Nir Kaufman, Thierry Templier

Angular 2
Components

A quick and concise guide to Angular 2 Components

L] Packh

Angular 2 Components

Table of Contents

Angular 2 Components
Credits

About the Authors
About the Reviewers
www.PacktPub.com
eBooks, discount offers, and more
Why subscribe?
Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback

Customer support
Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Angular 2 Component Architecture
The Model-View-Controller pattern

MVC in Angular 1
Moving from views to components
Defining components
Breaking the application into components
Summary
2. Setting Up an Angular 2 Development Environment with angular-cli
Node and npm
Installing Node
Introducing npm
Installing angular-cli
Generating an Angular 2 project
Choosing an IDE
Summary
3. The TypeScript Primer
Introduction to TypeScript
Managing dependencies with modules
The export and import statements
The default exports
Classes

The type system

The basic types
The custom types

About generics
Using decorators

Decorators versus annotations

Summary
4. Building a Basic Component

Bootstrapping the application
The component selector

Selector options

The component template
Embedding styles in component template
The shadow DOM
Encapsulation modes
Data bindings
Summary
5. Building Dynamic Components
Data interpolation
Core directives

Nglf
The asterisk — *

NgClass

NgStyle

NgSwitch

NgFor
Property bindings
Event bindings
Two-way bindings
Summary

6. Component Communication

Passing data via properties
Emitting custom events

Referencing with a local variable

Querying child components with the parent component
Summary
7. Putting It All Together

Preparing our development environment
The accordion component

Extending the accordion component tree
The component life cycle
Life cycle event interfaces

Onlnit and OnDestroy

OnChanges
Other life cycle events

Summary

8. Integrating Third-Party Components
Preparing our development environment
Importing dependencies
Bootstrap tooltip component
Bootstrap collapse component
Summary

9. Angular 2 Directives
Components and directives in Angular 2

Preparing our development environment
The basic attribute directive

ElementRef and Renderer
Reacting to events from the host element

Passing properties to the directive
The basic structural directive

Summary
Index

Angular 2 Components

Angular 2 Components

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: November 2016
Production reference: 1211116
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-234-0

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Nir Kaufman
Thierry Templier
Reviewers

Robin Bohm
Daniel Zen
Commissioning Editor
Sarah Crofton
Acquisition Editor
Meeta Rajani
Technical Editor
Narsimha Pai

Copy Editor

Laxmi Subramanian
Proofreader

Safis Editing
Indexers
Hemangini Bari
Pratik Shirodkar
Production Coordinators
Deepika Naik

Shantanu N. Zagade

Cover Work

Deepika Naik

About the Authors

Nir Kaufman is the Head of Angular Development at 500Tech, a leading front-end consultancy in
Israel. He is a passionate JavaScript developer, an international speaker, and an Angular
evangelist.

Nir runs three local Angular community meetup groups in Israel. He also collaborates with other
local Angular communities around the world.

Thierry Templier is a senior full stack developer with 17 years of experience. He has been a
JavaScript addict for a long time now and started to work with the early versions of the language.
He has a particular passion for Angular 2 and loves to help developers to use this framework,
particularly on the StackOverflow website, where he has answered more than 1,900 questions.

He also enjoys writing articles to promote and explain Angular 2's specific features on his blog

(https://medium.conv@ttemplier/) and on the Restlet blog (http://restlet.com/blog/author/thierry-
templier/).

Thanks to Nir, Meeta, and Narsimha for taking me on board and working with me on this project.
Thanks to my beloved wife and son, Séverine and Maél, for their daily support.

https://medium.com/@ttemplier/
http://restlet.com/blog/author/thierry-templier/

About the Reviewers

Robin Bohm is a Germany based passionate trainer for Angular. He is also the co-founder of the
AngularJS.DE platform, which is the biggest community for Angular in Germany. Together with
his team, he offers intensive workshops and trainings for web development with Angular. Since
2013, they have successfully trained over 5000 developers from freelance developers to
employees of large German corporate (DAX) companies.

Daniel Zen is a MIT graduate in Computer Science Engineering and has been teaching and
writing software for the past three decades. He has taught computer programming and Agile
methodologies at NYU, The New School, and at numerous Fortune 500 companies. He has
worked on large-scale art projects, as well as interactive installations at the Museum of Science
in Boston and The Milk Gallery in NYC. A former consultant to both Google and Pivotal Labs,
Zen is now focused on zen.digital, a full stack JavaScript training and consulting company.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
<customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books
and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

Preface

Angular 2 is a leap forward from the previous Angular 1.x framework, which became the most
popular frontend JavaScript framework in history.

It is a complete re-write, an up-to-date platform that is built upon web standards and modern
APIs. With Angular 2, you can build JavaScript applications aimed at the browser, server,
mobile, and desktop, thanks to an architecture that decoupled the view layer of Angular from the
platform core and services.

This book will be focused on the UI layer of Angular: components. We will explore the rich API
and multiple options available for building and composing UI components for powerful user
interfaces and views.

What this book covers

Chapter 1, Angular 2 Component Architecture, provides an overview of the existing popular
architectural patterns for building frontend applications, and the new approach that relys on
composing self-contained custom components.

Chapter 2, Setting Up an Angular 2 Development Environment with angular-cli, covers setting
up the development environment with angular-cli.

Chapter 3, The TypeScript Primer, covers the basics of the TypeScript language and what you
need to know about TypeScript.

Chapter 4, Building a Basic Component, covers the steps to build a basic component.

Chapter 5, Building Dynamic Components, covers the steps to transform your static component
into a dynamic component using core directives and data binding.

Chapter 6, Component Communication, covers different ways to make your components
communicate with each other.

Chapter 7, Putting It All Together, covers building the accordion component and the component
life cycle.

Chapter 8, Integrating Third-Party Components, covers the integration of a tooltip widget from
the popular Bootstrap library.

Chapter 9, Angular 2 Directives, covers the usage of directives in Angular 2.

What you need for this book

You need to know how to read and write JavaScript. Other technologies, such as C# or Java, may
help you understand the syntax, but are not mandatory.

Some experience with web development and related technologies such as HTML and CSS is
required, so make sure you are familiar with that.

Who this book is for

If you are a frontend developer with some experience in Angular who wants to understand
Angular 2 components and use them to create powerful user interfaces, then this book is for you.

This books is also for angular 1.x developers who want to upgrade their knowledge and skills.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code is set as follows:

class Product {
private id: number;
private color: string;

constructor(id:number, color:string) {
this.id = id;
this.color = color;

}
}

Any command-line input or output is written as follows:

$ npm uninstall -g angular-cli
$ npm cache clean

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves
you to the next screen."

Note
Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles that
you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's
title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing
to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Login or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

Nk wpN

You can also download the code files by clicking on the Code Files button on the book's webpage
at the Packt Publishing website. This page can be accessed by entering the book's name in the
Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

e WIinRAR / 7-Zip for Windows
e Zipeg/iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

https://github.com/PacktPublishing/Angular-2-Components. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check

them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Angular-2-Components
https://github.com/PacktPublishing/

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You can
download this file from

https://www.packtpub.com/sites/default/files/downloads/Angular2Components_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/Angular2Components_ColorImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list
of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will appear under the
Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any illegal
copies of our works in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

mailto:copyright@packtpub.com

Questions

If you have a problem with any aspect of this book, you can contact us at
<guestions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. Angular 2 Component Architecture

The way we think about web applications has changed. The goal of this chapter is to provide an
overview of the existing popular architectural patterns for building frontend applications, and the
new approach that relies on composing self-contained custom components.

Understanding the architectural pattern that was implemented in Angular 1 will help you migrate
your existing application to Angular 2 in the future. In this chapter, we will discuss those topics:

Overview of the Model-View-Controller pattern

Angular 1 implementation of model, view, and ViewModel
Moving from MVVM to components

An example of the Angular 2 components architecture

The Model-View-Controller pattern

This is an architectural design pattern for implementing user interfaces, which has been used for
many years for desktop GUI.
It divides the application into three distinct parts:

e Model: This is responsible for storing the actual data
e View: This is the presentation layer that renders the data to the user
e Controller: The glue between the model and the view

The following diagram describes the relationships between those parts:

model

controller < Al

This pattern describes the communication between those parts. The view reflects the data in the
model, but cannot alter the data directly in the model. It is common to describe the relationship
between the model and the view as read only (the view can only read from the model). The view
uses the controller by invoking methods and changing attributes. The controller updates the
model, which causes the view to update and render the new data.

MVC, which was originally developed for desktop applications, has been widely adopted as an
architecture for building single page web applications and can be found in all the popular client-
side frameworks, including Angular.

MVC in Angular 1

Angular 1 implements a variation of the classic MVC, which is known by the name Model View
ViewModel (MVVM). This pattern describes different roles and communication between the
parts:

e Model: This holds the data or acts as data access layer
e View: Like MV, this is the presentation layer
e ViewModel: This is an abstraction of the view that is bound to the view

The following diagram describes the relationships between those parts with the terminology of
Angular 1:

model ViewModel view

(service) (controller) (template)

The ViewModel in Angular 1 is an object named: '$scope’ that is constructed by an Angular
controller. We do not always interact with this object directly. It's binding to the view is two-way
(In Angular, we refer to the view as a 'Template"). The ViewModel can read and alter the data on
the model and update itself when necessary. The view will reflect those changes immediately.
Angular doesn't include any predefined model type. Instead, we code our models as plain
JavaScript and register it as an Angular service. The following code snippet shows the structure
of a custom model service Model. js:

class Product {
constructor(){
this.color = "red";

}
}

The following code snippet shows the structure of viewModel. js:

class ProductController {
constructor(Product) {
this.product = Product

}
}

The following code snippet shows the structure of View.html:

<p>{{ product.color }}</p>

Moving from views to components

Angular applications are based around the concept of views. A view in Angular refers to a
template (HTML), which is, most of the time, managed by one or more controllers. This view can
also contain some custom directives that encapsulate some other chunks of HTML and JavaScript.
Naturally, over the years, Angular developers tend to create more and more directives and use
them as building blocks that replace the original HTML tags with custom elements.

The concept of composing a view from small custom elements has become trendy and can be
found in other popular modern frameworks such as react and polymer. Angular 2 builds around
this concept well and will base the UI architecture on those building blocks. Hence from now on,
we call components as building blocks and templates as layouts.

Defining components

Components are a clean way of organizing Ul code into self-contained, reusable chunks, which
contain their own view and logic. Components can be composed together to create a complex
user interface. Components can optionally receive properties from the outside world and
optionally communicate through callbacks or events. The business logic, structure and styling can
be encapsulated inside the component code.

Components in Angular 2 are just directives with a view. Actually, the component in Angular 2 is
a type of directive. We can also write a directive that doesn't include a template (and will not be
called component) in Angular 2.

Those directives are very similar to the directives you're familiar with in Angular 1.x. The main
difference is that in Angular 2.0 we think of two kinds of directives: attribute directives that add
behavior to the elements, and structural directives which we named: components.

Breaking the application into components

The angular 2 application is a set of components. We define a component for every Ul element,
view and route. We must define a root component that we will use as a container for all other
components. In other words, an Angular 2 application is a tree of components.

The key for a well-designed, component-oriented Angular 2 application is to break the Ul into a
tree of components successfully. For example, let's talk about a simple mobile to-do list
application, which looks like this:

Add new.

' ltem One
' ltem Two

@ Item Three
& Item Four
@ Item Five
[Item Six

' ltem Seven

™ Item Elght
™ Item Nine

S EIGIE I I 0 4

The components tree that composes this Ul will look like this:

Application

Form TaskList

Input Button TaskRow

CheckBox Label Trash

This application is made up of nine components. At the root is the Application component, which
contains all the other components. Next, we find the Form component, which is built from an
Input component and a Button component.

The TaskList component is a container for the TaskRow component. Each TaskRow comprises
three components—a CheckBox, a Label, and a Trash icon.

There is no strict rule about how many components you should create, but a best practice is to
break the UI to as many components as we can. The number of components will affect the other
aspects of the application such as reusability, maintenance, and testing.

Summary

The idea of building a Ul from components is not new. While in Angular 1 we had the ability to
develop directives that act like components, it wasn't mandatory. In Angular 2, the whole
application is a tree of components, so the ability to break your design into small parts and learn

the how to build components is crucial.

Chapter 2. Setting Up an Angular 2
Development Environment with angular-cli

Angular 2 takes advantage of modern web technologies and tools, which means the development
environment becomes more sophisticated and requires some tools and their understanding.

Luckily, we don't need to spend time installing and configuring all the required dependencies and
wiring everything together. We can use the angular-cli (command-line tool) that is being
developed in parallel with Angular 2.

In this chapter, we will walk through setting up our development environment with angular-cli:
how to install it and how to use it to kickstart our Angular 2 project in minutes.

Node and npm

Before we can start using angular-cli, we need to install Node.js on our machine. Node is a
JavaScript runtime built on Chrome's V8 JavaScript engine. It enables JavaScript to run without a
browser, which leads to the development of many development tools that we use today, such as
task runners, compilers, linters, and module loaders. The modern web frontend development
environment relies on these tools.

Installing Node

Node is cross-platform, so it can run on any popular operating system. The easiest way to install
node is by downloading the official installer for your operating system. To do this, go to
https://nodejs.org/en/ and find the official installer for Windows, Macintosh, or Linux. Currently,
Node releases have two major paths—a Long Time Support (LTS) and a stable version. For this
book, we will use the LTS version of Node. Make sure to download the Node 4.24.53 LTS
version installer.

After you download and run the installer successfully, open your terminal (or command line in
Windows) and type node -v. This command should print the current version of node that you just
installed; in our case, it should be 4.24.53, or greater.

