

AngularJS Directives

Learn how to craft dynamic directives to fuel your
single-page web applications using AngularJS

Alex Vanston

 BIRMINGHAM - MUMBAI

AngularJS Directives

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-033-9

www.packtpub.com

Cover Image by Eleanor Leonne Bennett (eleanor.ellieonline@gmail.com)

Credits

Author
Alex Vanston

Reviewers
Jeff Cunningham

Brian Petro

Acquisition Editor
Rukhsana Khambatta

Commissioning Editor
Subho Gupta

Technical Editors
Manan Badani

Monica John

Sampreshita Maheshwari

Project Coordinator
Michelle Quadros

Proofreader
Stephen Silk

Indexer
Tejal R. Soni

Graphics
Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Alex Vanston is a self-professed geek and an outdoor junkie fused together.
During high-school he began teaching himself how to code and has been obsessed
with learning new languages and better ways to solve problems ever since. He has
been building web sites and applications professionally for the past seven years, for
clients and companies around the world. Currently he lives in Denver, CO, where he
loves hiking (5 14ers down, 49 to go), playing pickup sports, and water skiing when
he can. He's the lead front-end developer for ZipKick, Inc, a travel startup taking off
in San Francisco, CA. You can find him online at http://www.mrvdot.com, where
he blogs about web development and tech.

A huge thank you to the innumerable friends and family who have
encouraged me through this writing process, listened to me wrestle
with word choice and politely ignored me when I inexplicably begin
monologuing at random moments when a new idea hit me.

About the Reviewers

Jeff Cunningham is a mobile developer for The General Insurance. After 15 years
of Java web development, he is now enjoying the challenges of front-end and mobile
web development. Prior to working for The General, Jeff worked at The Weather
Channel where he was able to use both of his college degrees: Atmospheric Science
and Computer Science. When not programming, Jeff enjoys reading, spending time
with his family, and watching sports.

Brian Petro has long been a proponent of AngularJS. He has curated a handful of
developer resources dedicated to Angular. For example, 'Angular Developers' is a
group on LinkedIn where users can access the latest community generated material.
Through these experiences, Brian observed a significant deficit of talent in this fast
growing field. AngularJobs.com is a place where developers find opportunities to
work with Angular.

I would like to thank the author for providing a much needed
resource on this topic.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Designing Web Applications in 2013	 5

An overview of good code	 5
We're not just talking about a lot of APIs	 6
Modularity	 7
Data driven development	 8

Loading the data	 9
Structuring our HTML	 9
Adding JavaScript	 10

Summary	 10
Chapter 2: The Need for Directives	 11

What makes a directive a directive	 11
Directives are declarative	 11
Directives are data driven	 13
Directives are conversational	 14
Directives are everything you've dreamed about	 15

Summary	 15
Chapter 3: Deconstructing Directives	 17

Getting started	 17
With Angular	 17
With directives	 19

Naming	 20
Attachment styles	 21
Configuration options	 22

Priority	 22
Terminal	 23
Templating	 23
Replace	 23

Table of Contents

[ii]

Compiling and linking	 23
Scope	 24
Controllers	 25
Transclusion	 27

Summary	 27
Chapter 4: Compile versus Link	 29

Peeking under the covers	 29
ng-repeat	 31

Compile	 31
Link	 32

What about linking?	 36
Summary	 36

Chapter 5: Keeping it Clean with Scope	 37
Scope = false	 38
Scope = true	 40
Scope = {}	 41

@ – read-only Access	 41
= – two-way binding	 43
& – method binding	 44

Summary	 47
Chapter 6: Controllers – Better with Sharing	 49

Forms and inputs	 49
Creating our own controller communication	 53
Summary	 57

Chapter 7: Transclusion	 59
That's not a word...	 59
...it is a solution	 60
Manipulating the transcluded content	 62
Summary	 64

Chapter 8: Good Karma – Testing in AngularJS	 65
Getting Started	 65
Configuration	 66
Angular and Karma	 66

My first test	 68
Mocking data	 70
The test subject	 71
E2E testing	 72

Scenarios	 73
Summary	 74

Table of Contents

[iii]

Chapter 9: A Deeper Dive into Unit Testing	 75
Highlighted, again	 75
Negative testing	 77
Summary	 80

Chapter 10: Bringing it All Together	 81
Angular content grid	 82
Diving in	 82
The initial directive	 84
Connecting Masonry	 86

Testing Masonry	 88
Events	 89
Timing	 91
Further steps	 92
Summary	 92

Index	 93

Preface
AngularJS Directives dives into the core building blocks of Angular.JS and provides
you with the knowledge you need to create fully dynamic web applications that
respond in real time to updates and changes in your data. You'll learn how to build
directives from the ground up, as well as some of the best practices to use when
architecting them. By the end you'll be able to create a web application comprised
of multiple modules all working together seamlessly to provide the best possible
user experience.

What this book covers
Chapter 1, Designing Web Applications in 2013, provides a quick introduction to
single-page web applications and the current best practices for developing them.

Chapter 2, The Need for Directives, discusses the value of Angular.JS directives and
how they satisfy many of the best practices discussed in Chapter 1, Designing Web
Applications in 2013.

Chapter 3, Deconstructing Directives, highlights each of the configuration options
available for directives and provides examples of how they can be used.

Chapter 4, Compile versus Link, dives into the two separate processes by which
Angular.JS parses and transforms static HTML into a series of directives and
dynamic elements.

Chapter 5, Keeping it Clean with Scope, serves as a study into the different degrees
of scoping and isolation that AngularJS provides for its directives.

Chapter 6, Controllers – Better with Sharing, discusses the advantages of using
controllers to coordinate between parent and child directives.

Preface

[2]

Chapter 7, Transclusion, provides an overview for consuming existing HTML content
into your directive while preserving the appropriate scopes.

Chapter 8, Good Karma – Testing in Angular, introduces the Karma test-runner and
provides an overview of best practices for testing Angular applications.

Chapter 9, A Deeper Dive into Unit Testing, dives deeper into the realm of unit testing
and discusses the Angular approach to validating functionality.

Chapter 10, Bringing it All Together, walks through the creation of a custom Angular.JS
directive from beginning to end.

What you need for this book
To follow along with the examples, you'll need a standard text editor or IDE of your
choice. A basic web server such as Apache isn't required, but highly recommended,
particularly for the chapter on E2E testing. Some basic command-line knowledge is
recommended, but all the steps required will be explicitly written out within the text.

Who this book is for
This book is intended for intermediate JavaScript developers who are looking to
enhance their understanding of single-page web application development, with a
focus on Angular.JS and the JavaScript MVC framework. It is expected that you
will understand basic JavaScript patterns and idioms and can recognize JSON
formatted data, however, no prior MVC or Angular.JS knowledge is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "With this approach, our
JavaScript is nothing more than a function (attached to our element via ng-
controller="WidgetController") that binds our tweets to a $scope object "

A block of code is set as follows:

$('#nextLink').click(function () {
 $.get('api/next', function (nextPage) {
 displayPage(nextPage);
 })
});

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<p ng-repeat="tweet in tweets" tweet>
 <!-- ng-click allows us to bind a click event to a function on the
 $scope object -->
 @{{tweet.author}}: {{tweet.text}} <span ng-
 click="retweet()">RT | <span ng-
 click="reply()">Reply
</p>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Designing Web
Applications in 2013

The goal of this chapter is to provide a quick introduction to some principles that
will help you create high quality code, specifically aimed at frontend web application
development. For a fuller study, I strongly recommend the article, Patterns For
Large-Scale JavaScript Application Architecture, by Addy Osmani.

An overview of good code
If you're reading this book, I'm going to assume you've done at least some
programming work yourself, likely more than a little. During that time, I hope
you've had the chance to see some great code. Perhaps it was your own, but more
likely, at least for the first couple times you glimpsed it, it was someone else's
masterpiece. You probably didn't necessarily know what made it great; you just
knew that it was far better than anything you had ever been able to extract
out of a keyboard.

On the other hand, almost anyone can identify bad code (unless it's their own, but
that's a whole different book). The logical holes, the ignored errors, the horrifyingly
inconsistent indentation; we've seen it all, often with our own name attached to the
file, but somehow transforming that spaghetti mess into anything resembling those
works of art that we'd previously marveled at continues to escape us. This book
isn't about beautiful code, but it is about a framework which flexes its muscles
most effectively when wielded in a manner optimized for frontend applications,
and as such it's worthwhile for us to spend a chapter discussing some of the best
practices for modern frontend web development.

Designing Web Applications in 2013

[6]

For the purposes of our overview, we'll look at two basic tenets: modularity and
data driven development. Before we examine those, however, I want to use the next
section to address a common misunderstanding about frontend web development:
adding more APIs is not always the answer.

We're not just talking about a lot of APIs
Often, when a backend developer first begins working on a frontend project, they
believe that they can simply create an awesome API in the backend, call it with the
frontend code, and have a complete frontend web application. When I first started
developing frontend web applications, I wrote a lot of code that looked like the
following:

$('#nextLink').click(function () {
 $.get('api/next', function (nextPage) {
 displayPage(nextPage);
 })
});

While the frontend technically handles both the user interaction ($('#nextLink').
click()), and the display (displayPage(nextPage)), the real driver here is the
backend API. The API handles the logic, the state, and makes nearly all the decisions
about how the application should actually function.

In contrast, the frontend applications built on top of data modeling frameworks
allow us to move away from that paradigm and instead position the client-side
code as the primary driver. This is awesome for two reasons:

1.	 It allows modern web developers to do 90 percent of the coding in the same
language. This creates the potential for more code reuse, easier debugging,
and all-round more efficient development, since even developers who speak
both client and server-side languages fluently will lose some momentum
when they have to switch between them.

2.	 The user experience vastly improves when everything we need to run the
application is already downloaded and available. Because the majority of
the logic and application processing is done client side, we are no longer
dependent upon network requests or additional downloads before moving
the user forward. And as the JavaScript engines in all modern browsers get
continually faster with each release, even computationally intense processes
are becoming less and less of a limiting factor.

Chapter 1

[7]

These reasons can make a significant difference in even the smallest of applications,
even if it's only in your own peace of mind while developing. As you begin to tackle
larger projects, however, especially if you're working on a distributed team, modular
code that all builds on top of the same data-model becomes mission-critical; without
it, each bit of functionality might expect a different property, flag, or (brace yourself)
classname to represent the appropriate state for your application. In contrast, when
your code is data-driven, everyone can work off the same built-in value map,
allowing different pieces to connect far more seamlessly.

Now that we've clarified what frontend development isn't, let's gets back to the
key principles that lead to great frontend application code.

Modularity
The principle of modularity is hardly specific to frontend web applications, and most
developers these days recognize its usefulness, so I won't spend a lot of time here,
but it's worth a quick overview.

The primary goal of modularity is to ensure that the code you write can be reused
in different parts of the same application, or even in different applications entirely,
without requiring extensive re-architecting. This also helps ensure that a change to
the internal logic of one feature doesn't negatively impact the functionality of any
other. In his article, Patterns For Large-Scale JavaScript Application Architecture, Addy
Osmani describes it as:

Decouple app. architecture w/module,facade & mediator patterns. Mods publish
msgs, mediator acts as pub/sub mgr & facade handles security.

In non-twitter speak, the basic goal is to make sure each feature/module keeps
track of its own data/state/existence, is not dependent on the behavior of any other
module to perform its own functionality, and uses messages to alert other modules
to its own changes and appropriately respond to the changes of others.

We'll dive into modularity in great detail in the coming chapters, as it's one of the
core principles of Angular Directives, so for now we'll leave this summary here,
and continue to the next key principle for frontend web applications.

Designing Web Applications in 2013

[8]

Data driven development
There are several different X-driven development ideologies in the world of
software and web development, test-driven and behavior-driven being two of the
most popular. data driven development (DDD from here on out) doesn't preclude
any of these, and actually works simultaneously with many of them quite easily.
DDD simply means using the structure of the data (or the model) as the foundation
from which you build and make all other development design decisions. This is
most easily explained by looking at an example, so let's start here, and then we will
reverse the process to create a new application in the coming chapters.

In this example, we've created the quintessential frontend widget, a twitter feed
display. This also serves as a good moment to highlight that not all web applications
have to fill the entire page. Often, a web app is a simple widget like this, possibly
something that can be embedded in third-party sites, and while there are some
differences in structure, the basic organization and guidelines are still the same.

First, a quick snippet of some JSON data that we might use for this widget
(we won't worry about the actual retrieving of data from Twitter right now):

[
 {
 "author" : "mrvdot",
 "text" : "Check out my new Angular widget!",
 },
 {
 "author" : "mrvdot",
 "text" : "I love directives!"
 }
 ...
]

The HTML:

<div ng-controller="WidgetController">
 <h3>My Tweets</h3>
 <p ng-repeat="tweet in tweets">
 @{{tweet.author}}: {{tweet.text}}
 </p>
</div>

Chapter 1

[9]

And finally the JavaScript:

function WidgetController ($scope) {
 $scope.tweets = [];//loaded from JSON data above
}

While the preceding example does operate within the Angular framework, the basic
structure here is representative of all good frontend architectures.

Let's first take a high-level view of what's happening here. The first thing to note is
that the data itself is most important. I listed it first not because it was shortest, but
to illustrate that the data is the foundation from which the rest of the code evolves.
After the data, we move onto the HTML. This is most applicable in Angular, though
it applies to other frameworks as well. In this model, once we have the data, we use
the HTML to describe the view, how we want to display the data, and also (jQuery
aficionados, brace yourselves) how we want the user to interact with that data. Only
then, at the end, do we write the little JavaScript code needed to glue it all together
as the controller. From here, let's walk through it stepwise to see how everything
works together.

Loading the data
When we first initialize our application, the first thing we need to do is load our data.
In Angular, this is most commonly done through a service, which, while a vital part
of Angular development, is outside the scope of this book. For now, let's just assume
that we've already loaded our data into $scope.tweets. We'll dissect $scope in great
detail later in Chapter 5, Keeping it Clean with Scope, so for the purpose of this example,
just know that it serves as the link between the view and our data.

Structuring our HTML
Let's revisit the main element of our widget, the tweet paragraph tag:

 <p ng-repeat="tweet in tweets">
 @{{tweet.author}}: {{tweet.text}}
 </p>

The first part of the HTML code uses the ng-repeat attribute to declare (again,
remember we're building our HTML on top of the data-model, not receiving a
model and remolding the HTML to reflect it) that we want to iterate through the
array of tweets and print out for each the author's handle and their tweets in a
paragraph tag.

Designing Web Applications in 2013

[10]

Adding JavaScript
Finally, because we've focused on building the HTML on top of the data itself,
our JavaScript is only a few lines:

function WidgetController ($scope) {
 $scope.tweets = [];//loaded from JSON data
}

With this approach, our JavaScript is nothing more than a function (attached to
our element via ng-controller="WidgetController") that binds our tweets to
a $scope object. We'll discuss the specifics of scopes and controllers later, for now
just know that the scope serves as a bridge between the controller and our HTML.

Consider how we might have done this with jQuery (or a similar DOM manipulation
library). First we'd have to iterate through all of the tweets and build the HTML
string to insert into the message list. Then we'd need to watch for any new changes
to our tweet array, at minimum append or prepend new items, or possibly rebuild
the entire list if we can't rely on all our tweets coming in order.

Don't misunderstand, jQuery is an amazing library, and we'll go into extensive
detail about how to use it in conjunction with Angular in the chapter on linking.
The problem, however, is that jQuery was never designed to be a data-model
interaction layer. It's great for the DOM manipulation, but trying to keep track
of the DOM and the data at the same time gets tricky very quickly, and as anyone
who has previously built an application using this structure can attest, adequate
testing is nearly impossible.

Summary
Hopefully by now you're beginning to see that frontend web applications are far
more than just a collection of Ajax calls with a master backend still running the show.
And as such, principles such as modularity and data driven development are vital
to successful and efficient development. Modularity helps us plug features together
without worrying about undocumented interactions breaking our entire app. And
DDD ensures that every bit of our code stands on the foundation of the data-model
itself, so we can be confident that the user's view and interactions accurately reflect
the true state of the application.

If you're still not convinced about everything, that's ok, we'll explore both of these
principles in more detail throughout the coming chapters. For now, though, let's
take the next chapter to explore what distinguishes Angular.JS from many of the
other common JavaScript MVC frameworks available today.

The Need for Directives
This chapter could almost as easily be titled "The Need for Angular", as directives
make up the heart and soul of what distinguishes Angular from other JavaScript
libraries and frameworks. Certainly there are other key features, Dependency
Injection being one of my favorites that makes it exemplary, however none are
quite as foundational to Angular as directives.

With that in mind, let's take a look at what attributes define directives and why
they're best suited for frontend development, as well as what makes them different
from the JavaScript techniques and packages you've likely used earlier. Hopefully,
by the end you'll understand a few of the key qualities that make directives ideal
for frontend web development.

What makes a directive a directive
Angular directives have several distinguishing features, but for the sake of simplicity
we'll focus on just three in this chapter. In contrast to most plugins or other forms of
drop-in functionality, directives are declarative, data driven, and conversational.

