

Angular	2	Components

Table	of	Contents

Angular	2	Components
Credits
About	the	Authors
About	the	Reviewers
www.PacktPub.com

eBooks,	discount	offers,	and	more
Why	subscribe?

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Angular	2	Component	Architecture
The	Model-View-Controller	pattern
MVC	in	Angular	1
Moving	from	views	to	components
Defining	components
Breaking	the	application	into	components
Summary

2.	Setting	Up	an	Angular	2	Development	Environment	with	angular-cli
Node	and	npm

Installing	Node
Introducing	npm

Installing	angular-cli
Generating	an	Angular	2	project
Choosing	an	IDE
Summary

3.	The	TypeScript	Primer
Introduction	to	TypeScript
Managing	dependencies	with	modules

The	export	and	import	statements
The	default	exports

Classes
The	type	system

The	basic	types
The	custom	types
About	generics

Using	decorators
Decorators	versus	annotations

Summary
4.	Building	a	Basic	Component

Bootstrapping	the	application
The	component	selector

Selector	options
The	component	template

Embedding	styles	in	component	template
The	shadow	DOM
Encapsulation	modes
Data	bindings
Summary

5.	Building	Dynamic	Components
Data	interpolation
Core	directives

NgIf
The	asterisk	–	*

NgClass
NgStyle
NgSwitch
NgFor

Property	bindings
Event	bindings
Two-way	bindings
Summary

6.	Component	Communication
Passing	data	via	properties
Emitting	custom	events

Referencing	with	a	local	variable
Querying	child	components	with	the	parent	component
Summary

7.	Putting	It	All	Together
Preparing	our	development	environment
The	accordion	component

Extending	the	accordion	component	tree
The	component	life	cycle
Life	cycle	event	interfaces

OnInit	and	OnDestroy
OnChanges

Other	life	cycle	events

Summary
8.	Integrating	Third-Party	Components

Preparing	our	development	environment
Importing	dependencies
Bootstrap	tooltip	component
Bootstrap	collapse	component
Summary

9.	Angular	2	Directives
Components	and	directives	in	Angular	2
Preparing	our	development	environment
The	basic	attribute	directive

ElementRef	and	Renderer
Reacting	to	events	from	the	host	element
Passing	properties	to	the	directive

The	basic	structural	directive
Summary

Index

Angular	2	Components

Angular	2	Components
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,
except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers	and
distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing
cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2016

Production	reference:	1211116

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78588-234-0

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Nir	Kaufman

Thierry	Templier

Reviewers

Robin	Böhm

Daniel	Zen

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Meeta	Rajani

Technical	Editor

Narsimha	Pai

Copy	Editor

Laxmi	Subramanian

Proofreader

Safis	Editing

Indexers

Hemangini	Bari

Pratik	Shirodkar

Production	Coordinators

Deepika	Naik

Shantanu	N.	Zagade

Cover	Work

Deepika	Naik

About	the	Authors
Nir	Kaufman	is	the	Head	of	Angular	Development	at	500Tech,	a	leading	front-end	consultancy	in
Israel.	He	is	a	passionate	JavaScript	developer,	an	international	speaker,	and	an	Angular
evangelist.

Nir	runs	three	local	Angular	community	meetup	groups	in	Israel.	He	also	collaborates	with	other
local	Angular	communities	around	the	world.

Thierry	Templier	is	a	senior	full	stack	developer	with	17	years	of	experience.	He	has	been	a
JavaScript	addict	for	a	long	time	now	and	started	to	work	with	the	early	versions	of	the	language.
He	has	a	particular	passion	for	Angular	2	and	loves	to	help	developers	to	use	this	framework,
particularly	on	the	StackOverflow	website,	where	he	has	answered	more	than	1,900	questions.

He	also	enjoys	writing	articles	to	promote	and	explain	Angular	2's	specific	features	on	his	blog
(https://medium.com/@ttemplier/)	and	on	the	Restlet	blog	(http://restlet.com/blog/author/thierry-
templier/).

Thanks	to	Nir,	Meeta,	and	Narsimha	for	taking	me	on	board	and	working	with	me	on	this	project.
Thanks	to	my	beloved	wife	and	son,	Séverine	and	Maël,	for	their	daily	support.

https://medium.com/@ttemplier/
http://restlet.com/blog/author/thierry-templier/

About	the	Reviewers
Robin	Böhm	is	a	Germany	based	passionate	trainer	for	Angular.	He	is	also	the	co-founder	of	the
AngularJS.DE	platform,	which	is	the	biggest	community	for	Angular	in	Germany.	Together	with
his	team,	he	offers	intensive	workshops	and	trainings	for	web	development	with	Angular.	Since
2013,	they	have	successfully	trained	over	5000	developers	from	freelance	developers	to
employees	of	large	German	corporate	(DAX)	companies.

Daniel	Zen	is	a	MIT	graduate	in	Computer	Science	Engineering	and	has	been	teaching	and
writing	software	for	the	past	three	decades.	He	has	taught	computer	programming	and	Agile
methodologies	at	NYU,	The	New	School,	and	at	numerous	Fortune	500	companies.	He	has
worked	on	large-scale	art	projects,	as	well	as	interactive	installations	at	the	Museum	of	Science
in	Boston	and	The	Milk	Gallery	in	NYC.	A	former	consultant	to	both	Google	and	Pivotal	Labs,
Zen	is	now	focused	on	zen.digital,	a	full	stack	JavaScript	training	and	consulting	company.

www.PacktPub.com

eBooks,	discount	offers,	and	more
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book
customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books
and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development
and	advance	your	career.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Preface
Angular	2	is	a	leap	forward	from	the	previous	Angular	1.x	framework,	which	became	the	most
popular	frontend	JavaScript	framework	in	history.

It	is	a	complete	re-write,	an	up-to-date	platform	that	is	built	upon	web	standards	and	modern
APIs.	With	Angular	2,	you	can	build	JavaScript	applications	aimed	at	the	browser,	server,
mobile,	and	desktop,	thanks	to	an	architecture	that	decoupled	the	view	layer	of	Angular	from	the
platform	core	and	services.

This	book	will	be	focused	on	the	UI	layer	of	Angular:	components.	We	will	explore	the	rich	API
and	multiple	options	available	for	building	and	composing	UI	components	for	powerful	user
interfaces	and	views.

What	this	book	covers
Chapter	1,	Angular	2	Component	Architecture,	provides	an	overview	of	the	existing	popular
architectural	patterns	for	building	frontend	applications,	and	the	new	approach	that	relys	on
composing	self-contained	custom	components.

Chapter	2,	Setting	Up	an	Angular	2	Development	Environment	with	angular-cli,	covers	setting
up	the	development	environment	with	angular-cli.

Chapter	3,	The	TypeScript	Primer,	covers	the	basics	of	the	TypeScript	language	and	what	you
need	to	know	about	TypeScript.

Chapter	4,	Building	a	Basic	Component,	covers	the	steps	to	build	a	basic	component.

Chapter	5,	Building	Dynamic	Components,	covers	the	steps	to	transform	your	static	component
into	a	dynamic	component	using	core	directives	and	data	binding.

Chapter	6,	Component	Communication,	covers	different	ways	to	make	your	components
communicate	with	each	other.

Chapter	7,	Putting	It	All	Together,	covers	building	the	accordion	component	and	the	component
life	cycle.

Chapter	8,	Integrating	Third-Party	Components,	covers	the	integration	of	a	tooltip	widget	from
the	popular	Bootstrap	library.

Chapter	9,	Angular	2	Directives,	covers	the	usage	of	directives	in	Angular	2.

What	you	need	for	this	book
You	need	to	know	how	to	read	and	write	JavaScript.	Other	technologies,	such	as	C#	or	Java,	may
help	you	understand	the	syntax,	but	are	not	mandatory.

Some	experience	with	web	development	and	related	technologies	such	as	HTML	and	CSS	is
required,	so	make	sure	you	are	familiar	with	that.

Who	this	book	is	for
If	you	are	a	frontend	developer	with	some	experience	in	Angular	who	wants	to	understand
Angular	2	components	and	use	them	to	create	powerful	user	interfaces,	then	this	book	is	for	you.

This	books	is	also	for	angular	1.x	developers	who	want	to	upgrade	their	knowledge	and	skills.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"We	can	include	other
contexts	through	the	use	of	the	include	directive."

A	block	of	code	is	set	as	follows:

class	Product	{

		private	id:	number;

		private	color:	string;

		constructor(id:number,	color:string)	{

				this.id	=	id;

				this.color	=	color;

		}

}

Any	command-line	input	or	output	is	written	as	follows:

$	npm	uninstall	-g	angular-cli

$	npm	cache	clean

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Clicking	the	Next	button	moves
you	to	the	next	screen."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that
you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the	book's
title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing
to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get
the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's	webpage
at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's	name	in	the
Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest
version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Angular-2-Components.	We	also	have	other	code	bundles
from	our	rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Angular-2-Components
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can
download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/Angular2Components_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Angular2Components_ColorImages.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If
you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we	would	be
grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and
help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the	Errata
Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are	verified,	your
submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our	website	or	added	to	any	list
of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support
and	enter	the	name	of	the	book	in	the	search	field.	The	required	information	will	appear	under	the
Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,
we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal
copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or
website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Angular	2	Component	Architecture
The	way	we	think	about	web	applications	has	changed.	The	goal	of	this	chapter	is	to	provide	an
overview	of	the	existing	popular	architectural	patterns	for	building	frontend	applications,	and	the
new	approach	that	relies	on	composing	self-contained	custom	components.

Understanding	the	architectural	pattern	that	was	implemented	in	Angular	1	will	help	you	migrate
your	existing	application	to	Angular	2	in	the	future.	In	this	chapter,	we	will	discuss	those	topics:

Overview	of	the	Model-View-Controller	pattern
Angular	1	implementation	of	model,	view,	and	ViewModel
Moving	from	MVVM	to	components
An	example	of	the	Angular	2	components	architecture

The	Model-View-Controller	pattern
This	is	an	architectural	design	pattern	for	implementing	user	interfaces,	which	has	been	used	for
many	years	for	desktop	GUI.

It	divides	the	application	into	three	distinct	parts:

Model:	This	is	responsible	for	storing	the	actual	data
View:	This	is	the	presentation	layer	that	renders	the	data	to	the	user
Controller:	The	glue	between	the	model	and	the	view

The	following	diagram	describes	the	relationships	between	those	parts:

This	pattern	describes	the	communication	between	those	parts.	The	view	reflects	the	data	in	the
model,	but	cannot	alter	the	data	directly	in	the	model.	It	is	common	to	describe	the	relationship
between	the	model	and	the	view	as	read	only	(the	view	can	only	read	from	the	model).	The	view
uses	the	controller	by	invoking	methods	and	changing	attributes.	The	controller	updates	the
model,	which	causes	the	view	to	update	and	render	the	new	data.

MVC,	which	was	originally	developed	for	desktop	applications,	has	been	widely	adopted	as	an
architecture	for	building	single	page	web	applications	and	can	be	found	in	all	the	popular	client-
side	frameworks,	including	Angular.

MVC	in	Angular	1
Angular	1	implements	a	variation	of	the	classic	MVC,	which	is	known	by	the	name	Model	View
ViewModel	(MVVM).	This	pattern	describes	different	roles	and	communication	between	the
parts:

Model:	This	holds	the	data	or	acts	as	data	access	layer
View:	Like	MVC,	this	is	the	presentation	layer
ViewModel:	This	is	an	abstraction	of	the	view	that	is	bound	to	the	view

The	following	diagram	describes	the	relationships	between	those	parts	with	the	terminology	of
Angular	1:

The	ViewModel	in	Angular	1	is	an	object	named:	'$scope'	that	is	constructed	by	an	Angular
controller.	We	do	not	always	interact	with	this	object	directly.	It's	binding	to	the	view	is	two-way
(In	Angular,	we	refer	to	the	view	as	a	'Template').	The	ViewModel	can	read	and	alter	the	data	on
the	model	and	update	itself	when	necessary.	The	view	will	reflect	those	changes	immediately.
Angular	doesn't	include	any	predefined	model	type.	Instead,	we	code	our	models	as	plain
JavaScript	and	register	it	as	an	Angular	service.	The	following	code	snippet	shows	the	structure
of	a	custom	model	service	Model.js:

class	Product	{

		constructor(){

				this.color	=	"red";

		}

}

The	following	code	snippet	shows	the	structure	of	ViewModel.js:

class	ProductController	{

		constructor(Product)	{

				this.product	=	Product

		}

}

The	following	code	snippet	shows	the	structure	of	View.html:

<p>{{	product.color	}}</p>

Moving	from	views	to	components
Angular	applications	are	based	around	the	concept	of	views.	A	view	in	Angular	refers	to	a
template	(HTML),	which	is,	most	of	the	time,	managed	by	one	or	more	controllers.	This	view	can
also	contain	some	custom	directives	that	encapsulate	some	other	chunks	of	HTML	and	JavaScript.
Naturally,	over	the	years,	Angular	developers	tend	to	create	more	and	more	directives	and	use
them	as	building	blocks	that	replace	the	original	HTML	tags	with	custom	elements.

The	concept	of	composing	a	view	from	small	custom	elements	has	become	trendy	and	can	be
found	in	other	popular	modern	frameworks	such	as	react	and	polymer.	Angular	2	builds	around
this	concept	well	and	will	base	the	UI	architecture	on	those	building	blocks.	Hence	from	now	on,
we	call	components	as	building	blocks	and	templates	as	layouts.

Defining	components
Components	are	a	clean	way	of	organizing	UI	code	into	self-contained,	reusable	chunks,	which
contain	their	own	view	and	logic.	Components	can	be	composed	together	to	create	a	complex
user	interface.	Components	can	optionally	receive	properties	from	the	outside	world	and
optionally	communicate	through	callbacks	or	events.	The	business	logic,	structure	and	styling	can
be	encapsulated	inside	the	component	code.

Components	in	Angular	2	are	just	directives	with	a	view.	Actually,	the	component	in	Angular	2	is
a	type	of	directive.	We	can	also	write	a	directive	that	doesn't	include	a	template	(and	will	not	be
called	component)	in	Angular	2.

Those	directives	are	very	similar	to	the	directives	you're	familiar	with	in	Angular	1.x.	The	main
difference	is	that	in	Angular	2.0	we	think	of	two	kinds	of	directives:	attribute	directives	that	add
behavior	to	the	elements,	and	structural	directives	which	we	named:	components.

Breaking	the	application	into	components
The	angular	2	application	is	a	set	of	components.	We	define	a	component	for	every	UI	element,
view	and	route.	We	must	define	a	root	component	that	we	will	use	as	a	container	for	all	other
components.	In	other	words,	an	Angular	2	application	is	a	tree	of	components.

The	key	for	a	well-designed,	component-oriented	Angular	2	application	is	to	break	the	UI	in	to	a
tree	of	components	successfully.	For	example,	let's	talk	about	a	simple	mobile	to-do	list
application,	which	looks	like	this:

The	components	tree	that	composes	this	UI	will	look	like	this:

This	application	is	made	up	of	nine	components.	At	the	root	is	the	Application	component,	which
contains	all	the	other	components.	Next,	we	find	the	Form	component,	which	is	built	from	an
Input	component	and	a	Button	component.

The	TaskList	component	is	a	container	for	the	TaskRow	component.	Each	TaskRow	comprises
three	components—a	CheckBox,	a	Label,	and	a	Trash	icon.

There	is	no	strict	rule	about	how	many	components	you	should	create,	but	a	best	practice	is	to
break	the	UI	to	as	many	components	as	we	can.	The	number	of	components	will	affect	the	other
aspects	of	the	application	such	as	reusability,	maintenance,	and	testing.

Summary
The	idea	of	building	a	UI	from	components	is	not	new.	While	in	Angular	1	we	had	the	ability	to
develop	directives	that	act	like	components,	it	wasn't	mandatory.	In	Angular	2,	the	whole
application	is	a	tree	of	components,	so	the	ability	to	break	your	design	into	small	parts	and	learn
the	how	to	build	components	is	crucial.

Chapter	2.	Setting	Up	an	Angular	2
Development	Environment	with	angular-cli
Angular	2	takes	advantage	of	modern	web	technologies	and	tools,	which	means	the	development
environment	becomes	more	sophisticated	and	requires	some	tools	and	their	understanding.

Luckily,	we	don't	need	to	spend	time	installing	and	configuring	all	the	required	dependencies	and
wiring	everything	together.	We	can	use	the	angular-cli	(command-line	tool)	that	is	being
developed	in	parallel	with	Angular	2.

In	this	chapter,	we	will	walk	through	setting	up	our	development	environment	with	angular-cli:
how	to	install	it	and	how	to	use	it	to	kickstart	our	Angular	2	project	in	minutes.

