AngulardS Test-driven
Development

Implement the best practices to improve your Angulards
applications using test-driven development

http://www.it-ebooks.info/

AngularJS Test-driven Development

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

AngularJS Test-driven Development
Credits

About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface
What this book covers
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code
Errata
Piracy
Questions

1. Introduction to Test-driven Development

An overview of TDD

Fundamentals of TDD

Measuring success

Breaking down the steps

Measure twice cut once
Diving in
Setting up the test

Creating a development to-do list

Test first

Making it run

www.it-ebooks.info

http://www.it-ebooks.info/

Making it better
Testing techniques
Testing with a framework
Testing doubles with Jasmine spies
Stubbing a return value
Testing arguments
Refactoring
Building with a builder
Self-test questions
Summary
2. The Karma Way

JavaScript testing tools

Karma

Protractor
JavaScript testing frameworks
Jasmine
Selenium
Mocha
Birth of Karma

The Karma difference
Importance of combining Karma with AngularJS
Installing Karma

Installation prerequisites

Configuring Karma
Customizing Karma’s configuration

Confirming Karma’s installation and configuration

Common installation/configuration issues

Testing with Karma

Confirming the Karma installation
Using Karma with AngularJS

Getting AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

Bower

Bower installation

Installing AngularJS
Installing Angular mocks
Initializing Karma

Testing with AngularJS and Karma

A development to-do list

Testing a list of items
Test first

Assemble, Act, and Assert (3 A’s)

Make it run

Make it better

Adding a function to the controller
Test first

Assemble, Act, and Assert (3 A’s)
Make it run

Make it better

Self-test questions

Summary
3. End-to-end Testing with Protractor

An overview of Protractor

Origins of Protractor
End of life
The birth of Protractor

Life without Protractor

Protractor installation

Installation prerequisites

Installing Protractor
Installing WebDriver for Chrome

Customizing configuration

Confirming installation and configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Common installation/configuration issues

Hello Protractor

TDD end-to-end

The pre-setup
The setup
Test first
Installing the test web server
Configuring Protractor
Getting down to business
Specification
The development to-do list
Test first
Assemble, Act, Assert (3 A’s)
Running the test

Make it run

Make it better

Cleaning up the gaps

Async magic
Loading a page before test execution

Assertion on elements that get loaded in promises

TDD with Protractor

Self-test questions

Summary
4. The First Step

Preparing the application’s specification

Setting up the project
Setting up the directory

Setting up Protractor

Setting up Karma
Setting up http-server

Top-down or bottom-up approach

www.it-ebooks.info

http://www.it-ebooks.info/

Testing a controller
A simple controller test setup
Initializing the scope

Bring on the comments
Test first

Assemble
Act
Assert

Make it run

Adding the module
Adding the input

Controller

Make it pass
Make it better

Implementing the Submit button

Configuring Karma
Test first

Assemble

Act

Assert
Make it run

Make it better

Back up the test chain

Bind the input

Onwards and upwards

Test first
Assemble
Act
Assert

Make it run

Fixing the unit tests

www.it-ebooks.info

http://www.it-ebooks.info/

Make it better

Coupling of the test
Self-test questions
Summary

5. Flip Flop

Fundamentals

Protractor locators

CSS locators

Button and link locators

Angular locators

URL location references

Creating a new project
Setting up headless browser testing for Karma
Preconfiguration
Configuration
Walk-through of Angular routes
Setting up AngularJS routes
Defining directions

Configuring ngRoute
Defining the route controllers

Defining the route views

Assembling the flip flop test

Making the views flip

Asserting a flip

Making flip flop run
Making flip flop better

Searching the TDD way

Deciding on the approach

Walk-through of search query

The search query test

The search query HTML page

www.it-ebooks.info

http://www.it-ebooks.info/

The search application

Show me some results!

Creating the search result routes
Testing the search results
Assembling the search result test
Selecting a search result
Confirming a search result
Making the search result test run
Creating a location-aware test
Making the search result better
Confirming the route ID
Setting up the route ID unit test
Confirming the ID
Making the route parameter’s test run
Self-test questions
Summary
6. Telling the World
Before the plunge

Karma configuration

File watching

Using a bottom-up approach

Services

Publishing and subscribing messages
Emitting
Testing emit

Testing broadcast

Testing broadcast

Publishing and subscribing — the good and bad

The good
Communicating through events

Reducing coupling

www.it-ebooks.info

http://www.it-ebooks.info/

Harnessing the power of events

The plan
Rebranding
Seeing recently viewed items
Test first
Assembling SearchController
Selecting a product
Expecting events to be published
Making the search controller run

Recently viewed unit test

Test first

Assembling Recently ViewedController

Invoking a recently viewed item

Confirming RecentlyViewedController
Making RecentlyViewedController run
End-to-end testing

Test first

Assembling the recently viewed end-to-end test

Selecting a search result

Confirming recently viewed items

Making the recentlyViewedltems test pass

Making recently viewed items better

Creating a product cart

Publisher test first

Assembling searchDetailController

Invoking the saving of a product

Confirming the save event

Making the saveProduct test pass

Test for the subscriber first

Assembling the product cart test

Invoking a saved cart event

www.it-ebooks.info

http://www.it-ebooks.info/

Confirming the saved cart

Making the cart controller test run

End-to-end testing

Assembling the cart’s end-to-end test

Invoking a save to cart action

Confirming products have been saved
Making the cart’s end-to-end test pass
Self-test questions

Summary
7. Give Me Some Data

REST — the language of the Web

Getting started with REST

Testing asynchronous calls
Creating asynchronous calls in Karma
Creating asynchronous calls in Protractor

Making REST requests using AngularJS
Testing with AngularJS REST

Testing the product service
Testing $http with Karma

Mocking requests with Protractor

Displaying products with REST

Unit testing product requests

Setting up the project

Karma configuration

Using an API builder pattern

The product data service

The product data controller

Assembling the product controller test

Getting products

Asserting product data results

Making the product data tests run

www.it-ebooks.info

http://www.it-ebooks.info/

Testing middle-to-end
Test first
Assembling the product test
Getting products
Expecting product data results
Making the product data run
Testing end-to-end
Getting the product data
Self-test questions
Summary
A. Integrating Selenium Server with Protractor
Installation
Protractor configuration
Running Selenium

Let it run
Test first

Assemble

Assert
Make it run
Summary

B. Automating Karma Unit Testing on Commit

GitHub

Test setup

Test scripts
Setting the hook

Creating the hook

Adding a Travis configuration file

References
C. Answers
Chapter 1, Introduction to Test-driven Development

Chapter 2, The Karma Way

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3, End-to-end Testing with Protractor
Chapter 4, The First Step

Chapter 5, Flip Flop

Chapter 6, Telling the World
Chapter 7, Give Me Some Data

Index

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Test-driven Development

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Test-driven Development
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015
Production reference: 1230115
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78439-883-5

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits

Author

Tim Chaplin
Reviewers

Md. Ziaul Haq

Nive Jayasekar

Tim Pei

Andi Smith
Commissioning Editor
Pramila Balan
Acquisition Editor
Reshma Raman
Content Development Editor
Manasi Pandire
Technical Editor
Madhunikita Sunil Chindarkar
Copy Editors

Gladson Monteiro
Adithi Shetty

Stuti Srivastava
Project Coordinator
Leena Purkait
Proofreaders

Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer

Hemangini Bari

Production Coordinator

www.it-ebooks.info

http://www.it-ebooks.info/

Aparna Bhagat
Cover Work
Aparna Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Tim Chaplin lives and breathes software solutions and innovations. During the day, he
works with Fortune 100 enterprise applications, and in the evening, he perfects his craft by
contributing to and distributing open source software, writing, and constantly looking for
ways to increase his knowledge of technology and the world. At an early age, Tim began
developing software and has been hooked on it since. Tim is an established conference
speaker who has extensive experience in developing and leading AngularJS projects. He
has a wide background of JavaScript, C#, Java, and C++ languages. Tim specializes in
leading code quality and testing throughout all his applications. After attending California
State University, Chico, he has gone on to work in Shanghai, Los Angeles, and London.

I would like to thank my wife, Pierra, for always making me think and dream bigger. I
would also like to thank my family for their constant love and support. Pops, this one’s for
you babe.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Md. Ziaul Haq is a senior software engineer from Dhaka, Bangladesh, who has been
working with the oDesk core platform development team as a senior JavaScript developer
since 2011. He likes to work mostly on the frontend, though he is a full-stack developer.
JavaScript is his passion and he likes to code in it all day long. He is well known as
jquerygeek in the web community.

Md. Ziaul started his career in 2005 as a software developer. He has work experience with
UNICEF locally and internationally, where he worked with UNICEF’s web CMS. He is
currently pursuing a master’s degree in computer science from United International
University, Dhaka, Bangladesh.

I would like to thank my wife, Richi, and my newborn son, Arabi, who is my inspiration.

Nive Jayasekar started programming in high school. In her last year of high school, she
won $10,500 at a Hackathon for building a mobile artificial-intelligence app. She has
interned at Facebook and LinkedIn, and will soon graduate from Carnegie Mellon
University with a degree in computer science and a minor in machine learning. She is
always interested in building game-changing products. She has 5 years of experience
building web and mobile applications using Python, AngularJS, Java, and Objective C.

I’d like to thank the people at Packt Publishing, Leena Purkait and Kirti Patil, for their
help in producing this book.

Tim Pie is a computer science and business administration double degree student at the
University of Waterloo, Ontario. He has gained a wide range of technical skills through
past projects and internships, including cloud computing, data mining, and full stack web
development. Tim’s current technical interest is focusing on building web applications
using modern web technologies, specifically HTML5 and web components.

I’d like to thank my parents for their constant support of my pursuits, while providing me
great advice along the way.

Andi Smith (@andismith) is a senior architect who specializes in frontend solutions at
ideas and innovation agency, AKQA.

Andi has over 15 years of experience building for the Web and has worked with clients
such as Nike, Ubisoft, Sainsburys, Barclays, Heineken, and MINI. He has also created a
number of open source plugins and sites such as Grunt Responsive Images
(http://www.andismith.com/grunt-responsive-images/) and Secrets of the Browser
Developer Tools (http://devtoolsecrets.com/).

Andi maintains a blog focused on frontend development at http://www.andismith.com/.

I would like to thank my wife, Amy, for all her love and support.

www.it-ebooks.info

http://www.andismith.com/grunt-responsive-images/
http://devtoolsecrets.com/
http://www.andismith.com/
http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@ PACKT!L £°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface

The book will provide the reader with a complete guide to the test-driven development
(TDD) approach for AngularJS. It will provide step-by-step, clear examples to continually
reinforce TDD best practices. The book will look at both unit testing with Karma and end-
to-end testing with Protractor. It will not only focus on how to use the tools, but also on
understanding the reason they were built, and why they should be used. Throughout, there
will be focus on when, where, and how to use these tools, constantly reinforcing the
principles of the TDD life cycle (test, execute, refactor).

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

This book is basically split into two parts. The initial chapters focus on the TDD life cycle,
and how Karma and Protractor fit into the life cycle and development of an AngularJS
application. As we proceed, you’ll get a step-by-step approach to AngularJS TDD using
Karma and Protractor. Each of the chapters builds up on the previous one and introduces
how to test several different AngularJS components.

Chapter 1, Introduction to Test-driven Development, is an introduction to the concepts of
TDD and testing techniques.

Chapter 2, The Karma Way, explores the origins of Karma and why it is an essential tool
for any AngularJS project.

Chapter 3, End-to-end Testing with Protractor, introduces the simplicity of Protractor, an
end-to-end testing tool built specifically for AngularJS.

Chapter 4, The First Steps, covers the TDD journey and shows the fundamentals and tools
in action.

Chapter 5, Flip Flop, expands to include testing for multiple controllers, partial views,
location references, CSS, and HTML element building on the initial foundational aspects
learned in the previous chapter.

Chapter 6, Telling the World, dives into communicating across controllers, and testing
services and broadcasting.

Chapter 7, Give Me Some Data, dives into how to apply several of the concepts shown
previously, and extend them to pull data using an external API.

Appendix A, Integrating Selenium Server with Protractor, walks through setting up and
configuring Protractor to use a standalone Selenium server.

Appendix B, Automating Karma Unit Testing on Commit, covers how to set up Travis CI,
a platform for continuous integration, and setting up Karma to test your application.

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is for the developer who wants to go beyond the basic tutorials, and wants to
take the plunge into AngularJS development. This book is for the developer who has
experience with AngularJS and has walked through the basic tutorials but wants to
understand the wider context of when, why, and how to apply testing techniques and best
practices to create quality-clean code. To get the most out of this book, it is preferred that
the reader has basic understanding of HTML, JavaScript, and AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “Create a
web page and import calculator.js for testing.”

A block of code is set as follows:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

<script src="calculator.js"></script>

</body>
</html>

Any command-line input or output is written as follows:

$ node calculator.js

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “Traditionally, tests were
run by having to manually launch a browser and check for results by continually hitting
the Refresh button.”

Note

Warnings or important notes appear in a box like this.
Tip

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the
book’s title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter 1. Introduction to Test-driven
Development

AngularJS is at the forefront of client-side JavaScript testing. Every AngularJS tutorial
includes an accompanying test, and event test modules are part of the core AngularJS
package. The Angular team is focused on making testing fundamental to web
development.

This chapter introduces you to the fundamentals of test-driven development with
AngularJS including:

e An overview of test-driven development (TDD)
e The TDD life cycle: test first, make it run, make it better
e Common testing techniques

www.it-ebooks.info

http://www.it-ebooks.info/

An overview of TDD

TDD is not used only to develop software. The fundamental principles can be seen in
many industries. This section will explore the fundamentals of TDD and how they are
applied by a tailor.

www.it-ebooks.info

http://www.it-ebooks.info/

Fundamentals of TDD

Know what to code before you code. This may sound cliché, but this is essentially what
TDD gives you. TDD begins by defining expectations, then makes you meet the
expectations, and finally forces you to refine the changes after the expectations have been
met.

Here are a couple of clear benefits of using TDD:

¢ Knowing before you code: A test provides a clear vision of what code needs to do in
order to be successful. Setting up tests first allows focus on only components that
have been defined in tests.

¢ Confidence in refactoring: Refactoring involves moving, fixing, and changing a
project. Tests protect the core logic from refactoring by ensuring that the logic
behaves independently of the code structure.

¢ Documentation: Tests define expectations that a particular object or function must
meet. The expectation acts as a contract, and can be used to see how a method should
or can be used. This makes the code readable and easier to understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Measuring success

TDD is not just a software development practice. The fundamental principles are shared
by other craftsmen as well. One of these craftsmen is a tailor, whose success depends on
precise measurements and careful planning.

Breaking down the steps

Here are the high-level steps a tailor takes to make a suit:
1. Test first:

o Determining the measurements for the suit
o Having the customer determine the style and material they want for their suit
o Measuring the customer’s arms, shoulders, torso, waist, and legs

2. Making the cuts:

Measuring the fabric and cut

Selecting the fabric based on the desired style

Measuring the fabric based on the customer’s waist and legs
Cutting the fabric based on the measurements

O O O o

3. Refactoring:

o Comparing the resulting product to the expected style, reviewing, and making
changes

o Comparing the cut and look to the customer’s desired style

o Making adjustments to meet the desired style

4. Repeating:

o Test first: Determining the measurements for the pants
o Making the cuts: Measuring the fabric and making the cuts
o Refactor: Making changes based on the reviews

The preceding steps are an example of a TDD approach. The measurements must be taken
before the tailor can start cutting up the raw material. Imagine for a moment if the tailor
didn’t use a test-driven approach and didn’t use a measuring tape (testing tool). It would
be ridiculous if the tailor started cutting before measuring.

As a developer, do you “cut before measuring”? Would you trust a tailor without a
measuring tape? How would you feel about a developer who doesn’t test?

Measure twice cut once

The tailor always starts with measurements. What would happen if the tailor made cuts
before measuring? What would happen if the fabric was cut too short? How much extra
time would go into the tailoring? Measure twice, cut once.

Software developers can choose from an endless amount of approaches to use before

www.it-ebooks.info

http://www.it-ebooks.info/

starting developing. One common approach is to work off a specification. A documented
approach may help in defining what needs to be built; however, without tangible criteria
for how to meet a specification, the actual application that gets developed maybe
completely different than the specification. With a TDD approach (test first, make it run,
and make it better), every stage of the process verifies that the result meets the
specification. Think about how a tailor continues to use a measuring tape to verify the suit
throughout the process.

TDD embodies a test-first methodology. TDD gives developers the ability to start with a
clear goal and write code that will directly meet a specification. Develop like a
professional and follow the practices that will help you write quality software.

www.it-ebooks.info

http://www.it-ebooks.info/

Diving in
It is time to dive into some actual code. This walk-through will take you through adding

the multiplication functionality to a calculator. Remember the TDD life cycle: test first,
make it run, and make it better.

Setting up the test

The initial calculator is in a file called calculator. js and is initialized as an object as
follows:

var calculator = {};

The test will be run through a web browser using a basic HTML page. Create a web page
and import calculator. js to test it. Save the web page as testRunner.html. To run the
test, open a browser and run testRunner.html. Here is the code for testRunner.html:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

<script src="calculator.js'"></script>
</body>
</html>

Now that the project is set up, the next step is to create the development to-do list.

Creating a development to-do list

A development to-do list helps organize and focus your tasks. It also provides a place to
write down ideas during the development process.

Here is the initial step for creating a development to-do list:
¢ Add multiplication functionality: 3 *3 = 9

The preceding list describes what needs to be done. It also provides a clear example of
how to verify multiplication: 3 *3 = 9.

Test first

Although you can write the multiplication function quickly, remember that once the habit
of TDD is set in place, it will be just as quick to write the test and code. Here are the steps
for the first test:

1. Open calculator.js.
2. Create a new function to test multiplying 3 * 3:

function multipleTest1(){
//Test

www.it-ebooks.info

http://www.it-ebooks.info/

var result = calculator.multiply(3,3);

//Assert Result is expected
if (result === 9) {
console.log('Test Passed');

}

else{
console.log('Test Failed');

}
};

The test calls a multiply function, which still needs to be defined. It then asserts that the
results are as expected by displaying a pass or fail message. Remember, in TDD, you are
looking at the use of the method and explicitly writing how it should be used. This allows
you to define the interface through a use case, as opposed to only looking at the limited
scope of the function being developed.

The next step in the TDD life cycle will be focused on making the test run.
Making it run

This step is about making the test run, just as the tailor did with the suit. The
measurements were taken during the test step, and now the application can be molded to
fit the measurements. Here are the steps to run the test:

1. Open the browser with testRunner.html.
2. Open the JavaScript developer Console window.

The test throws an error, as shown in the following screenshot:

Q [FElements Network Sources Timeline Profiles Resources Audits |Console| @1 # D‘ b
& Y <topframe> ¥ Preserve log
@ » Uncaught TypeError: undefined is not a functior i

The error thrown is expected as the calculator application calls a function that hasn’t been
created yet: calculator.multiply.

In TDD, the focus is on adding the smallest change to get a test to pass. There is no need
to actually implement the multiplication logic. This may seem unintuitive. The point is
once a passing test exists, it should always pass. When a method contains fairly complex
logic, it is easier to run a passing test against it to ensure it meets the expectations.

What is the smallest change that can be made to make the test pass? By returning the
expected value of 9, the test should pass. Although this won’t add the multiply function,
it will confirm the application wiring. In addition, after you have passed the test, making
future changes will be easy as you have to simply keep the test passing!

Now, add the multiply function and have it return the required value 9:

www.it-ebooks.info

http://www.it-ebooks.info/

var calculator = {
multiply : function(){

return 9;
}
i
In the browser, the JavaScript console reruns the test. The result should be as follows:
Q, [] Eements Network Sources Timeline Profiles Resources Audits | Console F -) O,
& Y <topframe= ¥ Preserve log

Test Passed

Yes! The test passed. Time to cross out the first item from the to-do list:
e Add multiplication functionality: 3 *3 =9

Now that there is a passing test, the next step will be to remove the hardcoded value in the
multiply function.

Making it better

The refactoring step needs to remove the hardcoded return value of the multiply
function. The required logic is as follows:

var calculator = {
multiply : function(amountl,amount2){
return amountl * amount2;
}

Iy
Rerun the tests and confirm the test passes. Excellent! Now the multiply function is
complete. Here is the full code for the calculator and test:

var calculator = {
multiply : function(amountl, amount2){
return amountl* amount2;
}

+;

var multipleTestl = function (){
var result = calculator.multiply(3,3);

if (result === 9) {
console.log('Test Passed');
}

else{
console.log('Test Failed');
}

+;

www.it-ebooks.info

http://www.it-ebooks.info/

multipleTestl();

www.it-ebooks.info

http://www.it-ebooks.info/

Testing techniques

It is important to understand some fundamental techniques and approaches to testing. This
section will walk you through a couple of examples of techniques that will be leveraged in
this book. This includes:

e Testing doubles with Jasmine spies
e Refactoring
¢ Building patterns

In addition, here are additional terms that will be used:

¢ Function under test: This is the function being tested. It is also referred to as system
under test, object under test, and so on.
e The 3 A’s (Arrange, Act, and Assert): This is a technique used to set up tests, first

described by Bill Wake (http://xp123.com/articles/3a-arrange-act-assert/). The 3 A’s
will be discussed further in Chapter 2, The Karma Way.

www.it-ebooks.info

http://xp123.com/articles/3a-arrange-act-assert/
http://www.it-ebooks.info/

Testing with a framework

Although a simple web page can be used to perform tests, as seen earlier in this chapter, it
is much easier to use a testing framework. A testing framework provides methods and
structures to test. This includes a standard structure to create and run tests, the ability to
create assertions/expectations, the ability to use test doubles, and more. This book uses
Jasmine as the test framework. Jasmine is a behavior-driven testing framework. It is
highly compatible with testing AngularJS applications. In Chapter 2, The Karma Way, we
will take a more in-depth look at Jasmine.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing doubles with Jasmine spies

A test double is an object that acts and is used in place of another object. Take a look at
the following object that needs to be tested:

var objectUnderTest = {
someFunction : function(){}

i
Using a test double, you can determine the number of times someFunction gets called.
Here is an example:

var objectUnderTest = {
someFunction : function(){}

i
jasmine.spyOn(objectUnderTest, 'someFunction');

objectUnderTest.someFunction ();
objectUnderTest.someFunction();

console.log(objectUnderTest.someFunction.count);

The preceding code creates a test double using a Jasmine spy (jasmine.spyon). The test
double is then used to determine the number of times someFunction gets called. A
Jasmine test double offers the following features and more:

e The count of calls on a function
e The ability to specify a return value (stub a return value)
e The ability to pass a call to the underlying function (pass through)

Throughout this book, you will gain further experience in the use of test doubles.

Stubbing a return value

The great thing about using a test double is that the underlying code of a method does not
have to be called. With a test double, you can specify exactly what a method should return
for a given test. Here is an example function:

var objectUnderTest = {
someFunction : function(){ return 'stub me!'; }

i
The preceding object (objectUnderTest) has a function (someFunction) that needs to be
stubbed. Here is how you can stub the return value using Jasmine:

jasmine.spyOn(objectUnderTest, 'someFunction')
.and
.returnvValue('stubbed value');

Now, when objectUnderTest.someFunction is called, stubbed value will be returned.
Here is how the preceding stubbed value can be confirmed using console. log:

var objectUnderTest = {

www.it-ebooks.info

http://www.it-ebooks.info/

someFunction : function(){ return 'stub me!'; }

i

//before the return value is stubbed
Console.log(objectUnderTest.someFunction());
//displays 'stub me'

jasmine.spyOn(objectUnderTest, 'someFunction')
.and
.returnvValue('stubbed value');

//After the return value is stubbed
Console.log(objectUnderTest.someFunction());
//displays 'stubbed value'

Testing arguments

A test double provides insights into how a method is used in an application. As an
example, a test might want to assert what arguments a method was called with or the
number of times a method was called. Here is an example function:

var objectUnderTest = {
someFunction : function(argl,arg2){}

i
Here are the steps to test the arguments the preceding function is called with:
1. Create a spy so that the arguments called can be captured:
jasmine.spyOn(objectUnderTest, 'someFunction');

2. Then to access the arguments, do the following:

//Get the arguments for the first call of the function
var callArgs = objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);
//displays ['paraml', 'param2’']

3. Here is how the arguments can be displayed using console.log:

var objectUnderTest = {
someFunction : function(argl,arg2){}

};

//create the spy
jasmine.spyOn(objectUnderTest, 'someFunction');

//Call the method with specific arguments
objectUnderTest.someFunction('paraml', 'param2');

//Get the arguments for the first call of the function
var callArgs = objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);
//displays ['paraml', 'param2']

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring

Refactoring is the act of restructuring, rewriting, renaming, and removing code in order to
improve the design, readability, maintainability, and overall aesthetic of a piece of code.
The TDD life cycle step of “making it better” is primarily concerned with refactoring.
This section will walk you through a refactoring example. Here is an example of a
function that needs to be refactored:

var abc = function(z){
var x = false;
if(z > 10)

return true;

return x;

}

This function works fine and does not contain any syntactical or logical issues. The
problem is that the function is difficult to read and understand. Refactoring this function
will improve the naming, structure, and definition. The exercise will remove the
masquerading complexity and reveal the function’s true meaning and intention. Here are
the steps:

1. Rename the function and variable names to be more meaningful, that is, rename x
and z so that they make sense:

var isTenOrGreater = function(value)({
var falsevValue = false;
if(value > 10)
return true;

return falseValue;

}

2. Now, the function can easily be read and the naming makes sense.
3. Remove unnecessary complexity. In this case, the if conditional statement can be
removed completely:

var isTenOrGreater = function(value){
return value > 10;

+;
4. Reflect on the result.

At this point, the refactor is complete, and the function’s purpose should jump out at
you. The remaining question that should be asked is “why does this method exist in
the first place?”.

This example only provided a brief walk-through of the steps that can be taken to identify
issues in code and how to improve them. Other examples will be used throughout this
book.

www.it-ebooks.info

http://www.it-ebooks.info/

Building with a builder

The builder pattern uses a builder object to create another object. Imagine an object with
ten properties. How will test data be created for every property? Will the object have to be
recreated in every test?

A builder object defines an object to be reused across multiple tests. The following code
snippet provides an example of the use of this pattern. This example will use builder
object in the validate method:

var book = {
id : null,
author : null,
dateTime : null

i

The book object has three properties: id, author, and dateTime. From a testing
perspective, you would want the ability to create a valid object, that is, one that has all the
fields defined. You may also want to create an invalid object with missing properties, or
you may want to set certain values in the object to test the validation logic, that is,
dateTime is an actual date.

Here are the steps to create a builder for the dateTime object:

1. Create a builder function:

var bookBuilder = function();

2. Create a valid object within the builder:

var bookBuilder = function(){
var _resultBook = {
id: 1,
author: 'Any Author',
dateTime: new DateTime()

+
}

3. Create a function to return the built object:

var bookBuilder = function(){
var _resultBook = {
id: 1,
author: "Any Author",
dateTime: new DateTime()
3
this.build = function(){
return _resultBook;

b
}

4. Create another function to set the resultBook author field:

var bookBuilder = function(){

www.it-ebooks.info

http://www.it-ebooks.info/

var _resultBook = {
id: 1,
author: 'Any Author',
dateTime: new DateTime()
3
this.build = function(){
return _resultBook;
3
this.setAuthor = function(author){
_resultBook.author = author;
3
Iy

5. Make the function fluent so that calls can be chained:

this.setAuthor = function(author){
_resultBook.author = author;
return this;

};
6. A setter function will also be created for dateTime:

this.setDateTime = function(dateTime){
_resultBook.dateTime = dateTime;
return this;

};

Now, bookBuilder can be used to create a new book as follows:

var builtBook = bookBuilder.setAuthor('Tim Chaplin')
.setDateTime(new Date())
Lbuild();

The preceding builder can now be used throughout your tests to create a single consistent
object. Here is the complete builder for your reference:

var bookBuilder = function(){
var _resultBook = {
id: 1,
author: 'Any Author',
dateTime: new DateTime()

+

this.build = function(){
return _resultBook;

+

this.setAuthor = function(author){
_resultBook.author = author;
return this;

+

this.setDateTime = function(dateTime){
_resultBook.dateTime = dateTime;
return this;

+

www.it-ebooks.info

http://www.it-ebooks.info/

i
Tip
Downloading the example code

You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-
mailed directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Self-test questions

Q1. A test double is another name for a duplicate test.

1. True
2. False

Q2. TDD stands for test-driven development.

1. True
2. False

Q3. The purpose of refactoring is to improve code quality.

1. True
2. False

Q4. A test object builder consolidates the creation of objects for testing.

1. True
2. False

Q5. The 3 A’s are a sports team.

