100%;

 }

 webharp-strings {

 position: absolute;

 width: 100%;

 height: 100%;

 }

 </style>

 <wcia-handtracker useCamera useCanvasForDisplay
 canvasRefreshInterval="50"></wcia-handtracker>
 <webharp-strings

 strings="${this.getAttribute('strings')}">
 </webharp-strings>`;

 this.stringsElement = this.querySelector('webharp-strings');

 this.addEventListener(HandTracker.HAND_LOCATION, e =>
 this.onMouseMove(e));

 }

 onMouseMove(event) {

 if (event.detail.points.length > 0) {

 this.stringsElement.points = { last: this.lastPoint,
 current: { x: event.detail.points[0].x, y:
 event.detail.points[0].y } };

 this.lastPoint = { x: event.detail.points[0].x, y:

Новая HTML-строка,
включающая в себя
handtracker и CSS
для позиционирования
позади компонента strings

Изменяем слушателя событий: вместо перемещения
мыши теперь идет местоположение рук

434 Глава 15 Сокрытие сложностей

 event.detail.points[0].y };

 }

 }

}

if (!customElements.get('webharp-app')) {

 customElements.define('webharp-app', WebHarpApp);
}

Вероятно, вы можете начать представлять все возможные способы
улучшить это приложение – например, убрав с экрана окно, окаймляю-
щее ладонь. Более того, у вас может возникнуть желание избавиться от
ограничения, из-за которого можно отслеживать движения только одной
руки, и использовать весь список точек, чтобы играть на арфе обеими
руками. Это может быть отличным домашним заданием. Однако сейчас
на рис. 15.15 показана веб-арфа в ее нынешнем виде с отслеживанием
движения рук.

Должен признать, что экспериментировать с этой веб-арфой было ве-
село. Фактически эта глава посвящена экспериментам с забавными при-
мерами веб-ком по нен тов, которые я либо создал сам, либо нашел в те-
чение последней пары лет.

Хотя я надеюсь, что вы тоже повеселились, я также надеюсь на то, что
сведения, которые вы почерпнули из этой последней главы, – это то волне-
ние, которое я испытываю, говоря о веб-компонентах. В главе 2 мы начали
с создания самого простого из всех компонентов: ползунка. Мы все еще
используем этот ползунок в этой главе в палитре цветов в 3D-приложении
для редактирования материалов. Мы перешли от карусели изображений
в компоненте к созданию сцен смешанной реальности, которые можно
просматривать с помощью гарнитуры Oculus Rift или Magic Leap, и закон-
чили компонентом обработки видеоэффектов, который использует ма-
шинное обучение для отслеживания движения ваших рук.

Рис. 15.15 Веб-арфа с возможностью отслеживания движения рук

Устанавливаем точки
для первой найденной руки
вместо положения мыши

435Резюме

Мы проделали все это, и не имеет значения, насколько вы опытны.
Любой из этих компонентов можно добавить на любую обычную HTML-
страницу. Не важно, если вы слишком робкий, чтобы заглянуть внутрь
какого-либо конкретного компонента, – вы можете просто использовать
его. Кроме того, у веб-ком по нен тов действительно простой API, поэтому
любой начинающий JS-разработчик может начать работать с ними пря-
мо сейчас.

У нас наверняка будут более сложные рабочие процессы, которые
станут популярными по мере того, как разработчики компонентов бу-
дут выходить за рамки первоначальных стандартов. Но эти стандарты
в ближайшее время не изменятся. В случае с веб-ком по нен та ми у нас
останется то, что мне всегда нравилось в интернете. Это место, где каж-
дый может внести свой вклад, опираясь на основные строительные бло-
ки внутри или на плечи экспертов и креативщиков. Как бы то ни было,
я искренне желаю вам всего наилучшего и надеюсь, что веб-ком по нен-
ты и эта книга – первый шаг на пути к удивительным вещам, которые
вы создаете. Прежде всего, пожалуйста, делитесь с другими! Это одно из
преимуществ таких людей, как вы, которые творят сегодня для интерне-
та. Спасибо за то, что читали эту книгу!

Резюме
Из этой главе вы узнали:

� что может произойти в будущем веб-ком по нен тов;
� как веб-ком по нен ты могут сделать такие пугающие непосвящен-

ного технологии, как смешанная реальность и машинное обучение,
доступными;

� как скрывать собственные сложные системы, такие как полноцен-
ная 3D-сцена в веб-компоненте;

� как использовать компоненты, созданные в этой книге, для новых
технологий.

Приложение
ES2015

для веб-компонентов

A.1 Что такое ES2015?
Раньше изменений в языке JavaScript было немного, и они находились
далеко друг от друга. Возможно, вы не знаете, что «JavaScript» в действи-
тельности не является официальным названием этого языка – это то, как
мы называем его с 1996 года, когда язык Java был королем, а компания
Netscape хотела укрепить позиции своего языка LiveScript. Также это был
тот год, когда по инициативе Netscape была проведена стандартизация
JavaScript ассоциацией ECMA International (www.ecma-international.org).

После принятия его в качестве нового языкового стандарта мы долж-
ны были называть его ECMAScript, но такое название не очень удобно
произносить. Таким образом, на протяжении более 20 лет этот язык из-
вестен как JavaScript (или JS), а стандарт называется ECMAScript. Ког-
да в 1999 году вышел ECMAScript 3, что касается изменений, в течение
какого-то периода времени ничего не происходило.

Только в 2009 году была завершена пятая редакция ECMAScript. К со-
жалению, выпуск четвертой версии был отменен из-за того, что она
была основана на языке ActionScript от компании Macromedia и оказа-
лась слишком амбициозной в отношении изменения языка в сознании
многих людей. ECMAScript 5 возрастом 10 лет – это стандарт, с которым
знакомо большинство из нас. Эту версию также называют ES5.

Поэтому, конечно же, в 2015 году, когда была завершена работа над
шестой версией языка, люди называли его ES6, что, к сожалению, было
немного неточным! Шестая версия ECMAScript была первой редакцией,
которую комитет по стандартам решил назвать в соответствии с годом
выпуска, то есть ES2015.

С 2015 года мы видим, что каждый год появляется новая версия. При
сжатых сроках изменения были довольно устойчивыми и небольшими.
В наши дни более полезно посмотреть, была ли выбранная вами языко-
вая функция принята браузерами, на которые вы ориентируетесь.

Несмотря на некоторые замечательные возможности языка JS начи-
ная с 2015 года, мне бы хотелось сосредоточиться на нескольких основ-
ных функциях ES2015 (ES6), которые действительно значительно улуч-
шают разработку веб-ком по нен тов.

437Переосмысление способа объявления переменных с помощью ES2015

A.2 Переосмысление способа объявления
переменных с помощью ES2015
Строго говоря, вы можете продолжать использовать ключевое слово var,
когда захотите. Объявление переменных таким образом работает до тех
пор, пока существует JS, и в ближайшее время оно не изменится.

A.2.1 Объявление переменных с помощью ключевого слова let
ES2015 дает нам еще два способа объявления переменных: let и const.
С точки зрения использования мало что изменилось – просто стало не-
много строже и разумнее. С помощью ключевого слова let вы можете
объявлять свои переменные, как делали это всегда, используя var:

var x = 5; // Старый способ
let x = 5; // Новый способ

Разница между let и var зависит от области видимости. Объявления
переменных с помощью ключевого слова let более знакомы тем, кто
работает с другими языками программирования. Переменные будут су-
ществовать только в блоке, с которым они были созданы, а также во всех
вложенных блоках внутри. Блоки – это строки кода, заключенные в фи-
гурные скобки, например if/then, цикл for или объявление функции.

Рассмотрим приведенный ниже листинг.

Листинг А.1 Объявление переменной внутри цикла for

for (var c = 0; c < 5; c++) {

 var message = 'hi' + c;

}

console.log(message);

Используя ключевое слово var, мы постоянно устанавливаем для пе-
ременной message значение «hi» наряду с текущей итерацией цикла. По-
скольку в этом цикле мы ограничиваем значение c до 5, в нашем журнале
консоли выводится «hi4». Тот факт, что наша переменная вообще содер-
жит что-либо после этого цикла, немного уникален для JS.