Node	and	npm
Before	we	can	start	using	angular-cli,	we	need	to	install	Node.js	on	our	machine.	Node	is	a
JavaScript	runtime	built	on	Chrome's	V8	JavaScript	engine.	It	enables	JavaScript	to	run	without	a
browser,	which	leads	to	the	development	of	many	development	tools	that	we	use	today,	such	as
task	runners,	compilers,	linters,	and	module	loaders.	The	modern	web	frontend	development
environment	relies	on	these	tools.

Installing	Node
Node	is	cross-platform,	so	it	can	run	on	any	popular	operating	system.	The	easiest	way	to	install
node	is	by	downloading	the	official	installer	for	your	operating	system.	To	do	this,	go	to
https://nodejs.org/en/	and	find	the	official	installer	for	Windows,	Macintosh,	or	Linux.	Currently,
Node	releases	have	two	major	paths—a	Long	Time	Support	(LTS)	and	a	stable	version.	For	this
book,	we	will	use	the	LTS	version	of	Node.	Make	sure	to	download	the	Node	4.24.53	LTS
version	installer.

After	you	download	and	run	the	installer	successfully,	open	your	terminal	(or	command	line	in
Windows)	and	type	node	-v.	This	command	should	print	the	current	version	of	node	that	you	just
installed;	in	our	case,	it	should	be	4.24.53,	or	greater.

We	use	node	as	the	JavaScript	engine	that	our	development	environment	tools	depend	on.	The
version	that	was	mentioned	here	does	not	have	any	special	meaning	due	to	the	fact	that	we	won't
write	any	Node.js	code	throughout	this	book,	but	the	other	tools	we	use	will.

Note!	The	angular-cli	tool	will	work	with	any	version	of	node	larger	than	4.x,	so	you	can	use
another	installation	if	you	like.

https://nodejs.org/en/

Introducing	npm
Npm	is	a	package	manager	for	node.	It	is	bundled	with	the	node	installer.	If	you	installed	node
successfully	in	the	previous	step,	npm	should	be	ready	to	use.	To	make	sure	it	is	installed
properly,	open	the	terminal	(command	line	on	Windows)	and	type	npm	-v.	This	command	should
print	the	npm	version.	It	should	be	3	or	greater.

We	use	npm	to	install	the	dependencies	we	need	both	for	development	and	for	runtime.	Npm
searches	for	those	packages	in	the	npm	registry,	which	currently	contain	more	than	1,90,000
packages	(and	growing).	You	can	either	visit	https://www.npmjs.com/	and	search	for	packages,
or	use	the	npm	cli	for	searching,	installing,	and	managing	packages.	Npm	also	helps	us	manage
the	project	life	cycle	as	we	will	see	next.

https://www.npmjs.com/

Installing	angular-cli
We	will	use	npm	to	install	angular-cli	on	our	workstation.	To	do	so,	follow	these	simple	steps:

1.	 Launch	the	Terminal	(or	command	line	in	Windows).
2.	 Type:	npm	install	-g	angular-cli@latest	and	press	Enter	(in	Windows,	you	might

need	to	run	this	command	as	an	administrator).

That's	it!	The	angular-cli	is	now	installed	on	your	machine,	and,	because	we	used	the	flag	-g
with	our	npm	install	command,	angular-cli	exposed	an	ng	alias	that	is	available	from
anywhere.	(-g	stands	for	global,	which	means	the	module	was	installed	on	a	system-level
directory).

Generating	an	Angular	2	project
The	first	command	that	we	will	use	with	angular-cli	is	new.	This	command	will	create	a	folder
structure	for	our	project	and	install	all	the	required	dependencies.	Along	with	the	basic	Angular	2
files	and	modules,	angular-cli	will	install	modules	for	testing,	linting,	and	documenting	our
code.	This	book	is	all	about	components,	so	we	won't	touch	most	of	this	stuff.	You	can	read	more
about	the	available	commands	on	the	official	angular-cli	page:	https://cli.angular.io/.

To	generate	a	new	project,	follow	these	steps:

1.	 Launch	the	Terminal	(or	command-line	in	Windows).
2.	 Type	ng	new	ng_components	and	press	Enter.

The	angular-cli	software	will	generate	a	new	project	under	the	current	directory:

https://cli.angular.io/

Note	that	the	last	line	prints:	Installing	packages	for	tooling	via	npm.	The	angular-
cli	tool	will	download	all	the	required	modules	using	standard	npm	command	behind	the	scenes.

That's	it!	You	just	generated	a	complete	Angular	2	project	with	everything	you	need	already
configured	and	wired.

To	serve	it	on	top	of	a	development	server,	follow	these	steps:

1.	 Navigate	using	cd	into	the	directory	you	just	created	by	typing:	cd	ng_components.
2.	 Type	ng	serve	and	sit	back.

Wait	until	angular-cli	prints	the	following:

Note

If	you	see	something	related	to	Brocolli,	its	because	a	previous	version	of	angular-cli	was	not
properly	uninstalled.	In	such	cases,	use	the	following	commands:

$	npm	uninstall	-g	angular-cli

$	npm	cache	clean

Then	you	can	reinstall	the	tool	as	described	in	the	chapter,	using	this	command:

$	npm	install	-g	angular-cli@latest

Behind	the	scenes,	angular-cli	builds	the	project,	launches	a	server	and	serves	the	application.
All	we	need	to	do	know	is	launch	our	browser	and	point	it	to	http://localhost:4200:

There	is	a	lot	going	on	behind	the	scenes.	The	angular-cli	tool	uses	various	other	tools	like
webpack	to	perform	its	magic.	These	tools	are	beyond	the	scope	of	this	book,	but	you	can	read	all
about	it	in	the	angular-cli	documentation	on	GitHub	at	https://github.com/angular/angular-cli.

https://github.com/angular/angular-cli

Choosing	an	IDE
While	Angular	2	applications	can	be	developed	with	a	plain	text	editor,	working	with	an	IDE
(integrated	develop	environment)	is	highly	recommended.	Personally,	I'm	using	webstorm
(https://www.jetbrains.com/webstorm/),	which	offers	complete	support	for	Angular	out	of	the
box.	If	you	are	looking	for	a	free,	open	source	alternative,	we	have	VSCode
(https://code.visualstudio.com/),	which	also	supports	Angular	2	naturally.	Both	of	them	offer
Angular	code	inspection	and	highlighting	along	with	refactoring	and	autocomplete	features.
WebStorm	offers	a	complete	integration	with	almost	every	JavaScript	tool	out	there	and	is
considered	by	many	to	be	the	best	JavaScript	IDE	out	there.

https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/

Summary
In	this	chapter,	we	learned	how	to	use	angular-cli	to	create,	configure,	and	serve	a	new	Angular	2
project	in	minutes.	This	tool	is	helping	us	as	developers	to	focus	on	our	application	code	rather
than	on	configurations.

In	the	next	chapter,	we	will	get	familiar	with	the	TypeScript	language,	focusing	on	the	important
features	for	building	Angular	2	components	(and	all	the	rest	of	the	project).

Chapter	3.	The	TypeScript	Primer
Angular	2	is	written	with	TypeScript,	but	that	doesn't	mean	we	have	to	write	our	application	with
TypeScript.	Angular	2	applications	can	be	written	with	ES6	(JavaScript	2015)	or	even	ES5
(JavaScript	1.5).	In	this	book,	we	will	use	TypeScript,	mainly	(but	not	only)	because	of	the
implementations	of	decorators,	which	can	clean	our	Angular	2	code	compared	to	ES6	and	ES5.

I	will	assume	that	you	already	know	how	to	write	JavaScript	2015	(ES6)	code.	Through	this
chapter,	we	will	cover	just	what	we	need	to	know	about	TypeScript;	most	of	the	code	is
compatible	with	JavaScript	2015	as	is.	If	you	are	not	familiar	with	ES6	at	all,	it's	highly
recommended	to	catch	up	with	the	new	syntax	and	features.

The	following	are	the	topics	that	we	will	cover:

An	introduction	to	the	TypeScript	language
Manage	dependencies	with	modules
Class	declarations	and	usage
System,	built-in,	and	custom	types
How	to	use	decorators

Introduction	to	TypeScript
The	most	important	thing	that	you	should	know	about	TypeScript	is	that	it's	not	a	completely	new
language.	It's	a	superset	of	ES6.	This	means	an	ES6	code	can	be	converted	to	TypeScript	just	by
changing	the	file	extension	from	.js	to	.ts.

For	example,	the	following	code	is	a	valid	ES6	or	TypeScript:

class	User	{

		constructor(id){

				this.id	=	id;

		}

		getUserInfo(){

				return	this.userInfo;

		}

}

On	the	other	hand,	the	TypeScript	compiler	can	target	various	versions	of	JavaScript,	including
ES6.	The	compiler	will	peel	all	the	extra	code	and	output	clean	and	readable	JavaScript	code
that	is	almost	identical	to	the	source.

This	is	a	simple	TypeScript	class:

class	Product	{

		private	id:	number;

		private	color:	string;

		constructor(id:number,	color:string)	{

				this.id	=	id;

				this.color	=	color;

		}

}

Targeting	ES6	will	output	this	code:

class	Product	{

		constructor(id,	color)	{

				this.id	=	id;

				this.color	=	color;

		}

}

And	this	is	the	completion	result	when	targeting	ES5:

var	Product	=	(function	()	{

		function	Product(id,	color)	{

				this.id	=	id;

				this.color	=	color;

		}

		return	Product;

})();

As	you	can	see,	the	compilation	results	in	a	clean	and	readable	code,	which	is	almost	identical	to
the	source	code	(in	case	of	ES6).

Next,	we	will	explore	the	language	features.	Note	that	most	of	the	features	that	we	will	go	through
are	part	of	ES6	and	not	TypeScript.	I	will	mention	which	feature	belongs	to	TypeScript	and	which
does	not.

Managing	dependencies	with	modules
One	of	the	most	important	changes	introduced	in	JavaScript	is	modules.	A	module	is	a	JavaScript
file	that	gets	loaded	in	a	special	way.	All	variables	and	declarations	are	scoped	to	the	module.	If
we	like	to	expose	some	code	to	the	outside	world,	we	need	to	export	it	explicitly.	If	you	try	to	log
the	value	of	this	in	the	top	level	of	the	module,	you	will	get	undefined.

The	export	and	import	statements
The	export	and	import	keywords	are	used	to	define	which	part	of	the	code	should	be	exposed	to
other	modules,	and	which	code	we	will	like	to	import	from	another	module.	The	following
module	exposes	a	function,	a	class,	and	a	variable:

[user.ts]

export	function	getRandomNumber()	{

		return	Math.random();

}

export	class	User	{

		constructor(name)	{

				this.name	=	name;

		}

}

export	const	id	=	12345;

To	use	this	exported	code,	we	need	to	import	it	in	another	module.	We	can	import	this	code	in
various	ways:

//	import	only	the	function	from	the	module

import	{	getRandomNumber	}	from	'./user';

//	import	both	the	function	and	the	class	from	the	module

import	{	getRandomNumber,	Person	}	from	'./user';

//	import	the	function	and	bind	it	to	a	random	variable

import	{	getRandomNumber	as	random	}	from	'./user';

//	import	everything	from	the	module	and

//	bind	it	to	a	userModule	variable

import	*	as	UserModule	from	'./user';

The	default	exports
We	can	import	only	what	we	need	from	the	module,	import	multiple	code	and	import	everything
that	the	module	exported.	There	is	another	option	to	export	code	from	a	module,	which	is	called	a
default	export:

[user.ts]

export	default	class	User	{

		constructor(name)	{

				this.name	=	name;

		}

}

When	importing	code	that	is	exported	using	the	default	keyword,	we	don't	have	to	use	the	exact
name	of	the	function	or	class	or	variable	that	we	exported:

import	UserModule	from	'./user.ts';

A	default	export	can	be	declared	only	once	per	module.	We	can	mix	the	default	and	named
exports	in	the	same	module.	Note	that	we	don't	have	to	use	curly	braces	when	importing	code	that
has	been	exported	as	default.

Classes
The	JavaScript	language's	object-oriented	capabilities	are	built	around	the	concept	of	prototypes.
The	prototype	model	defines	links	between	objects,	instead	of	inheritance	trees.	The	prototype
model,	as	powerful	as	it	is,	is	not	very	friendly	to	the	average	JavaScript	programmer.	TypeScript
enables	us	to	create	classes	with	a	familiar	syntax,	and	it's	completely	identical	to	JavaScript	1.5
classes	(if	we	choose	not	to	use	TypeScript	exclusive	features).	To	define	a	class	in	TypeScript,
we	use	the	class	keyword:

class	Product	{}

Classes	in	TypeScript	might	have	a	constructor	and	methods	just	like	JavaScript	2015.	TypeScript
also	adds	the	ability	to	define	class	properties.	The	following	example	shows	our	Product	class
with	a	constructor,	property,	and	a	method:

class	Product	{

	

		color;

		price;

		constructor(color,	price)	{

				this.color	=	color;

				this.price	=	price;

		}

		getProductDetails()	{

				return	this.color	+	this.price;

		}

}

In	TypeScript,	just	like	JavaScript	2015,	inheritance	is	achieved	through	the	extends	keyword,
and	the	super	keyword	is	used	to	call	the	parent	class	when	necessary.	The	following	example
illustrates	how	to	use	it:

class	Product	{

		color;

		price;

		constructor(color,	price)	{

				this.color	=	color;

				this.price	=	price;

		}

		getProductDetails()	{

				return	`${this.color},	${this.price}`;

		}

}

class	Ebook	extends	Product	{

		size;

		constructor(color,	price,	size)	{

				super(color,	price);

				this.size	=	size;

		}

		getProductDetails(){

				return	`${this.color},	${this.price},	${this.size}`;

		}

}

It's	important	to	realize	that	classes	are	just	a	sugar	on	top	of	prototypes.	This	means	the	way
JavaScript	deals	with	objects'	instantiation	and	inheritance	behind	the	scenes	hasn't	changed.	It
just	has	a	friendly	syntax.

In	Angular	2,	the	component	that	contains	all	the	component	behavior	is	defined	as	a	class.	The
rest	is	just	a	metadata	decorator,	which	we	will	learn	about	in	the	future	chapters.

The	type	system
The	most	famous	feature	that	made	TypeScript	what	it	is,	is	the	type	system	that	enables	us	to
leverage	a	static	type	checking	at	compile	time.	We	have	already	seen	the	use	of	types	in	the
previous	code	examples.	It's	important	to	understand	that	in	TypeScript	the	use	of	types	is
optional	but	highly	recommended.	As	we	saw	at	the	beginning	of	this	chapter,	the	TypeScript
compiler	breakdown	all	the	types	declaration,	so	the	compilation	result	will	be	plain	JavaScript.

The	basic	types
TypeScript	supports	all	the	basic	JavaScript	types	you	expected:	Booleans,	Numbers,	Strings,	and
Arrays.	The	following	example	shows	how	to	use	it	in	code:

//	strings

let	name:	string	=	"bob";

//	boolean

let	isLoggedIn:	boolean	=	true;

//	number

let	height:	number	=	24;

let	width:	number	=	12;

//	arrays

let	colors:	string[]	=	['red',	'green',	'blue'];

let	colors:	Array<string>	=	['red',	'green',	'blue'];

TypeScript	also	includes	extra	three	types	to	the	mix,	namely,	enum,	any,	and	void.	The	type	any,
as	the	name	suggests,	is	used	when	we	are	dealing	with	dynamic	data	and	we	can't	tell	which	type
of	data	we	are	expecting.	If	we	don't	specify	a	type	at	all,	TypeScript	defaults	to	the	any	type:

//	value	can	be	any	type,	init	with	a	number

let	value:	any	=	10;

//	different	types	can	assigned

value	=	false;

value	=	"this	value	is	a	string";

The	void	type	is	like	the	opposite	of	any.	It	means	no	type.	Most	of	the	time,	it	is	used	as	a	return
type	for	a	function	that	doesn't	return:

//	this	function	doesn't	returns

function	setId(id:string):	void	{

		this.id	=	id;

}

An	enum	is	just	a	way	of	giving	more	friendly	names	to	sets	of	numeric	values.	Nothing	more.	The
default	numbering	starts	with	0,	and	can	be	set	manually	to	any	other	numeric	value:

//	default	behavior,	value	of	color	will	be	2;

enum	Color	{Red,	Green,	Blue}

let	color:	Color	=	Color.Blue;

//	manual	initialize,	value	of	color	will	be	6;

enum	Color	{Red	=	2,	Green	=	4,	Blue	=	6}

let	color:	Color	=	Color.Blue;

The	custom	types
Besides	the	built-in	basic	types,	you	can	(and	you	probably	will)	use	your	own	types	for	code	that
you	have	written.	There	are	three	ways	in	TypeScript	to	define	types,	namely,	creating	a	class,
defining	an	interface,	and	using	special	files	that	declare	types	for	an	existing	library.