1. True
2. False

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter provided an introduction to TDD. It discussed the TDD life cycle (test first,
make it run, make it better) and showed how the same steps are used by a tailor. Finally, it
looked over some of the testing techniques that will be discussed throughout this book
including:

e Test doubles
e Refactoring
e Building patterns

Although TDD is a huge topic, this book is solely focused on the TDD principles and
practices to be used with AngularJS. In the next chapter, you will start the journey and see
how to set up the Karma test runner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. The Karma Way

JavaScript testing has hit the mainstream, thanks to Karma. Karma makes it seamless to

test JavaScript. AngularJS was created around testing. This chapter explores the origins of
Karma and why it has to be used in any AngularJS project. By the end of this chapter, you
will not only understand the problem that Karma solves, but also walk through a complete

example using it.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript testing tools

Knowing what the different testing tools are is half the battle. In this section, you will
learn about the two primary tools that will be discussed and used throughout the book.

They are:

e Karma: This is a test runner
e Protractor: This is an end-to-end testing framework

www.it-ebooks.info

http://www.it-ebooks.info/

Karma

Before discussing what Karma is, it is best to discuss what it isn’t. It isn’t a framework to
write tests. It is a test runner. What this means is that Karma gives you the ability to run
tests in several different browsers in an automated way. In the past, developers had to
perform manual steps to do this, including:

1. Opening up a browser

Pointing the browser to the project URL
Running the tests

Confirming that all tests have passed
Making changes

Refreshing the page

ok W

With Karma, automation gives the developer the ability to run a single command and
determine whether an entire test suite has passed or failed. From a TDD perspective, this
gives you the ability to find and fix failing tests quickly. Some of the pros and cons of
using Karma compared to a manual process are as follows:

Pros

Cons |

Ability to automate tests in multiple browsers and devices.||Additional tool to learn, configure, and maintain.

Automating the process of testing and using Karma is extremely advantageous. In the
TDD journey through this book, Karma will be one of your primary tools.

Ability to watch files. |
Online documentation and support. |

Does one thing—runs JavaScript tests—and does it well.

Easy to integrate with a continuous integration server. |

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor

Protractor is an end-to-end testing tool. It allows developers to mimic user interactions. It
automates the testing of functionality and features through the interaction of a web
browser. Protractor has specific methods to assist with testing AngularJS, but they are not
exclusive to AngularJS. Some of the pros and cons of using Protractor are as follows:

Pros

Cons |

Configurable to test multiple environments Documentation and examples are limited

Easy integration with AngularJS || |

Syntax and testing can be similar to the testing framework chosen for unit testing

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript testing frameworks

In this section, you will learn about the testing frameworks that will support you in your
TDD practices. These include:

e Jasmine
e Selenium
e Mocha

www.it-ebooks.info

http://www.it-ebooks.info/

Jasmine

Jasmine is a JavaScript testing framework. It can be easily integrated and run for websites
and is agnostic to AngularJS. It provides spies and other features. It can also be run on its
own without Karma. Some of the pros and cons are as follows:

Pros Cons

No file-watching feature available when running tests. This means that tests

Default integration with Karma.
& have to be rerun by the user as they change.

Provides additional functions to assist with testing, such as test spies,

fakes, and the pass-through functionality. The learning curve can be steep for all the Protractor methods and features.

Cleans readable syntax that allows tests to be formatted in a way that
relates to the behavior being tested.

Integration with several output reporters. ||

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium
Selenium (http://www.seleniumhg.org/) defines itself as:

“Selenium automates browsers. That’s it!”

Automation of browsers means that developers can interact with browsers easily. They can
click on buttons or links, enter data, and so on. Selenium is a powerful toolset that, when
used and set up properly, has lots of benefits; however, it can be confusing and
cumbersome to set it up. Some of the pros and cons of Selenium are as follows:

Pros

Cons |

Large feature set Has to be run as a separate process

Several steps to configure |

Documentation and resources available || |

Distributed testing

Saa$S support through services such as Sauce Labs

As Protractor is a wrapper around Selenium, it won’t be discussed in detail. Protractor will
be further introduced in Chapter 3, End-to-end Testing with Protractor.

www.it-ebooks.info

http://www.seleniumhq.org/
http://www.it-ebooks.info/

Mocha

Mocha is a testing framework originally written for Node.js applications but supports
browser testing as well. It is very similar to Jasmine and mirrors much of its syntax. Let’s
discuss some of the pros and cons of Mocha:

Pros

Cons |

Easy to install Separate plugins/modules required for assertions, spies, and so on

Good documentation available ||Additional configuration required to use it with Karma

Has several reporters

Plugs in with several node projects

The approach of being just a test runner and not worrying about assertions and mocking
fits into the Node.js mantra—small individual modules that do one thing. For Node.js
projects, I prefer to go with Mocha. The reason is that you can add new Node Package
Manager (npm) modules for the specific plugins needed. When working with a website,
and specifically AngularJS, I prefer to use Jasmine. It provides the features needed
without having to install additional npm modules to a non-Node.js project.

www.it-ebooks.info

http://www.it-ebooks.info/

Birth of Karma

When picking up a new tool, it is important to understand where it came from and why it
was built. This section gives you some background of the origins of Karma.

www.it-ebooks.info

http://www.it-ebooks.info/

The Karma difference

Karma was created by Vojtech Jina. The project was originally called testacular. In Vojtech
Jina’s thesis, he discusses the design, purpose, and implementation of Karma. In his thesis
(JavasScript Test Runner, page 6, https://github.com/karma-
runner/karma/raw/master/thesis.pdf), he describes Karma as:

“...a test runner, that helps web application developers to be more productive and
effective by making automated testing simpler and faster. In fact, I have a much
higher ambition and this thesis is only a part of it - I want to promote Test Driven
Development (TDD) as “the” way to develop web applications, because I believe it is
the most effective way to develop high quality software.”

Karma has the ability to easily and automatically run JavaScript unit tests on real
browsers. Traditionally, tests were run by having to manually launch a browser and check
for results by continually hitting the Refresh button. This method was awkward and often
resulted in developers limiting the amount of tests that were written.

With Karma, a developer can write a test in almost any standard test framework, choose a
browser to run against, set the files to watch for changes, and bam! Continuous automated
testing. Simply check the output window for failed or passed tests.

www.it-ebooks.info

https://github.com/karma-runner/karma/raw/master/thesis.pdf
http://www.it-ebooks.info/

Importance of combining Karma with AngularJS

Karma was built for AngularJS. Prior to Karma, there was a lack of automated testing
tools for web-based JavaScript developers.

Remember, Karma is a test runner, not a test framework. Its job is to run tests and report
which tests will pass or fail. Why is this helpful? A test framework is where you will write
your tests. Apart from doing this, you will need to be focused on running the tests easily
and seeing results. Karma easily runs tests across several different browsers. Karma also
has some other features, such as file watching, which will be discussed further in detail
later in the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Karma

Time to start using Karma. Installations and applications are constantly changing. The
following guide is intended to be brief in the hope that you will go to the Karma website,

http://karma-runner.github.io/, and find the latest instructions.

The main focus of this section will be on the specific configuration used in this book and
not an in-depth installation guide.

www.it-ebooks.info

http://karma-runner.github.io/
http://www.it-ebooks.info/

Installation prerequisites

To install Karma, you need to have Node.js on your computer. Node.js runs on Google’s
V8 engine and allows JavaScript to be run on several operating systems.

Developers can publish node applications and modules using npm. This allows developers
to quickly integrate applications and modules into their applications.

Karma runs and is installed through the npm package, and therefore you need Node.js
before you use or install Karma. To install Node.js, go to http://nodejs.org/ and follow the
installation instructions.

Assuming you have Node.js installed, type the following command in the command
prompt to install Karma:

$ npm install karma -g

The preceding command uses npm to install Karma globally using -g. What this means is
that you can use Karma on the command prompt by simply typing the following:

$ karma --version

By default, installing Karma will install karma-chrome-launcher and karma-jasmine as
dependencies. Ensure that these modules are installed globally as well.

www.it-ebooks.info

http://nodejs.org/
http://www.it-ebooks.info/

Configuring Karma

Karma comes equipped with an automated way to create a configuration file. To use the
automated way, type the following command:

$ karma init

Here is a sample of the options chosen:
$ karma inmit

h testing framework do you w: to use 7
55 tab to 1ist possible options. Enter to move to the next gquestion.

will add Reguire.js pl

Do you want to use R:qu1re
L
]
Press tab to 1ist possible rlpT.-..rl*—... Enter to move to the next guestion.

Do you want to capture a browser automaticall :
- zs tab to list [u-nlh e opt i O6NS Enter emp string to move to the next quest

Dn you want Karma to watch all the files and run the tests on change ?
ress tab to 1list possible options.

Customizing Karma’s configuration

The following instructions describe the specific configuration required to get Karma
running for the project. Customization includes the test framework (Jasmine), browser
(Chrome) to test with, and files to test. To customize the configuration, open up
karma.conf and perform the following steps:

1. Ensure that the enabled framework says jasmine using the following code:

frameworks: ['jasmine'],

2. Configure the test directory. Note that the following definition needs to include the
tests required to run along with any potential dependencies. The directory that will
hold our tests is /test/unit/:
files: [

"test/unit/**/*.js'
1

3. Set the test browser to Chrome. It will then be initialized and will run a pop up after

every test:

www.it-ebooks.info

http://www.it-ebooks.info/

browsers: ['Chrome'],

Confirming Karma’s installation and configuration
To confirm Karma’s installation and configuration, perform the following steps:
1. Run the following command to confirm that Karma starts with no errors:

$ karma start

2. The output should be something like this:

$ INFO [karma]: Karma v0.12.16 server started at http://localhost:9876/
3. In addition, the output should state that no test files were found:

$ WARN [watcher]: Pattern "test/unit/**/*.js" does not match any file.
4. The output should do this along with a failed test message:

$ Chrome 35.0.1916 (Windows 7): Executed 0 of © ERROR (0.016 secs / 0
secs)

This is expected as no tests have been created yet. Continue to the next step if Karma is
started and you will see your Chrome browser with the following output:

La Cc localhost

Karma v0.12.16 - connected DEBUG

Common installation/configuration issues
If Jasmine or Chrome Launcher are missing, perform the following steps:

e When running the test, an error might occur saying missing Jasmine or Chrome
Launcher. If you get this error, type the following command to install the missing
dependencies:

$ npm install karma-jasmine -g
$ npm install karma-chrome-launcher -g

e Retry the test and confirm that the errors have been resolved.
The following is what you need to do to provide permissions (sudo/administrator):

¢ In some cases, you might not be able to install npm_modules globally using the -g
command. This is generally due to permission issues on your computer. The
resolution is to install Karma directly in your project folder. Use the same command
without -g to do this:

$ npm install karma

e Run Karma using the relative path:

www.it-ebooks.info

http://www.it-ebooks.info/

$./node_modules/karma/bin/karma --version

Now that Karma is installed and running, it’s time to put it to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with Karma

In this section, you will create a test to confirm Karma is working as expected. To do this,
perform the following steps:

1.

Create the test directory. In the Karma configuration, tests were defined in the
following directory:

files: [
"test/unit/**/*.js'
1

Go ahead and create the test/unit directory.

Create a new file named firstTest.js in the test/unit directory.
Write the first test as follows:

describe('when testing karma', function (){
it('should report a successful test', function (){
expect(true).toBeTruthy();

1)
1)

The preceding test uses Jasmine functions and has the following properties:

o describe: This provides a brief string description of the things that will be
tested

o it: This provides a brief string of the specific assertion

o expect: This provides a way to assert values

o toBeTruthy: This is one of several properties on an expectation that can be used
to make assertions

This test has no real value other than to confirm the output of a passing test.

Bam! Check your console window and see that Karma has executed your test. Your
command line should say something like this:

$ INFO [watcher]: Added file "./test/unit/firstTest.js"

This output means that Karma automagically recognized that a new file was added.
The next output should say something like this:

$ Chrome 35.0.1916 (Windows 7): Executed 1 of 1 SUCCESS (0.02 secs /
0.015 secs)

This means your test has passed!

www.it-ebooks.info

http://www.it-ebooks.info/

Confirming the Karma installation

Now the initial set up and configuration of Karma is complete. Here is a review of the
steps:

Installed Karma through the npm command

Initialized a default configuration through the karma init command
Configured Karma with Jasmine and a test/unit test directory

Started Karma and confirmed it could be opened with Chrome

Added a Jasmine test, firstTest.js, to our test/unit test directory
Karma recognized that firstTest.js had been added to the test directory
Karma executed our firstTest. js and reported our output

With a couple of steps, you were able to see Karma running and executing tests
automatically. From a TDD perspective, you can focus on moving tests from failing to
passing without much effort. No need to refresh the browser; just check the command
output window. Keep Karma running and all your tests and files will automatically be
added and run.

In the next sections, you will see how to apply Karma with a TDD approach. If you’re OK
with Karma so far and want to move on to Protractor, continue to the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Karma with AngularJS

Here, you will walk through a TDD approach to an AngularJS component. By the end of
this chapter, you should be able to:

e Feel confident about using Karma and its configuration
e Understand the basic components of a Jasmine test
e Start to understand how to integrate a TDD approach in an AngularJS application

www.it-ebooks.info

http://www.it-ebooks.info/

Getting AngularJS

An easy method for installing AngularJS into projects is to use Bower. Feel free to install
AngularJS into your project in any way you prefer. Following is a brief description on
how to install and use Bower.

Bower

Bower is a package manager for JavaScript components. Bower allows client-side
JavaScript components to be versioned and automatically downloaded into your projects.
This allows you to upgrade third-party tools and components and provide an easy,
standard way to use tools such as AngularJS, Bootstrap, and many more.

Bower installation

Bower is an npm module, just like Karma. Ensure you have Node.js installed before you
try to install Bower using the following steps:

1. Ensure you have Bower installed using this code:
$ npm install bower -g
2. Initialize the bower . json configuration in the root of the project:

$ bower init

//This will create a bower.json file which contains the dependent
packages

//Answer default to all the questions.

The output should be something like what is shown in the following screenshot:

That is it. Now Bower is installed and ready to download JavaScript packages into your
project.

Installing AngularJS

Use the following command to install AngularJS using Bower:

www.it-ebooks.info

http://www.it-ebooks.info/

$ bower install angular

Type the previous command in your command prompt for the directory you will be
working in. After the installation is complete, look at your directory and confirm that a
bower_componets directory was created. Inside this, there should be a folder for
AngularJS:

¥ bower_components

P angular

Installing Angular mocks

Angular mocks allows you to test AngularJS components. The official definition, which is
found at https://docs.angularjs.org/api/ngMock, is as follows:

“The ngMock module provides support to inject and mock Angular services into unit
tests. In addition, ngMock also extends various core ng services such that they can be
inspected and controlled in a synchronous manner within test code.”

To install Angular mocks, simply use Bower:

$ bower install angular-mocks
Initializing Karma

A karma.conf file is required to tell Karma how it should run for the application in
question. The best way to initialize it is to run the following command in the command
prompt:

$ karma 1init

Use the default answers. After karma.conf has been created in the current directory, open
up the configuration. The one configuration that needs to change is the definition of the
files for Karma to use. Use the following definition in the files section, which defines the
files required to run the test:

files: [
"bower_components/angular/angular.js',
"bower_components/angular-mocks/angular-mocks.js"',
'app/**/*.jS',
'spec/**/*.js'

1

The preceding configuration loads angular.js, JavaScript files in the app directory, and
your tests in the spec folder.

Ensure that Karma can run your configuration:

$ karma start

The command output should state something like this:

www.it-ebooks.info

https://docs.angularjs.org/api/ngMock
http://www.it-ebooks.info/

$ Chrome 35.0.1916 (Windows 7): Executed 0 of 0 ERROR (0.01 secs / 0 secs)

That is it. Karma is now running for the first AngularJS application.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with AngularJS and Karma

The purpose of this first test using Karma is to create a dynamic to-do list. This walk
through will follow the TDD steps we discussed in Chapter 1, Introduction to Test-driven
Development: test first, make it run, and make it better. This will allow you to gain more
experience in using TDD with AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

A development to-do list

Before you start the test, set your focus on what needs to be developed using a

development to-do list. This will allow you to organize your thoughts. Here is the to-do
list:

e Maintain a list of items:

o The example list consists of test, execute, and refactor

e Add an item to the list:

o The example list after you add the item is test, execute, refactor, and repeat

e Remove an item from the list:

o The example list after you add and remove the item is test, execute, and refactor

www.it-ebooks.info

http://www.it-ebooks.info/

Testing a list of items

The first development item is to provide you with the ability to have a list of items on a
controller. The next couple of steps will walk you through the TDD process of adding the
first feature using the TDD life cycle that is test first, make it run, make it better.

Test first

Determining where to start is often the hardest part. The best way is to remember the 3 A’s
(Assemble, Act, and Assert) and start with the base Jasmine template format. The code to
do this is as follows:

describe('', function(){

beforeeach(function(){

1)

it('', function(){
1)
});

e describe: This defines the main feature we are testing. The string will explain the
feature in readable terms and then the function will follow with the test.

e beforeEach: This is the assemble step. The function defined in beforeEach will get
executed before every assert. It is best to put the test setup required before each test
in this function.

e it: This is the act and assert step. In the it section, you will perform the action being
tested, followed by some assertion. The act step doesn’t have to go into the it
function. Depending on the test, it might be more suited in the beforeEach function.

Assemble, Act, and Assert (3 A’s)

Now that the template is there, we can start filling in the pieces. We will again follow the 3
A’s mantra.

The following are the two parts of the assemble section.

In the first part, we initialize the module using the following code:

beforeEach(function(){
module('todo');

1);

This code will use the Angular mocks JavaScript library to initialize the AngularJS
module being tested. We haven’t defined the todo module, but we will do this after we get
a failing test.

The second part talks about the scope of TodoController. The TodoController scope
will contain the list of items on its scope variable. It is required that the test has access to
the scope of TodoController. Angular mocks will be used to get this. Add the following

www.it-ebooks.info

http://www.it-ebooks.info/

code to beforeEach to get the controller’s scope:

// scope -hold items on the controller
var scope = {};

beforeEach(function(){

// ...

//inject - access angular controllerinject(function($controller){
//$controller - initialize controller with test scope
$controller('TodoController', {$scope:scope});

1),
//. ..

1),

The following is a brief explanation of each of the code elements:

e scope: This variable is used to hold and test the list items on the controller.

e inject: The Angular mocks function is used to access AngularJS’s $controller.
This essentially allows you to get access and inject dependencies into AngularJS
objects.

e $controller: This initializes the scope of TodoController. The test’s scope variable
will now contain the controller’s scope.

In the case of “act”, there is no method to act on. The scope object has already been
retrieved as part of the assemble step.

In assert, there are two parts again:

e The first assertion is to ensure the TodoController scope has a 1ist variable defined
with three items. The 1ist variable will be used to hold the list of all the items:

it('should define a list object',6 function(){
expect(scope.list).toBeDefined();

1)

e The second, third, and fourth assertions will be used to confirm whether the data in
the list is in the correct order, that is, first is test, second is execute, and third is
refactor:

//Second test

it('should define a list object', function(){
expect(scope.list[0]).toEqual('test');

3);

//Third test

it('should define a list object', function(){
expect(scope.list[1]).toEqual('execute');

1)
//Fourth test

it('should define a list object', function(){
expect(scope.list[2]).toEqual('refactor');

1)
Make it run

The next step in the TDD life cycle is to make the application run and fix the code so that

www.it-ebooks.info

http://www.it-ebooks.info/

the tests pass. Remember, think about the smallest components that can be added to make
the test pass by proceeding with the following steps:

1. Run Karma by typing the following command:
$ karma start

2. If you encounter [$injector:moduler] Failed to instantiate module todo due
to error, then it can be due to the following:

o The preceding error message is saying that the todo module hasn’t been defined.
Since the error message is telling you what is required, this is the perfect place
to start. Create a new file in the app directory named todo. The working
directory should now look something like this:

¥ app
todo.js
P bower_components
W spec
todo.js
karma.conf.js

o Add the todo module to the beginning of your new file as follows:
angular.module('todo',[]);

o Review the console window where Karma is running. You should now see a
new error.

3. Error: The [ng:areq] argument TodoController is not a function, got
undefined:

o This error message is describing exactly what needs to be done. There is no need
to decipher error messages or stack traces. Simply update the todo. js file so it
contains an AngularJS controller as follows:

angular.module('todo', [])
.controller('TodoController',[])

o In the previous code, we didn’t try and define the logic required; we only added
the smallest component to meet the error message. Review the console window
for the next error.

4. Error: The expected undefined to be defined as follows:

o The new error message is again clear. We can also see that the code has now
passed up to the point of our assertion at the following point:

expect(scope.list).toBeDefined();

o As there is no list on the scope, you need to add one. Update the app/todo.js
file as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

.controller('TodoController', ['$scope', function($scope){
$scope.list = [];

31

o Review the console window.

5. You should now see one of the four tests pass! This means you have successfully
used TDD and Karma to get your first test to pass. Now you need to fix the other
three. The next error is Expected undefined to equal 'test':

o The error output again describes exactly what needs to happen. You just need to
initialize the array with the elements test, execute, and run. Go to app/todo.js
and add the data to the array initialization:

angular.module('todo',[])
.controller('TodoController', ['$scope', function($scope){
$scope.list = ['test', 'execute', 'refactor'];

31);

o Review the output in the Karma window.
6. Excellent! The output is in green and states that all the tests have passed.

The result module and controller code from this step is as follows:

//A module for the application
angular.module('todo',[])
//A controller to manage the to-do items.controller('TodoController',
['$scope', function($scope){
//the initialization of items on the controller scope
$scope.list = ['test', 'execute', 'refactor'];

31

Now that the “make it run” step is complete, you can move on to the next step and make it
better.

Make it better

Until this point, there was nothing required to directly refactor or that had been identified
in the development to-do list. A review of the development to-do list shows that an item
can be crossed out:

e View a list of to-do list items:
o The example list consists of test, execute, and refactor
e Add an item to a to-do-list:

o The example list after you add the item will consist of test, execute, refactor, and
repeat

e Remove an item from a to-do-list:

o The example list after you add and then remove the item will consist of test,
execute, and refactor

www.it-ebooks.info

http://www.it-ebooks.info/

Next up is the requirement to add a new item to the list. The TDD rhythm will be followed
again: test first, make it run, and make it better.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a function to the controller

The next task is to give the controller the ability to add items to the scope list. This will
require the addition of a method to the scope. This walk-through will follow the same
TDD steps as done previously.

Test first

Instead of creating a new file and duplicating some of the assemble steps, the following
test will be inserted under the last it method. The reason is because the same module and
controller will be used:

describe('when using a to-do list', function(){
var scope = null;
beforeEach(function(){
VA

1)
//. ..

describe('"', function(){

beforeEach(function(){

1)

it('', function(){

1)

1)

1)

Assemble, Act, and Assert (3 A’s)

Now that the template is there, we can start filling in the gaps using the 3 A’s mantra:

1.

2.

Assemble: There is no initialization or setup required, as the module and controller
scope will be inherited.

Act: Here, you need to act on the add method with a new item. We place the act
function into the before each function. This allows us to repeat the same step
if/when more tests are added:

beforeEach(function(){
scope.add('repeat');

1);

Assert: Here, an item should be added to the list, and then you need to confirm that
the last item in the array is as expected:

it('should add item to last item in list', function()({
var lastIndexOfList = scope.list.length - 1;
expect(scope.list[lastIndex0OfList]).toEqual('repeat');

1),

www.it-ebooks.info

http://www.it-ebooks.info/

Make it run

The next step in the TDD life cycle is to make it run. Remember, think about the smallest
components that can be added to make the test pass, as follows:

1. Ensure Karma is running in your console by typing in the following command:

$ karma start
2. The first error will state TypeError: undefined is not a function:

o The error refers to the following line of code:
scope.add('repeat');

o The error is telling you that the add method hasn’t been defined. The add
function will need to be added to the app/todo.js code. The controller has
already been defined, so the add function needs to be placed on the controller’s
scope:

angular.module('to-do',[])
.controller('TodoController', ['$scope', function($scope){
/7. ..

$scope.add = function(){};

11);

o Notice how the add function doesn’t contain any logic. The smallest component
has been added to get the test to satisfy the error message.
o Review the console window for the next error.

3. Error: Expected 'refactor' to equal 'repeat':

o Have a look at the following expectation:

it('should add item to last item in list', function(){
var lastIndexOfList = scope.list.length - 1;
expect(scope.list[lastIndex0OfList]).toEqual('repeat');

1)

o The failed assertion in step 2 is telling us that based on the preceding
expectation, the expected result of repeat is not what the last item in the list
has. The smallest possible thing that can be added to make this assertion pass is
to push repeat to the end of the list in the add function. Here is how to do this:

// ...
$scope.add = function(){
$scope.list.push('repeat');
iy
// ...
o Review the console to see what the next output says.

4. Success! All five tests have now passed.
The resulting code added to get the tests to pass is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

//A module for the application
angular.module('todo',[])
//A controller to manage the to-do items
.controller('TodoController', ['$scope', function($scope){
//the initialization of items on the controller scope
$scope.list = ['test', 'execute', 'refactor'];

$scope.add = function(){
$scope.list.push('repeat');
Iy
1)

Make it better

The main thing that we need to refactor is that the add function still hasn’t been fully
implemented. It contains a hardcoded value, and the minute we send in a different item
into the add function, the test will fail.

Keep Karma running so we can keep passing the tests as changes are made. The main
issue with the current add method is as follows:

e It doesn’t accept any parameter
e It doesn’t push a parameter onto the list but uses a hardcoded value

The resultant add function should now look as follows:

$scope.add = function(item){
$scope.list.push(item);

i
Confirm that the Karma output still displays success:

$ Chrome 35.0.1916 (Windows 7): Executed 5 of 5 SUCCESS (0.165 secs / 0.153
secs)

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

Self-test questions will help you further test your knowledge of using TDD with
AngularJS and Karma.

Q1. How do you use Karma to create a configuration file?

1. karma config
2. karma init
3. karma -config karma.conf.js

Q2. The Jasmine test method named before gets executed before every test.

1. True
2. False

Q3. Bower is used to install Karma.

1. True
2. False

Q4. The 3 A’s stand for which one of these?

1. A group of super heroes
2. Assemble, Act, and Assert
3. Accept, approve, and act

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we reviewed JavaScript testing frameworks and tools and discussed how
Vojtech Jina created Karma. We saw how to install, configure, and run Karma. Finally,
you have walked through an example of using Karma with TDD. In the next chapter, you

will learn about end-to-end testing with Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. End-to-end Testing with
Protractor

Unit testing is only one aspect of testing. In this chapter, we will look at end-to-end testing
applications, through all layers of an application. You will be introduced to Protractor, the
end-to-end testing tool from the AngularJS team. We will look into why it was created and
the problems it solves. Finally, we will see how to install, configure, and use Protractor

with TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

An overview of Protractor

Protractor is an end-to-end testing tool that runs using Node.js and is available as an npm
package. Before talking about Protractor specifically, you need to understand what end-to-
end testing is. End-to-end testing is testing an application against all the interconnected
moving parts and layers of an application. This differs from unit tests, where the focus is
on individual components such as controllers, services, directives, and so on. With end-to-
end testing, the focus is on how the application or a module, as a whole, works, such as
confirming the click of a button does x, y, and z.

Protractor allows the end-to-end testing of an application. This includes the ability to
simulate the click of a button and interact with an application in the same way a user
would. It then allows expectations to be set based on what the user would expect. To put
this into context, think about the following user specification:

Assuming I input abc into the search box, the following should occur:

e The search button is hit
e At least one result should be received

The preceding specification describes a basic search feature. Nothing in the preceding
specification describes a controller, directive, or service; it only describes the expected
application behavior. If a user were to test the specification, they may perform the
following steps:

1. Point the browser to the website

Select the input field

Type abc in the input field

Click on the Search button

Confirm that the search output displays at least one result.

oW

The structure and syntax of Protractor mirrors that of Jasmine and the tests you wrote in
Chapter 2, The Karma Way. You can think of Protractor as a wrapper around Jasmine, with
added features to support end-to-end testing. To write an end-to-end test with Protractor,
we can follow the same steps as described in the preceding steps, but with code. Here are
the steps in code:

1. Point the browser to the website:

browser.get('/");

2. Select the input field:

var inputField = element.all(by.css('input'));

3. Type abc in the input field:

inputField.setText('abc');
4. Click on the Search button:

www.it-ebooks.info

http://www.it-ebooks.info/

inputField.click();

5. Find the search result details on the page:

var searchResults = element.all(by.css('#searchResult');

6. Finally, the assertion needs to be made that at least one or more search results are
available on the screen:

expect(searchResults).count() >= 1);

As a complete test, the code will be as follows:

describe('Given I input 'abc' into the search box', function(){
//1 - Point browser to website
browser.get('/");
//2 - Select input field

var inputField = element.all(by.css('input'));

//3 - Type abc into input field

inputField.setText('abc');

//4 - Push search button

inputField.click();

it('should display search results',6 function(){
// 5 - Find the search result details
var searchResults = element.all(by.css('#searchResult');
//6 - Assert
expect(searchResults).count() >= 1);

1);
1);
That’s it! When Protractor runs, it will open a browser, go to the website, follow the
instructions, and finally check the expectations. The trick with end-to-end testing is having
a clear vision on what the user specification is, and then translating that specification to
code.