Directives are declarative
If you've done any JavaScript development before, you've almost certainly used
jQuery (or perhaps Prototype), and likely one of the thousands of plugins available
for it. Perhaps you've even written your own such plugin. In either case, you
probably have a decent understanding of the flow required to integrate it.
They all look something like the following code:

$(document).ready(function() {
 $('#myElement').myPlugin({pluginOpts});
});

The Need for Directives

[12]

In short, we're finding the DOM element matching #myElement, then applying our
jQuery plugin to it. These frameworks are built from the ground up on the principle
of DOM manipulation. In contrast, as you may have noticed in the previous chapter,
Angular directives are declarative, meaning we write them into the HTML elements
themselves. Declarative programming means that instead of telling an object how
to behave (imperative programming), we describe what an object is. So, where in
jQuery we might grab an element and apply certain properties or behaviors to it,
with Angular we label that element as a type of directive, and, elsewhere, maintain
code that defines what properties and behaviors make up that type of object:

<html>
 <body>
 <div id="myElement" my-awesome-directive></div>
 </body>
</html>

At a first glance, this may seem rather pedantic, merely a difference in styles, but as
we begin to make our applications more complex, this approach serves to streamline
many of the usual development headaches.

Consider again our example of the tweet list from the previous chapter. In a more
fully developed application, our messages would likely be interactive, and in
addition to growing or shrinking during the course of the user's visit, we'd want
them to be able to reply to some or retweet themselves. If we were to implement this
with a DOM manipulation library (such as jQuery or Prototype), that would require
rebuilding the HTML with each change (assuming you want it sorted, just using
.append() won't be enough), and then rebinding to each of the appropriate elements
to allow the various interactions.

In contrast, if we use Angular directives, this all becomes much simpler. As before,
we use the ng-repeat directive to watch our list and handle the iterated display of
tweets, so any changes to our scoped array will automatically be reflected within the
DOM. Additionally, we can create a simple tweet directive to handle the messaging
interactions, starting with the following basic definition. Don't worry right now
about the specific syntax of creating a directive, we'll cover that more in the next
chapter; for now just take a look at the overall flow in the following code:

angular.module('myApp', [])
 .directive('tweet', ['api', function (api) {
 return function ($scope, $element, $attributes) {
 $scope.retweet = function () {
 api.retweet($scope.tweet);// Each scope inherits from it's
 parent, so we still have access to the full tweet object of {
 author : '…', text : '…' }
 };

Chapter 2

[13]

 $scope.reply = function () {
 api.replyTo($scope.tweet);
 };
 }
 }]);

For now just know that we're getting an instance of our Twitter API connection and
passing it into the directive in the variable api, then using that to handle the replies
and retweets. Our HTML for each message now looks like the following code:

<p ng-repeat="tweet in tweets" tweet>
 <!-- ng-click allows us to bind a click event to a function on the
 $scope object -->
 @{{tweet.author}}: {{tweet.text}}
 RT |
 Reply
</p>

By adding the tweet attribute to the paragraph tag, we tell Angular that this element
should use the tweet directive, which gives us access to the published methods, as
well as anything else we later decide to attach to the $scope object.

Directives in Angular can be declared in multiple ways, including
classes and comments, though attributes are the most common. We'll
discuss the pros and cons of each method in the next chapter.

Scoping within directives is simultaneously one of the most powerful and most
complicated features within Angular, so we'll spend all of Chapter 5, Keeping it Clean
with Scope on it, but for now it's enough to know that every property and function we
attach to the scope is accessible to us within the HTML declarations.

Directives are data driven
We talked in the previous chapter about how important being data driven is
for frontend applications. Angular directives are built from the ground up with
this philosophy. The scope and attribute objects accessible to each directive form
the skeleton around which the rest of a directive is built and can be monitored
for changes both within the DOM as well as the rest of your JavaScript code.

The Need for Directives

[14]

What this means for developers is that we no longer have to constantly poll for
changes, or ensure that every data change that might have an impact elsewhere
within our application is properly broadcast. Instead, the scope object handles all
data changes for us, and because directives are declarative as well, that data is
already connected to the elements of the view that need to update when the data
changes. There's a proposal for ECMAScript 6 to support this kind of data watching
natively with Object.observe(), but until that is implemented and fully
supported, Angular's scope provides the much needed intermediary.

Directives are conversational
As we discussed in the previous chapter, modular coding emphasizes the use of
messages to communicate between separate building blocks within an application.
You're likely familiar with DOM events, used by many plugins to broadcast internal
changes (for example, save, initialized, and so on) and subscribe to external
events (for example, click, focus, and so on). Angular directives have access to
all those events as well (the $element variable you saw earlier is actually a jQuery
wrapped DOM element), but $scope also provides an additional messaging system
that functions only along the scope tree. The $emit and $broadcast methods
serve to send messages up and down the scope tree respectively, and like DOM
events, allow directives to subscribe to changes or events within other parts of the
application, while still remaining modular and uncoupled from the specific logic
used to implement those changes.

If you don't have jQuery included in your application, Angular
wraps the element in jqLite, which is a lightweight wrapper that
provides the same basic methods.

Additionally, when you add in the use of Angular services, which aren't the focus
of this book but we'll touch on briefly in the next chapter, directives gain an even
greater vocabulary. Services, among many other things, allow you to share specific
pieces of data between the different pieces of your application, such as a collection
of user preferences or utility mapping item codes to their names. Between this shared
data and the messaging methods, separate directives are able to communicate fully
with each other without requiring a retooling of their internal architecture.

Chapter 2

[15]

Directives are everything you've dreamed
about
Ok, that might be a bit of hyperbole, but you've probably noticed by now that the
benefits outlined so far here are exactly in line with the best practices we discussed
in the previous chapter. One of the most common criticisms of Angular is that it's
relatively new (especially compared to frameworks such as Backbone and Ember). In
contrast, however, I consider that to be one of its greatest assets. Older frameworks
all defined themselves largely before there was a consensus on how frontend
web applications should be developed. Angular, on the other hand, has had the
advantage of being defined after many of the existing best practices
had been established, and in my opinion provides the cleanest interface between
an application's data and its display.

As we've seen already, directives are essentially data driven modules. They allow
developers to easily create a packageable feature that declaratively attaches to an
element, molds to fit the data at its disposal, and communicates with the other
directives around it to ensure coordinated functionality without disruption of
existing features.

Summary
In this chapter we learned about what attributes define directives and why they're
best suited for frontend development, as well as what makes them different from
the JavaScript techniques and packages you've likely used before. I realize that's a
bold statement, and likely one that you don't fully believe yet. That's ok, we still have
nine more chapters to go. Next we'll spend some time discussing just how to go about
creating a directive and what some of the options mean, and hopefully you'll begin to
see just how flexible, yet powerful, these directives can be.

Deconstructing Directives
And without further ado: Directives! Now that we've had the chance to discuss
some of the whys of directives, let's get on with the hows. In this chapter, we'll go over
each of the different configuration options you have at your disposal while creating
a directive, as well as when each property is most helpful. Hopefully by the end of this
chapter you'll begin to have a better understanding of what actually happens when we
add a directive to an element and be excited to dive into some of the more powerful,
but complex, configurations possible that are coming in the following chapters.

Getting started
If you've worked with Angular before, feel free to skip the next section, it's simply
a review of how to set up an Angular.JS application and import other modules.
We'll get into the specifics of directives in the With directives section.

With Angular
An Angular.JS application is first brought to life using the angular.module
command, which is actually much more powerful than what we'll cover here.
For the purpose of our text, we'll simply look at how to create a module and how
to include other modules as you need. For a fuller read, the documentation on
angularjs.org is actually pretty robust at http://docs.angularjs.org/guide/
module.

Angular uses modules to separate different pieces of your application for easier
testing and modularity. The recommended approach is to have separate modules
for your services, directives, and filters, and one application-level module that
imports all of them and then executes your initialization code, if any.

With this in mind, here's a quick example of what it looks like, and then we'll walk
through it.

Deconstructing Directives

[18]

First, the JavaScript needed to initialize our module:

angular.module('myApp', ['myApp.directives']);
angular.module('myApp.directives', []);

Then the HTML code that tells Angular we want our page to be dynamically
controlled:

<html ng-app="myApp">
 <head></head>
 <body></body>
</html>

A couple points to notice.

1.	 First, we don't need to wrap the angular.module statements within any
sort of the $(document).ready() event listener. As long as the module file
is loaded after Angular itself, Angular takes care of making sure everything
is ready before charging forward.

2.	 Secondly, in that same vein, note that we can actually require a module
before it's loaded. The array passed in as the second parameter to angular.
module tells Angular what other module(s) should be required before
initializing our new module, and in our case here, the directives module
actually comes after our main myApp module (and could be in an entirely
different file, loaded several requests later), however Angular waits until
all the modules have been loaded before initializing any of them.

3.	 Finally, we use yet another directive, ng-app to tell Angular that this module
is our primary module, please initialize it and then parse all the nodes within
it. The ng-app directive can be attached to any DOM node, however, unless
you're creating a small widget to be embedded within a different application,
most commonly you'll want to use it on the html node itself.

At the time of writing, when developing for Internet Explorer 8 & 9
browsers, the ng-app directive must be declared twice if you attach it
to the html node. In addition to using the attribute to declare which
module to use, you must also add the id tag of "ngApp", otherwise IE
won't notice it during the bootstrap process.

As a closing note, for convenience' sake, Angular allows you also to retrieve a
module by calling angular.module with just the name parameter (that is angular.
module('myApp')), which can be helpful if you want to attach additional directives
or other configurations to a directive in a separate file, or perhaps conditionally
based on your environment variables.

Chapter 3

[19]

With directives
Now that you have a basic understanding of how to initialize an Angular module,
let's extend our directives module to demonstrate how to declare a directive within
our code as shown:

…
angular.module('myApp.directives', [])
 .directive('myAwesomeDirective', function (){});

Obviously, this directive won't do much (and will actually throw an error if you
try to use it because it's not complete yet), but this, in a nutshell, is how you create
a directive. The .directive method on each module is actually a shortcut method
to the same method on compileProvider, which you can use within a module's
configuration block, but that's outside the goals of this book.

As mentioned earlier, our directive, as it stands right now, will actually throw
an error if you try to attach it to a node, which is because Angular recognizes the
directive, but doesn't know what to do with it. The function that makes up the
second parameter isn't actually the directive definition in itself, but rather a factory,
used to create the directive. This is a pattern common within Angular, and you'll see
it used in controllers, services, and filters when you go on to create those. What this
means is that the first time Angular needs to initialize your directive, it executes this
factory function, then stores the result for all the future instances of the directive.
As such, it's what we return from this factory function that actually determines the
directive's configuration. This can be a bit confusing to discuss, but hopefully will
make more sense as we continue our example as shown:

…
angular.module('myApp.directives', [])
 .directive('myAwesomeDirective', ['api', function(api) {
 //Do any one-time directive initialization work here
 return function($scope, $element, $attrs) {
 //Do directive work that needs to be applied to each
 instance here
 };
 }]);

Deconstructing Directives

[20]

Within your factory function, you can either return another function, as we did
here, or a configuration object, which we'll go over in detail later in this chapter.
The function accepts the current scope for the instance of that directive, the jQuery
wrapped DOM element, and any attributes attached to the element as parameters,
and often that will be all you'll need to use for your directive. This function gets
called each time the directive is attached to a DOM element and can be used to
attach plugins, retrieve additional data, and so on.

Angular provides multiple ways to handle Dependency Injection,
but two are the most common. In many examples, you'll see factory
functions that look like function($scope, $http) { … }, which
works because Angular will actually inspect the variable names to
determine what providers it should use, then inject those into the
function, so $scope gets populated with an instance of the current
scope, and $http gets the singleton instance of Angular's $http
library. This is awesome, until you try minimizing your code, because
once the variable names change, everything breaks. With that in mind,
I recommend using the second approach, which requires passing in an
array in place of the factory function, as we did earlier. In this case, you
explicitly name what instances you need (api in our case, these can be
our own custom services/filters in addition to those built into Angular),
and then the last element in your array is the factory function itself, and
each variable will be populated in the same order as your original array
elements. This is the method I'll use throughout this book, and the one
I recommend anytime you're writing code that you'll want to use in a
production environment.

Naming
Naming of directives within Angular is pretty flexible, with a few conventions
implemented to ensure consistency. All directives are named using camelCase in
JavaScript, and snake case within your HTML. Snake case, here, means all lower
case, using either :, -, or _ to separate the words. Thus, for us, the JavaScript name
myAwesomeDirective becomes my-awesome-directive, my:awesome:directive,
or my_awesome_directive in the HTML, all of which will properly bind the
directive to the DOM node. And finally, if you're running your HTML through a
validator and don't like seeing warnings about each of your custom directives, you
can even prepend x- or data- to the directive name and Angular will still detect it.

Chapter 3

[21]

Attachment styles
No, we're not talking about relationships here. Directives can be invoked from
within your HTML in multiple ways, though it's up to the developer to decide
which ones they will allow. When developing your own directive, you can control
which methods you want to utilize through the restrict property, using a subset
of EACM (standing for element, attribute, class, comment).

By far, the most common method for invoking a directive is through an attribute,
in large part because it's the default if the restrict property is left undefined.
It's the method you've seen me use so far in all the examples, and outside of this
section, all other examples we'll use this method as well. Declaring a directive via
an attribute protects you from the issues we'll see shortly with Internet Explorer,
and still provides a semantic indication within your HTML that you are declaring
the function or nature of this node. For a quick reminder, here's what the attribute
method looks like:

<div my-awesome-directive="something"></div>

The next method that you're likely to see is using the directive name as the element
name itself.

<my-awesome-directive></my-awesome-directive>

This method has the advantage of being exceptionally semantically accurate, and,
let's be honest, it looks the coolest because we're creating our own HTML elements.
The disadvantage, as usual, is that Internet Explorer will read these in as div
instances, thus preventing Angular from knowing that they even exist. You can get
around this by using document.createElement('my-awesome-directive') in the
head of your HTML, but you have to do this separately for each directive, and except
in rare cases I usually consider it to be more work than it's worth.

The final two methods are classname and comment. Both are very rarely used,
although I do know some developers who prefer using comments because they feel
it keeps their HTML cleaner.

//As a class
<div class="my-awesome-directive: something;"></div>
//As an HTML comment
<!-- directive: my-awesome-directive something -->

Which method out of the four you use is almost entirely a matter of preference,
though conventions do lean toward attributes, and most directives you use from
other developers will likely at least support that method, if not use it exclusively.

Deconstructing Directives

[22]

Configuration options
Now that we have a good basis for how to create a blank directive and attach it to
our DOM, let's take a look through the directive definition object, which is the official
name for the object returned from the directive factory function. Remember that
there are two ways to initialize a directive within the factory function. The first is to
return our linking function, as we did earlier, and the second is to use this definition
object to provide more fine-grained control over the way our directive functions.
Using the definition object, our directive with all the options enumerated looks like
the following code:

angular.module('myApp.directives', [])
.directive('myAwesomeDirective', ['api', function(api) {
 //Do any one-time directive initialization work here
 return {
 priority : 10,
 terminal : false,
 template: '<div><h3>{{title}}</h3></div>',
 templateUrl : 'myDirective.html',
 replace : true,
 compile : function (element, attributes, transclude) {},
 link : function ($scope, $element, $attrs) {},
 scope : true,
 controller : function ($scope, $element, $attrs) {},
 require : 'myAwesomeDirective',
 transclude : true
 };
}]);

Obviously you'll never use all of these options at the same time, however, let's dive
into each one individually.

Priority
The first property we will look at is the priority option, which allows us to specify
in what order directives should be executed, if there are multiple directives on the
same node. The default is 0, and unlike many languages, higher numbers go first
here. There is no specification for what order directives of the same priority will
execute in, so if order is really important, it's best to make that explicit.

For simple tasks like attaching some data or initializing a jQuery plugin on your
element, this option won't be necessary, however if your directive needs to modify
the DOM in any way, particularly if it needs to add in other directives conditionally,
you'll find this option exceptionally helpful.

Chapter 3

[23]

Terminal
Closely tied to priority, terminal dictates whether or not directive execution
should stop after the priority level. It's important to note, however, that this does
not necessarily mean stop after this directive itself. Because the execution order of
directives on the same priority level is not specified, directive processing continues after
a terminal directive until the end of its priority level, ensuring that the results will be
consistent. Like priority, this option is most useful in cases where conditional DOM
manipulation is needed, something we'll study in greater detail in the next chapter.

Templating
If your directive provides a custom HTML structure, you can use the template
or templateUrl property to define it. These templates can also contain other
directives nested within them, and those will be initialized and attached as part
of your directive's compilation process as well. Both template properties function
largely in the same way, replacing the element's HTML with the specified template,
although template takes an inline string, whereas templateUrl loads the HTML
from an external file. Do note that the compile/link process for this directive will
be suspended until the template is loaded, so if your custom HTML is minimal, it's
usually more efficient to provide it inline.

Replace
Use of the replace property specifies whether the whole element should be replaced
with the template, or if the template HTML should just replace the element's inner
HTML. If you do choose to replace the entire element, note that Angular will do its
best to copy over all of the classes/attributes from the original element, including
merging the class attributes together. Additionally, if you want to replace the original
element, your template must have only one root node. If you try to use a template
with multiple root nodes (such as <h2>{{title}}</h2><div>{{content}}</
div>), Angular will throw an error as there's no way to migrate the attributes
over consistently.