An	interface	in	TypeScript	can	be	described	as	the	shape	of	the	object,	and	usually	includes	class
members	and	methods	without	implementation.	Interfaces	are	only	at	design	time;	for	example,
you	can't	use	it	as	type	when	defining	providers.

The	following	example	illustrates	how	to	use	your	own	classes	as	types:

class	Model	{}

class	Account	extends	Model	{}

class	Controller	{

		model:Model;

		constructor(model:Model)	{

				this.model	=	Model;

		}

}

new	Controller(Account);

The	following	example	illustrates	how	to	create	an	interface	for	defining	a	type:

interface	Model	{

		get(query:string):	any[];

}

class	Account	implements	Model	{

		get(query:string):any[]	{

				return	[];

		}

}

class	Controller	{

	model:Model;

	constructor(model:Model)	{

		this.model	=	Model;

	}

}

The	third	option	is	to	create	a	file	with	a	.d.ts	extension,	which	maps	an	existing	code	(third
party)	to	types.	The	process	of	creating	this	file	is	behind	the	scope	of	this	book,	and	you	can	visit
http://www.typescriptlang.org/Handbook#writing-dts-files	to	learn	more	about	it.

The	good	news	is	that	you	can	find	the	Definition	map	for	almost	any	library	out	there	(including
Angular).	Visit	https://github.com/typings/typings	where	you	can	browse	for	repositories	of
Definition	maps,	and	learn	more	about	typings,	which	is	a	command-line	tool	for	managing	those
maps.

http://www.typescriptlang.org/Handbook#writing-dts-files
https://github.com/typings/typings

About	generics
There	is	another	feature	that	is	related	to	types	and	that	should	be	mentioned,	called	generics.
This	feature	enables	us	to	create	a	component	that	can	work	over	a	variety	of	types	rather	than	a
single	one.

The	generics	API	is	out	of	the	scope	of	this	book,	and	we	won't	use	this	feature	through	our	code
example.	You	can	learn	more	about	generics	by	visiting
http://www.typescriptlang.org/Handbook#generics.

http://www.typescriptlang.org/Handbook#generics

Using	decorators
Decorators	are	functions	that	modify	a	class,	property,	method,	or	method	parameter.	The
following	example	illustrates	how	to	define	and	use	a	simple	decorator	that	adds	a	static
parameter	to	the	class:

//	decorator	function

function	AddMetadata	(...args)	{

		return	function	(target){

				target.metadata	=	[...args];

		}

}

//	decorator	applied

@AddMetadata({	metadata:	'some	values'})

class	Model	{

}

The	three	dots	syntax	(...)	is	the	spread	operator,	which	is	a	feature	of	JavaScript	2015	that
deconstructs	the	items	of	a	given	array.

Decorators	versus	annotations
You	might	have	heard	the	term	annotations;	they	are	simply	metadata	related	to	Angular	2.	Before
the	Angular	team	decided	to	use	TypeScript,	they	introduced	us	to	a	new	language	that	they	called
AtScript.	This	language	included	a	feature	called	annotations,	which	look	exactly	like	decorators.
So	what's	the	difference?	The	decorator	is	an	interface	for	creating	those	Angular	annotations.
Decorators	are	executed	and	in	Angular	2,	they	have	the	responsibility	to	set	metadata	leveraging
the	Reflect	Metadata	library.	Furthermore,	decorators	are	a	proposal	for	ES7—the	next	version	of
JavaScript.	For	that	reason,	we	can	focus	on	decorators.

Summary
TypeScript	is	a	superset	of	JavaScript.	This	means	you	can	write	plain	JavaScript	in	.ts	files.
The	TypeScript	compiler	will	peel	all	the	extra	TypeScript	code	and	produce	code	that	is	plain,
readable,	and	almost	identical	to	the	source	code.	The	Angular	2	team	uses	TypeScript	for
developing	the	Angular	platform	(the	source	code	is	written	with	TypeScript,	but	a	compiled
JavaScript	version	is	also	available).	As	developers,	we	can	choose	whatever	we	want	to	use;
TypeScript,	JavaScript	2015	(ES6),	or	JavaScript	1.5.

If	you	choose	to	use	TypeScript,	it's	highly	recommended	to	visit	http://www.typescriptlang.org/
and	learn	more	about	the	language's	capabilities	that	go	beyond	the	scope	of	this	book.

http://www.typescriptlang.org/

Chapter	4.	Building	a	Basic	Component
At	its	core,	an	Angular	2	component	is	a	class	that	is	responsible	for	exposing	data	to	the	view
and	implementing	user	interaction	logic.	An	Angular	2	component	can	be	compared	to	the
controller,	scope,	and	view	of	Angular	1.

How	does	Angular	2	know	how	to	treat	our	class	as	a	component?	We	need	to	attach	metadata	to
the	class	to	tell	Angular	how	to	treat	it.

The	term	metadata	describes	the	additional	information	that	we	add	to	our	code.	This	information
is	used	by	Angular	2	at	runtime.

In	this	chapter,	we	will	cover	the	following	topics:

The	anatomy	of	an	Angular	2	component
The	component	selector
Component	template
Component	style
View	encapsulation	(the	shadow	DOM)
Data	binding
Anatomy	of	an	Angular	2	component

In	Chapter	2,	Setting	Up	an	Angular	2	Development	Environment	with	angular-cli,	setting	the
development	environment,	we	generated	an	Angular	2	project	from	scratch	using	the	angular-
cli	tool	and	served	it	to	the	browser.	If	you	haven't	done	so,	refer	to	Chapter	2,	Setting	Up	an
Angular	2	Development	Environment	with	angular-cli,	and	follow	the	steps.

After	you	are	done,	it's	time	to	open	the	project	in	our	favorite	IDE	(also	described	in	Chapter	2,
Setting	Up	an	Angular	2	Development	Environment	with	angular-cli),	to	inspect	the	code.	It
should	be	similar	to	the	following	screenshot:

When	we	generate	our	project	using	angular-cli,	a	component	with	our	application	name	(that
we	supplied	to	the	ng	new	command)	is	created	for	us.	We	can	find	it	under	the	src/app
directory	as	follows:

Locate	the	file	named	app.component.ts	and	open	it	in	the	editing	view	(the	editing	view	can
be	differ	from	one	IDE	to	another).

Let's	explore	the	component	code	line	by	line,	here	is	the	code	of	app.component.ts

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		templateUrl:	'./app.component.html',

		styleUrls:	['./app.component.css']

})

export	class	AppComponent	{

		title	=	'app	works!';

}

In	the	first	line,	we	are	importing	the	Component	decorator	from	the	Angular	core	module

Then,	we	declare	the	Component	decorator	by	assigning	the	@	symbol	following	the	name	of

the	decorator.	Because	the	decorator	is	just	a	function	(refer	to	Chapter	3,	The	TypeScript
Primer	for	an	explanation),	we	need	to	invoke	it	just	like	any	other	function	using
parenthesis.
The	Component	decorator	accepts	an	object	as	a	parameter,	which	defines	the	component
metadata.	We	will	explore	it	in	a	second.
Right	after	the	decorator,	we	declare	the	component	class,	which	should	hold	our	component
logic	and	currently	declares	the	string	named	title
The	class	needs	to	be	exported	so	it	can	be	used	in	other	places	in	the	code

As	we	can	see,	Angular	2	components	must	be	built	from	two	distinct	parts:	a	simple	class	and	a
decorator.

Before	we	dive	into	this	code,	let's	open	the	browser	and	explore	the	elements	that	have	been
rendered	to	the	browser.

To	do	so,	point	your	browser	to	http://localhost:4200/	(I'm	using	Google	Chrome),	right-
click	on	the	title	and	choose	Inspect	from	the	pop-up	menu:

This	will	open	up	the	Chrome	DevTool	where	we	will	explore	the	DOM:

The	selector	that	we	defined	in	our	metadata	becomes	an	element	with	the	same	name,	and	the
title	that	we	defined	on	the	component	class	is	rendered	as	an	<h1>	tag	inside	it.

How	has	the	<app-root>	found	its	way	to	the	DOM?	Where	does	that	<h1>	tag	come	from?

Bootstrapping	the	application
Before	dealing	with	how	the	link	is	made	between	components	and	the	DOM,	let's	introduce	the
concept	of	module	and	how	it's	used	to	bootstrap	the	application.

Under	the	src	directory	in	the	project	root,	locate	and	open	the	main.ts	file:

This	file	is	the	starting	point	of	our	Angular	application.	It	is	responsible	for	instantiating	the	main
module	of	the	application	and	the	root	component	in	it.	To	do	so,	we	import	a
platformBrowserDynamic	method	from	the	platform-browser-dynamic	module,	which	is	a
part	of	Angular.	This	method	returns	an	object	to	bootstrap	the	application.	The
bootstrapModule	method	of	this	object	is	responsible	for	kicking	off	Angular	by	rendering	the
root	component	of	the	component	tree.	It	requires	the	main	module	to	be	passed	as	an	argument,
so	we	import	our	module	class	AppModule	and	pass	it	to	bootstrap:

The	following	code	is	from	the	main.ts	file:

import	'./polyfills.ts';

import	{	platformBrowserDynamic	}	from	'@angular/platform-browser-dynamic';

import	{	enableProdMode	}	from	'@angular/core';

import	{	environment	}	from	'./environments/environment';

import	{	AppModule	}	from	'./app/';

if	(environment.production)	{

		enableProdMode();

}

platformBrowserDynamic().bootstrapModule(AppModule);

The	rest	of	the	code	doesn't	have	any	effect	on	bootstrapping	Angular	with	a	root	module.	The
enableProdMode	method	is	a	method	from	Angular	core	that	runs	the	application	in	production
mode.	The	environment	is	just	a	constant	that	holds	a	Boolean	that	indicates	if	we	are	running	in

the	production	environment.

Modules	are	a	convenient	way	to	gather	a	set	of	components,	directives,	services	and	pipes	into	a
single	entity	that	can	into	other	modules.	Each	Angular	application	contains	a	single	root	module,
in	our	case,	AppModule.	It	contains	the	root	component	of	the	application.

A	module	is	simply	a	class	decorated	with	@NgModule	that	accepts	an	object	as	a	parameter,
which	defines	the	module	metadata.

Note	that	we	use	the	dynamic	bootstrapping	approach	leveraging	the	Just-in-Time	compiler.	This
compiles	components	on	the	fly,	in	memory,	and	in	the	browser.	Another	alternative,	called
Ahead	of	Time	(AoT),	is	possible	in	Angular	2	to	precompile	the	application.	In	this	case,	there
is	no	need	to	ship	the	Angular	compiler	to	the	browser	and	the	performance	boost	can	be
significant.

In	this	case,	after	having	precompiled	the	application,	you	need	to	use	the
platformBrowserDynamic	method	from	the	platform-browser-dynamic	module	for	the
main.ts	file:

import	'./polyfills.ts';

import	{	platformBrowser	}	from	'@angular/platform-browser';

import	{	enableProdMode	}	from	'@angular/core';

import	{	environment	}	from	'./environments/environment';

import	{	AppModuleNgFactory	}	from	'./app/app.module.ng.factory';

if	(environment.production)	{

		enableProdMode();

}

platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);

The	component	selector
As	we	have	seen	in	the	first	example	of	this	chapter,	the	selector	that	we	defined	in	the
component	decorator	becomes	an	element	that	renders	to	the	DOM.	Before	we	explore	our
selector	options,	let's	understand	how	Angular	renders	this	component.

As	we	discussed	in	Chapter	1,	Angular	2	Component	Architecture,	an	Angular	2	application	can
be	described	as	a	tree	of	components.	Like	any	other	tree	structure,	there	is	only	one	root	node.
Currently	in	our	project	we	got	only	one	component,	which	is	used	as	the	tree	node.

With	this	information,	let's	see	how	Angular	instantiates	our	root	component	and	renders	it:

Under	the	src/app	directory	in	the	project	root,	locate	and	open	the	app.module.ts	file.	This
file	contains	the	definition	of	the	root	module	of	the	application:

[app.module.ts]

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	FormsModule	}	from	'@angular/forms';

import	{	HttpModule	}	from	'@angular/http';

import	{	AppComponent	}	from	'./app.component';

@NgModule({

		declarations:	[

				AppComponent

],

		imports:	[

				BrowserModule,

				FormsModule,

				HttpModule

],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

The	app.module.ts	is	responsible	for	instantiating	the	component	class.	When	this	happens,
Angular	searches	for	the	selector	that	we	defined	in	the	component	decorator	in	the	index.html
file.	The	only	component	that	we	need	to	place	inside	our	index.html	is	our	root	component
defined	in	the	bootstrap	attribute	of	the	root	module	in	the	app.module.ts.

Note	that	this	component	needs	to	be	specified	in	the	declarations	attribute	listing	all	usable
components	for	the	module.

Open	index.html	which	is	located	next	to	main.ts	and	inspect	the	code:

[index.html]

<html>

		<head>

				<!--	other	code	related	to	the	page	head	-->

		</head>

		<body>

				<app-root>Loading...</app-root>

		</body>

</html>

The	first	thing	we	see	is	that	we	used	our	selector	as	element	in	our	html	file.	This	is	the	default
behavior	of	Angular.

The	other	code	that	you	find	in	index.html	is	related	to	the	build	system	that	angular-cli	uses,
which	is	out	of	the	scope	of	this	book.

All	you	need	to	know	is	that	when	this	HTML	is	loaded	into	the	server,	all	the	required
dependencies	are	loaded	for	Angular	and	you	need	to	run	the	code	in	main.ts	to	kickstart	the
framework.

Selector	options
When	we	build	components,	we	are	creating	new	html	elements.	That's	the	reason	that,	by	default,
our	selector	name	is	used	as	an	element	in	the	HTML.	But	we	have	other	options	as	well	for
building	components.	Let's	explore	them:

Select	by	CSS	class	name:

@Component({

		selector:	'.app-root'

})

Use	in	markup:

<div	class="app-root">Loading...</div>

Select	by	attribute	name:

@Component({

		selector:	'[app-root]'

})

Use	in	markup:

<div	app-root>Loading...</div>

Select	by	attribute	name	and	value:

@Component({

		selector:	'div[app=components]'

})

Use	in	markup:

<div	app="components">Loading...</div>

Select	only	if	the	element	does	not	match	the	selector:

@Component({

		selector:	'div:not(.widget)'

})

Use	in	markup:

<div	class="app">Loading...</div>

Select	if	one	of	the	selectors	matches:

@Component({

		selector:	'app-root,	.app,	[ng=app]'

})

Use	in	markup:

<app-root>Loading...</app-root>

<div	class="app">Loading...</div>

<div	ng="app">Loading...</div>

Most	of	the	time,	leaving	the	default—which	is	the	component	selector—is	exactly	what	we	want
when	building	common	components.	In	the	later	chapters,	we	will	see	other	usages	as	well.

For	now,	we	will	leave	the	selector	as	default.

The	component	template
The	template	is	the	heart	of	the	component	in	Angular	2.	Without	a	template	there	is	nothing	to
render	to	the	DOM.	There	are	two	ways	to	attach	a	template	to	the	component:

Providing	a	URL	to	an	external	html	file
Define	the	template	inline

The	app-root	that	is	created	by	the	angular-cli	includes	an	external	template.	It	is	defined
with	the	templateUrl	property:

[app.component.ts]

@Component({

		selector:	'app-root',

		templateUrl:	'./app.component.html'

})

We	can	find	the	template	next	to	app.component.ts	as	an	HTML	file	with	the	same	name
app.component.html.	Let's	open	it	to	inspect	the	code:

[app.component.html]

<h1>

		{{title}}

</h1>

Now	we	know	where	the	<h1>	came	from.	As	you	can	guess,	the	double	curly	braces	render	the
title	from	the	component	class.

If	we	want	to	declare	our	templates	inline,	we	should	use	the	template	property	instead.	Luckily,
in	ES6,	we	are	introduce	with	a	way	to	create	multiline	strings	easily.	This	feature	is	called
template	strings	and	it's	declared	with	the	back	tick	(`)	character.	In	the	following	example,	we
demonstrate	how	to	declare	an	inline	template:

[app.component.ts]

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{title}}

				</h1>

		`

})

Keeping	the	template	inline	is	comfortable	as	we	can	see	both	the	template	and	the	component
class	in	the	same	file.

Embedding	styles	in	component	template
We	will	probably	want	to	use	some	CSS	in	our	component's	template.	Like	templates,	we	have
two	options—specifying	our	CSS	classes	inline	or	supplying	a	URL	for	external	style	sheets.
Currently,	our	component	uses	one	external	CSS	file,	by	declaring	a	path	in	the	styleUrls	array.

