
www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Testing
Cookbook

Eliminate volatile code by taking control and
understanding how to test AngularJS applications

Simon Bailey

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Testing Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-374-2

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Simon Bailey

Reviewers
Ashutosh Das

Abhishek Dey

James Morgan

Steve Perkins

Commissioning Editor
Pramila Balan

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Anand Singh

Technical Editor
Rohith Rajan

Copy Editor
Pranjali Chury

Project Coordinator
Akash Poojary

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Simon Bailey is a frontend developer based in the UK, specializing in JavaScript development
and application architecture. He founded Newtriks Ltd. and has been remotely contracting for
the last 10 years for global corporations and venture-backed start-ups. He regularly consults
Angular, Backbone, and React, and trains programmers in test-driven development. He is an
enthusiastic open source contributor and maintains a blog at http://newtriks.com and
is the cofounder and lead developer of the live webcasting platform Sayansho Ltd. He is a
husband, father, and lover of the golden age of hip hop.

Gratitude and love goes to my wife Donna, and children Iola, Joel, and
Clarisse, for their support and encouragement. Thanks to my parents for
their support and persistent pushes in the right direction. Thanks to the
amazing network of developers offering help and support to the community.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Abhishek Dey, born in West Bengal, India, is a graduate student at the University of Florida,
Gainesville, conducting research in the fields of computer security, computer networks,
compiler design, analysis of algorithms, and concurrency and parallelism. He is a passionate
programmer who started programming in C and Java at the age of 10 and developed a strong
interest in web technologies when he was 15. He possesses profound expertise in developing
high-volume software using C#, C++, Java, JavaScript, jQuery, AngularJS, and HTML5.

He is a Microsoft Certified Professional, an Oracle Certified Java Programmer, an Oracle
Certified Web Component Developer, and an Oracle Certified Business Component Developer.

He has also contributed to bringing about new innovations in the field of Highway Capacity
Software Development at McTrans Center at the University of Florida (http://mctrans.
ce.ufl.edu/mct/) in collaboration with the Engineering School of Sustainable
Infrastructure and Environment (http://www.essie.ufl.edu/).

He has previously reviewed Kali Linux CTF Blueprints and AngularJS UI Development,
both by Packt Publishing.

In his leisure time, Abhishek loves to listen to music, travel to different interesting places,
or paint on a canvas giving colors to his imagination. More information about Abhishek Dey
can be found at http://abhishekdey.com.

I'd like to take this opportunity to thank my mom and dad. They are the
biggest inspiration of my life.

www.it-ebooks.info

http://www.it-ebooks.info/

James Morgan has been working with Angular since early 2011 and immediately fell in
love with the programming model drastically different than the traditional request-response
model he was used to, and he still continues to promote the use of AngularJS which is
necessary for his clients.

AngularJS revolutionized his thinking and approach to the enterprise application stack, and
he believes that its widely growing popularity has changed the face of client-side development
within the enterprise space forever. A Java and Spring programmer originally, he now spends
most of the day working with AngularJS, Node, and Scala. He believes that the up and coming
ES6 changes as well as the functional movement within the industry will all compliment
AngularJS, and it will continue as a strong first choice for many enterprise applications.

He started his journey with AngularJS inside a small but rapidly growing financial services
company based in Manchester, UK, where AngularJS proved its worth as a platform that
can live alongside a rapidly changing business and yet comes with the required enterprise
features such as dependency injection and testability.

Some of his recent work has been in partnership with Cake Solutions Ltd., a Manchester-based
functional software house. He has been an integral member of the team delivering solutions
for one of UK's largest price comparison sites as well as for a London-based TV broadcasting
company on several internal and client-facing applications. He continues to mentor newcomers
to AngularJS and also continues his own professional development and keeps track of the latest
changes in Angular and the functional programming world.

I would like to thank my partner for her support over the last few years of
late night programming and reading sessions, which may have occasionally
hampered her plans.

Steve Perkins is the author of Hibernate Search by Example published by Packt Publishing,
and has over 15 years of experience working with enterprise Java. He lives in Atlanta,
GA, USA, with his wife, Amanda, and their son, Andrew. Steve currently works as an architect
at BetterCloud, where he writes software for the Google cloud platform.

When he is not writing code, Steve plays fiddle and guitar and enjoys working with music
production software. You can visit his technical blog at steveperkins.net and follow
him on Twitter at @stevedperkins.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate
access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

i

Table of Contents
Preface	 v
Chapter 1: Setup and Configuration	 1

Introduction	 1
Creating a basic AngularJS application	 2
Running a simple test using Jasmine	 4
Installing Protractor	 8
Running a simple test using Protractor	 10
Installing Karma	 13
Running tests using Karma	 16
Installing Testem	 18
Running tests using Testem	 19
Automating test runners using Grunt	 21
Automating test runners using Gulp	 26

Chapter 2: Getting Started with Testing and AngularJS	 31
Introduction	 31
Loading a module	 32
Writing a test spec	 34
Debugging AngularJS code	 37
Mocking injected instances using an object	 39
Mocking injected instances using spies	 42

Chapter 3: How to Test Navigation and Routing	 45
Introduction	 45
Getting started with testing using ngRoute	 46
Testing route parameters with ngRoute	 49
Getting started with testing using ui-router	 51
Testing the transitioning state with ui-router	 54
Testing URL parameters with ui-router	 56
Testing page loading using Protractor	 58

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Testing navigation using Protractor	 60
Testing redirection using Protractor	 62

Chapter 4: Testing Controllers	 65
Introduction	 65
Setting up for testing a controller 	 65
Testing the initial state of a scope object	 67
Testing the initial state of a scope object with Protractor	 69
Testing interactive scope changes with Protractor	 70
Testing navigation scope changes with Protractor	 72

Chapter 5: Testing User Interaction and Directives	 75
Introduction	 75
Starting with testing directives	 76
Setting up templateUrl	 79
Searching elements using selectors	 82
Accessing basic HTML content	 84
Accessing repeater content	 85
Scope changes based on user input	 86
Scope changes based on DOM events	 89
Class changes based on window properties	 91
Directive changes on interaction using Protractor	 93

Chapter 6: Using Spies to Test Events	 97
Introduction	 97
Testing event dispatches	 98
Testing the handling of dispatched events	 100
Testing the handling of external events	 103
Testing the handling of callbacks	 105
Testing events using Protractor	 107

Chapter 7: Testing Filters	 109
Introduction	 109
Testing a filter that formats a number as text	 110
Testing a filter that formats seconds to a time string	 112
Using Protractor to test filter changes based on input	 114
Using Protractor to test filter changes based on events	 115

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 8: Service and Factory Testing with Mocks and Spies	 119
Introduction	 120
Getting started with testing a service	 120
Testing HTTP GET requests using $httpBackend	 122
Testing HTTP POST requests using $httpBackend	 124
Using spies to test HTTP GET requests	 127
Using spies to test HTTP POST requests	 129
Testing service data using mock helpers	 132
Testing rejected $http promises	 135
Testing constants	 138
Using Protractor to test HTTP requests	 140

Chapter 9: A Brief Look at Testing Animations	 143
Introduction	 143
Synchronous testing of animations	 144
Testing animations with ngAnimateMock	 147
Asynchronous testing of animations	 150

Index	 153

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

Preface
It's 2015 and the world has accelerated at a whirlwind pace towards the open source
paradigm. Software is now also analyzed and gauged based on GitHub stars, codebase
contributors and consistency in Git commits. When Google open sourced AngularJS, it
offered a declarative approach for web application development and was welcomed by
an ever-growing community. It's been over 4 years since the first commit to the AngularJS
codebase and it has evolved at a breakneck speed to become one of the most popular web
application frameworks in the world of open-source.

As the AngularJS team cultivated the framework's documentation, it became abundantly clear
that they wanted to facilitate testing of web applications. The documented guidance offers
solutions on how developers should test but avoids an overly prescriptive testing process.
This allows the developer to decide when and where to test, offering a more approachable
development workflow, reducing potential concerns surrounding testing.

This book follows the AngularJS philosophy and offers guidance on how to approach testing
components that make up the AngularJS framework. Testing need not be a chore. The recipes
contained within this book will provide simple accessible solutions to testing, with a clear
demarcation of AngularJS-specific functionality between chapters. The benefit of a cookbook
is that it can be used as a point of reference for continuous development of your AngularJS
applications. Regardless of whether you're starting a project from scratch or looking to
introduce tests into an existing codebase, this book will provide you with a reference point to
build the testing foundation.

What this book covers
Chapter 1, Setup and Configuration, is crucial in order to get started with the rest of
the book and will detail various options for alternative tools that can be used to test
AngularJS applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

vi

Chapter 2, Getting Started with Testing and AngularJS, will form the basis for all tests
throughout the book, explaining basics principles required to use Jasmine and AngularJS
plus the anatomy of a unit test. Specifics detailed here are crucial to get a test running, for
example, dependency injection.

Chapter 3, How to Test Navigation and Routing, will explain how to test routing and page
rendering, starting from the view perspective of the application. This chapter also shows
how to use Protractor and Page Objects.

Chapter 4, Testing Controllers, explains that the business logic is contained within the
controllers, hence it should be addressed early in this book and is the logical early step
following routing. Data binding and updating the view based on model data will be tackled
ensuring that the UI behaves as expected.

Chapter 5, Testing User Interaction and Directives, focuses on testing changes within a
directive based on interaction from either UI events or application updates to the model.
Directives are one of the cornerstones of AngularJS and can range in complexity. They
can provide the foundation to many aspects of the application and therefore require
comprehensive tests.

Chapter 6, Using Spies to Test Events, shows that an application's state can be updated via
events, whether from user interaction in the browser or via API changes. We need to ensure
that the correct events are sent and with the correct data. We will also test a third party
component wrapped in a directive and mimic its events.

Chapter 7, Testing Filters, explains that manipulated output are easily integrated with bound
values in the view. They are important to test as they essentially display the data to the user.
After looking at a couple of simple examples, this chapter will provide examples on how to
run end-to-end tests on filters simulating updates based on events or simulated input.

Chapter 8, Service and Factory Testing with Mocks and Spies, will show recipes on how to
use this module to test common HTTP requests. Services form a communication channel
with outside services requesting data and feeding it into the application. They are singleton
objects and relatively easy to test due to their segregation from core application logic.
Isolation of components to remove dependencies is facilitated using mocks and spies
that are documented in this chapter.

Chapter 9, A Brief Look at Testing Animations shows you how to test basic animations and
delays synchronously and asynchronously. This is just an introduction into animations as
AngularJS did a major overhaul on the animation aspect of their framework and the result
included the mock.animate module.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

vii

What you need for this book
The recipes in this book use AngularJS version 1.2.x, available from the AngularJS website at
https://angularjs.org/. Tests within recipes in this book use Jasmine version 2.0.x,
available from the pivotal GitHub repository at https://github.com/pivotal/jasmine/
raw/master/dist/jasmine-standalone-2.0.0.zip. You will need to include the
angular.js.min and jasmine.js files in your project folders for your tests to work.

The code snippets shown in the book are just example snippets to support the explanations.
Please refer to respective chapter files present in the code bundle for complete reference and
understanding.

Who this book is for
AngularJS Testing Cookbook is for AngularJS developers who want to test their web
applications developed using the framework. Developers with a basic comprehension of
AngularJS and test-related concepts will find examples of how to test core components with
the AngularJS framework, and server, the AngularJS framework, to form a foundation for
further development.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The expect function takes a value that is matched
against an expected value."

A block of code is set as follows:

it('should assign scope emcee to element text', function () {
 $scope.emcee = 'Izzy Ice';
 $scope.$digest();
 expect(element.text()).toBe('Step up Izzy Ice!');
});

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

it('should assign scope emcee to element text', function () {
 $scope.emcee = 'Izzy Ice';
 $scope.$digest();
 expect(element.text()).toBe('Step up Izzy Ice!');
});

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

viii

Any command-line input or output is written as follows:

npm install -g protractor

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

ix

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website, or
added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1

Setup and Configuration

In this chapter, you will learn the following recipes:

ff Creating a basic AngularJS application

ff Running a simple test using Jasmine

ff Installing Protractor

ff Running a simple test using Protractor

ff Installing Karma

ff Running tests using Karma

ff Installing Testem

ff Running tests using Testem

ff Automating test runners using Grunt

ff Automating test runners using Gulp

Introduction
In this chapter, you will learn various approaches available to configure and test an
AngularJS application. These include simple unit tests using Jasmine, integration tests
using Protractor, running tests using Karma/Testem, and finally using the Grunt /Gulp
build tools to automate tasks.

It's important not to get too overwhelmed by automation of the various libraries available
for testing. Each recipe within this book can simply be written and tested using Jasmine and
Protractor. This cookbook's overall intention is to make each recipe as accessible as possible
using the minimum number of toolsets.

The first half of this chapter is crucial to understand testing throughout this cookbook and we
recommend that anyone looking to get started testing AngularJS applications reads it carefully.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Setup and Configuration

2

There are, however, some great advantages to be gained from using some of the tools and
libraries available out there to configure and automate running tests. The second half of this
chapter will provide instructions on how to get started with these tools and the information
learned from these recipes can be used throughout the book if you choose to.

Creating a basic AngularJS application
This recipe will form the structure for the majority of recipes throughout this cookbook.
Additionally, it will provide a code base that can be used and tested in this chapter's recipes,
sparing you the task of recreating your own code base throughout these initial configuration
steps. The intention is for you, as a reader, to run recipes with minimal configuration and a
limited set of libraries. The justification behind this simplicity is to maintain accessibility to
each recipe independently. After completing this recipe, you will have a clear idea of the basic
setup of an AngularJS application and can build on this foundation as the recipes advance.

Getting ready
Nothing specific is required for this recipe except your usual text editor and browser.
Alternatively, you can use an online editor such as http://jsfiddle.net or http://
plnkr.co.

How to do it…
1.	 You should first create a new directory to store the application files named

basic_example.

2.	 Following this, create a new JavaScript file named cookbook.js and within this file,
create an application module named cookbook:
angular.module('cookbook', [])

3.	 Next, add the controller's constructor function to the module using the
.controller() method. Assign a value to the emcee property on the scope
instance:
.controller('MainCtrl', ['$scope', function($scope) {
 $scope.emcee = 'Kool G Rap';
}])

4.	 You now need to create an index.html file and add script references to both the
angular.js source code (via their content delivery network) and the cookbook.js
files either between the <head> tags or just before the closing <body> tag:
<script type="text/javascript"
src="http://code.angularjs.org/1.2.28/angular.min.js"></script>
<script type="text/javascript" src="cookbook.js"></script>

www.it-ebooks.info

http://jsfiddle.net
http://plnkr.co
http://plnkr.co
http://www.it-ebooks.info/

Chapter 1

3

5.	 Following this, bootstrap the application on a document level naming the module
cookbook:
<html ng-app="cookbook">

6.	 Declare a controller named MainCtrl on an HTML div tag and using AngularJS's
binding syntax, declare the emcee expression as follows:

<div ng-controller="MainCtrl">
 Favourite member of the Juice Crew:
{{emcee}}
</div>

This will be part of the HTML code, which you can see in its entirety, as follows:

<!DOCTYPE html>
<html ng-app="cookbook">
 <head>
 <script type="text/javascript"
 src="http://code.angularjs.org/1.2.28/angular.min.js">
 </script>
 <script type="text/javascript"
 src="cookbook.js"></script>
 </head>
 <body>
 <div ng-controller="MainCtrl">
 Favourite member of the Juice Crew:
 {{emcee}}
 </div>
 </body>
</html>

By this point, you may have created your application. You can see this by opening index.html
in a browser. Also, Kool G Rap will be displayed as you can see in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Setup and Configuration

4

How it works…
The preceding process demonstrates the basic steps to configure a simple AngularJS
application and should be familiar to you. The view component is automatically synchronized
with the model data using AngularJS data binding. AngularJS takes data binding one step
further by offering two-way data binding, resulting in changes to the model propagated to the
view and vice versa.

See also
ff For more information, specific to data binding, please consult the official

documentation at http://docs.angularjs.org/guide/databinding.

ff The AngularJS website offers a step-by-step tutorial available at https://docs.
angularjs.org/tutorial that offers
a quick overview to getting started.

Running a simple test using Jasmine
This book is focused on testing AngularJS with the behavior-driven development framework
Jasmine. Jasmine is currently the framework used for testing the AngularJS code base. With
the increased popularity of test runners and generators, the core basics of using Jasmine
without these additional tools is sometimes overlooked. In this recipe, you will learn how to set
up a basic specification, load an AngularJS module, instantiate a controller, and finally, run a
spec testing a value on scope. The series of steps within this recipe are the basis for all your
AngularJS tests using Jasmine. The general structure is as follows:

ff Injecting dependencies

ff Defining a context

ff Writing specs

To solidify your base of comprehension regarding Jasmine, I recommend that you read through
the documentation at http://jasmine.github.io/2.0/introduction.html. Within
this recipe and throughout the rest of this book, we will follow the same directory structure
as the AngularJS team (https://github.com/angular/angular.js/tree/v1.2.28).
Their approach places application code within a directory named src and test-related code
in a directory named test. You may have your own preferences on naming conventions and
directory structure, and can choose to adopt those as you feel comfortable within the recipes
throughout this book.

www.it-ebooks.info

http://docs.angularjs.org/guide/databinding
https://docs.angularjs.org/tutorial
https://docs.angularjs.org/tutorial
http://jasmine.github.io/2.0/introduction.html
https://github.com/angular/angular.js/tree/v1.2.28
http://www.it-ebooks.info/

Chapter 1

5

Getting ready
In this recipe, we will build upon the basic project created in this chapter's first recipe. To get
ready, perform the following steps to install Jasmine and prepare your project for testing:

1.	 First, create a new directory called src in your project directory.

2.	 Next, move the cookbook.js file we wrote earlier in this chapter to the src
directory.

3.	 Ensure that you have downloaded and unzipped the Jasmine framework by visiting
https://github.com/pivotal/jasmine/blob/master/dist/jasmine-
standalone-2.0.0.zip?raw=true in your browser.

4.	 Finally, copy the unzipped jasmine-2.0.0 directory to a folder named lib within
your project directory.

How to do it…
1.	 First, copy the SpecRunner.html file from the jasmine-2.x.x directory to a new

directory named test in the project root folder.

2.	 Next, update the SpecRunner.html file with the correct paths to the Jasmine files:
 <link rel="stylesheet" type="text/css"
 href="../lib/jasmine-2.0.0/jasmine.css">
 <script type="text/javascript" src="../lib/jasmine-
 2.0.0/jasmine.js"></script>
 <script type="text/javascript" src="../lib/jasmine-
 2.0.0/jasmine-html.js"></script>
 <script type="text/javascript" src="../lib/jasmine-
 2.0.0/boot.js"></script>

3.	 Now, update the SpecRunner.html file to include AngularJS and AngularJS mock
libraries. Order is important here, the mocks.js library must be below the AngularJS
script include:
<script type="text/javascript" src="http://code.angularjs.
org/1.2.28/angular.js"></script>
<script type="text/javascript"
src="http://code.angularjs.org/1.2.28/angular-
mocks.js"></script>

4.	 Edit the SpecRunner.html file replacing the source file paths with our main
cookbook.js file path:
<script type="text/javascript"
src="../src/cookbook.js"></script>

www.it-ebooks.info

https://github.com/pivotal/jasmine/blob/master/dist/jasmine-standalone-2.0.0.zip?raw=true
https://github.com/pivotal/jasmine/blob/master/dist/jasmine-standalone-2.0.0.zip?raw=true
http://www.it-ebooks.info/

Setup and Configuration

6

5.	 Next, create a new file named cookbookSpec.js within the test directory and add a
describe block with a beforeEach() function that loads our module:
describe('MainCtrl', function () {
 beforeEach(module('cookbook'));
});

6.	 Still within the describe block, create a basic test that injects the $controller
service and $rootscope. We can then create a new $scope object and instantiate
a new instance of our controller providing the $scope object:
it('should assign the correct rapper to scope',
inject(function ($controller, $rootScope) {
 var $scope = $rootScope.$new();
 $controller('MainCtrl', {
 $scope: $scope
 });
}));

7.	 Create an expectation asserting that the value on scope is as expected:
expect($scope.emcee).toEqual('Kool G Rap');

8.	 Update SpecRunner.html to include cookbookSpec.js:
<script type="text/javascript"
src="cookbookSpec.js"></script>

9.	 Finally, open SpecRunner.html in a browser and you should see your first
test passing:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

How it works…
In step 1, we use the SpecRunner.html file that Jasmine provides as a basis to build on
for our test. Once we move the file into our directory structure, we need to ensure that all the
paths correlate to the Jasmine files correctly; this we do in step 2.

The idea behind unit testing is to test the functionality of a piece of code in isolation. The
AngularJS team helps to ease this process by offering replicas of objects called mocks that
make unit testing easier by decoupling the components. The angular-mocks.js file loads
the ngMock module (https://docs.angularjs.org/api/ngMock) so we can inject and
mock AngularJS services. In step 3, we ensure that the AngularJS library is loaded in addition
to the angular-mocks.js file.

The angular-mocks.js library depends on AngularJS and therefore
must be loaded after the angular.js file.

In step 4, we ensure that our main cookbook.js application code is loaded and ready
to test. Then, in step 5, we define a context based on our MainCtrl controller and a
beforeEach() function. The beforeEach() function is passed a string alias cookbook
as an argument to the mock module function that configures information ready for the
Angular injector.

In step 6, we define our test starting with the it() function that requires a string detailing
our test intention, plus a second argument that makes use of the mock module's inject
function. The mock inject function basically creates an injectable wrapper around this second
argument creating a new instance of $injector for each test. The $injector instance
is used to resolve all references for this recipe; this includes the $controller service
function, which instantiates controllers and $rootScope. We use the injected $rootScope
service to create a new child scope using the $new() method (https://docs.
angularjs.org/api/ng/type/$rootScope.Scope#$new). This new child scope object
is then passed to our newly instantiated controller that's constructed using the $controller
service. Please refer to the introduction part of Chapter 2, Getting Started with Testing and
AngularJS for further explanation about the Jasmine API.

Our expectation in step 7 is that when our MainCtrl controller is created, the scope's emcee
property is expected to match the value of Kool G Rap (https://github.com/pivotal/
jasmine/wiki/Matchers). This is asserted in step 7 by comparing the $scope.emcee
property to Kool G Rap.

For a more in-depth overview of each of the steps involved in writing a test, including
expectations and matchers, please read Chapter 2, Getting Started with Testing
and AngularJS.

www.it-ebooks.info

https://docs.angularjs.org/api/ngMock
https://docs.angularjs.org/api/ng/type/$rootScope.Scope#$new
https://docs.angularjs.org/api/ng/type/$rootScope.Scope#$new
https://github.com/pivotal/jasmine/wiki/Matchers
https://github.com/pivotal/jasmine/wiki/Matchers
http://www.it-ebooks.info/

Setup and Configuration

8

There's more…
An alternative approach to injecting the controller reference within the spec would be to
move this logic and assign it to a variable reference outside of the spec. We can do this in
another beforeEach() function with the refactored code looking like this:

describe('MainCtrl', function () {
 var mainCtrl, $scope;
 beforeEach(module('cookbook'));
 beforeEach(inject(function ($controller, $rootScope) {
 $scope = $rootScope.$new();
 $controller('MainCtrl', {
 $scope: $scope
 });
 }));
 it('should assign the correct rapper to scope', function () {
 expect($scope.emcee).toEqual('Kool G Rap');
 });
});

See also
ff The Creating a basic AngularJS application recipe

ff Chapter 2, Getting Started with Testing and AngularJS

Installing Protractor
During the first half of 2014, there was an abundance of renewed debate regarding Test
Driven Development (TDD) taking place on the Web. David Heinemeier Hansson (creator
of Ruby on Rails) challenged the fundamentals behind TDD and suggested placing more
emphasis on system/browser tests. There are many arguments, for and against, as you can
imagine, but what we are interested in is how we can implement the type of testing being
advocated in an AngularJS application.