Как правило, в других языках наша переменная message будет видна
в блоке, в котором она находится, а именно в цикле for. На практике
переменная просто не существовала бы вне этой области видимости!
Использование ключевого слова let для объявления переменной делает
такое поведение поведением по умолчанию.

Давайте изменим var на let, как показано ниже.

Листинг A.2 Объявление переменной с помощью ключевого слова let
внутри цикла for

for (let c = 0; c < 5; c++) {

 let message = 'hi' + c;

}

console.log(message);

Переменная message объявляется
внутри цикла for

Объявление переменной выглядит так же, как и раньше,
за исключением того, что теперь вместо ключевого слова
«var» используется «let»

438 Приложение ES2015 для веб-компонентов

Теперь переменная message не только не определена, но и JavaScript вы-
дает ошибку:

Uncaught ReferenceError: message is not defined

Еще одна интересная особенность let состоит в том, что переменную
нельзя использовать до того, как она будет объявлена, в отличие от клю-
чевого слова var. Да, здесь требуется разъяснение, потому что если вы не
привыкли к JS, то можете подумать: «Как я могу использовать перемен-
ную до того, как она объявлена?!» Это возможно благодаря поднятию.
Поднятие имеет реализации вне простого объявления переменной, но
когда переменная объявляется, она «поднимается» или перемещается
в верхнюю часть блока.

Рассмотрим этот код:

x = 5;

var x;

console.log(x);

При поднятии переменной объявление фактически перемещается
в верхнюю часть этого блока до выполнения. Таким образом, в действи-
тельности переменная x объявляется до того, как для нее будет установ-
лено значение 5, несмотря на то что говорит код. С другой стороны, при
использовании ключевого слова let для объявления переменной x по-
явится следующая ошибка:

Uncaught ReferenceError: x is not defined

Значит ли это, что let не поднимает переменную? Нет, на самом деле x
все равно будет поднята, но между началом блока и моментом, когда код
определяет переменную, создается так называемая «временная мертвая
зона». Внутри этой мертвой зоны к переменным нельзя получить доступ
или установить для них значения. На рис. A.1 показана временная мерт-
вая зона, которая появляется при использовании ключевого слова let,
и простое поднятие переменной с помощью var.

Переменная х
поднимается

на вершину
функции

Переменная х
здесь может
использоваться
где угодно

{

}

 var x;

...код...

var x = 5;

Переменная х
поднимается

на вершину
функции

Переменная x
внутри
«временной
мертвой зоны»
использоваться
не может

Рис. A.1 Разница между доступом к переменной до ее объявления с помощью ключевого
слова var в сравнении с использованием let. При использовании ключевого слова let
появляется «временная мертвая зона», где переменная не доступна

439Переосмысление способа объявления переменных с помощью ES2015

Теперь вы могли бы спросить себя: «Чем это может быть полезно?»
Все, что я написал о let, ограничивает нас по сравнению с var! Зачем
стремиться к появлению ошибок? Здесь действительно важны читабель-
ность кода и намерение, которое вы объявляете с помощью своего кода
всем, кто приходит и читает его позже.

Когда кто-то будет читать ваш код, видя ключевое слово let, он авто-
матически будет знать, что вы не используете свою переменную внутри
любого другого блока, кроме того места, где он ее видит. Тот, кто читает
ваш код, видит, что ваша переменная объявлена внутри цикла for? Он
будет на 100 % уверен, что ваш код не использует ту же ссылку на пере-
менную где-либо еще. Даже если у нее есть такое же имя в другом блоке,
он полностью уверен, что переменные не ссылаются на одно и то же.
Использование ключевого слова let также убеждает читающего ваш код,
в том, что вы не обращаетесь к переменной и не устанавливаете для нее
значение, перед тем как объявить ее.

Такое очень строгое поведение с ошибками помогает вашему коду со-
ответствовать сделанным вами обещаниям. Если вы нарушите это обе-
щание, ваш код просто не будет работать! С другой стороны, использо-
вание ключевого слова var для объявления переменных не дает таких
обещаний, и ваш код будет выглядеть довольно неоднозначно относи-
тельно ваших намерений.

A.2.2 Объявление переменной с помощью ключевого слова const
Объявление переменной с помощью ключевого слова const практически
идентично объявлению с помощью let. Вы даете те же обещания людям,
которые читают ваш код, что вы не будете использовать переменную до
того, как она будет объявлена, и что переменная не определена вне бло-
ка, в котором она находится.

Единственное отличие в случае использования const состоит в том, что
когда вы объявляете переменную с помощью этого ключевого слова, для
нее нельзя установить другое значение. Опробуем этот пример:

const x = 5;

console.log(x);

x = 6;

В данном примере мы устанавливаем для переменной x значение,
равное 5. В журнале консоли выводится цифра 5. Все прекрасно. Но когда
мы устанавливаем значение, равное 6, то получаем ошибку:

Uncaught TypeError: Assignment to constant variable.

Итак, действительно ли нельзя изменить переменную с помощью клю-
чевого слова const? Похоже, что нет, но все зависит от того, что вы под-
разумеваете под словом «изменить». Мы не можем просто установить
для переменной x какое-то полностью другое значение, и это правда, но
мы, безусловно, можем, так сказать, отредактировать ее. Если наша пере-

440 Приложение ES2015 для веб-компонентов

менная не является примитивным типом, таким как строка или число,
а является объектом, обладающим собственными свойствами, мы мо-
жем отредактировать эти свойства:

const x = { a: 5 };

x.a = 6;

При использовании этого примера ошибки нет. Однако если мы уста-
новим для переменной x в качестве значения другой объект, это опреде-
ленно вызовет ошибку.

A.2.3 Важно по соглашению, но не по функциональности
Как вы убедились, ключевые слова let и const не дают дополнительной
функциональности. Учитывая это, использовать данные новые функ-
ции JS совсем не обязательно. Если после прочтения всего этого вы
по-прежнему предпочитаете использовать ключевое слово var, у вас
действительно не возникнет никаких проблем (помимо упомянутых
аспектов читабельности). Тем не менее, учитывая, что вы создаете веб-
ком по нен ты, вам необходимо будет использовать хотя бы одну функцию
ES2015. Поэтому особого повода отказываться от использования ключе-
вых слов let и const нет. Если другие люди читают ваш код, им, вероятно,
будет интересно, почему вы до сих пор используете var.

A.3 Классы
В других языках классы можно рассматривать как копии чертежей или
шаблоны. Когда вы создаете такую копию, то создаете четко определен-
ную конструкцию, из которой можно создавать экземпляры объектов.
Класс на самом деле не служит ничему, кроме как быть этим шаблоном.
Несмотря на то что классы – это просто копия чертежа, они служат для
планирования того, как будут действовать объекты, которые мы создаем
из них. Любой экземпляр или объект, созданный из определенного клас-
са, всегда будет действовать определенным образом, потому что про-
граммист определил все методы, свойства и логику в классе.

Обычно класс выглядит примерно так:

Class MyClass {
 . . .

}

А вот как можно создать экземпляр класса (рис. A.2):

const myInstance = new MyClass();

Однако в JavaScript ситуация с классами обстоит немного иначе. По-
скольку JavaScript является языком, основанным на прототипах, классов
в истинном понимании этого слова в действительности не существует,
как в объектно-ориентированных языках. Вместо этого новая функция
класса ES2015 предлагает приятный синтаксис, который делает JS более
объектно-ориентированным. «Под капотом» и правда нет «копии» – вы

441Классы

просто создаете объект времени выполнения, используя эту функцию,
который вы клонируете для создания экземпляра.

Класс

свойство1
свойство2

метод1
метод2

новый Class();

новый Class();

новый Class();

Экземпляр
класса

Экземпляр
класса

Экземпляр
класса

Рис. A.2 В объектно-ориентированных языках программирования экземпляры
класса обычно создаются из класса, своего рода как копия чертежа

Учитывая это, даже несмотря на то что они выглядят одинаково
и предлагают отличную функциональность, классы в JS не предлагают
того же, что делают классы в других языках. Существуют хорошие ресур-
сы для изучения всего, что касается объектно-ориентированного про-
граммирования и классов в JS. В этом разделе будут изложены некоторые
основы, которые помогут вам освоить концепции, касающиеся веб-ком-
по нен тов, не вдаваясь в подробности.