As	the	property	name	suggests,	we	can	supply	more	than	one	URL	to	pull	the	CSS	from.	The
styles	defined	on	those	CSS	files	are	now	available	for	use	within	our	template.	First	let's	take	a
look	at	the	current	component	declaration:

[app.component.ts]

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{title}}

				</h1>

		`,

		styleUrls:	['./app.component.css']

})

Alternatively,	we	can	define	styles	inline,	just	like	the	template,	by	using	the	styles	property
instead.	styles	is	an	array	of	strings	where	we	can	write	our	CSS	rules.	The	following	example
demonstrates	how	to	style	the	<h1>	tag	using	inline	styles:

[app.component.ts]

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{title}}

				</h1>

		`,

		styles:	[`

				h1	{	color:	darkblue	}

		`]

})

Let's	explore	the	element	in	Chrome	DevTool.	Right-click	on	the	title	and	choose	inspect	from
the	pop	up	menu.	The	Chrome	DevTool	will	launch:

Looking	at	the	element	through	the	DevTool,	we	expose	some	facts	about	component	styling:

The	style	that	we	defined	is	transformed	into	an	inline	style	tag	on	the	head	section	on	top	of
the	html	document
The	style	definition	is	changed	and	now	includes	a	property	next	to	it,	which	makes	it
specific	and	almost	impossible	to	override

Angular	protects	the	component	styling	from	overriding	by	generating	a	unique	property	and
attaches	it	to	the	original	CSS	selector	that	we	defined.	This	behavior	tries	to	mimic	the	way	that
the	shadow	DOM	works.	So,	before	we	can	move	forward,	we	need	to	understand	what	the
shadow	DOM	is.

The	shadow	DOM
When	we	are	creating	a	component	in	Angular	2,	a	shadow	DOM	is	created	and	our	template	gets
loaded	into	it	(not	by	default).	What	is	a	shadow	DOM?	Shadow	DOM	refers	to	a	subtree	of
DOM	elements	that	renders	as	part	of	the	document,	but	not	into	the	main	document	DOM	tree.

Let's	see	a	well-known	example	of	a	shadow	DOM,	an	HTML	select,	in	action.	Create	a	plain
HTML	file	in	your	favorite	text	editor	and	create	a	select	element	in	its	body:

<!doctype	html>

<html	lang="en">

		<head>

				<meta	charset="UTF-8">

				<title>Document</title>

		</head>

		<body>

				<select>

						<option>ONE</option>

						<option>TWO</option>

						<option>THREE</option>

				</select>

		</body>

</html>

Next,	open	it	up	in	Chrome	and	right-click	on	the	element,	then	choose	Inspect	Element	from	the
pop-up	menu:

The	Chrome	DevTool	will	pop	up,	and	we	can	inspect	the	select	element	in	the	Elements	tab:

If	you	have	ever	tried	to	customize	the	appearance	of	a	native	html	select	element	with	CSS,
you	know	that	you	need	to	hack	and	develop	a	workaround	to	make	it	work.	The	select	element
has	styling	structure,	and	even	a	built-in	behavior,	but	we	can't	see	it.	It's	encapsulated	inside	the
element.

If	you	are	not	familiar	with	the	term	encapsulation	here	is	a	quick	definition	taken	from
Wikipedia:

Encapsulation	is	an	Object	Oriented	Programming	concept	that	binds	together	the	data	and
functions	that	manipulate	the	data,	and	that	keeps	both	safe	from	outside	interference	and	misuse.

So,	where	does	the	select	appearance	come	from?	Chrome	DevTool	has	a	feature	that	can	rival
the	shadow	DOM	of	this	element.	To	enable	this,	go	to	the	Settings	menu	of	Chrome	DevTool:

Scroll	down	and	find	the	Elements	section.	Check	the	checkbox	Show	user	agent	shadow
DOM:

Now,	let's	inspect	the	select	element	again:

Now	we	clearly	see	that	the	select	element	hides	a	secret	DOM	tree.	Under	the	select	element,
a	new	root	is	created	(the	#shadow-root)	and	a	content	element	renders	right	under	it.	The
hidden	content	tag	has	an	attribute	called	select,	which	defines	some	internal	behavior.	This	is
same	for	the	option	tag.	If	you	would	like	to	explore	one	more	popular	HTML	element	that	creates
a	shadow	DOM,	you	can	repeat	those	steps	using	<input	type='file'	/>.

This	powerful	ability	to	create	a	native	element,	which	encapsulates	its	own	styling,	behavior,
and	even	data,	is	also	possible	with	Angular	2.

Encapsulation	modes
By	default,	as	we	have	seen,	our	component	won't	encapsulate	its	structure	and	styling.	This
means	that	CSS	classes	from	outside	of	the	component	can	override	and	affect	the	embedded	CSS
styles	that	we	defined,	and	the	HTML	structure	of	the	component	is	accessible	as	well.

Angular	will	generate	a	unique	property	for	our	selector	to	protect	our	styling,	but	this	can	be
overridden	with	a	CSS	!important	statement.

To	change	this,	we	need	to	define	an	encapsulation	mode.	Angular	2	provides	us	three	options	to
choose	from:

Emulated	(the	default):	Angular	will	add	a	special	attribute	to	the	class	selector	to	avoid
affecting	other	styles	outside	of	the	components.
Native:	This	is	the	native	encapsulation	mechanism	of	the	renderer	that	will	be	applied.	In
our	case,	it's	the	browser.	Angular	will	create	a	shadow	DOM	for	this	component,	which
means	that	external	CSS	can't	affect	our	component.
None:	No	encapsulation	will	be	applied.

To	define	encapsulation	options,	we	need	to	import	the	ViewEncapsulation	from	Angular	core
and	use	one	of	the	options	to	define	the	component	encapsulation	property.	The	following
example	demonstrates	how	to	set	the	component	encapsulation	model	to	None:

[app.component.ts]

@Component({

		selector:	'app-root',

		encapsulation:	ViewEncapsulation.None,

		template:	`

				<h1>

						{{title}}

				</h1>

		`,

		styles:	[`

				h1	{	color:	darkblue	}

		`]

})

Most	of	the	time,	leaving	the	default	emulate	mode	is	fine.	In	the	future	chapters,	we	will
encounter	some	situations	where	setting	the	mode	to	None	is	crucial.

Data	bindings
To	fully	understand	the	component	code	that	was	generated	for	us	by	angular-cli,	we	need	to	talk
about	data	bindings.	In	other	words,	the	way	that	we	were	able	to	render	the	title	declared	on	the
component	class	to	component	template.

First,	let's	take	a	look	at	the	entire	component	code:

[app.component.ts]

import	{	Component,	ViewEncapsulation	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		encapsulation:	ViewEncapsulation.None,

		template:	`

				<h1>

						{{title}}

				</h1>

		`,

		styles:	[`

				h1	{	color:	darkblue	}

		`]

})

export	class	AppComponent	{

		title	=	'app	works!';

}

It's	not	hard	to	spot	the	double	curly	braces	in	the	template.	This	is	a	part	of	Angular's	template
syntax,	which	is	responsible	for	one	way	binding	of	data	from	the	component	class.	In	this	case,
we	are	binding	the	title	property	(which	is	a	string)	to	be	rendered	between	the	<h1>	tag.

Later	in	this	book,	we	will	explore	some	more	binding	options.

Summary
In	Angular	2,	a	component	is	a	class	with	a	decorator	that	adds	important	metadata	to	it.	The
component	decorator	defines	how	we	can	use	it,	and	what	it	can	do.	The	selector	and	the	template
are	the	minimum	required	fields	when	calling	the	decorator	(Angular	will	throw	an	error	if	one	of
them	is	missing).

If	we	defined	the	view	encapsulation	as	native,	Angular	will	create	a	shadow	DOM	for	our
component,	which	protects	the	embedded	styles	from	being	affected	by	external	CSS	on	the	page.

In	the	next	chapter,	we	will	continue	to	develop	our	component	and	make	it	dynamic.

Chapter	5.	Building	Dynamic	Components
Components	are	data	driven	by	nature.	They	should	be	able	to	render	dynamic	data,	respond	to
user	interactions,	and	react	to	events.

In	this	chapter,	we	will	continue	where	we	stopped	in	Chapter	4,	Building	a	Basic	Component,
focusing	on	the	component	template	syntax,	and	learn	how	to	bind	data	and	events.

The	topics	that	will	be	covered	are	as	follows:

Data	interpolation
Using	core	directives
Properties	binding
Events	bindings
Two-way	bindings

Data	interpolation
In	Chapter	3,	The	TypeScript	Primer,	we	bound	a	simple	string	to	the	template.	If	you	haven't
done	it,	refer	to	Chapter	4,	Building	a	Basic	Component.	Let's	overview	our	app-component
code:

[app.component.ts]

import	{	Component,	ViewEncapsulation	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		encapsulation:	ViewEncapsulation.None,

		template:	`

				<h1>

						{{title}}

				</h1>

		`,

		styles:	[`

				h1	{	color:	darkblue	}

		`]

})

export	class	AppComponent	{

		title	=	'app	works!';

}

For	now,	we	will	focus	on	the	template.	Remove	the	encapsulation	and	styles	properties
from	the	component	decorator	to	make	it	more	clear	and	focused.	While	doing	this,	let's	add	a
type	and	a	constructor	to	our	class	as	well:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{	title	}}

				</h1>

		`

})

export	class	AppComponent	{

		title:	string;

		constructor()	{

				this.title	=	'app	works!';

		}

}

This	is	a	one-way	binding	from	the	data	source	(the	component	class	in	our	case)	to	the	view	(the
component	template).	Angular	interpolates	the	title	and	outputs	the	result	between	the	double
curly	brace.

The	double	curly	braces	can	only	interpolate	strings.	If	we	try	to	bind	an	object,	it	will	not	work.
In	the	following	example,	instead	of	a	title,	I	created	an	object	which	contains	the	title	and
inspects	the	result	in	the	browser:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{	info	}}

				</h1>

		`

})

export	class	AppComponent	{

		info:	{};

		constructor()	{

				this.info	=	{title:	'app	works!'};

		}

}

Here	is	the	output:

Note

If	you	can't	see	the	result	in	the	browser,	make	sure	you	run	the	ng	serve	command.	If	you	are	not
sure	how	to	do	it,	refer	to	Chapter	2,	Setting	Up	an	Angular	2	Development	Environment	with
angular-cli.

We	can	bind	to	object	properties,	just	remember	that	everything	will	be	interpolated	as	a	string.
The	following	example	will	render	the	title	properly:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>

						{{	info.title	}}

				</h1>

		`

})

export	class	AppComponent	{

		info:	{};

		constructor()	{

				this.info	=	{title:	'app	works!'}

		}

}

What	we	write	between	the	curly	braces	is	an	angular	expression.	It	means	that	angular	evaluates
the	expression	before	it	is	converted	into	a	string.	In	other	words,	we	can	put	simple	logic	in	our
expressions	and	even	bind	to	a	method.	Consider	the	following	example:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>{{	info.title	}}</h1>

				<h2>{{	info.subtitle	||	'alternative	text'	}}</h2>

				<h3>My	name	is:	{{	getFullName()	}}</h3>								

		`

})

export	class	AppComponent	{

		info:	{};

		firstName:	string;

		lastName:	string;

		constructor()	{

				this.info	=	{title:	'app	works!'}

				this.firstName	=	'Nir';

				this.lastName	=	'Kaufman';

		}

		getFullName(){

				return	`${this.firstName}	${this.lastName}`;

		}

}

Inside	angular	expressions	we	can't	use	the	new	keyword	and	operators	such	as:	++,	--,	and	+=.

As	a	rule	of	thumb,	expressions	shouldn't	be	complex.

The	context	of	the	component	template	is	the	component	instance.	It	means	that	you	can't	access
global	variables	such	as	window,	document,	or	console.log.

Core	directives
If	you	are	familiar	with	Angular	1.x,	you	already	know	what	a	directive	is.	If	not,	here	is	a	quick
definition:	a	directive	is	a	custom	attribute	that	adds	functionality	to	an	element.	In	Angular,	a
component	is	considered	to	be	a	special	case	of	a	directive	which	contains	a	template.

Angular	2	core	includes	several	directives—NgClass,	NgFor,	NgIf,	NgStyle,	NgSwitch,
NgSwitchWhen,	and	NgSwitchDefault.

If	you	are	familiar	with	Angular	1,	you	already	know	what	these	directives	can	do,	although	the
syntax	and	the	underneath	implementation	have	been	changed.

Those	directives	aim	to	help	us	implement	common	templating	tasks	such	as	DOM	manipulation.

To	be	able	to	use	core	directives	in	a	component,	we	need	to	import	the	BrowserModule	module
into	the	module	where	the	component	fits.	This	was	automatically	done	by	angular-cli	when
generating	the	application	within	the	app.module.ts	file:

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	AppComponent	}	from	'./app.component';

@NgModule({

		declarations:	[

				AppComponent

],

		imports:	[

				BrowserModule

],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Let's	explore	how	to	use	them	in	our	code.

NgIf
Just	like	Angular	1,	the	NgIf	directive	will	remove	or	recreate	a	portion	of	the	DOM	based	on	an
expression	that	we	passed.	The	expression	should	evaluate	to	true	or	false.

Here	is	how	we	use	ngIf:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>{{	info.title	}}</h1>

				<h2>{{	info.subtitle	||	'alternative	text'	}}</h2>		

				<h3	*ngIf="showFullName">My	name	is:	{{	getFullName()	}}</h3>	

		`

})

export	class	AppComponent	{

		info:	{};

		firstName:	string;

		lastName:	string;

		showFullName:	boolean;

		constructor()	{

				this.info	=	{title:	'app	works!'};

				this.firstName	=	'Nir';

				this.lastName	=	'Kaufman';

				this.showFullName	=	false;

		}

		getFullName(){

				return	`${this.firstName}	${this.lastName}`;

		}

}

Don't	worry	about	the	asterisk	before	the	ngIf	attribute,	we	will	discuss	it	in	a	moment.	We
assign	an	expression	called	showFullName,	which	exists	on	the	component	class.	So,	on	the
component	class,	we	declare	a	class	member	called	showFullName	of	type	Boolean	and	initialize
it	on	the	constructor	to	be	false.

As	a	result,	the	<h3>	tag	will	not	render	to	the	DOM,	and	we	won't	see	the	full	name.

The	asterisk	–	*

The	asterisk	(*)	before	the	directive	name	is	a	syntactic	sugar	of	Angular	that	hides	the	use	of	the
<template>	tag	from	us.	This	tag	is	being	used	in	structural	directives,	which	is	a	term	that
describes	a	directive	that	impacts	the	structure	of	the	DOM.

The	preceding	example	can	be	written	like	this:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<h1>{{	info.title	}}</h1>

				<h2>{{	info.subtitle	||	'alternative	text'	}}</h2>

																

					<template	[ngIf]="showFullName">

						<h3>My	name	is:	{{	getFullName()	}}</h3>								

				</template>						

		`

})

export	class	AppComponent	{

		info:	{};

		firstName:	string;

		lastName:	string;

		showFullName:	boolean;

		constructor()	{

				this.info	=	{title:	'app	works!'};

				this.firstName	=	'Nir';

				this.lastName	=	'Kaufman';

				this.showFullName	=	false;

		}

		getFullName(){

				return	`${this.firstName}	${this.lastName}`;

		}

}

That's	what	Angular	will	do	behind	the	scenes,	but	we	don't	need	to	worry	when	using	the	shorter
version	of	the	syntax.

NgClass
The	NgClass	directive,	just	like	in	Angular	1,	conditionally	adds	and	removes	CSS	classes.	We
pass	an	expression	that	can	be	interpreted	in	three	different	ways:

A	string	that	contains	all	the	CSS	classes	that	we	want	to	add,	delimited	by	space
An	array	of	CSS	classes	to	be	added
An	object	that	maps	CSS	classes	to	a	Boolean	value	(true	or	false)

Let's	demonstrate	the	various	options	to	use	ngClass,	start	with	a	string:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		styles:	[`

				.italic	{	font-style:	italic}

				.info	{	color:	blue;	}	

		`],

		template:	`

				<h1>{{	info.title	}}</h1>

				<h2	[ngClass]="getClass()">

						{{	info.subtitle	||	'alternative	text'	}}</h2>

																

				<template	[ngIf]="showFullName">

						<h3>My	name	is:	{{	getFullName()	}}</h3>	

				</template>		

		`

})

export	class	AppComponent	{

		info:	{};

		firstName:	string;

		lastName:	string;

		showFullName:	boolean;

		constructor()	{

				this.info	=	{title:	'app	works!'};

				this.firstName	=	'Nir';

				this.lastName	=	'Kaufman';

				this.showFullName	=	false;

		}

		getFullName(){

				return	`${this.firstName}	${this.lastName}`;

		}

		getClass(){

				return	'info	italic';

		}

}

We	apply	the	ngClass	to	the	<h2>	tag	and	pass	a	method	that	we	implement	on	the	component
class.	The	getClass()	method	returns	a	string	containing	a	string	that	includes	the	names	of	both

of	the	CSS	classes	we	want	to	append	to	the	<h2>	element.	Don't	worry	about	the	square	brackets
that	surround	the	ngClass	directive.	We	will	explain	this	syntax	in	a	moment.

