
Никольский А. П.

JavaScript
на примерах
Создание слайдера, подсказок,

форм и других динамических элементов

для сайта

Стек полезных инструментовJ s
и технологий: AJAX, jQuery

Один из

примеров:

лендинговая

страница

с нуля!

Описание языка на сквозном примере от самых

основ до объектно-ориентированного "
программирования

Наука и Техника

Санкт-Петербург

2017

Никольский А. П.

JavaScript

на примерах

Наука и Техника

Санкт-Петербург

2017

УДК 004.738.5

ISBN 978-5-94387-735-3

Никольский А. П.

JAVASCRIPT НА ПРИМЕРАХ - СПб.: Наука и Техника, 2017. - 272 с.,
ил.

Серия "На примерах и задачах"

Эта книга является превосходным учебным пособием для изучения
языка программирования JavaScript на примерах. Изложение ведется
последовательно: от написания первой программы.до создания полноценных

проектов: интерактивных элементов (типа слайдера, диалоговых окон)

интернет-магазина, лендинговой страницы и проч. По ходу даются все

необходимые пояснения и комментарии.

Книга написана простым и доступным языком. Лучший выбор для
результативного изучения J avaScript!

Контактные телефоны издательства:

(812) 412 70 25, (812) 412 70 26, (044) 516 38 66

Официальный сайт: www.nit.com.ru

© Никольский А.П., ПРОКДИ, 2017

© Наука и техника (оригинал-макет), 2017

Содержание

ВВЕДЕНИЕ .. 12

ГЛАВА 1. ПРОСТОЙ САЙТ БЕЗ JAVASCRIPT ••..•..•...•..• 15

1. 1. ГЛАВНАЯ СТРАНИЦА •••.••••••••••• 16

1.2. СТРАНИЦА С ИНФОРМАЦИЕЙ О ТОВАРЕ •••••••.•••••••••••••••••••••••••••••• 19

1.3. стили ... 22

1.4. НЕДОСТАТКИ НАШЕГО РЕШЕНИЯ ••••••••••••...•.•••••••••••••••••••••••••••••• 32

ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ
И ПЕРВАЯ ПРОГРАММА .•..•..•..••.•••••.••.....•...•. 35

2.1. JAVASCRIPТ - НЕ JAVA ••• 36

2.2. ОБЪЕКТНАЯ МОДЕЛЬ JAVASCRIPT •••••••••••..•....•••••.•••••••••.•••.•••••••• 37

2.3. ПЕРВАЯ ПРОГРАММА ••..•..•••••••••••• 38

2.4. КОММЕНТАРИИ В JAVASCRIPT •• 41

2.5. ДИАЛОГОВЫЕ ОКНА •••••••••••••••••••••••••••••.•••..••••••••••••••••••....•••••••• 42

2.5.1. Метод alert() - простое окно с сообщением и кнопкой ОК .42

2.5.2. Метод coпfirm() - окно с кнопками ОК и Сапсеl43

2.5.3. Метод prompt() - диалоговое окно для ввода данных 44

2.6. СПЕЦИАЛЬНЫЕ СИМВОЛЫ ••••.••••••••••••••.•.•.•••••••••••••.•.....•.•••••••••• 45

2. 7. ЗАРЕЗЕРВИРОВАННЫЕ СЛОВА •• 46

ГЛАВА З. ОСНОВЫ СИНТАКСИСА .•...•.••.••.••.....•..••..• 47

3. 1. ПЕРЕМЕННЫЕ В JAVASCRIPT •••••••••••••••••••.•••.••••••••••••••••.•••.••••••••• 48

3.1.1. Объявление переменной .. 48

3.1.2. Типы данных и преобразование типов 49

3.1.3. Локальные и глобальные переменные 52

3.2. ВЫРАЖЕНИЯ И ОПЕРАТОРЫ •• 52

3.2.1. Типы выражений ... 52

'- ----. -----------------------. -. ------. -. -----. -. --. -. -. -. --. -. -. ------... -. -. --....

JavaScript на примерах

3.2.2. Операторы присваивания """"""""""""""""""""""""53

3.2.3. Арифметические операторы""."""""""""""""."""" .. ".53

3.2.4. Логические операторы "" "" """"""" """"""""""""". ""54

3.2.5. Операторы сравнения ."""."""""".".""""""""."""""".54
3.2.6. Двоичные операторы." " " """" ... "." " 55

3.2.7. Слияние строк """."""""""""""."."."""""""""""""""55
3.2.8. Приоритет выполнения операторов"""""""""""""""""56

3.3. ОСНОВНЫЕ КОНСТРУКЦИИ ЯЗЫКА •••••••••••••••••••••••.••••••••••••••••••••• 57

3.3.1. Условный оператор if "" """"".""" """"""" "" """"."".".57

3.3.2. Оператор выбора switch """"""""""""""" """ "" """"".59
3.3.3. Циклы " """ 61

Цикл for .. 62

Цикл while " .. " " " " 63

Цикл do .. while ... 63

Операторы break и continue""""""""""""""""""""""""""""64
Вложенность циклов " " " ... 65

ГЛАВА 4. МАССИВЫ .•.........•...•...•...•..................... 67

4. 1. ВВЕДЕНИЕ В МАССИВЫ •••.••••••••.• 68

4.2. ИНИЦИАЛИЗАЦИЯ МАССИВА •••••••.•.••••.•.•..•••.••••.••••.••.•.•••••.••.••••• 69

4.3. ИЗМЕНЕНИЕ И ДОБАВЛЕНИЕ ЭЛЕМЕНТОВ МАССИВА •••••••••..••••.•.••• 69

4.4. МНОГОМЕРНЫЕ МАССИВЫ ..•.•.••••••••••••••••••••••.•••••••••••••••••••••••••• 70

4.5. ПРИМЕР ОБРАБОТКИ МАССИВА •••••••••••••.••.•••••••••.•••••••••••••.•.•••••• 70

ГЛАВА 5. ДЕЛАЕМ СЛАЙДЕР•..•...••.•.•.••............. 75

5.1. ДЕЛАЕМ СЛАЙДЕР ВРУЧНУЮ ••••••••••••••••••••••••••••••••••••••..••........... 76

5.2. ДЕЛАЕМ СЛАЙДЕР СРЕДСТВАМИ JQUERY Ul/SHOPPICA••••.••• 79

ГЛАВА 6. КРАСИВЫЕ ПОДСКАЗКИ ДЛЯ САЙТА"""" .•. 84

6. 1. САМОСТОЯТЕЛЬНОЕ РЕШЕНИЕ •••.••••••••••••..••••.•••••••••••.•..•.•.••••••.• 84

6.2. СКРИПТТООLТIР •.••.••••••••••••••••••••••.•.•...............•..•••.••••••••••••••••• 89

• ". ------- . ----- -- - - -- - -------- - -- . -- -- - - " ----. ----------- ---------- --------- -- -- -'

Содержание

ГЛАВА 7. ФУНКЦИИ .•........................•................... 93

7.1. ОСНОВНЫЕ ПОНЯТИЯ ••••••••••••.•.••••••••...•...••••••••••••••.••••••••.•.•...••. 94

7 .2. РАСПОЛОЖЕНИЕ ФУНКЦИЙ ВНУТРИ СЦЕНАРИЯ .•.•.......•••••••••......• 96

7 .3. РЕКУРСИЯ ••••••.••••••••••••••••••••••.••••••••••.•.•.••••••••••••••.•.••••••••.••••••• 98

7.4. ОБЛАСТЬ ВИДИМОСТИ ПЕРЕМЕННОЙ: ГЛОБАЛЬНЫЕ
И ЛОКАЛЬНЫЕ ПЕРЕМЕННЫЕ ••••••••..••..•..••••••••••.••••••.••••••...••. 98

ГЛАВА 8. ОСНОВЫ ОБЪЕКТНО-ОРИЕНТИРОВАННОГО
ПРОГРАММИРОВАНИЯ•....................•.... 101

8. 1. ОСНОВНЫЕ КОНЦЕПЦИИ•.........••........................ 102

8.2. СОЗДАНИЕ ПОЛЬЗОВАТЕЛЬСКИХ КЛАССОВ И ОБЪЕКТОВ ...••....•.. 105

8.3. ПРОТОТИПЫ ••••••••..••••••.•.............••••...•..........•....................... 108

8.4. ПРОСТРАНСТВА ИМЕН •••.••••••••••.•.••••••.•.••••••••••••••••••••••.••.•.•••.•• 109

ГЛАВА 9. МЕНЮ И ПАНЕЛИ •..•..........•................... 111

9.1. ДЕЛАЕМ МЕНЮ ВРУЧНУЮ•....•...•.•......•....................... 112

9.2. ДИНАМИЧЕСКОЕ МЕНЮ СРЕДСТВАМИ SUPERFISH ••••••••••••••••••••.. 116

9.2.1. Создание меню """""""""""""""""" .. """"""""""""116

9.2.2. Настройка меню""""""""""""""""" .. """ .. """"" .. " ... 120

9.3. ЭФФЕКТНАЯ ПОЛОСКА ПРОКРУТКИ••...•....••....•....... 122

9.4. РАЗДВИГАЮЩЕЕСЯ МЕНЮ•.•••...........•..•••..........•••••...... 123

ГЛАВА 1 О. ОБЪЕКТНАЯ МОДЕЛЬ•.........•......•.... 125

10.1. СТРУКТУРА ОБЪЕКТНОЙ МОДЕЛИ •..•..•.......•••...........•.•............ 126

10.2. ОСНОВНЫЕ ОБЪЕКТЫ ОБЪЕКТНОЙ МОДЕЛИ IE ••••••.••••.••••.••.•.... 127

10.3. ОБЪЕКТ WINDOW ••••••••••••••.•.••••••.•.•.•......•••••.....•.....•••••..•...•.• 128

10.3.1. Метод open(): создаем новые окна "" """" """""""" ". 130

10.3.2. MeтoдshowModalDialog()" .. """"""" .. " .. " .. " .. """"."."132

• ·---- ------- ----- -- - - ------ - - -- - - -- ---- - ----- ------ -- --------- -- ------ ---------......

JavaScript на примерах

10.3.3. MeтoдsetТimeout() " 138

10.4. ОБЪЕКТ NAVIGATOR: ПОЛУЧЕНИЕ ИНФОРМАЦИИ О БРАУЗЕРЕ И СИ-
СТЕМЕ ••.••••••••.••••••••.•.••••••...•..•••..••••.••••.•••••••••••••••••••••••••• 140

10.5. ОБЪЕКТ SCREEN: ИНФОРМАЦИЯ О МОНИТОРЕ ПОЛЬЗОВАТЕЛЯ •• 141

10.б. ОБЪЕКТ LOCATION: СТРОКА АДРЕСА БРАУЗЕРА •.......•...••.•••••••••• 142

10.7. ОБЪЕКТ HISTORY: СПИСОК ИСТОРИИ ••••••••••••••••••••••••••••••••••••••• 142

10.8. ОБЪЕКТ DOCUMENT: ОБРАЩЕНИЕ К ЭЛЕМЕНТАМ ДОКУМЕНТА •••• 143

10.9. ОБЪЕКТ SТYLE: ДОСТУП К ТАБЛИЦЕ СТИЛЕЙ ••••••••••••••••••••••••.••• 147

10.1 О. ОБЪЕКТ SELECTION: РАБОТА С ВЫДЕЛЕНИЕМ ••••••••••••••••••••••••• 148

10.11. ПОЛЕЗНЫЕ ПРИМЕРЫ ••••••••••••••••••••••.••••••••••••••••••••••••••••••••• 149

10.11.1. Добавление сайта в Избранное " .. " " .. " ... " 149

10.11.2. Установка сайта в качестве домашней страницы 150

10.11.3. Работа с Cookies ... 150

ГЛАВА 11. РАБОТА С ФОРМАМИ В JAVASCRIPT 154

11. 1. КОЛЛЕКЦИЯ FORMS ••.•••••••••• 155

11.2. СВОЙСТВА, МЕТОДЫ И СОБЫТИЯ ОБЪЕКТА ФОРМЫ •.•.••...•....•.•• 156

11.3. ПОЛУЧЕНИЕ ДАННЫХ ИЗ ПОЛЯ ВВОДА. ПРОВЕРКА
ПРАВИЛЬНОСТИ ВВОДА •••••••••••••••••••••••••••••••.••••••••••••••••••• 156

11.4. РАБОТА С TEXTAREA •.•••••••••••••.••• 158

11.5. РАБОТА С ФЛАЖКАМИ ••••••••••••..•• 160

11.6. РАБОТА С КНОПКАМИ •••••••••••••••••••.•••••••••••••••••••••••••••••••••••••.. 161

11. 7. ПРОВЕРКА ПРАВИЛЬНОСТИ E-MAIL •••••••••••••••••••••••••••••..••...••••• 162

11.8. ФОРМА ЗАКАЗА ДЛЯ НАШЕГО САЙТА """.".""""".""" ".". "." 167

ГЛАВА 12. ВСТРОЕННЫЕ КЛАССЫ
И СОБЫТИЯ JAVASCRIPT •••.•..................•..••. 171

12.1. ВСТРОЕННЫЕ КЛАССЫ"""""""."""".""""""""." .• "".""." 172 • ". -- -. -. ------. --.. -------. -.. -----·· - . - -- -- - ·-- -- -- . --- ---- --.. -··- -- ---- --- -----·

Содержание

12.1.1. КлaccGlobal"""""""""""""""""""""""""""""""""172
12.1.2. Класс Number """ """"""""""" """""""" """" "" "" ". 173

12.1.3. Класс String "" "" """" "" "" "" "" "" "" "" "" """"""""" 17 4
12.1.4. Класс Array .. 177

Свойства и методы класса ... 177

Сортировка массива ... " "." 179

Многомерные массивы .. 180

Ассоциативные массивы .. 180

12.1.5. Класс Math""""""""""""""""""""""""""""""""""181
12.1.6. Классы Function и Arguments"""""""" """" "" "" "" "". 182

12.1.7. Класс Date """"""""""""""""""""""""""""""""""183
12.1.8. Класс RegExp .. 186

12.2. СОБЫТИЯ JAVASCRIPT .. 188

12.2.1. Что такое событие?""""""""""""""""""""""""""". 188

12.2.2. События мыши""""""""".""""""""""""".".""."""" 188

12.2.3. События клавиатуры"""""""""""""""""""""""""". 189
12.2.4. События документа "" "" """""" """"""""""""""""" 189

12.2.5. События формы"." .. """"".""""""""""" .. "."""".".". 190

12.2.6. Последовательность событий"""".""""""""".""""". 190

12.2.7. Всплывание событий"""""""""""""""""""""""""" 191

12.2.8. Действие no умолчанию"""""""""""""""""""""""" 193

12.2.9. Обработчики событий""""""""""""""""""""""""".194
12.2.1 О. Объект event "" """"". """"""""". """" """"""". """ 195

ГЛАВА 13. ЭФФЕКТНАЯ ЛЕНДИНГ-СТРАНИЦА 197

13. 1. НЕОБХОДИМЫЕ СЦЕНАРИИ ... 198

13.2. НТМL-КОД .. 199

13.3. СЦЕНАРИЙ ПРОКРУТКИ ... 201

ГЛАВА 14. ВВЕДЕНИЕ В AJAX 205

14.1. РАЗЛИЧНЫЕ БИБЛИОТЕКИ JAVASCRIPT 206

14.2. ВВЕДЕНИЕ В AJAX ИЛИ ПЕРЕЗАГРУЗКА СТРАНИЦЫ НА ЛЕТУ 207

14.3. СОЗДАНИЕ АJАХ-ПРИЛОЖЕНИЯ ... 208

• ······ .. ---··-··· --·- ---- ·-·- -· -..... --·- -·· -·---· -- ----·- ··- -- . -······-- -·-. -·

JavaScript на примерах

ГЛАВА 15. ДОБАВЛЯЕМ JQUERY UI НА САЙТ 214

15.1. ЗАГРУЗКА JQUERY UI •.••••••••.••......•.•••.••••.•••••••••••••••••••••••••••••• 215

15.2. ВЫБОР ДАТЫ •••••••••••.....••..••••.•...•.•.•.............................••••••• 216

15.3. ДИАЛОГОВОЕ ОКНО ••••••.••.•••••.•••.••••••.•.•••••••••••••••••••••..••••••••. 218

15.4. РАСКРЫВАЮЩИЕСЯ СЕКЦИИ ••••.••••.•............•......•........•.••••••• 220

15.5. ИНДИКАТОР ПРОЦЕССА ••••••••••••••.••••.••••.••••••••••••.••.••.•••••••••... 223

15.6. ВКЛАДКИ ••••.•.•.•••...•..•..••.•.•••..........•...................•......•.••..••• 226

15.7. кнопки ... 228

ГЛАВА 16. НАВОРАЧИВАЕМ ИЗОБРАЖЕНИЯ 231

16. 1 . ИЗМЕНЕНИЕ ИЗОБРАЖЕНИЯ ПО СОБЫТИЮ МЫШИ ..••.•....•••.••..• 232

16.2. СЛАЙДЕР В ВИДЕ ФОТОПЛЕНКИ••...•••••••••.••••••.•••.•••••• 233

16.3. ЗАГРУЗКА ИЗОБРАЖЕНИЯ В DIV ..•.•.....••....•...•...••.•••...••.••••••••• 239

16.4. КАРУСЕЛЬ ФОТОГРАФИЙ •••••••••••••••.••.•...............•.•••.........•.••• 241

16.5. ЗАТЕНЕНИЕ КАРТИНКИ ПРИ НАВЕДЕНИИ С ПОМОЩЬЮ
ФИЛЬТРА ••••••.•.••••.•••••••••••••••.••••••••.....•.......••••..•••..•......•.• 246

16.6. ГАЛЕРЕЯ FANCY ВОХ •••••••••••••••••••••••••••••••••.•••••..••....•..••......... 247

16.6.1. Самая простая галерея ... 247

16.6.2. Просмотр предыдущей и следующей фотографии.
Изменение внешнего вида окна галереи .. 250

ГЛАВА 17. ВСЯКИЕ ПОЛЕЗНОСТИ••....•...•.... 255

17. 1. СЧЕТЧИК ПОСЕЩЕНИЙ С ПОМОЩЬЮ COOKIES •.•••••••••••••••••••.... 256

17.2. ЗАПРЕЩАЕМ БРАУЗЕРУ ВЫДЕЛЯТЬ ТЕКСТ .•.•.•..••••••.••.............• 261

17 .3. ДОБАВЛЯЕМ ИНФОРМАЦИЮ ОБ АВТОРСКИХ ПРАВАХ •••••••••••••••• 262

17 .4. ЗАПРЕТ ПРОСМОТРА НТМL-КОДА .••••.•.•••..•.•..•..•..............••••••• 262

17 .5. ОТЛОЖЕННАЯ ЗАГРУЗКА ФАЙЛА •••••..•.........•••...•....•.•••••••••••••• 263

818-------- ------ ---- --- ---- -·- ---. ---- ------------· --- -... " ---.. ----·--. --- --- ---·'

Содержание

17 .6. ВСПЛЫВАЮЩИЕ ОКНА ••••...••.•..............•.•.•..................•.•••..•. 264

ЗАКЛЮЧЕНИЕ ... 266

• ·--811

JavaScript на примерах

Введение

Давно уже прошло время статических веб-страниц. Ведь на дворе век авто­
матизации и любые, даже самые простые, действия принято автоматизиро­

вать. В случае с веб-страницами автоматизация достигается или на сторо­
не сервера или на стороне клиента. Также возможна автоматизация, как на

стороне сервера, так и на стороне клиента.

Давайте разберемся, что к чему. Представим, у нас есть некоторая база дан­
ных, скажем список товаров интернет-магазина, и нам нужно ее вывести на

нашем сайте. Теоретически, список товаров можно оформить в виде ста­

тической НТМL-страницы. Но обновлять такой магазин будет очень не­
удобно - ведь со временем нужно будет добавить/удалить товары, изменить
цены и т.д. Гораздо проще написать, скажем, на РНР сценарий, который

будет подключаться к БД, выбирать товары из нужной категории (скажем,
компьютеры, мобильные телефоны, бытовая техника и т.д.) и отображать
их посетителю. Также с помощью РНР-сценария можно легко изменить все

позиции сразу, например, в канун Нового года устроить небольшую акцию
и снизить цены на 10%. Вручную отредактировать несколько тысяч запи­
сей, согласитесь, не просто. А простейший сценарий сделает это за доли се­

кунды.

Это и есть автоматизация на стороне сервера, поскольку РНР-сценарий вы­

полняется интерпретатором на сервере, а пользователь лишь видит резуль­

тат выполнения этого сценария. РНР в этой книге не рассматривается, а

если вы заинтересовались, на виртуальных полках книжных магазинах вы

найдете множество книг, посвященных этому языку программирования.

Теперь переходим к автоматизации на стороне клиента. Итак, серверный

сценарий сгенерировал список товаров. Пользователь хочет купить какой­

то товар. Принцип работы большинства магазинов прост: посетитель добав­
ляет все необходимые ему товары в корзину, а потом оформляет заказ или
вообще отказывается от покупки. Вопрос заключается в том, как будет ре­
ализована корзина. Ее тоже можно реализовать как на стороне сервера, так

и на стороне клиента. Скажем, для кнопки "Купить" сделать ссылку вида

http://our_shop.com/Ьuy.php?id=12345, где 12345 - это идентификатор (ар­
тикул) товара, который будет помещен в корзину. Сама же корзина поль­
зователя будет храниться или в БД (если нужно отслеживать все закаЗы
пользователя), или же во временном файле сессии в каталоге /trnp (этот
файл будет удален, как только пользователь закроет браузер).

• 88-·-···················---······-·-···-··-···-·-··········-······-·---··-·-···-·-··

Введение

Но такой вариант работы с корзиной малоэффективен. Представим, что

в среднем покупатель может заказать 2-3 товара (один основной и 1-2 ак­
сессуара к нему, например ноутбук, а к нему - мышку и дополнительную
акустику). А что если пользователей 1000 (для средних интернет-магазинов
это не показатель)? Выходит, к серверу будет почти одновременно отправ­
лено 2-3 тысячи запросов. Сервер должен их обработать и вывести резуль­
тат (по сути ту же страницу, что и была, но со строкой "Товаров в корзине:
число"). То есть ради изменения одного символа мы так нагружаем сервер

процессора. Да и посетитель не будет рад, так как на перезагрузку страницы
нужно время, а если сервер будет сильно загружен или у клиента низкоско­
ростной доступ к Интернету, ждать придется несколько секунд.

Оказывается, можно все автоматизировать нашу задачу на стороне кли­

ента. Вместе с НТМL-кодом списка товаров наш РНР-сценарий отправит

код JavaScript-cцeнapия, который будет выполнен на клиенте, а не на сер­
вере. Когда пользователь нажмет кнопку "Купить", идентификатор товара

запишется в Cookies браузера (чтобы содержимое корзины не изменялось
при переходе от одной до другой страницы магазина). При этомJаvаSсriрt­

сценарий будет выполнен на компьютере пользователя. Страница не будет
перезагружена, и все будут рады. И хостинг-провайдер - поскольку вы не
нагружаете сервер лишними запросами, и пользователь, которому не при­

дется ждать несколько секунд, пока перезагрузится страница.

Когда же пользователь захочет оформить заказ и нажмет соответствующую

кнопку /ссылку, содержимое корзины будет отправлено на сервер для об­
работки заказа. Получается, что вместо 2-3 запросов среднестатистический
пользователь сделает всего один (если не считать запросов G ЕТ, когда он
будет просматривать содержимое интернет-магазина, но от этого никуда не
денешься) - когда будет оформлять заказ. И вместо 2-3 тысяч запросов мы
получим тысячу. Вот вам и оптимизация. Теоретически, можно уменьшить

и число GЕТ-запросов (когда пользователь просматривает категории мага­

зина, а сценарий на сервере генерирует содержимое той или иной категории

в формате HTML), но не думаю, что об этом стоит говорить во введении.

Сценарий на стороне сервера, как уже отмечено, вместе с НТМL-страницей

может передать и JavaScript-кoд, который лежит в основе автоматизации

на стороне клиента. Справедливости ради нужно отметить, что кроме

JavaScript допускается использование и других скриптинговых языков,
например VBScript. Однако в этой главе мы будем рассматривать только
JavaScript, который наиболее популярен среди веб-мастеров.

KoдJavaScript находится в составе НТМL-документа (или выносится в от­

дельный файл, если код слишком большой). Сам жeJavaScript также может

• '----------------- --------- --- --- --------- -- ------- ---- ------- ---- --- ---- -------- --811

JavaScript на примерах

генерировать НТМL-код (кроме выполнения вычислительных операций и

отображения всевозможных запросов и сообщений).

НТМL-код в этой книге мы не рассматриваем, считается, что читатель с

ним знаком. Данная книга - самое что ни есть практическое руководство по
JavaScript, позволяющее выучить этот скриптовый язык с нуля. Начнем мы
с создания обычного НТМL-сайта, а затем попытаемся улучшить его сред­
ствами JavaScript. Теоретические и практические главы в этой книге будут
перемешаны - чтобы читатель не уставал от теории и мог сразу опробовать
полученные знания на практике.

Что же касается написания кода с О, то в книге мы будем как писать полно­
стью собственный код, так и использовать уже готовые библиотеки (когда
это целесообразно). Например, вы хотите сделать обработку формы, чтобы
не подключать тяжеловесные библиотеки, можно написать код вручную -
тем более, что там ничего сложного нет. Совсем другое дело, когда вам нуж­
но реализовать более объемную функцию, например галерею. Нет смысла
тратить недели времени на разработку галереи, биться над одинаковым ото­
бражением кода и стилей в разных браузерах, если можно использовать уже
готовое решение. Зачем изобретать велосипед заново?

Приятного чтения!

• --·----------------------·

Глава 1.

Простой сайт без JavaScript

JS

JavaScript на примерах

Цель первой главы - разработать простенький сайт, который мы сможем
потом усовершенствовать средствами JavaScript. Сайт будет написан на
HTML с применением каскадных таблиц стилей (CSS) для придания ему
относительно привлекательного вида. Наш сайт будет посвящен набираю­
щим в данное время популярность устройствам - гироскутерам.

1 . 1 . Главная страница

На главной странице у нас будет размещена информационная область (ее
модно называть featured) и некоторые товары (например, самые популяр­
ные или те, которые нам нужно продать в первую очередь).

Как правило, в информационной области можно разместить объявления о
всевозможных акциях, добавить в нее слайдер с лучшими продуктами или
новинками и т.д. Мы просто дополним краткую информацию о преимуще­

ствах гироскутеров (лист. 1.1).

Листинг 1 . 1 . Преимущества гироскутеров

<div id="body">
<div id="featured">

<div>

<h2>Преимущества</h2>

<р><sраn>Экологичность</sраn>

<р><sраn>Экономичность</sраn>

<р><sраn>Комnактность</sраn>

<р><а href="dostavka.html" сlаss="mоrе">купить</а>
</div>

</div>

Далее последует информация о товарах (лист. 1.2). На главной мало кто пу­
бликует весь товар (если самого товара предостаточно), поэтому мы огра­

ничимся тремя единицами.

• -------- ----------- --------- ---- ------ --- - -- ------. -- ---------- ---- ------ --- - _______ ,

Листинг 1.2. Некоторые товары

<а href="catalog.html">

ГЛАВА 1. Простой сайт без JavaScript

IO CHIC Smart-LS 9" Black

</а>

<а href="catalog.html">

IO CHIC Cross 20" Black

</а>

<а href="catalog.html">

IO CHIC Fairy 6.7" Red

</а>

Понятное дело, у нашего сайта будут меню и "подвал" - нижняя часть сайта.
Код меню и "подвала" приводится в листинге 1.3. Этот же листинг отобра­
жает весь код главной страницы - index.html.

Листинг 1.3. Код index.html

<html>
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial­

scale=l. 0 ">
<title>Гиpocкyтepы</title>

<link rel="stylesheet" type="text/css" href="css/style.css">

</head>
<body>

<div id="header">
<hl>Гироскутеры на любой вкус</hl>

<ul id="navigation">
<li class="selected">

<а href="index.html">глaвнaя

' . ----------------------------" -- -.. -------"''" -- ---------. -. ------------- ----- -----818

JavaScпpt на примерах

<а href="about.html">дocтaвкa и оплата</а>

<а href="gallery.html">кaтaлoг

<а href="contact.html">кoнтaкты

</div>
<div id="body">

<div id="featured">

<div>

<h2>Преимущества</h2>

<р><sраn>Экологичность</sраn>

<р><sраn>Экономичность</sраn>

<р><sраn>Компактность</sраn>

<р><а href="dostavka.html" сlаss="mоrе">купить</а>
</div>

</div>

<а href="9.html">

IO CHIC Smart-LS 9" Black

</а>

<а href="20.html">

IO CHIC Cross 20" Black

</а>

<а href="6.html">

IO CHIC Fairy 6.7" Red

</а>

</div>
<div id="footer">

<div>
<р>&сору; 2016 Магазин гироскутеров.</р> ". ----· -- -- -- --·. --..... . •

ГЛАВА 1. Простой сайт без JavaScript

<а href="" id="twitter">twitter

<а href="" id="facebook">facebook

<а href="" id="googleplus">googleplus

<а href="" id="pinterest">pinterest

</div>

</div>
</body>
</html>

Как видите, в меню есть ссылки на другие страницы - "Доставка и оплата'',
"Каталог и Контакты". А в "подвале" сайта есть ссылки на наши страницы в

социальных сетях.

1.2. Страница с информацией о товаре

Мы не будем приводить код всех страниц сайта, он сходен. Например, на
страницах "Доставка и оплата" и "Контакты" выводится только текстовая

информация со способами оплаты и контактной информацией. В катало­
ге отображаются изображения и названия продуктов, как мы это делали на

главной странице. Щелчок по тому или иному товару открывает страницу

с информацией о нем. Обычно такая страница содержит как минимум одно
изображение товара, описание и характеристики. Код страницы товара при­

веден в листинге 1.4.

Листинг 1.4.

<html>
<head>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial­

scale=l. 0">
<title>Гиpocкyтepы</title>

<link rel="stylesheet" type="text/css" href="css/style.css">

• ·-------------·········-------------------------------·-····---···-···------·····-81!1

JavaScпpt на примерах

</head>
<body>

<div id="header">
<hl>Гироскутеры на любой вкус</hl>

<ul id="navigation">
<li class="selected">

<а href="index.html">глaвнaя

<а href="about.html">дocтaвкa и оплата</а>

<а href="gallery.html">кaтaлoг

<а href="contact.html">кoнтaкты

</div>
<div id="body">

<h2>IO CHIC Smart-LS 9" Black</h2>

<р align="left">Oпиcaниe

<р align="justify">Гиpocкyтep CHIC Cross широко
используется в прокате для развлечения, в аэропортах,

международных конференц-центрах, выставочных залах, стадионах,

больших тематических парках и площадях, полях для гольфа, в

экотуризме, на многочисленных курортах и частных виллах, для

патрулирования коттеджных поселков, парков, питомников, в

развлекательных и рекламных мероприятиях.

<р align=justify>Гиpocкyтep CHIC Cross имеет два режима
скорости: начинающий режим - максимум 8 км/ч, и обычный - 15-
20 км/ч. CHIC Cross имеет ключ, который дает доступ к кнопке

включения гироскутера, и брелок для оперативного управления

CHIC Cross.
<р аlign="lеft"><Ь>Характеристики</Ь>

<Ьr>Максимальная рекомендуемая нагрузка: 125 кг
<Ьr>Мощность: 2000 Вт (2 х 1000 Вт)
<Ьr>Максимальная скорость: 20 км/ч

• E!I--- ----------- ------ -------- --------- --- ------- -- -- ------- ----- -------------------.

ГЛАВА 1. Простои саит без JavaScript

<р align="left">Цeнa

4999$

<а href="catalog.html">

IO CHIC Smart-LS 9" Black

</а>

<а href="catalog.html">

IO CHIC Cross 20" Black

</а>

<а href="catalog.html">

IO CHIC Fairy 6.7" Red

</а>

</div>
<div id="footer">

<div>
<р>&сору; 2016 Магазин гироскутеров.</р>

<а href="" id="twitter">twitter

<а href="" id="facebook">facebook

<а href="" id="googleplus">googleplus

<а href="" id="pinterest">pinterest

</div>

</div>
</body>
</html>

• ·-- --- ------. --- --------- ----. -·- --- --- -- .. ··- .. --... ·---. --... -. --· -. ---. -. --------

JavaScript на примерах

1.3. Стили

Если вы сейчас просмотрите обе созданные нами страницы, то выглядеть
они будут очень непривлекательно. Чтобы они хоть как-то смотрелись,
нужно задать оформление в СSS-файле style.css, который подключен к обе­
им страницам (лист. 1.5).

' Листинг 1.5. Файл style.css

@font-face {
font-family: 'poller oneregular';
src: url(' .. /fonts/pollerone/pollerone-webfont.eot');
src: url (' .. /fonts/pollerone/pollerone-weЬfont. eot ?#iefix')

format ('emЬedded-opentype') ,
url(' .. /fonts/pollerone/pollerone-weЬfont.woff') format('woff'),
url(' .. /fonts/pollerone/pollerone-weЬfont.ttf')

format ('truetype') ,
url(' .. /fonts/pollerone/pollerone-webfont.svg#poller_oneregular')

format ('svg') ;
}

@font-face {
font-family: 'leckerli_oneregular';
src: url(' .. /fonts/leckerlione/leckerlione-regular-weЬfont.eot');
src: url(' .. /fonts/leckerlione/leckerlione-regular-weЬfont.

eot?#iefix') format ('emЬedded-opentype'),
url(' .. /fonts/leckerlione/leckerlione-regular-weЬfont.woff')

format ('woff'),
url(' .. /fonts/leckerlione/leckerlione-regular-weЬfont.ttf')

format ('truetype') ,
url(' .. /fonts/leckerlione/leckerlione-regular-weЬfont.

svg#leckerli_oneregular') format('svg');
}

body

р

background: #fff;
font-family: Arial, Helvetica, sans-serif;
font-size: 14рх;

font-weight: normal;
line-height: 1;
margin: О;

min-width: 960рх;

padding: О;

color: #252525;
line-height: 24рх;

--------- -- ----- --------. -----· ... ---· -·. --- --- ----- -.. ------ -- --.. - --· -·-- ---. ___ ,

margin: О;

padding: О;

Р а {
color: #252525;
text-decoration: underline;

р a:hover {
color: #898989;

#header {
margin: О auto;
padding: 44рх О 50рх;

text-align: center;
width: 960рх;

#header a.logo {
display: Ыосk;
margin: О auto;
padding: О;

width: 340рх;

#header a.logo img
border: О;

display: Ыосk;
margin: О;

padding: О;

#header ul
margin: О;

padding: 56рх О О;

#header ul li {
display: inline;
list-style: none;
margin: О;

padding: О 19рх;

#header ul li а {
color: #252525;
display: inline-Ьlock;

ГЛАВА 1. Простой сайт без JavaScript

font-family: "Arial Black", Gadget, sans-serif;
font-size: 14рх;

font-weight: normal;
margin: О;

padding: О О Зрх;

• ·---

JavaScпpt на примерах

text-decoration: none;
text-transform: uppercase;

#header ul li a:hover, #header ul li.selected а {
color: #ОЬа39с;

#body {
margin: О;

padding: О О ЗОрх;

text-align: center;

#body hl {
color: #fff;
display: inline;
font-family: poller_oneregular;
font-size: 35рх;

font-weight: normal;
margin: О;

padding: О;

text-transform: uppercase;

#body hl span {
background: #252525;
display: inline-Ыock;
padding: 15рх 28рх 12рх;

#body > div {
margin: О auto;
padding: О;

width: 960рх;

#body > div img
border: 2рх solid #292929;
margin: 24рх О О;

padding: .О;

#body > div .article
margin: О auto;
padding: ЗОрх ЗОрх О;

width: 560рх;

#body > div .article h2 {
font-family: "Arial Black", Gadget, sans-serif;
font-size: 25рх;

font-weight: normal;
margin: О О ЗОрх;

• ----- -- . -. -- -. --- ----- . ----- ---. ---- ---- . ------ ---- --- . -.. -- -. ---- -..... -... .

#body > div .article hЗ
color: #252525;
line-height: 24рх;

margin: О;

padding: О;

#body > div .article h4
background: #252525;
color: #fff;
display: inline-Ьlock;

ГЛАВА 1. Простои саит без JavaScпpt

font-family: "Arial Black", Gadget, sans-serif;
font-size: 25рх;

font-weight: normal;
margin: О О ЗОрх;

padding: Врх 27рх lOpx;

#body > div .article р {
margin: О О ЗОрх;

#body div ul {
margin: О;

padding: 24рх lOpx О;

width: 940рх;

#body div ul li
border: 2рх solid #lalala;
display: Ыосk;
list-style: none;
margin: О О 13рх;

overflow: hidden;
padding: О;

#body div ul li .figure {
border-right: 2рх solid #lalala;
float: left;
margin: О;

padding: О;

width: 37брх;

#body div ul li img
border: О;

display: Ыосk;
margin: О;

padding: О;

opacity: 0.8;

• ·---~

JavaScript на примерах

transition: 0.5s ease-in-out;

#body div ul li .figure:hover img
opacity: 1;

#body div ul li div {
float: left;
margin: О;

padding: бЗрх О 20рх;

width: 558рх;

#body div ul li div hЗ {
color: #252525;
font-family: "Arial Black", Gadget, sans-serif;
font-size: 25рх;

font-weight: normal;
margin: О;

padding: О;

text-transform: uppercase;

#body div ul li div р {
padding: ЗОрх ЗОрх 18рх;

#body div ul li div a.more
background: #000;
color: #fff;
display: inline-Ьlock;

font-family: "Arial Black", Gadget, sans-serif;
font-size: 18рх;

font-weight: normal;
margin: О;

padding: Врх 28рх;

text-decoration: none;
text-transform: uppercase;

#body div ul li div a.more:hover
color: #252525;
background: #fff;
border: 2рх solid #252525;

#body #featured {
margin: О О 13рх;

padding: О;

position: relative;
width: 100%;

• 88----. -..... ------.. -- -......... -- --- ... -- . ---...... -- -...................... --.

#body #featured img
border: О;

display: Ыосk;
margin: О;

padding: О;

width: 100%;

#body #featured div {
left: 50%;
margin-left: -420рх;

margin-top: -171рх;

padding: О О О 470рх;

position: absolute;
top: 50%;
text-align: left;
width: 490рх;

#body #featured div h2 {
background: #abf;
color: #000;
display: inline-Ьlock;

font-family: poller_oneregular;
font-size: 20рх;

font-weight: normal;
margin: О О 18рх;

padding: 2Зрх 27рх 20рх;

text-transform: uppercase;

#body #featured div span
background: #252525;
color: #fff;
display: inline-Ьlock;

font-size: 20рх;

margin: 7рх О;

padding: 12рх 27рх;

#body #featured div а
background: #ОЬа39с;

color: #fff;
display: inline-Ьlock;

font-size: lбрх;

margin: 15рх О О;

padding: 26рх 27рх 22рх;

text-align: center;
text-decoration: none;
text-transform: uppercase;

ГЛАВА 1. Простой сайт без JavaScript

• ·--- - ----- - - -- --. --- -----...... ----- .. - -..... -- ... -. ----- -· -. - -- ····-·· ··- -------

JavaScпpt на примерах

#body #featured div a:hover
background: #lfcЗbc;

#body > ul {
margin: О auto;
overflow: hidden;
padding: 24рх О О;

width: 960рх;

#body > ul li {
display: Ыосk;
float: left;
margin: О lOpx 20рх;
padding: О;

width: ЗООрх;

#body > ul li а

color: #000;
display: Ыосk;
font-family: poller oneregular;
font-size: 20рх;

font-weight: normal;
margin: О;

padding: О;

text-align: left;
text-decoration: none;
text-transform: uppercase;

#body > ul li а img
border: 2рх solid #lalala;
display: Ыосk;
margin: 20;
padding: О;

opacity: .8;
transition: O.Ss ease-in-out;

#body > ul li a:hover img {
opacity: 1;

#body > ul li а span
display: Ыосk;
margin: О;

padding: ЗЗрх О О;

#body form -- -- -------- ---- ------- ---- ----------- --------·-. ----. ---· -- -- ------- •

margin: О auto;
padding: 24рх О О;

width: 620рх;

ГЛАВА 1. Простои сайт без JavaScпpt

#body form input, #body form textarea {
border: 2рх solid #252525;
color: #252525;
font-family: Arial, Helvetica, sans-serif;
font-size: 15рх;

font-weight: normal;
margin: О О 37рх;

padding: 20рх lOpx;
text-align: center;
text-transform: uppercase;
width: 596рх;

#body form textarea
height: 175рх;

overflow: auto;
resize: none;

#body form #send
background: #252525;
color: #fff;
font-family: "Arial Black", Gadget, sans-serif;
font-size: 15рх;

font-weight: normal;
display: inline-Ьlock;

padding: 20рх 28рх;

width: auto;

#body form #send:hover
background: #fff;
color: #252525;
cursor: pointer;

#footer {
background: #252525;
margin: О;

padding: Збрх О 42рх;

#footer div {
margin: О auto;
overflow: hidden;
padding: О;

width: 960рх;

• . . -· -.. ·-· -·- -·- -... -. -........ -. --- . -. -.... -.. ·-. --. -.... ---

JavaScпpt на примерах

#footer div р {
color: #fff;
float: left;
line-height: 44рх;

margin: О О О lOpx;
padding: О;

#footer div ul
display: Ыосk;
float: right;
margin: О;

overflow: hidden;
padding: О;

width: 25брх;

#footer div ul li
display: Ыосk;
float: left;
list-style: none;
margin: О lOpx;
padding: О;

width: 44рх;

#footer div ul li а {
background: url(.. /images/icons.jpg) no-repeat О О;

display: Ыосk;
height: 44рх;

margin: О;

padding: О;

text-indent: -99999рх;

width: 44рх;

#footer div ul li #twitter {
background-position: О О;

#footer div ul li #twitter:hover
background-position: -44рх О;

#footer div ul li #facebook {
background-position: О -44рх;

#footer div ul li #facebook:hover
background-position: -44рх -44рх;

#footer div ul li #googleplus {

• " ······ ·········. -·-. ···-·. -------·······-·····- .. -·-

background-position: О -88рх;

#footer div ul li #googleplus:hover
background-position: -44рх -88рх;

#footer div ul li #pinterest
background-position: О -132рх;

#footer div ul li #pinterest:hover
background-position: -44рх -132рх;

ГЛАВА 1. Простой сайт без JavaScript

Вот теперь, подключив стили, можно взглянуть, что у нас получилось. На

рис. 1.1 показано, как выглядит главная страница, на рис. 1.2 показана ниж­
няя часть главной страницы - некоторые товары, а также "подвал" с кнопка­
ми социальных сетей.

Гироскутеры на любой вкус

f"ЛAIJHU ДОСТАВКА И ОПЛАТА КАТАЛОГ KOHTAlrТW

Рис. 1. 1. Главная страница

• -·-·-··- ... -. -·-·- --- ·---· ---. -.. ------ ----- -. -. -. -. -. -. -- . -. --- . -. -- ... "

JavaScr1pt на примерах

10 СНIС SM,\.RT-LS 9 "
BLACK

10 CHIC CROSS 20"
BLACK

-. - .
"

10 CHIC FAIRY 6.7" RED

Рис. 1.2. Нижняя часть главной страницы

На рис. 1.3 показана страница товара - есть изображения товара, его описа­
ние, характеристики и цена. Внизу страницы приводятся ссылки на другие

товары.

1 .4. Недостатки нашего решения

У нашего решения очень много недостатков. Во-первых, посмотрите на

меню. Нет, его основной недостаток даже не в том, что оно не динамиче­

ское, как мы привыкли видеть на современных сайтах. Его нужно включать

в каждую страницу нашего сайта (как и подвал), поскольку HTML не со­
держит средств включения (include) других НТМL-файлов. Когда страниц
немного, это, в общем, не проблема. А представьте, что у вашего сайта есть

уже несколько сотен страниц и вам нужно изменить меню или "подвал"?

Тогда вам придется изменять все эти несколько сотен страниц. Это ужасно!