A.3.1 Конструктор
Конструктор является довольно простой концепцией, но используется
и упоминается везде, где идет обсуждение классов. С точки зрения ис-
пользования, между конструктором в JavaScript и конструктором в боль-
шинстве других языков на самом деле нет никакой разницы.

Конструктор – это функция, которая описывает любую пользователь-
скую логику, которая возникает при создании экземпляра класса. Напри-
мер, можно определить класс в JavaScript с помощью конструктора, ко-
торый просто выводит информацию в консоль при создании экземпляра
класса, как показано в приведенном ниже листинге.

Листинг A.3 Использование конструктора класса

<script>

 class MyClass {
 constructor() {

 console.log('hi from my class');

 }

 }

 let instance = new MyClass();
</script>

Просто создавая экземпляр этого класса, мы выводим информацию
в консоль. Как правило, любая инициализация логики помещается
в конструктор.

Метод constructor()

Создаем экземпляр класса

442 Приложение ES2015 для веб-компонентов

Существует одно дополнительное правило при использовании насле-
дования в классе, которое заключается в том, что вы должны вызывать
метод super(); в самой первой строке, даже если у родительского класса
нет конструктора (см. ниже).

Листинг A.4 Необходимо вызвать метод super() в конструкторе
подкласса

<script>

 class MyParentClass {
 }

 class MyClass extends MyParentClass {
 constructor() {

 super();

 console.log('hi from my class');

 }

 }

 let instance = new MyClass();
</script>

Вызов метода super(); – это способ вызова конструктора унаследован-
ного класса, в данном случае MyParentClass.

A.3.2 Свойства
В большинстве языков класс обычно служит «копией» как для опреде-
ления методов, так и для определения свойств. Посмотрите на пример,
приведенный ниже:

Листинг А.5 Общий пример класса для любого языка

class MyClass {
 property1: . . .;

 property2: . . .;

 method1() {

 . . .

 }

 method2() {

 . . .

 }

}

В JS в классе определяются только методы. Свойства – это отдельная
история. Если вы хотите создать переменную, которая существует в обла-
сти видимости вашего класса, вам нужно создать ее в одном из методов
в виде свойства this, которое представляет область видимости экземпляра
вашего класса. К сожалению, данное различие означает, что ваш код JS,
возможно, станет труднее читать. В других языках, где переменные объяв-
ляются в самом классе, не составит труда точно выяснить, какие свойства
доступны в вашем классе, потому что обычно они объявляются вверху.

Объявляем базовый класс

Наследуем базовый класс

При наследовании требуется вызов
метода super() в конструкторе

Свойство, объявленное в классе (в чистом JS это не работает)

Метод, объявленный в классе (работает в JS)

443Классы

В случае с JS мне нравится объявлять свои переменные внутри кон-
структора, чтобы попытаться восполнить этот недостаток. Если бы я хо-
тел использовать конструктор, чтобы свойства моего класса было легче
читать, я мог бы опробовать подход, описанный в приведенном ниже
листинге.

Листинг A.6 Объявление свойств в конструкторе, а не в самом классе

class MyClass {
 constructor() {

 this.property1;

 this.property2 =

 'a starting value';

 }

 method1() {

 . . .

 }

 method2() {

 . . .

 }

}

Еще одна вещь, которую вы можете упустить, если работали с другими
языками, – это понятие частных, защищенных и общедоступных свойств
в вашем классе.

A.3.3 Закрытые свойства в JavaScript
В традиционных объектно-ориентированных языках программирова-
ния, помимо возможности объявления свойств класса, разработчики
могут также указать способ доступа к этим переменным. Обычно в этих
языках есть три типа свойств класса:

� Private (Закрытый);
� Protected (Защищенный);
� Public (Открытый).

На рис. A.3 показаны все типы свойств при попытке получить к ним
доступ извне класса.

Закрытая переменная – это переменная, доступная только из вашего
класса. Это означает, что если вы создадите экземпляр класса с помощью
ключевого слова new, а затем попытаетесь получить доступ к свойству,
оно будет неопределенным или сгенерирует исключение, как показано
в приведенном ниже листинге.

Листинг A.7 Псевдокод, где показаны свойства закрытого класса
в других языках

Class MyClass {
 private x;

 constructor() {

Объявляем свойство в классе, у которого нет значения
Объявляем свойство в классе с начальным значением

Объявляем закрытую переменную в классе

444 Приложение ES2015 для веб-компонентов

 x = 5;

 }

}

instance = new MyClass();
instance.x = 6;

Экземпляр,
созданный из класса

Закрытое свойство

Защищенное свойство

Открытое свойство

Отклонено!

Отклонено!

Успешно!

Код
приложения

Рис. A.3 Пример различий между открытыми, закрытыми и защищенными
переменными (не JavaScript)

Закрытые переменные предлагают вашему классу защиту от поль-
зователей этого класса, которые приходят и меняют его внутреннее
устройство. Будучи создателем класса, вы должны определить, как этот
класс используется.

Например, внутри класса есть переменная, которую вы используете
для отслеживания чего-либо. Допустим, вы можете отслеживать, сколько
раз пользователь нажимал кнопку. Внутри класса мы пишем это: counter
= 0. Каждый раз, когда пользователь кликает по кнопке, мы увеличиваем
значение счетчика: counter ++. Как правило, во многих языках этот счет-
чик может быть закрытой или защищенной переменной. Это не позво-
лит разработчику настроить myinstance .counter извне как ему заблагорас-
судится, тем самым полностью уничтожив фактический счет!

В других языках производный класс также не получает доступ к за-
крытым переменным. Посмотрите на два этих класса:

Листинг A.8 Некорректный доступ к закрытому свойству в подклассе
(псевдокод)

Class MyParentClass {
 private x;

 constructor() {

 x = 5;

 }

}

Class MyClass extends MyParentClass {

Ничего не получилось, потому что свойство является закрытым

Закрытая переменная объявлена в базовом классе

Значение для переменной устанавливается
в конструкторе базового класса

445Классы

 constructor() {

 super();

 x = 6;

 }

}

В этом примере, хотя класс MyClass и наследует от MyParentClass, он не
может получить доступ к переменной x. Если бы она была защищенной,
а не закрытой, то все было бы иначе. Однако в случае с JavaScript эти раз-
личия исчезают. Поскольку свойства не объявлены и все они доступны
в области видимости класса с помощью слова this, различий нет – все
свойства являются открытыми. Это означает, что после создания экзем-
пляра вашего объекта из класса на любое свойство или метод, которые
можно использовать внутри класса, можно ссылаться вне класса.

Разработчики JavaScript занимались этим некоторое время, еще до
того, как классы стали чем-то особенным. Некоторые из них создали для
этого довольно гениальные и также неприглядного вида обходные пути.
Я сторонник того, чтобы все было просто, и использую нижнее подчер-
кивание для добавления имен переменных. Примерно так:

this._property2 = 'a starting value';

Нижнее подчеркивание в имени вашей переменной на самом деле
не делает ничего. Это соглашение, которое многие из нас используют,
чтобы притворяться, что эта переменная не является открытой и к ней
нельзя получить доступ извне.

Да, разработчики могут настроить myobject._counter вне класса, но, ис-
пользуя это подчеркивание, очевидно, что любой, кто читает код, знает,
что он делает «неправильные» вещи.

Хотя я предпочитаю нижнее подчеркивание для простоты и исполь-
зую его в этой книге, более современный подход заключается в приме-
нении еще одной функции ES2015 под названием WeakMap. WeakMap и Map –
две схожие концепции в JS. Они используются в качестве хранилища
типа «ключ/значение». Объекты Map и WeakMap не только имеют, возможно,
более приятный API по сравнению с простым объектом, они также при-
нимают непримитивные типы данных в качестве ключей (на самом деле
WeakMap требует наличия непримитивных ключей).

Это означает, что фактически мы можем использовать весь экземпляр
класса в качестве ключа. Поскольку нам нужна автоматическая сборка
мусора, мы будем использовать объект WeakMap для реализации нашей за-
крытой переменной вместо Map в приведенном ниже листинге.