Compiling and linking
The compile and link properties do the bulk of the DOM manipulation and the
plugin binding work. We'll spend all of the next chapter discussing why the process
is split into two parts like this, and when to use each. For the sake of an introduction,
and as a massive over-simplification, you can think of compile as performing any
tasks that require restructuring the DOM (and possibly adding other directives)
regardless of the specific scope, and the link function as attaching a scope to that
compiled element.

Deconstructing Directives

[24]

Remember that we said you could return a function directly from the factory
function, instead of using this definition object? That function that we return is
actually the link function discussed here, and is simply a shortcut to returning
a definition object with only link defined.

One last important note on these properties, and then we'll save the rest for the
next chapter. If you set a value for the compile property, Angular will ignore the
link property. If you need to use both, you can return an object from the compile
function, with pre set to your compile function, and post set to your link function,
as demonstrated in the following code:.

angular.directive('myAwesomeDirective', function () {
 return {
 compile : function (tElement, tAttrs, transclude) {
 pre : function compile ($scope, $element, $attrs) {},
 post : function link ($scope, $element, $attrs) {}
 return{
 ...//current pre and post text
 }
 }
 }
});

Scope
As mentioned in Chapter 2, The Need for Directives, scoping with directives is one
of the most powerful, yet confusing features of Angular, so we've dedicated all
of Chapter 5, Keeping it Clean with Scope, to it. For now, let's just take a quick look
at the three types of values the scope option can have.

If left undefined, the scope value is null, which tells Angular to give the directive
the same scope as the object its attached to. This is by far the most common case,
and is perfect for adding a few new values to watch as we did in the previous
chapter. If, however, you want to generate a new scope for your directive, there
are two ways you can do so.

First, simply set the scope parameter to true, which will create a new scope for
the directive, but still inherit from it's parent. This means you'll still be able to
read all of the values from your parent scope, including adding any new watchers
to monitor data changes, but new values you write onto the scope won't affect
the parent scope's values.

Chapter 3

[25]

Note, this is a bit of an over generalization, as it's simply inherited
from it's parent prototypically, like all other JavaScript objects. Which
means if you set $scope.name = “bob” on the child scope, the
parent won't be touched. If instead, however, you set $scope.data.
name = “bob”, it will be changed, as you're actually reading the
“data” object first, then setting the value on that, and since that object
is shared between parent and child, both will reflect the change.

$scope.name = “bob”
$scope.data.name = “bob”
“data”

Secondly, if you want to isolate your directive from the rest of your application,
you can create an aptly named isolate scope. This scope can be helpful in ensuring
modularity and preventing accidental changes to data outside of your directive
caused by shared properties or methods.

To create an isolate scope, simply pass in an object hash to the scope parameter. If it's
empty, no values will be inherited and your scope will be completely isolated. You
can also specify specific properties and attributes that you want to maintain access
to, which we'll explore in Chapter 5, Keeping it Clean with Scope.

As a final note on scope for this chapter, each DOM element can only have one scope
applied to it, which means that if you set scope : true for multiple directives on
the same node, they'll all share the same new scope. While this is usually fine, do
note that only one directive on a node can request an isolate scope, and all other
directives will share that scope, so be careful with declaring an isolated scope too
often, particularly if you intend to share this module with other developers who
might need to isolate their own directives as well.

Controllers
The next two properties, controller and require, are closely related, so we'll look
at them together. The controller function can store many of the same properties or
methods that you might normally attach to the scope discussed earlier, however, if
they are attached to the controller itself, they can be shared with other directives in
the DOM tree. This sharing is done via the require property, which tells Angular
to grab the instance of one directive's controller and make it available to another
directive. As with much of Angular, this is somewhat complex to discuss in text, so
let's take a look at an example of requiring an instance of ngModel, one of the most
common controllers you'll request, as it's the basis for all two-way data binding.
To start, here's the basic directive definition:

Deconstructing Directives

[26]

angular.directive('autocompleteInput', function () {
 return {
 require : 'ngModel',
 link : function ($scope, $element, $attrs, ngModel) {
 ngModel.$render = function () {
 $element.val(ngModel.$viewValue || '');
 };
 $element.autocomplete({
 … //Define source, etc
 select : function (ev, ui) {
 $scope.$apply(function() {
 ngModel.$setViewValue(ui.item.value);
 });
 }
 });
 }
 }
});

Here we have an example of a simple directive that attaches the jQueryUI
autocomplete plugin to an input, and handles updating the model when a selection
is made. You can see we've used the require property to tell Angular that we want
access to the controller instance on the ngModel directive, which then gets passed
into our link function as the fourth parameter. Because we've required the ngModel
controller, we also have to declare the directive that provides that controller,
otherwise Angular will throw an error, which means that our input element needs to
look something like this:

<input ng-model="data.property" autocomplete-input />

Obviously, throwing an error is often not what we want to happen, so Angular
allows you to prepend a question mark, such as ?ngModel, to make that requirement
optional. You can also use a caret (^ngModel), to tell Angular to traverse upwards
from the element node through the DOM tree and look for the directive in the
elements there, such as the following:

<div ng-model="data.property">
 <input autocomplete-input />
</div>

The ngModel controller provides multiple methods and properties, but for our
purposes we only need two, $render and $setViewValue(). The ngModel directive
calls $render whenever the value of the data element that it's bound to (data.
property in the preceding code) changes. Thus, once we assign our custom function
to the $render key, any time the data changes, we can update the input value
appropriately. $setViewValue works in the opposite direction, so when the user
does something that should change the value, we can tell ngModel what the new
value is and it will update the internal data model.

Chapter 3

[27]

If you need access to multiple controllers, you can also pass in an array to the
require property, and likewise the fourth parameter of your link function will be
an array of those controllers.

Defining your own controller is a bit outside the scope of this chapter, so we'll revisit
that later in Chapter 6, Controllers – Better with Sharing.

Transclusion
Just like the previous few sections, the transclude property deserves its own
chapter, and so we'll explore it more in Chapter 7, Transclusion. In short, transclusion
provides the ability to have an isolate scope as we discussed earlier, and still have
access to the parent scope's properties for internal content. If that doesn't make any
sense, that's normal, even the developers of Angular themselves concede that:

This may seem to be a unexpected complexity, but it gives the widget user and the
developer the least surprise.

http://docs.angularjs.org/guide/directive

While indeed providing helpful functionality, for most directives, transclusion is
simply too much complexity for what we need, and thus we're going to leave it
alone until Chapter 7, Transclusion. By that point, you'll hopefully be more
comfortable with the more core attributes of directives.

Summary
Hopefully by this point I've whetted your appetite by elaborating on some of the
power that each directive can utilize. The simpler properties such as template,
priority, and basic linking should already have demonstrated a taste of the kind of
modular extensibility directives can add to your development arsenal. And we'll
revisit each of these properties over the next several chapters as we dive into the
inner workings of scoping, controllers, and transclusion, as I recognize many of the
options discussed likely still seem like a magic black box. Next, however, let's take a
look at some of Angular's built in directives, ng-repeat and ng-switch, for a study
into why we separate compile and link, and how you can use that for your own
custom directives as well.

Compile versus Link
Within Angular directives, there are two primary phases that handle the process of
connecting the directive logic to the DOM, as well as performing any necessary DOM
manipulation. The first phase is the compile phase, which works on the element
before it's been inserted into the document, and thus is great for performance, but
can't be used to attach any DOM related plugins since the element isn't accessible yet.
The second phase is the linking phase, which works on the element after it has been
inserted into the DOM and has the appropriate scope instance created and initialized
for it. For this chapter, we'll start by reviewing a couple directives built into Angular
as an example of why this separation exists and how it can best be used, and then
we'll create a few of our own examples to explore it in more detail.

Peeking under the covers
Let's first take a quick look at what Angular actually does with the functions it
receives from the compile and link properties, and how they're used during the full
compilation process. The first thing to know is that both returning a function from our
directive factory (instead of using the definition object) and defining a function on the
link parameter are really just shortcuts to setting the compile property to be a function
that returns that same linking function. In other words, no matter how we define our
link function, by the time Angular gets around to processing our directive, it will
always call the compile function and take what it returns as the linking function(s).
For proof, here are few lines of code that make that initial call:

...
linkFn = directive.compile($compileNode, templateAttrs,
 childTranscludeFn);
 if (isFunction(linkFn)) {
 addLinkFns(null, linkFn);
 //Only attach to 'postLink' functions
 }else if (linkFn) {
 addLinkFns(linkFn.pre, linkFn.post);
}

Compile versus Link

[30]

There are a couple of important things to note from this code before we move on.
First, compile is called really early on during this whole process. $compileNode
represents the element we're manipulating, but it's not anywhere in the DOM just yet,
instead it's much like what you would receive if you called jQuery (<div>). What
this means is while we can manipulate it within the compile function (and if we need
to conditionally add other directives or change the pre-parsed HTML, this is where
we have to manipulate it), we can't attach any DOM listeners or plugins that need to
process a fully-realized node just yet. Secondly, there are actually two types of linking
functions, pre and post. When Angular is processing your directive, it will first execute
any and all of the pre-linking functions on the directive element itself, then it will
recurse down into any child nodes within the element and compile those, then walk
back up the DOM tree and execute all of the post-linking functions. As a result,
the whole compilation process proceeds through the following flow:

mainDirective

- compile fn

-preLinking fn

mainDirective

- postLink fn

firstChildDirective

- compile fn

- preLinking fn

firstChildDirective

- postLink fn

lastChildDirective

- compile fn

- preLinking fn

- postLinking fn

As a general rule, the same DOM manipulation restrictions apply to both the compile
function and the pre-linking function, since the element is still being updated by
Angular and cannot be cloned or otherwise modified before creating the final instance
that will be inserted into the document. The post-linking function, on the other hand,
receives the final element and can be manipulated as you need. The majority of your
directives will likely just use the post-linking function. The pre-linking function is
only advantageous when you need to perform some individualized preparation
on the scope or controller object before any child elements compile, so we'll review
that use case in more detail in Chapter 6, Controllers–Better with Sharing. Compile, on
the other hand, is ideal when you need to make use of the transclusion function or
conditionally modify your element before it's compiled, so we'll review a couple use
cases of that in this chapter.

Chapter 4

[31]

ng-repeat
To start our study into the primary use cases for the compile function, let's take
a look at the definition object for the built-in directive ng-repeat. The definition
object is as follows:

...

.directive('ngRepeat', function () {
 return {
 priority: 1000,
 transclude: 'element',
 terminal: true,
 compile: function(element, attr, linker) { // Compile Function
 return function(scope, iterStartElement, attr){ // Linking
Function
 };
 }
 }
});

The first few properties should be familiar from the previous chapter, but let's
quickly review how each is used here. A priority value of 1000 makes sure that
this directive executes before any others on the element, and setting terminal to
true ensures that Angular's automatic compilation doesn't continue on to any other
directives on this element or its children. We want this because the ng-repeat
compile function itself will actually be handling the compilation processing for the
node tree of child elements. A transclude value of element is used to collect the
HTML content of the original element, as we'll need that to be able to compile it
later and as such we'll see that it is used here shortly within the compile function.

Compile
The compile function declared in the preceding section takes three properties. The
first is the template element, meaning it contains all the HTML within our DOM
node, but again, this doesn't necessarily represent the instance of that element
that's actually going to be inserted into our final document. The second property
is similar to the $attrs object that was passed to our linking function in Chapter 3,
Deconstructing Directives. It contains normalized access to each attribute on the DOM
element. Remember, however, that we don't have an initialized scope here, so any
of the attribute values that need to be evaluated within a scope won't have a useful
value yet.

Compile versus Link

[32]

For the purpose of our examination, however, the final parameter is by far the most
valuable. This linker is the transcluded function, which Angular would normally
use to attach a scope to this element, interpolate all of the values, and then insert the
final object into the DOM. By grabbing this linking function, ng-repeat now has
control over when to perform the actual linking, as well as the ability to repeatedly
do so, which of course is exactly what we need.

Link
The linking function is what the compile function returns. Because, in the case of
ng-repeat, we only need to get access to the transcluding function, and not actually
do any DOM manipulation on the template element, we can just return
that immediately.

At the heart of the ng-repeat linking function is $scope.$watch, which serves
to connect the data and data changes to the rest of our code. As a quick note of
introduction, the $watch method's first argument can take two types of parameters.
The first type is a simple string that corresponds to a scoped variable and is
evaluated against the current scope; this is the method you'll probably use most
commonly. The second type is a full function which takes the current scope as its
own first parameter and allows for more complex comparisons. In both cases, any
time the return value changes or is first initialized, the function passed in to $watch
as the second parameter is called. In our case here of ng-repeat, we're actually
using the watcher function (first parameter) to perform all of the necessary changes,
since it gets called every time Angular executes the $digest function. As a note, I
wouldn't actually recommend this method unless you're confident it's necessary and
you've extensively optimized your watcher function, as this can get called several
times a second.

The actual internals of the $watcher function are more complicated than it is
worthwhile for us to dive into for the goals of this chapter, so we'll operate off this
simplified model for the purpose of our discussion.

compile: function (element, attrs, linker) {
 return function ($scope, $element, $attrs) { // "post" Linking
function
 $scope.$watch(function ($internalScope) {

Chapter 4

[33]

 $element.html('');// Clear the element's current HTML
 var values = … // Read in array to iterate over
 values.forEach(function (data, index) {
 $internalScope.element = data; // Attach this element's data
properties to the 'element' property on the scope so we can use it
within the template
 linker($internalScope, function (clone) {
 $element.append(clone); // Take the interpolated HTML and
append it to our main $element
 }); // end of linker clone function
 }); // end of forEach
 }); // end of $watch
 }; // end of linking function
} // end of compile function

Obviously, we're setting aside some necessary caching and sorting methods,
however for our purposes this represents the key process. We begin by reading in
the current values for our array, iterating over each element to assign it to our scope,
and then performing magic.

Well, almost magic. We're finally going to use that linker function we've been
working up to for this whole section. Remember that we fetched this from the
compile property, which means it's imbued with all of the requisite knowledge
of our directive template (if there is one), the internal HTML within our element
node, and is all but salivating at the chance to show off its skills at scope binding
and interpolation. And since it's never wise to disappoint an anxious function,
we're finally going to oblige it by sending in our newly crafted scope, along with a
secondary function to handle the result.

Within the linker function, the scope gets bound to the compiled, but not yet
interpolated, element HTML, and a new "fully transformed" element is generated.
That element gets passed to our secondary function as the clone parameter, whereby
we use a little standard jQuery DOM manipulation to insert our clone element into
the DOM at the end of our original element.

In a (somewhat large) nutshell, that's how ng-repeat makes use of the compile
property to transform an element DOM structure, not just once, but continuously
as the data changes. Now let's continue and check out ng-switch, another built-in
directive that makes use of the compile property, though in a slightly different way.

Compile versus Link

[34]

ng-switch
Since we've already covered attaching directives extensively, we're not going to
examine the HTML of an ng-switch directive in detail. However, in the interest of
having a reference point while going through the JavaScript, here's a simple example
shown in the following code snippet:

<div ng-switch="currentSport">
 <p ng-switch-when="baseball">Home run!</p>
 <p ng-switch-when="football">Touchdown!</p>
 <p ng-switch-default>Goal!</p>
</div>

For an unexpected twist in the story, let's take a look at the ng-switch definition
object:

{
 restrict: 'EA',
 require: 'ngSwitch',
 controller: function () {
 this.cases = {};
 },
 link: function(scope, element, attr, ctrl) {
 var watchExpr = attr.ngSwitch, // Read in the data property we
want to monitor
 selectedLinker,
 selectedElement,
 selectedScope;
 scope.$watch(watchExpr, function (value) {
 if (selectedElement) { // remove any prior HTML within $element
 selectedScope.$destroy();
 selectedElement.remove();
 selectedElement = selectedScope = null;
 }
 if ((selectedLinker = ctrl.cases['!' + value] || ctrl.
cases['?'])) {
 selectedScope = scope.$new();
 selectedLinker(selectedScope, function(caseElement) {
 selectedElement = caseElement;
 element.append(caseElement);
 });
 }
 });
 }

Chapter 4

[35]

I warned you there was a twist, and you've likely already seen it... there's no compile
property here. That's right; our next foray into this study of compilation doesn't
even include a compile property on the main directive. That's because ng-switch is
actually a collection of three different directives, all of which work together, and it's
on these other two directives that compile makes its shining appearance.

The two supplemental directives, ng-switch-when and ng-switch-default, work in
nearly the same way, and function just as you might expect if you have any experience
with switch statements in other languages. ng-switch-when serves to match against a
specific case, and display its associated element if a match is made. On the other hand,
ng-switch-default comes into play if no matches can be found. Because they're so
similar, we'll only look in depth at the code of ng-switch-when, but I'll point out the
one place they differ just so you can have a fuller understanding of it. Without further
ado, let's have a look at the following ng-switch-when directive:

{
 transclude: 'element',
 priority: 500,
 require: '^ngSwitch',
 compile: function(element, attrs, linker) {
 return function(scope, element, attr, ctrl) {
 // For ng-switch-default, the linker function is simply attached
to the '?' key within ctrl.cases
 ctrl.cases['!' + attrs.ngSwitchWhen] = linker;
 };
 }
}

In the same manner as we just saw with ng-repeat, we're once again setting the
transclude property to element in order to request an instance of the linking
function. This time, however, we've also grabbed an instance of the ngSwitch
controller. We'll talk more about controllers in Chapter 6, Controllers–Better with
Sharing, but for now just remember that when we request a controller with require,
we're fetching the same instance that's in use on the ng-switch directive itself, and
thus is shared with ng-switch and all of the other ng-switch-[when/default]
directives as well.