Во-вторых, нет никакой возможности придать "жизни" нашему сайту. На­

пример, на главной странице не выводить постоянно одни и те же три то~ - ·-·· --------·-·

ГЛАВА 1. Простой сайт без JavaScript

,...~

'~·~-" с11•• =
гnАВНАЯ АОСТА8КА М О ТА КАТАJIОГ конт

10 CHIC Smart-LS 9" Black

>!роскуtер СН!С cross шмрс;.о мcr:.on~-eтcJ< е. r:.polQтe ~ ра.~нщ:; s зэроflср1.ах r~на~чых t;ot<фe:>e11ц-цe-rrrpax eьicr.ie<Ntiыx ээnall:. ::r;щщ:~нзх боЛЬU!ИХ

:еJ:ЗТИ'ЕСЯt)(napgx и r":ЛОЩад;ёХ. r;.c;u;x ,!l:"'i.i= П:~'Iьф<t 8 ЭКOtypt\g.!e_ Н'1 LftfG!"O'W!c.neHt<blX К"урорmХ и IQ(.'!)<blJ(f:i<Jtl18lC:. :JJUJ Г<aTpYЛЩIO!i<l/'<itli 10С>i7~~.ы-.. nocfno.oв. r:apiroб

.рс.сt.утер СНК: Cross ~меёr д!\а peюtJ.Ja скорос;и на'iинаюшиИ ре}lо,)'!ы, - ual;(и!J'fм 8 r,u.ч.t i1 ocь.--ir.ыi:i - 15-20 #JN СНtС Cross >!U~~т li:moч ro:opыi1 д.ает д~!УВ к

-nire ек.·ночеiiи::~ rмpo.:iryтepa. и 15р.еnо«для onepmatioro vnpa&"\CH>'Я сн;с Cюss.

рап1рмстм11.м

aJG:11м.inЫ1aя реJtОцеН!f)'ецая riгrpy:жa· 125 fl

. ощностъ 2000 Зт\2 :it 1000 ЭrJ

<iIO:.O!f.IMЬticlЯ: <IСDрОСТЬ" '20 JQ.L"Ч

Рис. 1 .3. Страница товара

вара, а вывести разные товары или разные изображения одних и тех же

товаров. Нет возможности организовать слайдер товаров. Наша главная

страница статична, и смотрится это ужасно, особенно, учитывая, что наш
магазин продает динамические гироскутеры. Ладно бы, если мы продавали

классические деревянные стулья ...

В-третьих, посмотрите на страницу с информацией о продукте. Галереи

изображений нет. Организовать ее средствами HTML нельзя. Единственно
возможное - это скачать из Интернета еще несколько изображений товара и
добавить их рядом с имеющимся. Но это вы можете сделать и сами.

Описание, характеристики и цена товара указаны непривлекательно. Лич­

но я вижу их в виде вкладок с информацией.

Кнопку "Купить" в нашем случае я даже и не делал. Особого смысла в этом

нет, поскольку все, что можно сделать, - это ссылку на страницу "Доставка
и оплата", как это было сделано на главной странице.

В последующих главах мы исправим все недостатки нашего сайта и превра­

.им его в простейший интернет-магазин по продаже гироскутеров.

··- · ··-· -· .. · -............ -............ -· -. ·- --· ... -..... -. -...... -. -. --

Глава 2.

Основные понятия и первая

программа

JavaScript на примерах

2. 1 . JavaScript - не Java

Прежде чем вы приступите к изучению JavaScript, нужно понимать, что
J ava - это не J ava. Это два совершенно разных языка программирования.
JavaScript не имеет ничего общего с языком Java, кроме похожего синтак­
сиса. OднaкojavaScript может обращаться к внешним свойствам и методам
Jаvа-апплетов, которые встроены в НТМL-страницу.

Java - это объектно-ориентированный язык программирования, а Jаvа­
апплеты запускаются с помощью компилятора. Апплеты J ava встраиваются
в WеЬ-страницу, но хранятся на диске как отдельные файлы. Это двоичные
файлы, и если вы их откроете, то не увидите исходный код апплета.

Сценарии JavaScript размещаются внутри WеЬ-страницы и не могут суще­
ствовать отдельно от нее. Для выполнения JS-сценариев не нужен компи­

лятор, они выполняются браузером. JS-сценарий - это обычный текст, и вы
можете просмотреть код сценария невооруженным взглядом - без какого­
нибудь специального программного обеспечения.

Что же тaкoeJavaScript? Это язык программирования с синтаксисом, сход­

ным с языком Java, использующийся в составе НТМL-страниц для увели­
чения их функциональности. Первоначально язык JavaScript был разрабо­
тан компаниями Netscape и Sun Microsystems, за его основу был взят язык
Sunjava.

JavaScript позволяет реализовать те функции страницы, которые невоз­
можно реализовать стандартными тегами HTML. Сценарии запускаются
в результате наступления какого-нибудь события, например пользователь
нажал кнопку или изменился размер окна. JavaScript имеет доступ к свой­
ствам документа и свойствам браузера. Например, нajavaScript вы можете
легко изменять заголовок окна браузера или текст в строке состояния.

Для написания сценариев JavaScript не нужно никакое специальное про­
граммное обеспечение - достаточно простого текстового редактора. Так что
вы можете использовать свой любимый НТМL-редактор для написания

JavaScript-кoдa.

• " ----- ... -.. -............ -.. " " ... --- -- -- .. -.. ------·

ГЛАВА 2. Основные понятия и первая программа

2.2. Объектная модель JavaScript

В JavaScript используется объектная модель документа, в рамках кото­
рой каждый НТМL-контейнер можно рассматривать как совокупность

свойств, методов и событий, происходящих в браузере. По сути, это связь
между НТМL-страницей и браузером. В этой главе мы не будем вникать в
ее подробности, а желающие "бежать впереди паровоза" могут узнать боль­

ше по следующей ссылке: https:j/developer.mozilla.org/en-US/docsjWeb/
javaScript/Guide/Details_ of _ the_ Object_ Model

Пока вам нужно знать, что есть старший класс Window, позволяющий об­
ращаться к методам и свойствам НТМL-страницы и браузера. Например,
метод close() позволяет закрыть окно браузера, а свойство location - обра­
титься к адресной строке браузера.

Если вы не знакомы с объектно-ориентированным программированием,
тогда, наверное, не особо понимаете, о чем идет речь, когда мы говорим об
объектах и методах. Не расстраивайтесь, пока принимайте все как есть, а
дальше вы поймете что к чему. В JavaScript все основано на классах и объ­
ектах (поскольку это объектно-ориентированный язык), и без них вы не
сможете написать свои программы. Именно поэтому мы начали разговор об
объектной мoдeлиjavaScript в этой вводной главе.

Объект можно воспринимать как совокупность данных и методов (функ­
ций) для их обработки. В JavaScript с некоторыми объектами также связы­
ваются определенные события.

Давайте разберемся, что такое объект, как говорится, "на пальцах". Пред­
ставим, что объект - это человек. Путь наш объект называется Human. У
такого объекта может быть масса характеристик - имя, пол, дата рождения
и т.д. Все это называется свойствами объекта. Обратиться к свойству можно

так: объект.свойство

Например:

Human.Sex = 'М';

Human.Name = 'Николай';

Numan.YearOfBirth = '1976';

Метод - это функция обработки данных. Например, метод, возвращаемый
год рождения человека может называться Get Year. Обращение к методу
производится так:

'--······---········----·--······'818

JavaScr1pt на примерах

объект.метод(параметры);

Например:

Human.GetYear();

Связать метод с функцией можно так:

объект.метод = имя функции;

С объектом может быть связано какое-нибудь событие. Например, при рож­
дении человека может генерироваться событие OnВirth. Для каждого со­
бытия можно определить его обработчик - функцию, которая будет на него
реагировать. Что будет делать эта функция, зависит от события. Например,
обработчик OnВirth может заносить в некую общую таблицу базы данных
информацию об объекте - имя, пол и дату рождения. Такая таблица может
использоваться для ускорения поиска нужного объекта.

Теперь рассмотрим еще одно, более абстрактное, понятие - класс. Класс -
это образец объекта, если хотите - тип переменной объекта. Пусть мы разра­
ботали класс Human, тогда объект, то есть экземпляр класса Human, может
называться Human1. Вы можете создавать несколько объектов класса Hu­
man - имена у них будут разными:

John new Human;
Mary = new Human;

11 создаем объект John класса Human
11 создаем объект Mary класса Human

В этой книге мы еще поговорим о создании объектов, а сейчас приведенной

информации вполне достаточно для восприятия следующего материала.

2.3. Первая программа

Чтобы ваша JavaScript-пpoгpaммa (или сценарий) запустилась, ее нужно
внедрить в НТМL-код документа (или "связать" программу с документом).

Обратите внимание - я использовал два разных термина - внедрение и связ­
ка. Я сделал это умышленно, потому что есть разные способы взаимного
существованияJаvаSсriрt и HTML.

Самый простой из них - использование тега <SCRIPT>, который обычно
расположен до тега <BODY> (принято размещать тег <SCRIPT> в теге
<HEAD>), например:

• ~- ---- ------ ----- - -------- -- ----------- --- ------- --- -------- ------- ----------- --- -·

ГЛАВА 2. Основные понятия и первая программа

<SCRIPT>
document.write("<hl>Пpивeт, мир!</hl>");

</SCRIPT>

Данный сценарий будет выполнен при открытии страницы и выведет стро­

ку:

<hl>Привет, мир!</hl>

Однако не всегда нужно, чтобы ваша программа начинала работать сразу
при открытии страницы. Чаще всего требуется, чтобы она запускалась при
определенном событии, например при нажатии какой-то кнопки. При на­

жатии кнопки генерируется событие onClick. Обработчик для этого собы­
тия можно указать прямо в НТМL-коде, например:

<FORМ>

<INPUT TYPE=button VALUE="Haзaд" onClick="history.back()">
</FORМ>

Разумеется, нс всегда обработчик события компактный. Иногда он просто
не помещается в одну-две строчки. Конечно, максимальная длина значения

атрибута НТМL-тега составляет 1024 символа, что вполне хватило бы для
несложных обработчиков. Однако такие длинные обработчики значительно
ухудшают читабельность НТМL-кода, поэтому если обработчик события

достаточно длинный, его принято оформлять в виде функции, например:

<form>
<input type="button" vаluе="Нажми меня"
onClick="openWindow()">
</form>

Функцию opcn Window() нужно определить в теге <SCRIPT>. Полный код
(HTML и JavaScript) нашего первого "проекта" (да, первая программа в
этой книге не будет выводить фразу "Привет, мир!") приведен в листинге

2.1.

Листинг 2. 1. Наш первый JavaScript-npoeкт

<html>
<head>

•
<script language="JavaScript">

function openWindow () {
msgWindow= open("index.html")

------- --- -- -". --- --- -- .. - - ---· ...

JavaScпpt на примерах

</script>
</head>
<body>

<form>
<input type="button" vаluе="Открыть главную страницу"

onClick="openWindow()">
</form>

</body>
</html>

Данная страница отобразит кнопку Открlо!'Rо r.na.внYJD страницу (рис. 2.1),
при нажатии которой будет открыто новое окно с загруженной страницей

index.html.

Рис. 2. 1. Hawa страница

Обратите внимание: мы указали атрибут language тега <SCRIPT>, указы­
вающий язык программирования, на котором написан сценарий (кpoмeJa­

vaScript сценарии можно писать еще на VBS - Visual Basic Script). Кроме
атрибута language у тега <SCRIPT> есть еще один очень полезный атрибут
- src, указывающий файл, в котором содержится JS-код. Если код JavaS­
cript очень большой, и вы не хотите загромождать им НТМL-код страницы,
можете вынести его в отдельный файл, а затем подключить его следующим

способом:

<script src="javascript.js" type="text/javascript"></script>

Четвертый (и последний) атрибут тега <SCRIPT> называется defer. Он от­
кладывает выполнение сценария до полной загрузки страницы (по умолча­

нию сценарий начинает выполняться сразу при открытии страницы):

--------- ------------------- ------- -- ------ --- ------- -------- --- ---- ---------------'

<script defer>
11 code
</script>

ГЛАВА 2. Основные понятия и первая программа

Аргумент language, как уже было отмечено выше, задает язык программи­
рования, на котором написан сценарий, и может принимать следующие зна­

чения:

• JavaScript - классический вариант языка программирования, который

рассматривается в этой книге (разработка Netscape и Sun).

• JScript - разновидность языка программирования JavaScript, разрабо­
танная компанией Microsoft. Компании Microsoft обязательно нужно
построить дом заново и заново изобрести велосипед, поэтому разница
между JavaScript иJScipt заключается не только в названии, но и в под­
ходах к программированию. Учтите, что поддержкаJSсriрt в некоторых

браузерах может быть ограниченной, поэтому язык JavaScript более
предпочтителен.

• VBS, VBScript - сценарий на языке программирования VBScript, в ос­
нове которого лежит Visual Basic. Поддерживается браузером Internet
Explorer. Остальные браузеры или вовсе не поддерживают VBS или
поддержка весьма ограничена.

В данной книге мы будем рассматривать классическую версию языка про­
граммирования, а именно - JavaScript. Значение атрибута language по умол­
чанию - JavaScript, поэтому если вы программируете именно нajavaScript,
то можете не указывать атрибут language. Если же вы программируете на
JScript, нужно обязательно указать атрибут language во избежание недопо-
нимания со стороны браузера.

2.4. Комментарии в JavaScript

В этой главе вы уже успели познакомиться с комментариями, во всяком

случае неявно. Теперь настало время познакомиться с ними явно. Коммен­

тарии в JS могут быть однострочными и многострочными. Однострочный
комментарий начинается с двух знаков / /, с этим типом комментариев вы
уже знакомы:

11 комментарий
i++; //увеличиваем i

Комментарием является все, что находится после / / и до конца строки .

• ·------- --- --- --- --- ---------- ---------- --- ---- -- -. --- ---- ----- ----- --- --- ---. --· --818

JavaScript на примерах ,

Многострочный комментарий начинается символами /* и заканчивается
символами * /, например:

/* это пример
много строчного

комментария */

Какие комментарии использовать - зависит от вас. Однострочные коммен­
тарии удобно использовать для комментирования отдельных строчек кода.
Многострочные подойдут для объяснения того, что делает целый блок, на­

пример, описать, что делает функция и какие параметры ей нужно передать.

2.5. Диалоговые окна
Для взаимодействия с пользователем, то есть для ввода данных и вывода

результатов работы программы, как правило, используются НТМL-формы

и возможность вывода НТМL-кода прямо в документ (метод document.
write). Этот способ удобен тем, что вы, используя HTML и CSS, можете
оформить форму ввода данных так, как вам заблагорассудится. То же самое

можно сказать и о выводе данных. Из JS-сценария вы можете выводить лю­

бой НТМL-код, позволяющий как угодно оформить вывод.

Но в некоторых ситуациях этих возможностей оказывается очень много.

Иногда нужно просто вывести диалоговое сообщение, например сообщить
пользователю, о том, что введенный им пароль слишком простой или слиш­

ком короткий. В этом разделе мы разберемся, как выводить диалоговые
окна, позволяющие выводить короткие сообщения (например, сообщения

об ошибках ввода) и обеспечивающие ввод данных.

2.5.1. Метод alert() - простое окно с сообщением и кнопкой ОК

Метод alert() объекта window используется для отображения простого окна
с сообщением и одной кнопкой - ОК. Такое окно может использоваться, на­
пример, для отображения сообщений об ошибках (короткий/простой/не­
правильный пароль). Окно, кроме донесения до пользователя сообщения,
больше не предусматривает никакого взаимодействия с ним.

Методу alert() передается только одна строка - отображаемая. Чтобы ото­
бразить многострочное сообщение, разделяйте строки символом \n:

window.alert("Пpивeт, мир!");

window.alert("Пpивeт,\nмиp!");

Первая наша программа была не "Hello, woгld'', но давайте не будем из­
менять традиции и все-таки напишем эту программу, пусть она будет и не • " ... ,,

ГЛАВА 2. Основные понятия и первая программа

первой - хоть тут мы будем отличаться от всех остальных программистов.
Сценарий, демонстрирующий использование метода alert(), приведен в ли­
стинге 2.2.

Листинг 2.2. Использование метода alert()

<html>
<head>

<title>Alert</title>
</head>
<body>

<script>
window.alert("Пpивeт, мир!");

</script>
</body>
</html>

Наш сценарий находится в теле документа (тег<Ьоdу>), поэтому будет за­
пущен сразу при загрузке НТМL-файла. Изображаемое им окно приведено
на рис. 2.2.

х
Подтвердите действие:

рлвет, мир!

Рис. 2.2. Диалоговое окно в браузере Chrome

2.5.2. Метод confirm() - окно с кнопками ОК и Cancel

Другой часто используемый метод - confirm(). Он выводит окно с сообще­
нием и двумя кнопками - ОК и Cancel, позволяя пользователю выбрать
одну из них. Проанализировав возвращаемое методом значение (true, если
нажата кнопка ОК и false - в противном случае), вы можете выполнить то
или иное действие. Для нашего примера мы будем просто выводить с по­

мощью alert() название нажатой кнопки. Пример использования метода
confirm() приведен в листинге 2.3.

Листинг 2.3. Использование метода confirm()

<html >

• --. --··· .. -· ····-· -.... -..... -····-. -. -..... --. -. -.. ...

JavaScript на примерах

<head>
<title>Confirm</title>

</head>
<body>

<script>
if (window. confirm ("Нажмите ОК или Отмена")) {

window.alert("OK");

else {
window.alert("Oтмeнa");

</script>
</body>
</html>

Результат работы этого метода приведен на рис. 2.3.

Подтвердите действие:

ок 1 [0т"_~~.

)(!

Рис. 2.3. Диаnоrовое окно, отображаемое методом confirm (брауэер Firefox)

2.5.3. Метод prompt() - диалоговое окно дпя ввода данных

Метод prompt() отображает диалоговое окно с полем ввода, сообщением и
кнопками ОК и Cancel. Введенное пользователем значение можно потом
будет присвоить какой-то переменной. Диалог возвращает введенную поль­
зователем строку. Если пользователь ничего не ввел, диалог возвращает

значение null.

Методу prompt() нужно передать два параметра - строку, которая будет ото­
бражена в качестве приглашения ввода (над полем для ввода данных), и
значение по умолчанию, которое будет передано в сценарий, если пользова­
тель поленится ввести строку и просто нажмет ОК. Пример использования

этого диалога приведен в листинге 2.4.

Листинг 2.4. Пример использования метода prompt()

<html>
<head>

<title>Confirm</title>

• " . ------- - -------------- ------. --- ----- . -- --... ---... ---- --···- ······-· -. ------- --·

ГЛАВА 2. Основные понятия и первая программа

</head>
<body>

<script>
var UName = window.prompt("Kaк тебя зовут?", "Никак");

if (UName ==null) {
alert ("Пока!") ;

else {
document.write("Пpивeт, "+ UName);

</script>
</body>
</html>

Наш сценарий прост. Если пользователь нажмет Отмена, то увидит диа­

лог с текстом "пока!" (ну не хотим мы общаться с пользователем, который
не хочет представиться). Если пользователь нажмет ОК, то строка из поля

ввода будет отображена в НТМL-документе в виде "Привет, <введенный

текст>".

Подтвердите действ11е:
х

к. reб::i 3оеут?

·." .. ' Пред_Оr.11ратить ~о3}13н~~ .ае:nо;;.н о1те-.11ь"(~:Х. ~алогоаь1х сксн на)Т<IЙ странице.

Рис. 2.4. Метод prompt() в действии (браузер Flrefox)

2.6. Специальные символы
В строках вы можете использовать специальные символы. Это комбинации
обычных символов, обозначающих служебные или непечатаемые символы,

которые нельзя ввести обычным способом. Например, с помощью специ­
ального символа \ n в строку можно вставить разрыв строки, что позволяет
разбить сообщение в диалоговом окне на строки, например:

window.alert("Oшибкa!\nПapoль неправильный");

В JS вы можете использовать следующие специальные символы (ради спра­
ведливости, нужно отметить, что их можно также использовать в языках С,

РНР и некоторых других):

• \ n - перевод строки; • ·· · · ·····- ·- --- ... -. ---·-·-- -- -. --........ -. -···-· · -. -. -. -·--··· -. -. -·-. --. - . -.... ...

JavaScript на примерах

• \r - возврат каретки (в современном программировании используется

очень редко);

• \t - табуляция;

• \f - перевод страницы;

• \' - апостроф;

• \" - двойная кавычка;

• \ \ - обратный слеш (косая черта).

2.7. Зарезервированные слова
Зарезервированные слова (ключевые слова) нельзя использовать в каче­

стве идентификаторов, то есть имен переменных, функций и объектов. За­
резервированные cлoвaJavaScript приведены в таблице 2.1.

Таблица 2.1. Зарезервированные cлoвajavaScript

aьstract extenas intertace syncnronizea
boolean false long this
break final native throw
byte finally new throws
case float null transient
catch for package true
char function private try
class goto protected var
const if puЫic void
continue implements return while
default import short with
do in static
douЫe instanceof super
else int switch

На этом наша вводная в JavaScript глава заканчивается. В следующей мы
рассмотрим синтаксис JavaScript. Большая часть материала в этой главе
воспринималась интуитивно. Вы всё понимали, но все равно у вас есть во­

просы относительно синтаксиса языка программирования. Конкретизиро­

вать, казалось бы, явные вещи и предназначена глава 3. В ней мы рассмо­
трим переменные, операторы и многое другое.

_____ " __ ----- ------- """ •

Глава 3.

Основы синтаксиса

JavaScript на примерах

3.1. Переменные в JavaScript

3.1.1. Объявление переменной

Переменная - это поименованная область памяти, хранящая данные. В
других языках программирования (например, в С, РНР) переменные явля­

ются типизированными, то есть при объявлении переменной определяется
тип данных (число, символ, строка, массив чисел или массив символов и

т.д.), которые будут храниться в этой переменной. BJavaScript, как и в РНР,
переменные не являются строго типизированными, а это означает, что тип

переменной зависит от данных, которые в данный момент хранятся в ней.

В отличие от того же РНР, где можно использовать переменную без ее пред­
варительного объявления (хотя это и нежелательно, поскольку переменная
не инициализирована), в JavaScript переменную нужно объявить с помо­
щью служебного слова var (сокращение от variaЬle), как во многих других
языках программирования (например, предварительное объявление пере­
менных требуется в С, Pascal и других языках программирования).

Имя переменной должно начинаться с символа буквы (A-Z) или символа
подчеркивания. Последующими символами могут быть цифры, буквы, а
также знак $. Имя переменной не может начинаться с цифры или с симво­
ла$ (как в РНР)! Также нужно помнить, что JavaScript учитывает регистр
символов, то есть переменные variaЬle и VariaЬle - это две разные перемен­
ные.

Имя переменной не может быть зарезервированным словом. Зарезервиро­
ванные cлoвajavaScript были приведены в таблице 2.1.

Правильные примеры имен переменных:

х, yl, userName, user

Неправильные имена:

lx, puЫic

В первом случае имя переменной начинается с цифры, во втором - является
зарезервированным словом.

• -- - ------ -- -- --------- ----- ---- -- -- ------- ---- ----------- --- ------ -- ------------·

ГЛАВА 3. Основы синтаксиса

При объявлении переменной желательно указать ее первоначальное значе­

ние (инициализировать ее):

var my = 1;

Можно объявить переменную и без инициализации, однако это нежела­

тельно, поскольку если забыть ее инициализировать перед первым исполь­
зованием, результаты вычисления могут быть неопределенными.

При желании можно объявить сразу несколько переменных, разделив их

запятыми:

var х, yl, userName, user;

Сейчас переменная first целого типа, поскольку содержит значение 1. Но ее
очень легко превратить в строку, присвоив строковое значение:

my = "привет";

Все последующие обращения к переменной производятся без служебного

слова var.

3.1.2. Типы данных и преобразование типов

Данные, хранящиеся в переменной, могут быть разного типа. Как вы заме­
тили, при объявлении переменной (как это делается в других языках про­
граммирования) тип переменной (данных) не указывается.

BJavaScript переменные могут содержать следующие типы данных:

• number - числа, как целые, так и с плавающей точкой.

• string - строки.

• Boolean - логический тип данных, может содержать два значения - true
(истцна) и false (ложь).

• function - функции. В JS мы можем присвоить ссылку на функцию лю­
бой переменной, если указать имя функции без круглых скобок.

• object - массивы, объекты, а также переменные со значением null.

Тип переменной JavaScript определяет при ее инициализации, то есть при
первом присваивании значения, например:

• ·---- ---------- ------- - ----' ----.". --------- --- ----- . -----. - - - --- --- -- ---- --------

JavaScript на примерах

Numl = 5; // Переменной Numl присвоено целое значение 5, тип

- number
Num2 = 5. 5;
number

// Переменное с плавающей точкой 5.5, тип -

Strl = "привет"; // Переменной Strl присвоено значение
"Hello", тип - string
Str2 = 'мир'; //Также можно использовать одинарные кавычки

StrЗ = null; // Переменная не содержит данных, ее тип - object
Booll = true; // Булевая (логическая) переменная со значением

true

Оператор typeof возвращает строку, описывающую тип данных перемен­
ной. Давайте продемонстрируем его работу (см. листинг 3.1). Сценарий из
листинга 3.1 объявляет переменные, выполняет их инициализацию (при­
сваивает значения), а затем выводит тип каждой переменной. Результат ра­

боты этого сценария изображен на рис. 3.1.

Листинг 3.1. Оператор typeof

<html>
<head>

<title>typeof</title>
</head>
<body>
<script>
var Numl, Num2, Strl, Str2, StrЗ, Booll;

Numl 5;

Num2 5. 5;
Strl "привет";

Str2 'мир';

StrЗ null;
Booll = true;

document.write("
Numl " + typeof(Numl));
document.write("
Num2 "+ typeof(Num2));
document.write("
Strl "+ typeof(Strl));
document.write("
Str2 - "+ typeof(Str2));
document.write("
StrЗ "+ typeof(Str3));
document.write("
Booll - "+ typeof(Booll));

</script>
</body>
</html>

18---------- •

ГЛАВА 3. Основы синтаксиса

~ - -, .

'~- . "C''lf • •=
Ntuпl - uшubitr
Xн.1.nl - nшuь~
Strl - strшg

Str~ - strшg
St,:3 - Obj~t
Booil - Ьоо!.аu

Рис. 3. 1. Пример использования оператора typeof

В процессе вычислений JavaScript производит преобразование типов. По­
смотрим, как оно работает. Определим две переменные: одна будет содер­

жать число 1, а вторая - символ "1 ":

var А 1;
var В "1";

Теперь определим еще две переменные:

var SR В + А;
var IR = А + В;

11 string result
11 integer result

Тип переменной определяется по типу первого присваиваемого значения.

В нашем случае переменная SR будет содержать значение "11 ", поскольку
первой была строковая переменная В. Переменная IR будет содержать зна­
чение 2 по вышеописанным причинам.

Переменные в JavaScript также могут быть булевого (логического) типа.
Такие переменные могут принимать одно из двух значений - true (истина)
или false (ложь):

var Bool = true;

Для принудительного преобразования типов вы можете использовать две

следующие функции:

• ·------ -- -- ---- --- -- ---- · '-- -- - -- ---- --- -- ,_" ____ --- - -- __ .,. - - --------- -- ----- __ ___ ,..

JavaScript на примерах

1. parselnt - преобразует строку в целое число, если это возможно.

2. parseFloat - преобразует строку в число с плавающей запятой, если это
возможно.

3. eval - вычисляет выражение в строке, как будто это обычное выражение
JavaScript.

Рассмотрим несколько примеров:

var А
var в
1
var с
var D

5.1
var Е
var F

"1"; // строковое значение "1"
parselnt(A); //переменная В теперь содержит число

"5. 1"; / / строка "5. 1"
parseFloat(C); //переменной D будет присвоено число

"2 + 2";
eval(E);

11 строка "2+2"
// переменной F будет присвоено число 4

3.1.3. Локальные и глобальные переменные

Как и в других языках программирования, вJavaScript существуют локаль­

ные и глобальные переменные. Локальной называется переменная, объяв­
ленная в какой-нибудь функции. Она доступна только в этой функции и
недоступна во всем скрипте.

Глобальная переменная объявлена в теле скрипта и доступна во всех объ­
явленных в скрипте функциях.

Глобальные переменные принято объявлять в самом начале скрипта, что­
бы все функции наследовали эти переменные и их значения. Подробнее об
области видимости переменной мы поговорим в главе 11, когда будем рас­
сматривать функции.

3.2. Выражения и операторы

3.2. 1 . Типы выражений

Выражение - это набор переменных, констант, операторов. У любого вы­
ражения есть свое значение - результат вычисления выражения. Значение

может быть числом, строкой или логическим значением. """ .. -. - . -... --. - . -. ----.. --... -.. - . --- --. -. -. -. -.. -. -. -. -.... - . --- . -. --. -. - . -. -. '

ГЛАВА 3. Основы синтаксиса

В J avaScript есть два типа выражений: которые присваивают значение пере­
менной и те, что просто вычисляют выражение без присваивания его значе-

ния переменной:

х = 3 * 2

9 - 5

Существуют еще так называемые условные выражения. Они определяются

так:

(условие)? значениеl: значение2

Если условие истинно, то выражение имеет значение 1, а если нет - значе­

ние 2.

Например:

sedan = (doors >=4) ? true false

3.2.2. Операторы присваивания

Операторы присваивания, поддерживаемые в JavaScript, описаны в табли­
це 3.1.

Таблица 3.1. Операторы присваивания

Оператор Пример Описание
+= х+=у х=х+у

-- х-= у х=х-у

*= х *=у х=х*у

/= х/=у х=х/у
%=(остаток от деления) х%=у х=х%у

3.2.3. Арифметические операторы

Математические (арифметические) операторы вJS такие же, как и в боль­
шинстве других языков программирования, а именно:

• + - сложение (например, А= В+ С).

'---················--·--········------·-·-·-------------------·----·-·---·-------EI

JavaScript на примерах

• - - вычитание (например, А= В - С).

• * - умножение (например, А= В* С).

• / - деление (например, А= В/ С).

• % - деление по модулю (например, А= В% С).

• ++ - инкремент, увеличивает значение переменной на 1 (например, i++).

• -- - декремент, уменьшает значение переменной на 1 (например, j--).

Как используются эти операторы, думаю, вы и так знаете. Нужно отметить

только особенность операторов инкремента и декремента. Рассмотрим не-

большой пример:

х = 7
у = х++

Переменной у будет присвоено значение 7, а после этого переменная х будет
увеличена на 1 (значение 8). Если же++ указать дох (а не после него), то
сначала переменная х будет увеличена на 1, а потом уже будет присвоено
новое значение переменной у:

у = ++х

3.2.4. Логические операторы

К логическим операторам относятся следующие операции:

• ! - унарная операция отрицания (NOT).

• && -бинарная операция И (AND), истинна, когда оба операнда истинны.

• 11- бинарная операция ИЛИ (OR), истинна, когда один из операндов ра­

вен true.

Пример:

bool = true && false

3.2.5. Операторы сравнения

В таблице 3.2 описаны операторы сравнения, которые вы можете использо­
вать вjavaScript при написании своих сценариев.

• Е8--- -- ----------- ----------------------- . -. ------ -- --- -- ------. --- --- ---- --- ---- --·

ГЛАВА 3. Основы синтаксиса

Таблица 3.2. Операторы сравнения вJavaScript

Оператор Описание

> Больше

>= Больше или равно

< Меньше

<= Меньше или равно

-- Равно

!= Не равно

--- Строго равно
Обратите внимание, что в JS есть два оператора сравнения: равно (==) и
строго равно(===). В чем между ними разница? Оператор==, сравнивая

значения разных типов, пробует свести типы, а затем выполнить сравнения.

То есть значение 3 будет равно строке "3". Оператор===, встретив разные
типы значений, сразу вернет false.

3.2.6. Двоичные операторы

К двоичным операторам относятся следующие операторы:

• - - двоичная инверсия (А= -В).

• & - двоичное И (А= В & С).

• 1- двоичное ИЛИ (А= В 1 С).

• л - двоичное исключающее ИЛИ (А= В л С).

• << - сдвиг влево на один или более разрядов с заполнением младших
разрядов нулями (А= В<< У).

• >> - сдвиг вправо на один или разрядов с заполнением старших разрядов
содержимым самого старшего разряда (А= В>> Z).

• >>> - сдвиг вправо без учета знака, старшие разряды будут заполнены
нулями (А= В>>> С).

Двоичные операторы выполняют поразрядные операции с двоичным пред­

ставлением целых чисел.

3.2. 7. Слияние строк

Для слияния (конкатенации) строк используется оператор+:

• . ---- -- . ---... -. -.... -. -.. --..... --- - --. -· - - - --.. --- --.. ---- --. -·- .. -... -. -.....

JavaScript на примерах

var str = "stringl" + "string2"

В результате переменная str будет содержать значение "string1 string2".

3.2.8. Приоритет выполнения операторов

Сейчас мы поговорим о приоритете выполнения операторов. Пусть у нас

есть выражение:

А = 2 + 3 * 4 / 5;

В какой последовательности будет производиться его вычисление? Еще из
школьного курса математики мы знаем, что приоритет операции умноже­

ния выше, чем сложения, поэтому сначала 3 будет умножено на 4 (в резуль­
тате мы получим значение 12).

Затем полученное значение 12 будет разделено на 5 (мы получим значение
2.4), поскольку приоритет операции деления выше, чем сложения.

К полученному значению 2.4 будет добавлено значение 2 и в результате пе­
ременной А будет присвоено значение 4.4.

Приоритет операций можно изменить с помощью скобок, например:

А = (2 + 3) * 4 / 5;

В этом случае сначала будет вычислено выражение 2 + 3, а затем получен­
ное значение будет умножено на 4 и разделено на 5. Приоритет операций
умножения и деления одинаковый, поэтому они выполняются слева напра­

во, то есть в порядке следования. В результате будет получено значение 4 (5
* 4 и разделить на 5).

Далее перечислены операторы в порядке убывания приоритета:

• !, -, ++, -- - отрицание, двоичная инверсия, инкремент, декремент.

• *, /, % - умножение, деление, остаток от деления.

• +, - - сложение и вычитание.

• <<, >>, >>> - двоичные сдвиги.

• & - двоичное И.

• --------- ----- ·--. -· -· -. -·-· ... -- -·-- -. --- -. -·-. --- --- -----. - . --- --· -·- ----- --- ---- -·

ГЛАВА 3. Основы синтаксиса

• л - двоичное исключающее ИЛИ.

• 1- двоичное ИЛИ.
• =, +=, -=, *=, /=, %= - присваивание.

3.3. Основные конструкции языка
К основным конструкциям языка относят условный оператор (if .. else), а
также операторы циклов. В этом разделе будут рассмотрены данные кон­
струкции.

3.3.1. Условный оператор if

Прежде чем мы будем рассматривать условный оператор if, настоятельно
рекомендую вернуться к разделу 3.2.5 и еще раз просмотреть таблицу с опе­
раторами сравнения - так вам будет понятнее все происходящее здесь.

Условный оператор if имеется в большинстве языков программирования.
Он позволяет выполнить определенное действие в зависимости от истин­

ности условия. Общая форма оператора выглядит так:

if (условие)
{операторы, если условие истинно}

[else {
операторы, если условие ложно}]

Обратите внимание, что вторая часть (else) не обязательна.

Условие - это логическое выражение, построенное на базе операторов срав­
нения, именно поэтому я просил вас вернуться к разделу 3.2.5, чтобы еще
раз просмотреть имеющиеся операторы сравнения. Каждый из операторов

сравнения возвращает true в случае истинности и false, если проверяемый
факт ложен.

Пусть у нас есть две переменные:

var А 10;
var В = 5;

Оператор А == В вернет false, поскольку А не равно В. Оператор А > В вер­
нет true, поскольку А больше, чем В .

• ·--

JavaScript на примерах

Для инверсии логического значения вы можете использовать оператор !,
например:

! (А== В)

Конечно, можно также использовать оператор!=, но здесь уже поступайте,

как вам будет удобнее и понятнее.

В нашем случае переменные А и В не равны, поэтому оператор == вернет
значение false, но поскольку указан оператор !, то будет возвращено значе­
ние true.

Рассмотрим несколько примеров:

var А = 10;
var В = 5;

11 Будет выведено А> В
if (А > В) {

document.write('A >В');

11 Будет выведено В< А
if (А > В) {

document.write('A >В');
else {

document.write('B <А');

11 Будет выведено А= В
if (!(А== В)) {

document.write(" А !=В"); }
else {

document.write(" А= В"); }

В главе 8 мы уже сталкивались с оператором if и рассмотрели более слож­
ный пример - проверку нажатия одной из кнопок в диалоговом окне. Вы
можете вернуться к этому примеру, чтобы освежить его в памяти.

Операторы if можно вкладывать друг в друга. что продемонстрировано в
листинге 3.2. Сценарий в это~~ листинге пытается разделить 1 О на значе­
ние одной из переменных - А или В, предварительно проверяя, не равно ли
значение этих переменной О. Сначала он выясняет, не равно ли О значение

переменной А. Поскольку А = О, то выполнение сценария переходит на вто­
рой оператор if, который проверяет. не равно ли О значение переменной В.
С переменной В все хорошо, поэтому переменной С будет присвоено зна-

........ """" .. •

ГЛАВА 3. Основы синтаксиса

чение 10 / 1 (10). В противном случае, если обе переменные равны О, будет
выведено сообщение Division Ьу zero.

Листинг 3.2. Вложенность операторов if

<htrnl>
<head>

<title>if</title>
</head>
<body>
<script>

var А = О;

var В = 1;
var С;

if (А !=О)

С = 10 / А;

docurnent.write('C
else if (В != 0) {

С = 10 / В;

' + С) ; }

docurnent.write('C = ' +С); }
else docurnent.write("Дeлeниe на 0");

</script>
</body>
</htrnl>

3.3.2. Оператор выбора switch

Иногда (конечно не во всех ситуациях) вместо множества вложенных опе­

раторов if можно использовать оператор switch. Оператор s\vitch позволяет
сравнить переменное или выражение с множеством значений, что позволя­

ет избавиться от серии операторов if и сделать код более компактным.

Общая форма оператора switch выглядит так:

switch (<Переменная или выражение>)

case <Значение 1>:
<Оператор 1>;
break;
case <Значение 2>:
<Оператор 2>;
break;

.defaul t:

--········-~

JavaScript на примерах

<Оператор>;]

}

Работает оператор switch следующим образом:

• Сначала вычисляется значение переменной или выражения.

• Затем полученное значение сравнивается с одним из значений, указан­

ных в блоках case.

• Представим, что у нас 10 блоков case, и значение совпало с 5-м блоком
case. Тогда, если в 5-м блоке case не указан оператор break, то будут вы­
полнены действия, связанные с блоками 5-1 О, а также операторы из бло­
ка default. Если же указан оператор break, тогда будет выполнено только
то действие, которое указано в 5-м блоке case. Для большей однозначно­
сти (если не нужно иного) я всегда рекомендую использовать оператор

break для преждевременного выхода из оператора switch.

• Если вычисленное значение не совпало ни с одним из значений, указан­

ных в блоках case, тогда будет выполнены операторы из блока default,
если таковой указан. Блок default является необязательным.

Представим, что у нас есть переменная command, в зависимости от значе­
ния которой нужно выполнить определенные действия, например:

if (cornrnand 1) alert ('Выбрано действие: 1') ;
if (cornrnand 2) alert ('Выбрано действие: 2') ;
if (cornrnand 3) alert ('Выбрано действие: 3 ') ;
if (cornrnand 4) alert ('Выбрано действие: 4') ;

Код выглядит громоздко и логически воспринимается не как один блок, а

как четыре разных блока (если бы мы по этому коду построили блок-схему,
то у нас бы и получилось четыре разных блока).

Весь этот громоздкий код мы можем заменить на более компактный. Пусть
он занимает больше строк, зато выглядит не таким перегруженным и вос­

принимается как единое целое:

switch (cornrnand) {
case 1: alert('Chosen action: 1'); break;

case 2: alert('Chosen action: 2'); break;
case 3: alert('Chosen action: 3'); break;
case 4: alert('Chosen action: 4'); break;
default: alert('Unknown action!);
} - ----- --- -- ------- -- --- -- ---- --- -- --- ---- ---- -------- -------- ------ --------- -- ___ ,

ГЛАВА 3. Основы синтаксиса

Как видите, получившийся код воспринимается не таким перегруженным,

хотя занимает больше строк. К тому же оператор switch позволяет задавать
действие по умолчанию. В конечном итоге, с его помощью можно понятнее

и прозрачнее реализовывать сложные разветвления, которые кажутся за­

путанными, если их реализовать с помощью if. Однако еще раз отмечу, что
switch - далеко не панацея во всех ситуациях выбора.

В листинге 3.3 приведен пример использования оператора switch. Сначала
мы отображаем диалог ввода действия, затем анализируем, какое действие
выбрал пользователь. Обратите внимание, что прежде чем передать полу­
ченное действие оператору switch, мы сводим его к типу number с помощью
функции parselnt().

Листинг 3.3. Пример использования оператора switch

<html>
<head>

<title>Confirm</title>
</head>
<body>

<script>
var command = window.prompt("Bвeдитe действие", "");

if (command == null) {
document.write('Cancel pressed');

else
switch (parseint(command)) {

case 1: аlеrt('Выбрано действие 1'); break;
case 2: аlеrt('Выбрано действие 2'); break;
case 3: аlеrt('Выбрано действие 3'); break;
case 4: аlеrt('Выбрано действие 4'); break;
default: аlеrt('Неизвестное действие');

</script>
</body>

</html>

3.3.3. Циклы

Если проанализировать все программы, то на втором месте после условного

оператора будут операторы цикла. Используя цикл, вы можете повторить
операторы, находящиеся в теле цикла. Количество повторов зависит от

• ·-· -. -.. -- -. -· -. -. --. ---- -· -. -- ---- ·-· -. --- ---·-. --- . -. ----- ---- -·-- --· -·- .. -.. -----

JavaScript на примерах

типа цикла - можно даже создать бесконечный цикл. В JavaScript есть три
типа цикла:

• Цикл со счетчиком (for).

• Цикл с предусловием (while).

• Цикл с постусловием (do .. while).

Цикл for

Начнем с цикла со счетчиком - for. Он используется для выполнения тела
цикла четко определенного количества раз. Цикл \vhile, например, удобно
использовать для ожидания какого-то события (мы не знаем, сколько раз

будет выполнено тело цикла, пока условие станет истинным), а цикл for ис­
пользуется тогда, когда вы точно знаете, сколько раз нужно повторить цикл.

Синтаксис цикла for:

for (команды_инициализации; условие; команды_после_итерации)

<Операторы - тело цикла>

}

Оператор for начинает свою работу с выполнения команд инициализации.
Данные команды выполняются всего лишь один раз. После этого проверя­

ется условие: если оно истинно, выполняется тело цикла. После того, как

будет выполнен последний оператор тела, выполняются команды "после

итерации". Затем снова проверяется условие, в случае, если оно истинно,

выполняются тело цикла и поститерационные команды и т.д.

Выведем строку 0123456789:

for (i=O; i<lO; i++) document.write(i);

Чтобы вывести строку 12345678910, нужно установить начальное значение
счетчика в 1 и изменить условие цикла:

for (i=l; i<=lO; i++) document.write(i);

Цикл for будет очень полезным при обработке массивов, которые мы рас­
смотрим в следующей главе.

-------- -. -.. --. --- -. - -- . --- " -. ------- " ---. -. -. --- •

ГЛАВА 3. Основы синтаксиса

Цикл while

В некоторой мере цикл for очень похож на цикл с предусловием (while),
так как сначала проверяется условие, а потом уже выполняется тело цикла.

Рассмотрим цикл с предусловием:

while (логическое выражение)
операторы; }

Сначала цикл вычисляет значение логического выражения. Если оно ис­

тинно, происходит итерация цикла (выполняется тело цикла), иначе следу­

ет выход из цикла и выполнение следующего за циклом оператора.

Далее приведен пример, выводящий числа от 1 до 1 О:

var i = 1;

while (i < 11) {
document.write(i + "
");
i++;

Соблюдайте осторожность при использовании цикла while. Если вы не
предусмотрите условие выхода, получите бесконечный ци1с1. В нашем слу­
чае условием выхода является не только, что i < 11, но и сам инкремент
i, то есть оператор, способный повлиять на условие, указанное в заголовке
цикла. Если бы мы забыли указать оператор i++, то получили бы бесконеч­
ный цикл. Поскольку переменная i = 1, что меньше 11, и у нас нет другого
оператора, который в теле цикла изменял бы эту переменную, тело цикла
будет выполняться бесконечно.

Цикл do .. while

В JavaScript есть еще одна форма цикла - do while. В отличие от цикла v.:hile
здесь сначала выполняются операторы (тело цикла), а затем уже проверя­

ется условие. Если условие истинно, то начинается следующая итерация.

Получается, что тело цикла будет выполнено как минимум один раз. Син­

таксис цикла:

do
{

11 тело цикла

)

while (условие);

• ·-------------- -- -------- ------ ------ ----- ---- -- ------- -------- ---, --- ------------.EJ

JavaScript на примерах

Пример:

i = 1;
do {

document.write(i);
i++; }

while (i < 10);

Операторы break и continue

В теле цикла вы можете использовать операторы break и continue. Первый
прерывает выполнение цикла, а второй - выполнение текущей итерации и

переходит к следующей.

