
www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS	Test-driven	Development

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents

AngularJS	Test-driven	Development

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introduction	to	Test-driven	Development

An	overview	of	TDD

Fundamentals	of	TDD

Measuring	success

Breaking	down	the	steps

Measure	twice	cut	once

Diving	in

Setting	up	the	test

Creating	a	development	to-do	list

Test	first

Making	it	run

www.it-ebooks.info

http://www.it-ebooks.info/

Making	it	better

Testing	techniques

Testing	with	a	framework

Testing	doubles	with	Jasmine	spies

Stubbing	a	return	value

Testing	arguments

Refactoring

Building	with	a	builder

Self-test	questions

Summary

2.	The	Karma	Way

JavaScript	testing	tools

Karma

Protractor

JavaScript	testing	frameworks

Jasmine

Selenium

Mocha

Birth	of	Karma

The	Karma	difference

Importance	of	combining	Karma	with	AngularJS

Installing	Karma

Installation	prerequisites

Configuring	Karma

Customizing	Karma’s	configuration

Confirming	Karma’s	installation	and	configuration

Common	installation/configuration	issues

Testing	with	Karma

Confirming	the	Karma	installation

Using	Karma	with	AngularJS

Getting	AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

Bower

Bower	installation

Installing	AngularJS

Installing	Angular	mocks

Initializing	Karma

Testing	with	AngularJS	and	Karma

A	development	to-do	list

Testing	a	list	of	items

Test	first

Assemble,	Act,	and	Assert	(3	A’s)

Make	it	run

Make	it	better

Adding	a	function	to	the	controller

Test	first

Assemble,	Act,	and	Assert	(3	A’s)

Make	it	run

Make	it	better

Self-test	questions

Summary

3.	End-to-end	Testing	with	Protractor

An	overview	of	Protractor

Origins	of	Protractor

End	of	life

The	birth	of	Protractor

Life	without	Protractor

Protractor	installation

Installation	prerequisites

Installing	Protractor

Installing	WebDriver	for	Chrome

Customizing	configuration

Confirming	installation	and	configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Common	installation/configuration	issues

Hello	Protractor

TDD	end-to-end

The	pre-setup

The	setup

Test	first

Installing	the	test	web	server

Configuring	Protractor

Getting	down	to	business

Specification

The	development	to-do	list

Test	first

Assemble,	Act,	Assert	(3	A’s)

Running	the	test

Make	it	run

Make	it	better

Cleaning	up	the	gaps

Async	magic

Loading	a	page	before	test	execution

Assertion	on	elements	that	get	loaded	in	promises

TDD	with	Protractor

Self-test	questions

Summary

4.	The	First	Step

Preparing	the	application’s	specification

Setting	up	the	project

Setting	up	the	directory

Setting	up	Protractor

Setting	up	Karma

Setting	up	http-server

Top-down	or	bottom-up	approach

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	a	controller

A	simple	controller	test	setup

Initializing	the	scope

Bring	on	the	comments

Test	first

Assemble

Act

Assert

Make	it	run

Adding	the	module

Adding	the	input

Controller

Make	it	pass

Make	it	better

Implementing	the	Submit	button

Configuring	Karma

Test	first

Assemble

Act

Assert

Make	it	run

Make	it	better

Back	up	the	test	chain

Bind	the	input

Onwards	and	upwards

Test	first

Assemble

Act

Assert

Make	it	run

Fixing	the	unit	tests

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	better

Coupling	of	the	test

Self-test	questions

Summary

5.	Flip	Flop

Fundamentals

Protractor	locators

CSS	locators

Button	and	link	locators

Angular	locators

URL	location	references

Creating	a	new	project

Setting	up	headless	browser	testing	for	Karma

Preconfiguration

Configuration

Walk-through	of	Angular	routes

Setting	up	AngularJS	routes

Defining	directions

Configuring	ngRoute

Defining	the	route	controllers

Defining	the	route	views

Assembling	the	flip	flop	test

Making	the	views	flip

Asserting	a	flip

Making	flip	flop	run

Making	flip	flop	better

Searching	the	TDD	way

Deciding	on	the	approach

Walk-through	of	search	query

The	search	query	test

The	search	query	HTML	page

www.it-ebooks.info

http://www.it-ebooks.info/

The	search	application

Show	me	some	results!

Creating	the	search	result	routes

Testing	the	search	results

Assembling	the	search	result	test

Selecting	a	search	result

Confirming	a	search	result

Making	the	search	result	test	run

Creating	a	location-aware	test

Making	the	search	result	better

Confirming	the	route	ID

Setting	up	the	route	ID	unit	test

Confirming	the	ID

Making	the	route	parameter’s	test	run

Self-test	questions

Summary

6.	Telling	the	World

Before	the	plunge

Karma	configuration

File	watching

Using	a	bottom-up	approach

Services

Publishing	and	subscribing	messages

Emitting

Testing	emit

Testing	broadcast

Testing	broadcast

Publishing	and	subscribing	–	the	good	and	bad

The	good

Communicating	through	events

Reducing	coupling

www.it-ebooks.info

http://www.it-ebooks.info/

Harnessing	the	power	of	events

The	plan

Rebranding

Seeing	recently	viewed	items

Test	first

Assembling	SearchController

Selecting	a	product

Expecting	events	to	be	published

Making	the	search	controller	run

Recently	viewed	unit	test

Test	first

Assembling	RecentlyViewedController

Invoking	a	recently	viewed	item

Confirming	RecentlyViewedController

Making	RecentlyViewedController	run

End-to-end	testing

Test	first

Assembling	the	recently	viewed	end-to-end	test

Selecting	a	search	result

Confirming	recently	viewed	items

Making	the	recentlyViewedItems	test	pass

Making	recently	viewed	items	better

Creating	a	product	cart

Publisher	test	first

Assembling	searchDetailController

Invoking	the	saving	of	a	product

Confirming	the	save	event

Making	the	saveProduct	test	pass

Test	for	the	subscriber	first

Assembling	the	product	cart	test

Invoking	a	saved	cart	event

www.it-ebooks.info

http://www.it-ebooks.info/

Confirming	the	saved	cart

Making	the	cart	controller	test	run

End-to-end	testing

Assembling	the	cart’s	end-to-end	test

Invoking	a	save	to	cart	action

Confirming	products	have	been	saved

Making	the	cart’s	end-to-end	test	pass

Self-test	questions

Summary

7.	Give	Me	Some	Data

REST	–	the	language	of	the	Web

Getting	started	with	REST

Testing	asynchronous	calls

Creating	asynchronous	calls	in	Karma

Creating	asynchronous	calls	in	Protractor

Making	REST	requests	using	AngularJS

Testing	with	AngularJS	REST

Testing	the	product	service

Testing	$http	with	Karma

Mocking	requests	with	Protractor

Displaying	products	with	REST

Unit	testing	product	requests

Setting	up	the	project

Karma	configuration

Using	an	API	builder	pattern

The	product	data	service

The	product	data	controller

Assembling	the	product	controller	test

Getting	products

Asserting	product	data	results

Making	the	product	data	tests	run

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	middle-to-end

Test	first

Assembling	the	product	test

Getting	products

Expecting	product	data	results

Making	the	product	data	run

Testing	end-to-end

Getting	the	product	data

Self-test	questions

Summary

A.	Integrating	Selenium	Server	with	Protractor

Installation

Protractor	configuration

Running	Selenium

Let	it	run

Test	first

Assemble

Assert

Make	it	run

Summary

B.	Automating	Karma	Unit	Testing	on	Commit

GitHub

Test	setup

Test	scripts

Setting	the	hook

Creating	the	hook

Adding	a	Travis	configuration	file

References

C.	Answers

Chapter	1,	Introduction	to	Test-driven	Development

Chapter	2,	The	Karma	Way

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3,	End-to-end	Testing	with	Protractor

Chapter	4,	The	First	Step

Chapter	5,	Flip	Flop

Chapter	6,	Telling	the	World

Chapter	7,	Give	Me	Some	Data

Index

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS	Test-driven	Development

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS	Test-driven	Development
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2015

Production	reference:	1230115

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-883-5

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

Credits
Author

Tim	Chaplin

Reviewers

Md.	Ziaul	Haq

Nive	Jayasekar

Tim	Pei

Andi	Smith

Commissioning	Editor

Pramila	Balan

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Manasi	Pandire

Technical	Editor

Madhunikita	Sunil	Chindarkar

Copy	Editors

Gladson	Monteiro

Adithi	Shetty

Stuti	Srivastava

Project	Coordinator

Leena	Purkait

Proofreaders

Simran	Bhogal

Maria	Gould

Ameesha	Green

Paul	Hindle

Indexer

Hemangini	Bari

Production	Coordinator

www.it-ebooks.info

http://www.it-ebooks.info/

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author
Tim	Chaplin	lives	and	breathes	software	solutions	and	innovations.	During	the	day,	he
works	with	Fortune	100	enterprise	applications,	and	in	the	evening,	he	perfects	his	craft	by
contributing	to	and	distributing	open	source	software,	writing,	and	constantly	looking	for
ways	to	increase	his	knowledge	of	technology	and	the	world.	At	an	early	age,	Tim	began
developing	software	and	has	been	hooked	on	it	since.	Tim	is	an	established	conference
speaker	who	has	extensive	experience	in	developing	and	leading	AngularJS	projects.	He
has	a	wide	background	of	JavaScript,	C#,	Java,	and	C++	languages.	Tim	specializes	in
leading	code	quality	and	testing	throughout	all	his	applications.	After	attending	California
State	University,	Chico,	he	has	gone	on	to	work	in	Shanghai,	Los	Angeles,	and	London.

I	would	like	to	thank	my	wife,	Pierra,	for	always	making	me	think	and	dream	bigger.	I
would	also	like	to	thank	my	family	for	their	constant	love	and	support.	Pops,	this	one’s	for
you	babe.

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Reviewers
Md.	Ziaul	Haq	is	a	senior	software	engineer	from	Dhaka,	Bangladesh,	who	has	been
working	with	the	oDesk	core	platform	development	team	as	a	senior	JavaScript	developer
since	2011.	He	likes	to	work	mostly	on	the	frontend,	though	he	is	a	full-stack	developer.
JavaScript	is	his	passion	and	he	likes	to	code	in	it	all	day	long.	He	is	well	known	as
jquerygeek	in	the	web	community.

Md.	Ziaul	started	his	career	in	2005	as	a	software	developer.	He	has	work	experience	with
UNICEF	locally	and	internationally,	where	he	worked	with	UNICEF’s	web	CMS.	He	is
currently	pursuing	a	master’s	degree	in	computer	science	from	United	International
University,	Dhaka,	Bangladesh.

I	would	like	to	thank	my	wife,	Richi,	and	my	newborn	son,	Arabi,	who	is	my	inspiration.

Nive	Jayasekar	started	programming	in	high	school.	In	her	last	year	of	high	school,	she
won	$10,500	at	a	Hackathon	for	building	a	mobile	artificial-intelligence	app.	She	has
interned	at	Facebook	and	LinkedIn,	and	will	soon	graduate	from	Carnegie	Mellon
University	with	a	degree	in	computer	science	and	a	minor	in	machine	learning.	She	is
always	interested	in	building	game-changing	products.	She	has	5	years	of	experience
building	web	and	mobile	applications	using	Python,	AngularJS,	Java,	and	Objective	C.

I’d	like	to	thank	the	people	at	Packt	Publishing,	Leena	Purkait	and	Kirti	Patil,	for	their
help	in	producing	this	book.

Tim	Pie	is	a	computer	science	and	business	administration	double	degree	student	at	the
University	of	Waterloo,	Ontario.	He	has	gained	a	wide	range	of	technical	skills	through
past	projects	and	internships,	including	cloud	computing,	data	mining,	and	full	stack	web
development.	Tim’s	current	technical	interest	is	focusing	on	building	web	applications
using	modern	web	technologies,	specifically	HTML5	and	web	components.

I’d	like	to	thank	my	parents	for	their	constant	support	of	my	pursuits,	while	providing	me
great	advice	along	the	way.

Andi	Smith	(@andismith)	is	a	senior	architect	who	specializes	in	frontend	solutions	at
ideas	and	innovation	agency,	AKQA.

Andi	has	over	15	years	of	experience	building	for	the	Web	and	has	worked	with	clients
such	as	Nike,	Ubisoft,	Sainsburys,	Barclays,	Heineken,	and	MINI.	He	has	also	created	a
number	of	open	source	plugins	and	sites	such	as	Grunt	Responsive	Images
(http://www.andismith.com/grunt-responsive-images/)	and	Secrets	of	the	Browser
Developer	Tools	(http://devtoolsecrets.com/).

Andi	maintains	a	blog	focused	on	frontend	development	at	http://www.andismith.com/.

I	would	like	to	thank	my	wife,	Amy,	for	all	her	love	and	support.

www.it-ebooks.info

http://www.andismith.com/grunt-responsive-images/
http://devtoolsecrets.com/
http://www.andismith.com/
http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

Preface
The	book	will	provide	the	reader	with	a	complete	guide	to	the	test-driven	development
(TDD)	approach	for	AngularJS.	It	will	provide	step-by-step,	clear	examples	to	continually
reinforce	TDD	best	practices.	The	book	will	look	at	both	unit	testing	with	Karma	and	end-
to-end	testing	with	Protractor.	It	will	not	only	focus	on	how	to	use	the	tools,	but	also	on
understanding	the	reason	they	were	built,	and	why	they	should	be	used.	Throughout,	there
will	be	focus	on	when,	where,	and	how	to	use	these	tools,	constantly	reinforcing	the
principles	of	the	TDD	life	cycle	(test,	execute,	refactor).

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
This	book	is	basically	split	into	two	parts.	The	initial	chapters	focus	on	the	TDD	life	cycle,
and	how	Karma	and	Protractor	fit	into	the	life	cycle	and	development	of	an	AngularJS
application.	As	we	proceed,	you’ll	get	a	step-by-step	approach	to	AngularJS	TDD	using
Karma	and	Protractor.	Each	of	the	chapters	builds	up	on	the	previous	one	and	introduces
how	to	test	several	different	AngularJS	components.

Chapter	1,	Introduction	to	Test-driven	Development,	is	an	introduction	to	the	concepts	of
TDD	and	testing	techniques.

Chapter	2,	The	Karma	Way,	explores	the	origins	of	Karma	and	why	it	is	an	essential	tool
for	any	AngularJS	project.

Chapter	3,	End-to-end	Testing	with	Protractor,	introduces	the	simplicity	of	Protractor,	an
end-to-end	testing	tool	built	specifically	for	AngularJS.

Chapter	4,	The	First	Steps,	covers	the	TDD	journey	and	shows	the	fundamentals	and	tools
in	action.

Chapter	5,	Flip	Flop,	expands	to	include	testing	for	multiple	controllers,	partial	views,
location	references,	CSS,	and	HTML	element	building	on	the	initial	foundational	aspects
learned	in	the	previous	chapter.

Chapter	6,	Telling	the	World,	dives	into	communicating	across	controllers,	and	testing
services	and	broadcasting.

Chapter	7,	Give	Me	Some	Data,	dives	into	how	to	apply	several	of	the	concepts	shown
previously,	and	extend	them	to	pull	data	using	an	external	API.

Appendix	A,	Integrating	Selenium	Server	with	Protractor,	walks	through	setting	up	and
configuring	Protractor	to	use	a	standalone	Selenium	server.

Appendix	B,	Automating	Karma	Unit	Testing	on	Commit,	covers	how	to	set	up	Travis	CI,
a	platform	for	continuous	integration,	and	setting	up	Karma	to	test	your	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
This	book	is	for	the	developer	who	wants	to	go	beyond	the	basic	tutorials,	and	wants	to
take	the	plunge	into	AngularJS	development.	This	book	is	for	the	developer	who	has
experience	with	AngularJS	and	has	walked	through	the	basic	tutorials	but	wants	to
understand	the	wider	context	of	when,	why,	and	how	to	apply	testing	techniques	and	best
practices	to	create	quality-clean	code.	To	get	the	most	out	of	this	book,	it	is	preferred	that
the	reader	has	basic	understanding	of	HTML,	JavaScript,	and	AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Create	a
web	page	and	import	calculator.js	for	testing.”

A	block	of	code	is	set	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

<script	src="calculator.js"></script>

</body>

</html>

Any	command-line	input	or	output	is	written	as	follows:

$	node	calculator.js

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“Traditionally,	tests	were
run	by	having	to	manually	launch	a	browser	and	check	for	results	by	continually	hitting
the	Refresh	button.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

Chapter	1.	Introduction	to	Test-driven
Development
AngularJS	is	at	the	forefront	of	client-side	JavaScript	testing.	Every	AngularJS	tutorial
includes	an	accompanying	test,	and	event	test	modules	are	part	of	the	core	AngularJS
package.	The	Angular	team	is	focused	on	making	testing	fundamental	to	web
development.

This	chapter	introduces	you	to	the	fundamentals	of	test-driven	development	with
AngularJS	including:

An	overview	of	test-driven	development	(TDD)
The	TDD	life	cycle:	test	first,	make	it	run,	make	it	better
Common	testing	techniques

www.it-ebooks.info

http://www.it-ebooks.info/

An	overview	of	TDD
TDD	is	not	used	only	to	develop	software.	The	fundamental	principles	can	be	seen	in
many	industries.	This	section	will	explore	the	fundamentals	of	TDD	and	how	they	are
applied	by	a	tailor.

www.it-ebooks.info

http://www.it-ebooks.info/

Fundamentals	of	TDD
Know	what	to	code	before	you	code.	This	may	sound	cliché,	but	this	is	essentially	what
TDD	gives	you.	TDD	begins	by	defining	expectations,	then	makes	you	meet	the
expectations,	and	finally	forces	you	to	refine	the	changes	after	the	expectations	have	been
met.

Here	are	a	couple	of	clear	benefits	of	using	TDD:

Knowing	before	you	code:	A	test	provides	a	clear	vision	of	what	code	needs	to	do	in
order	to	be	successful.	Setting	up	tests	first	allows	focus	on	only	components	that
have	been	defined	in	tests.
Confidence	in	refactoring:	Refactoring	involves	moving,	fixing,	and	changing	a
project.	Tests	protect	the	core	logic	from	refactoring	by	ensuring	that	the	logic
behaves	independently	of	the	code	structure.
Documentation:	Tests	define	expectations	that	a	particular	object	or	function	must
meet.	The	expectation	acts	as	a	contract,	and	can	be	used	to	see	how	a	method	should
or	can	be	used.	This	makes	the	code	readable	and	easier	to	understand.

www.it-ebooks.info

http://www.it-ebooks.info/

Measuring	success
TDD	is	not	just	a	software	development	practice.	The	fundamental	principles	are	shared
by	other	craftsmen	as	well.	One	of	these	craftsmen	is	a	tailor,	whose	success	depends	on
precise	measurements	and	careful	planning.

Breaking	down	the	steps
Here	are	the	high-level	steps	a	tailor	takes	to	make	a	suit:

1.	 Test	first:

Determining	the	measurements	for	the	suit
Having	the	customer	determine	the	style	and	material	they	want	for	their	suit
Measuring	the	customer’s	arms,	shoulders,	torso,	waist,	and	legs

2.	 Making	the	cuts:

Measuring	the	fabric	and	cut
Selecting	the	fabric	based	on	the	desired	style
Measuring	the	fabric	based	on	the	customer’s	waist	and	legs
Cutting	the	fabric	based	on	the	measurements

3.	 Refactoring:

Comparing	the	resulting	product	to	the	expected	style,	reviewing,	and	making
changes
Comparing	the	cut	and	look	to	the	customer’s	desired	style
Making	adjustments	to	meet	the	desired	style

4.	 Repeating:

Test	first:	Determining	the	measurements	for	the	pants
Making	the	cuts:	Measuring	the	fabric	and	making	the	cuts
Refactor:	Making	changes	based	on	the	reviews

The	preceding	steps	are	an	example	of	a	TDD	approach.	The	measurements	must	be	taken
before	the	tailor	can	start	cutting	up	the	raw	material.	Imagine	for	a	moment	if	the	tailor
didn’t	use	a	test-driven	approach	and	didn’t	use	a	measuring	tape	(testing	tool).	It	would
be	ridiculous	if	the	tailor	started	cutting	before	measuring.

As	a	developer,	do	you	“cut	before	measuring”?	Would	you	trust	a	tailor	without	a
measuring	tape?	How	would	you	feel	about	a	developer	who	doesn’t	test?

Measure	twice	cut	once
The	tailor	always	starts	with	measurements.	What	would	happen	if	the	tailor	made	cuts
before	measuring?	What	would	happen	if	the	fabric	was	cut	too	short?	How	much	extra
time	would	go	into	the	tailoring?	Measure	twice,	cut	once.

Software	developers	can	choose	from	an	endless	amount	of	approaches	to	use	before

www.it-ebooks.info

http://www.it-ebooks.info/

starting	developing.	One	common	approach	is	to	work	off	a	specification.	A	documented
approach	may	help	in	defining	what	needs	to	be	built;	however,	without	tangible	criteria
for	how	to	meet	a	specification,	the	actual	application	that	gets	developed	maybe
completely	different	than	the	specification.	With	a	TDD	approach	(test	first,	make	it	run,
and	make	it	better),	every	stage	of	the	process	verifies	that	the	result	meets	the
specification.	Think	about	how	a	tailor	continues	to	use	a	measuring	tape	to	verify	the	suit
throughout	the	process.

TDD	embodies	a	test-first	methodology.	TDD	gives	developers	the	ability	to	start	with	a
clear	goal	and	write	code	that	will	directly	meet	a	specification.	Develop	like	a
professional	and	follow	the	practices	that	will	help	you	write	quality	software.

www.it-ebooks.info

http://www.it-ebooks.info/

Diving	in
It	is	time	to	dive	into	some	actual	code.	This	walk-through	will	take	you	through	adding
the	multiplication	functionality	to	a	calculator.	Remember	the	TDD	life	cycle:	test	first,
make	it	run,	and	make	it	better.

Setting	up	the	test
The	initial	calculator	is	in	a	file	called	calculator.js	and	is	initialized	as	an	object	as
follows:

var	calculator	=	{};

The	test	will	be	run	through	a	web	browser	using	a	basic	HTML	page.	Create	a	web	page
and	import	calculator.js	to	test	it.	Save	the	web	page	as	testRunner.html.	To	run	the
test,	open	a	browser	and	run	testRunner.html.	Here	is	the	code	for	testRunner.html:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

<script	src="calculator.js"></script>

</body>

</html>

Now	that	the	project	is	set	up,	the	next	step	is	to	create	the	development	to-do	list.

Creating	a	development	to-do	list
A	development	to-do	list	helps	organize	and	focus	your	tasks.	It	also	provides	a	place	to
write	down	ideas	during	the	development	process.

Here	is	the	initial	step	for	creating	a	development	to-do	list:

Add	multiplication	functionality:	3	*	3	=	9

The	preceding	list	describes	what	needs	to	be	done.	It	also	provides	a	clear	example	of
how	to	verify	multiplication:	3	*	3	=	9.

Test	first
Although	you	can	write	the	multiplication	function	quickly,	remember	that	once	the	habit
of	TDD	is	set	in	place,	it	will	be	just	as	quick	to	write	the	test	and	code.	Here	are	the	steps
for	the	first	test:

1.	 Open	calculator.js.
2.	 Create	a	new	function	to	test	multiplying	3	*	3:

function	multipleTest1(){

		//Test

www.it-ebooks.info

http://www.it-ebooks.info/

		var	result	=	calculator.multiply(3,3);

		//Assert	Result	is	expected

		if	(result	===	9)	{

				console.log('Test	Passed');

		}

		else{

				console.log('Test	Failed');

		}

};

The	test	calls	a	multiply	function,	which	still	needs	to	be	defined.	It	then	asserts	that	the
results	are	as	expected	by	displaying	a	pass	or	fail	message.	Remember,	in	TDD,	you	are
looking	at	the	use	of	the	method	and	explicitly	writing	how	it	should	be	used.	This	allows
you	to	define	the	interface	through	a	use	case,	as	opposed	to	only	looking	at	the	limited
scope	of	the	function	being	developed.

The	next	step	in	the	TDD	life	cycle	will	be	focused	on	making	the	test	run.

Making	it	run
This	step	is	about	making	the	test	run,	just	as	the	tailor	did	with	the	suit.	The
measurements	were	taken	during	the	test	step,	and	now	the	application	can	be	molded	to
fit	the	measurements.	Here	are	the	steps	to	run	the	test:

1.	 Open	the	browser	with	testRunner.html.
2.	 Open	the	JavaScript	developer	Console	window.

The	test	throws	an	error,	as	shown	in	the	following	screenshot:

The	error	thrown	is	expected	as	the	calculator	application	calls	a	function	that	hasn’t	been
created	yet:	calculator.multiply.

In	TDD,	the	focus	is	on	adding	the	smallest	change	to	get	a	test	to	pass.	There	is	no	need
to	actually	implement	the	multiplication	logic.	This	may	seem	unintuitive.	The	point	is
once	a	passing	test	exists,	it	should	always	pass.	When	a	method	contains	fairly	complex
logic,	it	is	easier	to	run	a	passing	test	against	it	to	ensure	it	meets	the	expectations.

What	is	the	smallest	change	that	can	be	made	to	make	the	test	pass?	By	returning	the
expected	value	of	9,	the	test	should	pass.	Although	this	won’t	add	the	multiply	function,
it	will	confirm	the	application	wiring.	In	addition,	after	you	have	passed	the	test,	making
future	changes	will	be	easy	as	you	have	to	simply	keep	the	test	passing!

Now,	add	the	multiply	function	and	have	it	return	the	required	value	9:

www.it-ebooks.info

http://www.it-ebooks.info/

var	calculator	=	{

		multiply	:	function(){

				return	9;

		}

};

In	the	browser,	the	JavaScript	console	reruns	the	test.	The	result	should	be	as	follows:

Yes!	The	test	passed.	Time	to	cross	out	the	first	item	from	the	to-do	list:

Add	multiplication	functionality:	3	*	3	=	9

Now	that	there	is	a	passing	test,	the	next	step	will	be	to	remove	the	hardcoded	value	in	the
multiply	function.

Making	it	better
The	refactoring	step	needs	to	remove	the	hardcoded	return	value	of	the	multiply
function.	The	required	logic	is	as	follows:

var	calculator	=	{

multiply	:	function(amount1,amount2){

				return	amount1	*	amount2;

		}

};

Rerun	the	tests	and	confirm	the	test	passes.	Excellent!	Now	the	multiply	function	is
complete.	Here	is	the	full	code	for	the	calculator	and	test:

var	calculator	=	{

		multiply	:	function(amount1,amount2){

				return	amount1*	amount2;

		}

};

var	multipleTest1	=	function	(){

		var	result	=	calculator.multiply(3,3);

		if	(result	===	9)	{

				console.log('Test	Passed');

		}

		else{

				console.log('Test	Failed');

		}

};

www.it-ebooks.info

http://www.it-ebooks.info/

multipleTest1();

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	techniques
It	is	important	to	understand	some	fundamental	techniques	and	approaches	to	testing.	This
section	will	walk	you	through	a	couple	of	examples	of	techniques	that	will	be	leveraged	in
this	book.	This	includes:

Testing	doubles	with	Jasmine	spies
Refactoring
Building	patterns

In	addition,	here	are	additional	terms	that	will	be	used:

Function	under	test:	This	is	the	function	being	tested.	It	is	also	referred	to	as	system
under	test,	object	under	test,	and	so	on.
The	3	A’s	(Arrange,	Act,	and	Assert):	This	is	a	technique	used	to	set	up	tests,	first
described	by	Bill	Wake	(http://xp123.com/articles/3a-arrange-act-assert/).	The	3	A’s
will	be	discussed	further	in	Chapter	2,	The	Karma	Way.

www.it-ebooks.info

http://xp123.com/articles/3a-arrange-act-assert/
http://www.it-ebooks.info/

Testing	with	a	framework
Although	a	simple	web	page	can	be	used	to	perform	tests,	as	seen	earlier	in	this	chapter,	it
is	much	easier	to	use	a	testing	framework.	A	testing	framework	provides	methods	and
structures	to	test.	This	includes	a	standard	structure	to	create	and	run	tests,	the	ability	to
create	assertions/expectations,	the	ability	to	use	test	doubles,	and	more.	This	book	uses
Jasmine	as	the	test	framework.	Jasmine	is	a	behavior-driven	testing	framework.	It	is
highly	compatible	with	testing	AngularJS	applications.	In	Chapter	2,	The	Karma	Way,	we
will	take	a	more	in-depth	look	at	Jasmine.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	doubles	with	Jasmine	spies
A	test	double	is	an	object	that	acts	and	is	used	in	place	of	another	object.	Take	a	look	at
the	following	object	that	needs	to	be	tested:

var	objectUnderTest	=	{

		someFunction	:	function(){}

};

Using	a	test	double,	you	can	determine	the	number	of	times	someFunction	gets	called.
Here	is	an	example:

var	objectUnderTest	=	{

		someFunction	:	function(){}

};

jasmine.spyOn(objectUnderTest,'someFunction');

objectUnderTest.someFunction	();

objectUnderTest.someFunction();

console.log(objectUnderTest.someFunction.count);

The	preceding	code	creates	a	test	double	using	a	Jasmine	spy	(jasmine.spyOn).	The	test
double	is	then	used	to	determine	the	number	of	times	someFunction	gets	called.	A
Jasmine	test	double	offers	the	following	features	and	more:

The	count	of	calls	on	a	function
The	ability	to	specify	a	return	value	(stub	a	return	value)
The	ability	to	pass	a	call	to	the	underlying	function	(pass	through)

Throughout	this	book,	you	will	gain	further	experience	in	the	use	of	test	doubles.

Stubbing	a	return	value
The	great	thing	about	using	a	test	double	is	that	the	underlying	code	of	a	method	does	not
have	to	be	called.	With	a	test	double,	you	can	specify	exactly	what	a	method	should	return
for	a	given	test.	Here	is	an	example	function:

var	objectUnderTest	=	{

		someFunction	:	function(){	return	'stub	me!';	}

};

The	preceding	object	(objectUnderTest)	has	a	function	(someFunction)	that	needs	to	be
stubbed.	Here	is	how	you	can	stub	the	return	value	using	Jasmine:

jasmine.spyOn(objectUnderTest,'someFunction')

.and

.returnValue('stubbed	value');

Now,	when	objectUnderTest.someFunction	is	called,	stubbed	value	will	be	returned.
Here	is	how	the	preceding	stubbed	value	can	be	confirmed	using	console.log:

var	objectUnderTest	=	{

www.it-ebooks.info

http://www.it-ebooks.info/

		someFunction	:	function(){	return	'stub	me!';	}

};

//before	the	return	value	is	stubbed

Console.log(objectUnderTest.someFunction());	

//displays	'stub	me'

jasmine.spyOn(objectUnderTest,'someFunction')

.and

.returnValue('stubbed	value');

//After	the	return	value	is	stubbed

Console.log(objectUnderTest.someFunction());	

//displays	'stubbed	value'

Testing	arguments
A	test	double	provides	insights	into	how	a	method	is	used	in	an	application.	As	an
example,	a	test	might	want	to	assert	what	arguments	a	method	was	called	with	or	the
number	of	times	a	method	was	called.	Here	is	an	example	function:

var	objectUnderTest	=	{

		someFunction	:	function(arg1,arg2){}

};

Here	are	the	steps	to	test	the	arguments	the	preceding	function	is	called	with:

1.	 Create	a	spy	so	that	the	arguments	called	can	be	captured:

jasmine.spyOn(objectUnderTest,'someFunction');

2.	 Then	to	access	the	arguments,	do	the	following:

//Get	the	arguments	for	the	first	call	of	the	function

var	callArgs	=	objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);

//displays	['param1','param2']

3.	 Here	is	how	the	arguments	can	be	displayed	using	console.log:

var	objectUnderTest	=	{

		someFunction	:	function(arg1,arg2){}

};

//create	the	spy

jasmine.spyOn(objectUnderTest,'someFunction');

//Call	the	method	with	specific	arguments

objectUnderTest.someFunction('param1','param2');

//Get	the	arguments	for	the	first	call	of	the	function

var	callArgs	=	objectUnderTest.someFunction.call.argsFor(0);

console.log(callArgs);

//displays	['param1','param2']

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring
Refactoring	is	the	act	of	restructuring,	rewriting,	renaming,	and	removing	code	in	order	to
improve	the	design,	readability,	maintainability,	and	overall	aesthetic	of	a	piece	of	code.
The	TDD	life	cycle	step	of	“making	it	better”	is	primarily	concerned	with	refactoring.
This	section	will	walk	you	through	a	refactoring	example.	Here	is	an	example	of	a
function	that	needs	to	be	refactored:

var	abc	=	function(z){

		var	x	=	false;

		if(z	>	10)

				return	true;

		

		return	x;

}

This	function	works	fine	and	does	not	contain	any	syntactical	or	logical	issues.	The
problem	is	that	the	function	is	difficult	to	read	and	understand.	Refactoring	this	function
will	improve	the	naming,	structure,	and	definition.	The	exercise	will	remove	the
masquerading	complexity	and	reveal	the	function’s	true	meaning	and	intention.	Here	are
the	steps:

1.	 Rename	the	function	and	variable	names	to	be	more	meaningful,	that	is,	rename	x
and	z	so	that	they	make	sense:

var	isTenOrGreater	=	function(value){

		var	falseValue	=	false;

		if(value	>	10)

				return	true;

		return	falseValue;

}

2.	 Now,	the	function	can	easily	be	read	and	the	naming	makes	sense.
3.	 Remove	unnecessary	complexity.	In	this	case,	the	if	conditional	statement	can	be

removed	completely:

var	isTenOrGreater	=	function(value){

		return	value	>	10;

};

4.	 Reflect	on	the	result.

At	this	point,	the	refactor	is	complete,	and	the	function’s	purpose	should	jump	out	at
you.	The	remaining	question	that	should	be	asked	is	“why	does	this	method	exist	in
the	first	place?”.

This	example	only	provided	a	brief	walk-through	of	the	steps	that	can	be	taken	to	identify
issues	in	code	and	how	to	improve	them.	Other	examples	will	be	used	throughout	this
book.

www.it-ebooks.info

http://www.it-ebooks.info/

Building	with	a	builder
The	builder	pattern	uses	a	builder	object	to	create	another	object.	Imagine	an	object	with
ten	properties.	How	will	test	data	be	created	for	every	property?	Will	the	object	have	to	be
recreated	in	every	test?

A	builder	object	defines	an	object	to	be	reused	across	multiple	tests.	The	following	code
snippet	provides	an	example	of	the	use	of	this	pattern.	This	example	will	use	builder
object	in	the	validate	method:

var	book	=	{

		id	:	null,

		author	:	null,

		dateTime	:	null

};

The	book	object	has	three	properties:	id,	author,	and	dateTime.	From	a	testing
perspective,	you	would	want	the	ability	to	create	a	valid	object,	that	is,	one	that	has	all	the
fields	defined.	You	may	also	want	to	create	an	invalid	object	with	missing	properties,	or
you	may	want	to	set	certain	values	in	the	object	to	test	the	validation	logic,	that	is,
dateTime	is	an	actual	date.

Here	are	the	steps	to	create	a	builder	for	the	dateTime	object:

1.	 Create	a	builder	function:

var	bookBuilder	=	function();

2.	 Create	a	valid	object	within	the	builder:

var	bookBuilder	=	function(){

		var	_resultBook	=	{

				id:	1,

				author:	'Any	Author',

				dateTime:	new	DateTime()

		};

}

3.	 Create	a	function	to	return	the	built	object:

var	bookBuilder	=	function(){

		var	_resultBook	=	{

				id:	1,

				author:	"Any	Author",

				dateTime:	new	DateTime()

		};

		this.build	=	function(){

				return	_resultBook;

		}

}

4.	 Create	another	function	to	set	the	_resultBook	author	field:

var	bookBuilder	=	function(){

www.it-ebooks.info

http://www.it-ebooks.info/

var	_resultBook	=	{

				id:	1,

				author:	'Any	Author',

				dateTime:	new	DateTime()

		};

		this.build	=	function(){

				return	_resultBook;

		};

		this.setAuthor	=	function(author){

				_resultBook.author	=	author;

		};

};

5.	 Make	the	function	fluent	so	that	calls	can	be	chained:

this.setAuthor	=	function(author){

		_resultBook.author	=	author;

		return	this;

};

6.	 A	setter	function	will	also	be	created	for	dateTime:

this.setDateTime	=	function(dateTime){

		_resultBook.dateTime	=	dateTime;

		return	this;

};

Now,	bookBuilder	can	be	used	to	create	a	new	book	as	follows:

var	builtBook	=	bookBuilder.setAuthor('Tim	Chaplin')

.setDateTime(new	Date())

.build();

The	preceding	builder	can	now	be	used	throughout	your	tests	to	create	a	single	consistent
object.	Here	is	the	complete	builder	for	your	reference:

var	bookBuilder	=	function(){

		var	_resultBook	=	{

				id:	1,

				author:	'Any	Author',

				dateTime:	new	DateTime()

		};

		this.build	=	function(){

				return	_resultBook;

		};

		this.setAuthor	=	function(author){

				_resultBook.author	=	author;

				return	this;

		};

		

		this.setDateTime	=	function(dateTime){

				_resultBook.dateTime	=	dateTime;

				return	this;

		};

www.it-ebooks.info

http://www.it-ebooks.info/

};

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Self-test	questions
Q1.	A	test	double	is	another	name	for	a	duplicate	test.

1.	 True
2.	 False

Q2.	TDD	stands	for	test-driven	development.

1.	 True
2.	 False

Q3.	The	purpose	of	refactoring	is	to	improve	code	quality.

1.	 True
2.	 False

Q4.	A	test	object	builder	consolidates	the	creation	of	objects	for	testing.

1.	 True
2.	 False

Q5.	The	3	A’s	are	a	sports	team.