We use node as the JavaScript engine that our development environment tools depend on. The
version that was mentioned here does not have any special meaning due to the fact that we won't
write any Node.js code throughout this book, but the other tools we use will.

Note! The angular-cli tool will work with any version of node larger than 4.x, so you can use
another installation if you like.

https://nodejs.org/en/

Introducing npm

Npm is a package manager for node. It is bundled with the node installer. If you installed node
successfully in the previous step, npm should be ready to use. To make sure it is installed
properly, open the terminal (command line on Windows) and type npm -v. This command should
print the npm version. It should be 3 or greater.

We use npm to install the dependencies we need both for development and for runtime. Npm
searches for those packages in the npm registry, which currently contain more than 1,90,000
packages (and growing). You can either visit https://www.npmijs.comy/ and search for packages,
or use the npm cli for searching, installing, and managing packages. Npm also helps us manage
the project life cycle as we will see next.

https://www.npmjs.com/

Installing angular-cli

We will use npm to install angular-cli on our workstation. To do so, follow these simple steps:

1. Launch the Terminal (or command line in Windows).
2. Type: npm install -g angular-cli@latest and press Enter (in Windows, you might
need to run this command as an administrator).

That's it! The angular-cli is now installed on your machine, and, because we used the flag - g
with our npm install command, angular-cli exposed an ng alias that is available from
anywhere. (-g stands for global, which means the module was installed on a system-level
directory).

Generating an Angular 2 project

The first command that we will use with angular-c1li is new. This command will create a folder
structure for our project and install all the required dependencies. Along with the basic Angular 2
files and modules, angular-cli will install modules for testing, linting, and documenting our
code. This book is all about components, so we won't touch most of this stuff. You can read more
about the available commands on the official angular-cli page: https://cli.angular.io/.

To generate a new project, follow these steps:

1. Launch the Terminal (or command-line in Windows).
2. Type ng new ng_components and press Enter.

The angular-cli software will generate a new project under the current directory:

https://cli.angular.io/

Terminal

> ng new ng components
Could not start watchman; falling back to NodeWatcher for file system events.
Visit http://ember-cli.com/user-guide/#watchman for more info.
installing ng2
create .editorconfig
create README.md
create src/app/app-routing.module.ts
create src/app/app.component.css
create src/app/app.component.html
create src/app/app.component.spec.ts
create src/app/app.component.ts
create src/app/app.module.ts
create src/app/index.ts
create src/app/shared/index.ts
create src/assets/.gitkeep
‘eate src/assets/.npmignore
reate src/environments/environment.prod.ts
reate src/environments/environment.ts
reate src/favicon.ico
create src/index.html
create src/main.ts
create src/polyfills.ts
create src/styles.css
eate src/test.ts
reate src/tsconfig.json
reate src/typings.d.ts
create angular-cli.json
create e2e/app.e2e-spec.ts
create e2e/app.po.ts
create e2e/tsconfig.json
create .gitignore
create karma.conf.js
create package.json
create protractor.conf.js
create tslint.json
Successfully initialized git.
Installing packages for tooling via npm.

oM M

™o M

Note that the last line prints: Installing packages for tooling via npm. The angular-
cli tool will download all the required modules using standard npm command behind the scenes.

That's it! You just generated a complete Angular 2 project with everything you need already
configured and wired.

To serve it on top of a development server, follow these steps:

1. Navigate using cd into the directory you just created by typing: cd ng_components.
2. Type ng serve and sit back.

Wait until angular-cli prints the following:

Terminal

/Ng_componer (master) > ng serve

Could not start watchman; falling back to NodeWatcher for file system events.

Visit http://ember-cli.com/user-guide/#watchman for more info.
* NG Live Development Server is running on http://localhost:4208.

5867ms building modules

13ms sealing

Bms optimizing

Bms basic module optimization

188ms module optimization

1lms advanced module optimization

9ms basic chunk optimization

8@ms chunk optimization

8ms advanced chunk optimization

@ms module and chunk tree optimization

54ms module reviving

2ms module order optimization

3ms module id optimization

3ms chunk reviving

8@ms chunk order optimization

8ms chunk id optimization

53ms hashing

1ms module assets processing

118ms chunk assets processing

4ms additional chunk assets processing

Bms recording

Bms additional asset processing

1175ms chunk asset optimization

1240ms asset optimization

28ms emitting

Hash: 196381c55676b67clecd

Version: webpack 2.1.08-beta.22

Time: B787ms

Asset Size Chunks Chunk Names
2.83 MB 8, 2 main
16.2 kB i E styles
5.53 kB 2 inline
2.88 MB 8, 2 main
14 kB 1, 2 styles
5.59 kB 2 inline
479 bytes
8 bytes
Child html-webpack-plugin for "index.html":
Asset Size Chunks Chunk Names
2.81 kB o

webpack: bundle is now VALID.

Note
If you see something related to Brocolli, its because a previous version of angular-cli was not
properly uninstalled. In such cases, use the following commands:

$ npm uninstall -g angular-cli
$ npm cache clean

Then you can reinstall the tool as described in the chapter, using this command:

$ npm install -g angular-cli@latest

Behind the scenes, angular-cli builds the project, launches a server and serves the application.
All we need to do know is launch our browser and point itto http://localhost:4200:

¥ NgComponents x

“— C | @ localhost:4200 S

app works!

There is a lot going on behind the scenes. The angular-cli tool uses various other tools like
webpack to perform its magic. These tools are beyond the scope of this book, but you can read all
about it in the angular-cli documentation on GitHub at https://github.com/angular/angular-cli.

https://github.com/angular/angular-cli

Choosing an IDE

While Angular 2 applications can be developed with a plain text editor, working with an IDE
(integrated develop environment) is highly recommended. Personally, I'm using webstorm
(https://www.jetbrains.com/webstorm/), which offers complete support for Angular out of the
box. If you are looking for a free, open source alternative, we have vScode
(https://code.visualstudio.comv), which also supports Angular 2 naturally. Both of them offer
Angular code inspection and highlighting along with refactoring and autocomplete features.
WebStorm offers a complete integration with almost every JavaScript tool out there and is
considered by many to be the best JavaScript IDE out there.

https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/

Summary

In this chapter, we learned how to use angular-cli to create, configure, and serve a new Angular 2
project in minutes. This tool is helping us as developers to focus on our application code rather
than on configurations.

In the next chapter, we will get familiar with the TypeScript language, focusing on the important
features for building Angular 2 components (and all the rest of the project).

Chapter 3. The TypeScript Primer

Angular 2 is written with TypeScript, but that doesn't mean we have to write our application with
TypeScript. Angular 2 applications can be written with ES6 (JavaScript 2015) or even ES5
(JavaScript 1.5). In this book, we will use TypeScript, mainly (but not only) because of the
implementations of decorators, which can clean our Angular 2 code compared to ES6 and ES5.

I will assume that you already know how to write JavaScript 2015 (ES6) code. Through this
chapter, we will cover just what we need to know about TypeScript; most of the code is
compatible with JavaScript 2015 as is. If you are not familiar with ES6 at all, it's highly
recommended to catch up with the new syntax and features.

The following are the topics that we will cover:

An introduction to the TypeScript language
Manage dependencies with modules

Class declarations and usage

System, built-in, and custom types

How to use decorators

Introduction to TypeScript

The most important thing that you should know about TypeScript is that it's not a completely new
language. It's a superset of ES6. This means an ES6 code can be converted to TypeScript just by
changing the file extension from . js to . ts.

For example, the following code is a valid ES6 or TypeScript:

class User {
constructor(id){
this.id = id;
}

getUserInfo(){
return this.userInfo;
}

}

On the other hand, the TypeScript compiler can target various versions of JavaScript, including
ES6. The compiler will peel all the extra code and output clean and readable JavaScript code
that is almost identical to the source.

This is a simple TypeScript class:

class Product {
private id: number;
private color: string;

constructor(id:number, color:string) {
this.id = id;
this.color = color;
}
}

Targeting ES6 will output this code:

class Product {
constructor(id, color) {
this.id = id;
this.color = color;
}
}

And this is the completion result when targeting ES5:

var Product = (function () {
function Product(id, color) {
this.id = id;
this.color = color;

}

return Product;

1O

As you can see, the compilation results in a clean and readable code, which is almost identical to
the source code (in case of ES6).

Next, we will explore the language features. Note that most of the features that we will go through

are part of ES6 and not TypeScript. I will mention which feature belongs to TypeScript and which
does not.

Managing dependencies with modules

One of the most important changes introduced in JavaScript is modules. A module is a JavaScript
file that gets loaded in a special way. All variables and declarations are scoped to the module. If

we like to expose some code to the outside world, we need to export it explicitly. If you try to log
the value of this in the top level of the module, you will get undefined.

The export and import statements

The export and import keywords are used to define which part of the code should be exposed to
other modules, and which code we will like to import from another module. The following
module exposes a function, a class, and a variable:

[user.ts]

export function getRandomNumber() {
return Math.random();

}

export class User {
constructor(name) {
this.name = name;

}
}

export const id = 12345;
To use this exported code, we need to import it in another module. We can import this code in
various ways:

// import only the function from the module
import { getRandomNumber } from './user';

// import both the function and the class from the module
import { getRandomNumber, Person } from './user';

// import the function and bind it to a random variable
import { getRandomNumber as random } from './user';

// import everything from the module and
// bind it to a userModule variable
import * as UserModule from './user';

The default exports

We can import only what we need from the module, import multiple code and import everything
that the module exported. There is another option to export code from a module, which is called a
default export:

[user.ts]
export default class User {
constructor(name) {
this.name = name;

}
}

When importing code that is exported using the default keyword, we don't have to use the exact
name of the function or class or variable that we exported:

import UserModule from './user.ts';
A default export can be declared only once per module. We can mix the default and named

exports in the same module. Note that we don't have to use curly braces when importing code that
has been exported as default.

Classes

The JavaScript language's object-oriented capabilities are built around the concept of prototypes.
The prototype model defines links between objects, instead of inheritance trees. The prototype
model, as powerful as it is, is not very friendly to the average JavaScript programmer. TypeScript
enables us to create classes with a familiar syntax, and it's completely identical to JavaScript 1.5
classes (if we choose not to use TypeScript exclusive features). To define a class in TypeScript,
we use the class keyword:

class Product {}

Classes in TypeScript might have a constructor and methods just like JavaScript 2015. TypeScript
also adds the ability to define class properties. The following example shows our Product class
with a constructor, property, and a method:

class Product {

color;
price;

constructor(color, price) {
this.color = color;
this.price = price;

}

getProductDetails() {
return this.color + this.price;

}
}

In TypeScript, just like JavaScript 2015, inheritance is achieved through the extends keyword,
and the super keyword is used to call the parent class when necessary. The following example
illustrates how to use it:

class Product {
color;
price;

constructor(color, price) {
this.color = color;
this.price = price;

}

getProductDetails() {
return “${this.color}, ${this.price}";
}
}

class Ebook extends Product {
size;

constructor(color, price, size) {

super(color, price);
this.size = size;

}

getProductDetails(){
return “${this.color}, ${this.price}, ${this.size}’;

}
}

It's important to realize that classes are just a sugar on top of prototypes. This means the way
JavaScript deals with objects' instantiation and inheritance behind the scenes hasn't changed. It

just has a friendly syntax.

In Angular 2, the component that contains all the component behavior is defined as a class. The
rest is just a metadata decorator, which we will learn about in the future chapters.

The type system

The most famous feature that made TypeScript what it is, is the type system that enables us to
leverage a static type checking at compile time. We have already seen the use of types in the
previous code examples. It's important to understand that in TypeScript the use of types is
optional but highly recommended. As we saw at the beginning of this chapter, the TypeScript
compiler breakdown all the types declaration, so the compilation result will be plain JavaScript.

The basic types

TypeScript supports all the basic JavaScript types you expected: Booleans, Numbers, Strings, and
Arrays. The following example shows how to use it in code:

// strings
let name: string = "bob";

// boolean
let isLoggedIn: boolean = true;

// number
let height: number = 24;
let width: number = 12;

// arrays
let colors: string[] = ['red', 'green', 'blue'];
let colors: Array<string> = ['red', 'green', 'blue'];

TypeScript also includes extra three types to the mix, namely, enum, any, and void. The type any,
as the name suggests, is used when we are dealing with dynamic data and we can't tell which type
of data we are expecting. If we don't specify a type at all, TypeScript defaults to the any type:

// value can be any type, init with a number
let value: any = 10;

// different types can assigned
value = false;
value = "this value is a string";

The void type is like the opposite of any. It means no type. Most of the time, it is used as a return
type for a function that doesn't return:

// this function doesn't returns

function setId(id:string): void {
this.id = id;

}

An enum is just a way of giving more friendly names to sets of numeric values. Nothing more. The
default numbering starts with 0, and can be set manually to any other numeric value:

// default behavior, value of color will be 2;
enum Color {Red, Green, Blue}
let color: Color = Color.Blue;

// manual initialize, value of color will be 6;
enum Color {Red = 2, Green = 4, Blue = 6}
let color: Color = Color.Blue;

The custom types

Besides the built-in basic types, you can (and you probably will) use your own types for code that
you have written. There are three ways in TypeScript to define types, namely, creating a class,
defining an interface, and using special files that declare types for an existing library.

An interface in TypeScript can be described as the shape of the object, and usually includes class
members and methods without implementation. Interfaces are only at design time; for example,
you can't use it as type when defining providers.