Представим, что нам нужно вывести только нечетные числа в диапазоне от

1до20. Пример цикла может быть таким:

for (i=l; i<21; i++) {
if (i % 2 == 0) continue;
else document.write(i +" ");

В теле цикла мы проверяем, если остаток от деления i на 2 равен О, значит,
число четное и нужно перейти на следующую итерацию цикла. В против­

ном случае нам нужно вывести наше число.

А вот пример использования оператора break. Несмотря на то, что цикл яко­
бы должен выполниться 10 раз, он будет прерван, когда i будет равно 5:

for (i=l; i<ll; i++) {
if (i == 5) break;
document.write(i +" ");

}

В результате будет выведена строка:

1 2 3 4

" -. -. -. -. --... -. ---.. --... ---. -. -------. ----. -. -- --. -. --- --.. -... •

ГЛАВА 3. Основы синтаксиса

Вложенность циклов

В теле цикла может быть другой цикл. Вложенность циклов формально не
ограничивается, однако нужно быть предельно осторожным, чтобы не до-

пустить зацикливания. Пример вложенного цикла:

var j = 1;
while (j < 15) {

}

for (k=O; k<j; k++) document.write('*');
document.write('
');
j++;

Результат выполнения этого сценария приведен на рис. 3.2.

Одно из частых применений циклов - обработка массивов. О том, что та­
кое массивы и как с ними работать вJavaScript, мы поговорим в следующей
главе.

*
**

Рис. 3.2. Пример работы вложенных циклов

• . -- . --- . -. -- ----... ------.. --- --. -. ----- --.. -----. ---. --. -----. -. --. -. -. -. -.. -. --...

JavaScript на примерах

са---. -. -, . -----. -------------. --------. -. --------

Глава 4.

Массивы

1

JS

JavaScript на примерах

4. 1. Введение в массивы

Все мы знаем, что такое переменная, - это поименованная область в памяти.
Мы выделяем область в памяти (точнее, за нас это делает интерпретатор) и
назначаем ей имя (а вот имя выбираем мы - программисты). Но перемен­
ные не всегда удобны. Представим, что нам нужно хранить набор данных,
состоящий из 100 или даже 1 ООО значений одного типа. В этом случае нам
понадобится 100 или 1000 переменных, что не совсем удобно. Специально
для таких целей были созданы массивы. Массив - это упорядоченный набор
данных. У каждого элемента массива есть свой индекс (его также называют

ключом), который используется для однозначной идентификации элемен­

та внутри массива. Думаю, совершенно понятно, что в одном массиве не мо­

жет быть двух элементов с одинаковыми ключами.

Работать с массивами намного удобнее, поскольку можно в цикле пере­
брать все элементы массива, а не обращаться отдельно к каждому элементу
(как это происходит с переменными).

Если вы программировали на других языках программирования, то знаете,

что все переменные, в том числе и массивы, должны быть объявлены в стро­
го определенном месте программы. В JavaScript переменную, следователь­
но и массив, можно объявить в любом месте программы (сценария), но до
первого использования массива. А это удобно, если нужно создать массив
с неизвестным числом параметров. Например, вам нужно прочитать в мас­

сиве текстовый файл так, чтобы каждая строка файла представляла собой
один элемент массива. В другом языке программирования нужно было объ­

явить очень большой массив, скажем, на 1 О ООО элементов, - ведь вы же не
знаете, сколько строк будет в файле, но нужно написать более или менее
универсальную программу, чтобы она умела обрабатывать большие фай­
лы. А что делать, если в файле всего 3 строки или 10 001 строка? В первом
случае вы выделили памяти во много раз больше, чем реально нужно для
обработки файла. Ваша программа будет попросту поедать память, и вы ни­
чего не сможете сделать. Во втором случае ваша программа не справится с

обработкой всего файла, поскольку в файле больше строк, чем может по­
меститься в массив.

• --·

ГЛАВА 4. Массивы

4.2. Инициализация массива

Массив инициализируется, как и любая другая переменная, путем присва­
ивания значения. Поскольку массив может содержать несколько значений,

при его инициализации значения указываются в квадратных скобках и раз­
деляются запятыми:

var М;
м = [5, 3, 4, 1, 2];

var Months;
Months = ["", "Jan", "Feb", "Mar", "Apr", "Мау", "Jun", "Jul",
"Aug", "Sep", "Oct", "Nov", "Dec"];

Нумерация элементов массива начинается с О, а не с 1. Получить доступ к
определенному элементу массива можно так:

numO = М [О] ; / / 5
j =М[З]; // 1

4.3. Изменение и добавление элементов
массива

При желании вы всегда можете изменить значение существующего элемен­

та массива или добавить новый элемент, например:

М[О] 7;

M[S] 8;

Первый оператор присваивает значение 7 элементу массива М с индексом
О. Второй оператор создает новый элемент массива со значением 8, индекс
элемента - 5. Теперь у нас есть вот такой массив:

[7, 3, 4, 1, 2, 8]

Посмотрим, что сделает следующий оператор: • ·············-···························---····-------·-··--------------·-·-----·.EJ

JavaScript на примерах

М[7] = 11;

Этот оператор создаст два элемента массива: элемент с индексом 6 и значе­
нием undefined и элемент с индексом 7 и значением 11. Массив будет сле­
дующим:

[7, 3, 4, 1, 2, 8, undefined, 11]

4.4. Многомерные массивы

В JS вы можете создавать многомерные массивы путем присваивания любо­
му элементу массива нового массива, например:

М[О] = [3, 2, 1];

Обратиться к элементу многомерного массива можно так:

j = М[О] [1];

4.5. Пример обработки массива

Подробно о средствах работы с массивами мы поговорим в главе 14, когда
будем рассматривать встроенные классы JS. Сейчас же мы рассмотрим не­
сколько примеров для работы с массивами. У любого объекта массива есть
свойство length, содержащее длину массива. Это свойство мы можем ис­
пользовать при обработке массива.

Сценарий из листинга 4.1 вычисляет минимальный элемент массива. Сна­
чала минимальным считается первый (с индексом О) элемент массива. Да­

лее в цикле for мы сравниваем каждый следующий элемент массива. Если
сравниваемый элемент меньше нашего минимума, он становится новым

минимумом.

Листинг 4. 1. Вычисление минимума массива

<html>
<head>

<titlе>Минимум в мaccивe</title>

</head>

• ... " - " --------- - --- - -------- ---- ------- --------- - ---- ---- ---- --------- --- ---------- _,

<body>
<script>
var М = [7, 66, 55, 4, 88, 1, 8, 99, 3];

Min М[О];

Min ind = О;

//Минимум

//Индекс Min

document.write('Maccив:
');

for (i=l; i<M. length; i++) {
if (M[i] < Min) {

Min = M[i];
Min ind = i;

} // if
document.write(M[i] +" ");

//for
document.write('
Mинимyм: ' + Min);
document.write('
Индeкc: ' + Min ind);

</script>
</body>
</html>

ГЛАВА 4. Массивы

Сначала мы считаем минимальным элемент с индексом О. Далее выводим
этот минимальный элемент, поскольку обработка массива начинается с ин­

декса 1(сравнивать0-й элемент с 0-м элементом нет смысла). В цикле мы

проверяем, не является ли текущий элемент минимальным, и, если это так,

устанавливаем новый минимум. Для идентификации минимума использу­

ются две переменных - Min (минимум) и Min_ind (индекс минимума). Так­
же в цикле мы выводим обрабатываемый элемент. Результат работы сцена­
рия приведен на рис. 4.1.

~-Iaccrrв .

66 'ч ss 1 $ 99 3
~·Uum...\ty~i : 1
llн.:t<KC ::

Рис. 4. 1 . Поиск минимального элемента • . ---- -- -------------------------------------- ------------------- . -----------------811

JavaScript на примерах

Теперь мы решим другую подобную задачу - найдем максимальный эле­
мент. Чтобы было интереснее, давайте сделаем двумерный массив и най­
дем максимальный элемент в нем. А то наш новый сценарий отличался бы

от предыдущего лишь знаком больше. Согласитесь, совсем не интересно. В
новом же сценарии нам нужно обойти два измерения. Для обхода перво­
го измерения мы будем использовать счетчик i, для обхода второго - j. Как
только найдем максимальный элемент, в массив Ind мы запишем его "коор­
динаты" - значения счетчиков i (элемент О) иj (элемент 1).

Листинг 4.2. Поиск максимума в двухмерном массиве

<html>
<head>
<titlе>Максимальный элемент</titlе>

</head>
<body>

<script>
var М = [О, О, О] ;

М [О] [3' 2, 1] ;
м [1] [7' 8' 9] ;

м [2] [5' 6, 7] ;

Мах М[О] [О]; 11 Максимум
Ind [о' о] ; 11 Его индекс

for (i=O; i<M.length; i++)

for (j=O; j<M[i] .length; j++)

if (M[i] [j] > Мах)
Мах = М [i] [j] ;
Ind[O] i;
Ind [1] = j;

document.write('Max ' +Мах);

document.write('
Ind [' + Ind[OJ + '] [' + Ind[l] + ']');

</script>

• Еа--- ... ---- -- -- -- -. --------. ----- ---- ---. ------ --- -. ---- -·- --.. --- -. --- . ----------·

</body>
</html>

ГЛАВА 4. Массивы

Обратите внимание, как мы обращаемся к свойству length. Поскольку
каждый из элементов исходного массива также является массивом, то мы

можем обратиться к length так: M[i].length. Конечно, мы и так знаем раз­
мерность массива, и можно было бы использовать значения длины 3 для
каждого из счетчиков, но корректнее. Результат работы сценария 4.2 изо­
бражен на рис. 4.2.

Хватит теории. Настало время для практики, и в следующей главе мы раз­

работаем простенький слайдер для нашего сайта.

~"

~-­+-Cfl • • =
~"""""'""9
l1и,1,<J:C[!J[2]

Рис. 4.2. Поиск максимума в двухмерном массиве

• ·----···· · ······ --- --- -- · ···-- -- ------

JavaScript на примерах

...... -. -.. -... -. -. --- -... -·-- ---- . -. ---. --. ------------- --------. --. ------ .. -. '

Глава 5.

Делаем слайдер

JavaScript на примерах

Слайдер - это средство отображения изображений в виде слайдов. Обычно
слайдеры имеют возможность как автоматического слайд-шоу (когда слай­

ды показываются автоматически), так и ручного переключения слайдов. В

этой главе мы попытаемся организовать слайдер вручную, а затем покажем,

как его можно сделать с помощью jQuery UI.

5. 1. Делаем слайдер вручную

Код простейшего слайдера довольно компактный. Нам нужно предусмо­

треть массив с изображениями, функции инициализации слайдера, функ­

ции прокрутки слайдера влево и вправо, а также автоматическое перели­

стывание картинок. Такой код приведен в листинге 5.1.

Листинг 5. 1. Код слайдера

var slider = {
//массив с изображениями

slides: ['6. jpg',' 9. jpg', '20. jpg'],
// начальный кадр (индекс из массива, нумерация с 0)
frame:O,
set: function(image) { // установка нужного фона слайдеру

document.getElementByid("scr") .style.backgroundimage
"url("+image+")";

} ;

} '
init: function() { // запуск слайдера с начальной картинкой

this.set(this.slides[this.frame]);

} '
left: function() { // влево

} '

this.frame--;
if(this.frame < 0) this.frame = this.slides.length-1;
this.set(this.slides[this.frame]);

right: function() { // вправо
this.frame++;
if(this.frame == this.slides.length) this.frame О;

this.set(this.slides[this.frame]);

window.onload = function() { // запуск слайдера после загрузки
документа

---'

ГЛАВА 5. Делаем слайдер

slider. init ();
set!nterval(function() { // 5 секунд

slider.right(); //после - переход на кадр справа

),5000);
} ;

НТМL-код страницы выглядит так:

<div id="main">
<button class="left" onclick="slider.left();"><</button>
<div id="scr"></div>
<button class="right" onclick="slider.right();">></button>

</div>

Конечно, чтобы слайдер имел презентабельный вид, нужно задать стили.
Стили, а также полный код примера приведены в листинге 5.2.

Листинг 5.2. Полный код слайдера

<html lang="ru">
<head>

<title>Cлaйдep</title>

<meta charset="utf-8">
</head>
<style>
#main {

position:relative;
margin: lOOpx auto;
padding: 5рх;

width: ббОрх;

height:360px;
background-color: silver;
border: 5рх solid grey;
border-radius:l5px;

#scr {
margin:20px auto;
width: бООрх;

height: 320рх;

margin-top:20px;
background-color: white;
background-size:cover;
border: 2рх solid Ыасk;
border-radius:lOpx; , ___ -. -. -- ----· -. - - .. ---- . - -- -------- ---------- ----- -------------------- ----- . --....

JavaScript на примерах

button
position: absolute;
top: 150рх;

width: 25рх;

height: 70рх;

font: 12pt arial,tahoma,sans-serif;
text-align: center;

.left {
left:Spx;

.right {
right:Spx;

</style>
<script>
var slider = {

slides: ['6. jpg',' 9. jpg', '20. jpg'],
frame:O,
set: function(image)

document.getElementByid("scr") .style.backgroundimage
"url("+image+")";

} ;

} '
init: function()

this.set(this.slides[this.frame]);

} '
left: function()

} '

this.frame--;
if(this.frame < 0) this.frame = this.slides.length-1;
this.set(this.slides[this.frame]);

right: function()
this.frame++;
if(this.frame == this.slides.length) this.frame О;

this.set(this.slides[this.frame]);

window.onload = function()
slider.init();
setinterval(function()

slider.right();
),5000);

} ;

</script>
<body>

• " ---- --, -- -. ----- -- ---. ----- -- -- -. ---- ---- -----. ---- . ------ " ---- -. -. -- --- _,

ГЛАВА 5. Делаем слайдер

<div id="main">
<button class="left" onclick="slider.left();"><</button>
<div id="scr"></div>
<button class="right" onclick="slider.right();">></button>

</div>
</body>
</html>

Как выглядит наш слайдер, показано на рис. 5.1 .

Рис. 5. 1. Созданный вручную слайдер

5.2. Делаем слайдер средствами jQuery
Ul/Shoppica

Теперь посмотрим, как можно сделать слайдер средствами библиотеки

jQuery. Первым делом нужно подключить необходимые сценарии и стили:

<script type="text/javascript" src="http://ajax.googleapis.
com/ajax/libs/jquery/l.5.2/jquery.min.js"></script>
<script type="text/javasc ript" src="http://ajax.googleapis.
com/ajax/libs/jqueryui/l.8.11/jquery-ui.min.js">< /script>
<script type="text/javascript" src="j s /shoppica.j s " >< /scrip t >

• "".'" ... -.... ·- ----······· -.... -- ·-··· -..... -. ---. -. -...... -.. - - --.. ...

JavaScript на примерах

<link rel="stylesheet" type="text/css" href="stylesheet/960.
css" media="all" />
<link rel="stylesheet" type="text/css" href="stylesheet/
screen.css" media="screen" />
<link rel="stylesheet" type="text/css" href="stylesheet/color.
css" media="screen" />

Не волнуйтесь, все эти файлы можно будет скачать по предоставленному
архиву. Заголовок слайдера будет выглядеть так:

<div id="intro">
<center><p>Гироскутеры на любой
вкyc</p></center>

<div id="intro_wrap">
<div id="product_intro" class="container_l2">

<div id="product_intro_info" class="grid_S">

Он будет постоянным в любом случае. Далее нужно описать сами продук­
ты. Это делается так:

<div style="position: relative;">
<h2>Гиpocкyтep IO CHIC Smart­

LS 9"</h2>
<р class="s_desc">Moдeль IO CHIC Smart-LS весит всего лишь

21,5 кг, при этом она выдерживает максимальную нагрузку в 100
кг. Это удобный и компактный сигвей с двумя двигателями по 700
Вт и диаметром колес 9". Купить IO CHIC Smart-LS - это выгодно

и удобно.

</р>

<div class="s_price holder">
<р class="s_price"> <span class="s_currency s

before">l499 $ </р>
</div>

</div>

Все, что вам остается, - это добавить описание своих продуктов в слайдер
(добавить соответствующие div). Удобнее всего это делать РНР-сценарием,
но поскольку книга не о нем, добавлять продукты будем вручную.

Далее нужно описать изображения для наших продуктов и кнопки назад/
вперед:

<div id="product intro_preview">

• 18--------·-·---···---··--·-·-···--··------·---·-···--·----------·---·--··--·------··

ГЛАВА 5. Делаем слайдер

<div class="slides container"><div class="slideitem"
style="display: none;"><center> <img
src="images/9.jpg" аlt="Гироскутер IO CHIC Smart-LS 9 Black"
/></center></div>
<div class="slideitem" style="display:
none;"><center> <img height=ЗЗO width=230
src="images/20" аlt="Гироскутер IO CHIC Cross 20" /></
center></div>
<div class="slideitem" style="display:
none;"><center> <img height=ЗЗO width=230
src="images/9.jpg" alt="IO CHIC Fairy 6.7 Red" /></center></
div>

</div>
<а class="s_button_prev" href="javascript:;">
<а class="s button next" href="javascript:;">

И не забыть, ясное дело, подключить сценарии jQuery /Shoppica:

<script type="text/javascript" src="js/jquery/jquery.slides.
js"></script>
<script type="text/javascript" src="js/shoppica.products
slide.js"></script>

Полный исходный код примера можно скачать (вместе со всеми необходи­
мыми файлами - JavaScript и CSS) по адресу:

http://nit.corn.ru/

В результате у нас должен получиться слайдер, изображенный на рис. 5.2 .

• ·--·· -·-· -·------ ... ---·-. -- -- --·-·----. -·-----·-. -.. ----- . ---.... ------. --- ----· --118

JavaScript на примерах

Гироскутер !О CHIC Cross
20~ 8!ack
rмpoc.q-rei; CHIC Cro~' IUlфOt:Q ~Cnol!~fCI •

Щ)Oi(.lltt AЛl·~:i&М'ft1t11•. а •)JIOl"loptax.
•JIAVttaPOAtQol'IC 11~рсwц-центр.1Х, 1i.:craюot1t 111i1

:мA.tJC. ст._1!1Ж4Х, бо:;~.&1111х тeм•тlfЧttllM'(мрцх "
• ЛIКН.Ц&АА!I, 001!.tX .11,11.t ГO.tll;:фd., 1)1\ОТ)'f)WЗЧе, lt<\

щtQl"O'l"<nt14ltlo/X J(ypopnx м '4<!.cnt!il)I 1;vuw.r., A!ll

tt.тpyJU1po&111111 котте~•а" n oi::t.1kOI, n~р1щ1,

lhllf0/ll''111Кo., p.1)8(1t"ТVl.ИW){ 11 j)tl.11<1.JofotlolЖ.

iнponpioт••~

Рис. 5.2. Слайдер jQuery/Shoppica

4999$

• - ----- -- ----- --- ----- -- --- -- --- --- -- ------ ------- --- ---------- -- --- -- ----- --------·

Глава 6.

Красивые подсказки для сайта

JS

JavaScript на примерах

Некоторые начинающие программисты пренебрежительно относятся к
подсказкам. А зря. Подсказки удобно использовать как в панелях управ­
ления (чтобы пользователь точно знал, для чего используется та или иная
кнопка), так и на основном сайте. Например, в нашем случае мы можем вы­

водить подсказку с основными характеристиками гироскутеров в списке

товаров. Это очень удобно - подвел мышку, увидел основные характеристи­
ки и уже потом открыл страничку товара. Так пользователю не придется

открывать все товары подряд, чтобы ознакомиться с их характеристиками.

Всплывающие подсказки можно реализовать, как самостоятельно, так и ис­

пользовать какую-нибудь библиотеку. Мы рассмотрим оба варианта - сна­
чала сделаем красивые всплывающие подсказки сами, а потом будем ис­

пользовать ToolTip.

6.1. Самостоятельное решение

Поскольку глава практическая, то сразу приступим к практике. Отройте

ваш style.css и добавьте в него следующие строки (лист. 6.1).

Листинг 6. 1. Стили для подсказки

/*всплывающие подсказки*/

#tt {position:absolute; display:Ыock;
padding:lOpx;
border:solid #089dcb;
border-width:lpx;
border-radius:lOpx lOpx lOpx Орх;
-webkit-border-radius:lOpx lOpx 10рх Орх;
-moz-border-radius:lOpx lOpx lOpx Орх;
-webkit-box-shadow:lpx lpx 2рх #888888;
-moz-box-shadow:lpx lpx 2рх #888888;
box-shadow:lpx lpx 2рх #888888;
background-color:#ffD;

.hlpl { color:#OOO;border:#9fbddd lpx solid;background­
color:#E7FSFE;

cursor:help;margin-left:Spx;line-height:l4px;

• 13--. ------------. -. -. -. -.. -. -. -.. ----. ----------. -------. ----. ---------- ----. -. -----.

ГЛАВА 6. Красивые подсказки для сайта

width:12px;display:inline-Ьlock;text-align:center;

border-radius:4px;
-webkit-border-radius:4px;
-moz-border-radius:4px;
font-weight:lOO;
text-indent:O;

При желании можете отредактировать цвет и параметры рамки. При на­

ведении указателя мыши на объект сразу будет показана красивая всплы­
вающая подсказка, использующая стили HTMLS для закругленных углов
и теней. Если пользователь использует старый браузер, то подсказка тоже
будет показана, только без всяких украшательств.

Теперь создайте файл tips.js (лист. 6.2) и поместите в него следующий код.

Листинг 6.2. Файл tips.js

var tt=function() {
var id = 'tt';
var top = 3;
var left = 3;
var maxw = 300;
var speed = 8;
var timer = 10;
var endalpha = 95;
var alpha = О;

var tt,t,/*c,b,*/h;
var ie = document.all ? true
return{

show:function(e,v,w) {

false;

var t=getEventTarget(e);addEvent(t,'mouseout' ,this.
hide); t.style.cursor='help';

if (tt==null) {
tt=document.createElement('div');
tt.setAttribute('id' ,id);
document.body.appendChild(tt);
tt.style.opacity=O;
if(ie)tt.style.filter = 'alpha(opacity=O)';

tt.style.display = 'Ьlock';

tt.innerHTML = v;
tt.style.width = w? w + 'рх' : 'auto';
if(tt.offsetWidth > maxw) {tt.style.width=maxw+'px')
h = parseint(tt.offsetHeight) + top;
clearinterval(tt.timer);

• ··········----------·-················--------·······------········-------· "

JavaScript на примерах

tt.timer=setinterval(function() { tt.fade(l)),timer);
dd=getOffset(t);
tt.style.top = (dd.top-h+4) + "рх";
tt.style.left = (dd.left+lЗ) + "рх";

) /

pos:function(e) {
var и = ie ? event.clientY + document.documentElement.

scrollTop : e.pageY;
var 1 = ie ? event.clientX + document.documentElement.

scrollLeft : e.pageX;
tt.style.top = (и - h) + 'рх';

tt.style.left = (1 + left) + 'рх';

) '
fade:function(d) {

) '

var а = alpha;
if((а != endalpha && d == 1) 11 (а !=О && d == -1)) {

var i = speed;
if(endalpha - а < speed && d == 1) {i
)else if(alpha < speed && d == -1) {i
alpha =а+ (i * d);

endalpha - а;

а;)

tt.style.opacity = alpha * .01;
if(ie)tt.style.filter='alpha(opacity=' + alpha + ')';

)else{
clearinterval(tt.timer);
if(d == -1) {tt.style.display 'none')

hide:function(e) {
clearinterval(tt.timer);
tt.timer = setinterval(function() { tt.fade(-1)),timer);

) ;

) () ;

/* вспомогательная функция получения координат элемента */

function getOffset(elem)
if(elem.getBoundingClientRect) {

var Ьох = elem.getBoundingClientRect();
var body = document.body;
var docElem = document.documentElement;
var scrollTop = window.pageYOffset 11 docElem.scrollTop 11

body.scrollTop;
var scrollLeft = window.pageXOffset 1 docElem.scrollLeft

1 1 body. scrollLeft;

• 18············------------·····--·-·····--·-················-·············-·········

О;

ГЛАВА 6. Красивые nодсказки для сайта

var clientTop = docElem.clientTop 11 body.clientTop 11 О;

var clientLeft = docElem.clientLeft 11 body.clientLeft 11

var top = box.top + scrollTop - clientTop;
var left = box.left + scrollLeft - clientLeft;
return { top: Math.round(top), left: Math.round(left)

}else{
var top=O, left=O;
while (elem) {

top = top + parse!nt(elem.offsetTop);
left left + parse!nt(elem.offsetLeft);
elem = elem.offsetParent;

return {top: top, left: left}

/* вспомогательная функция получения объекта, на котором

возникло событие */

function getEventTarget(e)
var е = е 11 window.event;
var target=e.target 11 e.srcElement;
if(typeof target == "undefined")return е; 11 передали this, а

не event
if (target.nodeType==З) target=target.parentNode;// боремся

с Safari
return target;

/* стандартная вспомогательная функция назначения обработчика
событий */

var addEvent = (function() {
if (document.addEventListener) {

return function(obj, type, fn, useCapture) {
obj.addEventListener(type, fn, useCapture);

else if (document.attachEvent) { // для Internet Explorer
return function(obj, type, fn, useCapture) {

obj.attachEvent("on"+type, fn);

else
return function(obj, type, fn, useCapture) {

obj ["on"+type] = fn;

• . . -. -. -. -. -. --. -. ------. -------------------------------- --------------------------...

JavaScript на примерах

)

)) () ;

Кода очень много, поэтому мы вынесли его в отдельный файл. Однако нуж­

но не забыть этот файл подключить, поэтому на каждой странице, где будут
использоваться подсказки, нужно в секцию <head> добавить вот такой код:

<script src="tips.js"></script>

Осталось разобраться только, как использовать подсказки. Есть два вари­
анта. Первый заключается в привязке подсказки к изображению товара, а
именно:

<img onmouseover="_tt.show(this, 'Максимальная скорость - 10
км/ч<Ьr>Максимальный вес - 90 кг.')" src="images/9.jpg"
alt="">

Здесь мы устанавливаем событие onmouseover для изображения. Обратите
внимание, как осуществляется перенос строки: & l t; br & gt;

Второй вариант заключается в том, что мы выводим какой-то текст, напри­

мер, Инфо или просто ? и привязываем к нему подсказку:

<span class="hlpl"
onmouseover="_tt.show(this, 'Максимальная скорость - 10

км/ч<Ьr>Максимальный вес - 90 кг. ')">?

Именно для этого и предназначен второй класс hlp 1. Давайте посмотрим,
что вышло на практике (рис. 6.1). Слева на нем показано, что мы привязали
подсказку к изображению. Она появится, как только пользователь подведет
курсор мыши к картинке товара. Справа - что подсказка привязана к знаку
?. При подведении курсора мыши к этому знаку появится подсказка. Какой
вариант использовать, решать только вам.

• са---------------------------------. --------. ----------. ---------------------------.

Максимальная скорос~ъ - 10 км/ч
максимальный вес - 90 К(

10 CHIC SM-'AT-LS 9"
BL-'CK

?

6.2. Скрипт ToolTip

ГЛАВА 6 Красивые подсказки для сайта

1' ..• "'

10 CHIC SM-'1 t.!аксималь~<ая скорость - 10 км:ч С
BL-'CK · tЛаr.симапсны1; вес - о.о кr J

?

Рис. 6.1.

Все сценарии подсказок работают одинаково - реагируют на событие
OnMouseOver. По этому событию они должны отобразить подсказку. Внеш­
ний вид подсказки определяется только CSS и никак не зависит от самого
скрипта. Он может просто использовать те или иные стили.

Вот как можно подключить готовый сценарий ToolTip:

<img src="images/20.jpg"
onmouseover="tooltip.show('Maкcимaльнaя скорость - 20 км/
ч<Ьr>Максимальный вес - 120 кг.');"
onmouseout="tooltip.hide();"
alt="">

Как видите, мы задаем не только событие OnMouseOver, но и OnMouseOut
- это событие должно закрыть подсказку.

Стили могут выглядеть примерно так:

* {margin:O; padding:O)
body {font:llpx/1.5 Verdana, Arial, Helvetica, sans-serif;
background:#FFF)
#text {margin:SOpx auto; widt h:SOOpx)

• ·--- -·· ------- ---· ·---- -···· --- --. -. --- ------- -- -........... ------ -. -. -- --. --. -

· JavaScript на примерах

.hotspot {color:#900; padding-bottom:lpx; border-bottom:lpx
dotted #900; cursor:pointer}

#tt {position:absolute; display:Ыock; background:url(images/
tt_left.gif) top left no-repeat}
#tttop {display:Ьlock; height:Spx; margin-left:Spx;
background:url(images/tt top.gif) top right no-repeat;
overflow:hidden}
#ttcont {display:Ыock; padding:2px 12рх 3рх 7рх; margin­
left:Spx; background:#666; color:#FFF}
#ttbot {display:Ьlock; height:Spx; margin-left:Spx;
background:url(images/tt_bottom.gif) top right no-repeat;
overflow:hidden}

Как видите, стили компактнее, но и подсказка тоже будет выглядеть попро­

ще предыдущего варианта.

KoдJavaScript приведен в листинге 6.3.

Листинг 6.3. Файл tt.js

var tooltip=function() {
var id = 1 tt' ;
var top = 3;
var left = 3;
var maxw = 300;
var speed = 10;
var timer = 20;
var endalpha = 95;
var alpha = О;

var tt,t,c,b,h;
var ie = document.all ? true false;
return{

show:function(v,w) {
if(tt == null) {

tt = document.createElement('div');
tt.setAttribute('id' ,id);
t = document.createElement('div');
t.setAttribute('id' ,id + 'top');
с= document.createElement('div');
c.setAttribute('id' ,id + 'cont');
Ь = document.createElement('div');
b.setAttribute('id' ,id
tt.appendChild(t);
tt.appendChild(c);
tt.appendChild(b);

+ 'bot');

•

ГЛАВА 6. Красивые подсказки для сайта

'рх' }

document.body.appendChild(tt);
tt.style.opacity = О;

tt.style.filter = 'alpha(opacity=O)';
document.onmousemove = this.pos;

tt.style.display 'Ьlock';

c.innerHTML = v;
tt.style.width = w ? w + 'рх'

if(!w && ie) {
'auto';

t.style.display = 'none';
b.style.display = 'none';
tt.style.width = tt.offsetWidth;
t.style.display 'Ьlock';

b.style.display = 'Ьlock';

if(tt.offsetWidth > maxw) {tt.style.width

h = parseint(tt.offsetHeight) + top;
clearlnterval(tt.timer);
tt.timer = setlnterval(function() {tooltip.

fade (1)}, timer);

} '
pos:function(e) {

var и = ie ? event.clientY + document.
documentElement.scrollTop : e.pageY;

var 1 = ie ? event.clientX + document.
documentElement.scrollLeft : e.pageX;

tt.style.top = (u - h) + 'рх';

tt.style.left = (1 + left) + 'рх';

} '
fade:function(d) {

var а = alpha;

maxw +

if((a != endalpha && d 1) 11 (а!= О && d
-1)) {

1) ' ;

var i = speed;
if(endalpha - а < speed && d == 1) {

i = endalpha - а;

}else if(alpha < speed && d == -1) {
i а;

alpha а + (i *
tt.style.opacity
tt.style.filter

d);

= alpha * .01;
'alpha(opacity=' + alpha +

}else{
clearlnterval(tt.timer);

• ·--

JavaScript на примерах

if(d -1) {tt.style.display 'none'}

} '
hide:function() {

clearinterval(tt.timer);
tt.timer = setinterval(function() {tooltip.fade(-

1)}, timer);
}

} ;

} () ;

Чтобы его не перепечатывать, вы можете найти данный код в Интернете.
Кстати, если вы сравните оба сценария, то обнаружите, что наша самосто­

ятельная версия - это не что иное, как надстройка над исходным ToolТip.
Если присмотритесь внимательнее, то обнаружите, что наш сценарий уста­

навливает другой тип курсора мыши при наведении на область с подсказ­
кой, и много чего еще. Сравнение этих двух сценариев будет вашим домаш­
ним заданием. Внешний вид подсказки приведен на рис. 6.2.

Приведенные варианты создания всплывающих подсказок - не единствен­
ные. В Интернете вы найдете другие варианты. Но по мне смысла в этом

нет, лучше поработать над оформлением подсказки (стилями).

10 CHIC CROSS 20"
BLACK

Рис. 6.2. Внешний вид подсказки (скрипт ToolTip)

• - ------ -- --- --- -- -- ------- -- -------- --- ---. -------- ------- ----- ------- --- ----- ----·

Глава 7.

Функции

JS

JavaScript на примерах

7. 1 . Основные понятия

Функция - это фрагмент JavaScript-кoдa, который можно вызвать из любо­
го места основного сценария. По сути, функция - это подпрограмма. Функ­
ция описывается с помощью ключевого слова function, синтаксис описания
функции следующий:

function <Имя функции> ([<Параметры>]) {
<Тело функции>

[return <Значение>]
}

Имя функции должно быть уникальным. Для него действуют те же прави­
ла, что и для имени переменной. После имени функции в круглых скобках

указываются параметры функции. Если функции не Передаются параме­
тры, то указываются только круглые скобки. Если параметров несколько,
то они разделяются запятыми.

В фигурных скобках располагаются выражения JavaScript. Как правило,
они производят какие-то манипуляции над переданными параметрами.

Функция по определению должна возвращать результат. Результат возвра­

щается с помощью ключевого слова return. Конечно, иногда нужно создать
просто подпрограмму, которая не возвращает никакого результата (напри­

мер, форматирует сообщение в диалоговом окне и выводит это самое диа­
логовое окно), в этом случае ключевое слово retuгn не обязательно и можно
обойтись без него.

Рассмотрим несколько примеров функций:

11 Функция просто выводит диалоговое окно с текстом 'Access
denied'
11 Использование этой функции просто короче, чем вызов

windows.alert
11 К тому же, когда понадобится изменить текст сообщения,

тогда

11 текст можно будет изменить в одном месте, а не по всему

сценарию

11 Функция ничего не возвращает

• ··- ·-- -- --....... ··- ---· ------ - . --. -- -· --" - ----- ·-- ----- . -- ·····-- ----·-·

function denied()
window.alert('Access Denied!');
}

ГЛАВА 7. Функции

//Функция возвращает сумму двух чисел. Никакой проверки,

являются

//ли аргументы числами, не производится

function Sum (х, у) {
var result = х + у;

return result;

Использовать эти функции можно так:

denied(); //будет выведено наше сообщение

var х = Sum(2, 2); //в переменную х будет записан результат

функции Sum

После инструкции return происходит выход из функции. Все операторы по­
сле оператора return не будут выполнены, например:

function Sum(x, у)

var result = х + у;

return result;
window.alert('Cyммa'); //никогда не будет выполнен

В конструкции return можно указать сразу выражение, перепишем нашу
функцию Sum:

function Sum(x, у)

return (х + у) ;

Функции можно передавать не только значения, но и значения перемен­

ных, например:

var а 10;
var Ь 12;

var аЬ = Sum(a, Ь);

Ссылку на функцию вы можете сохранить в любой переменной, например:

• ·-----------·-·· ---------·-. ----- -----. --- ------- ------ -- -- -. ------- ---. --- -------..:8

JavaScпpt на примерах

var d
d ();

denied; // Имя функции указываем без скобок
// Вызываем функцию denied() по ссылке

В JS допускаются также анонимные функции, то есть функции без назва­
ния:

var х = function() { // ссылка на анонимную функцию
window.alert('Tecт'); //присваивается переменной х

х () ; // вызываем функцию через переменную х

Ссылку на вложенную функцию можно возвратить в качестве значения

конструкции return, для этого дважды используются круглые скобки. При-
мер:

var х = function() {
return function() {
функцию

window.alert("Tecт");

) ;

) ;

// Ссылка на анонимную функцию
// Возвращаем ссылку на вложенную

х() (); //Вызываем вложенную функцию

7.2. Расположение функций внутри
сценария

Мы уже рассмотрели достаточно примеров функций, осталось только по­

нять, rде в НТМL-документе должны находиться функции. Теоретически,

функция может находиться в любом месте сценария, но до первого момента
ее использования. Чтобы не запутывать прежде всего самих себя, програм­
мисты обычно помещают описание функций в секцию HEAD (заголовок)
НТМL-документа. Если же функций достаточно много или код функции

слишком объемный, можно вынести код в отдельный .js файл. Сейчас мы
рассмотрим оба варианта.

В листинrе 7.1 я описал функцию в секции HEAD, а вызов функции произ­
водится из сценария секции BODY.

- ------. -.. ------ -. -. --. -----. -.. --------- ----------- ----. --- . ---... ·-- ----. -- ___ ,

Листинг 7.1. Функция помещена в HEAD

<html>
<head>

<title>Фyнкции</title>

<script>
function denied() {

window.alert('Access Denied!');

</script>
</head>
<body>

<script>

denied();

</script>
</body>
</html>

11 вызываем функцию

ГЛАВА 7. Функции

В листинге 7.2 мы подключаемJS-файл functions.js (имя файла может быть
любым). Код файла functions.js приведен в листинге 7.3.

Листинг 7.2. Вызов функции из внешнего JS-файла

<html>
<head>

<title>Фyнкции</title>

<script type="text/javascript" src="functions.js"></script>
</head>
<body>

<script>

denied();

</script>
</body>
</html>

Листинг 7.3. Внешний JS-файл (functions.js)

function denied() {
window.alert('Access Denied!');

• ······- -. ------ -·- --·- -----· -·- ---- ---·- --. ----·-·-. ---------- ------- ... -. -.. ---.....

JavaScпpt на примерах

Понятно, не нужно создавать отдельный JS-файл для каждой функции. Вы

можете создать один-единственный файл, в который поместите все функ­

ции, необходимые вашему основному сценарию.

7. 3. Рекурсия
Рекурсия - это явление, когда функция вызывает саму себя. Нужно отме­

тить, что рекурсивные алгоритмы очень опасны и их рекомендуется по воз­

можности избегать. Основная опасность в зацикливании, когда не предус­
мотрено (или предусмотрено некорректно) условие выхода из рекурсии. Во

многих книгах по программированию рекурсия традиционно используется

для вычисления факториала. Далее приведена функция Factorial(), вычис­
ляющая факториал числа х. Условием выхода из рекурсии является опера­

тор:

if (х == О 1 1 х == 1) return 1;

Если х равен О или 1, функция вернет 1, в противном случае она будет вы­
числять факториал х - 1, для чего вызовет саму себя.

Код функции:

function f_Factorial(x)
if (х ==О 11х==1) return 1;
else return (х * f_Factorial(x - 1));

7.4. Область видимости переменной:
глобальные и локальные переменные
Глобальными являются все переменные, объявленные за пределами функ­
ции. Они доступны в любой части программы (сценария), в том числе и в
функции.

Локальными являются переменные, объявленные в самой функции. Такие
переменные доступны только функции, в которой они объявлены, и недо­
ступны в других функциях или в основной программе.

Если имя локальной переменной совпадает с именем глобальной перемен­
ной, то будет использоваться локальная переменная, а значение глобальной
переменной останется без изменения.

• -. -. -· -...... -... -. -.... -. -. -...... -. -........ -.......... -... -.. -. ---. -...... .

ГЛАВА 7. Функции

Рассмотрим листинг 7.4. В секции HEAD мы объявляем две переменные
- А и В. Они будут глобальными переменными, доступными как в функ­
ции F1(), так и в коде из секции BODY, то есть везде по сценарию. В теле
функции мы объявляем две локальные переменные - Х и В. Затем функция
выводит значение переменных А, В, Х. Посмотрите на рис. 7.1. Функция
вывела значения 10, 5 и 10. Как видите, используется локальная перемен­
ная В вместо глобальной переменной В, если имена переменных совпадают.
Основная программа выводит значения переменных А и В, будут выведе­
ны значения 1 О и 20. Выводить значение переменной Х в основной про­
грамме нет смысла, так как вы получите сообщение об ошибке Uncaught
ReferenceError: Х is not defined.

Листинг 7.4. Глобальные и локальные переменные

<html>
<head>
<titlе>Глобальные и локальные переменные</titlе>

<script>
/! глобальные переменные
var А 10;
var В = 20;

function Fl ()

//локальные переменные

var Х 10;
var В = 5;

document.write("
A
document.write("
B
document.write("
X

</script>
</head>
<body>

<script>

F1 ();

" + А);
" + В);
" + Х);

document.write("<HR>");
document.write("A ="+А);
document.write("
B ="+В);

• ·--· --- --· ---·- ··-. - ·- --· -·· ·-···· ···--··· .. -· -·-···· -· .. ·------

JavaScript на примерах

</script>
</body>
</html>

А= 10
в= 5
Х= 10

А= 10
в =20

Рис. 7.1. Область видимости локальных и глобальных переменных

•

Глава 8.

Основы объектно-ориентированного
программирования

JavaScript на примерах

8. 1. Основные концепции

Объектно-ориентированное программирование (ООП) - это особый под­
ход к написанию программ. Чтобы понять, что такое ООП и зачем оно
нужно, необходимо вспомнить некоторые факты из истории развития вы­

числительной техники. Первые программы вносились в компьютер с по­

мощью переключателей на передней панели компьютера - в то время ком­

пьютеры занимали целые комнаты. Такой способ "написания" программы,
сами понимаете, был не очень эффективным - ведь большая часть времени
(несколько часов, иногда - целый рабочий день) занимало подключение
кабелей и установка переключателей. А сами расчеты занимали считанные
минуты. Вы только представьте, что делать, если один из программистов

(такие компьютеры программировались, как правило, группами програм­

мистов) неправильно подключил кабель или установил переключатель?
Да, приходилось все перепроверять - по сути, все начинать заново.

Позже появились перфокарты. Программа, то есть последовательность

действий, которые должен был выполнить компьютер, наносилась на пер­
фокарту. Пользователь вычислительной машины (так правильно было на­
зывать компьютеры в то время) писал программу, оператор "записывал"

программу на перфокарту, которая передавалась оператору вычислитель­

ного отдела. Через определенное время оператор возвращал пользователю

результат работы программы - рулон бумаги с результатами вычислений.
Мониторов тогда не было, а все, что выводил компьютер, печаталось на бу­
маге. Понятно, если в расчетах была допущена ошибка (со стороны поль­
зователя, компьютеры ведь не ошибаются - они делают с точностью то, что
заложено программой), то вся цепочка действий (программист, оператор

перфокарты, оператор вычислительной машины, проверка результатов) по­

вторялась заново.

Следующий этап в программировании - это появление языка Ассемблер.
Этот язык программирования позволял писать довольно длинные для того

времени программы. Но Ассемблер - это язык программирования низкого
уровня, все операции проводятся на уровне "железа". Если вы не знаете, то

сейчас я вам поясню. Чтобы в РНР выполнить простейшее действие, напри­
мер сложение, достаточно записать '$А= 2 + 2; '.На языке Ассемблер вам

• ID------------------------------- --.

ГЛАВА 8. Основы объектно-ориентированного программирования

для выполнения этого же действия нужно было выполнить как минимум
три действия - загрузить в один из регистров первое число (команда MOV),
загрузить в другой регистр второе число (опять команда М OV), выполнить
сложение регистров командой ADD. Результат сложения будет помещен в
третий регистр. Названия регистров я специально не указывал, поскольку

они зависят от архитектуры процессора, а это еще один недостаток Ассем­

блера. Если вам нужно перенести программу на компьютер с другой архи­
тектурой, вам нужно переписать программу с учетом особенностей целевой
архитектуры.

Требования к программным продуктам и к срокам их разработки росли
(чем быстрее будет написана программа, тем лучше), поэтому появились
языки программирования высокого уровня. Язык высокого уровня позво­

ляет писать программы, не задумываясь об архитектуре вашего процессора.
Нет, это не означает, что на любом языке высокого уровня можно написать
программу, которая в итоге станет работать на процессоре с любой архи­
тектурой. Просто при написании программы знать архитектуру процессора

совсем не обязательно. Вы пишете просто А = В + С и не задумываетесь, в
каком из регистров (или в какой ячейке оперативной памяти) сейчас хра­

нятся значения, присвоенные переменным В и С. Вы также не задумывае­

тесь, куда будет помещено значение переменной А. Вы просто знаете, что к
нему можно обратиться по имени А. Первым языком высокого уровня стал
FORTRAN (FORmula TRANslator).

Следующий шаг - это появление структурного программирования. Дело в

том, что программы на языке высокого уровня очень быстро стали расти
в размерах, что сделало их нечитабельными из-за отсутствия какой-либо
четкой структуры самой программы. Структурное программирование под­

разумевает наличие структуры программы и программных блоков, а также
отказ от инструкций безусловного перехода (GOTO,JMP).

После выделения структуры программы появилась необходимость в созда­
нии подпрограмм, которые существенно сокращали код программы. Намно­

го проще один раз написать код вычисления какой-то формулы и оформить

его в виде процедуры (функции) - затем для вычисления 10 результатов по
этой формуле нужно будет 10 раз вызвать процедуру, а не повторять 10 раз
один и тот же код. Новый класс программирования стал называться про­

цедурным.