1.	 True
2.	 False

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	provided	an	introduction	to	TDD.	It	discussed	the	TDD	life	cycle	(test	first,
make	it	run,	make	it	better)	and	showed	how	the	same	steps	are	used	by	a	tailor.	Finally,	it
looked	over	some	of	the	testing	techniques	that	will	be	discussed	throughout	this	book
including:

Test	doubles
Refactoring
Building	patterns

Although	TDD	is	a	huge	topic,	this	book	is	solely	focused	on	the	TDD	principles	and
practices	to	be	used	with	AngularJS.	In	the	next	chapter,	you	will	start	the	journey	and	see
how	to	set	up	the	Karma	test	runner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	The	Karma	Way
JavaScript	testing	has	hit	the	mainstream,	thanks	to	Karma.	Karma	makes	it	seamless	to
test	JavaScript.	AngularJS	was	created	around	testing.	This	chapter	explores	the	origins	of
Karma	and	why	it	has	to	be	used	in	any	AngularJS	project.	By	the	end	of	this	chapter,	you
will	not	only	understand	the	problem	that	Karma	solves,	but	also	walk	through	a	complete
example	using	it.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript	testing	tools
Knowing	what	the	different	testing	tools	are	is	half	the	battle.	In	this	section,	you	will
learn	about	the	two	primary	tools	that	will	be	discussed	and	used	throughout	the	book.
They	are:

Karma:	This	is	a	test	runner
Protractor:	This	is	an	end-to-end	testing	framework

www.it-ebooks.info

http://www.it-ebooks.info/

Karma
Before	discussing	what	Karma	is,	it	is	best	to	discuss	what	it	isn’t.	It	isn’t	a	framework	to
write	tests.	It	is	a	test	runner.	What	this	means	is	that	Karma	gives	you	the	ability	to	run
tests	in	several	different	browsers	in	an	automated	way.	In	the	past,	developers	had	to
perform	manual	steps	to	do	this,	including:

1.	 Opening	up	a	browser
2.	 Pointing	the	browser	to	the	project	URL
3.	 Running	the	tests
4.	 Confirming	that	all	tests	have	passed
5.	 Making	changes
6.	 Refreshing	the	page

With	Karma,	automation	gives	the	developer	the	ability	to	run	a	single	command	and
determine	whether	an	entire	test	suite	has	passed	or	failed.	From	a	TDD	perspective,	this
gives	you	the	ability	to	find	and	fix	failing	tests	quickly.	Some	of	the	pros	and	cons	of
using	Karma	compared	to	a	manual	process	are	as	follows:

Pros Cons

Ability	to	automate	tests	in	multiple	browsers	and	devices. Additional	tool	to	learn,	configure,	and	maintain.

Ability	to	watch	files. 	

Online	documentation	and	support. 	

Does	one	thing—runs	JavaScript	tests—and	does	it	well. 	

Easy	to	integrate	with	a	continuous	integration	server. 	

Automating	the	process	of	testing	and	using	Karma	is	extremely	advantageous.	In	the
TDD	journey	through	this	book,	Karma	will	be	one	of	your	primary	tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor
Protractor	is	an	end-to-end	testing	tool.	It	allows	developers	to	mimic	user	interactions.	It
automates	the	testing	of	functionality	and	features	through	the	interaction	of	a	web
browser.	Protractor	has	specific	methods	to	assist	with	testing	AngularJS,	but	they	are	not
exclusive	to	AngularJS.	Some	of	the	pros	and	cons	of	using	Protractor	are	as	follows:

Pros Cons

Configurable	to	test	multiple	environments Documentation	and	examples	are	limited

Easy	integration	with	AngularJS 	

Syntax	and	testing	can	be	similar	to	the	testing	framework	chosen	for	unit	testing 	

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript	testing	frameworks
In	this	section,	you	will	learn	about	the	testing	frameworks	that	will	support	you	in	your
TDD	practices.	These	include:

Jasmine
Selenium
Mocha

www.it-ebooks.info

http://www.it-ebooks.info/

Jasmine
Jasmine	is	a	JavaScript	testing	framework.	It	can	be	easily	integrated	and	run	for	websites
and	is	agnostic	to	AngularJS.	It	provides	spies	and	other	features.	It	can	also	be	run	on	its
own	without	Karma.	Some	of	the	pros	and	cons	are	as	follows:

Pros Cons

Default	integration	with	Karma. No	file-watching	feature	available	when	running	tests.	This	means	that	tests
have	to	be	rerun	by	the	user	as	they	change.

Provides	additional	functions	to	assist	with	testing,	such	as	test	spies,
fakes,	and	the	pass-through	functionality. The	learning	curve	can	be	steep	for	all	the	Protractor	methods	and	features.

Cleans	readable	syntax	that	allows	tests	to	be	formatted	in	a	way	that
relates	to	the	behavior	being	tested. 	

Integration	with	several	output	reporters. 	

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium
Selenium	(http://www.seleniumhq.org/)	defines	itself	as:

“Selenium	automates	browsers.	That’s	it!”

Automation	of	browsers	means	that	developers	can	interact	with	browsers	easily.	They	can
click	on	buttons	or	links,	enter	data,	and	so	on.	Selenium	is	a	powerful	toolset	that,	when
used	and	set	up	properly,	has	lots	of	benefits;	however,	it	can	be	confusing	and
cumbersome	to	set	it	up.	Some	of	the	pros	and	cons	of	Selenium	are	as	follows:

Pros Cons

Large	feature	set Has	to	be	run	as	a	separate	process

Distributed	testing Several	steps	to	configure

SaaS	support	through	services	such	as	Sauce	Labs 	

Documentation	and	resources	available 	

As	Protractor	is	a	wrapper	around	Selenium,	it	won’t	be	discussed	in	detail.	Protractor	will
be	further	introduced	in	Chapter	3,	End-to-end	Testing	with	Protractor.

www.it-ebooks.info

http://www.seleniumhq.org/
http://www.it-ebooks.info/

Mocha
Mocha	is	a	testing	framework	originally	written	for	Node.js	applications	but	supports
browser	testing	as	well.	It	is	very	similar	to	Jasmine	and	mirrors	much	of	its	syntax.	Let’s
discuss	some	of	the	pros	and	cons	of	Mocha:

Pros Cons

Easy	to	install Separate	plugins/modules	required	for	assertions,	spies,	and	so	on

Good	documentation	available Additional	configuration	required	to	use	it	with	Karma

Has	several	reporters 	

Plugs	in	with	several	node	projects 	

The	approach	of	being	just	a	test	runner	and	not	worrying	about	assertions	and	mocking
fits	into	the	Node.js	mantra—small	individual	modules	that	do	one	thing.	For	Node.js
projects,	I	prefer	to	go	with	Mocha.	The	reason	is	that	you	can	add	new	Node	Package
Manager	(npm)	modules	for	the	specific	plugins	needed.	When	working	with	a	website,
and	specifically	AngularJS,	I	prefer	to	use	Jasmine.	It	provides	the	features	needed
without	having	to	install	additional	npm	modules	to	a	non-Node.js	project.

www.it-ebooks.info

http://www.it-ebooks.info/

Birth	of	Karma
When	picking	up	a	new	tool,	it	is	important	to	understand	where	it	came	from	and	why	it
was	built.	This	section	gives	you	some	background	of	the	origins	of	Karma.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Karma	difference
Karma	was	created	by	Vojtech	Jína.	The	project	was	originally	called	testacular.	In	Vojtech
Jína’s	thesis,	he	discusses	the	design,	purpose,	and	implementation	of	Karma.	In	his	thesis
(JavasScript	Test	Runner,	page	6,	https://github.com/karma-
runner/karma/raw/master/thesis.pdf),	he	describes	Karma	as:

“…a	test	runner,	that	helps	web	application	developers	to	be	more	productive	and
effective	by	making	automated	testing	simpler	and	faster.	In	fact,	I	have	a	much
higher	ambition	and	this	thesis	is	only	a	part	of	it	-	I	want	to	promote	Test	Driven
Development	(TDD)	as	“the”	way	to	develop	web	applications,	because	I	believe	it	is
the	most	effective	way	to	develop	high	quality	software.”

Karma	has	the	ability	to	easily	and	automatically	run	JavaScript	unit	tests	on	real
browsers.	Traditionally,	tests	were	run	by	having	to	manually	launch	a	browser	and	check
for	results	by	continually	hitting	the	Refresh	button.	This	method	was	awkward	and	often
resulted	in	developers	limiting	the	amount	of	tests	that	were	written.

With	Karma,	a	developer	can	write	a	test	in	almost	any	standard	test	framework,	choose	a
browser	to	run	against,	set	the	files	to	watch	for	changes,	and	bam!	Continuous	automated
testing.	Simply	check	the	output	window	for	failed	or	passed	tests.

www.it-ebooks.info

https://github.com/karma-runner/karma/raw/master/thesis.pdf
http://www.it-ebooks.info/

Importance	of	combining	Karma	with	AngularJS
Karma	was	built	for	AngularJS.	Prior	to	Karma,	there	was	a	lack	of	automated	testing
tools	for	web-based	JavaScript	developers.

Remember,	Karma	is	a	test	runner,	not	a	test	framework.	Its	job	is	to	run	tests	and	report
which	tests	will	pass	or	fail.	Why	is	this	helpful?	A	test	framework	is	where	you	will	write
your	tests.	Apart	from	doing	this,	you	will	need	to	be	focused	on	running	the	tests	easily
and	seeing	results.	Karma	easily	runs	tests	across	several	different	browsers.	Karma	also
has	some	other	features,	such	as	file	watching,	which	will	be	discussed	further	in	detail
later	in	the	book.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing	Karma
Time	to	start	using	Karma.	Installations	and	applications	are	constantly	changing.	The
following	guide	is	intended	to	be	brief	in	the	hope	that	you	will	go	to	the	Karma	website,
http://karma-runner.github.io/,	and	find	the	latest	instructions.

The	main	focus	of	this	section	will	be	on	the	specific	configuration	used	in	this	book	and
not	an	in-depth	installation	guide.

www.it-ebooks.info

http://karma-runner.github.io/
http://www.it-ebooks.info/

Installation	prerequisites
To	install	Karma,	you	need	to	have	Node.js	on	your	computer.	Node.js	runs	on	Google’s
V8	engine	and	allows	JavaScript	to	be	run	on	several	operating	systems.

Developers	can	publish	node	applications	and	modules	using	npm.	This	allows	developers
to	quickly	integrate	applications	and	modules	into	their	applications.

Karma	runs	and	is	installed	through	the	npm	package,	and	therefore	you	need	Node.js
before	you	use	or	install	Karma.	To	install	Node.js,	go	to	http://nodejs.org/	and	follow	the
installation	instructions.

Assuming	you	have	Node.js	installed,	type	the	following	command	in	the	command
prompt	to	install	Karma:

$	npm	install	karma	-g

The	preceding	command	uses	npm	to	install	Karma	globally	using	-g.	What	this	means	is
that	you	can	use	Karma	on	the	command	prompt	by	simply	typing	the	following:

$	karma	-–version

By	default,	installing	Karma	will	install	karma-chrome-launcher	and	karma-jasmine	as
dependencies.	Ensure	that	these	modules	are	installed	globally	as	well.

www.it-ebooks.info

http://nodejs.org/
http://www.it-ebooks.info/

Configuring	Karma
Karma	comes	equipped	with	an	automated	way	to	create	a	configuration	file.	To	use	the
automated	way,	type	the	following	command:

$	karma	init

Here	is	a	sample	of	the	options	chosen:

Customizing	Karma’s	configuration
The	following	instructions	describe	the	specific	configuration	required	to	get	Karma
running	for	the	project.	Customization	includes	the	test	framework	(Jasmine),	browser
(Chrome)	to	test	with,	and	files	to	test.	To	customize	the	configuration,	open	up
karma.conf	and	perform	the	following	steps:

1.	 Ensure	that	the	enabled	framework	says	jasmine	using	the	following	code:

frameworks:	['jasmine'],

2.	 Configure	the	test	directory.	Note	that	the	following	definition	needs	to	include	the
tests	required	to	run	along	with	any	potential	dependencies.	The	directory	that	will
hold	our	tests	is	/test/unit/:

files:	[

'test/unit/**/*.js'

],

3.	 Set	the	test	browser	to	Chrome.	It	will	then	be	initialized	and	will	run	a	pop	up	after
every	test:

www.it-ebooks.info

http://www.it-ebooks.info/

browsers:	['Chrome'],

Confirming	Karma’s	installation	and	configuration
To	confirm	Karma’s	installation	and	configuration,	perform	the	following	steps:

1.	 Run	the	following	command	to	confirm	that	Karma	starts	with	no	errors:

$	karma	start

2.	 The	output	should	be	something	like	this:

$	INFO	[karma]:	Karma	v0.12.16	server	started	at	http://localhost:9876/

3.	 In	addition,	the	output	should	state	that	no	test	files	were	found:

$	WARN	[watcher]:	Pattern	"test/unit/**/*.js"	does	not	match	any	file.

4.	 The	output	should	do	this	along	with	a	failed	test	message:

$	Chrome	35.0.1916	(Windows	7):	Executed	0	of	0	ERROR	(0.016	secs	/	0	

secs)

This	is	expected	as	no	tests	have	been	created	yet.	Continue	to	the	next	step	if	Karma	is
started	and	you	will	see	your	Chrome	browser	with	the	following	output:

Common	installation/configuration	issues
If	Jasmine	or	Chrome	Launcher	are	missing,	perform	the	following	steps:

When	running	the	test,	an	error	might	occur	saying	missing	Jasmine	or	Chrome
Launcher.	If	you	get	this	error,	type	the	following	command	to	install	the	missing
dependencies:

$	npm	install	karma-jasmine	-g

$	npm	install	karma-chrome-launcher	-g

Retry	the	test	and	confirm	that	the	errors	have	been	resolved.

The	following	is	what	you	need	to	do	to	provide	permissions	(sudo/administrator):

In	some	cases,	you	might	not	be	able	to	install	npm_modules	globally	using	the	–g
command.	This	is	generally	due	to	permission	issues	on	your	computer.	The
resolution	is	to	install	Karma	directly	in	your	project	folder.	Use	the	same	command
without	–g	to	do	this:

$	npm	install	karma

Run	Karma	using	the	relative	path:

www.it-ebooks.info

http://www.it-ebooks.info/

$./node_modules/karma/bin/karma	--version

Now	that	Karma	is	installed	and	running,	it’s	time	to	put	it	to	use.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	with	Karma
In	this	section,	you	will	create	a	test	to	confirm	Karma	is	working	as	expected.	To	do	this,
perform	the	following	steps:

1.	 Create	the	test	directory.	In	the	Karma	configuration,	tests	were	defined	in	the
following	directory:

files:	[

'test/unit/**/*.js'

],

Go	ahead	and	create	the	test/unit	directory.

2.	 Create	a	new	file	named	firstTest.js	in	the	test/unit	directory.
3.	 Write	the	first	test	as	follows:

describe('when	testing	karma',	function	(){

		it('should	report	a	successful	test',	function	(){

				expect(true).toBeTruthy();

		});

});

4.	 The	preceding	test	uses	Jasmine	functions	and	has	the	following	properties:

describe:	This	provides	a	brief	string	description	of	the	things	that	will	be
tested
it:	This	provides	a	brief	string	of	the	specific	assertion
expect:	This	provides	a	way	to	assert	values
toBeTruthy:	This	is	one	of	several	properties	on	an	expectation	that	can	be	used
to	make	assertions

This	test	has	no	real	value	other	than	to	confirm	the	output	of	a	passing	test.

5.	 Bam!	Check	your	console	window	and	see	that	Karma	has	executed	your	test.	Your
command	line	should	say	something	like	this:

$	INFO	[watcher]:	Added	file	"./test/unit/firstTest.js"

This	output	means	that	Karma	automagically	recognized	that	a	new	file	was	added.
The	next	output	should	say	something	like	this:

$	Chrome	35.0.1916	(Windows	7):	Executed	1	of	1	SUCCESS	(0.02	secs	/	

0.015	secs)

This	means	your	test	has	passed!

www.it-ebooks.info

http://www.it-ebooks.info/

Confirming	the	Karma	installation
Now	the	initial	set	up	and	configuration	of	Karma	is	complete.	Here	is	a	review	of	the
steps:

Installed	Karma	through	the	npm	command
Initialized	a	default	configuration	through	the	karma	init	command
Configured	Karma	with	Jasmine	and	a	test/unit	test	directory
Started	Karma	and	confirmed	it	could	be	opened	with	Chrome
Added	a	Jasmine	test,	firstTest.js,	to	our	test/unit	test	directory
Karma	recognized	that	firstTest.js	had	been	added	to	the	test	directory
Karma	executed	our	firstTest.js	and	reported	our	output

With	a	couple	of	steps,	you	were	able	to	see	Karma	running	and	executing	tests
automatically.	From	a	TDD	perspective,	you	can	focus	on	moving	tests	from	failing	to
passing	without	much	effort.	No	need	to	refresh	the	browser;	just	check	the	command
output	window.	Keep	Karma	running	and	all	your	tests	and	files	will	automatically	be
added	and	run.

In	the	next	sections,	you	will	see	how	to	apply	Karma	with	a	TDD	approach.	If	you’re	OK
with	Karma	so	far	and	want	to	move	on	to	Protractor,	continue	to	the	next	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	Karma	with	AngularJS
Here,	you	will	walk	through	a	TDD	approach	to	an	AngularJS	component.	By	the	end	of
this	chapter,	you	should	be	able	to:

Feel	confident	about	using	Karma	and	its	configuration
Understand	the	basic	components	of	a	Jasmine	test
Start	to	understand	how	to	integrate	a	TDD	approach	in	an	AngularJS	application

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	AngularJS
An	easy	method	for	installing	AngularJS	into	projects	is	to	use	Bower.	Feel	free	to	install
AngularJS	into	your	project	in	any	way	you	prefer.	Following	is	a	brief	description	on
how	to	install	and	use	Bower.

Bower
Bower	is	a	package	manager	for	JavaScript	components.	Bower	allows	client-side
JavaScript	components	to	be	versioned	and	automatically	downloaded	into	your	projects.
This	allows	you	to	upgrade	third-party	tools	and	components	and	provide	an	easy,
standard	way	to	use	tools	such	as	AngularJS,	Bootstrap,	and	many	more.

Bower	installation

Bower	is	an	npm	module,	just	like	Karma.	Ensure	you	have	Node.js	installed	before	you
try	to	install	Bower	using	the	following	steps:

1.	 Ensure	you	have	Bower	installed	using	this	code:

$	npm	install	bower	-g

2.	 Initialize	the	bower.json	configuration	in	the	root	of	the	project:

$	bower	init

//This	will	create	a	bower.json	file	which	contains	the	dependent	

packages

//Answer	default	to	all	the	questions.

The	output	should	be	something	like	what	is	shown	in	the	following	screenshot:

That	is	it.	Now	Bower	is	installed	and	ready	to	download	JavaScript	packages	into	your
project.

Installing	AngularJS
Use	the	following	command	to	install	AngularJS	using	Bower:

www.it-ebooks.info

http://www.it-ebooks.info/

$	bower	install	angular

Type	the	previous	command	in	your	command	prompt	for	the	directory	you	will	be
working	in.	After	the	installation	is	complete,	look	at	your	directory	and	confirm	that	a
bower_componets	directory	was	created.	Inside	this,	there	should	be	a	folder	for
AngularJS:

Installing	Angular	mocks
Angular	mocks	allows	you	to	test	AngularJS	components.	The	official	definition,	which	is
found	at	https://docs.angularjs.org/api/ngMock,	is	as	follows:

“The	ngMock	module	provides	support	to	inject	and	mock	Angular	services	into	unit
tests.	In	addition,	ngMock	also	extends	various	core	ng	services	such	that	they	can	be
inspected	and	controlled	in	a	synchronous	manner	within	test	code.”

To	install	Angular	mocks,	simply	use	Bower:

$	bower	install	angular-mocks

Initializing	Karma
A	karma.conf	file	is	required	to	tell	Karma	how	it	should	run	for	the	application	in
question.	The	best	way	to	initialize	it	is	to	run	the	following	command	in	the	command
prompt:

$	karma	init

Use	the	default	answers.	After	karma.conf	has	been	created	in	the	current	directory,	open
up	the	configuration.	The	one	configuration	that	needs	to	change	is	the	definition	of	the
files	for	Karma	to	use.	Use	the	following	definition	in	the	files	section,	which	defines	the
files	required	to	run	the	test:

files:	[

			'bower_components/angular/angular.js',

			'bower_components/angular-mocks/angular-mocks.js',

			'app/**/*.js',

			'spec/**/*.js'

],

The	preceding	configuration	loads	angular.js,	JavaScript	files	in	the	app	directory,	and
your	tests	in	the	spec	folder.

Ensure	that	Karma	can	run	your	configuration:

$	karma	start

The	command	output	should	state	something	like	this:

www.it-ebooks.info

https://docs.angularjs.org/api/ngMock
http://www.it-ebooks.info/

$	Chrome	35.0.1916	(Windows	7):	Executed	0	of	0	ERROR	(0.01	secs	/	0	secs)

That	is	it.	Karma	is	now	running	for	the	first	AngularJS	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	with	AngularJS	and	Karma
The	purpose	of	this	first	test	using	Karma	is	to	create	a	dynamic	to-do	list.	This	walk
through	will	follow	the	TDD	steps	we	discussed	in	Chapter	1,	Introduction	to	Test-driven
Development:	test	first,	make	it	run,	and	make	it	better.	This	will	allow	you	to	gain	more
experience	in	using	TDD	with	AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

A	development	to-do	list
Before	you	start	the	test,	set	your	focus	on	what	needs	to	be	developed	using	a
development	to-do	list.	This	will	allow	you	to	organize	your	thoughts.	Here	is	the	to-do
list:

Maintain	a	list	of	items:

The	example	list	consists	of	test,	execute,	and	refactor

Add	an	item	to	the	list:

The	example	list	after	you	add	the	item	is	test,	execute,	refactor,	and	repeat

Remove	an	item	from	the	list:

The	example	list	after	you	add	and	remove	the	item	is	test,	execute,	and	refactor

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	a	list	of	items
The	first	development	item	is	to	provide	you	with	the	ability	to	have	a	list	of	items	on	a
controller.	The	next	couple	of	steps	will	walk	you	through	the	TDD	process	of	adding	the
first	feature	using	the	TDD	life	cycle	that	is	test	first,	make	it	run,	make	it	better.

Test	first
Determining	where	to	start	is	often	the	hardest	part.	The	best	way	is	to	remember	the	3	A’s
(Assemble,	Act,	and	Assert)	and	start	with	the	base	Jasmine	template	format.	The	code	to
do	this	is	as	follows:

describe('',function(){

beforeEach(function(){

		});

		it('',function(){

		});

});

describe:	This	defines	the	main	feature	we	are	testing.	The	string	will	explain	the
feature	in	readable	terms	and	then	the	function	will	follow	with	the	test.
beforeEach:	This	is	the	assemble	step.	The	function	defined	in	beforeEach	will	get
executed	before	every	assert.	It	is	best	to	put	the	test	setup	required	before	each	test
in	this	function.
it:	This	is	the	act	and	assert	step.	In	the	it	section,	you	will	perform	the	action	being
tested,	followed	by	some	assertion.	The	act	step	doesn’t	have	to	go	into	the	it
function.	Depending	on	the	test,	it	might	be	more	suited	in	the	beforeEach	function.

Assemble,	Act,	and	Assert	(3	A’s)
Now	that	the	template	is	there,	we	can	start	filling	in	the	pieces.	We	will	again	follow	the	3
A’s	mantra.

The	following	are	the	two	parts	of	the	assemble	section.

In	the	first	part,	we	initialize	the	module	using	the	following	code:

...

beforeEach(function(){

		module('todo');

});

...

This	code	will	use	the	Angular	mocks	JavaScript	library	to	initialize	the	AngularJS
module	being	tested.	We	haven’t	defined	the	todo	module,	but	we	will	do	this	after	we	get
a	failing	test.

The	second	part	talks	about	the	scope	of	TodoController.	The	TodoController	scope
will	contain	the	list	of	items	on	its	scope	variable.	It	is	required	that	the	test	has	access	to
the	scope	of	TodoController.	Angular	mocks	will	be	used	to	get	this.	Add	the	following

www.it-ebooks.info

http://www.it-ebooks.info/

code	to	beforeEach	to	get	the	controller’s	scope:

//	scope	–hold	items	on	the	controller

var	scope	=	{};

beforeEach(function(){

//...

//inject	–	access	angular	controllerinject(function($controller){

		//$controller	–	initialize	controller	with	test	scope

		$controller('TodoController',{$scope:scope});

});

//...

});

The	following	is	a	brief	explanation	of	each	of	the	code	elements:

scope:	This	variable	is	used	to	hold	and	test	the	list	items	on	the	controller.
inject:	The	Angular	mocks	function	is	used	to	access	AngularJS’s	$controller.
This	essentially	allows	you	to	get	access	and	inject	dependencies	into	AngularJS
objects.
$controller:	This	initializes	the	scope	of	TodoController.	The	test’s	scope	variable
will	now	contain	the	controller’s	scope.

In	the	case	of	“act”,	there	is	no	method	to	act	on.	The	scope	object	has	already	been
retrieved	as	part	of	the	assemble	step.

In	assert,	there	are	two	parts	again:

The	first	assertion	is	to	ensure	the	TodoController	scope	has	a	list	variable	defined
with	three	items.	The	list	variable	will	be	used	to	hold	the	list	of	all	the	items:

it('should	define	a	list	object',function(){

expect(scope.list).toBeDefined();

});

The	second,	third,	and	fourth	assertions	will	be	used	to	confirm	whether	the	data	in
the	list	is	in	the	correct	order,	that	is,	first	is	test,	second	is	execute,	and	third	is
refactor:

//Second	test

it('should	define	a	list	object',	function(){

expect(scope.list[0]).toEqual('test');

});

//Third	test

it('should	define	a	list	object',	function(){

expect(scope.list[1]).toEqual('execute');

});

//Fourth	test

it('should	define	a	list	object',	function(){

expect(scope.list[2]).toEqual('refactor');

});

Make	it	run
The	next	step	in	the	TDD	life	cycle	is	to	make	the	application	run	and	fix	the	code	so	that

www.it-ebooks.info

http://www.it-ebooks.info/

the	tests	pass.	Remember,	think	about	the	smallest	components	that	can	be	added	to	make
the	test	pass	by	proceeding	with	the	following	steps:

1.	 Run	Karma	by	typing	the	following	command:

$	karma	start

2.	 If	you	encounter	[$injector:moduler]	Failed	to	instantiate	module	todo	due
to	error,	then	it	can	be	due	to	the	following:

The	preceding	error	message	is	saying	that	the	todo	module	hasn’t	been	defined.
Since	the	error	message	is	telling	you	what	is	required,	this	is	the	perfect	place
to	start.	Create	a	new	file	in	the	app	directory	named	todo.	The	working
directory	should	now	look	something	like	this:

Add	the	todo	module	to	the	beginning	of	your	new	file	as	follows:

angular.module('todo',[]);

Review	the	console	window	where	Karma	is	running.	You	should	now	see	a
new	error.

3.	 Error:	The	[ng:areq]	argument	TodoController	is	not	a	function,	got
undefined:

This	error	message	is	describing	exactly	what	needs	to	be	done.	There	is	no	need
to	decipher	error	messages	or	stack	traces.	Simply	update	the	todo.js	file	so	it
contains	an	AngularJS	controller	as	follows:

angular.module('todo',[])

.controller('TodoController',[])

In	the	previous	code,	we	didn’t	try	and	define	the	logic	required;	we	only	added
the	smallest	component	to	meet	the	error	message.	Review	the	console	window
for	the	next	error.

4.	 Error:	The	expected	undefined	to	be	defined	as	follows:

The	new	error	message	is	again	clear.	We	can	also	see	that	the	code	has	now
passed	up	to	the	point	of	our	assertion	at	the	following	point:

expect(scope.list).toBeDefined();

As	there	is	no	list	on	the	scope,	you	need	to	add	one.	Update	the	app/todo.js
file	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

.controller('TodoController',['$scope',function($scope){

$scope.list	=	[];

}])

Review	the	console	window.

5.	 You	should	now	see	one	of	the	four	tests	pass!	This	means	you	have	successfully
used	TDD	and	Karma	to	get	your	first	test	to	pass.	Now	you	need	to	fix	the	other
three.	The	next	error	is	Expected	undefined	to	equal	'test':

The	error	output	again	describes	exactly	what	needs	to	happen.	You	just	need	to
initialize	the	array	with	the	elements	test,	execute,	and	run.	Go	to	app/todo.js
and	add	the	data	to	the	array	initialization:

angular.module('todo',[])

.controller('TodoController',['$scope',function($scope){

$scope.list	=	['test','execute','refactor'];

}]);

Review	the	output	in	the	Karma	window.

6.	 Excellent!	The	output	is	in	green	and	states	that	all	the	tests	have	passed.

The	result	module	and	controller	code	from	this	step	is	as	follows:

//A	module	for	the	application

angular.module('todo',[])

		//A	controller	to	manage	the	to-do	items.controller('TodoController',

['$scope',	function($scope){

//the	initialization	of	items	on	the	controller	scope

$scope.list	=	['test','execute','refactor'];

}]);

Now	that	the	“make	it	run”	step	is	complete,	you	can	move	on	to	the	next	step	and	make	it
better.

Make	it	better
Until	this	point,	there	was	nothing	required	to	directly	refactor	or	that	had	been	identified
in	the	development	to-do	list.	A	review	of	the	development	to-do	list	shows	that	an	item
can	be	crossed	out:

View	a	list	of	to-do	list	items:

The	example	list	consists	of	test,	execute,	and	refactor

Add	an	item	to	a	to-do-list:

The	example	list	after	you	add	the	item	will	consist	of	test,	execute,	refactor,	and
repeat

Remove	an	item	from	a	to-do-list:

The	example	list	after	you	add	and	then	remove	the	item	will	consist	of	test,
execute,	and	refactor

www.it-ebooks.info

http://www.it-ebooks.info/

Next	up	is	the	requirement	to	add	a	new	item	to	the	list.	The	TDD	rhythm	will	be	followed
again:	test	first,	make	it	run,	and	make	it	better.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding	a	function	to	the	controller
The	next	task	is	to	give	the	controller	the	ability	to	add	items	to	the	scope	list.	This	will
require	the	addition	of	a	method	to	the	scope.	This	walk-through	will	follow	the	same
TDD	steps	as	done	previously.

Test	first
Instead	of	creating	a	new	file	and	duplicating	some	of	the	assemble	steps,	the	following
test	will	be	inserted	under	the	last	it	method.	The	reason	is	because	the	same	module	and
controller	will	be	used:

describe('when	using	a	to-do	list',	function(){

		var	scope	=	null;

		beforeEach(function(){

		//...

		});

		//...

		describe('',function(){

				beforeEach(function(){

				});

				it('',function(){

				});

		});

});

Assemble,	Act,	and	Assert	(3	A’s)
Now	that	the	template	is	there,	we	can	start	filling	in	the	gaps	using	the	3	A’s	mantra:

1.	 Assemble:	There	is	no	initialization	or	setup	required,	as	the	module	and	controller
scope	will	be	inherited.

2.	 Act:	Here,	you	need	to	act	on	the	add	method	with	a	new	item.	We	place	the	act
function	into	the	before	each	function.	This	allows	us	to	repeat	the	same	step
if/when	more	tests	are	added:

beforeEach(function(){

scope.add('repeat');

});

3.	 Assert:	Here,	an	item	should	be	added	to	the	list,	and	then	you	need	to	confirm	that
the	last	item	in	the	array	is	as	expected:

it('should	add	item	to	last	item	in	list',function(){

var	lastIndexOfList	=	scope.list.length	-	1;

expect(scope.list[lastIndexOfList]).toEqual('repeat');

});

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	run
The	next	step	in	the	TDD	life	cycle	is	to	make	it	run.	Remember,	think	about	the	smallest
components	that	can	be	added	to	make	the	test	pass,	as	follows:

1.	 Ensure	Karma	is	running	in	your	console	by	typing	in	the	following	command:

$	karma	start

2.	 The	first	error	will	state	TypeError:	undefined	is	not	a	function:

The	error	refers	to	the	following	line	of	code:

scope.add('repeat');

The	error	is	telling	you	that	the	add	method	hasn’t	been	defined.	The	add
function	will	need	to	be	added	to	the	app/todo.js	code.	The	controller	has
already	been	defined,	so	the	add	function	needs	to	be	placed	on	the	controller’s
scope:

angular.module('to-do',[])

.controller('TodoController',['$scope',function($scope){

//...

$scope.add	=	function(){};

}]);

Notice	how	the	add	function	doesn’t	contain	any	logic.	The	smallest	component
has	been	added	to	get	the	test	to	satisfy	the	error	message.
Review	the	console	window	for	the	next	error.

3.	 Error:	Expected	'refactor'	to	equal	'repeat':

Have	a	look	at	the	following	expectation:

it('should	add	item	to	last	item	in	list',function(){

		var	lastIndexOfList	=	scope.list.length	-	1;

		expect(scope.list[lastIndexOfList]).toEqual('repeat');

});

The	failed	assertion	in	step	2	is	telling	us	that	based	on	the	preceding
expectation,	the	expected	result	of	repeat	is	not	what	the	last	item	in	the	list
has.	The	smallest	possible	thing	that	can	be	added	to	make	this	assertion	pass	is
to	push	repeat	to	the	end	of	the	list	in	the	add	function.	Here	is	how	to	do	this:

//...

$scope.add	=	function(){

		$scope.list.push('repeat');

};

//...

Review	the	console	to	see	what	the	next	output	says.

4.	 Success!	All	five	tests	have	now	passed.

The	resulting	code	added	to	get	the	tests	to	pass	is	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

//A	module	for	the	application

angular.module('todo',[])

		//A	controller	to	manage	the	to-do	items

.controller('TodoController',['$scope',	function($scope){

				//the	initialization	of	items	on	the	controller	scope

				$scope.list	=	['test','execute','refactor'];

				$scope.add	=	function(){

								$scope.list.push('repeat');

				};

}]);

Make	it	better
The	main	thing	that	we	need	to	refactor	is	that	the	add	function	still	hasn’t	been	fully
implemented.	It	contains	a	hardcoded	value,	and	the	minute	we	send	in	a	different	item
into	the	add	function,	the	test	will	fail.

Keep	Karma	running	so	we	can	keep	passing	the	tests	as	changes	are	made.	The	main
issue	with	the	current	add	method	is	as	follows:

It	doesn’t	accept	any	parameter
It	doesn’t	push	a	parameter	onto	the	list	but	uses	a	hardcoded	value

The	resultant	add	function	should	now	look	as	follows:

$scope.add	=	function(item){

		$scope.list.push(item);

};

Confirm	that	the	Karma	output	still	displays	success:

$	Chrome	35.0.1916	(Windows	7):	Executed	5	of	5	SUCCESS	(0.165	secs	/	0.153	

secs)

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
Self-test	questions	will	help	you	further	test	your	knowledge	of	using	TDD	with
AngularJS	and	Karma.

Q1.	How	do	you	use	Karma	to	create	a	configuration	file?

1.	 karma	config
2.	 karma	init
3.	 karma	–config	karma.conf.js

Q2.	The	Jasmine	test	method	named	before	gets	executed	before	every	test.

1.	 True
2.	 False

Q3.	Bower	is	used	to	install	Karma.

1.	 True
2.	 False

Q4.	The	3	A’s	stand	for	which	one	of	these?

1.	 A	group	of	super	heroes
2.	 Assemble,	Act,	and	Assert
3.	 Accept,	approve,	and	act

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	reviewed	JavaScript	testing	frameworks	and	tools	and	discussed	how
Vojtech	Jína	created	Karma.	We	saw	how	to	install,	configure,	and	run	Karma.	Finally,
you	have	walked	through	an	example	of	using	Karma	with	TDD.	In	the	next	chapter,	you
will	learn	about	end-to-end	testing	with	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	End-to-end	Testing	with
Protractor
Unit	testing	is	only	one	aspect	of	testing.	In	this	chapter,	we	will	look	at	end-to-end	testing
applications,	through	all	layers	of	an	application.	You	will	be	introduced	to	Protractor,	the
end-to-end	testing	tool	from	the	AngularJS	team.	We	will	look	into	why	it	was	created	and
the	problems	it	solves.	Finally,	we	will	see	how	to	install,	configure,	and	use	Protractor
with	TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

An	overview	of	Protractor
Protractor	is	an	end-to-end	testing	tool	that	runs	using	Node.js	and	is	available	as	an	npm
package.	Before	talking	about	Protractor	specifically,	you	need	to	understand	what	end-to-
end	testing	is.	End-to-end	testing	is	testing	an	application	against	all	the	interconnected
moving	parts	and	layers	of	an	application.	This	differs	from	unit	tests,	where	the	focus	is
on	individual	components	such	as	controllers,	services,	directives,	and	so	on.	With	end-to-
end	testing,	the	focus	is	on	how	the	application	or	a	module,	as	a	whole,	works,	such	as
confirming	the	click	of	a	button	does	x,	y,	and	z.

Protractor	allows	the	end-to-end	testing	of	an	application.	This	includes	the	ability	to
simulate	the	click	of	a	button	and	interact	with	an	application	in	the	same	way	a	user
would.	It	then	allows	expectations	to	be	set	based	on	what	the	user	would	expect.	To	put
this	into	context,	think	about	the	following	user	specification:

Assuming	I	input	abc	into	the	search	box,	the	following	should	occur:

The	search	button	is	hit
At	least	one	result	should	be	received

The	preceding	specification	describes	a	basic	search	feature.	Nothing	in	the	preceding
specification	describes	a	controller,	directive,	or	service;	it	only	describes	the	expected
application	behavior.	If	a	user	were	to	test	the	specification,	they	may	perform	the
following	steps:

1.	 Point	the	browser	to	the	website
2.	 Select	the	input	field
3.	 Type	abc	in	the	input	field
4.	 Click	on	the	Search	button
5.	 Confirm	that	the	search	output	displays	at	least	one	result.

The	structure	and	syntax	of	Protractor	mirrors	that	of	Jasmine	and	the	tests	you	wrote	in
Chapter	2,	The	Karma	Way.	You	can	think	of	Protractor	as	a	wrapper	around	Jasmine,	with
added	features	to	support	end-to-end	testing.	To	write	an	end-to-end	test	with	Protractor,
we	can	follow	the	same	steps	as	described	in	the	preceding	steps,	but	with	code.	Here	are
the	steps	in	code:

1.	 Point	the	browser	to	the	website:

browser.get('/');

2.	 Select	the	input	field:

var	inputField	=	element.all(by.css('input'));

3.	 Type	abc	in	the	input	field:

inputField.setText('abc');

4.	 Click	on	the	Search	button:

www.it-ebooks.info

http://www.it-ebooks.info/

inputField.click();

5.	 Find	the	search	result	details	on	the	page:

var	searchResults	=	element.all(by.css('#searchResult');

6.	 Finally,	the	assertion	needs	to	be	made	that	at	least	one	or	more	search	results	are
available	on	the	screen:

expect(searchResults).count()	>=	1);

As	a	complete	test,	the	code	will	be	as	follows:

describe('Given	I	input	'abc'	into	the	search	box',function(){

		//1	–	Point	browser	to	website

		browser.get('/');

		//2	–	Select	input	field

var	inputField	=	element.all(by.css('input'));

//3	-	Type	abc	into	input	field

inputField.setText('abc');

//4	-	Push	search	button

inputField.click();

it('should	display	search	results',function(){

				//	5	-	Find	the	search	result	details

				var	searchResults	=	element.all(by.css('#searchResult');

				//6	-	Assert

				expect(searchResults).count()	>=	1);

		});

});

That’s	it!	When	Protractor	runs,	it	will	open	a	browser,	go	to	the	website,	follow	the
instructions,	and	finally	check	the	expectations.	The	trick	with	end-to-end	testing	is	having
a	clear	vision	on	what	the	user	specification	is,	and	then	translating	that	specification	to
code.