The previous example is a high-level view of what will be described throughout this
chapter. Now that you have been introduced to Protractor, the rest of the chapter will show
how Protractor works behind the scenes, how to install it, and finally, walk you through a
complete example using TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

Origins of Protractor

Protractor is not the first end-to-end testing tool that the AngularJS team built. The first
tool was called Scenario Runner. In order to understand why Protractor was built, we
need to first look at its predecessor: Scenario Runner.

www.it-ebooks.info

http://www.it-ebooks.info/

End of life

Scenario Runner is in maintenance mode and has reached its end of life. It has been
deprecated in place of Protractor. In this section, we will look at what Scenario Runner

was and what gaps the tool had.

www.it-ebooks.info

http://www.it-ebooks.info/

The birth of Protractor

Julie Ralph is the primary contributor to Protractor. According to Julie Ralph, the
motivation for Protractor was based on the following experience with Angular Scenario
Runner, on another project within Google (http://javascriptjabber.com/106-jsj-protractor-

with-julie-ralph/):

We tried using the Scenario Runner. And we found that it really just couldn’t do the things
that we needed to test. We needed to test things like logging in. And your login page isn’t
an Angular page. And the Scenario Runner couldn’t deal with that. And it couldn’t deal
with things like popups and multiple windows, navigating the browser history, stuff like
that.

Based on her experience with Scenario Runner, Julie Ralph decided to create Protractor to
fill the gaps.

Protractor takes advantage of the maturity of the Selenium project, and wraps up its
methods so that it can be easily used for AngularJS projects. Remember, Protractor is
about testing through the eyes of the user. It was designed to test all layers of an
application: Web Ul, backend services, persistence layer, and so on.

www.it-ebooks.info

http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
http://www.it-ebooks.info/

Life without Protractor

Unit testing is not the only testing that needs to be written and maintained. Unit tests focus
on small individual components of an application. By testing small components, the
confidence in the code and logic grows. Unit tests don’t focus on how the complete
system works when interconnected.

End-to-end testing with Protractor allows the developer to focus on the complete behavior
of a feature or module. Going back to the search example, the test should only pass if the
whole user specification passes; enter data into the search box, click on the Search button,
and see the results.

Protractor is not the only end-to-end testing framework out there, but it is the best choice
for AngularJS applications. Here are a few reasons why you should choose Protractor:

It is documented throughout the AngularJS tutorials and examples.

It can be written using multiple JavaScript testing frameworks, including Jasmine and
Mocha.

It provides convenience methods for AngularJS components, including waiting for a
page to load, expectations on promises, and so on.

It wraps Selenium methods that automatically wait for promises to be fulfilled.

It is supported by SaaS (Software as a Service) providers such as Sauce Labs, which
is available at https://saucelabs.com/.

It is supported and maintained by the same company that maintains AngularJS and
Google.

www.it-ebooks.info

https://saucelabs.com/
http://www.it-ebooks.info/

Protractor installation

It’s time to start getting our hands dirty, and install and configure Protractor. Installations
and applications are constantly changing. The main focus will be on the specific
configuration used in this book, and not an in-depth installation guide. There are several
varying different configurations, so please review the Protractor site for additional details.
Please visit the following website to find the latest installation and configuration guide:

http://angular.github.io/protractor/

For this book, we will only be using the chromeonly configuration. The chromeonly
configuration doesn’t require several moving parts, and allows you to get up to speed
quickly. As your tests grow and you are required to support multiple browsers, running
tests with a Selenium server or using something like Sauce Labs should be reviewed.
Appendix A, Integrating Selenium Server with Protractor describes how to set up a
standalone Selenium server.

www.it-ebooks.info

http://angular.github.io/protractor/
http://www.it-ebooks.info/

Installation prerequisites

Protractor has the following prerequisites:

¢ Node.js: Protractor is a Node.js module available using npm. The best way to install
Node.js is to follow the instructions on the official site at http://nodejs.org/download/.

e Chrome: This is a web browser built by Google. It will be used to run end-to-end
tests in Protractor without the need for a Selenium server. Follow the installation
instructions on the official site at http://www.google.com/chrome/browser/.

¢ Selenium WebDriver for Chrome: This is a tool that allows you to interact with
web applications. Selenium WebDriver is provided with the Protractor npm module.
We will walk through the instructions as we install Protractor.

www.it-ebooks.info

http://nodejs.org/download/
http://www.google.com/chrome/browser/
http://www.it-ebooks.info/

Installing Protractor

Here are the steps to install Protractor:

1. Once Node.js is installed and available in the command prompt, type the following
command to install Protractor in the current directory:

$ npm install protractor

The previous command uses Node’s npm command to install Protractor in the current
local directory.

2. Confirm the current directory structure:

¥ node_modules
bin
P protractor

To use Protractor in the command prompt, use the relative path to the Protractor bin
directory.

3. Test that the Protractor version can be determined as follows:

$./node_modules/protractor/bin/protractor --version

Installing WebDriver for Chrome

Here are the steps to install WebDriver for Chrome:

1. To install Selenium WebDriver for Chrome, go to the webdriver-manager executable
in the Protractor bin directory that can be found at
./node_modules/protractor/bin/ and type the following:

$./node_modules/protractor/bin/webdriver-manager update
2. Confirm the directory structure.

The previous command will create a Selenium directory containing the required
Chrome driver used in the project. The node_modules directory should now look like
the following:

¥ node_modules
.bin
¥ protractor
¥ bin
¥ selenium
chromedriver_2.10.zip

selenium-server-standalone-2.42.2 jar

www.it-ebooks.info

http://www.it-ebooks.info/

The installation is now complete. Both Protractor and Selenium WebDriver for
Chrome have been installed. We can now move on to the configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing configuration

In this section, we will be configuring Protractor using the following steps:
1. Start with a standard template configuration.

Fortunately, the Protractor installation comes with some base configurations in its
installation directory. Going back to the local node_modules directory, you should
find the example Chrome configuration in the example folder:

¥ node_modules
P .bin
¥ protractor
¥ bin
P docs
¥ example
chromeCnlyConf.js
conf.js

example_spec.js

The example directory contains example configurations. The one that we will use is
called chromeonlycConf.js. The chromeonly configuration will allow us to run end-
to-end tests in Chrome without the need for a Selenium server. As discussed earlier,
running a Selenium server is another option that will not be discussed in this book.

2. Review the example configuration file:

o The chromeOnly parameter should be set to true, as follows:

exports.config = {
/7.
chromeOnly: true,
/7.

i
o The chromeDriver parameter will have to be modified to point to the driver we
installed, as follows:

exports.config = {

// ...
chromeDriver: '../selenium/chromedriver’,
// ...

i
o The capabilities parameter should only specify the name of the browser:

exports.config = {

// ...

capabilities: {
"browserName': 'chrome'
+r
// ...

www.it-ebooks.info

http://www.it-ebooks.info/

i
o The final important configuration is the source file declaration:

exports.config = {
// ...
specs: ['example_spec.js'],
// ...

iy

Excellent! Now we have Protractor installed and configured.

Confirming installation and configuration

To confirm installation, Protractor requires at least one file defined in the specs
configuration section. Before adding a real test and complicating things, create an empty
file in the root directory called confirmConfigTest.js. Then, add the test to the specs
section so it looks like this:

specs: ['confirmConfigTest.js'],

To confirm that Protractor has been installed, run Protractor by going to the root of your
project directory and type:

$./node_modules/protractor/bin/protractor chromeOnlyConf.js

If everything was set up correctly and installed, you should see something similar to this
in your command prompt:

Finished in 0.0002 seconds
0 tests, 0 assertions, 0 failures

Common installation/configuration issues

The following are some common issues that you might come across while installing
WebDriver for Chrome:

e Selenium not installed correctly: If the tests have errors related to the Selenium
WebDriver location, you need to ensure that you followed the steps to update
WebDriver. The update step downloads the WebDriver components into the local
Protractor installation folder. Until WebDriver has been updated, you won’t be able to
reference it in the Protractor configuration. An easy way to confirm the update is to
look in the Protractor directory and ensure that a Selenium folder exists.

e Unable to find tests: When no tests are executed by Protractor, it can be
frustrating. The best place to start is in the configuration file. Make sure the relative
path and any file names or extensions are correct.

For a more complete list, please refer to the official Protractor site at
http://angular.github.io/protractor/.

www.it-ebooks.info

http://angular.github.io/protractor/
http://www.it-ebooks.info/

Hello Protractor

With the Protractor installation and configuration complete, you can look at writing a real
test. This section will walk you through using TDD with Protractor. At the end of this
chapter, you should be able to:

e Feel confident in using and configuring Protractor
¢ Understand the basic components of a Protractor test
e Start to understand how to integrate a TDD approach to end-to-end testing

www.it-ebooks.info

http://www.it-ebooks.info/

TDD end-to-end

Test-driven development is not a silver bullet. It is a foundation of principles and
techniques used to improve efficiency, quality, and much more. Knowing how to apply
TDD is the first step, but knowing when to apply it is just as important.

When applying TDD, you are coupling tests to your logic and code. As a developer, you
have to make decisions on when that coupling makes sense and will be advantageous to
your project. As you work through the examples, be aware that they show you how to
apply TDD techniques. As you use these practices in your own projects, you will need to
determine the depth and coupling of the tests that your project and specifications require.

The pre-setup

The code in this test will leverage the unit tested code from Chapter 2, The Karma Way.
You will need to copy the code to a new directory.

As a reminder, the application was a to-do application that adds and deletes items from a
list. It has a single controller, TodoController, that has a list of items and an add method.
The application didn’t have any HTML or user components. We will use a TDD approach
to add the UI elements. The current code directory should be structured as follows:

¥ todo
¥ app
todo.js
P bower_components
b spec

karma.conf

www.it-ebooks.info

http://www.it-ebooks.info/

The setup

The setup will mirror the installation and configuration steps from earlier:

1. Install Protractor.
2. Update Selenium WebDiriver.
3. Configure Protractor based on the example configuration.

Follow the Protractor installation and configuration steps you learned in the previous
section in a new project directory. The only difference is that the Protractor tests should be
placed in a spec/e2e directory. This will allow you to easily identify the tests in your
project structure. After creating a spec/e2e directory update, the Protractor configuration
spec section should be as follows:

exports.config = {
/7.
specs: ['spec/e2e/**/*.js'],
// ...

i

After confirming that Protractor has been installed and configured properly, you can start
the first test.

www.it-ebooks.info

http://www.it-ebooks.info/

Test first

Now that Protractor has been set up, the testing can begin. End-to-end tests are slow and
touch multiple layers of the application. They also require the full application to be set up
and running in order to test. There are several techniques that we can leverage to mock a
local environment. Mocking data and APIs will be discussed in Chapter 7, Give Me Some
Data. This first end-to-end test will only have a Web UI layer. No additional mocking will
be required.

As mentioned earlier, Protractor requires a running application. This means the website
needs to be available for you to point your browser to it. A simple approach to serving
static HTTP content is to use the http-server npm module. The http-server module is
perfect for a local development environment, but probably not suited for the final
application infrastructure. Your production website might be developed in something like
Express, IIS, or Apache.

Installing the test web server

To install our test web server, we will use the http-server node module. The advantage
of a web server such as http-server is that it requires very little configuration and can
just start and run the website. Here are the steps to install the web server:

1. Type the following command in the command line:

$ npm install http-server

2. Now create a stub index.html page at the root of the project with the basic HTML
components:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

</body>
</html>

3. Now run the HTTP server and ensure the page is loaded:
./node_modules/http-server/bin/http-server -p 8080

4. Goto http://localhost:8080. You should see a blank page get loaded, with no
errors in the command or on the web page. If you see errors, ensure that the directory
has the required index.html file. Now that you have a working website, it is time to
configure Protractor to use it.

Configuring Protractor

Protractor can be configured with a base URL for an application. By specifying a base

www.it-ebooks.info

http://www.it-ebooks.info/

URL, tests will look cleaner and can be easily configured to use different URLs for the
same application. Imagine a dev, qa, and production URL that use the same tests, but have
different URLs that need to be tested.

As we will be running this locally, we will need to use http://localhost:86000 as our
base URL. Update the Protractor configuration file as follows:

baseUrl: 'http://localhost:8080/'

Getting down to business

End-to-end testing is different than unit testing. Tests will interact with different layers of
an application throughout a single scenario. You may have another team designing the
HTML elements, CSS, and so on. The development team will then have to integrate the Ul
HTML into the page. The TDD approach will allow you to create tests for separate
components independently. The idea is you want to be able test the features of the
application that make sense to test. Testing everything blindly can be a waste of time and a
refactoring nightmare.

In this case, we start with a blank canvas of a page and want to test the behavior of the
primary components. We will follow the TDD life cycle (test, execute, refactor). In the
upcoming sections, we will cover the following steps:

1. Review the user specification.
2. Write down the main tasks that need to be developed.
3. Write the test for what will be developed.

Specification
The purpose of this first test is to manage a dynamic to-do list.
The development to-do list

We will need a development to-do list to set our focus and organize our development
tasks. Perform the following steps:

1. View the to-do list items

o Example list: test, execute, refactor
2. Add an item to the to-do list

o Example list: test, execute, refactor, repeat
3. Remove an item from the to-do list

o Example list: test, execute, refactor

If you recall, in our previous example, we set up the backend module for the to-do list
application. In this case, we will focus on managing the list from the user’s perspective.

Test first

www.it-ebooks.info

http://www.it-ebooks.info/

Just as we discussed with the Karma test, start with the 3 A’s (Assemble, Act, Assert).
Protractor tests are written in the same Jasmine style and setup, so you don’t have to learn
any new syntax. Start with the basic Jasmine template format:

describe('', function(){
beforekEach(function(){

1)
it('', function(){

1)
3);

e describe: This defines the main feature we test. The first parameter is a string to
explain the feature and the second parameter is the function that contains the test
steps.

e beforeEach: This is the test setup and Assemble section. The function defined in
beforeEach will be executed before every Assert. This is where we perform any
setup mocks, spies, and other components needed to test.

e it: This is the Act and Assert section. In this section, you will perform the actual
action being tested, followed by an assertion.

Assemble, Act, Assert (3 A’s)

Follow the 3 A’s mantra:

e Assemble: As this is an end-to-end test, we will initialize by directing the test to go
to the page under test. In this case, the page is /. This is because we set the base URL
to be http://localhost:8080/ in the configuration file. So the code will look like
the following:

beforekEach(function(){
browser.get('/"');

1)

e Act: In the first test, to view a list of to-do items, there is no button to be clicked or
action to be done in order to get the list. We should just browse to the page and see
the list of to-do items.

e Assert: This is our first failing test, which we will write using Protractor. The test
needs to determine whether the list of to-do items, that is test, execute, and refactor,
is available on the page. In AngularJS, this will be done using ng-repeat, meaning
each item in a list will be repeated with some special HTML to display an individual
item.

As Protractor is testing the actual Ul, you will need to have the ability to select
HTML elements. One of the benefits of Protractor is that it wraps up AngularJS
components so that they can be easily tested.

In the preceding test, we will use the element selector with the by.repeater
selection. In our case, the first assertion will look like this:

it('', function(){

var todoListItems = element.all(by.repeater('item in list'));
expect(todoListItems.count()).toBe(3);

www.it-ebooks.info

http://www.it-ebooks.info/

1),

The first line will select the to-do list items available on the page. The second will
Assert that the item count is 3. When running the test, ensure the web server is still
running using the following command:

$./node_modules/http-server/bin/http-server -p 8080

The completed test looks as follows:

describe('', function(){
//ASSEMBLE
beforekEach(function(){
//ACT
browser.get('/");

3)7

it('', function(){
var todoListItems = element.all(by.repeater('item in list'));
//ASSERT
expect(todoListItems.count()).toBe(3);

1)
1),

Running the test
The steps to run a test are as follows:

1. Run the Protractor test in a different command prompt, using the following
command:

$ protractor chromeOnlyConf.js

2. The output should say that AngularJS could not be found:

$ Error: Angular could not be found on the page http://localhost:8080/
: retries looking for angular exceeded

This error indicates that the assertions failed.

3. When running the test, you should see a Chrome pop-up with the page. You should
also see that the output from the web server says something like the following:

GET /” “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/36.0.1985.125 Safari/537.36

Excellent! Now you’ve got a failing Protractor test, it is time to make it run.
Make it run

The next step in the TDD life cycle is to execute and fix the code so that the tests pass. As
you walk through the test, remember to use the smallest components that can be added to
make the test pass:

1. As the first error says, Angular can't be found. Add Angular]S to the page just
before the closing tag for the body as follows:

/7.

www.it-ebooks.info

http://www.it-ebooks.info/

<script src="bower_components/angular/angular.js"></script>
</body>
/7. ..

2. Rerun the test using the following command:

$ protractor chromeOnlyConf.js

The output should now display the following:

$ Error: Angular could not be found on the page http://localhost:8080/
: angular never provided resume Bootstrap

3. Since you haven’t specified the application or added the todo. js page, let’s add these
components to it after the AngularJS script:

/7. ..

<body ng-app="todo">
<script src="bower_components/angular/angular.js"></script>
<script src="app/todo.js"></script>

/7. ..

4. Rerun the test using the following command:

$ protractor chromeOnlyConf.js

The output should now display that our expectations failed:

$ Expected 0 to be 3.

Great! Now there are no more execution errors in our page, only the failed
expectations on the number of list items.

5. In order to add the items to the page, we will need to add a reference to
TodoController, and then add ng-repeat for each item. The code in the index.html
page should be as follows:

<div ng-controller="TodoController">
<ul ng-repeat="item in list">
{{item}}</1i>

</div>

6. Rerun the test as follows:

$ protractor chromeOnlyConf.js

The output should now display that our assertion and test passed:

$ 1 test, 1 assertion, 0 failures

The completed page body tag will now look as follows:

<body ng-app="todo">
<div ng-controller="TodoController">
<ul ng-repeat="item in list">
{{item}}</1i>

www.it-ebooks.info

http://www.it-ebooks.info/

</div>

<script src="bower_components/angular/angular.js"></script>
<script src="app/todo.js"></script>
</body>

Make it better
There is nothing that was called out to refactor. Looking at our to-do list, we tackled the
first two items from an end-to-end perspective.

1. View the to-do-list items:
o Example list: test, execute, refactor

2. Add an item to a to-do-list:

o Example list: test, execute, refactor, repeat

3. Remove an item from a to-do-list:

o Example list: test, execute, refactor

I will leave the second and third items as an exercise, so that you can further explore and
practice TDD with Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning up the gaps

There are a couple of things that were discussed in this chapter that need some further
clarification. This includes the following:

e Where is the asynchronous logic?
e How to really implement TDD with end-to-end tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Async magic

In the preceding tests, we saw some magic that you might be questioning. Here are some
of the magic components that we glanced over:

e [oading a page before test execution
e Assertion on elements that get loaded in promises

Loading a page before test execution

In the previous test, we used the following code to specify that the browser should point to
the home page:

browser.get('/");

The preceding command will launch the browser and navigate to the baseur1 location.
Once the browser reaches the page, it will have to load AngularJS and then implement the
AngularJS-specific functions. Our tests don’t have any wait logic, and this is part of the
beauty of Protractor with AngularJS. The waiting for page loading is already built in the
framework for you. Your tests can then be written very cleanly.

Assertion on elements that get loaded in promises

The assertions and expectations already have promise fulfillment written in them. In the
case of our test, we wrote the assertion so that it expects the count to be three:

expect(todoListItems.count()).toBe(3);

However, in reality, we may have thought that we needed to add asynchronous testing to
the assertion in order to wait for the promise to be fulfilled, something more complicated
like the following:

it('', function(done){
var todoListItems = element.all(by.repeater('item in list'));
todoListItems.count().then(function(count){
expect(count).toBe(3);
done();
37
1)

The preceding code is longer, more granular, and harder to read. Protractor has the ability
for certain elements built in to expectations to make tests more concise.

www.it-ebooks.info

http://www.it-ebooks.info/

TDD with Protractor

With our first test, there is a clear distinction of end-to-end tests and unit tests. With the
unit test, we focused on strong coupling the test to the code. As an example, our unit test
spied on the scope for a specific controller, TodoController. We used Angular mocks to
initialize the scope with a variable we could then evaluate:

inject(function($controller){
$controller('TodoController', {$scope:scope});

1),

In the Protractor test, we don’t care about which controller we are testing and our focus is
on the user perspective of the test. We first start with the selection of a particular element
within the Document Object Model (DOM); in our case, that element is tied to
AngularJS, ng-repeat. The Assert is that the number of elements for a specific repeater is
equal to the expected count.

With the loose coupling of the end-to-end test, we can write a test that focuses on the user
specification, which initially displays three elements, and then have the freedom to write
that in the page, controllers, and so on, in any way we want.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

Use TDD with Protractor to develop the third development to-do list item:
Q1. Protractor uses which of the following frameworks?

1. Selenium
2. Unobtanium
3. Karma

Q2. You can install Angular mocks by running bower install angular-mocks.

1. True
2. False

Q3. What steps does the TDD life cycle, discussed in this book, consist of?

1. Test first, make it run, make it better (refactor)
2. Test, make it better (refactor), make it run
3. Make it run, test, make it better

Additionally, if you want more practice, add a functionality to the application to remove
an item from the to-do list.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter has given you the skills necessary to install, configure, and apply TDD
principles to end-to-end testing. We have seen how we can leverage the existing TDD life
cycle (test, make it run, make it better) and techniques with Protractor. Protractor is an
important part of testing any AngularJS application. It bridges the gap to ensure the user’s
specifications work as expected. When end-to-end tests are written to the user
specifications, the confidence of the application and ability to refactor grows. In the
upcoming chapters, we will see how to apply Karma and Protractor in more depth with
simple straightforward examples. The next chapter will walk you through testing
controllers, using Angular mocks, and using Protractor to enter key strokes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. The First Step

The first step is always the hardest. This chapter provides an initial introductory walk-
through of how to use TDD to build an AngularJS application with a controller, model,
and scope. You will be able to begin the TDD journey and see the fundamentals in action.
Up to this point, this book has focused on a foundation of TDD and the tools. Now, we
will switch gears and dive into TDD with AngularJS. This chapter will be the first step of
TDD. We have already seen how to install Karma and Protractor, in addition to small
examples and a walk-through on how to apply it. This chapter will focus on the creation of
social media comments. It will also focus on the testing associated with controllers and the
use of Angular mocks to AngularJS components in a test.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing the application’s specification
Create an application to enter comments. The specification of the application is as follows:

e Given I am posting a new comment, when I click on the submit button, the comment
should be added to the to-do list

e Given a comment, when I click on the like button, the number of likes for the
comment should be increased

Now that we have the specification of application, we can create our development to-do
list. It won’t be easy to create an entire to-do list of the whole application. Based on the
user specifications, we have an idea of what needs to be developed. Here is a rough sketch
of the UT:

| | | Submit |

« Comment 1 0

* Comment 2 Like| 1
« Comment 3 2

Hold yourself back from jumping into the implementation and thinking about how you
will use a controller with a service, ng-repeat, and so on. Resist, resist, resist! Although
you can think of how this will be developed in the future, it is never clear until you delve
into the code, and that is where you start getting into trouble. TDD and its principles are
here to help you get your mind and focus in the right place.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the project

In previous chapters, we discussed in detail how a project should be set up, explained the
different components involved, and walked through the entire process of testing. I will
skip these details and provide a list in the following section for the initial actions to get the

project set up.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the directory

The following instructions are specific to setting up the project directory:

1. Create a new project directory.
2. Get angular into the project using Bower:

bower install angular

3. Get angular-mocks for testing using Bower:

bower install angular-mocks

4. Initialize the application’s source directory:

mkdir app

5. Initialize the test directory:

mkdir spec

6. Initialize the unit test directory:

mkdir spec/unit

7. Initialize the end-to-end test directory:

mkdir spec/e2e

Once the initialization is complete, your folder structure should look as follows:

¥ app

¥ bower_components
P angular
P angular-mocks

P spec

package.json

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up Protractor

In Chapter 3, End-to-end Testing with Protractor, we discussed the full installation and
setup of Protractor. In this chapter, we will just discuss the steps at a higher level:

1. Install Protractor in the project:
$ npm install protractor

2. Update Selenium WebDriver:
$./node_modules/protractor/bin/webdriver-manager update
Make sure that Selenium has been installed.

3. Copy the example chromeonly configuration into the root of the project:
$ cp ./node_modules/protractor/example/chromeOnlyConf.js .

4. Configure the Protractor configuration using the following steps:

1. Open the Protractor configuration.
2. Edit the Selenium WebDriver location to reflect the relative directory to
chromeDriver:

chromeDriver: './node_modules/protractor/selenium/chromedriver’',

3. Edit the files section to reflect the test directory:

specs: ['spec/e2e/**/*.js'],

5. Set the default base URL:

baseUrl: 'http://localhost:8080/',

Excellent! Protractor should now be installed and set up. Here is the complete
configuration:

exports.config = {
chromeOnly: true,
chromeDriver: './node_modules/protractor/selenium/chromedriver’,
capabilities: {
"browserName': 'chrome'

3
baseUrl: 'http://localhost:8080/',

specs: ['spec/e2e/**/*.js'],

};

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up Karma

The details for Karma can be found in Chapter 2, The Karma Way. Here is a brief
summary of the steps required to install and get your new project set up:

1. Install Karma using the following command:

npm install karma -g

2. Initialize the Karma configuration:

karma init

3. Update the Karma configuration:

files: [
"bower_components/angular/angular.js’',
"bower_components/angular-mocks/angular-mocks.js"',
'spec/unit/**/*.js'

1

Now that we have set up the project directory and initialized Protractor and Karma, we
can dive into the code. Here is the complete karma.conf.js file:

module.exports = function(config) {
config.set({

basePath: '',

frameworks: ['jasmine'],

files: [

"bower_components/angular/angular.js’',

"bower_components/angular-mocks/angular-mocks.js"',
'spec/unit/**/*.js'

1

reporters: ['progress'],

port: 9876,

autowatch: true,

browsers: ['Chrome'],

singleRun: false

1)
+;

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up http-server

A web server will be used to host the application. As this will just be for local
development only, you can use http-server. The http-server module is a simple HTTP
server that serves static content. It is available as an npm module. To install http-server
in your project, type the following command:

$ npm install http-server

Once http-server is installed, you can run the server by providing it with the root
directory of the web page. Here is an example:

$./node_modules/http-server/bin/http-server

Now that you have http-server installed, you can move on to the next step.

www.it-ebooks.info

http://www.it-ebooks.info/

Top-down or bottom-up approach

From our development perspective, we have to determine where to start. The approaches
that we will discuss in this book are as follows:

e The bottom-up approach: With this approach, we think about the different
components we will need (controller, service, module, and so on) and then pick the
most logical one and start coding.

e The top-down approach: With this approach, we work from the user scenario and
UI. We then create the application around the components in the application.

There are merits to both types of approaches and the choice can be based on your team,
existing components, requirements, and so on. In most cases, it is best for you to make the
choice based on the least resistance. In this chapter, the approach of specification is top-
down, everything is laid out for us from the user scenario and will allow you to
organically build the application around the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing a controller

Before getting into the specification, and the mind-set of the feature being delivered, it is
important to see the fundamentals of testing a controller. An AngularJS controller is a key
component used in most applications.

www.it-ebooks.info

http://www.it-ebooks.info/

A simple controller test setup

When testing a controller, tests are centered on the controller’s scope. The tests confirm
either the objects or methods in the scope. Angular mocks provide inject, which finds a
particular reference and returns it for you to use. When inject is used for the controller,
the controllers scope can be assigned to an outer reference for the entire test to use. Here is
an example of what this would look like:

describe('"', function(){
var scope = {};
beforekEach(function(){
module('anyModule');
inject(function($controller){
$controller('AnyController', {$scope:scope});

3);
1);
3);
In the preceding case, the test’s scope object is assigned to the actual scope of the
controller within the inject function. The scope object can now be used throughout the
test, and is also reinitialized before each test.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the scope

In the preceding example, scope is initialized to an object {}. This is not the best
approach; just like a page, a controller might be nested within another controller. This will
cause inheritance of a parent scope as follows:

<body ng-app='anyModule'>
<div ng-controller='ParentController'>
<div ng-controller='ChildController'>
</div>
</div>
</body>

As seen in the preceding code, we have this hierarchy of scopes that the childController

function has access to. In order to test this, we have to initialize the scope object properly
in the inject function. Here is how the preceding scope hierarchy can be recreated:

inject(function($controller, $rootScope){

var parentScope = $rootScope.$new();
$controller('ParentController', {$scope:parentScope});
var childScope = parentScope.$new();
$controller('AnyController', {$scope: childScope});

1)

There are two main things that the preceding code does:
e The $rootScope scope is injected into the test. The $rootScope scope is the highest
level of scope that exists.

e FEach level of scope is created with the $new() method. This method creates the child
scope.