The following example illustrates how to use your own classes as types:

class Model {}
class Account extends Model {}
class Controller {
model:Model;
constructor(model:Model) {
this.model = Model;

}
}
new Controller (Account);

The following example illustrates how to create an interface for defining a type:

interface Model {
get(query:string): any[];

class Account implements Model {

get(query:string):any[] {
return [];

}
}

class Controller {

model:Model;

constructor(model:Model) {
this.model = Model;

}
}

The third option is to create a file witha .d. ts extension, which maps an existing code (third
party) to types. The process of creating this file is behind the scope of this book, and you can visit

http://www.typescriptlang.org/Handbook#writing-dts-files to learn more about it.

The good news is that you can find the Definition map for almost any library out there (including
Angular). Visit https://github.com/typings/typings where you can browse for repositories of
Definition maps, and learn more about typings, which is a command-line tool for managing those
maps.

http://www.typescriptlang.org/Handbook#writing-dts-files
https://github.com/typings/typings

About generics

There is another feature that is related to types and that should be mentioned, called generics.
This feature enables us to create a component that can work over a variety of types rather than a
single one.

The generics API is out of the scope of this book, and we won't use this feature through our code
example. You can learn more about generics by visiting

http://www.typescriptlang.org/Handbook#generics.

http://www.typescriptlang.org/Handbook#generics

Using decorators

Decorators are functions that modify a class, property, method, or method parameter. The
following example illustrates how to define and use a simple decorator that adds a static
parameter to the class:

// decorator function
function AddMetadata (...args) {
return function (target){
target.metadata = [...args];

}
}

// decorator applied
@AddMetadata({ metadata: 'some values'})
class Model {

}

The three dots syntax (. . .) is the spread operator, which is a feature of JavaScript 2015 that
deconstructs the items of a given array.

Decorators versus annotations

You might have heard the term annotations; they are simply metadata related to Angular 2. Before
the Angular team decided to use TypeScript, they introduced us to a new language that they called
AtScript. This language included a feature called annotations, which look exactly like decorators.
So what's the difference? The decorator is an interface for creating those Angular annotations.
Decorators are executed and in Angular 2, they have the responsibility to set metadata leveraging
the Reflect Metadata library. Furthermore, decorators are a proposal for ES7—the next version of
JavaScript. For that reason, we can focus on decorators.

Summary

TypeScript is a superset of JavaScript. This means you can write plain JavaScript in . ts files.
The TypeScript compiler will peel all the extra TypeScript code and produce code that is plain,
readable, and almost identical to the source code. The Angular 2 team uses TypeScript for
developing the Angular platform (the source code is written with TypeScript, but a compiled
JavaScript version is also available). As developers, we can choose whatever we want to use;
TypeScript, JavaScript 2015 (ES6), or JavaScript 1.5.

If you choose to use TypeScript, it's highly recommended to visit http://www.typescriptlang.org/
and learn more about the language's capabilities that go beyond the scope of this book.

http://www.typescriptlang.org/

Chapter 4. Building a Basic Component

At its core, an Angular 2 component is a class that is responsible for exposing data to the view
and implementing user interaction logic. An Angular 2 component can be compared to the
controller, scope, and view of Angular 1.

How does Angular 2 know how to treat our class as a component? We need to attach metadata to
the class to tell Angular how to treat it.

The term metadata describes the additional information that we add to our code. This information
is used by Angular 2 at runtime.

In this chapter, we will cover the following topics:

The anatomy of an Angular 2 component
The component selector

Component template

Component style

View encapsulation (the shadow DOM)
Data binding

Anatomy of an Angular 2 component

In Chapter 2, Setting Up an Angular 2 Development Environment with angular-cli, setting the
development environment, we generated an Angular 2 project from scratch using the angular -
cli tool and served it to the browser. If you haven't done so, refer to Chapter 2, Setting Up an
Angular 2 Development Environment with angular-cli, and follow the steps.

After you are done, it's time to open the project in our favorite IDE (also described in Chapter 2,
Setting Up an Angular 2 Development Environment with angular-cli), to inspect the code. It
should be similar to the following screenshot:

FOLDERS
¥ = ng_components
e [0 e2e
» [node_modules
B[] src
[y .editorconfig
[y .gitignore
README. md
[5 angular-cli.json
[5 karma.confjs
[} package.json
[}y protractor.conf.js

[5 tslint.json

When we generate our project using angular-cli, a component with our application name (that
we supplied to the ng new command) is created for us. We can find it under the src/app
directory as follows:

FOLDERS
¥ = ng_components
e [0 eze
» [node_modules
¥ [= src
¥ [= app
» [shared
[} app-routing.module.ts
[3y app.component.css
app.component. html
[} app.component.spec.ts
[3y app.component.ts
[3 app.module.ts
[5 index.ts
- [assets
» [0 environments
[aa) favicon.ico
index. htrm
[& main.ts
5 polyfills.ts
& styles.css
[test.ts
[5y tsconfig.json
[& typings.d.ts

Locate the file named app.component. ts and open it in the editing view (the editing view can
be differ from one IDE to another).

Let's explore the component code line by line, here is the code of app.component.ts

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

3)

export class AppComponent {
title = 'app works!';

}

In the first line, we are importing the Component decorator from the Angular core module

e Then, we declare the Component decorator by assigning the @ symbol following the name of

the decorator. Because the decorator is just a function (refer to Chapter 3, The TypeScript
Primer for an explanation), we need to invoke it just like any other function using
parenthesis.

e The component decorator accepts an object as a parameter, which defines the component
metadata. We will explore it in a second.

e Right after the decorator, we declare the component class, which should hold our component
logic and currently declares the string named title

e The class needs to be exported so it can be used in other places in the code

As we can see, Angular 2 components must be built from two distinct parts: a simple class and a
decorator.

Before we dive into this code, let's open the browser and explore the elements that have been
rendered to the browser.

To do so, point your browser to http://localhost:4200/ (I'musing Google Chrome), right-
click on the title and choose Inspect from the pop-up menu:

- C | @ localhost:4200 S
app works;——
Search Google for 1"
Print...
(G) Diigo C

This will open up the Chrome DevTool where we will explore the DOM:

— [| (@ localhost:4200 w

Responsive ¥ 611 = 100% *

app works!

= 0 Elements Console Sources Metwork Timeline Profiles A

«=== | DOCTYPE himl> == 50

<html class="gr__localhost"=
» <head>..</head=
¥ <body data-gr-c-s-loaded="true” id="dummybodyid
¥=app-root nghost-pgl-1
=hl ngcontent-pgl-1
app works!=/hl=
=/app-root=

The selector that we defined in our metadata becomes an element with the same name, and the
title that we defined on the component class is rendered as an <h1> tag inside it.

How has the <app-root> found its way to the DOM? Where does that <h1> tag come from?

Bootstrapping the application

Before dealing with how the link is made between components and the DOM, let's introduce the
concept of module and how it's used to bootstrap the application.

Under the src directory in the project root, locate and open the main. ts file:

FOLDERS
¥ = ng_components
e [0 eze
» [node_modules
¥ [= src
» [app
p [assets
¢ [0 environments
[aa) favicon.ico
index. htrm
3
5 polyfills.ts
& styles.css

This file is the starting point of our Angular application. It is responsible for instantiating the main
module of the application and the root component in it. To do so, we import a
platformBrowserDynamic method from the platform-browser-dynamic module, whichis a
part of Angular. This method returns an object to bootstrap the application. The
bootstrapModule method of this object is responsible for kicking off Angular by rendering the
root component of the component tree. It requires the main module to be passed as an argument,

so we import our module class AppModule and pass it to bootstrap:

The following code is from the main. ts file:

import './polyfills.ts';

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { enableProdMode } from '@angular/core';

import { environment } from './environments/environment';

import { AppModule } from './app/';

if (environment.production) {
enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule);

The rest of the code doesn't have any effect on bootstrapping Angular with a root module. The
enableProdMode method is a method from Angular core that runs the application in production
mode. The environment is just a constant that holds a Boolean that indicates if we are running in

the production environment.

Modules are a convenient way to gather a set of components, directives, services and pipes into a
single entity that can into other modules. Each Angular application contains a single root module,
in our case, AppModule. It contains the root component of the application.

A module is simply a class decorated with @N\gModule that accepts an object as a parameter,
which defines the module metadata.

Note that we use the dynamic bootstrapping approach leveraging the Just-in-Time compiler. This
compiles components on the fly, in memory, and in the browser. Another alternative, called
Ahead of Time (AoT), is possible in Angular 2 to precompile the application. In this case, there
is no need to ship the Angular compiler to the browser and the performance boost can be
significant.

In this case, after having precompiled the application, you need to use the
platformBrowserDynamic method fromthe platform-browser-dynamic module for the
main.ts file:

import './polyfills.ts';

import { platformBrowser } from '@angular/platform-browser';
import { enableProdMode } from '@angular/core';

import { environment } from './environments/environment';

import { AppModuleNgFactory } from './app/app.module.ng.factory';

if (environment.production) {
enableProdMode();

}

platformBrowser().bootstrapModuleFactory(AppModuleNgFactory);

The component selector

As we have seen in the first example of this chapter, the selector that we defined in the
component decorator becomes an element that renders to the DOM. Before we explore our
selector options, let's understand how Angular renders this component.

As we discussed in Chapter 1, Angular 2 Component Architecture, an Angular 2 application can
be described as a tree of components. Like any other tree structure, there is only one root node.
Currently in our project we got only one component, which is used as the tree node.

With this information, let's see how Angular instantiates our root component and renders it:

Under the src/app directory in the project root, locate and open the app.module. ts file. This
file contains the definition of the root module of the application:

[app.module.ts]

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

@NgModule({
declarations: [
AppComponent

1

imports: [
BrowserModule,
FormsModule,
HttpModule

1

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

The app.module. ts is responsible for instantiating the component class. When this happens,
Angular searches for the selector that we defined in the component decorator in the index.html
file. The only component that we need to place inside our index.html is our root component
defined in the bootstrap attribute of the root module in the app.module. ts.

Note that this component needs to be specified in the declarations attribute listing all usable
components for the module.
Open index.html which is located next to main. ts and inspect the code:

[index.html]
<html>

<head>
<!-- other code related to the page head -->
</head>
<body>
<app-root>Loading...</app-root>
</body>
</html>

The first thing we see is that we used our selector as element in our html file. This is the default
behavior of Angular.

The other code that you find in index.html is related to the build system that angular-cli uses,
which is out of the scope of this book.

All you need to know is that when this HTML is loaded into the server, all the required
dependencies are loaded for Angular and you need to run the code inmain. ts to kickstart the
framework.

Selector options

When we build components, we are creating new html elements. That's the reason that, by default,
our selector name is used as an element in the HTML. But we have other options as well for
building components. Let's explore them:

e Select by CSS class name:

@Component ({
selector: '.app-root'

})

Use in markup:
<div class="app-root">Loading...</div>
e Select by attribute name:

@Component ({
selector: '[app-root]'

})

Use in markup:
<div app-root>Loading...</div>
e Select by attribute name and value:

@Component ({
selector: 'div[app=components]'

})

Use in markup:
<div app="components">Loading...</div>
e Select only if the element does not match the selector:

@Component ({
selector: 'div:not(.widget)'

})

Use in markup:
<div class="app">Loading...</div>
e Select if one of the selectors matches:

@Component ({
selector: 'app-root, .app, [ng=app]'

})

Use in markup:

<app-root>Loading...</app-root>

<div class="app">Loading...</div>
<div ng="app">Loading...</div>

Most of the time, leaving the default—which is the component selector—is exactly what we want
when building common components. In the later chapters, we will see other usages as well.

For now, we will leave the selector as default.

The component template

The template is the heart of the component in Angular 2. Without a template there is nothing to
render to the DOM. There are two ways to attach a template to the component:

e Providing a URL to an external html file
¢ Define the template inline

The app-root that is created by the angular-cli includes an external template. It is defined
with the templateUr1l property:

[app.component.ts]
@Component ({
selector: 'app-root',
templateUrl: './app.component.html'

})

We can find the template next to app.component.ts as an HTML file with the same name
app.component.html. Let's open it to inspect the code:

[app.component.html]
<h1>

{{title}}
</h1>

Now we know where the <h1> came from. As you can guess, the double curly braces render the
title from the component class.

If we want to declare our templates inline, we should use the template property instead. Luckily,
in ES6, we are introduce with a way to create multiline strings easily. This feature is called
template strings and it's declared with the back tick () character. In the following example, we
demonstrate how to declare an inline template:

[app.component.ts]
@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}
) </h1>

})

Keeping the template inline is comfortable as we can see both the template and the component
class in the same file.

Embedding styles in component template

We will probably want to use some CSS in our component's template. Like templates, we have
two options—specifying our CSS classes inline or supplying a URL for external style sheets.
Currently, our component uses one external CSS file, by declaring a path in the styleUrls array.