Со временем процедурное программирование постигла та же участь, что и

структурное, - программы стали настолько большими, что их было неудоб­
но читать. Нужен был новый подход к программированию. Таким стало
объектно-ориентированное программирование (далее - ООП) .

• ·--11!!1

JavaScпpt на примерах

ООП базируется на трех основных принципах - инкапсуляция, полимор­
физм, наследование. Разберемся, что есть что.

С помощью инкапсуляции вы можете объединить воедино данные и обра­
батывающий их код. Инкапсуляция защищает и код, и данные от вмеша­
тельства извне. Базовым понятием в ООП является класс. Грубо говоря,
класс - это своеобразный тип переменной. Экземпляр класса (переменная
типа класс) называется объектом. В свою очередь, объект - это совокуп­
ность данных (свойств) и функций (методов) для их обработки. Данные и
методы обработки называются членами класса.

Получается, что объект - это результат инкапсуляции, поскольку он вклю­
чает в себя и данные, и код их обработки. Чуть дальше вы поймете, как это
работает, пока представьте, что объект - это эдакий рюкзак, собранный по
принципу "все свое ношу с собой".

Члены класса могут быть открытыми или закрытыми. Открытые члены
класса доступны для других частей программы, которые не являются ча­

стью объекта. Закрытые члены доступны только методам самого объекта.

Теперь поговорим о полиморфизме. Если вы программировали на языке С

(на обычном С, не С++), то наверняка знакомы с функциями abs(), fabs(),
labs(). Все они вычисляют абсолютное значение числа, но каждая из функ­
ций используется для своего типа данных. Если бы С поддерживал поли­
морфизм, то можно было бы создать одну функцию abs(), но объявить ее
трижды - для каждого типа данных, а компилятор бы уже сам выбирал нуж­
ный вариант функции, в зависимости от переданного ей типа данных. Дан­

ная практика называется перезагрузкой функций. Перезагрузка функций

существенно облегчает труд программиста - вам нужно помнить в несколь­
ко раз меньше названий функций для написания программы.

Полиморфизм позволяет нам манипулировать с объектами путем создания
стандартного интерфейса для схожих действий.

Осталось поговорить о наследовании. С помощью наследования один объ­
ект может приобретать свойства другого объекта. Заметьте, наследование -
это не копирование объекта. При копировании создается точная копия объ­
екта, а при наследовании эта копия дополняется уникальными свойствами

(новыми членами). Наследование можно сравнить с рождением ребенка,
когда новый человек наследует "свойства" своих родителей, но в то же вре­

мя не является точной копией одного из родителей.

Все вышесказанное было истинно для любого полноценного объектно-ори­
ентированного языка программирования. В JavaScript поддержка ООП до­
вольно ограничена. Например, нет ни закрытых (приватных), ни открытых

• -. -. -.. - " . -. -..... -. ----.... ---. --.. -. --. -. -. -. ------. ----... ---. ----.... ----. -.

ГЛАВА 8. Основы объектно-ориентированного программирования

свойств и методов. Все свойства и методы являются открытыми. Создание

класса сводится к созданию функции конструктора (будет показано ниже).
Полноценной поддержки ООП вJavaScript нет и не будет - это вам нejava,
а просто скриптинговый язык для браузера. Далее мы рассмотрим объек-

тно-ориентированные возможности JavaScript.

8.2. Создание пользовательских классов
и объектов

Мы уже знакомы немного с классами и объектами. Создать новый объект

можно с помощью встроенного класса Object, например:

var Human = new Object();
11 свойства объекта
Human.firstname = "John";
Human.lastname = "Doe";
11 формируем метод объекта
Human.getFullName = function()

var fname = this.firstname + this.lastname;
return fname;

11 просто выводим значения:
window.alert(Human.firstname);
window.alert(Human_lastname);
window.alert(Human.getFullName);

После того как объект создан, на него в переменной Human сохраняется
ссылка. В качестве значения свойства объекта можно использовать любой
тип данных - число, массив, строку или другой объект. Если в качестве зна­
чения указана ссылка на функцию, то такое свойство становится методом

объекта, внутри которого доступен указатель на текущий объект (this).

Если вы привыкли к другим языкам программирования и такое создание

объекта вам непривычно, можете использовать фигурные скобки для опре-

деления свойств и методов объекта:

var Human =

firstname: "John";
lastname: "Doe";
getFullName: function()

var fname = this.firstname + this.lastname;

• ·--18

JavaScript на примерах

return fname;

В этом случае значение свойств/методов указывается через двоеточие.

Если в фигурных скобках нет никаких выражений, тогда создается пустой

объект:

var empty_obj {};

Есть один очень важный момент, который вы должны осознать. Пусть нам

нужно создать два одинаковых объекта, которые должны использоваться

раздельно. Вот что первым приходит в голову:

var ol = о2 = {};

Однако так нельзя делать! Ведь создается только один объект, а ссылка на
него сохраняется в двух переменных. Поэтому все изменения в переменной

о1 будут отображаться и на переменной о2 и наоборот:

ol.firstname = "John";
document.write(o2.firstname); 11 будет выведено John

Что же делать? Нужны два разных оператора инициализации переменной­

объекта, например:

var ol {};
var о2 = {};

Если после ключевого слова new указывается функция, то она становится
конструктором объекта. Такой функции можно передать начальные данные
для инициализации объекта (можно ничего не передавать, все зависит от
реализации). Функции-конструкторы удобно использовать, если нужно
инициализировать несколько подобных объектов. Рассмотрим функцию-

конструктор:

function Human(firstname, lastname)
this.firstname = firstname;
this.lastname = lastname;
this.getFullName = function()

}

var fname = this.firstname + this.lastname;
return fname;

• ... ---.

var John
var Ivan

ГЛАВА 8. Основы объектно-ориентированного программирования

new Hurnan("John", "Doe");
new Hurnan("Ivan", "Ivanov");

Что такое класс? Класс - это тип объекта, включающий в себя переменные
и функции для управления этими переменными. Да, переменные - это свой­
ства, а функции - это методы. Создать экземпляр класса, то есть объект,

можно так:

<экземпляр>= new <имя объекта> ([параметры));

Теперь посмотрите на то, как мы создали объекты] ohn и 1 van. Мы указали
служебное слово new, затем имя нашей функции и передали ей параметры.
Другими словами, создав функцию-конструктор, мы создали класс Human.
Вот так вот. Как я уже и говорил, поддержка ООП в JavaScгipt несколько

изощренная. Если вы никогда не программировали на объектно-ориенти­

рованном языке программирования, то ничего не обычного не заметите. Но
если же вы программировали хотя бы на том же РНР, то создание класса
посредством создания функции-конструктора- это дикость. Но есть то, что

есть, и вам с этим придется смириться и использовать именно в таком кон­

тексте, как это предлагает JavaScript.

Зато вJavaScript есть удобный цикл for . .in, позволяющий пройтись по всем
свойствам объекта. Это дает возможность вывести свойства объекта, кото­
рые ранее были неизвестны. А так как у объектов нет закрытых свойств, то

будут выведены абсолютно все свойства объекта. Пример:

for (var Р in John) {
docurnent.write(P + "=" + John[P]);
)

Обратите внимание: мы обращаемся к объекту, как к массиву (в РНР такие
массивы называются ассоциативными, где в качестве индекса может ис­

пользоваться не только число, но и строка).

Оператор in позволяет проверить существование свойства в объекте, на­
пример:

if ("firstnarne" in John) window.alert(John.firstnarne);

Проверить наличие метода можно, указав его имя без скобок:

if (John.getFullName) window.alert('getFullName exists'); • . --- ------------------------------. --------------.. -. -. -----.... -. -----.... -. -.. --tD

JavaScript на примерах

Так нельзя проверять наличие свойства, поскольку значение О будет интер­
претироваться как false, в итоге такой проверки вы получите, что свойство
не существует, но на самом деле оно наличествует, но просто равно О.

С помощью оператора instanceof можно проверить принадлежность экзем­
пляра классу, например:

if ((typeof John == "object") && (John instanceof Human))

window.alert('John is instance of Human');

Удалить свойство можно так:

delete Ivan.lastnarne;

8.3. Прототипы
Ранее мы определяли метод getFullName() внутри конструктора:

function Hurnan(firstnarne, lastnarne)
this.firstnarne = firstnarne;
this.lastnarne = lastnarne;
this.getFullNarne = function()

var fnarne = this.firstnarne + this.lastnarne;
return fnarne;

Такое решение не всегда эффективно. Например, нужно создать массив, со­

стоящий из 1000 объектов. При этом свойства будут разные для всех объ­
ектов, а метод getFullName() одинаков для всех.

Использование прототипов позволяет определить метод вне конструктора.

При создании объекта будут унаследованы все свойства, которые имеются
в прототипе. Поэтому метод getFullName будет определен всего один раз, но
унаследуется всеми экземплярами класса.

Рассмотрим пример:

function Hurnan(firstnarne, lastnarne)
this .firstnarne firstnarne;
this.lastnarne = lastnarne;

Hurnan.prototype.getFullNarne = function() { • ". ------- - -... ----·--- ··- --. ---- -- ---- ---------- -. --------- --- --------------------·

ГЛАВА 8. Основы объектно-ориентированного программирования

var fname = this.firstname + this.lastname;
return fname;

var John = new Human("Aннa", "Машкина");

document.write(John.getFullName());

var Ivan = new Human("Фeдop", "Иванов");

document.write(Iva.getFullName());

8.4. Пространства имен

11 Анна Машкина

11 Федор Иванов

Представим, что вы написали функцию DecodeString(), а затем подклю­
чили какую-то библиотеку, в которой есть функция с таким же названием.
Произойдет конфликт имен. В результате будет использована та функция,
которая была определена последней. Ясно, что параметры этих двух функ­
ций могут отличаться, и если вы попытаетесь вызвать свою функцию, ука­

зав 3 параметра, а последней была определена функция DecodeString() с
двумя параметрами, выполнение сценария будет остановлено с ошибкой.

Чтобы этого не произошло, используются пространства имен. Каждая
функция будет определена в своем пространстве имен, а вам нужно будет
указывать, из какого пространства имен та или иная функция вызывается.

В JavaScript в качестве пространств имен используются объекты. Создан­
ный экземпляр объекта помещается в глобальную область видимости. а все
остальные идентификаторы будут доступны через свойства объекта, напри­

мер:

var MyLibrary = {);

MyLibrary.DecodeString = function()
document.write('Tecт');

MyLibrary.DecodeString();

В данном примере функция DecodeString() определена внутри простран­
ства имен Му Library. Понятно, что конфликт имен сводится к минимуму
(конечно, если вы не вздумали назвать свой объект так, как называется сто­
ронняя библиотека).

Если вы занимаетесь JavaScript-paзpaбoткoй профессионально и пишете
скрипты для разных сайтов, рекомендуется создавать пространства имен,

совпадающие с именем сайта. Так вы полностью исключите возможность

'----- --------- -- -- ------ --- ---- --- ---- ------- ---- ----------- ----- ---- -- ----- --.....

JavaScript на примерах

конфликта имен, а чтобы было удобнее обращаться к свойствам и методам,

используйте доступ по ссылке. Например:

var dkwsorgua = {};

var $ = dkwsorgua;
имен

11 создаем пространство имен
11 создаем ссылку на пространство

Далее используем ссылку $ (чтобы не переписывать весь код, когда вам
нужно реализовать подобные функции на разных сайтах), например:

$.DecodeString();

Здесь мы разобрались, как создавать собственные классы и объекты в
JavaScript. В главе 12 рассмотрим встроенные классы JavaScript. А пока -
немного практики, ведь нам нужно не только изучать JavaScript, но и со­
вершенствовать наш сайт.

• 1111-------------" -----. ----------. ------------ -----..... -----. ---. -. -------. -..... --.

Глава 9.

Меню и панели

JavaScript на примерах

Меню - очень важный элемент любого сайта, и от того, как оно устроено
(и как продумано), во многом зависит, найдет ли пользователь необходи­
мый материал на сайте и как комфортно ему будет работать с вашим сай­
том. Конечно, необходимый материал можно найти через поисковик, но в

этом случае пользователь увидит много сайтов ваших конкурентов, и если

один из них будет более удобным в использовании, чем ваш, не думаю, что
у пользователя возникнет желание вернуться на ваш сайт.

Статические меню уже давно канули в прошлое. Они неудобны, и при вы­
боре пункта меню, чтобы появились дочерние элементы меню, приходится
ждать перезагрузки страницы. Во-первых, это время ожидания для пользо­

вателя. А если соединение медленное или сервер слишком загружен, ждать

приходится несколько секунд, что очень раздражает. Во-вторых, как ни

крути, каждый такой запрос -лишняя нагрузка на сервер. Допустим, на сайт
зашло 1 ООО пользователей и выбрало один из пунктов меню, чтобы увидеть
команды меню, в итоге была создана лишняя тысяча запросов, которых
можно было бы избежать.

9.1. Делаем меню вручную

Для ценителей чистого javaScript (без использования сторонних библио­
тек) первым делом рассмотрим простое меню, а в следующем разделе созда­

дим динамическое меню средствами SuperFish. Однако оно будет динами­
ческим, то есть раскрываться и отображать подпункты меню.

Создать динамическое меню, оказывается, очень просто. Принцип следу­

ющий. В НТМL-коде мы формируем блоки. Каждый блок будет представ­
лять собой отдельный пункт меню или подменю. Блоки мы будем форми­
ровать с помощью таблиц. У нас будет одна таблица для пунктов главного
меню, а также отдельные таблицы для каждого подменю. Строки таблицы
будут пунктами данного подменю.

При наведении указателя мыши на пункт главного меню нужно отобразить
заданное подменю, например:

onMouseOver="getElementByid('menul') .style.display='Ыock';"

• 11!1-. -. --------. --------. ----------. ----------. --------------------------------------.

ГЛАВА 9. Меню и панели

Когда указатель мыши уходит за пределы этого пункта меню, подменю

нужно скрыть:

oпMouseOut="getElemeпtByid('meпul') .style.display='пoпe';"

Подменю menu 1 описывается так:

<tаЫе class="ids" id="meпul" oпMouseOut="this.style.
display='пoпe';"

oпMouseOver="this.style.display='Ьlock';">

<tr><td>Moй профиль</td></tr>
<tr><td>Moи заказы</td></tr>
<tr><td>Kopзинa</td></tr>
</tаЫе>

Принцип прост, поэтому сразу привожу полный код примера (лист. 9.1).

Листинг 9. 1. Динамическое меню (чистый JS)

<html>
<head>
<style type="text/css">
.meпu {

positioп:relative;

height:ЗOpx;

.meпu tаЫе {
positioп: absolute;
left: lOpx;
top: Орх;

border: lpx solid Ыасk;
backgrouпd-color: white;
border-spaciпg: О;

.meпu td {
width: 200рх;

paddiпg: Spx;
text-aligп: ceпter;

.meпu а{

•
text-decoratioп: попе;

foпt: 12рх Verdaпa, Arial, saпs-serif;

color: Ыuе;
display: Ыосk;

--- ------- ." .. --------------------------------------llEI

JavaScript на примерах

border: lpx solid Ыасk;

.menu a:hover{
text-decoration: underline;
color: Ыасk;

.ids td {
width: 188рх;

.ids а {
border: none;

#menul, #menu2, #menuЗ, #menu4 {
display:none;
top: 20рх;

left: lбрх;

#menu2 {
left: 22брх;

#menuЗ {
left: 4Збрх;

#menu4 {
left: 64брх;

</style>
</head>
<body>
<!-- меню первого уровня -->
<div class="menu">
<tаЫе>

<tr>
<td>
<а href="#" onMouseOut="getElementByld('menul') .style.

display='none';"
onMouseOver="getElementByid('menul') .style.

disрlау='Ыосk';">Главная</а>

</td>
<td>
<а href="#" onMouseOut="getElementByid('menu2') .style.

display='none';"
onMouseOver="getElementByld('menu2') .style.

disрlау='Ыосk';">Доставка и оплата</а>

</td>
<td>

1111------ ,,.,.,,, .. ''' " •

ГЛАВА 9. Меню и панели

<а href="#" onMouseOut="getElementByid('menuЗ') .style.
display='none';"

onMouseOver="getElementByid('menuЗ') .style.
display='Ьlock';">Kaтaлoг

</td>
<td>
<а href="#" onMouseOut="getElementByid('menu4') .style.

display='none';"
onMouseOver="getElementByid('menu4') .style.

disрlау='Ыосk';">Контакты</а>

</td>
</tr>
</tаЫе>

<!-- подменю-->

<tаЫе class="ids" id="menul" onMouseOut="this.style.
display='none';"
onMouseOver="this.style.display='Ьlock';">

<tr><td>Moй профиль</td></tr>
<tr><td>Moи заказы</td></tr>
<tr><td>Kopзинa</td></tr>
</tаЫе>

<tаЫе class="ids" id="menu2" onMouseOut="this.style.
display='none';"
onMouseOver="this.style.display='Ьlock';">

<tr><td><a hrеf="#">Способы оплаты</td></tr>
<tr><td><a hrеf="#">Способы доставки</td></tr>
<tr><td>Гapaнтии</td></tr>
</tаЫе>

<tаЫе class="ids" id="menu3" onMouseOut="this.style.
display='none';"
onMouseOver="this.style.display='Ьlock';">

<tr><td>Bзpocлым</td></tr>
<tr><td>Дeтям</td></tr>
</tаЫе>

<tаЫе class="ids" id="menu4" onMouseOut="this.style.
display='none';"
onMouseOver="this.style.display='Ьlock';">

<tr><td>Aдpec и карта пpoeздa</td></tr>
<tr><td><a hrеf="#">Обратная связь</td></tr>

</tаЫе>

</div>

К преимуществам этого меню можно отнести простоту реализации и неза­

висимость от сторонних библиотек. Внешний вид (рис. 9.1) можно настро­
ить с помощью CSS. Но у нашего решения есть и недостатки. Динамическая • ·- ·---- -- -- -- . -. --- . -------- -. -----· -- -· -. --- . --- ------------ --- -. -- --. --------- ---1118

JavaScпpt на примерах

библиотека сама вычисляет размеры подменю и сама определяет начальное
положение подменю. В нашем случае начальная позиция жестко прописы­

вается в CSS и никак не привязана к размеру экрана. Все это, конечно, на­
кладывает определенные ограничения на использование нашего меню. Вы

можете усовершенствовать его, а можете не изобретать велосипед и исполь­
зовать Superfish для построения меню.

С.""t~сбь! Д.ОСЧ&о<И

Га.ран1~1~

Рис. 9.1. Внешний вид

9.2. Динамическое меню средствами
Superfish

9.2.1 . Создание меню

Ранее написание динамического меню на javaScript было неблагодарной
работой. Приходилось писать его с нуля, а это задача не из легких. Конеч­
но, кто-то уже написал свое динамическое меню, но после того, как просмо­

тришь с десяток таких вариантов, приходишь к выводу, что проще написать

самому. Также помню программы, генерирующие динамические меню: вы

задаете структуру меню в программе, а она генерирует код, который нуж­

но было вставить в вашу страницу. Плохо только, что внешний вид такого
меню не поддавался изменению (или же за дополнительные деньги при­

ходилось покупать программу-генератор меню), а что-либо изменить в за­
путанном коде было сложно.

С появлением jQuery все стало гораздо проще. Теперь вы за считанные ми­

нуты разработаете свое меню. Правда, это заслуга не одной только jQuery.
Мы будем использовать дополнительный плагин Superfish (https://github.
com/joeldblrch/superfish/) для jQuery. Этот плагин позволяет создавать
очень неплохие меню. Также нам понадобится плагин hoverlntent, который - -- -- ------ ---- ------ -. ----- . ----- -------. ----- -- ------------- ----. -- ---- -------_,

ГЛАВА 9. Меню и панели

позволяет заменить обработчик hover (позже вы поймете, для чего это нуж­
но). Теоретически, если вы не будете работать с обработчиками hover и вам
не нужен плагин hoverlntent, его можно не использовать, чтобы не пере­
гружать программу лишним кодом. Основной функционал меню будет до­
ступен и без этого плагина.

Секция <head> нашего документа со всеми необходимыми подключенны­
ми сценариями будет выглядеть так:

<head>
<title>Meню</title>

<link rel="stylesheet" type="text/css" href="css/superfish.
css" />

<script type="text/javascript" src="jquery-1.x.x.rnin.js"></
script>

<script type="text/javascript" src="hoverlntent.js"></
script>

<script type="text/javascript" src="superfish.js"></script>

Мы подключили СSS-файл superfish.css, который находится в подкаталоге
css, библиотеку jQuery, а также плагины hoverlntent и Superfish.

Благодаря плагину Superfish создать меню очень и очень просто. Весь
javaScript-кoд будет следующим:

<script type="text/javascript">
$(function() {

$("ul.sf-rnenu") .superfish();
}) ;

</script>

Само меню определяется в НТМL-коде в виде списка. Нужно определить

ненумерованный список () стиля "sf-menu" (этот стиль использует­
ся, чтобы все списки на странице не превратились в меню). Далее, каждый
элемент списка () превращается в меню. Если вам нужно определить
подэлементы меню, внутри вы определяете еще один список .
Вложенность списков не ограничивается, поэтому внутри могут быть
, внутри которых определены еще списки . Однако не следует ув­
лекаться иерархией списков, поскольку вы можете сделать меню очень за­

путанным. Оптимальным считается меню, имеющее 2-3 уровня иерархии.

Далее приведено описание меню для нашего сайта гироскутеров (лист. 9.2) .

• ·1111

JavaScript на примерах

Листинг 9.2. Меню для сайта гироскутеров

<ul class="sf-menu">
<li class="current">

<а href="index.html">Глaвнaя

<ul class="A">
Moй профиль</а>
<li class="current">

<а href="#ab">Moи заказы</а>

<ul class="AA">
<li class="current">Kopзинa</

a>
Oфopмить заказ</а>
Oчиcтить вce
Пpocмoтpeть предыдущие

заказы</а>

<а hrеf="#">Доставка и оплата</а>

<ul class="AB">
Kaк оплатить</а>
Cпocoбы доставки</а>
Гapaнтия

<а hrеf="#">Каталог</а>

<ul class="B">

<а hrеf="#">Взрослым</а>

<ul class="BA">
Дo 10 км/ч</а>
l0-15 км/ч</а>
Cвышe 15 км/ч</а>

<а hrеf="#">Детям</а>

<ul class="BB">
дo 5 км/ч</а>

IDI-------------- ------ ---- --- ------------ -------- ---- --- ---- -- ----- -- --- ------ ----'

ГЛАВА 9. Меню и панели

S-10 км/ч</а>

Koнтaкты

Обратите внимание: для некоторых пунктов меню определены подменю
второго и третьего уровней, а пункт Контакты остался у нас без подменю.

Такое тоже возможно - не все пункты меню требуют подменю.

Не забудьте закрыть главный список ! Вообще самая большая слож­
ность заключается в необходимости следить за иерархией списков и не

забывать закрывать их. Нужно быть очень внимательным при описании
меню, иначе можете получить непредсказуемые результаты, вплоть до того,

что обычные списки на вашей странице будут преобразованы в меню.

Результат приведен на рис. 9.2.

"""" - '

~­+-Cti • •=

Гироскутер Ю CHIC
Smart-LS 9" Black
Модель 1О CHIC Smart-L5 Be-<:.tT всего l!ИШЬ 21 .S КГ,
при этом она выдерживает Nd.Ксямальную наrруЗ!\)' а

JOO кг. это удобный и MM!1dlfТH1t1'1 сиrеей < двум,:;
д11иrател1ми по 700 8т и диаметром колес 9~. Куn~1та

ю СН!С Smart-lS. НО !ЫГОДНО и удобно. <

Рис. 9.2. Динамическое меню средствами Superfish

1499$

>

• ·-· -- ... -·-. -.... -------· -· -·-· ----· ... --... ·-.. -. -. -... ·--.. -. -.. --· -·tlD

JavaScript на nримерах

Когда вы будете создавать меню для собственного сайта (а не для сайта­
примера), его внешний вид необходимо адаптировать под дизайн вашего
сайта. Для этого вам нужно или отредактировать файл superfish.css вруч­
ную или же скачать одну из тем оформления для Superfish с сайта http://
www.sooperthemes.com/category /tags/superfish. Темы оформления на этом
сайте платные, но достаточно красивые и подойдут для коммерческих про­

ектов. Конечно, можно также найти бесплатные темы в Интернете.

9.2.2. Настройка меню

Как видите, создать меню с помощью Superfish достаточно просто. Попыта­
емся теперь его настроить. Начнем с того, что мы добавим анимацию. Из­
мените код, отображающий меню, так:

$(function() {
$("ul.sf-menu") .superfish({

animation: { height: "show" },
delay: 1500

}) ;

}) ;

</script>

Теперь меню будет отображаться плавно и с анимационным эффектом. Па­
раметр delay задает задержку в 1.5 секунды: именно столько меню будет еще
отображаться после выхода указателя мыши за его пределы.

Если при наведении указателя мыши на пункт меню нужно выполнять

какое-то действие, задайте обработчик для события onShow:

onShow: function() { alert("test");

При подведении мыши к каждому пункту меню будет отображено диало­
говое окно со строкой "test". Конечно, на практике такой способ не очень
подходит, но если вы, например, для каждого пункта меню зададите атрибут
id, то сможете обратиться к нему так:

$(this) .attr("id")

Полный код:

• ID--....... ···-·· -- -- ·-·· -·····-· ·······- ... -... .

ГЛАВА 9. Меню и панели

<script type="text/javascript">
$ (function () (

$("ul.sf-rnenu") .superfish((
anirnation: (height: "show"),
delay: 1200,
onShow: function() (alert("test");

)) ;

)) ;

</script>

Остальные опции, которые вы можете установить для Superfish-мeню, при­
ведены в таблице 9.1.

Таблица 9.1. Опции плаrина Superfish

Параметр Описание

animation Позволяет указать анимационный объект. Принимает

те же значения, что и первый аргумент метода animate()
вjQuery

autoArrows Если этот параметр равен true, то автоматически гене-
рируются стрелки в разметке

delay Задержка отображения меню после выхода указателя

мыши за его пределы. Задается в миллисекундах, зна-

чение по умолчанию - 800
disaЫeHI Если этот параметр равен true, то плагин hoverlntent

не будет обнаруживаться и его возможности не будут
использоваться

dropShadows Определяет, будут ли группы пунктов подменю отбра-

сывать тень (true) или нет (false)

onlnit Содержит пользовательскую функцию, которая будет

вызвана при инициализации меню

onBetoreShow ЧJункция, которая будет вызвана перед показом оче-

редного меню

onShow Функция, которая будет вызвана сразу после откры-

тия очередного меню

onHide ЧJункция, которая будет вызвана сразу после закры-

тияменю

speed Время выполнения анимации. Значение по умолча-

нию 'normal'. Другие допустимые параметры: 'slow'
(медленная анимация) или 'fast' (быстрая анимация)

н . ---tв1

JavaScript на примерах

На многих сайтах вы видели не только горизонтальное, но и вертикальное

меню. Плагин Superfish позволяет создать и такое меню. Это достаточно
просто. Нужно добавить файл стилей superfish-vertical.css (не удаляя обыч­
ный superfish.css):

<link rel=" stylesheet" type="text/ css" href="css/ superfish. css"
/>
<link rel="stylesheet" type="text/css" href="css/superfish­
vertical. css" />

Этот файл, как и superfish.css, входит в комплект Superfish и является стан­
дартным. Далее при описании списка, представляющего меню, нужно ука­

зать класс sf-vertical:

<ul class="sf-menu sf-vertical">

Больше никаких изменений ни в код, ни в НТМL-разметку вносить не сто­

ит.

9.3. Эффектная полоска прокрутки

Наверняка на многих сайтах, особенно посвященных играм, вы видели эф­

фектные скрол-бары (полоски прокрутки), заменяющие скучные стандарт­
ные полоски браузеров. Реализовать подобную полоску прокрутки можно с
помощью jQuеrу-нлагина под наэваниемjSсrоllРаnе.

На сайте j ScrollPane (http://jscrollpane.kelvinluck.com/) вы найдете полную
информацию о том, как скачать и где просмотреть демо плагина. Действи­

тельно, на сайте приводится очень много примеров (как JavaScript-, так и
СSS-код), поэтому нет смысла приводить их в книге. Все достаточно про­

сто - скачали плагин, вызвали стандартный код и указали контент, который
должен быть прокручен.

Как выглядят полоски прокрутки jScrollPane, показано на рис. 9.3. Нужно
отметить, что это только один из возможных вариантов полоски прокрутки,

а на сайте разработчиков вы найдете гораздо больше разных полосок - как
по внешнему виду, так и по функционалу.

• ID-------... ---.. ---. --------------. ------------" -----------------------------------.

ГЛАВА 9. Меню и панели

JScrollP<tnt! - ex:;1mple wi1h апоw buttons
;

Тhis d.mcnslJltion Ьuilds on tle ta":;; i'('ivffpY-.~ Q:"1'::'!f.if' : f aodin~ n~alon ~asтows· to the scrollbor. "5: t'OU сап ste from the
sowcecoOt Ьеlо-.; l!ese are simply ad,jed t11"passing Яl<>wAнows."\rUe in lhe set!ings ott;ect~1'1en you lnitl.alis:e ;ЗcroflPaлe.

Lofem ipsum dofOf slt amet, consкt.tut adipison~ elit. Donec in ligula id sem trtsl!que urtnces eget id neq1.11. Duis enim turpis,
temcщs at acwmsan \'lae, lot>oftis ld sapien. Ptllentisque пес Ofd ml. in pharen llgula Hulla facilisl. Nulla ladllsi. uauris ccnvз/lis
wnenas massa, quis c.onsedeturfelis оmме quis. Sed aJiquet m.rnc ас ante molestie ultficies tJam i;uMnar utЬides t:ibencum
Vl\.-amus dl~ 110. raueiЬus tt~lcuta eu, moltttie sn: amet dUI. Proin пес orci et elit semper ultrices. Cum sodts nat~que i:enatiЬus et
magnls Cfs paztufient montes. nаsсеь.и rldiculus mus. Se~ quls uma ml. ас dignisslm mauf1s Qulsqui mollis cmзre maurlз , аеа
l~eet diam m~esua\18 quis. Proinvel 1letт\tmumante. Dcnec hendrerit arcu ас cdio lindcuntposuere. Vestitulum necrisus eu
tacus semptf ..Мпа.

\.'ealЬUkJm dk::tJm COfisectR.lr magna 1u ~1stas. Praesent moltslie copiOOs erat. sit am9t sodal9s lectus con~e ut Na.'1"\
a~isdng, tortor actllan\it egestas. IUfem ligulэ posu1re ipsum. nectauotius nisl enlm eu purus Ot.щ>que blDendum diam quis nunc
etennd at moftstit НЬ.rо llnddunt. Oulsque lindount sa~en а sapien pet!entesque etins1aquat uauns adlplsdng \-en~natla auoue ut
i.rnpor Ooflec auc:tor maflis quam ouis allquam. t.JuHam ultrlceз er-.1 ln dolor pharera blDenctum. Euspenalsse e;iet oeio UI liьero
lrnc.nlet rhoocus. CurablltJr JИauet iosum slt arnetallouet\.'Зfius. est urna ullamcorcer macna. S!td elellend liЬero nunc non erэt

Lorem lpsum ctolor sil: amtt, constdНJf a<tptselno ellL Donec ln ligula ld sem trlstlQUt ulЬicts tQ@lloneque. Duis enlmturJ)Js, ternpus at
Pe111ntesq_ue мс orci mi. ln pharetrз tigula. Nulla fadlisi. NUПa tadUsi. Mauris conv'Эllls venena11s massa. quis ccnsectetur retis omare quls
u*ides. Nam puМnar ultricles Ыten~m. Vivamus diam leQ. lэucit:us tt Ythirola eu, moles1ie sl amet ooi. PrOln ntc orci tt tlit semper ulti
rr.agnls dis p.nurtenl motns, na.sct\Jr riOiculus mus. Sed qyis uma mi, ас di~ssim r'auns. OUls;iue mollis omare mauris. sed laGA.t с:

. Don" h~ artU к Odio tindOUf't ~osvert, vtstiootum ntt risus tu latUS st!J'\Qtr ~rra.

Lortm lpsum aolor sit .amtt. consectttur adiplsang 1111. Donecin Qgula id sen lristiQUe ultrices egtt idneque. Ouis tnlm turpia. lempus•
Ptlltnlt1QUe ntc orei mi, in phartNra ligura. №Ua fadltsl. NuИa radtisl. Uauris corwallis venenatls massa. quis consedetvr retis omate Q,
ultides Nam pl.lftl.1nar uttridlS Ьltмnoum. 'lfflamus ciam leo. '3udЬUs •t vthicu~ eu m<Кeslie sll amet dui. Proin пес ord tt tlit sempet
m~s dis oarturient montts, nasc:etur rldleulus mus. Sed quis uma mi. ас dionisstm rnauris Ot.iis~e moИis omзte maurts, seCI lэcre•
ance. Oonec neni;Yefit arcu ас oaio tinddunt oosuere. \tisli~ulum пес nsus eu tacus strncer ..-ivi!rrз.

\'tsli~ulum dictum consectetur rnaona eu egeвtas. Praesent moleslie oapH>us erat. sit amet sodales lectus congue ut. Nam adiplзdng.

. QOJl:;~"i:; "ifJ3Шf"!.I~- ;,,• " · vµiщ:,,pJ•J~

Рис. 9.3. Полоска прокрутки jScrollPane

9.4. Раздвигающееся меню

Для фан-сайтов, сайтов по продаже одежды может пригодиться раздвигаю­

щееся меню, показанное на рис. 9.4. Данное меню реализовано с помощью
jQuery. Просмотреть его в действии можно по адресу:

http://tympanus.net/ Tutorials/ ExpandinglmageMenu/

О том, как создать такое меню, вы узнаете по адресу:

http:j / tympanus.net/ codrops/ 2011/03/ 16/ expanding-image-menu

• . ----- -·------· -. -- -- ------------------------ID

JavaScript на примерах

Of SPRtlG \.'iНСН 1 ENJOY Wmt 11У Yf'НGLi HEART.

IAUALONE. AN!> Fffl.. ТНЕ C!iARlil CF EX!STTНCf fl

ТНiS SPOT. 'о\'НIСН WAS CREAТED FOR ТН~ BLISS Of

SOULSL.t<f J.ltl!::

Рис. 9 .4. Раздвигающееся меню

•

Глава 10.

Объектная модель

JavaScript на примерах

1О.1. Структура объектной модели

Объектная модель браузера - это набор объектов, обеспечивающих доступ к
содержимому веб-страницы и ряду функций веб-браузера.

Объектная модель представляется в виде иерархии объектов. Другими сло­
вами, есть объект верхнего уровня (родительский объект) и подчиненные
ему объекты (дочерние объекты). У подчиненных объектов могут быть соб­
ственные подчиненные объекты и т.д. Доступ к подчиненным объектам осу­
ществляется через точку:

<родительский_объект>.<дочерний_объект>.{свойство}

<родительский_объект>.<дочерний_объект>.{метод}

Часто объект верхнего уровня (и даже некоторые подчиненные объекты)
можно не указывать. Например, мы не раз использовали метод alert() объ­
екта window:

window.alert('Пpивeт');

В этом случае window - объект самого верхнего уровня, представляющий
веб-браузер, поэтому мы можем его не указывать, так как объект window
подразумевается по умолчанию:

alert ('Привет') ;

Зато мы не раз опускали "window" при обращении к методу document.
write(). Объект document является дочерним для объекта window, поэтому
правильнее было бы писать код так:

window.document.write('Пpивeт');

Однако такая конструкция не очень удобна, поэтому мы использовали ее
сокращенную форму (document.write()).

• IEI-------... ----- ----. -. -" -- --- -" -. --------. -. -. ------. -. " --. -. -. -. -. --... -. ---" ---..

ГЛАВА 1 О. Объектная модель

В этой главе будет рассмотрена объектная модель браузера Internet Explorer.
Эта же модель полностью поддерживается браузерами Edge (преемник
Internet Explorer) и Google Chrome. Именно поэтому данная и многие дру­
гие книги пojavaScript ориентируются на объектную модель IE.

10.2. Основные объекты объектной
моделиlЕ

• Кроме объекта window в объектной модели имеются следующие объек­
ты (все они являются подчиненными объектами объекта window):

• event - с этим объектом мы уже знакомы, о нем подробно рассказывается
в главе 12, где будет рассмотрена обработка событий.

• frame - используется для работы с фреймами. Сегодня использование
фреймов не поощряется, поэтому этот объект мы рассматривать в книге

не будем.

• history - используется для работы с историей (журналом) веб-браузера.

• navigator - предоставляет информацию о браузере.

• location - содержит URL-aдpec текущей неб-страницы.

• screen - используется для доступа к характеристикам экрана компьютера
пользователя.

• document - используется для доступа к документу, загруженному в брау-
зер. Содержит следующие дочерние классы:

• all - предоставляет доступ ко всем элементам сразу.

• anchors - коллекция "якорей'', заданных тегом <а>.

• elements - предоставляет доступ к элементам формы.

• forms - предоставляет доступ к формам.

• frames - все фреймы.

• images - предоставляет доступ ко всем изображениям.

• links - предоставляет доступ к ссылкам.

• scripts - предоставляет доступ к скриптам.

• styleSheets - предоставляет доступ к стилям.

'---. ------------------------------111

JavaScript на примерах

10.3. Объект window

Как уже отмечалось, объект window представляет сам браузер. Далее мы
рассмотрим свойства и методы этого объекта. Основные свойства объекта

window приведены в таблице 10.1.

Таблица 10.1. Основные свойства объекта window

Свойство Описание

defaultStatus
Сообщение, выводимое по умолчанию в строке
состояния.

Сообщение, отображаемое в данный момент в

строке состояния. В браузере IE есть строка со-
стояния, но она может отсутствовать в других

Status
браузерах, например ее нет в Google Chrome, и
любая попытка изменить установки свойства
status просто ни к чему не приведет.

window.status = "Новое состояние";

Число фреймов в данном окне. Как уже отмеча-

Length лось, сегодня с фреймами уже никто не работа-
РТ IM v И МЫ U<' hVIТPM

Parent Ссылка на родительское oкi,io

Self Ссылка на текущее окно

Тор Ссылка на самое верхнее родительское окно

Opener Ссылка на окно, которое открыло данное окно

Если равно true, то данное окно открыто, если
Closed false - закрыто (хотя по названию свойства мож-

но подvмать что все наобооот)

Горизонтальная координата левого верхнего

screenLeft угла окна. В Firefox вместо этого свойства ис-
пользуется свойство screenX
Вертикальная координата левого верхнего угла

screenTop окна. В Firefox вместо этого свойства использу-
Ртrя r.ио

u srrPPnY

clientlnformation Объект navigator, то есть сам браузер

~ IE!t-------------. -. ----------. ---.... -------. ----------------. ----, -... --. ---. -----. '

ГЛАВА 1 О. Объектная модель

С объектом window связаны следующие события:

• onload - происходит после загрузки веб-страницы.

• onunload - происходит перед выгрузкой документа.

• onscroll - происходит при прокручивании содержимого окна или фрей-
ма.

• onresize - при изменении размеров окна.

• onЫur - когда окно теряет фокус.

• onfocus - когда окно получает фокус.

• onerror - вызывается, когда в коде JavaScript возникает ошибка. В каче­
стве обработчика этого события указывается функция, которой переда­
ется три параметра - описание ошибки, URL и номер строки. Функция
должна вернуть true, если ошибка обработана, и false в противном слу­
чае.

Краткое описание методов объекта window приведено в таблице 10.2. Далее
мы рассмотрим эти методы подробнее.

Таблица 10.2. Методы объекта window

Метод Описание

alert() Отображает окно сообщения

confirm() Выдает окно подтверждения (см. гл. 8)

prompt() Отображает окно с полем ввода (см. гл. 8)

show ModalDialog() Отображает модальное диалоговое окно

open() Открывает новое окно веб-браузера

close() Закрывает текущее окно

Ьlur() Снимает фокус с окна

focus()
Переносит фокус на текущее окно и генери-

рует событие onfocus

navigate(URL)
Загружает указанный URL в текущем окне
бDavзeDa. В Firefox нет метода navigateO

• ·--------·--·-----------------tв

JavaScпpt на примерах

Прерывает загрузку страницы. Этот метод

stop() есть в других браузерах, но его нет в браузере
1Е

resizeBy(x, у) Изменяет размеры окна

resizeTo(width, height) Устанавливает новые размеры окна

moveBy(x, у)
Перемещает окно на х пикселей вправо, на у

пикселей вниз

scrollBy(x, у) Прокручивает окно на заданное расстояние

scrollTo(x, у)
Прокручивает окно в точку с заданными ко-

ординатами х, у

setTimeout()
Создает таймер. Далее будет продемонстри-
ровано использование этого метода

В таблице 10.2 приведены далеко не все методы объекта window, а только
основные. Остальные методы будут рассмотрены по мере необходимости в

этой главе.

10.3. 1. Метод ореп(): создаем новые окна

Метод open() используется для открытия нового окна браузера и загрузки в
него веб-страницы. Синтаксис следующий:

[var <окно>=]window.open(<URL>, [<Имя окна>], [<Свойства

>]) ;

Обязательным является только параметр URL, задающий адрес страницы,
который нужно открыть в окне. Необязательный параметр Имя окна задает
имя создаваемого окна, а пара!'уfетр Свойства - свойства нового окна. При
желании можно создать переменную окно, которую можно использовать

для управления окном. Свойства окна (задаются последним параметром)

приведены в таблице 10.3.

Таблица 10.З. Свойства нового окна (метод open())

Свойство

left, top

Описание

Задают горизонтальную и вертикальную координаты ле­

вого верхнего угла нового окна

• IEDI--- ---------- ---------------.

ГЛАВА 1 О. Объектная модель

width, height Ширина и высота создаваемого окна

Если это свойство равно yes или 1, тогда создаваемое
Fullscreen окно будет открыто в полноэкранном режиме. Если свой-

ство равно no или О, режим окна будет обычным

Если это свойство равно yes или 1, тогда у нового окна
ResizaЬle будет возможность изменения размера. Если свойство

равно no или О, размер окна нельзя будет изменить

Location
yes или 1 - у нового окна будет строка адреса

no или О - у нового окна не будет адресной строки

Menubar
yes или 1 - у нового окна будет строка меню

no или О - у нового окна не будет меню

Scrollbars
yes или 1 - у нового окна будут полоски прокрутки

no или О - у нового окна не будет полосок прокрутки

Status
yes или 1 - у нового окна будет строка состояния

no или О - у нового окна не будет строки состояния

Titlebar
yes или 1 - у нового окна будет заголовок

no или О - у нового окна не будет заголовка

Toolbar
yes или 1 - у нового окна будет заголовок

no или О - у нового окна не будет заголовка

Пример использования метода window.open() приведен в листинге 10.1.
При нажатии на кнопку Open window происходит вызов функции wopen(),
которая открывает окно с сайтом автора этой книги и возвращает дескрип­

тор окна. При вызове window.open() мы указываем URL, название сайта и
строку, описывающую опции окна. В данном случае мы не будем отобра-

жать строку состояния и панель инструментов.

Листинг 1О.1. Использование метода window.open()

<html>
<head>

<title>Window</title>
<script>

function wopen() { • . --------. -. -. ----. --------------. --. --. -. -.. -" -. -... --------.. -. ---. --. ---. -. ---tEll

JavaScript на примерах

var options = "status = no,toolbar = no";
return window.open("http://microsoft.com", "Сайт Мicrosoft", options)
)

</script>
</head>
<body>

<input type="button" onclick="wopen ();" vаluе="Открыть
окно">

</body>
</html>

10.3.2. Метод showМodalDialog()

Ранее были рассмотрены методы alert(), prompt() и confirm(). Они были
рассмотрены раньше времени, чтобы заинтересовать вас и продемонстри­
ровать возможности JavaScript. Но есть и еще один метод, который не был
рассмотрен раньше, - метод sho\vModalDialog(). Данный метод использу­
ется для отображения модальных окон, которые могут заменить окна, ото­
бражаемые методом prompt().

Синтаксис следующий:

[var <окно> =]window.showModalDialog(<URL>,
[<Аргументы>], [<Свойства>]);

Первый параметр задает URL страницы, которая будет загружена в модаль­
ное окно. Второй параметр позволяет передать в окно произвольный набор
аргументов. Третий параметр определяет внешний вид окна. Свойства мо­

дального окна (третий параметр) приведены в таблице 10.4.