In this chapter, we will use the simplified version and initialize the scope to an empty
object; however, it is important to understand how to create the scope when required.

www.it-ebooks.info

http://www.it-ebooks.info/

Bring on the comments

Now that the setup and approach have been decided, we can start our first test. From a
testing point of view, as we will be using a top-down approach, we will write our
Protractor tests first and then build the application. We will follow the same TDD life
cycle we have already reviewed, that is, test first, make it run, and make it better.

www.it-ebooks.info

http://www.it-ebooks.info/

Test first

The scenario given is in a well-specified format already and fits our Protractor testing
template:

describe('', function(){
beforekEach(function(){

3)7
it('', function(){

1)
1),

Placing the scenario in the template, we get the following code:

describe('Given I am posting a new comment', function(){
describe('When I push the submit button', function(){
beforeEach(function(){

1)
it('Should then add the comment', function(){

1)
1)
1)

Following the 3 A’s (Assemble, Act, Assert), we will fit the user scenario in the template.

Assemble

The browser will need to point to the first page of the application. As the base URL has
already been defined, we can add the following to the test:

beforeEach(function(){
browser.get('/"');

1);
Now that the test is prepared, we can move on to the next step, Act.

Act

The next thing we need to do, based on the user specification, is add an actual comment.
The easiest thing is to just put some text into an input box. The test for this, again without
knowing what the element will be called or what it will do, is to write it based on what it
should be.

Here is the code to add the comment section for the application:
beforeEach(function(){

var commentInput = $('input');
commentInput.sendKeys('a comment');

1),

The last assemble component, as part of the test, is to push the Submit button. This can be
easily achieved in Protractor using the click function. Even though we don’t have a page
yet, or any attributes, we can still name the button that will be created:

www.it-ebooks.info

http://www.it-ebooks.info/

beforekEach(function(){

var submitButton = element.all(by.buttonText('Submit')).click();
1);

Finally, we will hit the crux of the test and assert the users’ expectations.

Assert

The user expectation is that once the Submit button is clicked, the comment is added. This
is a little ambiguous, but we can determine that somehow the user needs to get notified
that the comment was added. The simplest approach is to display all comments on the
page. In AngularJS, the easiest way to do this is to add an ng-repeat object that displays
all comments. To test this, we will add the following:

it('Should then add the comment', function(){
var comments = element(by.repeater('comment in comments')).first();
expect(comment.getText()).toBe('a comment');

1),

Now, the test has been constructed and meets the user specifications. It is small and
concise. Here is the completed test:

describe('Given I am posting a new comment', function(){
describe('When I push the submit button', function(){
beforeEach(function(){
//Assemble
browser.get('/");

var commentInput = $('input');
commentInput.sendKeys('a comment');

//Act
//Act
var submitButton = element.all(by.buttonText('Submit')).
click();
3);
//Assert
it('Should then add the comment', function(){
var comments = element(by.repeater('comment in
comments')).first();
expect(comment.getText()).toBe('a comment');

1)
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Make it run

Based on the errors and output of the test, we will build our application as we go.

1. The first step to make the code run is to identify the errors. Before starting off the
site, let’s create a bare bones index.html page:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

</body>
</html>

Already anticipating the first error, add AngularJS as a dependency in the page:

<script type='text/javascript'
src="bower_components/angular/angular.js'></script>
</body>

2. Now, starting the web server using the following command:

$./node_modules/http-server/bin/http-server -p 8080

3. Run Protractor to see the first error:

$./node_modules/.bin/protractor chromeOnlyConf.js

4. Our first error states that AngularJS could not be found:

Error: Angular could not be found on the page http://localhost:8080/ :
angular never provided resumeBootstrap

This is because we need to add ng-app to the page. Let’s create a module and add it
to the page.

The complete HTML page now looks as follows:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

<script src="bower_components/angular/angular.js"></script>
</body>
</html>

Adding the module

The first component that you need to define is an ng-app attribute in the index.html page.

www.it-ebooks.info

http://www.it-ebooks.info/

Use the following steps to add the module:
1. Add ng-app as an attribute to the body tag:
<body ng-app='comments'>

2. Now, we can go ahead and create a simple comments module and add it to a file
named comments. js:

angular.module('comments', []);

3. Add this new file to index.html;

<script src='app/commentController.js'></script>

4. Rerun the Protractor test to get the next error:

$ Error: No element found using locator: By.cssSelector('input')

The test couldn’t find our input locator. You need to add the input to the page.
Adding the input
Here are the steps you need to follow to add the input to the page:
1. All we have to do is add a simple input tag to the page:
<input type='text' />
2. Run the test and see what the new output is:
$ Error: No element found using locator: by.buttonText('Submit')
3. Just like the previous error, we need to add a button with the appropriate text:
<button type='button'>Submit</button>
4. Run the test again and the next error is as follows:
$ Error: No element found using locator: by.repeater('comment in

comments')

This appears to be from our expectation that a submitted comment will be available on the
page through ng-repeat. To add this to the page, we will use a controller to provide the
data for the repeater.

Controller

As we mentioned in the preceding section, the error is because there is no comments
object. In order to add the comments object, we will use a controller that has an array of
comments in its scope. Use the following steps to add a comments object in the scope:

1. Create a new file in the app directory named commentController.js:

angular.module('comments')
.controller('CommentController',['$scope', function($scope){

www.it-ebooks.info

http://www.it-ebooks.info/

$scope.comments = [];

1)
. Add it to the web page after the AngularJS script:

<script src='app/commentController.js'></script>

. Now, we can add commentController to the page:

<div ng-controller='CommentController'>

. Then, add a repeater for the comments as follows:

<ul ng-repeat='comment in comments'>
{{comment}}</1i>

. Run the Protractor test and let’s see where we are:

$ Error: No element found using locator: by.repeater('comment in
comments')

Hmmm! We get the same error.

. Let’s look at the actual page that gets rendered and see what’s going on. In Chrome,
go to http://localhost:8080 and open the console to see the page source (Ctrl +
Shift + J). You should see something like what’s shown in the following screenshot:

Submit
div.ng-scope 15B4px * Bpx|

Q, | Elements | Metwork Sources Timeline Profiles Resources Audits Console

¥ <htmls
F iheads..< heads
¥ <body ng-app="comments" Class="ng-scope™>
<input type="text":
<button type="button®>Submit</button>
¥ <div ng-controller="CommentController” class="ng
{i-- ngRepeat: comment in comments --3>
<fdivs
<seript type="text/javascript” src="bower cosponents/ansular/angular.js"»</script>
<script types"text/javascript”™ src="app/comments. js"></script>
<script types"text/javascript” src="app/commentController.js"></script>
< fbody>»
</html>

Notice that the repeater and controller are both there; however, the repeater is
commented out. Since Protractor is only looking at visible elements, it won’t find the
repeater.

. Great! Now we know why the repeater isn’t visible, but we have to fix it. In order for
a comment to show up, it has to exist on the controller’s comments scope. The
smallest change is to add something to the array to initialize it as shown in the
following code snippet:

.controller('CommentController', ['$scope', function($scope){
$scope.comments = ['anything'];

www.it-ebooks.info

http://www.it-ebooks.info/

11);

8. Now run the test and we get the following:

$ Expected 'anything' to be 'a comment'.

Wow! We finally tackled all the errors and reached the expectation. Here is what the
HTML code looks like so far:

<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body ng-app='comments'>
<div ng-controller='CommentController'>
<input type='text' />

<li ng-repeat='comment in comments'>
{{comment.value}}
</1i>

</div>

<script src='bower_components/angular/angular.js'></script>
<script src='app/comments.js'></script>

<script src='app/commentController.js'></script>

</body>

</html>

The comments. js module looks as follows:

angular.module('comments', []);

Here is commentController.js:

angular.module('comments')
.controller('CommentController', ['$scope', function($scope){
$scope.comments = [];

)
Make it pass

With TDD, you want to add the smallest possible component to make the test pass. Since
we have hardcoded, for the moment, the comments to be initialized to anything, change
anything to a comment; this should make the test pass. Here is the code to make the test
pass:

angular.module('comments')

.controller('CommentController',['$scope', function($scope){
$scope.comments = ['a comment'];

11);
Run the test, and bam! We get a passing test:

www.it-ebooks.info

http://www.it-ebooks.info/

$ 1 test, 1 assertion, 0 failures

Wait a second! We still have some work to do. Although we got the test to pass, it is not
done. We added some hacks just to get the test passing. The two things that stand out are:

¢ (Clicking on the Submit button, which really doesn’t have any functionality
e Hardcoded initialization of the expected value for a comment

The preceding changes are critical steps we need to perform before we move forward.
They will be tackled in the next phase of the TDD life cycle, that is, make it better
(refactor).

www.it-ebooks.info

http://www.it-ebooks.info/

Make it better

The two components that need to be reworked are:

¢ Adding behavior to the Submit button
e Removing hardcoded value of the comments

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the Submit button

The Submit button needs to actually do something. We were able to sidestep the
implementation by just hardcoding the value. Using our tried and trusted TDD techniques,
switch to an approach focused on unit testing. So far, the focus has been on the UI and
pushing changes to the code. We haven’t written a single unit test.

For this next bit of work, we will switch gears and focus on driving the development of
the Submit button through tests. We will be following the TDD life cycle (test first, make
it run, make it better).

Configuring Karma

We did something very similar for the to-do list application in Chapter 2, The Karma Way.
I won’t spend as much time diving into the code, so please review the previous chapters
for a deeper discussion on some of the attributes. Here are the steps you need to follow to
configure Karma:

1. Update the files section with the added files:
files: [

"app/comments.js',
'"app/commentController.js',

1,
2. Start Karma:

$ karma start

3. Confirm that Karma is running:

$ Chrome 36.0.1985 (Windows 7): Executed 1 of 1 SUCCESS (0.018 secs /
0.015 secs)

Test first

Let’s first start with a new file in the spec/unit folder called comments.js. We will use
the base template:

describe('', function(){
beforekEach(function(){
1)
it('', function(){
1)

1);

According to the specification, when the Submit button is clicked, it needs to add a
comment. We will need to fill in the blanks of the three components of a test (Assemble,
Act, Assert).

www.it-ebooks.info

http://www.it-ebooks.info/

Assemble

The behavior will need to be part of a controller for the frontend to use it. The object
under test in this case is the controller’s scope object; we will need to add this to the
assemble of this test. To wire up the AngularJS controller we need to initialize the module
and then inject the CommentController scope into the test. As we did in Chapter 2, The
Karma Way, we will do the same in the following code:

var scope = {};
beforekEach(function(){
module('comments');
inject(function($controller){
$controller('CommentController', {$scope:scope});

1)
1)
Now, the controller’s scope object, which is under test, is available to the test.
Act

The specification determines that we need to call a add method in the scope object. Add
the following code to the beforeEach section of the test:

beforeEach(function(){

scope.add('any Comment');

1)

Now for the assertion.
Assert

Assert that the comment items in the scope object now contain any comment as the first
element. Add the following code to the test:

it('', function(){
expect(scope.comments[0]).toBe('any comment');

1);
Save the file and let’s move on to the next step of the life cycle and make it run (execute).
Make it run

Now that we have most of the test prepared, we need to make the test pass. Looking at the
output of the console where Karma is running, we see the following:

$ TypeError: undefined is not a function..unit/comments.js:4:9

Looking at the line number, that is 4:9, of our unit test, we see that this is the add function.
Let’s go ahead and put in an add function into the controller’s scope object using the
following steps:

1. Open the controller scope and create a function named add:

$scope.add = function(){}

www.it-ebooks.info

http://www.it-ebooks.info/

2. Check Karma’s output and let’s see where we are:

$ Expected 'a comment' to be 'any comment'.

3. Now, we have hit the expectation. Remember to think of the smallest change to get
this to work. Modify the add function to set the $scope.comments array to any
comment when called:

$scope.add = function(){
$scope.comments.unshift('any comment');

i
Tip
Unshift is a standard JavaScript function that adds an item to the front of an array.

4. When we check Karma’s output, we see the following:

$ Chrome 36.0.1985 (Windows 7): Executed 1 of 1 SUCCESS

Success! The test passes, but again needs some work. Let’s move on to the next stage and
make it better (refactor).

Make it better

The main point that needs to be refactored is the add function. It doesn’t take any
arguments! This should be straightforward to add, and simply confirm that the test still
runs. Update the add function of CommentController.js to take an argument and use that
argument to add to the comments array:

$scope.add = function(commentToAdd) {
$scope.comments.unshift(commentToAdd);

+;

Check the output window of Karma and ensure that the test still passes. The complete unit
test looks as follows:

describe('', function(){
var scope = {};
beforeEach(function(){
module('comments');
inject(function($controller){
$controller('CommentController', {$scope:scope});

1)

scope.add('any comment');

1)

it('', function(){
expect(scope.comments[0]).toBe('any comment');

19)
1),

The commentController file now looks as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

angular.module('comments')
.controller('CommentController', ['$scope', function($scope){
$scope.comments = [];
$scope.add = function(commentToAdd){
$scope.comments.unshift(newComment);

i
31);

Back up the test chain

We completed the unit test and addition of the add function. Now we can add the function
to specify the behavior of the Submit button. The way to link the add method to the
button is to to use the ng-click attribute. The steps to add behavior to the Submit button
are as follows:

1. Open the index.html page and link it as follows:
<button type="button" ng-click="add('a comment')">Submit</button>

Warning! Is the value hardcoded? Well, again, we want to do the smallest change and
ensure that the test still passes. We will work through our refactors until the code is
how we want it, but instead of a big bang approach, we want to make small
incremental changes.

2. Now let’s rerun the Protractor test and ensure that it still passes. The output says it
passes, and we are okay. The hardcoded value wasn’t removed from the comments.
Let’s go ahead and remove that now. The CommentsController file should now look
as follows:

$scope.comments = [];

3. Run the test and see that we still get a passing test.

Now the last thing we need to mop up is the hardcoded value in ng-click. The comment
being added should be determined by the input in the comment input text.

Bind the input

Here are the steps you need to follow to bind the input:

1. To be able to bind the input into something meaningful, add an ng-model attribute to
the input tag:

<input type='text' ng-model='newComment'/>

2. Then, in the ng-click attribute, simply use the newComment model as the input:

<button type='button' ng-click='add(newComment)'>Submit</button>

Run the Protractor test and confirm that everything has passed and is good to go.

www.it-ebooks.info

http://www.it-ebooks.info/

Onwards and upwards

Now that we have the first specification working end-to-end and unit tested, we can start
the next specification. The next specification states that the users want the ability to like a

comment.

We will use the same top-down approach and start our test from a Protractor test. We will
continue to follow the TDD life cycle, that is, test first, make it run, make it better.

www.it-ebooks.info

http://www.it-ebooks.info/

Test first

Following the pattern, we will start with a basic Protractor test template:

describe('', function(){
beforekEach(function(){

1)
it('', function(){

1)
1),

When we fill in the specification, we get the following:

describe('When I like a comment', function(){
beforeEach(function(){

1)
it('should then be liked', function(){

1)
1),

With the template in place, we are ready to construct the test.
Assemble

The assembly of this test will require a comment to exist. Place the comment within the
existing posted comment test. It should look similar to this:

describe(''Given I am posting a new comment', function(){
describe('When I like a comment', function(){

1)
1)

Act

The user specification we test is that the 1ike button performs an action for a specific
comment. Here are the steps that will be required and the code required to do them (note
that the following steps will be added to the beforeEach text):

1. Store the first comment so that it can be used in the test:
var firstComment = null;
beforeEach(function(){

2. Find the first comment’s like button:

var firstComment = element.all(by.repeater('comment in
comments').first();
var likeButton = firstComment.element(by.buttonText('like'));

3. The code for the 1ike button when it is clicked is as follows:

likeButton.click();

www.it-ebooks.info

http://www.it-ebooks.info/

Assert

The specification expectation is that once the comment has been liked, it is liked. This is
best done by putting an indicator of the number of likes, and ensuring the count is 1. The
code will then be as follows:

it('Should increase the number of likes to one',6 function(){
var commentLikes = firstComment.element(by.binding('likes'));
expect (commentLikes.getText()).toBe(1);

1),

The created test now looks as follows:

describe('When I like a comment', function(){
var firstComment = null;
beforeEach(function(){

//Assemble
firstComment = element.all(by.repeater('comment in comments').first();
var likeButton = firstComment.element(by.buttonText('like'));

//Act
likeButton.click();

1)

//Assert

it('Should increase the number of likes to one', function(){
var commentLikes = firstComment.element(by.binding('likes"'));
expect(commentLikes.getText()).toBe(1);

1)i});

www.it-ebooks.info

http://www.it-ebooks.info/

Make it run

The test has been prepared and is itching to run. We will now run the test and fix the code
until the test passes. The following steps will detail the error and the fix cycle required to
make the test path:

1.
2.

~

10.

Run Protractor.
View the error message in the command line:

$ Error: No element found using locator: by.buttonText("like")

As the error states, there is no 1ike button. Go ahead and add the button:

<li ng-repeat='comment in comments'>
{{comment}}

<button type="button">like</button>
</1li>

Run Protractor.
View the next error message:

$ Expected 'a comment like' to be 'a comment'.

By adding the 1ike button, we caused our other test to fail. The reason is our use of
the getText () method. Protractor’s getText () method gets the inner text including
inner elements. To fix this, we will need to update the previous test to include 1ike as
part of the test:

it('Should then add the comment', function(){
var comments = element.all(by.repeater('comment in comments')).first();
expect(comments.getText()).toBe('a comment like');

1)

Run Protractor.
View the next error message:

$ Error: No element found using locator: by.binding("likes")

Time to add a likes binding. This one is a little more involved. Likes needs to be
bound to a comment. We need to change the way the comments are held in the
controller. Comments need to hold the comment value and the number of likes. A
comment should be an object like this: {value:'', likes:0}. Again, the focus of this
step is just to get the test to pass. The next step is to update the controller’s add
function to create comments based on the object we described in the preceding steps.
Open commentController.js and edit the add function as follows:

$scope.add = function(commentToAdd) {
var newComment = {value:commentToAdd, likes:0};
$scope.comments.unshift(newComment);

i
Update the page to use the value for the comment:

www.it-ebooks.info

http://www.it-ebooks.info/

11.

12.

13.

14.

15.

16.

17.

<li ng-repeat='comment in comments'>
{{comment.value}}

Before rerunning the Protractor test, we need to add the new comment . likes binding
to the HTML page:

<li ng-repeat='comment in comments'>

{{comment.likes}}

Now rerun the Protractor tests and let’s see where the errors are:

$ Expected 'a comment like 0' to be 'a comment like'

Because the inner text of the comment has changed, we need to change the
expectation of the test:

it('Should then add the comment', function(){

expect(comments.getText()).toBe('a comment like 0');

1),

Run Protractor:
$ Expected '0' to be '1'.

Now, we are finally down to the expectation of the test. In order to make this test
pass, the smallest change will be to make the 1ike button update the likes on the
comment array. The first step is to add a 1ike method on the controller, which will
update the number of likes:

$scope.like = function(comment){
comment.likes++;

i
Link the 1ike method to the HTML page using an ng-click attribute on the button as
follows:

<button type="button" ng-click='like(comment)'>like</button>

Run Protractor and confirm that the tests pass!

The page now looks as follows:

comment 3 Submit

e comment 3| like |1
¢ comment 2 | like |0
o comment 1| like |1

Compared to the drawing at the beginning of this chapter, all the features have been
created. Now that we made the test pass in Protractor, we need to check the unit tests to

www.it-ebooks.info

http://www.it-ebooks.info/

ensure that our changes didn’t break the unit tests.

Fixing the unit tests

One of the primary changes required was to make the comment an object, consisting of a
value and number of likes. Before thinking too much about how the unit tests could have
been affected, let’s kick them off. Execute the following command:

$ karma start

As expected, the error is related to the new comment object:

$ Expected { value : 'any comment', likes : 0 } to be 'any comment'.

Reviewing the expectation, it seems like the only thing required is for comment .value to
be used in the expectation as opposed to the comment object itself. Change the expectation
as follows:

it('', function(){
var firstComment = scope.comments[0];
expect(firstComment.value).toBe('any comment');

1)

Save the file and check the Karma output. Confirm that the test passes. Both the Karma
and Protractor tests pass and we have completed the primary user behaviors of adding a
comment and liking it. You are free now to move on to the next step and make things
better.

www.it-ebooks.info

http://www.it-ebooks.info/

Make it better

All in all, the approach ended up with the result we wanted. Users are now able to like a
comment in the UI and see the number of likes. The major callout from a refactor
standpoint is that we have not unit tested the 1ike method. Reviewing our development
to-do list, we see that the to-do list is an action we wrote down. Before completely
wrapping up the feature, let’s discuss the option of adding a unit test for the 1ike
functionality.

Coupling of the test

As already discussed in this book, tests are tightly coupled to the implementation. This is a
good thing when there is a complicated logic involved or you need to ensure that certain
aspects of the application behave in certain ways. It is important to be aware of the
coupling and know when it is important to bring it into the application and when it is not.
The 1ike function we created simply increments a counter on an object. This can be easily
tested; however, the coupling we will bring in with a unit test will not give us the extra
value. In this case, we will not add an additional unit test for the 1ike method. As the
application progresses, we may find the need to add a unit test in order to develop and
extend the function. Here are a couple of things I consider when adding a test:

e Does adding a test outweigh the cost of maintaining a test?
e s the test adding value to the code?

o Does it help other developers better understand the code?
¢ s the functionality being tested in some other way?

Based on our decision, there is no more refactoring or testing required. In the next section,
we will take a step back and review the main points of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

Q1. The $new function is used to create a child scope: $scope . $new.

1. True
2. False

Q2. Given the following code segment, how would you select the items in the list?

<li ng-repeat="item in myItems'">
{{item.value}}

</1li

1. element.all(by.repeater('item in items')).
2. element.all(by.repeater('item in myItems')).
3. element.all('item in items').

Q3. The Angular mocks inject function is used to:

1. Resolve application dependencies/references.
2. Inject dependencies into the application.
3. None of the above.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we walked through the TDD techniques of using Protractor and Karma
together. As the application was developed, you were able to see where, why, and how to
apply the TDD testing tools and techniques. The approach, top-down, was different than
the bottom-up approach discussed in Chapter 2, The Karma Way and Chapter 3, End-to-
end Testing with Protractor. With the bottom-up approach, the specifications are used to
build unit tests and then build the UI layer on top of that. In this chapter, a top-down
approach was shown to focus on the user’s behavior. The top-down approach tests the Ul
and then filters the development through the other layers. Both approaches have their
merit. When applying TDD, it is essential to know how to use both. In addition to walking
through a different TDD approach, you saw some of the core testing components of
AngularJS such as:

e Testing a controller from end-to-end and unit perspectives
e Using Angular mocks to test the scope object of a controller
e Protractor’s ability to:

o Bind to ng-repeater and ng-model
o Send key strokes to input columns
o Get an element’s text by its inner HTML code and all subelements

The next chapter will build on the techniques used here and look into headless browser
testing, advanced techniques for Protractor, and how to test AngularJS routes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Flip Flop

At this point, you should be feeling confident in the initial implementation of an
AngularJS application using TDD. You should be familiar with using a test-first approach.
In this chapter, you will continue to expand your knowledge of applying TDD with
AngularJS by looking at the following:

e AngularJS routes

e Partial views

¢ Protractor location references with CSS (Cascading Style Sheets) and HTML
elements

e Headless browser testing with Karma

www.it-ebooks.info

http://www.it-ebooks.info/

Fundamentals

This chapter will walk you through applying TDD to routes and partial views for a search
application. Before getting into the walk-through, you need to be aware of some of the
techniques, configurations, and functions that will be used throughout this chapter, which
include:

¢ Protractor locators
e Headless browser testing

After you have reviewed these concepts, you can move on to the walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor locators

Protractor locators are key components that you must take time to learn. This book will
not be able to show examples of all the different locators, but it will provide examples of
the most common ones.

Protractor locators allow you to find elements within an HTML page. In this chapter, you
will see the following in action: CSS, HTML, and AngularJS-specific locators. Locators
are passed to the element function. The element function will find and return elements in
a page. The generic locator syntax is as follows:

element (by.<LOCATOR>);

In the preceding code, <LOCATOR> is a placeholder. The following sections describe a
couple of these locators.

CSS locators

CSS is used to add layout, color, formatting, and style to an HTML page. From an end-to-
end testing perspective, the look and style of an element may be part of a specification. As
an example consider the following HTML snippet:

<div class="anyClass" id="anyId"></div>

// ..

var el = element(by.css('.anyClass'));
var e2 = element(by.css('#anyId'));
var e3 = element(by.css('div'));

var e4 = $('div');

All four selections will select the div element.

Button and link locators

Besides being able to select and interpret the way something looks, it is also important to
be able to find buttons and links within a page. This will allow a test to interact with the
site easily. Here are a couple of examples:

e Button text locator:

<button>anyButton</button>
/] ...
var bl = element(by.buttonText('anyButton'));

e Link text locator:
anyLink

/] ...
var al = element(by.linkText('anyLink'));

Angular locators

One of Protractor’s key strengths is that it provides testing functionality specific to
Angular]JS. The repeater locator will select the elements within the application where ng-

www.it-ebooks.info

http://www.it-ebooks.info/

repeat was used. This is especially useful when looking at the number of returned results
and the values of individual results. One key to using this locator is that the string of the
repeater locator must match the ng-repeat string used in the AngularJS application. Here
is an example of using the repeater locator:

//The List in the application to use ng-repeat on
<li ng-repeat="item in list">

<div>

link

</div>
</1i>
// ..
var firstItem = element.all(by.repeater('item in list')).first();

The preceding code highlights how to find the first element in a repeater. It should be clear
that in this case, the element.all function finds all the elements matching the selector.
Then, the first () method is used to return the first element found.

URL location references

When testing AngularJS routes, you need to be able to test the URL of your test. By
adding tests around the URL and location, you ensure that the application follows specific
routes. This is important because routes provide an interface into your application. Here is
how to get the URL reference in a Protractor test:

var location = browser.getLocationAbsUrl();

Now that you have seen how to use the different locators it is time to put the knowledge to
use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a new project

It is important to get a process and method to set up your projects quickly. The less time
you’re thinking of the structure of the directory and the required tools, the more time
you’re developing!

Some people use the angular-seed (https://github.com/angular/angular-seed) project,
Yeoman, or create a custom template. Although these techniques are useful and have their
merit, when starting out in AngularJS, it is essential to understand what it takes to build an
application from the ground up. By building the directory structure and installing tools
yourself, you will understand AngularJS better. You will be able to make layout decisions
based on your specific application and needs, as opposed to fitting into some other mold.
As you grow and become a better AngularJS developer, this step may not be needed and
will become second nature to you.

In previous chapters, we discussed how to get the project set up, explained the different
components involved, and walked through the entire process. I will skip these details and
expect that you can recall how to perform the necessary installation. To confirm the
installation, here is a screenshot of the expected output:

¥ tdd

app

¥ bower_components
P angular
node_modules
B .bin
P http-server
P protractor

¥ spec
P ele
P unit
karma.conf.js

protractorConf.js

www.it-ebooks.info

https://github.com/angular/angular-seed
http://www.it-ebooks.info/

Setting up headless browser testing for Karma

In previous chapters, you were running Karma using the default configuration. The default
Chrome configuration launches Chrome on every test. Testing against the actual code and
browser, which the application will run in, is a powerful tool. However, when launching, a
browser may not be how you always wanted it. From a unit test perspective, you may not
want the browser to be launched in a window. Some of the reasons are tests may take a
long time to run or you may not always have a browser installed.

Luckily, Karma comes equipped with the ability to easily configure PhantomJS, a headless
browser. A headless browser runs in the background and will not display web pages in a
UL The PhantomJS headless browser is a really great tool to use for testing. It can even be
set up to take screenshots of your tests! Read more about how this is done and the WebKit
used on the PhantomJS site at http://phantomjs.org/. The succeeding setup configuration
will show you how to set up PhantomJS with Karma to get headless browser testing.

Preconfiguration

When Karma is installed, it automatically includes the PhantomJS browser plugin. For

your reference, the plugin is located at https://github.com/karma-runner/karma-phantomjs-
launcher. There shouldn’t be any additional installation or configuration required.

However, if your setup states that it is missing karma-phantomjs-launcher, you can
easily install it using npm:

$ npm install karma-phantomjs-launcher

Configuration

PhantomJS is configured in the browser section of the Karma configuration. Open the
karma.conf file and update it with the following details:

browsers: ['PhantomJS'],

Now that the project has been initialized and configured with headless browser testing,
you can see it in action through the following walk-throughs.

www.it-ebooks.info

http://phantomjs.org/
https://github.com/karma-runner/karma-phantomjs-launcher
http://www.it-ebooks.info/

Walk-through of Angular routes

This walk-through will leverage AngularJS routes. Routes are an extremely useful feature
of AngularJS. They allow you to control certain aspects of the application using different
views. This walk-through will flip between views to show you how to use TDD to build
routes. The following are the specifications:

e Given a view A that has a single button; the following actions will take place:

o The button is pushed
o The view is switched to view B

e Given a view B that has a single button; the following actions will take place:

o The button is pushed
o The view is switched to view A

Essentially, this will be an application that does a flip flop between views.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up AngularJS routes

Before you use AngularJS routes, you need to install the AngularJS route component. You
can install AngularJS routes using bower as follows:

$ bower install angular-route

Angular routes requires Angular, as you can imagine. In order to use it an HTML page
would look as follows:

<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
<script src="bower_components/angular/angular.js">
</script>
<script
src="bower_components/angular-route/angular-route.js"></script>

</body>
</html>

Defining directions

A route specifies a specific location and expects a result. From an AngularJS perspective,
the routes must first be specified and then associated to certain elements within them.