As the property name suggests, we can supply more than one URL to pull the CSS from. The
styles defined on those CSS files are now available for use within our template. First let's take a
look at the current component declaration:

[app.component.ts]
@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}
) </h1>

styleUrls: ['./app.component.css']

})

Alternatively, we can define styles inline, just like the template, by using the styles property
instead. styles is an array of strings where we can write our CSS rules. The following example
demonstrates how to style the <h1> tag using inline styles:

[app.component.ts]
@Component ({
selector: 'app-root',
template: °
<h1>

{{title}}
) </h1>

s%yles: [
hi { color: darkblue }
]
3)

Let's explore the element in Chrome DevTool. Right-click on the title and choose inspect from
the pop up menu. The Chrome DevTool will launch:

€ C |® localhost:4200 e :

Responsive ¥ 648 = Gf 100% ¥ :

app works! [
— A

= O Elements Console Sources Mebtwork Timeline Profiles Application Security # : X

| | Skyles | Computed Event Listeners DOM Breakpoints »
chtml class="gr__localhost"= |

» <head=..</head Filte thov 4 .cls <+

¥ =hody data-gr-c-s-loaded="true"” id= EET—— ‘
dummybodyid element.style { =
¥ <app-root nghost-goy-1 !

hl ngoontent-goy-1 hl] ngcontent-goy-1] { zstyles.=/style=
app works! color: Edarkblue;
fhl> == 50 }
Japp-root
script type="text/javascript" src=
inline.js"=<fscript
=script type="text/javascript" src=
styles.bundle.js"==/script

hl { user agent stylesheet
display: block;
font-size: Zem;
-webkit-margin-before: 0.67em;
script type="text/javascript’ src= -webkit-margin-after: 8.67em;
main.bundle.js"=</script -webkit-margin-start: Bpx;
div id="diigo-chrome-installed" style= -webkit-margin-end: @px;
display: none;'"=</div Eil font-weight: bold;

N

S R v Sl il Y]_

html.gr_-l;:;calhnst bu:;dy#dummybndyid -app-rcunt .

Looking at the element through the DevTool, we expose some facts about component styling:

e The style that we defined is transformed into an inline style tag on the head section on top of

the html document
e The style definition is changed and now includes a property next to it, which makes it

specific and almost impossible to override

Angular protects the component styling from overriding by generating a unique property and
attaches it to the original CSS selector that we defined. This behavior tries to mimic the way that
the shadow DOM works. So, before we can move forward, we need to understand what the

shadow DOM is.

The shadow DOM

When we are creating a component in Angular 2, a shadow DOM is created and our template gets
loaded into it (not by default). What is a shadow DOM? Shadow DOM refers to a subtree of
DOM elements that renders as part of the document, but not into the main document DOM tree.

Let's see a well-known example of a shadow DOM, an HTML select, in action. Create a plain
HTML file in your favorite text editor and create a select element in its body:

<!doctype html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Document</title>
</head>
<body>
<select>
<option>ONE</option>
<option>TWO</option>
<option>THREE</option>
</select>
</body>
</html>

Next, open it up in Chrome and right-click on the element, then choose Inspect Element from the
pop-up menu:

ONE 4!

=]

Reload

Save As...

Print...

Translate to English
View Page Source
View Page Info

JSONView 2

The Chrome DevTool will pop up, and we can inspect the select element in the Elements tab:

ONE

4

Ik [0 | Elements | Network

‘html lang="en">
» <head>..</head:
v <body
v <select
<option>0ONE</option:
<option>TWO</option:
<option>THREE</option
</select>
/body:
</htm1l:

If you have ever tried to customize the appearance of a native html select element with CSS,
you know that you need to hack and develop a workaround to make it work. The select element
has styling structure, and even a built-in behavior, but we can't see it. It's encapsulated inside the
element.

If you are not familiar with the term encapsulation here is a quick definition taken from
Wikipedia:

Encapsulation is an Object Oriented Programming concept that binds together the data and
functions that manipulate the data, and that keeps both safe from outside interference and misuse.

So, where does the select appearance come from? Chrome DevTool has a feature that can rival
the shadow DOM of this element. To enable this, go to the Settings menu of Chrome DevTool:

Console T
vles pockside 1@ = [3

Show console D
Search all files 3 opt F

.ect Inspect devices...
wtl
bacl Shortcuts

- Settings F1

| Help

men

Scroll down and find the Elements section. Check the checkbox Show user agent shadow
DOM:

Settings General

General I Don't show Chrome Data Saver warni
OEIcE | Disable paused state overlay
Throttling

Workspace Elements

Experiments Color format: = As authored

Shortcuts -
@nw user agent shadow @

Now, let's inspect the select element again:

v <select>
v <content select="option,optgroup,hr>
» <option>
» <option>
o <option>
</content>
v <option>
» #shadow-root (user-agent)
"ONE"
</option>

Now we clearly see that the select element hides a secret DOM tree. Under the select element,
a new root is created (the #shadow-root) and a content element renders right under it. The
hidden content tag has an attribute called select, which defines some internal behavior. This is
same for the option tag. If you would like to explore one more popular HTML element that creates

a shadow DOM, you can repeat those steps using <input type='file' />.

This powerful ability to create a native element, which encapsulates its own styling, behavior,

and even data, is also possible with Angular 2.

Encapsulation modes

By default, as we have seen, our component won't encapsulate its structure and styling. This
means that CSS classes from outside of the component can override and affect the embedded CSS
styles that we defined, and the HTML structure of the component is accessible as well.

Angular will generate a unique property for our selector to protect our styling, but this can be
overridden with a CSS !'important statement.

To change this, we need to define an encapsulation mode. Angular 2 provides us three options to
choose from:

e Emulated (the default): Angular will add a special attribute to the class selector to avoid
affecting other styles outside of the components.

e Native: This is the native encapsulation mechanism of the renderer that will be applied. In
our case, it's the browser. Angular will create a shadow DOM for this component, which
means that external CSS can't affect our component.

e None: No encapsulation will be applied.

To define encapsulation options, we need to import the ViewEncapsulation from Angular core
and use one of the options to define the component encapsulation property. The following
example demonstrates how to set the component encapsulation model to None:

[app.component.ts]
@Component ({
selector: 'app-root',
encapsulation: ViewEncapsulation.None,
template:
<hi1>

{{title}}
) </h1>

s%yles: [
hi { color: darkblue }
]
3)

Most of the time, leaving the default emulate mode is fine. In the future chapters, we will
encounter some situations where setting the mode to None is crucial.

Data bindings

To fully understand the component code that was generated for us by angular-cli, we need to talk
about data bindings. In other words, the way that we were able to render the title declared on the
component class to component template.

First, let's take a look at the entire component code:

[app.component.ts]
import { Component, ViewEncapsulation } from '@angular/core';

@Component ({
selector: 'app-root',
encapsulation: ViewEncapsulation.None,
template:
<hi1>

{{title}}
) </h1>

s%yles: [
hi { color: darkblue }
"]
1)

export class AppComponent {
title = 'app works!';
}

It's not hard to spot the double curly braces in the template. This is a part of Angular's template
syntax, which is responsible for one way binding of data from the component class. In this case,
we are binding the title property (which is a string) to be rendered between the <h1> tag.

Later in this book, we will explore some more binding options.

Summary

In Angular 2, a component is a class with a decorator that adds important metadata to it. The
component decorator defines how we can use it, and what it can do. The selector and the template
are the minimum required fields when calling the decorator (Angular will throw an error if one of

them is missing).

If we defined the view encapsulation as native, Angular will create a shadow DOM for our
component, which protects the embedded styles from being affected by external CSS on the page.

In the next chapter, we will continue to develop our component and make it dynamic.

Chapter 5. Building Dynamic Components

Components are data driven by nature. They should be able to render dynamic data, respond to
user interactions, and react to events.

In this chapter, we will continue where we stopped in Chapter 4, Building a Basic Component,
focusing on the component template syntax, and learn how to bind data and events.

The topics that will be covered are as follows:

e Data interpolation
Using core directives
Properties binding
Events bindings

[]
[]
[]
e Two-way bindings

Data interpolation

In Chapter 3, The TypeScript Primer, we bound a simple string to the template. If you haven't
done it, refer to Chapter 4, Building a Basic Component. Let's overview our app-component
code:

[app.component.ts]
import { Component, ViewEncapsulation } from '@angular/core';

@Component ({
selector: 'app-root',
encapsulation: ViewEncapsulation.None,
template:
<hi1>

{{title}}
) </h1>

styles: [~
hi { color: darkblue }
"1
1)
export class AppComponent {
title = 'app works!';
}

For now, we will focus on the template. Remove the encapsulation and styles properties
from the component decorator to make it more clear and focused. While doing this, let's add a
type and a constructor to our class as well:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<hi1>

{{ title }}
) </h1>

})

export class AppComponent {
title: string;

constructor() {
this.title = 'app works!';

}
}

This is a one-way binding from the data source (the component class in our case) to the view (the
component template). Angular interpolates the title and outputs the result between the double
curly brace.

The double curly braces can only interpolate strings. If we try to bind an object, it will not work.
In the following example, instead of a title, I created an object which contains the title and
inspects the result in the browser:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<hi1>

{{ info }}
) </h1>

})

export class AppComponent {
info: {};

constructor() {
this.info = {title: 'app works!'};
}
}

Here is the output:

= C localhost: 4200

[object Object]

Note

If you can't see the result in the browser, make sure you run the ng serve command. If you are not
sure how to do it, refer to Chapter 2, Setting Up an Angular 2 Development Environment with
angular-cli.

We can bind to object properties, just remember that everything will be interpolated as a string.
The following example will render the title properly:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<hi1>

{{ info.title }}
</h1>

})

export class AppComponent {
info: {};

constructor() {
this.info = {title: 'app works!'}
}
}

What we write between the curly braces is an angular expression. It means that angular evaluates
the expression before it is converted into a string. In other words, we can put simple logic in our
expressions and even bind to a method. Consider the following example:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<h1>{{ info.title }}</h1>
<h2>{{ info.subtitle || 'alternative text' }}</h2>
<h3>My name is: {{ getFullName() }}</h3>

})

export class AppComponent {
info: {};
firstName: string;
lastName: string;

constructor() {
this.info = {title: 'app works!'}
this.firstName = 'Nir';
this.lastName = 'Kaufman';

}

getFullName(){
return “${this.firstName} ${this.lastName} " ;

}
}

Inside angular expressions we can't use the new keyword and operators such as: ++, - -, and +=.
As a rule of thumb, expressions shouldn't be complex.

The context of the component template is the component instance. It means that you can't access
global variables such as window, document, or console. log.

Core directives

If you are familiar with Angular 1.x, you already know what a directive is. If not, here is a quick
definition: a directive is a custom attribute that adds functionality to an element. In Angular, a
component is considered to be a special case of a directive which contains a template.

Angular 2 core includes several directives—NgClass, NgFor, NglIf, NgStyle, NgSwitch,
NgSwitchWhen, and NgSwitchDefault.

If you are familiar with Angular 1, you already know what these directives can do, although the
syntax and the underneath implementation have been changed.

Those directives aim to help us implement common templating tasks such as DOM manipulation.

To be able to use core directives in a component, we need to import the BrowserModule module
into the module where the component fits. This was automatically done by angular-cli when
generating the application within the app.module. ts file:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { AppComponent } from './app.component';

@NgModule({
declarations: [
AppComponent

1

imports: [
BrowserModule

1

bootstrap: [AppComponent]

1)
export class AppModule { }

Let's explore how to use them in our code.

Nglf

Just like Angular 1, the Nglf directive will remove or recreate a portion of the DOM based on an
expression that we passed. The expression should evaluate to true or false.

Here is how we use ngIf:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<h1>{{ info.title }}</h1>
<h2>{{ info.subtitle || 'alternative text' }}</h2>
<h3 *ngIf="showFullName">My name is: {{ getFullName() }}</h3>

})

export class AppComponent {
info: {};
firstName: string;
lastName: string;
showFullName: boolean;

constructor() {
this.info = {title: 'app works!'};

this.firstName = 'Nir';
this.lastName = 'Kaufman';
this.showFullName = false;

}

getFullName(){
return “${this.firstName} ${this.lastName} " ;

}
}

Don't worry about the asterisk before the ngIf attribute, we will discuss it in a moment. We
assign an expression called showFullName, which exists on the component class. So, on the
component class, we declare a class member called showFullName of type Boolean and initialize
it on the constructor to be false.

As a result, the <h3> tag will not render to the DOM, and we won't see the full name.

The asterisk — *

The asterisk (*) before the directive name is a syntactic sugar of Angular that hides the use of the
<template> tag from us. This tag is being used in structural directives, which is a term that
describes a directive that impacts the structure of the DOM.

The preceding example can be written like this:

[app.component.ts]

import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<h1>{{ info.title }}</h1>
<h2>{{ info.subtitle || 'alternative text' }}</h2>

<template [ngIf]="showFullName">
<h3>My name is: {{ getFullName() }}</h3>
</template>

})

export class AppComponent {
info: {};
firstName: string;
lastName: string;
showFullName: boolean;

constructor() {
this.info = {title: 'app works!'};

this.firstName = 'Nir';
this.lastName = 'Kaufman';
this.showFullName = false;

}

getFullName(){
return “${this.firstName} ${this.lastName} " ;

}
}

That's what Angular will do behind the scenes, but we don't need to worry when using the shorter
version of the syntax.

NgClass

The NgClass directive, just like in Angular 1, conditionally adds and removes CSS classes. We
pass an expression that can be interpreted in three different ways:

e A string that contains all the CSS classes that we want to add, delimited by space
e An array of CSS classes to be added
¢ An object that maps CSS classes to a Boolean value (true or false)

Let's demonstrate the various options to use ngClass, start with a string:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
styles: [~
.italic { font-style: italic}
.info { color: blue; }
1
template:
<h1>{{ info.title }}</h1>
<h2 [ngClass]="getClass()">
{{ info.subtitle || 'alternative text' }}</h2>

<template [ngIf]="showFullName">
<h3>My name is: {{ getFullName() }}</h3>
</template>

})

export class AppComponent {
info: {};
firstName: string;
lastName: string;
showFullName: boolean;

constructor() {
this.info = {title: 'app works!'};

this.firstName = 'Nir';
this.lastName = 'Kaufman';
this.showFullName = false;

}

getFullName(){
return “${this.firstName} ${this.lastName} " ;

}

getClass(){
return 'info italic';
}
}

We apply the ngClass to the <h2> tag and pass a method that we implement on the component
class. The getClass () method returns a string containing a string that includes the names of both

of the CSS classes we want to append to the <h2> element. Don't worry about the square brackets
that surround the ngClass directive. We will explain this syntax in a moment.
We could implement that method in two other ways in order to achieve the same result:

e The first is by returning an array:

getClass(){
return ['info', 'italic'];
}

Returning an object:

getClass(){
return { italic: true, info: true },;
}

e The second is by using square brackets ([])
Tip
In Angular 2, we can bind data directly to DOM or directive properties. The ngClass selector

was defined as a property, so if we want to use it, we need to use the square brackets syntax. We
will see more examples later in this chapter when we deal with data bindings.