Таблица 10.4. Свойства модального окна

Свойство Описание

dialogWidth dia-
Задает ширину и высоту окна logHeight

dialogTop, dialogLeft
Определяют вертикальную и горизонтальную

координаты

Edge
Задает вид границы окна: вдавленный (sunken)
или выпуклый (raised)

ID----------- •

ГЛАВА 1 О. Объектная модель

ResizaЬle
Будет (yes, 1) ли возможность изменить разме-
ры окна или нет (no, О)

Scroll
Будут (yes, 1) отображаться полосы прокрутки
ИЛИНРт(nn ())

Status
Будет (yes, 1) отображаться строка состояния
или нет (no, О)

dialogArtuments
Переменная или массив переменных, передава-

емыхв окно

Border Задает толщину рамки (thick или thin)

Center Выравнивает (yes) окно по центру экрана

return Value Возвращаемое окном значение (см. далее)

Теперь рассмотрим небольшой пример. Пусть у нас будет основная стра­
ница index.html (лист. 10.2) и страница modal.html (лист. 10.3), которая бу­
дет загружена в мода.Jiьное окно, вызываемое сценарием из страницы index.
html. Страница index.html будет содержать кнопку Открыть диалоr, при
нажатии которой откроется окно, в которое нужно ввести имя и фамилию.

Листинг 10.2. Страница index.html

<html>
<head>
<meta charset="utf-8">
<titlе>Модальный диалог</titlе>

<script>
function wmopen() { // Открываем модальное окно

var obj = window. showModalDialog ("modal. html", ["Fi tstname",
"Lastname"],

"dialogWidth:ЗOOpx; dialogHeight:200px;
center=yes; status=no;");

if (obj != null) {
var msg = "Имя: " + obj .first;
msg += "<Ьr>Фамилия: "+ obj.last;
document.getElementByid("divl") .innerHTML msg;

</script>
<body>

<p><input type="button" vаluе="Открыть диалог"
onclick="wmopen();"></p>
<div id="divl"></div> • • ·-------------------·-·----------·-·------·-·--------·------------·-·----·-·-·-·---IE!I

JavaScript на примерах

</body>
</htrnl>

Листинг 10.3. Страница modal.html

<htrnl>
<head>
<rneta charset="utf-8">
<titlе>Введите имя и фамилию</titlе>

<script>
function Onclick()

var о= {};
o.first = docurnent.forrns[O] .first.value;
o.last = docurnent.forrns[O] .last.value;
window.returnValue = о;

window.close();

function Onload()
docurnent.forrns[OJ .first.value
docurnent.forrns[O] .last.value

</script>
<body onload="Onload();">

<forrn action="" id="frrn">
<div style="text-align: center">

window.dialogArgurnents[O];
window.dialogArgurnents[l];

Имя:
<input type="text" narne="first ">

Фамилия:<Ьr><inрut type="text" narne="last">

<input type="reset" vаluе="Очистить">
<input type="button" value="OK" onclick="Onclick();">
</div>

</forrn>
</body>
</htrnl>

А теперь разберемся, что есть что. Сначала в index.html при нажатии кнопки
Открыть диалог мы открываем модальное окно:

var obj = window.showModalDialog("rnodal.htrnl", ["Firstnarne",
"Lastnarne"],

"dialogWidth:ЗOOpx; dialogHeight:200px;
center=yes; status=no;");

• Et------------------------. ----------. ----------. ----------------------------------.

ГЛАВА 1 О. Объектная модель

Первый параметр метода show ModalDialog - это документ, который будет
загружен в открытое окно. Объекту окна будут переданы два параметра,

значение первого параметра - "Firstname", значение второго - "Lastname".
Третий параметр - это параметры диалога. Мы задаем ширину и высоту диа­

лога (300 и 200 пикселей соответственно), указываем центрирование и от­
ключаем строку состояния. Подробнее о внешнем виде мы поговорим чуть
позже.

Теперь переходим к файлу modal.html (к index.html мы еще вернемся). Для
обработки события onload используется функция Onload(). Она получает
параметры, переданные диалогу, и заполняет поля формы - имя и фамилию.
В принципе, без этого можно было бы обойтись, но зато теперь вы знаете,
как получить параметры окна и как их можно использовать.

При нажатии кнопки ОК вызывается функция Onclick. Данная функция
формирует объект о, который будет отправлен в качестве возвращаемого

значения вызывающему окну (то есть сценарию в index.html). После того
как значение свойства return Value сформировано, вызывается метод close(),
чем модальное окно закрывается.

Теперь о внешнем виде. Посмотрите на рис. 10.1. На нем изображено соз­
данное нами окно в браузерах Internet Explorer, Firefox (слева направо).
Наиболее корректно окно отображается в Internet Explorer: у него нет стро­
ки адреса (а зачем она нужна модальному окну?), окно всплывает точно по

~ 8вед1пе имя и фамилию •• Диалогоеое ."

Имя:

Fitstnam~

Фамилия:

Lastname

1 Очистить j ~

В..еди~ имя и ф<~мИ№!ю • Мozilla Firefox

t,,__fi_11e_:ff_IC:/test/modal.html

Имя:

Fitstname

Lastname

Рис. 1О.1. Внешний вид модаnьноrо окна в разных браузерах

• - · ··- .. · - ··-- - - . - · - . . . " --.. --·- --.... .. -. -. ---·----. -. - . -·- · -- . -. -. ----

JavaScпpt на примерах

центру экрана. У Chrome появилась строка адреса, убрать которую у меня не
получилось, придется с ней мириться. Зато окно всплывает точно по центру

экрана. А в Firefox мало того, что окно (несмотря на center=yes) всплывает
в верхнем левом углу, так еще и тоже отображается строка адреса, которую
всем пользователям видеть как бы и не обязательно.

Возвращаемся к index.html. Итак, объект передан. Если переданный объект
не равен null, тогда мы формируем сообщение, которое будет выведено в
качестве значения div1 нашей НТМL-страницы.

if (obj != null) {
var msg = "Firstname: "+ obj.first;
msg += "
Lastname: "+ obj.last;
document.getElementByid("divl") .innerHTML msg;

Модальные диалоговые окна, в отличие от метода prompt(), очень удобно
использовать, когда пользователю необходимо ввести несколько значений,
например имя и фамилию, или имя пользователя и пароль.

Однако с модальными окнами и методом sho\vModal наблюдается некото­
рая проблема - этот метод уже не поддерживается в последних версиях бра­
узеров Chrome и Opera. Можно предположить, что со временем и другие
браузеры (IE, Firefox) откажутся от него. Что же делать?

Выход как всегда есть, и это НТМLS-диалоги. К преимуществам таких диа­

логов можно отнести:

• Они описываются непосредственно в НТМL-коде, вам не нужен допол­

нительный файл (в нашем случае modal.html) для хранения кода диа­
лога.

• Не нужны сложные конструкции для доступа к полям диалога. Посколь­

ку поля описываются в пределах того же документа, что и вызывает ди­

алог, доступ к его полям осуществляется так же, как в случае с обычной
формой.

• Используя CSS, вы можете настроить внешний вид диалога так, как вам
нравится.

Недостаток (точнее особенность, недостатком это сложно назвать) у
НТМLS-диалога только один - он появляется в том месте страницы, где был
объявлен. На рис. 10.2 диалог был объявлен в начале страницы, поэтому он
и появился вверху окна браузера. Чтобы задать другое положение, нужно
настраивать стили (CSS).

• Еа----. -. -. ------. ---. -. -----. --. --------. ----------. -----. --. -. -. -. --. ---. -. -. ----.

ГЛАВА 1 О. Объектная модель

Denrs - ,- ..,,.

~"
+.Ctt • • =

Пр1шер НТ!'v1L 5-диалоrа

1 Закрыть /

Рис. 10.2. НТМL5-диалог

В листинге 10.4 приводится код страницы, отображающей этот диалог.

Листинг 10.4. НТМL5-диалог

<html>
<head>

<meta charset="utf-8">
<script>
function Onclick() {

var dialog = document. getEle me ntByid('Dialog');
document.getE l e me n tBy i d(' showDi a l og') .onclic k = f unct i on ()

dialog.show();
} ;

document.getElementByid('closeDialog') .onclick
functi on () {

d i a l og.close ();
} ;

} ;

</script>
</head>
<b ody>

<d ialog id="Dia l og" >
<р>Пример НТМLS-диалога</р>

<button id= " closeDialog" >Зaкpыть</button>

, ____ -··-- ---" .. --. --.. ----ID

JavaScпpt на примерах

</dialog>
<button id="showDialog" onclick="Onclick();">Oткpыть

oкнo</button>

</body>
</html>

10.3.З. Метод setTimeout()

Метод setTimeout() используется для управления таймерами, а именно set­
Timeout() можно использовать для однократного выполнения определен­
ной функции в заданное время. Вы задаете интервал времени, по истечении

которого будет выполнена указанная функция.

Кроме этого метода у объекта window есть также и другие методы, касаю­
щиеся таймеров:

• clearTimeout(<таймер>) - сбрасывает таймер, установленный методом
setTimeout().

• setlnterval() - создает таймер, который многократно выполняет указан­
ную функцию или выражение через заданный интервал времени.

• clear Interval(<интервал>) - сбрасывает интервал, установленный мето­
дом setlnterval().

Рассмотрим несколько примеров. Установить таймер можно так:

var timer = sеtТimеоut(<функция или выражение>, <инвервал>);

Сбросить таймер timer можно так:

clearTimeout(timer);

Метод setlnterval() вызывается так:

var intr = setlnterval(<фyнкция или выражение>, <инвервал>);

Как использовать таймеры? Первое, что приходит в голову, - организовать
часы на страничке. В листинге 10.4 функция Timerstart() запускает таймер
посредством setlnterval(). Каждую секунду (1000 мс) будет запускаться
функция DisplayTime(), отображающая время. Для остановки таймера ис­
пользуется функция Timerstop().

• at----. ---- -- ---- ---- ---- --- -- ----- -. -- . -------- ·- ... ---- --- -- . -. ----- -- -. -....... "

Листинг 10.5. Пример использования таймеров

<html>
<head>
<title>Timers</title>
<script>

var clock;

ГЛАВА 1 О. Объектная модель

function Timerstart() { // Запускает таймер
clock = setinterval("DisplayTime();", 1000);

function DisplayTime() { // Отображает время
var d = new Date();
var CurrTime = (d.getHours()<lO) ? "0"
CurrTime += d.getHours();
CurrTime += (d.getMinutes()<lO) ? ":0"
CurrTime += d.getMinutes();
CurrTime += (d.getSeconds()<lO) ? ":О"

CurrTime += d.getSeconds();
document.getElementByid("divl") .innerHTML = CurrTime;
}

function Timerstop()
clearinterval(clock);
}

</script>
</head>

//Останавливает таймер

<body onload="Timerstart();">
<div id="divl"></div>

<input type="button" value="Start" onclick="Timerstart();">
<input type="button" value="Stop" onclick="Timerstop();">

</body>
</html>

• ············-···-·····-·····-llD

JavaScript на примерах

10.4. Объект navigator: получение
информации о браузере и системе

Объект navigator можно использовать для получения информации о веб­
браузере. Свойства объекта navigator содержат много полезной информа­
ции:

• appName - имя WеЬ-браузера;

• appCodeName - кодовое имя версии WеЬ-браузера;

• арр Version - версия WеЬ-браузера;

• appMinorVersion - вторая цифра в номере версии WеЬ-браузера;

• userAgent - комбинация свойств appCodeName и appVersion;

• cpuClass - тип процессора компьютера пользователя;

• platform - название клиентской платформы;

• systemLanguage - код языка операционной системы пользователя;

• browser Language - код языка WеЬ-браузера;

• userLanguage - код языка WеЬ-браузера;

• onLine -true, если клиент в настоящее время подключен к Интернету, и
false, если мы - оффлайн;

• cookieEnaЬled - режим работы cookie: возвращает true, если прием
cookie разрешен.

Все эти свойства вы можете использовать для получения различной инфор­

мации о браузере. Например,

document.write(navigator.userAgent);

В браузере Google Chrome выведет следующую строку:

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebКit/537.36 (KHTML, like
Gecko) Chrome/52.0.27 43.116 Safari/537.36

• ---· -··. ······. -·-. ·····-. -········- ·-··· ·······-. ···········-·········· -··········

ГЛАВА 1 О. Объектная модель

Все эти свойства можно использовать, например, для отображения инфор­

мации на языке клиента. Допустим, вы пишете сценарий, который дол­

жен "общаться" с пользователем на русском или английском. С помощью
свойств объекта navigator можно попытаться определить язык браузера/си­
стемы и отобразить информацию на этом языке. Если язык браузера/систе­
мы не поддерживается вашим сценарием, тогда будете отображать инфор­

мацию на английском. Это как один из вариантов использования свойств

объекта navigator. Единственный недостаток - не все свойства поддержива­
ются отдельными браузерами. Однако свойства вроде AppName и user Agent
поддерживаются всегда, поэтому их можно использовать для определения

браузера и написания более кроссбраузерного кода, адаптированного под

тот или иной браузер, например:

var browser = navigator.userAgent;
if (browser. indexOf ("Explorer") ! = -1) {

11 код для IE

if (browser.indexOf("Firefox") != -1) {
11 код для Firefox

if (browser.indexOf("Opera") != -1) {
11 код для Opera

if (browser.indexOf("Chrorne") != -1) {
11 код для IE

10.5. Объект screen: информация о
мониторе пользователя

Объект screen хранит информацию о мониторе пользователя. Получить до­
ступ к этой информации можно посредством свойств этого объекта:

• width -ширина экрана в пикселах;

• height -высота экрана в пикселах;

• availWidth - ширина, доступная для окна браузера;

• availHeight - высота, доступная для окна браузера;

• colorDepth - глубина цвета: 4 - для 16 цветов, 8 - для 256 цветов, 32 -
для 16,7 млн цветов .

• -........ -. --------. -----·- ·-1111

JavaScrtpt на примерах

10.6. Объект location: строка адреса
браузера

Объект location предоставляет информацию об URL-aдpece текущей стра­
ницы. Получить доступ к этой информации, как обычно, можно через свой­
ства этого объекта:

• href - полный URL-aдpec документа;

• protocol - идентификатор протокола;

• port - номер порта;

• host - имя сервера вместе с номером порта;

• hostname - имя компьютера в сети Интернет;

• pathname - путь и имя файла;

• search - строка параметров, указанная после знака "?" (включая этот
знак);

• hash - строка, указанная после знака"#" (включая этот знак).

В отличие от предыдущих двух объектов у объекта location есть также и
методы. Метод assign() загружает указанный URL, reload() - перезагружает
документ, replace() - загружает указанный в качестве параметра URL, а ин­
формация о предыдущем адресе удаляется из объекта history.

Однако загрузить новый документ можно не только с помощью метода

assign(), но и путем изменения свойства href, например:

windows.location.href = "http://dkws.org.ua";

1О.7. Объект history: список истории
Объект history позволяет получить доступ к списку всех ранее просмотрен­
ных веб-страниц. Свойство length содержит размер списка истории. Мето­
ды этого объекта следующие:

• go(<номер>) - переходит в списке истории на позицию с указанным но­
мером.

• back() - загружает в окно браузера предыдущий документ, можно ис­
пользовать для реализации кнопки Back.

11!8-----------------------. -----.. -------------------------" --------------------. ---'

ГЛАВА 10. Объектная модель

• forward() - загружает в окно браузера следующий документ из списка
истории. Можно использовать для реализации кнопки Next.

С помощью методов back() и forward() можно создать кнопки или ссылки
BackjNext. Вот пример создания таких ссылок:

<р><а href="javascript:history.back();">Back</p>
<р><а href="javascript:history.forward();">Next</p>

10.8. Объект document: обращение к
элементам документа

Объект document используется для обращения к элементам документа.
Свойств у этого объекта довольно много, поэтому для лучшего восприятия

они приведены в таблице 10.5.

Таблица 10.5. Свойства объекта document

Свойство Описание

activeElement Ссылка на активный элемент документа

documentElement Ссылка на тег <html>

Body Ссылка на все содержимое тега <body>

Title Название документа, указанное в теге <title>

URL Адрес документа

Referrer
Адрес страницы, с которой посетитель перешел на

эту страницу

parentWindow Окно, которому принадлежит документ

Используется для хранения данных на компьюте-

Cookie ре пользователя, например можно запомнить вы-

бранную пользователем тему оформления

Состояние документа. Оно может быть следую-
щим:

uninitialized - не инициализирован, недоступен.

readyState loading - документ загружается.

interactive - загружен не полностью, но уже досту-
пен для просмотра.

complete - полностью загружен.

" .. -·------·-. --------. -. ---.. ---. ---------------------. ----------. ------------. ----1111

JavaScпpt на примерах

Location Объект location, рассмотренный ранее

Selection
Объект selection, который будет рассмотрен чуть
позже

fileCreatedDate Дата создания файла документа (в виде строки)

fileModifiedDate Дата последнего изменения

file U pdatedDate
Дата обновления файла в кэше компьютера поль-
зователя

lastModified Дата и время последнего изменения документа

Filesize Размер файла

bgColor Цвет фона документа

fgColor Цвет текста страницы

linkColor Цвет гиперссылок документа

alinkColor Цвет активных ссылок

vlinkColor Цвет посещенных ссылок

Объект document поддерживает следующие методы:

• write(<текст>) - выводит текст, заданный параметром, в текущее место
документа.

• writeln(<текст>) - выводит текст, заданный параметром, после чего вы­
водит символы возврата каретки и новой строки (\r\n). Данные симво­
лы полностью игнорируются браузером, поэтому результат будет такой
же, что и у метода write().

• getElementByld(<ID элемента>) - возвращает ссылку на элемент сука­
занным ID.

• getElementByName(<название элемента>) - возвращает ссылку на эле­
мент по его имени.

• elementFromPoint(<х>, <у>) - возвращает ссылку на элемент, который
находится по координатам <х>, <у>

У каждого элемента на странице есть свои свойства и методы. В таблице

10.6 представлены свойства, общие для всех элементов.

• ll!t-----. -... --. --------. ---. -. -. --. ---. -. ----. ---. -. -. ------. ---------------------_,

ГЛАВА 10. Объектная модель

Таблица 10.6. Основные свойства элемента неб-страницы

Свойство Описание

All Ссылка на коллекцию дочерних элементов

Id Имя элемента, заданное параметром id

className Имя класса, заданное параметром class

sourcelndex
Порядковый номер элемента, который можно ис-

пользовать для ссылки на элемент из коллекции all

tagName Имя тега элемента

parentElement Ссылка на родительский элемент

Length Число элементов в коллекции

height и width Высота и ширина элемента

clientHeight и Высота и ширина элемента без учета рамок, границ и
clientWidth полосок прокрутки

Смещение левого края элемента относительно ле-

clientLeft вого края родительского элемента без учета рамок,
границ и т.д.

Смещение верхнего края элемента относительно ле-

clientTop вого края родительского элемента без учета рамок,
границ и т.д.

offsetHeight и Высота и ширина элемента относительно родитель-

offsetWidth ского элемента

offsetLeft
Смещение левого края элемента относительно лево-

го края родительского элемента

Ссылка на родительский элемент, относитель-

offsetParent но которого определяются свойства offsetHeight,
offsetWidth, offsetLeft и offsetTop

Содержимое элемента без НТМL-тегов. Если этому
innerText свойству присвоить новое значение, то изменится

значение элемента

'----------------------------- -- --------._ --...

JavaScr1pt на примерах

Содержимое элемента без НТМL-тегов. Если при-
outerText своить свойству новое значение, то содержимое эле-

мента заменится новым и будет изменен сам элемент

Содержимое элемента вместе с НТМL-тегами. Если

innerHTML этому свойству присвоить новое значение, то изме-

нится значение элемента

outerHTML Содержимое элемента вместе с НТМL-тегами

scrollHeight и
Высота и ширина содержимого элемента

scrollWidth

scrollLeft и Положение горизонтальной и вертикальной полос

scrollTop прокрутки

В таблице 10.7 приведены методы, общие для всех элементов страницы.

Таблица 10.7. Основные методы элемента неб-страницы

Метод Описание

getAdjancentText (<ме- Возвращает текстовую строку в зависимости

стонахождение>) от указанного местонахождения

insertAdjancentHTML
Вставляет текст в место, заданное местона-

(<местонахождение>,

<текст>)
хождением

Возвращает значение параметра, который за-

getAttribute (<имя дан <именем параметра>. Если второй пара-

параметра>, true 1 false) метр равен false, то поиск параметра тега про-
исходит без учета регистра символов

setAttribute (<имя пара-
Присваивает <Значение> параметру, кота-

рый задан <именем параметра>. Если третий
метра>, <значение>, true

параметр равен false, то поиск параметра тега
1 false)

происходит без учета регистра символов

Удаляет параметр тега текущего элемента.

removeAttribute(<Имя Если второй параметр равен false, то поиск
параметра>, true 1 false) параметра тега происходит без учета реги-

стра символов

1

1

tll llrl----- ---- ---------- -.. ---- --- -- ----- ---- --. ------ --- -- -- ---- ----- -----------------·

ГЛАВА 10. Объектная модель

clear Attributes()
Удаляет все параметры тега элемента, кроме

параметров id и паше

coпtaiпs(<имя>)
Возвращает true, если элемент с этим именем
содержится внутри текущего элемента

Используя все эти свойства и методы, вы можете манипулировать элемен­

тами страницы. Например, вы можете обратиться к любому изображению и
получить его источник (заданный параметром тега src):

document.images[индeкc] .src

Нумерация, как обычно, начинается с О. В цикле можно обойти все изобра­
жения (как и другие элементы страницы) с целью получения информации

о них.

10.9. Объект style: доступ к таблице
стилей

Объект style используется для получения доступа к каскадным таблицам
стилей (CSS). Свойства этого объекта соответствуют атрибутам в CSS с не­
большими отличиями: удаляются символы"-", а первые буквы всех слов в

названии атрибута, кроме первого, делаются прописными. Пример преоб­

разования имен:

color = color
font-size = fontSize

В листинге 10.5 приведен пример изменения цвета текста в <div> с ID div1.

Листинг 10.5. Изменение стиля с помощью JavaScript

<html>
<body onload="OnLoad();">
<script>

function OnLoad() {
var divl = document.getElementByid("divl");
divl.style.color = 'red';

• ·---·--·-----------------------------crl

JavaScr1pt на примерах

</script>
<div id="divl" >Привет</div>
</body>
</htrnl>

10.1 О. Объект selection: работа с
выделением

Объект selection используется для работы с выделенным фрагментом на
странице. Свойство type объекта selection возвращает значение None, если
ничего не выбрано, и Text, если выбран текст.

Методы у объекта selection следующие:

• clear() - стирает выделенный текст.

• empty() - снимает выделение текста.

Метод getSelection() объекта window возвращает объект Selection. У него
есть различные свойства и методы, но самый полезный из них - метод

toString(), который возвращает выделение в виде строки. Данный метод бу­
дет работать только в браузерах Chrome, Firefox и Opera. В IE код получе­
ния выделения нужно реализовывать через диапазоны. Рассмотрим сцена­

рий 10.6. В нем приведен простой код получения выделения, который будет
работать в браузерах Chrome, Firefox и Opera.

Листинг 10.6. Получение выделения текста

<htrnl>
<head>

<title>Selection</title>
</head>
<body>
<script>

function OnClick() {
var selText = window.getSelection() .toString();
window.alert(selText);

• aJ--. ---. ----. ---. ------. -... ----. -----. ------... ---------. ----. ----. -. -------------.

ГЛАВА 1 О. Объектная модель

</script>
<div id="divl" >Выделите текст и нажмите кнопку</div>
<p><input type="button" onclick="OnClick();" vаluе="Нажми

меня">

</body>
</html>

Логика проста: мы получаем выделение методом getSelection(), преобразу­
ем его в текст методом toString() и отображаем методом alert. Когда же нуж­
но обеспечить совместимость с браузером IE (а это нужно сделать, потому
что все еще этот браузер занимает значительную долю на рынке браузеров),
то код будет несколько сложнее. Нужно переписать функцию OneClick(),
которая приведена в листинге 10.7. Остальной код будет таким же.

Листинг 1О.7. Универсальный код, работает в IE, Chrome, Firefox и Opera

function OnClick() {

if (window.getSelection)
window.alert(window.getSelection() .toString());

else { // For IE
if (document.selection.type=="Text")
var rangel = document.selection.createRange();
window.alert(rangel.text);
document.selection.empty();

else {
window.alert("No selected text");

// IE Ыосk

//function

1О.11. Полезные примеры

В качестве полезных примеров мы рассмотрим добавление вашего сайта в

Избранное и в качестве домашней страницы, а также работу с Cookies.

1О.11 . 1 . Добавпение сайта в Избранное

Наверное, вы видели на многих сайтах ссылки, позволяющие добавить сайт
в избранное или установить его в качестве домашней страницы. В принци-• ····-······-········-···------------·-····--·--·-·······························---111!1

JavaScript на примерах

пе, данные действия можно совершить и с помощью средств самого брау­

зера, однако пользователь может забыть это сделать, а создав соответству­
ющие ссылки (кнопки) на самом сайте, вы можете ему об этом напомнить.
Учтите, что добавление своего сайта в избранное или установка в качестве
домашней страницы без разрешения (ведома) пользователя считается дур­
ным тоном, поэтому даже и не думайте вызывать приведенные ниже методы

из обработчика события onload вашей страницы!

Для добавления сайта в избранное используется метод addFavorite объекта
external. В качестве параметров этого методу нужно передать адрес стра­
ницы и ее описание. Ниже приведена функция, реализующая добавление
сайта в избранное. Вы ее можете использовать в качестве обработчика на­

жатия ссылки.

function addToFavorites()
external.addFavorite("http://example.com", "Example.com");
window.alert('Cпacибo!');

return false;

<р><а href="http://example.com" onclick="return
addToFavorites();">
Добавить в Избранное</а><Ьr>

10.11.2. Установка сайта в качестве домашней страницы

Чтобы установить ваш сайт в качестве домашней страницы, вы можете ис­

пользовать функцию, код которой приведен ниже:

function setAsHomePage(obj)
obj.style.behavior="url(#default#homepage)";
obj.setHomePage("http://example.com");
window.alert('Cпacибo!');

return false;

<р><а href="http://example.com" onclick="return
setAsHomePage(this);">
Установить как домашнюю страницу</а><Ьr>

10.11.З. Работа с Cookies

Веб-браузеры позволяют на пользовательском клиенте хранить небольшой
объем информации, называемый Cookies. С помощью Cookies удобно хра-• ID .. ---. -. ------------. ----.

ГЛАВА 1 О. Объектная модель

нить настройки пользователя, например выбранную тему оформления, про­
смотренные ним товары и т.д. У Cookies, конечно, есть свои достоинства и
недостатки, как у всего в этом мире. К достоинствам можно отнести то, что

вам не нужно хранить эту не очень важную информацию на своем сервере.

Это снижает нагрузку на сервер и экономит дисковое пространство на нем.

А вот недостатков больше. Доступ к Cookies может получить любой другой
сценарий, запущенный на компьютере пользователя (даже если он не уста­

навливал эти Cookies), поэтому там нельзя хранить конфиденциальную ин­
формацию, например признак аутентификации, номера кредитных карто­

чек, пароли и т.д. К тому же, если пользователь запустит другой браузер на
этом компьютере или перейдет на другой компьютер, данные, сохраненные

в Cookies, станут недоступными.

Прежде чем приступить к использованию Cookies, нужно проверить, под­
держивает ли их браузер клиента:

if (navigator.cookieEnaЫed)
// Cookies поддерживаются, можно устанавливать и читать их
}

Установить Cookies можно путем присвоения значения свойству cookie
объекта document в следующем формате:

document.cookie = "<Имя>=<Значение>; [expires=<Дaтa>;]

[domain=<Имя домена>;] [раth=<Путь>;] [secure;] ";

В самом простом случае нужно указать пару <Имя>=<Значение>. В чуть

более сложном - дату истечения срока действия. Дату нужно указывать

только в таком формате:

Mon, 03 Feb 2014 00:00:01 GMT

По истечении данной даты Cookie будет удален. Получить дату в этом фор­
мате (чтоб не создавать ее вручную) можно с помощью метода setTime() и
метода toGMTString(). Пример:

var d = new Date();
d.setTime(d.getTime()+36000000); // Cookie будет жить 10
часов

var End_Date = d.toGMTString(); //Дата удаления cookies

Считать Cookie можно посредством обращения к document.cookie. Воз­
вращенная строка будет содержать все установленные Cookie в формате
"имя1 =значение1; имя2=значение2".

'--8111

JavaScпpt на примерах

Чтобы удалить Cookie, нужно установить его с истекшей датой. Другого
способа, увы, нет.

Для облегчения работы с Cookies мною были разработаны функции, пред­
ставленные в листинге 10.8. Используя их, вы можете легко установить,
прочитать и удалить Cookie.

Листинг 10.8. Функции для работы с Cookies

function setCookie(name, value, expires, path, domain, secure)
{

if (!name 11 !value) return false;
var str = name + '=' + encodeURIComponent(value);

if (expires) str += '. ,
if (path) str += '. ,
if (domain) str += '. ,
if (secure) str += '. ,

document.cookie = str;
return true;

function getCookie(name)

expires=' + expires.toGMTString();
path=' + path;
domain=' + domain;
secure';

var pattern "(?:;)?" + name + "=([л;]*);?";
var regexp = new RegExp(pattern);

if (regexp.test(document.cookie))
return decodeURIComponent(RegExp["$1"));

return false;

function deleteCookie(name, path, domain)
setCookie(name, null, new Date(O), path, domain);
return true;

Использовать эти функции можно так:

11 устанавливаем Cookies без параметров, только имя и значения

setCookie ('color', 'red');
11 читаем Cookie
var color = getCookie('color');
11 Выводим Cookie
window.alert(color);

• ID --------. ----------... --... -. ---. --..... -. -. -. ---.... -. -... --. -... -... -. --. -. -. -..

ГЛАВА 1 О. Объектная модель

На этом данная глава заканчивается, а в следующей мы поговорим о том,

как работать с формами вJavaScript .

• ·----- -. -------- ·-. -------- --· ---- ---- -.. --··· -- --- . --- -------- ----- ----- -. ·- ---·

Глава 11.

Работа с формами в JavaScript

ГЛАВА 11. Работа с формами в JavaScript

11 . 1 . Коллекция Forms

Представим, что в нашем документе есть форма form1 с текстовым полем
firstname. Обратиться к этому полю можно через коллекцию forms:

document.forms["forml"] .firstname.value

При желании к форме можно обратиться и напрямую, что делает код ком­
пактнее:

document. forml .firstname. value

Существует и третий способ обращения к форме - по индексу:

document.forms[O] .firstname.value

Нумерация форм начинается с О. Если в документе только одна форма, то

ее номер - О.

Получить доступ к элементу независимо от того, находится ли он вну­

три формы или нет, можно с помощью метода getElementBy Id() объекта
document:

document.getElementByid("firstname") .value

Элементы формы также доступны через коллекцию elements, например:

document.forms["forml"] .elements["firstname"] .value
document.forms["forml"] .elements[O] .value
document.forms[O] .elements[O] .value

• ·--18

JavaScпpt на примерах

Используйте тот метод обращения к элементам формы, который вам боль­
ше нравится.

11.2. Свойства, методы и события
объекта формы

У объекта формы есть следующие свойства:

• length - количество элементов в форме;

• action - URL-aдpec сценария, который будет обрабатывать форму;

• elements - ссылка на коллекцию elements;

• encoding - МIМЕ-тип передаваемых данных;

• method - режим пересылки данных формы программе, которая задана
в action;

• enctype - метод кодирования данных формы;

• name - имя формы;

• target - имя фрейма, в который будет заrружен документ.

Объект формы поддерживает всего два метода: submit() и reset(). Первый
метод инициирует отправку формы на веб-сервер, второй - сбрасывает фор­
му. Соответственно, есть два события - onsubmit и onreset. Первое происхо­
дит при отправке данных формы, второе - при сбросе формы.

11 .3. Получение данных из поля ввода.
Проверка правильности ввода

Сейчас мы поговорим о двух элементах формы - текстовом поле и поле для
ввода пароля, которые создаются с помощью следующего НТМL-кода:

<input type="text">
<input type="password">

• ---···-····

ГЛАВА 11. Работа с формами в JavaScript

У этих элементов формы одинаковые свойства, методы и события. Сначала
рассмотрим свойства (см. табл. 11.1).

Таблица 11.1. Свойства полей ввода текста и пароля

Свойство Описание

Value Значение элемента формы

defaultValue Начальное значение, задаваемое параметром value

DisaЪled Если true, то поле является неактивным.

Form Ссылка на форму

maxLength
Максимальное количество символов, которое можно

ввести в поле

Name Имя элемента

readOnly
Если это свойство равно true, то поле нельзя редактиро-
вать, если false, то можно

Туре Тип элемента формы

Методы и связанные с ними события представлены в таблице 11.2.

Таблица 11.2. Методы и свойства полей ввода текста и пароля

Метод Событие Описание

Убирает фокус с текущего элемента
Ъlur() onЫur формы. При потере фокуса происхо-

дит событие onЫur

Помещает фокус на текущий эле-

мент формы. При получении фокуса

определенным элементом формы про-

focus() onfocus, onchange
исходит событие onfocus. Событие
onchange происходит при получении
и изменении фокуса, изменении дан-

пых в поле или при отправке данных

формы.

select() - Выделяет текст в поле

• . ----------. -. ------. -. ------. -----. --. -. -. ---. ----------. ------. -. -. --------. ---. tD

JavaScr1pt на примерах

11 .4. Работа с textarea

В отличие от обычного поля ввода текста поле textaгea позволяет вводить
многострочный текст. Свойства, методы и события textaгea такие же, как у
поля ввода. Однако у textaгea нет свойства maxLenght, зато есть свойство
wrap, задающее режим переноса слов. Это свойство может принимать сле­
дующее значение:

• off - слова переноситься не будут.

• physical - слова переносятся как на экране, так и при передаче данных.

• virtual - слова переносятся только на экране, но не при передаче данных
на сервер.

Сейчас мы напишем простой сценарий, демонстрирующий работу с фор­
мой. Наша форма изображена на рис. 11.1. Она содержит всего три элемента
- поле ввода, textarea и кнопка. При нажатии кнопки Add введенное в тек­
стовое поле слово будет добавлено в textarea. Листинг 11.1 содержит ком­
ментарии, прочитайте их для лучшего понимания программы.

Drenr\ (

·~-+- Cti • • e
Слово !.:------- ···--------------···----

]

l ---.. ---··-··-·-··-----·-··· . ос
Рис. 11. 1 . Hawa форма

• --------- -------- ----- -- --- -- -- -------- --- ---------- -- --------- --------- -- ---- ----·

Листинг 11 . 1 . Работа с текстовыми полями

<html>
<head>

<meta charset="utf-8">
<title>Фopмы</title>

</head>
<body>

<script>
function AddWord()

ГЛАВА 11. Работа с формами в JavaScript

// получаем значение текстового поля
var textl = document.forml.textl.value;

11 если текст не введен, выходим

if (textl == "") { windows.alert('Bвeдитe текст'); return
" " ; }

// получаем значение textarea
var tal = document.forml.tal.value;
var result = tal + "\n" + textl;

11 новое значение textarea
document.forml.tal.value = result;

11 очищаем текстовое поле
document.forml.textl.value - "". - '
return textl; // возвращает введенный текст

</script>
<form name="forml">

Word <input type="text" name="textl" id="textl">

<textarea name="tal" id="tal" cols="25" rows="l5"></

textarea>

<input type="button" vаluе="Добавить"

onclick="AddWord();">

</form>

</body>
</html>

• .. -·············- -··-········ ·--·-·- ·-· -··-·-- .. -. -. -- ------. -·-··. ··-· --·-· -·-·-· -ID

JavaScript на примерах

11 .5. Работа с флажками

У флажков и переключателей несколько другой набор свойств, методов и
событий. Как обычно, сначала рассмотрим свойства (таблица 11.3).

Таблица 11.3. Свойства флажков и переключателей

Свойство Описание

checked
Если свойство равно true, переключатель или фла-
жок находится во включенном состоянии

value Значение текущего элемента формы

defaultChecked
Включен ли флажок или переключатель по умолча-

нию (true - да, false - нет)

disaЫed
Если true, то элемент формы выключен (его нельзя
изменять)

indeterminate
Флажок находится в неопределенном состоянии (за-

крашен серым цветом). Возвращает false или true

form Ссылка на форму, в которой находится элемент

name Имя элемента

type Тип элемента формы

Из методов флажки и переключатели поддерживают только Ыuе() и focus(),
которые были рассмотрены раньше. События тоже аналогичны рассмотрен­
ным ранее: onЬlur(), onfocus(). Также есть событие onclick(), которое воз­
никает при выборе элемента.

Теперь рассмотрим небольшой пример. Пусть у нас есть группа переключа­
телей rg1:

<input type="radio" name="rgl" id="radiol" value="l"
checked>Option 1
<input type="radio" name="rgl" id="radio2" value="2">0ption
2

<input type="radio" name="rgl" id="radioЗ" value="З">Option
З<Ьr>

Обойти группу переключателей в цикле можно так:

• llD------. -.. -------. -.. ---... -.... -... -......... -.. --........ --..... -.. -. -......... .

ГЛАВА 11. Работа с формами в JavaScript

var count = document.forml.rgl.length;
for (i=O; i<count; i++) {

if (document.form.rgl.item(i) .checked)
window.alert(document.form.rgl.item(i) .value);
break;

После того как находим включенный переключатель, мы выводим его зна­

чение (задается атрибутом value) и прерываем цикл - остальные переклю­
чатели нет смысла просматривать, так как выбранным в группе может быть
только один переключатель (не путать с флажком - checkbox!).

11.6. Работа с кнопками

Свойства кнопки подобны свойствам других элементов формы:

• value - значение кнопки (текст, который отображается на ней).

• disaЫed - если это свойство равно true, кнопка будет неактивной.

• form - ссылка на форму, в которой находится кнопка.

• name - имя элемента формы.

• type - тип элемента формы.

Методы также вам уже знакомы: Ьlur() и focus(). События аналогичны пере­
ключателям: onЬlur(), onclick() и onfocus(). Далее приведен пример работы
с кнопками. Наша форма будет содержать две кнопки - Press me и Test. При
нажатии на Press me происходит инвертирование кнопки Test. То есть при
одном нажатии кнопка Test будет выключена, при другом - включена и т~д.

Листинг 11.2. Пример работы с кнопками

<html>
<head>

<meta charset="utf-8">
<title>Фopмы</title>

<script>

• . -. -----.. --.. ---. --.. ----... -" -. -" . -" -.. ----". -. -.. " --. -tD

JavaScript на примерах

function OnClick()
document.forml.button2.disaЫed

button2.disaЫed;

)

</script>

</head>
<body>

<form name="forml">

!document.forml.

<input type="button" name="buttonl" id="buttonl"
vаluе="Нажми меня" onclick="OnClick();">

<input type="button" name="button2" id="button2"
value="Tecт">

</form>
</body>
</html>

11. 7. Проверка правильности e-mail

Очень часто перед отправкой формы на сервер требуется проверить вве­

денные данные, например ввел ли пользователь имя, e-mail, установил ли
пароль, совпадают ли пароли (если речь идет о форме регистрации). Учиты­

вая все полученные знания, вы сами можете написать код такой проверки.

Сложность может вызвать разве что проверка корректности электронного

адреса. Если проверять корректность e-mail с помощью обычных проверок,
то получите некомпактный и неэффективный код, перегруженный множе­

ством операторов if, и не факт, что он будет работать правильно. Например,
все мы знаем, что в любом электронном адресе должны быть символы "@" и
".",но если проверить наличие в строке только этих символов, то проверка

явно не будет полной. Например:

@us.er@
.user@
.user@domain .
. u@d.@

• ID---.

ГЛАВА 11. Работа с формами в JavaScript

Все эти адреса вряд ли можно назвать корректными. Какие есть мысли?

Проверять, чтобы в строке был только один символ@. Но все равно есть
много неправильных вариантов, например:

us.r@domain
пользователь@dоmаin.ru

user@domain".

Чтобы не загромождать код лишними проверками, есть один выход - ис­
пользовать регулярные выражения. Только с помощью регулярных выра­

жений можно быстро и компактно проверить правильность e-mail. Давайте
напишем функцию validateEmail(), которая будет проверять правильность
введенного e-mail:

function validateEmail(email) {
var re = /л(([л<>()[\]\\.,;:\s@\"]+(\.[л<>()

[\J\\.,;:\s@\"J+)*) 1 (\".+\"))@((\[[0-9) {1,3)\. [0-9) {1,3)\.
[0- 9] { 1, 3 } \ . [0- 9] { 1, 3 } \]) 1 (([а - zA- Z \ -0- 9] + \ .) + [а - zA- Z]
{2,)))$/;

return re.test(email);

Да, регулярное выражение очень сложное, но оно учитывает все возможные

варианты правильного построения e-mail и избавляет вас от множества не­
нужных проверок.

В листинге 11.3 приведен полный код сценария проверки e-mail:

Листинг 11.3. Проверка допустимости e-mail

<html>
<head>
<meta charset="utf-8">
<title>Пpoвepкa правильности e-mail</title>
<script>

function validateEmail(email) {
var re = /л(([л<>()[\)\\.,;:\s@\")+(\.[л<>()
[\)\\.,;:\s@\"]+)*)l(\".+\"))@((\[[0-9]{1,3)\.(0-9]{1,3}\.
[0-9) {1,3)\. [0-9] {1,3)\)) 1 (([a-zA-Z\-0-9]+\.)+[a-zA-Z]
{2,)))$/;

return re.test(email);

• . --------... -. ------...... -..... -....... -.......... -.... " -..... -.... --...... --llD

JavaScпpt на примерах

function check() {

var email = document.forml.email.value;

if (validateEmail(email)) window.alert("OK");
else window.alert("E-mail неправильный");

</script>
<body>

<form name="forml">
E-mail: <input type="text" name="email" id="email">
<input type="button" vаluе="Проверить" onclick="check();" >
</form>

</body>
</html>

В функции check() мы передаем содержимое текстового поля email нашей
функции validateEmail(). Если она возвращает true, мы выводим сообщение
ОК, в противном случае сообщаем, что e-mail некорректен.

Теперь давайте усложним задачу. Наверняка вы видели в Интернете сцена­

рии, где проверка ввода осуществляется при самом вводе, а не при нажатии

кнопки Check. Такие кнопки уже давно в прошлом и в современных сцена­
риях будут выглядеть архаично. Сейчас мы перепишем наш сценарий так,

чтобы он проверял правильность e-mail на лету и выводил в определенный
элемент документа результат проверки. Первым делом нужно переписать

саму функцию check(). Нам уже не нужно выводить сообщения с помощью
window.alert(), поэтому результат проверки мы будем выводить в отдель­
ный документа. Вот измененный код:

function check()

var email = document.forml.email.value;
if (validateEmail(email)) document.getElementByid("spanl").
innerText = "ОК";

else document.getElementByid("spanl") .innerText "Email
недопустим";

ID---· •

ГЛАВА 11. Работа с формами в JavaScript

Логика функции осталась той же, изменился только способ отображения
результата. Все остальное - дело техники. Для проверки "на лету" нужно ис­
пользовать событие onKey Down нашего поля ввода:

<input type="text" name="email" id="email"
onKeyDown="check();">

В качестве обработчика события мы используем нашу функцию check().
Собственно, в нашей форме уже нет необходимости в кнопке Проверить.
Эта форма теперь изображена на рис. 11.2. Как видите, она содержит только
поле ввода e-mail. Элемент, в который выводится результат обработки, мо­
жет находиться за пределами формы.

ок

Рис. 11.2. Форма ввода

Измененный сценарий представлен в листинге 11.4.

Листинг 11 .4. Измененный сценарий

<html>
<head>
<meta charset="utf-8">
<title>Пpoвepкa правильности e-mail</title>

<script>

function validateEmail(email) {
var re = /л(([л<>()[\]\\.,;:\s@\"]+(\.[л<>()

[\]\\.,;:\s@\"]+)*) 1 (\".+\"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.
[0- 9] { 1, 3} \ . [0- 9] { 1, 3 } \]) 1 (([а - zA- Z \ -0- 9] + \ .) + [а - zA- Z]
{2,}))$/;

return re.test(email);

function check() {

var email = document.forml.email.value;

• ·---·--ID

JavaScript на примерах

if (validateEmail(email)) document.getElementByid("spanl").
innerText = "ОК";

else document.getElementByid("spanl") .innerText = "Email is
not valid";

</script>
<body>

<form name="forml">E-mail: <input type="text" name="email"
id="email" onKeyDown="check();">
</form>

</body>
</html>

Аналогичным образом, используя событие onKey Down, можно проверить
правильность других полей формы, например, указал ли пользователь свой

номер телефона. Ниже, кстати, представлена функция для проверки номера

телефона в международном формате (+код_ страны(код_ оператора)ххх-хх-

хх):

function isValidPhone(Phone) {
return /л\+\d{l,2}\(\d{3}\)\d{3}-\d{2}-\d{2}$/.

test (Phone);
}

Обратите внимание, что функции проверки e-mail и номера телефона выяс­
няют, соответствуют ли введенные пользователем данные определенному

шаблону. Они не проверяют существование такого e-mail и такого номера
телефона. Например, вы можете ввести +33(011)010-00-00. Это корректный
номер телефона, то есть такой номер может существовать, но существует ли

- никто не знает (лично я не проверял). Проверить существование e-mail
можно только путем отправки сообщения на этот адрес, но, как правило,

этим никто не занимается. С технической точки зрения реализовать такую

проверку можно: отправить e-mail, получить ответ от сервера и выдать ре­
зультат. Однако подобные проверки порождают ненужный трафик.