Листинг A.9 Использование объекта WeakMap для моделирования
закрытых свойств в JavaScript

const vars = new WeakMap();

const _private = obj => {

 if (!vars.has(obj)) {

 vars.set(obj, {});
 }

Выбрасывается исключение, потому что x – закрытая переменная,
которая не объявлена в этом классе

Инициализируем объект WeakMap

Объект для доступа к закрытым переменным,
организованный по экземпляру класса

446 Приложение ES2015 для веб-компонентов

 return vars.get(obj);

};

class MyClass {
 constructor() {

 _private(this).test =

 'hi from my class';

 }

}

Поначалу это может сбивать с толку, но потерпите. Сначала мы созда-
ем WeakMap для хранения коллекций наших закрытых переменных. Пом-
ните, что у одного класса может быть много экземпляров, поэтому мы
используем каждый экземпляр в качестве ключа для WeakMap, управляе-
мого самим классом.

Итак, если ключ – это экземпляр, что же со значением? Каждое зна-
чение представляет собой объект JS, который содержит еще больше пар
типа «ключ/значение». Каждая из этих пар является именем закрытой
переменной и значением самой переменной, как показано на рис. A.4.

Экземпляр класса

private(this).myVariable = 'test';

WeakMap

Экземпляр класса № 1

Экземпляр класса № 2

Экземпляр класса № 3

Переменные
экземпляра № 1

myVariable: 'test'

myOtherVar: 5

anotherVar: 6.2

Рис. A.4 Реализация, в которой используются закрытые переменные, проходящие
через WeakMap с ключами на базе экземпляров класса. Каждый ключ ссылается на объект,
содержащий закрытые переменные

Наконец, мы также объявляем функцию _private, чтобы она помогла
нам управлять использованием этого объекта WeakMap и упростить полу-
чение и настройку закрытых переменных. Помимо получения правиль-
ной закрытой переменной для экземпляра, эта функция создает объекты
для хранения закрытых переменных отдельного экземпляра.

Похоже, что этот метод представляет собой популярный и современ-
ный способ сделать ваши переменные закрытыми. В отличие от просто-
го использования нижнего подчеркивания для обозначения закрытых
переменных, этот метод фактически делает переменные недоступными
в экземпляре класса. Существует немало обходных путей, подобных это-
му. Возможно, скоро у нас действительно появится поддержка закрытых
переменных (поля закрытых классов уже есть в Chrome Canary), но пока
мы можем выбрать только то решение, которое удовлетворяет нашим
потребностям, взвесив простоту использования и реальную невозмож-
ность доступа за пределами экземпляра класса.

Устанавливаем значение
для закрытой переменной внутри класса

447Классы

A.3.4 Геттеры и сеттеры
Еще один набор функций, которые будут иметь отношение к нашей ра-
боте с веб-ком по нен та ми, – это методы чтения (геттеры) и устанавлива-
ющие методы (сеттеры). Геттеры и сеттеры – это методы, которые извне
выглядят как свойства. Давайте притворимся, что в приведенном ниже
листинге у нас есть класс со счетчиком кликов, который мы не хотели бы
изменить извне, но который хотим сделать доступным для чтения.

Листинг A.10 Счетчик кликов мышью, отслеживаемый внутри

class MyClass {
 constructor() {

 this._counter = 0;

 }

 mouseClickHandler() {
 this._counter ++;

 }

}

Как было подробно описано в предыдущем разделе, посвященном за-
крытым переменным, использование нижнего подчеркивания для this._
counter является примитивной реализацией для обозначения этой пере-
менной как закрытой. Опять же, это делается по соглашению и означает,
что мы не должны иметь доступ к _counter:

let myInstance = new MyClass();
let myCounter = myInstance._counter;

Чтобы сделать нашу переменную доступной для чтения, но не для
запи си, нам нужно определить доступ к ней с помощью метода чтения.
Повторюсь, геттеры и сеттеры – это не свойства, к которым можно по-
лучить доступ. Вместо этого в приведенном ниже листинге мы создаем
метод для нашего класса, который работает как свойство.

Листинг A.11 Создаем метод, разрешающий чтение,
но не запись в свойство

class MyClass {
 constructor() {

 this._counter = 0;

 }

 get counter() {

 return this._counter;

 }

 mouseClickHandler() {
 this._counter ++;

 }

}

Инициализируем счетчик в конструкторе класса

Увеличиваем значение счетчика в гипотетическом
обработчике mouseClickHandler()

Геттер для переменной counter

448 Приложение ES2015 для веб-компонентов

Теперь у нас есть способ запросить переменную counter, но поскольку
мы не добавили сеттер, ее настройка на самом деле ничего не даст. Внут-
реннее значение по-прежнему будет равно 0:

let myInstance = new MyClass();
let myCounter = myInstance.counter; // Работает
myInstance.counter = 5;

console.log(myInstance.counter) // Выводит 0

Это именно то, что нам нужно! Мы хотим предоставить способ до-
ступа к количеству раз, которое была нажата кнопка мыши, но, как и на
рис. A.5, мы не хотим, чтобы кто-то приходил и назначал переменной
counter значение в виде любого числа. Конечно, в приведенном ниже
листинге мы также можем добавить сеттер, используя set вместо get
в определении метода.

Экземпляр,
созданный из класса

Отклонено!

Успешно!
Приложениеget myVariable() {}

let x = myInstance.myVariable

myInstance.myVariable = 5;

Рис. A.5 Пример объявления метода чтения в классе без сеттера.
Внешнее приложение может получить переменную, но не может установить
для нее значение

Листинг A.12 Определение методов чтения и устанавливающих методов
для класса

class MyClass {
 constructor() {

 this._counter = 0;

 }

 set counter(val) {

 this._counter = val;

 }

 get counter() {

 return this._counter;

 }

 mouseClickHandler() {
 this._counter ++;

 }

}

Конечно, в контексте этого примера сеттер не имеет особого смысла.
Более того, использование и геттеров, и сеттеров для чтения и записи из
простого свойства – это немного чересчур. Почему бы просто не сделать
counter открытым свойством?

Сеттер, дополняющий метод чтения

449Классы

Определение геттеров и сеттеров полезно, когда вы хотите выполнить
какой-то код в дополнение или вместо чтения или записи переменной.
Например, возможно, что при настройке свойства counter также обнов-
ляется и график. Здесь это может быть столбец из гистограммы, который
растет до значения счетчика, и все это делается просто с помощью ме-
тода чтения:

 set counter(val) {

 this.counterElement.style.height = val + "px";

 this._counter = val;

 }

A.3.5 Статические методы
Давайте перейдем к статическим методам. Статические методы также
называют методами класса, потому что они запускаются в самом классе,
а не в экземпляре класса.

Начнем с простого, но бесполезного примера: сложим два числа
и вернем результат. Конечно, обычно вы просто используете оператор +
и складываете их, но давайте сделаем так, чтобы это был метод.

Листинг A.13 Метод add

class MyClass {
 constructor() {

 }

 add(a, b) {
 return a + b;

 }

}

Чтобы использовать наш новый метод add, нам нужно сначала создать
экземпляр класса:

let myInstance = new MyClass();
let total = myInstance.add(5, 6); // В сумме получается 11

Хотя если подумать, мы не будем использовать какие-либо свойства
экземпляра класса. Ранее в нашем примере со счетчиком мы записывали
количество как свойство класса. Без использования экземпляра, создан-
ного из нашего класса, для увеличения значения нашего счетчика, у нас
не было бы способа узнать, что это было до того, как мы попытались уве-
личить значение.

Однако в этом случае мы ничего не отслеживаем – нам на самом деле
не нужен экземпляр класса; мы просто хотим вызвать функцию и полу-
чить результат.

Листинг A.14 Пример метода класса, использующего ключевое слово
static

class MyClass {
 constructor() {

 }

Метод сложения, определенный внутри класса

450 Приложение ES2015 для веб-компонентов

 static add(a, b) {
 return a + b;

 }

}

Функцию в листинге A.14 теперь можно запускать из самого класса
(отсюда и название: метод класса):

let total = MyClass.add(5, 6);

Статические или классовые методы довольно полезны, но они также
непосредственно применимы к тому, как мы слушаем атрибуты в веб-
компонентах. Это можно увидеть в главе 4, где используется метод ob-
servedAttributes, чтобы сообщать вашему веб-компоненту, какие атрибу-
ты следует отслеживать на предмет изменений.

Статические методы можно дополнительно сочетать с геттерами
и сеттерами. Использование статического геттера может быть отличным
способом определения константных значений, которые должны исполь-
зоваться совместно в вашем приложении.