Unlike ng-repeat, we're not going to use the linker function immediately, but
instead we use the subordinate directives (when/default) to collect all of the possible
linker functions, and thus their respective DOM elements, and then store them
on the primary ng-switch controller for use there. Once again, we use $watch to
connect the data to our code, though in this case we're using the more common
string method. This time, instead of grabbing a specific data element to update our
scope, we're grabbing the transclude function that's attached to a particular template,
allowing us to update the element HTML automatically to reflect changes in the data.

Compile versus Link

[36]

What about linking?
Ok, so now that we've taken a look at some of the uses for compile, you may be
wondering when you would ever want to use link. The answer: pretty much always.
First of all, realize that both of the examples we reviewed in the preceding section
use the linking function; they just initialize it differently, then return it from the
compile function instead of attaching it directly to the link property. Secondly,
while the ability to have low level access to the element template and fine-tune
exactly when and where the linker function comes into play sounds awesome (and
it is), in reality there are actually very few times you'll need that much control. Out of
the 26 different directives included with the awesome AngularUI library, only three
use the compile property. And even those primarily use the compile function simply
for validating the directive options and prepping variables so they don't have to be
repeatedly looked up.

Summary
So, in the end, the compile function is awesome. It's also rarely needed. Most of the
time, your link function will handle all of the heavy lifting for you, and adding in
the compile option just creates unnecessary complexity within your code. On the
other hand, when you need to be able to manipulate the template element before
binding to the scope, or want to conditionally apply the linker function as the
data changes, compile offers you that option. Next chapter we'll dive into scoping,
a helpful way to ensure your data is properly linked, yet still modular, both inside
and outside your directives.

Keeping it Clean with Scope
"Why do we [scope], Master Wayne? So we can [stay modular and code like a
rockstar]"

- Alfred (if he'd been an Angular developer)

As you've likely seen so far, the scope object within Angular serves as the primary
intersection point between our data, our view, and the rest of our code. Any property
or method that's available on our scope can be accessed and used within our HTML.
Likewise, any changes that happen to the data will update the HTML and can trigger
other updates within the rest of code, via the $watch method that we've already used
several times.

Those qualities of scope pervade nearly all of Angular development. Within a
directive however, scoping takes on an even more powerful role, allowing us to plug
directly into the rest of the application scope, remain completely separate, or utilize
some blend of both.

As a quick reminder about scoping when there are multiple directives
on an element, all directives receive the same scope, and whichever
directive requests the most limited scope gets priority. This means
that a scope of "true" trumps a scope of "false", and an isolate scope
(object hash) trumps them all.

Now, with whetted appetite, let's take a look at the three types of values we can use:
false, true, and an object hash.

Keeping it Clean with Scope

[38]

Scope = false
A scope property value of false is the default for all directive definition objects. If
you've done much Angular development before, you might be tempted to assume that
this operates in the same manner as nesting another controller, where each directive
gets a new inherited scope. With directives, however, that's actually not the case. When
a new directive is initialized with a scope property of false, that directive receives the
same scope as its parent. Not an inherited scope, but the exact same object. This means
that all changes to the parent scope will be reflected within our directive, and also any
change within our directive's scope will be reflected within the parent.

To help explain the unique characteristics of this and the other types of scoping,
take a look at the following HTML and directive declaration:

<div ng-init="title = 'Hello World'">
 <h2 id="appTitle">{{title}}</h2>
 <button id="newAppTitle" ng-click="setAppTitle('App 2.0')">Upgrade
me!</button>
 <div my-scoped-directive>
 <h4 id="directiveTitle">{{title}}</h4>
 <button id="newDirTitle" ng-click="setDirectiveTitle('bob')">Bob
it!</button>
 </div>
</div>
…
directive('myScopedDirective', function() {
 return {
 scope : false, // we could leave this out, since it's the default
 link : function ($scope, $element, $attrs) {
 $scope.setDirectiveTitle = function (title) {
 $scope.title = title;
 };
 }
 };
});

Chapter 5

[39]

To help visualize what happens here, let's diagram the effects of compilation and
user interaction on our $parentScope and $directiveScope:

$parentScope

$directiveScope

ng-init tag

parsed

{

title : ‘Hello World’

}

my-scoped-directive

initialized

Unchanged

setApp Title

fired

{

title : ‘App 2.0’

}

setDirectiveTitle

fired

{

title : ‘bob’

}

{

title : ‘Hello World’

}

{

title : ‘App 2.0’

}

{

title : ‘bob’

}

As you can see, when Angular first parses through this HTML, it sees the ng-init
attribute, which it evaluates within the current scope before proceeding, and thus
sets $scope.title equal to Hello World. Then, when the element is fully compiled
and linked, both #appTitle and #directiveTitle will say Hello World. We
developers are curious, however, which means that if there's a button, we must
click it. When we click the #newDirTitle button, the setDirectiveTitle method
gets called and, working directly on our directive's scope, sets $scope.title to
now say bob. You might expect at this point #appTitle to still read Hello World
and #directiveTitle to bob. Remember however, that because we've set scope to
false, the parent scope and the directive scope are in fact the same object, and thus
both #appTitle and #directiveTitle will now read bob.

Sometimes, this behavior is exactly what we want. Setting the scope to false
gives us unbridled interconnectivity with the parent scope and thus the rest of
our application. Such power, however, comes with a price. As you can see in the
preceding paragraph, it is exceptionally easy to accidentally change data in the rest
of your application when using a non-scoped directive and so, unless you're sure
you need that much connectedness, my recommendation is to use a more limited
scope whenever possible.

Keeping it Clean with Scope

[40]

Scope = true
The first step down the path of limiting, or modularizing, your scope is setting its
value to true. In this case, a new inherited scope is actually generated, much like the
behavior when nesting controllers. This type of scoping for a directive is by far the
easiest to understand and operate within, as you still have read access to all of the
parent scope's values, but it's less likely that you'll accidentally change the data in the
rest of the application. For this reason, I usually recommend setting scope to true
from the beginning, unless you have a strong reason to do otherwise.

To help clarify the difference of this type of scoping, let's revisit our previous
example. This time, the scope section of our definition object will be scope: true,
but otherwise all of the code will remain the same. When we first load the page, this
directive will be indistinguishable from our previously false-scoped directive; both
#appTitle and #directiveTitle will still say Hello World because our directive's
scope is inherited from the parent.

We discussed this inheritance briefly earlier, but as a reminder, this is the prototypical
inheritance innate to JavaScript. As such, any value not explicitly declared on our
scope will be read from the parent, or parent's parent, all the way up to $rootScope.
The caveat, of course, is that setting, or writing, values does not work that same way.
As soon as we set a value, it's stored locally and we lose all connection to any ancestral
property of the same name. Again, let's see how our directive will flow given our
newly updated scope parameter, as shown in the following figure:

$parentScope

$directiveScope

ng-init tag

parsed

{

title : ‘Hello World’

}

my-scoped-directive

initialized

Unchanged

setApp Title

fired

{

title : ‘App 2.0’

}

setDirectiveTitle

fired

{

title : ‘bob’

}

{

title : ‘Hello World’

}

{

title : ‘App 2.0’

}

{

title : ‘App 2.0’

}

As you can see, what this new scope object means for us is that once we click on our
button and fire setDirectiveTitle, #directiveTitle will change to bob, however
#appTitle will still say Hello World. This type of scoping has all of the advantages
and disadvantages of prototypical inheritance. We get to keep read access to the rest
of the application's data, and even the updates to it, as demonstrated by our firing of
setAppTitle, without having to worry about accidentally overwriting anything. On
the other hand, for values that you do want to change, it does require keeping track
of which values are local and which are inherited, as well as using inherited methods
to change any ancestral values.

Chapter 5

[41]

Scope = {}
For times when you want to have complete control over which properties and
methods are interconnected within your new directive scope, an object hash is
usually your best solution. This type of scoping is commonly referred to as an
isolate scope, because of the lack of connectedness with the other scopes within the
application. An empty object signifies that you want the new scope to be completely
isolated from its parents, so nothing is inherited or carried over. If absolutely
necessary, you can still access the parent or root scopes by using the $parent and
$root properties, respectively, however this goes directly against our goals of
modularity and thus should only be used when there's no better option.

While there are a few instances where we want our directive to be entirely isolated,
more commonly we'll want to maintain access to a few explicitly specified properties
and methods from the ancestral scope tree. To do this, Angular provides three
symbols for notating what type of access you want to acquire: @, =, and &, which are
prepended to the attribute names that you want to derive a value from. As such, we
can create an isolate scope that looks like this:

scope : {
 'myReadonlyVariable' : '@myStringAttr',
 'myTwowayVariable' : '=myParentProperty',
 'myInternalFunction' : '&myParentFunction'
}

@ – read-only Access
Using the @ symbol to retrieve a value from your attributes means that the attribute
value will be interpolated and whatever is returned will be stored within the scope
property that you specify. To help explain, let's expand our previous scoping
example with a few extra details as shown in the following code snippet:

<div ng-init="title = 'Hello World'">
 <h2 id="appTitle">{{title}}</h2>
 <button id="newAppTitle" ng-click="setAppTitle('App 2.0')">Upgrade
me!</button>
 <div my-scoped-directive msd-title="I'm a directive, within the app
{{title}}">
 <h4 id="directiveTitle">{{title}}</h4>
 <button id="newDirTitle" ng-click="setDirectiveTitle('bob')">Bob
it!</button>
 </div>
</div>
…

Keeping it Clean with Scope

[42]

directive('myScopedDirective', function() {
 return {
 scope : {
 'title' : '@msdTitle'
 },
 link : function ($scope, $element, $attrs) {
 $scope.setDirectiveTitle = function (title) {
 $scope.title = title;
 };
 }
 };
});

First, as a quick reminder, within our JavaScript, all attribute names are normalized
to be camelCased, which is why we refer to the HTML attribute msd-title as
msdTitle within our scoping object. Secondly, take note of how our attribute string
is evaluated. The {{title}} value in our attribute will be evaluated within the
parent scope, not in the new internal scope we're creating. Thus, in this example,
#appTitle will still be Hello World, but #directiveTitle will now read I'm a
directive, within the app Hello World.

Thirdly, it is important to realize that even though we've requested only read-only
access for this attribute, it will still be dynamically updated when the parent scope
changes. If a user clicks on our #setAppTitle button, the #appTitle will be updated
to App 2.0 and #directiveTitle will mirror that change by now reading I'm a
directive, within the app App 2.0.

Of course, as you can probably ascertain by the "read-only" nature of this access,
the reverse is not true. If our user now clicks on our #setDirTitle button, #appTitle
will remain unchanged, #directiveTitle will now read bob, and, most importantly,
we've now severed the connection between the two values. The following figure
provides insight into the state of our data at each point of the process:

$parentScope

$directiveScope

ng-init tag

parsed
my-scoped-directive

initialized

Unchanged

{

title : ‘Hello World’

}

setApp Title

fired

{

title : ‘App 2.0’

}

{

title : ‘bob’

}

setDirectiveTitle

fired

{

title : ‘App 2.0’

}

{

title : ‘I'm a directive, within

the app Hello World’

}

{

title : ‘I'm a directive, within

the app App 2.0’

}

Chapter 5

[43]

From this point forward, any updates to the parent scope's title property will be
ignored by our directive, as we've overridden our original linked value with a new
static value. If we you need both read and write access to a property, you will need
to instead utilize the following method for requesting property access.

= – two-way binding
For occasions where you want full access to a specific property on the parent scope,
Angular provides the = symbol for use within our isolate scope. Let's extend our
original example again to see how this can be useful:

<div ng-init="title = 'Hello World'; subtitle = 'I am an app'">
 <h2 id="appTitle">{{title}}</h2>
 <h3 id="appSub">{{subtitle}}</h3>
 <button id="newAppTitle" ng-click="setAppTitle('App 2.0')">Upgrade
me!</button>
 <div my-scoped-directive msd-title="I'm a directive, within the app
{{title}}" msd-subtitle="subtitle">
 <h4 id="directiveTitle">{{title}}</h4>
 <button id="newDirTitle" ng-click="setDirectiveTitle('bob')">Bob
it!</button>
 <button id="newDirSub" ng-click="setDirectiveSubtitle('Time to
submerge')">Empty the ballasts!</button>
 </div>
</div>
directive('myScopedDirective', function() {
 return {
 scope : {
 'title' : '@msdTitle',
 'subtitle' : '=msdSubtitle'
 },
 link : function ($scope, $element, $attrs) {
 $scope.setDirectiveTitle = function (title) {
 $scope.title = title;
 };
 $scope.setDirectiveSubtitle = function (subtitle) {
 $scope.subtitle = subtitle;
 };
 }
 };
});

Keeping it Clean with Scope

[44]

Now that's we've updated our code, the data model now proceeds through the
following flow:

$parentScope

$directiveScope

ng-init tag

parsed
my-scoped-directive

initialized

setDirectiveSubtitle

fired

{

title : ‘Hello World’,

subtitle : ‘I am an app’

}

Unchanged

{

title : ‘I’m a directive, within

the app Hello World’,

subtitle : ‘I am an app’

}

{

title : ‘Hello World’,

subtitle : ‘Time to submerge’

}

{

title : ‘I’m a directive, within

the app Hello World’,

subtitle : ‘Time to submerge’

}

Within this scenario, our subtitle property works in exactly the same
way as it would if we had set the entire scope property to false. When our
app is first initialized, both subtitles will read I am an app. If we fire the
setDirectiveSubtitle method, however, both values will again change, this time
reading Time to submerge. Given that this method of binding is identical to a false
scope property, we might be inclined to wonder why this option is even provided.
The difference here is that we only have this two-way binding for properties that
we explicitly specify, which helps us ensure modularity. Because of the way we've
bound our property, we don't care about the name of our parent property. It could
be lesser-title-the-third for all we care, and as long as that property is passed
into our msd-subtitle attribute, our directive will continue to function in exactly the
same way, including updating the parent scope's property when our button is clicked.
And, of course, the reverse is also true. When developing our parent application,
we don't need to worry about our property names conflicting with those used in
our directive and suddenly being overwritten. This type of binding plays a huge
role in making sure a directive can be plugged into any application and have both
the directive and the application function as their respective developers intended.

& – method binding
Sometimes, however, it's not simply properties that you want to be able to maintain
access to. Sometimes you need to be able to call a method on the parent scope. For
this, the symbol of choice is &, and let's once again return to our example to see how
this symbol is used, as shown in the following code snippet:

<div ng-init="title = 'Hello World'; subtitle = 'I am an app'">
 <h2 id="appTitle">{{title}}</h2>
 <h3 id="appSubtitle">{{subtitle}}</h3>

Chapter 5

[45]

 <button id="upgradeApp" ng-click="setAppTitle('App 2.0', 'Still an
app')">Upgrade me!</button>
 <div my-scoped-directive msd-update-title="setAppTitle(title,
'Updated by a directive')">
 <h4 id="directiveTitle">{{title}}</h4>
 <button id="bobApp" ng-click="updateTitle({title : 'bob'})">Bob
it!</button>
 </div>
</div>
//Parent scope:
$scope.setAppTitle = function (title, subtitle) {
 $scope.title = title;
 $scope.subtitle = subtitle;
}
…
directive('myScopedDirective', function() {
 return {
 scope : {
 'updateTitle' : '&msdUpdateTitle'
 },
 link : function ($scope, $element, $attrs) {
 $scope.title = 'Lonely Directive';
 }
 };
});

Method binding is by far the most complicated of all scope bindings, so don't worry
if it doesn't all make sense instantly. In most cases if you need to share methods
between parent and child directives, I'd recommend using controllers (see our next
chapter) whenever possible, however this is helpful if for some reason your method
has to be scoped. Once more, the following diagram demonstrates the flow of the
data model as our user interacts with our elements:

$parentScope

$directiveScope

ng-init tag

parsed

{

title : ‘Hello world’,

subtitle : ‘I am an app’

}

my-scoped-directive

initialized

Uncharged

{

title : ‘Lonely Directive”

}

setAppTitle

fired

{

title : ‘App 2.0’,

subtitle : ‘Still an app’

}

{

title : ‘Lonely Directive’

}

updateTitle

fired

{

title : ‘bob’,

subtitle : ‘Updated by

a directive’

}

{

title : ‘Lonely Directive’

}

Keeping it Clean with Scope

[46]

In this example, we've extended our parent scope's setAppTitle method to take two
arguments, allowing us to update both the title and subtitle at the same time. We've
also requested access to that same function and passed it in via the msd-update-title
attribute. Note, however, that we don't just ask for it by name. Instead, the attribute
value actually calls the function with a set of variable and/or hard-coded parameters.
Then, within our new scope, Angular creates a wrapper function that takes a map of
the variable names and values (the {title : 'bob'} parameter in our example) and
calls our original method within the context of the parent scope, passing in all mapped
values and other hard-coded parameters.

What this means is that when we first click on the #upgradeApp button, our
#appTitle will become App 2.0 and our #appSubtitle will read Still an app.
If, however, we click on the #bobApp button within our directive, our wrapper
function, bound to updateTitle within our directive's scope will be called, the
title variable within our msd-update-title value will be mapped to bob, and
finally setAppTitle('bob','Updated by a directive') will be called within the
parent scope. It's important to emphasize that the entire function is called within the
parent scope, so even though we're passing in a title value and calling it from the
directive, it's the parent scope's title property that we're actually updating.