Luckily, to test application logic with browser tests (as opposed to the more granular unit
tests), the AngularJS team developed a solution named Protractor (https://github.com/
angular/protractor). This is a Node.js (http://nodejs.org/) program to run end-to-
end tests against an actual browser using WebDriver (which you can access at https://
code.google.com/p/selenium/wiki/GettingStarted). Webdriver is used to control
browsers and simulate user actions. Protractor is quite an active project and therefore subject
to change; this recipe is based on the current version at the time of writing this, which is
0.23.1. This recipe will focus on installing and configuring Protractor and Webdriver.

www.it-ebooks.info

https://github.com/angular/protractor
https://github.com/angular/protractor
http://nodejs.org/
https://code.google.com/p/selenium/wiki/GettingStarted
https://code.google.com/p/selenium/wiki/GettingStarted
http://www.it-ebooks.info/

Chapter 1

9

Getting ready
You will need to have Node.js (http://nodejs.org/) installed on your machine. For the
purpose of this recipe, we use the Chrome browser that you can download at http://
www.google.co.uk/chrome/. Alternative browsers can be configured and I recommend
that you read the Protractor browser setup guide at https://github.com/angular/
protractor/blob/master/docs/browser-setup.md.

How to do it…
1.	 You will first need to install Protractor using the npm install -g protractor

command.

2.	 You will then need to install the necessary WebDrivers using the webdriver-
manager update command.

3.	 Following this, start the Selenium server using the webdriver-manager start
command.

4.	 Protractor will then accept a configuration file. Create a new file named
protractor.conf.js with the following content:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 jasmineNodeOpts: {
 showColors: true, // use colors in the command line
 report
 defaultTimeoutInterval: 30000
 }
};

There's more…
Protractor can start an instance of the Selenium standalone server if you provide the path to
the Selenium server standalone JAR as follows. This will slow down the overall time it takes to
run your tests due to Protractor having to start the server as opposed to an instance already
running:

seleniumServerJar: './node_modules/protractor/selenium/selenium-
server-standalone-2.41.0.jar'

The path may be vary based on OS or if you installed Protractor globally.

www.it-ebooks.info

http://nodejs.org/
http://www.google.co.uk/chrome/
http://www.google.co.uk/chrome/
https://github.com/angular/protractor/blob/master/docs/browser-setup.md
https://github.com/angular/protractor/blob/master/docs/browser-setup.md
http://www.it-ebooks.info/

Setup and Configuration

10

See also
ff The Running a simple test using Protractor recipe

Running a simple test using Protractor
In the Installing Protractor recipe in this chapter, you learned how to configure Protractor and
WebDriver. This recipe will introduce you to running a basic end-to-end test with Protractor. You
will learn how to add test files to the Protractor configuration, add a basic end-to-end test, find
DOM elements based on AngularJS attributes, and simulate user interaction. The latter has
the potential to save a considerable amount of time testing your application and allows you
to test expected user interaction. This sort of testing can prove indispensable and Protractor
provides a simplified API to simulate user actions, as you will see within this recipe. Please
refer to https://github.com/angular/protractor/blob/master/docs/api.md for
a comprehensive list and explanation of the API methods available to you using Protractor.

Getting ready
Protractor will connect to a browser to run its tests. Preferably, we would want to run our
application against an HTTP server and the quickest way to do this is using Python's (Version
2.4 or greater) SimpleHTTPServer by visiting https://docs.python.org/2/library/
simplehttpserver.html.

This is a cross-platform solution that requires Python to be installed on your
machine. OS X, for example, will have this preinstalled while Windows users
can install ActivePython or another Python installation route of your choice.

How to do it…
1.	 First, create a new directory and add a new file named index.html with the

following content:
<!DOCTYPE html>
<html ng-app="cookbook">
 <head>
 <script
 src="https://code.angularjs.org/1.2.16/angular.js">
 </script>
 <script src="cookbook.js"></script>
 </head>

www.it-ebooks.info

https://github.com/angular/protractor/blob/master/docs/api.md
https://docs.python.org/2/library/simplehttpserver.html
https://docs.python.org/2/library/simplehttpserver.html
http://www.it-ebooks.info/

Chapter 1

11

 <body>
 <div ng-controller="MainCtrl">
 Favourite member of the Juice Crew: <input
 type="text" ng-model="emcee">

 Emcee:
 </div>
 </body>
</html>

2.	 You then need to copy the cookbook.js file from the Creating a basic AngularJS
application project recipe into the directory.

3.	 Following this, add a new file named protractor.conf.js with the following
content:
exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['cookbookSpec.js'],
 jasmineNodeOpts: {
 showColors: true,
 defaultTimeoutInterval: 30000
 }
};

4.	 You should then create a new file named cookbookSpec.js with the following
content:
describe('favourite rapper', function () {
 it('should bind to input', function () {
 browser.get('');
 var emceeInput = element(by.model('emcee'));
 var emceeOutput = element(by.binding('emcee'));
 expect(emceeOutput.getText()).toBe('Kool G Rap');
 emceeInput.clear();
 emceeInput.sendKeys('Aesop Rock');
 expect(emceeOutput.getText()).toBe('Aesop Rock');
 });
});

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Setup and Configuration

12

5.	 Now, start the local HTTP server by running the python -m SimpleHTTPServer
command (this command serves HTTP service on IP address 0.0.0.0 using port
8000 by default; you need to use python -m http.server if you are a windows
user.) and the Selenium server with the webdriver-manager start command.

6.	 Once the server has started, in the command-line console of your choice, run the
protractor protractor.conf.js command. As a result, you should see the
following output:

How it works…
In step 1, we create an HTML file, which is a basic AngularJS binding example. Step 3 shows
the addition of a specs option that expects an array of relative filenames or a glob pattern.
Step 4 executes the following sequence of events:

ff The should bind to input spec begins using the Protractor global browser
variable that is a wrapper around a WebDriver instance. The get() function expects
a URL or path to a running web page for the AngularJS application. The web page can
be run over a local web server, which we start in step 5.

ff Search for elements on the page using the element() method and its additional
AngularJS-specific strategies, for example binding names (ng-bind or {{}})
and elements by input using ng-model. The element method does not return a
DOM element, but an ElementFinder. Calls to element can be chained to find child
elements within a parent.

ff Define an assertion based on the input field value. The initial value will be the default
value assigned to the $scope.emcee property in the controller.

ff Clear the input field value using the clear() method on the ElementFinder.

ff Populate the input field using the sendKeys() method on the ElementFinder.

ff Reassert, based on the updated input field, that the output binding has worked
as expected.

The final steps run the local HTTP server and the Protractor tests displaying the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

There's more…
A baseUrl option is available within the Protractor configuration, for example baseUrl
(http://0.0.0.0:8000). This enables the use of relative paths using the get ()method
that's available on Protractor's browser function, for example browser.get();. Please
read the Protractor API documentation for more information on available functions (http://
angular.github.io/protractor/#/api?view=Protractor).

There are some additional Chrome-specific options that can prove quite useful within your
development toolkit. These can be added using a chromeOptions object; using this object
will display the frame rate within your browser. Monitoring frame rate for consistency and a
value between 30 to 60 frames per second (fps) can ensure that your application doesn't
appear jerky and animations are smoothly run, for example:

capabilities: {
 'browserName': 'chrome',
 'chromeOptions': {
 'args': ['show-fps-counter=true']
 }
}

To target multiple spec files within your Protractor configuration, you can use a regular
expression as opposed to an array of file names:

specs: ['test/*_spec.js']

See also
ff The Installing Protractor recipe in this chapter

Installing Karma
This recipe will introduce you to the Karma test runner, which you can get at http://karma-
runner.github.io/, for test-driven development and continuous integration. You will run
through the basic process to install Karma version, which at time of writing this is 0.12.16.

Karma is another fantastic tool from the AngularJS team allowing you to execute JavaScript
code in browsers. Earlier in this chapter, (in the Running a simple test using Protractor recipe
in this chapter), you learned about Protractor, a tool for integration testing; what Karma
offers is configuration for unit testing. It facilitates testing against multiple browsers, whether
locally or on a continuous integration server. It can also be configured to run unit tests when
application code changes via a watch feature. There are many plugins available to extend
Karma and in this recipe we will use two of them. Firstly, we will use Jasmine throughout the
cookbook so we will need the plugin from https://github.com/karma-runner/karma-
jasmine. Secondly, we will run the tests in the Chrome browser using https://github.
com/karma-runner/karma-chrome-launcher. Once you have completed this recipe,
you'll have Karma installed with the Chrome and Jasmine plugins and ready to run some tests.

www.it-ebooks.info

http://0.0.0.0:8000
http://0.0.0.0:8000
http://angular.github.io/protractor/#/api?view=Protractor
http://angular.github.io/protractor/#/api?view=Protractor
http://karma-runner.github.io/
http://karma-runner.github.io/
https://github.com/karma-runner/karma-jasmine
https://github.com/karma-runner/karma-jasmine
https://github.com/karma-runner/karma-chrome-launcher
https://github.com/karma-runner/karma-chrome-launcher
http://www.it-ebooks.info/

Setup and Configuration

14

Getting ready
All you need is Node.js (http://nodejs.org/; ideally version 0.10.* or above) installed on
your machine.

How to do it…
1.	 First, install Karma and the required plugins using the following command:

npm install karma karma-jasmine karma-chrome-launcher --save-
dev

2.	 Install the karma-cli to use Karma in your command line:
npm install -g karma-cli.

3.	 Next, we use an option that some Node.js libraries provide to run initialization steps,
which is typically called init. It guides us through the steps required to configure
Karma on our command line:
karma init

4.	 Now, at the prompt for testing framework, press Enter to accept the default option
of jasmine.

5.	 Next, at the prompt to use Require.js, press Enter to accept the default option of no.

6.	 When you are prompted to automatically capture any browsers, press Enter twice to
accept the default option of Chrome.

7.	 Next, at the prompt to define source file location, press Enter to accept the default
option of an empty string.

8.	 At the prompt to define file patterns to exclude, press Enter to accept the default
option of an empty string.

9.	 Finally, you will be prompted for Karma to watch for file changes so press Enter to
accept the default option of yes.

www.it-ebooks.info

http://nodejs.org/
http://www.it-ebooks.info/

Chapter 1

15

The following screenshot shows you the steps discussed earlier:

There's more…
If you prefer not to install karma-cli globally, allowing for different versions and different
projects, you can remove the –g syntax. This will install the package to a node_modules
folder within the root directory of the project:

npm install karma-cli

You can then run the commands from node_modules, as shown here:

./node_modules/.bin/karma init

See also
ff The Running a simple test using Karma recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Setup and Configuration

16

Running tests using Karma
To save time and effort when manually running your tests, you can use a test runner. The
recipe, Installing Karma, gets you ready to run tests with Karma. This recipe will introduce
you to automatically run a Jasmine test with Karma (which you can visit at http://
karma-runner.github.io/). You will learn how to set up a basic configuration file and
automatically run your tests with Karma.

Getting ready
You can either implement this as an initial step to an existing project, or build upon the basic
project created in the first recipe. You can do this as follows:

1.	 Karma will need access to the angular.js and angular-mocks.js files, which
can be downloaded from https://code.angularjs.org/1.2.28/. Ensure
these are included in a lib/angular folder in your project root directory.

2.	 Copy the cookbook.js file from the recipe Creating a basic AngularJS application,
into the src directory.

3.	 Finally, copy the cookbookSpec.js file from the Running a simple test using
Jasmine recipe in this chapter, into a test directory.

How to do it…
Firstly, you need to create a Karma configuration file named karma.conf.js with the
following code:

module.exports = function(config) {
 config.set({
 frameworks: ['jasmine'],
 files: [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/cookbook.js",
 "test/cookbookSpec.js"
],
 autoWatch: true,
 browsers: ['Chrome']
 });
};

www.it-ebooks.info

http://karma-runner.github.io/
http://karma-runner.github.io/
https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Chapter 1

17

Once this has been created, you can run the following command:

karma start

As a result of this, you should see that Karma launches the Chrome browser and produces the
following in the console window:

How it works…
Karma requires a configuration file for it to run our AngularJS application tests. Let's step
through the configuration options:

ff frameworks: Framework adaptors that must be installed via the karma init
process or manually, for example npm install karma-jasmine --save-dev.

ff files: These are the file patterns specifying applications and test files.

ff autoWatch: This option watches for changes to applications/test files and re-run
tests.

ff browsers: These are the launchers that must be installed via the karma init
process or manually, for example npm install karma-chrome-launcher
--save-dev.

The angular.js file is a dependency for angular-mocks.js, therefore angular.js must
be declared before angular-mocks.js.

For a more comprehensive list of configuration options, please refer to Karma's configuration
file documents at http://karma-runner.github.io/0.12/config/configuration-
file.html.

There's more…
Use a glob pattern for files, as opposed to declaring each file explicitly, by inserting the
following code:

files: [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/**/*.js",
 "test/**/*.js"
]

www.it-ebooks.info

http://karma-runner.github.io/0.12/config/configuration-file.html
http://karma-runner.github.io/0.12/config/configuration-file.html
http://www.it-ebooks.info/

Setup and Configuration

18

See also
ff The Installing Karma recipe in this chapter

Installing Testem
This recipe will introduce you to the Testem test runner (https://github.com/airportyh/
testem) for test-driven-development and continuous integration. Testem is an alternative to
Karma and although similar, it is favoured by some developers in the community including the
Lineman (https://github.com/linemanjs/lineman) team. Karma and Testem have
similar feature sets but Karma is developed with regular updates by the AngularJS team. As
with Karma, Testem is framework-agnostic and configurable to run tests within a multitude
of browsers, whether locally or on a Continuous Integration server. This recipe is based on
the current version; at time of writing this it is 0.6.15 and will guide you on installing Testem.

Getting ready
You will need to have Node.js (http://nodejs.org/, version 0.10.* or greater) installed
on your machine.

How to do it…
All you need to do is install Testem using the following command:

npm install testem --save-dev

You can then run the following command:

testem

You will see that Testem produces the following:

See also
ff The Running a simple test using Testem recipe

www.it-ebooks.info

https://github.com/airportyh/testem
https://github.com/airportyh/testem
https://github.com/linemanjs/lineman
http://nodejs.org/
http://www.it-ebooks.info/

Chapter 1

19

Running tests using Testem
To save time and effort manually running your tests, you can use a test runner. In the
Installing Testem recipe you learned how to install and configure the runner. This recipe will
introduce you to automatically running a Jasmine test with Testem within the Chrome browser.
You will learn how to set up a basic configuration file and automatically run your tests.

Getting ready
To begin using Testem in this recipe you can either perform the following steps within an
existing AngularJS project or build upon the basic project created in the first recipe:

1.	 Firstly, the angular.js and angular-mocks.js files need to be included. They
can be downloaded from https://code.angularjs.org/1.2.28/. Ensure
these are included in a lib/angular folder in your project root folder.

2.	 Copy the cookbook.js file from the Creating a basic AngularJS application recipe
in this chapter, into the src directory.

3.	 Finally, copy the cookbookSpec.js file, from the Running a simple test using
Jasmine recipe, into the test directory.

How to do it…
To start with, create a Testem configuration file named testem.json with the following JSON:

{
 "framework": "jasmine",
 "src_files": [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/cookbook.js",
 "test/cookbookSpec.js"
],
 "launch_in_dev" : ["Chrome"]
}

www.it-ebooks.info

https://code.angularjs.org/1.2.28/
https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Setup and Configuration

20

Next, you need to run the testem command. As a result, you'll see that Testem launches the
Chrome browser and our single test passing as shown in the following screenshot.

How it works…
A Testem configuration file allows finer control over what is included by the test runner. Let's
step through the configuration options:

ff framework: This is the test framework of choice. Testem already includes our
preference of Jasmine.

ff src_files: These are the file patterns specifying application and test files.

ff launch_in_dev: This is the list of launchers to use for development runs.

The angular.js file is a dependency for angular-mocks.js, therefore angular.js
must be declared before angular-mocks.js. Testem will automatically detect our files and
changes made to the application or tests and rerun the tests.

For a more comprehensive list of configuration options, please refer to Testem's configuration
file documents by visiting https://github.com/airportyh/testem/blob/master/
docs/config_file.md.

www.it-ebooks.info

https://github.com/airportyh/testem/blob/master/docs/config_file.md
https://github.com/airportyh/testem/blob/master/docs/config_file.md
http://www.it-ebooks.info/

Chapter 1

21

There's more…
Use a glob pattern for files, as opposed to declaring each file explicitly, by inserting this:

"src_files": [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/**/*.js",
 "test/**/*.js"
]

See also
ff The Installing Testem recipe

Automating test runners using Grunt
The amount of tasks within an AngularJS-based project can rapidly increase, such as running
an HTTP server, unit test runner, end-to-end test runner, or automating testing. These repetitive
tasks can be automated using task runners such as Grunt (which you can download at
http://gruntjs.com/), and Gulp (which can be downloaded at http://gulpjs.com/).

Grunt has been at the forefront of task runners for quite some time now; the community
is vast with a great selection of available plugins. Grunt advises a global installation of its
Command Line Interface (CLI) to access the grunt command anywhere on your system.
Project and task configuration is contained within a Gruntfile, including the loading of plugins
to extend the range of tasks available. A great starting point is on the Grunt website itself at
http://gruntjs.com/getting-started. Armed with this basic knowledge, this recipe
will focus on how to set up and configure Grunt to run the following tasks:

ff HTTP web server

ff Karma test runner

ff WebDriver

ff Protractor

Getting ready
You can either perform the following steps within an existing AngularJS project, or build upon
the basic project created in the first recipe:

1.	 Firstly, the angular.js and angular-mocks.js files need to be included. They
can be downloaded from https://code.angularjs.org/1.2.28/. Ensure
these are included in a lib/angular folder in your project root folder.

www.it-ebooks.info

http://gruntjs.com/
http://gulpjs.com/
http://gruntjs.com/getting-started
https://code.angularjs.org/1.2.28/
https://code.angularjs.org/1.2.28/
https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Setup and Configuration

22

2.	 Next, you then need to copy the cookbook.js file from the Creating a basic
AngularJS application recipe into the src directory.

3.	 Next, copy the cookbookSpec.js file from the Running a simple test using Jasmine
recipe into the test/unit directory.

4.	 Next, copy the cookbookSpec.js file from the Running a simple test using
Protractor recipe into the test/e2e directory.

5.	 Finally, you need to ensure that you have installed Protractor globally, that is using
the -g lag (please refer to the Installing Protractor recipe in this chapter to see how
to do this). Also ensure that the Selenium standalone server has been downloaded
and installed.

Once Protractor and the Selenium server have both been installed, you are now ready to begin.

How to do it…
1.	 First, let's install the Grunt CLI globally using this command:

npm install -g grunt-cli

2.	 Next, run the following command to interactively create a package.json file and
either add your specific configuration or accept the defaults when prompted:
npm init

3.	 Following this, install the rest of the dependencies required for this recipe locally:
npm install grunt grunt-contrib-connect grunt-karma grunt-
protractor-runner grunt-protractor-webdriver karma karma-
chrome-launcher karma-jasmine load-grunt-tasks 0.4.0—save-dev

4.	 Now, install the WebDrivers using Protractor by running this command:
/node_modules/protractor/bin/webdriver-manager update

5.	 A Karma configuration file named karma.conf.js can then be created with the
following code:
module.exports = function(config) {
 config.set({
 frameworks: ['jasmine'],
 files: [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/cookbook.js",
 "test/unit/cookbookSpec.js"
],
 autoWatch: true,
 browsers: ['Chrome']
 });
};

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

6.	 You should then create a Protractor configuration file named protractor.conf.js,
which contains the following code:
exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 jasmineNodeOpts: {
 showColors: true,
 defaultTimeoutInterval: 30000
 }
};

7.	 Next, another file named Gruntfile.js needs to be created, which will be in the
root of the project directory with the following code:
module.exports = function (grunt) {
 require('load-grunt-tasks')(grunt);
 grunt.initConfig({
 connect: {
 server: {
 options: {
 port: 8000,
 base: 'src'
 }
 }
 },
 karma: {
 unit: {
 configFile: 'karma.conf.js'
 }
 },
 protractor: {
 e2e: {
 options: {
 args: {
 specs: ['test/e2e/cookbookSpec.js']
 },
 configFile: 'protractor.conf.js',
 keepAlive: true
 }
 }
 },
 protractor_webdriver: {
 start: {
 options: {
 path: './node_modules/protractor/bin/',
 command: 'webdriver-manager start',

www.it-ebooks.info

http://www.it-ebooks.info/

Setup and Configuration

24

 },
 }
 }
 });
 grunt.registerTask('test', [
 'karma:unit'
]);
 grunt.registerTask('e2e', [
 'connect:server',
 'protractor_webdriver:start',
 'protractor:e2e'
]);
}

8.	 Finally, you can run the unit tests of Karma using grunt test. You can then run the
end-to-end tests of Protractor using grunt e2e.

How it works…
Step 1 simply runs the global installation for grunt-cli (which you can download at
https://github.com/gruntjs/grunt-cli). This enables us to access the Grunt
command anywhere on our system. Step 2 and step 3 install all of the dependencies required
to successfully run all the Grunt tasks.

After this, step 4 and step 5 show how to set up the configuration files for both Karma and
Protractor defining our unit and end-to-end specs.

Using the grunt-karma command, you can eliminate the need for
a karma.conf configuration file and define the configuration in the
Gruntfile instead. Visit https://github.com/karma-runner/
grunt-karma#heres-an-example-that-puts-the-config-
in-the-gruntfile to discover more.

In step 6, we see the Gruntfile.js file where we define all the necessary tasks to
automate the unit and end-to-end tests. Both work by:

ff Unit tests: Running the unit tests with Karma is relatively straightforward and simply
requires the grunt-karma plugin (https://github.com/karma-runner/
grunt-karma). We then add a karma target and provide the configFile
created in step 4. Finally, we register a task with Grunt named test, which calls
karma:unit and runs the unit tests.

www.it-ebooks.info

https://github.com/gruntjs/grunt-cli
https://github.com/karma-runner/grunt-karma#heres-an-example-that-puts-the-config-in-the-gruntfile
https://github.com/karma-runner/grunt-karma#heres-an-example-that-puts-the-config-in-the-gruntfile
https://github.com/karma-runner/grunt-karma#heres-an-example-that-puts-the-config-in-the-gruntfile
https://github.com/karma-runner/grunt-karma
https://github.com/karma-runner/grunt-karma
http://www.it-ebooks.info/

Chapter 1

25

The grunt-karma module supports configuring options for multiple targets,
for example dev (development) and continuous (Continuous Integration).
To use the continuous integration mode, use the singleRun option. In
development, we can use the autoWatch option.
For Continuous Integration option, use the following code:

{
 singleRun: true,
 browsers: ['PhantomJS']
},

For Development option, use the following code:
{
 autoWatch: true
}

ff End-to-end tests: Running the end-to-end tests with Protractor is slightly more
complex due to the additional requirement of running HTTP and Selenium
servers. We can run Protractor using the grunt-protractor-runner plugin
(https://github.com/teerapap/grunt-protractor-runner) and adding
a protractor target. Within the protractor target, we create an e2e target
and a single option configuration file pointing to our protractor.conf.js file
that we created in step 5. The grunt-protractor-webdriver plugin (which
you can download at https://github.com/seckardt/grunt-protractor-
webdriver) enables us to start the WebDriver that we define as a sole command in
the protractor_webdriver e2e target. To start a local HTTP server, we use the
grunt-contrib-connect plugin (https://github.com/gruntjs/grunt-
contrib-connect) with three options, mainly port, hostname, and the base path,
which is the src directory containing our AngularJS application. Finally, we register
a task with Grunt named e2e that connects to our web server, starts the Selenium
standalone server, and runs Protractor, phew!