Листинг A.15 Статический метод чтения для совместного использования
константных значений в вашем приложении

class MyClass {
 static get URL() {
 return "http://myserviceurl/api/v2";

 }

}

С помощью данного статического метода чтения этот URL-адрес мо-
жет использоваться где угодно, даже без получения экземпляра класса:

let url = MyClass.URL;

A.4 Модули
Чтобы изучить, что такое модули, нужно взглянуть на одну распростра-
ненную функцию, которая есть в других языках: импорт. Рассмотрим
приведенный ниже класс, написанный на Java, из учебного курса на сай-
те www.javatpoint.com/java-swing.

Листинг A.16 Пример импорта в Java

import javax.swing.*;

public class SwingHelloWorld {

 public static void main(String[] args) {

 JFrame f=new JFrame();
 JButton b=new JButton("click");
 b.setBounds(130,100,100, 40);
 f.add(b);

 f.setSize(400,500);
 f.setLayout(null);

Создаем экземпляр кнопки

Устанавливаем значения
для осей x и y, ширину и высоту

Добавляем кнопку
в пользовательский
интерфейс

Устанавливаем размер кнопки

451Модули

 f.setVisible(true);

 }

}

В этом примере на базе Java мы программными средствами создаем
кнопку и помещаем ее в окно. Если не знать язык Java, то это выглядит
довольно просто, не так ли? Нечто очень похожее и лаконичное мож-
но было бы сделать и с помощью HTML и JavaScript. Разница в случае
с JavaScript заключается в том, что мы будем использовать пространство
имен document для создания нашей кнопки:

document.createElement('button');

A.4.1 Объекты верхнего уровня в JS
Вы когда-нибудь задумывались обо всех этих методах, которые мы
используем каждый день, из объектов document или window? Их много,
и хотя поначалу вас это может ошеломить, с этим можно справиться,
как только вы привыкнете. Эти объекты верхнего уровня или глобаль-
ные объекты предназначены для управления DOM и вашими визуаль-
ными элементами, находящимися внутри модели. Между тем сущест-
вуют и другие глобальные объекты, которые используются для иных
целей. Мы выводим журналы в нашу консоль с помощью console.log
и можем выполнять парсинг строк в формате JSON с помощью JSON.
parse. У нас также есть объект верхнего уровня Math, который можно ис-
пользовать для тригонометрических вычислений, создания случайных
чисел и многого другого.

Когда вы думаете обо всех этих объектах верхнего уровня, о которых
мы как разработчики JavaScript должны знать, все это может показаться
немного хаотичным. С другой стороны, если посмотреть на пример, при-
веденный в листинге A.16, можно заметить такие объекты, как JFrame
и JButton, которые используются для создания окна и кнопки соответ-
ственно, – но откуда они появились?

Чтобы ответить на этот вопрос, нужно учитывать, что графические ин-
терфейсы не обязательно являются тем, что делают разработчики Java.
Многие этим занимаются, но многие также будут счастливы выполнять
работу, связанную c backend-программированием. Учитывая широкий
спектр всего, что Java нужно делать и с чем приходится работать, когда
дело доходит до сторонних библиотек, в Java, как и в большинстве других
языков, существует функциональная возможность – import.

Обратите внимание на импорт javax.swing.*; в верхней части класса.
На самом деле это сокращение. Расширенный вариант выглядел бы так:

import javax.swing.JFrame;
import javax.swing.JButton;

Используя синтаксис .*, мы импортируем все классы или вложенные
классы в javax.swing и делаем их доступными по имени в классе, в кото-
рый вы их импортировали, поэтому у JButton хватает смекалки создать
визуальную кнопку.

452 Приложение ES2015 для веб-компонентов

A.4.2 Синтаксис модуля для импорта и экспорта
До сих пор в JavaScript, если говорить о браузерах, никогда не было встро-
енного способа управления внешними зависимостями, кроме использо-
вания тега <script>. Сторонние библиотеки, такие как require.js, пытались
восполнить этот пробел, но это так и не было принято в качестве специ-
фикации. Теперь у нас официально есть нативная функция модулей. Для
того чтобы использовать модули, которые допускают применение им-
порта, как и другие языки, нужно сделать кое-какие настройки.

Сначала давайте подготовим небольшой код, который можно исполь-
зовать в качестве импортируемого модуля. В отдельном файле мы мо-
жем написать всего несколько строк:

export default function demo() {

 console.log('demo');

}

Если разобрать, что мы написали, очевидно, что здесь мы определя-
ем функцию с именем demo, которая выводит «demo». Ключевое слово
export – то, что делает эту функцию способной импортироваться. Клю-
чевое слово default просто сообщает любому коду, с помощью которого
импортируется этот сценарий, что эта функция является переменной,
объектом или функцией по умолчанию, которая используется при им-
порте сценария.

Чтобы было понятнее, давайте посмотрим на импорт, который пока-
зан в листинге ниже. Для этого нам нужно объявить, что используемый
нами тег <script> имеет тип module.

Листинг A.17 Установка типа тега <script> для активации JS-модулей

<script type="module">

 import DemoModule from "./moduledemo.js";

 DemoModule();

</script>

Мы можем просто импортировать несколько строк кода, который мы
только что написали. Название DemoModule в данном случае является вы-
думанным. С помощью этого импорта мы можем вызывать то, что им-
портируем, как показано на рис. A.6. Поскольку мы объявили нашу функ-
цию как default в импортируемом коде, не нужно дополнительно ничего
уточнять.

A.4.3 Работа с несколькими функциями в одном модуле
Все-таки нам нужно немного больше конкретики, если из JS-файла не-
обходимо импортировать не одну функцию, как показано ниже.

Листинг A.18 Экспорт нескольких функций в одном модуле

export function hi() {

 console.log('hi');

Используем тип module
Импортируем скрипт

Функция, экспортированная из модуля

453Модули

}

export function bye() {

 console.log('bye');

}

Код JavaScript

Импорт

Импорт

из

из

модульного файла

модульного файла

<my-component></my-component>

модуля

модуля

модуля новый ();

myclass.js

mycomponent.js

Класс
JavaScript

Определение
веб-компонента

Рис. A.6 Использование импорта, чтобы ссылаться
на внешние JS-файлы с различными целями,
включая пользовательские классы или даже другие
веб-ком по нен ты

Раньше мы могли использовать сокращенный вариант и придумывать
любое имя, какое захотим. В приведенном ниже листинге нам нужно ис-
пользовать реальные имена функций, которые мы определили в моду-
лях, когда их импортируем.

Листинг A.19 Импорт нескольких конкретных функций
из одного модуля

<script type="module">

 import { hi, bye } from "./multiplemoduledemo.js";
 hi();

 bye();

</script>

Это не значит, что мы не можем придумать собственные имена, если
бы действительно этого хотели. Для этого можно использовать модифи-
катор as.

Листинг A.20 Альтернативные имена для функций из модуля

<script type="module">

 import { hi as SomeName, bye as SomeOtherName } from
 "./multiplemoduledemo.js";

 SomeName();
 SomeOtherName();
</script>

Дополнительная функция,
экспортированная из того же модуля

Импортируем два экспорта
из одного модуля

Используем первый из двух экспортов

Используем ключевое слово «as» для ссылки
на импорт по пользовательскому имени

454 Приложение ES2015 для веб-компонентов

Наконец, мы можем просто использовать методы hi и bye для объекта
с модификатором as.

Листинг A.21 Альтернативные имена для функций в виде группы
из модуля

<script type="module">

 import * as Greeting from

 "./multiplemoduledemo.js";

 Greeting.hi();

 Greeting.bye();

</script>

Модули отлично подходят для использования в веб-компонентах.
В главе 5 подробно описано, как их можно использовать для обеспечения
полной самостоятельности ваших веб-ком по нен тов, управляя всеми их
зависимостями.

A.5 Шаблонные литералы
Использование шаблонов в JavaScript в качестве базовой функции языка
уже давно назрело. Хотя и верно, что было много библиотек и фрейм-
ворков, предлагавших нечто подобное, приятно, что теперь мы можем
сделать что-то без внешней библиотеки.