The	previous	example	is	a	high-level	view	of	what	will	be	described	throughout	this
chapter.	Now	that	you	have	been	introduced	to	Protractor,	the	rest	of	the	chapter	will	show
how	Protractor	works	behind	the	scenes,	how	to	install	it,	and	finally,	walk	you	through	a
complete	example	using	TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

Origins	of	Protractor
Protractor	is	not	the	first	end-to-end	testing	tool	that	the	AngularJS	team	built.	The	first
tool	was	called	Scenario	Runner.	In	order	to	understand	why	Protractor	was	built,	we
need	to	first	look	at	its	predecessor:	Scenario	Runner.

www.it-ebooks.info

http://www.it-ebooks.info/

End	of	life
Scenario	Runner	is	in	maintenance	mode	and	has	reached	its	end	of	life.	It	has	been
deprecated	in	place	of	Protractor.	In	this	section,	we	will	look	at	what	Scenario	Runner
was	and	what	gaps	the	tool	had.

www.it-ebooks.info

http://www.it-ebooks.info/

The	birth	of	Protractor
Julie	Ralph	is	the	primary	contributor	to	Protractor.	According	to	Julie	Ralph,	the
motivation	for	Protractor	was	based	on	the	following	experience	with	Angular	Scenario
Runner,	on	another	project	within	Google	(http://javascriptjabber.com/106-jsj-protractor-
with-julie-ralph/):

We	tried	using	the	Scenario	Runner.	And	we	found	that	it	really	just	couldn’t	do	the	things
that	we	needed	to	test.	We	needed	to	test	things	like	logging	in.	And	your	login	page	isn’t
an	Angular	page.	And	the	Scenario	Runner	couldn’t	deal	with	that.	And	it	couldn’t	deal
with	things	like	popups	and	multiple	windows,	navigating	the	browser	history,	stuff	like
that.

Based	on	her	experience	with	Scenario	Runner,	Julie	Ralph	decided	to	create	Protractor	to
fill	the	gaps.

Protractor	takes	advantage	of	the	maturity	of	the	Selenium	project,	and	wraps	up	its
methods	so	that	it	can	be	easily	used	for	AngularJS	projects.	Remember,	Protractor	is
about	testing	through	the	eyes	of	the	user.	It	was	designed	to	test	all	layers	of	an
application:	Web	UI,	backend	services,	persistence	layer,	and	so	on.

www.it-ebooks.info

http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
http://www.it-ebooks.info/

Life	without	Protractor
Unit	testing	is	not	the	only	testing	that	needs	to	be	written	and	maintained.	Unit	tests	focus
on	small	individual	components	of	an	application.	By	testing	small	components,	the
confidence	in	the	code	and	logic	grows.	Unit	tests	don’t	focus	on	how	the	complete
system	works	when	interconnected.

End-to-end	testing	with	Protractor	allows	the	developer	to	focus	on	the	complete	behavior
of	a	feature	or	module.	Going	back	to	the	search	example,	the	test	should	only	pass	if	the
whole	user	specification	passes;	enter	data	into	the	search	box,	click	on	the	Search	button,
and	see	the	results.

Protractor	is	not	the	only	end-to-end	testing	framework	out	there,	but	it	is	the	best	choice
for	AngularJS	applications.	Here	are	a	few	reasons	why	you	should	choose	Protractor:

It	is	documented	throughout	the	AngularJS	tutorials	and	examples.
It	can	be	written	using	multiple	JavaScript	testing	frameworks,	including	Jasmine	and
Mocha.
It	provides	convenience	methods	for	AngularJS	components,	including	waiting	for	a
page	to	load,	expectations	on	promises,	and	so	on.
It	wraps	Selenium	methods	that	automatically	wait	for	promises	to	be	fulfilled.
It	is	supported	by	SaaS	(Software	as	a	Service)	providers	such	as	Sauce	Labs,	which
is	available	at	https://saucelabs.com/.
It	is	supported	and	maintained	by	the	same	company	that	maintains	AngularJS	and
Google.

www.it-ebooks.info

https://saucelabs.com/
http://www.it-ebooks.info/

Protractor	installation
It’s	time	to	start	getting	our	hands	dirty,	and	install	and	configure	Protractor.	Installations
and	applications	are	constantly	changing.	The	main	focus	will	be	on	the	specific
configuration	used	in	this	book,	and	not	an	in-depth	installation	guide.	There	are	several
varying	different	configurations,	so	please	review	the	Protractor	site	for	additional	details.
Please	visit	the	following	website	to	find	the	latest	installation	and	configuration	guide:

http://angular.github.io/protractor/

For	this	book,	we	will	only	be	using	the	chromeOnly	configuration.	The	chromeOnly
configuration	doesn’t	require	several	moving	parts,	and	allows	you	to	get	up	to	speed
quickly.	As	your	tests	grow	and	you	are	required	to	support	multiple	browsers,	running
tests	with	a	Selenium	server	or	using	something	like	Sauce	Labs	should	be	reviewed.
Appendix	A,	Integrating	Selenium	Server	with	Protractor	describes	how	to	set	up	a
standalone	Selenium	server.

www.it-ebooks.info

http://angular.github.io/protractor/
http://www.it-ebooks.info/

Installation	prerequisites
Protractor	has	the	following	prerequisites:

Node.js:	Protractor	is	a	Node.js	module	available	using	npm.	The	best	way	to	install
Node.js	is	to	follow	the	instructions	on	the	official	site	at	http://nodejs.org/download/.
Chrome:	This	is	a	web	browser	built	by	Google.	It	will	be	used	to	run	end-to-end
tests	in	Protractor	without	the	need	for	a	Selenium	server.	Follow	the	installation
instructions	on	the	official	site	at	http://www.google.com/chrome/browser/.
Selenium	WebDriver	for	Chrome:	This	is	a	tool	that	allows	you	to	interact	with
web	applications.	Selenium	WebDriver	is	provided	with	the	Protractor	npm	module.
We	will	walk	through	the	instructions	as	we	install	Protractor.

www.it-ebooks.info

http://nodejs.org/download/
http://www.google.com/chrome/browser/
http://www.it-ebooks.info/

Installing	Protractor
Here	are	the	steps	to	install	Protractor:

1.	 Once	Node.js	is	installed	and	available	in	the	command	prompt,	type	the	following
command	to	install	Protractor	in	the	current	directory:

$	npm	install	protractor

The	previous	command	uses	Node’s	npm	command	to	install	Protractor	in	the	current
local	directory.

2.	 Confirm	the	current	directory	structure:

To	use	Protractor	in	the	command	prompt,	use	the	relative	path	to	the	Protractor	bin
directory.

3.	 Test	that	the	Protractor	version	can	be	determined	as	follows:

$./node_modules/protractor/bin/protractor	--version

Installing	WebDriver	for	Chrome
Here	are	the	steps	to	install	WebDriver	for	Chrome:

1.	 To	install	Selenium	WebDriver	for	Chrome,	go	to	the	webdriver-manager	executable
in	the	Protractor	bin	directory	that	can	be	found	at
./node_modules/protractor/bin/	and	type	the	following:

$./node_modules/protractor/bin/webdriver-manager	update

2.	 Confirm	the	directory	structure.

The	previous	command	will	create	a	Selenium	directory	containing	the	required
Chrome	driver	used	in	the	project.	The	node_modules	directory	should	now	look	like
the	following:

www.it-ebooks.info

http://www.it-ebooks.info/

The	installation	is	now	complete.	Both	Protractor	and	Selenium	WebDriver	for
Chrome	have	been	installed.	We	can	now	move	on	to	the	configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing	configuration
In	this	section,	we	will	be	configuring	Protractor	using	the	following	steps:

1.	 Start	with	a	standard	template	configuration.

Fortunately,	the	Protractor	installation	comes	with	some	base	configurations	in	its
installation	directory.	Going	back	to	the	local	node_modules	directory,	you	should
find	the	example	Chrome	configuration	in	the	example	folder:

The	example	directory	contains	example	configurations.	The	one	that	we	will	use	is
called	chromeOnlyConf.js.	The	chromeOnly	configuration	will	allow	us	to	run	end-
to-end	tests	in	Chrome	without	the	need	for	a	Selenium	server.	As	discussed	earlier,
running	a	Selenium	server	is	another	option	that	will	not	be	discussed	in	this	book.

2.	 Review	the	example	configuration	file:

The	chromeOnly	parameter	should	be	set	to	true,	as	follows:

exports.config	=	{		

//...

		chromeOnly:	true,

		//...

};

The	chromeDriver	parameter	will	have	to	be	modified	to	point	to	the	driver	we
installed,	as	follows:

exports.config	=	{	

//...	

		chromeDriver:	'../selenium/chromedriver',

		//...

};

The	capabilities	parameter	should	only	specify	the	name	of	the	browser:

exports.config	=	{	

//...	

		capabilities:	{

'browserName':	'chrome'

},		

//...

www.it-ebooks.info

http://www.it-ebooks.info/

};

The	final	important	configuration	is	the	source	file	declaration:

exports.config	=	{

		//...

		specs:	['example_spec.js'],

		//...

};

Excellent!	Now	we	have	Protractor	installed	and	configured.

Confirming	installation	and	configuration
To	confirm	installation,	Protractor	requires	at	least	one	file	defined	in	the	specs
configuration	section.	Before	adding	a	real	test	and	complicating	things,	create	an	empty
file	in	the	root	directory	called	confirmConfigTest.js.	Then,	add	the	test	to	the	specs
section	so	it	looks	like	this:

specs:	['confirmConfigTest.js'],

To	confirm	that	Protractor	has	been	installed,	run	Protractor	by	going	to	the	root	of	your
project	directory	and	type:

$./node_modules/protractor/bin/protractor	chromeOnlyConf.js

If	everything	was	set	up	correctly	and	installed,	you	should	see	something	similar	to	this
in	your	command	prompt:

Finished	in	0.0002	seconds

0	tests,	0	assertions,	0	failures

Common	installation/configuration	issues
The	following	are	some	common	issues	that	you	might	come	across	while	installing
WebDriver	for	Chrome:

Selenium	not	installed	correctly:	If	the	tests	have	errors	related	to	the	Selenium
WebDriver	location,	you	need	to	ensure	that	you	followed	the	steps	to	update
WebDriver.	The	update	step	downloads	the	WebDriver	components	into	the	local
Protractor	installation	folder.	Until	WebDriver	has	been	updated,	you	won’t	be	able	to
reference	it	in	the	Protractor	configuration.	An	easy	way	to	confirm	the	update	is	to
look	in	the	Protractor	directory	and	ensure	that	a	Selenium	folder	exists.
Unable	to	find	tests:	When	no	tests	are	executed	by	Protractor,	it	can	be
frustrating.	The	best	place	to	start	is	in	the	configuration	file.	Make	sure	the	relative
path	and	any	file	names	or	extensions	are	correct.

For	a	more	complete	list,	please	refer	to	the	official	Protractor	site	at
http://angular.github.io/protractor/.

www.it-ebooks.info

http://angular.github.io/protractor/
http://www.it-ebooks.info/

Hello	Protractor
With	the	Protractor	installation	and	configuration	complete,	you	can	look	at	writing	a	real
test.	This	section	will	walk	you	through	using	TDD	with	Protractor.	At	the	end	of	this
chapter,	you	should	be	able	to:

Feel	confident	in	using	and	configuring	Protractor
Understand	the	basic	components	of	a	Protractor	test
Start	to	understand	how	to	integrate	a	TDD	approach	to	end-to-end	testing

www.it-ebooks.info

http://www.it-ebooks.info/

TDD	end-to-end
Test-driven	development	is	not	a	silver	bullet.	It	is	a	foundation	of	principles	and
techniques	used	to	improve	efficiency,	quality,	and	much	more.	Knowing	how	to	apply
TDD	is	the	first	step,	but	knowing	when	to	apply	it	is	just	as	important.

When	applying	TDD,	you	are	coupling	tests	to	your	logic	and	code.	As	a	developer,	you
have	to	make	decisions	on	when	that	coupling	makes	sense	and	will	be	advantageous	to
your	project.	As	you	work	through	the	examples,	be	aware	that	they	show	you	how	to
apply	TDD	techniques.	As	you	use	these	practices	in	your	own	projects,	you	will	need	to
determine	the	depth	and	coupling	of	the	tests	that	your	project	and	specifications	require.

The	pre-setup
The	code	in	this	test	will	leverage	the	unit	tested	code	from	Chapter	2,	The	Karma	Way.
You	will	need	to	copy	the	code	to	a	new	directory.

As	a	reminder,	the	application	was	a	to-do	application	that	adds	and	deletes	items	from	a
list.	It	has	a	single	controller,	TodoController,	that	has	a	list	of	items	and	an	add	method.
The	application	didn’t	have	any	HTML	or	user	components.	We	will	use	a	TDD	approach
to	add	the	UI	elements.	The	current	code	directory	should	be	structured	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

The	setup
The	setup	will	mirror	the	installation	and	configuration	steps	from	earlier:

1.	 Install	Protractor.
2.	 Update	Selenium	WebDriver.
3.	 Configure	Protractor	based	on	the	example	configuration.

Follow	the	Protractor	installation	and	configuration	steps	you	learned	in	the	previous
section	in	a	new	project	directory.	The	only	difference	is	that	the	Protractor	tests	should	be
placed	in	a	spec/e2e	directory.	This	will	allow	you	to	easily	identify	the	tests	in	your
project	structure.	After	creating	a	spec/e2e	directory	update,	the	Protractor	configuration
spec	section	should	be	as	follows:

exports.config	=	{

		//...

		specs:	['spec/e2e/**/*.js'],

		//...

};

After	confirming	that	Protractor	has	been	installed	and	configured	properly,	you	can	start
the	first	test.

www.it-ebooks.info

http://www.it-ebooks.info/

Test	first
Now	that	Protractor	has	been	set	up,	the	testing	can	begin.	End-to-end	tests	are	slow	and
touch	multiple	layers	of	the	application.	They	also	require	the	full	application	to	be	set	up
and	running	in	order	to	test.	There	are	several	techniques	that	we	can	leverage	to	mock	a
local	environment.	Mocking	data	and	APIs	will	be	discussed	in	Chapter	7,	Give	Me	Some
Data.	This	first	end-to-end	test	will	only	have	a	Web	UI	layer.	No	additional	mocking	will
be	required.

As	mentioned	earlier,	Protractor	requires	a	running	application.	This	means	the	website
needs	to	be	available	for	you	to	point	your	browser	to	it.	A	simple	approach	to	serving
static	HTTP	content	is	to	use	the	http-server	npm	module.	The	http-server	module	is
perfect	for	a	local	development	environment,	but	probably	not	suited	for	the	final
application	infrastructure.	Your	production	website	might	be	developed	in	something	like
Express,	IIS,	or	Apache.

Installing	the	test	web	server
To	install	our	test	web	server,	we	will	use	the	http-server	node	module.	The	advantage
of	a	web	server	such	as	http-server	is	that	it	requires	very	little	configuration	and	can
just	start	and	run	the	website.	Here	are	the	steps	to	install	the	web	server:

1.	 Type	the	following	command	in	the	command	line:

$	npm	install	http-server

2.	 Now	create	a	stub	index.html	page	at	the	root	of	the	project	with	the	basic	HTML
components:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

</body>

</html>

3.	 Now	run	the	HTTP	server	and	ensure	the	page	is	loaded:

./node_modules/http-server/bin/http-server	-p	8080

4.	 Go	to	http://localhost:8080.	You	should	see	a	blank	page	get	loaded,	with	no
errors	in	the	command	or	on	the	web	page.	If	you	see	errors,	ensure	that	the	directory
has	the	required	index.html	file.	Now	that	you	have	a	working	website,	it	is	time	to
configure	Protractor	to	use	it.

Configuring	Protractor
Protractor	can	be	configured	with	a	base	URL	for	an	application.	By	specifying	a	base

www.it-ebooks.info

http://www.it-ebooks.info/

URL,	tests	will	look	cleaner	and	can	be	easily	configured	to	use	different	URLs	for	the
same	application.	Imagine	a	dev,	qa,	and	production	URL	that	use	the	same	tests,	but	have
different	URLs	that	need	to	be	tested.

As	we	will	be	running	this	locally,	we	will	need	to	use	http://localhost:8000	as	our
base	URL.	Update	the	Protractor	configuration	file	as	follows:

baseUrl:	'http://localhost:8080/'

Getting	down	to	business
End-to-end	testing	is	different	than	unit	testing.	Tests	will	interact	with	different	layers	of
an	application	throughout	a	single	scenario.	You	may	have	another	team	designing	the
HTML	elements,	CSS,	and	so	on.	The	development	team	will	then	have	to	integrate	the	UI
HTML	into	the	page.	The	TDD	approach	will	allow	you	to	create	tests	for	separate
components	independently.	The	idea	is	you	want	to	be	able	test	the	features	of	the
application	that	make	sense	to	test.	Testing	everything	blindly	can	be	a	waste	of	time	and	a
refactoring	nightmare.

In	this	case,	we	start	with	a	blank	canvas	of	a	page	and	want	to	test	the	behavior	of	the
primary	components.	We	will	follow	the	TDD	life	cycle	(test,	execute,	refactor).	In	the
upcoming	sections,	we	will	cover	the	following	steps:

1.	 Review	the	user	specification.
2.	 Write	down	the	main	tasks	that	need	to	be	developed.
3.	 Write	the	test	for	what	will	be	developed.

Specification

The	purpose	of	this	first	test	is	to	manage	a	dynamic	to-do	list.

The	development	to-do	list

We	will	need	a	development	to-do	list	to	set	our	focus	and	organize	our	development
tasks.	Perform	the	following	steps:

1.	 View	the	to-do	list	items

Example	list:	test,	execute,	refactor

2.	 Add	an	item	to	the	to-do	list

Example	list:	test,	execute,	refactor,	repeat

3.	 Remove	an	item	from	the	to-do	list

Example	list:	test,	execute,	refactor

If	you	recall,	in	our	previous	example,	we	set	up	the	backend	module	for	the	to-do	list
application.	In	this	case,	we	will	focus	on	managing	the	list	from	the	user’s	perspective.

Test	first

www.it-ebooks.info

http://www.it-ebooks.info/

Just	as	we	discussed	with	the	Karma	test,	start	with	the	3	A’s	(Assemble,	Act,	Assert).
Protractor	tests	are	written	in	the	same	Jasmine	style	and	setup,	so	you	don’t	have	to	learn
any	new	syntax.	Start	with	the	basic	Jasmine	template	format:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

});

describe:	This	defines	the	main	feature	we	test.	The	first	parameter	is	a	string	to
explain	the	feature	and	the	second	parameter	is	the	function	that	contains	the	test
steps.
beforeEach:	This	is	the	test	setup	and	Assemble	section.	The	function	defined	in
beforeEach	will	be	executed	before	every	Assert.	This	is	where	we	perform	any
setup	mocks,	spies,	and	other	components	needed	to	test.
it:	This	is	the	Act	and	Assert	section.	In	this	section,	you	will	perform	the	actual
action	being	tested,	followed	by	an	assertion.

Assemble,	Act,	Assert	(3	A’s)

Follow	the	3	A’s	mantra:

Assemble:	As	this	is	an	end-to-end	test,	we	will	initialize	by	directing	the	test	to	go
to	the	page	under	test.	In	this	case,	the	page	is	/.	This	is	because	we	set	the	base	URL
to	be	http://localhost:8080/	in	the	configuration	file.	So	the	code	will	look	like
the	following:

beforeEach(function(){

		browser.get('/');

});

Act:	In	the	first	test,	to	view	a	list	of	to-do	items,	there	is	no	button	to	be	clicked	or
action	to	be	done	in	order	to	get	the	list.	We	should	just	browse	to	the	page	and	see
the	list	of	to-do	items.
Assert:	This	is	our	first	failing	test,	which	we	will	write	using	Protractor.	The	test
needs	to	determine	whether	the	list	of	to-do	items,	that	is	test,	execute,	and	refactor,
is	available	on	the	page.	In	AngularJS,	this	will	be	done	using	ng-repeat,	meaning
each	item	in	a	list	will	be	repeated	with	some	special	HTML	to	display	an	individual
item.

As	Protractor	is	testing	the	actual	UI,	you	will	need	to	have	the	ability	to	select
HTML	elements.	One	of	the	benefits	of	Protractor	is	that	it	wraps	up	AngularJS
components	so	that	they	can	be	easily	tested.

In	the	preceding	test,	we	will	use	the	element	selector	with	the	by.repeater
selection.	In	our	case,	the	first	assertion	will	look	like	this:

it('',function(){

		var	todoListItems	=	element.all(by.repeater('item	in	list'));

		expect(todoListItems.count()).toBe(3);

www.it-ebooks.info

http://www.it-ebooks.info/

});

The	first	line	will	select	the	to-do	list	items	available	on	the	page.	The	second	will
Assert	that	the	item	count	is	3.	When	running	the	test,	ensure	the	web	server	is	still
running	using	the	following	command:

$./node_modules/http-server/bin/http-server	-p	8080

The	completed	test	looks	as	follows:

describe('',function(){

		//ASSEMBLE

		beforeEach(function(){

				//ACT

				browser.get('/');

		});

		it('',function(){

				var	todoListItems	=	element.all(by.repeater('item	in	list'));

				//ASSERT

				expect(todoListItems.count()).toBe(3);

		});

});

Running	the	test

The	steps	to	run	a	test	are	as	follows:

1.	 Run	the	Protractor	test	in	a	different	command	prompt,	using	the	following
command:

$	protractor	chromeOnlyConf.js

2.	 The	output	should	say	that	AngularJS	could	not	be	found:

$	Error:	Angular	could	not	be	found	on	the	page	http://localhost:8080/	

:	retries	looking	for	angular	exceeded

This	error	indicates	that	the	assertions	failed.

3.	 When	running	the	test,	you	should	see	a	Chrome	pop-up	with	the	page.	You	should
also	see	that	the	output	from	the	web	server	says	something	like	the	following:

GET	/”	“Mozilla/5.0	(Windows	NT	6.1;	WOW64)	AppleWebKit/537.36
(KHTML,	like	Gecko)	Chrome/36.0.1985.125	Safari/537.36

Excellent!	Now	you’ve	got	a	failing	Protractor	test,	it	is	time	to	make	it	run.

Make	it	run

The	next	step	in	the	TDD	life	cycle	is	to	execute	and	fix	the	code	so	that	the	tests	pass.	As
you	walk	through	the	test,	remember	to	use	the	smallest	components	that	can	be	added	to
make	the	test	pass:

1.	 As	the	first	error	says,	Angular	can't	be	found.	Add	AngularJS	to	the	page	just
before	the	closing	tag	for	the	body	as	follows:

//...

www.it-ebooks.info

http://www.it-ebooks.info/

		<script	src="bower_components/angular/angular.js"></script>

</body>

//...

2.	 Rerun	the	test	using	the	following	command:

$	protractor	chromeOnlyConf.js

The	output	should	now	display	the	following:

$	Error:	Angular	could	not	be	found	on	the	page	http://localhost:8080/	

:	angular	never	provided	resume	Bootstrap

3.	 Since	you	haven’t	specified	the	application	or	added	the	todo.js	page,	let’s	add	these
components	to	it	after	the	AngularJS	script:

//...

<body	ng-app="todo">

		<script	src="bower_components/angular/angular.js"></script>

		<script	src="app/todo.js"></script>

//...

4.	 Rerun	the	test	using	the	following	command:

$	protractor	chromeOnlyConf.js

The	output	should	now	display	that	our	expectations	failed:

$	Expected	0	to	be	3.

Great!	Now	there	are	no	more	execution	errors	in	our	page,	only	the	failed
expectations	on	the	number	of	list	items.

5.	 In	order	to	add	the	items	to	the	page,	we	will	need	to	add	a	reference	to
TodoController,	and	then	add	ng-repeat	for	each	item.	The	code	in	the	index.html
page	should	be	as	follows:

<div	ng-controller="TodoController">

		<ul	ng-repeat="item	in	list">

				{{item}}

		

</div>

6.	 Rerun	the	test	as	follows:

$	protractor	chromeOnlyConf.js

The	output	should	now	display	that	our	assertion	and	test	passed:

$	1	test,	1	assertion,	0	failures

The	completed	page	body	tag	will	now	look	as	follows:

<body	ng-app="todo">

<div	ng-controller="TodoController">

		<ul	ng-repeat="item	in	list">

				{{item}}

www.it-ebooks.info

http://www.it-ebooks.info/

		

</div>

		<script	src="bower_components/angular/angular.js"></script>

		<script	src="app/todo.js"></script>

</body>

Make	it	better

There	is	nothing	that	was	called	out	to	refactor.	Looking	at	our	to-do	list,	we	tackled	the
first	two	items	from	an	end-to-end	perspective.

1.	 View	the	to-do-list	items:

Example	list:	test,	execute,	refactor

2.	 Add	an	item	to	a	to-do-list:

Example	list:	test,	execute,	refactor,	repeat

3.	 Remove	an	item	from	a	to-do-list:

Example	list:	test,	execute,	refactor

I	will	leave	the	second	and	third	items	as	an	exercise,	so	that	you	can	further	explore	and
practice	TDD	with	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning	up	the	gaps
There	are	a	couple	of	things	that	were	discussed	in	this	chapter	that	need	some	further
clarification.	This	includes	the	following:

Where	is	the	asynchronous	logic?
How	to	really	implement	TDD	with	end-to-end	tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Async	magic
In	the	preceding	tests,	we	saw	some	magic	that	you	might	be	questioning.	Here	are	some
of	the	magic	components	that	we	glanced	over:

Loading	a	page	before	test	execution
Assertion	on	elements	that	get	loaded	in	promises

Loading	a	page	before	test	execution
In	the	previous	test,	we	used	the	following	code	to	specify	that	the	browser	should	point	to
the	home	page:

browser.get('/');

The	preceding	command	will	launch	the	browser	and	navigate	to	the	baseUrl	location.
Once	the	browser	reaches	the	page,	it	will	have	to	load	AngularJS	and	then	implement	the
AngularJS-specific	functions.	Our	tests	don’t	have	any	wait	logic,	and	this	is	part	of	the
beauty	of	Protractor	with	AngularJS.	The	waiting	for	page	loading	is	already	built	in	the
framework	for	you.	Your	tests	can	then	be	written	very	cleanly.

Assertion	on	elements	that	get	loaded	in	promises
The	assertions	and	expectations	already	have	promise	fulfillment	written	in	them.	In	the
case	of	our	test,	we	wrote	the	assertion	so	that	it	expects	the	count	to	be	three:

expect(todoListItems.count()).toBe(3);

However,	in	reality,	we	may	have	thought	that	we	needed	to	add	asynchronous	testing	to
the	assertion	in	order	to	wait	for	the	promise	to	be	fulfilled,	something	more	complicated
like	the	following:

it('',	function(done){

		var	todoListItems	=	element.all(by.repeater('item	in	list'));

		todoListItems.count().then(function(count){

				expect(count).toBe(3);

				done();

		});

})

The	preceding	code	is	longer,	more	granular,	and	harder	to	read.	Protractor	has	the	ability
for	certain	elements	built	in	to	expectations	to	make	tests	more	concise.

www.it-ebooks.info

http://www.it-ebooks.info/

TDD	with	Protractor
With	our	first	test,	there	is	a	clear	distinction	of	end-to-end	tests	and	unit	tests.	With	the
unit	test,	we	focused	on	strong	coupling	the	test	to	the	code.	As	an	example,	our	unit	test
spied	on	the	scope	for	a	specific	controller,	TodoController.	We	used	Angular	mocks	to
initialize	the	scope	with	a	variable	we	could	then	evaluate:

inject(function($controller){

		$controller('TodoController',{$scope:scope});

});

In	the	Protractor	test,	we	don’t	care	about	which	controller	we	are	testing	and	our	focus	is
on	the	user	perspective	of	the	test.	We	first	start	with	the	selection	of	a	particular	element
within	the	Document	Object	Model	(DOM);	in	our	case,	that	element	is	tied	to
AngularJS,	ng-repeat.	The	Assert	is	that	the	number	of	elements	for	a	specific	repeater	is
equal	to	the	expected	count.

With	the	loose	coupling	of	the	end-to-end	test,	we	can	write	a	test	that	focuses	on	the	user
specification,	which	initially	displays	three	elements,	and	then	have	the	freedom	to	write
that	in	the	page,	controllers,	and	so	on,	in	any	way	we	want.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
Use	TDD	with	Protractor	to	develop	the	third	development	to-do	list	item:

Q1.	Protractor	uses	which	of	the	following	frameworks?

1.	 Selenium
2.	 Unobtanium
3.	 Karma

Q2.	You	can	install	Angular	mocks	by	running	bower	install	angular-mocks.

1.	 True
2.	 False

Q3.	What	steps	does	the	TDD	life	cycle,	discussed	in	this	book,	consist	of?

1.	 Test	first,	make	it	run,	make	it	better	(refactor)
2.	 Test,	make	it	better	(refactor),	make	it	run
3.	 Make	it	run,	test,	make	it	better

Additionally,	if	you	want	more	practice,	add	a	functionality	to	the	application	to	remove
an	item	from	the	to-do	list.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	has	given	you	the	skills	necessary	to	install,	configure,	and	apply	TDD
principles	to	end-to-end	testing.	We	have	seen	how	we	can	leverage	the	existing	TDD	life
cycle	(test,	make	it	run,	make	it	better)	and	techniques	with	Protractor.	Protractor	is	an
important	part	of	testing	any	AngularJS	application.	It	bridges	the	gap	to	ensure	the	user’s
specifications	work	as	expected.	When	end-to-end	tests	are	written	to	the	user
specifications,	the	confidence	of	the	application	and	ability	to	refactor	grows.	In	the
upcoming	chapters,	we	will	see	how	to	apply	Karma	and	Protractor	in	more	depth	with
simple	straightforward	examples.	The	next	chapter	will	walk	you	through	testing
controllers,	using	Angular	mocks,	and	using	Protractor	to	enter	key	strokes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	The	First	Step
The	first	step	is	always	the	hardest.	This	chapter	provides	an	initial	introductory	walk-
through	of	how	to	use	TDD	to	build	an	AngularJS	application	with	a	controller,	model,
and	scope.	You	will	be	able	to	begin	the	TDD	journey	and	see	the	fundamentals	in	action.
Up	to	this	point,	this	book	has	focused	on	a	foundation	of	TDD	and	the	tools.	Now,	we
will	switch	gears	and	dive	into	TDD	with	AngularJS.	This	chapter	will	be	the	first	step	of
TDD.	We	have	already	seen	how	to	install	Karma	and	Protractor,	in	addition	to	small
examples	and	a	walk-through	on	how	to	apply	it.	This	chapter	will	focus	on	the	creation	of
social	media	comments.	It	will	also	focus	on	the	testing	associated	with	controllers	and	the
use	of	Angular	mocks	to	AngularJS	components	in	a	test.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing	the	application’s	specification
Create	an	application	to	enter	comments.	The	specification	of	the	application	is	as	follows:

Given	I	am	posting	a	new	comment,	when	I	click	on	the	submit	button,	the	comment
should	be	added	to	the	to-do	list
Given	a	comment,	when	I	click	on	the	like	button,	the	number	of	likes	for	the
comment	should	be	increased

Now	that	we	have	the	specification	of	application,	we	can	create	our	development	to-do
list.	It	won’t	be	easy	to	create	an	entire	to-do	list	of	the	whole	application.	Based	on	the
user	specifications,	we	have	an	idea	of	what	needs	to	be	developed.	Here	is	a	rough	sketch
of	the	UI:

Hold	yourself	back	from	jumping	into	the	implementation	and	thinking	about	how	you
will	use	a	controller	with	a	service,	ng-repeat,	and	so	on.	Resist,	resist,	resist!	Although
you	can	think	of	how	this	will	be	developed	in	the	future,	it	is	never	clear	until	you	delve
into	the	code,	and	that	is	where	you	start	getting	into	trouble.	TDD	and	its	principles	are
here	to	help	you	get	your	mind	and	focus	in	the	right	place.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	project
In	previous	chapters,	we	discussed	in	detail	how	a	project	should	be	set	up,	explained	the
different	components	involved,	and	walked	through	the	entire	process	of	testing.	I	will
skip	these	details	and	provide	a	list	in	the	following	section	for	the	initial	actions	to	get	the
project	set	up.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	the	directory
The	following	instructions	are	specific	to	setting	up	the	project	directory:

1.	 Create	a	new	project	directory.
2.	 Get	angular	into	the	project	using	Bower:

bower	install	angular

3.	 Get	angular-mocks	for	testing	using	Bower:

bower	install	angular-mocks

4.	 Initialize	the	application’s	source	directory:

mkdir	app

5.	 Initialize	the	test	directory:

mkdir	spec

6.	 Initialize	the	unit	test	directory:

mkdir	spec/unit

7.	 Initialize	the	end-to-end	test	directory:

mkdir	spec/e2e

Once	the	initialization	is	complete,	your	folder	structure	should	look	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	Protractor
In	Chapter	3,	End-to-end	Testing	with	Protractor,	we	discussed	the	full	installation	and
setup	of	Protractor.	In	this	chapter,	we	will	just	discuss	the	steps	at	a	higher	level:

1.	 Install	Protractor	in	the	project:

$	npm	install	protractor

2.	 Update	Selenium	WebDriver:

$./node_modules/protractor/bin/webdriver-manager	update

Make	sure	that	Selenium	has	been	installed.

3.	 Copy	the	example	chromeOnly	configuration	into	the	root	of	the	project:

$	cp	./node_modules/protractor/example/chromeOnlyConf.js	.

4.	 Configure	the	Protractor	configuration	using	the	following	steps:

1.	 Open	the	Protractor	configuration.
2.	 Edit	the	Selenium	WebDriver	location	to	reflect	the	relative	directory	to

chromeDriver:

chromeDriver:	'./node_modules/protractor/selenium/chromedriver',

3.	 Edit	the	files	section	to	reflect	the	test	directory:

specs:	['spec/e2e/**/*.js'],

5.	 Set	the	default	base	URL:

baseUrl:	'http://localhost:8080/',

Excellent!	Protractor	should	now	be	installed	and	set	up.	Here	is	the	complete
configuration:

exports.config	=	{

		chromeOnly:	true,

		chromeDriver:		'./node_modules/protractor/selenium/chromedriver',

		capabilities:	{

				'browserName':	'chrome'

		},

				

		baseUrl:	'http://localhost:8080/',

		specs:	['spec/e2e/**/*.js'],

};	

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	Karma
The	details	for	Karma	can	be	found	in	Chapter	2,	The	Karma	Way.	Here	is	a	brief
summary	of	the	steps	required	to	install	and	get	your	new	project	set	up:

1.	 Install	Karma	using	the	following	command:

npm	install	karma	-g

2.	 Initialize	the	Karma	configuration:

karma	init

3.	 Update	the	Karma	configuration:

				files:	[

						'bower_components/angular/angular.js',

						'bower_components/angular-mocks/angular-mocks.js',

						'spec/unit/**/*.js'

],

Now	that	we	have	set	up	the	project	directory	and	initialized	Protractor	and	Karma,	we
can	dive	into	the	code.	Here	is	the	complete	karma.conf.js	file:

module.exports	=	function(config)	{

		config.set({

				basePath:	'',

				frameworks:	['jasmine'],

				files:	[

'bower_components/angular/angular.js',

						'bower_components/angular-mocks/angular-mocks.js',

						'spec/unit/**/*.js'

],

				reporters:	['progress'],

				port:	9876,

				autoWatch:	true,

				browsers:	['Chrome'],

				singleRun:	false

		});

};

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	http-server
A	web	server	will	be	used	to	host	the	application.	As	this	will	just	be	for	local
development	only,	you	can	use	http-server.	The	http-server	module	is	a	simple	HTTP
server	that	serves	static	content.	It	is	available	as	an	npm	module.	To	install	http-server
in	your	project,	type	the	following	command:

$	npm	install	http-server

Once	http-server	is	installed,	you	can	run	the	server	by	providing	it	with	the	root
directory	of	the	web	page.	Here	is	an	example:

$./node_modules/http-server/bin/http-server

Now	that	you	have	http-server	installed,	you	can	move	on	to	the	next	step.

www.it-ebooks.info

http://www.it-ebooks.info/

Top-down	or	bottom-up	approach
From	our	development	perspective,	we	have	to	determine	where	to	start.	The	approaches
that	we	will	discuss	in	this	book	are	as	follows:

The	bottom-up	approach:	With	this	approach,	we	think	about	the	different
components	we	will	need	(controller,	service,	module,	and	so	on)	and	then	pick	the
most	logical	one	and	start	coding.
The	top-down	approach:	With	this	approach,	we	work	from	the	user	scenario	and
UI.	We	then	create	the	application	around	the	components	in	the	application.

There	are	merits	to	both	types	of	approaches	and	the	choice	can	be	based	on	your	team,
existing	components,	requirements,	and	so	on.	In	most	cases,	it	is	best	for	you	to	make	the
choice	based	on	the	least	resistance.	In	this	chapter,	the	approach	of	specification	is	top-
down,	everything	is	laid	out	for	us	from	the	user	scenario	and	will	allow	you	to
organically	build	the	application	around	the	UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	a	controller
Before	getting	into	the	specification,	and	the	mind-set	of	the	feature	being	delivered,	it	is
important	to	see	the	fundamentals	of	testing	a	controller.	An	AngularJS	controller	is	a	key
component	used	in	most	applications.

www.it-ebooks.info

http://www.it-ebooks.info/

A	simple	controller	test	setup
When	testing	a	controller,	tests	are	centered	on	the	controller’s	scope.	The	tests	confirm
either	the	objects	or	methods	in	the	scope.	Angular	mocks	provide	inject,	which	finds	a
particular	reference	and	returns	it	for	you	to	use.	When	inject	is	used	for	the	controller,
the	controllers	scope	can	be	assigned	to	an	outer	reference	for	the	entire	test	to	use.	Here	is
an	example	of	what	this	would	look	like:

describe('',function(){

		var	scope	=	{};

		beforeEach(function(){

				module('anyModule');

				inject(function($controller){

						$controller('AnyController',{$scope:scope});

				});

		});

});

In	the	preceding	case,	the	test’s	scope	object	is	assigned	to	the	actual	scope	of	the
controller	within	the	inject	function.	The	scope	object	can	now	be	used	throughout	the
test,	and	is	also	reinitialized	before	each	test.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing	the	scope
In	the	preceding	example,	scope	is	initialized	to	an	object	{}.	This	is	not	the	best
approach;	just	like	a	page,	a	controller	might	be	nested	within	another	controller.	This	will
cause	inheritance	of	a	parent	scope	as	follows:

<body	ng-app='anyModule'>

		<div	ng-controller='ParentController'>

				<div	ng-controller='ChildController'>

				</div>

		</div>

</body>

As	seen	in	the	preceding	code,	we	have	this	hierarchy	of	scopes	that	the	ChildController
function	has	access	to.	In	order	to	test	this,	we	have	to	initialize	the	scope	object	properly
in	the	inject	function.	Here	is	how	the	preceding	scope	hierarchy	can	be	recreated:

inject(function($controller,$rootScope){

		var	parentScope	=	$rootScope.$new();

$controller('ParentController',{$scope:parentScope});

var	childScope	=	parentScope.$new();

$controller('AnyController',{$scope:	childScope});

});

There	are	two	main	things	that	the	preceding	code	does:

The	$rootScope	scope	is	injected	into	the	test.	The	$rootScope	scope	is	the	highest
level	of	scope	that	exists.
Each	level	of	scope	is	created	with	the	$new()	method.	This	method	creates	the	child
scope.