Again, binding a method like this is one of the most complex binding options
Angular offers for use in an isolate scope, however it also allows you as the
developer once again to remain fully modular, having to worry about the internal
logic within the setAppTitle method, or even what it's called, and yet still be able
to trigger it as you see fit. This type of access can be especially helpful when you
want to be able to trigger a data refresh from an external source, but don't want
your directive to know anything about how to go about that refresh or any data
processing that needs to happen before or after the new content is received.

Chapter 5

[47]

Summary
If you've made it this far, I trust you're convinced of the value of modularity and
are interested in the ways Angular directives can make that easier for you. Scoping,
particularly isolate scopes, is one of the most fundamental pieces of enabling that
modularity. While the default scope value of false can certainly be convenient, and
is often useful during early development and debugging, I strongly recommend not
using it within your final production code unless you know it's absolutely necessary,
and certainly not when you're developing a directive intended to be packaged and
made available for use in other applications. The new scope provided by a value of
true does provide a helpful compromise, though is still often more access than you
need for a packaged directive. Hopefully by now, you see the value of an isolate
scope, even though it does require some additional effort up front to consider all
of the properties and methods you might need. If not, hold on, it'll demonstrate its
usefulness even more in the coming chapters. In the next chapter, we'll be talking
about controllers, and the ways they can be shared across multiple directives to
extend the functionality of each.

Controllers – Better
with Sharing

In Chapter 4, Compile versus Link, we walked through the compile and link steps of
the Angular compilation process. What we set aside, at that point, were controllers,
which are also functions that execute as Angular applies a directive. In and of
themselves, controllers don't provide significant advantages over local methods
within the linking function of your directives. When paired with their ability to be
shared across directives, however, controllers provide unparalleled communication
between directives on the same node, or even just within the same ancestral tree.
To get a better understanding of how these controllers can enable directives to work
together, let's take a look at the ngModel and form controllers, which combine to
provide much of the real-time data binding that powers Angular's dynamic content.

Forms and inputs
Within Angular, every form element is also a directive whose primary purpose
is to instantiate a FormController object, attach it to the form element and, if the
form is named, register that form controller on the parent scope so that it can be
more easily accessed. Likewise, all input and input-esque elements (for purposes
of this discussion, we'll include the select and textarea tags within the input
elements category) are also built-in directives, although unless they have an
ng-model attribute on them, they don't actually have any extra functionality.

Controllers – Better with Sharing

[50]

Our HTML for this example is pretty simple, just a simple form with a single
input element.

<form name="exampleForm">
 <input type="text" ng-model="myName" />
</form>

The FormController function is primarily responsible for monitoring the overall
validity of the form, based upon the validity of the individual elements within it.
It does this through the use of the four main functions within the controller function
outlined as shown:

function FormController(element, attrs) {
 //All controller functions and properties you want to export are
bound to 'this'
 this.$addControl = function(control) { ...}; //Register an input
element
 this.$removeControl = function(control) { ...}; //Unregister an
element
 this.$setValidity = function(validationToken,
 isValid, control) { ...}; //Set the validity for a specific
element
 this.$setDirty = function() {...}; //Mark the form as having been
modified
}

For the purposes of this discussion, we're not going to worry about the internal
logic of the FormController functions, what instead I want you to note is
that, on its own, this controller does absolutely nothing. It's a handy collection
of functions, but without any input elements, a form is simply sitting there,
"valid", but otherwise unimpressive.

You've (hopefully) read the introductory paragraph, however, so you already
knew that, and are now sitting there patiently waiting for the big reveal where
ngModelController arises with a flourish and shows you just how cool controllers
really are. Well, far be it from me to fool you twice (yes, I know after the whole
select directive and compile twist, you might be cautious), so let's dive straight
into the ngModelController function:

NgModelController = function($scope, $exceptionHandler, $attr,
$element, $parse) {
 this.$render = noop;
 var parentForm = $element.inheritedData('$formController') ||
nullFormCtrl;

Chapter 6

[51]

 this.$setValidity = function(validationErrorKey, isValid) {
 … //Internal processing
 parentForm.$setValidity(validationErrorKey, isValid, this);
 };
 this.$setViewValue = function(value) { ... };
};

And then finally, tying it all together is the ng-model directive, which grabs both
controllers and teaches them to share:

ngModelDirective = function() {
 return {
 require: ['ngModel', '^form'],
 controller: NgModelController,
 link: function(scope, element, attr, ctrls) {
 var modelCtrl = ctrls[0], //grab the instance of the ngModel
controller
 formCtrl = ctrls[1]
 formCtrl.$addControl(modelCtrl);
 element.bind('$destroy', function() {
 formCtrl.$removeControl(modelCtrl);
 });
 }
 };
};

So yes, I admit, that was a lot of code. Feel free to go walk around the block to let
it all settle in your mind before continuing... Ok, cool, let's dive in then. Part of the
reason there's so much code is that that's what makes controllers powerful, they
provide the ability to tie together large amounts of otherwise disconnected code into
a cohesive package. In this example, you can see that when the ng-model directive
initializes, it requests an array of controllers, both its own and the FormController,
the latter of which is both optional and can be located on ancestral elements.

Let's go ahead and walk through the code to see how that all comes together.
Remember that the compilation process proceeds down the DOM tree, so the
FormController function initializes first. After the form is compiled, Angular
works its way down to our input element, where it initializes the
ngModelController function:

NgModelController = function($scope, $exceptionHandler, $attr,
$element, $parse) {
 this.$render = noop; //Each directive that requires ngModel must
implement this method to properly display the value

Controllers – Better with Sharing

[52]

 // Grab the form controller if there is one
 var parentForm = $element.inheritedData('$formController') ||
nullFormCtrl;
 this.$setValidity = function(validationErrorKey, isValid) {
 … //Internal processing
 parentForm.$setValidity(validationErrorKey, isValid, this);
 };
 this.$setViewValue = function(value) { ... };
};

Before we continue, there are a couple of things to note here. First, unlike the link
and compile functions, you can pass in any available service or dependency, such
as $exceptionHandler and $parse in the preceding example. Additionally, we can
grab the FormController function off the element data ($element.inheritedData(
'$formController')), which we can then use to pass validity information as part of
each input's own $setValidity method. This connecting of controllers to elements
all happens via the directive, and is our first example of using directive controllers to
coordinate across elements.

Once the ngModelController function is initialized, Angular continues with the
compilation process and triggers the linking function on the element itself, as shown
in the following code:

ngModelDirective = function() {
 return {
 require: ['ngModel', '^form'],
//request an array of controllers. Look for formController on parent
elements
 controller: NgModelController,
 link: function(scope, element, attr, ctrls) {
 var modelCtrl = ctrls[0],
//grab the instance of the ngModel controller
 formCtrl = ctrls[1];
//grab the form controller
 formCtrl.$addControl(modelCtrl);
//register our ngModel controller

 element.bind('$destroy', function() {
 formCtrl.$removeControl(modelCtrl);
//unregister our controller if this element is removed
 });
 }
 };
};

Chapter 6

[51]

As a reminder, the require property can be a string if we only want one controller,
or an array as we have here. With the array format, the ctrls parameter passed
into our linking function is also an array, in the same order as we requested them.
Here, we've grabbed both controllers, and thus are able to call the FormController's
addControl method and pass in our ngModelController function. From this point
forward, each controller, and therefore each directive, is fully aware of the relevant
changes happening on the other.

At this point, you may be asking why we're not simply using basic messaging with
$broadcast and $emit to communicate between our directives. There are two basic
reasons why we prefer controllers over messaging in this scenario:

•	 First, idealistically, using controllers is significantly more modular. It allows
us to separate out instance code that needs to be shared and available for
cross-directive communication from the rest of the scope, while still keeping
such methods available for convenient usage.

•	 Secondly, more pragmatically, controllers are far easier to utilize for
scenarios like this. Messaging is designed primarily for a shotgun notification
approach, such that when an event happens, you broadcast it to all of
the elements above or below your current node, and then continue on.
Controllers, however, allow for a much more targeted communication style,
calling methods on specific nodes as necessary, and while we didn't use
them here, also allowing for easy callback integration. Doing the same sort of
targeted communication via messaging requires significant extra logic on the
part of the listeners to determine whether or not they're the intended node.

There are certainly still plenty of times where the more open broadcast style of
messaging suits your goals better. Controllers simply fill in when a more targeted
approach is preferred.

Creating our own controller
communication
Most likely, you'll find that ngModel is the most common controller you'll require
within your code. Any time you want to create a custom input, or even just bind an
input plugin that requires specific formatting, ngModel provides the methods you'll
need to coordinate communication between the plugin and your data model.

Controllers – Better with Sharing

[54]

With that in mind, let's walk through the process of creating an input for time values
that utilizes the handy timepicker jQuery plugin provided by Jon Thornton. Our goal
is to be able to turn a regular text field input into a timepicker that displays its value
in the format HH:mm but stores it in our data property in milliseconds.

For this example, our HTML is once again pretty simple, as shown here:

<input type="text" ng-model="timeOfDay" time-picker />

Obviously, we'll also need to include the timepicker plugin within our main page
so that it can be attached to our input, so if you're recreating the code on your own,
be sure to do that before continuing on. For our directive, let's start with the basic
definition object, and since we know we need data-binding functionality, we'll
require ngModel from the start so that we can utilize its methods.

.directive('timePicker', function () {
 var today = new Date(new Date().toDateString());
 return {
 require : '?ngModel',
 link : function ($scope, $element, $attrs, ngModel) {
 }
 }
});

Note that since we need to be working with the actual instance of the element,
almost all our code is going to sit inside the linking function, and we don't need to
worry about the compilation process at all. We've also initialized a today variable
that holds a Date object set to this morning at midnight. Creating the variable as part
of the factory function allows us to just have one today variable that's shared across
all instances of our time-picker directive. Be careful, however, as even though
this allows us to minimize memory usage, it does mean that if our app is left open
overnight, our directive will start providing inaccurate results. If you're planning
on using this directive in a live application you'll want to create a secondary function
that updates this value once tomorrow comes. Let's move forward now and grab
our controller:

link : function ($scope, $element, $attrs, ngModel) {
 ngModel = ngModel || {
 "$setViewValue" : angular.noop
 }
}

Chapter 6

[51]

You may have noticed this pattern before, as a part of the form and ngModel
controllers that we looked at previously. Remember that we've made our controller
requirement optional, so that if someone wants to use our directive just to attach
a timepicker, but doesn't need the data-binding offered by ngModel, our directive
won't throw an error when it doesn't find the requested controller. We could just
use conditional statements to verify that ngModel is defined each time we need
to use it, however the developers at Angular use this pattern, and I recommend
it, in order to help keep the directive code a little cleaner. All we're doing here is
saying that if ngModel is defined and has a true value, use that. If not, define it as
an object with all of the requisite method names set to a no-op function (angular.
noop is a convenience method provided for exactly this purpose). Now when we
call ngModel.$setViewValue later in our directive, if there's no ngModel directive
attached to our node, our code will continue along without an issue.

Speaking of ngModel.$setViewValue, let's take a look at how we'll attach our
timepicker and where we might need that very function. If you've been pining
away for a jQuery plugin while reading this book, now is the time for a brief
moment of relief:

link : function ($scope, $element, $attrs, ngModel) {
 …
 var initialized = false;
 setTimeout(function () {
 initialized = $element.timepicker()
 .on('changeTime', function (ev, ui) {
 var sec = $element.timepicker('getSecondsFromMidnight')
 ngModel.$setViewValue(sec * 1000);
 });
 });
}

Undoubtedly, your first question is going to be about setTimeout, particularly one
with no actual timeout. Because we're in the linking function, our $element is fully
instantiated, so this sort of trickery shouldn't be necessary. And you're right, it isn't
necessary. It is, however, a practice I recommend, for two primary reasons. First,
on occasion, particularly if your directive or another on your element is applying a
template, Angular and jQuery will both try to apply themselves at the same time and
you run into a race condition. While this is rare, and usually means that your plugin
isn't actually working on the $element itself, but trying to clone it or nest something
inside, it still can cause a few headaches and this helps guard against that.

Controllers – Better with Sharing

[56]

Secondly, and more importantly, is that when you begin to develop larger
applications and have hundreds or even thousands of different directive instances
all manipulating and binding to their own elements in various ways, any plugin
that requires DOM manipulation tends to slow things down. And often, especially
for input type plugins that are hidden until the user directly interacts with them,
these plugins can wait a few milliseconds to initialize themselves without harming
the user experience. Wrapping our initialization process within setTimeout tells
the JavaScript interpreter to process this after it's done with the current task, so the
compilation process doesn't get delayed by our jQuery plugin attachment. Again,
this isn't a necessity, but it is a practice I recommend you consider as you begin to
develop larger applications with Angular.

Now that we've discussed that, let's take a look at how we're using $setViewValue.
Because we've grabbed a shared instance of our ngModel controller, we can call the
controller's $setViewValue function from our own directive, which helps us connect
our plugin to the data model. Remember that this is used to take the display value,
perform any necessary parsing, and then store it in the data property. The timepicker
plugin emits a changeTime event anytime the user updates the time value displayed
in our input, so we use that to know when we need to change our internal value.
Within our event handler, all we have to do is get the number of seconds since
midnight, which the plugin provides a convenience method for, then multiply it by
a thousand and pass that into $setViewValue. Once we're done, our data will travel
through the following process:

The ngModel controller
takes in the new value
and updates the data
model appropriately

Our event listener grabs
the seconds from midnight,

multiples by 1000, and
passes to $setViewValue

User selects a value,
timepicker fires

‘changeTime’ event

Once we have our timepicker initialized and listening for changes in the view, our
next step is to define the $render method, which is responsible for converting a data
value to the appropriate display or view value. This will be called any time the data
value changes from a source outside our directive, including when it's first initialized
and can be defined as follows:

link : function ($scope, $element, $attrs, ngModel) {
 …
 ngModel.$render = function (val) {
 if (!initialized) {

Chapter 6

[51]

 //If $render gets called before our timepicker plugin is ready,
just return
 return;
 };
 $element.timepicker('setTime', new Date(today.getTime() + val));
 }
}

Again, note that we're actually redefining the $render method of our shared
ngModelController function, so when the ngModel directive observes a data change
and tells the controller to execute $render, it's our function that gets called. All we
have to do is know how to transform the data-model value into a value our plugin
expects. In this case, the timepicker plugin provides a method for setting the time
displayed by passing in a Date object with the specified time. Because our values are
stored in milliseconds since midnight, when we need to render a value, we simply
take the time from today, add on our new value, and create a Date object with that
value. Again, when we're finished, our data will flow back into the view via the
following process:

Timepicker updates
element and displays

2:58PM

Our $render function
adds val to today’s time

and passes it to ‘setTime’

ngModel Directive
observes change and

calls $render with
val = 53907764

Summary
As you have hopefully seen, controllers provide a powerful mechanism for connecting
two or more otherwise disconnected directives. This means that each directive can
provide its own functionality, such as the simple timepicker plugin, but also extend
its functionality if another directive is present. This targeted communication helps us
make calls and interact with other pieces of an application directly without the need
for the general broadcast approach provided by messaging. For the next chapter, we
are moving on to a different topic entirely, transclusion, which allows you to utilize
the existing content of an element when applying your directive.

Transclusion
Up to this point, we've primarily focused on one side of directives, which is how
they can affect the elements to which they are attached by replacing the HTML via
a template, binding additional plugins, or some combination of the two. In this
chapter, we're going to look at the opposite side and see how transclusion allows
for the original element's content to impact the behavior of the directive. While this
methodology is certainly less common, it still is a powerful tool to be aware of and
one you should call to mind when you find yourself tempted to create multiple
directives that only vary from one another in content. With that, let's dive in and
check out some examples.

That's not a word...
True. Looking up transclude in the dictionary won't help you understand what's
really happening here (a fact lamented in the comment section on Angular's
documentation site). I believe, however, that a brief dive into why they created this
word in the first place will actually help greatly in your understanding of what its
real purpose is, so bear with me a moment while we step aside from the focused
realm of JavaScript and breathe deeply in the wider world of computer science.

If you've ever had the privilege, or arduous task, of creating a templating syntax,
along with the parser required to bring that syntax to life, you're likely familiar
with the concept of inclusion. Within a template, various snippets of code will
often be repeated. In HTML, this is commonly seen with headers, footers, a Twitter
widget, and so forth. And in the continuous quest for Don't-Repeat-Yourself code,
we usually build 'include' commands into our templating definitions that allow you
to write your snippet of code once and then drop it into other parts of your template
wherever you want.

Transclusion

[60]

That part of templating, pretty much everyone agrees upon. There remains a
question, however, which is: if you're including a snippet that itself has dynamic
variables and needs to be parsed, what scope do you use when parsing it? Some
widgets, such as the Twitter widget mentioned in the preceding paragraph, benefit
from being parsed all by themselves in an isolated scope, and then just having the
compiled result inserted at the include tag. Other widgets, such as a customized
blog post header or dynamic list display, however, need to be parsed within the
original scope of the include tag, not outside of it. Most mature templating syntaxes
have ways of performing both types of inclusion, but it's a problem that each syntax
designer must answer in their own way.