До появления шаблонных литералов разработчики JavaScript исполь-
зовали одинарные или двойные кавычки для определения строк. Встав-
ка переменных в строки, а также создание многострочных строк – все
это выглядело довольно уродливо. Это описано в главе 6, где я знакомлю
читателей с шаблонными литералами как наиболее подходящим спосо-
бом для вставки разметки в наши веб-ком по нен ты.

Что в целом делает для нас шаблонизация? Рассмотрим приведенную
ниже строку:

`Hi, my name is Ben Farrell and I live in Oakland, CA`

A.5.1 Вставка переменных в шаблонный литерал
Хорошо, если вы оказались мной (и если я не перееду в новый город), но
как персонализировать эту строку? Для начала можно использовать не-
сколько переменных:

const firstName = 'Ben';
const lastName = 'Farrell';
const city = 'Oakland';

const state = 'CA';

Здесь мы извлекли информацию, которая персонализирует эту строку
в переменные, – идея, конечно, заключается в том, что вы можете впи-
сать любое имя, город и штат в эту строку. Раньше мы могли сделать это
с помощью методов конкатенации строк:

Используем * для импорта всего,
что есть под объектом Greeting

455Толстая стрелка

const greeting = 'Hi, my name is ' + firstName + ' ' + lastName + ' and I
 live in ' + city + ', ' + state;

Данный путь всегда был немного рутинным. Это не страшно, но если
вам все время нужно следить за тем, чтобы не забыть добавить пробе-
лы во всех нужных местах вокруг вашей переменной, в сочетании с тем
фактом, что это JS-код для представления вашего шаблона, это означает,
что на самом деле это не то выражение, которое вы можете использовать
откуда угодно.

Вместо этого можно использовать шаблонные литералы, чтобы сде-
лать то же самое:

const greeting = `Hi, my name is ${firstName} ${lastName}
 and I live in ${city}, ${state}`;

Обратите внимание, что это все одна строка, включая переменные. На
рис. A.7 можно увидеть различные варианты использования литералов.

let adjective = ['nifty' , 'easy' , 'ugly'];

let who = 'you'’;

Шаблонные литералы – это новая функция ES ,

позволяющая использовать встроенные выражения в строках с

переносом строк, что не выглядит так

${adjective [0]} ${2000 + 15}

${who} ${adjective [1]}

${adjective [2]}

Рис. A.7 При объединении наших переменных и нашей строки шаблонного литерала мы
получаем: «Шаблонные литералы – это отличная новая функция ES2015, позволяющая вам
использовать встроенные выражения в строках с простым переносом строк, что не выглядит
так безобразно»

A.6 Толстая стрелка
Толстая стрелка – это новая функция JS, которая решает давнюю проб-
лему в этом языке. Метод bind, помимо apply, решил эту проблему до по-
явления ES2015. Толстая стрелка, или функция-стрелка, теперь решает
проблему области видимости более понятным способом. В этом отноше-
нии данная проблема не является уникальной для веб-ком по нен тов или
классов. Толстая стрелка позволяет нам сохранять область видимости
везде, где нам это нужно. Специально для классов веб-ком по нен тов она
делает наших слушателей событий и функции обратного вызова намно-
го более читабельными и простыми в использовании.

A.6.1 Проблема, связанная с областью видимости функции
обратного вызова
Вероятно, вы знакомы со слушателями событий, так как мы используем
их постоянно при проверке событий мыши, ввода с клавиатуры и много-

456 Приложение ES2015 для веб-компонентов

го другого. Как правило, вы используете их с двумя параметрами, пер-
вый из которых – это строка, описывающая событие, которое нужно
прослушать, а второй – функция, вызываемая, когда объект, который вы
прослушиваете, отправляет событие.

На данный момент мы проигнорируем синтаксис толстой стрелки
и рассмотрим обычный вариант:

target.addEventListener('mousemove', function(event) {
 ...do something

});

Или если у вас уже настроена функция для обработки события:

target.addEventListener('mousemove', myFunction);

В каждом из этих случаев происходит довольно неприятная вещь: мы
потеряли первоначальную область видимости, а в вызываемой функции
у нас совершенно новая область. Чтобы было понятнее, взгляните на
приведенный ниже листинг.

Листинг A.22 Пример с таймером, показывающий потерю области
видимости в классе

class ScopeTest {

 constructor() {

 this.message = 'hi';

 setInterval(this.onTimer, 1000);
 }

 onTimer() {

 console.log(this.message);

 }

}

let test = new ScopeTest();

В этом примере мы создаем экземпляр класса. Сразу же в конструкто-
ре мы установили для строки с именем message значение «hi». Также мы
запускаем таймер, который срабатывает каждую секунду. Он вызывает
функцию onTimer, выводящую в консоль содержание нашей переменной
message.

A.6.2 Потеря области видимости в классах
Проблема состоит в том, что при запуске этого кода в консоли выводится
слово undefined. Почему не выводится «hi»? Что произойдет, если мы из-
меним наш конструктор, чтобы вызвать функцию напрямую?

Листинг A.23 Вызов функции напрямую,
чтобы избежать потери области видимости

class ScopeTest {

 constructor() {

 this.message = 'hi';

Запускаем таймер, используя функцию onTimer,
которая вызывается при каждом тайм-ауте

Не определено, потому что «this» больше
не находится в области видимости класса

457Толстая стрелка

 this.onTimer();

 }

 onTimer() {

 console.log(this.message);

 }

}

let test = new ScopeTest();

В этом случае и вправду выводится сообщение в виде слова «hi», но
разница между этими двумя методами зависит от области видимости.

Область видимости – это контекст, в котором мы можем получить
доступ к переменным, функциям и объектам. На самом деле этот кон-
текст – ссылка this. Попробуйте добавить этот код в свой конструктор:

 constructor() {

 console.log(this);

 this.message = 'hi';

 this.onTimer();

 }

Вот что будет выведено:

ScopeTest {message: "hi"}

И конечно, если вы откроете это в инструментах разработчика, то так-
же сможете увидеть там функцию onTimer. Использование этой строки
кода, console.log(this), дает вам ссылку на ваш класс! Это именно то, что
нам нужно для управления кодом в нашем классе, и именно поэтому мы
можем обращаться к переменным с помощью ключевого слова this или
вызывать функции.

С другой стороны, если мы установим надлежащий таймер в конструк-
торе, используя set-Timeout (this.onTimer, 1000), и напишем уже знакомую
строку console.log(this):

 onTimer() {

 console.log(this);

 }

то попадем в нераспознаваемую область видимости:

Window {postMessage: ƒ, blur: ƒ, focus: ƒ, close: ƒ, frames: Window, . . .}

Фактически, если бы вы запускали функцию onTimer из конструктора
без таймера, ваша область видимости все равно была бы областью види-
мости вашего класса.

Итак, как вы, вероятно, убедились, когда вы передаете функцию, на-
пример, слушателю событий, таймеру или чему-то похожему, что будет
вызвано позже, ваша функция обратного вызова внезапно оказывается
в новой области видимости! Конечно, это проблематично, потому что
тогда возникает вопрос, как снова ссылаться на область видимости ва-
шего класса из функции обратного вызова.

В нашем примере, в рамках нашего обратного вызова таймера, мы не
можем получить доступ к нашей переменной message. Что, если вместо

Вызываем функцию onTimer напрямую,
а не через setInterval

Будет выведено «hi», потому что «this» все
еще находится в области видимости класса

458 Приложение ES2015 для веб-компонентов

этого мы захотим принять меры в отношении DOM нашего веб-ком по-
нента? Щелчок мышью был бы крайне полезен для прослушивания, если
бы мы не могли предпринять какие-либо контекстные действия с ним.

A.6.3 Управление областью видимости
с помощью толстой стрелки
В JS было много способов решить эту проблему с течением времени, но
у нас наконец-то появилась новая функция специально для этого – толс-
тая стрелка. Конечно, мы ласково называем ее толстой, потому что она
выглядит как стрелка с толстым основанием – =>.

Чтобы использовать толстую стрелку в приведенном ниже листинге,
мы передаем функцию-стрелку, содержащую выражение, которая вызы-
вает наш метод вместо самой функции.