In	this	chapter,	we	will	use	the	simplified	version	and	initialize	the	scope	to	an	empty
object;	however,	it	is	important	to	understand	how	to	create	the	scope	when	required.

www.it-ebooks.info

http://www.it-ebooks.info/

Bring	on	the	comments
Now	that	the	setup	and	approach	have	been	decided,	we	can	start	our	first	test.	From	a
testing	point	of	view,	as	we	will	be	using	a	top-down	approach,	we	will	write	our
Protractor	tests	first	and	then	build	the	application.	We	will	follow	the	same	TDD	life
cycle	we	have	already	reviewed,	that	is,	test	first,	make	it	run,	and	make	it	better.

www.it-ebooks.info

http://www.it-ebooks.info/

Test	first
The	scenario	given	is	in	a	well-specified	format	already	and	fits	our	Protractor	testing
template:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

});

Placing	the	scenario	in	the	template,	we	get	the	following	code:

describe('Given	I	am	posting	a	new	comment',function(){

		describe('When	I	push	the	submit	button',function(){

				beforeEach(function(){

				});

				it('Should	then	add	the	comment',function(){

				});

		});

});

Following	the	3	A’s	(Assemble,	Act,	Assert),	we	will	fit	the	user	scenario	in	the	template.

Assemble
The	browser	will	need	to	point	to	the	first	page	of	the	application.	As	the	base	URL	has
already	been	defined,	we	can	add	the	following	to	the	test:

beforeEach(function(){

		browser.get('/');

});

Now	that	the	test	is	prepared,	we	can	move	on	to	the	next	step,	Act.

Act
The	next	thing	we	need	to	do,	based	on	the	user	specification,	is	add	an	actual	comment.
The	easiest	thing	is	to	just	put	some	text	into	an	input	box.	The	test	for	this,	again	without
knowing	what	the	element	will	be	called	or	what	it	will	do,	is	to	write	it	based	on	what	it
should	be.

Here	is	the	code	to	add	the	comment	section	for	the	application:

beforeEach(function(){

		...

		var	commentInput	=	$('input');

		commentInput.sendKeys('a	comment');

});

The	last	assemble	component,	as	part	of	the	test,	is	to	push	the	Submit	button.	This	can	be
easily	achieved	in	Protractor	using	the	click	function.	Even	though	we	don’t	have	a	page
yet,	or	any	attributes,	we	can	still	name	the	button	that	will	be	created:

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach(function(){

		...

		var	submitButton	=	element.all(by.buttonText('Submit')).click();

});

Finally,	we	will	hit	the	crux	of	the	test	and	assert	the	users’	expectations.

Assert
The	user	expectation	is	that	once	the	Submit	button	is	clicked,	the	comment	is	added.	This
is	a	little	ambiguous,	but	we	can	determine	that	somehow	the	user	needs	to	get	notified
that	the	comment	was	added.	The	simplest	approach	is	to	display	all	comments	on	the
page.	In	AngularJS,	the	easiest	way	to	do	this	is	to	add	an	ng-repeat	object	that	displays
all	comments.	To	test	this,	we	will	add	the	following:

it('Should	then	add	the	comment',function(){

		var	comments	=	element(by.repeater('comment	in	comments')).first();

		expect(comment.getText()).toBe('a	comment');

});

Now,	the	test	has	been	constructed	and	meets	the	user	specifications.	It	is	small	and
concise.	Here	is	the	completed	test:

describe('Given	I	am	posting	a	new	comment',function(){

				describe('When	I	push	the	submit	button',function(){

								beforeEach(function(){

								//Assemble

												browser.get('/');

												var	commentInput	=	$('input');

												commentInput.sendKeys('a	comment');

								//Act

								//Act

								var	submitButton	=	element.all(by.buttonText('Submit')).

								click();

						});

					//Assert

					it('Should	then	add	the	comment',function(){

					var	comments	=	element(by.repeater('comment	in

						comments')).first();

						expect(comment.getText()).toBe('a	comment');

				});

		});

});

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	run
Based	on	the	errors	and	output	of	the	test,	we	will	build	our	application	as	we	go.

1.	 The	first	step	to	make	the	code	run	is	to	identify	the	errors.	Before	starting	off	the
site,	let’s	create	a	bare	bones	index.html	page:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

</body>

</html>

Already	anticipating	the	first	error,	add	AngularJS	as	a	dependency	in	the	page:

<script	type='text/javascript'	

src='bower_components/angular/angular.js'></script>

</body>

2.	 Now,	starting	the	web	server	using	the	following	command:

$./node_modules/http-server/bin/http-server	-p	8080

3.	 Run	Protractor	to	see	the	first	error:

$./node_modules/.bin/protractor	chromeOnlyConf.js

4.	 Our	first	error	states	that	AngularJS	could	not	be	found:

Error:	Angular	could	not	be	found	on	the	page	http://localhost:8080/	:	

angular	never	provided	resumeBootstrap

This	is	because	we	need	to	add	ng-app	to	the	page.	Let’s	create	a	module	and	add	it
to	the	page.

The	complete	HTML	page	now	looks	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

				<script	src="bower_components/angular/angular.js"></script>

</body>

</html>

Adding	the	module
The	first	component	that	you	need	to	define	is	an	ng-app	attribute	in	the	index.html	page.

www.it-ebooks.info

http://www.it-ebooks.info/

Use	the	following	steps	to	add	the	module:

1.	 Add	ng-app	as	an	attribute	to	the	body	tag:

<body	ng-app='comments'>

2.	 Now,	we	can	go	ahead	and	create	a	simple	comments	module	and	add	it	to	a	file
named	comments.js:

angular.module('comments',[]);

3.	 Add	this	new	file	to	index.html:

<script	src='app/commentController.js'></script>

4.	 Rerun	the	Protractor	test	to	get	the	next	error:

$	Error:	No	element	found	using	locator:	By.cssSelector('input')

The	test	couldn’t	find	our	input	locator.	You	need	to	add	the	input	to	the	page.

Adding	the	input
Here	are	the	steps	you	need	to	follow	to	add	the	input	to	the	page:

1.	 All	we	have	to	do	is	add	a	simple	input	tag	to	the	page:

<input	type='text'	/>

2.	 Run	the	test	and	see	what	the	new	output	is:

$	Error:	No	element	found	using	locator:	by.buttonText('Submit')

3.	 Just	like	the	previous	error,	we	need	to	add	a	button	with	the	appropriate	text:

<button	type='button'>Submit</button>

4.	 Run	the	test	again	and	the	next	error	is	as	follows:

$	Error:	No	element	found	using	locator:	by.repeater('comment	in	

comments')

This	appears	to	be	from	our	expectation	that	a	submitted	comment	will	be	available	on	the
page	through	ng-repeat.	To	add	this	to	the	page,	we	will	use	a	controller	to	provide	the
data	for	the	repeater.

Controller
As	we	mentioned	in	the	preceding	section,	the	error	is	because	there	is	no	comments
object.	In	order	to	add	the	comments	object,	we	will	use	a	controller	that	has	an	array	of
comments	in	its	scope.	Use	the	following	steps	to	add	a	comments	object	in	the	scope:

1.	 Create	a	new	file	in	the	app	directory	named	commentController.js:

angular.module('comments')

.controller('CommentController',['$scope',	function($scope){

www.it-ebooks.info

http://www.it-ebooks.info/

						$scope.comments	=	[];

				}])

2.	 Add	it	to	the	web	page	after	the	AngularJS	script:

<script	src='app/commentController.js'></script>

3.	 Now,	we	can	add	commentController	to	the	page:

<div	ng-controller='CommentController'>

4.	 Then,	add	a	repeater	for	the	comments	as	follows:

<ul	ng-repeat='comment	in	comments'>

		{{comment}}

5.	 Run	the	Protractor	test	and	let’s	see	where	we	are:

$	Error:	No	element	found	using	locator:	by.repeater('comment	in	

comments')

Hmmm!	We	get	the	same	error.

6.	 Let’s	look	at	the	actual	page	that	gets	rendered	and	see	what’s	going	on.	In	Chrome,
go	to	http://localhost:8080	and	open	the	console	to	see	the	page	source	(Ctrl	+
Shift	+	J).	You	should	see	something	like	what’s	shown	in	the	following	screenshot:

Notice	that	the	repeater	and	controller	are	both	there;	however,	the	repeater	is
commented	out.	Since	Protractor	is	only	looking	at	visible	elements,	it	won’t	find	the
repeater.

7.	 Great!	Now	we	know	why	the	repeater	isn’t	visible,	but	we	have	to	fix	it.	In	order	for
a	comment	to	show	up,	it	has	to	exist	on	the	controller’s	comments	scope.	The
smallest	change	is	to	add	something	to	the	array	to	initialize	it	as	shown	in	the
following	code	snippet:

.controller('CommentController',['$scope',function($scope){

		$scope.comments	=	['anything'];

www.it-ebooks.info

http://www.it-ebooks.info/

}]);

8.	 Now	run	the	test	and	we	get	the	following:

$	Expected	'anything'	to	be	'a	comment'.

Wow!	We	finally	tackled	all	the	errors	and	reached	the	expectation.	Here	is	what	the
HTML	code	looks	like	so	far:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body	ng-app='comments'>

		<div	ng-controller='CommentController'>

				<input	type='text'	/>				

				

						<li	ng-repeat='comment	in	comments'>

								{{comment.value}}

						

				

		</div>

<script	src='bower_components/angular/angular.js'></script>

<script	src='app/comments.js'></script>

<script	src='app/commentController.js'></script>

</body>

</html>

The	comments.js	module	looks	as	follows:

angular.module('comments',[]);

Here	is	commentController.js:

angular.module('comments')

		.controller('CommentController',['$scope',	function($scope){

				$scope.comments	=	[];

		}])

Make	it	pass
With	TDD,	you	want	to	add	the	smallest	possible	component	to	make	the	test	pass.	Since
we	have	hardcoded,	for	the	moment,	the	comments	to	be	initialized	to	anything,	change
anything	to	a	comment;	this	should	make	the	test	pass.	Here	is	the	code	to	make	the	test
pass:

angular.module('comments')

.controller('CommentController',['$scope',	function($scope){

				$scope.comments	=	['a	comment'];

}]);

…

Run	the	test,	and	bam!	We	get	a	passing	test:

www.it-ebooks.info

http://www.it-ebooks.info/

$	1	test,	1	assertion,	0	failures

Wait	a	second!	We	still	have	some	work	to	do.	Although	we	got	the	test	to	pass,	it	is	not
done.	We	added	some	hacks	just	to	get	the	test	passing.	The	two	things	that	stand	out	are:

Clicking	on	the	Submit	button,	which	really	doesn’t	have	any	functionality
Hardcoded	initialization	of	the	expected	value	for	a	comment

The	preceding	changes	are	critical	steps	we	need	to	perform	before	we	move	forward.
They	will	be	tackled	in	the	next	phase	of	the	TDD	life	cycle,	that	is,	make	it	better
(refactor).

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	better
The	two	components	that	need	to	be	reworked	are:

Adding	behavior	to	the	Submit	button
Removing	hardcoded	value	of	the	comments

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing	the	Submit	button
The	Submit	button	needs	to	actually	do	something.	We	were	able	to	sidestep	the
implementation	by	just	hardcoding	the	value.	Using	our	tried	and	trusted	TDD	techniques,
switch	to	an	approach	focused	on	unit	testing.	So	far,	the	focus	has	been	on	the	UI	and
pushing	changes	to	the	code.	We	haven’t	written	a	single	unit	test.

For	this	next	bit	of	work,	we	will	switch	gears	and	focus	on	driving	the	development	of
the	Submit	button	through	tests.	We	will	be	following	the	TDD	life	cycle	(test	first,	make
it	run,	make	it	better).

Configuring	Karma
We	did	something	very	similar	for	the	to-do	list	application	in	Chapter	2,	The	Karma	Way.
I	won’t	spend	as	much	time	diving	into	the	code,	so	please	review	the	previous	chapters
for	a	deeper	discussion	on	some	of	the	attributes.	Here	are	the	steps	you	need	to	follow	to
configure	Karma:

1.	 Update	the	files	section	with	the	added	files:

				files:	[

						...

								'app/comments.js',

								'app/commentController.js',

								...

],

2.	 Start	Karma:

$	karma	start

3.	 Confirm	that	Karma	is	running:

$	Chrome	36.0.1985	(Windows	7):	Executed	1	of	1	SUCCESS	(0.018	secs	/	

0.015	secs)

Test	first
Let’s	first	start	with	a	new	file	in	the	spec/unit	folder	called	comments.js.	We	will	use
the	base	template:

describe('',	function(){

		beforeEach(function(){

		});

		it('',	function(){

		});

});

According	to	the	specification,	when	the	Submit	button	is	clicked,	it	needs	to	add	a
comment.	We	will	need	to	fill	in	the	blanks	of	the	three	components	of	a	test	(Assemble,
Act,	Assert).

www.it-ebooks.info

http://www.it-ebooks.info/

Assemble

The	behavior	will	need	to	be	part	of	a	controller	for	the	frontend	to	use	it.	The	object
under	test	in	this	case	is	the	controller’s	scope	object;	we	will	need	to	add	this	to	the
assemble	of	this	test.	To	wire	up	the	AngularJS	controller	we	need	to	initialize	the	module
and	then	inject	the	CommentController	scope	into	the	test.	As	we	did	in	Chapter	2,	The
Karma	Way,	we	will	do	the	same	in	the	following	code:

var	scope	=	{};

beforeEach(function(){

		module('comments');

		inject(function($controller){

				$controller('CommentController',{$scope:scope});

		});

		...

})

Now,	the	controller’s	scope	object,	which	is	under	test,	is	available	to	the	test.

Act

The	specification	determines	that	we	need	to	call	a	add	method	in	the	scope	object.	Add
the	following	code	to	the	beforeEach	section	of	the	test:

beforeEach(function(){

		…

		scope.add('any	Comment');

});

Now	for	the	assertion.

Assert

Assert	that	the	comment	items	in	the	scope	object	now	contain	any	comment	as	the	first
element.	Add	the	following	code	to	the	test:

it('',function(){

		expect(scope.comments[0]).toBe('any	comment');

});

Save	the	file	and	let’s	move	on	to	the	next	step	of	the	life	cycle	and	make	it	run	(execute).

Make	it	run
Now	that	we	have	most	of	the	test	prepared,	we	need	to	make	the	test	pass.	Looking	at	the
output	of	the	console	where	Karma	is	running,	we	see	the	following:

$	TypeError:	undefined	is	not	a	function…unit/comments.js:4:9

Looking	at	the	line	number,	that	is	4:9,	of	our	unit	test,	we	see	that	this	is	the	add	function.
Let’s	go	ahead	and	put	in	an	add	function	into	the	controller’s	scope	object	using	the
following	steps:

1.	 Open	the	controller	scope	and	create	a	function	named	add:

$scope.add	=	function(){}

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 Check	Karma’s	output	and	let’s	see	where	we	are:

$	Expected	'a	comment'	to	be	'any	comment'.

3.	 Now,	we	have	hit	the	expectation.	Remember	to	think	of	the	smallest	change	to	get
this	to	work.	Modify	the	add	function	to	set	the	$scope.comments	array	to	any
comment	when	called:

$scope.add	=	function(){

		$scope.comments.unshift('any	comment');

};

Tip
Unshift	is	a	standard	JavaScript	function	that	adds	an	item	to	the	front	of	an	array.

4.	 When	we	check	Karma’s	output,	we	see	the	following:

$	Chrome	36.0.1985	(Windows	7):	Executed	1	of	1	SUCCESS

Success!	The	test	passes,	but	again	needs	some	work.	Let’s	move	on	to	the	next	stage	and
make	it	better	(refactor).

Make	it	better
The	main	point	that	needs	to	be	refactored	is	the	add	function.	It	doesn’t	take	any
arguments!	This	should	be	straightforward	to	add,	and	simply	confirm	that	the	test	still
runs.	Update	the	add	function	of	CommentController.js	to	take	an	argument	and	use	that
argument	to	add	to	the	comments	array:

$scope.add	=	function(commentToAdd){

		$scope.comments.unshift(commentToAdd);

};

Check	the	output	window	of	Karma	and	ensure	that	the	test	still	passes.	The	complete	unit
test	looks	as	follows:

describe('',function(){

		var	scope	=	{};

		beforeEach(function(){

				module('comments');

				inject(function($controller){

						$controller('CommentController',	{$scope:scope});

				});

				scope.add('any	comment');

		});

		it('',function(){

				expect(scope.comments[0]).toBe('any	comment');

		})

});

The	CommentController	file	now	looks	as	follows:

www.it-ebooks.info

http://www.it-ebooks.info/

angular.module('comments')

		.controller('CommentController',	['$scope',	function($scope){

						$scope.comments	=	[];

						$scope.add	=	function(commentToAdd){

										$scope.comments.unshift(newComment);

						};

}]);

Back	up	the	test	chain
We	completed	the	unit	test	and	addition	of	the	add	function.	Now	we	can	add	the	function
to	specify	the	behavior	of	the	Submit	button.	The	way	to	link	the	add	method	to	the
button	is	to	to	use	the	ng-click	attribute.	The	steps	to	add	behavior	to	the	Submit	button
are	as	follows:

1.	 Open	the	index.html	page	and	link	it	as	follows:

<button	type="button"	ng-click="add('a	comment')">Submit</button>

Warning!	Is	the	value	hardcoded?	Well,	again,	we	want	to	do	the	smallest	change	and
ensure	that	the	test	still	passes.	We	will	work	through	our	refactors	until	the	code	is
how	we	want	it,	but	instead	of	a	big	bang	approach,	we	want	to	make	small
incremental	changes.

2.	 Now	let’s	rerun	the	Protractor	test	and	ensure	that	it	still	passes.	The	output	says	it
passes,	and	we	are	okay.	The	hardcoded	value	wasn’t	removed	from	the	comments.
Let’s	go	ahead	and	remove	that	now.	The	CommentsController	file	should	now	look
as	follows:

$scope.comments	=	[];

3.	 Run	the	test	and	see	that	we	still	get	a	passing	test.

Now	the	last	thing	we	need	to	mop	up	is	the	hardcoded	value	in	ng-click.	The	comment
being	added	should	be	determined	by	the	input	in	the	comment	input	text.

Bind	the	input
Here	are	the	steps	you	need	to	follow	to	bind	the	input:

1.	 To	be	able	to	bind	the	input	into	something	meaningful,	add	an	ng-model	attribute	to
the	input	tag:

<input	type='text'	ng-model='newComment'/>

2.	 Then,	in	the	ng-click	attribute,	simply	use	the	newComment	model	as	the	input:

<button	type='button'	ng-click='add(newComment)'>Submit</button>

Run	the	Protractor	test	and	confirm	that	everything	has	passed	and	is	good	to	go.

www.it-ebooks.info

http://www.it-ebooks.info/

Onwards	and	upwards
Now	that	we	have	the	first	specification	working	end-to-end	and	unit	tested,	we	can	start
the	next	specification.	The	next	specification	states	that	the	users	want	the	ability	to	like	a
comment.

We	will	use	the	same	top-down	approach	and	start	our	test	from	a	Protractor	test.	We	will
continue	to	follow	the	TDD	life	cycle,	that	is,	test	first,	make	it	run,	make	it	better.

www.it-ebooks.info

http://www.it-ebooks.info/

Test	first
Following	the	pattern,	we	will	start	with	a	basic	Protractor	test	template:

describe('',function(){

		beforeEach(function(){

		});

		it('',	function(){

		});

});

When	we	fill	in	the	specification,	we	get	the	following:

describe('When	I	like	a	comment',function(){

		beforeEach(function(){

		});

		it('should	then	be	liked',	function(){

		});

});

With	the	template	in	place,	we	are	ready	to	construct	the	test.

Assemble
The	assembly	of	this	test	will	require	a	comment	to	exist.	Place	the	comment	within	the
existing	posted	comment	test.	It	should	look	similar	to	this:

describe(''Given	I	am	posting	a	new	comment',	function(){

describe('When	I	like	a	comment',function(){

…

		});

});

Act
The	user	specification	we	test	is	that	the	like	button	performs	an	action	for	a	specific
comment.	Here	are	the	steps	that	will	be	required	and	the	code	required	to	do	them	(note
that	the	following	steps	will	be	added	to	the	beforeEach	text):

1.	 Store	the	first	comment	so	that	it	can	be	used	in	the	test:

var	firstComment	=	null;

beforeEach(function(){

…

2.	 Find	the	first	comment’s	like	button:

var	firstComment	=	element.all(by.repeater('comment	in	

comments').first();

var	likeButton	=	firstComment.element(by.buttonText('like'));

3.	 The	code	for	the	like	button	when	it	is	clicked	is	as	follows:

likeButton.click();

www.it-ebooks.info

http://www.it-ebooks.info/

Assert
The	specification	expectation	is	that	once	the	comment	has	been	liked,	it	is	liked.	This	is
best	done	by	putting	an	indicator	of	the	number	of	likes,	and	ensuring	the	count	is	1.	The
code	will	then	be	as	follows:

it('Should	increase	the	number	of	likes	to	one',function(){

var	commentLikes	=	firstComment.element(by.binding('likes'));

		expect(commentLikes.getText()).toBe(1);

});

The	created	test	now	looks	as	follows:

describe('When	I	like	a	comment',function(){

		var	firstComment	=	null;

		beforeEach(function(){

						//Assemble

				firstComment	=	element.all(by.repeater('comment	in	comments').first();

				var	likeButton	=	firstComment.element(by.buttonText('like'));

				//Act

				likeButton.click();

		});

		//Assert

		it('Should	increase	the	number	of	likes	to	one',	function(){

				var	commentLikes	=	firstComment.element(by.binding('likes'));

				expect(commentLikes.getText()).toBe(1);

});});

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	run
The	test	has	been	prepared	and	is	itching	to	run.	We	will	now	run	the	test	and	fix	the	code
until	the	test	passes.	The	following	steps	will	detail	the	error	and	the	fix	cycle	required	to
make	the	test	path:

1.	 Run	Protractor.
2.	 View	the	error	message	in	the	command	line:

$	Error:	No	element	found	using	locator:	by.buttonText("like")

3.	 As	the	error	states,	there	is	no	like	button.	Go	ahead	and	add	the	button:

<li	ng-repeat='comment	in	comments'>

{{comment}}

		<button	type="button">like</button>

4.	 Run	Protractor.
5.	 View	the	next	error	message:

$	Expected	'a	comment	like'	to	be	'a	comment'.

6.	 By	adding	the	like	button,	we	caused	our	other	test	to	fail.	The	reason	is	our	use	of
the	getText()	method.	Protractor’s	getText()	method	gets	the	inner	text	including
inner	elements.	To	fix	this,	we	will	need	to	update	the	previous	test	to	include	like	as
part	of	the	test:

it('Should	then	add	the	comment',function(){

var	comments	=	element.all(by.repeater('comment	in	comments')).first();

expect(comments.getText()).toBe('a	comment	like');

});

7.	 Run	Protractor.
8.	 View	the	next	error	message:

$	Error:	No	element	found	using	locator:	by.binding("likes")

9.	 Time	to	add	a	likes	binding.	This	one	is	a	little	more	involved.	Likes	needs	to	be
bound	to	a	comment.	We	need	to	change	the	way	the	comments	are	held	in	the
controller.	Comments	need	to	hold	the	comment	value	and	the	number	of	likes.	A
comment	should	be	an	object	like	this:	{value:'',likes:0}.	Again,	the	focus	of	this
step	is	just	to	get	the	test	to	pass.	The	next	step	is	to	update	the	controller’s	add
function	to	create	comments	based	on	the	object	we	described	in	the	preceding	steps.
Open	commentController.js	and	edit	the	add	function	as	follows:

$scope.add	=	function(commentToAdd){

var	newComment	=	{value:commentToAdd,likes:0};

		$scope.comments.unshift(newComment);

};

10.	 Update	the	page	to	use	the	value	for	the	comment:

www.it-ebooks.info

http://www.it-ebooks.info/

<li	ng-repeat='comment	in	comments'>

{{comment.value}}

11.	 Before	rerunning	the	Protractor	test,	we	need	to	add	the	new	comment.likes	binding
to	the	HTML	page:

<li	ng-repeat='comment	in	comments'>

…

{{comment.likes}}

12.	 Now	rerun	the	Protractor	tests	and	let’s	see	where	the	errors	are:

$	Expected	'a	comment	like	0'	to	be	'a	comment	like'

13.	 Because	the	inner	text	of	the	comment	has	changed,	we	need	to	change	the
expectation	of	the	test:

it('Should	then	add	the	comment',	function(){

…

		expect(comments.getText()).toBe('a	comment	like	0');

});

14.	 Run	Protractor:

$	Expected	'0'	to	be	'1'.

15.	 Now,	we	are	finally	down	to	the	expectation	of	the	test.	In	order	to	make	this	test
pass,	the	smallest	change	will	be	to	make	the	like	button	update	the	likes	on	the
comment	array.	The	first	step	is	to	add	a	like	method	on	the	controller,	which	will
update	the	number	of	likes:

$scope.like	=	function(comment){

comment.likes++;

};

16.	 Link	the	like	method	to	the	HTML	page	using	an	ng-click	attribute	on	the	button	as
follows:

<button	type="button"	ng-click='like(comment)'>like</button>

17.	 Run	Protractor	and	confirm	that	the	tests	pass!

The	page	now	looks	as	follows:

Compared	to	the	drawing	at	the	beginning	of	this	chapter,	all	the	features	have	been
created.	Now	that	we	made	the	test	pass	in	Protractor,	we	need	to	check	the	unit	tests	to

www.it-ebooks.info

http://www.it-ebooks.info/

ensure	that	our	changes	didn’t	break	the	unit	tests.

Fixing	the	unit	tests
One	of	the	primary	changes	required	was	to	make	the	comment	an	object,	consisting	of	a
value	and	number	of	likes.	Before	thinking	too	much	about	how	the	unit	tests	could	have
been	affected,	let’s	kick	them	off.	Execute	the	following	command:

$	karma	start

As	expected,	the	error	is	related	to	the	new	comment	object:

$	Expected	{	value	:	'any	comment',	likes	:	0	}	to	be	'any	comment'.

Reviewing	the	expectation,	it	seems	like	the	only	thing	required	is	for	comment.value	to
be	used	in	the	expectation	as	opposed	to	the	comment	object	itself.	Change	the	expectation
as	follows:

it('',function(){

var	firstComment	=	scope.comments[0];

expect(firstComment.value).toBe('any	comment');

})

Save	the	file	and	check	the	Karma	output.	Confirm	that	the	test	passes.	Both	the	Karma
and	Protractor	tests	pass	and	we	have	completed	the	primary	user	behaviors	of	adding	a
comment	and	liking	it.	You	are	free	now	to	move	on	to	the	next	step	and	make	things
better.

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	better
All	in	all,	the	approach	ended	up	with	the	result	we	wanted.	Users	are	now	able	to	like	a
comment	in	the	UI	and	see	the	number	of	likes.	The	major	callout	from	a	refactor
standpoint	is	that	we	have	not	unit	tested	the	like	method.	Reviewing	our	development
to-do	list,	we	see	that	the	to-do	list	is	an	action	we	wrote	down.	Before	completely
wrapping	up	the	feature,	let’s	discuss	the	option	of	adding	a	unit	test	for	the	like
functionality.

Coupling	of	the	test
As	already	discussed	in	this	book,	tests	are	tightly	coupled	to	the	implementation.	This	is	a
good	thing	when	there	is	a	complicated	logic	involved	or	you	need	to	ensure	that	certain
aspects	of	the	application	behave	in	certain	ways.	It	is	important	to	be	aware	of	the
coupling	and	know	when	it	is	important	to	bring	it	into	the	application	and	when	it	is	not.
The	like	function	we	created	simply	increments	a	counter	on	an	object.	This	can	be	easily
tested;	however,	the	coupling	we	will	bring	in	with	a	unit	test	will	not	give	us	the	extra
value.	In	this	case,	we	will	not	add	an	additional	unit	test	for	the	like	method.	As	the
application	progresses,	we	may	find	the	need	to	add	a	unit	test	in	order	to	develop	and
extend	the	function.	Here	are	a	couple	of	things	I	consider	when	adding	a	test:

Does	adding	a	test	outweigh	the	cost	of	maintaining	a	test?
Is	the	test	adding	value	to	the	code?

Does	it	help	other	developers	better	understand	the	code?

Is	the	functionality	being	tested	in	some	other	way?

Based	on	our	decision,	there	is	no	more	refactoring	or	testing	required.	In	the	next	section,
we	will	take	a	step	back	and	review	the	main	points	of	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
Q1.	The	$new	function	is	used	to	create	a	child	scope:	$scope.$new.

1.	 True
2.	 False

Q2.	Given	the	following	code	segment,	how	would	you	select	the	items	in	the	list?

<li	ng-repeat="item	in	myItems">

{{item.value}}

</li

1.	 element.all(by.repeater('item	in	items')).
2.	 element.all(by.repeater('item	in	myItems')).
3.	 element.all('item	in	items').

Q3.	The	Angular	mocks	inject	function	is	used	to:

1.	 Resolve	application	dependencies/references.
2.	 Inject	dependencies	into	the	application.
3.	 None	of	the	above.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	walked	through	the	TDD	techniques	of	using	Protractor	and	Karma
together.	As	the	application	was	developed,	you	were	able	to	see	where,	why,	and	how	to
apply	the	TDD	testing	tools	and	techniques.	The	approach,	top-down,	was	different	than
the	bottom-up	approach	discussed	in	Chapter	2,	The	Karma	Way	and	Chapter	3,	End-to-
end	Testing	with	Protractor.	With	the	bottom-up	approach,	the	specifications	are	used	to
build	unit	tests	and	then	build	the	UI	layer	on	top	of	that.	In	this	chapter,	a	top-down
approach	was	shown	to	focus	on	the	user’s	behavior.	The	top-down	approach	tests	the	UI
and	then	filters	the	development	through	the	other	layers.	Both	approaches	have	their
merit.	When	applying	TDD,	it	is	essential	to	know	how	to	use	both.	In	addition	to	walking
through	a	different	TDD	approach,	you	saw	some	of	the	core	testing	components	of
AngularJS	such	as:

Testing	a	controller	from	end-to-end	and	unit	perspectives
Using	Angular	mocks	to	test	the	scope	object	of	a	controller
Protractor’s	ability	to:

Bind	to	ng-repeater	and	ng-model
Send	key	strokes	to	input	columns
Get	an	element’s	text	by	its	inner	HTML	code	and	all	subelements

The	next	chapter	will	build	on	the	techniques	used	here	and	look	into	headless	browser
testing,	advanced	techniques	for	Protractor,	and	how	to	test	AngularJS	routes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Flip	Flop
At	this	point,	you	should	be	feeling	confident	in	the	initial	implementation	of	an
AngularJS	application	using	TDD.	You	should	be	familiar	with	using	a	test-first	approach.
In	this	chapter,	you	will	continue	to	expand	your	knowledge	of	applying	TDD	with
AngularJS	by	looking	at	the	following:

AngularJS	routes
Partial	views
Protractor	location	references	with	CSS	(Cascading	Style	Sheets)	and	HTML
elements
Headless	browser	testing	with	Karma

www.it-ebooks.info

http://www.it-ebooks.info/

Fundamentals
This	chapter	will	walk	you	through	applying	TDD	to	routes	and	partial	views	for	a	search
application.	Before	getting	into	the	walk-through,	you	need	to	be	aware	of	some	of	the
techniques,	configurations,	and	functions	that	will	be	used	throughout	this	chapter,	which
include:

Protractor	locators
Headless	browser	testing

After	you	have	reviewed	these	concepts,	you	can	move	on	to	the	walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor	locators
Protractor	locators	are	key	components	that	you	must	take	time	to	learn.	This	book	will
not	be	able	to	show	examples	of	all	the	different	locators,	but	it	will	provide	examples	of
the	most	common	ones.

Protractor	locators	allow	you	to	find	elements	within	an	HTML	page.	In	this	chapter,	you
will	see	the	following	in	action:	CSS,	HTML,	and	AngularJS-specific	locators.	Locators
are	passed	to	the	element	function.	The	element	function	will	find	and	return	elements	in
a	page.	The	generic	locator	syntax	is	as	follows:

element(by.<LOCATOR>);

In	the	preceding	code,	<LOCATOR>	is	a	placeholder.	The	following	sections	describe	a
couple	of	these	locators.

CSS	locators
CSS	is	used	to	add	layout,	color,	formatting,	and	style	to	an	HTML	page.	From	an	end-to-
end	testing	perspective,	the	look	and	style	of	an	element	may	be	part	of	a	specification.	As
an	example	consider	the	following	HTML	snippet:

<div	class="anyClass"	id="anyId"></div>

//	...

var	e1	=	element(by.css('.anyClass'));

var	e2	=	element(by.css('#anyId'));

var	e3	=	element(by.css('div'));

var	e4	=	$('div');

All	four	selections	will	select	the	div	element.

Button	and	link	locators
Besides	being	able	to	select	and	interpret	the	way	something	looks,	it	is	also	important	to
be	able	to	find	buttons	and	links	within	a	page.	This	will	allow	a	test	to	interact	with	the
site	easily.	Here	are	a	couple	of	examples:

Button	text	locator:

<button>anyButton</button>

//	...

var	b1	=	element(by.buttonText('anyButton'));

Link	text	locator:

anyLink

//	...

var	a1	=	element(by.linkText('anyLink'));

Angular	locators
One	of	Protractor’s	key	strengths	is	that	it	provides	testing	functionality	specific	to
AngularJS.	The	repeater	locator	will	select	the	elements	within	the	application	where	ng-

www.it-ebooks.info

http://www.it-ebooks.info/

repeat	was	used.	This	is	especially	useful	when	looking	at	the	number	of	returned	results
and	the	values	of	individual	results.	One	key	to	using	this	locator	is	that	the	string	of	the
repeater	locator	must	match	the	ng-repeat	string	used	in	the	AngularJS	application.	Here
is	an	example	of	using	the	repeater	locator:

//The	List	in	the	application	to	use	ng-repeat	on

<li	ng-repeat="item	in	list">

		<div>

				link

		</div>

//	...

var	firstItem	=	element.all(by.repeater('item	in	list')).first();

The	preceding	code	highlights	how	to	find	the	first	element	in	a	repeater.	It	should	be	clear
that	in	this	case,	the	element.all	function	finds	all	the	elements	matching	the	selector.
Then,	the	first()	method	is	used	to	return	the	first	element	found.

URL	location	references
When	testing	AngularJS	routes,	you	need	to	be	able	to	test	the	URL	of	your	test.	By
adding	tests	around	the	URL	and	location,	you	ensure	that	the	application	follows	specific
routes.	This	is	important	because	routes	provide	an	interface	into	your	application.	Here	is
how	to	get	the	URL	reference	in	a	Protractor	test:

var	location	=	browser.getLocationAbsUrl();

Now	that	you	have	seen	how	to	use	the	different	locators	it	is	time	to	put	the	knowledge	to
use.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	new	project
It	is	important	to	get	a	process	and	method	to	set	up	your	projects	quickly.	The	less	time
you’re	thinking	of	the	structure	of	the	directory	and	the	required	tools,	the	more	time
you’re	developing!

Some	people	use	the	angular-seed	(https://github.com/angular/angular-seed)	project,
Yeoman,	or	create	a	custom	template.	Although	these	techniques	are	useful	and	have	their
merit,	when	starting	out	in	AngularJS,	it	is	essential	to	understand	what	it	takes	to	build	an
application	from	the	ground	up.	By	building	the	directory	structure	and	installing	tools
yourself,	you	will	understand	AngularJS	better.	You	will	be	able	to	make	layout	decisions
based	on	your	specific	application	and	needs,	as	opposed	to	fitting	into	some	other	mold.
As	you	grow	and	become	a	better	AngularJS	developer,	this	step	may	not	be	needed	and
will	become	second	nature	to	you.

In	previous	chapters,	we	discussed	how	to	get	the	project	set	up,	explained	the	different
components	involved,	and	walked	through	the	entire	process.	I	will	skip	these	details	and
expect	that	you	can	recall	how	to	perform	the	necessary	installation.	To	confirm	the
installation,	here	is	a	screenshot	of	the	expected	output:

www.it-ebooks.info

https://github.com/angular/angular-seed
http://www.it-ebooks.info/

Setting	up	headless	browser	testing	for	Karma
In	previous	chapters,	you	were	running	Karma	using	the	default	configuration.	The	default
Chrome	configuration	launches	Chrome	on	every	test.	Testing	against	the	actual	code	and
browser,	which	the	application	will	run	in,	is	a	powerful	tool.	However,	when	launching,	a
browser	may	not	be	how	you	always	wanted	it.	From	a	unit	test	perspective,	you	may	not
want	the	browser	to	be	launched	in	a	window.	Some	of	the	reasons	are	tests	may	take	a
long	time	to	run	or	you	may	not	always	have	a	browser	installed.

Luckily,	Karma	comes	equipped	with	the	ability	to	easily	configure	PhantomJS,	a	headless
browser.	A	headless	browser	runs	in	the	background	and	will	not	display	web	pages	in	a
UI.	The	PhantomJS	headless	browser	is	a	really	great	tool	to	use	for	testing.	It	can	even	be
set	up	to	take	screenshots	of	your	tests!	Read	more	about	how	this	is	done	and	the	WebKit
used	on	the	PhantomJS	site	at	http://phantomjs.org/.	The	succeeding	setup	configuration
will	show	you	how	to	set	up	PhantomJS	with	Karma	to	get	headless	browser	testing.