...it is a solution
For Angular that answer is transclusion. My unofficial interpretation of the word is
translated-inclusion. What transclusion does is offer a way to create a widget with an
isolate scope, which we as good modular developers always do, but then tunnel back
out into the parent scope to parse the original content. This, of course, is significantly
clearer in an example, so let's check one out. Take a look at the following HTML and
note what's different from our previous examples:

<div>
 <input type="text" ng-model="name" />
 <select ng-model="movie">
 <option value="Man Of Steel">Superman</option>
 <option value="A New Hope">Star Wars</option>
 </select>
 <input type="number" ng-model="friendCount" />
</div>
<div movie-info="movie">
 <p>Hi, I'm {{name}}, and I'm going to see {{movie}} with
{{friendCount}} friends</p>
</div>

Ok, so what do you notice? Hopefully, one of the main things you saw is that our
directive, movie-info, isn't just an empty node this time. It has child nodes. Before
we get too much farther into how exactly that impacts our development, however,
let's take a look at the directive definition as well:

directive('movieInfo', function () {
 return {
 template : '<div class="movie-info">' +
 '<h1 class="movie-title">{{name}}</h1>' +
 '' +
 '<div ng-transclude></div>' +
 '</div>',

Chapter 7

[61]

 transclude : true,
 scope : {
 'name' : '=movieInfo'
 }
 }
});

Now I should ask again, what do you notice? Perhaps most notably, we have a
scoping issue. On the one hand, we're adhering to our principle of modularity and
isolating our scope. On the other hand, however, we've ignorantly introduced a
naming conflict. Both scopes use the name property, and even though our scope
is isolated, the origin element content we've pulled in is now inside our directive
element, so surely it's going to be parsed against the directive scope, which isn't the
name property we want.

Enter transclusion, stage left. Remember, we said that transclusion stands for
translated-inclusion, which means that first we parse it and then we include it. In
the official Angular documentation, they explain this by saying that the transcluded
scope and the isolate scope are siblings. The transcluded scope inherits from the
parent scope per normal, and the isolate scope, though still a child of the parent
scope, is otherwise disconnected.

That undoubtedly sounds fascinating, but perhaps a bit obtuse. Let's take a look
then, at what our HTML will look like after everything is parsed and compiled,
taking note of the highlighted values:

<div>
 <input type="text" ng-model="name" /><!-- value: "Alex" -->
 <select ng-model="movie">
 <option value="Superman">Man of Steel</option><!-- selected -->
 <option value="Star Wars">A New Hope</option>
 </select>
 <input type="number" ng-model="friendCount" /><!-- value: 3 -->
</div>
<div movie-info="movie">
 <div class="movie-info">
 <!-- these two lines parse against the directive scope -->
 <h1 class="movie-title">Superman</h1>

 <div ng-transclude>
 <!-- Everything in here parses against the parent scope -->
 <p>Hi, I'm Alex, and I'm going to see Superman with 3
friends</p>
 </div>
 </div>
</div>

Transclusion

[62]

As this hopefully makes clearer, we've effectively created a tunnel to the parent
scope, hidden from the directive's scope and yet fully accessible to the transcluded
portion nested inside. And, of course, all these data values are dynamic, so if the
user selects a different movie, all the instances of Superman will change to Star
Wars, whether they're bound to the movie property of the parent scope or the name
property of the directive scope. Likewise, changing the parent scope's name property
will only affect the value within our transcluded element, the directive scope will
remain ignorant of its existence entirely.

Manipulating the transcluded content
Sometimes you want more control over the transcluded content than just dropping it
into an element and calling it a day. There are a couple of different methods you can
use, but I've found the most efficient and straightforward is by utilizing the directive
controller. As you likely remember from the previous chapter, one of the main
benefits of controllers is that they can be shared across directives. Another feature,
not as commonly used, is that they can also require $transclude, which provides a
transclusion function already properly bound to the parent scope and ready for use.

Again, you'll really only need to utilize this functionality when you want to
manipulate the transcluded content before including it in your new directive
element, otherwise the standard procedure we used in the preceding section is far
simpler and easier to debug. That said, let's take a look at a situation where this can
come in handy. Consider that you have a blog header that you want to enhance.
Your starting HTML might look like the following:

<div class="post">
 <h2 class="post-header">
 {{postTitle}} |
 {{author}}
 {{formattedDate}}
 </h2>
 <div class="content">...</div>
</div>

While that conveys all the necessary information, it's rather boring. Suppose you
want to only show the title normally, then when your devoted reader scrolls down
to a specific post, the title slides to the center and your author and date values fade
in on the sides (If you're a designer, apologies for my admittedly developer-brained
invention here). While you could try using a series of regular jQuery plugins for this,
hopefully by this point in our book you've become so awed by the structure that
Angular provides for modularity that your days of non-data-driven plugin-binding
are a thing of the past. If not, humor me for the sake of our example.

Chapter 7

[63]

So, you want this awesome blog post header and you've got the plugins ready for
detecting scroll positions and fading in your metadata; the only trick is that they
all work much better together if your HTML actually looks like this:

<div class="post">
 <div class="post-header">
 {{formattedDate}}
 <h2 class="title">{{postTitle}}</h2>
 {{author}}
 </div>
 <div class="content">...</div>
</div>

With the power of controller fueled transclusion, we can do just that. Remember,
when we request $transclude, it's already bound correctly, so even if we have other
directive scope properties in here, they won't conflict with our post values. And
for those of you craving a bit of jQuery based DOM manipulation, this next slice of
example code is my gift to you:

.directive('postHeader', function () {
 var tpl = '<div class="post-header"></div>';
 return {
 template : tpl,
 replace : true,
 restrict : 'C',//We're attaching ourselves to the classname 'post-
header' here
 transclude : 'element',//We want the whole element, not just the
content
 controller : function ($scope, $element, $attrs, $transclude) {
 $transclude(function (clone) {
 //clone is our transcluded element, in this case the h2 tag,
fully compiled and ready for use
 clone.removeClass('post-header');// this class is on our main
directive element now
 var title = clone.find('.title').text();
 var dateEl = clone.find('.date').hide();//Start hidden
 var authorEl = clone.find('.author').hide();
 // Now insert them all in where we want them
 $element
 .append(dateEl)
 .append('<h2 class="title">'+title + '</h2>')
 .append(authorEl);
 });
 //When a user scrolls down to our element, reveal author and
date

Transclusion

[64]

 $element.waypoint(function () {
 $element.find('.date, .author').fadeIn();
 });
 }
 }
});

Summary
As you can see, once we've grabbed $transclude, the rest of the manipulations
are actually quite standard. In this case, because we've distributed the transcluded
content in a piecemeal manner, we end up not even ever inserting the clone
element itself back into the DOM; however there might be other times when you
only want to extract part of the element for use elsewhere, and then insert the rest
back into its normal location. In either case, always remember that transclusion is
your friend when you need to interact with the content internal to your directive.
Use the standard ng-transclude directive when you want the content unaltered,
and controller plus $transclude if you need to manipulate it first. Coming up
next we're going to spend two chapters talking about testing, both unit testing and
Angular's scenario end-to-end testing framework.

Good Karma – Testing
in AngularJS

Ah, testing! The process that every young developer believes they don't need; of
course, every experienced developer just looks at them and says, "Just wait, you'll
see." Often, however, experienced or not, testing is one of the last tasks we as
developers think about, if for no other reason than because it tends to feel like a
whole new development task, and even worse, one where perhaps your client or
boss thinks you're wasting time because they can't see the direct results. In an effort
to help assuage this suffering, Angular comes shipped with Karma, a test runner
built to make testing easier and designed to make testing as easy as just scoping
out the desired functionality, and instead of being a part of the process that drags
down your morale, it gives you immediate feedback on the effectiveness, or
not-quite-there-yet-ness, of your code, which quickly makes for faster and more
efficient development overall.

Getting Started
Now that we have the obligatory testing-is-good platitudes out the way, let's dive
into Karma and let it prove its worth on its own. If you already have NPM (Node
Package Manager) installed, installing Karma is as simple as npm install -g
karma. If not, head over to http://karma-runner.github.io and follow the
instructions there. Once you have it installed, fire up a terminal in the same directory
as your code and run karma start, then sit back and watch the magic happen.

Well, sort of. Likely what really happened was you got an error saying it couldn't
find your config file. Karma is designed to let you specify different configurations
for each project. Many of the options are more niche than we're going to cover in this
chapter, but let's walk through some of the basic options that need to be defined for
every project.

Good Karma – Testing in AngularJS

[66]

Configuration
By default, Karma looks for a configuration file called karma.conf.js, and
while you can name it whatever you want, we're going to stick with that for the
sake of convenience. To create your initial file, run karma init in your project
directory and answer the questions appropriately. For this chapter, I'll be using
the following configuration:

•	 Testing framework: Jasmine
•	 Use Require.js: no
•	 Browser: Chrome
•	 Files to test: test/spec/**/*.js
•	 Watch files and run on change: yes

These are the defaults for my current version of Karma, though they may change
by the time you're reading this. When you specify which file pattern to watch,
it will likely create a warning that it can't find any files that match that pattern.
That's ok, we'll get to that in a moment. First, we need to create our code directory,
import Angular, and finally tell Karma to grab our libraries so it can process our
code correctly.

Angular and Karma
First, go ahead and create a directory called app, where we'll store all our
application code. Within that, let's create a components directory for Angular (and
jQuery if you need it) and a scripts directory for all our custom code. Go ahead
and import your angular.js file, as well as the angular-mocks file included in your
Angular download (if you just downloaded the base angular.js file, you'll need to
go back to http://www.angularjs.org and download the entire ZIP package).

Some of you may recognize this filesystem pattern as the one
followed by Bower (http://bower.io), an awesome browser
package manager by Twitter. We don't have time here to dive into it
deeper, but I highly recommend you look into it as you go forward in
developing your web applications.

Once you have everything included, your directory structure should look something
like the following:

myAwesomeApp/
-- test/

Chapter 8

[67]

---- spec/
------ directives/
-------- directives.js (currently an empty file)
-- app/
---- components/
------ angular/
-------- angular.js
------ angular-mocks/
-------- angular-mocks.js
---- scripts/
------ app.js (currently an empty file)
------ directives/
-------- directives.js

I've gone ahead and created a couple of empty test and app files as well. You're
welcome to organize your app and test directories however you want, although
I do recommend keeping them in a similar structure to help you remember which
files test which parts of your application.

Now that our directory structure is in place, we need to finish telling Karma which
files to include. Go ahead and open karma.conf.js again in a text editor and find
the files array. Right now it should just have one entry, corresponding to the test
file pattern we specified in the previous paragraph. Now, before that entry, let's
add the file patterns for our application scripts, so it should read like this:

files = [
 'app/components/angular/angular.js',
 'app/components/angular-mocks/angular-mocks.js',
 'app/scripts/*.js',
 'app/scripts/**/*.js',
 'test/spec/**/*.js'
];

And, just like that, Karma is ready to run. That said, a test setup without any tests
is obviously not particularly helpful, so let's go ahead and create our first test.

If the idea of writing a test before you've even written any application
code seems backwards to you, I highly recommend doing some
research into Test Driven Development (TDD) online. We don't have
time to cover it all here, but it is the approach we'll use for these two
chapters and our final app in the last chapter.

Good Karma – Testing in AngularJS

[68]

My first test
There are two primary types of tests supported by Angular and Karma: Unit and E2E
(end-to-end). Unit testing is concerned with testing small chunks of code to ensure
they do, and continue to do, what they're supposed to do. We'll do a quick overview
of those next, and then dive into them in more detail in the next chapter. After our
unit testing overview, we're going to introduce Angular's approach to E2E testing,
which ensures that your whole application has and maintains all its functionality.
Because E2E testing is more focused on an entire application, and not just a single
directive, we won't spend too much time with it here, but it is worth being familiar
with as you go forward.

Ok, let's take a look at some code. Jasmine allows you to have multiple test blocks,
each of which is housed in a describe call. Usually you would use one test block
per module of code, unless you have some modules of either very large or very small
size. For our purposes, we'll wrap all our directive tests in one describe call, so that
our initial test/spec/directives/directives.js file looks like the following:

describe('My Tested Directive', function () {
});

Since we're going to be testing a directive, we'll need access to the compilation
process, as well as a scope to work with. Luckily for us, the angular-mocks package
we included provides the same dependency injection functionality that we've
come to appreciate so much in our application code, using the inject method as
highlighted in the following code snippet:

describe('My Tested Directive', function () {
 var $compile, $rootScope;

 //Require the module our directive is attached to
 beforeEach(module('myApp'));

 //The inject function strips away the underscores, which allows us
 //to avoid any scoping confusion
 beforeEach(inject(function (_$compile_, _$rootScope_) {
 $compile = _$compile_;
 $rootScope = _$rootScope_;
 }));
});

Chapter 8

[69]

The module method is also provided by the angular-mocks package, and bootstraps
our Angular app for us before running each of the tests. The mocks package provides
a few other utilities for testing which we won't cover here, but are helpful if you
dive into more complex testing situations and are documented as part of the official
Angular documentation. Finally, the beforeEach method is part of the Jasmine
framework itself and, as you might guess by the name, executes before each test runs,
allowing us to perform any necessary setup or data normalization before continuing.

Now that we have everything wired up, let's go ahead and write our first unit test.
For this directive, we're going create another listing directive, much like out tweet
widget from Chapter 2, The Need for Directives, except this time it's a list of players,
and we'll build the entire widget as a tested directive, instead of just generic
Angular code. Our first test simply confirms that our directive compiled correctly.

describe('My Tested Directive', function () {
 … //setup code

 //We'll use this template for all our tests
 var directiveTpl = '<div player-widget="playerList"></div>';
 it('should create player widget element', function () {
 var $scope = $rootScope.$new();
 //The passing a template into $compile returns a "linking"
function that can
 //be used to take a scope and apply it to the template
 var $element = $compile(directiveTpl)($scope);
 //Now the actual test
 expect($element.html()).toContain('class="player-widget"');
 });
});

Now, if Karma is running in the background, you'll see it noticed the new test, ran it,
and found the result a bit disappointing. That, of course, is exactly what we expected,
since we haven't defined our directive or its actual template yet. In order to prevent
our dear test runner from being sad for too long, let's go ahead and build that out. In
our scripts/app.js file, we need to create a module named myApp, and then in the
scripts/directives/directives.js file, we'll create our actual directive. As an
exercise to test your progress on the path to directive mastery, go ahead and build
part of the directive yourself so that our tests start passing. If you get stuck, don't
worry, we'll walk through all the code shortly, but first, try it yourself, and then
we'll write a few more tests.

Good Karma – Testing in AngularJS

[70]

Mocking data
Often when we're testing different pieces of an application, we need to validate how
that piece responds to specific data input. We don't however, want to be dependent
on an external source for that data; there's nothing worse than spending several
hours trying to debug your failing tests only to realize that your third-party data is
corrupt. Because of this, whenever possible we want to use mocked sample data for
our tests so that we can be sure of the validity, or invalidity if we're negative testing,
of the input our directive is receiving.

As a side note, whenever possible your directive should not be
responsible for actually retrieving the information. Angular provides
services as a more modular way of handling information, and they
also make it significantly easier to test. We don't have time for a full
discussion of services here, but the short answer is if you find yourself
requiring $http into your directive, it's time to create a service.

In our case here, we'll want to mock the player JSON data that gets passed into our
widget. For convenience' sake, we'll include our sample data in the same file as our
test, but if you have lots of sample data I recommend keeping it in separate files and
loading it into your test runner via the karma.conf.js config as discussed previously.

For our next two tests then, we want to ensure that our directive properly received
the player list, and that it correctly generated the corresponding DOM elements.

describe('My Tested Directive', function () {
 … //setup work and first test

 var playerList;
 beforeEach(function () {
 //We want to set this before each test, in case we need to
manipulate it
 playerList = [
 { "name" : "Babe Ruth", "team" : "Yankees" },
 { "name" : "Jackie Robinson", "team" : "Dodgers" },
 { "name" : "Hank Aaron", "team" : "Braves" }
];
 });
 it('should scope playerList to players', function () {
 var $parent = $rootScope.$new();

Chapter 8

[71]

 $parent.playerList = playerList;
 var $element = $compile(directiveTpl)($parent);
 var $directiveScope = $element.scope(); //Angular provides the
scope() method to retrieve an element's scope
 expect($directiveScope.players).toBeDefined();//Confirm we have a
new property
 expect($directiveScope.players.length).toEqual(playerList.
length);//Confirm our list is the same length
 });
 it('should generate player elements for each player', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 //We're outside of the angular $watch loop here, so we need to
call $digest manually
 $scope.$digest();
 //the jQLite wrapper provided by angular can only find elements by
tag name. If you're including jQuery, you'll have access to those full
methods instead
 var $players = $element.find('p');
 expect($players.length).toEqual(playerList.length);
 expect($players.eq(0).text()).toContain('Babe Ruth');
 });
});

Before we go on, a quick note about testing objects and using equality. Jasmine is
good about using an object's properties, not its reference, to test for equality. That
said, the ng-repeat directive adds an extra $$hashKey property to each item for
caching purposes, so if you're going to test a property that you iterate over (like we
do here), it likely won't be the same as what was passed in, which is why we used
definition and length tests, instead of just expect($directiveScope.players).
toEqual($parent.playerList).