Листинг A.24 Использование толстой стрелки
для сохранения области видимости

class ScopeTest {

 constructor() {

 this.message = 'hi';

 setInterval(() => this.onTimer(), 1000);
 }

 onTimer() {

 console.log(this.message);

 }

}

let test = new ScopeTest();

Используя здесь толстую стрелку, мы можем вывести содержимое
this.message, и это не будет undefined; что еще более важно, мы сохраняем
область видимости нашего класса даже посредством функции обратного
вызова. Часто вы не увидите пустых скобок в выражении толстой стрел-
ки. Здесь это означает, что мы не передаем параметры, поскольку обрат-
ные вызовы setInterval их не принимают.

Если бы были параметры для данного метода, эти круглые скобки
были бы заполнены, как вы, возможно, и ожидали:

callback((x, y, z) => this.onCallback(x, y, z));

В качестве примера, который непосредственно относится к нам, да-
вайте вернемся к нашему слушателю события перемещения мыши:

this.addEventListener('mousemove', e => this.onMouseMove(e));

В этом случае слушатель событий передает событие в функцию обрат-
ного вызова, и мы решили использовать это. Мы по-прежнему можем
игнорировать это событие и использовать функцию с пустыми скобка-
ми, например так:

this.addEventListener('mousemove', () => this.onMouseMove());

Передаем выражение из толстой
стрелки вместо функции

Область видимости класса сохранена;
сообщение со словом «hi» зарегистрировано

459Толстая стрелка

В любом случае, мы можем использовать толстую стрелку, чтобы пра-
вильно сохранить область видимости, как показано на рис. A.8, где мы
противопоставляем это другим методам, которые мы обсуждали. Что
еще более важно для сценариев использования нашего веб-компонента,
мы можем сохранить область видимости непосредственно для самого
веб-компонента, а написание кода для нашего компонента останется
простым, не превращаясь в лабиринт из смешанных областей, которыми
мы должны управлять.

Класс JavaScript

this.callFunc()

setTimeout(callFunc, 1000)

setTimeout(
 () => callFunc(),
 1000)

Новая область
видимости

“this”

“this”

“this”

Рис. A.8 Потеря области видимости или контекста при использовании функции
обратного вызова без возможности возврата, и как толстая стрелка может
отобразить область видимости туда, где была вызвана функция,
точно так же, как при вызове обычной функции

Предметный указатель

А
Атрибут, 39

В
Встряхивание дерева, 325

Г
Глубокое клонирование, 192

Д
Дополненная реальность, 410

И
Именованные теги, 203
Инкапсуляция, 207
Интернет-хранилище, 380

К
Класс, 51
Компонент, 30
Контроллер, 378
Корень теневого дерева, 202, 213

Л
Локальное хранилище, 380

М
Метод отражения, 40
Методы класса, 449
Модель, 378
Модуль, 30
Монтирование, 118

Н
Наборы тестов, 343
Наследование, 47

О
Область видимости, 457
Отражение, 97

П
Палитра цветов, 414
Поднятие, 438
Пространство имен, 49

Р
Реентерабельность, 98

С
Селекторы, 263
Статические методы, 449

Т
Теневая граница, 213
Теневая модель DOM, 31
Теневое дерево, 213
Теневой хост, 213
Толстая стрелка, 455

У
Утечка стилей, 222

Ф
Фрагмент документа, 188, 212

Ш
Шаблонный литерал, 36, 157
Шаблоны с тегами, 174
Шина событий, 391

B
Babel, 325, 333
Babylon.js, 401

461Предметный указатель

C

Chai, 344
CSShake, 146

E
ECMAScript, 436
ES2015, 437

H
Handtrack.js, 430
HTML, тег, 30
HTMLElement, 46

J
JSDOM, 342
JSON, 76

L
LitElement, 35, 320
lit-html, 35

M
Mocha, 343

N
Node.js, 60

P
Parcel.js, 326
Poly, 76, 408

Polymer, 17, 35

R
React, 118
Redux, 364
Rollup, 326

S
Selenium, 343
StencilJS, 37, 320
Svelte, 37

T
Three.js, 401

U
Unity, 107
Unity 3D, 120

W
Web Component Tester (WCT), 343
WebGL, 400
Webpack, 326
WebStorm, 60
WebVR, 403
WebXR, 403
Windows Subsystem for Linux (WSL), 323

X

X-Tag, 35

Книги издательства «ДМК ПРЕСС»
можно купить оптом и в розницу в книготорговой компании «Галактика»

(представляет интересы издательств «ДМК ПРЕСС», «СОЛОН ПРЕСС», «КТК Галактика»).
Адрес: г. Москва, пр. Андропова, 38;

тел.: (499) 782-38-89, электронная почта: books@alians-kniga.ru.
При оформлении заказа следует указать адрес (полностью),

по которому должны быть высланы книги;
фамилию, имя и отчество получателя.

Желательно также указать свой телефон и электронный адрес.
Эти книги вы можете заказать и в интернет-магазине: www.a-planeta.ru.

Бен Фаррелл

Веб-компоненты в действии

 Главный редактор Мовчан Д. А.
dmkpress@gmail.com

 Перевод Беликов Д. А.
 Корректор Синяева Г. И.
 Верстка Чаннова А. А.
 Дизайн обложки Мовчан А. Г.

Формат 70 × 100 1/16.
Гарнитура PT Serif. Печать офсетная.

Усл. печ. л. 37,54. Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

	Веб-компоненты в действии_21-02-2020.pdf
	Предисловие
	От автора
	Благодарности
	Об этой книге
	Об авторе
	Об иллюстрации на обложке
	Часть I
	Первые шаги
	Фреймворк без фреймворка
	1.1 Что такое веб-ком­по­нен­ты?
	1.1.1 Календарь с возможностью выбора даты
	1.1.2 Теневая модель DOM
	1.1.3 Что имеют в виду, когда говорят «веб-ком­по­нен­ты»?
	1.1.4 Проблемная история импорта HTML
	1.1.5 Библиотеки Polymer и X-Tag
	1.1.6 Современные веб-ком­по­нен­ты

	1.2 Будущее веб-ком­по­нен­тов
	1.3 За пределами одного компонента
	1.3.1 Веб-компоненты как и любой другой элемент DOM
	1.3.2 От отдельного компонента к приложению

	1.4 Ваш проект, ваш выбор
	Резюме

	Ваш первый веб-компонент
	2.1 Знакомство с HTMLElement
	2.1.1 Ускоренный курс по наследованию
	2.1.2 Наследование в ваших любимых элементах

	2.2 Правила именования вашего элемента
	2.3 Определение вашего пользовательского элемента (и обработка столкновений)
	2.4 Расширение HTMLElement для создания логики пользовательского компонента
	2.5 Использование вашего пользовательского элемента на практике
	2.6 Создание (полезного) первого компонента
	2.6.1 Настраиваем свой веб-сервер
	2.6.2 Пишем свой HTML-тег
	2.6.3 Создаем свой класс
	2.6.4 Добавляем содержимое в наш компонент
	2.6.5 Добавляем стили
	2.6.6 Логика компонента
	2.6.7 Добавляем интерактивности
	2.6.8 Последние штрихи
	2.6.9 Улучшение компонента

	2.7 Примечания относительно поддержки в браузерах
	Резюме

	Делаем так, чтобы ваш компонент можно было использовать повторно
	3.1 Реальный компонент
	3.1.1 Пример использования поиска в 3D
	3.1.2 Начнем с HTTP-запроса
	3.1.3 Обертываем свою работу в пользовательский компонент
	3.1.4 Отображение результатов поиска
	3.1.5 Стилизация нашего компонента

	3.2 Делаем наш компонент настраиваемым
	3.2.1 Создание API компонента с помощью устанавливающих методов
	3.2.2 Используя наш API извне

	3.3 Использование атрибутов для конфигурирования
	3.3.1 Аргумент против API компонента
	3.3.2 Реализация атрибутов
	3.3.3 Чувствительность к регистру символов

	3.4 Прослушивание изменений в атрибутах
	3.4.1 Добавление поля ввода текста
	3.4.2 Метод attributeChangedCallback
	3.4.3 Атрибуты, за которыми ведется наблюдение

	3.5 Делаем другие вещи еще более настраиваемыми
	3.5.1 Использование метода hasAttribute для проверки существования атрибута
	3.5.2 Полная настройка URL-адреса HTTP-запроса для разработки
	3.5.3 Руководство по передовым методикам
	3.5.4 Избегайте использования атрибутов для расширенных данных
	3.5.5 Отражение свойств и атрибутов