Preconfiguration
When	Karma	is	installed,	it	automatically	includes	the	PhantomJS	browser	plugin.	For
your	reference,	the	plugin	is	located	at	https://github.com/karma-runner/karma-phantomjs-
launcher.	There	shouldn’t	be	any	additional	installation	or	configuration	required.
However,	if	your	setup	states	that	it	is	missing	karma-phantomjs-launcher,	you	can
easily	install	it	using	npm:

$	npm	install	karma-phantomjs-launcher

Configuration
PhantomJS	is	configured	in	the	browser	section	of	the	Karma	configuration.	Open	the
karma.conf	file	and	update	it	with	the	following	details:

browsers:	['PhantomJS'],

Now	that	the	project	has	been	initialized	and	configured	with	headless	browser	testing,
you	can	see	it	in	action	through	the	following	walk-throughs.

www.it-ebooks.info

http://phantomjs.org/
https://github.com/karma-runner/karma-phantomjs-launcher
http://www.it-ebooks.info/

Walk-through	of	Angular	routes
This	walk-through	will	leverage	AngularJS	routes.	Routes	are	an	extremely	useful	feature
of	AngularJS.	They	allow	you	to	control	certain	aspects	of	the	application	using	different
views.	This	walk-through	will	flip	between	views	to	show	you	how	to	use	TDD	to	build
routes.	The	following	are	the	specifications:

Given	a	view	A	that	has	a	single	button;	the	following	actions	will	take	place:

The	button	is	pushed
The	view	is	switched	to	view	B

Given	a	view	B	that	has	a	single	button;	the	following	actions	will	take	place:

The	button	is	pushed
The	view	is	switched	to	view	A

Essentially,	this	will	be	an	application	that	does	a	flip	flop	between	views.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	AngularJS	routes
Before	you	use	AngularJS	routes,	you	need	to	install	the	AngularJS	route	component.	You
can	install	AngularJS	routes	using	bower	as	follows:

$	bower	install	angular-route

Angular	routes	requires	Angular,	as	you	can	imagine.	In	order	to	use	it	an	HTML	page
would	look	as	follows:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

<script	src="bower_components/angular/angular.js">

</script>

<script	

src="bower_components/angular-route/angular-route.js"></script>

	

</body>

</html>

Defining	directions
A	route	specifies	a	specific	location	and	expects	a	result.	From	an	AngularJS	perspective,
the	routes	must	first	be	specified	and	then	associated	to	certain	elements	within	them.

Configuring	ngRoute

In	order	to	use	AngularJS	routes,	we	first	need	to	bring	ngRoute	in	as	a	dependency	into
the	application.	In	app/flipFlop.js,	modify	the	code	to	bring	in	ngRoute	as	a
dependency	and	return	the	module:

var	flipFlop	=	angular.module('flipFlop',['ngRoute']);

Now,	the	second	thing	required	is	we	need	to	configure	the	routes	that	we	need.	In	our
case,	we	need	two	routes:	one	for	viewA	and	one	for	viewB.	The	route	configuration	will
then	look	as	follows:

flipFlop.config(['$routeProvider',function($routeProvider){

		$routeProvider

		.when('/view/a',{

				templateUrl	:	'app/viewA.html',

				controller	:	'ViewAController'

		})

		.when('/view/b',{

				templateUrl	:	'app/viewB.html',

				controller	:	'ViewBController'

		})

		.otherwise({

				redirectTo	:	'/view/a'

		});

www.it-ebooks.info

http://www.it-ebooks.info/

}]);

A	route	is	defined	using	when,	which	has	a	first	argument	as	a	string	for	the	full	route.	The
second	argument	is	an	object,	which	takes	the	HTML	page	for	the	route	(template	URL)
and	the	controller	for	the	route	(controller).

Defining	the	route	controllers

For	both	routes,	create	an	empty	controller	so	that	it	can	be	a	placeholder	for	the	future
controller.	Here	are	the	steps	you	need	to	follow	to	define	route	controllers:

1.	 Create	a	new	file	for	the	View	A	controller	(/app/ViewAController.js):

angular.module('flipFlop')

		.controller('ViewAController',['$scope',function($scope){

				}]);

2.	 Create	another	new	file	for	the	View	B	controller	(/app/ViewBController.js):

angular.module('flipFlop')

		.controller('ViewBController',['$scope',function($scope){

				}]);

3.	 Add	the	two	controllers	to	the	index.html	page:

<script	src="app/viewAController.js"></script>

<script	src="app/viewBController.js"></script>

Defining	the	route	views

Route	views	are	partial	HTML	elements	that	can	be	dynamically	placed	into	an
application.	For	the	two	views	we	require,	we	will	put	a	basic	div	tag	for	each	view,	as
shown	in	the	following	steps:

1.	 Create	a	new	file	for	app/viewA.html:

<div	id="viewA"></div>

2.	 Create	a	new	file	for	app/viewB.html:

<div	id="viewB"></div>

The	last	thing	required	is	to	put	a	placeholder	where	the	route	view	will	be	placed	in	the
index.html	page:

<div	ng-view></div>

Now,	the	routes	are	set	up	with	the	initial	views	and	controllers.	We	can	continue	with	the
Protractor	test.

Assembling	the	flip	flop	test
Following	the	first	of	the	3	A’s,	Assemble,	the	following	steps	will	show	you	how	to
assemble	the	test.

www.it-ebooks.info

http://www.it-ebooks.info/

1.	 Start	with	the	Protractor	base	template:

describe('Given	a	view	A	that	has	a	single	button',	function(){

		describe('When	the	button	is	pushed',function(){

				beforeEach(function(){

				})

				it(''should	be	switched	to	view	B'',	function(){

				})

		})

})

2.	 Navigate	to	the	root	of	the	application	using	the	following	code:

browser.get('/index.html');

3.	 The	beforeEach	method	needs	to	confirm	that	the	correct	view	is	being	displayed.
This	can	be	done	using	a	CSS	locator	to	look	for	the	div	tag	of	viewA.	The
expectation	will	look	as	follows:

var	viewA	=	element(by.css('#viewA'));

expect(viewA.isPresent()).toBeTruthy();

4.	 Then,	add	an	expectation	that	viewB	is	not	visible:

var	viewB	=	element(by.css('#viewB'));

expect(viewB.isPresent()).toBeFalsy();

You	will	notice	how	the	selection	of	viewA	and	viewB	is	done	outside	of	the	beforeEach
method,	so	it	can	be	used	for	other	expectations.

Making	the	views	flip

The	preceding	test	needs	to	confirm	that	when	the	flip	button	is	pushed,	the	view	should
switch.	In	order	to	test	this,	you	can	use	the	by.buttonText	locator.	Here	is	what	it	will
look	like:

var	buttonToPush	=	element(by.linkText('flip'));

buttonToPush.click();

The	beforeEach	function	is	now	complete	and	looks	as	follows:

var	viewA	=	element(by.css('#viewA'));

var	viewB	=	element(by.css('#viewB'));

beforeEach(function(){

		browser.get('/index.htm');

		expect(viewA.isPresent()).toBeTruthy();

		var	buttonToPush	=	element(by.linkText('flip'));

		buttonToPush.click();

})

Now,	you	can	add	the	assertion.

Asserting	a	flip

The	assertion	will	again	use	Protractor’s	CSS	locator	to	find	that	viewB	is	available:

www.it-ebooks.info

http://www.it-ebooks.info/

it('should	be	switched	to	view	B',function(){

		expect(viewB.isPresent()).toBeTruthy();

})

You	also	need	to	confirm	that	viewA	is	no	longer	available.	Add	the	expectation	that	viewA
should	not	exist:

it('should	not	display	view	A',function(){

		expect(viewA.isPresent()).toBeFalsy();

})

The	test	has	now	been	assembled.

Making	flip	flop	run
Now,	you	will	see	the	steps	required	to	make	the	flip	flop	run:

1.	 In	a	new	console	window,	start	http-server:

$./node_modules/http-server/bin/http-server	-p	8080

2.	 Run	Protractor:

$./node_modules/protractor/bin/protractor	protractorConf.js

3.	 The	first	error	states	Error:	Angular	could	not	be	found	on	the	page
http://localhost:8080/	:	angular	never	provided	resumeBootstrap.	When
you	get	this	error,	proceed	with	the	following	steps:

1.	 This	error	means	that	no	AngularJS	application	has	been	associated	with	the
application.	It’s	now	time	to	create	the	application	module	and	add	it	to	the
page.

2.	 Create	a	new	file	named	/app/flipFlop.js:

angular.module('flipFlop',[]);

3.	 Add	the	new	module	to	the	index.html	page:

<script	src="app/flipFlop.js"></script>

4.	 Add	the	AngularJS	application	identifier	to	the	page:

<body	ng-app='flipFlop'>

5.	 Rerun	the	Protractor	test.

4.	 The	error	is	Error:	No	element	found	using	locator:	by.linkText("flip").	To
rectify	this	perform	the	following	steps:

1.	 Open	up	the	app/viewA.html	file	and	add	a	link	to	the	View	B	route	with	the
flip	text:

		<div	id="viewA">

				flip</button>

		</div>

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 Rerun	the	test.

5.	 The	Protractor	tests	now	pass.

Making	flip	flop	better
For	practice,	you	should	add	a	link	to	switch	back	to	viewA	from	viewB.	There	is	nothing
that	has	been	called	out	that	needs	to	be	changed	or	refactored.	The	main	takeaway	from
this	walk-through	is	how	to	use	Protractor	to	test	routes.	Here	are	some	screenshots	of	the
application:

The	initial	index	page	is	shown	in	the	following	screenshot:

The	following	is	what	you’ll	see	after	the	view	has	been	switched:

www.it-ebooks.info

http://www.it-ebooks.info/

Searching	the	TDD	way
This	walk-through	will	show	you	how	to	build	a	simple	search	application.	The	walk-
through	has	two	components.	The	first	discusses	a	search	query	component.	The	second
uses	routes	to	display	search	result	details.

www.it-ebooks.info

http://www.it-ebooks.info/

Deciding	on	the	approach
This	walk-through	uses	the	top-down	TDD	approach.	It	starts	with	writing	failing	tests,
from	the	UI	point	of	view	using	Protractor,	and	then	working	through	the	application	with
a	combination	of	unit	and	end-to-end	tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Walk-through	of	search	query
The	application	being	built	is	a	search	application.	The	first	step	is	to	set	up	the	search
area	with	search	results.	Imagine	I	am	performing	a	search.	The	following	actions	will
occur:

A	search	query	is	typed	in
Results	are	displayed	on	the	left	sidebar

This	piece	of	the	application	is	very	similar	to	the	test,	layout,	and	approach	you	saw	in
Chapter	4,	First	Steps.	The	application	will	need	to	use	an	input,	respond	to	a	click,	and
confirm	the	resulting	data.	Since	the	tests	and	code	use	the	same	functionality	as	the
previous	example,	it	is	not	worth	providing	a	complete	walk-through	of	the	search
functionality.	Instead,	the	following	section	will	show	the	resulting	code	with	a	few
explanations.

www.it-ebooks.info

http://www.it-ebooks.info/

The	search	query	test
The	following	code	represents	the	test	for	the	search	query	functionality:

describe('',	function(){

				//Store	the	searchResult	for	use	in	the	test

				var	searchResult	=	null;

				beforeEach(function(){

		

		//ASSEMBLE	

		browser.get('/index.html');

		var	searchResult	=	element.all(by.repeater('result	in	results'));

		expect(searchResult.count()).toBe(0);

		//ACT

		var	searchQueryInput	=	$('input');

		searchQueryInput.sendKeys('any	value');

		var	searchButton	=	element(by.buttonText('search'));

								searchButton.click();

				});

				//Assert

				it('',	function(){

								expect(searchResult.count()).toBe(1);

				});

});

You	should	notice	a	parallel	to	previous	tests.	The	functionality	is	written	to	mirror	the
behavior	of	a	user	typing	in	the	search	box.	The	test	finds	the	input	field,	types	a	value,
and	then	selects	the	button	that	says	Search.	The	assertion	confirms	that	the	result
contains	a	single	value.	The	next	section	will	look	at	the	application	from	the	HTML	page.

www.it-ebooks.info

http://www.it-ebooks.info/

The	search	query	HTML	page
The	following	code	shows	the	resulting	body	of	the	search	query	HTML	page:

<body	ng-app="search">

		<div	ng-controller="SearchController">

				<input	type="text"	ng-model="searchQuery"></input>

				<button	ng-click="search(searchQuery)">search</button>

				

						<li	ng-repeat="result	in	results">{{result}}

				

		</div>

		

		<script	src="bower_components/angular/angular.js"></script>

		<script	src="app/search.js"></script>

		<script	src="app/searchController.js"></script>

</body>

The	main	highlights	of	the	HTML	page	are:

The	use	of	the	searchController	class’	model	to	store	the	searchQuery	class	in	the
input:

<input	type="text"	ng-model="searchQuery"></input>

Associating	the	button	click	event	to	the	searchController's	search	function:

<button	ng-click="search(searchQuery)">search</button>

The	next	section	will	show	the	resulting	search	module	and	searchController.

www.it-ebooks.info

http://www.it-ebooks.info/

The	search	application
Here	is	the	result	of	the	searchModule	code:

var	searchModule	=	angular.module('search',[]);

Here	is	the	result	of	the	searchController	code:

angular.module('search')

		.controller('SearchController',['$scope',	function($scope){

								$scope.results	=	[];

								$scope.search	=	function(){

												$scope.results	=	['Any	Value'];

				};

		}]);

The	preceding	AngularJS	components	are	similar	to	what	has	already	been	shown	in
previous	chapters.	Now	that	you	have	reviewed	the	existing	search	piece	of	the
application,	you	can	walk	through	the	steps	to	display	search	result	detail	views.	Here	is
what	the	search	application	looks	like	so	far:

www.it-ebooks.info

http://www.it-ebooks.info/

Show	me	some	results!
Now	that	the	Search	button	is	set	with	the	required	features,	the	resulting	details	need	to
be	displayed	when	a	search	result	is	selected.	Here	is	the	user	specification.	Given	the
following	search	results:

I	select	an	item	from	the	search	results
I	will	see	the	details	in	the	main	page	component

Following	the	top-down	approach,	the	first	step	will	be	the	Protractor	tests	followed	by	the
necessary	steps	to	get	the	application	fully	functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	the	search	result	routes
This	application	will	use	routes	to	switch	between	views.	As	this	step	is	primarily	about
configuration,	it	doesn’t	make	sense	to	wait	until	a	test	fails.	The	following	steps	will
briefly	recap	the	necessary	steps,	as	you	have	already	walked	through	the	steps	with	the
flip	flop	application:

1.	 Install	angular-routes	using	Bower:

$	bower	install	angular-route

2.	 Add	angular	and	angular-route	to	the	index.html	page:

<script	src="bower_components/angular/angular.js"></script>

<script	src="bower_components/angular-route/angular-route.js"></script>

3.	 Create	a	ngRoute	module	as	a	dependency	in	the	application	(app/search.js):

var	searchModule	=	angular.module('search',['ngRoute']);

4.	 Configure	the	routes	in	the	app/search.js	file.	Add	the	following	route
configuration:

searchModule.config(['$routeProvider',function($routeProvider){

		$routeProvider

		.when('/splash',{

				templateUrl	:	'app/splash.html',

				controller	:	'SplashController'

		})

		.when('/detail/:id',{

				templateUrl	:	'app/searchDetail.html',

				controller	:	'SearchDetailController'

		})

		.otherwise({

				redirectTo	:	'/splash'

		});

}]);

The	preceding	configuration	contains	two	routes.	One	for	a	splash	screen/landing
page	that	will	be	displayed	when	the	user	first	comes	to	the	page.	The	second	is	the
route	to	get	the	search	details.

5.	 Add	the	route	stub	controllers:

1.	 Create	a	new	file	for	SplashController	(app/splashController.js):

angular.module('search')

		.controller('SplashController',['$scope',function($scope){

		}]);

2.	 Create	a	new	file	for	SearchDetailController
(app/searchDetailController.js):

angular.module('search')

		.controller('SearchDetailController',['$scope',function($scope){

www.it-ebooks.info

http://www.it-ebooks.info/

		}]);

6.	 Add	the	detail	controller	to	the	index.html	page:

<script	src="app/searchDetailController.js"></script>

7.	 Create	the	partial	view	HTML	files	by	following	these	steps:

1.	 Create	a	new	file	for	splash.html:

<div	id="splash"></div>

2.	 Create	a	new	file	for	searchDetail.html:

<div	id="searchResultDetail"></div>

The	routes	for	the	test	have	now	been	created.	You	can	continue	to	the	next	step	and	begin
adding	the	functionality	to	link	search	results	to	the	result	details.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	the	search	results
As	the	specification	states,	you	will	need	to	leverage	the	existing	search	results.	Instead	of
creating	a	test	from	scratch,	you	can	add	to	the	existing	search	query	test.	Start	with	a	base
test	embedded	in	the	search	query	test	as	follows:

describe('Given	I	am	searching',function(){

		describe(''when	I	type	in	a	search	query'',function(){

				...

				describe('Given	search	results',function(){

						describe('When	I	select	an	item	from	the	search	results',function(){

								beforeEach(function(){

								});

								it('should	see	the	details	in	the	main	page	component',function(){

								});

						});

				});

		})

})

Now	move	on	to	the	next	step	and	build	the	test.

Assembling	the	search	result	test
In	this	case,	the	search	results	are	already	available	from	the	search	query	test.	You	don’t
have	to	add	any	more	setup	step	for	the	test.

Selecting	a	search	result
The	object	under	test	is	the	result.	The	test	is	when	the	result	is	selected	and	then	the
application	must	do	something.	The	steps	to	write	this	in	Protractor	are	as	follows:

1.	 Find	a	result	item	using	the	following	code:

var	resultItem	=	element(by.repeater('result	in	results')).first();

2.	 Select	the	result	item.	As	you	will	be	representing	the	details	using	a	route,	you	will
create	a	link	to	the	details	page	and	click	on	the	link.	Here	are	the	steps	to	create	a
link:

1.	 Select	the	link	within	the	result	item.	This	uses	the	element	currently	selected
and	then	finds	any	subelements	that	meet	the	criteria.	The	code	for	this	is	as
follows:

var	resultLink	=	resultItem.element(by.css('a'));

2.	 Now	to	select	the	link	add	the	following	code:

resultLink.click();

Confirming	a	search	result

www.it-ebooks.info

http://www.it-ebooks.info/

Now	that	the	search	item	has	been	selected,	you	will	need	to	verify	that	the	result	details
page	is	visible.	The	simplest	solution	at	this	point	is	to	ensure	that	the	details	view	is
visible.	This	can	be	done	using	Protractor’s	CSS	locator	to	look	for	the	search	detail	view.
The	following	is	the	code	to	be	added	for	confirming	a	search	result:

it('Should	see	the	details	in	the	main	page	component',function(){

		var	resultDetail	=	element(by.css('#searchResultDetail'))

		expect(resultDetail.isDisplayed()).toBeTruthy();

})

Here	is	the	complete	test:

...

describe('When	I	select	an	item	from	the	search	results',	function(){

				beforeEach(function(){

				var	resultItem	=	element.all(by.repeater('result	in	results')).first();

				var	resultLink	=	resultItem.element(by.css('a'));

				resultLink.click();

		});

		it('Should	see	the	details	in	the	main	page	component',function(){

				var	resultDetail	=	element(by.css('#searchResultDetail'))

				expect(resultDetail.isDisplayed()).toBeTruthy();

		});

});

Now	that	the	test	is	set	up,	you	can	continue	to	the	next	phase	of	the	life	cycle	and	make	it
run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	the	search	result	test	run
For	this	step	of	the	life	cycle,	we	will	execute	Protractor	and	make	fixes	in	the	application
in	order	to	make	the	test	run	successfully.	Here	are	the	steps	you	need	to	follow:

1.	 The	first	error	:	Error:	No	element	found	using	locator:	by.cssSelector('a')

We	need	to	add	a	link	to	the	result	item	list,	which	will	point	to	the	details	of	the
result.	In	terms	of	Angular	routes,	we	will	add	#/detail/:resultId	as	a	prefix:

<li	ng-repeat="result	in	results">

{{result.name}}

2.	 Now	rerun	the	test	and	we	get	UnknownError:	unknown	error:	Element	is	not
clickable	at	point	(48,	57).	Other	element	would	receive	the	click:....

This	error	is	not	as	clear.	When	this	happens,	and	the	error	is	not	as	specific	as
required,	you	can	jump	to	the	site	itself	and	look	at	the	JavaScript	console	for
errors.	Go	to	http://localhost:8080.	Here	is	a	screenshot	of	what	you	should
see:

The	main	problem	is	that	the	link	is	not	on	the	page.	Looking	back	at	the	code,
you	can	see	that	the	search	result	object	is	an	array	of	strings	but	it	needs	to	be
an	array	of	objects	that	have	an	ID	and	name.
Update	the	app/searchController.js	search	function	as	follows:

		$scope.search	=	function(){

				$scope.results	=	[{id:1,name:'Any	Value'}];

		};

Now	rerun	the	test.

3.	 The	routes	have	now	been	configured	to	the	new	route	(#/detail/{{result.id}})
and	the	tests	now	pass.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	location-aware	test
As	the	application	uses	routes,	the	route	detail	view	will	need	to	be	tested.	In	this	case,
you	will	need	to	ensure	the	URL	has	the	ID	of	the	search	result.	Follow	these	steps	to	add
the	test:

1.	 In	the	beforeEach	method,	retrieve	the	ID	of	the	search	result	based	on	href	of	the
link	attribute:

var	resultId	=	null;

beforeEach(function(){	

…

resultId	=	resultLink.getAttribute('href').then(function(attr)	{

return	attr.match(/#\/detail\/(\d+)/)[1];

});

});	

2.	 Resolve	the	resultId	promise	containing	the	ID	of	the	result:

it('Should	set	the	url	to	the	selected	detail	view',function(){

resultId.then(function(id)	{

3.	 Within	the	promise,	create	expectedUrl:

var	expectedUrl	=	'/detail/'+id;

4.	 Get	the	location	of	the	URL:

browser.getLocationAbsUrl()

5.	 Use	the	promise	to	check	the	expectation	on	the	URL:

.then(function(url)	{

expect(url.split('#')[1]).toBe(expectedUrl);

});

});

Location-aware	tests	can	be	very	helpful	when	dealing	with	routes.	The	tests	can	be
simple	or	complex,	but	help	align	the	route	interface	to	clear	specifications.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	the	search	result	better
Now	that	there	is	a	passing	test,	some	cleanup	and	refactoring	is	needed.	There	are	two
primary	callouts:

No	unit	tests.
How	do	you	know	searchResultDetail	is	specific	to	the	search	result	we	select?

Up	to	this	point,	there	hasn’t	been	a	need	to	create	unit	tests	to	build	the	application.	The
focus	has	been	on	the	UI	in	the	application.	There	hasn’t	been	logic	or	actions	needed	to
build	on	the	backend.	Most	of	the	development	has	been	focused	on	wiring	up	the
frontend	and	making	sure	the	components	in	the	specification	are	available	to	the	user.

The	other	action	that	you	need	to	look	at	is	the	fact	that	there	is	not	a	way	to	test	that	a
loaded	view	actually	reflects	data	from	the	selected	result.	This	can	be	tackled	in	two
parts.	The	first	part	is	to	ensure	that	the	URL	for	the	window	points	to	the	correct	route.
The	second	part	will	be	to	display	the	ID	number	of	the	search	result	on	the	view.

Confirming	the	route	ID
The	ID	will	not	be	displayed	to	the	users;	however,	it	is	still	an	integral	part	of	the
application.	As	the	application	grows	in	the	following	chapters,	you	will	be	leveraging	the
ID	to	extract	further	data.	This	walk-through	will	follow	the	TDD	life	cycle	and	use
Karma	to	build	the	feature.

Setting	up	the	route	ID	unit	test

To	inject	the	scope	into	a	controller,	the	initial	test	will	look	as	follows:

describe('',function(){

		var	scope	=	{};

		beforeEach(function(){

				module('search');

				inject(function($controller){

						$controller('SearchController',{$scope:scope});

				});

		});

		it('',function(){});

});

In	order	to	test	the	routes,	the	test	will	leverage	the	$routeParams	object.	The
$routeParams	object	gives	an	object	access	to	information	relating	to	the	route	that
brought	the	application	to	the	location.	For	example,	the	/detail/:id	route	definition	and
the	/detail/123,	$routeParams	route	will	give	you	the	{id:123}	object.	For	the	test,	a
fake	$routeParams	object	containing	the	ID	of	the	detail	object	will	be	used.	Update	the
test	so	that	it	has	the	following	fake	$routeParams	object,	which	will	return	an	ID	of	1:

beforeEach(function(){

//	...

var	routeParams	=	{id:1};

$controller('SearchDetailController',{$scope:scope,$routeParams:	

routeParams	});

www.it-ebooks.info

http://www.it-ebooks.info/

Now	that	the	fake	$routeParams	object	has	been	injected	into	the	controller,	you	can
continue	to	the	next	phase	and	make	the	assertion.

Confirming	the	ID

The	assertion	is	that	the	scope	has	a	detail	object	with	the	same	ID	that	$routeParams
specified.	The	code	for	confirming	the	ID	is	as	follow:

it('Should	return	results',function(){

expect(scope.detail.id).toBe(1);

});

Making	the	route	parameter’s	test	run

Now	that	Karma	is	running	using	a	headless	browser,	we	can	start	Karma	in	the	console
and	let	it	run	as	we	walk	through	the	issues,	as	shown	in	the	following	steps:

1.	 Start	Karma:

$	karma	start

2.	 The	first	issue	we	get	is	that	ngRoute	can’t	be	found.	This	is	because	we	added
angular-route	to	the	project,	but	haven’t	added	it	to	karma.conf.	Update	the
karma.conf	update	the	files	section	with	the	following	code:

files:	[

//	...

'bower_components/angular-route/angular-route.js',

3.	 After	rerunning	the	test,	we	are	left	with	TypeError:	''undefined''	is	not	an
object	(evaluating	scope.detail.id).	To	rectify	this,	perform	the	following
steps:

1.	 This	error	informs	us	that	the	scope.detail.id	object	doesn’t	exist	in	the
controller.	We	will	now	update	the	controller	to	include	it.	The	first	step	to
fixing	this	is	to	add	$routeParams	to	searchDetailController:

.controller('SearchDetailController',

['$scope','$routeParams',function($scope,$routeParams){

2.	 Now,	in	the	controller,	create	the	detail	object	with	the	$routeParams	ID:

$scope.detail	=	{id	:	$routeParams.id};

3.	 The	detail	object	has	now	been	created	using	the	ID	of	the	route.	Go	ahead	and
rerun	the	test.

The	test	passes!

The	application	now	looks	like	what	is	shown	in	the	following	screenshot	when	you	first
open	it:

www.it-ebooks.info

http://www.it-ebooks.info/

After	a	search	query,	the	application	looks	like	what	is	shown	in	the	following	screenshot:

For	details	of	the	application	looks	as	shown	in	the	following	screenshot	(notice	that	the
URL	contains	the	detail	route):

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
Q1.	Given	the	following	HTML	code,	how	would	you	select	the	second	list	item?

item	1

item	2

1.	 element.all(by.css('li')).second();.
2.	 element	(by.repeater('item	in	list'))[1];.
3.	 element.all(by.css('li')).get(1);.

Q2.	Given	the	following	AngularJS	component,	how	would	you	select	the	element	and
simulate	a	click?

Some	Link

1.	 $('a').click();.
2.	 element(by.css('li)).click();.
3.	 element(by.linkText('Some	Link')).click();.

Q3.	When	using	routes	with	AngularJS	you	need	to	install	angular-route.

1.	 True.
2.	 False.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	has	shown	you	how	to	use	TDD	to	build	an	AngularJS	application.	The
approach,	up	to	this	point,	has	focused	on	the	specification	from	a	user	perspective	and
using	TDD	from	top-down	approach.	This	technique	helps	you	get	usable,	small
components	tested	and	completed	for	the	users.	As	applications	grow,	so	does	their
complexity.	As	we	move	on	to	the	next	chapter,	we	will	explore	the	bottom-up	approach
and	see	when	to	use	that	technique	over	a	top-down	approach.

This	chapter	has	shown	you	how	TDD	can	be	used	to	develop	route-based	views.	This
includes	utilizing	multiple	controllers	and	views.	Routes	allow	you	to	get	a	nice	separation
of	your	components	and	views.	We	have	shown	the	usage	of	several	Protractor	locators,
from	CSS,	to	repeaters,	to	link	text,	to	inner	locators.	Besides	using	Protractor,	we	have
also	learned	how	to	configure	Karma	with	a	headless	browser,	and	we	got	to	see	it	in
action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Telling	the	World
The	buildup	of	TDD	focused	on	fundamental	components,	namely	life	cycle	and	process,
using	step-by-step	walk-throughs.	You	have	taken	several	applications	from	the	ground
up,	understanding	how	to	build	AngularJS	applications	and	use	tools	to	test	them.	It	is
time	to	expand	further	into	the	depths	of	AngularJS	and	integrate	services,	broadcasting,
and	routes.

This	chapter	will	be	slightly	different	than	the	others	in	two	ways:

Instead	of	building	a	brand	new	application,	we	will	use	the	search	application	from
Chapter	5,	Flip	Flop.
Also,	a	bottom-up	approach	will	be	used.	This	consists	of	creating	unit	tests	first	and
then	moving	to	the	UI.

www.it-ebooks.info

http://www.it-ebooks.info/

Before	the	plunge
Before	the	walk-through,	the	core	concepts	of	the	chapter	will	be	reviewed	first.	It	is
important	that	you	understand	these	concepts	before	you	move	on	to	the	walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma	configuration
So	far,	the	default	Karma	configuration	has	been	used,	but	no	explanation	on	the	default
configuration	has	been	given	yet.	File	watching	is	a	useful	default	behavior	that	will	now
be	reviewed.

File	watching
File	watching	is	enabled	by	default	when	the	karma	init	command	is	used.	File	watching
in	Karma	is	configured	with	the	following	definition	in	the	karma.conf.js	file:

autoWatch:	true,

The	file	watching	feature	works	as	expected	and	watches	the	files	defined	in	the
configuration’s	files	array.	When	a	file	is	updated,	changed,	or	deleted,	Karma	will
respond	by	rerunning	the	tests.	From	a	TDD	perspective,	this	is	a	great	feature	as	tests	will
continue	to	run	without	any	manual	intervention.

The	main	point	to	watch	out	for	is	the	addition	of	files.	If	the	file	being	added	doesn’t
match	the	criteria	in	the	files	array,	the	autoWatch	parameter	won’t	respond	to	the
change.	As	an	example,	let’s	consider	that	the	files	are	defined	as	follows:

files	:	['dir1/**/*.js']

If	this	is	the	case,	the	watcher	will	find	all	the	files	and	subdirectory	files	ending	in	.js.	If
a	new	file	is	in	a	different	directory,	not	in	dir1,	then	the	watcher	will	not	be	able	to
respond	to	the	new	file	because	it	is	in	a	different	directory	than	what	it	was	configured	in.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	a	bottom-up	approach
The	top-down	approach	of	TDD	can	be	very	useful.	It	helps	focus	on	user-facing
components	first	and	then	fills	up	the	backend	layer.	One	of	the	caveats	to	this	approach	is
that	the	specification	being	built	is	more	user	facing	as	opposed	to	it	being	based	on	logic.
The	bottom-up	approach	builds	from	the	inner	components	out	to	the	UI	and	the	user.	This
kind	of	approach	is	extremely	important	when	working	with	complicated	logic	and
requirements.	With	the	bottom-up	approach,	you	will	first	build	services,	controllers,	and
directives	with	all	the	complexities	using	unit	tests	and	Karma.	After	this,	you	will	expand
to	create	end-to-end	tests	with	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Services
AngularJS	services,	factories,	and	resources	are	all	important	components.	Services	are
used	to	abstract	application	logic.	They	are	used	to	provide	single	responsibility	for	a
particular	action.	Single	responsibility	allows	components	to	be	easily	tested	and	changed.
This	is	because	the	focus	is	on	one	component	and	not	all	the	inner	dependencies.

Here	is	a	summary	of	some	of	the	other	AngularJS	components	that	have	been	looked	at
so	far:

Attributes	and	directives:	These	drive	actions	and	flow	from	the	UI
Controllers:	This	provides	the	glue	between	the	UI	and	logic
Services:	This	isolates	the	logic

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing	and	subscribing	messages
One	of	the	great	features	of	AngularJS	is	its	ability	to	publish	and	subscribe	messages
within	a	page.	Publishing	and	subscribing	messages	is	a	powerful	component,	but	like
with	anything,	when	used	the	wrong	way,	it	can	lead	to	a	mess.

One	area	where	this	pattern	is	useful	is	when	communicating	across	boundaries	in	an
application.	Application	boundaries	are	important	as	they	allow	the	UI	to	have	isolated
code.	Complexity	occurs	when	separate	UI	components	need	to	be	aware	of	changes	in
other	areas	of	the	UI.	With	a	publishing	and	subscription	model,	applications	can
communicate	seamlessly	using	messages.	This	chapter	will	focus	on	publishing	and
subscribing.	You	will	be	able	to	take	a	closer	look	at	what	boundaries	are	and	determine
good	places	to	leverage	this	feature	in	your	own	applications.

There	are	two	ways	in	which	messages	can	be	published.	You	can	either	emit	or	broadcast.
It	is	important	to	know	the	difference	as	both	work	slightly	differently,	and	they	may
affect	the	performance	of	your	application.

Emitting
One	way	to	publish	events	is	to	emit	them.	The	documentation	at
https://docs.angularjs.org/api/ng/type/$rootScope.Scope	gives	the	functionality	of	the
$emit()	method	as	follows:

Dispatches	an	event	name	upwards	through	the	scope	hierarchy	notifying	the	registered
$rootScope.Scope	listeners.

The	important	thing	to	note	is	$emit()	notifies	up	through	the	scopes	all	the	way	to	the
top	of	the	hierarchy.	This	is	important	because	if	you	have	an	embedded	controller	scope,
it	is	going	to	have	to	propagate	all	the	way	up	to	every	controller	and	scope.	This	can
cause	a	performance	issue.	Here	is	an	example	of	how	to	emit	an	event:

$scope.someAction	=	function(){

		$scope.$emit('ANYEVENT');

};

The	best	way	to	see	the	upward	propagation	of	the	event	is	through	a	test.	The	next	section
will	show	you	how	to	unit	test	the	upward	effect	of	$emit().

Testing	emit

The	following	tests	have	three	controllers:	TopController,	MiddleController,	and
BottomController.	MiddleController	will	emit	the	event.	From	this,	an	expectation	can
be	made	that	TopController	will	receive	the	event	and	BottomController	won’t,	as	the
emission	propagates	in	an	upward	fashion.	Here	are	the	steps	to	test	the	$emit()	method:

1.	 Create	spies	to	test	the	emission	of	events:

var	topEventSpy	=	jasmine.createSpy();

var	bottomEventSpy	=	jasmine.createSpy();

www.it-ebooks.info

https://docs.angularjs.org/api/ng/type/%24rootScope.Scope
http://www.it-ebooks.info/

2.	 The	test	setup	first	sets	the	hierarchy	of	scopes:

inject(function($controller,$rootscope){

		var	topScope	=	$rootscope.$new();

		var	middleScope	=	topScope.$new();

		var	bottomScope	=	middleScope.$new();

3.	 Then	the	controllers	are	set	with	their	respective	scopes:

$controller('TopController',{$scope:topScope});

$controller('MiddleController',{$scope:middleScope});

$controller('BottomController',{$scope:bottomScope});

4.	 Set	the	spy	to	capture	the	events:

topScope.$on('MIDDLEEMIT',topEventSpy);

bottomScope.$on('MIDDLEEMIT',bottomEventSpy);

5.	 Emit	the	event	from	the	middle	scope:

middleScope.$emit('MIDDLEEMIT');

6.	 Add	the	expectation	that	the	top	spy	was	called	on	the	events:

it('Should	notify	top	controller',function(){

		expect(topEventSpy.wasCalled).toBe(true);

});

7.	 Add	the	expectation	that	the	bottom	spy	was	not	called:

it('Should	not	notify	bottom	controller',	function(){

		expect(bottomEventSpy.wasCalled).toBe(false);

});

Here	are	a	couple	of	things	to	note	from	the	preceding	test:

This	is	a	unit	test	that	we	will	run	in	Karma.
The	inject	method	provides	a	reference	to	the	$controller	and	$rootscope	scopes.
The	$rootscope	scope	is	the	topmost	scope	of	an	AngularJS	application.	If	you’re
using	$rootscope	to	emit	events,	they	wouldn’t	need	to	propagate	anymore	as
$rootscope	is	at	the	highest	level.	In	the	later	examples,	$rootscope	will	be	injected
into	the	controller	and	used	to	listen	to	and	send	events.
A	scope	can	create	a	new	child	scope.	A	child	scope	is	created	using	the	$new
method.	You	can	imagine	this	to	be	equivalent	to	a	page	that	has	embedded
containers:

<div	ng-controller="topController"

		<div	ng-controller="middleController">

				<div	ng-controller="bottomController">

				</div>

		</div>

</div>

Testing	broadcast

www.it-ebooks.info

http://www.it-ebooks.info/

The	documentation	at	https://docs.angularjs.org/api/ng/type/$rootScope.Scope	states	gives
the	functionality	of	the	$broadcast()	method	as	follows:

Dispatches	an	event	name	downwards	to	all	child	scopes	(and	their	children)	notifying	the
registered	$rootScope.Scope	listeners.

As	opposed	to	the	$emit	method,	which	pushes	events	up	through	the	scope	chain,
$broadcast	pushes	events	down	the	chain.	The	other	important	distinction	to	make	is	that
the	$broadcast	event	can’t	be	cancelled,	but	$emit	can	be.	These	are	small	intricacies	that
if	not	understood	properly	can	have	a	negative	effect	on	the	application.	Like	with	the
$emit	event,	the	following	example	shows	the	way	broadcasting	works	through	a	test.