We	could	implement	that	method	in	two	other	ways	in	order	to	achieve	the	same	result:

The	first	is	by	returning	an	array:

getClass(){

		return	['info',	'italic'];

}

Returning	an	object:

getClass(){

		return	{	italic:	true,	info:	true	};

}

The	second	is	by	using	square	brackets	([])
Tip

In	Angular	2,	we	can	bind	data	directly	to	DOM	or	directive	properties.	The	ngClass	selector
was	defined	as	a	property,	so	if	we	want	to	use	it,	we	need	to	use	the	square	brackets	syntax.	We
will	see	more	examples	later	in	this	chapter	when	we	deal	with	data	bindings.

NgStyle
The	ngStyle	directive	will	change	the	inline	styles	of	the	element	based	on	an	expression	that
evaluates	an	object.	In	the	following	example,	we	will	use	ngStyle	to	dynamically	assign	a	font
size	to	the	title:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		styles:	[`

				.italic	{	font-style:	italic}

				.info	{	color:	blue;	}								

		`],

		template:	`

				<h1	[ngStyle]="{'font-size':	titleSize	}">{{	info.title	}}</h1>

				<h2	[ngClass]="getClass()">

						{{	info.subtitle	||	'alternative	text'	}}</h2>

																

				<template	[ngIf]="showFullName">

						<h3>My	name	is:	{{	getFullName()	}}</h3>								

				</template>		

		`

})

export	class	AppComponent	{

		info:	{};

		firstName:	string;

		lastName:	string;

		showFullName:	boolean;

		titleSize:	string;

		constructor()	{

				this.info	=	{title:	'app	works!'};

				this.firstName	=	'Nir';

				this.lastName	=	'Kaufman';

				this.showFullName	=	false;

				this.titleSize	=	'96px';

		}

		getFullName(){

				return	`${this.firstName}	${this.lastName}`;

		}

		getClass(){

				return	{	italic:	true,	info:	true	};

		}

}

In	this	example,	we	created	a	class	member	that	initializes	a	property	named	titleSize	and	then
uses	it	to	determine	the	font	size	style	on	the	<h1>	tag,	with	ngStyle.

NgSwitch
The	NgSwitch	directive	adds	or	removes	DOM	subtrees	according	to	the	value	of	the	switch
expression.	To	effectively	use	this	directive,	we	used	ngSwitchCase	and	ngSwitchDefault
within	the	ngSwitch	directive	block:

<div	[ngSwitch]="cases">

		<div	*ngSwitchCase="1">Case	1</div>	

		<div	*ngSwitchCase="2">Case	2</div>	

		<div	*ngSwitchDefault>Default	Case</div>	

</div>

There	are	a	few	things	to	notice—the	ngSwitch	directive	is	not	a	structural	directive,	which
means	it	does	not	use	a	<template>	tag	and	also	does	not	manipulate	the	DOM	tree.	This	is	done
by	the	ngSwitchCase	and	the	ngSwitchDefault	directives.	So,	we	use	the	square	brackets	when
using	the	ngSwitch	directive,	and	the	asterisk	for	the	rest.

NgFor
The	ngFor	directive	creates	a	new	element	(instantiates	a	new	template),	once	per	item	from	a
collection	that	it	repeats.	If	you	are	familiar	with	Angular	1,	the	ngFor	directive	is	similar	to	the
ng-repeat	directive	in	concept,	but	the	underneath	implementation	and	syntax	is	different:

In	the	following	example,	we	are	creating	a	list	of	colors	by	repeating	each	element	in	a	string
array:

@Component({

		selector:	'app-root',

		template:	`

				

						<li	*ngFor="let	color	of	colors">{{	color	}}

							

		`

})

export	class	AppComponent	{

		colors:	string[]	=	['red',	'green',	'blue'];

}

Property	bindings
With	Angular	2,	we	can	easily	bind	to	each	DOM	property.	For	example,	let's	bind	a	value	to	the
disabled	property	of	a	button	and	initialize	it	to	be	true:

@Component({

		selector:	'app-root',

		template:	`

			<button	[disabled]="isDisabled">You	can't	click	me!</button>			

		`

})

export	class	AppComponent	{

		private	isDisabled:	boolean;

		constructor()	{

				this.isDisabled	=	true;

		}

}

This	is	true	to	any	property.	Let's	see	another	example,	this	time	with	an	input	element:

@Component({

		selector:	'app-root',

		template:	`

				<input	[type]="inputType"	[placeholder]="placeHolderText">		

		`

})

export	class	AppComponent	{

		private	placeHolderText:	string;

		private	inputType:	string;

		private	inputClass:	string;

		constructor()	{

				this.placeHolderText	=	'type	your	password...'

				this.inputType	=	'password';

		}

}

Event	bindings
Up	until	now,	we	learned	about	two	kinds	of	data	binding:	interpolation	(using	the	curly	braces)
and	properties	binding.	Both	of	them	are	considered	to	be	one-way	data	binding	from	the	data
source	to	the	view.	In	real	life,	our	component	should	be	able	to	respond	to	user	events.	Luckily,
in	Angular	2,	this	is	simple	as	property	binding.

We	can	respond	to	any	native	DOM	event	by	surrounding	it	with	parentheses	and	assign	it	to	a
method	on	the	component	class.	Let's	see	how	we	can	respond	to	the	click	event	on	our	button.	We
need	to	wrap	the	click	event	of	the	button	in	parentheses,	and	assign	a	method	that	will	be	invoked
in	return:

@Component({

		selector:	'app-root',

		template:	`

				<button	(click)="clickHandler()">

						click	me!</button>	

		`

})

export	class	AppComponent	{

		clickHandler()	{

				console.log('button	clicked!');

		}

}

Let's	use	data	binding	techniques	to	create	a	simple	toggle	component:

@Component({

		selector:	'app-root',

		template:	`				

				<h2	(click)="toggeld	=	!toggeld	">Click	me	to	toggle	some	content1</h2>

				<p	*ngIf="toggeld">Toggeld	content</p>

		`

})

export	class	AppComponent	{}

Two-way	bindings
We	learned	how	to	use	one	way	data	bindings	using	properties	and	events.	Angular	introduces	a
third	option	to	use	with	input	controls.	This	directive	is	called	ngModel.	The	syntax	can	be	a	little
strange,	because	this	directive	combines	property	and	event	bindings	together.

With	ngModel,	we	can	easily	achieve	two-way	data	binding	easily.	In	the	following	example,	we
will	bind	username	and	password	inputs	to	a	user	object:

@Component({

		selector:	'app-root',

		template:	`										

				<input	type="text"	[(ngModel)]="user.username">

				<input	type="password"	[(ngModel)]="user.password">

					

				<button	(click)="sendUser()">Send</button>

		`

})

export	class	AppComponent	{

		private	user	=	{

				username:	'',

				password:	''

		}

		sendUser(){

				console.log(this.user);

		}

}

Summary
Throughout	this	chapter,	we	transform	our	static	component	to	a	dynamic	component	using	core
directives	and	data	binding.

Angular	2	keeps	the	data	binding	easy,	much	like	Angular	1.	The	ability	to	bind	data	to	native
DOM	properties	and	events	directly	is	a	powerful	feature.	The	core	directives	of	Angular	2
includes	only	a	few	directives	that	give	us	some	extra	functionality	that	otherwise	is	hard	to
achieve.

Chapter	6.	Component	Communication
Up	until	now,	we	have	built	a	single	component,	but	the	real	power	of	Angular	components	is
building	the	interaction	between	them.	in	this	chapter,	we	will	learn	how	components	can
communicate	in	different	ways:

Pass	data	from	the	parent	component	to	the	child	through	properties
Define	custom	events	on	a	child	component	for	the	parent	to	listen	to
Communicate	via	local	variables
Query	child	components	using	the	parent	component

Passing	data	via	properties
The	parent	component	can	pass	data	to	the	child	component	through	properties.	There	are	two
ways	that	define	input	properties	for	a	component:

By	creating	an	input	array	on	the	component	decorator
By	using	the	@Input	decorator	for	decorating	a	class	property

Using	the	component	input	array	is	simple	and	straightforward.	Just	declare	an	input	array	and
populate	it	with	strings	that	represent	the	name	of	the	property	you	are	expecting:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		inputs:			['title'],

		template:	`<h2>{{	title	}}</h2>`

})

export	class	ChildComponent	{}

@Component({

		selector:	'app-root',

		template:	`	

				<h1>Component	Interactions</h1>

				<child-component	[title]="title"	></child-component>

		`

})

export	class	AppComponent	{

		private	title:	string	=	"Sub	title	for	child";

}

In	this	example,	we	created	a	child	component,	which	defined	an	input	array	with	a	single	string
named	title	that	represents	a	property	that	the	parent	component	can	bind	to	and	pass	data
through.

Don't	forget	to	add	the	ChildComponent	class	to	the	declarations	attribute	of	the	AppModule.
Otherwise,	this	component	can't	be	used	within	the	template	of	the	AppComponent.	This
configuration	is	required	each	time	you	need	to	use	a	component	or	a	directive	in	another	one	and
within	the	same	module:

[app.module.ts]

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	FormsModule	}	from	'@angular/forms';

import	{	HttpModule	}	from	'@angular/http';

import	{	AppComponent,	ChildComponent	}	from	'./app.component';

@NgModule({

		declarations:	[

				AppComponent,

				ChildComponent

],

		imports:	[

				BrowserModule

],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

The	approach	of	the	input	array	is	suitable	when	we	don't	need	to	access	the	input	in	the
Component	class,	and	we	don't	care	about	the	type	of	the	input.

Alternatively,	we	can	bind	an	input	to	a	class	property	using	the	@Input()	decorator:

[app.component.ts]

import	{	Component,	Input	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		template:	`<h2>{{	title	}}</h2>`

})

export	class	ChildComponent	{

		@Input()	private	title:	string;

}

@Component({

		selector:	'app-root',

		template:	`	

				<h1>Component	Interactions</h1>

				<child-component	[title]="title"></child-component>

		`

})

export	class	AppComponent	{

		private	title:	string	=	'Sub	title	for	child';

}

Binding	to	a	class	property	(the	second	example)	is	considered	to	be	a	best	practice	when	dealing
with	inputs.

An	input	can	be	a	primitive	or	an	object.

Emitting	custom	events
When	the	child	component	needs	to	communicate	with	its	parent	component,	it	can	emit	an	event.
This	technique	keeps	the	child	component	de-coupled	from	its	parent	(de-coupled:	doesn't	need	to
know	its	parents).

In	Angular,	we	need	to	use	a	class	named	EventEmitter	if	we	want	to	emit	events.

You	need	to	instantiate	the	EventEmitter	class,	assign	it	to	a	class	property,	and	call	the	emit
method.

In	the	following	example,	the	child	component	will	emit	a	custom	event	named	TitleClicked
when	the	user	clicks	on	the	title:

[app.component.ts]

import	{	Component,	Input,	EventEmitter,	Output	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		template:	`<h2	(click)="titleClicked.emit()">{{	title	}}</h2>`

})

export	class	ChildComponent	{

		@Input()	private	title:	string;

		@Output()	private	titleClicked	=	new	EventEmitter<any>();

}

@Component({

		selector:	'app-root',

		template:	`	

				<h1>Component	Interactions</h1>

				<child-component	[title]="title"	

				(titleClicked)="clickHandler()"></child-component>

		`

})

export	class	AppComponent	{

		private	title:	string	=	'Sub	title	for	child';

		clickHandler()	{

				console.log('Clicked!');

		}

}

First,	we	imported	the	EventEmitter	class	and	the	Output	decorator	from	Angular	core.	Then,
we	created	a	class	property	named	titleClicked	and	assigned	it	to	a	fresh	instance	of	the
EventEmitter	class.

Then,	we	bound	the	native	click	event	of	the	<h2>	element	and	called	the	emit()	method	of	the
titleClicked	object.

The	parent	component	can	now	bind	to	this	event.

Referencing	with	a	local	variable
One	component	can	access	another	component's	properties	and	methods	using	local	variables.	In
the	following	example,	we	create	a	local	variable	for	the	child	component	that	becomes
accessible	within	the	template:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		template:	`

				<h2>Content	Header</h2>

				<p	*ngIf="flag">Toggleable	Content</p>

		`

})

export	class	ChildComponent	{

		private	flag:	boolean	=	false;

		toggle()	{

				this.flag	=	!this.flag;

		}

}

@Component({

		selector		:	'app-root',

		template		:	`	

				<h1>Component	Interactions</h1>

				<button	(click)="child.toggle()">Toggle	Child</button>

				<child-component	#child></child-component>

		`

})

export	class	AppComponent	{}

We	create	a	local	variable	using	the	#	symbol.

The	method	in	the	child	component	must	be	public,	otherwise	Angular	will	throw	an	exception.

This	technique	is	very	useful	in	some	cases	because	it	doesn't	require	any	code	inside	the
component	class.	On	the	other	hand,	the	reference	context	is	just	inside	the	template.

If	you	need	to	access	the	child	component	inside	the	parent	component,	you	need	to	inject	a
reference	to	the	child	component	using	the	@ViewChild	decorator.

Consider	the	following	example:

[app.component.ts]

import	{	Component,	ViewChild	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		template:	`

				<h2>Content	Header</h2>

				<p	*ngIf="flag">Toggleable	Content</p>

		`

})

export	class	ChildComponent	{

		private	flag:	boolean	=	false;

		toggle(){

				this.flag	=	!this.flag;

		}

}

@Component({

		selector:	'app-root',

		template:	`	

				<h1>Component	Interactions</h1>

				<button	(click)="toggle()">Toggle	Child</button>

				<child-component></child-component>

		`

})

export	class	AppComponent	{

		@ViewChild(ChildComponent)

		private	childComponent:	ChildComponent;

		toggle(){

				this.childComponent.toggle();

		}

}

The	parent	component	is	using	the	@ViewChild	decorator	(imported	from	angular	core)	passing
the	name	of	the	component,	and	assigning	it	to	a	local	class	member	named	childComponent.

If	we	have	more	than	one	instance	of	the	child	component,	we	can	use	the	@ViewChildren
decorator	instead.

Querying	child	components	with	the	parent
component
The	@ViewChildren	component	will	provide	a	reference	to	all	of	the	children	components	of	a
given	type	as	a	QueryList,	which	contains	an	array	of	child	instances.

Consider	the	following	example:

[app.component.ts]

import	{	Component,	ViewChildren,	QueryList	}	from	'@angular/core';

@Component({

		selector:	'child-component',

		template:	`

				<h2>Content	Header</h2>

				<p	*ngIf="flag">Toggleable	Content</p>

		`

})

export	class	ChildComponent	{

		private	flag:	boolean	=	false;

		toggle(){

				this.flag	=	!this.flag;

		}

}

@Component({

		selector:	'app-root',

		template:	`	

				<h1>Component	Interactions</h1>

				<button	(click)="toggle()">Toggle	Child</button>

				<child-component></child-component>

				<child-component></child-component>

				<child-component></child-component>

		`

})

export	class	AppComponent	{

		@ViewChildren(ChildComponent)

		private	children:	QueryList<ChildComponent>;

		toggle(){

				this.children.forEach(child	=>	child.toggle())

		}

}

Both	ViewChildren	and	the	QueryList	are	imported	from	Angular	core.

Summary
Components	can	interact	and	communicate	in	many	ways.	Each	technique	is	suitable	for	a	certain
situation.	The	main	difference	is	related	to	the	scope	of	communication:	template	context	or
component	class	context.

This	flexibility	enables	us	to	create	complex	component	compositions	that	easily	share	data	and
interactions,	which	consists	of	APIs.

In	the	next	chapter,	we	will	build	useful	components	and	also	learn	about	Angular	2	change
detection	and	the	component	life	cycle.

Chapter	7.	Putting	It	All	Together
It's	time	to	take	everything	we	have	learned	about	components	and	put	it	into	practice.	In	this
chapter,	we	will	build	useful	components.	We	will	also	learn	about	Angular	2	change	detection
and	the	component	life	cycle.

The	following	are	the	topics	that	we	will	cover:

Resetting	the	development	environment
Building	a	simple	accordion	component
Extending	the	accordion	component	tree
Extending	hooking	to	the	component	life	cycle	events

Preparing	our	development	environment
It's	time	to	create	a	new	project	with	angular-cli	as	described	in	Chapter	2,	Setting	Up	an
Angular	2	Development	Environment	with	angular-cli.	We	will	create	a	new	directory	called
components	to	contain	all	the	components	we	will	implement	in	this	chapter.

We	will	later	create	two	other	subdirectories	in	this	chapter,	accordion	and	user-info,	when
implementing	the	corresponding	components:

The	last	thing	before	starting	to	build	our	new	components	is	to	clean	up	our	root	component.
Open	index.ts	and	clean	it	as	follows:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	'<h1>Angular2	Components</h1>'

})	

export	class	AppComponent	{}

Open	your	browser	and	make	sure	that	the	component	has	rendered	without	any	errors:

Now	we	are	ready	to	start	developing	our	new	components.