Configuring ngRoute

In order to use AngularJS routes, we first need to bring ngRoute in as a dependency into
the application. In app/flipFlop.js, modify the code to bring in ngRoute as a
dependency and return the module:

var flipFlop = angular.module('flipFlop', ['ngRoute']);

Now, the second thing required is we need to configure the routes that we need. In our
case, we need two routes: one for viewA and one for viewB. The route configuration will
then look as follows:

flipFlop.config(['$routeProvider', function($routeProvider){
$routeProvider
.when('/view/a',{
templateUrl : 'app/viewA.html',
controller : 'ViewAController'
1)
.when('/view/b"', {
templateUrl : 'app/viewB.html',

controller : 'ViewBController'
1)
.otherwise({

redirectTo : '/view/a'
)

www.it-ebooks.info

http://www.it-ebooks.info/

11);

A route is defined using when, which has a first argument as a string for the full route. The
second argument is an object, which takes the HTML page for the route (template URL)
and the controller for the route (controller).

Defining the route controllers

For both routes, create an empty controller so that it can be a placeholder for the future
controller. Here are the steps you need to follow to define route controllers:

1. Create a new file for the View A controller (/app/VviewAController.js):

angular.module('flipFlop')
.controller('vViewAController', ['$scope', function($scope){

31);

2. Create another new file for the View B controller (/app/ViewBController.js):

angular.module('flipFlop')
.controller('viewBController', ['$scope', function($scope){

1)
3. Add the two controllers to the index.html page:

<script src="app/viewAController.js"></script>
<script src="app/viewBController.js"></script>

Defining the route views

Route views are partial HTML elements that can be dynamically placed into an
application. For the two views we require, we will put a basic div tag for each view, as
shown in the following steps:

1. Create a new file for app/viewA.html:
<div id="viewA"></div>
2. Create a new file for app/viewB.html:

<div id="viewB"></div>

The last thing required is to put a placeholder where the route view will be placed in the
index.html page:

<div ng-view></div>

Now, the routes are set up with the initial views and controllers. We can continue with the
Protractor test.

Assembling the flip flop test

Following the first of the 3 A’s, Assemble, the following steps will show you how to
assemble the test.

www.it-ebooks.info

http://www.it-ebooks.info/

1. Start with the Protractor base template:

describe('Given a view A that has a single button', function(){
describe('When the button is pushed', function(){
beforeEach(function(){

)

it(''should be switched to view B'', function(){

1)
1)
})

2. Navigate to the root of the application using the following code:

browser.get('/index.html');

3. The beforeEach method needs to confirm that the correct view is being displayed.
This can be done using a CSS locator to look for the div tag of viewA. The
expectation will look as follows:

var viewA = element(by.css('#viewA'));
expect(viewA.isPresent()).toBeTruthy();

4. Then, add an expectation that viewB is not visible:

var viewB = element(by.css('#viewB'));
expect(viewB.isPresent()).toBeFalsy();

You will notice how the selection of viewA and viewB is done outside of the beforeEach
method, so it can be used for other expectations.

Making the views flip

The preceding test needs to confirm that when the flip button is pushed, the view should
switch. In order to test this, you can use the by.buttonText locator. Here is what it will
look like:

var buttonToPush = element(by.linkText('flip'));
buttonToPush.click();

The beforeEach function is now complete and looks as follows:

var viewA = element(by.css('#viewA'));
var viewB = element(by.css('#viewB'));
beforeEach(function(){
browser.get('/index.htm');
expect(viewA.isPresent()).toBeTruthy();
var buttonToPush = element(by.linkText('flip'));
buttonToPush.click();

1)

Now, you can add the assertion.
Asserting a flip

The assertion will again use Protractor’s CSS locator to find that viewB is available:

www.it-ebooks.info

http://www.it-ebooks.info/

it('should be switched to view B', function(){
expect(viewB.isPresent()).toBeTruthy();

1)

You also need to confirm that viewA is no longer available. Add the expectation that viewA
should not exist:

it('should not display view A', function(){
expect(viewA.isPresent()).toBeFalsy();

i)

The test has now been assembled.

Making flip flop run
Now, you will see the steps required to make the flip flop run:
1. In a new console window, start http-server:

$./node_modules/http-server/bin/http-server -p 8080

2. Run Protractor:

$./node_modules/protractor/bin/protractor protractorConf.js

3. The first error states Error: Angular could not be found on the page
http://localhost:8080/ : angular never provided resumeBootstrap. When
you get this error, proceed with the following steps:

1. This error means that no AngularJS application has been associated with the
application. It’s now time to create the application module and add it to the

page.
2. Create a new file named /app/flipFlop.js:

angular.module('flipFlop',[]);

3. Add the new module to the index.html page:
<script src="app/flipFlop.js"></script>

4. Add the AngularJS application identifier to the page:
<body ng-app='flipFlop'>

5. Rerun the Protractor test.

4. The erroris Error: No element found using locator: by.linkText("flip"). To
rectify this perform the following steps:

1. Open up the app/viewA.html file and add a link to the View B route with the
flip text:

<div id="viewA">

flip</button>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

2. Rerun the test.

5. The Protractor tests now pass.

Making flip flop better

For practice, you should add a link to switch back to viewA from viewB. There is nothing
that has been called out that needs to be changed or refactored. The main takeaway from
this walk-through is how to use Protractor to test routes. Here are some screenshots of the
application:

e The initial index page is shown in the following screenshot:

<« C | [localhost:8080/index.htmi#/view/a

e The following is what you’ll see after the view has been switched:

% C | [4 localhost:8080/index.html#/view/b

www.it-ebooks.info

http://www.it-ebooks.info/

Searching the TDD way

This walk-through will show you how to build a simple search application. The walk-
through has two components. The first discusses a search query component. The second
uses routes to display search result details.

www.it-ebooks.info

http://www.it-ebooks.info/

Deciding on the approach

This walk-through uses the top-down TDD approach. It starts with writing failing tests,
from the UI point of view using Protractor, and then working through the application with
a combination of unit and end-to-end tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Walk-through of search query

The application being built is a search application. The first step is to set up the search
area with search results. Imagine I am performing a search. The following actions will
occur:

e A search query is typed in
e Results are displayed on the left sidebar

This piece of the application is very similar to the test, layout, and approach you saw in
Chapter 4, First Steps. The application will need to use an input, respond to a click, and
confirm the resulting data. Since the tests and code use the same functionality as the
previous example, it is not worth providing a complete walk-through of the search
functionality. Instead, the following section will show the resulting code with a few
explanations.

www.it-ebooks.info

http://www.it-ebooks.info/

The search query test
The following code represents the test for the search query functionality:

describe('"', function(){
//Store the searchResult for use in the test
var searchResult = null;
beforeEach(function(){

//ASSEMBLE

browser.get('/index.html');

var searchResult = element.all(by.repeater('result in results'));
expect(searchResult.count()).toBe(0);

//ACT

var searchQueryInput = $('input');

searchQueryInput.sendKeys('any value');

var searchButton = element(by.buttonText('search'));
searchButton.click();

1),

//Assert
it('', function()({
expect(searchResult.count()).toBe(1);

1);
1);
You should notice a parallel to previous tests. The functionality is written to mirror the
behavior of a user typing in the search box. The test finds the input field, types a value,
and then selects the button that says Search. The assertion confirms that the result
contains a single value. The next section will look at the application from the HTML page.

www.it-ebooks.info

http://www.it-ebooks.info/

The search query HTML page

The following code shows the resulting body of the search query HTML page:

<body ng-app="search">

<div ng-controller="SearchController">
<input type="text" ng-model="searchQuery'"></input>
<button ng-click="search(searchQuery)">search</button>

<li ng-repeat="result in results">{{result}}</1i>

</div>

<script src="bower_components/angular/angular.js"></script>
<script src="app/search.js"></script>
<script src="app/searchController.js"></script>

</body>

The main highlights of the HTML page are:

e The use of the searchController class’ model to store the searchQuery class in the
input:

<input type="text" ng-model="searchQuery'"></input>
e Associating the button click event to the searchController's search function:

<button ng-click="search(searchQuery)'">search</button>

The next section will show the resulting search module and searchController.

www.it-ebooks.info

http://www.it-ebooks.info/

The search application

Here is the result of the searchModule code:

var searchModule = angular.module('search',[]);

Here is the result of the searchController code:

angular.module('search')
.controller('SearchController', ['$scope', function($scope){
$scope.results = [];
$scope.search = function(){
$scope.results = ['Any Value'];

I
1)
The preceding AngularJS components are similar to what has already been shown in
previous chapters. Now that you have reviewed the existing search piece of the
application, you can walk through the steps to display search result detail views. Here is
what the search application looks like so far:

search

www.it-ebooks.info

http://www.it-ebooks.info/

Show me some results!

Now that the Search button is set with the required features, the resulting details need to
be displayed when a search result is selected. Here is the user specification. Given the

following search results:

e [select an item from the search results
e [will see the details in the main page component

Following the top-down approach, the first step will be the Protractor tests followed by the
necessary steps to get the application fully functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the search result routes

This application will use routes to switch between views. As this step is primarily about
configuration, it doesn’t make sense to wait until a test fails. The following steps will
briefly recap the necessary steps, as you have already walked through the steps with the
flip flop application:

1. Install angular-routes using Bower:

$ bower install angular-route

2. Add angular and angular-route to the index.html page:

<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-route/angular-route.js"></script>

3. Create a ngRoute module as a dependency in the application (app/search.js):

var searchModule = angular.module('search', ['ngRoute']);

4. Configure the routes in the app/search. js file. Add the following route
configuration:

searchModule.config(['$routeProvider', function($routeProvider){
$routeProvider
.when('/splash', {
templateUrl : 'app/splash.html',
controller : 'SplashController'
1)
.when('/detail/:id"', {
templateUrl : 'app/searchDetail.html',

controller : 'SearchDetailController'
1)
.otherwise({

redirectTo : '/splash'
1)

31D

The preceding configuration contains two routes. One for a splash screen/landing
page that will be displayed when the user first comes to the page. The second is the
route to get the search details.

5. Add the route stub controllers:

1. Create a new file for SplashController (app/splashController.js):

angular.module('search')
.controller('SplashController', ['$scope', function($scope){

11);

2. Create a new file for SearchbetailController
(app/searchDetailController.js):

angular.module('search')
.controller('SearchDetailController', ['$scope', function($scope){

www.it-ebooks.info

http://www.it-ebooks.info/

11);

6. Add the detail controller to the index.html page:

<script src="app/searchDetailController.js"></script>
7. Create the partial view HTML files by following these steps:
1. Create a new file for splash.html:
<div id="splash"></div>
2. Create a new file for searchDetail.html:

<div id="searchResultDetail''></div>

The routes for the test have now been created. You can continue to the next step and begin
adding the functionality to link search results to the result details.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing the search results

As the specification states, you will need to leverage the existing search results. Instead of
creating a test from scratch, you can add to the existing search query test. Start with a base
test embedded in the search query test as follows:

describe('Given I am searching', function(){
describe(''when I type in a search query'',6 function(){

describe('Given search results', function(){
describe('When I select an item from the search results', function(){
beforeEach(function(){

1)

it('should see the details in the main page component', function(){

1)
1)
1),
19)
1)

Now move on to the next step and build the test.
Assembling the search result test

In this case, the search results are already available from the search query test. You don’t
have to add any more setup step for the test.

Selecting a search result

The object under test is the result. The test is when the result is selected and then the
application must do something. The steps to write this in Protractor are as follows:

1. Find a result item using the following code:

var resultItem = element(by.repeater('result in results')).first();

2. Select the result item. As you will be representing the details using a route, you will
create a link to the details page and click on the link. Here are the steps to create a
link:

1. Select the link within the result item. This uses the element currently selected
and then finds any subelements that meet the criteria. The code for this is as
follows:

var resultLink = resultItem.element(by.css('a'));

2. Now to select the link add the following code:

resultLink.click();

Confirming a search result

www.it-ebooks.info

http://www.it-ebooks.info/

Now that the search item has been selected, you will need to verify that the result details
page is visible. The simplest solution at this point is to ensure that the details view is
visible. This can be done using Protractor’s CSS locator to look for the search detail view.
The following is the code to be added for confirming a search result:

it('Should see the details in the main page component', function(){
var resultDetail = element(by.css('#searchResultDetail'))
expect(resultDetail.isDisplayed()).toBeTruthy();

1)

Here is the complete test:

describe('When I select an item from the search results', function(){

beforeEach(function(){
var resultItem = element.all(by.repeater('result in results')).first();
var resultLink = resultItem.element(by.css('a'));
resultLink.click();

1)

it('Should see the details in the main page component', function(){
var resultDetail = element(by.css('#searchResultDetail'))
expect(resultDetail.isDisplayed()).toBeTruthy();

1)
1)

Now that the test is set up, you can continue to the next phase of the life cycle and make it
run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the search result test run

For this step of the life cycle, we will execute Protractor and make fixes in the application
in order to make the test run successfully. Here are the steps you need to follow:

1. The first error : Error: No element found using locator: by.cssSelector('a')

o We need to add a link to the result item list, which will point to the details of the
result. In terms of Angular routes, we will add #/detail/:resultId as a prefix:

<li ng-repeat="result in results">
{{result.name}}</1i>
2. Now rerun the test and we get UnknownError: unknown error: Element is not
clickable at point (48, 57). Other element would receive the click:....

o This error is not as clear. When this happens, and the error is not as specific as
required, you can jump to the site itself and look at the JavaScript console for

errors. Go to http://localhost:8080. Here is a screenshot of what you should
see:

aa | search

a.ng-binding 8px = 17px

-

Q, [] |Elements| Network Sources Timeline Profiles Resources Audits Console

¥ <html>
F <head>.</head>
¥ {body ng-app="search™ class="ng-scope">
¥ <div ng-controller="SearchController” class="ng-scope"»
<input type="text™ ng-model="searchQuery" class="ng-valid ng-dirty":
<button ng-click="search{searchQuery)">search</button>
¥ {ul>
¢!-- ngRepeat: result in results --3
¥ ¢1li ng-repeat="result in results" class="ng-scope">
<@ href="#/detail/" class="ng-binding"»
£y
¢!-- end ngRepeat: result in results --»
<ful>

o The main problem is that the link is not on the page. Looking back at the code,
you can see that the search result object is an array of strings but it needs to be
an array of objects that have an ID and name.

o Update the app/searchController.js search function as follows:

$scope.search = function(){
$scope.results = [{id:1,name:'Any Value'}];

+
o Now rerun the test.

3. The routes have now been configured to the new route (#/detail/{{result.id}})
and the tests now pass.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a location-aware test

As the application uses routes, the route detail view will need to be tested. In this case,
you will need to ensure the URL has the ID of the search result. Follow these steps to add
the test:

1. In the beforeEach method, retrieve the ID of the search result based on href of the
link attribute:

var resultId = null;
beforekEach(function(){

resultId = resultLink.getAttribute('href').then(function(attr) {
return attr.match(/#\/detail\/(\d+)/)[1];

1),
1),

2. Resolve the resultId promise containing the ID of the result:

it('Should set the url to the selected detail view', function(){
resultId.then(function(id) {

3. Within the promise, create expectedurl:
var expectedUrl = '/detail/'+id;

4. Get the location of the URL:
browser.getLocationAbsUrl()

5. Use the promise to check the expectation on the URL:

.then(function(url) {
expect(url.split('#')[1]).toBe(expecteduUrl);

1)
1)

Location-aware tests can be very helpful when dealing with routes. The tests can be
simple or complex, but help align the route interface to clear specifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the search result better

Now that there is a passing test, some cleanup and refactoring is needed. There are two
primary callouts:

e No unit tests.
e How do you know searchResultDetail is specific to the search result we select?

Up to this point, there hasn’t been a need to create unit tests to build the application. The
focus has been on the Ul in the application. There hasn’t been logic or actions needed to
build on the backend. Most of the development has been focused on wiring up the
frontend and making sure the components in the specification are available to the user.

The other action that you need to look at is the fact that there is not a way to test that a
loaded view actually reflects data from the selected result. This can be tackled in two
parts. The first part is to ensure that the URL for the window points to the correct route.
The second part will be to display the ID number of the search result on the view.

Confirming the route ID

The ID will not be displayed to the users; however, it is still an integral part of the
application. As the application grows in the following chapters, you will be leveraging the
ID to extract further data. This walk-through will follow the TDD life cycle and use
Karma to build the feature.

Setting up the route ID unit test

To inject the scope into a controller, the initial test will look as follows:

describe('',function(){
var scope = {};
beforeEach(function(){
module('search');
inject(function($controller){
$controller('SearchController', {$scope:scope});
3);

1)
it('', function(){});

1)

In order to test the routes, the test will leverage the $routeParams object. The
$routeParams object gives an object access to information relating to the route that
brought the application to the location. For example, the /detail/:id route definition and
the /detail/123, $routeParams route will give you the {id:123} object. For the test, a
fake $routeParams object containing the ID of the detail object will be used. Update the
test so that it has the following fake $routeParams object, which will return an ID of 1:

beforeEach(function(){

/]

var routeParams = {id:1};
$controller('SearchDetailController', {$scope:scope, $routeParams:
routeParams });

www.it-ebooks.info

http://www.it-ebooks.info/

Now that the fake $routeParams object has been injected into the controller, you can
continue to the next phase and make the assertion.

Confirming the ID

The assertion is that the scope has a detail object with the same ID that $routeParams
specified. The code for confirming the ID is as follow:

it('Should return results', function(){
expect(scope.detail.id).toBe(1);

1),

Making the route parameter’s test run

Now that Karma is running using a headless browser, we can start Karma in the console
and let it run as we walk through the issues, as shown in the following steps:

1. Start Karma:

$ karma start

2. The first issue we get is that ngRoute can’t be found. This is because we added
angular-route to the project, but haven’t added it to karma.conf. Update the
karma.conf update the files section with the following code:

files: [
// ..
"bower_components/angular-route/angular-route.js',

3. After rerunning the test, we are left with TypeError: ''undefined'' is not an
object (evaluating scope.detail.id). To rectify this, perform the following
steps:

1. This error informs us that the scope.detail.id object doesn’t exist in the
controller. We will now update the controller to include it. The first step to
fixing this is to add $routeParams to searchDetailController:

.controller('SearchDetailController',
['$scope', '$routeParams', function($scope, $routeParams){

2. Now, in the controller, create the detail object with the $routeParams ID:

$scope.detail = {id : $routeParams.id},;

3. The detail object has now been created using the ID of the route. Go ahead and
rerun the test.

The test passes!

The application now looks like what is shown in the following screenshot when you first
open it:

www.it-ebooks.info

http://www.it-ebooks.info/

L C' | [4 localhost:8080/index.html#/splash

| search |

After a search query, the application looks like what is shown in the following screenshot:

= C | [localhost:3080/index.html#/splash
any query search |

o Anv Value

For details of the application looks as shown in the following screenshot (notice that the
URL contains the detail route):

&~ C | [localhost:8080/index.html#/detail/1
any query search

e Anv Value

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

Q1. Given the following HTML code, how would you select the second list item?

item 1</1i>

item 2</1i>

1. element.all(by.css('1li')).second();.
2. element (by.repeater('item in list'))[1];.
3. element.all(by.css('1i')).get(1);.

Q2. Given the following Angular]JS component, how would you select the element and
simulate a click?

Some Link

1. $('a').click();.
2. element(by.css('1i)).click();.
3. element(by.linkText('Some Link')).click();.

Q3. When using routes with AngularJS you need to install angular-route.

1. True.
2. False.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter has shown you how to use TDD to build an AngularJS application. The
approach, up to this point, has focused on the specification from a user perspective and
using TDD from top-down approach. This technique helps you get usable, small
components tested and completed for the users. As applications grow, so does their
complexity. As we move on to the next chapter, we will explore the bottom-up approach
and see when to use that technique over a top-down approach.

This chapter has shown you how TDD can be used to develop route-based views. This
includes utilizing multiple controllers and views. Routes allow you to get a nice separation
of your components and views. We have shown the usage of several Protractor locators,
from CSS, to repeaters, to link text, to inner locators. Besides using Protractor, we have
also learned how to configure Karma with a headless browser, and we got to see it in
action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Telling the World

The buildup of TDD focused on fundamental components, namely life cycle and process,
using step-by-step walk-throughs. You have taken several applications from the ground
up, understanding how to build AngularJS applications and use tools to test them. It is
time to expand further into the depths of AngularJS and integrate services, broadcasting,

and routes.
This chapter will be slightly different than the others in two ways:

¢ Instead of building a brand new application, we will use the search application from

Chapter 5, Flip Flop.
e Also, a bottom-up approach will be used. This consists of creating unit tests first and

then moving to the UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Before the plunge

Before the walk-through, the core concepts of the chapter will be reviewed first. It is
important that you understand these concepts before you move on to the walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma configuration

So far, the default Karma configuration has been used, but no explanation on the default
configuration has been given yet. File watching is a useful default behavior that will now
be reviewed.

File watching

File watching is enabled by default when the karma init command is used. File watching
in Karma is configured with the following definition in the karma.conf. js file:

autowatch: true,

The file watching feature works as expected and watches the files defined in the
configuration’s files array. When a file is updated, changed, or deleted, Karma will
respond by rerunning the tests. From a TDD perspective, this is a great feature as tests will
continue to run without any manual intervention.

The main point to watch out for is the addition of files. If the file being added doesn’t
match the criteria in the files array, the autowatch parameter won’t respond to the
change. As an example, let’s consider that the files are defined as follows:

files : ['dirdl/**/*.js']

If this is the case, the watcher will find all the files and subdirectory files ending in . js. If
a new file is in a different directory, not in dir1, then the watcher will not be able to
respond to the new file because it is in a different directory than what it was configured in.

www.it-ebooks.info

http://www.it-ebooks.info/

Using a bottom-up approach

The top-down approach of TDD can be very useful. It helps focus on user-facing
components first and then fills up the backend layer. One of the caveats to this approach is
that the specification being built is more user facing as opposed to it being based on logic.
The bottom-up approach builds from the inner components out to the UI and the user. This
kind of approach is extremely important when working with complicated logic and
requirements. With the bottom-up approach, you will first build services, controllers, and
directives with all the complexities using unit tests and Karma. After this, you will expand
to create end-to-end tests with Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Services

AngularJS services, factories, and resources are all important components. Services are
used to abstract application logic. They are used to provide single responsibility for a
particular action. Single responsibility allows components to be easily tested and changed.
This is because the focus is on one component and not all the inner dependencies.

Here is a summary of some of the other AngularJS components that have been looked at
so far:

o Attributes and directives: These drive actions and flow from the UI
e Controllers: This provides the glue between the UI and logic
e Services: This isolates the logic

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing and subscribing messages

One of the great features of AngularJS is its ability to publish and subscribe messages
within a page. Publishing and subscribing messages is a powerful component, but like
with anything, when used the wrong way, it can lead to a mess.

One area where this pattern is useful is when communicating across boundaries in an
application. Application boundaries are important as they allow the UI to have isolated
code. Complexity occurs when separate Ul components need to be aware of changes in
other areas of the UI. With a publishing and subscription model, applications can
communicate seamlessly using messages. This chapter will focus on publishing and
subscribing. You will be able to take a closer look at what boundaries are and determine
good places to leverage this feature in your own applications.

There are two ways in which messages can be published. You can either emit or broadcast.
It is important to know the difference as both work slightly differently, and they may
affect the performance of your application.

Emitting

One way to publish events is to emit them. The documentation at
https://docs.angularjs.org/api/ng/type/$rootScope.Scope gives the functionality of the
$emit () method as follows:

Dispatches an event name upwards through the scope hierarchy notifying the registered
$rootScope.Scope listeners.

The important thing to note is $emit () notifies up through the scopes all the way to the
top of the hierarchy. This is important because if you have an embedded controller scope,
it is going to have to propagate all the way up to every controller and scope. This can
cause a performance issue. Here is an example of how to emit an event:

$scope.someAction = function(){
$scope.$emit ('ANYEVENT');

i
The best way to see the upward propagation of the event is through a test. The next section
will show you how to unit test the upward effect of $emit().

Testing emit

The following tests have three controllers: TopController, MiddleController, and
BottomController. MiddleController will emit the event. From this, an expectation can
be made that TopController will receive the event and BottomController won’t, as the
emission propagates in an upward fashion. Here are the steps to test the $emit () method:

1. Create spies to test the emission of events:

var topEventSpy = jasmine.createSpy();
var bottomEventSpy = jasmine.createSpy();

www.it-ebooks.info

https://docs.angularjs.org/api/ng/type/%24rootScope.Scope
http://www.it-ebooks.info/

2. The test setup first sets the hierarchy of scopes:

inject(function($controller, $rootscope){
var topScope = $rootscope.$new();
var middleScope = topScope.$new();
var bottomScope = middleScope.$new();

3. Then the controllers are set with their respective scopes:

$controller('TopController', {$scope:topScope});
$controller('MiddleController', {$scope:middleScope});
$controller('BottomController', {$scope:bottomScope});

4. Set the spy to capture the events:

topScope.$on('MIDDLEEMIT', topEventSpy);
bottomScope.$on('MIDDLEEMIT', bottomEventSpy);

5. Emit the event from the middle scope:

middleScope.$emit('MIDDLEEMIT');

6. Add the expectation that the top spy was called on the events:

it('Should notify top controller', function(){
expect(topEventSpy.wasCalled).toBe(true);

1);
7. Add the expectation that the bottom spy was not called:

it('Should not notify bottom controller', function(){
expect(bottomEventSpy.wasCalled).toBe(false);

1);

Here are a couple of things to note from the preceding test:

e This is a unit test that we will run in Karma.

e The inject method provides a reference to the $controller and $rootscope scopes.
The $rootscope scope is the topmost scope of an AngularJS application. If you’re
using $rootscope to emit events, they wouldn’t need to propagate anymore as
$rootscope is at the highest level. In the later examples, $rootscope will be injected
into the controller and used to listen to and send events.

e A scope can create a new child scope. A child scope is created using the $new
method. You can imagine this to be equivalent to a page that has embedded
containers:

<div ng-controller="topController"
<div ng-controller="middleController">
<div ng-controller="bottomController">
</div>
</div>
</div>

Testing broadcast

www.it-ebooks.info

http://www.it-ebooks.info/

The documentation at https://docs.angularjs.org/api/ng/type/$rootScope.Scope states gives
the functionality of the $broadcast () method as follows:

Dispatches an event name downwards to all child scopes (and their children) notifying the
registered $rootScope.Scope listeners.

As opposed to the $emit method, which pushes events up through the scope chain,
$broadcast pushes events down the chain. The other important distinction to make is that
the $broadcast event can’t be cancelled, but $emit can be. These are small intricacies that
if not understood properly can have a negative effect on the application. Like with the
$emit event, the following example shows the way broadcasting works through a test.

Testing broadcast

Utilizing similar techniques from the emission test, here are the steps to test the
broadcasting of events:

1. Create the spies:

var topEventSpy = jasmine.createSpy();
var bottomEventSpy = jasmine.createSpy();

2. Initialize the scopes:

var topScope = $rootScope.$new();
var middleScope topScope.$new();
var bottomScope middleScope.$new();

3. Set the respective controller scopes:

$controller('TopController', {$scope:topScope});
$controller('MiddleController', {$scope:middleScope});
$controller('BottomController', {$scope:bottomScope});

4. Set the spies to listen for the events:

topScope.$on('MIDDLEEMIT', topEventSpy);
bottomScope.$on('MIDDLEEMIT', bottomEventSpy);

5. Broadcast the event from middleScope:
middleScope.$broadcast('MIDDLEEMIT');

6. Have the expectation that the top scope was not touched:

it('Should not notify top controller', function(){
expect(topEventSpy.wasCalled).toBe(false);

1),

7. Have the expectation that the bottom scope received the message:

it('Should notify bottom controller', function(){
expect(bottomEventSpy.wasCalled).toBe(true);

3);

The preceding explanations have showed how to integrate and test two types of AngularJS

www.it-ebooks.info

https://docs.angularjs.org/api/ng/type/%24rootScope.Scope
http://www.it-ebooks.info/

events. As you progress through the rest of the event tests, you will find that the setup and
techniques used here will be used throughout the rest of the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing and subscribing — the good and bad

Knowing when to use publishing and subscribing is one thing, but knowing when not to
use them is the difficult part.

The good

Before looking at the problems that publishing and subscribing can lead to, here are some
of the best scenarios where you can use this technique:

e Communicating important events to different components of the application
e Reducing coupling

Communicating through events

When thinking about events that need to be coupled, it is important to think about what
actions are driving the application. Given a bank application, events might be as simple as
DEPOSITED and WITHDREW. These two simple events may be used in many other places.
Think about you wanting to send an e-mail to the customer every time they withdrew or
automatically updated some real-time report. Instead of polling the persistence layer, a
real-time notification message can be used. In AngularJS, this means that the UI can be
made up of different components that can respond to changes in one area, for example, Ul
notifications, updating workflows, enabling features, or anything you can think of.