Testing	broadcast

Utilizing	similar	techniques	from	the	emission	test,	here	are	the	steps	to	test	the
broadcasting	of	events:

1.	 Create	the	spies:

var	topEventSpy	=	jasmine.createSpy();

var	bottomEventSpy	=	jasmine.createSpy();

2.	 Initialize	the	scopes:

var	topScope	=	$rootScope.$new();

var	middleScope	=	topScope.$new();

var	bottomScope	=	middleScope.$new();

3.	 Set	the	respective	controller	scopes:

$controller('TopController',{$scope:topScope});

$controller('MiddleController',{$scope:middleScope});

$controller('BottomController',{$scope:bottomScope});

4.	 Set	the	spies	to	listen	for	the	events:

topScope.$on('MIDDLEEMIT',topEventSpy);

bottomScope.$on('MIDDLEEMIT',bottomEventSpy);

5.	 Broadcast	the	event	from	middleScope:

middleScope.$broadcast('MIDDLEEMIT');

6.	 Have	the	expectation	that	the	top	scope	was	not	touched:

it('Should	not	notify	top	controller',function(){

		expect(topEventSpy.wasCalled).toBe(false);

});

7.	 Have	the	expectation	that	the	bottom	scope	received	the	message:

it('Should	notify	bottom	controller',	function(){

		expect(bottomEventSpy.wasCalled).toBe(true);

});

The	preceding	explanations	have	showed	how	to	integrate	and	test	two	types	of	AngularJS

www.it-ebooks.info

https://docs.angularjs.org/api/ng/type/%24rootScope.Scope
http://www.it-ebooks.info/

events.	As	you	progress	through	the	rest	of	the	event	tests,	you	will	find	that	the	setup	and
techniques	used	here	will	be	used	throughout	the	rest	of	the	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Publishing	and	subscribing	–	the	good	and	bad
Knowing	when	to	use	publishing	and	subscribing	is	one	thing,	but	knowing	when	not	to
use	them	is	the	difficult	part.

The	good
Before	looking	at	the	problems	that	publishing	and	subscribing	can	lead	to,	here	are	some
of	the	best	scenarios	where	you	can	use	this	technique:

Communicating	important	events	to	different	components	of	the	application
Reducing	coupling

Communicating	through	events

When	thinking	about	events	that	need	to	be	coupled,	it	is	important	to	think	about	what
actions	are	driving	the	application.	Given	a	bank	application,	events	might	be	as	simple	as
DEPOSITED	and	WITHDREW.	These	two	simple	events	may	be	used	in	many	other	places.
Think	about	you	wanting	to	send	an	e-mail	to	the	customer	every	time	they	withdrew	or
automatically	updated	some	real-time	report.	Instead	of	polling	the	persistence	layer,	a
real-time	notification	message	can	be	used.	In	AngularJS,	this	means	that	the	UI	can	be
made	up	of	different	components	that	can	respond	to	changes	in	one	area,	for	example,	UI
notifications,	updating	workflows,	enabling	features,	or	anything	you	can	think	of.

Communicating	events	so	that	other	components	can	respond	to	them	is	key.	When	you
want	to	easily	respond	to	events	and	changes,	publishing	and	submitting	is	the	way	to	go.
The	following	is	another	test	to	show	how	communication	can	be	used:

1.	 Create	scopes	for	the	controllers:

recentTransactionScope	=	$rootScope.$new();

atmScope	=	recentTransactionScope.$new();

2.	 Assign	the	scopes	to	the	controllers:

$controller('AtmController',{$scope:atmScope});

$controller('RecentTransactionsController',

{$scope:recentTransactionScope});

3.	 Set	the	spies:

spyOn(atmScope,'$emit').and.callThrough();

spyOn(recentTransactionScope.recent,'push');

4.	 Call	the	method	being	tested:

atmScope.withdraw(3.33);

5.	 Set	the	expectation	that	the	event	was	emitted:

it('should	emit	an	event',function(){

		expect(atmScope.$emit).toHaveBeenCalled();

});

www.it-ebooks.info

http://www.it-ebooks.info/

6.	 Set	the	expectation	that	the	recent	transactions	received	the	event:

it('should	send	event	to	recent	transactions',function(){

		expect(recentTransactionScope.recent.push).toHaveBeenCalled();

});

Here	are	the	controllers	to	further	clarify	the	code:

1.	 The	AtmController	property	(publisher):

bankModule.controller('AtmController',	['$scope',	function($scope){

		$scope.withdraw	=	function(amount){

				$scope.$emit('WITHDREW',amount);

		}

}]);

2.	 The	RecentTransactionsController	property	(subscriber):

bankModule.controller('RecentTransactionsController',	['$scope',	

function($scope){

		$scope.recent	=	[];

		$scope.$on('WITHDREW',function(amount){

				$scope.recent.push(amount);

		})

}]);

As	discussed	with	the	tests,	AtmController	emits	the	WITHDREW	event	after	a	withdrawal
occurs.

The	preceding	steps	are	just	a	simple	example	of	how	publishing	and	subscribing	can	help
communicate	important	activities	across	your	application.

Reducing	coupling

Communication	is	one	aspect	of	the	benefits	of	publishing	messages.	Messaging	gives	you
decreased	coupling.	Think	about	the	preceding	bank	application	that	communicates	when
a	withdrawal	occurs.	The	messages	may	be	used	for	many	different	aspects	of	the
application,	and	since	it	is	decoupled,	we	don’t	need	to	worry.	If	we	think	about	it	another
way,	the	withdraw	function	doesn’t	care	about	the	rest	of	the	application.	It	only	focuses
on	the	fact	that	it	will	perform	a	withdrawal	and	then	send	a	message	upon	its	completion.
From	the	subscription	perspective,	the	recent	transactions	don’t	care	where	the	withdrawal
happens.	It	only	has	to	focus	on	what	it	needs	to	do	when	this	happens.

Decoupling	the	application	can	be	extremely	beneficial	from	a	testing	perspective.	Take
another	look	at	the	bank	application	if	you	want	to	refactor	and	separate	out	the	tests.	You
could	create	a	new	test	that	is	specific	to	the	RecentTransactions	property.	Since	the
application	is	decoupled,	it	doesn’t	care	about	AtmController.	The	test	can	be	separated
out	as	follows:

1.	 The	beforeEach	function	can	be	reduced	to	only	deal	with	the	scope	of
recentTransactionsController	and	$rootScope:

www.it-ebooks.info

http://www.it-ebooks.info/

var	recentTransactionScope	=	{};

var	rootScope	=	{};

beforeEach(function(){

		module('bank');

		inject(function($controller,$rootScope){

				rootScope	=	$rootScope.$new();

				recentTransactionScope	=	$rootScope.$new();

				$controller('RecentTransactionsController',

{$scope:recentTransactionScope});

		});

		spyOn(recentTransactionScope.recent,'push');

		rootScope.$emit('WITHDREW',3);

});

2.	 In	the	beforeEach	function,	add	a	spy	to	help	with	testing:

spyOn(recentTransactionScope.recent,'push');

3.	 Instead	of	calling	the	AtmController	class’s	withdraw	function,	we	can	call	$emit	on
$rootScope:

rootScope.$emit('WITHDREW',3);

4.	 The	afterEach	function	and	the	expectation	are	the	same	as	shown	previously:

afterEach(function(){

		recentTransactionScope.recent.push.calls.reset();

		});

		it('should	send	event	to	recent	transactions',function(){

				expect(recentTransactionScope.recent.push).toHaveBeenCalled();

});

This	example	has	shown	that	using	messaging,	you	can	decouple	tests.	Decoupling
application	tests	allows	the	application	to	grow	without	having	to	negatively	refactor	the
entire	application.	In	the	preceding	case,	if	AtmController	is	changed,	the
recentTransactions	test	and	the	recentTransactions	controller	won’t	need	to	be
changed.	As	long	as	the	WITHDREW	event	is	published,	recentTransactions	will	not	have
to	be	updated.

www.it-ebooks.info

http://www.it-ebooks.info/

Harnessing	the	power	of	events
Publishing	and	subscribing	events	can	lead	to	some	ugly	and	hard-to-understand	spaghetti
code.	Now	that	the	foundations	for	the	chapter	have	been	reviewed,	you	can	dive	into
implementing	events	into	the	search	application.

www.it-ebooks.info

http://www.it-ebooks.info/

The	plan
The	search	application	from	Chapter	5,	Flip	Flop,	is	quite	basic.	At	this	point,	it	will
return	a	set	of	results,	and	then	when	the	user	clicks	on	a	result,	details	will	appear.	The
application	provides	a	foundation	for	future	development.	In	this	chapter,	the	functionality
will	be	expanded	to	include	publishing	and	subscribing.	Here	is	the	plan	to	expand	the
search	application:

The	search	application	will	be	rebranded	as	a	store	application,	and	the	search	results
will	display	a	list	of	products.
When	a	product	is	selected,	details	will	be	displayed.
All	selected	products	from	the	search	will	be	available	in	a	new	view	for	“recently
viewed”	items.
The	detailed	view	of	the	product	will	have	the	option	to	“add	to	cart”,	and	the	product
will	then	be	available	in	the	cart	view.

The	plan	is	somewhat	ambitious,	but	with	all	the	knowledge	we	have	on	TDD	and
AngularJS,	the	development	should	flow	nicely.

www.it-ebooks.info

http://www.it-ebooks.info/

Rebranding
The	search	application	will	be	rebranded	into	a	store	application	instead	of	rewriting	the
search	functionality	that	has	already	been	written.	In	order	to	leverage	the	existing	search
project,	it	will	be	copied	into	a	new	project	file.	Then,	the	new	project	will	use	the	tests	to
drive	the	development	changes	and	refactoring.	The	refactor	steps	have	been	left	out,	but	a
review	of	the	code	will	show	how	the	code	and	tests	were	modified	to	create	the	product
application.

The	refactor	steps	updated	the	unit	tests	and	application	to	support	the	correct	naming	for
the	application.	It	is	important	to	take	away	two	things	from	this:

Refactor	small	to	introduce	big	changes.	Small	incremental	changes	help	to
progressively	get	to	the	next	stage	of	the	application.	When	big	changes	occur,	it	can
be	confusing	to	know	where	and	what	to	change.	With	small	changes,	even	though
the	same	code	is	revisited	several	times,	you	can	ensure	the	tests	pass	at	each	stage
instead	of	ripping	the	application	apart	completely	and	then	trying	to	put	it	all	back
together	again.
TDD	applies	during	refactoring	just	as	much	as	when	doing	core	development.	The
refactor	steps	followed	were	the	same	as	the	TDD	steps.	Start	with	changing	the	test
to	meet	our	specification	and	then	make	the	code	run	to	meet	the	specification.
Applying	these	principles	helps	keep	productivity	and	focus.

Both	the	unit	tests	and	end-to-end	tests	pass	from	the	refactor	steps.	It	is	time	to	turn	to	the
first	feature	of	the	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Seeing	recently	viewed	items
Now	that	the	initial	refactoring	is	complete,	the	new	functionality	of	the	product
application	can	be	considered.	The	first	specification	that	will	be	considered	is	the	ability
to	see	“recently	viewed”	items.	The	specification	is	broken	down	into	two	steps,	as
follows:

The	user	selects	a	product	to	view	the	details
They	will	be	able	to	see	the	viewed	products

This	is	an	example	of	where	broadcasting	would	be	a	good	candidate.	In	the	preceding
case,	the	specification	is	concerned	with	when	a	product	has	been	selected.	In	other	words,
when	an	event	occurs,	a	subsequent	action	needs	to	happen.	Using	AngularJS	events
($broadcast()/$emit()),	the	event	of	selecting	a	product	to	view	can	be	published	and
then	consumed	by	the	recently	viewed	component.

The	standard	TDD	life	cycle	will	be	used	to	build	this	component:	test	first,	make	it	run,
make	it	better.	We	will	be	using	a	bottom-up	approach	(unit	test	first).	The	main	reason	for
choosing	this	approach	is	that	there	are	multiple	controllers	involved,	and	it	will	be	easier
to	start	at	the	bottom	and	make	our	way	up	through	the	application.

Test	first
The	first	test	we	will	be	writing	is	that	the	SearchController	class	will	publish	an	event
when	a	product	is	selected.	The	following	sections	detail	how	to	write	the	test.

Assembling	SearchController

Here	are	the	steps	to	assemble	the	SearchController	class:

1.	 Start	with	the	test	stub	using	the	following	code:

describe('',function(){

		beforeEach(function(){

		});

		it(function(){

		});

});

2.	 Get	the	scope	of	SearchController	so	that	an	action	can	be	performed:

describe('',	function(){

		beforeEach(function(){

				module('product');

				inject(function($controller,$rootScope){

						var	searchControllerScope	=	$rootScope.$new();

						$controller('SearchController',{$scope:searchControllerScope});

				});

		});

		it(function(){

		});

});

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Place	a	spy	on	the	SELECTEDPRODUCT	event:

var	selectedProductSpy	=	jasmine.createSpy();

var	searchControllerScope	=	{};

beforeEach(function(){

		module('product');

		inject(function($controller,$rootScope){

				searchControllerScope	=	$rootScope.$new();

				$controller('SearchController',

{$scope:searchControllerScope,$rootscope});

				searchControllerScope.$on('SELECTEDPRODUCT',selectedProductSpy);

		});

})

4.	 Add	a	cleanup	function	to	clear	the	scope	after	each	test	and	clear	the	spy:

afterEach(function(){

		searchControllerScope	=	{};

		selectedProductSpy.reset();

});

Selecting	a	product

The	test	requires	that	a	SELECTEDPRODUCT	event	has	been	published.	The	event	will	occur
when	the	selected	product	method	is	called	with	productId:

var	fakeProduct	=	{productId:1};

searchControllerScope.selectProduct(fakeProduct);

Expecting	events	to	be	published

The	expectation	is	that	selectedProductSpy	has	been	called:

it('',function(){

		expect(selectedProductSpy).toHaveBeenCalled();

});

Making	the	search	controller	run
Now	we	have	to	make	the	test	pass	and	run.	Here	are	the	steps:

1.	 Start	Karma	using	the	following	command:

$karma	start

2.	 You’ll	get	an	error,	namely	TypeError:	'undefined'	is	not	a	function
(evaluating	'searchControllerScope.selectProduct(fakeProduct)').	To
rectify	this,	perform	the	following	step:

1.	 Add	the	method	to	SearchController:

$scope.selectProduct	=	function(){};

3.	 Then	you’ll	get	the	error	Expected	spy	unknown	to	have	been	called.	Error:
Expected	spy	unknown	to	have	been	called.	To	rectify	this,	perform	the

www.it-ebooks.info

http://www.it-ebooks.info/

following	steps:

1.	 The	expectation	has	failed,	which	means	the	spy	was	never	called.	Open	up
SearchController	and	add	functionality	to	the	selectProduct	method	to	emit
an	event:

$scope.selectProduct	=	function(productId){

		$rootScope.$broadcast('SELECTEDPRODUCT',productId);

};

2.	 Rerun	the	test.

4.	 The	test	will	pass.

Now	when	a	product	is	selected,	the	event	is	broadcasted.	Any	function	wanting	to	know
when	something	gets	selected	can	simply	listen	for	the	broadcast.

Recently	viewed	unit	test
The	next	step	is	to	add	another	test	from	the	subscription	side	of	the	event	to
RecentlyViewedController.

Test	first

Again,	the	walk-through	of	the	test	steps	will	use	the	3	A’s.

Assembling	RecentlyViewedController

Here	are	the	steps	to	assemble	RecentlyViewedController:

1.	 Start	with	the	test	stub	using	the	following	code:

describe('',function(){

		beforeEach(function(){

		});

		it(function(){

		});

});

2.	 Get	the	scope	of	RecentlyViewedController	so	that	an	action	can	be	performed:

describe('',function(){

		beforeEach(function(){

				module('product');

				inject(function($controller,	$rootScope){

						var	recentlyViewedScope	=	$rootScope.$new();

						$controller('RecentlyViewedController',	

{$scope:recentlyViewedScope});

				});

		});

		it(function(){

		});

});

3.	 Confirm	that	the	number	of	recently	viewed	products	is	equal	to	0:

www.it-ebooks.info

http://www.it-ebooks.info/

expect(recentlyViewedScope.recent.length).toBe(0);

Invoking	a	recently	viewed	item

The	action	for	this	test	is	that	the	SELECTEDPRODUCT	event	has	been	published.	Now	add
the	publish	event:

var	fakeProductEvent	=	{productId:1};

$rootscope.$broadcast('SELECTEDPRODUCT',fakeProductEvent);

Confirming	RecentlyViewedController

The	assertion	is	that	the	number	of	recently	viewed	products	is	now	equal	to	1:

it('',function(){

		expect(recentlyViewedScope.recent.length).toBe(1);

});

Making	RecentlyViewedController	run
Here	are	the	steps	to	run	RecentlyViewedController:

1.	 Start	Karma	using	the	following	command:

$	karma	start

2.	 You’ll	get	an	error,	namely	Error:	[ng:areq]	Argument
'RecentlyViewedController'	is	not	a	function,	got	undefined.	To	rectify
this	error,	perform	the	following	steps:

1.	 Create	the	required	controller	and	create	a	new	file	named
RecentlyViewedController.js.

2.	 Then,	add	the	following	details:

angular.module('product')

.controller('RecentlyViewedController',['$scope',function($scope){

}]);

3.	 Rerun	the	test.

3.	 Then	you’ll	get	the	error	TypeError:	'undefined'	is	not	an	object
(evaluating	'recentlyViewedScope	recent.length'),	which	means	that	the	first
expectation,	that	is	the	recent	product	0,	has	been	hit.	As	the	object	is	undefined,	add
it	to	the	recentlyViewedScope	scope.

4.	 Then	you’ll	get	the	error	Expected	0	to	be	1.	Error:	Expected	0	to	be	1.	To
rectify	this,	perform	the	following	steps:

1.	 The	expectation	has	been	hit.	Now	the	behavior	of	the	event	needs	to	be	added
to	the	controller.

2.	 Add	$rootScope	to	the	controller:

.controller('RecentlyViewedController',

['$scope','$rootScope',function($scope,$rootScope){

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Subscribe	to	the	event	from	$rootScope:

$rootScope.$on('SELECTEDPRODUCT',function(productEvent){

})

4.	 Now	add	productEvent	to	the	recent	array:

$rootScope.$scope.recent.push(productEvent)

5.	 Rerun	the	test.

5.	 The	tests	will	now	pass.

End-to-end	testing
The	unit	tests	are	complete	and	will	verify	that	the	publisher	and	subscriber	can	both
communicate	with	events.	Now	the	walk-through	will	look	at	the	application	as	a	whole
and	will	show	you	how	to	create	an	end-to-end	test.	The	specification	for	recently	viewed
items	is	that	in	a	given	search	result:

A	product	is	selected
It	will	be	available	in	the	recently	viewed	items

Now,	it	is	time	to	move	on	to	actually	creating	the	test.

Test	first

As	always,	start	by	translating	the	specification	in	the	test	using	the	3	A’s,	as	the	tests	will
utilize	the	existing	tests.
Assembling	the	recently	viewed	end-to-end	test

Before	you	repeat	the	code	from	Chapter	5,	Flip	Flop,	you	should	notice	that	the	first	test
already	searches	for	and	retrieves	the	search	results.	Therefore,	the	recently	viewed	test
can	be	embedded	within	the	existing	test	for	a	search	result	that	is	already	available.	At	the
bottom	of	the	existing	function	of	a	search	query,	initialize	the	test	stub:

describe('when	I	type	in	a	search	query',	function(){

//	...

describe('',function(){

		beforeEach(function(){

				});

				it('',function(){

		});

});

There	is	nothing	else	to	assemble	for	the	test,	and	you	can	move	on	to	the	next	step.
Selecting	a	search	result

Now,	searchResult	needs	to	be	invoked	using	the	following	steps:

1.	 The	first	step	will	be	to	select	the	first	searchResult	element:

var	firstResult	=	searchResult.first();

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 Find	the	link	within	the	first	item:

var	resultLink	=	firstResult.element(by.css('a'));

3.	 Click	on	the	result:

resultLink.click();

Confirming	recently	viewed	items

Now	that	a	product	has	been	selected	and	one	product	has	been	added	to	the	recently
viewed	items	list,	we	need	to	view	the	recently	viewed	items.	Here	are	the	steps	to	do	this:

1.	 Get	the	recently	viewed	items:

var	recentlyViewedItems	=	element(by.repeater('items	in	recent'));

2.	 Confirm	that	the	count	of	recently	viewed	items	is	equal	to	0:

expect(recentlyViewedItems.count()).toBe(1);

Making	the	recentlyViewedItems	test	pass

Now	the	test	needs	to	pass.	Here	are	the	steps	to	do	this:

1.	 Start	the	website:

./node_modules/http_server/bin/http_server

2.	 Run	Protractor:

./node_modules/protractor/bin/protractor	chromeOnlyConf.js

3.	 You’ll	get	an	error,	namely	Expected	0	to	be	1..
4.	 The	error	is	that	the	expectation	has	failed.	It	is	time	to	add	the	controller	and

repeater	to	the	recently	viewed	items	list	to	show	the	items:

<div	ng-controller="RecentlyViewedController">

		<div	ng-repeat="item	in	recent">

				{{item}}

		</div>

</div>

5.	 Rerun	the	test
6.	 The	error	is	the	same	as	before.	This	time,	Protractor	errors	don’t	give	any	clues	to

what	the	issue	is.	The	next	step	is	to	open	up	a	browser	and	see	what	the	web	browser
JavaScript	console	is	saying.	Point	your	browser	to
http://localhost:8080/#/recentlyViewed.	Immediately,	one	error	will	be	visible,
namely	[ng:areq]	Argument	'RecentlyViewedController'	is	not	a	function,
got	undefined.	To	rectify	this,	perform	the	following	steps:

1.	 Now	that	there	is	an	actual	error	to	fix,	progress	can	be	made.	The	error
indicates	that	the	controller	was	not	available.	As	the	controller	has	not	been
added,	it	is	time	to	add	the	controller	to	the	page.	Open	up	the	index.html	page

www.it-ebooks.info

http://www.it-ebooks.info/

and	add	the	controller	reference:

<script	src="app/recentlyViewedController.js"></script>

2.	 Rerun	the	test.

7.	 Now	the	test	will	be	successful.

Making	recently	viewed	items	better

The	recently	viewed	controller	is	now	complete.	It	would	be	nice	to	better	organize	the
view,	however	this	can	happen	later.	The	point	of	this	exercise	was	to	establish
communication	between	separate	views	and	create	a	usable	function.	This	has	been
achieved,	and	now	you	can	move	to	the	next	step	of	the	walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	product	cart
Another	important	aspect	of	the	application	is	the	ability	to	add	products	to	a	cart.	A
publishing	and	subscription	model	will	be	used	to	publish	when	an	item	has	been	saved	to
a	cart.	A	subscription	to	the	event	will	then	keep	track	of	items	in	the	cart	so	the	user	can
easily	see	when	saved	items	get	updated	in	real	time.	Here	is	the	specification	given	the
product	details	of	a	particular	product:

If	the	product	is	saved	to	a	cart
Product	will	be	displayed	in	the	product	cart	view

Now	the	necessary	things	are	in	order	to	get	down	to	the	3	A’s.

Publisher	test	first
The	publisher	will	come	from	searchDetailController.	The	test	will	need	to	ensure	that
when	an	item	is	saved,	an	event	is	published.

Assembling	searchDetailController

The	searchDetailController	already	has	some	unit	tests	written.	The	existing	test	can	be
leveraged	to	confirm	the	publishing	feature.	Here	are	the	steps	to	create	a	subtest	to	handle
the	saving	of	a	cart:

1.	 Start	with	an	inner	stub:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

})

2.	 In	order	to	test	that	an	event	has	been	emitted,	a	spy	will	be	needed	on	$rootScope.
Bring	in	$rootScope	and	add	a	spy	to	it:

//	...

var	savedToCartEventSpy	=	jasmine.createSpy();

beforeEach(function(){

		inject(function($rootScope){

				$rootScope.$on('SAVEDTOCART',savedToCartEventSpy);

		});

});

3.	 Add	afterEach	to	reset	the	spy:

afterEach(function(){

		savedToCartEventSpy.calls.reset();

});

Invoking	the	saving	of	a	product

In	the	beforeEach	section,	select	the	method	and	make	the	following	changes:

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach(function(){

		//	...

		var	fakeProduct	=	{productId:1};

		searchDetailScope.saveProduct(fakeProduct);

})

Confirming	the	save	event

The	expectation	is	that	the	spy	has	been	called:

it('',function(){

		expect(savedToCartEventSpy).toHaveBeenCalled();

})

Making	the	saveProduct	test	pass
Now	we	need	to	make	the	test	pass.	Here	are	the	steps	to	make	the	saveProduct	test	pass:

1.	 Start	Karma:

$	karma	start

2.	 The	first	error	will	be	TypeError:	'undefined'	is	not	a	function	(evaluating
'searchDetailScope.saveProduct(fakeProduct)').	If	you	get	this	error,	then
follow	these	steps:

1.	 The	function	doesn’t	exist	on	the	scope.	Add	it	using	the	following	code:

$scope.saveProduct	=	function(product){};

2.	 Rerun	the	test.

3.	 Now	the	error	has	hit	the	expectation	and	says	Expected	spy	unknown	to	have
been	called.	In	this	case,	follow	the	given	steps:

1.	 The	smallest	thing	we	can	add	to	the	test	is	the	ability	to	emit	the	event	from	the
method.	First	add	$rootScope	to	the	controller:

.controller('SearchDetailController',

['$scope','$routeParams','productService','$rootScope',function($sc

ope,$routeParams,productService,$rootScope){

2.	 Then	add	the	Sbroadcast()	event	to	it:

$rootScope.$broadcast('SAVEDTOCART',product);

3.	 Rerun	the	test.

4.	 The	test	is	successful.

Test	for	the	subscriber	first
The	subscriber	unit	test	will	confirm	that	when	a	SAVEDTOCART	event	is	emitted,	then	the
product	will	be	added	to	the	cart	object.	The	specification	is	as	a	SAVEDTOCART	event	is

www.it-ebooks.info

http://www.it-ebooks.info/

given,	the	following	action	will	be	performed:

It	will	add	the	product	to	the	cart

Assembling	the	product	cart	test

Here	are	the	steps	to	assemble	the	product	cart	test:

1.	 Create	a	new	file,	spec/unit/cart.js.
2.	 Start	with	the	base	stub:

describe('',	function(){

		beforeEach(function(){

		});

		it('',	function(){

		});

});

3.	 Initialize	the	module:

module('product');

4.	 Initialize	the	scope	so	that	expectations	can	be	made:

var	scope	=	{};

beforeEach(function(){

		//	...

		inject(function($controller){

				$controller('CartController',{$scope:scope});

		});

});

5.	 Initialize	$rootScope	so	subscriptions	can	be	made:

inject(function($controller,$rootScope){

		scope	=	$rootScope.$new();

		$controller('CartController',{$scope:scope,$rootScope:$rootScope});

		});

6.	 The	last	thing	to	confirm	is	that	the	cart	is	empty.	Add	the	following	expectation	to
ensure	the	test	is	set	up	properly:

expect(scope.cart.length).toBe(0);

Invoking	a	saved	cart	event

This	test	is	around	the	fact	that	when	the	SAVEDTOCART	event	is	published,	the
CartController	property	will	perform	a	specific	action.	Add	the	publishing	of	the	event
to	the	beforeEach	method:

beforeEach(function(){

		//	...

		var	fakeProduct	=	{productId:1};

		$rootScope.$broadcast('SAVEDTOCART',fakeProduct);

});

Confirming	the	saved	cart

www.it-ebooks.info

http://www.it-ebooks.info/

Now	that	the	test	has	been	set	up	and	the	act	performed,	you	can	assert.	Assert	that	the
number	of	cart	items	is	equal	to	1	by	adding	the	following	code:

it('',function(){

		expect(scope.cart.length).toBe(1);

});

Making	the	cart	controller	test	run
Now	it’s	time	to	walk	the	test	through	the	cycle	by	following	the	given	steps	until	we	get	a
green	test:

1.	 Start	Karma:

$	karma	start

2.	 The	first	error	is	Error:	[ng:areq]	Argument	'CartController'	is	not	a
function,	got	undefined.	As	seen	previously,	the	controller	hasn’t	been	created.
Create	a	new	file	and	set	up	a	stub	controller	(/app/cart.js):

angular.module('product')

.controller('CartController',['$scope',function($scope){

}]);

3.	 The	next	error	will	be	TypeError:	'undefined'	is	not	an	object	(evaluating
'scope.cart.length').	This	indicates	that	no	object	was	found	on	the	scope	named
cart.	Go	ahead	and	create	it	now	in	app/cart.js:

$scope.cart	=	[];

4.	 Then,	you’ll	get	an	expectation	error,	namely	Expected	0	to	be	1.	Error:
Expected	0	to	be	1.	To	rectify	this,	perform	the	following	steps:

1.	 At	this	point,	the	controller	is	not	doing	anything	with	the	event	being	emitted.
Add	$rootScope	as	a	dependency	to	the	application:

.controller('CartController',

['$scope','$rootScope',function($scope,$rootScope){

2.	 Add	the	handling	logic	to	capture	the	event	and	add	the	product	to	the	cart:

$rootScope.$on('SAVEDTOCART',function(productEvent){

		$scope.cart.push(productEvent);

});

5.	 Success!	All	the	tests	have	passed.

End-to-end	testing
The	unit	tests	are	now	complete,	and	it	is	now	time	to	perform	end-to-end	testing	for	the
cart.

Assembling	the	cart’s	end-to-end	test

www.it-ebooks.info

http://www.it-ebooks.info/

The	test	comes	from	the	perspective	of	being	on	a	product	detail	view	and	selecting	a
Save	to	Cart	button.	Once	the	item	has	been	saved,	it	should	be	available	in	the	cart	view.
Here	are	the	steps	to	assemble	the	cart’s	end-to-end	test:

1.	 Create	a	new	file	named	spec/e2e/cartScenario.js.
2.	 Start	with	the	base	template	test:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

});

3.	 The	next	thing	we	need	to	do	is	navigate	to	a	product	page:

browser.get("#/product/1");

4.	 Select	the	button	that	will	save	the	cart:

var	saveToCartButton	=	element(by.buttonText('Save	to	Cart'));

Invoking	a	save	to	cart	action

The	action	is	to	click	on	the	Save	button	using	the	following	code:

saveToCartButton.click();

Confirming	products	have	been	saved

The	assert	is	to	confirm	that	the	cart	view	now	has	at	least	one	product:

it('',function(){

		var	productsInCart	=	element.all(by.repeater('product	in	cart'));

		expect(productsInCart.count()).toBe(1);

})

Making	the	cart’s	end-to-end	test	pass
Here	is	the	walk-through	of	the	process	of	making	the	application	run:

1.	 Start	the	site:

$./node_modules/http-server/bin/http-server	.

2.	 Run	Protractor:

$./node_modules/protractor/bin/protractor	chromeOnlyConf.js

3.	 The	first	error	is	NoSuchElementError:	No	element	found	using	locator:
by.buttonText("Save	to	Cart").	To	rectify	this,	perform	the	following	steps:

1.	 Go	ahead	and	create	the	button	within	the	product	detail’s
app/searchDetail.html	partial	view:

<button>Save	to	Cart</button>

www.it-ebooks.info

http://www.it-ebooks.info/

2.	 Rerun	the	test.

4.	 The	next	error	is	Expected	0	to	be	1.	To	rectify	this,	perform	the	following	steps:

1.	 This	error	means	that	the	count	is	0	for	products	in	the	cart.	By	reviewing	the
index	page,	you	can	see	that	the	cart	doesn’t	even	exist	in	the	page.	First,	add	a
reference	to	the	cart	controller:

<script	src="app/cart.js"></script>

2.	 Next,	the	items	in	the	cart	need	to	be	added	to	the	page.	First,	add	a	tag	with	the
controller:

<div	ng-controller="CartController"></div>

3.	 Finally,	add	a	repeater	to	display	the	product	in	the	cart:

		<li	ng-repeat="product	in	cart">{{product}}

4.	 Rerun	the	test.

5.	 The	same	error	occurs,	Expected	0	to	be	1.	To	rectify	this,	perform	the	following
steps:

1.	 Even	though	the	product	data	has	been	added,	the	test	is	still	failing.	The	next
question	is	whether	anything	is	being	added	to	the	cart.	In	this	case,	no.	The
button	is	being	selected	but	no	action	has	been	associated	with	it.	Update	the
button	in	app/searchDetail.html	to	use	the	searchDetailController	class’s
saveProduct	method:

<button	ng-click="saveProduct()">Save	to	Cart</button>

2.	 Rerun	the	test.

6.	 All	the	tests	pass.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
The	following	are	some	questions	to	check	your	understanding:

Q1.	When	broadcasting	a	message,	it	propagates	up	the	scope’s	hierarchy.

1.	 True
2.	 False

Q2.	The	following	creates	a	spy	in	Jasmine:

1.	 var	spy	=	jasmine.createSpy();
2.	 var	spy	=	jasmine.$new();
3.	 var	spy	=	jasmine.createFake();

Q3.	The	$rootScope	scope	is	the	highest	level	scope	in	AngularJS.

1.	 True
2.	 False

Additionally,	if	you	want	more	practice,	add	the	ability	to	add	likes	to	the	page.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	has	explored	events	within	AngularJS.	You	saw	two	types	of	AngularJS
event	emitters:	$broadcast()	and	$emit().	You	also	saw	some	examples	of	applying
TDD	to	events	and	how	events	give	a	separation	of	controllers	and	code.	In	addition,	you
expanded	the	types	of	testing	techniques	to	include	services	and	reiterated	the	testing	of
controllers	and	models.	You	also	explored	further	configuration	of	Karma	to	use	its
features.	In	the	next	chapter,	you	will	look	at	the	integration	and	testing	of	data	and	APIs
into	an	AngularJS	application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Give	Me	Some	Data
Applications	need	a	way	to	consume	the	ever-expansive	world	of	data.	Most	applications
written	today	consume	data.	Luckily	for	AngularJS	developers,	consuming	data	is	quite
easy.	Testing	data	consumption	is	also	a	core	component	of	the	framework.	In	this	chapter,
we	will	cover	the	following	topics:

Integrating	a	REST-based	service
Creating	and	mocking	AngularJS’s	$http
Handling	exceptions
Implementing	a	fake	API	builder	pattern

www.it-ebooks.info

http://www.it-ebooks.info/

REST	–	the	language	of	the	Web
Representational	State	Transfer	(REST)	defines	how	the	Web	should	communicate.
From	an	AngularJS	application	standpoint,	the	main	concern	is	with	the	HTTP	methods.
For	HTTP	methods,	REST	can	be	thought	of	as	the	verbs	or	actions	that	an	HTTP	request
can	make.	Specifically,	an	HTTP	request	can	make	these	request	types:	GET,	POST,	PUT,
and	DELETE.	From	an	API	standpoint,	the	HTTP	methods	can	be	used	to	determine	how
logic	should	handle	the	specific	HTTP	request	type.	Here	is	a	further	look	at	the	common
HTTP	methods:

HTTP	Method Description Example

GET Retrieves	data	from	an	endpoint curl	--request	GET	'http://<SOME	URL>'

POST Posts	a	new	data	element	to	the	endpoint curl	–request	POST	'http://<SOME	URL>'	–data	'anydata'

PUT Inserts	or	updates	the	enclosed	data	element	to	the	endpoint curl	–request	POST	'http://<SOME	URL>'	–data	'anydata'

DELETE Deletes	a	request	to	the	endpoint curl	--request	DELETE	'http://<SOME	URL>'

Note
The	curl	tool	is	a	command-line	tool	that	can	be	used	to	make	requests.	On	Unix
machines,	it	is	available	in	the	command	line	by	simply	typing	curl.	For	Windows
machines,	it	is	best	to	install	Git	bash	and	access	it	through	the	Git	bash	command	line.
Installation	instructions	for	Git	and	Git	bash	can	be	found	at	http://git-
scm.com/downloads.

As	can	be	seen	from	the	preceding	explanation,	the	RESTful	components	of	HTTP	can
define	the	basics	for	most	APIs.	The	preceding	REST	approach	is	different	from	other
web	service	techniques	or	protocols	and	can	be	used	by	practically	anything.	For	their
simplicity,	REST-based	web	services	are	the	best	options.	In	this	chapter,	the	focus	will
only	be	on	how	to	use	AngularJS	with	a	REST-based	API.

www.it-ebooks.info

http://git-scm.com/downloads
http://www.it-ebooks.info/

Getting	started	with	REST
Before	jumping	into	how	AngularJS	communicates	with	a	REST	layer,	it	is	important	to
see	how	to	communicate	using	standard	tools	within	a	browser.	As	you	saw	from	the
previous	definition,	curl	can	be	used	to	communicate	to	a	REST	API.	Although	making	a
manual	HTTP	request	outside	of	a	browser	is	useful,	you	also	need	to	understand	the
basics	of	how	a	browser	makes	an	API	request	without	a	framework.	In	a	browser,
requests	can	be	made	to	REST	layers	through	asynchronous	calls.	This	allows	requests
that	won’t	affect	the	other	parts	of	the	application	to	be	made;	that	is,	the	page	won’t
freeze	and	become	unusable.	The	web	page	remains	useable	while	the	request	is	made.

Browsers	provide	a	mechanism	to	make	asynchronous	REST	calls	using	an
XMLHttpRequest	method.	An	XMLHttpRequest	method	can	be	used	to	make	an	HTTP	GET,
POST,	PUT,	or	DELETE	request.	Here	is	an	example	of	how	to	make	a	GET	request:

var	request	=	new	XMLHttpRequest();

request.open('GET',	'/any/rest/endpoint');

request.send();

The	preceding	example	creates	a	new	request,	specifies	the	request	type	and	location,	and
finally,	sends	the	request.	The	missing	piece	is	the	handling	of	the	response.	Add	the
following	code	just	before	the	send	method:

request.onreadstatechange	=	function(){

		if	(request.readyState	===	4)	{

				console.log('received	response	with	status:	'+request.status);

		}

};

The	preceding	code	handles	when	the	request	has	received	a	response	from	the	server	and
is	complete	(readystate	===	4).	Within	the	condition	given	in	the	code,	you	can	handle
the	parsing	of	the	response,	the	determining	status	of	the	request,	and	so	on.

What’s	great	about	the	preceding	code	is	that	it	doesn’t	require	a	framework.	The	problem
is	that	the	code	can	grow	in	size	and	become	repetitive	for	every	request.	AngularJS	has
abstracted	the	request	for	you.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	asynchronous	calls
Now	that	you	understand	how	to	make	HTTP	requests	through	the	browser,	we	need	to
understand	how	to	test	these	calls.	The	preceding	requests	are	asynchronous.
Asynchronous	means	there	is	no	guarantee	of	when	the	function	will	complete.	For	your
reference,	here	is	an	example	of	synchronous	sequential	logic:

var	synchronousFunc	=	function(){

		console.log('In	synchronousFunc');

};

synchronousFunc();

console.log('After	call	to	synchronousFunc');

When	the	preceding	code	is	run,	the	output	is	as	follows:

In	synchronousFunc

After	call	to	synchronousFunc

Each	function	call	occurs	in	the	order	of	the	call.	With	an	asynchronous	request,	the	order
is	not	guaranteed.	A	callback	function	is	passed	into	a	function	to	inform	you	when	a
method	is	complete.