The	accordion	component
The	first	component	that	we	are	going	to	build	will	be	an	accordion	component.	The	accordion
is	composed	from	two	components:	the	accordion	wrapper	and	an	accordion	tab.	Let's	start
implementing	the	accordion	tab	first.

Inside	the	components	directory,	create	a	new	directory	called	accordion.	Inside	it,	create	the
accordion-tab.ts	file,	and	paste	the	following	code:

[accordion-tab.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'accordion-tab',

		styles:	[`

				.accordion-tab	{

						width:	500px;

						border:	1px	solid	black;

						border-collapse:	collapse;

				}

				.accordion-heading	{

						padding:	5px;

						background-color:	lightblue;

						cursor:	pointer;

				}

	`],

		template:	`

				<div	class="accordion-tab">

						<div	class="accordion-heading">Accordion	Title</div>

						<div>

								<ng-content></ng-content>

						</div>

				</div>

		`

})

export	class	AccordionTab	{}

The	component	decorator	is	straightforward.	We	throw	some	CSS	and	a	template	that	includes	a
<ng-content>	tag	to	use	an	insertion	point	for	the	accordion	tab	content.

To	test	it,	let's	render	the	accordion-tab	file.	Open	app.component.ts	and	update	the	code:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	{	AccordionTab	}	from	'./components/accordion/accordion-tab';

@Component({

		selector:	'app-root',

		template:`

				<div>

						<accordion-tab>Accordion	Content</accordion-tab>

						<accordion-tab></accordion-tab>

						<accordion-tab></accordion-tab>

				</div>

		`

})

export	class	AppComponent	{}

Don't	forget	to	add	the	AccordionTab	class	to	the	declarations	attribute	of	the	root	module.	This
operation	will	be	required	for	all	custom	components	implemented	in	this	chapter.	Open	the
app.module.ts	file	and	update	it	as	follows:

[app.module.ts]

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	FormsModule	}	from	'@angular/forms';

import	{	HttpModule	}	from	'@angular/http';

import	{	AppComponent	}	from	'./app.component';

import	{	AccordionTab	}	from	'./components/accordion/accordion-tab';

@NgModule({

		declarations:	[

				AppComponent,

				AccordionTab

],

		imports:	[

				BrowserModule,

				FormsModule,

				HttpModule

],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Now,	let's	open	the	browser	to	make	sure	that	the	component	is	rendered	as	expected:

Next,	let's	implement	the	toggle	action	of	accordion-tab.	Open	accordion-tab.ts	and	update
the	template	and	the	Component	class:

[accordion-tab.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'accordion-tab',

		styles:	[`

				.accordion-tab	{

						width:	500px;

						border:	1px	solid	black;

						border-collapse:	collapse;

				}

				.accordion-heading	{

						padding:	5px;

						background-color:	lightblue;

						cursor:	pointer;

				}

		`],

		template:	`

				<div	class="accordion-tab">

						<div	class="accordion-heading"

							(click)="toggleContent()">Accordion	Title</div>

						<div	class="accordion-body">

								<ng-content	*ngIf="extended"></ng-content>

						</div>

				</div>

		`

})

export	class	AccordionTab	{

		extended:	boolean	=	false;

		toggleContent()	{

				this.extended	=	!this.extended

		}

}

We	bind	a	method	to	the	click	event	of	the	title	that	toggles	a	Boolean,	which	trigger	the	ngIf
directive.	We	covered	that	in	the	previous	two	chapters.	To	test	our	component,	let's	put	some
dummy	content	in	the	other	tabs.	Open	app.component.ts	and	update	the	template	as	follows:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	{	AccordionTab	}	from	'./accordion/accordion-tab.ts';

@Component({

		selector:	'app-root',

		template:`

				<div>

						<accordion-tab>Accordion	Content</accordion-tab>

						<accordion-tab>Accordion	Content</accordion-tab>

						<accordion-tab>Accordion	Content</accordion-tab>

				</div>

		`

})	

export	class	AppComponent	{}

Now,	we	can	open	the	browser	and	test	our	component.	When	we	click	on	a	tab	title,	the
corresponding	content	is	toggled.	But	the	tabs	should	work	together.	Only	one	tab	can	be
extended.	To	achieve	this,	we	can	wrap	the	accordion-tab	component	with	a	component	that
implements	this	logic.

Before	we	do	it,	we	need	to	make	sure	that	each	of	the	objects	in	the	users	array	that	we	get	from

the	server	(users.json	in	our	case)	has	a	unique	id.	Open	users.json	and	make	sure	it	is
similar	to	the	following:

[users.json]

[

		{

				"id":	1,

				"name":	"Jhon	Darn",

				"email":	"jhon@email.com",

				"birthday":	"5/6/1979",

				"gender":	"male",

				"status":	"active",

				"role":	"employee",

				"phoneNumbers":	[

						"+972-123-9873",

						"+972-352-8922",

						"+972-667-2973"

]

		},

		(...)

Now,	create	a	new	file	called	accordion.ts	inside	the	accordion	folder	and	let's	lay	down	the
basic	implementation:

[accordion.ts]

import	{	Component	}	from	'@angular/core';

import	{	Http	}	from	'@angular/http';

import	'rxjs/add/operator/map';

import	{	AccordionTab	}	from	'./accordion-tab';

@Component({

		selector:	'accordion',

		template:	`

				<div>

						<accordion-tab	*ngFor="let	user	of	users"

																			(click)="toggle(user)"

																			[extended]="isActive(user)"

																			[title]="user.name">

																	<pre>{{	user	|	json	}}</pre>

						</accordion-tab>

				</div>

		`

})

export	class	Accordion	{		users;

		activeUserId	=	0;

		constructor(http:	Http)	{

				http.get('/app/server/users.json')

								.map(result	=>	result.json())

								.subscribe(result	=>	this.users	=	result);

		}

		isActive(user)	{

				return	user.id	===	this.activeUserId;

		}

		toggle(user)	{

				this.isActive(user)	?

								this.activeUserId	=	0	:	this.activeUserId	=	user.id;

		}

}

We	used	the	HTTP	service	to	pull	the	user's	data	from	a	static	JSON,	and	we	iterate	over	the
users	array—repeating	the	accordion-tab	component.	On	each	accordion-tab	component,	we
bind	a	method	to	a	click	event	and	bind	dynamic	data	to	the	properties.	We	are	also	using	the
json	pipe	fill	some	content	inside	the	accordion	tabs.

The	logic	for	selecting	an	active	tab	is	very	easy	to	implement	inside	the	Component	class.

Next,	we	need	to	refactor	the	accordion-tab	and	define	its	input	and	output	interface:

[accordion-tab.ts]

import	{

				Component,	Input,	Output

}	from	'@angular/core';

@Component({

		selector:	'accordion-tab',

		styles:	[`

				.accordion-tab	{

						width:	500px;

						border:	1px	solid	black;

						border-collapse:	collapse;

				}

				.accordion-heading	{

						padding:	5px;

						background-color:	lightblue;

						cursor:	pointer;

				}

		`],

		template:`

				<div	class="accordion-tab">

						<div	class="accordion-heading"

							(click)="toggleContent()">{{title}}</div>

						<div	class="accordion-body">

								<content	*ngIf="extended"></content>

						</div>

				</div>

		`

})

export	class	AccordionTab	{

		@Input()	extended;

		@Input()	title;

		toggleContent()	{

				this.extended	=	!this.extended

		}

}

The	simple	accordion	is	now	ready.	We	used	almost	everything	we	have	learned	to	craft	this
widget.	Note	that	we	didn't	have	to	write	a	lot	of	code.	Angular's	built-in	directives	and	binding
system	did	all	the	heavy	lifting	for	us.	To	test	it	in	the	browser,	open	app.component.ts	and
render	the	<accordion>	component:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	{	Accordion	}	from	'./components/accordion/accordion';

@Component({

		selector:	'app-root',

		template:	`<accordion></accordion>`

})	

export	class	AppComponent	{}

Open	the	browser	and	check	the	result.	Each	time	we	click	on	an	accordion	tab,	it	is	the	only	one
that	gets	extended:

Before	we	move	forward,	let's	make	the	accordion	extended	only	when	clicking	its	title,	and
the	whole	tab.	For	this,	we	will	emit	a	custom	event	when	clicking	on	the	title	and	then	bind	to
this	event	from	the	parent	component,	which	is	the	accordion:

[accordion-tab.ts]

import	{

				Component,	Input,	Output,	EventEmitter

}	from	'@angular/core';

@Component({

		selector:	'accordion-tab',

		styles:	[`

				.accordion-tab	{

						width:	500px;

						border:	1px	solid	black;

						border-collapse:	collapse;

				}

				.accordion-heading	{

						padding:	5px;

						background-color:	lightblue;

						cursor:	pointer;

				}

	`],

		template:	`

				<div	class="accordion-tab">

					<div	class="accordion-heading"	

										(click)="toggleContent()">{{title}}</div>

					<div>

						<ng-content	*ngIf="extended"></ng-content>

					</div>

				</div>

		`

})	

export	class	AccordionTab	{

		@Input()	extended	:	boolean;

		@Input()	title	:	string;

		@Output()	toggle	=	new	EventEmitter<any>();

		toggleContent()	{

				this.toggle.emit(null)

		}

}

That's	it	for	the	accordion-tab	component.	Let's	move	to	the	accordion	component	and	bind	to
this	event:

[accordion.ts]

import	{	Component,	Inject	}	from	'@angular/core';

import	{	Http	}	from	'@angular/http';

import	'rxjs/add/operator/map';

import	{	AccordionTab	}	from	'./accordion-tab';

@Component({

		selector:	'accordion',

		template:	`

				<div>

						<accordion-tab	*ngFor="let	user	of	users"

																				(toggle)="toggle(user)"

																				[extended]="isActive(user)"

																				[title]="user.name">

								<pre>{{	user	|	json	}}</pre>

						</accordion-tab>

				</div>

		`

})

export	class	Accordion	{		

		users;

		activeUserId	=	0;

		constructor(http:	Http)	{

				http.get('/app/server/users.json')

								.map(result	=>	result.json())

								.subscribe(result	=>	this.users	=	result);

		}

		isActive(user)	{

				return	user.id	===	this.activeUserId;

		}

		toggle(user)	{

				this.isActive(user)	?

								this.activeUserId	=	0	:	this.activeUserId	=	user.id;

		}

}

Now	we	can	render	the	accordion	component	and	see	the	results.	In	app.component.ts'	include
the	following:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	{	Accordion	}	from	'./components/accordion/accordion';

@Component({

		selector:	'app-root',

		template:`<accordion></accordion>`

})	

export	class	AppComponent	{}

Open	the	browser	and	check	the	results.	The	accordion	works	as	expected.

Extending	the	accordion	component	tree
Let's	add	another	component	to	our	accordion	tree.	Instead	of	rendering	raw	JSON	as	a	tab
content,	let's	reuse	the	user	information	component	that	we	built	on	in	Chapter	4,	Building	a	Basic
Component,	and	Chapter	5,	Building	Dynamic	Components.	For	this,	just	create	a	user-info
subdirectory	in	the	components	directory	and	copy	the	corresponding	TypeScript	files	into	this
directory.	The	only	file	we	need	to	refactor	is	accordion.ts:

[accordion.ts]	

import	{	Component,	Inject,	ViewEncapsulation	}	from	'@angular/core';

import	{	Http	}	from	'@angular/http';

import	'rxjs/add/operator/map';

import	{	AccordionTab	}	from	'./accordion-tab';

import	{	UserInformation	}	from	'../user-info/user-info';

@Component({

		selector:	'accordion',

		template:	`

				<div>

						<accordion-tab	*ngFor="let	user	of	users"

																				(toggle)="toggle(user)"

																				[extended]="isActive(user)"

																				[title]="user.name">

								<user-info	[user]="user"></user-info>

						</accordion-tab>

				</div>

		`

})

export	class	Accordion	{		

		users;

		activeUserId	=	0;

		constructor(http:	Http)	{

				http.get('app/server/users.json')

								.map(result	=>	result.json())

								.subscribe(result	=>	this.users	=	result);

		}

		isActive(user)	{

				return	user.id	===	this.activeUserId;

		}

		toggle(user)	{

				this.isActive(user)	?

								this.activeUserId	=	0	:	this.activeUserId	=	user.id;

		}

}

All	we	needed	to	do	is	to	import	the	user	info	component,	declare	it	in	the	component	metadata,
and	use	it	in	our	template,	binding	the	user	variable	to	the	User	property	that	the	component
expects.

The	component	life	cycle
Component	instances	have	a	life	cycle	that	we	can	hook	into.	Currently,	our	mini	application
contains	four	components:	App,	accordion,	accordion-tab,	and	user-info,	but	a	typical
Angular	application	will	contain	tens	of	component	trees	that	Angular	will	create,	update,	and
destroy	during	our	application's	lifetime.

For	demo	purposes,	we	will	simulate	a	server	call	that	returns	other	data.	For	this,	create	a	file
called	other-users.json	inside	the	server	directory	and	paste	this	code	into	it:

[other-users.json]

[

		{

				"id":	5,

				"name":	"Michael	jackson",

				"email":	"jackson@email.com",

				"birthday":	"22/3/1974",

				"gender":	"male",

				"status":	"onhold",

				"role":	"manager",

				"phoneNumbers":	[

						"+972-123-9873"

]

		},

		(...)

]

On	the	accordion	component	template,	we	will	add	a	button	that	will	fetch	this	new	data	and
implement	the	fetchData	method	on	the	Component	class:

[accordion.ts]

import	{	Component,	Inject	}	from	'@angular/core';

import	{	Http	}	from	'@angular/http';

import	'rxjs/add/operator/map';

import	{	AccordionTab	}	from	'./accordion-tab';

import	{	UserInformation	}	from	'../user-info/user-info';

@Component({

		selector:	'accordion',

		template:	`

				<div>

					<button	(click)="fetchData('other-users.json')">update	data</button>

					<accordion-tab	*ngFor="let	user	of	users"

																				(toggle)="toggle(user)"

																				[extended]="isActive(user)"

																				[title]="user.name">

								<user-info	[user]="user"></user-info>

						</accordion-tab>

				</div>

		`

})

export	class	Accordion	{		

		users;

		activeUserId	=	0;

		constructor(private	http:	Http)	{

				this.fetchData('users.json');

		}

		isActive(user)	{

				return	user.id	===	this.activeUserId;

		}

		fetchData(subPath)	{

				this.http.get(`/app/server/${subPath}`)

								.map(result	=>	result.json())

								.subscribe(result	=>	this.users	=	result);

		}

		toggle(user)	{

				this.isActive(user)	?

								this.activeUserId	=	0	:	this.activeUserId	=	user.id;

		}

}

Now,	each	time	we	click	on	the	button,	the	user's	data	is	updated	and	the	accordion	re-rendered.
Open	the	browser,	click	on	the	button,	and	watch	the	accordion	data	change.

Life	cycle	event	interfaces
In	order	to	run	our	own	logic	on	each	one	of	the	component	life	cycle	events,	we	need	to
implement	the	desired	method	that	corresponds	to	the	event	we	want	to	react	to.	Each	one	of	those
events	is	published	as	a	TypeScript	interface,	which	we	can	implement	in	our	component	class.
The	use	of	TypeScript	interfaces	is	optional	and	won't	affect	our	application	in	any	way	at	all.
You	can	learn	about	TypeScript	interfaces	from	the	documentation	on	the	TypeScript	website	at
http://www.typescriptlang.org/docs/handbook/interfaces.html.	We	won't	use	this	in	our	code
examples.

http://www.typescriptlang.org/docs/handbook/interfaces.html

OnInit	and	OnDestroy
The	simplest,	most	straightforward,	and	most	easy-to-understand	life	cycle	event	hooks	are
onInit	and	onDestroy.

The	ngOnInit	method	is	called	after	the	component	data-bound	properties	have	been	checked	for
the	first	time,	and	ngOnDestroy	will	be	called	right	before	the	component	instance	is	destroyed
by	Angular.	In	our	component	hierarchy,	we	will	implement	both	of	these	methods	on	the	user-
info	class:

[user-info.ts]

import	{

		Component,	Input,

		OnInit,	OnDestroy

}	from	'@angular/core';

@Component({

		selector:	'user-info',

		styleUrls:	['./user-info.css'],

		templateUrl:	'./user-info.html'

})

export	class	UserInformation	implements	OnInit,	OnDestroy	{		

		@Input()	

		user;

		fontSize	=	'20px';

		editMode	=	false;

		randomNumber;

		ngOnInit(){

				console.log('UserInformation	initialized');

		}

		ngOnDestroy(){

				console.log('UserInformation	Destroy');

		}

		toggleEditMode()	{

				this.editMode	=	!this.editMode;

		}

		onSubmit(data)	{

				Object.assign(this.user,	data);

				this.editMode	=	false;

		}

}

Now,	open	the	browser	and	make	sure	the	console	is	visible.	You	should	see	four	logs	that
indicate	that	each	of	the	user	components	have	been	initialized:

Now,	click	on	the	button	to	pull	new	data	from	the	server.	You	should	see	four	logs	for	each	user
information	component	that	have	been	destroyed,	and	three	logs	for	the	new	components	that	are
created	for	the	new	data:

The	OnInit	method	is	a	good	place	to	run	code	after	the	components	have	been	initialized	(data
bounded	properties	have	been	resolved),	and	before	one	of	the	child	components	has	been
initialized.	OnDestroy	is	a	good	place	for	cleanup	or	persistence	code	for	the	component's	state
just	before	it	is	ripped	from	the	DOM.