Finally, to run all of these tasks, we call either the test or e2e task.

See also
ff The Automating test runners using Gulp recipe

ff Brunch (http://brunch.io/)

www.it-ebooks.info

https://github.com/teerapap/grunt-protractor-runner
https://github.com/seckardt/grunt-protractor-webdriver
https://github.com/seckardt/grunt-protractor-webdriver
https://github.com/gruntjs/grunt-contrib-connect
https://github.com/gruntjs/grunt-contrib-connect
http://brunch.io/
http://www.it-ebooks.info/

Setup and Configuration

26

Automating test runners using Gulp
An additional task runner you can use, other than Grunt, is Gulp (you can download it at
http://gulpjs.com/). Gulp is a stream-based build system with a simple yet powerful API
focusing on code over configuration. Gulp builds use the Node.js streams that do not need to
write temporary files or folders to disk, which results in faster builds. I advise you to read this
excellent article on streams at https://github.com/substack/stream-handbook.
The Gulp API is small and extremely simple:

ff gulp.src(globs[, options]): This returns a readable stream

ff gulp.dest(path): This can receive an input stream and output to a destination,
for example, writing files

ff gulp.task(name[, deps], fn): This defines tasks using orchestrator
(https://github.com/orchestrator/orchestrator)

ff gulp.watch(glob [, opts], tasks) or gulp.watch(glob [, opts,
cb]): This enables watching for file changes and then running a task or tasks
when changes are detected

Please visit https://github.com/gulpjs/gulp/blob/master/docs/API.md for an
explanation of the API.

Gulp has its own configuration file called a Gulpfile, focused on code over configuration. It offers
a coherent read with a clear visualization of flow. Gulp discourages the use of writing plugins for
tasks that don't require a dedicated plugin focusing on providing streams and basic tasks. This
recipe will focus on how to set up and configure Gulp to run the following tasks:

ff HTTP web server

ff Karma test runner

ff WebDriver

ff Protractor

Getting ready
You can either implement this as an initial step to an existing project or build upon the basic
project created in the first recipe. If integrating into an existing project, ensure that you have
specified the correct source and test files with their corresponding paths. Once configured, Gulp
will run your tests as expected. If using the cookbook example project, then follow these steps:

1.	 Firstly, angular.js and angular-mocks.js files need to be included. They can
be downloaded from https://code.angularjs.org/1.2.28/. Ensure these
are included in a lib/angular folder in your project root folder.

2.	 You then need to copy the cookbook.js file created in the Creating a basic
AngularJS application recipe into the src directory.

www.it-ebooks.info

http://gulpjs.com/
https://github.com/substack/stream-handbook
https://github.com/orchestrator/orchestrator
https://github.com/gulpjs/gulp/blob/master/docs/API.md
https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Chapter 1

27

3.	 Finally, copy the cookbookSpec.js file from the Running a simple test using
Jasmine recipe in this chapter into a test/unit directory.

4.	 To prepare yourself completely for this recipe, you can then copy the
cookbookSpec.js file from the Running a simple test using Protractor recipe
into a test/e2e directory.

How to do it…
1.	 First, let's install Gulp and Protractor globally using this command:

npm install -g gulp protractor

2.	 Next, run the following command to interactively create a package.json file and
either add your specific configuration or accept the defaults when prompted:
npm init

3.	 Following this, install the rest of the dependencies required for this recipe locally:
npm install connect gulp-load-plugins gulp-protractor karma karma-
chrome-launcher karma-jasmine -—save-dev

4.	 You then need to create a Karma configuration file named karma.conf.js with the
following code:
module.exports = function () {
 return {
 frameworks: ['jasmine'],
 files: [
 "lib/angular/angular.js",
 "lib/angular/angular-mocks.js",
 "src/cookbook.js",
 "test/unit/cookbookSpec.js"
],
 autoWatch: true,
 browsers: ['Chrome']
 };
};

5.	 Create a Protractor configuration file named protractor.conf.js with the
following code:
exports.config = {
 seleniumServerJar:
 './node_modules/protractor/selenium/selenium-server-
 standalone-2.41.0.jar',
 specs: ['test/e2e/cookbookSpec.js'],
 jasmineNodeOpts: {
 showColors: true,

www.it-ebooks.info

http://www.it-ebooks.info/

Setup and Configuration

28

 defaultTimeoutInterval: 30000
 }
};

6.	 Following this, create a file named gulpfile.js in the root of the project directory
with the following code:
var gulp = require('gulp');
var $ = require('gulp-load-plugins')();

gulp.task('webdriver_update', $.protractor.webdriver_update);

gulp.task('connect', function () {
 var connect = require('connect');
 var app = connect()
 .use(connect.static('src'));

 $.server = require('http').createServer(app)
 .listen(8000);
});

gulp.task('test', function (done) {
 var karma = require('karma').server;
 var karmaConf = require('./karma.conf.js')();
 karma.start(karmaConf, done);
});

gulp.task('e2e', ['connect', 'webdriver_update'], function (done)
{
 gulp.src(['test/e2e/cookbookSpec.js'])
 .pipe($.protractor.protractor({
 configFile: './protractor.conf.js',
 }))
 .on('end', function () {
 $.server.close();
 done();
 });
});

7.	 Finally, you can start the testing! You can run unit tests with Karma using gulp test
and run the end-to-end tests with Protractor using gulp e2e.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

How it works…
Step 1 and step 2 install all the dependencies required to successfully run all of the Gulp
tasks. Step 3 and step 4 show how we can set up the configuration files for both Karma and
Protractor defining our unit and end-to-end specifications.

Step 5 has the gulpfile.js file where we define all the necessary tasks to automate the
unit and end-to-end tests:

ff Unit tests: As opposed to the approach taken in the Automating test runners using
Grunt recipe, a dedicated plugin to run Karma is not really necessary. We simply call the
start() function, providing the configFile created in step 4 as the first argument,
and the Gulp callback to cleanly exit the task as necessary. Finally, we register a task
with Gulp named test that calls the Karma test runner to the unit tests.

To set a default task as opposed to defining the task name
explicitly, add the following line of code to your gulp file:

gulp.task('default', ['test']);

ff End-to-end tests: End-to-end tests need to run Protractor but also have the additional
tasks of running HTTP and Selenium servers. We can run Protractor using the gulp-
protractor plugin (https://github.com/mllrsohn/gulp-protractor).
The connect task sets up a static HTTP server on port 8000 using the files within the
src directory. Also, the webdriver_update task uses the webdriver-manager
script included with Protractor to ensure that necessary drivers are installed; if
not, then they will automatically get installed. This is a slight overhead each time
the e2e task is run. However, it can easily be removed and you can call the gulp
task independently if required. Within the actual e2e task, we pass the path to the
test files to gulp's src function. We can then stream the file structure to the gulp-
protractor protractor() function, including the protractor.conf.js file
created in step 5 as an additional option. Listening for the end event, a handler will
close the static HTTP server and then ensure the gulp callback is called to complete
the set of events.

Finally, to run these tasks, we call either the test task or the e2e target.

See also
ff The Automating test runners using Grunt recipe

ff An exceptional resource for learning about streams is the Streams Handbook (which
you can access at https://github.com/substack/stream-handbook)

www.it-ebooks.info

https://github.com/mllrsohn/gulp-protractor
https://github.com/substack/stream-handbook
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

31

2
Getting Started with

Testing and AngularJS

In this chapter, you will learn the following recipes:

ff Loading a module

ff Writing a test spec

ff Debugging AngularJS code

ff Mocking injected instances using an object

ff Mocking injected instances using spies

Introduction
This chapter explains the principles required to test AngularJS code using Jasmine. This book
focuses on using Jasmine, however, there are also other great options available for testing
AngularJS code including Mocha (http://mochajs.org). Specifics detailed within this
chapter are crucial to get a test running, for example, dependency injection and registering
modules. This chapter will repeatedly reinforce familiar recurrent patterns typical to testing
and will become second nature throughout the rest of the book. After discovering the core
essentials required when running a test, the remaining recipes will guide you to dig deeper
into debugging your code both in your application and tests. Dependency injection allows us
to test code in isolation with stubs/spies and mocks that we will cover later in this chapter.
Jasmine uses Behavior-Driven Development (BDD) solution that Dan North developed based
on Test-Driven Development (TDD). BDD offers developer's guidelines for the process of
testing based on the concept of user stories. The process follows a pattern:

www.it-ebooks.info

http://mochajs.org
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

32

ff given: There first needs to be an initial context defined. In Jasmine we would use the
describe function, for example:
describe("Signup form", function(){});)

ff when: This is used to denote an event occurrence; in Jasmine we would use another
describe function nested in the given context, for example:
describe("Signup form", function(){
describe("when the submit button is clicked", function(){});)
});)

ff then: This ensures an outcome; in Jasmine we would use the if function, for
example:

if("should validate the form", function(){});)

Jasmine will take the title values we provide in the describe() and it() functions and
integrate them into the final output displayed on completion of our test. It is important to be
clear and concise with the titles, in order to ensure what we are testing is easy to interpret.

Test methods require a clean slate to ensure that each test is run in isolation from other
setup-related tasks. When testing AngularJS applications, the required modules need to be
loaded, directives need their associated elements to be compiled, and the scope needs to
be recreated. These, along with many other characteristics specific to configuring AngularJS
modules, ensure that each test is independently configured.

It's likely you will need more than one test for your AngularJS components. As you add further
tests you'll find duplication will inevitably occur based on configuration of the component.
To help reduce this duplication, common logic can be extracted out into two Jasmine helper
functions: beforeEach which runs before each test and afterEach which runs after. These
are perfect for abstracting duplicate code out of the tests themselves and help us adhere to
the Don't Repeat Yourself (DRY) principle, reducing repetition.

Loading a module
AngularJS uses modules to contain the different parts of the application such as controllers,
services, filters, and so on. To test these distinct parts, we first need a reference to
applications associated module and we need to load it. An AngularJS module is configured in
preparation to inject using the ngMock module (https://code.angularjs.org/1.2.28/
docs/api/ngMock). The ngMock module enables us to inject and mock AngularJS services
into unit tests. The ngMock module exposes an angular.mock.module function that
also has the abbreviated version available on the window named module. This recipe will
demonstrate how to configure a module ready for injection and therefore enables us to test
the specific components within an AngularJS application.

www.it-ebooks.info

https://code.angularjs.org/1.2.28/docs/api/ngMock
https://code.angularjs.org/1.2.28/docs/api/ngMock
http://www.it-ebooks.info/

Chapter 2

33

Getting ready
All that is required for this recipe is a simple AngularJS application bootstrapping a
component. For this recipe, I will use a service but you can replace this with any component
of your choice such as a directive. The ngMock module is provided in a file named angular-
mocks.js. This, along with the angular.js file is required to be included in your project.
Both files can be downloaded from https://code.angularjs.org/1.2.28/. Please
refer to the Running a simple test using Jasmine recipe in Chapter 1, Setup and Configuration,
to understand how these files are included in your codebase.

How to do it…
Typically, the angular.mock.module function is used within a beforeEach function. The
module function expects either a module string alias or an object literal to replace the string,
which will be also injected:

1.	 First, let's look at using a string alias:
beforeEach(module('services.emcees'));

2.	 Next, we use an object literal, as follows:
beforeEach(module('services.emcees', {
 'beatjunkies': {
 'dj': 'Babu'
 }
}));

3.	 Following on, you can now retrieve the resolved object within your test using the
beatjunkies reference, which will return the object {'dj': 'Babu'}.

4.	 Lastly, you can also provide a function that will provide the rapper reference, as
follows:

beforeEach(module('cookbook', {
 'beatjunkies': {
 'dj': 'Babu'
 }
}, function ($provide) {
 $provide.value('rapper', 'madchild');
}));

www.it-ebooks.info

https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

34

There's more…
To configure multiple modules, all you need to do is simply add each module, separating them
with a comma. Here's an example of a beforeEach function:

beforeEach(module('services.emcees', 'services.deejays',
'services.breakers'));

Please be aware that you cannot load a module after injection
has taken place.

I recommend that you take a look at the fantastic angular-debaser library available at
http://decipherinc.github.io/angular-debaser to help manage your fixtures as
they grow.

Writing a test spec
Using the global Jasmine function called it, we can define our spec that includes the title
and a function containing the spec code. When unit testing, as opposed to end-to-end testing,
I follow the rule of one expectation per spec. This rule focuses the spec onto one area of
functionality and helps clarify what is either successfully working as expected or on the other
hand, failing. The drawback of this approach is that it involves writing more code. This recipe
will provide you with an example spec for a directive, demonstrating how to update the scope
and then assert a value within the DOM element.

Getting ready
For this example, I will test against a directive that updates the element text content based on
a scope value. This value is assigned when a method on scope named onClick is triggered.
This could have been called by a button click in the HTML, for example. Here is an example
directive to be used in this test:

.directive('emcee', function () {
 return {
 restrict: 'E',
 link: function (scope, element) {
 scope.onClick = function() {
 element.text('Step up ' + scope.emcee + '!');
 };
 }
 };
});

www.it-ebooks.info

http://decipherinc.github.io/angular-debaser
http://www.it-ebooks.info/

Chapter 2

35

Both the angular.js and angular-mocks.js files are required to be included in your
project and can be downloaded from https://code.angularjs.org/1.2.28/. Please
refer to the Running a simple test using Jasmine recipe in Chapter 1, Setup and Configuration
to understand how these files are included in your code base.

How to do it…
1.	 First, create two variables. One for scope (var scope) and another for our element

(var element).

2.	 Ensure you load your module: beforeEach(module('cookbook'));.

3.	 Create a beforeEach function to inject the necessary dependencies and assign
them to the variables declared in step 1, including creating new scope object and
assign our emcee value to the scope:
beforeEach(inject(function ($rootScope, $compile) {
 rootScope = $rootScope;
 scope = $rootScope.$new();
 scope.emcee = 'Izzy Ice';
}));

4.	 Next, within the beforeEach function from step 3, add the following to create and
compile our directive:
element = angular.element('<emcee></emcee>');
$compile(element)(scope);

5.	 Next, still within the beforeEach function from step 3, process all of the watchers:
scope.$digest();

6.	 You need to create a new spec defining what the expected outcome of this test is. An
example is shown here:
it('should assign scope emcee to element text when the
onClick handler is called', function () {});

7.	 Now, within the spec from step 6, add the following to trigger the onClick method
defined in the scope:
scope.onClick();

8.	 Still within the spec from step 6, add an expectation that the element text matches
our expected value:
expect(element.text()).toBe('Step up Izzy Ice!');

www.it-ebooks.info

https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

36

9.	 The final spec should look as follows and we can now expect that running this test will
result in Jasmine displaying that the test passes:

it('should assign scope emcee to element text when the onClick
handler is called', function () {
 scope.onClick ();
 expect(element.text()).toBe('Step up Izzy Ice!');
});

How it works…
In step 1, we declare some convenience variables to be reused throughout all tests. These
variables get assigned in step 3 using a beforeEach function that ensures that the values
assigned are reset before each test is run. In step 3, we also assign a value to scope.
emcee and expect this value to be concatenated by our directive. In step 4, we create and
compile our directive (for more information on this please refer to the Starting with Testing
Directives recipe in Chapter 5, Testing User Interaction and Directives). In step 5, we call
scope.$digest() function to ensure that all of the AngularJS bindings are updated.

The test spec is declared in step 6 and states what we expect from this test. In step 7, we call
the onClick() method and then update the element text with the value provided on the scope.
The AngularJS element provides the convenience text method that returns the text content
of the element. The expectation in step 8 uses the value returned from the text method to be
compared against our expected value Step up Izzy Ice using the toBe matcher.

There's more…
Matchers, along with expectations, form the foundation of all your tests, and together follow
the same simple sequence—I expect this to match that. Matchers, as with expectations,
remain the same functionally regardless of whether you use AngularJS or not. A matcher
implements a Boolean comparison between the actual value and the expected value. There
are a wide array of matchers to suit the specific expectation you're testing and they can all be
reviewed at https://github.com/pivotal/jasmine/wiki/Matchers.

Here is a list of some commonly used matchers:

ff This will pass if the actual value contains expected value:
expect($djListItems().eq(0).html()).toContain('D-
Styles
\nQbert
\nMix Master
Mike
\nShortkut
\nA-Trak
\nBabu');

ff This will pass if the actual value and expected value are the same object (uses ===
for equality):
expect(element.text()).toBe('Izzy Ice');

www.it-ebooks.info

https://github.com/pivotal/jasmine/wiki/Matchers
https://github.com/pivotal/jasmine/wiki/Matchers
http://www.it-ebooks.info/

Chapter 2

37

ff This will pass if the actual value and expected value are equivalent (uses == for
equality):
expect(scope.emcees.length).toEqual(7);

ff This will pass if the actual value matches expected string or regular expression:
expect(element.text()).toMatch(/Eyedea/);

ff This will pass if the actual value is defined:
expect($cookies.bboy).toBeDefined();

ff This will pass if actual value is not defined:
expect($cookies.writer).not.toBeDefined();

ff This will pass if the actual value is null:
expect(BreakBeat.tracks()).toBeNull();

ff This will pass if the actual value is not null:
expect(Scratch.tracks()).not.toBeNull();

ff This will pass if the actual value is false:
expect(element(by.css('button')).getAttribute('disabled')).
toBeFalsy();

ff This will pass if the actual value is true:
expect(angular.element(element.find('a')[0])
.parent().hasClass('ng-
hide')).getAttribute('disabled')).toBeTruthy();

ff This will pass if the actual value is less than expected value:
expect(scope.deejays.length).toBeLessThan(2);

ff This will pass if the actual value is greater than expected value:

expect(scope.bboys.length).toBeGreaterThan(4);

Debugging AngularJS code
There will potentially be a time when you need to dig a little deeper into your code when
something isn't responding the way you expect. There are a variety of options available to us
to help gain a more comprehensive understanding of the sequence of events that will take
place when our application is run. This recipe will demonstrate the available methods to
debug your AngularJS code to help diagnose obstacles that you may face when testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

38

Getting ready
For this recipe, you simply need some AngularJS code running to test various debugging
options. You can use the code from the Writing a test spec recipe in this chapter.

How to do it…
1.	 First, let's use the simplest available option, which is the $log service as it will write

messages to the browser console. Include the $log service and then write to the
console log using $log.debug('message'). The available methods are: log,
warn, info, debug and error. The default is to log debug messages, and you can
disable this using $logProvider.debugEnabled(false);.

2.	 Next, let's use the debugger statement to suspend the browser at a specific point
of execution. Navigate to a specific point in your code and add the debugger;
statement. The debugger; statement suspends execution and is similar to setting a
breakpoint in your code. If your browser supports the statement, then on reload you
should be able to navigate through the call stack in your browser console.

3.	 Following this, we can actually interact with the scope of an element in the browser
console by first retrieving an element using the document querySelector method
and then wrapping the result in the AngularJS element function. We can also follow
similar logic to debug services where the element is the DOM node and ngApp was
defined. You can try running the following commands and analyzing the output:
var element = document.querySelector('.css-selector');
var elementScope = angular.element(element).scope();
element = document.querySelector('html');
var service =
angular.element(document).injector().get('emcees');

Your output should now look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

4.	 Finally, take a look at Batarang, the WebInspector extension for Chrome from
the Angular team. Go ahead and follow the installation instructions on the Github
repository page at https://github.com/angular/angularjs-batarang and
read through some of the tutorials that they provide. Targeting an element, as seen in
step 3, can be now simplified using Batarang by first inspecting the element and then
typing $scope into the console.

See also
ff You can check out another great tool: ng-inspector (http://ng-inspector.org/).

ff A Google engineer named Addy Osmani has frequently produced great examples of
how to debug your code with a specific focus on the Chrome DevTools. I recommend
that you follow his Twitter feed at http://www.addyosmani.com/blog/tag/
devtools, where he highlights many valuable tips.

Mocking injected instances using an object
In the ideal world, as a developer, you would want to ensure your code is loosely coupled. As
your application grows, so do the dependencies and therefore the testing can get difficult and
thus become less maintainable. Imitating or faking dependencies is known as mocking and
facilitates the isolation of test modules while making it generally easier to test. We can very
simply mock a dependency with an object and register it with the injector using the AngularJS
$provide service; this recipe will demonstrate how it can be done.

Getting ready
In this example, a factory called Artists is the module under test and the imageStore
factory is its only dependency. The Artists factory exposes an object with the thumb method
that expects an id value as its sole argument. The imageStore dependency is expected to
expose a thumbnailUrl method and using an id value returns the thumbnail URL:

angular.module('artists', [])
 .factory('Artists', ['imageStore',
 function (imageStore) {
 // API
 return {
 thumb: function (id) {
 return imageStore.thumbnailUrl(id);
 }
 };
 }
]);

www.it-ebooks.info

https://github.com/angular/angularjs-batarang
http://ng-inspector.org/
http://www.addyosmani.com/blog/tag/devtools
http://www.addyosmani.com/blog/tag/devtools
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

40

Both the angular.js and angular-mocks.js files are required to be included in your
project and can be downloaded from https://code.angularjs.org/1.2.28/. Please
refer to the Running a simple test using jasmine recipe in Chapter 1, Setup and Configuration,
to understand how these files are included in your code base.

How to do it…
Once you have a module and a factory defined, you are ready to begin with the test logic:

1.	 First, create a reference to the URL soon to be captured within our mock and a
variable for the Artists injected instance:
var url;
var Artists;

2.	 Following this, register the mock factory ready for injection within a beforeEach
function using the $provide service. Mock the thumbnailUrl function using an
object. The thumbnailUrl function expects an id value and now we need to mock
its behavior and assign the url variable with a concatenated string including the id
parameter:
beforeEach(module(function ($provide) {
 $provide.value('imageStore', {
 thumbnailUrl: function (id) {
 url = '/thumbs/' + id;
 }
 });
}));

3.	 Next, run the inject method and using the $injector service, retrieve our Artists
factory instance and assign it to a variable so that we can reuse it in our test:
beforeEach(inject(function ($injector) {
 Artists = $injector.get('Artists');
}));

4.	 Finally, create a simple test that will call the Artists.thumb function with an id
value of 1 and write an expectation on the returned URL:
it('return the correct artist thumbnailUrl', function () {
 Artists.thumb('1');
 expect(url).toBe('/thumbs/1');
});

www.it-ebooks.info

https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Chapter 2

41

5.	 To conclude this recipe, here is the complete test example using the previous steps
that mock out the imageStore using $provide. This will return an object defining
the thumbnailUrl function, which will then concatenate the id argument with a
string and assign it to the url variable. The test will then expect the URL to match
the '/thumbs/1' value:
describe('Factory: artists', function () {
 var url;
 var Artists;

 beforeEach(module('artists'));

 beforeEach(module(function ($provide) {
 $provide.value('imageStore', {
 thumbnailUrl: function (id) {
 url = '/thumbs/' + id;
 }
 });
 }));

 beforeEach(inject(function ($injector) {
 Artists = $injector.get('Artists');
 }));

 it('return the correct artist thumbnailUrl',function () {
 Artists.thumb('1');
 expect(url).toBe('/thumbs/1');
 });
});

How it works…
The main logic is within step 2, where we use the $provide service's value() method
(https://docs.angularjs.org/api/auto/service/$provide) that registers the
imageStore mock factory object with the $injector service. The $injector service uses
this mock object as a replacement of the imageStore with the associated fake result to the
URL variable.