Tip
Callback	functions	have	two	main	conventions.	The	first	is	the	jQuery-based	method.	The
second	is	the	Node.js	method.	The	jQuery	convention	uses	two	callbacks	as	the	last
arguments	to	a	method.	The	first	callback	is	for	success,	and	the	second	is	for	an	error.	The
Node.js	convention	is	to	use	a	single	callback	as	the	last	argument.	The	callback	has	two
parameters,	the	first	being	an	error	and	the	second	being	the	successful	result.

It	is	up	to	you	to	decide	which	convention	to	use	based	on	what	you’re	developing	for.
Don’t	create	your	own	new	convention;	use	one	of	the	preceding	conventions	so	that	other
developers	can	easily	understand	and	read	your	code.

Here	is	an	example	of	the	output	of	an	asynchronous	method:

var	asynchronousFunc	=	function(callback){

		setTimeout(callback,0);

};

var	callback	=	function(){

		console.log('In	asynchronousFunc');

};

asynchronousFunc(callback);

console.log('After	call	to	asynchronousFunc');

When	the	preceding	code	is	run,	the	output	is	as	follows:

After	call	to	asynchronousFunc

In	asynchronousFunc

The	next	sections	will	look	at	how	test	to	asynchronous	functions	in	Karma	and	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	asynchronous	calls	in	Karma
From	the	preceding	asynchronous	example,	it	should	be	clear	that	the	way	in	which	you
test	needs	to	be	modified	to	account	for	asynchronous	behavior.	Luckily,	this	is	fairly
straightforward	when	testing	with	Karma.

Here	are	the	steps	to	test	the	preceding	asynchronous	method	using	Karma:

1.	 Create	the	stub	test	using	the	following	code:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

});

2.	 Create	a	spy	to	test	when	the	asynchronous	method	gets	called:

var	spy	=	jasmine.createSpy();

3.	 Call	the	asynchronous	method	in	the	beforeEach	function:

beforeEach(function(){

		var	asynchronousFunc	=	function(callback){

				setTimeout(callback,0);

		};

		var	callback	=	function(){

				spy();

		};

		asynchronousFunc(callback);

});

4.	 Add	a	callback	to	the	parameters	of	the	beforeEach	function.	By	doing	this,	you	have
made	the	function	asynchronous:

beforeEach(function(done){

		…

});

5.	 Call	the	done	method	in	the	asynchronousFunc	callback:

var	callback	=	function(){

		spy();

		done();

};

6.	 Add	the	assertion	function:

it('',function(){

		expect(spy).toHaveBeenCalled();

});

The	key	to	the	preceding	code	is	that	a	callback	was	passed	into	the	beforeEach	function.
You	can	try	to	run	this	test	without	the	callback	and	see	whether	the	test	will	fail.	A

www.it-ebooks.info

http://www.it-ebooks.info/

callback	can	be	passed	into	the	beforeEach,	afterEach,	describe,	and	it	methods.

You	will	be	leveraging	this	example	through	the	rest	of	the	chapter,	so	be	sure	that	you
understand	the	main	concepts.	Now	that	you	have	tested	in	Karma,	the	next	section	will
show	you	what	Protractor	offers	from	an	asynchronous	standpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	asynchronous	calls	in	Protractor
Protractor	is	different	in	the	way	it	handles	asynchronous	actions.	It	has	been	optimized	to
handle	asynchronous	actions,	specifically,	promises.	As	an	example,	when	a	test	navigates
to	a	page,	Protractor	will	wait	until	AngularJS	has	been	loaded	until	it	starts	running	the
tests.	Julie	Ralph,	the	main	contributor	and	creator	of	Protractor,	sums	it	up	in	this	GitHub
issue	(https://github.com/angular/protractor/issues/716):

Protractor	patches	Jasmine	so	that	it	is	automatically	asynchronous,	and	a	test	case
finishes	when	the	WebDriver	queue	of	commands	is	finished.

What	this	means	is	that	you	don’t	have	to	think	about	how	the	calls	are	being	rendered	and
when	the	promises	are	complete.	It	even	waits	for	$http	requests	to	complete.	Here	is	an
example	of	using	Protractor:

describe('When	I	type	in	a	search	query',	function(){

		var	searchResult	=	element.all(by.repeater("result	in	results"));

		beforeEach(function(){

				browser.get("/index.html");

				$('input').sendKeys('any	value');

				element(by.buttonText('search')).searchButton.click();

		});	

		it('Should	then	add	the	result',	function(){

				expect(searchResult.count()).toBe(1);

		});

});

The	preceding	code	snippet	is	taken	from	Chapter	6,	Tell	the	World.	It	highlights	how
Protractor	executes	each	one	of	the	commands	and	takes	care	of	the	asynchronous
behaviors	for	you.	In	the	next	section,	you	will	see	how	to	make	REST	requests	using
AngularJS.

www.it-ebooks.info

https://github.com/angular/protractor/issues/716
http://www.it-ebooks.info/

Making	REST	requests	using	AngularJS
Now	that	we	have	looked	at	what	REST	requests	are	and	seen	how	to	test	asynchronously
in	Karma	and	Protractor,	it	is	time	to	see	how	to	make	a	request	in	AngularJS.	At	the
lowest	level,	AngularJS	provides	the	$http	module.	The	module	allows	you	to	make
HTTP	requests.	By	visiting	the	documentation
(https://docs.angularjs.org/api/ng/service/$http),	we	can	see	that	it	says	the	following:

The	$http	service	is	a	core	Angular	service	that	facilitates	communication	with	the	remote
HTTP	servers	via	the	browser’s	XMLHttpRequest	object.

As	you	have	already	seen	how	to	make	an	XMLHttpRequest,	you	should	feel	at	ease	that
you	know	what	is	going	on	under	the	hood.	Here	is	a	simple	example	of	how	to	make	an
$http.get	request	in	AngularJS:

$http.get('/any/rest/endpoint')

		.success(function(data,status,header,config){

		});

		.error(function(data,status,header,config){

		});

The	success/error	function	is	called	asynchronously	once	the	request	is	complete.

Using	$http	is	not	the	only	way	to	make	a	request.	If	an	API	is	completely	REST-based,
AngularJS	provides	the	$resource	module.	A	resource	gets	defined	and	used	as	shown	in
the	following	steps:

1.	 Define	a	resource	for	a	specific	end	point:

var	thing	=	$resource('/any/rest/endpoint/:id',	{id:	'@id'});

2.	 Make	the	HTTP	GET	request:

thing.get({id:1},function(aThing){

		…

});

The	preceding	example	defines	a	resource	that	retrieves	aThing	based	on	an	ID.	It	then
retrieves	that	data	with	a	GET	request.

Both	of	the	preceding	examples	show	you	how	to	create	requests	in	AngularJS.	You	will
be	looking	at	the	$http	method	in	the	remaining	examples,	but	it	is	good	to	understand	the
different	ways	in	which	requests	can	be	created	in	AngularJS.

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/%24http
http://www.it-ebooks.info/

Testing	with	AngularJS	REST
Now	that	you	have	seen	how	to	make	requests	in	AngularJS	and	how	to	test
asynchronously,	you	will	need	to	look	at	how	to	put	it	together.	The	following	example
looks	at	a	specific	service	and	then	discusses	how	to	test	using	Karma.

Testing	the	product	service
The	service	that	needs	to	be	tested	is	as	follows:

angular.module('anyModule')

		.service('productService',	['$http',	function($http){

				return	{

						search:	function(query){

								return	$http.get('/product/search');

						}

				};

		});

The	preceding	productService	parameter	provides	an	object	search	that	takes	in	a	query
and	returns	a	$http	promise.	The	product	service	can	be	used	in	a	controller	as	follows:

productService.search(query)

		.success(function(data){

				$scope.result	=	data;

		})

		.error(function(data){

				$scope.error	=	data;

		});

angular.module('anyModule')

		.controller('productController',['$scope','productService',	

function($scope,productService){

				$scope.search	=	function(query){

productService.search(query)

								.success(function(data){

										$scope.result	=	data;

								})

								.error(function(data){

										$scope.error	=	data;

								});

		}]);

The	preceding	use	of	the	productService	shows	you	that	because	an	$http	promise	is
returned,	you	can	use	the	success	and	error	functions	to	define	what	needs	to	occur	after.
Now	that	there	is	a	controller	and	a	service,	the	next	section	will	show	you	how	to	test	the
components.

Testing	$http	with	Karma
The	Karma	test	will	look	to	confirm	the	behavior	of	productService	if	the	$http	call	is
successful	and	is	one	to	look	at	if	an	error	occurs.	The	main	difference	between	this	test
and	others	that	have	been	looked	at	so	far	is	that	you	are	creating	a	request	to	something

www.it-ebooks.info

http://www.it-ebooks.info/

outside	of	AngularJS.	This	is	a	perfect	case	of	use	mocking.	You	can	set	up	a	fake	object
around	$http	to	test	the	success	and	error	paths	of	the	request.	AngularJS	provides	a
mock	object	that	can	be	used,	which	is	Angular	mock’s	$httpBackend.

Here	are	the	steps	to	create	a	positive	test—when	the	request	is	successful:

1.	 Start	with	the	test	stub:

describe('',function(){

		beforeEach(function(){

		});

it('',function(){

});

});

2.	 Initialize	the	module:

beforeEach(function(){

		module('anyModule');

});

3.	 Inject	$httpBackend	and	productService	in	the	beforeEach	function:

var	$httpBackend	=	null;

var	productService	=	null;

beforeEach(function(){

		module('anyModule');

inject(function(_$httpBackend_,_productService_){

				$httpBackend	=	_$httpBackend_;

				productService	=	_productService_;

		});

});

4.	 Mock	the	GET	successful	request	with	an	HTTP	status	code	of	200	as	follows:

it('',function(){

		$httpBackend.when('GET','/product/search').respond(200,'');

});

5.	 Set	the	expectation	as	follows:

it('',function(){

		…

		$httpBackend.expectGET('/product/search');

});

6.	 Make	the	call	to	productService	using	the	following	code:

productService.search('any');

7.	 Flush	the	request	using	the	following	code:

$httpBackend.flush();

As	you	can	see,	$httpBackend	allows	expectations	and	mock	responses	to	be	controlled.
To	tie	up	loose	ends,	here	are	the	additional	expectations	for	a	failed	request.	Follow	the
steps	to	add	expectations	for	a	failed	request:

www.it-ebooks.info

http://www.it-ebooks.info/

1.	 Add	the	expectation	stub	to	an	asynchronous	parameter:

it('',function(done){

});

2.	 Mock	the	GET	unsuccessful	request	with	an	HTTP	status	code	of	500:

$httpBackend.when('GET','/product/search').respond(500,'');

3.	 Call	productService.Search:

productService.search('any');

4.	 Confirm	that	the	error	function	gets	called:

productService.search('any').error(function(){

		expect(true).toBe(true);

		done();

});

5.	 Flush	the	request:

$httpBackend.flush();

We	have	not	added	any	other	layers	to	the	application	and	are	able	to	confirm	how	it	will
work	during	a	successful	and	unsuccessful	request.	In	the	next	section,	you	will	see	how	to
test	HTTP	requests	in	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Mocking	requests	with	Protractor
Now	that	unit	tests	for	the	backend	are	complete,	you	can	move	to	the	frontend	and	test	an
HTTP	request	through	Protractor.	You	might	not	always	want	to	do	this.	Protractor	is
supposed	to	test	your	site	from	an	end-to-end	perspective.	This	means	that	all	layers	of	the
application	will	be	touched.	One	benefit	of	the	following	example	is	that	it	will	help	in
cases	where	you	haven’t	set	up	the	backend	rest	service.	You	can	begin	by	laying	out	the
page	and	interactions	before	the	backend	is	complete.	This	can	help	when	you’re	just
putting	your	site	together.

In	order	to	mock	the	backend	HTTP	layer	for	Protractor,	we	will	use	$httpBackend,	which
is	part	of	the	ngMockE2E	module	and	is	used	to	mock	the	backend	HTTP	layer	for
Protractor.	The	$httpBackend	property	used	for	Protractor	is	different	from	the	one	used
in	the	previous	Karma	test.	To	use	end-to-end	$httpBackend	you	will	need	to	inject
ngMockE2E	as	a	dependency	into	the	application.	For	this	reason,	it	is	not	a	viable	solution
to	have	in	a	production	site.

Here	are	the	steps	that	are	to	be	mocked	using	$httpBackend	in	Protractor:

1.	 Add	AngularJS	and	Angular	mocks	to	the	web	page:

<script	src="bower_components/angular/angular.js"></script>

<script	src="bower_components/angular-mocks/angular-mocks.js"></script>

2.	 Create	a	module	and	require	ngMockE2E:

angular.module('anyModule',	['ngMockE2E'])

3.	 Add	a	run	function	that	uses	$httpBackend:

.run(['$httpBackend',function($httpBackend)	{

4.	 Create	the	mock	data:

.run(['$httpBackend',function($httpBackend)	{

var	products	=	[{id:	'id1',name:'product1'},	{id:	

'id2',name:'product2'}];

}]);

5.	 Set	the	mock	data	request:

.run(['$httpBackend',function($httpBackend)	{

var	products	=	[{id:	'id1',name:'product1'},	{id:	

'id2',name:'product2'}];

$httpBackend.whenGET('/product/search').respond(products);

}]);

Now	the	request	to	/product/search	will	respond	with	the	products	defined	in	the	mock.
This	means	that	the	application	will	work	without	the	need	for	a	backend	service	and	will
be	able	to	be	tested	as	an	application	with	a	backend	service.	A	complete	example	using	a
mocked	backend	will	be	shown	in	the	walk-through.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying	products	with	REST
All	the	core	components	of	REST,	asynchronous	testing,	and	mocking	HTTP	requests
have	been	discussed.	Now,	the	following	walk-through	will	provide	a	full	example	that
will	look	at	displaying	products	that	are	retrieved	through	an	external	service.	The
example	will	ignore	the	creation	of	an	external	service	and	focus	on	the	data	it	provides:	a
list	of	products	in	a	JSON	format.	The	walk-through	will	take	a	bottom-up	approach	so
that	the	core	data	layer	is	worked	out	before	adding	the	UI	elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Unit	testing	product	requests
The	approach	from	the	unit	level	is	to	create	a	service	to	manage	the	HTTP	requests	for
products.	The	controller	will	then	be	built	up	the	same	way.

Setting	up	the	project
Before	writing	tests,	the	project	needs	to	have	a	structure.	Here	is	what	the	initial	project
structure	looks	like:

Karma	configuration
Now	that	the	project	template	has	been	set	up,	a	couple	of	adjustments	need	to	be	made.
The	Karma	configuration	needs	to	use	a	headless	browser	and	set	up	the	test	files	to	the
correct	location.	Open	up	karma.conf.js	and	make	the	following	changes:

1.	 Update	the	browsers	section	to	PhantomJS	for	headless	browser	testing:

browsers:	['PhantomJS'],

2.	 Update	the	files	section	to	include	the	unit	test	folders:

				files:	[

'bower_components/angular/angular.js',

									'bower_components/angular-mocks/angular-mocks.js',

'app/**/*.js',

									'spec/unit/**/*.js'

],

Karma	has	been	configured	and	the	project	template	has	been	created.	The	next	step	is	to
set	up	an	API	builder	for	the	product	data.	This	will	allow	for	a	consistent	interface	to	be
used	in	a	test	where	mocking	data	is	required.

Using	an	API	builder	pattern
A	builder	is	an	object	that	is	used	to	create	another	object;	it	will	be	used	to	create	test
data.	An	API	builder	can	reduce	duplication	and	the	time	taken	to	create	tests.	It	provides
a	central	way	to	handle	methods	and	create	data.	If	a	builder	is	not	used,	then	every	test
written	will	have	to	have	a	separate	distinct	way	of	creating	data.	This	is	an	especially	bad

www.it-ebooks.info

http://www.it-ebooks.info/

design	when	the	API	being	used	changes!

The	product	data	API	is	defined	by	a	single	route/products.	The	expected	response	is	a	list
of	products.	Here	are	the	steps	to	create	a	builder	for	the	product	API:

1.	 Create	a	new	file	in	the	spec	folder	named	productDataBuilder.js:

$	touch	productDataBuilder.js

2.	 Create	a	new	function	named	productDataBuilder:

module.exports	=	function	productDataBuilder()	{};

3.	 Return	an	object	with	methods	to	set	IDs,	names,	and	to	actually	build	an	object:

module.exports	=	function	productDataBuilder()	{

				return	{

								withId:	function	(id)	{

								},

								withName:	function	(name)	{

								},

								build:	function	()	{

								}

				};

};

4.	 Initialize	a	basic	product:

module.exports	=	function	productDataBuilder()	{

				return	{

								_mockProduct:	{	id:	1,	name:	'productName'	},

								withId:	function	(id)	{

								},

								withName:	function	(name)	{

								},

								build:	function	()	{

								}

				};

};

5.	 Have	the	setter	commands	update	the	mock	product:

return	{

		...

withId:	function	(id)	{

			this._mockProduct.id	=	id;

							return	this;

			},

			withName:	function	(name)	{

							this._mockProduct.name	=	name;

							return	this;

			},

};

6.	 Have	the	build	method	return	the	mock	data:

return	{

build:	function	()	{

www.it-ebooks.info

http://www.it-ebooks.info/

					return	this._mockProduct;

			}

};

The	builder	allows	you	to	use	a	fluent	interface	to	create	products.	The	simplest	use	is	as
follows:

var	productDataBuilder	=	require('../productDataBuilder');

var	someProduct	=	productDataBuilder.build();

A	more	complicated	use	will	be	to	set	the	ID	and	name	to	something	such	as	the
following:

var	productDataBuilder	=	require('../productDataBuilder');

var	someProduct	=	productDataBuilder.withId(9999)

.withName('Product	9999');

The	preceding	productDataBuilder	object	will	be	used	in	the	Karma	test.

www.it-ebooks.info

http://www.it-ebooks.info/

The	product	data	service
It’s	time	to	get	to	the	actual	test.	The	same	TDD	life	cycle	that	has	been	used	throughout
the	book	will	be	used;	test	first,	make	it	run,	and	make	it	better.	As	the	creation	and	testing
of	a	service	that	uses	HTTP	has	already	been	discussed,	this	walk-through	will	be	skipped.
For	reference,	the	tests	are	in	the	code	repository	and	the	service	is	defined	as	follows:

angular.module('product')

		.service('productService',	['$http',function($http){

				return	{

						getAll	:	function(){

								return	$http.get('/products')

						}

				};

		}]);

With	the	service	complete,	the	next	step	is	to	look	at	the	controller	and	how	to	actually
make	use	of	the	HTTP	data.

www.it-ebooks.info

http://www.it-ebooks.info/

The	product	data	controller
The	next	component	needed	is	a	controller	so	that	the	UI	can	use	productService.	The
controller	needs	to	have	one	method	to	make	the	request	for	products.	In	the	method,	it
needs	to	set	$result	when	the	request	is	successful	and	$error	when	the	request	is
unsuccessful.

Assembling	the	product	controller	test
Here	are	the	steps	to	assemble	the	product	controller:

1.	 Create	a	new	test	file	for	the	product	controller	spec/productController.js:

$	touch	spec/productController.js

2.	 Use	the	standard	test	stub:

describe('',function(){

		beforeEach(function(){

		});

		it(function(){

		});

});

3.	 Create	variables	for	scope	and	$httpBackend:

var	scope	=	{};

var	$httpBackend	=	null;

4.	 Initialize	the	product	module:

beforeEach(function(){

		module('product');

});

5.	 Get	the	$controller	and	$httpBackend:

beforeEach(function(){

		inject(function($controller,_$htttpBackend_){

		});

});

6.	 Set	$httpBackend	to	the	injected	variable:

inject(function($controller,_$httpBackend_){

$httpBackend	=	_$httpBackend_;

7.	 Initialize	the	controller	scope:

inject(function($controller,_$httpBackend_){

$httpBackend	=	_$httpBackend_;

$controller('ProductController',{$scope:scope});

Getting	products

www.it-ebooks.info

http://www.it-ebooks.info/

The	object	under	test	is	the	controller’s	scope	getAll	method.	Here	are	the	steps	to	call
the	method	for	a	successful	HTTP	response:

1.	 For	a	successful	HTTP	response,	use	the	builder	to	build	a	test	product:

it('',function(){

		var	testProduct	=	productDataBuilder().build();

});

2.	 Mock	the	HTTP	request	response	to	return	testProduct:

$httpBackend.when('GET','/products').respond(200,[testProduct]);

3.	 Call	the	object	under	test:

scope.getAll()

Now,	the	unsuccessful	HTTP	response	requires	an	error	response.	Here	are	the	steps	for
the	unsuccessful	HTTP	request:

1.	 Mock	the	HTTP	request	response	to	return	testProduct:

it('',function(){

		$httpBackend.when('GET','/products').respond(200,[testProduct]);

});

2.	 Call	the	object	under	test:

scope.getAll()

The	HTTP	response	has	been	covered,	and	the	next	step	will	assert	the	expectation.

Asserting	product	data	results
An	assertion	can	be	used	to	require	that	an	HTTP	request	receives	a	response.	The	mocked
$httpBackend	property	can	call	the	flush()	method	to	execute	the	HTTP	response
synchronously,	so	you	don’t	have	to	worry	about	asynchronous	issues.	Here	are	the	steps
for	the	successful	HTTP	response	expectation:

1.	 Flush	the	request:

$httpBackend.flush();

2.	 Expect	the	result	variable	on	the	scope	object	to	have	testProductData:

expect(scope.results[0]).toEqual(testProductData);

Here	are	the	assert	steps	for	the	unsuccessful	HTTP	response	expectation:

1.	 Flush	the	HTTP	request	using	the	following	code:

$httpBackend.flush()

2.	 Confirm	that	the	scopes’	error	value	has	been	set:

www.it-ebooks.info

http://www.it-ebooks.info/

expect(scope.error).toEqual('error');

Now	that	the	tests	have	been	assembled,	the	next	step	is	to	make	them	run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	the	product	data	tests	run
Here	are	the	steps	to	get	the	controller	test	running:

1.	 Run	Karma:

$	karma	start

2.	 The	first	error	is	Error:	[ng:areq]	Argument	'ProductController'	is	not	a
function,	got	undefined.	To	rectify	this,	perform	the	following	steps:

1.	 This	error	means	that	ProductController	doesn’t	exist.	Create	a	controller	stub
in	app/productController.js:

angular.module('product')

.controller('ProductController',['$scope',function($scope){

}]);

2.	 Rerun	the	test.

3.	 This	next	error	is	TypeError:	'undefined'	is	not	a	function	(evaluating
'scope.getAll()').	To	rectify	this,	perform	the	following	steps:

1.	 This	error	means	that	there	is	no	function	called	getAll	in	the	controller.	Add
the	function	now:

.controller('ProductController',['$scope',function($scope){

$scope.getAll()	=	function(){

};

}]);

2.	 Rerun	the	test.

4.	 The	next	error	is	Error:	No	pending	request	to	flush!.	To	rectify	this	error,
perform	the	following	steps:

1.	 This	error	occurs	because	the	test	is	expecting	an	HTTP	request	to	be	flushed
but	there	is	no	request.	Add	productService	to	controller	so	that	the	request
will	get	made.	Add	productService	as	a	dependency:

.controller('ProductController',

['$scope','productService',function($scope,productService){

2.	 Add	productService	to	the	getAll	function:

scope.getAll	=	function(){

productService.getAll();

};

3.	 Rerun	the	test.

5.	 The	next	error	is	Expected	undefined	to	equal	{	id	:	1,	name	:
'productName'	}.	To	rectify	this	error,	perform	the	following	steps:

www.it-ebooks.info

http://www.it-ebooks.info/

1.	 This	error	occurs	because	scope.results	has	not	been	set	when	the	product
service	was	successful.	Add	a	successful	callback	to	productService	and	set
the	scope’s	results	variable:

productService.getAll()

.success(function(data){

$scope.results	=	data;

});

6.	 Now	we’re	down	to	one	failure,	which	is	Expected	undefined	to	equal.	To	rectify
this,	perform	the	following	step:

1.	 This	error	occurs	because	we	haven’t	handled	the	error	condition	of	the	HTTP
request.	Add	the	error	condition	of	productService	so	that	it	sets	the	scope’s
error:

productService.getAll()

				.success(function(data){

						$scope.results	=	data;

				})

				.error(function(error){

						$scope.error	=	error;

				})

7.	 Confirm	that	all	the	tests	pass	now.

The	unit	tests	for	the	product	controller	have	been	completed	using	a	mocked	backend	to
test	both	positive	and	negative	scenarios.	The	next	step	can	be	skipped,	as	there	were	no
callouts	during	development.

The	next	section	will	look	at	how	to	test	from	an	end-to-end	perspective.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	middle-to-end
Now	that	the	unit	level	testing	of	the	application	is	complete,	the	user	facing	tests	can	be
worked	on.	One	of	the	benefits	of	Angular	mocks	is	that	it	provides	$httpBackend,	which
can	be	used	to	mock	data	for	end-to-end	tests.	As	data	is	being	mocked,	it	is	really	a
middle-to-end	test.	This	is	because	only	the	UI	interactions	are	being	tested,	as	the	rest	of
the	behavior	has	been	mocked.	This	will	allow	us	to	create	scaffolding	for	the	UI	layer.
Once	the	development	is	complete,	the	scaffolding	can	be	removed	and	a	full	end-to-end
test	can	be	put	in	place.

Here	are	the	initial	setup	steps	to	create	the	application	UI	using	a	mocked	backend	with
Protractor:

1.	 Install	Protractor:

$	npm	install	protractor

2.	 Update	WebDriver:

$./node_modules/protractor/bin/webdriver-manager	update

3.	 Copy	the	example’s	Chrome-only	configuration:

$	cp	./node_modules/protractor/example/chromeOnlyConf.js	.

4.	 Open	up	the	chromOnlyConf.js	and	update	the	driver	to	point	to	the	node_modules
directory:

chromeDriver:		'./node_modules/protractor/selenium/chromedriver',

5.	 Update	the	base	URL	variable:

baseUrl:	'http://localhost:8080/',

6.	 Update	the	test	directory:

specs:	['spec/e2e/**/*.js'],

7.	 Add	ngMockE2e	as	a	dependency	to	the	product	module	in	the	app	or	product.js	file:

angular.module('product',['ngMockE2e'])

8.	 Set	up	the	mock	request:

.run(['$httpBackend',function($httpBackend)	{

						var	testProduct	=	productDataBuilder().build();

var	products	=	[testProduct];

						$httpBackend.whenGET('/products').respond(products);

}]);

9.	 Create	the	index.html	page	using	an	HTML	stub:

<!DOCTYPE	html>

<html>

<head>

www.it-ebooks.info

http://www.it-ebooks.info/

	 <title></title>

</head>

<body>

</body>

</html>

10.	 Add	the	AngularJS	references:

<script	src="bower_components/angular/angular.js"></script>

</body>

11.	 Add	the	product	module,	controller,	and	service:

<script	src="app/product.js"></script>

<script	src="app/productService.js"></script>

<script	src="app/productController.js"></script>

12.	 For	mocking	purposes,	add	Angular	mocks	and	the	product	data	builder:

<script	src="bower_components/angular-mocks/angular-mocks.js"></script>

<script	src="spec/productDataBuilder.js"></script>

The	initial’s	index	page	and	mock	has	been	set	up.	The	next	step	will	walk	through	the
TDD	life	cycle	and	get	the	application	rocking.

www.it-ebooks.info

http://www.it-ebooks.info/

Test	first
The	first	step	in	the	life	cycle	is	to	create	the	tests	using	the	3	A’s.	The	test	confirms	that
the	product	data	will	be	visible	on	the	page	once	a	user	pushes	a	button	to	get	the	product
data.

Assembling	the	product	test
Here	are	the	steps	to	assemble	the	Protractor	test:

1.	 Create	a	new	file	for	the	test	called	spec/e2e/productScenario.js:

$	touch	productScenario.js

2.	 Create	the	test	stub:

describe('',function(){

		beforeEach(function(){

		});

		it('',function(){

		});

});

3.	 Browse	the	application:

beforeEach(function(){

		browser.get('/index.html');

});

4.	 Find	the	button	that	we	will	be	selecting:

beforeEach(function(){

		var	productButton	=	element(by.buttonText('Get	Products'));

});

Now	that	the	test	has	been	assembled,	we	can	hit	the	object	under	test.

Getting	products
The	action	of	this	test	is	to	select	the	product	button.	As	we	have	already	retrieved	the
button	in	the	Assemble	section,	we	can	now	click	on	it:

beforeEach(function(){

var	productButton	=	element(by.buttonText('Get	Products'));

productButton.click();

});

Finally,	it	is	time	to	create	the	assertions	and	expectations.

Expecting	product	data	results
The	assertion	for	this	test	is	to	ensure	that	the	product	data	is	now	displayed.	Here	are	the
steps:

1.	 Find	the	results:

www.it-ebooks.info

http://www.it-ebooks.info/

var	results	=	element.all(by.repeater('result	in	results'));

2.	 Assert	that	the	count	is	greater	than	0:

expect(results.count()).toBeGreaterThan(0);

The	test	setup	is	complete.	The	next	step	is	to	make	it	run.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	the	product	data	run
As	has	been	done	with	the	other	Protractor	tests,	one	process	will	be	running	the	HTTP
page	and	the	other	will	be	running	the	protractor	test:

1.	 Install	http-server	so	that	we	can	run	the	website:

$	npm	install	http-server

2.	 Start	the	website:

$./node_modules/http-server/bin/http-server	.

3.	 In	another	command	window,	run	the	protractor	tests:

$./node_modules/protractor/bin/protractor	chromeOnlyConf.js

4.	 The	first	error	is	Error:	Angular	could	not	be	found	on	the	page
http://localhost:8080/index.html	:	angular	never	provided

resumeBootstrap.	To	rectify	this,	perform	the	following	steps:

1.	 The	preceding	error	is	due	to	the	fact	that	we	haven’t	referenced	the	application
module	in	the	web	page.	Add	the	product	module	to	the	body	of	the	application:

<body	ng-app='product'>

2.	 Rerun	the	tests.

5.	 The	next	error	is	NoSuchElementError:	No	element	found	using	locator:
by.buttonText("Get	Products").	To	rectify	this,	perform	the	following	step:

1.	 Add	the	button:

<button>Get	Products</button>

6.	 The	next	error	has	hit	the	expectation	and	states	Expected	0	to	be	greater	than
0.	To	fix	this,	we	need	to	first	add	productController	to	the	page:

<div	ng-controller='ProductController'>

		<button>Get	Products</button>

</div>

7.	 The	next	step	is	to	associate	the	button-click	with	the	ProductController	classes
scope	to	get	all	products:

<button	ng-click='getAll()'>Get	Products</button>

8.	 The	final	step	is	to	display	all	results:

<div	ng-repeat="result	in	results">

		{{result}}

</div>

The	test	now	shows	a	successful	result.

www.it-ebooks.info

http://www.it-ebooks.info/

The	make	it	better	step	will	be	skipped	as	there	is	nothing	immediate	that	needs	to	be
refactored.	At	this	point,	the	application	is	tested	and	operated	using	the	mocked	data.	You
should	be	able	to	see	how	powerful	this	technique	can	be	as	you’re	building	up	an
application.	The	next	section	will	look	at	removing	the	scaffolding	and	using	an	actual
backend.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing	end-to-end
Remove	the	Angular	mocks	scaffolding	and	set	up	the	test	to	actually	connect	to	the	real
server	and	setup.

The	backend	of	Angular	mocks	allowed	us	to	create	the	application	without	the	need	to
actually	return	data.	Now	that	the	application	has	been	set	up,	we	can	remove	the
scaffolding	and	create	a	real	HTTP	request	for	the	data.	Here	are	the	steps:

1.	 Remove	ngMockE2e	and	the	mock	response	from	the	products	module	in
app/product.js:

angular.module('product',[]);

Remove	Angular	mocks	and	productDataBuilder	from	the	index.html	page

2.	 Rerun	the	Protractor	test.
3.	 The	error	states	the	failed	expectation.

Now	that	the	mock	HTTP	response	has	been	removed,	we	need	to	add	an	actual	request.
Luckily	for	us,	we	don’t	have	to	use	any	other	tool	or	framework	and	can	use	the	http-
server	module	that	we	have	been	using	the	whole	time.	In	a	real-world	example,	the
product	route	would	live	in	a	separate	service,	but	this	example	will	use	a	simpler
approach	for	brevity.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	the	product	data
The	http-server	module,	which	is	used	to	serve	static	content,	can	be	extended	to	serve
static	content	as	well.	This	allows	us	to	set	up	a	static	file	that	mirrors	a	request	route.	In
this	case,	a	single	JSON	file	of	products	will	be	used.	The	products	file	will	have	an	array
of	product	data.	Here	are	the	steps:

1.	 Create	a	new	file	named	products	in	the	root	of	the	project:

$	touch	products

2.	 Open	the	file	and	add	the	following	content:

[{	

		"id":	1,	

		"name":	"productName"

}]

Now,	the	/products	route	is	available	and	will	return	an	array	of	products.	Rerun	the
Protractor	test,	and	confirm	that	it	is	passing.	With	these	simple	tests,	we	have	tested	the
application	end-to-end	and	successfully	removed	the	mock	scaffolding.

This	concludes	the	walk-through	of	using	TDD	to	create	an	AngularJS	REST	layer.

www.it-ebooks.info

http://www.it-ebooks.info/

Self-test	questions
Q1.	A	callback	function	refers	to	a	function	that	is	called	after	an	asynchronous	function
completes.

1.	 True
2.	 False

Q2.	An	XMLHttpRequest	cannot	send	or	receive	JSON.

1.	 True
2.	 False

Q3.	REST	stands	for:

1.	 Representational	State	Transfer
2.	 Nothing
3.	 Repeatable	Endpoint	State	Transfer

Q4.	Asynchronous	functions	always	complete	in	the	order	in	which	they	were	called.

1.	 True
2.	 False

Q5.	There	are	two	different	implementations	of	$httpBackend:	one	for	unit	and	one	for
end-to-end	testing.

1.	 True
2.	 False

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	chapter	explained	the	details	behind	REST	requests,	asynchronous	testing,	and	the
mocking	of	Angular	HTTP	requests	in	Karma	and	Protractor.	It	has	brought	together	many
of	the	techniques	and	tools	used	throughout	the	book.	Specifically,	it	has	showed	us	how
to	apply	the	TDD	life	cycle	(test	first,	make	it	run,	and	make	it	better)	to	incrementally
build	your	applications	to	a	specification	and	how	to	use	the	3A’s	(Assemble,	Act,	and
Assert)	to	construct	a	test.

As	you	complete	this	book	and	go	about	applying	the	techniques	in	the	real	world,
remember	that	knowing	what	to	test	is	just	as	important	as	knowing	how	to	test.	This	book
has	shown	you	how;	it	is	up	to	you	to	practice	and	continue	to	improve	your	development
skills	through	TDD.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix	A.	Integrating	Selenium	Server
with	Protractor
Throughout	this	book,	we	used	Selenium	ChromeDriver	to	test	with	Protractor.	What	this
meant	was	that	in	order	to	run	a	Protractor	test,	we	simply	had	to	have	the	website	running
and	then	kick	off	Protractor.	In	Chapter	3,	End-to-end	Testing	with	Protractor,
ChromeDriver	was	installed	and	used	to	run	the	tests.	From	the	perspective	of	the	book
and	TDD,	this	was	acceptable.	Our	tests	were	small	and	contained	and	did	not	have	a	lot
of	moving	parts.

The	problem	with	only	using	ChromeDriver	is	that	we	can’t	test	on	other	browsers.	As
your	application	grows	and	you	want	to	support	more	browsers,	you	need	to	think	about
running	a	standalone	Selenium	Server.	This	section	of	the	book	provides	a	walk-through
of	how	to	get	a	standalone	Selenium	Server	running	and	integrated	with	Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Installation
The	good	thing	about	installation	is	that	we	have	already	done	it	before.	Every	time	we
installed	ChromeDriver,	the	first	thing	we	did	was	install	Selenium.	Here	are	the	standard
steps:

1.	 Install	the	Protractor	npm	module:

$	npm	install	protractor

2.	 Install	Selenium	WebDriver:

$./node_modules/protractor/bin/webdriver-manager	update

That’s	it.	Selenium	is	now	installed	and	is	ready	to	be	used.	In	the	next	section,	we	will	see
how	to	update	the	Protractor	configuration	to	use	the	Selenium	standalone	server.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor	configuration
Luckily	for	us,	we	don’t	have	to	remember	all	the	basic	configurations	for	Protractor.
Within	npm_modules,	there	are	examples	that	we	can	use.	Here	are	the	steps	to	copy	the
Selenium	standalone	configuration:

1.	 Open	up	the	example	Protractor	configuration	file	that	is	located	in	the	following
directory:

./node_modules/protractor/example/conf.js

2.	 Copy	the	file	to	your	local	test	folder:

$	cp	./node_modules/protractor/example/conf.js

The	configuration	should	look	very	similar	to	the	chromeOnly	configuration.	Here	is	a
snippet	of	the	important	configuration	items:

exports.config	=	{

		seleniumAddress:	'http://localhost:4444/wd/hub',

		capabilities:	{

				'browserName':	'chrome'

		},

…

};

The	first	important	item	is	the	seleniumAddress	object.	The	address	is	the	hostname,	port,
and	location	where	the	Selenium	Server	is	running.	The	next	important	item	is	the
capabilities	object.	Browser-specific	capabilities	give	you	the	ability	to	define	which
browsers	will	be	tested	against.	As	we	are	not	using	the	ChromeOnly	configuration,	you
can	now	choose	Internet	Explorer	(IE),	Firefox,	and	so	on.	For	more	information	on
multiple	browser	support	and	capabilities,	refer	to	the	Protractor	documentation	at
https://github.com/angular/protractor/blob/master/docs/browser-setup.md

In	the	next	section,	we	will	look	at	how	to	run	Selenium.