Communicating events so that other components can respond to them is key. When you
want to easily respond to events and changes, publishing and submitting is the way to go.
The following is another test to show how communication can be used:

1. Create scopes for the controllers:

recentTransactionScope = $rootScope.$new();
atmScope = recentTransactionScope.$new();

2. Assign the scopes to the controllers:

$controller('AtmController', {$scope:atmScope});
$controller('RecentTransactionsController',
{$scope:recentTransactionScope});

3. Set the spies:

spyOn(atmScope, "$emit').and.callThrough();
spyoOn(recentTransactionScope.recent, 'push');

4. Call the method being tested:
atmScope.withdraw(3.33);

5. Set the expectation that the event was emitted:

it('should emit an event', function(){
expect(atmScope.$emit).toHaveBeenCalled();

1),

www.it-ebooks.info

http://www.it-ebooks.info/

6. Set the expectation that the recent transactions received the event:

it('should send event to recent transactions',6 function(){
expect(recentTransactionScope.recent.push).toHaveBeenCalled();

1),

Here are the controllers to further clarify the code:
1. The AtmController property (publisher):

bankModule.controller('AtmController', ['$scope', function($scope){
$scope.withdraw = function(amount){
$scope.$emit ('"WITHDREW', amount);
}

31);

2. The RecentTransactionsController property (subscriber):

bankModule.controller('RecentTransactionsController', ['$scope',
function($scope){
$scope.recent = [];
$scope.$on('"WITHDREW', function(amount){
$scope.recent.push(amount);

1)
11);

As discussed with the tests, AtmController emits the WITHDREW event after a withdrawal
occurs.

The preceding steps are just a simple example of how publishing and subscribing can help
communicate important activities across your application.

Reducing coupling

Communication is one aspect of the benefits of publishing messages. Messaging gives you
decreased coupling. Think about the preceding bank application that communicates when
a withdrawal occurs. The messages may be used for many different aspects of the
application, and since it is decoupled, we don’t need to worry. If we think about it another
way, the withdraw function doesn’t care about the rest of the application. It only focuses
on the fact that it will perform a withdrawal and then send a message upon its completion.
From the subscription perspective, the recent transactions don’t care where the withdrawal
happens. It only has to focus on what it needs to do when this happens.

Decoupling the application can be extremely beneficial from a testing perspective. Take
another look at the bank application if you want to refactor and separate out the tests. You
could create a new test that is specific to the RecentTransactions property. Since the
application is decoupled, it doesn’t care about AtmController. The test can be separated
out as follows:

1. The beforeEach function can be reduced to only deal with the scope of
recentTransactionsController and $rootScope:

www.it-ebooks.info

http://www.it-ebooks.info/

var recentTransactionScope = {};
var rootScope = {};
beforekEach(function(){
module('bank');
inject(function($controller, $rootScope){
rootScope = $rootScope.$new();
recentTransactionScope = $rootScope.$new();

$controller('RecentTransactionsController',
{$scope:recentTransactionScope});

1)

spyoOn(recentTransactionScope.recent, 'push');
rootScope.$emit ('"WITHDREW', 3);

});
2. In the beforeEach function, add a spy to help with testing:

spyoOn(recentTransactionScope.recent, 'push');

3. Instead of calling the AtmController class’s withdraw function, we can call $emit on
$rootScope:

rootScope.$emit ('WITHDREW', 3);

4. The afterkach function and the expectation are the same as shown previously:

afterkEach(function(){
recentTransactionScope.recent.push.calls.reset();

1)

it('should send event to recent transactions', function(){
expect(recentTransactionScope.recent.push).toHaveBeenCalled();

1)

This example has shown that using messaging, you can decouple tests. Decoupling
application tests allows the application to grow without having to negatively refactor the
entire application. In the preceding case, if AtmController is changed, the
recentTransactions test and the recentTransactions controller won’t need to be
changed. As long as the WITHDREW event is published, recentTransactions will not have
to be updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Harnessing the power of events

Publishing and subscribing events can lead to some ugly and hard-to-understand spaghetti
code. Now that the foundations for the chapter have been reviewed, you can dive into
implementing events into the search application.

www.it-ebooks.info

http://www.it-ebooks.info/

The plan

The search application from Chapter 5, Flip Flop, is quite basic. At this point, it will
return a set of results, and then when the user clicks on a result, details will appear. The
application provides a foundation for future development. In this chapter, the functionality
will be expanded to include publishing and subscribing. Here is the plan to expand the
search application:

e The search application will be rebranded as a store application, and the search results
will display a list of products.

e When a product is selected, details will be displayed.

e All selected products from the search will be available in a new view for “recently
viewed” items.

e The detailed view of the product will have the option to “add to cart”, and the product
will then be available in the cart view.

The plan is somewhat ambitious, but with all the knowledge we have on TDD and
AngularJS, the development should flow nicely.

www.it-ebooks.info

http://www.it-ebooks.info/

Rebranding

The search application will be rebranded into a store application instead of rewriting the
search functionality that has already been written. In order to leverage the existing search
project, it will be copied into a new project file. Then, the new project will use the tests to
drive the development changes and refactoring. The refactor steps have been left out, but a
review of the code will show how the code and tests were modified to create the product
application.

The refactor steps updated the unit tests and application to support the correct naming for
the application. It is important to take away two things from this:

e Refactor small to introduce big changes. Small incremental changes help to
progressively get to the next stage of the application. When big changes occur, it can
be confusing to know where and what to change. With small changes, even though
the same code is revisited several times, you can ensure the tests pass at each stage
instead of ripping the application apart completely and then trying to put it all back
together again.

e TDD applies during refactoring just as much as when doing core development. The
refactor steps followed were the same as the TDD steps. Start with changing the test
to meet our specification and then make the code run to meet the specification.
Applying these principles helps keep productivity and focus.

Both the unit tests and end-to-end tests pass from the refactor steps. It is time to turn to the
first feature of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing recently viewed items

Now that the initial refactoring is complete, the new functionality of the product
application can be considered. The first specification that will be considered is the ability
to see “recently viewed” items. The specification is broken down into two steps, as
follows:

e The user selects a product to view the details
e They will be able to see the viewed products

This is an example of where broadcasting would be a good candidate. In the preceding
case, the specification is concerned with when a product has been selected. In other words,
when an event occurs, a subsequent action needs to happen. Using Angular]JS events
($broadcast()/$emit()), the event of selecting a product to view can be published and
then consumed by the recently viewed component.

The standard TDD life cycle will be used to build this component: test first, make it run,
make it better. We will be using a bottom-up approach (unit test first). The main reason for
choosing this approach is that there are multiple controllers involved, and it will be easier
to start at the bottom and make our way up through the application.

Test first

The first test we will be writing is that the SearchController class will publish an event
when a product is selected. The following sections detail how to write the test.

Assembling SearchController
Here are the steps to assemble the SearchController class:

1. Start with the test stub using the following code:

describe('', function(){
beforeEach(function(){
1)
it(function(){
1)

1)

2. Get the scope of SearchController so that an action can be performed:

describe('', function(){
beforeEach(function(){
module('product');
inject(function($controller, $rootScope){
var searchControllerScope = $rootScope.$new();
$controller('SearchController', {$scope:searchControllerScope});
3);
1)
it(function(){
1)
3);

www.it-ebooks.info

http://www.it-ebooks.info/

3. Place a spy on the SELECTEDPRODUCT event:

var selectedProductSpy = jasmine.createSpy();
var searchControllerScope = {};
beforekEach(function(){
module('product');
inject(function($controller, $rootScope){
searchControllerScope = $rootScope.$new();
$controller('SearchController',
{$scope:searchControllerScope, $rootscope});
searchControllerScope.$on('SELECTEDPRODUCT', selectedProductSpy);

1)
1)

4. Add a cleanup function to clear the scope after each test and clear the spy:

afterkach(function(){
searchControllerScope = {};
selectedProductSpy.reset();

1),

Selecting a product

The test requires that a SELECTEDPRODUCT event has been published. The event will occur
when the selected product method is called with productid:

var fakeProduct = {productId:1};
searchControllerScope.selectProduct(fakeProduct);

Expecting events to be published

The expectation is that selectedProductSpy has been called:

it('', function(){
expect(selectedProductSpy).toHaveBeenCalled();

3);

Making the search controller run

Now we have to make the test pass and run. Here are the steps:
1. Start Karma using the following command:

$karma start

2. You’ll get an error, namely TypeError: 'undefined' is not a function
(evaluating 'searchControllerScope.selectProduct(fakeProduct)'). To
rectify this, perform the following step:

1. Add the method to SearchController:

$scope.selectProduct = function(){};

3. Then you’ll get the error Expected spy unknown to have been called. Error:
Expected spy unknown to have been called. To rectify this, perform the

www.it-ebooks.info

http://www.it-ebooks.info/

following steps:

1. The expectation has failed, which means the spy was never called. Open up
SearchController and add functionality to the selectProduct method to emit
an event:

$scope.selectProduct = function(productId){
$rootScope.$broadcast('SELECTEDPRODUCT', productId);

iy
2. Rerun the test.

4. The test will pass.

Now when a product is selected, the event is broadcasted. Any function wanting to know
when something gets selected can simply listen for the broadcast.

Recently viewed unit test

The next step is to add another test from the subscription side of the event to
RecentlyViewedController.

Test first

Again, the walk-through of the test steps will use the 3 A’s.
Assembling RecentlyViewedController

Here are the steps to assemble RecentlyViewedController:

1. Start with the test stub using the following code:

describe('"', function(){
beforeEach(function(){
1)
it(function(){
1)

1);

2. Get the scope of RecentlyViewedController so that an action can be performed:

describe('', function(){
beforeEach(function(){
module('product');
inject(function($controller, $rootScope){
var recentlyViewedScope = $rootScope.$new();
$controller('RecentlyViewedController',
{$scope:recentlyViewedScope});
3);
1)
it(function(){
37
3);

3. Confirm that the number of recently viewed products is equal to 0:

www.it-ebooks.info

http://www.it-ebooks.info/

expect(recentlyViewedScope.recent.length).toBe(0);

Invoking a recently viewed item

The action for this test is that the SELECTEDPRODUCT event has been published. Now add
the publish event:

var fakeProductEvent = {productId:1};
$rootscope.$broadcast('SELECTEDPRODUCT', fakeProductEvent);

Confirming RecentlyViewedController

The assertion is that the number of recently viewed products is now equal to 1:

it('', function(){
expect(recentlyViewedScope.recent.length).toBe(1);

3
Making RecentlyViewedController run

Here are the steps to run RecentlyViewedController:

1. Start Karma using the following command:

$ karma start

2. You’ll get an error, namely Error: [ng:areq] Argument
'RecentlyViewedController' is not a function, got undefined. To rectify
this error, perform the following steps:

1. Create the required controller and create a new file named
RecentlyViewedController.js.
2. Then, add the following details:

angular.module('product')
.controller('RecentlyViewedController', ['$scope', function($scope){

1)
3. Rerun the test.

3. Then you’ll get the error TypeError: 'undefined' is not an object
(evaluating 'recentlyViewedScope recent.length'), which means that the first
expectation, that is the recent product 0, has been hit. As the object is undefined, add
it to the recentlyViewedScope scope.

4. Then you’ll get the error Expected @ to be 1. Error: Expected 0 to be 1. To
rectify this, perform the following steps:

1. The expectation has been hit. Now the behavior of the event needs to be added
to the controller.
2. Add s$rootScope to the controller:

.controller('RecentlyViewedController',
['$scope', '$rootScope', function($scope, $rootScope){

www.it-ebooks.info

http://www.it-ebooks.info/

3. Subscribe to the event from $rootScope:

$rootScope.$on('SELECTEDPRODUCT', function(productEvent){
1)

4. Now add productEvent to the recent array:

$rootScope.$scope.recent.push(productEvent)

5. Rerun the test.

5. The tests will now pass.

End-to-end testing

The unit tests are complete and will verify that the publisher and subscriber can both
communicate with events. Now the walk-through will look at the application as a whole
and will show you how to create an end-to-end test. The specification for recently viewed
items is that in a given search result:

e A product is selected
e [t will be available in the recently viewed items

Now, it is time to move on to actually creating the test.

Test first

As always, start by translating the specification in the test using the 3 A’s, as the tests will
utilize the existing tests.

Assembling the recently viewed end-to-end test

Before you repeat the code from Chapter 5, Flip Flop, you should notice that the first test
already searches for and retrieves the search results. Therefore, the recently viewed test
can be embedded within the existing test for a search result that is already available. At the
bottom of the existing function of a search query, initialize the test stub:

describe('when I type in a search query', function(){
/] ...
describe('"', function(){

beforeEach(function(){

3);
it('', function(){

1)
1)

There is nothing else to assemble for the test, and you can move on to the next step.

Selecting a search result

Now, searchResult needs to be invoked using the following steps:

1. The first step will be to select the first searchrResult element:

var firstResult = searchResult.first();

www.it-ebooks.info

http://www.it-ebooks.info/

2. Find the link within the first item:

var resultLink = firstResult.element(by.css('a'));

3. Click on the result:

resultLink.click();

Confirming recently viewed items

Now that a product has been selected and one product has been added to the recently
viewed items list, we need to view the recently viewed items. Here are the steps to do this:

1. Get the recently viewed items:

var recentlyViewedItems = element(by.repeater('items in recent'));

2. Confirm that the count of recently viewed items is equal to O:

expect(recentlyViewedItems.count()).toBe(1);

Making the recentlyViewedItems test pass
Now the test needs to pass. Here are the steps to do this:
1. Start the website:
./node_modules/http_server/bin/http_server

2. Run Protractor:

./node_modules/protractor/bin/protractor chromeOnlyConf.js

w

You’ll get an error, namely Expected 0 to be 1..
4. The error is that the expectation has failed. It is time to add the controller and
repeater to the recently viewed items list to show the items:

<div ng-controller="RecentlyViewedController">
<div ng-repeat="item in recent'">

{{item}}

</div>
</div>

5. Rerun the test

6. The error is the same as before. This time, Protractor errors don’t give any clues to
what the issue is. The next step is to open up a browser and see what the web browser
JavaScript console is saying. Point your browser to
http://localhost:8080/#/recentlyViewed. Immediately, one error will be visible,
namely [ng:areq] Argument 'RecentlyViewedController' is not a function,
got undefined. To rectify this, perform the following steps:

1. Now that there is an actual error to fix, progress can be made. The error
indicates that the controller was not available. As the controller has not been
added, it is time to add the controller to the page. Open up the index.html page

www.it-ebooks.info

http://www.it-ebooks.info/

and add the controller reference:

<script src="app/recentlyViewedController.js"></script>

2. Rerun the test.
7. Now the test will be successful.

Making recently viewed items better

The recently viewed controller is now complete. It would be nice to better organize the
view, however this can happen later. The point of this exercise was to establish
communication between separate views and create a usable function. This has been
achieved, and now you can move to the next step of the walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a product cart

Another important aspect of the application is the ability to add products to a cart. A
publishing and subscription model will be used to publish when an item has been saved to
a cart. A subscription to the event will then keep track of items in the cart so the user can
easily see when saved items get updated in real time. Here is the specification given the
product details of a particular product:

e If the product is saved to a cart
e Product will be displayed in the product cart view

Now the necessary things are in order to get down to the 3 A’s.

Publisher test first

The publisher will come from searchbDetailController. The test will need to ensure that
when an item is saved, an event is published.

Assembling searchDetailController

The searchDetailController already has some unit tests written. The existing test can be
leveraged to confirm the publishing feature. Here are the steps to create a subtest to handle
the saving of a cart:

1. Start with an inner stub:

describe('', function(){
beforeEach(function(){

1)
it('', function(){

1)
1)

2. In order to test that an event has been emitted, a spy will be needed on $rootScope.
Bring in $rootScope and add a spy to it:

/7 ...
var savedToCartEventSpy = jasmine.createSpy();
beforeEach(function(){
inject(function($rootScope){
$rootScope.$on('SAVEDTOCART', savedToCartEventSpy);

1)
1)

3. Add afterEach to reset the spy:

afterEach(function(){
savedToCartEventSpy.calls.reset();

1),

Invoking the saving of a product

In the beforeEach section, select the method and make the following changes:

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach(function(){
/] ...
var fakeProduct = {productId:1};
searchDetailScope.saveProduct(fakeProduct);

1)

Confirming the save event

The expectation is that the spy has been called:

it('', function(){
expect(savedToCartEventSpy).toHaveBeenCalled();

1)

Making the saveProduct test pass

Now we need to make the test pass. Here are the steps to make the saveProduct test pass:
1. Start Karma:

$ karma start

2. The first error will be TypeError: 'undefined' is not a function (evaluating
'searchDetailScope.saveProduct (fakeProduct)'). If you get this error, then
follow these steps:

1. The function doesn’t exist on the scope. Add it using the following code:

$scope.saveProduct = function(product){};

2. Rerun the test.

3. Now the error has hit the expectation and says Expected spy unknown to have
been called. In this case, follow the given steps:

1. The smallest thing we can add to the test is the ability to emit the event from the
method. First add $rootScope to the controller:

.controller('SearchDetailController',
['$scope', '$routeParams', 'productService', '$rootScope’, function($sc
ope, $routeParams, productService, $rootScope){

2. Then add the sbroadcast () event to it:

$rootScope.$broadcast('SAVEDTOCART', product);

3. Rerun the test.

4. The test is successful.

Test for the subscriber first

The subscriber unit test will confirm that when a SAVEDTOCART event is emitted, then the
product will be added to the cart object. The specification is as a SAVEDTOCART event is

www.it-ebooks.info

http://www.it-ebooks.info/

given, the following action will be performed:
o [t will add the product to the cart
Assembling the product cart test
Here are the steps to assemble the product cart test:

1. Create a new file, spec/unit/cart.js.
2. Start with the base stub:

describe('', function(){
beforekEach(function(){

1)
it('', function(){

1)
1),

3. Initialize the module:

module('product');

4. Initialize the scope so that expectations can be made:

var scope = {};
beforeEach(function(){
// ...
inject(function($controller){
$controller('CartController', {$scope:scope});

1)
1)

5. Initialize $rootScope so subscriptions can be made:

inject(function($controller, $rootScope){
scope = $rootScope.$new();
$controller('CartController', {$scope:scope, $rootScope:$rootScope});

1);
6. The last thing to confirm is that the cart is empty. Add the following expectation to
ensure the test is set up properly:

expect(scope.cart.length).toBe(0);

Invoking a saved cart event

This test is around the fact that when the SAVEDTOCART event is published, the
CartController property will perform a specific action. Add the publishing of the event
to the beforeEach method:

beforeEach(function(){
/] ...
var fakeProduct = {productId:1};
$rootScope.$broadcast('SAVEDTOCART', fakeProduct);

1),

Confirming the saved cart

www.it-ebooks.info

http://www.it-ebooks.info/

Now that the test has been set up and the act performed, you can assert. Assert that the
number of cart items is equal to 1 by adding the following code:

it('', function(){
expect(scope.cart.length).toBe(1);
3);

Making the cart controller test run

Now it’s time to walk the test through the cycle by following the given steps until we get a
green test:

1. Start Karma:

$ karma start

2. The first error is Error: [ng:areq] Argument 'CartController' is not a
function, got undefined. As seen previously, the controller hasn’t been created.
Create a new file and set up a stub controller (/app/cart.js):

angular.module('product')
.controller('CartController', ['$scope', function($scope){

11);

3. The next error will be TypeError: 'undefined' is not an object (evaluating
'scope.cart.length'). This indicates that no object was found on the scope named
cart. Go ahead and create it now in app/cart.js:

$scope.cart = [];

4. Then, you’ll get an expectation error, namely Expected © to be 1. Error:
Expected 0 to be 1. To rectify this, perform the following steps:

1. At this point, the controller is not doing anything with the event being emitted.
Add s$rootScope as a dependency to the application:

.controller('CartController',
['$scope', '$rootScope', function($scope, $rootScope){

2. Add the handling logic to capture the event and add the product to the cart:

$rootScope.$on('SAVEDTOCART', function(productEvent){
$scope.cart.push(productEvent);

1)

5. Success! All the tests have passed.

End-to-end testing

The unit tests are now complete, and it is now time to perform end-to-end testing for the
cart.

Assembling the cart’s end-to-end test

www.it-ebooks.info

http://www.it-ebooks.info/

The test comes from the perspective of being on a product detail view and selecting a
Save to Cart button. Once the item has been saved, it should be available in the cart view.
Here are the steps to assemble the cart’s end-to-end test:

1. Create a new file named spec/e2e/cartScenario.js.
2. Start with the base template test:

describe('', function(){
beforekEach(function(){

1)
it('', function(){

1)
1),

3. The next thing we need to do is navigate to a product page:
browser.get("#/product/1");
4. Select the button that will save the cart:

var saveToCartButton = element(by.buttonText('Save to Cart'));

Invoking a save to cart action

The action is to click on the Save button using the following code:
saveToCartButton.click();

Confirming products have been saved

The assert is to confirm that the cart view now has at least one product:

it('', function(){
var productsInCart = element.all(by.repeater('product in cart'));
expect(productsInCart.count()).toBe(1);

})
Making the cart’s end-to-end test pass
Here is the walk-through of the process of making the application run:
1. Start the site:
$./node_modules/http-server/bin/http-server .
2. Run Protractor:
$./node_modules/protractor/bin/protractor chromeOnlyConf.js

3. The first error is NoSuchElementError: No element found using locator:
by.buttonText("Save to Cart"). To rectify this, perform the following steps:

1. Go ahead and create the button within the product detail’s
app/searchDetail.html partial view:

<button>Save to Cart</button>

www.it-ebooks.info

http://www.it-ebooks.info/

2. Rerun the test.

4. The next error is Expected 0 to be 1. To rectify this, perform the following steps:

1. This error means that the count is @ for products in the cart. By reviewing the
index page, you can see that the cart doesn’t even exist in the page. First, add a
reference to the cart controller:

<script src="app/cart.js"></script>

2. Next, the items in the cart need to be added to the page. First, add a tag with the
controller:

<div ng-controller="CartController'"></div>
3. Finally, add a repeater to display the product in the cart:

<1li ng-repeat="product in cart">{{product}}</1i>

4. Rerun the test.

5. The same error occurs, Expected 0 to be 1. To rectify this, perform the following
steps:

1. Even though the product data has been added, the test is still failing. The next
question is whether anything is being added to the cart. In this case, no. The
button is being selected but no action has been associated with it. Update the
button in app/searchDetail.html to use the searchDetailController class’s
saveProduct method:

<button ng-click="saveProduct()">Save to Cart</button>

2. Rerun the test.

6. All the tests pass.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

The following are some questions to check your understanding:
Q1. When broadcasting a message, it propagates up the scope’s hierarchy.

1. True
2. False

Q2. The following creates a spy in Jasmine:

1. var spy = jasmine.createSpy();
2. var spy = jasmine.$new();
3. var spy = jasmine.createFake();

Q3. The $rootScope scope is the highest level scope in AngularJS.

1. True
2. False

Additionally, if you want more practice, add the ability to add likes to the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter has explored events within AngularJS. You saw two types of AngularJS
event emitters: $hroadcast () and $emit (). You also saw some examples of applying
TDD to events and how events give a separation of controllers and code. In addition, you
expanded the types of testing techniques to include services and reiterated the testing of
controllers and models. You also explored further configuration of Karma to use its
features. In the next chapter, you will look at the integration and testing of data and APIs
into an AngularJS application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Give Me Some Data

Applications need a way to consume the ever-expansive world of data. Most applications
written today consume data. Luckily for AngularJS developers, consuming data is quite
easy. Testing data consumption is also a core component of the framework. In this chapter,

we will cover the following topics:
¢ Integrating a REST-based service
¢ Creating and mocking AngularJS’s $http

e Handling exceptions
e Implementing a fake API builder pattern

www.it-ebooks.info

http://www.it-ebooks.info/

REST - the language of the Web

Representational State Transfer (REST) defines how the Web should communicate.
From an AngularJS application standpoint, the main concern is with the HTTP methods.
For HTTP methods, REST can be thought of as the verbs or actions that an HTTP request
can make. Specifically, an HTTP request can make these request types: GET, POST, PUT,
and DELETE. From an API standpoint, the HTTP methods can be used to determine how
logic should handle the specific HTTP request type. Here is a further look at the common
HTTP methods:

HTTP Method|

Description Example |

GET Retrieves data from an endpoint

curl --request GET 'http://<SOME URL>' |

POST Posts a new data element to the endpoint curl -request POST 'http://<SOME URL>' -data 'anydata'

PUT

curl -request POST 'http://<SOME URL>' -data 'anydata'

Inserts or updates the enclosed data element to the endpoint]

DELETE Deletes a request to the endpoint

curl --request DELETE 'http://<SOME URL>' |

Note

The curl tool is a command-line tool that can be used to make requests. On Unix
machines, it is available in the command line by simply typing curl. For Windows
machines, it is best to install Git bash and access it through the Git bash command line.
Installation instructions for Git and Git bash can be found at http://git-
scm.com/downloads.

As can be seen from the preceding explanation, the RESTful components of HTTP can
define the basics for most APIs. The preceding REST approach is different from other
web service techniques or protocols and can be used by practically anything. For their
simplicity, REST-based web services are the best options. In this chapter, the focus will
only be on how to use AngularJS with a REST-based API.

www.it-ebooks.info

http://git-scm.com/downloads
http://www.it-ebooks.info/

Getting started with REST

Before jumping into how AngularJS communicates with a REST layer, it is important to
see how to communicate using standard tools within a browser. As you saw from the
previous definition, curl can be used to communicate to a REST API. Although making a
manual HTTP request outside of a browser is useful, you also need to understand the
basics of how a browser makes an API request without a framework. In a browser,
requests can be made to REST layers through asynchronous calls. This allows requests
that won’t affect the other parts of the application to be made; that is, the page won’t
freeze and become unusable. The web page remains useable while the request is made.

Browsers provide a mechanism to make asynchronous REST calls using an
XMLHt tpRequest method. An XMLHttpRequest method can be used to make an HTTP GET,
POST, PUT, or DELETE request. Here is an example of how to make a GET request:

var request = new XMLHttpRequest();
request.open('GET', '/any/rest/endpoint');
request.send();

The preceding example creates a new request, specifies the request type and location, and
finally, sends the request. The missing piece is the handling of the response. Add the
following code just before the send method:

request.onreadstatechange = function(){
if (request.readyState === 4) {
console.log('received response with status: '+request.status);

}
i
The preceding code handles when the request has received a response from the server and
is complete (readystate === 4). Within the condition given in the code, you can handle

the parsing of the response, the determining status of the request, and so on.

What’s great about the preceding code is that it doesn’t require a framework. The problem
is that the code can grow in size and become repetitive for every request. AngularJS has
abstracted the request for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing asynchronous calls

Now that you understand how to make HTTP requests through the browser, we need to
understand how to test these calls. The preceding requests are asynchronous.
Asynchronous means there is no guarantee of when the function will complete. For your
reference, here is an example of synchronous sequential logic:

var synchronousFunc = function(){
console.log('In synchronousFunc');

I

synchronousFunc();

console.log('After call to synchronousFunc');

When the preceding code is run, the output is as follows:

In synchronousFunc
After call to synchronousFunc

Each function call occurs in the order of the call. With an asynchronous request, the order
is not guaranteed. A callback function is passed into a function to inform you when a
method is complete.

Tip

Callback functions have two main conventions. The first is the jQuery-based method. The
second is the Node.js method. The jQuery convention uses two callbacks as the last
arguments to a method. The first callback is for success, and the second is for an error. The

Node.js convention is to use a single callback as the last argument. The callback has two
parameters, the first being an error and the second being the successful result.

It is up to you to decide which convention to use based on what you’re developing for.
Don’t create your own new convention; use one of the preceding conventions so that other
developers can easily understand and read your code.

Here is an example of the output of an asynchronous method:

var asynchronousFunc = function(callback){
setTimeout(callback,0);

iy

var callback = function(){
console.log('In asynchronousFunc');

Iy
asynchronousFunc(callback);
console.log('After call to asynchronousFunc');

When the preceding code is run, the output is as follows:

After call to asynchronousFunc
In asynchronousFunc

The next sections will look at how test to asynchronous functions in Karma and Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating asynchronous calls in Karma

From the preceding asynchronous example, it should be clear that the way in which you
test needs to be modified to account for asynchronous behavior. Luckily, this is fairly
straightforward when testing with Karma.