OnChanges
OnChanges	has	a	method	named	ngOnChanges	that	will	be	called	after	all	the	data-binding
properties	have	been	checked.	Angular	passes	a	change	object	that	contains	a	key	named	after	the
property	that	changed,	and	an	instance	of	a	SimpleChange	object.	The	SimpleChange	object
contains	the	previous	value	and	the	current	value.	Let's	implement	this	method	in	our	user-info
component:

[user-info.ts]

import	{

		Component,	Input,

		OnInit,	OnDestroy,	OnChanges

}	from	'@angular/core';

@Component({

		selector:	'user-info',

		styleUrls:	['./user-info.css'],

		templateUrl:	'./user-info.html'

})

export	class	UserInformation

						implements	OnInit,	OnDestroy,	OnChanges	{		

		@Input()	user;

		fontSize	=	'20px';

		editMode	=	false;

		randomNumber;

		ngOnInit(){

				console.log('UserInformation	initialized');

		}

		ngOnDestroy(){

				console.log('UserInformation	Destroy');

		}

		ngOnChanges(changes){

				console.log('onChanges',	changes);

		}

		toggleEditMode()	{

				this.editMode	=	!this.editMode;

		}

		onSubmit(data)	{

				Object.assign(this.user,	data);

				this.editMode	=	false;

		}

}

In	the	browser	console,	we	will	see	four	logs:

If	you	are	familiar	with	Angular	1.x,	you	can	think	of	the	OnChange	method	as	a	$scope.$watch
function.	It	will	be	called	any	time	the	data	changes,	and	contains	both	the	new	and	the	old	values.

Other	life	cycle	events
Besides	the	init,	changes,	and	destroy	events,	we	can	hook	four	more	component	life	cycle
events:

AfterContentInit:	This	is	called	after	the	component's	content	is	fully	initialized
AfterContentChecked:	This	is	called	after	each	time	the	component	is	checked
AfterViewInit:	This	is	called	after	the	component's	view	has	initialized
AfterViewChecked:	This	is	called	after	the	component's	view	has	been	checked

Each	of	them	can	be	implemented	in	the	same	way	as	the	previous	examples.

Summary
Through	this	chapter,	we	took	everything	we	have	learned	so	far	about	components	and	built	a
useful	accordion	widget	that	is	composed	of	four	components.	An	Angular	2	application	is	a
collection	of	dynamic	components	that	communicate	with	each	other	using	properties	as	an	input,
and	events	as	output.	We	can	hook	into	each	important	life	cycle	of	a	component,	for	example,
when	a	component	is	initialized	or	destroyed,	and	run	our	own	logic.

Chapter	8.	Integrating	Third-Party	Components
There	are	a	lot	of	UI	components	built	with	other	libraries	that	we	might	want	to	use	in	our
Angular	2	application.	Throughout	this	chapter	we	will	integrate	a	tooltip	widget	from	the
popular	bootstrap	library.

Importing	the	bootstrap	and	jQuery	libraries	are	the	topics	that	we	cover	in	this	chapter.

Preparing	our	development	environment
Before	we	continue,	let's	create	a	new	project.	Open	app.component.ts	and	remove	the	external
links	to	the	HTML	template	and	the	CSS	file:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`<h1>Angular2	components</h1>`

})

export	class	AppComponent	{}

Importing	dependencies
Since	we	are	going	to	wrap	a	component	from	the	bootstrap	library,	we	first	need	to	download
and	import	the	bootstrap	library	and	its	dependencies	and	import	it	in	to	our	code.	The	first	step
will	be	to	install	bootstrap	with	npm.	Open	the	Terminal,	make	sure	that	you	are	inside	the
project	root,	and	type	npm	install	bootstrap	-S.	This	command	will	download	the	bootstrap
files	into	the	node_modules	and	write	it	on	the	package.json.

Since	bootstrap	is	dependent	on	jQuery	library,	we	need	to	install	it	as	well.	We	will	use	npm	for
it	as	well.	In	the	Terminal,	type	npm	install	jquery	–S.

We	also	need	to	install	corresponding	typings	for	these	two	libraries	to	be	able	to	compile	the
application.	The	names	of	the	corresponding	typing	modules	are	the	same	as	the	target	libraries
but	with	the	@types	prefix.	To	install	them,	just	use	the	following	command:

npm	install	@types/jquery	@types/bootstrap	--save-dev

The	CSS	file	of	the	Bootstrap	library	needs	to	be	configured	globally	for	the	application	in	the
styles	section	of	the	angular-cli.json	file:

[angular-cli.json]

{

		"project":	{

				"version":	"1.0.0-beta.16",

				"name":	"ng-components"

		},

		"apps":	[

				{

						"root":	"src",

						"outDir":	"dist",

						"assets":	"assets",

						"index":	"index.html",

						"main":	"main.ts",

						"test":	"test.ts",

						"tsconfig":	"tsconfig.json",

						"prefix":	"app",

						"mobile":	false,

						"styles":	[

								"styles.css",

								"../node_modules/bootstrap/dist/css/bootstrap.css"

],

						"scripts":	[

],

						"environments":	{

								"source":	"environments/environment.ts",

								"dev":	"environments/environment.ts",

								"prod":	"environments/environment.prod.ts"

						}

				}

],

		(…)

}

Since	the	latest	versions	of	the	Angular	CLI	rely	on	Webpack,	we	use	its	expose	loader	to	make
available	jQuery	globally	to	the	Bootstrap	library.	The	latter	needs	this	to	extend	jQuery	by
adding	a	set	of	methods	such	as	tooltip	and	collapse.	To	install	the	expose	loader,	just	use
the	following	command:

npm	install	expose-loader	--save-dev

We	can	now	import	both	jQuery	and	Bootstrap	where	we	need	them	using	the	import	clause.

Before	we	move	forward,	open	app.component.ts	and	add	the	following	import	statements	for
the	jQuery	and	Bootstrap	libraries:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	'expose?jQuery!jquery';

import	'bootstrap';

import	*	as	$	from	'jquery';

@Component({

		selector:	'app-root',

		template:	`<h1>Angular2	components</h1>`

})

export	class	AppComponent	{}

Bootstrap	tooltip	component
Angular	2's	ability	to	bind	to	element	properties	and	events	without	the	need	for	custom	directives
enables	us	to	integrate	with	third-party	code	easily.	Bootstrap	uses	some	custom	attributes	to
make	the	tooltip	work.	We	can	use	it	as	is.	Open	app.component.ts	and	add	the	bootstrap
attributes	to	the	heading	to	display	a	tooltip	from	the	bottom.	We	also	need	to	leverage	the
AfterViewInit	hook	to	initialize	the	tooltip	when	the	template	is	rendered:

[app.component.ts]

import	{	Component,	AfterViewInit	}	from	'@angular/core';

import	'expose?jQuery!jquery';

import	'bootstrap';

import	*	as	$	from	'jquery';

@Component({

		selector:	'app-root',

		template:	`

				<h1	data-toggle="tooltip"

								data-placement="bottom"

								title="A	Tooltip	on	the	right">Angular2	components</h1>

		`

})

export	class	AppComponent	implements	AfterViewInit	{

		ngAfterViewInit()	{

				$('h1').tooltip();

		}

}

Now,	let's	open	the	browser	and	test	it.	Hover	over	the	title	and	wait	for	the	tooltip	to	appear	at
the	bottom:

Now,	let's	integrate	it	with	Angular	and	make	it	dynamic.	The	process	is	straightforward.	We	can
bind	to	each	property	that	we	want	to	control.	Let's	start	with	the	title.

Open	app.component.ts	and	add	the	following	code:

[app.component.ts]

import	{	Component,	AfterViewInit	}	from	'@angular/core';

import	'expose?jQuery!jquery';

import	'bootstrap';

import	*	as	$	from	'jquery';

@Component({

		selector:	'app-root',

		template:	`

				<input	type="text"	[(ngModel)]="title"	placeholder="enter	custom	

title..">

				<h1	data-toggle="tooltip"

								data-placement="bottom"

								[title]="title">Angular2	components</h1>

		`

})

export	class	AppComponent	implements	AfterViewInit	{

		ngAfterViewInit()	{

				$('h1').tooltip();

		}

}

We	didn't	have	to	write	a	single	line	of	code	in	our	component	class	to	make	it	work.	Open	the
browser,	type	a	title,	and	hover	over	the	title	to	see	the	result:

Bootstrap	collapse	component
Let's	try	another	example,	but	this	time	we	will	bind	to	events	as	well.	For	this	example	we	will
use	another	widget	from	the	bootstrap	library	called	collapse.	In	the	components	folder,	create
a	new	folder	named	collapse.	Inside	it,	create	a	file	named	collapse.ts	for	our	component	and
a	file	named	collapse.html	for	the	component	template.

Open	collapse.ts	and	paste	the	following	code.	This	is	an	example	collapse	widget	that	was
taken	as-is	from	the	bootstrap	website	(http://getbootstrap.com/javascript/#collapse):

[collapse.ts]

import	{	Component,	AfterViewInit	}	from	'@angular/core';

import	*	as	$	from	'jquery';

@Component({

		selector:	'collapse',

		templateUrl:	'./collapse.html'

})

export	class	Collapse	implements	AfterViewInit	{

		ngAfterViewInit()	{

				$('.collapse').collapse();

		}

}

Open	collapse.html	and	paste	in	the	following:

[collapse.html]

<button	class="btn	btn-primary"

								data-toggle="collapse"

								data-target="#collapseExample"

								aria-expanded="false"

								aria-controls="collapseExample">

		Collapse!

</button>

<div	class="collapse"

					id="collapseExample">

		<div	class="well">

				Integrating	third	party	is	easy	with	angular2!

		</div>

</div>

Let's	render	the	component.	Open	app.component.ts,	import	the	collapse	component,	and	use
it	in	the	template	as	follows:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

import	'expose?jQuery!jquery';

import	'bootstrap';

@Component({

http://getbootstrap.com/javascript/#collapse

		selector:	'app-root',

		template:	'<collapse></collapse>'

})

export	class	AppComponent	{}

Don't	forget	to	add	the	Collapse	class	to	the	declarations	attribute	of	the	root	module	of	the
application	to	make	the	collapse	component	usable,	as	shown	in	the	following	code:

[app.module.ts]

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	FormsModule	}	from	'@angular/forms';

import	{	HttpModule	}	from	'@angular/http';

import	{	AppComponent	}	from	'./app.component';

import	{	Collapse	}	from	'./components/collapse/collapse';

@NgModule({

		declarations:	[

				AppComponent,

				Collapse

],

		imports:	[

				BrowserModule,

				FormsModule,

				HttpModule

],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Now,	open	the	browser	to	test	the	collapse	event:

We	already	know	how	to	bind	to	properties	from	the	tooltip	example.	In	this	example,	we	will
bind	to	the	collapse	events.

According	to	the	bootstrap	documents,	the	collapse	fires	four	events	throughout	it's	life	cycle.	We
will	focus	on	two	of	them:

show.bs.collapse:	This	method	fires	when	the	show	method	is	called.
hide.bs.collapse:	This	method	fires	when	the	hide	method	is	called.

If	we	want	to	listen	to	those	events,	we	need	to	hold	a	reference	to	the	DOM	element.	For	this,	we
will	inject	ElementRef.	Open	collapse.ts	and	the	following	code:

[collapse.ts]

import	{	Component,	Inject,	ElementRef	}	from	'@angular/core';

import	*	as	$	from	'jquery';

@Component({

		selector:	'collapse',

		templateUrl:	'./collapse.html'

})

export	class	Collapse	{

		constructor(element:	ElementRef)	{

				$(element.nativeElement)

						.on('show.bs.collapse',	

						()=>	console.log('handle	show	event'));

				$(element.nativeElement)

						.on('hide.bs.collapse',	

						()=>	console.log('handle	hideevent'));

		}	

}

There	is	a	lot	of	ways	to	listen	to	an	event	on	an	element.	We	choose	to	use	jQuery	to	wrap	the
native	element	and	register	an	event	listener	for	the	collapse.

You	can	open	the	browser	and	watch	the	logs	in	the	console	corresponding	to	the	collapse	events:

Summary
Angular	2	plays	well	with	third-party	code	by	enabling	binding	to	native	properties	naturally.	On
the	other	hand,	if	we	need	to	hold	a	reference	to	the	DOM	element,	we	can	inject	ElementRef	in
to	our	component.

Chapter	9.	Angular	2	Directives
Throughout	this	book,	we	learned	how	to	craft	Angular	2	components.	Before	we	end	our	journey,
it's	important	to	understand	that	Angular	2	didn't	kill	the	concept	of	directives.	As	a	matter	of	fact,
a	component	is	a	directive.	In	this	chapter,	we	will	introduce	Angular	2	directives	and	how	to	use
them.

The	following	are	the	topics	that	we	will	cover:

The	difference	between	components	and	directives	in	Angular	2
Angular	2	directive	types
How	to	build	a	simple	attribute	directive
How	to	build	a	simple	structural	directive

Components	and	directives	in	Angular	2
Up	until	now,	we	have	built	components.	But	components	do	not	replace	the	directives	that	we
are	familiar	with	from	Angular	1.	If	you	are	not	familiar	with	Angular	1	directives,	don't	worry,
we	will	explain	the	difference	in	a	minute.

Let's	start	by	defining	what	a	directive	is	in	Angular	terminology:	a	directive	is	a	custom	attribute
or	an	element	that	extends	HTML	tags	by	adding	custom	behavior.

In	Angular	2,	we	have	three	types	of	directive:	component	directive,	attribute	directive,	and
structural	directive.	We	are	already	familiar	with	components,	so	let's	define	the	other	types:

Attribute	directive:	This	changes	the	appearance	or	behavior	of	an	element.	One	example
for	this	can	be	the	NgStyle	directive	from	Angular	core.
Structural	directive:	This	manipulates	the	DOM,	just	like	NgFor	and	NgSwitch	from	the
Angular	core.

Directives	as	opposed	to	components,	do	not	require	a	template,	and	usually	define	a	selector	as
an	attribute.

Preparing	our	development	environment
Like	for	previous	chapters,	let's	create	a	new	project	as	explained	in	Chapter	2,	Setting	Up	an
Angular	2	Development	Environment	with	angular-cli.	You	can	also	remove	all	the	existing
folders	and	remove	all	the	unnecessary	code	from	app.component.ts:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`<h1>Angular2	components</h1>`

})

export	class	AppComponent	{}

The	basic	attribute	directive
Let's	begin	by	creating	a	new	file	for	our	directive	named	text-marker.ts.	Inside	it,	paste	the
following	code:

[text-marker.ts]

import	{	Directive,	ElementRef,	Renderer	}	from	'@angular/core';

@Directive({

		selector:	'[text-marker]'

})

export	class	TextMarker	{

		constructor(element:	ElementRef,	renderer:	Renderer)	{

				renderer.setElementStyle(element.nativeElement,

						'text-decoration',	'underline');

		}

}

To	create	a	directive,	we	need	to	import	the	Directive	decorator	function	from	Angular	core.
We	will	also	need	two	more	classes	named	ElementRef	and	Renderer	to	manipulate	the
element.	They	are	injected	to	our	directive	class	from	its	constructor.

This	directive	will	add	styling	to	the	element	and	decorate	the	text	with	an	underline.

Let's	test	this	directive	by	applying	it	on	our	app	component	template.	Open	index.ts	and	add
the	following	code:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`<h1	text-marker>Angular2	components</h1>`

})	

export	class	AppComponent	{}

Don't	forget	to	add	the	TextMarker	class	to	the	declarations	attribute	of	the	root	module.	This
operation	will	be	required	for	all	custom	components	and	directives	implemented	in	this	chapter.
Open	the	app.module.ts	file	and	update	it	as	described	here:

[app.module.ts]

import	{	BrowserModule	}	from	'@angular/platform-browser';

import	{	NgModule	}	from	'@angular/core';

import	{	FormsModule	}	from	'@angular/forms';

import	{	HttpModule	}	from	'@angular/http';

import	{	AppComponent	}	from	'./app.component';

import	{	TextMarker	}	from	'./text-marker';

@NgModule({

		declarations:	[

				AppComponent,

					TextMarker

],

		imports:	[

				BrowserModule,

				FormsModule,

				HttpModule

],

		providers:	[],

		bootstrap:	[AppComponent]

})

export	class	AppModule	{	}

Open	the	browser	and	inspect	the	result:

ElementRef	and	Renderer
Attribute	directives	intend	to	add	behavior	to	an	element.	For	this,	we	need	to	gain	access	to	the
element	itself.	In	Angular	2,	direct	access	to	a	DOM	element	is	considered	to	be	bad	practice.
Angular	keeps	the	code	separated	from	the	view	layer	by	introducing	an	abstraction	layer.