Tip
The	seleniumAddress	object	is	meant	to	be	configurable	so	that	you	can	have	a	separate
instance	in	a	completely	different	location	than	your	development	machine.	Visit	the
Selenium	site	for	more	information	at	http://www.seleniumhq.org/.

www.it-ebooks.info

https://github.com/angular/protractor/blob/master/docs/browser-setup.md
http://www.seleniumhq.org/
http://www.it-ebooks.info/

Running	Selenium
Selenium	is	quite	straightforward	to	start.	Once	run,	it	can	just	sit	in	the	background	while
the	tests	are	running:

1.	 Start	the	Selenium	standalone	service:

$./node_modules/protractor/bin/webdriver-manager	start

2.	 The	console	window	will	display	several	information	messages.	Ensure	the	following
messages	are	displayed:

3.	 You	should	ensure	that	the	default	port	used,	as	can	be	seen	in	the	RemoteWebDriver
message	in	the	preceding	messages,	is	the	same	as	the	one	that	is	configured	in	the
Protractor	configuration:

		seleniumAddress:	'http://localhost:4444/wd/hub',

…

www.it-ebooks.info

http://www.it-ebooks.info/

Let	it	run
Selenium	is	now	running	on	the	4444	localhost	port.	In	order	to	ensure	that	Protractor	can
communicate	with	Selenium,	let’s	run	a	simple	test	to	ensure	everything	is	working.	As
we	have	done	throughout	the	book,	we	will	follow	the	TDD	steps	even	though	this	will	be
an	extremely	short	and	simple	test.	As	Protractor	is	installed,	the	only	other	prerequisite	is
to	install	an	HTTP	server.	Install	http-server	using	the	following	command:

$	npm	install	http-server

Once	it	is	installed,	start	the	server:

$./node_modules/http-server/bin/http-server

www.it-ebooks.info

http://www.it-ebooks.info/

Test	first
The	test	will	check	whether	the	title	of	the	page	is	equal	to	seleniumTestTitle.	Create	a
new	Protractor	test	file	named	scenario.js.

Assemble
To	set	up	the	test,	we	need	to	navigate	the	browser	to	the	root	of	the	web	application:

beforeEach(function(){

		browser.get("/");

});

There	is	no	Act	section	as	we	will	simply	be	checking	that	the	loaded	index	page	has	the
title	we	need.

Assert
The	assert	needs	get	the	title	and	compare	it	with	the	expected	value:

it('',function(){

		expect(browser.getTitle()).toBe('seleniumTestTitle');

});

www.it-ebooks.info

http://www.it-ebooks.info/

Make	it	run
Now	that	the	test	is	prepared,	we	can	start	running	the	Protractor	test	through	the
standalone	Selenium	Server.	Here	are	the	steps	to	run	the	Protractor	test:

1.	 Add	the	test	file	to	the	Protractor	configuration:

specs:	['scenario.js'],

2.	 Create	an	empty	HTML	page	that	will	be	used	to	make	the	test	run:

<!DOCTYPE	html>

<html>

<head>

		<title></title>

</head>

<body>

</body>

</html>

3.	 Add	the	index	page	to	the	Protractor	configuration:

specs:	['scenario.js','index.html'],

4.	 Run	the	test:

$./node-modules/protractor/bin/protractor	conf.js

5.	 The	first	error	is	Angular	could	not	be	found	on	the	page
http://localhost:8080/index.html	:	retries	looking	for	angular	exceeded.	To	rectify
this,	perform	the	following	steps:

1.	 AngularJS	has	not	been	added	to	the	page.	Install	angular	through	bower:

$	bower	install	angular

2.	 Add	the	AngularJS	reference	to	the	index.html	page:

<script	type="text/javascript"	

src="bower_components/angular/angular.js"></script>

3.	 Rerun	the	test.

6.	 The	next	error	is	Angular	could	not	be	found	on	the	page
http://localhost:8080/index.html	:	angular	never	provided	resumeBootstrap.	This
error	means	that	AngularJS	couldn’t	load	the	main	module	of	your	application.	To
rectify	this,	perform	the	following	steps:

1.	 Add	a	simple	module	into	the	body	tag:

<body	ng-app='test'>

2.	 Initialize	the	module	in	the	last	tag:

www.it-ebooks.info

http://www.it-ebooks.info/

<script	type="text/javascript"	

src="bower_components/angular/angular.js"></script>

<script	type="text/javascript">

		angular.module('test',[]);

</script>

3.	 Rerun	the	test.

7.	 The	next	error	has	hit	the	expectation:	Expected	‘http://localhost:8080/index.html’
to	be	‘seleniumTestTitle’.	Here	are	the	steps	to	rectify	this	error:

1.	 Set	the	title	of	the	web	page	to	the	expectation:

<title>seleniumTestTitle</title>

2.	 Rerun	the	test.

8.	 The	Protractor	output	now	reports	1	test,	1	assertion,	0	failures.	With	the	success	of
the	test,	we	have	now	successfully	shown	you	how	to	use	the	Selenium	standalone
server.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	appendix	has	shown	you	how	to	set	up	and	use	the	Selenium	standalone	server.	There
are	many	options	and	advantages	of	using	the	standalone	server.	The	advantages	are
geared	more	for	advanced	testing	when	you	want	to	use	a	dedicated	Selenium	Server	or	a
PaaS	(Platform	as	a	Service)	or	if	you	want	to	test	a	functionality	on	different	browsers
and	as	the	volume	of	your	Protractor	tests	grow.	For	more	information,	visit	the	Selenium
home	page	at	http://www.seleniumhq.org/.

www.it-ebooks.info

http://www.seleniumhq.org/
http://www.it-ebooks.info/

Appendix	B.	Automating	Karma	Unit
Testing	on	Commit
Running	tests	locally	is	one	thing,	but	how	do	you	know	whether	they	will	work	on
someone	else’s	computer.	Setting	up	continuous	testing	and	integration	should	be	part	of
every	application	you	write.	One	of	the	best	things	is	that	the	tools	to	set	up	are	free,	easy
to	use,	and	best	of	all,	they	get	to	showcase	your	tests!	The	following	section	will	explore
how	to	set	up	continuous	integration	using	GitHub	for	source	control	and	Travis	for
continuous	integration.

www.it-ebooks.info

http://www.it-ebooks.info/

GitHub
GitHub	is	a	source	control,	collaboration,	and	all-around	awesome	tool.	For	open	source
projects,	it	is	free.	Once	you	sign	up,	you	can	get	started	and	create	a	new	repository	for
your	project.	GitHub	provides	a	Git	URL	for	every	project;	the	URL	can	then	be	set	up	to
push	changes	like	any	other	Git	repository.	One	of	the	benefits	of	using	GitHub	is	that	it
automatically	provides	hooks	into	other	applications	and	services.	When	setting	up
continuous	integration	and	testing	through	Travis	CI,	you	will	leverage	the	Travis	CI
GitHub	hook.

www.it-ebooks.info

http://www.it-ebooks.info/

Test	setup
In	order	to	run	Karma	properly,	we	will	need	to	add	the	following	development
dependencies:

karma:	The	base	Karma	installation
karma-jasmine:	The	test	runner
karma-phantomjs-launcher:	The	PhantomJS	headless	browser	plugin	we	discussed
and	set	up	in	Chapter	5,	Flip	Flop

Install	the	following	Karma	dev	dependencies:

$	npm	install	karma	--save-dev

$	npm	install	karma-jasmine	--save-dev

$	npm	install	karma-phantomjs-launcher	--save-dev

www.it-ebooks.info

http://www.it-ebooks.info/

Test	scripts
When	using	Travis	CI,	a	script	to	run	the	tests	needs	to	be	defined.	The	best	place	to
define	a	script	is	in	the	package.json	file.	The	package.json	file	is	used	in	several	ways
by	node.js.	Here	are	the	steps	to	run	the	test:

1.	 The	test	script	can	then	be	run	when	you	type	the	following	command	in	the
command	prompt:

$	npm	test

2.	 Update	the	package.json	scripts	section	as	shown	in	the	following	code	snippet:

"scripts":	{

				"start":	"node	app.js",

				"test"	:	"karma	start	--single-run	--browsers	PhantomJS"

}

3.	 Confirm	that	the	test	script	works:

$	npm	test

PhantomJS	allows	tests	to	run	on	the	Travis	CI	servers	without	the	need	for	a	UI.	The
following	is	a	sample	output:

The	application	setup	is	now	configured	to	run	unit	tests	via	the	npm	test	command.	This
will	be	used	by	Travis	CI	to	run	the	tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	the	hook
GitHub	provides	several	hooks	into	other	applications.	A	hook	allows	you	to	chain	actions
when	a	commit	occurs.	A	hook	is	an	extremely	useful	feature	from	a	continuous
integration	standpoint	because	we	can	set	up	the	code	to	be	tested	on	every	commit.	Travis
CI	has	a	GitHub	hook	that	can	be	easily	set	up	on	any	GitHub	repository.	The	following	is
a	walk-through	on	how	to	create	a	Travis	CI	hook	on	your	open	source	repository.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	the	hook
Here	are	the	steps	to	create	the	hook:

1.	 Create	a	Travis	CI	account	by	going	to	the	Travis	CI	page	at	https://travis-ci.org	and
click	on	Sign	in	with	GitHub.	Confirm	the	questions	it	asks	and	continue.

2.	 Activate	a	GitHub	Webhook	to	Travis	CI.	You	can	set	up	the	Webhook	in	Travis	CI
through	your	profile	URL	at	https://travis-ci.org/profile

3.	 Turn	the	switch	on.	In	the	profile,	you	should	see	your	repository.

Here	is	a	before	view	of	Webhook	(Switch	off):

Here	is	a	view	of	the	Webhook	after	it	is	enabled(Switch	on):

www.it-ebooks.info

https://travis-ci.org
https://travis-ci.org/profile
http://www.it-ebooks.info/

Adding	a	Travis	configuration	file
Travis	requires	a	configuration	file	to	be	at	the	root	of	your	repository	named
.travis.yml.	The	configuration	file	contains	the	source	code	language,	language
versioning,	metadata,	and	other	information.	The	template	configuration	will	look	as
follows:

language:	node_js

node_js:

		-	"0.10"

Besides	the	basic	configuration	in	the	preceding	code,	additional	setup	is	needed	to	run
Karma	tests.	The	before_script	configuration	will	be	used	to	install	Karma	and	Bower
prior	to	running	any	tests.	Here	is	what	the	configuration	needs	to	look	like	in	order	to
install	Karma	and	Bower	before	any	tests	run:

language:	node_js

node_js:

		-	"0.10"

before_script:

		-	npm	install	-g	karma-cli

		-	npm	install	-g	bower

		-	bower	install

Now	the	tests	are	ready	to	be	run.	Add	the	preceding	contents	to	a	new	file	named
travis.yml.	By	default,	the	Node.js	project	will	execute	the	npm	test	command	in
Travis.	This	is	why	you	don’t	need	to	specify	the	actual	command	to	test	your	application.

Note
Please	note	that	Travis	CI	is	case	sensitive.

The	following	screenshot	is	an	example	of	what	the	preceding	code	looks	like:

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	have	any	issues,	go	to	the	Travis	CI	Getting	started	guide	at	http://docs.travis-
ci.com/user/getting-started/.

www.it-ebooks.info

http://docs.travis-ci.com/user/getting-started/
http://www.it-ebooks.info/

References
The	following	are	some	references	that	may	help	you	with	the	concepts:

This	form	of	user	specification	is	written	using	the	Gerkin	syntax.	The	Gerkin	syntax
allows	you	to	write	the	specifications	in	a	well-formatted	manner.	See	the	following
link	for	more	details:	http://en.wikipedia.org/wiki/Behavior-driven_development.
The	JavaScript	Jabber	homepage	can	be	found	at	http://javascriptjabber.com/106-jsj-
protractor-with-julie-ralph/
The	GitHub	page	for	http-server	can	be	found	at	https://github.com/nodeapps/http-
server

www.it-ebooks.info

http://en.wikipedia.org/wiki/Behavior-driven_development
http://javascriptjabber.com/106-jsj-protractor-with-julie-ralph/
https://github.com/nodeapps/http-server
http://www.it-ebooks.info/

Appendix	C.	Answers

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	1,	Introduction	to	Test-driven
Development
Q1 2

Q2 1

Q3 1

Q4 1

Q5 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2,	The	Karma	Way
Q1 2

Q2 2

Q3 2

Q4 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3,	End-to-end	Testing	with
Protractor
Q1 1

Q2 1

Q3 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4,	The	First	Step
Q1 1

Q2 2

Q3 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5,	Flip	Flop
Q1 3

Q2 3

Q3 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6,	Telling	the	World
Q1 2

Q2 1

Q3 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7,	Give	Me	Some	Data
Q1 1

Q2 2

Q3 1

Q4 2

Q5 1

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

3	A’s
reference	link	/	Testing	techniques

3A’s
assemble	/	Assemble,	Act,	and	Assert	(3	A’s)
act	/	Assemble,	Act,	and	Assert	(3	A’s),	Assemble,	Act,	Assert	(3	A’s)
assert	/	Assemble,	Act,	and	Assert	(3	A’s),	Assemble,	Act,	Assert	(3	A’s)
assemble	/	Assemble,	Act,	Assert	(3	A’s)

3A’s,	application	to	enter	comments
assemble	/	Assemble
act	/	Act
assert	/	Assert

3A’s,	comment	adding	specification
assemble	/	Assemble
act	/	Act
assert	/	Assert

3A’s,	comment	liking	specification
assemble	/	Assemble
act	/	Act
assert	/	Assert

AngularJS
installing	/	Installing	AngularJS

AngularJS	components
attributes	/	Services
directives	/	Services
controllers	/	Services
services	/	Services

AngularJS	REST,	testing	with
about	/	Testing	with	AngularJS	REST
product	service,	testing	/	Testing	the	product	service
$http,	testing	with	Karma	/	Testing	$http	with	Karma

AngularJS	routes
about	/	Walk-through	of	Angular	routes
setting	up	/	Setting	up	AngularJS	routes
directions,	defining	/	Defining	directions
flip	flop	test,	assembling	/	Assembling	the	flip	flop	test

AngularJS	services
about	/	Services

Angular	Mocks
installing	/	Installing	Angular	mocks
URL	/	Installing	Angular	mocks

www.it-ebooks.info

http://www.it-ebooks.info/

application	to	enter	comments
specification,	preparing	/	Preparing	the	application’s	specification
setting	up	/	Setting	up	the	project
directory,	setting	up	/	Setting	up	the	directory
Protractor,	installing	/	Setting	up	Protractor
Protractor,	setting	up	/	Setting	up	Protractor
Karma,	setting	up	/	Setting	up	Karma
http-server	setup	/	Setting	up	http-server
Karma	configuration	/	Configuring	Karma

application	to	enter	comments,	TDD	life	cycle
about	/	Bring	on	the	comments
test	first	/	Test	first
3A’s	/	Test	first
test,	running	/	Make	it	run
module,	adding	/	Adding	the	module
input,	adding	/	Adding	the	input
controller	/	Controller
test,	passing	/	Make	it	pass
test,	improving	/	Make	it	better

asynchronous	calls
testing	/	Testing	asynchronous	calls
creating,	in	Karma	/	Creating	asynchronous	calls	in	Karma
creating,	in	Protractor	/	Creating	asynchronous	calls	in	Protractor

async	magic	components,	Protractor
about	/	Async	magic
page,	loading	before	test	execution	/	Loading	a	page	before	test	execution
assertion	on	elements	/	Assertion	on	elements	that	get	loaded	in	promises

www.it-ebooks.info

http://www.it-ebooks.info/

B
beforeEach	parameter

about	/	Test	first,	Test	first
bottom-up	approach

about	/	Top-down	or	bottom-up	approach
using	/	Using	a	bottom-up	approach

Bower
about	/	Bower
installing	/	Bower	installation

broadcast
testing	/	Testing	broadcast,	Testing	broadcast

builder	object
about	/	Building	with	a	builder

builder	pattern
about	/	Building	with	a	builder

www.it-ebooks.info

http://www.it-ebooks.info/

C
$controller	variable

about	/	Assemble,	Act,	and	Assert	(3	A’s)
Chrome

about	/	Installation	prerequisites
URL	/	Installation	prerequisites

comment	liking	specification
about	/	Onwards	and	upwards
testing,	with	Protractor	test	template	/	Test	first
3A’s	/	Test	first
test,	running	/	Make	it	run
unit	tests,	fixing	/	Fixing	the	unit	tests
test,	improving	/	Make	it	better
test,	coupling	/	Coupling	of	the	test

controller
testing	/	Testing	a	controller
simple	controller	test	setup	/	A	simple	controller	test	setup
scope,	initializing	/	Initializing	the	scope

curl	tool
about	/	REST	–	the	language	of	the	Web

www.it-ebooks.info

http://www.it-ebooks.info/

D
describe	parameter

about	/	Test	first,	Test	first
Describe	property,	Karma	test	/	Testing	with	Karma
directions,	AngularJS	routes

ngRoute,	configuring	/	Configuring	ngRoute
route	controllers,	defining	/	Defining	the	route	controllers
route	views,	defining	/	Defining	the	route	views

documentation,	TDD
about	/	Fundamentals	of	TDD

Document	Object	Model	(DOM)	/	TDD	with	Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

E
emit

about	/	Emitting
testing	/	Testing	emit

end-to-end	testing
about	/	Getting	down	to	business,	Testing	end-to-end
specification,	reviewing	/	Specification
development	to-do	list	/	The	development	to-do	list
TDD	process	/	Test	first
product	data,	obtaining	/	Getting	the	product	data

end-to-end	testing,	product	cart
end-to-end	test,	assembling	/	Assembling	the	cart’s	end-to-end	test
save	to	cart	action,	invoking	/	Invoking	a	save	to	cart	action
saved	products,	confirming	/	Confirming	products	have	been	saved
end-to-end	test,	passing	/	Making	the	cart’s	end-to-end	test	pass

end-to-end	testing,	recently	viewed	items
about	/	End-to-end	testing
test	first	/	Test	first
recently	viewed	end-to-end	test,	assembling	/	Assembling	the	recently	viewed
end-to-end	test
search	result,	selecting	/	Selecting	a	search	result
recently	viewed	items,	confirming	/	Confirming	recently	viewed	items
recentlyViewedItems	test,	passing	/	Making	the	recentlyViewedItems	test	pass
recentlyViewedItems	test,	improving	/	Making	recently	viewed	items	better

end-to-end	tests,	Protractor
test	web	server,	installing	/	Installing	the	test	web	server

events,	in	search	application
implementing	/	Harnessing	the	power	of	events
plan	/	The	plan
rebranding	/	Rebranding
recently	viewed	items,	viewing	/	Seeing	recently	viewed	items
product	cart,	creating	/	Creating	a	product	cart

Expect	property,	Karma	test	/	Testing	with	Karma

www.it-ebooks.info

http://www.it-ebooks.info/

F
flip	flop	test,	AngularJS	routes

views	flip,	creating	/	Making	the	views	flip
flip,	asserting	/	Asserting	a	flip
running	/	Making	flip	flop	run
improving	/	Making	flip	flop	better

Function	Under	Test	/	Testing	techniques
fundamentals,	search	application

Protractor	locators	/	Protractor	locators

www.it-ebooks.info

http://www.it-ebooks.info/

G
GitHub

about	/	GitHub

www.it-ebooks.info

http://www.it-ebooks.info/

H
$httpBackend	property	/	Testing	$http	with	Karma
headless	browser	testing,	for	Karma

setting	up	/	Setting	up	headless	browser	testing	for	Karma
preconfiguration	/	Preconfiguration
configuration	/	Configuration

http-server	module	/	Getting	the	product	data
about	/	Getting	the	product	data

HTTP	methods
about	/	REST	–	the	language	of	the	Web
GET	/	REST	–	the	language	of	the	Web
POST	/	REST	–	the	language	of	the	Web
PUT	/	REST	–	the	language	of	the	Web
DELETE	/	REST	–	the	language	of	the	Web

www.it-ebooks.info

http://www.it-ebooks.info/

I
inject	variable

about	/	Assemble,	Act,	and	Assert	(3	A’s)
installation

Karma	/	Installing	Karma
Protractor	/	Protractor	installation

it	parameter
about	/	Test	first,	Test	first

It	property,	Karma	test	/	Testing	with	Karma

www.it-ebooks.info

http://www.it-ebooks.info/

J
Jasmine

about	/	Jasmine
pros	/	Jasmine
cons	/	Jasmine

Jasmine	spy
used,	for	creating	test	double	/	Testing	doubles	with	Jasmine	spies

JavaScript	testing	frameworks
about	/	JavaScript	testing	frameworks
Jasmine	/	Jasmine
Selenium	/	Selenium
Mocha	/	Mocha

JavaScript	testing	tools
about	/	JavaScript	testing	tools
Karma	/	Karma
Protractor	/	Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

K
Karma

about	/	Karma
pros	/	Karma
cons	/	Karma
birth	/	Birth	of	Karma
features	/	The	Karma	difference
combining,	with	AngularJS	/	Importance	of	combining	Karma	with	AngularJS
installing	/	Installing	Karma
URL	/	Installing	Karma
prerequisites,	for	installation	/	Installation	prerequisites
configuring	/	Configuring	Karma
configuration,	customizing	/	Customizing	Karma’s	configuration
installation,	confirming	/	Confirming	Karma’s	installation	and	configuration,
Confirming	the	Karma	installation
configuration,	confirming	/	Confirming	Karma’s	installation	and	configuration
common	installation/configuration	issues	/	Common	installation/configuration
issues
testing,	with	/	Testing	with	Karma
initializing	/	Initializing	Karma

Karma,	using	with	AngularJS
about	/	Using	Karma	with	AngularJS
AngularJS,	obtaining	/	Getting	AngularJS
testing,	with	/	Testing	with	AngularJS	and	Karma
development	to-do	list	/	A	development	to-do	list
list	of	items,	testing	/	Testing	a	list	of	items
TDD	process	/	Testing	a	list	of	items
function,	adding	to	controller	/	Adding	a	function	to	the	controller

karma.conf	file	/	Initializing	Karma
Karma	configuration

about	/	Karma	configuration
file	watching	/	File	watching

Karma	configuration,	application	to	enter	comments
testing	/	Test	first
3A’s	/	Test	first
test,	running	/	Make	it	run
test,	improving	/	Make	it	better
test	chain,	backing	up	/	Back	up	the	test	chain
input,	binding	/	Bind	the	input

Karma	dev	dependencies
karma	/	Test	setup
karma-jasmine	/	Test	setup
karma-phantomjs-launcher	/	Test	setup

www.it-ebooks.info

http://www.it-ebooks.info/

installing	/	Test	setup
Karma	unit	testing

test	setup	/	Test	setup
test	scripts	/	Test	scripts
hook,	setting	/	Setting	the	hook
hook,	creating	/	Creating	the	hook
Travis	configuration	file,	adding	/	Adding	a	Travis	configuration	file

www.it-ebooks.info

http://www.it-ebooks.info/

M
messages

publishing	/	Publishing	and	subscribing	messages
subscribing	/	Publishing	and	subscribing	messages

middle-to-end	testing
about	/	Testing	middle-to-end
test	first	/	Test	first
product	test,	assembling	/	Assembling	the	product	test
products,	obtaining	/	Getting	products
product	data	results,	expecting	/	Expecting	product	data	results
product	data,	running	/	Making	the	product	data	run

Mocha
about	/	Mocha
pros	/	Mocha
cons	/	Mocha

www.it-ebooks.info

http://www.it-ebooks.info/

N
Node.js

URL	/	Installation	prerequisites,	Installation	prerequisites
about	/	Installation	prerequisites

Node	Package	Manager	(npm)	modules	/	Mocha

www.it-ebooks.info

http://www.it-ebooks.info/

P
PhantomJS

URL	/	Setting	up	headless	browser	testing	for	Karma
PhantomJS	browser	plugin

URL	/	Preconfiguration
prerequisites,	Protractor	installation

Node.js	/	Installation	prerequisites
Chrome	/	Installation	prerequisites
Selenium	WebDriver	for	Chrome	/	Installation	prerequisites

product	cart
creating	/	Creating	a	product	cart
publisher	test	first	/	Publisher	test	first
searchDetailController,	assembling	/	Assembling	searchDetailController
product	saving,	invoking	/	Invoking	the	saving	of	a	product
save	event,	confirming	/	Confirming	the	save	event
saveProduct	test,	passing	/	Making	the	saveProduct	test	pass
subscriber	unit	test	/	Test	for	the	subscriber	first
test,	assembling	/	Assembling	the	product	cart	test
saved	cart	event,	invoking	/	Invoking	a	saved	cart	event
saved	cart,	confirming	/	Confirming	the	saved	cart
cart	controller	test,	running	/	Making	the	cart	controller	test	run
end-to-end	testing	/	End-to-end	testing

product	data	controller
about	/	The	product	data	controller
product	controller	test,	assembling	/	Assembling	the	product	controller	test
products,	obtaining	/	Getting	products
product	data	results,	asserting	/	Asserting	product	data	results

product	data	service
about	/	The	product	data	service

product	requests,	unit	testing
about	/	Unit	testing	product	requests
project,	setting	up	/	Setting	up	the	project
Karma	configuration	/	Karma	configuration
API	builder	pattern,	using	/	Using	an	API	builder	pattern

products,	displaying	with	REST
about	/	Displaying	products	with	REST
product	requests,	unit	testing	/	Unit	testing	product	requests
product	data	service	/	The	product	data	service
product	data	controller	/	The	product	data	controller
product	data	tests,	running	/	Making	the	product	data	tests	run

Protractor
about	/	Protractor,	An	overview	of	Protractor
pros	/	Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

cons	/	Protractor
overview	/	An	overview	of	Protractor
origins	/	Origins	of	Protractor
birth	/	The	birth	of	Protractor
features	/	Life	without	Protractor
URL	/	Common	installation/configuration	issues
real	test	/	Hello	Protractor
TDD,	using	/	TDD	end-to-end
pre-setup	/	The	pre-setup
setup	/	The	setup
end-to-end	tests	/	Test	first
configuring	/	Configuring	Protractor
gaps,	cleaning	up	/	Cleaning	up	the	gaps
async	magic	components	/	Async	magic
TDD,	implementing	with	/	TDD	with	Protractor

Protractor	installation
about	/	Protractor	installation
reference	link,	for	guide	/	Protractor	installation
prerequisites	/	Installation	prerequisites
performing	/	Installing	Protractor
WebDriver,	installing	for	Chrome	/	Installing	WebDriver	for	Chrome
configuration,	customizing	/	Customizing	configuration
confirming	/	Confirming	installation	and	configuration
configuration,	confirming	/	Confirming	installation	and	configuration
common	issues	/	Common	installation/configuration	issues

Protractor	locators
about	/	Protractor	locators
CSS	locators	/	CSS	locators
button	text	locator	/	Button	and	link	locators
link	text	locator	/	Button	and	link	locators
Angular	locators	/	Angular	locators
URL	location	references	/	URL	location	references

publishing	and	subscribing
messages	/	Publishing	and	subscribing	messages
issues	/	Publishing	and	subscribing	–	the	good	and	bad
scenarios	/	The	good
communicating,	through	events	/	Communicating	through	events
coupling,	reducing	/	Reducing	coupling

www.it-ebooks.info

http://www.it-ebooks.info/

R
recently	viewed	items,	viewing

about	/	Seeing	recently	viewed	items
test	first	/	Test	first
end-to-end	testing	/	End-to-end	testing

recently	viewed	test
writing	/	Test	first
SearchController,	assembling	/	Assembling	SearchController
product,	selecting	/	Selecting	a	product
events,	to	be	published	/	Expecting	events	to	be	published
search	controller	run,	creating	/	Making	the	search	controller	run
unit	test	/	Recently	viewed	unit	test

recently	viewed	unit	test
about	/	Recently	viewed	unit	test
writing	/	Test	first
RecentlyViewedController,	assembling	/	Assembling	RecentlyViewedController
recently	viewed	item,	invoking	/	Invoking	a	recently	viewed	item
RecentlyViewedController,	confirming	/	Confirming	RecentlyViewedController
RecentlyViewedController,	running	/	Making	RecentlyViewedController	run

refactoring,	TDD
about	/	Fundamentals	of	TDD,	Refactoring

REST
about	/	REST	–	the	language	of	the	Web
getting	started	process	/	Getting	started	with	REST

REST	requests
creating,	AngularJS	used	/	Making	REST	requests	using	AngularJS
testing,	with	AngularJS	REST	/	Testing	with	AngularJS	REST
mocking,	with	Protractor	/	Mocking	requests	with	Protractor

www.it-ebooks.info

http://www.it-ebooks.info/

S
SaaS	(Software	as	a	Service)	/	Life	without	Protractor
Sauce	Labs

URL	/	Life	without	Protractor
Scenario	Runner

about	/	End	of	life
scope	variable

about	/	Assemble,	Act,	and	Assert	(3	A’s)
search	application

fundamentals	/	Fundamentals
creating	/	Creating	a	new	project
headless	browser	testing,	setting	up	for	Karma	/	Setting	up	headless	browser
testing	for	Karma

search	application,	TDD	way
about	/	Searching	the	TDD	way,	The	search	application
approach,	deciding	on	/	Deciding	on	the	approach
search	query	/	Walk-through	of	search	query
search	query	test	/	The	search	query	test
search	query	HTML	page	/	The	search	query	HTML	page

search	results,	search	application
about	/	Show	me	some	results!
search	result	routes,	creating	/	Creating	the	search	result	routes
testing	/	Testing	the	search	results
search	result	test,	assembling	/	Assembling	the	search	result	test
selecting	/	Selecting	a	search	result
confirming	/	Confirming	a	search	result
search	result	test,	running	/	Making	the	search	result	test	run
testing,	for	location	/	Creating	a	location-aware	test
improving	/	Making	the	search	result	better
route	ID,	confirming	/	Confirming	the	route	ID
route	ID	unit	test,	setting	up	/	Setting	up	the	route	ID	unit	test
route	ID	unit	test,	confirming	/	Confirming	the	ID
route	parameters	test,	running	/	Making	the	route	parameter’s	test	run

Selenium
URL	/	Selenium
about	/	Selenium
pros	/	Selenium
cons	/	Selenium
installing	/	Installation
Protractor	configuration	/	Protractor	configuration
running	/	Running	Selenium,	Let	it	run
test	first	/	Test	first

Selenium	WebDriver,	for	Chrome

www.it-ebooks.info

http://www.it-ebooks.info/

about	/	Installation	prerequisites
installing	/	Installing	WebDriver	for	Chrome

success,	measuring	in	TDD
steps,	breaking	down	/	Breaking	down	the	steps
test	first	methodology	/	Measure	twice	cut	once

www.it-ebooks.info

http://www.it-ebooks.info/

T
TDD

about	/	An	overview	of	TDD,	TDD	end-to-end
fundamentals	/	Fundamentals	of	TDD
benefits	/	Fundamentals	of	TDD
success,	measuring	/	Measuring	success
testing	techniques	/	Testing	techniques
applying	/	TDD	end-to-end

TDD	life	cycle
about	/	Diving	in
test,	setting	up	/	Setting	up	the	test
development	to-do	list,	creating	/	Creating	a	development	to-do	list
test	first	/	Test	first
test,	running	/	Making	it	run
test,	improving	/	Making	it	better

TDD	process,	end-to-end	testing
test	first	/	Test	first
3A’s	/	Assemble,	Act,	Assert	(3	A’s)
test,	running	/	Make	it	run
test,	improving	/	Make	it	better

TDD	process,	for	adding	function	to	controller
about	/	Adding	a	function	to	the	controller
test	first	/	Test	first
3A’s	/	Assemble,	Act,	and	Assert	(3	A’s)
test,	running	/	Make	it	run
test,	improving	/	Make	it	better

TDD	process,	for	testing	list	of	items
test	first	/	Test	first
3A’s	/	Assemble,	Act,	and	Assert	(3	A’s)
test,	running	/	Make	it	run
test,	improving	/	Make	it	better

test,	Selenium
assemble	/	Assemble
assert	/	Assert
running	/	Make	it	run

test	double
about	/	Testing	doubles	with	Jasmine	spies
using	/	Testing	doubles	with	Jasmine	spies
creating,	Jasmine	spy	used	/	Testing	doubles	with	Jasmine	spies
return	value,	stubbing	/	Stubbing	a	return	value
arguments,	testing	/	Testing	arguments

testing	framework
about	/	Testing	with	a	framework

www.it-ebooks.info

http://www.it-ebooks.info/

testing	techniques,	TDD
about	/	Testing	techniques
testing	framework	/	Testing	with	a	framework
test	double	/	Testing	doubles	with	Jasmine	spies
test	double,	using	Jasmine	spy	/	Testing	doubles	with	Jasmine	spies
refactoring	/	Refactoring
building,	with	builder	/	Building	with	a	builder

ToBeTruthy	property,	Karma	test	/	Testing	with	Karma
top-down	approach

about	/	Top-down	or	bottom-up	approach
Travis	CI

configuration	file	/	Adding	a	Travis	configuration	file
URL	/	Adding	a	Travis	configuration	file

Travis	CI	hook
creating	/	Creating	the	hook

www.it-ebooks.info

http://www.it-ebooks.info/

	AngularJS Test-driven Development
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introduction to Test-driven Development
	An overview of TDD
	Fundamentals of TDD
	Measuring success
	Breaking down the steps
	Measure twice cut once
	Diving in
	Setting up the test
	Creating a development to-do list
	Test first
	Making it run
	Making it better
	Testing techniques
	Testing with a framework
	Testing doubles with Jasmine spies
	Stubbing a return value
	Testing arguments
	Refactoring
	Building with a builder
	Self-test questions
	Summary
	2. The Karma Way
	JavaScript testing tools
	Karma
	Protractor
	JavaScript testing frameworks
	Jasmine
	Selenium
	Mocha
	Birth of Karma
	The Karma difference
	Importance of combining Karma with AngularJS
	Installing Karma
	Installation prerequisites
	Configuring Karma
	Customizing Karma's configuration
	Confirming Karma's installation and configuration
	Common installation/configuration issues
	Testing with Karma
	Confirming the Karma installation
	Using Karma with AngularJS
	Getting AngularJS
	Bower
	Bower installation
	Installing AngularJS
	Installing Angular mocks
	Initializing Karma
	Testing with AngularJS and Karma
	A development to-do list
	Testing a list of items
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better
	Adding a function to the controller
	Test first
	Assemble, Act, and Assert (3 A's)
	Make it run
	Make it better
	Self-test questions
	Summary
	3. End-to-end Testing with Protractor
	An overview of Protractor
	Origins of Protractor
	End of life
	The birth of Protractor
	Life without Protractor
	Protractor installation
	Installation prerequisites
	Installing Protractor
	Installing WebDriver for Chrome
	Customizing configuration
	Confirming installation and configuration
	Common installation/configuration issues
	Hello Protractor
	TDD end-to-end
	The pre-setup
	The setup
	Test first
	Installing the test web server
	Configuring Protractor
	Getting down to business
	Specification
	The development to-do list
	Test first
	Assemble, Act, Assert (3 A's)
	Running the test
	Make it run
	Make it better
	Cleaning up the gaps
	Async magic
	Loading a page before test execution
	Assertion on elements that get loaded in promises
	TDD with Protractor
	Self-test questions
	Summary
	4. The First Step
	Preparing the application's specification
	Setting up the project
	Setting up the directory
	Setting up Protractor
	Setting up Karma
	Setting up http-server
	Top-down or bottom-up approach
	Testing a controller
	A simple controller test setup
	Initializing the scope
	Bring on the comments
	Test first
	Assemble
	Act
	Assert
	Make it run
	Adding the module
	Adding the input
	Controller
	Make it pass
	Make it better
	Implementing the Submit button
	Configuring Karma
	Test first
	Assemble
	Act
	Assert
	Make it run
	Make it better
	Back up the test chain
	Bind the input
	Onwards and upwards
	Test first
	Assemble
	Act
	Assert
	Make it run
	Fixing the unit tests
	Make it better
	Coupling of the test
	Self-test questions
	Summary
	5. Flip Flop
	Fundamentals
	Protractor locators
	CSS locators
	Button and link locators
	Angular locators
	URL location references
	Creating a new project
	Setting up headless browser testing for Karma
	Preconfiguration
	Configuration
	Walk-through of Angular routes
	Setting up AngularJS routes
	Defining directions
	Configuring ngRoute
	Defining the route controllers
	Defining the route views
	Assembling the flip flop test
	Making the views flip
	Asserting a flip
	Making flip flop run
	Making flip flop better
	Searching the TDD way
	Deciding on the approach
	Walk-through of search query
	The search query test
	The search query HTML page
	The search application
	Show me some results!
	Creating the search result routes
	Testing the search results
	Assembling the search result test
	Selecting a search result
	Confirming a search result
	Making the search result test run
	Creating a location-aware test
	Making the search result better
	Confirming the route ID
	Setting up the route ID unit test
	Confirming the ID
	Making the route parameter's test run
	Self-test questions
	Summary
	6. Telling the World
	Before the plunge
	Karma configuration
	File watching
	Using a bottom-up approach
	Services
	Publishing and subscribing messages
	Emitting
	Testing emit
	Testing broadcast
	Testing broadcast
	Publishing and subscribing – the good and bad
	The good
	Communicating through events
	Reducing coupling
	Harnessing the power of events
	The plan
	Rebranding
	Seeing recently viewed items
	Test first
	Assembling SearchController
	Selecting a product
	Expecting events to be published
	Making the search controller run
	Recently viewed unit test
	Test first
	Assembling RecentlyViewedController
	Invoking a recently viewed item
	Confirming RecentlyViewedController
	Making RecentlyViewedController run
	End-to-end testing
	Test first
	Assembling the recently viewed end-to-end test
	Selecting a search result
	Confirming recently viewed items
	Making the recentlyViewedItems test pass
	Making recently viewed items better
	Creating a product cart
	Publisher test first
	Assembling searchDetailController
	Invoking the saving of a product
	Confirming the save event
	Making the saveProduct test pass
	Test for the subscriber first
	Assembling the product cart test
	Invoking a saved cart event
	Confirming the saved cart
	Making the cart controller test run
	End-to-end testing
	Assembling the cart's end-to-end test
	Invoking a save to cart action
	Confirming products have been saved
	Making the cart's end-to-end test pass
	Self-test questions
	Summary
	7. Give Me Some Data
	REST – the language of the Web
	Getting started with REST
	Testing asynchronous calls
	Creating asynchronous calls in Karma
	Creating asynchronous calls in Protractor
	Making REST requests using AngularJS
	Testing with AngularJS REST
	Testing the product service
	Testing $http with Karma
	Mocking requests with Protractor
	Displaying products with REST
	Unit testing product requests
	Setting up the project
	Karma configuration
	Using an API builder pattern
	The product data service
	The product data controller
	Assembling the product controller test
	Getting products
	Asserting product data results
	Making the product data tests run
	Testing middle-to-end
	Test first
	Assembling the product test
	Getting products
	Expecting product data results
	Making the product data run
	Testing end-to-end
	Getting the product data
	Self-test questions
	Summary
	A. Integrating Selenium Server with Protractor
	Installation
	Protractor configuration
	Running Selenium
	Let it run
	Test first
	Assemble
	Assert
	Make it run
	Summary
	B. Automating Karma Unit Testing on Commit
	GitHub
	Test setup
	Test scripts
	Setting the hook
	Creating the hook
	Adding a Travis configuration file
	References
	C. Answers
	Chapter 1, Introduction to Test-driven Development
	Chapter 2, The Karma Way
	Chapter 3, End-to-end Testing with Protractor
	Chapter 4, The First Step
	Chapter 5, Flip Flop
	Chapter 6, Telling the World
	Chapter 7, Give Me Some Data
	Index