As you can see, we have easily replicated the logic of the imageStore object without having
to reproduce all the unnecessary logic that the component may also provide, simply to run
our tests specific to the Artists factory. This has therefore reduced our dependency on the
imageStore factory and ensured that our test is run in isolation.

www.it-ebooks.info

https://docs.angularjs.org/api/auto/service/$provide
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

42

See also
ff The Mocking injected instances using spies recipe in this chapter

ff Chapter 3, How to Test Navigation and Routing

Mocking injected instances using spies
In the Mocking injected instances using an object recipe in this chapter, we stated that if the
module you're testing has other module dependencies, you need to maintain isolation, as
well as ensure that they are resolved appropriately. Jasmine provides functions called spies
(http://jasmine.github.io/2.0/introduction.html#section-Spies). Spies
are used by tests to imitate to be functions or objects and offer the ability to then track calls
made to the spy, plus query arguments that may also have been provided. They have their
own set of special matchers that enhance testing against expectations. This additional set
of features augment our testing capabilities offering a greater range of expectations than
normally available without spies. Once you understand the concept behind Jasmine spies, you
will realize they are a powerful tool to use within your tests. To further enhance Jasmine spies,
I recommend that you look at the Sinon.JS library (http://sinonjs.org/). This recipe will
demonstrate how to mock an injected dependency using a Jasmine spy.

Getting ready
To help demonstrate the issue of injection dependency, I will provide an example module
and spec:

1.	 First, let's take a look at this example module with two factories. Note that the second
factory, named scratch, is used in the deejays factory:
angular.module('hiphop', [])
 .factory('deejays', function ($rootScope, scratch) {
 return {
 originator: 'DJ Kool Herc',
 technique: scratch.technique()
 };
 })
 .factory('scratch', function ($rootScope) {
 console.log('Called scratch!');
 return {
 technique: function () {
 return 'breakbeat';
 }
 };
});

www.it-ebooks.info

http://jasmine.github.io/2.0/introduction.html#section-Spies
http://sinonjs.org/
http://www.it-ebooks.info/

Chapter 2

43

2.	 Now, take a look at this example spec that tests the service. Note that we have
injected the hiphop module and assigned the injected deejays service to a
variable so we can reference it within our tests. Finally, there is a single test with
an expectation that the deejays service originator should match DJ Kool Herc:

describe('Service: deejays', function () {
 beforeEach(module('hiphop'));
 var deejays;
 beforeEach(inject(function ($injector) {
 deejays = $injector.get('deejays');
 }));
 it('should return the correct originator',function () {
 expect(deejays.originator).toBe('DJ Kool Herc');
 });
});

Running this spec with Jasmine will display the following results. Note that there is a log in
the console window in the screenshot. This simply demonstrates that the scratch instance
is actually run, giving us the console log. Therefore, the deejays factory has not been run
in isolation.

Both the angular.js and angular-mocks.js files are required to be included in your
project and can be downloaded from https://code.angularjs.org/1.2.28/. Please
refer to the Running a simple test using Jasmine recipe in Chapter 1, Setup and Configuration,
to understand how these files are included in your code base.

www.it-ebooks.info

https://code.angularjs.org/1.2.28/
http://www.it-ebooks.info/

Getting Started with Testing and AngularJS

44

How to do it…
Once you have understood the issue of module dependency through the examples on the
sample module and spec, you are ready to start. Using the example spec from the Getting
ready section of this recipe, perform the following steps:

1.	 First, below the beforeEach() method that loads the module, create a second
beforeEach() method with the following code:
 beforeEach(inject(function($provide) {
 $provide.value('scratch',
 jasmine.createSpyObj('scratch', ['technique']));
}));

2.	 If you now run the test again, you will notice that the console log no longer appears,
indicating that the actual scratch module is not being used within the deejay test.
This concludes the recipe!

How it works…
In step 1, we use the $provide service's (https://docs.angularjs.org/api/
auto/service/$provide) value method to register an instance of the scratch service.
The $provide service expects a name of the instance to be registered, and we provide
the scratch factory name as a string. Next, we need to provide a value to be returned
when the instance is requested, here we provide our spy object. Jasmine's createSpyObj
method creates a JavaScript object, which inherits the typical Jasmine spy behaviour, such
as tracking calls. It requires an object name that should be the same as the module that we
are mocking. The createSpyObj method can create multiple spies and therefore expects
an array of strings. The scratch factory only has one method that requires spying on, so we
provide a single value in the array, which is the technique method. Now when the test runs,
the injector resolves the scratch factory dependency using our spy. You will no longer see the
console log in the browser window when running this test.

See also
ff The Mocking injected instances using an object recipe in this chapter

ff Chapter 8, Service and Factory Testing with Mocks and Spies

www.it-ebooks.info

https://docs.angularjs.org/api/auto/service/$provide
https://docs.angularjs.org/api/auto/service/$provide
http://www.it-ebooks.info/

3
How to Test Navigation

and Routing

In this chapter, you will learn the following recipes:

ff Getting started with testing using ngRoute

ff Testing route parameters with ngRoute

ff Getting started with testing using ui-router

ff Testing the transitioning state with ui-router

ff Testing URL parameters with ui-router

ff Testing page loading using Protractor

ff Testing navigation using Protractor

ff Testing redirection using Protractor

Introduction
AngularJS is a popular choice for developing Single-Page Applications (SPA), which have
grown in popularity over the years. Navigating round an SPA, however, presents problems
related to tracking location and state. AngularJS overcomes this dilemma by providing the
ngRoute module (https://docs.angularjs.org/api/ngRoute) responsible for routing
and deep linking services and directives. A popular alternative to ngRoute is the ui-router
framework (https://github.com/angular-ui/ui-router). This chapter will guide you
through testing some of the typical scenarios that you'll be presented with when using both
ngRoute and ui-router. We will also make use of Protractor to run end-to-end tests, simulating
user interaction for navigation.

www.it-ebooks.info

https://docs.angularjs.org/api/ngRoute
https://github.com/angular-ui/ui-router
http://www.it-ebooks.info/

How to Test Navigation and Routing

46

To get started with the ngRoute module, include the text from https://code.angularjs.
org/1.2.28/angular-route.min.js in the angular-route.js file within a script
tag in your application and the SpecRunner.html file. Follow the same logic for ui-router
using the the script from https://cdnjs.cloudflare.com/ajax/libs/angular-ui-
router/0.2.10/angular-ui-router.js.

Getting started with testing using ngRoute
To configure routes, we need to use the $routeProvider function; this maps paths from the
current URL to a route object. The route object can include a controller, an HTML template,
and other properties (for more information, visit https://docs.angularjs.org/api/
ngRoute/provider/$routeProvider). This recipe will show you how to lay the initial
groundwork to begin testing your routing logic, such as mapped values, and assigning route
parameters to scope.

Getting ready
Ensure that you have included the angular-route.js file as documented in this chapter's
introduction. You can use the following example code as a basis for testing in this recipe or
use an existing application that includes ngRoute:

1.	 Load the ngRoute module in your application by adding it as a dependent module:
 angular.module('chapter3.ngRoute', ['ngRoute'])

2.	 Add a config block that will get applied during the application's bootstrap process.
The config block injects providers, so this is where we supply a $routeProvider
function to configure our routes. For this example, we simply define a single route
named /home that requires a reference to the controller defined in the following code
as HomeCtrl, and provides a simple header as the template:

angular.module('chapter3.ngRoute', ['ngRoute'])
 .config(['$routeProvider', function($routeProvider) {
 $routeProvider
 .when('/emcees/:id', {
 controller: 'EmceesCtrl'
 })
 .when('/home', {
 templateUrl: 'home.html',
 controller: 'HomeCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });

www.it-ebooks.info

https://code.angularjs.org/1.2.28/angular-route.min.js
https://code.angularjs.org/1.2.28/angular-route.min.js
https://cdnjs.cloudflare.com/ajax/libs/angular-ui-router/0.2.10/angular-ui-router.js
https://cdnjs.cloudflare.com/ajax/libs/angular-ui-router/0.2.10/angular-ui-router.js
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider
http://www.it-ebooks.info/

Chapter 3

47

For further information on configuration of ngRoute, please refer to the documentation at
https://docs.angularjs.org/api/ngRoute. Also, ensure that you've loaded your
module as shown in the following code:

beforeEach(module('chapter3.ngRoute'));

How to do it…
1.	 First, let's create a basic test to ensure that the correct controller is mapped to

the specified route and inject the dependencies required for this test:
it('route controller should be mapped to HomeCtrl',
inject(function ($rootScope, $location, $route) {}));

2.	 Next, within the test from step 1, use the $location service and set the path
to /home:
$location.path('/home');

3.	 After setting the path, add rootScope.$apply() to ensure that changes are
propagated:
rootScope.$apply();

4.	 Finally, add the expectation that the route current controller path is equal to the
expected value:
expect($route.current.controller).toEqual('HomeCtrl');

5.	 The final code should look as follows:

it('route controller should be mapped to HomeCtrl',
inject(function($rootScope, $location, $route) {
 $location.path('/home');
 $rootScope.$apply();
 expect($route.current.controller).toEqual('HomeCtrl');
}));

How it works…
To summarize what we are testing in this recipe, we have configured our router to use our
specified controller when navigating to a particular location. Within our test, we need to
navigate to the specific location and ensure that the current route definition returns the
correct controller.

www.it-ebooks.info

https://docs.angularjs.org/api/ngRoute
http://www.it-ebooks.info/

How to Test Navigation and Routing

48

In step 1, we define our test intention and inject the required dependencies. The $location
service replaces the dependency on global objects, such as a window, which makes testing
difficult. The $location path() method is a getter or a setter that returns or sets the
path of the current URL. In step 2, we use the $location path method (https://docs.
angularjs.org/api/ng/service/$location) to set the current path to /home.

In step 4, we use the current property on the $route provider to access the controller
constructor as defined in the route definition. The returned value is then used in a toEqual
matcher to compare against our expected string of HomeCtrl.

There's more…
As we saw earlier, the current property on the $route provider allows us which makes the
current route definition. Quite often, supplying a simple template is not enough and you,
therefore, may replace the template property with templateUrl and it should return a path
to an HTML template.

If your configured routes are expected to load templates using templateUrl, then they
will have to be satisfied as a dependency. The easiest way to do this is to cache a template
using the $templateCache service (https://docs.angularjs.org/api/ng/
service/$templateCache) and while using this approach, the template HTML file need not
even exist. For example, you can add the following code to a beforeEach function ensuring
that the template is cached prior to each test:

$templateCache.put('home.html', 'Some template content');

You can then write a test once again using the current property on the $route
provider accessing the current route definition of the templateUrl function:

it('route templateUrl should be home.html', inject(function
($rootScope, $location, $route) {
 $location.path('/home');
 $rootScope.$apply();
 expect($route.current.templateUrl).toEqual('home.html');
}));

See also
ff The Testing route parameters with ngRoute recipe in this chapter

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/$location
https://docs.angularjs.org/api/ng/service/$location
https://docs.angularjs.org/api/ng/service/$templateCache
https://docs.angularjs.org/api/ng/service/$templateCache
http://www.it-ebooks.info/

Chapter 3

49

Testing route parameters with ngRoute
Route parameters are used to pass additional data to the URL, for example, ID or key-
value pairs. This additional data may be used as query parameters or for RESTful routing
(http://rest.elkstein.org/). This recipe will guide you on testing route parameters
with the $routeParams service (https://docs.angularjs.org/api/ngRoute/
service/$routeParams).

Getting ready
To get started, you'll need to define a route with parameters, either within an existing
application or using the example code given here. In this example, the emcees name could
be a page listing various emcee names and then a path with an id would show a page of a
specific emcee based on the provided id value. To test the parameters, we access and assign
the route parameters to scope in a controller:

1.	 First, load the ngRoute module in your application by adding it as a dependent module:
 angular.module('chapter3.ngRoute', ['ngRoute'])

2.	 Next, add a config block that will get applied during the application's bootstrap
process. Supply a $routeProvider function to the config block. Add a route
definition using the when() method (https://docs.angularjs.org/
api/ngRoute/provider/$routeProvider#when) with a path to the route
named emcees. Append a named group to the path starting with a colon and
call it id. The group named id will be replaced with a provided routeParam
service of the same name (https://docs.angularjs.org/api/ngRoute/
service/$routeParams). Finally, provide a route object mapping to a controller
named EmceesCtrl:
angular.module('chapter3.ngRoute', ['ngRoute'])
 .config(['$routeProvider', function($routeProvider) {
 $routeProvider
 .when('/emcees/:id', {
 controller: 'EmceesCtrl'
 })
 .when('/home', {
 templateUrl: 'home.html',
 controller: 'HomeCtrl'
 })
 .otherwise({
 redirectTo: '/'
 });
 }])

www.it-ebooks.info

http://rest.elkstein.org/
https://docs.angularjs.org/api/ngRoute/service/$routeParams
https://docs.angularjs.org/api/ngRoute/service/$routeParams
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider#when
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider#when
https://docs.angularjs.org/api/ngRoute/service/$routeParams
https://docs.angularjs.org/api/ngRoute/service/$routeParams
http://www.it-ebooks.info/

How to Test Navigation and Routing

50

3.	 Finally, create a controller associated with the route from step 2 that accesses the
injected $routeParams service and assigns the value of id to scope:
.controller('EmceesCtrl', ['$scope', '$routeParams',
function($scope, $routeParams) {
 $scope.id = $routeParams.id;
}]);

4.	 Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ngRoute'));

How to do it…
To test route parameters, we will need a defined route that passes this logic. We simply need
to mock the $routeParams service, which is as easy as adding an additional object to the
controller configuration:

1.	 First, let's create a basic test checking the route parameters and inject the
dependencies required for this test:
it('should assign routeParams to scope', inject(function
($rootScope, $controller) {}));

2.	 Next, create a new scope object:
var scope = $rootScope.$new();

3.	 Register a new instance of our controller providing the scope object created in step 2
and a $routeParams object with an id value:
$controller('EmceesCtrl', {
 $scope: scope,
 $routeParams: {
 id: '1'
 }
});

4.	 Finally, add the expectation that the scope id has the same value we provided to the
$routeParams object:

expect(scope.id).toEqual('1');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

51

How it works…
It is quite easy to overcomplicate testing, and routing can be a classic example of this. The
$routeParams service simply allows you to retrieve the current set of route parameters. In
step 3, to gain complete control of what is being assigned to the $routeParams service, we
simply create an object and inject it into the controller maintaining test isolation. We expect
that the controller then assigns the $routeParams object ID value to scope and we test this
in step 4.

See also
ff The Getting started with testing using ngRoute recipe in this chapter

Getting started with testing using ui-router
The ui-router framework is similar to ngRoute but more powerful due to easy implementation
of nested states and views, named views, and so on. Although the $stateProvider
ui-router is similar to $routeProvider, its emphasis on state allows an impressive
management of the application's interface.

In this recipe, we will we will test states within an AngularJS application using the ui-router
framework.

Getting ready
This recipe requires a project that utilizes the ui-router framework and is configured using
$stateProvider with at least one state. At the start of this chapter, I gave some example
code that demonstrates configuring $stateProvider with a state called home and also
assigns a templateUrl function and a controller to the state. If you're unfamiliar with
ui-router, I suggest that you take advantage of the example code. Testing is also a great
way to start understanding libraries and frameworks:

1.	 First, load the ui.router module in your application by adding it as a dependent
module:
 angular.module('chapter3.ui.router', ['ui.router'])

www.it-ebooks.info

http://www.it-ebooks.info/

How to Test Navigation and Routing

52

2.	 Next, add a config block that will get applied during the application's bootstrap
process:

angular.module('chapter3.ui.router', ['ui.router'])
 .config(['$urlRouterProvider', '$stateProvider',
 function($urlRouterProvider, $stateProvider) {
 $stateProvider
 .state('home', {
 url: '/home',
 templateUrl: 'home.html'
 })
 $urlRouterProvider
 .otherwise('/home');
 }]);

The preceding code can be broken down and explained in the following steps:

1.	 Supply a $stateProvider service to the config block.

2.	 Add a state (https://github.com/angular-ui/ui-router/wiki) named
home with a config object.

3.	 Set the URL property and a value of /home. This is associated with the state
(https://github.com/angular-ui/ui-router/wiki/URL-Routing).

4.	 Set the templateUrl property and a home.html value.

5.	 Supply a $urlRouterProvider service to the config block (https://github.
com/angular-ui/ui-router/wiki/URL-Routing#urlrouterprovider)
that watches the $location service. Using the otherwise() method (https://
github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-
invalid-routes), we ensure that the locations that have not been configured are
redirected to /home.

6.	 Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

How to do it…
1.	 First, cache our template within a beforeEach() method to ensure that it's loaded

prior to all tests:
beforeEach(inject(function($templateCache) {
 $templateCache.put('home.html', '');
}));

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki
https://github.com/angular-ui/ui-router/wiki/URL-Routing
https://github.com/angular-ui/ui-router/wiki/URL-Routing#urlrouterprovider
https://github.com/angular-ui/ui-router/wiki/URL-Routing#urlrouterprovider
https://github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-invalid-routes
https://github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-invalid-routes
https://github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-invalid-routes
http://www.it-ebooks.info/

Chapter 3

53

2.	 Next, create a test detailing our intention and inject the required dependencies:
it('default state should be home', inject(function
($rootScope, $state) {}));

3.	 Simulate the scope life cycle using the following:
$rootScope.$apply();

4.	 Finally, add the expectation that the state's current name property has a home value:

expect($state.current.name).toEqual('home');

How it works…
As we configured ui.router with a templateUrl function, in step 1 we need to follow the
logic documented in the Getting started with testing using ngRoute recipe in this chapter, and
cache our template.

We don't need to define a location or state in our test, as we have defined a redirection to the
home state using $urlRouterProvider (refer to the Getting started section for this recipe).
This makes our testing a whole lot easier. We simulate the scope life cycle in step 3, and then
in step 4 we use $state service (http://angular-ui.github.io/ui-router/
site/#/api/ui.router.state.$state) to access the current state object name
property. Our expectation is that the current state name should equal home.

There's more…
Using the $state service current state object, we can also test whether the current state
templateUrl is as expected:

it('state templateUrl should be home.html',
inject(function($rootScope, $state) {
 $rootScope.$apply();
 expect($state.current.templateUrl).toEqual('home.html');
}));

Additionally, we can test that the controller is as we expect:

it('state controller should be HomeCtrl',
inject(function($rootScope, $state) {
 $rootScope.$apply();
 expect($state.current.controller).toEqual('HomeCtrl');
}));

www.it-ebooks.info

http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://angular-ui.github.io/ui-router/site/#/api/ui.router.state.$state
http://www.it-ebooks.info/

How to Test Navigation and Routing

54

See also
ff The Testing the transitioning state with ui-router recipe

ff The Testing URL parameters with ui-router recipe

Testing the transitioning state with ui-router
The $stateProvider ui-router focuses purely on state (https://github.com/angular-
ui/ui-router/wiki). Some examples of how you can update the state within your
application are responding to user interaction or specific data change events. The ui-router
makes it incredibly easy to transition state, and in this recipe, we will demonstrate how to
test this.

Getting ready
Follow the Getting ready section in the Getting started with testing using ui-router recipe in
this chapter, to set up with the ui-router basics. We don't necessarily need the templateUrl
function, so that can be removed. In addition to this, add a second state that we can transition
to the named emcees objects:

 .state('emcees', {
 url: '/emcees'
 });

Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

How to do it…
1.	 First, create some local variables that can be accessed across all the tests in this

recipe:
var scope;
var state;

2.	 Next, inject the required dependencies and assign the relevant values to the
variables created in step 1 within a beforeEach() function:
beforeEach(inject(function($rootScope, $state) {
 scope = $rootScope.$new();
 state = $state;
}));

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki
https://github.com/angular-ui/ui-router/wiki
http://www.it-ebooks.info/

Chapter 3

55

3.	 Now, write a simple test to ensure that the default current state is as expected:
it('default state should be home', function () {
 scope.$apply();
 expect(state.current.name).toEqual('home');
});

4.	 Based on the previous step demonstrating our default current state, we can now test
transitioning to a different state. Create the following additional test and transition to
the emcees state using the go() method:
it('should transition to emcees state', function () {
 state.go('emcees');
 scope.$apply();
});

5.	 Finally, add the expectation to test whether the current state name matches the state
we aimed to transition to:
expect(state.current.name).toEqual('emcees');

6.	 You should see the following passing test within your browser (refer to the Running
a simple test using Jasmine recipe in Chapter 1, Setup and Configuration, if you've
forgotten how to produce this output):

www.it-ebooks.info

http://www.it-ebooks.info/

How to Test Navigation and Routing

56

How it works…
In step 3, we use the $state service's current state object name property and determine
that it matches our default current state. In step 4, using the state go() method (https://
github.com/angular-ui/ui-router/wiki/Quick-Reference#stategoto--
toparams--options), we triggered a transition to the emcees state. In step 7, once again,
we check the $state service's current state object name property and expect it to equal our
emcees state that we transitioned to.

See also
ff The Getting started with testing using ui-router recipe in this chapter

ff The Testing URL parameters with ui-router recipe in this chapter

Testing URL parameters with ui-router
URLs can pass additional information that ui-router can then access using the
$stateParams service (https://github.com/angular-ui/ui-router/wiki/URL-
Routing#stateparams-service). The $stateParams service is an object matching
individual parts of the navigated URL and provides these parts to controllers and services.
In this recipe, we will cover testing URL parameters with ui-router.

Getting ready
Follow the steps given in the Getting ready section in the Getting started with testing using ui-
router recipe in this chapter to become familiar with the ui-router basics. We don't necessarily
need the templateUrl function, so that can be removed. In addition to this, add a second
state that we can transition named emcees, which includes a URL parameter (https://
github.com/angular-ui/ui-router/wiki/URL-Routing#url-parameters):

 .state('emcees', {
 url: '/emcees/:id'
 });

Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki/Quick-Reference#stategoto--toparams--options
https://github.com/angular-ui/ui-router/wiki/Quick-Reference#stategoto--toparams--options
https://github.com/angular-ui/ui-router/wiki/Quick-Reference#stategoto--toparams--options
https://github.com/angular-ui/ui-router/wiki/URL-Routing#stateparams-service
https://github.com/angular-ui/ui-router/wiki/URL-Routing#stateparams-service
https://github.com/angular-ui/ui-router/wiki/URL-Routing#url-parameters
https://github.com/angular-ui/ui-router/wiki/URL-Routing#url-parameters
http://www.it-ebooks.info/

Chapter 3

57

How to do it…
1.	 First, create some local variables to access across all the tests in this recipe:

var scope;
var state;

2.	 Next, inject the required dependencies and assign the relevant values to the
variables created in step 1 within a beforeEach() function:
beforeEach(inject(function($rootScope, $state) {
 scope = $rootScope.$new();
 state = $state;
}));

3.	 Next, write a simple test to confirm the parameters:
it('should transition to emcees state passing the correct id
param', function() {
 state.go('emcees', {id:'1'});
 scope.$apply();
 });

4.	 Finally, add the expectation that the state params object contains the same id
provided when triggering the state transition:

expect(state.params.id).toEqual(id);

How it works…
In step 3, using the state go() method, we triggered a transition to the emcees state
providing an object with an id property as an additional parameter. In step 4, we checked
the $state service params object id property and expected it to equal our emcees state
that we transitioned to.