The test subject
Ok, so we've once again caused our poor test runner extensive grief and anguish
(we now have two failing tests, not just the paltry one from earlier), so let's dive
into our directive code and see how this all fits together. As a confirmation to what
you've hopefully already coded, the scripts/app.js file should be one simple line:

angular.module('myApp', []);

Good Karma – Testing in AngularJS

[72]

And then our final scripts/directives/directives.js file should have come
together somewhat similar to the following:

angular.module('myApp')
 .directive('playerWidget', function () {
 //Define our template for the widget
 var tpl = '<div class="player-widget">' +
 '<p class="player" ng-repeat="p in players">' +
 '{{p.name}} ({{p.team}})' +
 '</p>' +
 '</div>';
 return {
 template : tpl,
 scope : {
 'players' : '=playerWidget'//Declare our two-way binding, and
nothing else
 }
 }
 });

With that, we're going to press pause on our study of unit testing. We'll dive back in
more deeply in the next chapter, but first, I want to introduce the Angular Scenario
test runner, and its usage for E2E testing.

E2E testing
For E2E testing, Angular provides a testing suite called the Scenario Runner, which
is essentially a collection of utilities to navigate your application and interact with it
programmatically, so that you can test functionality from the user's point of view as
well, and not just at the code level.

To get the Scenario Runner configured, go ahead and copy your current karma.
conf.js to karma-e2e.conf.js. This testing setup requires a few different files to
operate, and it's generally recommended to keep your two configurations separate
for modularity and ease of testing. Open your new configuration file and replace
jasmine with ng-scenario in the frameworks array. You can also remove all the
application files from the include, as we're going to be loading our app directly this
time, so those includes are all handled via the application itself. Now is a good time
to also create an e2e directory under your test folder and update the test path to
match it. Our files array should now have only one element:

files = [
 'test/e2e/**/*.js'
];

Chapter 8

[73]

Now, there's one last thing we need to do to get this all running, and that's make
sure our app is hosted somewhere that a browser can access. To do this, set up a
proxy between what Karma sees as your application root and the actual web address
(including port) for your application. The following two examples are for Apache
and node.js servers. If you get stuck, a quick Google search for your specific setup
should point you in the right direction.

//Included in your karma-e2e.conf.js file (only use one of the
two below)

proxies : {
 '/': 'http://localhost/my-app/' // For apache/nginx
 '/': 'http://localhost:8080/' // For node.js
}

Now that Karma is all set for our E2E testing extravaganza, let's give it something
to work with.

If you get an error when running this configuration that says
No provider for "framework:ng-scenario", execute
npm install karma-ng-scenario karma-ng-html2js-
preprocessor in your application directory, and then run karma
start karma-e2e.conf.js again.

Scenarios
We'll start by testing the same functionality we covered in the previous section,
except now from the browser's point-of-view. We'll need to have an actual index.
html file which contains our widget, so go ahead and create that now if you're
following along (and you are, of course, aren't you?). Then let's create our first
few tests as follows:

describe('My Tested Widget', function () {
 beforeEach(function () {
 browser().navigateTo('../../app/index.html');
 }); // Tell our testing browser to load the index file

 it('Should display the widget', function () {
 expect(element('.player-widget').count()).toBe(1);
 });

 it('Should display 3 players', function () {
 expect(repeater('.player-widget .player').count()).toBe(3)
 });
});

Good Karma – Testing in AngularJS

[74]

So far everything looks pretty much the same as our previous unit tests, except that
now everything is already compiled and we don't have to worry about generating
all our elements. Another gotcha to be aware of is that while these tests look just like
Jasmine, they have one key difference: expect here requires a future, not a value.
What this means is that the usually tautological test of expect(true).toBe(true)
will actually fail, because the first true is a value. Instead, the Scenario Runner
version of expect requires a future, or promise, which will eventually resolve to a
value and it's that resolved value that gets tested against the expectation. If you're
not familiar with promises, I recommend taking some time to learn about them, as
both Angular and jQuery (and several other JavaScript libraries) use them for nearly
all asynchronous processing.The Scenario Runner uses them because it actually
queues up all the tests, and then runs through them, instead of just processing them
as it reads them, so the values need to be resolved asynchronously. All the standard
Scenario Runner methods return futures, so usually you won't need to worry about
it, but it is something to be aware of as you start developing more complex tests.

Finally, let's add one more test, looking at actual user interaction. Suppose we want
to highlight a player when the user clicks on it. As you can see in the following code
snippet, the Scenario Runner provides many of the same methods you might have
used in jQuery DOM manipulation, such as click and attr:

 ...
 it('Should highlight a player when clicked', function () {
 var p = element('.player-widget .player:first');
 p.click() ;
 expect(p.attr('class')).toContain('highlighted') ;
 });
 …

Just like that, we've loaded our page, interacted with it, and tested the result. I'll
leave it to you to update our widget directive with the code to satisfy Karma's need
for properly executing code.

Summary
So now we've introduced Karma, gone over its basic configuration options, and
looked at the basics for both unit and E2E testing. While unit testing allows us to
validate the data-model, E2E testing lets us test what the user actually sees, in a
way that's fast and reliable. Next, we'll dive into unit testing in more detail, looking
at how we can use it to ensure both accurate and corrupt data is handled cleanly
by our directives.

A Deeper Dive into
Unit Testing

In the previous chapter we discussed the basics of testing with Angular, including
how to set up Karma and write your first few unit and E2E tests. For the next few
pages we're going to dive deeper into the realm of unit testing, taking a look at
some of the ways being data-driven makes our lives easier, and how striving to
make our code easy to test will also directly lead to our code also being more
modular and extensible. We'll continue using Jasmine for all our tests here, and
many of the examples we cover will be helpful for testing in all frameworks,
not just Angular, although of course that will be our primary focus.

Highlighted, again
At the end of our discussion on E2E testing, we added the ability to highlight each
player when a user clicked on it. I left it up to you to implement the directive code
to create that functionality, and hopefully by now you've done so. There are a couple
ways you might have gone about it and, if you're used to the DOM manipulation
method of user-interaction, you might have written something like the following:

directive('playerWidget', function () {
 var tpl = '<div class="player-widget">' +
 '<p class="player" ng-repeat="p in players">' +
 '{{p.name}} ({{p.team}})' +
 '</p>' +
 '</div>';
 return {
 template : tpl,
 scope : {

A Deeper Dive into Unit Testing

[76]

 'players' : '=playerWidget',
 },
 link : function ($scope, $element, $attrs) {
 //When a user clicks the player tag, add the highlighted class
 $element.on('click','.player', function (ev) {
 jQuery(ev.currentTarget).addClass('highlighted');
 });

 }

 }
});

And while that method will work, and even passes our E2E tests, nothing in
the data-model itself actually changes to correspond to the highlighted state,
which makes it virtually impossible to test from a strictly data-model perspective,
making unit testing worthless for this functionality.

What Angular encourages, both from a modularity perspective and for ease of
testing, is a more data-driven approach. Consider the following example instead,
with the changed portions highlighted:

directive('playerWidget', function () {
 var tpl = '<div class="player-widget">' +
 '<p class="player" ng-repeat="p in players" ng-
class="{highlighted : p.active}" ng-click="activate(p)">' +
 '{{p.name}} ({{p.team}})' +
 '</p>' +
 '</div>';
 return {
 template : tpl,
 scope : {
 'players' : '=playerWidget',
 },
 link : function ($scope, $element, $attrs) {
 //When a user clicks, set the active flag on the player object
 $scope.activate = function (player) {
 player.active = true;
 }
 }
 }
});

Chapter 9

[77]

Now we can write a simple test to validate our activate method as follows:

it('should activate the player', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 var $directiveScope = $element.scope();
 var firstPlayer = $directiveScope.players[0];
 //First validate that the active property is either false or
undefined
 expect(firstPlayer.active).toBeFalsy();
 $directiveScope.activate(firstPlayer);
 //Now confirm that we've set that same property to true
 expect(firstPlayer.active).toBe(true);
 });

This approach to development and testing allows us to use unit tests to confirm
that our data-model is accurate and properly manipulated, and then use E2E tests
to validate the end result. As your applications get more complex, when something
breaks an E2E test, you'll want unit tests like these to help highlight exactly where
the problem is, instead of having to walk through a long function chain step-by-step.

Negative testing
Generally, when we first start testing, we think of all the things that need to happen
and then test for them, which is an awesome start. What we often forget however, is
that we need to decide, and test for, what happens when something goes wrong, or
when that 'it-could-never-happen' case happens. Consider our player list and what
would happen if we received a player object without a team. There are plenty of
reasons why this might happen—they're undrafted, a database corruption, or your
data-entry intern missed their coffee that morning—but, whatever the reason, we need
to make sure our directive can handle it cleanly. Right now, if we were to pass that in,
we'd end up with the following rather unprofessional output:

...
<p class="player">John Smith ()</p>
...

Since we'd rather not have a bunch of empty parentheses floating around in our
application, let's update our directive and tests to only display the team name,
and wrapping parentheses, when there's actually a team value associated with
that player.

A Deeper Dive into Unit Testing

[78]

First, let's write our test and see what that tells us.

…
var playerList;
beforeEach(function () {
 //We've updated this to include a fourth player without a team
 playerList = [
 { "name" : "Babe Ruth", "team" : "Yankees" },
 { "name" : "Jackie Robinson", "team" : "Dodgers" },
 { "name" : "Hank Aaron", "team" : "Braves" },
 { "name" : "John Smith"}
];
});
…
it('should display team when present', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 $scope.$digest();
 var $players = $element.find('p');
 expect($players.eq(0).text()).toContain(playerList[0].team);
});

it('should not display team when not present', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 $scope.$digest();
 var $players = $element.find('p');
 expect($players.eq(3).text()).not.toContain('()');
});

Naturally, if we run this right now, it will fail. More importantly, however, it also
feels very fragile. Testing for the existence of '()' makes us very dependent on the
specific styling implementation, and means that a layout change could easily break
our tests without actually breaking any of the real functionality in our code. With
that in mind, let's try to update our directive template a bit and see if we can make it,
and our test, more flexible.

Chapter 9

[79]

The main problem we have in the preceding example is that our team description
is just hanging out there all by itself, so a simple fix would be to wrap it in a DOM
element that we can easily query for.

…
var tpl = '<div class="player-widget">' +
 '<p class="player" ng-repeat="p in players" ng-click="activate(p)"
ng-class="{highlighted : p.active}">' +
 '{{p.name}} ({{p.team}})</
span>' +
 '</p>' +
'</div>';
…

Wrapping our team name up in its own element allows us to create much cleaner
and more flexible tests, which won't break the moment we need to change our
parentheses to brackets or remove them altogether.

it('should display team when present', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 $scope.$digest();
 var $players = $element.find('p');
 var teamNode = $players.eq(0).find('span');
 expect(teamNode.text()).toContain(playerList[0].team);
});

it('should not display team when not present', function () {
 var $scope = $rootScope.$new();
 $scope.playerList = playerList;
 var $element = $compile(directiveTpl)($scope);
 $scope.$digest();
 var $players = $element.find('p');
 var teamNode = $players.eq(3).find('span');
 expect(teamNode.css('display')).toBe('none');
});

A Deeper Dive into Unit Testing

[80]

Summary
Obviously, these few pages are far too short to dive very far into the complexities of
unit testing; hopefully, however, this has given you a taste of the various approaches
you can take and reinforced for you why our original principle of data-driven
modularity is so important. As a final note on testing, because we're using Jasmine
for all our unit tests, all of Jasmine's functionality is still available, including custom
matchers and spies. In the next chapter, we're going to wrap-up our study on
directives by building a full featured module from scratch, making use of everything
we've learned so far, and discovering a few new awesome tricks along the way as well.

Bringing it All Together
Congratulations. You've made it nearly the entire way through our study of Angular
Directives. No doubt some parts are still somewhat confusing, and there are likely
other areas you're already tired of hearing about (did I mention that you should
practice data-driven modularity?), but despite all that, hopefully you've come this
far excited about the possibilities in front of you. Whether you intend to spend the
rest of your days with Angular or just wanted to gain a different perspective that
you can take back to the framework in your life, hopefully this book has been an aid
in that process so far. What I want to do for this chapter now is to walk through the
entire directive creation process, from our first tests all the way through to a complete
module. I highly encourage you to follow along with your own development tools
of choice, but if you get stuck or want to come back and review something, all of the
code created in this chapter is available at https://github.com/mrvdot/angular-
content-grid/. We'll be working through an actual Angular module that's live on
GitHub, so the final code here will likely be different from what you see online. To
help you see each step as we progress, I've created tags within the repository that you
can use to track our progress throughout this chapter. If you want to be able to follow
along with each step, go ahead and run the following code in your working directory
before moving on:

git clone https://github.com/mrvdot/angular-content-grid/

….

cd angular-content-grid

git checkout blankRepo

The last command will update your working directory to the blankRepo tag,
which represents the initial commit with nothing more than a README file.

If you don't use git, or have simply downloaded the code packet
for this book already, all the branches have been included in the
C10 directory within that packet as well.

Bringing it All Together

[82]

Angular content grid
For this chapter then, we're going to build a content grid, utilizing the awesome
jQuery Masonry plugin by David DeSandro. At the end, we want the ability to
pass in a dynamic array of HTML elements, display them, trigger Masonry to
organize them properly, and communicate with the rest of our app that everything
is processed and ready, allowing for custom hooks into the Masonry process. Once
done, we should be able to render multiple elements on to a page like you see here:

Diving in
With that, let's go ahead and dive into writing some code to build this... Wait, you
know better than that. We just spent two chapters on the value of testing and the
importance of writing those tests before our code; surely you haven't forgotten
all that already. So instead, let's write up some unit tests to serve as our initial
specification. If you're following along on your own machine, you'll need to setup
Karma as before, or just copy our last setup over and rename the files. Once you
have that ready and Karma running, let's create a unit test file with two initial tests:

describe('Content Grid', function () {
 var $compile
 , $rootScope
 , tpl = '<div content-grid="elements"></div>'
 , elements = [];

 beforeEach(module('mvdContentGrid'))

Chapter 10

[83]

 beforeEach(inject(function (_$compile_, _$rootScope_) {
 $compile = _$compile_;
 $rootScope = _$rootScope_;
 }));

 describe('Basic compilation', function () {
 it('should scope elements correctly', function () {
 var $parScope = $rootScope.$new();
 $parScope.elements = elements;
 $parScope.otherProperty = "should be undefined";
 var $el = $compile(tpl)($parScope);
 var $scope = $el.scope();
 expect($scope.elements.length).toBe($parScope.elements.length);
 $parScope.elements.push({"test" : "item"});
 expect($scope.elements.length).toBe($parScope.elements.length);
 expect($scope.otherProperty).toBeUndefined();
 });

 it('should compile template with elements', function () {
 var $parScope = $rootScope.$new();
 $parScope.elements = [
 {
 title : "TITLE",
 id : 1,
 content : "<p>CONTENT</p>"
 }
]
 var $el = $compile(tpl)($parScope);
 $rootScope.$digest();
 var gridElements = $el.find('[content-grid-element]');
 expect(gridElements.length).toBe($parScope.elements.length);
 var first = $parScope.elements[0];
 expect(gridElements.eq(0).data('element-id')).toBe(first.id);
 expect(gridElements.eq(0).find('.title').text()).toBe(first.
title);
 expect(gridElements.eq(0).find('.content').html()).
toContain(first.content);
 });
 });
});

Bringing it All Together

[84]

These two initial tests ensure a few basic things about our directive. First, that it
will initialize and be properly scoped. We do this by testing for the existence and
proper linkage of the elements property that we want to be passed through, as
well as ensuring that other properties don't make it through to our directive's scope.
Secondly, we use the second test to validate that our content grid will iterate through
all the elements and create actual DOM grid elements containing their content. You
may notice that we've used jQuery selectors instead of sticking with the standard
jqLite selectors provided within Angular. This is because we'll use jQuery within the
directive itself, and since its selectors are significantly more powerful, I find it makes
the testing code much cleaner to use those instead.

You may also have noticed that at this point our tests do nothing to test for the
Masonry functionality. There are two main reasons for this, and as you go forward
with Angular directives you'll likely find these apply to almost any directive with a
significant third-party plugin component integration:

1.	 First, we (or, at least, I) simply don't know how Masonry operates well
enough yet to know how to test for it. This is often the case when integrating
with plugins, and for this I find it easier and more efficient to simply set the
integration tests aside until we've actually connected it (even if only through
the browser development tools) and can better say how it's working on
our element(s).

2.	 Secondly, we're just not ready yet. Our goal at this point is to create a
working directive, and while the integration is a key piece of that, it's not
the first step. My strategy for TDD is write one or two tests, then the code
to satisfy those, and then go on. Some people have recommended writing
out the entire specification in tests first, and while you're certainly welcome
to experiment with that, I usually find that that can cause almost as much
frustration as not testing at all.