Также на некоторых сайтах есть возможность проверки не только коррект­

ности введенных данных, но и их допустимости. Например, вы при реги­

страции ввели e-mail user@domain.com. С точки зрения функции проверки
он является корректным, поскольку соответствует регулярному выраже-

• llD .. -. --------. -----. ---.. --. ------.. --. ---. ------------. ----. ---------------------'

ГЛАВА 11. Работа с формами в JavaScript

нию. Однако этот e-mail может принадлежать другому пользователю (кто­
то уже указывал его при регистрации). К сожалению, JavaScript не умеет
непосредственно обращаться к базе данных, чтобы проверить, есть ли такой
e-mail в БД. Поэтому у вас есть два варианта:

• Остановиться на функции validateEmail() и отправлять данные на сер­
вер в случае, если они похожи на правильные. Дальнейшей обработкой
будет заниматься программа на сервере (как правило, это будет РНР­
сценарий).

• Освоить технологию AJAX (она будет рассмотрена в следующей части
книги), позволяющую вызвать стороннюю программу для обработки
данных. Например, наш сценарий вызовет РНР-сценарий, который

проверит, указывался ли такой e-mail при регистрации другого пользо­
вателя, и передаст результат проверки нашему JS-сценарию. Наш сце­

нарий на основании полученного ответа выполнит определенные дей­

ствия (сообщит пользователю, что e-mail занят или свободен).

11 .8. Форма заказа для нашего сайта

Теория - это хорошо, но нам нужна форма заказа для нашего сайта. Пер­

вым делом разработаем саму форму. Предлагаю оформить ее как НТМLS­
диалог, чтобы не ломать себе голову над ее внешним видом. При желании
вы можете использовать CSS для оформления формы, мы же этого делать
не станем для упрощения примера. Как будет выглядеть наша форма, по­
казано в лист. 11.5 и на рис. 11.3. Пока пусть внешний вид формы вас не
тревожит, мы его изменим, когда будем рассматривать создание вкладок с

помощью jQuery UI.

Листинг 11.5. Форма заказа

<dialog id="Dialog">
<р>Форма эакаэа</р>

<form name="order" action="http://localhost/order.php"
onsubmit="return validate form ();">

<input type="hidden" name="product" value="">
<р>Фамилия, имя, отчество: <input type="text" name="fio">
<p>E-mail: <input type="text" name="email">
<р>Телефон: <input type="text" name="phone">
<р>Адрес: <input type="text" name="address">
<p><input type="submit" vаluе="Отправить">

</dialog>

• . ----- -------- ----------------------- --------------" ----------- -- -----------------са

JavaScr1pt на примерах

Форма зака33

ФамилиР: имя oтчecrsv.

E-mail'

телеФсн.

Адреt

Рис. 11.З. Форма заказа

Разберемся, что есть что. При нажатии кнопки отправки формы (submit)
будет вызвана функция проверки формы - validate_form(). Эта функция
должна проверить введенные пользователем значения и вернуть одно и~

двух значений: true или false. Если форма возвращает true, то введенны€
значения будут переданы сценарию, указанному в action. Если форма вер­
нет false, данные передаваться не будут.

Функция validate_form() должна сообщить пользователю о результатю
проверки. Сделать это она может разными способами, например вывест11
уведомление или же выделить поле с некорректной информацией красным

цветом, вывести в документ описание ошибки (например, неправильныi1
e-mail) и т.д. Способы оповещения пользователя зависят только от фанта­
зии программиста.

• - ------------- ------------------------- ----- -- - ---- ---- ------ - ----- ---- -----------

ГЛАВА 11. Работа с формами в JavaScript

Код нашей функции проверки приведен в листинге 11.6. Мы проверим
только поля Ф.И.О и e-mail. Добавить проверку остальных полей вы смо­
жете по образу и подобию.

Листинг 11.6. Функция проверки формы

function validate form ()

valid = true;

if document.order.fio.value == "")

alert ("Укажите, пожалуйста, Ф.И.О.");

valid = false;

var re = /л(([л<>()[\]\\.,;:\s@\"]+(\.[л<>()

[\]\\.,;:\s@\"]+)*)l(\".+\"))@((\[[0-9]{1,3}\.[0-9]{1,3}\.
[0- 9] { 1 , 3 } \ . [0- 9] { 1, 3 } \]) 1 (([а - zA- Z \ - 0- 9] + \ .) + [а - zA- Z]
(2,)))$/;

if (!re.test(document.order.email.value))

alert
valid

"Укажите правильный e-mail");
false;

document.order.product.value
pathname;

window.location.

return valid;

Обратите внимание: функция проверки не только проверяет поля формы,
но и заполняет скрытое поле product. Оно служит для передачи сценарию
ссылки на страницу с товаром - так можно будет понять, какой товар за­
казывал пользователь, и не заполнять его название для каждой страницы.

Если вы будете использовать РНР, то можно сразу заполнить это поле при
выводе страницы товара.

После того как данные будут переданы сценарию order.php, он займется их
обработкой, например добавит заказ в базу данных или отправит информа­
цию о нем менеджеру (на e-mail), который потом свяжется с пользователем,
сделавшим заказ .

• . ----- --- -------- ----- -------· ---. ----- ------- --- -- . ------ . --- ---. ----- -----------CD

JavaScript на примерах

1111--- -------- ---- -. -. ----- --- .. --- --· ---. ----· -- -- -. -- . ---· -. --- . -. ------. -- ----· _,

Глава 12.

Встроенные классы и события
JavaScript

JavaScript на примерах

Глава 12. Встроенные классы и
события JavaScript

BJavaScript имеется богатый набор встроенных (стандартных) классов, со­
держащих множество полезных методов, которые вы можете использовать

при написании своих программ. Если вы пропустили предыдущую главу,

настоятельно рекомендую с ней ознакомиться, поскольку она нужна для

понимания изложенного в этой главе материала.

12.1. Встроенные классы

12.1.1. Класс Global

Чтобы использовать свойства и методы класса Global вам не нужно созда­
вать экземпляр этого класса. Все методы этого класса доступны как встро­

енные функции. К свойствам класса относятся NaN (Not а Number, не чис­
ло) и Infinity (плюс бесконечность). Например:

var х = NaN;
var у Infinity;

Методы класса Global:

• parselnt(<строка>, <основание>) - преобразует строку в целое число
системы счисления, которая задана вторым параметром. Если второй

параметр не указан, по умолчанию используется десятичная система

счисления. Если строку нельзя преобразовать в число, функция возвра­
щает значение NaN.

• parseFloat(<строка>) - преобразует строку в число с плавающей точкой.

• eval(<строка>) - вычисляет выражение, заданное в строке, как если бы
оно было обычным выражениемJаvаSсriрt;

• isNaN (<выражение>) - проверяет, является ли выражение правильным
числом. Возвращает true, если значение выражения - NaN, false - если
значение выражения - обычное число.

18--·--···-·-·-·--·----··-·-····-·-·-·-'

ГЛАВА 12. Встроенные классы и события JavaScript

• isFinite(<выражение>) - проверяет, является ли выражение конечным

числом (возвращает true или false).

• escape(<строка>) - выполняет Еsсаре-кодирование строки (кодирует

строку шестнадцатеричными символами).

• unescape(<строка>) - обратное преобразование строки.

• encodeURI(<cтpoкa>) - выполняет URI-кодирование строки (полезно
при формировании URI, содержащего символы национальных алфави­
тов).

• decodeURI(<cтpoкa>) - обратное кодирование строки.

Рассмотрим несколько примеров:

var str = "100";
var х = 50 + parseint(str);
var strf = "100.52";
var у strFloat(strf);
var z = eval("2 + 2");

11 150

//100.52
11 4

12.1 .2. Класс Number

Класс Number используется для работы с числами. Экземпляр класса мож­
но создать так:

var <объект>= new NumЬеr(начальное значение);

Например:

var х = NumЬer(l);

Свойства класса Number (можно использовать без создания экземпляра
класса):

• MAX_ VALUE - максимально допустимое вJS число.

• MIN_ VALUE- минимально допустимое в]S число.

• NaN - значение NaN.

• NEGAТIVE_INFINIТY - "минус бесконечность".

• POSIТIVE INFINIТY - положительная бесконечность .

• '------ -. -. ----- --- ·- ------ ---- ------- --- . --------- ----------- ------ --- -- -- -------'88

JavaScript на примерах

К методам этого класса относят всего два метода:

• valueOf() - возвращает числовое значение экземпляра класса.

• toString() - возвращает строковое представление числа.

Примеры:

var х = NumЬer.МAX VALUE;
var у= new NumЬer(lOO);
var str = y.toString(); / / "100"

12. 1.3. Класс String

Класс String используется для обработки строк. Экземпляр класса можно
создать так:

var <объект> new String (<строка>);

Например:

var so = new String ("Привет");

Но мы уже знаем, что строку можно создать гораздо проще, например:

var s = "Hello";

Разница в том, что тип переменной s будет string, а переменной so - object.
Однако к обычным строкам можно применять методы класса String, напри­
мер:

var str ="Привет, миp!".toUpperCase();

При использовании метода toUpperCase() строка, имеющая тип данных
string, будет автоматически преобразована в объект класса String. Класс
String является оберткой над типом данных string.

У класса String есть всего одно свойство - lenght, содержащее длину строки:

• ID---. -------------------------------. -------.

ГЛАВА 12. Встроенные классы и события JavaScript

var so = new String ("Привет");

document.write(so.length); 11 5

А вот методов у класса String значительно больше, поэтому они приведены
в таблице 12.1 для большего удобства чтения.

Таблица 12.1. Методы класса String

Метод Описание

toString() Преобразует объект класса String в строку

valueOf()
Возвращает значение хранящейся в объекте

строки

Возвращает символ строки с указанным но-

мерам. Нумерация символов начинается с

char At(<номер символа>) О. Например:

var s = "JavaScript";

var х = s.charAt(O); 11 "J"

Возвращает код символа строки с указан-

ным номером. Нумерация начинается с О.

charCodeAt Пример:

var s = "Hello";

var х = s.charCodeAt(O); 11 72

fromCharCode (<код1>, ... ,
Создает строку из указанных кодов

<кодN>)

Преобразует символы строки в нижний ре-
гистр. Пример:

toLowerCase()
var s = "JavaScript";

s = s.toLowerCase(); 11 javascript

to U pperCase()
Преобразует символы строки в символы

верхнего регистра

• " .. ·--. -------- --- ---.. --·- --- ----·-·- -----. --·- ----- - - ----- -----. -. -·-·- ---. ---....

JavaScript на примерах

substr(<начало
фрагмента>, [длина])

substring(<начало
фрагмента>,<конец фраг­

мента>)

indexOf(<подстрока>,
[<начальная позиция по­

иска>])

lastlndexOf(<подстрока>,
[<начальная позиция по­

иска>])

split(<Разделитель>,
[<Лимит>])

search(<регулярное
выражение>)

Извлекает фрагмент строки заданной дли­

ны. Если второй параметр пропущен, будут
возвращены все символы до конца строки.

var S = "Hello, world";

window.alert(S.substr(O,
"Hello"

5)) ; 11

window.alert(S.substr(7)); //
"world

Извлекает фрагмент строки, заданный но­

мерами начального и конечного символов.

Последний символ в подстроку не включа­

ется, например:

var S = "Hello, world";

document.write(S.substring(7,
12)); // "world"

Возвращает номер позиции первого вхож­

дения подстроки в текущей строке. Если

подстрока не найдена, возвращает -1. При­
мер:

var S = "Hello, world";

document.write(S.indexOf("llo"));
11 2

Возвращает номер позиции последнего

вхождения подстроки в текущей строке.

Если подстрока не найдена, возвращает -1.

Разделяет строку на подстроки по символу­

разделителю и возвращает массив. Напри­

мер:

var S = "Hello, world";

var М = S.split(",");

window.alert(Mass[O]); // "Hello"

window.alert(Mass[l]); // "world"

Определяет номер позиции первого вхож­

дения подстроки, совпадающей с регуляр-
HblM Hhl

~ ID---.

ГЛАВА 12. Встроенные классы и события JavaScript

match(<регулярное
Возвращает массив с результатами поиска,

выражение>)
которые совпадают с регулярным выраже-

ни ем

replace(<регулярное вы- Выполняет поиск и замену в исходной стро-

ражение>, <текст для за- ке с использованием регулярного выраже-

мены>) ния.

12.1.4. Класс Array

Свойства и методы кпасса

Ранее мы говорили о создании массивов. Сейчас мы рассмотрим класс

Array, который можно использовать для обработки массивов, а также для
их создания. Создать экземпляр этого класса можно так:

var <объект> new Array (<к-во элементов массива>);

var <объект>= new Array (<элементы массива через запятую>);

Пример:

var М = new Array(l, 2, 3);

Свойство length содержит количество элементов массива. Нумерация эле­
ментов массива начинается с О. Пример использования свойства length:

document.write(M.length);

for (var i=O, c=M. length; i<c; i++) {
document.write(M[i] + "
");
}

Методов у этого класса не меньше, чем у класса String. Ониприведены в
таблице 12.2.

Таблица 12.2. Методы класса Апау

Метод Описание

Добавляет элементы в конец массива, возвраща-

push(<элементы>) ет новую длину массива:

M.push(4, 5) ;

• ·--- ----------- ---------- ----------- ----------- ------- --- ------ ------ ---- ---------ID

JavaScript на примерах

unshift(<элементы>) Добавляет элементы в начало массива

Возвращает массив, полученный в результате

объединения текущего массива и списка эле-

ментов. В текущий массив элементы из списка

не добавляются. Например:

concat(<элементы>)
var Ml = new Array(l, 2, 3) ;

var М2 = [] ;

М2 = M.concat(4, 5) ;

11 Ml = [1, 2, 3]

11 М2 = [1, 2, 3, 4, 5]

Объединяет элементы массива в строку, разде-
ляя их заданным разделителем. Пример:

join(<разделитель>)
var Ml = new Array(l, 2, 3) ;

document.write(Ml.join(" ")) ; 11 1 2 3

shift()
Возвращает первый элемент массива и удаляет

его из массива

рор()
Возвращает последний элемент массива и уда-

ляет его из массива

Выполняет сортировку массива. Если функция

sort(<функция сорти- сортировки не указана, будет выполнена обыч-
ровки>) ная сортировка (числа - по возрастанию, сим во-

лы - по алфавиту).

reverse()
Переворачивает массив. Элементы массива бу-
дут в обратном порядке.

Возвращает часть массива, начиная от индекса

<начало> до индекса <конец>. Если второй ин-
slice(<начало>, [ко- деке не задан - до конца массива. Пример:
нец])

var Ml = new Array (1, 2, 3, 4, 5, 6) ;

var М2 = Ml.slice(l, 3) ; 11 [2' 3]

toString()
Преобразует массив в строку. Элементы указы-
ваются через запятую без пробела.

• ----- ---------------- .. --------.. -------- - ---------------------------------------.

ГЛАВА 12. Встроенные классы и события JavaScript

Сортировка массива

Отдельного внимания заслуживает сортировка массива. Функция sort()
способна выполнить только базовую сортировку массива, которой не всегда
достаточно, поэтому программист может создать собственную функцию со­
ртировки. Такая функция должна принимать две переменные и возвращать:

• О - если обе переменные равны;

• -1 - если вторая переменная больше первой;

• 1 - если первая переменная больше второй.

Рассмотрим пример сортировки строк без учета регистра:

function f_sort(Strl, Str2) {
var Sl

регистру

var S2
регистру

Strl.toLowerCase(); //Преобразуем к нижнему

Str2.toLowerCase(); //Преобразуем к нижнему

if (Sl>S2) return 1;
if (Sl<S2) return -1;
return О;

var Mass = ["One", "two9", "open");
Mass.sort(f_sort);
document.write(Mass.join(", "));

Порядок сортировки можно изменить, поменяв возвращаемые значения на

противоположные:

function f_sort (Strl, Str2) {
var Sl

регистру

var S2
регистру

Strl.toLowerCase(); //Преобразуем к нижнему

Str2.toLowerCase(); //Преобразуем к нижнему

if (Sl>S2) return -1;
if (Sl<S2) return 1;
return О;

• . -.. --------- -. -· --... -... -. -. -- . -... -........ -. -. -... -- . -----. -. -.... ---... -. -----

JavaScript на примерах

Многомерные массивы

Многомерные массивы можно создать несколькими способами. Например,
можно их создавать поэлементно:

var М = [];

М[О] = [];

M[l] = [];

М[О] [О] 1;

М[О] [1] 2;
М[О] [2] 3;
M[l] [О] 3;
M[l] [1] 2;
M[l] [2] 3;

Также можно использовать перечи~ление, например:

var М new Array(new Array("l", "2", "3"),
new Array("3", "2", "1"));

Ассоциативные массивы

Если вы программировали на РНР, то наверняка знакомы с ассоциативны­

ми массивами. Ассоциативные массивы позволяют в качестве индексов ис­

пользовать строки, а не только числа. Пример:

var М = new Array();
М ["one"] 1;

М ["two"] = 2;

Ни один из методов класса Array не позволяет вывести элементы ассоциа­
тивного массива. Свойство length также не работает, поэтому вы не можете
перебрать элементы ассоциативного массива в цикле for. Для этого нужно
использовать цикл for . .in:

for (var N in М) {
document.write(N + " " + M[N] + "
");

• са--. ----------------------------------.

Вывод будет таким:

one 1
two = 2

ГЛАВА 12. Встроенные классы и события JavaScript

12. 1.5. Кnасс Math

Класс Math содержит некоторые математические функции и константы.
Его использование не требует создания экземпляра класса.

В классе Math содержатся следующие константы:

• Е - экспонента, основание натурального логарифма.

• LN2 - натуральный логарифм 2.

• LN10 - натуральный логарифм 10.

• LOG2E - логарифм по основанию 2 от Е.

• LOG10E - логарифм по основанию 10 от Е;

• PI - число Пи.

• SQRT2 - квадратный корень из 2.

• SQRT1_2 - квадратный корень из 0,5.

Методы класса Math представлены в таблице 12.3.

Таблица 12.3. Методы класса Math

Метод Описание

abs() Возвращает абсолютное значение

sin(), cos(), tan(),
asin(), acos(), Стандартные тригонометрические функции

atan()

ехр() Экспонента

log() Натуральный логарифм

pow(<число>,
Возведение в степень

<степень>)

sqrt() Квадратный корень

• ·--11!11

JavaScript на примерах

Значение, округленное до ближайшего целого.
round() Округление может быть, как в большую, так и

меньшую сторону

ceil()
Значение, округленное до ближайшего большего
целого.

floor() Округление до ближайшего меньшего целого.

шах(<список

элементов че-

рез запятую>), Возвращают максимальное/минимальное значение

min(<список эле- из списка

ментов через запя-

тую>)

random() Возвращает случайное число от О до 1.

Как использовать математические функции на практике? Пусть у нас есть

4 баннера и нужно их выводить случайным образом при обновлении стра­
ницы. Вот пример кода:

var n = Math.floor(Math.random()*З.9999);
document.write('');

Файлы с баннерами должны называться bannerO.gif .. .ЬannerЗ.gif.

12.1.6. Классы Function и Arguments

Класс Function позволяет использовать функцию в качестве экземпляра
класса:

<Имя функции>

<код>);

new Function (<аргумент 1>, ... , <аргумент N>,

Пример:

var Sum = new Function("x", "у", "return х+у");

Однако таким способом мало кто пользуется, поскольку указывать код
функции в виде строки очень неудобно. Зато можно использовать аноним­
ные функции, например:

• ID-------------------. ------------. ------. -. -. --------. ----------------------------.

ГЛАВА 12. Встроенные классы и события JavaScript

var Sum = function(x, у) { return х + у;)

Вызвать функцию можно, как и раньше:

window.alert(Sum(2,2));

В J avaScript можно создавать функции с произвольным числом аргументов.
Доступ ко всем указанным при вызове функции аргументам осуществляет­

ся через массив arguments, который доступен только внутри тела функции.
Свойство length этого массива содержит число переданных аргументов. На­
пишем функцию Sum, вычисляющую сумму произвольного числа аргумен­
тов:

function Sum() {
var r = О;

for (var i=O; i < arguments.length; i++) r = r +
arguments[i];

return r;

window.alert(Sum(l, 2, 3));

12.1.7. Класс Date

Для работы с датой и временем в JavaScript используется класс Date.
Есть несколько способов создать экземпляры этого класса:

var <объект>= new Date();
var <объект>= new Dаtе(<количество миллисекунд>);
var <объект> = new Date (<год>, <месяц>, <день>, <часы>,

<мин>, <с>, <мс>);

Класс Date содержит много методов, которые вместе с примерами по их ис­
пользованию, приведены в таблице 12.4 .

• -- . -...... ---. -.... ---------.. -... -. ---. ---.. -. ---. -. --. -. -- -. ---. ------al

JavaScr1pt на примерах

Таблица 12.4. Методы класса Date

Метод

toString()

toLocaleString()

valueOf()

getDate()

getDay()

getMonth()

Описание

Преобразует дату в строку и возвращает ее.

Пример:

var d = new Date(); //текущая дата

document.write(d.toString());

Вывод может отличаться в зависимости от браузера.
В Chrome вывод будет таким:

Thu Jan 30 2014 15:37:14 GMT+0200 (Финлян­

дия (зима))

Преобразует дату в строку с использованием интер­
национальных установок системы. Параметры моей

системы таковы, что Chrome отобразил строку:

30.1.2014 15:38:57

Возвращает число секунд, прошедших с 01.01.1970
00:00:00.

var d = new Date(); //текущая дата

document.write(d.valueOf());

Вывод:

1391089258015

Возвращает день месяца (от 1 до 31)

Возвращает день недели, О - воскресение, 1 - поне­

дельник и т.д.

Возвращает номер месяца (О - январь, 11 - декабрь)

• llD·-·---- --. ----- -.... ------ -. -- -. -. ---- ---- . -. --- --- . -. --- ---- --. ------- --- .. -.....

ГЛАВА 12. Встроенные классы и события JavaScr1pt

getFullYear() Возвращает полный год (например, 2014)

gertHours() Возвращает час (от О до 23)

getMinutes() Возвращает минуты (от О до 59)

getSeconds() Возвращает секунды (от О до 59)

getMilliseconds() Возвращает миллисекунды (от О до 999)

getTime() Возвращает то же значение, что и valueOf()

Напишем небольшую функцию, возвращающую название месяца по пере­

данному ей номеру месяца:

function getStrMonth(m)

var d = new Date();

var Months = ["Jan", "Feb", "Mar", "Apr", "Мау",

"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

var currentMonth = d.getMonth();

if ((m < 0) 11 (m > 11)) return Months [CurrentMonth];

return Months [m] ;
месяцев с О

11 нумерация массива с О, нумерация

var d = new Date();
window.alert(getStrMonth(d.getMonth()));

В нашей функции определен массив Months, содержащий символьные на­
звания (в сокращенном виде) месяцев. Затем функция определяет текущий

месяц, вызвав getMonth() - на случай, если она будет вызвана с неправиль­
ным номером месяца (который меньше О или больше 11). В этом случае
функция вернет название текущего месяца (а не сообщение об ошибке - сде­
лаем нашу функцию более дружественной). Это позволяет вместо лишнего
вызова getMonth() в программе просто указать неподходящий номер меся­
ца, например -1, и вы получите название текущего месяца, а не сообщение
об ошибке. Например, следующий код в программе:

var d = new Date();
window.alert(getStrMonth(d.getMonth())); ' . ---. ----....... -. -..... --. -. -........ -. -. -.... -. -. -. -...... -. -........ -. -. -. -.. ...

JavaScпpt на примерах

можно смело заменить на такой код:

window.alert(getStrMonth(-1));

Так мы сокращаем число строк в программе. Нашу функцию можно ис­

пользовать как в паре с методом getMonth (что было продемонстрировано
выше), так и напрямую указывать номер месяца (только помните, что нуме­

рация месяцев начинается с О!).

12.1 .8. Класс RegExp

Класс RegExp используется для работы с регулярными выражениями, а
именно для организации поиска в строке с помощью регулярных выраже­

ний. Регулярные выражения - это шаблоны для поиска определенных ком­
бинаций метасимволов и позволяют осуществить очень сложный поиск.
Экземпляр класса RegExp создает так:

var <объект> new RеgЕхр(<регулярное выражение>,

<модификатор>);

var <объект>= /<регулярное выражение>/[<модификатор>];

Модификатор может принимать следующие значения:

• i - поиск без учета регистра;

• g- глобальный поиск;

• m - многострочный поиск;

• gi - глобальный поиск без учета регистра.

Подробное рассмотрение регулярных выражений, к сожалению, выходит
за рамки этой книги. Стоит заметить, что регулярные выражения, поддер­

живаемые в JavaScript, используются и в других языках программирова­
ния, например, в РНР, что добавит вашему коду больше портабельности.
Подробно о регулярных выражениях в JavaScript вы можете прочитать по
адресу: https://developer.mozilla.org/en-US/docsjWeb/JavaScript/Guide/
Regular _ Expressions

Далее мы рассмотрим несколько примеров, демонстрирующих всю силу ре­

гулярных выражений. При рассмотрении класса String вы узнали, что есть

• IВ--·

ГЛАВА 12. Встроенные классы и события JavaScript

три метода, работающие с регулярными выражениями: search(), match()
и replace(). Метод search() возвращает номер позиции первого вхождения
подстроки, которая совпадает с регулярным выражением:

var р = new RegExp("abc[de]");
var Str = "аЬс, abcd, аЬсе, abcf";
document.write(Str.search(p)); 11 5

В результате будет выведено 5, поскольку первая подстрока, соответству­
ющая регулярному выражению "abc[de]", начинается с позиции 5 (шестой
символ, нумерация с О). Вообще в строке Str есть две подстроки, которые
соответствуют нашему регулярному выражению, - abcd и аЬсе, но функция
возвращает позицию только первой найденной подстроки.

Если необходимо найти все соответствия, тогда нужно использовать метод
match(), который возвращает массив с результатами поиска:

var р = new RegExp("abc[de]");
var Str = "аЬс, abcd, аЬсе, abcf";
var М = [];

М = Str.match(p);

for (var i=O, c=M.length; i<c; i++)
document.write(M[i] +" ");

Этот пример выведет только abcd, чтобы match() вывел остальные вариан­
ты, нужно использовать модификатор глобального поиска:

var р = new RegExp("abc[de]", "g");

Вот тогда результат будет таким, как нужно:

abcd аЬсе

Метод rерlасе(<регулярное выражение>, <текст для замены>) использует­
ся для поиска и замены текста с использованием регулярного выражения.

var р = new RegExp("abc[de]", "g");

• ·-------------- ---- -- ----- -------- --- --------- -- --------- ------ ------- ----- -- ------ID

JavaScript на примерах

var Str = "аЬс, abcd, аЬсе, abcf";
var S = Str.replace(p, "match");
document.write(S);

В результате будет выведена строка:

аЬс, match, match, abcf

Все найденные подстроки, соответствующие регулярному выражению, бу­
дут заменены на "match".

На этом мы заканчиваем рассмотрение встроенных классов JavaScript и
переходим к рассмотрению событий.

12.2. События JavaScript

12. 2. 1 . Что такое событие?

События происходит при взаимодействии пользователя с веб-страницей.
Посредством событий система извещает сценарий, что пользователь вы­
полнил какое-то действие: переместил мышь, нажал кнопку мыши, нажал

какие-то клавиши на клавиатуре, изменил размеры окна и т.д. Например,

при нажатии кнопки мыши возникает событие onmousedown. Названия
всех событий начинаются с префикса on.

12.2.2. События мыши

К событиям мыши относятся события, описанные в таблице 12.5.

Таблица 12.5. События мыши

Событие Коrда происходит

onmousedown
Происходит при нажатии кнопки мыши на элементе

веб-страницы или самой странице.

onmouseup
Когда пользователь отпускает ранее нажатую кнопку

мыши.

• ------------------ ----------- -------- --- ----------- ------- ---- -- ------------ --- ---·

ГЛАВА 12. Встроенные классы и события JavaScr1pt

Onclick
Происходит, когда пользователь щелкает на элемен-

те веб-страницы или самой странице

OndЫclick При двойном щелчке

Когда пользователь наводит курсор мыши на эле-

Onmouseover мент страницы (картинку, надпись, абзац, кнопку и
т.д.)

Onmouseout
Когда курсор мыши выходит за пределы элемента

страницы

Onmousemove При перемещении мыши (при любом перемещении)

Onselect При выделении элемента

Onselectstart При начале выделения

При выводе контекстного меню (когда пользователь

Oncontextmenu нажимает правую кнопку или левую кнопку, если

пользователь - левша).

12.2.З. События кnавиатуры

Аналогично, события клавиатуры описаны в таблице 12.6.

Таблица 12.6. События клавиатуры

Собьпие Описание

Onkeydown При нажатии клавиши на клавиатуре

Onkeypress
Тоже при нажатии клавиши на клавиатуре, но возвращает

код нажатого символа в Unicode

Onkeyup Когда пользователь отпускает нажатую ранее клавишу

Onhelp При нажатии клавиши F1

12.2.4. События документа

В таблице 12.7 приведены основные события документа .

• ····-·--···-···------·-·-·-·--···-···-··-·-···---···-······--····-········-········

JavaScr1pt на примерах

Таблица 12. 7. Собьпия документа

Событие Описание

Onload Происходит сразу после загрузки веб-страницы

Onscroll При прокручивании содержимого страницы

Onresize При изменении размеров окна

Onunload
При выгрузке документа. Наступает после события
onbeforeunload

Onbeforeunload
Перед выгрузкой документа, перед событием
onunload

Onbeforeprint Перед распечаткой документа

Onafterprint После распечатки документа

12.2.5. События формы

События формы представлены в таблице 12.8.

Таблица 12.8. Собьпия формы

Собьпие Описание

Onsubmit При отправке формы (при нажатии кнопки Submit)

Onreset При сбросе формы (при нажатии кнопки Reset)

OnЬlur
Когда элемент формы (например, поле ввода) теряет фо-

кус

Onfocus
Когда элемент формы (например, поле ввода или кноп-

ка) получает фокус (становится активным)

Onchange
Когда фокус перемещается на другой элемент кнопки

(наступает перед onЬlur)

12.2.6. Последовательность событий

События возникают в определенной последовательности, например при
нажатии кнопки мыши последовательность будет такой: onmousedown,

• ID----. -. ----------. -- . -------... --------. -. --------. ----------. -. ----- -- -- -. ---. --.

ГЛАВА 12. Встроенные классы и события JavaScript

onmouseup, onclick. При двойном нажатии мыши последовательность будет
немного другой: onmousedown, onmouseup, onclick, ondЫclick.

Последовательность событий нужно учитывать при установке обработчи­
ков событий - в зависимости от желаемого результата.

Рассмотрим сценарий (листинг 12.1), демонстрирующий последователь­
ность событий. В нем мы устанавливаем обработчики событий (подробно о
них мы поговорим в разд. 12.2.9), чтобы проследить их последовательность.

Листинг 12.1. Пример обработки событий мыши

<htrnl>
<head>
<title>Coбытия</title>

</head>
<body onload="window.alert('OnLoad. Нажмите кнопку мыши');"

onrnousedown="docurnent.write('OnMouseDown');"
onrnouseup="docurnent.write('OnMouseUp');"
onclick="docurnent.write('OnClick');">
<hl>Пример обработки событий мыши</hl>

</body>
</htrnl>

Прежде чем перейти к следующему разделу, нужно сделать несколько за­

мечаний. Во-первых, описанная выше последовательность событий мыши
верна только для браузера Internet Explorer. В других браузерах последо­
вательность событий и вообще логика работы механизма событий может

отличаться. Во-вторых, на практике события onmousedown и onmouseup
используются крайне редко, может, в каких-то игровых сценариях. В основ­

ном используется событие onclick, когда пользователь щелкнул на элементе
веб-страницы. Данное событие можно определить отдельно для элемента,
например для изображения:

<irng src="button.png" onclick="window.alert('OnClick');">

12.2. 7. Всплывание событий

При работе с событиями приходится иметь дело с явлением, которое на­
зывается всплыванием событий. Чтобы понять, что это такое, давайте рас­
смотрим листинг 12.2 .

• . --------. -. ----.. --------. -----------. --------------------------------. -. ------. --1И1

JavaScript на примерах

Листинг 12.2. Всплывание событий

<html>
<head>
<title>Coбытия</title>

</head>
<body onclick="window.alert('OnClick для документа');">

<р onclick="window.alert('OnClick для абзаца');">Щелкните
<span style="color: green" onclick="window.alert('OnClick

для Span') ;">здесь</sраn>
</р>

</body>
</html>

После загрузки страницы вы увидите надпись:

Щелкните здесь

При щелчке на "here" возникнет целая цепочка событий:

OnClick для Span
OnClick для абзаца
OnClick для документа

Получается, что событие onclick передается последовательно родитель­
скому элементу. Это явление и называется всплыванием событий. Честно
говоря, оно не всегда желательно. Поэтому вjavaScript предусмотрена воз­

можность прерывания всплывания событий. Для этого нужно присвоить
свойству cancelВubЫe объекта event значение true. В некоторых браузерах
для прерывания всплывания событий используется метод stoPropogation().
Рекомендуется использовать оба способа прерывания одновременно для
совместимости с большим числом браузеров.

Пример прерывания всплывания событий приведен в листинге 12.3. Чтобы
присвоить свойству cancelBubЬle значение true, нам пришлось переписать
обработчик события. Теперь в качестве обработчика используется наша
функция f_alert(), которая устанавливает необходимое свойство и выводит
переданное ей сообщение.

Листинг 12.3. Пример прерывания всплывания событий

<html>
<head>

ID--- . ·- --- --. ·- -- -. --------- -- --- -- ------ ---- ------- ----- --·- ----- --- -.. ------ -·- --'

<title>Coбытия</title>

<script>
function f_alert(s, е)

е = е 11 window.event;

ГЛАВА 12. Встроенные классы и события JavaScпpt

if (e.stopPropogation) e.stopPropogation();
else e.cancelBubЬle = true;
window.alert(s);
}

</script>

</head>
<body onclick="f_alert('OnClick для документа', event);">

<р onclick="f_alert('OnClick для абзаца', еvеnt);">Щелкните

<span style="color: green" onclick="f_alert('OnClick для
Span', event);">здecь

</р>

</body>
</html>

В итоге, когда вы щелкните на надписи "здесь", вы получите только одно

событие:

OnClick для Span

12.2.8. Действие по умолчанию

Для некоторых событий назначены действия по умолчанию, например при
нажатии кнопки Submit формы идет отправка содержимого формы на веб­
сервер сценарию, который задан в свойствах формы. В некоторых ситуаци­

ях действия по умолчанию нужно отменить. Для этого нужно установить

свойство return Value в false или же использовать метод preventDefault (под­
держивается не всеми браузерами):

function cancel(e)
е = е 11 window.event;
if (e.preventDefault) e.preventDefault();

else e.returnValue = false;

Далее для элемента, для которого нужно прервать действие по умолчанию,

нужно вызвать эту функцию, например, • ··-···-····-·-···················· ...

JavaScript на примерах

12.2.9. Обработчики событий

Как устанавливать обработчики событий, вы уже знаете. Для этого нужно

задать событие и указатьjаvаSсriрt-код:

<тег событие="код">

Примеров было приведено уже предостаточно. Учитывая, что на практике
не всегда нужно выполнять простые действия, заключающиеся из одного­

двух операторов (например, вызов window.alert), рекомендуется создавать
функции-обработчики событий, что мы и делали в этой главе. Этим вы уби­

ваете двух зайцев: делаете ваш код проще для восприятий (а отсюда повы­

шается читабельность, отлаживаемость кода и упрощается поиск ошибок)
и позволяете преодолеть ограничение на максимальную длину значения

НТМL-атрибута (1024 символа).

Функции-обработчики желательно определять в разделе HEAD - так будет
логичнее для вас самих. Если же вы поместите код в BODY, - не беда, брау­
зер правильно обработает JS-код, но это будет не так нагляднее, как если бы
обработчики были определены в HEAD. Например, в следующем сценарии
(лист. 12.4) обработчик onload все равно будет вызван, хотя на самом деле
он определен после тега body. Это происходит потому, что браузер сначала
обрабатывает код сценария, а потом уже НТМL-код.

Листинг 12.4. Пример обработчика события

<html>
<head>

<title>Events</title>
</head>

<body onload="msg();">
<script>
function msg() {
window.alert('Пpивeт');

</script>
</body>

</html>

• at--------- ---- ------ ---- -- ----- ----- ---------- --- --- --- --- -- -------- --- ------ --- -- .

ГЛАВА 12. Встроенные классы и события JavaScript

12.2.1 О. Объект event

В этой главе мы уже использовали объект event. Однако он заслуживает
отдельного разговора, и мы его рассмотрим именно сейчас. Объект event
используется для получения подробной информации о произошедшем со­
бытии и доступен только в обработчиках событий (в других функциях и
методах вы не можете его использовать). При наступлении следующего со­

бытия все значения свойства объекта event сбрасываются. Свойства объек­
та event приведены в таблице 12.9.

Таблица 12.9. Свойства объекта event

Свойство Описание

srcElement
Ссылка на элемент, который является источником

события.

Возвращает ссылку на элемент, в котором обрабаты-

curren tTarget вается событие. Ссылается на тот же элемент, что и
ключевое слово this внутри обработчика события.

Содержит тип события (строку). Возвращается в

Туре нижнем регистре и без префикса оп, например, для
onmousedown свойство type равно "mousedown"

clientX, clientY Координаты (Х, У) события

screenX, screen У Координаты (Х, У) события относительно окна

offsetX, offset У
Координаты (Х, У) события относительно контейне-
ра

button
Число, указывающее, какая кнопка мыши была нажа-
та: О - левая, 1 - средняя, 2 - правая

Код нажатой на клавиатуре клавиши. В некоторых

браузерах, например в Firefox, это свойство при об-

keyCode
работке события onkeypress равно О, а код симво-
ла доступен через свойство charCode. Если нажата
функциональная клавиша, тогда charCode = О, а код
символа находится в keyCode .

• . ---- -------------------------. ------------. -. --------. -. -. ----. -------. --. -. -----...

JavaScript на примерах

Если это свойство равно true, то была нажата клави-
altKey ша Alt вместе с другой клавишей, например польза-

ватель мог нажать Alt + А

ctrlKey
Если это свойство равно true, то была нажата клави-
ша Ctrl

shiftKey Если это сойство равно true, то была нажата Shift

Запрещает всплывание событий. Использование это-

cancelВuЫe го свойства было продемонстрировано ранее в этой
главе.

Определяет, будет ли выполняться действие по умол-

return Value чанию. Использование этого свойства было проде-
монстрировано ранее в этой главе.

relatedTarget Ссылка на элемент, с которого перешел курсор мыши.

В таблице 12.9 описаны не все возможные свойства объекта event. Наличие
или отсутствие конкретного свойства зависит от уровня DOM. DOM (Doc­
ument Object Model) - объектная модель документа - это независимый от
платформы и языка программирования интерфейс, позволяющий програм­

мам и скриптам получить доступ к содержимому HTML, XHTML и ХМL­
документов, а также изменять содержимое, структуру и оформление этих

документов. Существует четыре уровня DOM: DOM Level О, DOM Level 1,
DOM Level 2, DOM Level 3.

Стандарты DOM Level О и Level 1 так устарели, что заглядывать в них нет
смысла. На смену Level 1 пришел Level 2, который внес много изменений в
первые два уровня. В таблице 15.5 приведены свойства event согласно стан­
дарта DOM Level 2. Также есть и самый новый стандарт Level 3, но он ис­
пользуется неохотно, несмотря на то, что был принят уже довольно давно
- в 2009 году.

• at-------. ---" --------. ----. ---------------. -------. -----". -. ---. -. --. --... ---. -..

Глава 13.

Эффектная лендинг-страница

JavaScript на примерах

В этой главе будет показано, как сделать эффектную лендинг-страницу для
нашего сайта. Данная страница используется для привлечения аудитории

и, как следствие этого, увеличения продаж. Некоторые сайты в Интерне­

те состоят всего из одной лендинг-страницы. Такие страницы в основном

используются, когда товара мало - от одного до пяти наименований. Для

полноценного интернет-магазина возможностей лендинг-страницы будет
мало.

За основу для нашей лендинг-страницы мы возьмем официальный сайт

Nike http://www.nikebetterworld.com/ и попытаемся реализовать подоб­
ный эффект. Зайдите на сайт Nike и прокрутите колесиком страницу вниз.
Именно такую лендинг-страницу мы создадим для нашего сайта по прода­

жам гироскутеров.

13. 1. Необходимые сценарии

Для создания подобного эффекта перелистывания нам понадобятся следу­
ющие сценарии:

• jQuery 1.4.4.

• jQuery Parallax - собственно он и организует перелистывание.

• jQuery localscroll - позволяет организовать плавную прокрутку между
статьями.

• jQuery scrollTo - также нужен для плавной прокрутки.

• jQuery lnview - определяет, какая статья просматривается.

Не волнуйтесь: далее будет приведена ссылка, по которой можно будет ска­
чать рабочий пример со всеми этими сценариями.

Все эти сценарии подключаются в секции <head>:

<script type="text/javascript" src="https://ajax.googleapis.
com/ajax/libs/jquery/l.6.4/jquery.min.js"></script>

• at. -... -..... ---· ... ------. -. -.. ------ -...... ---- --- . -----. -- . --..... ---- ... -- -. ---·

ГЛАВА 13. Эффектная лендинг-страница

<script type="text/javascript" src="scripts/jquery.parallax-
1.1. 3. js"></script>
<script type="text/javascript" src="scripts/jquery.
localscroll-1.2.7-min.js"></script>
<script type="text/javascript" src="scripts/jquery.scrollTo-
1.4.2-min.js"></script>

Для ускорения загрузки страницы я рекомендую скачать файл https://ajax.
googleapis.com/ajax/libs/jquery/1.6.4/jquery.min.js на собственный сервер и
вызывать его локально.

Вспомогательный сценарий определяет слайды со статьями:

<script type="text/javascript">
$(document) .ready(function() {

$ ('#nav'). localScroll (800);
$('#intro') .parallax("50%", 0.1);
$ ('#second') .parallax ("50%", О .1);
$('.bg').parallax("50%", 0.4);
$('#third') .parallax("50%", 0.3);

))

</script>

Первый параметр, передающийся в parallax(), - это горизонтальное поло­
жение элемента, второй - скорость вертикальной прокрутки. При этом 0.1
- это стандартная скорость, 0.2 - скорость в два раза выше и т.д. Третий пара­
метр необязательный, и он позволяет задать, будет ли (true) или нет (false)
библиотекаjQuеrу использовать свою опцию outerHeight для определения
секции в viewport. Этот параметр можно не задавать.

13.2. НТМL-код

Навигация определяется так:

<ul id="nav">
<img src="images/dot.png"

alt="" />
<img src="images/dot.png"

alt="" >

'- --- -- - - . - ------------------------------------." ---------------------------------"

JavaScript на примерах

<img src="images/dot.png"
alt="" />

<img src="images/dot.png"
alt="" />

Как видите, мы задаем id блоков div для каждой статьи, а также изображе­
ния, которые будут использоваться для доступа к тому или иному блоку.
Мы используем изображение точки для доступа ко всем блокам.

Затем нужно описать сами статьи, вот пример статьи intro:

<div id="intro">
<div class="story">
<div class="float-left">
<h2>Дешевле, чем смартфон</h2>

<р>Стоит всего 300$, запас хода от 20 км,

скорость от 10 км/ч</р>
</div>

</div> <!--.story-->
</div> <!--#intro-->

Остальные статьи описываются аналогично. Теперь заглянем в style.css. В
нем описываются стили. Больше всего нас интересуют изображения и их
параметры:

#intro{
background:url(images/1.jpg) 50% О no-repeat fixed;
color: white;
height: 700рх;

margin: О auto;
padding: О;

#second{
background: url(images/2.jpg) 50% О no-repeat fixed;
color: Ыасk;
height: 1200рх;

margin: О auto;
overflow: hidden;
padding: О;

• --·

ГЛАВА 13 Эффектная лендинг-страница

Думаю, понятно, где прописываются сами изображения. Параметр height
задает высоту изображения. Для правильной работы сценария вам нужно
отредактировать эти значения, если вы замените изображения другими. Это
значение должно быть немного меньше, чем реальная высота изображения.
Параметр color задает цвет текста статьи. Установите такой цвет, чтобы его
было нормально видно на фоне изображения.