See also
ff The Getting started with testing using ui-router recipe

ff The Testing the transitioning state with ui-router recipe

www.it-ebooks.info

http://www.it-ebooks.info/

How to Test Navigation and Routing

58

Testing page loading using Protractor
This recipe will guide you through an end-to-end test with Protractor. This test will simply
ensure that our routing logic works by confirming that the URL in the browser matches our
expectation. Protractor enables us to replicate user interaction within an actual browser
offering additional assurance that the code logic works as expected.

Getting ready
For this recipe, we can build on the steps from the Getting ready section from the Testing URL
parameters with ui-router recipe in this chapter. This will provide us with a default home state
and the emcees state to transition to. We don't necessarily need the templateUrl function,
so that can be removed. Follow the following steps to create an example for this recipe:

1.	 Add a state to the HTML as per the ui-router documentation (https://github.
com/angular-ui/ui-router/wiki#the-simplest-form-of-state):
<div ui-view></div>

2.	 Also ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

For further information on running Protractor, please read the Installing Protractor
recipe in Chapter 1, Setup and Configuration.

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL,

that is, our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention:
it('should default to home page', function () {});

3.	 Finally, add an expectation to match the browser's location against our
expected value:
expect(browser.getLocationAbsUrl()).toContain('/home');

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
http://www.it-ebooks.info/

Chapter 3

59

4.	 You will see the following result in your console:

How it works…
Protractor offers a global variable named browser that is used for browser-level commands
and is a wrapper around the instance of WebDriver. Please visit https://github.com/
angular/protractor/blob/master/docs/api-overview.md#global-variables
for further global variables available. With the AngularJS library available, we are able to use
the get method in step 1 to load our application by passing the URL to the local development
server running our application. We expect the router to ensure that the correct default page
has loaded at this point.

In step 3, we again use a browser-level command named getLocationAbsUrl to access
the absolute URL. Finally using the toContain matcher, we can confirm that our expected
state URL is within the returned full path.

There's more…
To test whether there is a specific element you expect on the page, you can use Protractor
locators. Using the global function named element, we can use a locator and expect it to
return ElementFinder (https://github.com/angular/protractor/blob/master/
docs/api.md#elementfinder). An ElementFinder feature enables us to call actions
on the element, for example click(). In this example, we use the buttonText locator to
locate the button with a label load. We then confirm that the element is present on the page
as expected, using the isPresent function:

it('should show a load button on home page', function () {
 var button = element(by.buttonText('load'));
 expect(button.isPresent()).toBeTruthy();
});

See also
ff The Testing navigation using Protractor recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

www.it-ebooks.info

https://github.com/angular/protractor/blob/master/docs/api-overview.md#global-variables
https://github.com/angular/protractor/blob/master/docs/api-overview.md#global-variables
https://github.com/angular/protractor/blob/master/docs/api.md#elementfinder
https://github.com/angular/protractor/blob/master/docs/api.md#elementfinder
http://www.it-ebooks.info/

How to Test Navigation and Routing

60

Testing navigation using Protractor
When testing navigation, it would be great to actually load and navigate through states within
a browser. Luckily, we can do just that using Protractor. This is quite compelling, because,
typically, to test interactive route changes we would expect a manual process whereby a user
would have to load the page in a browser and interact with elements, for example clicking a
button to trigger a route/state change. We can configure Protractor to follow a defined set of
instructions and mimic user actions thereby saving a lot of our time and effort plus enabling
a greater spectrum of application testing. In this recipe, we will test navigation through an
AngularJS application based on element interaction using Protractor.

Getting ready
For this recipe, we can build on the steps from the Getting ready section from the Testing URL
parameters with ui-router recipe in this chapter. This will provide us with a default home state
and the emcees state to transition to. We don't necessarily need the templateUrl function
so that can be removed. In addition to this setup, we add a button and click handler that will
transition the state. A value will be passed through to the handler and will be provided as a
URL parameter:

1.	 Add a state to the HTML as per the ui-router documentation (https://github.
com/angular-ui/ui-router/wiki#the-simplest-form-of-state) and a
button that makes use of ng-click to call a handler method:
 <div ui-view>
 <button ng-click="loadEmcee(1)">load</button>
 </div>

2.	 Add a controller with the handler method that transitions state with a defined
parameter:
.controller('HomeCtrl', ['$scope', '$state', function($scope,
$state) {
 $scope.loadEmcee = function(id) {
 $state.go('emcees', {
 id: id
 });
 }
}])

3.	 Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

For further information on running Protractor, please read the Installing Protractor
recipe in Chapter 1, Setup and Configuration.

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
http://www.it-ebooks.info/

Chapter 3

61

How to do it…
1.	 Firstly, use the get method to load the page by passing the URL to the local

development server running our application:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention:
it(should navigate to emcees page on click of the load
button', function () {});

3.	 Using the buttonText locator, locate the button with a label load:
var button = element(by.buttonText('load'));

4.	 Next, use the click action on the element:
button.click();

5.	 Finally, add an expectation to match the browser's location against our
expected value:
expect(browser.getLocationAbsUrl()).toContain('/emcees');

How it works…
In step 3, we use the ElementFinder reference to find the button element based on its
label. In step 4, we call a click action that triggers the click event on the button within the
DOM. We have configured a click handler in our application code that will navigate to the
emcees state. The getLocationAbsUrl function returns the full URL and we use the
toContain matcher to confirm that our expected state URL of emcees is within the
returned full path.

There's more…
To test URL parameters using Protractor, we can simply update the matcher to include the
expected URL parameter, for example:

expect(browser.getLocationAbsUrl()).toContain('/emcees/1');

As your end-to-end test suites grow, you may want to consider encapsulating information
about the elements on your application page using Page Objects (http://angular.
github.io/protractor/#/page-objects). This can also help with code reuse across
multiple tests.

www.it-ebooks.info

http://angular.github.io/protractor/#/page-objects
http://angular.github.io/protractor/#/page-objects
http://www.it-ebooks.info/

How to Test Navigation and Routing

62

See also
ff The Testing page loading using Protractor recipe in this chapter

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

ff The Testing navigation using Protractor recipe in this chapter

Testing redirection using Protractor
What if a user enters a URL that has not been registered with $stateProvider? We
may expect the application to fallback to a specific state. Using ui-router, you can use the
otherwise method on the $urlRouterProvider service to define the state to fallback to.
In this recipe, we will learn how to test whether an application redirects to a specified state if
the URL entered has not been registered with $stateProvider.

Getting ready
For this recipe, we can use the minimal setup to provide us with a default home state.
We then use the $urlRouterProvider otherwise() method to handle redirecting
an invalid route (https://github.com/angular-ui/ui-router/wiki/URL-
Routing#otherwise-for-invalid-routes):

1.	 Add a state to the HTML as per the ui-router documentation at https://github.
com/angular-ui/ui-router/wiki#the-simplest-form-of-state:
 <div ui-view></div>

2.	 Add the following configuration block with a single $state function called /home
and use the $urlRouterProvider otherwise() method to redirect to this
state when there is an invalid route provided. Please refer to the Getting started
with testing using ui-router recipe in this chapter for further information:
.config(['$urlRouterProvider', '$stateProvider',
function($urlRouterProvider, $stateProvider) {
 $stateProvider
 .state('home', {
 url: '/home',
 templateUrl: 'home.html',
 controller: 'HomeCtrl'
 })
 .state('emcees', {
 url: '/emcees/:id'
 });
 $urlRouterProvider
 .otherwise('/home');
 }])

www.it-ebooks.info

https://github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-invalid-routes
https://github.com/angular-ui/ui-router/wiki/URL-Routing#otherwise-for-invalid-routes
https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
https://github.com/angular-ui/ui-router/wiki#the-simplest-form-of-state
http://www.it-ebooks.info/

Chapter 3

63

3.	 Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter3.ui.router'));

For further information on running Protractor, please read the Installing Protractor
recipe in Chapter 1, Setup and Configuration.

How to do it…
1.	 Firstly, create a test stating our intention:

it(should navigate to emcees page on click of the load
button', function () {});

2.	 To test the fallback, simply use the get method to load an unknown URL:
browser.get('http://0.0.0.0:8000/#/dummy');

3.	 Finally, simply match the browser URL against the expected fallback:
expect(browser.getLocationAbsUrl()).toContain('/home);

4.	 The final test function should look as follows:

it('should redirect to home page if an unknown url is provided',
function () {
 browser.get('http://0.0.0.0:8000/#/dummy');
 expect(browser.getLocationAbsUrl()).toContain('/home');
});

How it works…
In step 2, we use the get method to load a URL that has not been registered with
$stateProvider and expect our application to fallback to the state defined in
the otherwise method on the $urlRouterProvider service. Step 3 uses the
getLocationAbsUrl function that returns the full URL and we use the toContain
matcher to confirm that our expected state URL of /home is within the returned full path.

See also
ff The Testing navigation using Protractor recipe

ff The Testing page loading using Protractor recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

65

4
Testing Controllers

In this chapter, you will learn the following recipes:

ff Setting up for testing a controller

ff Testing the initial state of a scope object

ff Testing the initial state of a scope object with Protractor

ff Testing interactive scope changes with Protractor

ff Testing navigation scope changes with Protractor

Introduction
Business logic for a single view can be found in a controller. Controllers are used for configuring
the initial $scope object or adding behavior to $scope. DOM manipulation, however, should not
be managed within controllers. For further information regarding AngularJS controllers, please
read the online documentation at https://docs.angularjs.org/guide/controller.
Considering what we've just discussed, tests should be focused either on modifications to the
scope object or its associated behavior. A scope can be an assigned initial property that provides
the view with data. These properties are then updated either via user interaction or from
external services. Scope behavior is constructed by attaching methods to the scope object. This
chapter will focus on how to set up a test for testing a controller and pay particular attention to
the tasks we would expect to be handled within a controller.

Setting up for testing a controller
The set up for testing a controller is simple, and this recipe will ensure that you have a solid
foundation ready to build on as you progress through this chapter.

www.it-ebooks.info

https://docs.angularjs.org/guide/controller
http://www.it-ebooks.info/

Testing Controllers

66

Getting ready
To begin with this recipe, you'll simply need a project setup with a controller. In this recipe for
example, we use a controller named SomeCtrl; make sure you replace this with the name of
the controller you're testing.

How to do it…
1.	 First, create two variables accessible across all tests:

�� One for the root scope: var rootScope;

�� One for scope: var scope;

2.	 Ensure that you load your module:
beforeEach(module('chapter4));

3.	 Create a beforeEach function to inject the necessary dependencies and assign
them to the variables declared in step 1:
beforeEach(inject(function ($rootScope) {
 rootScope = $rootScope;
 scope = $rootScope.$new();
}));

4.	 Finally, create another beforeEach function to inject the $controller service to
register a new instance of our controller providing the scope object created in step 2:

beforeEach(inject(function ($controller) {
 $controller('SomeCtrl', {
 $scope: scope
 });
}));

How it works…
Step 4 is the key step in setting up testing controllers and relies on the injected $controller
service. The injected $controller service enables us to register a new instance of our
controller with the injector. The $controller service is passed a string that's used to retrieve
the controller constructor. The second argument that we provide is an object that is used to
inject locals into the controller. This is the location where you can inject mock and spy data or
services to thoroughly test your controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

67

The object key must match the variable name of the injected resource it's
replacing.

We provide the scope object created in step 3 to be injected into the newly created controller
instance, which enables us to match expectations on scope values throughout tests.

See also
ff The Testing the initial state of a scope object recipe

Testing the initial state of a scope object
Scope properties are used in controllers and attached to the DOM. These properties are
then accessed through bindings within a view. Typically, an initial state is defined on scope
properties. This recipe will guide you through testing a scope property to see whether it has
the expected initialized state.

Getting ready
Ensure that you have a project set up with a controller. In this recipe, we have a controller
named SomeCtrl; please replace this with the name of the controller you're testing. Also
ensure that you have a scope property to test against. Here is the example code to create a
new module and a simple controller that assigns a value of foo to scope:

angular.module('chapter4', []);
var SomeCtrl = function ($scope) {
 $scope.id = 'foo';
};

Finally, attach scope to the view using the ngController directive:

<div ng-controller="SomeCtrl">
 {{id}}
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Controllers

68

How to do it…
1.	 Create a beforeEach function to inject the necessary dependencies and assign

them to global variables:
beforeEach(inject(function ($rootScope) {
 scope = $rootScope.$new();
}));

2.	 Next, create another beforeEach function to inject the $controller service to
register a new instance of our controller providing the scope object created in step 1:
beforeEach(inject(function ($controller) {
 $controller('SomeCtrl', {
 $scope: scope
 });
}));

3.	 Create a basic test to establish that the initial scope property value is what we expect:
it('should set the scope property id to the correct initial
value', function () {});

4.	 Finally, add the expectation that the id scope property matches foo:
expect(scope.id).toBe('foo');

5.	 You should see the following passing test within your browser:

How it works…
In step 2, when the new instance of the controller is registered, we provide the scope object
that we had previously assigned to a global variable in step 1. This enables us to access the
scope object throughout our tests and as it is updated within the controller and determine
whether the initial value was as expected as shown in step 4.

See also
ff The Setting up for testing a controller recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

69

Testing the initial state of a scope object
with Protractor

We can use the power of Protractor to confirm the scope data model from the view's
perspective, which initializes with the default parameter we define. This recipe will show you
how to use Protractor to load the initial state in a browser and target the bound view element
to determine its value.

Getting ready
For this recipe, you will need to have a scope property defined and rendered in a view. Ensure
you have Protractor installed and running and if you need guidance on setting up Protractor
please read the Installing Protractor recipe in Chapter 1, Setup and Configuration. Please
update your URL and port based on your configuration. Additionally, here is an example of a
Protractor configuration used in this recipe for testing:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',
 specs: ['test/cookbookSpec.e2e.js'],
 jasmineNodeOpts: {
 showColors: true,
 defaultTimeoutInterval: 30000
 }
};

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL,

that is, our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a base test to ensure that the default initialized value of the id scope
property id is what we would expect:
it('should initialize scope parameter id to expected
value', function () {});

3.	 Now, let's add a reference to the element with the binding of id to this test:
var el = element(by.binding('id'));

4.	 Add an expectation that the element text matches the scope property value:
expect(el.getText()).toEqual('foo');

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Controllers

70

5.	 If you run Protractor now, you should see the following result in your console:

How it works…
Using the binding Protractor locator in step 3, we find the element in the DOM that is bound to
the id property on the scope. Once we have a reference to the element, we can ascertain its
text value using the getText action, as seen in step 4.

See also
ff The Testing navigation scope changes with Protractor recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

Testing interactive scope changes with
Protractor

More often than not, we would expect a scope data model to be updated based on user
interaction with the view (through AngularJS data binding). This recipe will guide you through
replicating user actions with Protractor and testing view model updates based on these actions.

Getting ready
For this recipe, you will need to have a scope property defined and rendered in a view. You
will also need to have the necessary logic to update the data model via a user-defined action.
For example, here is the code that configures a scope property named id that's defined in
a view template. Then, there's a button that registers a click event with a scope method
called update:

<body ng-controller="SomeCtrl">
 <div>
 {{id}}
 </div>
 <button class="btn" ng-click="update()">Update</button>
</body>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

71

When the update method is called, we simply change the id property on the scope and
expect this to be propagated through to the view.

var SomeCtrl = function($scope) {
 $scope.id = 'foo';
 $scope.update = function() {
 $scope.id = 'bar';
 }
};

Ensure that you have Protractor installed and running and if you need guidance on setting up
Protractor, please read the Installing Protractor recipe in Chapter 1, Setup and Configuration.
Please update your URL and port based on your configuration.

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL,

that is, to our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Create a test stating our intention:
it('should update scope parameter id to expected value',
function () {});

3.	 Using the abbreviated version of the locator for CSS selectors, call the click action:
$('.btn').click();

4.	 Add a reference to the element with the binding of id:
var el = element(by.binding('id'));

5.	 Finally, add an expectation that the element text matches the updated scope property
value:
expect(el.getText()).toEqual('bar');

6.	 Now if you run protractor, then you should see that there has been a test run with one
assertion and no failures.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Controllers

72

How it works…
In step 3, we use a Protractor locator that finds an element using a CSS selector (we used
the shortcut $() notation). Using the click action that (you guessed it) clicks the element,
we would then expect the sequence of events such as, to update scope, and the view, to
take place. In step 4, we find the element in the DOM that is bound to the id property on the
scope, and then in step 5 we use the getText action to retrieve the text value to evaluate
against the test matcher.

See also
ff The Testing the initial state of a scope object with Protractor recipe

ff The Testing navigation scope changes with Protractor recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

Testing navigation scope changes with
Protractor

As demonstrated in the previous recipe, Testing interactive scope changes with Protractor,
data models are modified on user interaction with the view. Obviously, there are other
mechanisms to modify scope properties, one of which is navigation. This recipe will guide
you through testing a controller that makes changes to scope properties upon navigation. For
this recipe, we will use the ui-router (https://github.com/angular-ui/ui-router)
for application routing and, basically, navigate between two states updating a scope property
based on a state parameter passed during routing.

Getting ready
For this recipe, you will need to have a scope property defined and rendered in a view. You will
also need to have the necessary logic to update the data model on navigation, whether using
a ui-router or another routing option. For the recipe example, here are the steps to follow:

1.	 Define a handler in a controller to navigate the state using the provided value, id:
var HomeCtrl = function($scope, $state) {
 $scope.id = 'foo';
 $scope.loadEmcee = function(id) {
 $state.go('emcees', {
 id: id
 });
 }
};

www.it-ebooks.info

https://github.com/angular-ui/ui-router
http://www.it-ebooks.info/

Chapter 4

73

2.	 Next, create a second controller that is initialized when its defined state is loaded. In
this instance, the controller uses the injected state parameters to assign the id value
to $scope.id:
var EmceeCtrl = function($scope, $stateParams) {
 $scope.id = $stateParams.id;
};

3.	 Next, add the HTML code to navigate the state using a button click event, passing in a
value to be used as a state parameter:
<body ng-controller="HomeCtrl">
 <div ui-view>
 {{id}}
 </div>
 <button class="btn" ng-click="loadEmcee(1)">Emcee 1</button>
</body>

4.	 Finally, the router is configured with two states, as follows:

var UIRouterConfig = function($urlRouterProvider,
$stateProvider) {
 $stateProvider
 .state('home', {
 url: '/home',
 controller: 'HomeCtrl'
 })
 .state('emcees', {
 url: '/emcees/:id',
 controller: 'EmceeCtrl'
 });
 $urlRouterProvider
 .otherwise('/home');
};

Ensure that you have Protractor installed and running, and if you need guidance on setting up
Protractor, please read the Installing Protractor recipe in Chapter 1, Setup and Configuration.
Also update your URL and port based on your configuration.

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL

that is, to our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Controllers

74

2.	 Next, create a test stating our intention:
it(should update scope parameter id to expected value on
navigation', function () {});

3.	 Using the locator for CSS selectors, call the click action on the returned element:
$('.btn').click();

4.	 Next, add a reference to the element with the binding of id:
var el = element(by.binding('id'));

5.	 Finally, add an expectation such that the element text matches the updated scope
property value following the navigation:
expect(el.getText()).toEqual('1');

6.	 If you now run Protractor, then you should see that there has been a test run with one
assertion and no failures.

How it works…
The sequence of events is similar to the Testing interactive scope changes with Protractor
recipe in this chapter. The click action in step 3 triggers the button in the DOM to dispatch
the click event passing a value of 1, in this example. If the state navigation works as we
expect, then EmceeCtrl will assign the $stateParams id property to the $scope id
property. We confirm this in step 5 using the getText action to retrieve the text value for
the matcher.

See also
ff The Testing the initial state of a scope object with Protractor recipe

ff The Testing interactive scope changes with Protractor recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

ff The Testing navigation using Protractor recipe in Chapter 3, How To Test Navigation
and Routing

www.it-ebooks.info

http://www.it-ebooks.info/

75

5
Testing User

Interaction and
Directives

In this chapter, we will cover the following recipes:

ff Starting with testing directives

ff Setting up templateUrl

ff Searching elements using selectors

ff Accessing basic HTML content

ff Accessing repeater content

ff Scope changes based on user input

ff Scope changes based on DOM events

ff Class changes based on window properties

ff Directive changes on interaction using Protractor

Introduction
Directives are the cornerstone of AngularJS and can range in complexity providing the
foundation to many aspects of an application. Therefore, directives require comprehensive
tests to ensure they are interacting with the DOM as intended. This chapter will guide you
through some of the rudimentary steps required to embark on your journey to test directives.
The focal point of many of the recipes revolves around targeting specific HTML elements and
how they respond to interaction. You will learn how to test changes on scope based on a range
of influences and finally begin addressing testing directives using Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing User Interaction and Directives

76

Starting with testing directives
Testing a directive involves three key steps that we will address in this recipe to serve as a
foundation for the duration of this chapter:

1.	 Create an element.

2.	 Compile the element and link to a scope object.

3.	 Simulate the scope life cycle.

Getting ready
For this recipe, you simply need a directive that applies a scope value to the element in the
DOM. For example:

angular.module('chapter5', [])
 .directive('writers', function() {
 return {
 restrict: 'E',
 link: function(scope, element) {
 element.text('Graffiti artist: ' + scope.artist);
 }
 };
 });

How to do it…
1.	 First, create three variables accessible across all tests:

�� One for the element: var element;

�� One for scope: var scope;

�� One for some dummy data to assign to a scope value: var artist =
'Amara Por Dios';

2.	 Next, ensure that you load your module:
beforeEach(module('chapter5'));

3.	 Create a beforeEach function to inject the necessary dependencies and create a
new scope instance and assign the artist to a scope:
beforeEach(inject(function ($rootScope, $compile) {
 scope = $rootScope.$new();
 scope.artist = artist;
}));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

77

4.	 Next, within the beforeEach function, add the following code to create an Angular
element providing the directive HTML string:
element = angular.element('<writers></writers>');

5.	 Compile the element providing our scope object:
$compile(element)(scope);

6.	 Now, call $digest on scope to simulate the scope life cycle:
scope.$digest();

7.	 Finally, to confirm whether these steps work as expected, write a simple test that
uses the text() method available on the Angular element. The text() method will
return the text contents of the element, which we then match against our artist value:

it('should display correct text in the DOM', function() {
 expect(element.text()).toBe('Graffiti artist: ' +
artist);
});

Here is what your code should look like to run the final test:

var scope;
var element;
var artist;

beforeEach(module('chapter5'));

beforeEach(function() {
 artist = 'Amara Por Dios';
});

beforeEach(inject(function($compile) {
 element = angular.element('<writers></writers>');
 scope.artist = artist;
 $compile(element)(scope);
 scope.$digest();
}));

it('should display correct text in the DOM', function() {
 expect(element.text()).toBe('Graffiti artist: ' +
artist);
});

www.it-ebooks.info

http://www.it-ebooks.info/

Testing User Interaction and Directives

78

How it works…
In step 4, the directive HTML tag is provided as a string to the angular.element function.
The angular element function wraps a raw DOM element or an HTML string as a jQuery
element if jQuery is available; otherwise, it defaults to using Angular's jQuery lite which
is a subset of jQuery. This wrapper exposes a range of useful jQuery methods to interact
with the element and its content (for a full list of methods available, visit https://docs.
angularjs.org/api/ng/function/angular.element).