NgStyle

The ngStyle directive will change the inline styles of the element based on an expression that
evaluates an object. In the following example, we will use ngStyle to dynamically assign a font
size to the title:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
styles: [~
.italic { font-style: italic}
.info { color: blue; }
1
template:
<hl [ngStyle]="{'font-size': titleSize }">{{ info.title }}</h1>
<h2 [ngClass]="getClass()">
{{ info.subtitle || 'alternative text' }}</h2>

<template [ngIf]="showFullName">
<h3>My name is: {{ getFullName() }}</h3>
</template>

})

export class AppComponent {
info: {};
firstName: string;
lastName: string;
showFullName: boolean;
titleSize: string;

constructor() {
this.info = {title: 'app works!'};
this.firstName = 'Nir';
this.lastName = 'Kaufman';
this.showFullName = false;
this.titleSize = '96px';

}

getFullName(){
return “${this.firstName} ${this.lastName} " ;

}

getClass(){
return { italic: true, info: true },;

}
}

In this example, we created a class member that initializes a property named titleSize and then
uses it to determine the font size style on the <h1> tag, with ngStyle.

NgSwitch

The NgSwitch directive adds or removes DOM subtrees according to the value of the switch
expression. To effectively use this directive, we used ngSwitchCase and ngSwitchDefault
within the ngSwitch directive block:

<div [ngSwitch]="cases">

<div *ngSwitchCase="1">Case 1</div>

<div *ngSwitchCase="2">Case 2</div>

<div *ngSwitchDefault>Default Case</div>
</div>

There are a few things to notice—the ngSwitch directive is not a structural directive, which
means it does not use a <template> tag and also does not manipulate the DOM tree. This is done
by the ngSwitchCase and the ngSwitchDefault directives. So, we use the square brackets when
using the ngSwitch directive, and the asterisk for the rest.

NgFor

The ngFor directive creates a new element (instantiates a new template), once per item from a
collection that it repeats. If you are familiar with Angular 1, the ngFor directive is similar to the
ng-repeat directive in concept, but the underneath implementation and syntax is different:

In the following example, we are creating a list of colors by repeating each element in a string
array:

@Component ({
selector: 'app-root',
template: °

<li *ngFor="let color of colors">{{ color }}</1li>

3)
export class AppComponent {

colors: string[] = ['red', 'green', 'blue'];
}

Property bindings

With Angular 2, we can easily bind to each DOM property. For example, let's bind a value to the
disabled property of a button and initialize it to be true:

@Component ({
selector: 'app-root',
template: °
<button [disabled]="isDisabled">You can't click me!</button>

})

export class AppComponent {
private isDisabled: boolean;

constructor() {
this.isDisabled = true;

}
}

This is true to any property. Let's see another example, this time with an input element:

@Component ({
selector: 'app-root',
template: °
<input [type]="inputType" [placeholder]="placeHolderText">

})

export class AppComponent {
private placeHolderText: string;
private inputType: string;
private inputClass: string;

constructor() {
this.placeHolderText = 'type your password...'
this.inputType = 'password';

}

Event bindings

Up until now, we learned about two kinds of data binding: interpolation (using the curly braces)
and properties binding. Both of them are considered to be one-way data binding from the data
source to the view. In real life, our component should be able to respond to user events. Luckily,
in Angular 2, this is simple as property binding.

We can respond to any native DOM event by surrounding it with parentheses and assign it to a
method on the component class. Let's see how we can respond to the click event on our button. We
need to wrap the click event of the button in parentheses, and assign a method that will be invoked
in return:

@Component ({
selector: 'app-root',
template: °
<button (click)="clickHandler()">
click me!</button>

3)
export class AppComponent {
clickHandler () {
console.log('button clicked!');
}
}

Let's use data binding techniques to create a simple toggle component:

@Component ({
selector: 'app-root',
template: °
<h2 (click)="toggeld = !toggeld ">Click me to toggle some contentl</h2>

<p *ngIf="toggeld">Toggeld content</p>

3)
export class AppComponent {}

Two-way bindings

We learned how to use one way data bindings using properties and events. Angular introduces a
third option to use with input controls. This directive is called ngModel. The syntax can be a little
strange, because this directive combines property and event bindings together.

With ngModel, we can easily achieve two-way data binding easily. In the following example, we
will bind username and password inputs to a user object:

@Component ({
selector: 'app-root',
template: °
<input type="text" [(ngModel)]="user.username">
<input type="password" [(ngModel)]="user.password">

<button (click)="sendUser()">Send</button>

})

export class AppComponent {
private user = {
username: '',
password: ''

}

sendUser (){
console.log(this.user);

}

Summary

Throughout this chapter, we transform our static component to a dynamic component using core
directives and data binding,

Angular 2 keeps the data binding easy, much like Angular 1. The ability to bind data to native
DOM properties and events directly is a powerful feature. The core directives of Angular 2
includes only a few directives that give us some extra functionality that otherwise is hard to

achieve.

Chapter 6. Component Communication

Up until now, we have built a single component, but the real power of Angular components is
building the interaction between them. in this chapter, we will learn how components can
communicate in different ways:

Pass data from the parent component to the child through properties
Define custom events on a child component for the parent to listen to
Communicate via local variables

Query child components using the parent component

Passing data via properties

The parent component can pass data to the child component through properties. There are two
ways that define input properties for a component:

e By creating an input array on the component decorator
e By using the @Input decorator for decorating a class property
Using the component input array is simple and straightforward. Just declare an input array and

populate it with strings that represent the name of the property you are expecting;

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'child-component',
inputs: ['title'],
template: "<h2>{{ title }}</h2>"
1)
export class ChildComponent {}
@Component ({
selector: 'app-root',
template: °

<hi>Component Interactions</h1>
<child-component [title]="title" ></child-component>

})

export class AppComponent {
private title: string = "Sub title for child";
}

In this example, we created a child component, which defined an input array with a single string
named title that represents a property that the parent component can bind to and pass data
through.

Don't forget to add the childComponent class to the declarations attribute of the AppModule.
Otherwise, this component can't be used within the template of the AppComponent. This
configuration is required each time you need to use a component or a directive in another one and
within the same module:

[app.module.ts]

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http';

import { AppComponent, ChildComponent } from './app.component';

@NgModule({
declarations: [
AppComponent,

ChildComponent
1,

imports: [
BrowserModule

1

providers: [],
bootstrap: [AppComponent]

1)
export class AppModule { }

The approach of the input array is suitable when we don't need to access the input in the
component class, and we don't care about the type of the input.

Alternatively, we can bind an input to a class property using the @Input () decorator:

[app.component.ts]
import { Component, Input } from '@angular/core';

@Component ({
selector: 'child-component',
template: "<h2>{{ title }}</h2>"

1)

export class ChildComponent {
@Input() private title: string;

@Component ({
selector: 'app-root',
template: °
<hi>Component Interactions</h1>
<child-component [title]="title"></child-component>

})

export class AppComponent {
private title: string = 'Sub title for child';
}

Binding to a class property (the second example) is considered to be a best practice when dealing
with inputs.

An input can be a primitive or an object.

Emitting custom events

When the child component needs to communicate with its parent component, it can emit an event.
This technique keeps the child component de-coupled from its parent (de-coupled: doesn't need to
know its parents).

In Angular, we need to use a class named EventEmitter if we want to emit events.

You need to instantiate the EventEmitter class, assign it to a class property, and call the emit
method.

In the following example, the child component will emit a custom event named TitleClicked
when the user clicks on the title:

[app.component.ts]
import { Component, Input, EventEmitter, Output } from '@angular/core';

@Component ({

selector: 'child-component',

template: "<h2 (click)="titleClicked.emit()">{{ title }}</h2>"
1)
export class ChildComponent {

@Input() private title: string;

@Ooutput() private titleClicked = new EventEmitter<any>();

¥
@Component ({
selector: 'app-root',
template: °
<hi>Component Interactions</h1>
<child-component [title]="title"
(titleClicked)="clickHandler()"></child-component>
})

export class AppComponent {
private title: string = 'Sub title for child';
clickHandler () {
console.log('Clicked!");

}
}

First, we imported the EventEmitter class and the output decorator from Angular core. Then,
we created a class property named titleClicked and assigned it to a fresh instance of the
EventEmitter class.

Then, we bound the native click event of the <h2> element and called the emit () method of the
titleClicked object.

The parent component can now bind to this event.

Referencing with a local variable

One component can access another component's properties and methods using local variables. In
the following example, we create a local variable for the child component that becomes
accessible within the template:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'child-component',
template:
<h2>Content Header</h2>
<p *ngIf="flag">Toggleable Content</p>

})

export class ChildComponent {
private flag: boolean = false;

toggle() {
this.flag = !this.flag;
}
}
@Component ({
selector : 'app-root',
template X
<hi>Component Interactions</h1>
<button (click)="child.toggle()">Toggle Child</button>
<child-component #child></child-component>
3)

export class AppComponent {}
We create a local variable using the # symbol.
The method in the child component must be public, otherwise Angular will throw an exception.

This technique is very useful in some cases because it doesn't require any code inside the
component class. On the other hand, the reference context is just inside the template.

If you need to access the child component inside the parent component, you need to inject a
reference to the child component using the @viewChild decorator.

Consider the following example:

[app.component.ts]
import { Component, ViewChild } from '@angular/core';

@Component ({
selector: 'child-component',
template:
<h2>Content Header</h2>

<p *ngIf="flag">Toggleable Content</p>

1)
export class ChildComponent {
private flag: boolean = false;
toggle(){
this.flag = !this.flag;
}
}

@Component ({
selector: 'app-root',
template: °
<hi>Component Interactions</h1>
<button (click)="toggle()">Toggle Child</button>
<child-component></child-component>

})

export class AppComponent {
@viewChild(ChildComponent)
private childComponent: ChildComponent;

toggle(){
this.childComponent.toggle();

}
}

The parent component is using the @viewChild decorator (imported from angular core) passing
the name of the component, and assigning it to a local class member named childComponent.

If we have more than one instance of the child component, we can use the @viewChildren
decorator instead.

Querying child components with the parent
component

The @viewChildren component will provide a reference to all of the children components of a
given type as a QueryList, which contains an array of child instances.

Consider the following example:

[app.component.ts]
import { Component, ViewChildren, QueryList } from '@angular/core';

@Component ({
selector: 'child-component',
template:
<h2>Content Header</h2>
<p *ngIf="flag">Toggleable Content</p>

})

export class ChildComponent {
private flag: boolean = false;

toggle(){
this.flag = !this.flag;
}
}
@Component ({
selector: 'app-root',
template: °
<hi>Component Interactions</h1>
<button (click)="toggle()">Toggle Child</button>
<child-component></child-component>
<child-component></child-component>
<child-component></child-component>
3)

export class AppComponent {
@vViewChildren(ChildComponent)
private children: QueryList<ChildComponent>;
toggle(){
this.children.forEach(child => child.toggle())
}
}

Both viewChildren and the QueryList are imported from Angular core.

Summary

Components can interact and communicate in many ways. Each technique is suitable for a certain
situation. The main difference is related to the scope of communication: template context or
component class context.

This flexibility enables us to create complex component compositions that easily share data and
interactions, which consists of APIs.

In the next chapter, we will build useful components and also learn about Angular 2 change
detection and the component life cycle.

Chapter 7. Putting It All Together

It's time to take everything we have learned about components and put it into practice. In this
chapter, we will build useful components. We will also learn about Angular 2 change detection
and the component life cycle.

The following are the topics that we will cover:

Resetting the development environment
Building a simple accordion component
Extending the accordion component tree
Extending hooking to the component life cycle events

Preparing our development environment

It's time to create a new project with angular-cli as described in Chapter 2, Setting Up an
Angular 2 Development Environment with angular-cli. We will create a new directory called
components to contain all the components we will implement in this chapter.

We will later create two other subdirectories in this chapter, accordion and user-info, when
implementing the corresponding components:

¥ [= src
¥ [= app

¥ [= components
k= [accordion
- [user-info

» [0 server

» [shared
[3 app-routing.module.ts
[} app.component.css
app.component. html
[} app.component.spec.ts
[}y app.component.ts
[5 app.module.ts
[index.ts

The last thing before starting to build our new components is to clean up our root component.
Open index. ts and clean it as follows:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: '<hl1>Angular2 Components</hi>'

3)
export class AppComponent {}

Open your browser and make sure that the component has rendered without any errors:

< C | O localhost:4

Angular2 Components

Now we are ready to start developing our new components.

The accordion component

The first component that we are going to build will be an accordion component. The accordion
is composed from two components: the accordion wrapper and an accordion tab. Let's start
implementing the accordion tab first.

Inside the components directory, create a new directory called accordion. Inside it, create the
accordion-tab.ts file, and paste the following code:

[accordion-tab.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'accordion-tab',
styles: [°
.accordion-tab {
width: 500px;
border: 1px solid black;
border-collapse: collapse;
}
.accordion-heading {
padding: 5px;
background-color: lightblue;
cursor: pointer;
}
1,
template:
<div class="accordion-tab">
<div class="accordion-heading">Accordion Title</div>
<div>
<ng-content></ng-content>
</div>
</div>

})

export class AccordionTab {}

The component decorator is straightforward. We throw some CSS and a template that includes a
<ng-content> tag to use an insertion point for the accordion tab content.