13.3. Сценарий прокрутки

Сценарий, обеспечивающий прокрутку изображений (статей) приведен в

листинге 13.1.

Листинг 13.1. Сценарий jquery-parallax

(function($) {
var $window = $(window);
var windowHeight = $window.height();

$window.resize(function () {
windowHeight = $window.height();

}) ;

$.fn.parallax = function(xpos, speedFactor, outerHeight) {
var $this = $(this);
var getHeight;
var firstTop;
var paddingTop = О;

11 Получаем начальную позицию каждого элемента

$this.each(function() {
firstTop = $this.offset() .top;

}) ;

if (outerHeight)
getHeight = function(jqo)

return jqo.outerHeight(true);
} ;

else {
getHeight = function(jqo)

return jqo.height();
} ; • ·-------------· ---- ----------- -------- ·- --- -----·-· -----·· --- --------- -- -----------&1

JavaScript на примерах

11 Устанавливаем значения по умолчанию, если аргументы не

указаны

if (arguments.length
if (arguments.length

speedFactor = 0.1;
if (arguments.length

outerHeight = true;

< 1 1 1 xpos === null) xpo s = "5 0% ";
< 2 1 1 speedFactor null)

< 3 1 1 outerHeight null)

11 Эта функция будет вызвана, если окно будет прокручено
или

11 изменен его размер
function update() {

var pos = $window.scrol1Top();

$this.each(function() {
var $e l e me nt = $(this) ;
var t op = $element . offset () .top ;

Рис. 13. 1. Начальная позиция

• E!I-...... -... -. ----. -. -. -· --.. ----.. ----- . --. -···--. ----........ ,. -.. -, -.. ---. ;

ГЛАВА 13. Эффектная лендинг-страница

var height = getHeight($element);

11 Помещаемся ли мы во viewport
if (top + height < pos 1 1 top > pos + windowHeight)

return;

$this.css('backgroundPosition', xpos +" "+ Math.
:ound((firstTop - pos) * speedFactor) + "рх");

} ;

}) ;

$window.bind('scroll', update) .resize(update);
update();

f) (jQuery);

:>езультат приведен на рис. 13.1и13.2.

Рис. 13.2. Эффект прокрутки

·· · ·· ··- --- - · · · ··-- - -·---· · - - -- - ·· ····· · ·· ·· · ·· ·· · · ···· · ·· · · ·· ··- · · ··· · ··-· - ·· --&1

JavaScript на примерах

Конечно, лучше все увидеть в действии, поэтому загрузить рабочий пример
вы можете по адресу: http://www.nit.com.ru

E:t----------- -- ---- -- ." •

Глава 14.

Введение в AJAX

JavaScript на примерах

14. 1. Различные библиотеки JavaScript
Библиотека - это набор функций, выполняющих определенные действия.
Например, вы можете создать свою библиотеку для обработки строк. В
JavaScript большинство известных библиотек, с которым вам придется ра­
ботать, так или иначе связаны с организацией пользовательского интерфей­
са.

Почему так и почему "придется"? Представьте, что вы написали доволь­

но сложный сценарий, который превосходно отображается в IE, Chrome,
Firefox, но в Opera или каком-то другом браузере имеются некоторые про­
блемы, и созданный интерфейс пользователя отображается не так, как за­
думано вами.

Ранее было отмечено, что разные веб-браузеры могут отображать НТМL­
код и интерпретировать JavaScript-cцeнapии по-разному. Протестировать

все возможные браузеры одному разработчику, сами понимаете, нереально.

А теперь представьте, что вы используете библиотеку для организации
интерфейса пользователя. Если в ней будет найдена ошибка (а ее найдут
быстрее, поскольку этой библиотекой уже пользуются тысячи других про­
граммистов, и она используется в тысячах проектов, а не только в одном

вашем), ее быстро исправят. Все, что вам нужно будет сделать для исправ­
ления этой ошибки в вашем проекте, - загрузить новую версию библиотеки.
Вы можете даже не вдаваться в подробности и не вникать, что именно было
исправлено, - просто загрузите новую версию библиотеки. Более того, для
организации сложного интерфейса пользователя потребуются только осно­
вы знaнияJavaScript, вам не нужно понимать, что и как делает библиотека,
а нужно лишь использовать предоставляемые ей методы. Все остальное би­
блиотека выполнит за вас.

Существует много библиотек, но особенно хочется выделить следующие:

• jQuery (http://jquery.com).

• Prototype (www.prototypejs.org).

• Yahoo! UI Library (YUI, http://developer.yahoom.com/yui/).

• MooTools (http://mootools.net).

• Dojo (http://dojotoolkit.org).

• Extjs (http://www.extjs.com).

ID ·-- -.. -... ·- --- -- -· -- . -. -. -·----------------- --. ------- ------ -----··-- -----'

ГЛАВА 14. Введение в AJAX

Наиболее часто используемые библиотеки из этого списка - jQuery,
MooTools и YUI. В следующей части этой книги будет рассмотрена библи­
отека jQuery, обеспечивающая кроссбраузерную поддержку (работает с IE,
Chrome, Firefox, Opera и Safari). Библиотеку может использовать даже на­
чинающий программист, освоивший только основы JavaScript. Кроме про­
стоты использования популярности jQuery способствуют небольшой раз­
мер (библиотека очень компактна и не засоряет глобальное пространство
имен ненужными идентификаторами, а ваш проект - тысячами файлов) и
огромное количество всевозможных плагинов для этой библиотеки.

14. . Введение в AJAX или перезагрузка
страницы t-1a лету

Представим себе обычную НТМL-форму, например форму ввода имени
пользователя и пароля. Форма с помощью параметра action ссылается на
какой-то сценарий (он может быть написан на РНР, Perl, Python или лю­
бо~f другом языке программирования, но далее для большей однозначности
мы будем предполагать, что сценарий написан на РНР). Как только поль­
зователь нажимает кнопку Sнbmit (название может быть другим), форма
отправляет данные, введенные пользователем, РНР-сценарию, который их

обрабатывает. При этом происходит перезагрузка: страница в браузере ме­
няется ··сначала вы видели страницу НТМL-формы, затем - страницу РНР­
сценария.

Некоторые современные сайты умеют передавать данные, введенные поль­

зователем в форму, на сервер без перезагрузки страницы. Вы нажимаете
Submit, данные отправляются на сервер, потом ваша форма входа превра­
щается в набор служебных ссылок (вроде "Добавить статью", "Выход из си­

стемы" и т.д. - набор ссылок зависит от концепции сайта), а основная часть
страницы превращается в ваш кабинет, где вы можете управлять материала­
ми, которые добавили на сайт.

Как реализуется подобное поведение? При нажатии кнопки Submit вы­
зывается JavaScript, который передает полученную информацию РНР­
сценарию и получает от него ответ, потом (если пользователь прошел ау­

тентификацию) этот жejavaScript перестраивает вашу текущую страницу.

Получается, что страница осталась та же, но ее НТМL-код изменился без
перезагрузки .

• ·- --------- ------. ------ --. ------ -- ----. ------ -----.. -----. -. -. -----------------. _,..

JavaScпpt на примерах

Написать такой сценарий под силу программисту квалификации выше

среднего. При особом желании и знании JavaScript вам тоже под силу ре­
ализовать подобную систему. Но делать этого не придется. К счастью, про­
граммисты с более высокой квалификацией создали технологию AJAX
(Asynchronous Javascript and XML), позволяющую изменять код страни­
цы без ее перезагрузки. Если вы знакомы cjavaScript, то можете возразить
- мол, это умел и обычный JavaScript. Да, JavaScript может изменять код
страницы без ее перезагрузки, но суть технологии AJAX заключается в под­
держке баз данных. Новые данные, которые будут загружены в страницу,
получаются из базы данных. А в случае с обычнымJаvаSсriрt они являются
частью скрипта, что немного не то.

14.3. Создание АJАХ-приложения

Наше АJАХ-приложение будет состоять из трех файлов:

• index.php - основной файл;

• ajax.js - содержит все необходимые сценарии на языке J avaScript;

• ajax.php - это и есть сценарий, к которому будет обращаться JavaScript­
кoд.

Основной файл (index.php) не будет содержать РНР-код, а лишь НТМL­
форму, которая будет ссылаться на ajax.js. В нашем простом случае этого
вполне достаточно. Но если вам нужно будет внедрить РНР-код, можете
это сделать с помощью тегов <?php ?>. Все равно вы будете расширять
функциональность вашего сценария, вот тогда РНР вам и пригодится.

Код из файла ajax.js выполняет обращение к файлу ajax.php, который про­
изводит обработку данных, полученных от ajax.js. Это может быть все что
угодно - проверка имени пользователя и пароля, выборка из базы данных
и т.д. В результате ajax.php сгенерирует ХМL-код, который будет передан
обратно сценарию ajax.js. На основании полученного ХМL-кода ajax.js об­
новит НТМL-код страницы без ее перезагрузки.

Вроде бы все понятно, осталось реализовать идею на практике. Начнем с
файла index.php, который представлен в листинге 14.1.

• В!I- -- ---- ---. ----- ------... --. ----. --- -- . ---·- ---- ---- --------------- . ·--- --- . --- --·

ГЛАВА 14. Введение в AJAX

Листинг 14.1. Файл index.php

<htrnl xrnlns="http://www.wЗ.org/1999/xhtrnl">
<head>

<title>Пpимep AJAX</title>
<script type="text/javascript" src="ajax.js"></script>

</head>
<body onload='ajax()'>

Введите свое имя:

<input type="text" id="Narne" />
<div id="OurMessage" />

</body>
</htrnl>

При загрузке страницы автоматически вызывается метод ajax() из файла
ajax.js, который задан в теге <script>. Поле, в которое пользователь будет
вводить свое имя, называется Narne. Если вы надумали изменить его, то за­
помните, что вы указали в форме, - позже нужно будет это же имя указать в
ajax.js. Тег <div> с именем OurMessage будет принимать сообщение от сер­
вера, то есть от сценария ajax.php.

У нас нет кнопки Subrnit, поскольку введенная информация будет каждую
секунду отправляться на сервер, так что эта кнопка нам не нужна. В реаль­

ных проектах она может вам понадобиться - вряд ли пользователь сможет
заполнить форму за 1 секунду. Тогда сделайте так, чтобы кнопка Subrnit
запускала метод ajax() - не нужно запускать его при загрузке страницы:

<input type=BUТTON value="SuЬrnit" narne="rnySuЬrnit" onClick="ajax () ">

Вариант сценария index.php с кнопкой Subrnit представлен в листинге 14.2.

Листинг 14.2. Файл index.php, вариант 2

<htrnl xrnlns="http://www.wЗ.org/1999/xhtrnl">
<head>
<title>AJAX пример 2</title>
<script type="text/javascript" src="ajax.js"></script>
</head>
<body>
Введите ваше имя:

<input type="text" id="Narne" />

• ·--------------------·----------------·--------"··----------------------------------&3

JavaScript на примерах

<input type=BUTTON value="Submit" name="mySubmit"
onClick="ajax()">
<div id="OurMessage" />
</body>
</html>

Далее нам нужно написать файл ajax.js. Его задача - получить имя пользо­
вателя (значение текстового поля с именем Name) и передать его сценарию
ajax.php. Код ajax.js приведен в листинге 14.3. Жирным выделены значения,
на которые вам следует обратить внимание при модификации сценария.

Листинг 14.3. Файл ajax.js

// Объект XMLHttpRequest
var xmlHttp = createXmlHttpRequestObject();
// Получаем объект XMLHttpRequest
function createXmlHttpRequestObject()

var xmlHttp;
// Если используется Internet Explorer
if(window.ActiveXObject)
{

try
{

xmlHttp
}

catch (е)

{

new ActiveXObject("Microsoft.XMLHTTP");

xmlHttp false;
}

}

//Если используется другой браузер

else

try
{

xmlHttp
}

catch (е)

{

new XMLHttpRequest();

xmlHttp false;
}

}

// Если не получилось создать объект XMLHttpRequest

IJl!I-. --. ---. --. --.... -. --....... -............ --. -......... -....... -- . -..... -. -. -... -'

ГЛАВА 14. Введение в AJAX

if (! xmlHttp)
alert("Error creating the XMLHttpRequest object.");
else
return xmlHttp;
}

//Делаем НТТР-запрос

function ajax ()

if (xmlHttp.readyState == 4 11 xmlHttp.readyState == 0)
{

// получаем имя пользователя, в форме полю ввода присвоено имя

Name
name = encodeURIComponent(document.getElementByid("Name").
value);
//передаем введенное имя сценарию ajax.php
xmlHttp.open("GET", "ajax.php?name=" + name, true);

xmlHttp.onreadystatechange = processServerResponse;
//делаем запрос к серверу

xmlHttp.send(null);
}

else
// Если соединение занято, делаем повтор через 1 секунду
setTimeout('ajax() ', 1000);
}

//Эта функция выполняется автоматически при получении ответа

от сервера

function processServerResponse()
{

if (xmlHttp.readyState == 4)
{

// статус 200 - транзакция прошла успешно

if (xmlHttp.status == 200)
{

//извлекаем XML, который мы получили от сервера

xmlResponse = xmlHttp.responseXML;
xmlDocumentElement = xmlResponse.documentElement;
helloMessage = xmlDocumentElement.firstChild.data;
11 обновляем страницу: выводим полученный от ajax.php
результат

// в div с именем OurMessage
document.getElementByid("OurМessage") .innerHTML
'<i>' + helloMessage + '</i>';
//перезапуск через 1 секунду
setTimeout('ajax()', 1000);

• ··-·-·-··-·----·---·-···----···-···------···-·---···-·--·---------------------·----1111

JavaScript на примерах

}

// если статус<> 200, значит, произошла ошибка

else

аlеrt("Ошибка доступа к серверу: " +
xmlHttp.statusText);
}

}

}

Как видите, полученное значение текстового поля передается сценарию

ajax.php для дальнейшей обработки. Чтобы вы не запутались с именами пе­
ременных, рекомендую называть переменные одинаково во всех трех фай­

лах. Если в форме переменная называется name, то в сценарии JavaScript
для внутреннего имени тоже используйте переменную с именем name, сце­
нарию ajax.php тоже нужно передать GЕТ-переменную с именем name - как
будто бы она пришла непосредственно из формы ввода.

Наш сценарий ajax.php никакой особенной обработки производить не бу­
дет, а просто выведет имя пользователя и пожелает ему приятного дня

(лист. 14.4.)

' Листинг 14.4. Файл ajax.php

<?php
// XML output
header('Content-Type: text/xml');
11 XML header
echo '<?xml version="l.0" encoding="UTF-8"
standalone="yes"?>';
// print the <response> element
echo '<response>';
// получаем имя пользователя
$name = $_GET['name'];

echo htmlentities($name)
// конец <response>
echo '</response>';
?>

хорошего Вам дня!';

Результат работы сценария представлен на рис. 14.1. Понимаю, что сцена­
рии довольно объемны (особенно ajax.js), поэтому для улучшения восприя­
тия рекомендуется все "пощупать" лично.

• 11!1----. -. ---... -.. -----.. --. -. -...... -. -. -........ -. -. -.... -. -. -. -. -.... -. -. -. -.... -.

ГЛАВА 14. Введение в AJAX

°""' '
~~---
+- ~tl•• =

Рис. 14. 1. Результат работы АJАХ-nриnожения

Внимание!

Чтобы у вас не было проблем с кодировками, всегда используйте кодировку

UTF-8. Ее поддерживают все современные браузеры и текстовые редакто­
ры. Файлы с кодом сохраняйте в кодировке UTF-8, данные в базе данных
храните также в этой кодировке. Все текстовые редакторы, предназначен­

ные для редактирования кода, даже простейший Notepad2, поддерживают
кодировку UTF.

• -............ -...

Глава 15.

Добавляем jQuery UI на сайт

ГЛАВА 15. Добавляем jOuery UI на сайт

Ранее было показано несколько примеров, построенных на основании би­
блиотеки jQuery. Как правило, это были различные плагины для jQuery. В
этой главе мы рассмотрим собственные возможности этой библиотеки по
созданию интерфейса пользователя.

15. 1. Загрузка jQuery UI

Скачать библиотеку UI jQeery можно совершенно свободно (без оплаты и
регистрации) с сайта http://jqueryui.com/ download/ На данный момент по­
следней является версия 1.12 дляjQuery 1.7. Именно эту версию и рекомен­
дуется использовать.

При загрузке библиотеки можно выбрать тему оформления (рис. 15.1). Хотя
вы можете загрузить другую тему в любое удобное для вас время. На иллю­
страциях в этой книге будет использоваться тема оформления UI lightness.

~tкt the the.-ie you w&nt to include or .;е~ «. c.шU:..s thnne

• Рис.15.1 .

. ---- -- ---------. --. ---------------------- ----------------- -- --------------------- -IJIJ

JavaScпpt на примерах

15.2. Выбор даты

Далее мы рассмотрим ряд виджетов и покажем, какие из них вы можете ис­

пользовать при разработке сайтов разной сложности.

Виджет - это уже готовый элемент интерфейса пользователя. Библиотека

UI jQuery содержит целый набор различных элементов пользовательского
интерфейса. Например, в этом разделе будет рассмотрен элемент выбора
даты. А это означает, что вам никогда не придется разрабатывать его само­
стоятельно - вы можете использовать уже готовое решение.

,,.,_

~,"
(Jf'f • • =

Jща: _______ J

Пн Вт Ср Чт Пт С6 Вс

2 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

21. 23 1.4 25 26 п 28

29 30 31

Рис. 15.2. Виджет DataPlcker

Посмотрите на рис. 15.2. На нем изображен виджет DataPicker из библио­
теки UljQuery. Сейчас и вы научитесь создавать такой же. Представим, что
у нас есть поле ввода даты:

<p >Date : <input i d="date" typ e =" text" />< /р>

Ничего особенного, обычное поле с id="date". Вызвать виджет DataPicker
можно с помощью метода datapicker():

$("#dat e") .da t e p icke r () ;

• 1111-- -- --------- ------------------------------------- -------- --- -------------- ------"

ГЛАВА 15. Добавляем jQuery UI на сайт

Вот только чтобы все заработало как нужно, необходимо подключить би­
блиотеку UI jQuery. Как уже отмечалось ранее, при загрузке библиотеки
можно выбрать тему оформления. Доступно много подобных тем, к сожале­
нию, нельзя скачать их все сразу, приходится довольствоваться нескольки­

ми вариантами, а потом извлечь из них необходимые вам СSS-файлы.

Подключить необходимую тему оформления можно как обычный СSS­
файл, например:

<link type="text/css" href="css/нaзвaниe-'l'eмы/jquery-ui.

custom.css" rel="stylesheet" />

Подключение всего необходимого (не только для этого, но и для всех по­
следующих примеров в этой главе) выглядит так:

<link type="text/css" href="css/ui-lightness/jquery-ui.
custom.css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>
<script src="js/jquery-ru.js" type="text/javascript"></
script>

Код раскрытия календаря следующий:

<script type="text/javascript">
$ (function () {

$.datepicker.setDefaults($.extend($.datepicker.
regional ['ru']));

$("#date") .datepicker();
}) ;

</script>

Обратите внимание, что при открытии календаря мы указываем локализа­
цию - 'ru'. Однако все равно календарь был на английском. Чтобы его руси­
фицировать, нужно создать файл jquery-ru.js (мы его подключаем к нашей
странице, см. выше), приведенный в листинге 15.1.

Листинг 15.1. Файл локализации jquery-ru.js

jQuery(function($) {
~ $.datepicker.regional['ru'] = {

·--IJll

JavaScript на примерах

)) ;

monthNames: ['Январь', 'Февраль', 'Март', 'Апрель',

'Май', 'Июнь', 'Июль', 'Август', 'Сентябрь',

'Октябрь', 'Ноябрь', 'Декабрь'],

dayNamesMin: ['Вс' ,'Пн' ,'Вт' ,'Ср' ,'Чт' ,'Пт' ,'Сб'],

firstDay: 1,
) ;

$.datepicker.setDefaults($.datepicker.regional['ru']);

Данный файл вы не найдете в комплектеjQuегу UI.

Полный исходный код страницы примера приведен в листинге 15.2

Листинг 15.2. Полный код страницы выбора даты

<html>
<head>
<title>lS-2</title>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custom.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>
<script src="js/jquery-ru.js" type="text/javascript"></script>
<script type="text/javascript">
$ (function () {
$.datepicker.setDefaults($.extend($.datepicker.

regional['ru']));
$("#date") .datepicker();

}) ;

</script>
</head>
<body>
<р>Дата: <input id="date" type="text" /></р>

</body>
</html>

15.3. Диалоговое окно

С помощью виджета Dialog можно организовать привлекательное диало­
говое окно, которое затем перемещать по странице и при необходимости

• 111!1--·

ГЛАВА 15. Добавляем jQuery UI на сайт

закрыть. Также пользователь может изменять размер такого диалогового

окна. Очень полезная штука при выводе различных уведомлений или ре­

кламных блоков.

Организовать такое окно очень просто. Для начала нужно задать текст, ко­

торый будет использоваться для помещения в диалоговое окно:

<div id="dialog" titlе="Привет!">
<р>Только сегодня! Успей купить гироскутер всего за 300$ и

получи в подарок шлем!</р>

В данном случае в качестве текста будет использован текст из <div> с иден­
тификатором "dialog", а атрибут title будет задействован в качестве заголов­
ка окна.

Далее нужно вызвать метод dialog():

$ ("#dialog") . dialog () ;

Собственно, вот и все. Полный исходный код приведен в листинге 15.3, а
результат работы метода dialog() - на рис. 15.3.

Листинг 15.3. Использование метода dialog()
1

<html>
<head>
<title>Диaлoг</title>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custom.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>
<script type="text/javascript">
$ (function () {

$ ("#dialog") . dialog () ;
}) ;

</script>
</head>
<body>
<div id="dialog" titlе="Привет!">

<р>Только сегодня! Успей купить гироскутер всего за 300$ и
получи в подарок шлем!</р>

</div>

• ·----------------------------···-···-·--···-·--------···-····----------·---·-------IJD

JavaScпpt на примерах

</body>
</html>

Ди!лог

" ~ fil.:!l/C:/tert/sito/chl5!15-3.html

Только сегодня! Успей купить
гнроскутер всего за 300$ и
получи в подарок wлем!

Рис. 15.З. Созданное диалоговое окно

15.4. Раскрывающиеся секции

Виджет Accordion позволяет организовать раскрывающиеся секции НТМL­
кода. Чтобы вам было понятно, что мы создаем, взгляните на рис. 15.4. Ду­
маю, вы не раз видели подобные виджеты на других сайтах. Оказывается,
организовать такой виджет очень просто.

Первым делом нужно определить <div>, содержащий подходящую для
Accordion структуру. А именно: заголовки секций должны быть оформле­
ны как <hЗ>, а после заголовка должен следовать <div>, содержащий текст
раздела (<div> обязательно должен быть закрыт!). Внутри <div> можно
использовать любые НТМL-операторы: создавать списки, вставлять кар­
тинки, формировать таблицы и т.д.

Вот пример нашего <div> с необходимой информацией:

<div id="acco~dion" >
<hЗ><а hrеf="#" >Описание</а></hЗ>

<div> ---------- --- -- -- ----------·. -- ___ ; _. --- ·---- ---. ---- ------- -------------------'

ГЛАВА 15. Добавляем 10uery UI на сайт

~ - ~)

~­Cff • • =
• Оn1«сание

Гироскутер Смартвей UERA-ESU010 граффити с nодс11едкой колес 6. 5" и Блютуз
динамиками

Любимая 11семи надежная модель Smartway UERA-ESU010, обрела но11ую модную
расц11етку и прошла легкий рестайлинr. Новое оформление колес , дополнительная
с11етодиодная подс11етка сделали ее более при11Лекательной 11 стильной. Важным
нововведением является более прочный пластико11ый корпус 11 ультрамодных раскрасках
и обно11ленным диsайном. Тех.ническое оснащение как всегда на высоте . Отл~1чный
брендо11ый аккумулятор Samsuni емкостью 4400 мАч , д11а мощнь1х мотор-колеса по 350
Ватт , 3 со11ременных электроннь1х платы управления а так-же прочный металлический
каркас 11ыдержи11ающий 11ес е3Дока до 120 кг. Все это спрятано 11 крепком пластико11ом
корпусе.

' Характеристики

Цена и особые условия

Рис. 15.4. Виджет Accordion в действии

<р>Гироскутер Смартвей UERA-ESUOlO граффити с подсветкой

колес 6.5" и блютуз-динамиками</р>

<р>Любимая всеми надежная модель Smartway UERA-ESUOlO
обрела новую модную расцветку и прошла легкий рестайлинг.

Новое оформление колес, дополнительная светодиодная подсветка

сделали ее более привлекательной и стильной. Важным

нововведением является более прочный пластиковый корпус в

ультрамодных раскрасках и с обновленным дизайном. Техническое

оснащение как всегда на высоте. Отличный брендовый аккумулятор

Samsung емкостью 4400 мАч, два мощных мотор-колеса по 350
Ватт, 3 современных электронных платы управления а также

прочный металлический каркас, выдерживающий вес ездока до

120 кг. Все это спрятано в крепком пластиковом корпусе.</р>

</div>
<hЗ><а hrеf="#">Характеристики</а>< /hЗ>

<div>
<р>Максимальная нагрузка: 120 кг
<р>Мощность: 700W (350W * 2)
<р>Время зарядки: 2-2,5 ч

'--- - · · · ·· -··---------- -- --··----- - · -·---------- - - -- - - ·--·-····· · · · · --- -·-···--- - -&1

JavaScпpt на примерах

<р>Пробег на одной зарядке: 20-25 km
<р>Емкость батареи: 4400mAh 158w (батарея Samsung)
<р>Размер колес: 6,5 дюймов (18 см)

<р>Влагозащита: IP54 </р>
</div>
<h3>Цeнa и особые условия</а></h3>
<div>

<р>Обычная цена: $375
<р>Акционная (только до 31.08.2016): $299

</div>

Потом, все, что вам нужно сделать, - это вызвать метод accordion:

<script type="text/javascript">
$(function() {

$("#accordion") .accordion();
)) ;

</script>

Собственно, вот и все. Полный код страницы приведен в листинге 15.4.

Листинг 15.4. Использование виджета Accordioп

<html>
<head>
<titlе>Раскрывающиеся секции</titlе>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custom.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>
<script type="text/javascript">
$(function() {

$("#accordion") .accordion();
)) ;

</script>
</head>
<body>
<div id="accordion">

<h3><a hrеf="#">Описание</а></h3>
<div>

........... ·-·-··· -..... -. -.... -··-·· -. -.. --------. -.. : - .. -....... -.. -... -~

ГЛАВА 15. Добавляем jQuery UI на сайт

<р>Гироскутер Смартвей UERA-ESUOlO граффити с подсветкой

колес 6.5" и блютуз-динамиками</р>

<р>Любимая всеми надежная модель Smartway UERA-ESUOlO
обрела новую модную расцветку и прошла легкий рестайлинг.

Новое оформление колес, дополнительная светодиодная

подсветка сделали ее более привлекательной и стильной. Важным

нововведением является более прочный пластиковый корпус в

ультрамодных раскрасках и с обновленным дизайном. Техническое

оснащение как всегда на высоте. Отличный брендовый аккумулятор

Samsung емкостью 4400 мАч, два мощных мотор-колеса по 350
Ватт, 3 современных электронных платы управления а также
прочный металлический каркас, выдерживающий вес ездока до 120
кг. Все это спрятано в крепком пластиковом корпусе.</р>

</div>
<h3><a hrеf="#">Характеристики</а></h3>
<div>

<р>Максимальная нагрузка: 120 кг
<р>Мощность: 700W (350W * 2)
<р>Время зарядки: 2-2,5 ч
<р>Пробег на одной зарядке: 20-25km
<р>Емкость батареи: 4400mAh 158w (батарея Samsung)
<р>Размер колес: 6,5 дюймов (18 см)

<р>Влагозащита: IP54 </р>
</div>
<h3>Цeнa и особые условия</а></h3>
<div>

<р>Обычная цена: $375
<р>Акционная (только до 31.08.2016): $299

</div>

</div>
</body>
</html>

15.5. Индикатор процесса

Наверняка вы видели индикатор процесса, показывающий ход выполнения

какого-то процесса, например загрузки файла.

Индикатор процесса создается методом progressbar(). При изменении зна­
чения индикатора (позже я покажу, как это сделать) генерируется событие
progressbarchange. Когда значение индикатора достигнет 100, будет сгене­
рировано событие progressbarcomplete . • ·-·-·-- --· -· --- --· ... -. --·. -- -- . -·-·---- --. -. ---·-·- -· - . ---·- ·-- --- -..... ...

JavaScr1pt на примерах

В листинге 15.5 приведен полный код страницы, демонстрирующей управ­
ление индикатором процесса.

Листинг 15.5. Демонстрация управления индикатором процесса

<html>
<head>
<title>29-4</title>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custom.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>
<script type="text/.javascript">
$(function() {

$("#bar") .progressbar({
value: О,

change: function(event, ui)
//window.alert('Event ' + event.type);

} '
complete: function(event, ui)
window.alert('Event ' + event.type);

}

}) ;

$ ("but ton") . click (function () {
var currentVal = $("#bar") .progressbar('option', 'value');

if(currentVal<lOO)

}

currentVal = currentVal + 10;
$("#percent") .text(currentVal + "%");
$ ("#bar") . progressbar ('option' , 'val ue' , currentVal) ;

}) ;

}) ;

</script>
</head>
<body>
<div id="bar"></div>
<Ьuttоn>Добавить 10</button>
<div id="percent"></div>
</body>
</html>

• &1--·

ГЛАВА 15. Добавляем jQuery UI на сайт

У нас есть кнопка, увеличивающая значение индикатора процесса на 10. В
<div> с идентификатором "result". При ее нажатии мы первым делом полу­
чаем текущее значение индикатора в переменную currentVal, затем если это
значение еще не достигло 100, мы увеличиваем его на 10 (в реальном мире
придется увеличивать на столько, сколько работы по-настоящему выпол­
нено), выводим в область result и устанавливаем новое значение методом
progressbar().

Как только значение индикатора достигнет 100, будет сгенерировано собы­
тие progressbarcomplete и будет запущен его обработчик - вы увидите диа­
логовое окно с типом события. А вот если вы хотите (из соображений от­
ладки, конечно) видеть подобное диалоговое окно при каждом изменении
значения индикатора, раскомментируйте выделенный жирным оператор.

Пример работающего индикатора процесса приведен на рис. 15.5.

,,..,,,._

~."
Ctf • • :

1 Добавит~. 10 1
~0%

!
j

Рис. 15.5. Индикатор процесса

Вообще обработчик события pгogressbarchange можно использовать для
чего-то полезного, например, если индикатор загрузки отображает процесс
установки вашего программного продукта, то можете менять слайды, де­

монстрируя пользователю особенности вашего продукта. Все мы устанав­
ливали хоть раз в жизни Windows, поэтому, думаю, вы понимаете, о чем я
говорю. Конечно, нaJavaScript и РНР операционную систему не напишешь,

но зато можно написать систему управления контентом и сделать для нее

красочный инсталлятор, а в этом как раз вам поможет UljQuery .

• ·--- -- ---------------- ------------------. -------------------- -- ------- ----- -- -----fD

JavaScript на примерах

15.6. Вкладки

Иногда удобнее представить информацию во вкладках, например, когда вы
разрабатываете интерфейс сценария, изменяющий параметры вашего про­
граммного продукта. Вместо того чтобы создавать несколько страниц с на­

стройками, вы можете использовать одну страницу, но несколько вкладок

(см. рис. 15.6).

l)t ' '

§~,"!P'~il;!k~H;>"} -

Ctf . • E

Оn>'lсание Характеристик1о1

Гироскутер Смартвей UERA-ESU010 граффити с подсведкой колес 6.5" и блюту3 динамиками

Любимая всеми надежная модель Smartway UERA-ESU010, обрела новую модную расцветку
и прошла легкий рестайлинг. Новое оформление колес, 'дополнительная снтодиодная
подсветка сделали ее более привлекательной и стильной. Важнь1м нововведением
я8Ляется более прочныi:\ пластико11ы'1 корпус в ультрамодных раскрасках и обно11Ленным
ди3аi:\ном. Техническое оснащение как всегда на высоте. Отличный брендовыi:\
аккумулятор Samsuпg емкостою 4400 мАч, два мощных мотор-колеса по 350 Ватт, З

современнь1х мектронных платы управления а т~к-же nрочнь1Й металлический каркас
выдерживающий вес еэдока до 120 кг. Все это спрятано в крепком пластиковом корпусе.

Рис. 15.6. Вкладки, реализованные с помощью UI jQuery

Организовать вкладки очень просто. Для этого нужно создать список, со­

стоящий из заголовков вкладок, а затем в отдельных блоках (id блока дол­
жен соответствовать id вкладки) описать содержимое каждой вкладки:

<div id="tabs">

<l i >Oпиcaниe

<a hrеf="#tаЬs-2 " >Характеристики</а>

Цeнa

<div id="tabs-1" >

<р>Содержимое 1-й вкладки </р>

</di v>

• ВI- ------------- ---. --- ----- -·

<div id="tabs-2">
<р>Содержимое 2-й вкладки</р>

</div>
<div id="tabs-3">

<р>Содержимое 3-й вкладки</р>

</div>
</div>

ГЛАВА 15. Добавляем 10uery UI на сайт

После того как вкладки определены, нужно вызвать метод tabs() для роди­
тельского блока:

$ ("#tabs") . tabs () ;

Полный код страницы с вкладками представлен в листинге 15.6.

Листинг 15.6. Вкладки с помощью UI jQuery

<htrnl>
<head>
<title>29-5</title>
<rneta http-equiv="Content-Type" content="text/htrnl;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custorn.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custorn.rnin.js" type="text/
javascript"></script>
<script type="text/javascript">
$ (function () {

$ ("#tabs") .tabs ();
}) ;

</script>
</head>
<body>
<div id="tabs">

Onиcaниe
<a hrеf="#tаЬs-2">Характеристики</а>
Цeнa

<div id="tabs-1">

<р>Содержимое 1-й вкладки.</р>

</div>
<div id="tabs-2">

~ <р>Содержимое 2-й вкладки</р>

·--- -- ---------- --------- ------------ -- ---- ----- ---------- --- --- ------- ------------&1

JavaScr1pt на примерах

</div>
<div id="tabs-3">

<р>Содержимое 3-й вкладки</р>

</div>
</div>

</body>
</html>

15.7. Кнопки
Описание библиотеки UI jQuery было бы не полным, если бы мы не рас­
смотрели, какие она умеет формировать кнопки. Казалось, нужно было с
кнопок и начать, поскольку они всегда считаются самыми примитивными

виджетами, однако хотелось сразу начать с чего-то более интересного и по­

лезного. Тем более, кнопки UI jQuery мне кажутся немного вычурными
(рис. 15.7). С одной стороны, симпатично, с другой они впишутся далеко не
в каждый дизайн, поэтому придется экспериментировать с СSS-кнопками

или же с другой темой оформления для всего UI jQuery.

Кнопка 1 Кнопка 2 [~~~~]

Рис.15.7. ВиджетВuttоп

• &1- -- -- -. ----------- -------------- -- --------------- ------------------ ---- --- . ----- --·

ГЛАВА 15. Добавляем jQuery UI на сайт

Рассмотрим код страницы, изображенной на рис. 15.7 (лист. 15.7).

Листинг 15. 7. Код страницы с кнопками

<html>
<head>
<title>l5-7</title>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<link type="text/css" href="css/ui-lightness/jquery-ui.custom.
css" rel="stylesheet" />
<script src="js/jquery.js" type="text/javascript"></script>
<script src="js/jquery-ui.custom.min.js" type="text/
javascript"></script>

<style type="text/css">
button { margin:lOpx; }
</style>

<script type="text/javascript">
$(function() {

$("#buttonl") .button() .click(function(e) {
alert("Button 1 pressed");

}) ;

$("#button2") .button() .click(function(e) {
alert("Button 2 pressed");

}) ;

}) ;

</script>
</head>
<body>
<div>

<button id="buttonl">Kнoпкa l</button>
<button id="button2">Kнoпкa 2</button>
<button id="buttonЗ">Kнoпкa 3</button>

</body>
</html>

Нужно отметить, что мало просто подключить библиотеку UI jQuery, что­
бы все кнопки превратились в кнопки, показанные на рис. 15.7 (имеются в
виду первые две кнопки). Как видно из кода, представленного в лист. 15.7,
для первых двух кнопок вызывался метод button(). Именно он и выполня-

• ...

JavaScript на примерах

ет превращение обычной кнопки в UI-кнопку. Для третьей кнопки мы этот

метод не вызывали, и она выглядит как обычно.

На этом всё. Если вы заинтересовались, получить информацию о допол­

нительных виджетах, а также испытать их в действии вы всегда можете по

адресу: http://jqueryui.com/demos/

• 1!8----·-············-----------------------·-----------------·-········----·-·······

Глава 16.

Наворачиваем изображения

JavaScript на примерах

16. 1. Изменение изображения по
событию мыши

Используя события OnMouseOver и OnMouseOut, а также OnMouseDown,
можно изменять картинки на странице. Один из самых наиболее распро­
страненных сценариев - изменить картинку при наведении на изображение
указателя мыши (событие OnMouseOver), а затем восстановить перво­
начальное изображение при событии OnMouseOut. Рассмотрим пример
(лист. 16.1).

Листинг 16. 1 . Изменение изображения nри наведении мыши

<а href="#"
OnMouseOver="document.getElementByid('scooter').

src='yellow.png'"
OnMouseOut="document.getElementByid('scooter').

src='Ьlue.png'">

<img id="scooter" src="Ьlue.png" border=O
align="left">

Код очень прост: в элемент страницы с идентификатором scooter загружает­
ся изображение синего гироскутера Ыue.png. При наведении на него мыши
изображение заменяется на изображение желтого скутера - yellow.png. Как
только указатель мыши выйдет за пределы изображения, будет восстанов­
лено исходное изображение.

Аналогично можно было заменить изображение по нажатию на него мы­
шью. Для этого нужно использовать событие OnMouseDown - оно проис­
ходит, когда пользователь нажимает кнопку мыши. Восстановить исходное

изображение можно по событию OnMouseUp (лист. 16.2).

Листинг 16.2. Изменение изображения при нажатии кнопки мыши

<а href="#"

• Etl------. -. --------. ------------. ----------.. -----. -. --.. -.. -..... ------. -. ------. -.

ГЛАВА 16. Наворачиваем изображения

file;/ //C :/test/sito/Chlб/16-1 .html# '

Рис. 16.1. Замена изображения по событию мыши

OnMouseDown="document.getElementByid('scooter').
src='yellow.png'"

OnMouseUp="document.getElementByid('scooter').
src='Ьlue.png'">

<img id="scooter" src="Ьlue . png" border=O
align="left">

16. 2. Слайдер в виде фотопленки

В главе 5 мы создали два слайдера - один был попроще и написан средства­
ми обычного JavaScript, второй - с помощью библиотеки jQuery. В этой
главе мы разработаем еще один довольно эффектный слайдер в виде фото­

пленки. На рис. 16.2 показано, что у нас должно получиться в итоге.

Первым делом начнем разработку таблицы стилей для нашего слайдера:

<style type="text/css">

.scroller row {
position: relative;
white-space: nowrap;
width: 200%;
padding: 22рх О 22рх О;

• ·- ------ ---------------· ------·--- --·----. -- -------.. -·--... --. -·- -----· -.. --- ·- ---1!!1

JavaScпpt на примерах

1 + ~ fil.-;!//C:/t..Vsrto/~~6/16-3.ht~I
!

~м~· ... ·~·. ·m· ... · ~·-· ··~ -· . ·.· .. ~ ~ ~ ,_ ~
• t • • • 1 . " . . .

•••••••••••••••••••••••••••

Рис. 16.2. Спайдер в виде фотопленки

background: url('images/foto.gif') repeat-x;

</style>

Основной момент в таблице стилей выделен жирным. Если у вас в слайде­
ре много изображений, то вам нужно увеличить значение параметра width,
иначе фотопленка (фоновое изображение foto.gif) не будет дублироваться.

Мы предполагаем, что высота изображений в слайдере будет равна 100
пикселям. Если вы захотите увеличить это изображение, тогда вам нужно

предоставить другое фоновое изображение слайдера - чтобы оно могло по­
местить изображения увеличенного размера.

Полный код примера (CSS, JavaScript и HTML) вместе с комментариями
приведен в листинге 16.3.

Листинг 16.3. Полный код фото-слайдера

<head>
<style type="text/css" >

.scroller container
padding-left:lOOpx;
p adding-top: SOpx;

.scroller con t a i ne r d iv

------ ---- -- ----------- --- -- - - ------ •

float: left;
vertical-align: baseline;

.scroller_window {
width: 530рх;

overflow: hidden;

.scroller_row {
position: relative;
white-space: nowrap;
width: 200%;
padding: 22рх О 22рх О;

ГЛАВА 16. Наворачиваем изображения

background: url('images/foto.gif') repeat-x;

.scroller_row img
padding: О;

margin:O;

.scroller row а
padding:O;
margin:O;

.scroller container > IMG{
float: left;
vertical-align: baseline;
padding: 2рх lpx О lpx;
cursor: pointer;

а img {
border:O;

</style>

<script type="text/javascript">
var scroller;
scroller = function ()

return{
speed:lO,
position:O,
width:O,
step:O,
t:null,

11 слайдер

/*скорость в миллисекундах*/

window:O,
//Инициализация слайдера

init: function ()
var el;

• -.......... -... -...... -. -. -...... -. -......... --·-

JavaScпpt на примерах

window');

} '

// Получить ширину внутренней части слайдера
el = document.getElementByid('scroller_rule');
scroller.width = el.clientWidth;

// Получить ширину окна слайдера
el = document.getElementByid('scroller_

scroller.window = el.clientWidth;

// Установка обработчика колесика МЬШIИ
addEvent(el, 'mousewheel', this.wheel);
addEvent(el, 'DOММouseScroll', this.wheel);

// fix размеров для background (Opera, Chrome)
el = document.getElementByid('scroller_row');
el.style.width = scroller.width+'px';

// Обработчик колесика МЬШiи
wheel: function (е) {

//Если уже идет прокрутка, то игнорировать событие

if (scroller.t != null)
scroller.stop();

е = е ? е : window.event;
var wheelElem = e.target ? e.target : e.srcElement;
var wheelData = e.detail ? e.detail * -1 : e.wheelDelta / 40;

// В движке WebKit возвращается значение в 100 раз больше
if (Math.abs(wheelData) > 100) {

wheelData Math.round(wheelData / 100);

if (wheelData < 0)
scroller.step 5 * Math.abs(wheelData);
scroller.timer('right', 1);

else {
scroller.step = 5 * Math.abs(wheelData);
scroller.timer('left', 1);

if (window.event)
e.cancelBubЫe = true;
e.returnValue = false;
e.cancel = true;

if (e.stopPropagation && e.preventDefault) {

• IJ!I- -·-···. -· -· -··---··. -·-· -........ ---·-· ··-- ---- ····- ... ······

} ,

ГЛАВА 16. Наворачиваем изображения

e.stopPropagation();
e.preventDefault();

return false;

//Функция скроллера

scroll: function (dir, wheel)
var el = docurnent.getElernentByid('scroller_row');
var step;
if (wheel == 0)

step = 2;
}else{

step = Math.round(Math.log(_scroller.step * 2) * 2.5);
scroller.step--;

if (scroller.step 0)
scroller.stop();

if (dir == 'left')
scroller.position += step;

if (scroller.position > 0)
scroller.position = О;

scroller.stop();

else // dir='rigth' (направление вправо)

scroller.position -= step;
if (scroller.position < (scroller.window

scroller. width)) {
scroller.position scroller.window

scroller.width;
scroller.stop();

el.style.left scroller.position + 'рх';

} ,

// Таймер слайдера
tirner: function (dir, wheel)

scroller.stop();
scroller.t = setinterval(" scroller.scroll('"

+ dir + "' "+ wheel + ");", scroller.speed);

} '

• .. -........ -. --...... --·- ---. -----............ -. -.... -... -. -...... ---........ -. -.. "

JavaScr1pt на примерах

} ;
} () ;

11 Остановка слайдера
stop: function ()

if (scroller.t != null)
clearinterval(scroller.t);
scroller.t = null;

window.onload=function() {setTimeout(scroller.init,100);};
11 задержка при запуске
</script>
</head>
<body>

<div class="scroller container">
<img src="images/left.gif" alt="" onmousemove=" scroller.

timer('left',0) ;" onmouseout=" scroller.stop();">
<div class="scroller window" id="scroller window">

<div class="scroller row" id="scroller row">
<div id="scroller rule">

<а href="#l" onclick="return!l"><img src="sl.
jpg" height="l00" alt="">

<а href="#2" onclick="return!l"><img src="s2.
jpg" height="lOO" alt="">

<а href="#З" onclick="return!l"><img src="sЗ.
jpg" height="lOO" alt="">

<а href="#4" onclick="return!l"><img src="s4.
jpg" height="lOO" alt="">

<а href="#S" onclick="return!l"><img src="sS.
jpg" height="l00" alt="">

<а href="#б" onclick="return!l"><img src="sб.
jpg" height="l00" alt="">

<а href="#7" onclick="return!l"><img src="s7.
jpg" height="lOO" alt="">

<а href="#B" onclick="return!l"><img src="s8.
jpg" height="l00" alt="">

<а href="#9" onclick="return!l"><img src="s9.
jpg" height="l00" alt="">

</div>
</div>

</div>

• E!!t-----------------. -. -. -- --. -. -. ---- ... -. -. -. ------. -. -. -. --... -. -. -- --- .. -..... -..