In step 6, the element is compiled into a template using the $compile service. The $compile
service can compile HTML strings into a template and produces a template function. This
function can then be used to link the scope and the template together. Step 6 demonstrates just
this, linking the scope object created in step 3. The final step to getting our directive in a testable
state is in step 7 where we call $digest to simulate the scope life cycle. This is usually part of
the AngularJS life cycle within the browser and therefore needs to be explicitly called in a test-
based environment such as this, as opposed to end-to-end tests using Protractor.

There's more…
One beforeEach() method containing the logic covered in this recipe can be used as a
reference to work from for the rest of this chapter:

beforeEach(inject(function($rootScope, $compile) {
 // Create scope
 scope = $rootScope.$new();
 // Replace with the appropriate HTML string
 element = angular.element('<deejay></deejay>');
 // Replace with test scope data
 scope.deejay = deejay;
 // Compile
 $compile(element)(scope);
 // Digest
 scope.$digest();
}));

See also
ff The Setting up templateUrl recipe

ff The Searching elements using selectors recipe

ff The Accessing basic HTML content recipe

ff The Accessing repeater content recipe

ff The Scope changes based on user input recipe

www.it-ebooks.info

https://docs.angularjs.org/api/ng/function/angular.element
https://docs.angularjs.org/api/ng/function/angular.element
http://www.it-ebooks.info/

Chapter 5

79

ff The Scope changes based on DOM events recipe

ff The Class changes based on window properties recipe

Setting up templateUrl
It's fairly common to separate the template content into an HTML file that can then be
requested on demand when the directive is invoked using the templateUrl property.
However, when testing directives that make use of the templateUrl property, we need
to load and preprocess the HTML files to AngularJS templates. Luckily, the AngularJS team
preempted our dilemma and provided a solution using Karma and the karma-ng-html2js-
preprocessor plugin. This recipe will show you how to use Karma to enable us to test a
directive that uses the templateUrl property.

Getting ready
For this recipe, you will need to ensure the following:

1.	 You installed Karma by following the Installing Karma recipe in Chapter 1, Setup and
Configuration.

2.	 You installed the karma-ng-html2js-preprocessor plugin by following the
instructions at https://github.com/karma-runner/karma-ng-html2js-
preprocessor/blob/master/README.md#installation.

3.	 You configured the karma-ng-html2js-preprocessor plugin by following the
instructions at https://github.com/karma-runner/karma-ng-html2js-
preprocessor/blob/master/README.md#configuration.

4.	 Finally, you'll need a directive that loads an HTML file using templateUrl and
for this example, we apply a scope value to the element in the DOM. Consider the
following example:

angular.module('chapter5', [])
 .directive('emcees', function() {
 return {
 restrict: 'E',
 templateUrl: 'template.html',
 link: function(scope, element) {
 scope.emcee = scope.emcees[0];
 }
 };
 })

www.it-ebooks.info

https://github.com/karma-runner/karma-ng-html2js-preprocessor/blob/master/README.md#installation
https://github.com/karma-runner/karma-ng-html2js-preprocessor/blob/master/README.md#installation
https://github.com/karma-runner/karma-ng-html2js-preprocessor/blob/master/README.md#configuration
https://github.com/karma-runner/karma-ng-html2js-preprocessor/blob/master/README.md#configuration
http://www.it-ebooks.info/

Testing User Interaction and Directives

80

An example template could be as simple as what we will use for this example
(template.html):

<h1>{{emcee}}</h1>

How to do it…
1.	 First, create three variables accessible across all tests:

�� One for the element: var element;

�� One for the scope: var scope;

�� One for some dummy data to assign to a scope value: var
emcees = ['Roxanne Shante', 'Mc Lyte'];

2.	 Next, ensure that you load your module:
beforeEach(module('chapter5'));

3.	 We also need to load the actual template. We can do this by simply appending the
filename to the beforeEach function we just created in step 2:
beforeEach(module('chapter5', 'template.html'));

4.	 Next, create a beforeEach function to inject the necessary dependencies and
create a new scope instance and assign the artist to a scope:
beforeEach(inject(function ($rootScope, $compile) {
 scope = $rootScope.$new();
 Scope.emcees = emcees;
}));

5.	 Within the beforeEach function, add the following code to create an Angular
element providing the directive HTML string:
 element = angular.element('<emcees></emcees>');

6.	 Compile the element providing our scope object:
$compile(element)(scope);

7.	 Call $digest on scope to simulate the scope life cycle:
scope.$digest();

8.	 Next, create a basic test to establish that the text contained within the h1 tag is what
we expect:
it('should set the scope property id to the correct initial
value', function () {});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

81

9.	 Now, retrieve a reference to the h1 tag using the find() method on the element
providing the tag name as the selector:
var h1 = element.find('h1');

10.	 Finally, add the expectation that the h1 tag text matches our first emcee from the
array we provided in step 4:
expect(h1.text()).toBe(emcees[0]);

11.	 You will see the following passing test within your console window:

How it works…
The karma-ng-html2js-preprocessor plugin works by converting HTML files into JS
strings and generates AngularJS modules that we load in step 3. Once loaded, AngularJS
makes these modules available by putting the HTML files into the $templateCache. There
are libraries available to help incorporate this into your project build process, for example
using Grunt or Gulp. There is a popular example specifically for Gulp at https://github.
com/miickel/gulp-angular-templatecache. Now that the template is available, we
can access the HTML content using the compiled element we created in step 5.

In this recipe, we access the text content of the element using the find() method. Be aware
that if using the smaller jQuery lite subset of jQuery, there are certain limitations compared
to the full-blown jQuery version. The find() method in particular is limited to look up by tag
name only. To read more about the find() method, visit the jQuery API documentation at
http://api.jquery.com/find.

See also
ff The Starting with testing directives recipe

www.it-ebooks.info

https://github.com/miickel/gulp-angular-templatecache
https://github.com/miickel/gulp-angular-templatecache
http://api.jquery.com/find
http://www.it-ebooks.info/

Testing User Interaction and Directives

82

Searching elements using selectors
Directives, as you should know, attach special behavior to a DOM element. When AngularJS
compiles and returns the element on which the directive is applied, it is wrapped by either
jqLite or jQuery. This exposes an API on the element, offering many useful methods to query
the element and its contents. In this recipe, you will learn how to use these methods to
retrieve elements using selectors.

Getting ready
Follow the logic to define a beforeEach() function with the relevant logic to set up a
directive as outlined in the Starting with testing directives recipe in this chapter. For this
recipe, you can replicate the template that I suggested in the first recipe's There's more…
section. For the purpose of this recipe, I tested against a property on scope named deejay:

var deejay = {
 name: 'Shortee',
 style: 'turntablism'
};

You can replace this with whatever code you have within the directive you're testing.

How to do it…
1.	 First, create a basic test to establish that the HTML code contained within an

h2 tag is as we expected:
it('should return an element using find()', function ()
{});

2.	 Next, retrieve a reference to the h2 tag using the find() method on the element
providing the tag name as the selector:
var h2 = element.find('h2');

3.	 Finally, we create an expectation that the element is actually defined:
expect(h2[0]).toBeDefined();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

83

How it works…
In step 2, we use the find() method with the h2 selector to test against in step 3's
expectation. Remember, the element returned is wrapped by jqLite or jQuery. Therefore,
even if the element is not found, the object returned will have jQuery-specific properties; this
means that we cannot run an expectation on the element alone being defined. A simple way
to determine if the element itself is indeed defined is to access it via jQuery's internal array
of DOM objects, typically the first. So, this is why in our recipe we run an expectation against
element[0] as opposed to element itself.

There's more…
ff Here is an example using the querySelector() method. The querySelector()

method is available on the actual DOM so we need to access it on an actual HTML
element and not the jQuery wrapped element. The following code shows the selector
we use in a CSS selector:
it('should return an element using querySelector and css
selector', function() {
 var elementByClass = element[0].querySelector('.deejay-
style');
 expect(elementByClass).toBeDefined();
});

ff Here is a another example using the querySelector() method that uses an id
selector:

it(should return an element using querySelector and id selector',
function() {
 var elementByClass = element[0].querySelector(' #deejay_name');
 expect(elementByClass).toBeDefined();
});

You can read more about the querySelector() method at https://
developer.mozilla.org/en-
US/docs/Web/API/document.querySelector.

See also
ff The Starting with testing directives recipe

ff The Accessing basic HTML content recipe

www.it-ebooks.info

https://developer.mozilla.org/en- US/docs/Web/API/document.querySelector
https://developer.mozilla.org/en- US/docs/Web/API/document.querySelector
https://developer.mozilla.org/en- US/docs/Web/API/document.querySelector
http://www.it-ebooks.info/

Testing User Interaction and Directives

84

Accessing basic HTML content
A substantial number of directive tests will involve interacting with the HTML content within
the rendered HTML template. This recipe will teach you how to test whether a directive's
HTML content is as expected.

Getting ready
Follow the logic to define a beforeEach() function with the relevant logic to set up a directive
as outlined in the Starting with testing directives recipe in this chapter. For this recipe, you
can replicate the template that I suggested in the first recipe's There's more… section. For the
purpose of this recipe, I will test against a property on a scope named deejay:

var deejay = {
 name: 'Shortee',
 style: 'turntablism'
};

You can replace this with whatever code you have within the directive you're testing.

How to do it…
1.	 First, create a basic test to establish that the HTML code contained within a h2 tag is

as we expected:
it('should display correct deejay data in the DOM',
function () {});

2.	 Next, retrieve a reference to the h2 tag using the find() method on the element
providing the tag name as the selector:
var h2 = element.find('h2');

3.	 Finally, using the html() method on the returned element from step 2, we can get
the HTML contents within an expectation that the h2 tag HTML code matches our
scope's deejay name:

expect(h2.html()).toBe(deejay.name);

How it works…
We made heavy use of the jQuery (or jqLite) library methods available for our element. In step
2, we use the find() method with the h2 selector. This returns a match for us to further
utilize in step 3, in our expectation where we access the HTML contents of the element using
the html() method this time (http://api.jquery.com/html/).

www.it-ebooks.info

http://api.jquery.com/html/
http://www.it-ebooks.info/

Chapter 5

85

There's more…
We could also run a similar expectation for text within our h2 element using the text()
method (http://api.jquery.com/text/) on the element, for example:

it('should retrieve text from <h2>', function() {
 var h2 = element.find('h2');
 expect(h2.text()).toBe(deejay.name);
});

See also
ff The Starting with testing directives recipe

ff The Searching elements using selectors recipe

Accessing repeater content
AngularJS facilitates generating repeated content with ease using the ngRepeat directive. In
this recipe, we'll learn how to access and test repeated content.

Getting ready
Follow the logic to define a beforeEach() function with the relevant logic to set up a directive
as outlined in the Starting with testing directives recipe in this chapter. For this recipe, you
can replicate the template that I suggested in the first recipe's There's more… section. For the
purpose of this recipe, I tested against a property on scope named breakers:

var breakers = [{
 name: 'China Doll'
}, {
 name: 'Crazy Legs'
}, {
 name: 'Frosty Freeze'
}];

You can replace this with whatever code you have within the directive you're testing.

How to do it…
1.	 First, create a basic test to establish that the HTML code contained within the h2 tag

is as we expected:
it('should display the correct breaker name', function ()
{});

www.it-ebooks.info

http://api.jquery.com/text/
http://www.it-ebooks.info/

Testing User Interaction and Directives

86

2.	 Next, retrieve a reference to the li tag using the find() method on the element
providing the tag name as the selector:
var list = element.find('li');

3.	 Finally, targeting the first element in the list, we retrieve the text content expecting
it to match the first item in the breakers array:
expect(list.eq(0).text()).toBe('China Doll');

How it works…
In step 2, the find() method using li as the selector will return all the list items. In step
3, using the eq() method (http://api.jquery.com/eq/) on the returned element from
step 2, we can get the HTML contents at a specific index, zero in this particular case. As the
returned object from the eq() method is a jQuery object, we can call the text() method,
which immediately after that will return the text content of the element. We can then run an
expectation that the first li tag text matches the first breaker within the scope array.

See also
ff The Starting with testing directives recipe

ff The Searching elements using selectors recipe

ff The Accessing basic HTML content recipe

Scope changes based on user input
This recipe will show you how to update the scope using the user's input. There is a slight
potential overlap in this recipe where it could be interpreted that we are testing AngularJS
logic, which the AngularJS team would have already comprehensively covered in their test
suites. However, I would justify this by stating that we are testing a specific element, which
when interacted with in a particular manner, updates a specific value on the scope. By the
end of this recipe, you will be familiar with interacting with a directive, updating the content of
an element, and then triggering an event to update the scope. Finally, we will test whether the
value on the scope matches what we expected.

Getting ready
For this example, I have a simple directive that contains an input field and binds to a key press
event. If the key pressed is the Enter key, then the value of the input field is added to the array
of breakers:

www.it-ebooks.info

http://api.jquery.com/eq/
http://www.it-ebooks.info/

Chapter 5

87

directive('breakers', function() {
 return {
 restrict: 'E',
 template: '<input type="text" name="input" value="" ng-
 keypress="onSubmit($event)"><li ng-repeat="breaker
 in breakers">{{breaker.name}}',
 link: function(scope) {
 scope.onSubmit = function(event) {
 if (event.which === 13) {
 var input = event.target;
 scope.breakers.push({name:input.value});
 }
 }
 }
 };
})

Follow the logic to define a beforeEach() function with the relevant logic to set up a
directive as outlined in the Starting with testing directives recipe in this chapter. For this
recipe, you can replicate the template that I suggested in the first recipe's There's more…
section. For the purpose of this recipe, I will test against a property on the scope named
breakers that I will assign an empty array:

var breakers = [];

You can replace this with whatever code you have within the directive you're testing.

How to do it…
1.	 First, create a beforeEach() function that will inject the $controller service to

register a new instance of a controller named HomeCtrl and also provide the scope
object that we created in the Getting ready section of this recipe:
beforeEach(inject(function($controller) {
 $controller('HomeCtrl', {
 $scope: scope
 });
}));

2.	 Next, create a basic test that will ensure that the scope was updated as expected:
it('should update breakers list with defined input value',
function () {});

www.it-ebooks.info

http://www.it-ebooks.info/

Testing User Interaction and Directives

88

3.	 Next, create a small helper function that returns the first HTML element in the
directive template:
function $input() {
 return element.children().eq(0);
}

4.	 Next, use the helper function from step 3 to target the input field and using the
val() method, set the input value to the first breaker from our array:
$input().val('China Doll');

5.	 Manually trigger our key-press event by calling the onSubmit() method and pass an
object with the minimal information required to satisfy the handler's requirements:
// Trigger submit using Enter key
scope.onSubmit({
 which: 13,
 preventDefault: function() {},
 target: $input()[0]
});

6.	 Finally, run the expectation on the first value's name property on our breakers array
matching against the value we set in step 4:

expect(scope.breakers[0].name).toBe('China Doll');

How it works…
In step 4, using the power of jqLite (or jQuery), we are able to set the value of the input
field with the val() method (http://api.jquery.com/val/). At this point, we have
populated the input and now need to trigger the key-press handler with the relevant data to
ensure that its value gets pushed on to our array in step 5. Triggering the key-press event is
as easy as calling the onSubmit() method on scope, yet we need to ensure that we pass the
information required by the event handler:

1.	 The which property: The onSubmit() handler only processes key events triggered
by the Enter key. We determine the key press using the jQuery which property
(http://api.jquery.com/event.which/) that normalizes event.keyCode
and event.charCode. The enter key reports as 13.

2.	 The preventDefault property: This is called by the handler in our directive.
Providing an empty function will suffice to satisfy this dependency.

3.	 The target property: This is required so the handler can retrieve the input value.

4.	 This now results in a valid event being passed to the scope handler with the required
data to ensure that a value gets added to the breakers array and therefore ensure
that the expectation in step 6 passes.

www.it-ebooks.info

http://api.jquery.com/val/
http://api.jquery.com/event.which/
http://www.it-ebooks.info/

Chapter 5

89

See also
ff The Starting with testing directives recipe

ff The Searching elements using selectors recipe

Scope changes based on DOM events
Window events are easy to listen and respond to using the bind() method available on an
element. One such case can be responsive layouts based on window size. In this recipe,
we will run through how to test changes to scope based on window events, specifically the
resize event.

Getting ready
For this example, I have a simple directive that binds to the $window resize event. On
resizing, the $window outerWidth parameter is assigned to a scope property:

directive('writers', function($window) {
 return {
 restrict: 'E',
 link: function(scope, element) {

 function onResize(e) {
 scope.windowWidth = $window.outerWidth;
 scope.$digest();
 }

 angular.element($window).bind('resize',
 onResize);
 }
 };
});

Follow the logic to define a beforeEach() function with the relevant logic to set up a directive
as outlined in the Starting with testing directives recipe in this chapter. For this recipe, you can
replicate the template that I suggested in the first recipe's There's more… section. You can
replace this with whatever code you have within the directive you're testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing User Interaction and Directives

90

How to do it…
1.	 First, create a beforeEach() function that will inject the $window service, which

we assign to a variable:
var $window;
beforeEach(inject(function(_$window_) {
 $window = _$window_;
}));

2.	 Next, create a basic test that will ensure that the scope was updated as expected:
it('should update scope with current window width on window
resize', function () {});

3.	 Using the $window service, call its resizeTo() method by passing in a width and
height value 100:
$window.resizeTo(100, 100);

4.	 Next, create a small helper function that dispatches an event, for example:
function dispatchEvent(type) {
 var evt = document.createEvent('Event');
 evt.initEvent(type, true, true);
 $window.dispatchEvent(evt);
}

5.	 Use the helper function from step 4 to dispatch a resize event:
dispatchEvent('resize');

6.	 Finally, run the expectation on the windowWidth scope property matching it against
our defined window width value of 100 from step 3:

expect(scope.windowWidth).toBe(100);

How it works…
We use the $window service as opposed to the browser's window object for testability. The
AngularJS $window service allows overriding, mocking, and so on, which for testing, proves
to be indispensable. In step 3, we call the resizeTo() method on the $window service,
which does what it says on the tin. In step 4, we define a function that steps through creating
a custom event that gets dispatched by our $window service. The function expects one
argument, which is the event type so we can reuse this function in other tests if required. Step
5 uses the dispatchEvent() method passing resize as the argument. Our directive will
handle this event and assign the new window width to scope. Step 6 validates this logic for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

91

There's more…
Remember the DRY (http://en.wikipedia.org/wiki/Don't_repeat_yourself)
principle within your tests. An example within this code is the extraction of the dispatch event
logic into its own function. Another small improvement we can make to this recipe (and others
in this book) is to assign values used for testing to variables. This also means that when it
comes to changing any values, you will have minimized the number of locations that require
updating. Within this recipe, we can change the width and height values to variables,
for example:

var width = 100;
var height = 100;
it('should update scope with current window width on window resize',
function() {
 $window.resizeTo(width, height);
 dispatchEvent('resize');
 expect(scope.windowWidth).toBe(width);
});

See also
ff The Starting with testing directives recipe

ff The Searching elements using selectors recipe

Class changes based on window properties
The ngClass module allows you to dynamically set CSS classes on an HTML element using
data binding. To do this, an expression is evaluated on each of the classes you wish to add.
In this recipe, we will test whether a specific class is added to an element based on a
window property.

Getting ready
For this example, I have a small directive that makes use of ngClass to conditionally
apply a class named popup. The isPopup property on scope determines the condition
by using the search() method (https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/String/search) on the $window.
name property (https://developer.mozilla.org/en-US/docs/Web/API/Window.
name). The search() method returns a string index greater than -1 if it matches our regular
expression for popup on the $window.name object:

www.it-ebooks.info

http://en.wikipedia.org/wiki/Don't_repeat_yourself
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/search
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/search
https://developer.mozilla.org/en-US/docs/Web/API/Window.name
https://developer.mozilla.org/en-US/docs/Web/API/Window.name
http://www.it-ebooks.info/

Testing User Interaction and Directives

92

directive('deejay', function($window) {
 return {
 restrict: 'E',
 template: '<div class="deejay-booth" ng-class="{popup: isPopup
 === true}"></div>',
 link: function(scope) {
 scope.isPopup = $window.name.search(/popup/) >= 0;
 }
 };
})

Follow the logic to define a beforeEach() function with the relevant logic to set up a directive
as outlined in the Starting with testing directives recipe in this chapter. For this recipe, you can
replicate the template that I suggested in the first recipe's There's more… section. You can
replace this with whatever code you have within the directive you're testing.

How to do it…
1.	 First, create a beforeEach() function that will inject the $window service, which we

then assign to a variable:
Var $window;
beforeEach(inject(function(_$window_) {
 $window = _$window_;
}));

2.	 Next, create a basic test that will ensure that the scope was updated as expected:
it('should have specific popup class if window name contains
popup', function () {});

3.	 Retrieve a reference to the div class first using the find() method on the element
providing the div tag name as the selector, and then using the attr() method to
retrieve CSS classes on the returned element:
var divClasses = element.find('div').attr('class');

4.	 Next, set the $window.name object to the popup value:
$window.name = 'popup';

5.	 Finally, check for the popup value in the divClasses string from step 3:

expect(divClasses).toContain('popup');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

93

How it works…
Using the find() method, we can search for the div element. We then use the attr()
method (http://api.jquery.com/attr/) on the returned div element to get the
value of the class attribute. This returns a string of all the CSS classes. In step 4, using the
$window service, we are able to set the name property to our test value. In step 5, we used
the toContain matcher to search the CSS classes' string for the popup string.

There's more…
We can use the split() method (https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/String/split) on the string of
classes providing a regular expression to split the string based on whitespace. This would
return an array of class names that we could interrogate further in our tests or use the same
toContain() matcher with the same results:

expect(divClasses.split(/\s+/g)).toContain('popup');

See also
ff The Starting with testing directives recipe

ff The Searching elements using selectors recipe

Directive changes on interaction using
Protractor

As your directives flourish and begin to direct actions influencing the UI or state, Protractor will
give you a silent nod to encourage you to step up. In this recipe, the directive logic itself is a
doddle and the e2e tests are far from elaborate. However, they are a foundation you can build
on as your directives become more intricate. In this recipe, we will use Protractor to test hiding
and showing an HTML element based on a user clicking a button.

Getting ready
For this example, I have a directive that displays a deejay's information. Within the main
div is a button that when clicked changes a scope property called showBooth to false. The
showBooth value is used by the ngShow module, which is an attribute on the main div:

www.it-ebooks.info

http://api.jquery.com/attr/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
http://www.it-ebooks.info/

Testing User Interaction and Directives

94

directive('deejay', function($window) {
 return {
 restrict: 'E',
 template: '<div ng-show="showBooth" class="deejay-
 booth"><h2 id="deejay_name">{{deejay.name}}</h2><p
 class="deejay-style">{{deejay.style}}</p><button
 class="hide-btn" ng-click="hideBooth()">Hide
 Booth</button></div>',
 link: function(scope) {
 scope.showBooth = true;

 scope.hideBooth = function() {
 scope.showBooth = false;
 };
 }
 };
})

Ensure that you have Protractor installed and running. You also need to make sure that your
project is running on a local server so that Protractor can load the webpage and run the
application. In this example, I have used localhost port 8000, however you can amend
this according to your development environment.