To test it, let's render the accordion-tab file. Open app.component. ts and update the code:

[app.component.ts]
import { Component } from '@angular/core';
import { AccordionTab } from './components/accordion/accordion-tab';

@Component ({
selector: 'app-root',
template:’
<div>
<accordion-tab>Accordion Content</accordion-tab>
<accordion-tab></accordion-tab>
<accordion-tab></accordion-tab>

</div>

3)
export class AppComponent {}

Don't forget to add the AccordionTab class to the declarations attribute of the root module. This
operation will be required for all custom components implemented in this chapter. Open the
app.module. ts file and update it as follows:

[app.module.ts]

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { AccordionTab } from './components/accordion/accordion-tab';
@NgModule({
declarations: [
AppComponent,
AccordionTab

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Now, let's open the browser to make sure that the component is rendered as expected:

= C | [localhost:4:

Accordion Title
Accordion Content
Accordion Title

Accordion Title

Next, let's implement the toggle action of accordion-tab. Open accordion-tab.ts and update
the template and the Component class:

[accordion-tab.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'accordion-tab',
styles: [~

.accordion-tab {
width: 500px;
border: 1px solid black;
border-collapse: collapse;

}

.accordion-heading {
padding: 5px;
background-color: lightblue;
cursor: pointer;

}
1y
template:
<div class="accordion-tab">
<div class="accordion-heading"
(click)="toggleContent()">Accordion Title</div>
<div class="accordion-body">
<ng-content *ngIf="extended"></ng-content>
</div>
</div>

1)
export class AccordionTab {
extended: boolean = false;

toggleContent() {
this.extended = !this.extended

}
}

We bind a method to the click event of the title that toggles a Boolean, which trigger the ngIf
directive. We covered that in the previous two chapters. To test our component, let's put some
dummy content in the other tabs. Open app.component. ts and update the template as follows:

[app.component.ts]
import { Component } from '@angular/core';
import { AccordionTab } from './accordion/accordion-tab.ts';

@Component ({
selector: 'app-root',
template:”
<div>
<accordion-tab>Accordion Content</accordion-tab>
<accordion-tab>Accordion Content</accordion-tab>
<accordion-tab>Accordion Content</accordion-tab>
</div>
1)
export class AppComponent {}

Now, we can open the browser and test our component. When we click on a tab title, the
corresponding content is toggled. But the tabs should work together. Only one tab can be
extended. To achieve this, we can wrap the accordion-tab component with a component that
implements this logic.

Before we do it, we need to make sure that each of the objects in the users array that we get from

the server (users.json in our case) has a unique id. Open users.json and make sure it is
similar to the following:

[users.json]
[
{
"id": 1’
"name": "Jhon Darn",
"email": "jhon@email.com",
"birthday": "5/6/1979",
"gender": "male",
"status": "active",
"role": "employee",
"phoneNumbers": [
"+972-123-9873",
"+972-352-8922",
"+972-667-2973"

Iy
(...)

Now, create a new file called accordion. ts inside the accordion folder and let's lay down the
basic implementation:

[accordion.ts]

import { Component } from '@angular/core';
import { Http } from '@angular/http';

import 'rxjs/add/operator/map';

import { AccordionTab } from './accordion-tab';

@Component ({
selector: 'accordion',
template:
<div>
<accordion-tab *ngFor="let user of users"
(click)="toggle(user)"
[extended]="isActive(user)"
[title]="user.name">
<pre>{{ user | json }}</pre>
</accordion-tab>
</div>

1)
export class Accordion { users;
activeUserId = 0;

constructor(http: Http) {
http.get('/app/server/users.json')
.map(result => result.json())
.subscribe(result => this.users = result);

}

isActive(user) {
return user.id === this.activeUserlId;

}

toggle(user) {
this.isActive(user) ?
this.activeUserId = 0@ : this.activeUserId = user.id;
}

}

We used the HTTP service to pull the user's data from a static JSON, and we iterate over the
users array—repeating the accordion-tab component. On each accordion-tab component, we
bind a method to a click event and bind dynamic data to the properties. We are also using the
json pipe fill some content inside the accordion tabs.

The logic for selecting an active tab is very easy to implement inside the Component class.

Next, we need to refactor the accordion-tab and define its input and output interface:

[accordion-tab.ts]
import {

Component, Input, Output
} from '@angular/core';

@Component ({
selector: 'accordion-tab',
styles: [~

.accordion-tab {
width: 500px;
border: 1px solid black;
border-collapse: collapse;

}

.accordion-heading {
padding: 5px;
background-color: lightblue;
cursor: pointer;

}
1
template:”
<div class="accordion-tab">
<div class="accordion-heading"
(click)="toggleContent()">{{title}}</div>
<div class="accordion-body">
<content *ngIf="extended"></content>
</div>
</div>

1)
export class AccordionTab {

@Input() extended;
@Input() title;

toggleContent() {
this.extended = !this.extended
}
}

The simple accordion is now ready. We used almost everything we have learned to craft this
widget. Note that we didn't have to write a lot of code. Angular's built-in directives and binding
system did all the heavy lifting for us. To test it in the browser, open app.component.ts and
render the <accordion> component:

[app.component.ts]
import { Component } from '@angular/core';
import { Accordion } from './components/accordion/accordion';

@Component ({
selector: 'app-root',
template: “<accordion></accordion>"

3)
export class AppComponent {}

Open the browser and check the result. Each time we click on an accordion tab, it is the only one
that gets extended:

Jhon Darn

{
"id": 1,
"name": "Jhon Darn",
“"email”: "jhonfemail.com",

"birthday": "5/6/1979",

"gender": "male",

“"status": "active",

"role": "employee",

"phoneNumbers": [
"+972-123-9873",
"+972-352-8922",
"+972-667-2973"

|

}

Nir Kaufman

Jessica wendberd

Bruce Dangen

Before we move forward, let's make the accordion extended only when clicking its title, and
the whole tab. For this, we will emit a custom event when clicking on the title and then bind to
this event from the parent component, which is the accordion:

[accordion-tab.ts]
import {

Component, Input, Output, EventEmitter
} from '@angular/core';

@Component ({
selector: 'accordion-tab',

styles: [°

.accordion-tab {
width: 500px;
border: 1px solid black;
border-collapse: collapse;

}

.accordion-heading {
padding: 5px;
background-color: lightblue;
cursor: pointer;

}
1y
template:
<div class="accordion-tab">
<div class="accordion-heading"
(click)="toggleContent()">{{title}}</div>
<div>
<ng-content *ngIf="extended"></ng-content>
</div>
</div>

3)
export class AccordionTab {
@Input() extended : boolean;
@Input() title : string;
@output() toggle = new EventEmitter<any>();
toggleContent() {
this.toggle.emit(null)

}
}

That's it for the accordion-tab component. Let's move to the accordion component and bind to
this event:

[accordion.ts]
import { Component, Inject } from '@angular/core';
import { Http } from '@angular/http';
import 'rxjs/add/operator/map';
import { AccordionTab } from './accordion-tab';
@Component ({
selector: 'accordion',
template:
<div>
<accordion-tab *ngFor="let user of users"
(toggle)="toggle(user)"
[extended]="isActive(user)"
[title]="user.name">
<pre>{{ user | json }}</pre>
</accordion-tab>
</div>

3)
export class Accordion {

users;
activeUserId = 0;

constructor(http: Http) {
http.get('/app/server/users.json')
.map(result => result.json())
.subscribe(result => this.users = result);

3
isActive(user) {

return user.id === this.activeUserlId;
}

toggle(user) {
this.isActive(user) ?
this.activeUserId = 0@ : this.activeUserId = user.id;
}

}

Now we can render the accordion component and see the results. In app.component.ts' include
the following:

[app.component.ts]
import { Component } from '@angular/core';
import { Accordion } from './components/accordion/accordion';

@Component ({
selector: 'app-root',
template: "<accordion></accordion>"

3)
export class AppComponent {}

Open the browser and check the results. The accordion works as expected.

Extending the accordion component tree

Let's add another component to our accordion tree. Instead of rendering raw JSON as a tab
content, let's reuse the user information component that we built on in Chapter 4, Building a Basic
Component, and Chapter 5, Building Dynamic Components. For this, just create a user-info
subdirectory in the components directory and copy the corresponding TypeScript files into this
directory. The only file we need to refactor is accordion. ts:

[accordion.ts]

import { Component, Inject, ViewEncapsulation } from '@angular/core';
import { Http } from '@angular/http';

import 'rxjs/add/operator/map';

import { AccordionTab } from './accordion-tab';

import { UserInformation } from '../user-info/user-info';

@Component ({
selector: 'accordion',
template:
<div>
<accordion-tab *ngFor="let user of users"
(toggle)="toggle(user)"
[extended]="isActive(user)"
[title]="user.name">
<user-info [user]="user"></user-info>
</accordion-tab>
</div>

3)
export class Accordion {
users;
activeUserId = 0O;
constructor(http: Http) {
http.get('app/server/users.json')
.map(result => result.json())
.subscribe(result => this.users = result);

}
isActive(user) {

return user.id === this.activeUserlId;
}

toggle(user) {
this.isActive(user) ?
this.activeUserId = 0@ : this.activeUserId = user.id;
}

}

All we needed to do is to import the user info component, declare it in the component metadata,
and use it in our template, binding the user variable to the User property that the component
expects.

The component life cycle

Component instances have a life cycle that we can hook into. Currently, our mini application
contains four components: App, accordion, accordion-tab, and user-info, but a typical
Angular application will contain tens of component trees that Angular will create, update, and
destroy during our application's lifetime.

For demo purposes, we will simulate a server call that returns other data. For this, create a file
called other-users.json inside the server directory and paste this code into it:

[other-users.json]

[
{
"id": 5,
"name": "Michael jackson",
"email": "jackson@email.com",
"pirthday": "22/3/1974",
"gender": "male",
"status": "onhold",
"role": "manager",
"phoneNumbers": [
"+972-123-9873"
]
Iy
(...)
]

On the accordion component template, we will add a button that will fetch this new data and
implement the fetchData method on the Component class:

[accordion.ts]

import { Component, Inject } from '@angular/core';

import { Http } from '@angular/http';

import 'rxjs/add/operator/map';

import { AccordionTab } from './accordion-tab';

import { UserInformation } from '../user-info/user-info';

@Component ({
selector: 'accordion',
template:
<div>
<pbutton (click)="fetchData('other-users.json')">update data</button>
<accordion-tab *ngFor="let user of users"
(toggle)="toggle(user)"
[extended]="isActive(user)"
[title]="user.name">
<user-info [user]="user"></user-info>
</accordion-tab>
</div>

3)
export class Accordion {
users;

activeUserId = 0;

constructor(private http: Http) {
this.fetchData('users.json');

3
isActive(user) {

return user.id === this.activeUserlId;
}

fetchData(subPath) {
this.http.get(/app/server/${subPath})
.map(result => result.json())
.subscribe(result => this.users = result);

}

toggle(user) {
this.isActive(user) ?
this.activeUserId = 0@ : this.activeUserId = user.id;
}

}

Now, each time we click on the button, the user's data is updated and the accordion re-rendered.
Open the browser, click on the button, and watch the accordion data change.

Life cycle event interfaces

In order to run our own logic on each one of the component life cycle events, we need to
implement the desired method that corresponds to the event we want to react to. Each one of those
events is published as a TypeScript interface, which we can implement in our component class.
The use of TypeScript interfaces is optional and won't affect our application in any way at all.
You can learn about TypeScript interfaces from the documentation on the TypeScript website at

http://www.typescriptlang.org/docs/handbook/interfaces.html. We won't use this in our code

examples.

http://www.typescriptlang.org/docs/handbook/interfaces.html

Onlnit and OnDestroy

The simplest, most straightforward, and most easy-to-understand life cycle event hooks are
onInit and onDestroy.

The ngonInit method is called after the component data-bound properties have been checked for
the first time, and ngonDestroy will be called right before the component instance is destroyed
by Angular. In our component hierarchy, we will implement both of these methods on the user -
info class:

[user-info.ts]

import {
Component, Input,
OnInit, OnDestroy

} from '@angular/core';

@Component ({

selector: 'user-info',
styleUrls: ['./user-info.css'],
templateUrl: './user-info.html'
3)
export class UserInformation implements OnInit, OnDestroy {
@Input()

user;
fontSize = '20px';
editMode = false;

randomNumber ;

ngonInit(){
console.log('UserInformation initialized');

}

ngonDestroy(){
console.log('UserInformation Destroy');

}

toggleEditMode() {
this.editMode = !'this.editMode;

}

onSubmit(data) {
Object.assign(this.user, data);
this.editMode = false;

}
}

Now, open the browser and make sure the console is visible. You should see four logs that
indicate that each of the user components have been initialized:

— C | O localhost:4200

Respom

update data
Jhon Dam

Nir Kaufman
Jessica Wendberd

Bruce Dangen

=] Elements Console Sources Metwork Timeline Profiles Application Sec
® ¥ top v Preserve log

Regex Hide network messages (28 Errors Warnings Info

k XHR finished loading: GET “http://localhost:4200/app/components/accordion/use
Angular 2 is running in the development mode. Call enableProdMode() to enable t

kXHR finished loading: GET "http://localhost:4200/app/server/users.json”.