Here are the steps to test the preceding asynchronous method using Karma:

1. Create the stub test using the following code:

describe('', function(){
beforekEach(function(){

3);
it('', function(){

1)
1),

2. Create a spy to test when the asynchronous method gets called:
var spy = jasmine.createSpy();

3. Call the asynchronous method in the beforeEach function:

beforeEach(function(){
var asynchronousFunc = function(callback){
setTimeout(callback,0);

¥
var callback = function(){
spy();
Iy
asynchronousFunc(callback);
1);

4. Add a callback to the parameters of the beforeEach function. By doing this, you have
made the function asynchronous:

beforeEach(function(done){
1);
5. Call the done method in the asynchronousFunc callback:

var callback = function(){

spy();
done();

};
6. Add the assertion function:

it('', function(){
expect(spy).toHaveBeenCalled();

3);

The key to the preceding code is that a callback was passed into the beforeEach function.
You can try to run this test without the callback and see whether the test will fail. A

www.it-ebooks.info

http://www.it-ebooks.info/

callback can be passed into the beforeEach, afterEach, describe, and it methods.

You will be leveraging this example through the rest of the chapter, so be sure that you
understand the main concepts. Now that you have tested in Karma, the next section will
show you what Protractor offers from an asynchronous standpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating asynchronous calls in Protractor

Protractor is different in the way it handles asynchronous actions. It has been optimized to
handle asynchronous actions, specifically, promises. As an example, when a test navigates
to a page, Protractor will wait until AngularJS has been loaded until it starts running the

tests. Julie Ralph, the main contributor and creator of Protractor, sums it up in this GitHub

issue (https://github.com/angular/protractor/issues/716):

Protractor patches Jasmine so that it is automatically asynchronous, and a test case
finishes when the WebDriver queue of commands is finished.

What this means is that you don’t have to think about how the calls are being rendered and
when the promises are complete. It even waits for $http requests to complete. Here is an
example of using Protractor:

describe('When I type in a search query', function(){
var searchResult = element.all(by.repeater("result in results"));
beforeEach(function(){
browser.get("/index.html");
$('input').sendKeys('any value');
element(by.buttonText('search')).searchButton.click();
1)
it('Should then add the result', function(){
expect(searchResult.count()).toBe(1);
1)
1)

The preceding code snippet is taken from Chapter 6, Tell the World. It highlights how
Protractor executes each one of the commands and takes care of the asynchronous
behaviors for you. In the next section, you will see how to make REST requests using
AngularJS.

www.it-ebooks.info

https://github.com/angular/protractor/issues/716
http://www.it-ebooks.info/

Making REST requests using AngularJS

Now that we have looked at what REST requests are and seen how to test asynchronously
in Karma and Protractor, it is time to see how to make a request in AngularJS. At the
lowest level, AngularJS provides the $http module. The module allows you to make
HTTP requests. By visiting the documentation

(https://docs.angularjs.org/api/ng/service/$http), we can see that it says the following:

The $http service is a core Angular service that facilitates communication with the remote
HTTP servers via the browser s XMLHttpRequest object.

As you have already seen how to make an XMLHt tpRequest, you should feel at ease that
you know what is going on under the hood. Here is a simple example of how to make an
$http.get request in AngularJS:

$http.get('/any/rest/endpoint')
.success(function(data, status, header,config){

1)

.error(function(data, status, header,config){

1)

The success/error function is called asynchronously once the request is complete.

Using $http is not the only way to make a request. If an API is completely REST-based,
AngularJS provides the $resource module. A resource gets defined and used as shown in
the following steps:

1. Define a resource for a specific end point:
var thing = $resource('/any/rest/endpoint/:id', {id: '@id'});
2. Make the HTTP GET request:
thing.get({id:1}, function(aThing){
1)
The preceding example defines a resource that retrieves aThing based on an ID. It then

retrieves that data with a GET request.

Both of the preceding examples show you how to create requests in AngularJS. You will
be looking at the $http method in the remaining examples, but it is good to understand the
different ways in which requests can be created in AngularJS.

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/%24http
http://www.it-ebooks.info/

Testing with AngularJS REST

Now that you have seen how to make requests in AngularJS and how to test
asynchronously, you will need to look at how to put it together. The following example
looks at a specific service and then discusses how to test using Karma.

Testing the product service
The service that needs to be tested is as follows:

angular.module('anyModule')
.service('productService', ['S$http', function($http){
return {
search: function(query){
return $http.get('/product/search');
}
iy
1)

The preceding productService parameter provides an object search that takes in a query
and returns a $http promise. The product service can be used in a controller as follows:

productService.search(query)
.success(function(data)({
$scope.result = data;

1)

.error(function(data){
$scope.error = data;

1)

angular.module('anyModule')
.controller('productController', ['$scope', 'productService’',
function($scope, productService){
$scope.search = function(query){
productService.search(query)
.success(function(data){
$scope.result = data;

1)

.error(function(data){
$scope.error = data;

1);
117
The preceding use of the productService shows you that because an $http promise is
returned, you can use the success and error functions to define what needs to occur after.
Now that there is a controller and a service, the next section will show you how to test the
components.

Testing $http with Karma

The Karma test will look to confirm the behavior of productService if the $http call is
successful and is one to look at if an error occurs. The main difference between this test
and others that have been looked at so far is that you are creating a request to something

www.it-ebooks.info

http://www.it-ebooks.info/

outside of AngularJS. This is a perfect case of use mocking. You can set up a fake object
around $http to test the success and error paths of the request. AngularJS provides a
mock object that can be used, which is Angular mock’s $httpBackend.

Here are the steps to create a positive test—when the request is successful:

1. Start with the test stub:

describe('', function(){
beforekEach(function(){

1)
it('', function(){

1),
1),

2. Initialize the module:

beforekEach(function(){
module('anyModule');

1),

3. Inject $httpBackend and productService in the beforeEach function:

var $httpBackend = null;
var productService = null;
beforeEach(function(){
module('anyModule');
inject(function(_$httpBackend_, _productService_){
$httpBackend = _$httpBackend_;
productService = _productService_;

1)
1)

4. Mock the GET successful request with an HTTP status code of 200 as follows:

it('', function(){
$httpBackend.when('GET', '/product/search').respond(200,'"');

1)

5. Set the expectation as follows:
it('', function(){

$httpBackend.expectGET('/product/search');
3);

6. Make the call to productService using the following code:

productService.search('any');

7. Flush the request using the following code:

$httpBackend.flush();

As you can see, $httpBackend allows expectations and mock responses to be controlled.
To tie up loose ends, here are the additional expectations for a failed request. Follow the
steps to add expectations for a failed request:

www.it-ebooks.info

http://www.it-ebooks.info/

1. Add the expectation stub to an asynchronous parameter:

it('', function(done){

3);
2. Mock the GET unsuccessful request with an HTTP status code of 500:
$httpBackend.when('GET', '/product/search').respond(500,"'");
3. Call productService.Search:
productService.search('any');

4. Confirm that the error function gets called:

productService.search('any').error(function(){
expect(true).toBe(true);
done();

3);
5. Flush the request:

$httpBackend.flush();

We have not added any other layers to the application and are able to confirm how it will
work during a successful and unsuccessful request. In the next section, you will see how to
test HT'TP requests in Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Mocking requests with Protractor

Now that unit tests for the backend are complete, you can move to the frontend and test an
HTTP request through Protractor. You might not always want to do this. Protractor is
supposed to test your site from an end-to-end perspective. This means that all layers of the
application will be touched. One benefit of the following example is that it will help in
cases where you haven’t set up the backend rest service. You can begin by laying out the
page and interactions before the backend is complete. This can help when you’re just
putting your site together.

In order to mock the backend HTTP layer for Protractor, we will use $httpBackend, which
is part of the ngMockE2E module and is used to mock the backend HTTP layer for
Protractor. The $httpBackend property used for Protractor is different from the one used
in the previous Karma test. To use end-to-end $httpBackend you will need to inject
ngMockE2E as a dependency into the application. For this reason, it is not a viable solution
to have in a production site.

Here are the steps that are to be mocked using $httpBackend in Protractor:

1. Add AngularJS and Angular mocks to the web page:

<script src="bower_components/angular/angular.js"></script>
<script src="bower_components/angular-mocks/angular-mocks.js'"></script>

2. Create a module and require ngMockE2E:

angular .module('anyModule', ['ngMockE2E'])

3. Add a run function that uses $httpBackend:

.run(['$httpBackend', function($httpBackend) {
4. Create the mock data:

.run(['$httpBackend', function($httpBackend) {
var products = [{id: 'idl',6 name:'productl'}, {id:
'id2',name: 'product2'}];

31)7
5. Set the mock data request:

.run(['$httpBackend', function($httpBackend) {

var products = [{id: 'idl',6 name:'productl'}, {id:
'id2',name: 'product2'}];
$httpBackend.whenGET('/product/search').respond(products);

31

Now the request to /product/search will respond with the products defined in the mock.
This means that the application will work without the need for a backend service and will
be able to be tested as an application with a backend service. A complete example using a
mocked backend will be shown in the walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying products with REST

All the core components of REST, asynchronous testing, and mocking HTTP requests
have been discussed. Now, the following walk-through will provide a full example that
will look at displaying products that are retrieved through an external service. The
example will ignore the creation of an external service and focus on the data it provides: a
list of products in a JSON format. The walk-through will take a bottom-up approach so
that the core data layer is worked out before adding the UI elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit testing product requests

The approach from the unit level is to create a service to manage the HTTP requests for
products. The controller will then be built up the same way.

Setting up the project

Before writing tests, the project needs to have a structure. Here is what the initial project
structure looks like:

¥ productData
P app
¥ bower_components
P angular
P angular-mocks
¥ spec
P ele
P unit

karma.conf.js

Karma configuration

Now that the project template has been set up, a couple of adjustments need to be made.
The Karma configuration needs to use a headless browser and set up the test files to the
correct location. Open up karma.conf.js and make the following changes:

1. Update the browsers section to PhantomJS for headless browser testing:

browsers: ['PhantomJS'],

2. Update the files section to include the unit test folders:

files: [
"bower_components/angular/angular.js’',
"bower_components/angular-mocks/angular-mocks.js',
'app/**/*-jS'/
'spec/unit/**/*.js'

1

Karma has been configured and the project template has been created. The next step is to
set up an API builder for the product data. This will allow for a consistent interface to be
used in a test where mocking data is required.

Using an API builder pattern

A builder is an object that is used to create another object; it will be used to create test
data. An API builder can reduce duplication and the time taken to create tests. It provides
a central way to handle methods and create data. If a builder is not used, then every test
written will have to have a separate distinct way of creating data. This is an especially bad

www.it-ebooks.info

http://www.it-ebooks.info/

design when the API being used changes!

The product data API is defined by a single route/products. The expected response is a list
of products. Here are the steps to create a builder for the product API:

1. Create a new file in the spec folder named productbataBuilder. js:

$ touch productDataBuilder.js

2. Create a new function named productDataBuilder:

module.exports = function productDataBuilder() {};

3. Return an object with methods to set IDs, names, and to actually build an object:

module.exports = function productDataBuilder() {
return {
withId: function (id) {
3

withName: function (name) {

+
build: function () {
}
+;
+;

4. Initialize a basic product:

module.exports = function productDataBuilder() {
return {
_mockProduct: { id: 1, name: 'productName' 1},
withId: function (id) {

3

withName: function (name) {
3

build: function () {

by

+;
+;

5. Have the setter commands update the mock product:

return {

withId: function (id) {
this._mockProduct.id = id;
return this;
3
withName: function (name) {
this._mockProduct.name = name;
return this;
3
Iy

6. Have the build method return the mock data:

return {
build: function () {

www.it-ebooks.info

http://www.it-ebooks.info/

return this._mockProduct;

}
iy

The builder allows you to use a fluent interface to create products. The simplest use is as
follows:

var productDataBuilder = require('../productDataBuilder');
var someProduct = productDataBuilder.build();

A more complicated use will be to set the ID and name to something such as the
following:

var productDataBuilder = require('../productDataBuilder');
var someProduct = productDataBuilder.withId(9999)
.withName('Product 9999');

The preceding productbDataBuilder object will be used in the Karma test.

www.it-ebooks.info

http://www.it-ebooks.info/

The product data service

It’s time to get to the actual test. The same TDD life cycle that has been used throughout
the book will be used; test first, make it run, and make it better. As the creation and testing
of a service that uses HTTP has already been discussed, this walk-through will be skipped.
For reference, the tests are in the code repository and the service is defined as follows:

angular.module('product')
.service('productService', ['$http', function($http){
return {
getAll : function(){
return $http.get('/products’')
3
iy
1)

With the service complete, the next step is to look at the controller and how to actually
make use of the HTTP data.

www.it-ebooks.info

http://www.it-ebooks.info/

The product data controller

The next component needed is a controller so that the Ul can use productService. The
controller needs to have one method to make the request for products. In the method, it
needs to set $result when the request is successful and $error when the request is
unsuccessful.

Assembling the product controller test

Here are the steps to assemble the product controller:

1.

Create a new test file for the product controller spec/productController.js:

$ touch spec/productController.js

Use the standard test stub:

describe('', function(){
beforekEach(function(){

1)
it(function(){

1)
1)

Create variables for scope and $httpBackend:

var scope = {};
var $httpBackend = null;

Initialize the product module:

beforekEach(function(){
module('product');

3);
Get the $controller and $httpBackend:

beforeEach(function(){
inject(function($controller, _$htttpBackend_){

1)
1)

Set $httpBackend to the injected variable:

inject(function($controller, _$httpBackend_){
$httpBackend = _$httpBackend_;

Initialize the controller scope:

inject(function($controller, _$httpBackend_){
$httpBackend = _$httpBackend_;
$controller('ProductController', {$scope:scope});

Getting products

www.it-ebooks.info

http://www.it-ebooks.info/

The object under test is the controller’s scope getAll method. Here are the steps to call
the method for a successful HTTP response:

1. For a successful HTTP response, use the builder to build a test product:

it('', function(){
var testProduct = productDataBuilder().build();
1);

2. Mock the HTTP request response to return testProduct:
$httpBackend.when('GET', '/products').respond (200, [testProduct]);
3. Call the object under test:

scope.getAll()

Now, the unsuccessful HTTP response requires an error response. Here are the steps for
the unsuccessful HTTP request:

1. Mock the HTTP request response to return testProduct:

it('', function(){
$httpBackend.when('GET', '/products').respond (200, [testProduct]);
1)

2. Call the object under test:

scope.getAll()

The HTTP response has been covered, and the next step will assert the expectation.

Asserting product data results

An assertion can be used to require that an HTTP request receives a response. The mocked
$httpBackend property can call the flush() method to execute the HTTP response
synchronously, so you don’t have to worry about asynchronous issues. Here are the steps
for the successful HTTP response expectation:

1. Flush the request:

$httpBackend.flush();

2. Expect the result variable on the scope object to have testProductData:

expect(scope.results[0]).toEqual(testProductbData);

Here are the assert steps for the unsuccessful HTTP response expectation:

1. Flush the HTTP request using the following code:

$httpBackend.flush()

2. Confirm that the scopes’ error value has been set:

www.it-ebooks.info

http://www.it-ebooks.info/

expect(scope.error).toEqual('error');

Now that the tests have been assembled, the next step is to make them run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the product data tests run

Here are the steps to get the controller test running:

1. Run Karma:

$ karma start

2. The first error is Error: [ng:areq] Argument 'ProductController' is not a
function, got undefined. To rectify this, perform the following steps:

1. This error means that ProductController doesn’t exist. Create a controller stub
in app/productController.js:

angular.module('product')
.controller('ProductController', ['$scope', function($scope){

1),
2. Rerun the test.

3. This next error is TypeError: 'undefined' is not a function (evaluating
'scope.getAll()"). To rectify this, perform the following steps:

1. This error means that there is no function called getAl1l in the controller. Add
the function now:

.controller('ProductController', ['$scope', function($scope){
$scope.getAll() = function(){

};
1)

2. Rerun the test.

4. The next error is Error: No pending request to flush!. To rectify this error,
perform the following steps:

1. This error occurs because the test is expecting an HTTP request to be flushed
but there is no request. Add productService to controller so that the request
will get made. Add productService as a dependency:

.controller('ProductController’,
['$scope', 'productService', function($scope, productService){

2. Add productService to the getAll function:

scope.getAll = function(){
productService.getAll();

};
3. Rerun the test.

5. The next error is Expected undefined to equal { id : 1, name :
'productName' }. To rectify this error, perform the following steps:

www.it-ebooks.info

http://www.it-ebooks.info/

1. This error occurs because scope.results has not been set when the product
service was successful. Add a successful callback to productService and set
the scope’s results variable:

productService.getAll()
.success(function(data){
$scope.results = data;

1),

6. Now we’re down to one failure, which is Expected undefined to equal. To rectify
this, perform the following step:

1. This error occurs because we haven’t handled the error condition of the HTTP

request. Add the error condition of productService so that it sets the scope’s
error:

productService.getAll()
.success(function(data){
$scope.results = data;

1)
.error(function(error){
$scope.error = error;

1)

7. Confirm that all the tests pass now.

The unit tests for the product controller have been completed using a mocked backend to

test both positive and negative scenarios. The next step can be skipped, as there were no
callouts during development.

The next section will look at how to test from an end-to-end perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing middle-to-end

Now that the unit level testing of the application is complete, the user facing tests can be
worked on. One of the benefits of Angular mocks is that it provides $httpBackend, which
can be used to mock data for end-to-end tests. As data is being mocked, it is really a
middle-to-end test. This is because only the Ul interactions are being tested, as the rest of
the behavior has been mocked. This will allow us to create scaffolding for the UI layer.
Once the development is complete, the scaffolding can be removed and a full end-to-end
test can be put in place.

Here are the initial setup steps to create the application UI using a mocked backend with
Protractor:

1.

Install Protractor:

$ npm install protractor

Update WebDriver:

$./node_modules/protractor/bin/webdriver-manager update

Copy the example’s Chrome-only configuration:

$ cp ./node_modules/protractor/example/chromeOnlyConf.js .

Open up the chromonlyConf. js and update the driver to point to the node_modules
directory:

chromeDriver: './node_modules/protractor/selenium/chromedriver’,

Update the base URL variable:

baseUrl: 'http://localhost:8080/',

Update the test directory:

specs: ['spec/e2e/**/*.js'],

Add ngMockE2e as a dependency to the product module in the app or product. js file:
angular.module('product', ['ngMockE2e'])

Set up the mock request:

.run(['$httpBackend', function($httpBackend) {
var testProduct = productDataBuilder().build();

var products = [testProduct];
$httpBackend.whenGET('/products').respond(products);

11);
Create the index.html page using an HTML stub:

<!DOCTYPE html>
<html>
<head>

www.it-ebooks.info

http://www.it-ebooks.info/

<title></title>
</head>
<body>
</body>
</html>

10. Add the AngularJS references:

<script src="bower_components/angular/angular.js"></script>
</body>

11. Add the product module, controller, and service:

<script src="app/product.js"></script>
<script src="app/productService.js"></script>
<script src="app/productController.js"></script>

12. For mocking purposes, add Angular mocks and the product data builder:

<script src="bower_components/angular-mocks/angular-mocks.js"></script>
<script src="spec/productDataBuilder.js"></script>

The initial’s index page and mock has been set up. The next step will walk through the
TDD life cycle and get the application rocking.

www.it-ebooks.info

http://www.it-ebooks.info/

Test first

The first step in the life cycle is to create the tests using the 3 A’s. The test confirms that
the product data will be visible on the page once a user pushes a button to get the product
data.

Assembling the product test

Here are the steps to assemble the Protractor test:

1. Create a new file for the test called spec/e2e/productScenario.js:

$ touch productScenario.js

2. Create the test stub:

describe('', function(){
beforekEach(function(){

3)7
it('', function(){

1)
1)

3. Browse the application:

beforeEach(function(){
browser.get('/index.html');

1);
4. Find the button that we will be selecting:

beforeEach(function(){
var productButton = element(by.buttonText('Get Products'));

1)

Now that the test has been assembled, we can hit the object under test.

Getting products

The action of this test is to select the product button. As we have already retrieved the
button in the Assemble section, we can now click on it:

beforeEach(function(){
var productButton = element(by.buttonText('Get Products'));
productButton.click();

3);
Finally, it is time to create the assertions and expectations.
Expecting product data results

The assertion for this test is to ensure that the product data is now displayed. Here are the
steps:

1. Find the results:

www.it-ebooks.info

http://www.it-ebooks.info/

var results = element.all(by.repeater('result in results'));

2. Assert that the count is greater than o:

expect(results.count()).toBeGreaterThan(0);

The test setup is complete. The next step is to make it run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the product data run

As has been done with the other Protractor tests, one process will be running the HTTP
page and the other will be running the protractor test:

1. Install http-server so that we can run the website:
$ npm install http-server
2. Start the website:
$./node_modules/http-server/bin/http-server .
3. In another command window, run the protractor tests:
$./node_modules/protractor/bin/protractor chromeOnlyConf.js

4. The first error is Error: Angular could not be found on the page
http://localhost:8080/index.html : angular never provided

resumeBootstrap. To rectify this, perform the following steps:

1. The preceding error is due to the fact that we haven’t referenced the application
module in the web page. Add the product module to the body of the application:

<body ng-app="'product'>
2. Rerun the tests.

5. The next error is NoSuchElementError: No element found using locator:
by.buttonText("Get Products"). To rectify this, perform the following step:

1. Add the button:

<button>Get Products</button>

6. The next error has hit the expectation and states Expected 0 to be greater than
0. To fix this, we need to first add productController to the page:

<div ng-controller='ProductController'>
<button>Get Products</button>
</div>

7. The next step is to associate the button-click with the ProductController classes
scope to get all products:

<button ng-click="getAll()'>Get Products</button>

8. The final step is to display all results:

<div ng-repeat="result in results">
{{result}}
</div>

The test now shows a successful result.

www.it-ebooks.info

http://www.it-ebooks.info/

The make it better step will be skipped as there is nothing immediate that needs to be
refactored. At this point, the application is tested and operated using the mocked data. You
should be able to see how powerful this technique can be as you’re building up an

application. The next section will look at removing the scaffolding and using an actual
backend.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing end-to-end

Remove the Angular mocks scaffolding and set up the test to actually connect to the real
server and setup.

The backend of Angular mocks allowed us to create the application without the need to
actually return data. Now that the application has been set up, we can remove the
scaffolding and create a real HTTP request for the data. Here are the steps:

1. Remove ngMockE2e and the mock response from the products module in
app/product.js:

angular.module('product',[]);
Remove Angular mocks and productDataBuilder from the index.html page

2. Rerun the Protractor test.
3. The error states the failed expectation.

Now that the mock HTTP response has been removed, we need to add an actual request.
Luckily for us, we don’t have to use any other tool or framework and can use the http-
server module that we have been using the whole time. In a real-world example, the
product route would live in a separate service, but this example will use a simpler
approach for brevity.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the product data

The http-server module, which is used to serve static content, can be extended to serve
static content as well. This allows us to set up a static file that mirrors a request route. In
this case, a single JSON file of products will be used. The products file will have an array
of product data. Here are the steps:

1. Create a new file named products in the root of the project:

$ touch products

2. Open the file and add the following content:

[
"id": 1,
"name": "productName"

3]

Now, the /products route is available and will return an array of products. Rerun the
Protractor test, and confirm that it is passing. With these simple tests, we have tested the
application end-to-end and successfully removed the mock scaffolding.

This concludes the walk-through of using TDD to create an AngularJS REST layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test questions

Q1. A callback function refers to a function that is called after an asynchronous function
completes.

1. True
2. False

Q2. An XMLHttpRequest cannot send or receive JSON.

1. True
2. False

Q3. REST stands for:

1. Representational State Transfer
2. Nothing
3. Repeatable Endpoint State Transfer

Q4. Asynchronous functions always complete in the order in which they were called.

1. True
2. False

Q5. There are two different implementations of $httpBackend: one for unit and one for
end-to-end testing.

1. True
2. False

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter explained the details behind REST requests, asynchronous testing, and the
mocking of Angular HTTP requests in Karma and Protractor. It has brought together many
of the techniques and tools used throughout the book. Specifically, it has showed us how
to apply the TDD life cycle (test first, make it run, and make it better) to incrementally
build your applications to a specification and how to use the 3A’s (Assemble, Act, and
Assert) to construct a test.

As you complete this book and go about applying the techniques in the real world,
remember that knowing what to test is just as important as knowing how to test. This book
has shown you how; it is up to you to practice and continue to improve your development
skills through TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A. Integrating Selenium Server
with Protractor

Throughout this book, we used Selenium ChromeDriver to test with Protractor. What this
meant was that in order to run a Protractor test, we simply had to have the website running
and then kick off Protractor. In Chapter 3, End-to-end Testing with Protractor,
ChromeDriver was installed and used to run the tests. From the perspective of the book
and TDD, this was acceptable. Our tests were small and contained and did not have a lot
of moving parts.

The problem with only using ChromeDriver is that we can’t test on other browsers. As
your application grows and you want to support more browsers, you need to think about
running a standalone Selenium Server. This section of the book provides a walk-through
of how to get a standalone Selenium Server running and integrated with Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Installation

The good thing about installation is that we have already done it before. Every time we
installed ChromeDriver, the first thing we did was install Selenium. Here are the standard

steps:
1. Install the Protractor npm module:

$ npm install protractor

2. Install Selenium WebDriver:

$./node_modules/protractor/bin/webdriver-manager update

That’s it. Selenium is now installed and is ready to be used. In the next section, we will see
how to update the Protractor configuration to use the Selenium standalone server.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor configuration

Luckily for us, we don’t have to remember all the basic configurations for Protractor.
Within npm_modules, there are examples that we can use. Here are the steps to copy the
Selenium standalone configuration:

1. Open up the example Protractor configuration file that is located in the following
directory:

./node_modules/protractor/example/conf.js

2. Copy the file to your local test folder:

$ cp ./node_modules/protractor/example/conf.js

The configuration should look very similar to the chromeonly configuration. Here is a
snippet of the important configuration items:

exports.config = {
seleniumAddress: 'http://localhost:4444/wd/hub’,

capabilities: {
'"browserName': 'chrome'

3
i
The first important item is the seleniumAddress object. The address is the hostname, port,
and location where the Selenium Server is running. The next important item is the
capabilities object. Browser-specific capabilities give you the ability to define which
browsers will be tested against. As we are not using the Chromeonly configuration, you
can now choose Internet Explorer (IE), Firefox, and so on. For more information on

multiple browser support and capabilities, refer to the Protractor documentation at
https://github.com/angular/protractor/blob/master/docs/browser-setup.md

In the next section, we will look at how to run Selenium.
Tip
The seleniumAddress object is meant to be configurable so that you can have a separate

instance in a completely different location than your development machine. Visit the
Selenium site for more information at http://www.seleniumhg.org/.

www.it-ebooks.info

https://github.com/angular/protractor/blob/master/docs/browser-setup.md
http://www.seleniumhq.org/
http://www.it-ebooks.info/

Running Selenium

Selenium is quite straightforward to start. Once run, it can just sit in the background while
the tests are running:

1. Start the Selenium standalone service:

$./node_modules/protractor/bin/webdriver-manager start

2. The console window will display several information messages. Ensure the following
messages are displayed:

3. You should ensure that the default port used, as can be seen in the RemoteWebDriver
message in the preceding messages, is the same as the one that is configured in the
Protractor configuration:

seleniumAddress: 'http://localhost:4444/wd/hub’',

www.it-ebooks.info

http://www.it-ebooks.info/

Let it run

Selenium is now running on the 4444 localhost port. In order to ensure that Protractor can
communicate with Selenium, let’s run a simple test to ensure everything is working. As
we have done throughout the book, we will follow the TDD steps even though this will be
an extremely short and simple test. As Protractor is installed, the only other prerequisite is
to install an HTTP server. Install http-server using the following command:

$ npm install http-server

Once it is installed, start the server:

$./node_modules/http-server/bin/http-server

www.it-ebooks.info

http://www.it-ebooks.info/

Test first

The test will check whether the title of the page is equal to seleniumTestTitle. Create a
new Protractor test file named scenario. js.

Assemble
To set up the test, we need to navigate the browser to the root of the web application:

beforekEach(function(){
browser.get("/");

1),

There is no Act section as we will simply be checking that the loaded index page has the
title we need.

Assert

The assert needs get the title and compare it with the expected value:

it('', function(){
expect(browser.getTitle()).toBe('seleniumTestTitle');

1)

www.it-ebooks.info

http://www.it-ebooks.info/

Make it run

Now that the test is prepared, we can start running the Protractor test through the
standalone Selenium Server. Here are the steps to run the Protractor test:

1.