How to do it…
1.	 Firstly, use the get method to load the page by passing the URL to the local

development server that is running our application:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention that the HTML element is displayed first:
it('should show content on page load', function () {});

3.	 Select the element that has the ngShow attribute:
Var deejayBooth = $('[ng-show=showBooth].deejay-booth');

4.	 Add an expectation that the element we selected is actually displayed:
expect(deejayBooth.isDisplayed()).toBeTruthy();

5.	 Next, create a test stating our intention that the HTML element is not displayed when
the hide button is clicked:
it('should hide content on button click', function () {});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

95

6.	 Within the test from step 5, select the element that has the ngShow attribute:
Var deejayBooth = $('[ng-show=showBooth].deejay-booth');

7.	 Using a jQuery selector, call the click() method on the hide button:
$('.hide-btn').click();

8.	 Now, add an expectation that the element we selected is actually displayed:

expect(deejayBooth.isDisplayed()).toBeFalsy();

How it works…
In step 3 and 6, we use the jQuery attribute equals selector (http://api.jquery.
com/attribute-equals-selector/) providing the attribute value of ng-show and an
additional CSS selector specific to the div we are targeting. Before we test our logic to hide
the element, we first ensure that it is displayed; this is demonstrated in step 4. Once we
confirm this, it is actually displayed. We trigger the click event (http://api.jquery.com/
click/) on the button element in step 7.

See also
ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

ff The Searching elements using selectors recipe

www.it-ebooks.info

http://api.jquery.com/attribute-equals-selector/
http://api.jquery.com/attribute-equals-selector/
http://api.jquery.com/click/
http://api.jquery.com/click/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

97

Using Spies to
Test Events

In this chapter, you will learn the following recipes:

ff Testing event dispatches

ff Testing the handling of dispatched events

ff Testing the handling of external events

ff Testing the handling of callbacks

ff Testing events using Protractor

Introduction
As your AngularJS applications grow in size, you'll inevitably separate the code into multiple
modules. A great reference to guide you on the modularity of an AngularJS application can be
found at https://github.com/johnpapa/angularjs-styleguide#modularity. To
help facilitate the communication between modules without sharing the scope, you can use
events. The event concept in AngularJS, however, is not as intelligible as we would hope and
therefore testing can sometimes become overly complex when it need not be.

I recommend that you read the following excellent article at http://
toddmotto.com/all-about-angulars-emit-broadcast-on-
publish-subscribing to help you gain a deeper understanding of
Angular's event system.

This chapter will try and lift the veil on some of the techniques behind testing events and
hopefully provide some fundamentals for your future application development.

6

www.it-ebooks.info

https://github.com/johnpapa/angularjs-styleguide#modularity
http://toddmotto.com/all-about-angulars-emit-broadcast-on-publish-subscribing
http://toddmotto.com/all-about-angulars-emit-broadcast-on-publish-subscribing
http://toddmotto.com/all-about-angulars-emit-broadcast-on-publish-subscribing
http://www.it-ebooks.info/

Using Spies to Test Events

98

Testing event dispatches
Broadcasting events in AngularJS are dispatched down the $scope hierarchy as opposed to
$emit dispatching it upwards. Regardless of direction, we need to test whether an event was
actually dispatched and for this chapter we will favor the $broadcast method (https://
docs.angularjs.org/api/ng/type/$rootScope.Scope#$broadcast). The
$broadcast method requires a name and one or more optional arguments, which will be
passed on to all the event listeners.

This recipe will show you how to test broadcasting events from an AngularJS controller using
Jasmine spies (http://jasmine.github.io/2.0/introduction.html#section-
Spies). The core goal initially is to determine whether a specific method broadcasts an
event. We then go into further depth to analyze whether the correct data is broadcasted. It's
important to understand here that we are not testing AngularJS logic such as testing whether
the $broadcast method functions as we would expect, rather than testing whether the event
is dispatched at our specified prompt with the correct name and data.

Getting ready…
For this recipe, you simply need logic that broadcasts an event, such as within a controller.
As an example, here is the code to get you started with testing in this recipe, which basically
defines a method on the scope that we can call from within our test. The method dispatches
an event named showWuEmcee using the $broadcast method. A string from the scope
method argument is also dispatched as a single argument for the event:

var HomeCtrl = function($scope) {
 $scope.showWuEmcee = function(emceeName) {
 $scope.$broadcast('showWuEmcee', emceeName);
 };
};

How to do it…
1.	 Create a variable for scope and another for an array of string values to use within

the test:
var scope;
var wuTangClan = ['RZA', 'GZA', 'Method Man', 'Raekwon',
'Ghostface Killah', 'Inspectah Deck', 'U-God', 'Masta
Killa', 'Cappadonna', 'ODB'];

2.	 Next, ensure that you load your module:
beforeEach(module('chapter6'));

www.it-ebooks.info

https://docs.angularjs.org/api/ng/type/$rootScope.Scope#$broadcast
https://docs.angularjs.org/api/ng/type/$rootScope.Scope#$broadcast
http://jasmine.github.io/2.0/introduction.html#section-Spies
http://jasmine.github.io/2.0/introduction.html#section-Spies
http://www.it-ebooks.info/

Chapter 6

99

3.	 Write a beforeEach function to inject the necessary dependencies and create a
new scope instance:
beforeEach(inject(function ($rootScope, $controller) {
 scope = $rootScope.$new();
}));

4.	 Within the beforeEach function from step 3, register a new instance of a controller
named HomeCtrl providing the scope object created in step 3:
beforeEach(inject(function ($rootScope, $controller) {
 scope = $rootScope.$new();
 $controller('HomeCtrl', {
 $scope: scope
 });
}));

5.	 Within the beforeEach function again, create a new spy on the scope object and
stub the $broadcast method:
beforeEach(inject(function ($rootScope, $controller) {
 scope = $rootScope.$new();
 $controller('HomeCtrl', {
 $scope: scope
 	 });
 spyOn(scope, '$broadcast');
}));

6.	 Next, create a test to establish that our spy was called:
it('should call $broadcast', function() {});

7.	 Within the test created in step 6, call the showWuEmcee method on scope that
should broadcast an event:
scope.showWuEmcee();

8.	 Finally, add an expectation that the $broadcast spy was called:

expect(scope.$broadcast).toHaveBeenCalled();

How it works…
A super simple way to determine whether an event was broadcasted at a defined moment
is accomplished using Jasmine spies. In step 5, we created a spy to stub the $broadcast
method on scope. Jasmine proxies the object to allow expectations to be made on its invoked
methods. In step 7, we call the showWuEmcee method that should broadcast our event. In
step 8, we create an expectation that uses the toHaveBeenCalled matcher that returns
true if the spy was called.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spies to Test Events

100

There's more…
Testing whether the event was broadcasted is the groundwork we can build on to delve deeper
and test broadcasting further:

1.	 Let's test whether the event was dispatched with the correct name and argument
using the toHaveBeenCalledWith matcher. This returns true if the argument list
matches any of the recorded calls to the spy:
it('should call $broadcast with correct event name and emcee',
function() {
 scope.showWuEmcee(wuTangClan[0]);
 expect(scope.$broadcast).toHaveBeenCalledWith('showWuEmcee',
wuTangClan[0]);
});

2.	 Next, let's use the calls property (http://jasmine.github.io/2.0/
introduction.html#section-Other_tracking_properties) and test
whether first argument contains the first item in the array created in step 1 of this
recipe:

it('should call $broadcast with specific argument', function() {
 scope.showWuEmcee(wuTangClan[0]);
 expect(scope.$broadcast.calls.argsFor(0)).toContain(wuTangC
 lan[0]);
});

See also…
ff The Testing the handling of dispatched events recipe

Testing the handling of dispatched events
After dispatching an event, we can safely surmise that there is a function out there
somewhere listening for and responding to it. To listen for events in AngularJS, we use the
$on method and supply it with the name of the event it should listen out for and an event
handler function.

This recipe guides you on how to test the handling of a dispatched event and ensures that
the necessary processes that our handler performs are executed as expected. Just to clarify,
we are not checking AngularJS's specific logic where a broadcasted (or emitted) event calls a
listener; we are testing whether the handler function we stipulate responds as we envisaged
and successively runs the expected logic.

www.it-ebooks.info

http://jasmine.github.io/2.0/introduction.html#section-Other_tracking_properties
http://jasmine.github.io/2.0/introduction.html#section-Other_tracking_properties
http://www.it-ebooks.info/

Chapter 6

101

Getting ready…
For this recipe, you will need an example of broadcasting an event, for example within a
controller and an associated listener. As an example, we build on the example shown in the
Getting ready section of the Testing event dispatches recipe and add a listener and function
to call when the event is dispatched. Obviously, dispatching and listening for an event in the
same controller is not the brightest of ideas but it serves well for demonstration purposes:

ff The dispatched event we listen for using the $on method is showWuEmcee.

ff Our handler function is a method on $scope named onShowWuEmcee.

ff Within the onShowWuEmcee method, we assign different values to the $scope
property wuWho based on whether the value supplied is undefined or not:
var HomeCtrl = function($scope) {
 $scope.UNKNOWN_NAME = 'Unknown emcee';
 $scope.showWuEmcee = function(emceeName) {
 $scope.$broadcast('showWuEmcee', emceeName);
 };
 $scope.onShowWuEmcee = function(e, emceeName) {
 if (!emceeName) {
 $scope.wuWho = $scope.UNKNOWN_NAME;
 return;
 }
 $scope.wuWho = emceeName;
 }
 $scope.$on('showWuEmcee', $scope.onShowWuEmcee);
};

How to do it…
1.	 First, create a variable for scope and another for an array of string values to use

within the test:
var scope;
var wuTangClan = ['RZA', 'GZA', 'Method Man', 'Raekwon',
'Ghostface Killah', 'Inspectah Deck', 'U-God', 'Masta Killa',
'Cappadonna', 'ODB'];

2.	 Next, ensure that you load your module:
beforeEach(module('chapter6'));

3.	 Write a beforeEach function to inject the necessary dependencies and create a
new scope instance:
beforeEach(inject(function ($rootScope, $controller) {
 scope = $rootScope.$new();
}));

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spies to Test Events

102

4.	 Next, within the beforeEach function from step 3, register a new instance of a
controller named HomeCtrl providing the scope object created in step 3:
$controller('HomeCtrl', {
 $scope: scope
});

5.	 Create a test to establish that the value assigned to scope is equal to the provided
emceeName object:
it('should assign correct emcee to scope', function() {});

6.	 Next, within the test created in step 5, broadcast the showWuEmcee event and a
value from our test array created in step 1:
scope.$broadcast('showWuEmcee', wuTangClan[1]);

7.	 Finally, add an expectation that the scope.wuWho value is equal to the value
provided in step 6:

expect(scope.wuWho).toEqual(wuTangClan[1]);

How it works…
In step 6, we broadcast an event with the name showWuEmcee along with a single argument,
which is a value from our test array created in step 1. Step 7 raises an expectation that
scope.wuWho is equal to the value we broadcasted, wuTangClan[1].

There's more…
In the preceding steps, we tested one area of logic from our example function; that scope
updates to the value provided by the broadcasted event. Let's now test the logic that a default
value gets assigned to scope if the broadcasted event does not provide any data, that is
emceeName is undefined.

1.	 First, create a test to establish that a default value is assigned to the scope if the
emceeName is undefined:
it('should assign default emcee to scope if emceeName
undefined ', function() {});

2.	 Within the test created in step 1, broadcast the showWuEmcee event:
scope.$broadcast('showWuEmcee');

3.	 Next, add an expectation that the scope.wuWho value is equal to scope.NO_NAME
(a default value):

expect(scope.wuWho).toEqual(scope.NO_NAME);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

103

See also…
ff The Testing event dispatches recipe

Testing the handling of external events
AngularJS provides a multitude of useful directives that enable us to simply handle events,
however, not all DOM events are nicely wrapped into directives for us. Additionally, there may
be third-party or external events that need to be handled.

AngularJS's jqLite provides us with a method to make it straightforward to attach to a DOM
element and handle events that it dispatches. This wondrous method is known simply
as on() (http://api.jquery.com/on/) and is accessible on AngularJS elements
(https://docs.angularjs.org/api/ng/function/angular.element). The on()
method accepts a string naming the event type and a handler function.

Be aware of the jqLite limitations of the on() method. It does not support
namespaces, selectors, or eventData functions.

This recipe will demonstrate how to test responding to a DOM event that makes use of the
on() method.

Getting ready…
For this recipe, you'll need to have attached the on() method to an external event and
updated a scope property within the event handler. Here is the code as an example for testing
that uses the on() method on the $window service listening for the oncanplay event and
updating scope.canPlay to true:

directive('wuTang', function($window) {
 return {
 restrict: 'A',
 link: function(scope, element) {
 scope.canPlay = false;
 angular.element($window).on('oncanplay', function() {
 scope.canPlay = true;
 });
 }
 };
})

www.it-ebooks.info

http://api.jquery.com/on/
https://docs.angularjs.org/api/ng/function/angular.element
http://www.it-ebooks.info/

Using Spies to Test Events

104

How to do it…
1.	 First, create a variable for scope and another for an AngularJS element:

var scope;
var element;

2.	 Next, ensure that you load your module:
beforeEach(module('chapter6'));

3.	 Write a beforeEach function to inject the necessary dependencies and create a
new scope instance:
beforeEach(inject(function ($rootScope, $compile) {
 scope = $rootScope.$new();
}));

4.	 Next, within the beforeEach function from step 3, add the following code to create
an AngularJS element providing the attribute directive HTML string:
 element = angular.element('<div wu-tang></div>');

5.	 Within the beforeEach function from step 3, compile the element providing our
scope object:
$compile(element)(scope);

6.	 Within the beforeEach function from step 3, call $digest on scope to simulate the
scope's life cycle:
scope.$digest();

7.	 Next, create a small helper function that dispatches an event:
function dispatchEvent(type) {
 var evt = document.createEvent('Event');
 evt.initEvent(type, true, true);
 window.dispatchEvent(evt);
}

8.	 Create a test to establish that the value assigned to the scope is equal to updates
based on a DOM event:
it('should respond to an event and update scope',
function() {});

9.	 Now, use the helper function from step 7 to dispatch a oncanplay event:
dispatchEvent('oncanplay');

10.	 Next, add an expectation that the scope.canPlay value is true:

expect(scope.canPlay).toBeTruthy();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

105

How it works…
There are only two steps that reproduce the behavior of the window dispatching an
oncanplay event, which our code should be listening for, and handling. Our little helper
function in step 7 enables us to easily use the window object to dispatch a custom event. Step
9 makes use of the helper function to create and dispatch an event of the oncanplay type.
Step 10 simply tests whether the scope value has been updated to true.

See also…
ff The Testing the handling of dispatched events recipe

Testing the handling of callbacks
There are many third-party JavaScript components available for integration into your AngularJS
application. Many will expose some sort of API that may include methods specific to events
related to the component. An example of such a component is the JW player (http://www.
jwplayer.com).

The JW player API has an onReady() method available that expects a callback as an
argument. I have come across many convoluted approaches to testing this scenario, including
intricate mocks and complex spies. In this recipe, I will show you how to test the callback
workflow that components such as JW player provide (hint: it's easier than you might think).

Getting ready…
Our primary goal is to test a third-party component that makes use of callbacks. The JW
player has been chosen for this recipe as it's a popular JS library with an extensive API
making use of callbacks. It would be great if you have a project that makes use of the JW
player. However, if you do not have such a project and want to get started with this recipe,
we can quickly create a factory service (https://docs.angularjs.org/api/auto/
service/$provide#factory) as shown here. We create a factory named jwplayer
that follows a rough imitation of how the JW player API can be targeted. The service returns
a single method called onReady that returns a provided callback:

factory('jwplayer', function() {
 return function() {
 return {
 onReady: function(callback) {
 return callback;
 }
 }
 };
})

www.it-ebooks.info

http://www.jwplayer.com
http://www.jwplayer.com
https://docs.angularjs.org/api/auto/service/$provide#factory
https://docs.angularjs.org/api/auto/service/$provide#factory
http://www.it-ebooks.info/

Using Spies to Test Events

106

Here is a directive called jwplayer that performs the following tasks:

ff Sets scope.ready initially to false

ff Instantiates a new instance of our jwplayer service

ff Provides a callback to the onReady method

ff Within the callback, updates scope.ready to true:

directive('jwplayer', function(jwplayer) {
 return {
 restrict: 'EA',
 link: function(scope, element) {
 scope.ready = false;

 jwplayer()
 .onReady(scope.readyHandler);

 scope.readyHandler = function() {
 scope.ready = true;
 }
 }
 };
})

How to do it…
1.	 First, create a variable for the scope and another for element:

var scope;
var element

2.	 Next, ensure that you load your module:
beforeEach(module('chapter6'));

3.	 Write a beforeEach function to inject the necessary dependencies and create a
new scope instance:
beforeEach(inject(function ($rootScope, $compile) {
 scope = $rootScope.$new();
}));

4.	 Within the beforeEach function from step 3, add the following code to create an
AngularJS element providing the directive HTML string:
 element = angular.element('<jwplayer></ jwplayer>');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

107

5.	 Within the beforeEach function from step 3, compile the element providing our
scope object:
$compile(element)(scope);

6.	 Next, within the beforeEach function from step 3, call $digest on the scope to
simulate the scope's life cycle:
scope.$digest();

7.	 Create a test to establish that the value assigned to the scope is updated:
it('should update scope within callback', function() {});

8.	 Next, call the readyHandler() method on the scope:
scope.readyHandler();

9.	 Add an expectation that the scope.playing function is true:

expect(scope.ready).toBeTruthy();

How it works…
The key to testing callbacks, such as this JW player example, is predictably not the test code.
It's how we approach the application code itself using a scope property for the callback
handler. This simple approach enables us to isolate the handler and facilitate testing. We
need not concern ourselves with the JW player, nor its API. We can trigger our callback within
the test as it's accessible on the scope object and this is exactly what we do in step 8.

Testing events using Protractor
To truly feel confident with your event-driven processes, you need to start testing within the
browser using the trusty Protractor. Protractor will help coax out those potential cross-browser
inconsistencies we have all grown to love and cherish. This recipe will guide you on testing
expected distinct UI changes based on interactive events, for example clicking specific
DOM elements.

Getting ready…
For this example, I have a directive that loads an HTML template. The template contains
a couple of button type input, which on click action, will create a style setting to fill using
specific colors, for example, ng-click="wuStyle={'fill':'red'}". Ensure that
you have Protractor installed and running. You also need to make sure that your project is
running on a local server so that Protractor can load the web page and run the application.
In this example, I use localhost port 8000, however, you can amend this according to your
development environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Spies to Test Events

108

How to do it…
1.	 Use the get method to load the page by passing the URL to the local development

server running our application:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention that the HTML element is displayed first:
it('should update the wu logo background color following
click events', function () {});

3.	 Select the logo using the ID as the selector:
var logo = $('#logo');

4.	 Add an expectation that the logo background initial fill is black:
expect(logo.getCssValue('fill')).toBe('rgb(0, 0, 0)');

5.	 Using the by.css() selector, find the input with a value of red and call the
click() method:
element(by.css('input[value=red]')).click();

6.	 Next, add an expectation that the logo background fill is now red:
expect(logo.getCssValue('fill')).toBe('rgb(255, 0, 0)');

7.	 Using the by.css() selector, find the input with a value of blue and call the
click() method:
element(by.css('input[value=blue]')).click();

8.	 Next, add an expectation that the logo background fill is now blue:

expect(logo.getCssValue('fill')).toBe('rgb(0, 0, 255)');

How it works…
In steps 3 and 6, we use the jQuery attribute equals selector (http://api.jquery.com/
attribute-equals-selector/) providing the attribute value of ng-show and an additional
CSS selector specific to the div tag we are targeting. Before we test our logic to hide the
element, we first ensure that it is displayed, which is demonstrated in step 4. Once we confirm
that it is actually displayed, we trigger the click event (http://api.jquery.com/click/)
on the button element in step 7.

See also…
ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

www.it-ebooks.info

http://api.jquery.com/attribute-equals-selector/
http://api.jquery.com/attribute-equals-selector/
http://api.jquery.com/click/
http://www.it-ebooks.info/

109

7
Testing Filters

In this chapter, you will learn the following recipes:

ff Testing a filter that formats a number as text

ff Testing a filter that formats seconds to a time string

ff Using Protractor to test filter changes based on input

ff Using Protractor to test filter changes based on events

Introduction
Filters are used to format input data and output the result to be displayed to the user. Filters
are easily integrated into an AngularJS application via view templates or within controllers,
services, and so on. AngularJS provides the $filter service (https://docs.angularjs.
org/api/ng/service/$filter) that uses the $filterProvider API (https://docs.
angularjs.org/api/ng/provider/$filterProvider) and executes a filter when the
input changes. The typical expectation, we can assume, for the use of filters is to format some
information into either an easy-to-comprehend presentation of the data, or a recognized (or
potentially approved) representation. Therefore, testing whether a filter functions as expected
is crucial to your application. Incorrect formatting can lead to confusing or inaccurate
representation of your data within the UI. Testing filters focuses on input and output, thus
keeps test logic simple and fairly standard across most filters you'll encounter. This chapter
will give you direction on getting started with testing filters, both as standalone unit tests and
as integrated end-to-end tests using Protractor.

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/$filter
https://docs.angularjs.org/api/ng/service/$filter
https://docs.angularjs.org/api/ng/provider/$filterProvider
https://docs.angularjs.org/api/ng/provider/$filterProvider
http://www.it-ebooks.info/

Testing Filters

110

Testing a filter that formats a number as
text

In this recipe, you will learn how to test a filter that returns the value of a number rounded to
the nearest integer. This recipe will demonstrate how effortlessly you can test a filter based on
input and filtered output.

Getting ready
You can adapt this recipe and use the number filter AngularJS provides (https://docs.
angularjs.org/api/ng/filter/number) or you can use the custom filter I provided
based on the example that Mozilla provides at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math/round.

Following are the steps for this recipe's example:

1.	 Register a filter named decimalAdjust with your application module:
.filter('decimalAdjust', function() {
});

2.	 Next, within the function from step 1, write a function that expects the type of
adjustment, the number, and the exponent:
return function(type, value, exp) {};

3.	 Finally, write the logic within the function from step 2 that adjusts and returns
the value:

// If the exp is undefined or zero...
if (typeof exp === 'undefined' || +exp === 0) {
 return Math[type](value);
}
value = +value;
exp = +exp;
// If the value is not a number or the exp is not an
integer...
if (isNaN(value) || !(typeof exp === 'number' && exp % 1 === 0)) {
 return NaN;
}
// Shift
value = value.toString().split('e');
value = Math[type](+(value[0] + 'e' + (value[1] ?
(+value[1] - exp) : -exp)));
// Shift back

www.it-ebooks.info

https://docs.angularjs.org/api/ng/filter/number
https://docs.angularjs.org/api/ng/filter/number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
http://www.it-ebooks.info/

Chapter 7

111

value = value.toString().split('e');
return +(value[0] + 'e' + (value[1] ? (+value[1] + exp) :
exp));

Also ensure that you've loaded your module, for example:

beforeEach(module('chapter7'));

How to do it…
1.	 First, create a variable for the filter we are testing:

var decimalAdjustFilter;

2.	 Next, write a beforeEach function to inject the $filter service and retrieve our
filter function assigning it to the variable created in step 1:
beforeEach(inject(function ($filter) {
 decimalAdjustFilter = $filter('decimalAdjust');
}));

3.	 Create a test to establish that our filter works as expected:
it('should adjust decimal correctly using round',
function() {});

4.	 Finally, within the test created in step 3, add an expectation that the number our filter
function returns matches the value we provided:

expect(decimalAdjustFilter('round', 55.55, -1)).toBe(55.6);

How it works…
As you can see, testing filters is not a complicated process. In step 2, we gain access to our
filter using the $filter service providing our filter name (decimalAdjust) as the sole
argument. In step 4, we call and provide the filter with the obligatory arguments and use the
toBe matcher to determine test success or failure.