ﬂ UserInformation initialized
1

Now, click on the button to pull new data from the server. You should see four logs for each user
information component that have been destroyed, and three logs for the new components that are
created for the new data:

— C | O localhost:4200

Respon:

update data |
Michael jackson
George kartman

Mike brant

[:|J Elements Console Sources MNetwork Timeline Profiles Application Sec

® ¥ top v Preserve log

Errors Warnings Info |

Regex Hide network messages (21

@) UserInformation initialized
kXHR finished loading: GET "http://localhost:4200/app/server/other-users.json”

) vserInformation Destroy

ﬂ UserInformation initialized

The onInit method is a good place to run code after the components have been initialized (data
bounded properties have been resolved), and before one of the child components has been
initialized. onDestroy is a good place for cleanup or persistence code for the component's state

just before it is ripped from the DOM.

OnChanges

onChanges has a method named ngonChanges that will be called after all the data-binding
properties have been checked. Angular passes a change object that contains a key named after the
property that changed, and an instance of a SimpleChange object. The SimpleChange object
contains the previous value and the current value. Let's implement this method in our user-info
component:

[user-info.ts]
import {

Component, Input,

OnInit, OnDestroy, OnChanges
} from '@angular/core';

@Component ({
selector: 'user-info',
styleUrls: ['./user-info.css'],
templateUrl: './user-info.html'
})
export class UserInformation
implements OnInit, OnDestroy, OnChanges {
@Input() user;
fontSize = '20px';
editMode = false;
randomNumber ;

ngonInit(){
console.log('UserInformation initialized');

}

ngonDestroy(){
console.log('UserInformation Destroy');

}

ngonChanges(changes){
console.log('onChanges', changes);

}

toggleEditMode() {
this.editMode = !'this.editMode;

}

onSubmit(data) {
Object.assign(this.user, data);
this.editMode = false;
}
}

In the browser console, we will see four logs:

onChanges ¥ Qbject {user: SimpleChange}
Y user: SimpleChange
P currentValue: Object
> previousValue: Object
» proto__: SimpleChange
» _ proto__: Object
onChanges » Object {user: SimpleChange}
onChanges » Object {user: SimpleChange}

onChanges » Object {user: SimpleChange}

If you are familiar with Angular 1.x, you can think of the onChange method as a $scope. $watch
function. It will be called any time the data changes, and contains both the new and the old values.

Other life cycle events

Besides the init, changes, and destroy events, we can hook four more component life cycle
events:

AfterContentInit: This is called after the component's content is fully initialized
AfterContentChecked: This is called after each time the component is checked
AfterviewInit: This is called after the component's view has initialized
AfterviewChecked: This is called after the component's view has been checked

Each of them can be implemented in the same way as the previous examples.

Summary

Through this chapter, we took everything we have learned so far about components and built a
useful accordion widget that is composed of four components. An Angular 2 application is a
collection of dynamic components that communicate with each other using properties as an input,
and events as output. We can hook into each important life cycle of a component, for example,
when a component is initialized or destroyed, and run our own logic.

Chapter 8. Integrating Third-Party Components

There are a lot of Ul components built with other libraries that we might want to use in our
Angular 2 application. Throughout this chapter we will integrate a tooltip widget from the
popular bootstrap library.

Importing the bootstrap and jQuery libraries are the topics that we cover in this chapter.

Preparing our development environment

Before we continue, let's create a new project. Open app.component . ts and remove the external
links to the HTML template and the CSS file:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: “<hl1>Angular2 components</hi1>"

})
export class AppComponent {}

Importing dependencies

Since we are going to wrap a component from the bootstrap library, we first need to download
and import the bootstrap library and its dependencies and import it in to our code. The first step
will be to install bootstrap with npm. Open the Terminal, make sure that you are inside the
project root, and type npm install bootstrap -S. This command will download the bootstrap
files into the node_modules and write it on the package. json.

Since bootstrap is dependent on jQuery library, we need to install it as well. We will use npm for
it as well. In the Terminal, type npm install jquery -S.

We also need to install corresponding typings for these two libraries to be able to compile the
application. The names of the corresponding typing modules are the same as the target libraries
but with the @types prefix. To install them, just use the following command:

npm install @types/jquery @types/bootstrap --save-dev

The CSS file of the Bootstrap library needs to be configured globally for the application in the
styles section of the angular-cli.json file:

[angular-cli.json]

{
"project": {
"version": "1.0.0-beta.16",
"name": '"ng-components"
Iy
"appS": [
{
"root": "src",
"outDir": "dist",
"assets": "assets",
"index": "index.html",
"main": "main.ts",
"test": "test.ts",
"tsconfig": "tsconfig.json",

Ilprefixll: "app",

"mobile": false,

"styles": [
"styles.css",
"../node_modules/bootstrap/dist/css/bootstrap.css"

1,

"scripts": [

1,

"environments": {

"source": "environments/environment.ts",
"dev": "environments/environment.ts",
"prod": "environments/environment.prod.ts"

}

Since the latest versions of the Angular CLI rely on webpack, we use its expose loader to make
available jQuery globally to the Bootstrap library. The latter needs this to extend jQuery by
adding a set of methods such as tooltip and collapse. To install the expose loader, just use
the following command:

npm install expose-loader --save-dev
We can now import both jQuery and Bootstrap where we need them using the import clause.

Before we move forward, open app.component. ts and add the following import statements for
the jQuery and Bootstrap libraries:

[app.component.ts]

import { Component } from '@angular/core';
import 'expose?jQuery!jquery';

import 'bootstrap';

import * as $ from 'jquery';

@Component ({
selector: 'app-root',
template: “<hi1>Angular2 components</hi1>"

3)
export class AppComponent {}

Bootstrap tooltip component

Angular 2's ability to bind to element properties and events without the need for custom directives
enables us to integrate with third-party code easily. Bootstrap uses some custom attributes to
make the tooltip work. We can use it as is. Open app.component . ts and add the bootstrap
attributes to the heading to display a tooltip from the bottom. We also need to leverage the
AfterviewInit hook to initialize the tooltip when the template is rendered:

[app.component.ts]

import { Component, AfterViewInit } from '@angular/core';
import 'expose?jQuery!jquery';

import 'bootstrap';

import * as $ from 'jquery';

@Component ({
selector: 'app-root',
template: °
<h1 data-toggle="tooltip"
data-placement="bottom"
title="A Tooltip on the right">Angular2 components</h1>
3)
export class AppComponent implements AfterViewInit {
ngAftervViewInit() {
$('h1').tooltip();

}
}

Now, let's open the browser and test it. Hover over the title and wait for the tooltip to appear at
the bottom:

& = (| DO localhost:4:

Angular2 components

A Tooltip on the right

Now, let's integrate it with Angular and make it dynamic. The process is straightforward. We can
bind to each property that we want to control. Let's start with the title.

Open app.component . ts and add the following code:

[app.component.ts]

import { Component, AfterViewInit } from '@angular/core';
import 'expose?jQuery!jquery';

import 'bootstrap';

import * as $ from 'jquery';

@Component ({
selector: 'app-root',
template: °
<input type="text" [(ngModel)]="title" placeholder="enter custom
title..">
<h1l data-toggle="tooltip"
data-placement="bottom"
[title]="title">Angular2 components</h1>

3)
export class AppComponent implements AfterViewInit {
ngAfterViewInit() {
$('h1').tooltip();
}
}

We didn't have to write a single line of code in our component class to make it work. Open the
browser, type a title, and hover over the title to see the result:

€« = C | O localhost:4.

DYNAMIC TITLE

Angular2 components

DYNAMIC TITLE

Bootstrap collapse component

Let's try another example, but this time we will bind to events as well. For this example we will
use another widget from the bootstrap library called collapse. In the components folder, create
a new folder named collapse. Inside it, create a file named collapse. ts for our component and
a file named collapse.html for the component template.

Open collapse.ts and paste the following code. This is an example collapse widget that was
taken as-is from the bootstrap website (http://getbootstrap.com/javascript/#collapse):

[collapse.ts]
import { Component, AfterViewInit } from '@angular/core';
import * as $ from 'jquery';

@Component ({
selector: 'collapse',
templateUrl: './collapse.html'

})

export class Collapse implements AfterViewInit {
ngAfterViewInit() {
$('.collapse').collapse();
}
}

Open collapse.html and paste in the following:

[collapse.html]

<button class="btn btn-primary"
data-toggle="collapse"
data-target="#collapseExample"
aria-expanded="false"
aria-controls="collapseExample">

Collapse!
</button>

<div class="collapse"
id="collapseExample'">
<div class="well">
Integrating third party is easy with angular?2!
</div>
</div>

Let's render the component. Open app . component . ts, import the collapse component, and use
it in the template as follows:

[app.component.ts]

import { Component } from '@angular/core';
import 'expose?jQuery!jquery';

import 'bootstrap';

@Component ({

http://getbootstrap.com/javascript/#collapse

selector: 'app-root',
template: '<collapse></collapse>'

3)
export class AppComponent {}

Don't forget to add the Collapse class to the declarations attribute of the root module of the
application to make the collapse component usable, as shown in the following code:

[app.module.ts]

import BrowserModule } from '@angular/platform-browser';
import NgModule } from '@angular/core';

import FormsModule } from '@angular/forms';

import HttpModule } from '@angular/http';

import AppComponent } from './app.component';

import Collapse } from './components/collapse/collapse’;

P Yacn Yan Yo Y Yan

@NgModule({

declarations: [
AppComponent,
Collapse

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Now, open the browser to test the collapse event:

& = (& | 0O localhost:4:
Collapse!

Integrating third party is easy with angular2!

We already know how to bind to properties from the tooltip example. In this example, we will
bind to the collapse events.

According to the bootstrap documents, the collapse fires four events throughout it's life cycle. We
will focus on two of them:

e show.bs.collapse: This method fires when the show method is called.
e hide.bs.collapse: This method fires when the hide method is called.

If we want to listen to those events, we need to hold a reference to the DOM element. For this, we
will inject E1lementRef. Open collapse.ts and the following code:

[collapse.ts]
import { Component, Inject, ElementRef } from '@angular/core';
import * as $ from 'jquery';

@Component ({
selector: 'collapse',
templateUrl: './collapse.html'
3)
export class Collapse {
constructor(element: ElementRef) {
$(element.nativeElement)
.on('show.bs.collapse',
()=> console.log('handle show event'));
$(element.nativeElement)
.on('hide.bs.collapse’,
()=> console.log('handle hideevent'));

}
}

There is a lot of ways to listen to an event on an element. We choose to use jQuery to wrap the
native element and register an event listener for the collapse.

You can open the browser and watch the logs in the console corresponding to the collapse events:

& = (& | [localhost:4:

Collapse!

Integrating third party is easy with angular2!

x O
(T

handle show event

Elements Console Sources Metwork Timeline
chrome-extension://be...caagff ¥ Preserve log

Regex Hide network messages 20

handle hide event

handle show event

Summary

Angular 2 plays well with third-party code by enabling binding to native properties naturally. On
the other hand, if we need to hold a reference to the DOM element, we can inject ELementRef in

to our component.

Chapter 9. Angular 2 Directives

Throughout this book, we learned how to craft Angular 2 components. Before we end our journey,
it's important to understand that Angular 2 didn't kill the concept of directives. As a matter of fact,
a component is a directive. In this chapter, we will introduce Angular 2 directives and how to use

them.

The following are the topics that we will cover:

The difference between components and directives in Angular 2
Angular 2 directive types

How to build a simple attribute directive

How to build a simple structural directive

Components and directives in Angular 2

Up until now, we have built components. But components do not replace the directives that we
are familiar with from Angular 1. If you are not familiar with Angular 1 directives, don't worry,
we will explain the difference in a minute.

Let's start by defining what a directive is in Angular terminology: a directive is a custom attribute
or an element that extends HTML tags by adding custom behavior.

In Angular 2, we have three types of directive: component directive, attribute directive, and
structural directive. We are already familiar with components, so let's define the other types:

e Attribute directive: This changes the appearance or behavior of an element. One example
for this can be the NgStyle directive from Angular core.

e Structural directive: This manipulates the DOM, just like NgFor and NgSwitch from the
Angular core.

Directives as opposed to components, do not require a template, and usually define a selector as
an attribute.

Preparing our development environment

Like for previous chapters, let's create a new project as explained in Chapter 2, Setting Up an
Angular 2 Development Environment with angular-cli. You can also remove all the existing
folders and remove all the unnecessary code from app.component. ts:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: “<hi1>Angular2 components</hi1>"

3)
export class AppComponent {}

The basic attribute directive

Let's begin by creating a new file for our directive named text-marker . ts. Inside it, paste the
following code:

[text-marker.ts]
import { Directive, ElementRef, Renderer } from '@angular/core';

@Directive({
selector: '[text-marker]'

})

export class TextMarker {
constructor(element: ElementRef, renderer: Renderer) {
renderer.setElementStyle(element.nativeElement,
'text-decoration', 'underline');
}

}

To create a directive, we need to import the Directive decorator function from Angular core.
We will also need two more classes named ElementRef and Renderer to manipulate the
element. They are injected to our directive class from its constructor.

This directive will add styling to the element and decorate the text with an underline.

Let's test this directive by applying it on our app component template. Open index.ts and add
the following code:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: “<hl text-marker>Angular2 components</hi1>"

3)
export class AppComponent {}

Don't forget to add the TextMarker class to the declarations attribute of the root module. This
operation will be required for all custom components and directives implemented in this chapter.
Open the app.module. ts file and update it as described here:

[app.module.ts]

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import { AppComponent } from './app.component';
import { TextMarker } from './text-marker';
@NgModule({

declarations: [

AppComponent,

TextMarker

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

1)
export class AppModule { }

Open the browser and inspect the result:

— C | O localhost:4200

= Applications @@ d3.j5 [} Posemaniacs.com [da

Angular2 components

ElementRef and Renderer

Attribute directives intend to add behavior to an element. For this, we need to gain access to the
element itself. In Angular 2, direct access to a DOM element is considered to be bad practice.
Angular keeps the code separated from the view layer by introducing an abstraction layer.