The initial directive
Now that we have our first couple tests ready and running, let's move forward with
the directive code. I won't include every line of the directive here, just the key pieces
for the sake of space. To review all the code, run git checkout initialTests
within your cloned repository directory. Now, without further ado, the directive is:

Chapter 10

[83]

angular.module('mvdContentGrid', ['ngSanitize'])
 .directive('contentGrid', function () {
 return {
 template : /* … */,
 replace : true,
 scope : {
 'elements' : '=contentGrid'
 }
 }
 })
 .directive('contentGridElement', function () {
 return {
 template : /* … */,
 replace : true,
 scope : {
 'contentElement' : '=contentGridElement'
 },
 link : function ($scope, $element, $attrs) {
 $element.data('element-id', $scope.contentElement.id);
 }
 }
 });

There are a couple important things here to notice. First, we have required
ngSanitize into our module, which provides us with the ability to bind filtered
HTML to an element. Any time you're going to be binding HTML straight from
a data source to your elements, I highly recommend you use the sanitize filter to
ensure no malicious, or even just malformed, code gets in. To see how exactly we're
using it within this directive, check out the template for the content-grid-element
directive. Secondly, we're using two separate directives for additional modularity.
This isn't always necessary but, in many cases I do recommend using this approach
to help separate out responsibilities and keep your code cleaner. Finally, you may
wonder why we used the .data() method on our element, when everything is
supposed to be pulled directly from the data-model anyway. In short, it's because
we often integrate with plugins/libraries that don't have easy access to the Angular
scope, and for small data pieces such as an ID, making them easily retrievable to
third-party plugins actually tends to help keep our code more modular, rather
than less.

Bringing it All Together

[86]

Connecting Masonry
At this point, we have a functioning directive that takes an array of content elements
and displays them. That's great, but it's still missing the key piece: our Masonry
integration. If you haven't already, go ahead and download the packaged JavaScript
file from http://masonry.desandro.com. While Masonry can also be installed
using Bower, it has several dependencies and requires a fuller build process, which is
outside the scope of this book, so for now we'll just use the already packaged file.

Any time you want to connect a DOM manipulation plugin, there are a few things
to keep in mind:

1.	 Identify both the initialization and update methods for your plugin.
Sometimes these are the same.

2.	 Evaluate if the plugin needs to be told explicitly about changes, or if it will
detect them itself.

3.	 Set up the appropriate watchers to initialize and update your plugin.

To do this, we'll use both the controller and link properties of our content-grid
directive. The shared controller function allows us to manage all the options in a
way that can be accessed by each of the element directives easily, as well as provide
any connection methods we might need. We use link, however, because we know it
won't be called until our element is fully compiled and inserted into the DOM, so we
can safely call our initialization methods there. At this stage, our directive definition
has been updated to the following:

…
scope : {
 'elements' : '=contentGrid',
 'userOptions' : '=options'
},
require : 'contentGrid',
controller : function ($scope, $element, $attrs) {
 var ctrl = this;

 var defaults = {
 columns : 4,//How many columns should we have

Chapter 10

[83]

 columnWidth : 0,//Set this to force a specific column width,
instead of calculating based on columns property
 gutter : 0
 };

 ctrl.options = angular.extend({}, defaults, $scope.userOptions ||
{});
},
link : function ($scope, $element, $attrs, ctrl) {
 if ($scope.elements.length) {
 setTimeout(initOrUpdateMasonry);
 };

 var initialized = false;
 var initOrUpdateMasonry = function () {
 if (!initialized) {
 var opts = {
 columnWidth : ctrl.options.columnWidth || ($element.width() /
ctrl.options.columns),
 itemSelector : '.grid-element',
 gutter : ctrl.options.gutter
 };
 initialized = $element.masonry(opts);
 } else {
 //Already initialized, just update
 $element.masonry('reloadItems');
 $element.masonry('layout');
 }
 };

 $scope.$watch('elements', function (newValue, oldValue) {
 //Check to confirm that we actually have an array of elements to
work with
 if (newValue) {
 initOrUpdateMasonry();
 };
 });
}
…

Bringing it All Together

[88]

To see the full code at this point, use git checkout masonryConnected to update
your repository directory. Note that we've provided an options attribute property
to allow users to pass in a map of options much like they normally would to a
jQuery plugin, and we can extend it with our own defaults and then pass it along
to the plugin. Whenever you're creating an integration between Angular and a
plugin, I highly recommend you follow this pattern, as otherwise you'll find yourself
adding several attributes and flags to account for control of each option, instead
of a single map to handle all of them. We also setup our initOrUpdateMasonry
method to properly apply our plugin options and also request that Masonry update
its internal cache of items and then apply a new layout. If you prefer, you can split
the initOrUpdate method into two separate calls, or even call the initialize portion
immediately upon loading your directive, however when working with a plugin such
as Masonry that doesn't perform any action until we actually have HTML content for
it to work on, I prefer to delay initialization as long as possible. In my experience that
leads to more performant applications, since the browser doesn't have to hold any
additional objects or functions in memory until they're actually useful.

Testing Masonry
At this point we want to begin testing our plugin integration itself. Masonry doesn't
provide any direct data-model changes that we can use to cleanly validate it via
unit tests, so now seems like a good time to begin our E2E testing process. We want
to validate our basic directive compilation as before, but also confirm that the grid
elements are being modified by Masonry, which results in the three following tests:

describe('Content Grid', function () {
 beforeEach(function () {
 browser().navigateTo('/examples/');
 });

 it('should contain compiled content grid', function () {
 var grid = element('.content-grid');
 expect(grid.count()).toBe(1) ;
 });

 it('should contain two grid elements', function () {
 expect(element('.grid-element').count()).toBe(2);
 }) ;

Chapter 10

[83]

 it('should have applied masonry', function () {
 expect(element('.grid-element:first').css('position')).
toBe('absolute')
 }) ;
});

The first thing you'll notice is that I'm using my examples directory as my test basis.
While sometimes a specific test HTML file is more appropriate and/or cleaner, I find
that using my examples directory as my E2E testing directory helps ensure that not
only is my directive/application fully tested, but also that all the examples I provide
to other developers are fully functional and correct as well. It also has the reverse
effect of making sure my examples cover all the major functionality, since I want all
of those pieces to be tested.

Next, take a look at the third test. This one will be different for every plugin you
integrate. Some will add a class—those are some of the easiest to test. Some, such
as Masonry, require that you test for a specific attribute or characteristic. While this
isn't quite as clean and stable as testing for a specific class, unless you intend on
absolutely positioning your elements manually, which begs the question of why
you're even using Masonry in the first place, this kind of test will still suffice.

Events
When we first started this chapter, we said that we wanted to be able to hook into
specific events. Masonry itself only provides two events, one when everything is
laid out and one when an item is removed. Instead of Masonry events then, we'll
create our own, starting with one for when it's first initialized, and another that fires
anytime there's an update. Per usual, let's go ahead and write our unit tests first and
then we'll update the directive code to satisfy them:

describe('Events', function () {
 var initEvent = 'masonry-initialized'
 , updateEvent = 'masonry-updated';

 it('should not fire ' + initEvent + ' event when initialized with no
elements', function () {
 var $parScope = $rootScope.$new();
 var initialized = false;
 $parScope.$on(initEvent, function () {
 initialized = true;
 });

Bringing it All Together

[90]

 var $el = $compile(tpl)($parScope);
 $rootScope.$digest();
 expect(initialized).toBe(false);
 }) ;

 it('should fire ' + initEvent + ' event when initialized with
elements', function () {
 var $parScope = $rootScope.$new();
 $parScope.elements = […]
 var initialized = false;
 runs(function () {
 $parScope.$on(initEvent, function () {
 initialized = true;
 });
 var $el = $compile(tpl)($parScope);
 $rootScope.$digest();
 });
 waitsFor(function () {
 return initialized;
 }, 'Initialized should have been fired', 200);
 runs(function () {
 expect(initialized).toBe(true);
 })
 });

 /* … Repeat for update event ... */
});

I've introduced a few new Jasmine testing methods here and if you're not
accustomed to asynchronous testing within Jasmine, you likely haven't seen runs
and waitsFor blocks before. Because the Angular $emit and $broadcast methods
happen asynchronously, we need to run the code that should trigger the message
within a run block, then tell Jasmine to wait until initialized returns true or 200
milliseconds pass, whichever comes first. If we time-out before initialized has
been set to true, the second parameter gets passed back as a failure message.

For the sake of space, I'll let you implement the messaging system on your own,
although of course if you need a guide you can checkout the messagingEvents git
tag to see our final code.

Chapter 10

[83]

Timing
I mentioned earlier that one of the reasons why I like using my examples directory
as my basis for all E2E tests is that it helps ensure the quality of my code and my
examples at the same time. As a prime example of this, when I added a logging
element to my examples so I could demonstrate the use of our new initialized and
updated events, I discovered that Masonry wasn't running quite as seamlessly as
I'd originally imagined. The log was positioned right in the middle of the content
grid, even though our elements extended far below that point. It turns out that even
though Masonry was accurately positioning our elements, it was operating before all
the element content had been compiled, and thus it miscalculated the proper height
to apply to our grid. I noted in the first few chapters that any time you're applying
a DOM manipulation plugin, it's often best to wrap it in a setTimeout method to
ensure it operates after the compilation process it done. I had, however, forgotten to
follow that advice when first setting everything up, and so while our content-grid
element was ready for manipulation, the internal content-grid-element directives
were still compiling and thus were not yet at their full height.

Wrapping the initOrUpdateMasonry method was simple enough; if you look at the
code you just checked out you'll see that our watcher now includes the setTimeout
wrapper. I also wanted to ensure I didn't somehow break that layout again later,
however, so I added one more additional E2E test to finalize Version 1 of our
new directive.

…
it('should have sized masonry correctly', function () {
 var maxElHeight = 0;
 element('.grid-element').query(function (elements, done) {
 elements.each(function (idx) {
 var el = elements.eq(0);
 var elHeight = el.outerHeight();
 if (elHeight > maxElHeight) {
 maxElHeight = elHeight;
 };
 });
 done();
 });
 expect(element('.content-grid').outerHeight())
 .not().toBeLessThan(maxElHeight)
})

Bringing it All Together

[92]

The element().query(fn) method is provided by the Angular Scenario Runner and
allows you to execute a function with the selected elements as your first parameter.
Just be sure to call done(), the second parameter, at the end of your callback
function, as this lets the Scenario Runner know that it can continue its tests. This
test's setup still isn't perfect, since if we have several rows of content it might still
pass. Most developers will tell you that it's impossible to perfectly test everything,
especially when dealing with the browser directly, but at least this helps ensure that
our internal compilation has progressed prior to Masonry resetting the layout.

Further steps
With that, we'll conclude our walkthrough of the development of a directive,
however there are of course several other features and improvements left to add. If
you want to experiment on your own, a few starting ideas might include adding the
ability to transclude existing content elements into your grid or even allow certain
elements to be stamped, which is Masonry's term for gluing one or more elements
in place and then laying everything else out around them. Finally, if you want to
experiment with controllers, try replacing our elements watcher statement with a
controller function that each element directive calls when it initializes and ensure
that the initOrUpdateMasonry method only fires when all the elements are ready.
If you're really adventurous, you can even use Masonry's appended and prepended
methods instead of reloadItems so that Masonry knows exactly how to update
its layout more appropriately. And of course, if you want to join in on the live
development of this or other Angular plugins, the development community
is always open to new contributions.

Summary
Well, I hope you've enjoyed the ride through this book as much as I've enjoyed
writing it, and hopefully I've managed to whet your appetite for even more
AngularJS and data-driven modularity going forward. Angular is an extremely
feature-full framework, and even as I was writing this book I discovered a multitude
of new capabilities and development paradigms that furthered my coding processes.
There are significant areas we haven't even touched. Services, in particular, deserve
a mini-book of their own. I highly encourage you, whether it's with Angular, another
framework, or a different language entirely, to continue experimenting and diving
deeper into the world of problem solving through code. Thanks again for reading.
You can find me online at http://www.mrvdot.com; please don't hesitate to contact
me there with any questions or suggestions you might have.

Index
Symbols
$watch method 37
& - method binding 44, 46
@ - read-only Access 41-43
= - two-way binding 43, 44

A
Angular

about 17, 65-67
directives, handling 20
functions, receiving from compile

properties 29, 30
functions, receiving from link

properties 29, 30
Angular content grid

about 82
building 82
exploring 82, 84

angular directives 11, 81
Angular.JS application 17
angular.js file 66
angular-mocks file 66
Angular module

initializing 19
attachment styles, directives 21

B
beforeEach method 69
Bower

URL 66

C
code

overview 5
compile function 32
compile phase 29
compile property 23, 24
configuration options

about 22
compile 23, 24
controllers 25
link 23
priority 22
replace 23
scope 24
templating 23
terminal 23
transclusion 27

content-grid-element directive 85
controller communication

creating 53-57
controller property 25
controllers, over messaging

scenarios 53
conversational directive 14

D
data

loading 9
mocking 70, 71

data driven development (DDD)
about 6-9
data, loading 9
HTML, structuring 9

[94]

JavaScript, adding 10
data driven directive 13
declarative directive 11-13
directives

about 17, 18
conversational 14
data driven 13
declarative 11-13
deconstructing 17
naming 20
need for 11
overview 15

directives module
extending 19

Don't -Repeat-Yourself code 59

E
E2E testing

about 68-77
scenarios 73, 74

EACM 21
events 89, 90

F
false value, scope property 38, 39
form

with single input element 50-52
FormController class 50
FormController object 49
form element 49
frontend web development

misunderstandings 6

G
GitHub 81

H
HTML

structuring 9

I
initial directive 84, 85
initOrUpdateMasonry method 88, 91
initOrUpdate method 88
isolate scope 25, 41

J
JavaScript 10
jQuery 10

K
Karma

about 65
configuration file 66
installing 65

karma.conf.js file 66

L
link function 29, 32, 33
linking function 36
linking phase 29
link property 23

M
Masonry

connecting 86, 88
testing 88, 89
URL 86

modularity 6, 7

N
negative testing 77, 79
ng-app directive 18
ngModelController function 51
ng-model directive 51
ng-repeat directive

about 31
compile function 31, 32
link function 32, 33

ng-switch directive 34, 35
NPM (Node Package Manager) 65

[95]

P
priority function 31
priority option 22

R
replace property 23
require property 26

S
Scenario Runner 72
scenarios, E2E testing 73, 74
Scope - {}

& - method binding 44, 46
@ - read-only Access 41-43
= - two-way binding 43, 44

scope object 37
scope property

false value 38, 39
true value 40

setTimeout method 91

T
template property 23
templateUrl property 23
terminal option 23
Test Driven Development (TDD) 67
testing 65
test subject 71, 72
transclude 59
transcluded content

manipulating 62, 63
transclude function 31
transclusion 27, 59, 60, 61
true value, scope property 40

U
unit testing 68, 69

W
web applications

designing 5

Thank you for buying
AngularJS Directives

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant AngularJS Starter
ISBN: 978-1-782166-76-4 Paperback: 66 pages

A concise guide to start building dynamic web
applications with AngularJS, one of the Web's most
innovative JavaScript frameworks

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Take a broad look at the capabilities of
AngularJS, with in-depth analysis of its key
features

3.	 See how to build a structured MVC-style
application that will scale gracefully in real-
world applications

Mastering Web Application
Development with AngularJS:
RAW
ISBN: 978-1-782161-82-0 Paperback: 402 pages

Build single-page web applications using the power
of the AngularJS JavaScript framework from Google

1.	 Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

2.	 Effectively structure, write, test, and finally
deploy your application

3.	 Add security and optimization features to your
AngularJS applications

4.	 Harness the full power of AngularJS by
creating your own directives

Please check www.PacktPub.com for information on our titles

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-849516-86-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1.	 Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2.	 From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3.	 Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Ext JS 4 First Look
ISBN: 978-1-849516-66-2 Paperback: 340 pages

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

1.	 Migrate your Ext JS 3 applications easily to
Ext JS 4 based on the examples presented in
this guide

2.	 Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

4.	 Driven by examples and explanations of how
things work

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Designing Web
Applications in 2013
	An overview of good code
	We're not just talking about a lot of APIs
	Modularity
	Data driven development
	Loading the data
	Structuring our HTML
	Adding the JavaScript

	Summary

	Chapter 2: The Need for Directives
	What makes a directive a directive
	Directives are declarative
	Directives are data driven
	Directives are conversational
	Directives are everything you've dreamed about

	Summary

	Chapter 3: Deconstructing Directives
	Getting started
	With Angular
	With directives

	Naming
	Attachment styles
	Configuration options
	Priority
	Terminal
	Templating
	Replace
	Compiling and Linking
	Scope
	Controllers
	Transclusion

	Summary

	Chapter 4: Compile versus Link
	Peeking under the covers
	ng-repeat
	Compile
	Link

	What about linking?
	Summary

	Chapter 5: Keeping it Clean with Scope
	Scope = false
	Scope = true
	Scope = {}
	@ – read-only Access
	= – two-way binding
	& – method binding

	Summary

	Chapter 6: Controllers – Better with Sharing
	Forms and inputs
	Creating our own controller communication
	Summary

	Chapter 7: Transclusion
	That's not a word...
	...it is a solution
	Manipulating the transcluded content
	Summary

	Chapter 8: Good Karma – Testing
in AngularJS
	Getting Started
	Configuration
	Angular and Karma

	My first test
	Mocking data
	The test subject
	E2E testing
	Scenarios

	Summary

	Chapter 9: A Deeper Dive into
Unit Testing
	Highlighted, again
	Negative testing
	Summary

	Chapter 10: Bringing it All Together
	Angular content grid
	Diving in
	The initial directive
	Connecting Masonry
	Testing Masonry

	Events
	Timing
	Further steps
	Summary

	Index