ГЛАВА 16. Наворачиваем изображения

<img src="images/right.gif" alt="" onmousemove=" scroller.
timer ('right', О);" onmouseo.ut=" scroller. stop () ; ">
</div>

При щелчке на изображении ничего не происходит благодаря установке со­
бытия OnClick:

onclick="return!l"

Нажатие кнопок со стрелками влево и вправо обеспечивает переключение
фотографий в слайдере:

<img src=" images/right. gif" al t="" onmousemove=" scroller.

timer('right',0);" onmouseout=" scroller.stop();">

К преимуществам нашего способа можно отнести то, что наш слайдер не
требует сторонних библиотек.

16.3. Загрузка изображения в div

В этом примере будет показано, как загрузить изображение в DIV. Во вре­
мя загрузки изображения будет отображаться надпись "Загружается", пока
изображение не будет загружено. Полный код приведен в листинге 16.4, а
результат его выполнения изображен на рис. 16.3.

Листинг 16.4. Код примера

<html>
<head>
<script>
function imgdiv(url)

var el=document.getElementByid('img_div');
var img=new Image();
img.onload=function()

{

el.style.width=img.width+'px';
el.style.height=(img.height+20)+'px';

• ········ ·······. ············ ····-··· -................. -.......... ...

JavaScпpt на примерах

el.innerHTML='<img src='+url+' style="margin:O"
width="'+img.width+'" height="'+img.height+'" />
 ('+img.
width+'x'+img.height+')';

}

el.innerHTML='Зaгpyжaeтcя ... ';
img.src=url;
}

</script>
</head>
<b ody>
<hЗ><а href='#' onclick='imgdiv("Ьlue.png")' >Oткpыть DIV< /
hЗ>

<div id="img div" style='BORDER:#9fbddd lpx solid;' >< /div>
</body>
</html >

fil.:// /C;/t"st/".Chlб/16·4.html#)(

ОткрытьDIV

1

11

1

Рис. 16.З. Щелчок на надписи приводит к заrрузке изображения в DIV

• E1J. · ·· ·· · ······ · ······ · · :

ГЛАВА 16. Наворачиваем изображения

16.4. Карусель фотографий

После простого примера настало время опять для более сложного. На этот
раз мы реализуем карусель фотографий. Фотографии, загруженные в ка­

русель, будут прокручиваться непрерывно, пока пользователь не наведет
указатель мыши на карусель.

В качестве основы мы будем использовать слайдер фотопленки, однако фо­
тографии будут прокручиваться автоматически (а не по нажатию кнопки
влево или вправо) и не будет фона самой фотопленки. При этом мы опять
не будем использовать сторонние библиотеки, а весь код напишем самосто­
ятельно.

Также мы воспользуемся предыдущим примером и по щелчку на карусели

будем загружать в div выбранное пользователем изображение. Для этого
мы надлежащим образом задаем событие onclick, а именно вызываем функ­
цию загрузки изображения в div:

<div id="scroller_container" onmousemove="_scroller.stop();"
onmouseout=" scroller.timer(scroller.direct);">

<div>
<а href="#l" onclick='imgdiv("sl.jpg")'><img src="sl.

jpg" height="100">
<а href="#2" onclick='imgdiv("s2.jpg")'><img src="s2.

jpg" height="lOO">
<а href="#З" onclick='imgdiv("sЗ.jpg")'><img src="sЗ.

jpg" height="lOO">
<а href="#4" onclick='imgdiv("s4.jpg")'><img src="s4.

jpg" height="lOO">
<а href="#S" onclick='imgdiv("s5.jpg")'><img src="s5.

jpg" height="lOO">
<а href="#б" onclick='imgdiv("sб.jpg")'><img src="sб.

jpg" height="lOO">
<а href="#7" onclick='imgdiv("s7.jpg")'><img src="s7.

jpg" height="100">
<а href="#B" onclick='imgdiv("s8.jpg")'><img src="s8.

jpg" height="100">
<а href="#9" onclick='imgdiv("s9.jpg")'><img src="s9.

jpg" height="lOO">
</div>

</div>

Полный код примера вместе с комментариями приведен в листинге 16.5.

~--···· -..... -- ---- ----- -. ----- ---.. -... ---. -- . -. -- . -. ----. --- . ---. --. ---811

JavaScript на примерах

Листинг 16.5. Карусель фотографий

<html>
<head>
<style type="text/css">

#scroller container
margin: О auto;
width: 530рх;

overflow: hidden;
line-height:O;
font-size:O;

#scroller container div {
float: left;
vertical-align: baseline;

#scroller container>div {
position: relative;
white-space: nowrap;
width: 100%;
padding: 22рх О;

#scroller container>div а,

#scroller container>div а img
padding: О;

margin:O;

#scroller container>div а img
margin: О lpx;
border:O;

</style>

<script type="text/javascript">
var scroller;
scroller = function () { / / scroller

return{
speed:lO, /*скорость, чем больше значние, тем

медленнее движение*/

direct:-1,/* -1 - движение влево, +1 - вправо*/

position:O,
t:null,
// Инициализация скроллера
ini t: function () {

var el;
11 Установка обработчика колесика МЬШJИ

• 11!1-----------···-·-······-·····-·---------------------·-··-·---·-·--------·---------·

ГЛАВА 16. Наворачиваем изображения

el = docurnent.getElernentByld('scroller_container');
scroller.addEvent(el, 'rnousewheel', scroller.wheel);
scroller.addEvent(el, 'DOММouseScroll', _scroller.wheel);

scroller.tirner(scroller.direct); //
запускаем скроллер

} '

// Обработчик колесика МЬШIИ
wheel: function (е) {

scroller.stop();
е = е ? е : window.event;
/*var wheelElern = e.target ? e.target

e.srcElernent;*/
var wheelData = e.detail ? e.detail * -1

e.wheelDelta / 40;

раз больше

} '

//В движке WebKit возвращается значение в 100

if (Math.abs(wheelData) > 100)
wheelData = Math.round(wheelData / 100);

}

11 scroller.scroll(wheelData*lO);
scroller.direct=wheelData>O?l:-1;
scroller.tirner(scroller.direct);

if (window.event) {
e.cancelBubЫe = true;
e.returnValue = false;
e.cancel = true;

if (e.stopPropagation && e.preventDefault)
e.stopPropagation();
e.preventDefault();

return false;

11 Функция скроллера
scroll: function (wheel)

var el = docurnent.getElernentByld('scroller_
container') .firstElernentChild;

var о, oi, width;
scroller.position += wheel;

if (wheel>O) {
if (scroller.position >= 0)

• -- ------ --- -------- -- ---- ----- ---- --------- -- ----·-- --- -- ------ ------.... ...

JavaScript на примерах

11 берем последнюю картинку и вставляем ее
в начало

11 в этот момент можно подгружать

находящуюся левее картинку

// и удалить последнюю
o=el;//.firstElementChild; // контейнер

с картинками

// последняя картинка вместе с анкором

oi=o.lastElementChild;
11 размер картинки

width=oi.firstElementChild.clientWidth;
o.insertBefore(oi,o.firstElementChild);
scroller.position-=width;

else
o=el;//.firstElementChild; // контейнер с

картинками

oi=o.firstElementChild; // первая картинка
вместе с анкором

width=oi.firstElementChild.clientWidth; //
размер

if(_scroller.position < -width) {
// если картинка ушла влево из зоны

видимости

11 переносим ее в конец списка

следующую

} '

// В этот момент можно подгружать

11 картинку и удалить первую
o.appendChild(oi);
scroller.position+=width;

el.style.left scroller.position + 'рх';

11 Таймер скроллера
timer: function (wheel)

scroller.stop();

+ wheel + ") ; ",
scroller.t = setlnterval(" scroller.scroll("
scroller.speed);

} '

11 Остановка скроллера
stop: function () {

if (scroller.t != null)

•

} '

ГЛАВА 16. Наворачиваем изображения

clear!nterval(scroller.t);
scroller.t = null;

11 назначить обработчик события

addEvent:function(el, evType, fn, useCapture)
if (el.addEventListener) {

el.addEventListener(evType, fn,
useCapture);

} ;

} () ;

}else if (el.attachEvent)
var r = el.attachEvent('on' + evType, fn);

}else el['on' + evType] = fn;

window.onload=function() {setTimeout(scroller.init,100);};
11 стартуем с задержкой, чтобы все прогрузилось

11 Функция загрузки изображения в div
function imgdiv(url)
{

var el=document.getElementByid('img_div');
var img=new Image();
img.onload=function()

{

el.style.width=img.width+'px';
el.style.height=(img.height+20)+'px';
el.innerHTML='<center><img src='+url+' width="'+img.

width+'" height="'+img.height+'" />
 ('+img.width+'x'+img.
height+')';

}

el.innerHTML='Зaгpyжaeтcя ... ';
img.src=url;
}

</script>
</head>
<body>
<hl>Карусель фотографий</hl>

<div id="scroller container" onmousemove="_scroller.stop();"
onmouseout=" scroller.timer(scroller.direct);">

<div>
<а href="#l" onclick='imgdiv("sl.jpg")'><img src="sl.

jpg" height="100">

• ··----- ----- ------ -- ----------- ----- --- -------------. ----- --- . -. -. ----- -----. ------1111

JavaScript на примерах

<а href="#2" onclick='irngdiv("s2.jpg")'><irng src="s2.
jpg" height="lOO">

<а href="#З" onclick='irngdiv("sЗ.jpg")'><irng src="sЗ.

jpg" height="l00">
<а href="#4" onclick='irngdiv("s4.jpg")'><irng src="s4.

jpg" height="100">
<а href="#5" onclick='irngdiv("s5.jpg")'><irng src="s5.

jpg" height="lOO">
<а href="#б" onclick='irngdiv("sб.jpg")'><irng src="sб.

jpg" height="l00">
<а href="#7" onclick='irngdiv("s7.jpg")'><irng src="s7.

jpg" height="100">
<а href="#B" onclick='irngdiv("s8.jpg")'><irng src="s8.

jpg" height="100">
<а href="#9" onclick='irngdiv("s9.jpg")'><irng src="s9.

jpg" height="100">
</div>

</div>

<div id="irng div" style='BORDER:#9fbddd lpx solid;'></div>
</body>
</htrnl>

16.5. Затенение картинки при наведении
с помощью фильтра

Опять настало время для простого примера, а именно - сейчас мы реализу­

ем затенение картинки при наведении на нее указателя мыши (лист. 16.6).

Листинг 16.6. Затенение картинки

<style>
а irng:hover
filter:alpha(opacity=50); .. -opacity:0.5; opacity:0.5; -khtrnl­
opacity:0.5;
}

</style>

<script type="text/javascript">
function g(c,w) // ссылка на объект и признак вкл/выкл

if (w==O && c.style.filter)
{c.style.filter="light()";

• ... ------- - - - -- - - - - - --- - - -- - - -- -- ----- - -------- " - - ---------------------- ---------".

ГЛАВА 16. Наворачиваем изображения

/*
применяем фильтр "light", который окрашивает картинку в

определенный цвет~

и задаем в качестве затемняющего цвета темно-синий оттенок.

Эта команда используется лишь в том случае, когда браузер

может работать с фильтрами

- именно поэтому она помещена после оператора if,
проверяющего, существует ли для браузера фильтр light.
*/

if(c.filters.light)c.filters.light.
addArnЬient(l50,150,150,180);

// Если нужно вернуть картинке первоначальный вид, то просто

// отменяем все фильтры.
}else c.style.filter='';
}

</script>

Данный сценарий можно использовать для всех картинок на страни­

це, к которым нужно применить эффект "затемнения". В тэг каждой кар­

тинки, для которой требуется "затемнение", следует вставить команды
"onMouseover="g(this,O)" onMouseout="g(this,1)".

16.6. Галерея Fancy Вох

Ранее мы реализовали фото-слайдер и карусель фотографий. Вам ничего

не напоминают эти мини-проекты? Правильно, они напоминают фотогале­

реи, которых в Интернете предостаточно. Как было показано ранее, такую
галерею несложно реализовать самостоятельно. Но если вы предпочитае­

те сразу использовать готовые решения, а не изобретать колесо, можно ис­
пользовать галерею Fancy Вох.

16.6.1 . Самая простая галерея

Прежде чем приступить к написанию кода, скачайте плагин FancyBox с
официального сайта: http://fancybox.net/

Для подключения плагина к вашей странице нужно подключить: библиоте­
ку jQuery, собственно сам плагин FancyBox и таблицу стилей (СSS-файл)
FancyBox:

• . --- -------- ------ -------- --- ------ ----- ----------- -- --------- --- --------- ---------1%11

JavaScript на примерах

<script src="js/jquery-1.x.x.rnin.js" type="text/
javascript"></script>
<script src="js/jquery.fancybox-1.3.4.js" type="text/
javascript"></script>
<link type="text/css" href="js/jquery.fancybox-1.3.4.css"
rel="stylesheet" />

Должен отметить, что Fancy Вох давно не обновлялся (однако это не гово­
рит о том, что он плохо работает!) и поэтому даже на момент написания
этих строк (конец 2016 года) его текущая версия - 1.3.4.

Секция кода, загружающая галерею, будет выглядеть так:

<script type="text/javascript">
$ (function () {

$("а") .fancybox();
}) ;

</script>

После того как галерея подключена, ссылки на рисунки вы можете форми­

ровать так:

<а title="Hoчнoй город" href="photos/l.jpg">
<irng src="photos/l srnall.jpg" /></а>

Атрибут title ссылки (тега <а>) будет служить подписью картинки в га­
лерее, href задает изображение, которое будет загружено. В качестве тела
ссылки принято использовать загруженные миниатюры изображений. Я
использовал миниатюры размером 120х80 пикселей, а сами изображения
- 800 х 600. Изменить размер изображений пакетно (то есть для многих
сразу) можно с помощью программы FastStone Image Viewer или любой
другой подобной программы (например, ACDSee).

Созданная нами галерея выглядит, как показано на рис. 16.4. Изображение,
указанное в атрибуте href ссылки будет загружено в отдельном окне, за­
крыть которое можно с помощью кнопки Х в верхнем правом углу.

Полная версия кода приведена в листинге 16.6.

Листинг 16.6. Страница с галереей

<htrnl>
<head>

• eit--- -- --. , --- -- -- " --- ----- ----. ----- -- ---------- -- ----- ----- -- . ---- ---- --- ------·

ГЛАВА 16. Наворачиваем изображения

!+ file:/i/C:ttest/sitVCh16/lб·5.htmlJ С Q.. r:~.:r-x

Карусель фотографий

(600х600)

Рис. 16.4. Пример галереи

<title>lб-6</title>

<script src="js/jquery-1.x.x.rniп.js" type="text/javascript" >< /
script>
<script src="js/jquery.faпcybox-1.3.4.js" type="text/
javascript"></script>
<liпk type="text/css" href="js/jquery.faпcybox-1.3.4.css"
rel="stylesheet" />
<style type="text/css" >
img { paddiпg:2px; border: 2px solid #ссс ; rnargiп:2px;

а { outliпe:пoпe ; text-decoratioп : попе ; }

• ·------- -------- --- -------- -- -------------- --------- --- -------- ------- ---- -- --- ----1%!1

JavaScript на примерах

</style>
<script type="text/javascript">
$(function() {

$("а") .fancybox();
)) ;

</script>
</head>
<body>
<р>

<а title="Hoчнoй город" href="photos/l.jpg">
</а>

<а title="Peкa" href="photos/2.jpg">
</а>

<а title="Peкa ночью" href="photos/4.jpg">
</а>

</body>
</html>

16.6.2. Просмотр предыдущей и следующей фотографии.
Изменение внешнего вида окна галереи

У нашей небольшой галереи есть недостаток. Изображение можно только
открыть и закрыть, но если есть несколько связанных изображений, поль­
зователь не может просмотреть их, используя кнопки вперед/назад в окне

изображения. Ему нужно закрывать окно изображения, выбирать следую­
щую картинку, потом опять закрывать окно и опять открывать следующее

изображение. Не очень удобно.

Сейчас мы предоставим возможность просматривать всю галерею в режи­

ме именно галереи, то есть когда пользователь может использовать кноп­

ки "Назад" и "Вперед" для просмотра предыдущей и следующей фотогра­

фии. Заодно мы изменим стиль окна, сделав его похожим на окно галереи

Lightbox.

Изменений будет немного. Во-первых, ко всем ссылкам нужно добавить
атрибут rel="group":

<а rel="group" title="Peкa" href="photos/5.jpg">
</а>

<а rel="group" title="Peкa ночью" href="photos/3.jpg">
<irng src="photos/3 srnall.jpg" /></а>

• -- ---· ... ------ -- ... ---- ·--- -----

ГЛАВА 16. Наворачиваем изображения

Во-вторых, нужно изменить самJS-код вызова галереи:

<script type="text/javascript">
$ (function () {

function formatTitle (title, currentArray, currentindex,
currentOpts) {

return '<div id="tip-title">
<а href="javascript:;" onclick="$.fancybox.

close();">
' +

(title && title.length ? '' + title + ''
' ,) +

'Photo ' + (currentindex + 1) + ' from ' + currentArray.
length +

'</div>';

$("а [rel=' group'] "). fancybox ({
"showCloseButton": false,

"titlePosition" : "inside",
"titleFormat": formatTitle

}) ;

}) ;

</script>

Мы используем функцию formatTitle() для форматирования заголовка, по
сути, задаем новый вид окна. Наш формат использует новые стили, которые

нужно тоже определить на нашей странице:

#tip-title { text-align:left; }
#tip-title strong { display:Ыock; margin-right:80px; }
#tip-title span { float:right; }
#tip-title img { border:none; }

Вот и все, собираем все это вместе (лист. 16.7) и открываем для просмотра.
Как видите, оформление окна просмотра стало совсем другим (оно стало по­

хожим на галерею LightBox), а также появились кнопки "Вперед"/'Назад"
(на рисунке видна только кнопка "Вперед") .

• -· -·-·- ·- --· ... -······ -. -· -................ --. ------. -·-. -. -·····- -- -. -.. ...

JavaScript на примерах

Рис. 16.5. Видоизмененная галерея: при подведении указателя мыши появляется
стрелка (в данном случае влево)

Листинг 1б . 7 . Второй вариант галереи

<h trnl>
<head>
<title> l б-7 </ title>

<rneta http-e quiv="Co ntent-Type " content="text/htrnl;
c harset=u tf-8 " />
<script src="j s/jquery-1 .5 .2. rnin .js" type ="text / javascrip t"></
script>
<scrip t src= " js/jquer y .fanc ybox-1. 3 .4. js " t ype=" t ext /
javascript"></script>
<link type="text/css" href="js/jquery.fancybox-1.3.4 .css"
rel="stylesheet" />
<s t y l e typ e=" text/css " >
irng { padd i ng : 2px ; borde r :2px sol id # ссс ; rnargi n:2px;
а { outli ne :none ; text-d ecoration: none; }

&1-- ·-- -- - -- - - -- -- -- ---- - - --· -··· - --- - - -------- - - - -- -- ------------- - -- --- --- --- --- -'

ГЛАВА 16. Наворачиваем изображения

#tip-title { text-align:left; }
#tip-title strong { display:Ьlock; rnargin-right:BOpx; }
#tip-title span { float:right; }
#tip-title irng { border:none; }
</style>
<script type="text/javascript">
$ (function () {

function forrnatTitle(title, currentArray, currentindex,
currentOpts) {

return '<div id="tip-title"><a href="javascript:;"
onclick="$.fancybox.close();"><irng src="irng/closelabel.gif"
/>' + (title && title.length ? '' + title +
'' : ") + 'Photo ' + (currentindex + 1) + ' frorn '
+ currentArray.length + '</div>';

}

$("a[rel='group']") .fancybox({
"showCloseButton": false,

"titlePosition" : "inside",
"titleForrnat": forrnatTitle

}) ;

}) ;

</script>
</head>
<body>
<р>

<а rel="group" title="Peкa" href="photos/5.jpg">
<irng src="photos/5 srnall.jpg" /></а>

<а rel="group" title="Peкa" href="photos/3.jpg">
<irng src="photos/3 srnall.jpg" /></а>

<а rel="group" title="Teaтp" href="photos/6.jpg">
<irng src="photos/6 srnall.jpg" /></а>

</р>

</body>
</htrnl>

Если же вам не нужен внешний вид в стиле LightBox, но вы хотите просма­
тривать изображения в группе (чтобы была возможность перехода к пре­
дыдущему и следующему изображению), тогда все еще проще. Как уже от­
мечалось, для всех изображений группы нужно задать атрибут rel="group" в

теге <а>. А вот JavaScript-кoд придется изменить так:

<script type="text/javascript">
$ (function () {

$("а [rel л=' group'] "). fancybox ({

• ·---- -- -. -. ---- -.... ------- -· -. -. -------------- ------------ ---------- -- ---------- --111

JavaScript на примерах

"cyclic": true,
"speedin": 1000,
"speedOut": 1000,
"overlayColor": "#ссс",

"overlayOpacity": 0.6,
"transitionin": "elastic",
"transitionOut": "elastic"

}) ;

}) ;

</script>

Здесь мы определяем атрибут группы, а именно rel="group'', фактически
можно было бы использовать и другой атрибут, например title, id, но этот
атрибут не отображается браузером и реально ни на что не влияет, поэтому
рекомендуется использовать именно его.

Параметр cyclic (если он равен true) означает, что изображения в галерее
будут выводиться замкнуто, то есть по кругу и после просмотра последнего
изображения будет показано первое.

Параметры speedlп и speedOut задает время выполнения анимации и от­
крытия и закрытия полноразмерного изображения. По умолчанию - 300 мс,
но мы увеличили это время до 1000 мс (1 секунда).

Параметр overlayColor задает цвет слоя, который будет накладываться на
основную страницу. По умолчанию используется значение #666, но мы пе­
реопределили это дьявольское значение на #ссс.

Параметр overlayOpacity задает прозрачность дополнительного слоя, зна­
чения принимаются от О до 1сшагом0.1. По умолчанию используется зна­

чение 0.3, но мы сделали слой немного прозрачнее и установили значение
0.6.

Параметры traпsitioпlп и traпsitioпOut задают вид анимационных эффек­

тов при открытии/закрытии изображений. По умолчанию используется
значение 'fade', мы же задали значение 'elastic'. Чтобы отказаться от анима­
ционных эффектов, установите значение "попе".

С остальными параметрами плагина вы можете ознакомиться на сайте раз­

работчиков:

http://fancybox.net/api

• --·

Глава 17.

Всякие полезности

JavaScript на примерах

17. 1 . Счетчик посещений с помощью
Cookies

Сейчас попытаемся создать счетчик посещений с помощью Cookies. Что та­
кое Cookies, объяснять не станем - об этом полно информации в Интернете.
Грубо говоря, это специальная область памяти в браузере, которая может
хранить различные пользовательские значения. Мы будем использовать
Cookies для хранения количества посещений пользователем сайта и даты
последнего визита. Имейте в виду, что при очистке Cookies эта информация
будет стерта, поэтому там нельзя хранить какую-либо важную информа­
цию.

Для работы с Cookies мы напишем три функции:

• getCookie() - возвращает значение Cookie по имени.

• setCookies() - устанавливает (записывает) значение Cookie;

• parseCookie() - разделяет строку с Cookie на пары имя-значения, выпол­
няет декодирование и добавляет пары в массив с Cookies, который по­
том легко использовать.

Если Cookies не установлены, то мы выводим строку "Добро пожаловать на
наш сайт!"

if ("" == document.cookie)
{ //Инициализация cookie.
setCookie(l);

document.write("<div align=right>Дoбpo пожаловать на наш
сайт ! . < / di v>") ;

В противном случае мы запускаем сначала парсинг Cookies, затем выводим
информацию о количестве визитов и дате последнего визита, увеличиваем

счетчик посещений и сохраняем новое (увеличенное) значение в Cookies:

else {
var cookies = parseCookie();
if (isNaN(cookies.visits)) cookies.visits = 1; • -. -. -" -. -- . -. -. -. --- - . -----. ----- -. -. -. --- --- ". -. -. -- --- -. -. ------- -- -. --- -----·

ГЛАВА 1 7. Всякие полезности

// Вывод приветствия, числа посещений и увеличение

числа посещений на 1.

document.write("<div align=right>
<i>Мы снова рады
видеть Вас! Вы были у нас - " +

cookies.visits++ + "paз(a)</i></div>");
// Вывод даты последнего посещения.
document.write ("<div align=right><i>Пocлeдний раз Вы

были у нас: "+ cookies.LastVisit + ".</i></div>");
//Обновление cookie.
setCookie(isNaN(cookies.visits)?l:cookies.visits);

Полный код файла cookies.js приведен в листинге 17 .1.

Листинг 17. 1. Код файла cookies.js

// возвращает по имени значение, здесь не используется

function getCookie(byname) {
byname=byname+"=";
nlen = byname.length;
fromN = document.cookie.indexOf(byname)+O;
if((fromN) != -1)

{

fromN +=nlen
toN=document.cookie.indexOf(";",fromN)+O;
if(toN == -1) {toN=document.cookie.length;}
return unescape(document.cookie.

substring(fromN,toN));
)

return null;

// Разделение cookie
function parseCookie()

{ var cookieList = document.cookie.split("; ");
//Массив для каждого cookie в cookieList
var cookieArray = new Array();
for (var i = О; i < cookieList.length; i++)

11 Разделение пар имя-значение.
var name = cookieList[i] .split("=");
//Декодирование и добавление в сооkiе-массив.

cookieArray[unescape(name[O])] = unescape(name[l]);

return cookieArray;

• ·--- --- --- --- ---------- --- --------- --------- --- ----- ------- ---------- ------ -------111

JavaScript на примерах

function setCookie(visits)
/* Счетчик числа посещений с указанием даты последнего

посещения

и определением срока хранения в 1 год. */
var expireDate = new Date();
var today = new Date();
//Установка даты истечения срока хранения.

expireDate.setDate(365 + expireDate.getDate());
11 Сохранение числа посещений.
docurnent.cookie "visits=" + visits +

+ ".". , ,
"; expires=" + expireDate.toGMTString()

// Сохранение настоящей даты как времени последнего
посещения.

docurnent.cookie
toGMTString()) +

"LastVisit=" + escape(today.

"; expires=" + expireDate.toGMTString()
+ "; 11;

if ("" == docurnent.cookie)
{ //Инициализация cookie.
setCookie(l);
docurnent.write("<div align=right>Дoбpo пожаловать на наш

сайт! .</div>");

else {
var cookies = parseCookie();
if (isNaN(cookies.visits)) cookies.visits = 1;
// Вывод приветствия, числа посещений и увеличение

числа

11 посещений на 1.

docurnent.write("<div align=right>
<Ьr><i>Мы снова рады видеть Вас! Вы были у

нас - " +
cookies.visits++ + "paз(a)</i></div>");

// Вывод даты последнего посещения.
docurnent.write ("<div align=right>

<i>Последний раз Вы были у нас: " +
cookies.LastVisit + ".</i></div>");

11 Обновление cookie.
setCookie(isNaN(cookies.visits)?l:cookies.visits);

• " -.............. -. ---... -·. -- --. ·-·---- .. -- ------·. --·

ГЛАВА 17. Всякие полезности

Использовать сценарий очень просто. Добавьте следующую строку в место

отображения счетчика:

<script src="cookies.js"></script>

Например:

<body>
<div id="header">

<hl>Гироскутеры на любой вкус< /hl>

<script src="cookies.js"></script>
<ul id="navigation">

Результат изображен на рис. 17.1. Дату последнего визита вы вряд ли будете
выводить, а вот счетчик посещений конкретного пользователя может при­

годиться.

) Гироскутq:~ы JJ "+ __ с-----,.-"""""'""-- , ____._'--'-=""

; + ~ file:J//(:/tб[/Wf.t.'il'!d~html

Гироскутеры на любой вкус

ДОСТАВКА И ОГtnдТА КАТАЛОГ КОНТАКТЫ

Рис. 17. 1. Счетчик в действии

При желании можно оформить счетчик с помощью стилей:

.counter {
position:absolute ; display:Ыock;
padding :Spx;

• ·---·---- -·-------- ----------·- -------- --- ---· -·- . ---- . ------.. --- --- . -. --- -------111

JavaScript на примерах

border:solid #089dcb;
border-width:2px;
border-radius:lOpx lOpx lOpx Орх;
-webkit-border-radius:lOpx lOpx lOpx Орх;
-moz-border-radius:lOpx lOpx lOpx Орх;
-webkit-box-shadow:lpx lpx 2рх #888888;
-moz-box-shadow:lpx lpx 2рх #888888;
box-shadow:lpx lpx 2рх #888888;
background-color:#ffD;

Потом не забудьте определить этот стиль в НТМL-коде:

<div class="counter">
<script src="cookies.js"></script>

</div>

Внешний вид такого счетчика показан на рис. 17 .2. Как видно из рисунка,

вывод даты последнего визита отключен (путем комментирования соответ­

ствующей строчки в сценарии).

lf•r ttpOCIC)"ТfPЫ
~ .!: file:!f/(;/\ert/site/index.html

i .

Гироскутеры на любой вкус

(Мы СНОба paC1::r1 !иоеть Вас! Вы были у ttac - : 7раз(а}1
mдВrv\Я ДОСТАВКА И ОПЛАТА 1(,4.ТАПОГ КОНТАКТЫ

: i
. j

Рис. 17 .2. Изменен внешний вид счетчика (с помощью CSS)

\ . ID----. -----. ----------------------" -------------------------------. -\ --------- --·

ГЛАВА 17. Всякие полезности

17. 2. Запрещаем браузеру выделять
текст

Сейчас мы поговорим о защите авторских прав техническими средствами,

а именно рассмотрим, как запретить браузеру выделять важный текст на
странице - пользователь не сможет его выделить, значит не сможет копиро­
вать. Конечно, он в состоянии открыть исходный код страницы и потом уже

просмотреть его, но далее будет показано, как запретить просмотр НТМL­

кода.

Принцип следующий: в НТМL-код вы добавляете блок текста с id "noselect".

<div id="noselect">
Описание товара

</div>

Далее вам нужно добавить следующий сценарий в конец страницы (лист.

17.2):

Листинг 17.2. Запрет копирования текста

<script type="text/javascript">
//Функция отключает выделение заданного фрагмента страницы

function disaЬleSelection(target) {
if (typeof target.onselectstart!="undefined")

target.onselectstart=function() {return false}
else if (typeof target.style.MozUserSelect!="undefined")

target.style.MozUserSelect="none"
else

target.onmousedown=function() {return false}
target.style.cursor = "default"
}

if (document.getElementByid("noselect"))
disaЬleSelection(document.getElementByid("noselect"));

</script>

Данный код запрещает выделение текста для элемента с именем "noselect" .

• ·-- ------------ --------- --- ------- ---- -------- ------------ ----" ------ ------- ------&1

JavaScript на примерах

17. 3. Добавляем информацию об
авторских правах

Есть еще один метод борьбы с пиратами. При каждом копировании текста
добавлять к выделенному "пиратом" тексту информацию об авторских пра­
вах. Конечно, ее легко удалить, но это придется делать для каждого скопи­

рованного фрагмента, что очень неудобно. Возможно, вы попортите больше

крови этим трюком, чем даже предыдущим. Код приведен в листинге 17.3.

Листинг 17.3. Добавляем информацию об авторских правах к скопированному
тексту

<script type="text/javascript">
function addLink () {

[о] ;

var body_element = document.getElementsByTagName('body')

var selection;
selection = window.getSelection();
var pagelink = "

Скопировано с

<а href='"+document.location.href+"'>"
+document.location.href+"

© dkws.org.ua";

var copytext = selection + pagelink;
var newdiv = document.createElement('div');
newdiv.style.position='absolute';
newdiv.style.left='-99999px';
body_element.appendChild(newdiv);
newdiv.innerHTML = copytext;
selection.selectAllChildren(newdiv);
window.setTimeout(function() {

body_element.removeChild(newdiv);
} / о) ;

document.oncopy
</script>

addLink;

17 .4. Запрет просмотра НТМL-кода

Еще один трюк - можно запретить просматривать НТМL-код страницы. До­
бавив на страницу код, указанный в листинге 17 .4, вы отключите контекст-• ". -·-· --. -- -------- --------- --- . -. ---- --. -- -------- --- -. ------- -. -··---- -- -- ------·

ГЛАВА 17. Всякие полезности

ное меню, которое появляется при нажатии правой кнопки мыши. Именно

в этом меню есть команда просмотра НТМL-кода. Решение так себе, но для
начинающих "пиратов" сойдет. А более продвинутые скачают ваш сайт по­

средством программ вроде Teleport и все равно смогут просмотреть код лю­
бой страницы в их любимом текстовом редакторе.

Листинг 17 .4. прет просмотра НТМL-кода

<!--[if gte IE S]><script type="text/javascript">
createPopup() .show(О, О, О, О, О) ;
</script><! [endif]-->
<body oncontextmenu="return false;">

Данный код работает в IE, Fiгefox и Chrome. В остальных браузерах он не
проверялся.

17.5. Отложенная загрузка файла

Загружая файлы с различных файлообменников, вы наверняка видели, что

загрузка начинается не сразу, а спустя некоторое время, на протяжении ко­

торого вы любуетесь рекламой. Сейчас попробуем организовать такой же
алгоритм. Конечно, для нашего сайта он не нужен, но пример довольно ин­

тересный, возможно, он пригодится вам, когда будете работать над другим
проектом.

Код полностью рабочий и вы можете его использовать, заменив только путь

файла для загрузки и код рекламного баннера (лист. 17.5).

Листинг 17.5. Отложенная загрузка файла

<р>В течение нескольких секунд начнется загрузка файла.<Ьr>

Если этого не произошло, <а href="/download.zip">нaжмитe

сюда</а>.</р>

<div id="download_div" style="position:absolute; top:­
lOOpx"></div>
<script type="text/javascript">
setTimeout(function() {

document.getElementByid('download_div') .innerHTML=
'<iframe src="/download.zip" style="width:lpx;

height:lpx"></iframe>';
}, 10000); // 10 секунд
</script>

• ·-· -·-· .. ------- -.. --- . -- .. ----·-·- --- ---.. -. -- ---.. -....... -...... ---- .. ---· .. ----&1

JavaScript на примерах

<h2>Здесь может быть ваша рекпаиа</h2>

17.6. Всплывающие окна

В этом разделе будет показано, как сделать всплывающее окно при входе на
сайт и при уходе с сайта. Учтите, что в большинстве случаев браузеры бу­
дут блокировать всплывающие окна, и эта тактика не всегда приветствуется
пользователями. В листинге 17.6 показано, как сделать всплывающее окно
при входе на сайт.

Листинг 17. 6. Всплывающее окно при входе на сайт

<script type="text/javascript">
<!--
browserVer = parseint(navigator.appVersion);

Top=window.open("http://example.com/",'exaple', 'toolbar=l,
location=l, status=l, menubar=l, scrollbars=l, resizaЫe=l');

if(browserVer >= 4)
window. focus ()

)

11 -->
</script>

А в листинге 17.7 приведен код всплывающего окна при уходе с сайта.

Листинг 17. 7. Код всплывающего окна при уходе с сайта

<body onunload="ex() ">

<script type="text/javascript">
<'--
function ех ()
{

open("http://example.com/",'example' ,'toolbar=l,locati
on=l,

status=l,menubar=l,scrollbars=l,resizaЫe=l');

window. focus ()
)

11 -->
</script>

• &t--- .". ---. ------ ----····-- -- ---------- -- -------- ---- ---. ---- -- -------- ------------·

ГЛАВА 1 7. Всякие полезности

Здесь мы устанавливаем обработчик события onunload - функцию ех(), ко­
торая и открывает всплывающее окно .

• -------- -. ------- --- -- ----- -------------- -- -------- -- ---------- -&1

Заключение

JS

Заключение

В качестве заключения хотелось бы подвести итог проделанной работе.
Итак, мы начали с обычного НТМL-сайта, не содержащего каких-либо
скриптов, только СSS-код для оформления.

Первым делом мы добавили к нашему сайту меню, слайдер с продуктами и
всплывающие подсказки. Меню и слайдер изображены на рис. 1. О том, как
создать слайдер, было написано в главе 5, всплывающие подсказки рассмо­
трены в главе 6, а меню - в главе 9.

П;(Х"'~~k'

l~lt~t'(j-"''\i.;;.;

ерЮСН!С

-8 9~ Black
~Srnlrt-L5 &&llT KffOll\l\Wlo 11. S 1tr,
llllAC!p•111aит и•кcMNVllolf'/IO ttarpyжy &

~". 111 •Dflfn•a:тiм.11 СlllГИЙ CA•YW•
-с- .16 ·700 8т 111 АМ~Т'JЮМ l(ОА!К '3". 11)/П\llTlo

ю снес sman-LS -)ТО twro.t.tte м)'АобfЮ. <

10 СНIС SM-'RT-LS 9 "'
BL-'CK

10 CHIC CROSS 10"
BUCK

1499$

>

10 CHIC F -'IRY 6. '7'" RED

Рис. 1. Меню и спайдер

В главе 15 было показано, как создавать диалоги, которые можно перета­
скивать мышкой, а в главе 17 мы создали персональный счетчик пользова­
теля на базе Cookies. Объединение полученных знаний показано на рис. 2:
диалог с количеством посещений .

• ; -.. ·- · . - . -.. --·· --· -. --.... -- · ---. --. -.. . -. --.. -. -- .. . -... ·- ... -... -.. ··-· ---

JavaScript на примерах

fИpO(Y,YT~PN на J\Юбоi! 6~\'(

Гироскутер """ f"u•r:
Smart-LS 9
МО..,UА. Ю Снtе Snwrt мм (~Qfd ~:.1 lil4t1• ~с_;&"' ti111.1ttf у
nрмmжома аtр.1 dill - 41 p.1Jf.1J
10011г. :ЭТОудо6мwi!r

Al"f"~MMПO 1001. - ---..,~·""- -·-~ ~ • ••1•"• •w

К> СН~ Smatt- LS • 71'О IWfOAttO 111 удобtю. <

1499 $

10 CHIC SM"RT-LS 9 •
BL"CK

10 CHIC CROSS :10"
BUCK

10 CHIC F"IRY 6.7" RED

Рис. 2. диалог с количеством посещений

f' r~
+ .J i;i..n;c_,'*11...,........;;_ ,.,.~ •• -.oi'I...._

fмpoclrf'.eoC..ЧICCпiм~i.:;~,·•niaи•e11.•.J1;N1--, ·~•it. -•N.._....\.'Йl'I~-'~·
llЫC:t...,_ ."М.uх, ,,.,.~, ьа..-ж t_п,..к~'" ,.._., 1о ~- 11е~ ~ ~. • W(>l'fP"t-. ,..

•.Y«ll'-.c.tiel-".< llYЩl.U оо ..с'.- ы11:, ,111" М'~~'" ..0'11!'~ ~Jli.йa, ~' llЫaщ<;OIUlll,

P4.18-fl!-flll!tlt~~'""'-'"·

fwpocll)"~C..: (rl)'l5 _. .-a~uop.xn1. 1-/;l~ pt»:- - ~..;мо l 11М1Ч. 1t ~ - 1S-l:Jte111 ' ... (ffi(

Crmi-•..-.,ot1:1r~~~'l\"',;..~-•ГllpDO!J"'~"Бpr.-~~~o~-;o(t<ICCros-..

,.......................... !
~!81,•r!'t~ '

' т. --; ·1

1 1 •••••••• 4 ••• • ••••••••••••••

.,, 1 lli (j)

1

&t----····· ·· ·· --
Рис.З.Страницатовара •

Заключение

999'

ФUtНJМ.tЯ, НМ1', ОТ'fеСТ80:

E-mait:

Темфон:

Адрес:

ОТПРАВИТЬ

. ;

Рис. 4. Форма заказа

Мы значительно улучшили страницу товара (рис. 3, 4). Во-первых, мы ис­
пользовали jQuery UI для организации вкладок товара. Можно было бы ис­
пользовать и виджет Accordion (см. гл. 15) - это как вам больше нравится.
Также мы украсили подвал сайта слайдером в виде фотопленки, что сделало

сайт немного живее. При желании вы можете использовать и другие гале­

реи, разработанные нами в главе 16.

Для нашей формы заказа мы добавили проверку полей, а также проверку
e-mail, чтобы убедиться, что введенный пользователем электронный адрес
верный (см. гл . 11). При желании можно было бы на странице товара ис­
пользовать галерею Fancy Вох, которую мы рассмотрели в главе 16, но я
решил не перегружать страницу скриптами - при желании вы можете это
сделать самостоятельно.

Также нами в главе 13 была разработана эффектная лендинг-страница, ко­
торая при правильном использовании может повысить продажи и привлечь

аудиторию (рис. 5). '----------. -... - . --·- ·- -- ----- -·- -. -- -- --...... -. -. -... -. ·-. -. -. -........... ...

JavaScr1pt на примерах

Рис. 5. Лендинг-страница

В конечном итоге наш сайт стал напоминать современный сайт по продаже

товара. Конечно, некоторые функции просто не под силу JavaScript и все
равно придется привлекать РНР (например, для обработки форм, для вы­

вода товара из каталога, если не хотите делать это вручную и т.д.). Однако

средствами JavaScript можно существенно усовершенствовать интерфейс
пользователя, что и было сделано.

В книге приводится много советов и трюков, но не стоит переусердствовать

и применять все из них в вашем сайте. Не перегружайте страницу скрип­

тами, и пользователи будут вам благодарны! Выберите только то, что дей­
ствительно необходимо для вашей страницы и вашим пользователям.

Теперь о примерах:

• Результирующая версия сайта: http://www.nit.com.ru

• Только слайдер: http://www.nit.com.ru

• Лендинг страница (гл. 13): http://www.nit.com.ru

• Примеры использования jQuery UI: http://www.nit.com.ru

• ID--·····-··· .. ·------ --- ---- --- -------------- -----·--------·-····---·-·······--·

Заключение

• Примеры для главы 16 (изображения): http://www.nit.com.ru

Остальные примеры довольно просто воспроизвести самостоятельно .

• ----------------- ---- --- ----- --- -------- ---------- -- --- --- ·- ---&1

JavaScript на примерах

Группа подготовки издания:

Зав. редакцией компьютерной литературы: М. В. Финков

Редактор: Е. В. Финков

Корректор: А. В. Громова

ООО "Наука и Техника"

Лицензия №000350 от 23 декабря 1999 года.

198097, г. Санкт-Петербург, ул. Маршала Говорова, д. 29.

Подписано в печать 28.10.2016. Формат 70х100 1/16.

Бумага газетная. Печать офсетная. Объем 17 п. л.

Тираж 1750. Заказ № 8462

Отпечатано с готовых файлов заказчика

в АО "Первая Образцовая типография"

филиал "УЛЬЯНОВСКИЙ ДОМ ПЕЧАТИ"
432980, г. Ульяновск, ул. Гончарова, 14.

Еа---·-------------------···-----·····-·-------------··--·"··-·······-------------'

Никольский А. П.

JavaScript
на примерах

Эта книга является превосходным учебным пособием для

изучения языка программирования JavaScript на примерах.
Изложение ведется последовательно: от написания первой

программы, до создания полноценных проектов:

интерактивных элементов (типа слайдера, диалоговых

окон)интернет-магазина, лендинговой страницы и проч. По ходу

даются все необходимые пояснения и комментарии.

Книга написана простым и доступным языком. Лучший выбор

для результативного изучения JavaScгipt!

www.nit.com.ru

ISBN 978-5-94387-735-3
Россия: Санкт-Петербург,

пр. Обуховской обороны, 107
для писем: 192029, Санкт-Петербург, а/я 44
(812) 4127025, 4127026
e-mail: пit@mail.wplus . net

Украина:О2166,Киев,ул.Курчатова,9/21

(044) 516 3866
e-mail: nits@voliacaЫe.com

	000
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274