To reference the element, we use ElementRef, which is the class that represents the type of
element of the platform we are running on. In our case, it's the browser DOM. The ElementRef
class has the ability to reveal the native element that it wraps, but we won't need it. Instead, we
will use another class named Renderer and pass the ElementRef instance to it. Renderer is a
class that exposes methods for manipulating the element, without specifying which type of element
it is. This mechanism keeps our code decoupled from the element's implementation.

Reacting to events from the host element

An attribute directive applies on an element. If we want to react to the events that this element
fires, we can use the HostListener decorator on some methods of the Directive class. In the
following example, our directive will listen to mouse events from the element and change the
style in response:

[text-marker.ts]

import {

Directive, ElementRef, Renderer, HostListener
} from '@angular/core';

@Directive({
selector: '[text-marker]'

1)

export class TextMarker {
constructor(private element: ElementRef,
private renderer: Renderer) { }

@HostListener('mouseenter')
markText() {
this.renderer.setElementStyle(
this.element.nativeElement,
'text-decoration',
'underline'
);
}

@HostListener('mouseleave')
unmarkText() {
this.renderer.setElementStyle(
this.element.nativeElement,
'text-decoration',
);
}
}

Now, the style will be applied and removed each time the mouse enters and leaves the element
that host the attribute directive.

Passing properties to the directive

We can also pass configuration into the directive by using properties. Just like components,
directives can declare inputs. Let's refactor our Directive class to fetch and apply a text color
from a property

[text-marker.ts]

import {
Directive,
ElementRef,
Renderer, Input,
HostListener

} from '@angular/core';

@Directive({
selector: '[text-marker]'

3)

export class TextMarker {
@Input('text-marker')
private color: string;

constructor(
private element: ElementRef,
private renderer: Renderer

{3

@HostListener('mouseenter')
onEnter() {
this.applyStyle(this.color, true);

}

@HostListener('mouseleave')

onExit() {
this.applyStyle('', false);

}

private applyStyle(
color:string, mark:boolean) {

// apply underline
this.renderer.setElementStyle(
this.element.nativeElement,

'text-decoration',
mark ? 'underline' : "'

);

// apply color
this.renderer.setElementStyle(
this.element.nativeElement
'color', color
);
}
}

By using the Input decorator, we can accept the value of the property (in our case, it is text -

marker) and use it inside our directive class. Now we can pass the color that we want to use.
Open app.component . ts and try the following code:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: “<hl text-marker="red">Angular2 components</h1>"

1)
export class AppComponent {}

Now, each time the mouse enters the h1 element, the text should be colored in red and decorated
with an underline:

< C | O localhost:4200
i Applications @@ d3.js [Posemaniacs.com [m data Wm g

Angular2 components

The basic structural directive

As we mentioned at the beginning of this chapter, the third type of directive is called structural
directives, and as the name suggests, those directives are meant to manipulate the element that
they applied on. Angular core includes several directives that manipulate the DOM, such as ngIf,
ngFor, and ngSwitch.

For our example, we will implement our own ngIf directive that behaves just like the original
one.

First, create a new file named only-if.ts and let's define the basic structure for our directive:

[only-if.ts]
import { Directive } from '@angular/core';

@Directive({
selector: '[onlyIf]'

})
export class OnlyIf {

}

The structural directives begin their lives just like an attribute directive. We import the
@birective decorator from the Angular core and declare the selector as an attribute.

Next, we will need to access the template, and we will need some kinds of container so we can
attach or remove views. For this, we will need to inject TemplateRef and ViewContainerRef:

[only-if.ts]

import {
Directive,
TemplateRef,
ViewContainerRef

} from '@angular/core';

@Directive({
selector: '[onlyIf]'

})
export class OnlyIf {

constructor(private _templateRef: TemplateRef,
private _viewContainerRef: ViewContainerRef)
{ 2

}

Our directive, just like the Angular ngIf, needs to receive a Boolean from its caller that
represents the condition on which the content will be shown or removed. For this, we will
declare an input for this condition and make use of ViewContainerRef and TemplateRef:

[only-if.ts]

import {
Directive,
Input,

TemplateRef,
ViewContainerRef
} from 'angular/core';

@Directive({
selector: '[onlyIf]'
3)
export class OnlyIf {
constructor(private _templateRef: TemplateRef<any>,
private _viewContainerRef: ViewContainerRef) { }

@Input()
set onlyIf(condition:boolean) {
if (condition) {
this._viewContainerRef.createEmbeddedView(this._templateRef);
} else {
this._viewContainerRef.clear();
3
}
}

Let's make use of this directive. Open app.component.ts and paste the following code:

[app.component.ts]
import { Component } from '@angular/core';

@Component ({
selector: 'app-root',
template: °
<input type="checkbox" [(ngModel)]="condition">
<p *onlyIf="condition">
This content will shown only if the condition is true
</p>

3)
export class AppComponent {}

Don't forget to add the onlyIf class to the declarations attribute of the root module.

Let's explore what's going on: when we use the asterisk (*) to call our directive, Angular creates
a <template> tag behind the scenes. Inside our directive, we can get a reference for this template
through the TemplateRef class. Then, we can use the ViewContainerRef class, which
represents a container so that we can embed a view into it, to create or clear a view from the
content of the template.

Summary

In Angular 2, there are three types of directive: component directive, attribute directive, and
structural directive. Throughout this chapter, we got a quick introduction to them and learned how
to build simple directives. Directives can do much more, but that's beyond the scope of this book.

Index
A

e accordion component
o about / The accordion component
o accordion tab, implementing / The accordion component
o tree, extending / Extending the accordion component tree
o life cycle / The component life cycle

e Ahead of Time (AoT) / Bootstrapping the application

e angular-cli
o installing / Installing angular-cli
o URL/ Generating an Angular 2 project

e Angular 1
o Model-View-Controller pattern / MVC in Angular 1
e Angular 2

o development environment, preparing / Preparing our development environment,
Preparing our development environment, Preparing our development environment
components / Components and directives in Angular 2
directives / Components and directives in Angular 2
attribute directive / Components and directives in Angular 2
structural directive / Components and directives in Angular 2
e Angular 2 application
o breaking, into components / Breaking the application into components
e Angular 2 project
o generating / Generating an Angular 2 project
e Angular application
o bootstrapping / Bootstrapping the application
e annotations
o versus decorators / Decorators versus annotations
e Application component / Breaking the application into components
e asterisk (*)
o about/ The asterisk —*
o example / The asterisk — *
e attribute directive
about / Components and directives in Angular 2, The basic attribute directive
ElementRef class / ElementRef and Renderer
Renderer class / ElementRef and Renderer
events, reacting from host element / Reacting to events from the host element
properties, passing / Passing properties to the directive

O O O O

O O O O O

B

e basic types, TypeScript
o about / The basic types
e bootstrap
o dependencies, importing / Importing dependencies
o tooltip component / Bootstrap tooltip component
o collapse component / Bootstrap collapse component
e Button component / Breaking the application into components

classes, in TypeScript
o about / Classes
collapse component

o reference link / Bootstrap collapse component
components

o defining / Defining components
component selector

o about / The component selector

o options / Selector options
component template

o about / The component template

o styles, embedding in / Embedding styles in component template
Controller

o about / The Model-View-Controller pattern
core directives
o about / Core directives
Nglf directive / Nglf
NgClass directive / NgClass
NgStyle directive / NgStyle
NgSwitch directive / NgSwitch
NgFor directive / NgFor
custom events
o emitting / Emitting custom events
o local variable, referencing with / Referencing with a local variable
custom types, TypeScript

o about/ The custom types

O O O O O

data

o passing, via properties / Passing data via properties
data bindings / Data bindings
data interpolation / Data interpolation
decorators

o using/ Using decorators

o about/ Using decorators

o versus annotations / Decorators versus annotations
default exports

o about/ The default exports
dependencies

o managing, with modules / Managing dependencies with modules

ElementRef class
o about / ElementRef and Renderer
encapsulation mode
o about / Encapsulation modes
o emulated / Encapsulation modes
o native / Encapsulation modes
o none / Encapsulation modes

o example / Encapsulation modes
event binding / Event bindings

events
o reacting, from host element / Reacting to events from the host element
export statement

o about/ The export and import statements

F
e Form component / Breaking the application into components

G

® generics

o about / About generics
o reference / About generics

H

¢ host element
o events, reacting from/ Reacting to events from the host element

import statement

o about / The export and import statements
inline template

o example / The component template
Input component / Breaking the application into components
integrated development environment (IDE)

o selecting / Choosing an IDE

L

e life cycle events

interfaces / Life cycle event interfaces

OnlInit method / Onlnit and OnDestroy

OnDestroy method / Onlnit and OnDestroy

OnChanges method / OnChanges

about / Other life cycle events

e local variable
o referencing with / Referencing with a local variable
o example / Referencing with a local variable

e Long Time Support(LTS)

o URL/ Installing Node

o

o

o

o

o

M

e Model

o

about / The Model-View-Controller pattern

e Model-View-Controller pattern

o

o

o

o

o

working / The Model-View-Controller pattern
Model / The Model-View-Controller pattern
View / The Model-View-Controller pattern
Controller / The Model-View-Controller pattern
in Angular 1/ MVC in Angular 1

e Model View ViewModel (MVVM)

(e}

(e}

(e}

(e}

about / MVC in Angular 1
Model / MVC in Angular 1

View / MVC in Angular 1
ViewModel / MVC in Angular 1

e modules

O O O O O

about / Managing dependencies with modules
dependencies, managing with / Managing dependencies with modules

export statement / The export and import statements

import statement / The export and import statements
default exports / The default exports

NgClass directive / NgClass
NgFor directive

o about / NgFor

o example / NgFor
Nglf directive

o about / Nglf

o asterisk (*) / The asterisk — *
NgStyle directive

o about / NgStyle

o example / NgStyle
NgSwitch directive / NgSwitch
node

o about/ Node and npm
o installing / Installing Node
o URL/ Installing Node

npm
o about/ Node and npm
o installing / Introducing npm
o URL/ Introducing npm

O

¢ OnChanges method / OnChanges
¢ OnDestroy method / Onlnit and OnDestroy
¢ Onlnit method / Onlnit and OnDestroy

P

e properties
o data, passing via / Passing data via properties
e property binding / Property bindings

Q

e Query children components

o parent component, used / Querying child components with the parent component
o example / Querying child components with the parent component

R

e Renderer class
o about / ElementRef and Renderer

shadow DOM / The shadow DOM

structural directive
o about / Components and directives in Angular 2, The basic structural directive
o example / The basic structural directive

styles / Embedding styles in component template
styles property / Embedding styles in component template

T

e S

o reference / The custom types
e TaskList component / Breaking the application into components
e TaskRow component / Breaking the application into components
o checkbox / Breaking the application into components
o label / Breaking the application into components
o trash/ Breaking the application into components
e template strings / The component template
e two-way data binding / Two-way bindings
e TypeScript
o about / Introduction to TypeScript
e TypeScript interfaces
o URL/ Life cycle event interfaces
e type system
about / The type system
basic types / The basic types
custom types / The custom types
generics / About generics
e typings
o URL/ The custom types

o O O

(@)

View

o about / The Model-View-Controller pattern
view

o switching, to components / Moving from views to components
ViewModel

o about/ MVC in Angular 1
VSCode

o URL/ Choosing an IDE

W

e webstorm
o reference link / Choosing an IDE

	Angular 2 Components
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Angular 2 Component Architecture
	The Model-View-Controller pattern
	MVC in Angular 1
	Moving from views to components
	Defining components
	Breaking the application into components
	Summary
	2. Setting Up an Angular 2 Development Environment with angular-cli
	Node and npm
	Installing Node
	Introducing npm
	Installing angular-cli
	Generating an Angular 2 project
	Choosing an IDE
	Summary
	3. The TypeScript Primer
	Introduction to TypeScript
	Managing dependencies with modules
	The export and import statements
	The default exports
	Classes
	The type system
	The basic types
	The custom types
	About generics
	Using decorators
	Decorators versus annotations
	Summary
	4. Building a Basic Component
	Bootstrapping the application
	The component selector
	Selector options
	The component template
	Embedding styles in component template
	The shadow DOM
	Encapsulation modes
	Data bindings
	Summary
	5. Building Dynamic Components
	Data interpolation
	Core directives
	NgIf
	The asterisk – *
	NgClass
	NgStyle
	NgSwitch
	NgFor
	Property bindings
	Event bindings
	Two-way bindings
	Summary
	6. Component Communication
	Passing data via properties
	Emitting custom events
	Referencing with a local variable
	Querying child components with the parent component
	Summary
	7. Putting It All Together
	Preparing our development environment
	The accordion component
	Extending the accordion component tree
	The component life cycle
	Life cycle event interfaces
	OnInit and OnDestroy
	OnChanges
	Other life cycle events
	Summary
	8. Integrating Third-Party Components
	Preparing our development environment
	Importing dependencies
	Bootstrap tooltip component
	Bootstrap collapse component
	Summary
	9. Angular 2 Directives
	Components and directives in Angular 2
	Preparing our development environment
	The basic attribute directive
	ElementRef and Renderer
	Reacting to events from the host element
	Passing properties to the directive
	The basic structural directive
	Summary
	Index