To	reference	the	element,	we	use	ElementRef,	which	is	the	class	that	represents	the	type	of
element	of	the	platform	we	are	running	on.	In	our	case,	it's	the	browser	DOM.	The	ElementRef
class	has	the	ability	to	reveal	the	native	element	that	it	wraps,	but	we	won't	need	it.	Instead,	we
will	use	another	class	named	Renderer	and	pass	the	ElementRef	instance	to	it.	Renderer	is	a
class	that	exposes	methods	for	manipulating	the	element,	without	specifying	which	type	of	element
it	is.	This	mechanism	keeps	our	code	decoupled	from	the	element's	implementation.

Reacting	to	events	from	the	host	element
An	attribute	directive	applies	on	an	element.	If	we	want	to	react	to	the	events	that	this	element
fires,	we	can	use	the	HostListener	decorator	on	some	methods	of	the	Directive	class.	In	the
following	example,	our	directive	will	listen	to	mouse	events	from	the	element	and	change	the
style	in	response:

[text-marker.ts]

import	{	

Directive,	ElementRef,	Renderer,	HostListener	

}	from	'@angular/core';

@Directive({

	selector:	'[text-marker]'

})

export	class	TextMarker	{

		constructor(private	element:	ElementRef,	

		private	renderer:	Renderer)	{	}

		@HostListener('mouseenter')

		markText()	{

				this.renderer.setElementStyle(

						this.element.nativeElement,

						'text-decoration',

						'underline'

);

		}

		

		@HostListener('mouseleave')

		unmarkText()	{

				this.renderer.setElementStyle(

						this.element.nativeElement,

						'text-decoration',

						''

);

		}

}

Now,	the	style	will	be	applied	and	removed	each	time	the	mouse	enters	and	leaves	the	element
that	host	the	attribute	directive.

Passing	properties	to	the	directive
We	can	also	pass	configuration	into	the	directive	by	using	properties.	Just	like	components,
directives	can	declare	inputs.	Let's	refactor	our	Directive	class	to	fetch	and	apply	a	text	color
from	a	property

[text-marker.ts]

import	{

		Directive,

		ElementRef,

		Renderer,	Input,

		HostListener

}	from	'@angular/core';

@Directive({

		selector:	'[text-marker]'

})

export	class	TextMarker	{

		@Input('text-marker')	

		private	color:	string;

		

		constructor(

				private	element:	ElementRef,	

				private	renderer:	Renderer

){	}

		

		@HostListener('mouseenter')

		onEnter()	{

				this.applyStyle(this.color,	true);

		}

		@HostListener('mouseleave')

		onExit()	{

				this.applyStyle('',	false);

		}

		

		private	applyStyle(

				color:string,	mark:boolean)	{

				

						//	apply	underline

						this.renderer.setElementStyle(

								this.element.nativeElement,

								'text-decoration',

								mark	?	'underline'	:	''

);

		

						//	apply	color

						this.renderer.setElementStyle(

								this.element.nativeElement

								'color',	color

);

		}

}

By	using	the	Input	decorator,	we	can	accept	the	value	of	the	property	(in	our	case,	it	is	text-

marker)	and	use	it	inside	our	directive	class.	Now	we	can	pass	the	color	that	we	want	to	use.
Open	app.component.ts	and	try	the	following	code:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`<h1	text-marker="red">Angular2	components</h1>`

})

export	class	AppComponent	{}

Now,	each	time	the	mouse	enters	the	h1	element,	the	text	should	be	colored	in	red	and	decorated
with	an	underline:

The	basic	structural	directive
As	we	mentioned	at	the	beginning	of	this	chapter,	the	third	type	of	directive	is	called	structural
directives,	and	as	the	name	suggests,	those	directives	are	meant	to	manipulate	the	element	that
they	applied	on.	Angular	core	includes	several	directives	that	manipulate	the	DOM,	such	as	ngIf,
ngFor,	and	ngSwitch.

For	our	example,	we	will	implement	our	own	ngIf	directive	that	behaves	just	like	the	original
one.

First,	create	a	new	file	named	only-if.ts	and	let's	define	the	basic	structure	for	our	directive:

[only-if.ts]

import	{	Directive	}	from	'@angular/core';

@Directive({

		selector:	'[onlyIf]'

})

export	class	OnlyIf	{

}

The	structural	directives	begin	their	lives	just	like	an	attribute	directive.	We	import	the
@Directive	decorator	from	the	Angular	core	and	declare	the	selector	as	an	attribute.

Next,	we	will	need	to	access	the	template,	and	we	will	need	some	kinds	of	container	so	we	can
attach	or	remove	views.	For	this,	we	will	need	to	inject	TemplateRef	and	ViewContainerRef:

[only-if.ts]

import	{

		Directive,

		TemplateRef,

		ViewContainerRef

}	from	'@angular/core';

@Directive({

		selector:	'[onlyIf]'

})

export	class	OnlyIf	{

		constructor(private	_templateRef:	TemplateRef,

														private	_viewContainerRef:	ViewContainerRef)

		{		}

}

Our	directive,	just	like	the	Angular	ngIf,	needs	to	receive	a	Boolean	from	its	caller	that
represents	the	condition	on	which	the	content	will	be	shown	or	removed.	For	this,	we	will
declare	an	input	for	this	condition	and	make	use	of	ViewContainerRef	and	TemplateRef:

[only-if.ts]

import	{

		Directive,

		Input,

		TemplateRef,

		ViewContainerRef

}	from	'angular/core';

@Directive({

		selector:	'[onlyIf]'

})

export	class	OnlyIf	{

		constructor(private	_templateRef:	TemplateRef<any>,

														private	_viewContainerRef:	ViewContainerRef)	{		}

		@Input()

		set	onlyIf(condition:boolean)	{

				if	(condition)	{

						this._viewContainerRef.createEmbeddedView(this._templateRef);

				}	else	{

						this._viewContainerRef.clear();

				}

		}

}

Let's	make	use	of	this	directive.	Open	app.component.ts	and	paste	the	following	code:

[app.component.ts]

import	{	Component	}	from	'@angular/core';

@Component({

		selector:	'app-root',

		template:	`

				<input	type="checkbox"	[(ngModel)]="condition">

				<p	*onlyIf="condition">

						This	content	will	shown	only	if	the	condition	is	true

				</p>

		`

})	

export	class	AppComponent	{}

Don't	forget	to	add	the	OnlyIf	class	to	the	declarations	attribute	of	the	root	module.

Let's	explore	what's	going	on:	when	we	use	the	asterisk	(*)	to	call	our	directive,	Angular	creates
a	<template>	tag	behind	the	scenes.	Inside	our	directive,	we	can	get	a	reference	for	this	template
through	the	TemplateRef	class.	Then,	we	can	use	the	ViewContainerRef	class,	which
represents	a	container	so	that	we	can	embed	a	view	into	it,	to	create	or	clear	a	view	from	the
content	of	the	template.

Summary
In	Angular	2,	there	are	three	types	of	directive:	component	directive,	attribute	directive,	and
structural	directive.	Throughout	this	chapter,	we	got	a	quick	introduction	to	them	and	learned	how
to	build	simple	directives.	Directives	can	do	much	more,	but	that's	beyond	the	scope	of	this	book.

Index
A

accordion	component
about	/	The	accordion	component
accordion	tab,	implementing	/	The	accordion	component
tree,	extending	/	Extending	the	accordion	component	tree
life	cycle	/	The	component	life	cycle

Ahead	of	Time	(AoT)	/	Bootstrapping	the	application
angular-cli

installing	/	Installing	angular-cli
URL	/	Generating	an	Angular	2	project

Angular	1
Model-View-Controller	pattern	/	MVC	in	Angular	1

Angular	2
development	environment,	preparing	/	Preparing	our	development	environment,
Preparing	our	development	environment,	Preparing	our	development	environment
components	/	Components	and	directives	in	Angular	2
directives	/	Components	and	directives	in	Angular	2
attribute	directive	/	Components	and	directives	in	Angular	2
structural	directive	/	Components	and	directives	in	Angular	2

Angular	2	application
breaking,	into	components	/	Breaking	the	application	into	components

Angular	2	project
generating	/	Generating	an	Angular	2	project

Angular	application
bootstrapping	/	Bootstrapping	the	application

annotations
versus	decorators	/	Decorators	versus	annotations

Application	component	/	Breaking	the	application	into	components
asterisk	(*)

about	/	The	asterisk	–	*
example	/	The	asterisk	–	*

attribute	directive
about	/	Components	and	directives	in	Angular	2,	The	basic	attribute	directive
ElementRef	class	/	ElementRef	and	Renderer
Renderer	class	/	ElementRef	and	Renderer
events,	reacting	from	host	element	/	Reacting	to	events	from	the	host	element
properties,	passing	/	Passing	properties	to	the	directive

B
basic	types,	TypeScript

about	/	The	basic	types
bootstrap

dependencies,	importing	/	Importing	dependencies
tooltip	component	/	Bootstrap	tooltip	component
collapse	component	/	Bootstrap	collapse	component

Button	component	/	Breaking	the	application	into	components

C
classes,	in	TypeScript

about	/	Classes
collapse	component

reference	link	/	Bootstrap	collapse	component
components

defining	/	Defining	components
component	selector

about	/	The	component	selector
options	/	Selector	options

component	template
about	/	The	component	template
styles,	embedding	in	/	Embedding	styles	in	component	template

Controller
about	/	The	Model-View-Controller	pattern

core	directives
about	/	Core	directives
NgIf	directive	/	NgIf
NgClass	directive	/	NgClass
NgStyle	directive	/	NgStyle
NgSwitch	directive	/	NgSwitch
NgFor	directive	/	NgFor

custom	events
emitting	/	Emitting	custom	events
local	variable,	referencing	with	/	Referencing	with	a	local	variable

custom	types,	TypeScript
about	/	The	custom	types

D
data

passing,	via	properties	/	Passing	data	via	properties
data	bindings	/	Data	bindings
data	interpolation	/	Data	interpolation
decorators

using	/	Using	decorators
about	/	Using	decorators
versus	annotations	/	Decorators	versus	annotations

default	exports
about	/	The	default	exports

dependencies
managing,	with	modules	/	Managing	dependencies	with	modules

E
ElementRef	class

about	/	ElementRef	and	Renderer
encapsulation	mode

about	/	Encapsulation	modes
emulated	/	Encapsulation	modes
native	/	Encapsulation	modes
none	/	Encapsulation	modes
example	/	Encapsulation	modes

event	binding	/	Event	bindings
events

reacting,	from	host	element	/	Reacting	to	events	from	the	host	element
export	statement

about	/	The	export	and	import	statements

F
Form	component	/	Breaking	the	application	into	components

G
generics

about	/	About	generics
reference	/	About	generics

H
host	element

events,	reacting	from	/	Reacting	to	events	from	the	host	element

I
import	statement

about	/	The	export	and	import	statements
inline	template

example	/	The	component	template
Input	component	/	Breaking	the	application	into	components
integrated	development	environment	(IDE)

selecting	/	Choosing	an	IDE

L
life	cycle	events

interfaces	/	Life	cycle	event	interfaces
OnInit	method	/	OnInit	and	OnDestroy
OnDestroy	method	/	OnInit	and	OnDestroy
OnChanges	method	/	OnChanges
about	/	Other	life	cycle	events

local	variable
referencing	with	/	Referencing	with	a	local	variable
example	/	Referencing	with	a	local	variable

Long	Time	Support(LTS)
URL	/	Installing	Node

M
Model

about	/	The	Model-View-Controller	pattern
Model-View-Controller	pattern

working	/	The	Model-View-Controller	pattern
Model	/	The	Model-View-Controller	pattern
View	/	The	Model-View-Controller	pattern
Controller	/	The	Model-View-Controller	pattern
in	Angular	1	/	MVC	in	Angular	1

Model	View	ViewModel	(MVVM)
about	/	MVC	in	Angular	1
Model	/	MVC	in	Angular	1
View	/	MVC	in	Angular	1
ViewModel	/	MVC	in	Angular	1

modules
about	/	Managing	dependencies	with	modules
dependencies,	managing	with	/	Managing	dependencies	with	modules
export	statement	/	The	export	and	import	statements
import	statement	/	The	export	and	import	statements
default	exports	/	The	default	exports

N
NgClass	directive	/	NgClass
NgFor	directive

about	/	NgFor
example	/	NgFor

NgIf	directive
about	/	NgIf
asterisk	(*)	/	The	asterisk	–	*

NgStyle	directive
about	/	NgStyle
example	/	NgStyle

NgSwitch	directive	/	NgSwitch
node

about	/	Node	and	npm
installing	/	Installing	Node
URL	/	Installing	Node

npm
about	/	Node	and	npm
installing	/	Introducing	npm
URL	/	Introducing	npm

O
OnChanges	method	/	OnChanges
OnDestroy	method	/	OnInit	and	OnDestroy
OnInit	method	/	OnInit	and	OnDestroy

P
properties

data,	passing	via	/	Passing	data	via	properties
property	binding	/	Property	bindings

Q
Query	children	components

parent	component,	used	/	Querying	child	components	with	the	parent	component
example	/	Querying	child	components	with	the	parent	component

R
Renderer	class

about	/	ElementRef	and	Renderer

S
shadow	DOM	/	The	shadow	DOM
structural	directive

about	/	Components	and	directives	in	Angular	2,	The	basic	structural	directive
example	/	The	basic	structural	directive

styles	/	Embedding	styles	in	component	template
styles	property	/	Embedding	styles	in	component	template

T
.ts

reference	/	The	custom	types
TaskList	component	/	Breaking	the	application	into	components
TaskRow	component	/	Breaking	the	application	into	components

checkbox	/	Breaking	the	application	into	components
label	/	Breaking	the	application	into	components
trash	/	Breaking	the	application	into	components

template	strings	/	The	component	template
two-way	data	binding	/	Two-way	bindings
TypeScript

about	/	Introduction	to	TypeScript
TypeScript	interfaces

URL	/	Life	cycle	event	interfaces
type	system

about	/	The	type	system
basic	types	/	The	basic	types
custom	types	/	The	custom	types
generics	/	About	generics

typings
URL	/	The	custom	types

V
View

about	/	The	Model-View-Controller	pattern
view

switching,	to	components	/	Moving	from	views	to	components
ViewModel

about	/	MVC	in	Angular	1
VSCode

URL	/	Choosing	an	IDE

W
webstorm

reference	link	/	Choosing	an	IDE

	Angular 2 Components
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Angular 2 Component Architecture
	The Model-View-Controller pattern
	MVC in Angular 1
	Moving from views to components
	Defining components
	Breaking the application into components
	Summary
	2. Setting Up an Angular 2 Development Environment with angular-cli
	Node and npm
	Installing Node
	Introducing npm
	Installing angular-cli
	Generating an Angular 2 project
	Choosing an IDE
	Summary
	3. The TypeScript Primer
	Introduction to TypeScript
	Managing dependencies with modules
	The export and import statements
	The default exports
	Classes
	The type system
	The basic types
	The custom types
	About generics
	Using decorators
	Decorators versus annotations
	Summary
	4. Building a Basic Component
	Bootstrapping the application
	The component selector
	Selector options
	The component template
	Embedding styles in component template
	The shadow DOM
	Encapsulation modes
	Data bindings
	Summary
	5. Building Dynamic Components
	Data interpolation
	Core directives
	NgIf
	The asterisk – *
	NgClass
	NgStyle
	NgSwitch
	NgFor
	Property bindings
	Event bindings
	Two-way bindings
	Summary
	6. Component Communication
	Passing data via properties
	Emitting custom events
	Referencing with a local variable
	Querying child components with the parent component
	Summary
	7. Putting It All Together
	Preparing our development environment
	The accordion component
	Extending the accordion component tree
	The component life cycle
	Life cycle event interfaces
	OnInit and OnDestroy
	OnChanges
	Other life cycle events
	Summary
	8. Integrating Third-Party Components
	Preparing our development environment
	Importing dependencies
	Bootstrap tooltip component
	Bootstrap collapse component
	Summary
	9. Angular 2 Directives
	Components and directives in Angular 2
	Preparing our development environment
	The basic attribute directive
	ElementRef and Renderer
	Reacting to events from the host element
	Passing properties to the directive
	The basic structural directive
	Summary
	Index