Add the test file to the Protractor configuration:
specs: ['scenario.js'],
Create an empty HTML page that will be used to make the test run:

<IDOCTYPE html>

<html>

<head>
<title></title>

</head>

<body>

</body>
</html>

Add the index page to the Protractor configuration:

specs: ['scenario.js', 'index.html'],

Run the test:

$./node-modules/protractor/bin/protractor conf.js

The first error is Angular could not be found on the page
http://localhost:8080/index.html : retries looking for angular exceeded. To rectify
this, perform the following steps:

1. AngularJS has not been added to the page. Install angular through bower:

$ bower install angular

2. Add the AngularJS reference to the index.html page:

<script type="text/javascript"
src="bower_components/angular/angular.js"></script>

3. Rerun the test.

The next error is Angular could not be found on the page
http://localhost:8080/index.html : angular never provided resumeBootstrap. This
error means that AngularJS couldn’t load the main module of your application. To
rectify this, perform the following steps:

1. Add a simple module into the body tag:
<body ng-app="'test'>

2. Initialize the module in the last tag:

www.it-ebooks.info

http://www.it-ebooks.info/

<script type="text/javascript"

src="bower_components/angular/angular.js"></script>

<script type="text/javascript">
angular.module('test',[]);

</script>

3. Rerun the test.

7. The next error has hit the expectation: Expected ‘http://localhost:8080/index.html’
to be ‘seleniumTestTitle’. Here are the steps to rectify this error:

1. Set the title of the web page to the expectation:
<title>seleniumTestTitle</title>

2. Rerun the test.

8. The Protractor output now reports 1 test, 1 assertion, 0 failures. With the success of
the test, we have now successfully shown you how to use the Selenium standalone
server.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This appendix has shown you how to set up and use the Selenium standalone server. There
are many options and advantages of using the standalone server. The advantages are
geared more for advanced testing when you want to use a dedicated Selenium Server or a
PaaS (Platform as a Service) or if you want to test a functionality on different browsers
and as the volume of your Protractor tests grow. For more information, visit the Selenium

home page at http://www.seleniumhq.org/.

www.it-ebooks.info

http://www.seleniumhq.org/
http://www.it-ebooks.info/

Appendix B. Automating Karma Unit
Testing on Commit

Running tests locally is one thing, but how do you know whether they will work on
someone else’s computer. Setting up continuous testing and integration should be part of
every application you write. One of the best things is that the tools to set up are free, easy
to use, and best of all, they get to showcase your tests! The following section will explore
how to set up continuous integration using GitHub for source control and Travis for
continuous integration.

www.it-ebooks.info

http://www.it-ebooks.info/

GitHub

GitHub is a source control, collaboration, and all-around awesome tool. For open source
projects, it is free. Once you sign up, you can get started and create a new repository for
your project. GitHub provides a Git URL for every project; the URL can then be set up to
push changes like any other Git repository. One of the benefits of using GitHub is that it
automatically provides hooks into other applications and services. When setting up
continuous integration and testing through Travis CI, you will leverage the Travis CI
GitHub hook.

www.it-ebooks.info

http://www.it-ebooks.info/

Test setup

In order to run Karma properly, we will need to add the following development
dependencies:

e karma: The base Karma installation

e karma-jasmine: The test runner

e karma-phantomjs-launcher: The PhantomJS headless browser plugin we discussed
and set up in Chapter 5, Flip Flop

Install the following Karma dev dependencies:
$ npm install karma --save-dev

$ npm install karma-jasmine --save-dev
$ npm install karma-phantomjs-launcher --save-dev

www.it-ebooks.info

http://www.it-ebooks.info/

Test scripts

When using Travis CI, a script to run the tests needs to be defined. The best place to
define a script is in the package. json file. The package. json file is used in several ways
by node. js. Here are the steps to run the test:

1. The test script can then be run when you type the following command in the
command prompt:

$ npm test

2. Update the package. json scripts section as shown in the following code snippet:

"scripts": {
"start": "node app.js",
"test" : "karma start --single-run --browsers PhantomJS"

}

3. Confirm that the test script works:

$ npm test

PhantomJS allows tests to run on the Travis CI servers without the need for a UI. The
following is a sample output:

The application setup is now configured to run unit tests via the npm test command. This
will be used by Travis CI to run the tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting the hook

GitHub provides several hooks into other applications. A hook allows you to chain actions
when a commit occurs. A hook is an extremely useful feature from a continuous
integration standpoint because we can set up the code to be tested on every commit. Travis
CI has a GitHub hook that can be easily set up on any GitHub repository. The following is
a walk-through on how to create a Travis CI hook on your open source repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the hook

Here are the steps to create the hook:

1. Create a Travis CI account by going to the Travis CI page at https://travis-ci.org and
click on Sign in with GitHub. Confirm the questions it asks and continue.
2. Activate a GitHub Webhook to Travis CI. You can set up the Webhook in Travis CI

through your profile URL at https://travis-ci.org/profile
3. Turn the switch on. In the profile, you should see your repository.

o Here is a before view of Webhook (Switch off):

o Here is a view of the Webhook after it is enabled(Switch on):

§ npm test

= Karma start --s i gie-ru

Karma v 2.16 er star at http://localhost:9876/
Starting browser Pha
C ed on socket aCuNNhmOON1gwytBkmzx wit

"): Executed 3 of 3

www.it-ebooks.info

https://travis-ci.org
https://travis-ci.org/profile
http://www.it-ebooks.info/

Adding a Travis configuration file

Travis requires a configuration file to be at the root of your repository named
.travis.yml. The configuration file contains the source code language, language
versioning, metadata, and other information. The template configuration will look as
follows:

language: node_js
node_js:
_ "0.10"

Besides the basic configuration in the preceding code, additional setup is needed to run
Karma tests. The before_script configuration will be used to install Karma and Bower
prior to running any tests. Here is what the configuration needs to look like in order to
install Karma and Bower before any tests run:

language: node_js
node_js:
- "0.10"
before_script:
- npm install -g karma-cli
- npm install -g bower
- bower install

Now the tests are ready to be run. Add the preceding contents to a new file named
travis.yml. By default, the Node. js project will execute the npm test command in
Travis. This is why you don’t need to specify the actual command to test your application.

Note

Please note that Travis CI is case sensitive.

The following screenshot is an example of what the preceding code looks like:

www.it-ebooks.info

http://www.it-ebooks.info/

1/ Ehe-mean-way.git tichaplin/the-mean-way

SK With 14 2343259

If you have any issues, go to the Travis CI Getting started guide at http://docs.travis-
ci.com/user/getting-started/.

www.it-ebooks.info

http://docs.travis-ci.com/user/getting-started/
http://www.it-ebooks.info/

References

The following are some references that may help you with the concepts:

e This form of user specification is written using the Gerkin syntax. The Gerkin syntax
allows you to write the specifications in a well-formatted manner. See the following

link for more details: http://en.wikipedia.org/wiki/Behavior-driven_development.
e The JavaScript Jabber homepage can be found at http://javascriptjabber.com/106-jsj-

protractor-with-julie-ralph/
e The GitHub page for http-server can be found at https://github.com/nodeapps/http-
server

www.it-ebooks.info

http://en.wikipedia.org/wiki/Behavior-driven_development
http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
https://github.com/nodeapps/http-server
http://www.it-ebooks.info/

Appendix C. Answers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1, Introduction to Test-driven
Development

LRl 8RRl
= |

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2, The Karma Way

S T S

Rlels]e]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3, End-to-end Testing with
Protractor

]
]
]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4, The First Step

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5, Flip Flop

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6, Telling the World

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7, Give Me Some Data

Lo 8RRl
=

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

e 3A’s
o reference link / Testing techniques
e 3A’s

o assemble / Assemble, Act, and Assert (3 A’s)
o act/ Assemble, Act, and Assert (3 A’s), Assemble, Act, Assert (3 A’s)
o assert / Assemble, Act, and Assert (3 A’s), Assemble, Act, Assert (3 A’s)
o assemble / Assemble, Act, Assert (3 A’s)
e 3A’s, application to enter comments
o assemble / Assemble
o act/ Act
o assert / Assert
e 3A’s, comment adding specification
o assemble / Assemble
o act/ Act
o assert / Assert
e 3A’s, comment liking specification
o assemble / Assemble
o act/ Act
o assert / Assert
e AngularJS
o installing / Installing AngularJS
e AngularJS components
o attributes / Services
o directives / Services
o controllers / Services
o services / Services
e AngularJS REST, testing with
o about / Testing with AngularJS REST
o product service, testing / Testing the product service
o S$http, testing with Karma / Testing $http with Karma
e AngularJS routes
o about / Walk-through of Angular routes
o setting up / Setting up AngularJS routes
o directions, defining / Defining directions
o flip flop test, assembling / Assembling the flip flop test
e AngularJS services
o about / Services
e Angular Mocks

o installing / Installing Angular mocks
o URL / Installing Angular mocks

www.it-ebooks.info

http://www.it-ebooks.info/

e application to enter comments

o specification, preparing / Preparing the application’s specification
setting up / Setting up the project

directory, setting up / Setting up the directory

Protractor, installing / Setting up Protractor

Protractor, setting up / Setting up Protractor

Karma, setting up / Setting up Karma

http-server setup / Setting up http-server
o Karma configuration / Configuring Karma

e application to enter comments, TDD life cycle
o about / Bring on the comments
test first / Test first
3A’s / Test first
test, running / Make it run
module, adding / Adding the module
input, adding / Adding the input
controller / Controller
test, passing / Make it pass
o test, improving / Make it better
e asynchronous calls

o testing / Testing asynchronous calls

o creating, in Karma / Creating asynchronous calls in Karma

o creating, in Protractor / Creating asynchronous calls in Protractor
e async magic components, Protractor

o about / Async magic

o page, loading before test execution / Loading a page before test execution
o assertion on elements / Assertion on elements that get loaded in promises

O O O O O O

O O O O O o o

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach parameter
o about / Test first, Test first
bottom-up approach

o about / Top-down or bottom-up approach

o using / Using a bottom-up approach
Bower

o about / Bower
o installing / Bower installation
broadcast

o testing / Testing broadcast, Testing broadcast
builder object

o about / Building with a builder
builder pattern

o about / Building with a builder

www.it-ebooks.info

http://www.it-ebooks.info/

$controller variable
o about / Assemble, Act, and Assert (3 A’s)
Chrome

o about / Installation prerequisites

o URL / Installation prerequisites
comment liking specification

o about / Onwards and upwards

testing, with Protractor test template / Test first
3A’s / Test first

test, running / Make it run

unit tests, fixing / Fixing the unit tests
test, improving / Make it better

o test, coupling / Coupling of the test
controller

o testing / Testing a controller
o simple controller test setup / A simple controller test setup
o scope, initializing / Initializing the scope

curl tool

o about / REST — the language of the Web

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

describe parameter
o about / Test first, Test first
Describe property, Karma test / Testing with Karma
directions, AngularJS routes
o ngRoute, configuring / Configuring ngRoute
o route controllers, defining / Defining the route controllers
o route views, defining / Defining the route views
documentation, TDD
o about / Fundamentals of TDD
Document Object Model (DOM) / TDD with Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

e emit
o about / Emitting

o testing / Testing emit
¢ end-to-end testing

o about / Getting down to business, Testing end-to-end
o specification, reviewing / Specification
o development to-do list / The development to-do list
o TDD process / Test first
o product data, obtaining / Getting the product data
e end-to-end testing, product cart
o end-to-end test, assembling / Assembling the cart’s end-to-end test
o save to cart action, invoking / Invoking a save to cart action
o saved products, confirming / Confirming products have been saved
o end-to-end test, passing / Making the cart’s end-to-end test pass
e end-to-end testing, recently viewed items
o about / End-to-end testing
o test first / Test first
o recently viewed end-to-end test, assembling / Assembling the recently viewed
end-to-end test
o search result, selecting / Selecting a search result
o recently viewed items, confirming / Confirming recently viewed items
o recentlyViewedlItems test, passing / Making the recentlyViewedItems test pass
o recentlyViewedlItems test, improving / Making recently viewed items better
¢ end-to-end tests, Protractor
o test web server, installing / Installing the test web server
e events, in search application
o implementing / Harnessing the power of events
o plan/ The plan
o rebranding / Rebranding
o recently viewed items, viewing / Seeing recently viewed items
o product cart, creating / Creating a product cart
e Expect property, Karma test / Testing with Karma

www.it-ebooks.info

http://www.it-ebooks.info/

F

e flip flop test, AngularJS routes

o views flip, creating / Making the views flip
o flip, asserting / Asserting a flip
running / Making flip flop run

o improving / Making flip flop better
e Function Under Test / Testing techniques

e fundamentals, search application
o Protractor locators / Protractor locators

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

G

e GitHub
o about / GitHub

www.it-ebooks.info

http://www.it-ebooks.info/

$httpBackend property / Testing $http with Karma
headless browser testing, for Karma

e}

e}

e}

setting up / Setting up headless browser testing for Karma

preconfiguration / Preconfiguration
configuration / Configuration

http-server module / Getting the product data

e}

about / Getting the product data

HTTP methods

e}

O O O o

about / REST — the language of the Web
GET / REST — the language of the Web
POST / REST — the language of the Web
PUT / REST — the language of the Web
DELETE / REST — the language of the Web

www.it-ebooks.info

http://www.it-ebooks.info/

inject variable
o about / Assemble, Act, and Assert (3 A’s)
installation
o Karma / Installing Karma
o Protractor / Protractor installation
it parameter
o about / Test first, Test first
It property, Karma test / Testing with Karma

www.it-ebooks.info

http://www.it-ebooks.info/

Jasmine
o about / Jasmine
o pros/ Jasmine
o cons/ Jasmine
Jasmine spy
o used, for creating test double / Testing doubles with Jasmine spies
JavaScript testing frameworks
about / JavaScript testing frameworks
Jasmine / Jasmine
Selenium / Selenium
Mocha / Mocha
JavaScript testing tools
o about / JavaScript testing tools
o Karma / Karma
o Protractor / Protractor

(e]

(e]

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

K

e Karma
o about / Karma
pros / Karma
cons / Karma
birth / Birth of Karma
features / The Karma difference

combining, with AngularJS / Importance of combining Karma with AngularJS
installing / Installing Karma

URL / Installing Karma

prerequisites, for installation / Installation prerequisites

configuring / Configuring Karma

configuration, customizing / Customizing Karma’s configuration

installation, confirming / Confirming Karma’s installation and configuration,
Confirming the Karma installation

configuration, confirming / Confirming Karma’s installation and configuration
o common installation/configuration issues / Common installation/configuration

issues

o testing, with / Testing with Karma
o initializing / Initializing Karma
e Karma, using with AngularJS

o about / Using Karma with AngularJS
AngularJS, obtaining / Getting AngularJS

testing, with / Testing with AngularJS and Karma
development to-do list / A development to-do list
list of items, testing / Testing a list of items
TDD process / Testing a list of items
o function, adding to controller / Adding a function to the controller
karma.conf file / Initializing Karma
Karma configuration
o about / Karma configuration
o file watching / File watching
Karma configuration, application to enter comments
o testing / Test first
3A’s / Test first
test, running / Make it run
test, improving / Make it better
test chain, backing up / Back up the test chain
o input, binding / Bind the input
Karma dev dependencies
o karma / Test setup
o karma-jasmine / Test setup
o karma-phantomjs-launcher / Test setup

O 0O 0O O 0O 0O o o o o o

(e]

O O O O O

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

o installing / Test setup
e Karma unit testing
test setup / Test setup
test scripts / Test scripts
hook, setting / Setting the hook
hook, creating / Creating the hook
Travis configuration file, adding / Adding a Travis configuration file

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

M

® messages

o publishing / Publishing and subscribing messages
o subscribing / Publishing and subscribing messages
¢ middle-to-end testing
o about / Testing middle-to-end
test first / Test first
product test, assembling / Assembling the product test
products, obtaining / Getting products

product data results, expecting / Expecting product data results

o product data, running / Making the product data run
e Mocha

o about / Mocha
o pros / Mocha
o cons/ Mocha

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

N

e Node.js

o URL / Installation prerequisites, Installation prerequisites

o about / Installation prerequisites
e Node Package Manager (npm) modules / Mocha

www.it-ebooks.info

http://www.it-ebooks.info/

PhantomJS

o URL / Setting up headless browser testing for Karma
PhantomJS browser plugin

o URL / Preconfiguration
prerequisites, Protractor installation
o Node.js / Installation prerequisites

o Chrome / Installation prerequisites
o Selenium WebDriver for Chrome / Installation prerequisites

product cart
o creating / Creating a product cart
publisher test first / Publisher test first
searchDetailController, assembling / Assembling searchDetailController

product saving, invoking / Invoking the saving of a product
save event, confirming / Confirming the save event

saveProduct test, passing / Making the saveProduct test pass
subscriber unit test / Test for the subscriber first

test, assembling / Assembling the product cart test
saved cart event, invoking / Invoking a saved cart event
saved cart, confirming / Confirming the saved cart
cart controller test, running / Making the cart controller test run
o end-to-end testing / End-to-end testing
product data controller
about / The product data controller
o product controller test, assembling / Assembling the product controller test
o products, obtaining / Getting products
o product data results, asserting / Asserting product data results
product data service
o about / The product data service
product requests, unit testing
o about / Unit testing product requests
o project, setting up / Setting up the project
o Karma configuration / Karma configuration
API builder pattern, using / Using an API builder pattern
products, displaying with REST
about / Displaying products with REST
o product requests, unit testing / Unit testing product requests
o product data service / The product data service
o product data controller / The product data controller
o product data tests, running / Making the product data tests run
Protractor
o about / Protractor, An overview of Protractor
o pros / Protractor

O 0O 0O O O O o o o o

(e]

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

cons / Protractor

overview / An overview of Protractor

origins / Origins of Protractor

birth / The birth of Protractor

features / Life without Protractor

URL / Common installation/configuration issues
real test / Hello Protractor

TDD, using / TDD end-to-end

pre-setup / The pre-setup

setup / The setup

end-to-end tests / Test first
configuring / Configuring Protractor

gaps, cleaning up / Cleaning up the gaps
async magic components / Async magic

o TDD, implementing with / TDD with Protractor
e Protractor installation

o about / Protractor installation
reference link, for guide / Protractor installation

prerequisites / Installation prerequisites

performing / Installing Protractor
WebDriver, installing for Chrome / Installing WebDriver for Chrome

configuration, customizing / Customizing configuration

confirming / Confirming installation and configuration
configuration, confirming / Confirming installation and configuration

o common issues / Common installation/configuration issues
e Protractor locators

o about / Protractor locators
CSS locators / CSS locators
button text locator / Button and link locators
link text locator / Button and link locators
Angular locators / Angular locators
o URL location references / URL location references
e publishing and subscribing
o messages / Publishing and subscribing messages
issues / Publishing and subscribing — the good and bad
scenarios / The good
communicating, through events / Communicating through events

coupling, reducing / Reducing coupling

O 0O 0O O 0O 0O o o o o o o o o

O O O O O o o

O O O o

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

recently viewed items, viewing

e}

e}

e}

about / Seeing recently viewed items
test first / Test first

end-to-end testing / End-to-end testing

recently viewed test

O O O O O O

writing / Test first
SearchController, assembling / Assembling SearchController

product, selecting / Selecting a product

events, to be published / Expecting events to be published
search controller run, creating / Making the search controller run

unit test / Recently viewed unit test

recently viewed unit test

O O O O O

e}

about / Recently viewed unit test

writing / Test first

RecentlyViewedController, assembling / Assembling RecentlyViewedController
recently viewed item, invoking / Invoking a recently viewed item

Recently ViewedController, confirming / Confirming RecentlyViewedController
RecentlyViewedController, running / Making Recently ViewedController run

refactoring, TDD

e}

about / Fundamentals of TDD, Refactoring

REST

e}

e}

about / REST — the language of the Web
getting started process / Getting started with REST

REST requests

e}

e}

e}

creating, AngularJS used / Making REST requests using AngularJS
testing, with AngularJS REST / Testing with AngularJS REST
mocking, with Protractor / Mocking requests with Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

e SaaS (Software as a Service) / Life without Protractor
e Sauce Labs
o URL / Life without Protractor
e Scenario Runner
o about / End of life
e scope variable
o about / Assemble, Act, and Assert (3 A’s)
e search application
o fundamentals / Fundamentals

o creating / Creating a new project
o headless browser testing, setting up for Karma / Setting up headless browser

testing for Karma
e search application, TDD way
o about / Searching the TDD way, The search application
o approach, deciding on / Deciding on the approach
o search query / Walk-through of search query
o search query test / The search query test

o search query HTML page / The search query HTML page
e search results, search application

o about / Show me some results!
search result routes, creating / Creating the search result routes

testing / Testing the search results
search result test, assembling / Assembling the search result test

selecting / Selecting a search result
confirming / Confirming a search result
search result test, running / Making the search result test run
testing, for location / Creating a location-aware test
improving / Making the search result better
route ID, confirming / Confirming the route ID
route ID unit test, setting up / Setting up the route ID unit test
route ID unit test, confirming / Confirming the ID
o route parameters test, running / Making the route parameter’s test run
e Selenium
o URL / Selenium
about / Selenium
pros / Selenium
cons / Selenium
installing / Installation
Protractor configuration / Protractor configuration
running / Running Selenium, Let it run
o test first / Test first
e Selenium WebDriver, for Chrome

O 0O 0O O 0O 0O o o o o o

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

o about / Installation prerequisites
o installing / Installing WebDriver for Chrome
e success, measuring in TDD

o steps, breaking down / Breaking down the steps
o test first methodology / Measure twice cut once

www.it-ebooks.info

http://www.it-ebooks.info/

TDD

about / An overview of TDD, TDD end-to-end
fundamentals / Fundamentals of TDD

benefits / Fundamentals of TDD

success, measuring / Measuring success
testing techniques / Testing techniques
applying / TDD end-to-end

TDD life cycle

about / Diving in

test, setting up / Setting up the test
development to-do list, creating / Creating a development to-do list
test first / Test first

test, running / Making it run

test, improving / Making it better
TDD process, end-to-end testing

o test first / Test first
o 3A’s / Assemble, Act, Assert (3 A’s)
o test, running / Make it run
o test, improving / Make it better
TDD process, for adding function to controller

about / Adding a function to the controller
test first / Test first

3A’s / Assemble, Act, and Assert (3 A’s)
test, running / Make it run
test, improving / Make it better
TDD process, for testing list of items
o test first / Test first
o 3A’s / Assemble, Act, and Assert (3 A’s)
o test, running / Make it run
o test, improving / Make it better
test, Selenium
o assemble / Assemble
o assert / Assert
o running / Make it run
test double

o about / Testing doubles with Jasmine spies
o using / Testing doubles with Jasmine spies
o creating, Jasmine spy used / Testing doubles with Jasmine spies
o return value, stubbing / Stubbing a return value
o arguments, testing / Testing arguments
testing framework
o about / Testing with a framework

O O O O O O

O O O O O O

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

testing techniques, TDD

o about / Testing techniques
testing framework / Testing with a framework
test double / Testing doubles with Jasmine spies

test double, using Jasmine spy / Testing doubles with Jasmine spies
refactoring / Refactoring

o building, with builder / Building with a builder
ToBeTruthy property, Karma test / Testing with Karma
top-down approach

o about / Top-down or bottom-up approach
Travis CI

o configuration file / Adding a Travis configuration file

o URL / Adding a Travis configuration file
Travis CI hook

o creating / Creating the hook

O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

	AngularJS Test-driven Development
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to Test-driven Development
	An overview of TDD
	Fundamentals of TDD
	Measuring success
	Breaking down the steps
	Measure twice cut once
	Diving in
	Setting up the test
	Creating a development to-do list
	Test first
	Making it run
	Making it better
	Testing techniques
	Testing with a framework
	Testing doubles with Jasmine spies
	Stubbing a return value
	Testing arguments
	Refactoring
	Building with a builder
	Self-test questions
	Summary
	2. The Karma Way
	JavaScript testing tools
	Karma
	Protractor
	JavaScript testing frameworks
	Jasmine
	Selenium
	Mocha
	Birth of Karma
	The Karma difference
	Importance of combining Karma with AngularJS
	Installing Karma
	Installation prerequisites
	Configuring Karma
	Customizing Karma's configuration
	Confirming Karma's installation and configuration
	Common installation/configuration issues
	Testing with Karma
	Confirming the Karma installation
	Using Karma with AngularJS
	Getting AngularJS
	Bower
	Bower installation
	Installing AngularJS
	Installing Angular mocks
	Initializing Karma
	Testing with AngularJS and Karma
	A development to-do list
	Testing a list of items
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better
	Adding a function to the controller
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better
	Self-test questions
	Summary
	3. End-to-end Testing with Protractor
	An overview of Protractor
	Origins of Protractor
	End of life
	The birth of Protractor
	Life without Protractor
	Protractor installation
	Installation prerequisites
	Installing Protractor
	Installing WebDriver for Chrome
	Customizing configuration
	Confirming installation and configuration
	Common installation/configuration issues
	Hello Protractor
	TDD end-to-end
	The pre-setup
	The setup
	Test first
	Installing the test web server
	Configuring Protractor
	Getting down to business
	Specification
	The development to-do list
	Test first
	Assemble, Act, Assert (3 A's)
	Running the test
	Make it run
	Make it better
	Cleaning up the gaps
	Async magic
	Loading a page before test execution
	Assertion on elements that get loaded in promises
	TDD with Protractor
	Self-test questions
	Summary
	4. The First Step
	Preparing the application's specification
	Setting up the project
	Setting up the directory
	Setting up Protractor
	Setting up Karma
	Setting up http-server
	Top-down or bottom-up approach
	Testing a controller
	A simple controller test setup
	Initializing the scope
	Bring on the comments
	Test first
	Assemble
	Act
	Assert
	Make it run
	Adding the module
	Adding the input
	Controller
	Make it pass
	Make it better
	Implementing the Submit button
	Configuring Karma
	Test first
	Assemble
	Act
	Assert
	Make it run
	Make it better
	Back up the test chain
	Bind the input
	Onwards and upwards
	Test first
	Assemble
	Act
	Assert
	Make it run
	Fixing the unit tests
	Make it better
	Coupling of the test
	Self-test questions
	Summary
	5. Flip Flop
	Fundamentals
	Protractor locators
	CSS locators
	Button and link locators
	Angular locators
	URL location references
	Creating a new project
	Setting up headless browser testing for Karma
	Preconfiguration
	Configuration
	Walk-through of Angular routes
	Setting up AngularJS routes
	Defining directions
	Configuring ngRoute
	Defining the route controllers
	Defining the route views
	Assembling the flip flop test
	Making the views flip
	Asserting a flip
	Making flip flop run
	Making flip flop better
	Searching the TDD way
	Deciding on the approach
	Walk-through of search query
	The search query test
	The search query HTML page
	The search application
	Show me some results!
	Creating the search result routes
	Testing the search results
	Assembling the search result test
	Selecting a search result
	Confirming a search result
	Making the search result test run
	Creating a location-aware test
	Making the search result better
	Confirming the route ID
	Setting up the route ID unit test
	Confirming the ID
	Making the route parameter's test run
	Self-test questions
	Summary
	6. Telling the World
	Before the plunge
	Karma configuration
	File watching
	Using a bottom-up approach
	Services
	Publishing and subscribing messages
	Emitting
	Testing emit
	Testing broadcast
	Testing broadcast
	Publishing and subscribing – the good and bad
	The good
	Communicating through events
	Reducing coupling
	Harnessing the power of events
	The plan
	Rebranding
	Seeing recently viewed items
	Test first
	Assembling SearchController
	Selecting a product
	Expecting events to be published
	Making the search controller run
	Recently viewed unit test
	Test first
	Assembling RecentlyViewedController
	Invoking a recently viewed item
	Confirming RecentlyViewedController
	Making RecentlyViewedController run
	End-to-end testing
	Test first
	Assembling the recently viewed end-to-end test
	Selecting a search result
	Confirming recently viewed items
	Making the recentlyViewedItems test pass
	Making recently viewed items better
	Creating a product cart
	Publisher test first
	Assembling searchDetailController
	Invoking the saving of a product
	Confirming the save event
	Making the saveProduct test pass
	Test for the subscriber first
	Assembling the product cart test
	Invoking a saved cart event
	Confirming the saved cart
	Making the cart controller test run
	End-to-end testing
	Assembling the cart's end-to-end test
	Invoking a save to cart action
	Confirming products have been saved
	Making the cart's end-to-end test pass
	Self-test questions
	Summary
	7. Give Me Some Data
	REST – the language of the Web
	Getting started with REST
	Testing asynchronous calls
	Creating asynchronous calls in Karma
	Creating asynchronous calls in Protractor
	Making REST requests using AngularJS
	Testing with AngularJS REST
	Testing the product service
	Testing $http with Karma
	Mocking requests with Protractor
	Displaying products with REST
	Unit testing product requests
	Setting up the project
	Karma configuration
	Using an API builder pattern
	The product data service
	The product data controller
	Assembling the product controller test
	Getting products
	Asserting product data results
	Making the product data tests run
	Testing middle-to-end
	Test first
	Assembling the product test
	Getting products
	Expecting product data results
	Making the product data run
	Testing end-to-end
	Getting the product data
	Self-test questions
	Summary
	A. Integrating Selenium Server with Protractor
	Installation
	Protractor configuration
	Running Selenium
	Let it run
	Test first
	Assemble
	Assert
	Make it run
	Summary
	B. Automating Karma Unit Testing on Commit
	GitHub
	Test setup
	Test scripts
	Setting the hook
	Creating the hook
	Adding a Travis configuration file
	References
	C. Answers
	Chapter 1, Introduction to Test-driven Development
	Chapter 2, The Karma Way
	Chapter 3, End-to-end Testing with Protractor
	Chapter 4, The First Step
	Chapter 5, Flip Flop
	Chapter 6, Telling the World
	Chapter 7, Give Me Some Data
	Index