	3.6 Обновление компонента-ползунка
	Резюме

	Жизненный цикл компонента
	4.1 API веб-ком­по­нен­тов
	4.2 Обработчик connectedCallback
	4.2.1 Конструктор в сравнении с методом connectedCalback

	4.3 Остальные методы жизненного цикла веб-компонента
	4.3.1 Метод disconnectedCallback
	4.3.2 Метод adoptedCallback

	4.4 Сравнение с жизненным циклом React
	4.5 Сравнение с жизненным циклом игрового движка
	4.6 Жизненный цикл компонента v0
	Резюме

	Реализация более качественного веб-приложения с помощью модулей
	5.1 Использование тега <script> для загрузки ваших веб-ком­по­нен­тов
	5.1.2 Крошечные сценарии более организованы, но усугубляют проблему со ссылками
	5.1.3 Включение стилей CSS
для самостоятельных компонентов
	5.1.4 Ад зависимостей

	5.2 Использование модулей для решения проблем зависимости
	5.2.1 Создание музыкального инструмента с использованием веб-ком­по­нен­тов и модулей JS
	5.2.2 Начинаем с самого маленького компонента
	5.2.3 Импорт и вложение веб-компонента в веб-компонент
	5.2.4 Использование веб-компонента для обертки всего веб-приложения

	5.3 Добавляем интерактивности в наш компонент
	5.3.1 Прослушивание событий движения мыши
	5.3.2 Передача данных в дочерние компоненты
	5.3.3 Заставляем наши компоненты вибрировать с помощью CSS

	5.4 Обертывание сторонних библиотек в виде модулей
	5.4.1 Инструменты пользовательского интерфейса для обертывания модуля с помощью Node.js
	5.4.2 Не идеально, но работает
	5.4.3 Использование обернутого модуля
для воспроизведения нот
	5.4.4 Больше никакого автовоспроизведения аудио
	5.4.5 Игра на веб-арфе

	Резюме

	Часть II
	Способы улучшить рабочий процесс вашего компонента
	Управление разметкой
	6.1 Строки. Теория
	6.1.1 Когда innerHTML становится уродливым

	6.2 Использование шаблонных литералов
	6.2.1 Приложение для создания визиток

	6.3 Импорт шаблонов
	6.3.1 Хранение разметки вне логики основного компонента
	6.3.2 Модуль для HTML и CSS

	6.4 Логика шаблона
	6.4.1 Создание меню из данных
	6.4.2 Больше логики генерации
и более жесткая автоматизация

	6.5 Кеширование элементов
	6.5.1 Не заставляйте меня использовать метод querySelector в моем компоненте

	6.6 Умные шаблоны
	6.6.1 Использование lit-html
	6.6.2 Модуль repeat
	6.6.3 Нужно ли вам использовать это?
	6.6.4 Внедрение слушателей событий в разметку

	6.7 Обновление ползунка
	Резюме

	Шаблонирование контента с помощью HTML
	7.1 Покойся с миром, HTML-импорт
	7.1.1 Полифилинг
	7.1.2 Что внутри

	7.2 Тег <template>
	7.2.1 Фрагменты документа
	7.2.2 Использование содержимого шаблона

	7.3 Выберите свой вариант шаблона
	7.4 Динамически загружаемые шаблоны
	7.5 Вход в теневую модель DOM с помощью тега <slot>
	7.5.1 Тег <slot> без имени

	Резюме

	Теневая модель DOM
	8.1 Инкапсуляция
	8.1.1 Защита API вашего компонента
	8.1.2 Защита DOM вашего компонента

	8.2 Использование теневой модели DOM
	8.2.1 Корень теневого дерева
	8.2.2 Закрытый режим
	8.2.3 Конструктор вашего компонента
и метод connectedCallback: сравнение

	Резюме

	Shadow CSS
	9.1 Утечка стилей
	9.1.1 Утечка стилей в нижестоящие компоненты
	9.1.2 Утечка стилей в ваш компонент

	9.2 Проблема утечки стилей решается с помощью теневой модели DOM
	9.2.1 Когда происходит утечка стилей

	9.3 План тренировок
	9.3.1 Оболочка приложения
	9.3.2 Селекторы host и ID
	9.3.3 Сетка упражнений и список планов

	9.4 Адаптируемые компоненты
	9.4.1 Создание компонента упражнения
	9.4.2 Стили компонента упражнений

	9.5 Обновляем ползунок
	Резюме

	Проблемы Shadow CSS
	10.1 Контекстные селекторы
	10.1.1 Немного интерактивности
	10.1.2 Контекстные стили
	10.1.3 Обходной путь

	10.2 Темы компонента
	10.2.1 Селекторы ::shadow и /deep/
	10.2.2 CSS-переменные
	10.2.3 Применяем CSS-переменные в нашем примере

	10.3 Использование теневой модели DOM на практике (сегодня)
	10.3.1 Поддержка со стороны браузеров
	10.3.2 Полизаполнение
	10.3.3 Дизайн-системы

	Резюме

	Часть III
	Объединяем компоненты воедино
	Реальный компонент пользовательского интерфейса
	11.1 Создаем палитру цветов
	11.1.1 Компоненты нашего компонента

	11.2 Компонент выбора координат
	11.2.1 Класс инструмента выбора координат
	11.2.2 HTML-код и стили инструмента для выбора координат
	11.2.3 Демостраницы для компонентов

	11.3 Палитра цветов
	11.3.1 Наблюдение за изменениями атрибутов для взаимодействия
	11.3.2 Реакция на изменения в полях ввода
	11.3.3 Реакция на изменения атрибутов

	11.4 Работаем над внешним видом палитры
	11.4.1 Загрузка CSS-переменных для улучшения дизайна
	11.4.2 Использование импорта для более сложных стилей

	Резюме

	Сборка и поддержка старых браузеров
	12.1 Обратная совместимость
	12.1.1 Включение теневой модели DOM
	12.1.2 Сравнение с полифилами
	12.1.3 Shadow CSS и дочерние элементы

	12.2 Наименьший общий знаменатель
	12.3 Процессы сборки
	12.3.1 Использование сценариев NPM

	12.4 Сборка компонентов
	12.4.1 Почему мы выполняем сборку
	12.4.2 Компоновка модулей с помощью Rollup
	12.4.3 Запуск сборки с помощью npm

	12.5 Транспиляция для IE
	12.5.1 Babel
	12.5.2 CSS-vars-ponyfill

	Резюме

	Тестирование компонентов
	13.1 Модульное тестирование и разработка через тестирование
	13.2 Web Component Tester
	13.2.1 Пишем тесты

	13.3 Сравнение со стандартной тестовой конфигурацией при использовании Karma
	13.3.1 Плагин karma-web-components
	13.3.2 Несколько тестов в одном проекте
	13.3.3 Замечание относительно Safari

	Резюме

	События и поток данных приложения
	14.1 Использование фреймворков
	14.2 События
	14.2.1 Нативные события и WebComponentsReady
	14.2.2 Когда определяются пользовательские элементы
	14.2.3 Пользовательские события
	14.2.4 Всплытие пользовательского события

	14.3 Передача событий через веб-ком­по­нен­ты
	14.3.1 Распространение нативных событий
с помощью теневой модели DOM
	14.3.2 Распространение пользовательских событий
с помощью теневой модели DOM

	14.4 Разделение данных
	14.4.1 Модель–представление–контроллер
	14.4.2 Локальное хранилище
	14.4.3 Подключение пользовательского интерфейса к модели данных

	14.5 Воспроизведение упражнений
	14.6 Передача событий с помощью шины
	14.6.1 Статические методы чтения и типы событий
	14.6.2 Шаблоны проектирования как рекомендация

	Резюме

	Сокрытие сложностей
	15.1 Взгляд в будущее веб-компонентов
	15.2 3D и смешанная реальность
	15.2.1 A-Frame
	15.2.2 Компонент model-viewer
	15.2.3 model-viewer и поиск с помощью Poly
	15.2.4 Дополненная реальность и model-viewer
	15.2.5 Ваш собственный 3D-компонент

	15.3 Видеоэффекты
	15.3.1 Обработка пикселей с помощью JavaScript
	15.3.2 Шейдеры WebGL

	15.4 Отслеживание движений рук и машинное обучение
	Резюме

	ES2015
для веб-компонентов
	Указатель