See also
ff The Testing a filter that formats seconds to a time string recipe

ff The Using Protractor to test filter changes based on events recipe

ff The Using Protractor to test filter changes based on input recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Filters

112

Testing a filter that formats seconds to a
time string

In this recipe, you will learn how to test a filter that accepts input of a number and outputs
a string. The numeric input for this example is a time value in seconds and is formatted to a
time string, HH:MM:SS.

Getting ready
Here is an example filter that converts seconds into time-based text that you can use as a
reference for this recipe:

1.	 First, register a filter named secondsToTime with your application module:
.filter('secondsToTime', function() {
});

2.	 Next, within the function from step 1, write a function that expects the seconds value
as an argument:
return function(value) {};

3.	 Finally, write the logic within the function from step 2 that calculates and returns a
formatted time string:

var seconds = Math.floor(value % 60).toString();
var minutes = Math.floor(value / 60 % 60).toString();
var hours = Math.floor(value / 60 / 60 % 24).toString();
function pad(t) {
 if (t && t.length < 2) {
 return '0' + t;
 }
 return t;
}
return pad(hours > 0 ? hours.concat(':') :
'').concat(pad(minutes), ':', pad(seconds));

Also ensure you've loaded your module, for example:

beforeEach(module('chapter7'));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

113

How to do it…
1.	 First, create a variable for the filter we are testing:

var secondsToTimeFilter;

2.	 Next, write a beforeEach function to inject the $filter service and retrieve our
filter function assigning it to the variable created in step 1:
beforeEach(inject(function ($filter) {
 secondsToTimeFilter = $filter('secondsToTime');
}));

3.	 Now, create a test to establish that our filter works as expected:
it('should return a time formatted string (seconds)',
function() {});

4.	 Finally, within the test created in step 3, add an expectation that the string our filter
function returns matches the value we provided:

expect(secondsToTimeFilter(1)).toBe('00:01');

How it works…
As mentioned in the introduction to this chapter, the logic to testing filters is fairly consistent.
In step 2, we gain access to our filter using the $filter service providing secondsToTime
as the solitary argument. In step 4, we provide the filter with the seconds value and use the
toBe matcher to determine whether the test succeeds or fails by returning the formatted
time string.

There's more…
Based on the preceding example, we can easily test minutes and hours; here is the code that
can be added to achieve results in seconds or minutes:

ff Minutes: expect(secondsToTimeFilter(103)).toBe('01:43');

ff Hours: expect(secondsToTimeFilter(9504)).toBe('2:38:24');

See also
ff The Testing a filter that formats a number as text recipe

ff The Using Protractor to test filter changes based on events recipe

ff The Using Protractor to test filter changes based on input recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Filters

114

Using Protractor to test filter changes based
on input

This recipe will show you how to use Protractor to test data that is filtered following user input.
First, we will simulate entering data into an input field and then click the button to filter the
value.

Getting ready
In this example, you need to have an input field to enter a decimal number that will be
rounded by our filter. The filter needs to by applied based on a user action, for example when
a button is clicked. We use the Testing a filter that formats a number as text recipe's example
code to test within this recipe.

Ensure that you have Protractor installed and running and if you need guidance on setting up
Protractor, please read the Installing Protractor recipe in Chapter 1, Setup and Configuration.
Please update your URL and port based on your configuration.

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL,

that is, our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention that the HTML displays the correct
decimal value:
 it('should display the correct decimal value', function
 () {});

3.	 Find the filter button, by text using the buttonText method:
var button = element(by.buttonText('Filter'));

4.	 Next, find the decimal input text field:
var decimalText = element(by.model('decimal'));

5.	 Clear the text field:
decimalText.clear();

6.	 Now, populate the text field with a decimal:
decimalText.sendKeys('55.55');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

115

7.	 Next, call the click() method on the button element:
button.click();

8.	 Finally, add an expectation that the text field has been updated to reflect the
formatted number:

expect(decimalText.getAttribute('value')).toBe('55.6');

How it works…
In step 3, we use the buttonText locator (http://angular.github.io/
protractor/#/api?view=ProtractorBy.prototype.buttonText) to find the
filter button. In step 4, we use the model locator (http://angular.github.io/
protractor/#/api?view=ProtractorBy.prototype.model) to find the text
input element. In step 5, we ensure that the text field is empty by using the clear method
(http://angular.github.io/protractor/#/api?view=webdriver.WebElement.
prototype.clear) prior to step 6 where we type a sequence of keys into the input
field using the sendKeys method (http://angular.github.io/protractor/#/
api?view=webdriver.WebElement.prototype.sendKeys). In step 7, we use the
click method (http://angular.github.io/protractor/#/api?view=webdriver.
WebElement.prototype.click) on our button element to filter the input from step 6.

See also
ff The Testing a filter that formats a number as text recipe

ff The Testing a filter that formats seconds to a time string recipe

ff The Using Protractor to test filter changes based on events recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

Using Protractor to test filter changes based
on events

In this recipe, we'll test the output of a filter from repeatedly executed code using the
setInterval method. The setInterval method is started and stopped by a user action
(button click). The filter function will take numeric seconds as input and output a time string
that we will test to check whether it matches the expected format. A few use case examples
for this logic come to my mind, for example, a video playback time event or a stopwatch. For
this example, I will take the stopwatch scenario.

www.it-ebooks.info

http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.buttonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.buttonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.model
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.model
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.clear
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.clear
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.sendKeys)
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.sendKeys)
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.click
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.click
http://www.it-ebooks.info/

Testing Filters

116

Getting ready
Seeing as there's a little more overhead to the application setup I will provide the example
code to get you up and running quicker:

1.	 First, register a directive that injects the secondsToTimeFilter filter we used in
the Testing a filter that formats seconds to a time string recipe's example:
.directive('stopWatch', function(secondsToTimeFilter) {
 return {
 require: 'ngModel',
 link: function(scope) {}
 };
});

2.	 Within the link function from step 2, use the following logic that starts and stops our
stopwatch:
var timerInterval;
var timerOffset;

scope.timer = {
 current: 0,
 running: false
};

scope.start = function() {
 timerOffset = Date.now();
 timerInterval = setInterval(scope.update, 10);
};

scope.update = function() {
 scope.timer.current += scope.delta();
 scope.$digest();
};

scope.stop = function() {
 clearInterval(timerInterval);
};

scope.delta = function() {
 var now = Date.now();
 var delta = now - timerOffset;
 timerOffset = now;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

117

 return delta;
};

// Listeners
scope.onStartTimer = function() {
 scope.timer.running = !scope.timer.running;
 if (scope.timer.running) {
 scope.start();
 } else {
 scope.stop();
 }
};

scope.onResetTimer = function() {
 scope.timer.current = 0;
};

3.	 Next, add the following HTML making use of our stop-watch directive as an
attribute, a span tag to display the formatted string, and buttons to start/stop and
reset the stopwatch:

<div stop-watch ng-model="timer">
 {{timer.current | secondsToTime}}
 <button ng-click="onStartTimer()">{{!timer.running &&
'Start' || 'Stop'}}</button>
 <button ng-click="onResetTimer()">Reset</button>
</div>

Ensure that you have Protractor installed and running, and if you need guidance on
setting up Protractor, please read the Installing Protractor recipe in Chapter 1, Setup
and Configuration. Please update your URL and port based on your configuration.

How to do it…
1.	 Firstly, we need to ensure that Protractor navigates our browser to the correct URL,

that is, our local server and port:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention that the HTML displays the correct
formatted time:
 it('should display the correct time format', function ()
 {});

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Filters

118

3.	 Find the start/stop button, using the buttonText method:
var button = element(by.partialButtonText('St'));

4.	 Find the element displaying the time using the binding method:
var timeText = element(by.binding('timer.current'));

5.	 Now, start the stopwatch calling the click() method on the button element:
button.click();

6.	 Stop the stopwatch calling the click() method on the button element:
button.click();

7.	 Finally, add an expectation that the timeText text displayed has the correct format
using a regular expression:

expect(timeText.getText()).toMatch(/^([01]?[0-9]|2[0-
3]):[0-5][0-9]$/);

How it works…
Due to the stopwatch button toggling its label between start and stop, to find that
particular button element we need to use the partialButtonText locator (http://
angular.github.io/protractor/#/api?view=ProtractorBy.prototype.
partialButtonText), as shown in step 3. In step 4, we use the binding locator (http://
angular.github.io/protractor/#/api?view=ProtractorBy.prototype.
binding) to find the element that will display the formatted time. In step 5 and step 6, we
use the click() method to start and stop the stopwatch. Finally, we use a regular expression
(credits to http://www.mkyong.com/regular-expressions/how-to-validate-
time-in-24-hours-format-with-regular-expression) as a matcher to ensure that
the text displays the correctly formatted time string.

See also
ff The Testing a filter that formats a number as text recipe

ff The Testing a filter that formats seconds to a time string recipe

ff The Using Protractor to test filter changes based on input recipe

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

www.it-ebooks.info

http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.partialButtonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.partialButtonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.partialButtonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.binding
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.binding
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.binding
http://www.mkyong.com/regular-expressions/how-to-validate-time-in-24-hours-format-with-regular-expression
http://www.mkyong.com/regular-expressions/how-to-validate-time-in-24-hours-format-with-regular-expression
http://www.it-ebooks.info/

119

8
Service and Factory
Testing with Mocks

and Spies

In this chapter, you will learn the following recipes:

ff Getting started with testing a service

ff Testing HTTP GET requests using $httpBackend

ff Testing HTTP POST requests using $httpBackend

ff Using spies to test HTTP GET requests

ff Using spies to test HTTP POST requests

ff Testing service data using mock helpers

ff Testing rejected $http promises

ff Testing constants

ff Using Protractor to test HTTP requests

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

120

Introduction
Services (https://docs.angularjs.org/guide/services) are typically used to
assemble and transmit data throughout your application. They may be used to compute values
or form a communication channel with external resources, requesting data and dispatching
the responses back into the application. Services are singleton objects and are relatively easy
to test due to their segregation from core application logic. AngularJS is a popular choice when
developing client-side applications that are rich in data. These applications are not concerned
with storing large record sets of data and are commonly known to query RESTful APIs for data
(http://en.wikipedia.org/wiki/Representational_state_transfer). Whether
you're using a value, factory, or a service (further clarification on the definitions for these
can be found at http://stackoverflow.com/a/15666049), you'll find that testing of
computed data is covered elsewhere in this book.

In this chapter, we will primarily concentrate on testing services that generate HTTP requests
using the $http service (https://docs.angularjs.org/api/ng/service/$http).
This chapter will demonstrate various approaches to testing the $http service, both with
spies and the $httpBackend service (https://docs.angularjs.org/api/ngMock/
service/$httpBackend). As you work through this chapter (and the book) you'll begin to
notice repetition in the test specs. The API for Jasmine is not vast and there are repeated
patterns to configure AngularJS within your test suite. This will become even more evident in
this chapter as you work through each recipe, requiring only minor tweaks in implementation
to resolve test expectations.

This chapter will use the $httpBackend service to test GET and POST requests. Services,
as with many other aspects of AngularJS applications, can be approached in a variety of ways
based on developers' preferences and coding techniques. The majority of recipes in this
chapter concentrate on the testing of the request within a service and try to avoid focusing
too much on how the request is invoked. We will test rejected promises, a constant service,
and how to extend Jasmine to mock data facilitating reuse throughout test specs. This chapter
focuses on GET and POST requests; once you've nailed the specifics for these methods,
testing various other methods will be a cinch.

Getting started with testing a service
In this recipe, we'll simply test a service that exposes an API method as expected. Then,
throughout the rest of this chapter, we will build on this foundation to start testing logic
within the actual service itself.

www.it-ebooks.info

https://docs.angularjs.org/guide/services
http://en.wikipedia.org/wiki/Representational_state_transfer
http://stackoverflow.com/a/15666049
https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/api/ngMock/service/$httpBackend
https://docs.angularjs.org/api/ngMock/service/$httpBackend
http://www.it-ebooks.info/

Chapter 8

121

Getting ready
All that is required for this recipe is a straightforward service with a method, which we will
verify is defined. For this recipe, I have a service named emcees and a method named
getUKEmcees:

.service('emcees', function() {
 return {
 getUKEmcees: function() {}
 };
});

Also, ensure that you've loaded your module:

beforeEach(module('chapter8'));

How to do it…
Follow these steps to determine whether a service API method named getUKEmcees
is defined:

1.	 First, create a variable for the service we are testing:
var emcees;

2.	 Next, write a beforeEach function to inject the $injector service and retrieve
our service, assigning it to the variable created in step 1:
beforeEach(inject(function($injector) {
 emcees = $injector.get('emcees');
}));

3.	 Now, create a test to demonstrate that our service is accessible and exposes a
method:
it('should have a method defined', function() {});

4.	 Finally, within the test created in step 3, add an expectation that the getUKEmcees
service method is defined:

expect(emcees.getUKEmcees).toBeDefined();

How it works…
Using the $injector service's get method in step 2, we inject our emcees service and
assign it to a variable for reuse throughout the rest of the spec. In step 4, we simply provide
the expect function with a reference to the getUKEmcees method expecting it to be defined
in our emcees service. This is a modest example that serves as a basis to start testing the API
that your service exposes.

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

122

See also
ff The Testing HTTP GET requests using $httpBackend recipe

ff The Testing HTTP POST requests using $httpBackend recipe

ff The Using spies to test HTTP GET requests recipe

ff The Using spies to test HTTP POST requests recipe

ff The Testing service data using mock helpers recipe

ff The Testing rejected $http promises recipe

Testing HTTP GET requests using
$httpBackend

This recipe will demonstrate how to use the $httpBackend service to test whether an HTTP
GET request is made when a method exposed by a service is invoked. You'll learn how to inject
and use the $httpBackend service to return custom responses from a GET request. This
serves as a basis that you can expand on to test how your services handle different types of
data responses.

Getting ready
For this recipe, a service is required with a method exposed that, when called, makes an HTTP
GET request. For this recipe, I use an example service named emcees and a method named
getUKEmcees. The service makes use of the $http service's get() method (https://
docs.angularjs.org/api/ng/service/$http#get) that returns a promise with two
methods specific to $http: success and error, as shown in the following code:

.service('emcees', function($http) {
 return {
 getUKEmcees: function() {
 return $http.get('/emcees/uk');
 }
 };
});

Also, ensure that you've loaded your module; consider the following example:

beforeEach(module('chapter8'));

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/$http#get
https://docs.angularjs.org/api/ng/service/$http#get
http://www.it-ebooks.info/

Chapter 8

123

How to do it…
Follow these steps to test whether our service makes the HTTP GET request:

1.	 Create three variables, one for the service we are testing, another for the
$httpBackend service, and the last for a reference to a URL that we will use
throughout the recipe:
 var emcees;
 var $httpBackend;
 var url;

2.	 Next, write a beforeEach function to inject the $injector, and retrieve and assign
our services to the variables created in step 1. Also, define a URL to test the service:
beforeEach(inject(function($injector) {
 emcees = $injector.get('emcees');
 $httpBackend = $injector.get('$httpBackend');
 url = '/emcees/uk';
}));

3.	 Next, within the beforeEach function in step 2, use the $httpBackend service to
respond to HTTP GET with some mock data:
 $httpBackend.when('GET', url).respond({
 data: ['kamanchi-sly', 'el-eye', 'rola']
 });

4.	 Write an afterEach function calling the relevant methods to verify that all HTTP
requests were made and there are none to be flushed:
afterEach(function() {
 $httpBackend.verifyNoOutstandingExpectation();
 $httpBackend.verifyNoOutstandingRequest();
});

5.	 Create a test such that our service makes a GET request:
it('should make a GET request', function() {});

6.	 Create a new request expectation for a GET request providing the URL we defined in
step 2:
$httpBackend.expectGET(url);

7.	 Next, call the getUKEmcees method on our service:
emcees.getUKEmcees();

8.	 Finally, flush all pending requests:

$httpBackend.flush();

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

124

How it works…
In step 3, we specified a backend definition using the when method on the $httpBackend
service. The when method expects an HTTP method as its first argument; we provide a value
of GET and then the URL defined in step 2 as the method's second argument. The when
method returns an object with a respond method allowing us to control how to handle the
matched request. Finally, in step 3, we respond with some mock data to replace what we
would expect from a real server response.

In step 4, the afterEach function verifies that all HTTP requests were made and there
are none to be flushed. This is a great additional coverage to ensure that stipulated HTTP
expectations are fulfilled and will fail tests accordingly. The expectGET method in step 6
creates a new request expectation for GET requests. We provide the URL defined in step 2 and
the expectation will return true if the URL matches the current definition.

Step 8 is the final key move where we make use of the flush method, a pitfall newcomers
to AngularJS can encounter. This wondrous method enables us to have the best of both the
asynchronous and synchronous worlds by explicitly flushing pending requests.

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP POST requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP GET requests recipe

ff The Using spies to test HTTP POST requests recipe

ff The Testing service data using mock helpers recipe

ff The Test rejected $http promises recipe

Testing HTTP POST requests using
$httpBackend

This recipe will demonstrate how to use $httpBackend to test whether an HTTP POST
request is made when a method exposed by a service is invoked. You will learn how to create
a new backend definition for a POST request validating that the correct URL and POST data is
passed to the service method and mock a response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

125

Getting ready
For this recipe, a service is required with a method exposed that, when called, makes an
HTTP POST request. Here, I use an example service named emcees and a method named
addUKEmcee:

.service('emcees', function($http) {
 return {
 addUKEmcee: function(emcee) {
 return $http.post('/emcees/uk', emcee);
 }
 };
});

Also, ensure that you've loaded your module; consider the following example:

beforeEach(module('chapter8'));

How to do it…
1.	 First, create three variables, one for the service we are testing, another for the

$httpBackend service, and the last for a reference to a URL that we will use
throughout the recipe:
 var emcees;
 var $httpBackend;
 var url;

2.	 Next, write a beforeEach function to inject the $injector service, retrieve and
assign our services to the variables created in step 1. Also, define a URL to test
the service:
beforeEach(inject(function ($injector) {
 emcees = $injector.get('emcees');
 $httpBackend = $injector.get('$httpBackend');
 url = '/emcees/uk';
}));

3.	 Write an afterEach function calling the relevant methods to verify that all HTTP
requests were made and there are none to be flushed:
afterEach(function() {
 $httpBackend.verifyNoOutstandingExpectation();
 $httpBackend.verifyNoOutstandingRequest();
});

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

126

4.	 Create a test such that our service makes a POST request:
it('should make a POST request', function() {});

5.	 Create a dummy object to be sent as part of the POST request:
var emcee = {
 'name': 'ids'
};

6.	 Next, create a new backend definition for a POST request with a simple response of a
201 HTTP status:
$httpBackend.expectPOST(url, emcee).respond(201, '');

7.	 Call the addUKEmcee method on our service providing the emcee object from step 5:
emcees.addUKEmcee(emcee);

8.	 Finally, flush all pending requests:

$httpBackend.flush();

How it works…
The Testing HTTP GET requests using $httpBackend recipe in this chapter explains some of
the fundamental logic involved in using the mock HTTP backend implantation. When testing
a POST as opposed to a GET request, we also need to provide data in the request message's
body, data that we mock in step 5.

In step 6, we use the mock data as the second argument when we create a new backend
definition for the POST request. We respond with an HTTP status code of 201 (http://www.
w3.org/Protocols/rfc2616/rfc2616-sec10.html) to replace what we would expect
from a real server response. The expectation will return true if both the URL and the
data matches.

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP GET requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP GET requests recipe in this chapter

ff The Using spies to test HTTP POST requests recipe in this chapter

ff The Testing service data using mock helpers recipe in this chapter

ff The Testing rejected $http promises recipe in this chapter

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

Chapter 8

127

Using spies to test HTTP GET requests
We have made great use of spies throughout this book, and the fun continues while testing
services. Spies serve as a great way to easily test HTTP requests, and using spies to test
services also maintains consistency in your overall application testing.

The aim of this recipe is to demonstrate how to mock the $http service and test whether
a GET method was made with a spy.

Getting ready
For this recipe, a service is required with a method exposed that, when called, makes an
HTTP GET request. Here, I use an example service named emcees and a method named
getUKEmcees:

.service('emcees', function($http) {
 return {
 getUKEmcees: function() {
 return $http.get('/emcees/uk');
 }
 };
});

Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter8'));

How to do it…
Follow the following steps to test whether a GET request is made using spies:

1.	 Create a variable for the service we are testing:
 var emcees;

 var httpMock;

2.	 Next, write a beforeEach function to load our mock module and inject the
$provide service in an initialization function:
beforeEach(module('cookbook', function($provide) {}));

3.	 Within the initialization function, create a new spy object providing the $http service
as the object name to mock and the get method that will be created as a spy:
httpMock = jasmine.createSpyObj('$http', ['get']);

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

128

4.	 Next, use the $provide service to register our newly created spy object with the
$http service:
$provide.value('$http', httpMock);

5.	 Write a beforeEach function to inject the $injector service and retrieve our
service, assigning it to the variable created in step 1:
beforeEach(inject(function($injector) {
 emcees = $injector.get('emcees');
 }));

6.	 Next, create a test such that our service makes a GET request:
it('should make a GET request', function() {});

7.	 Call the getUKEmcees method on our service:
emcees.getUKEmcees();

8.	 Finally, create an expectation so that our spy GET method is called:

expect(httpMock.get).toHaveBeenCalled();

How it works…
The overall aim is to mock the $http service, entirely replacing the dependency on
making an actual request. In step 3, the $http service mock is created using the Jasmine
createSpyObj object and we then use the $provide service to register it with the injector
in step 4.

To spy on a method on the mock object, we pass an array to createSpyObj with the name of
the method, for example GET. In step 7, we call our getUKEmcees method on our service on
which we expect to make a GET request. Step 8 confirms that this in an expectation asserting
that our $http service mock had its GET method called.

There's more…
We can be more explicit about this request and ensure that the correct URL was requested.
The following example uses the toHaveBeenCalledWith matcher that will return true if
the argument provided to the get() method matches our expected URL /emcees/uk:

expect(httpMock.get).toHaveBeenCalledWith('/emcees/uk');

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP GET requests using $httpBackend recipe in this chapter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

129

ff The Testing HTTP POST requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP POST requests recipe in this chapter

ff The Testing service data using mock helpers recipe in this chapter

ff The Testing rejected $http promises recipe in this chapter

ff The Mocking injected instances using spies recipe in Chapter 2, Getting Started with
Testing and AngularJS

Using spies to test HTTP POST requests
You will notice that spies are incredibly diverse and the simplicity of their implementation
makes them a favorable choice when testing services. In this recipe, I will show you how to
mock an $http service and test whether a POST method was made using a spy. You will
also learn how to confirm that the data supplied is correct for the POST request using the
toHaveBeenCalledWith method.

Getting ready
For this recipe, a service is required with a method exposed that, when called, makes an
HTTP POST request. Here, I use an example service named emcees and a method named
addUKEmcee:

.service('emcees', function($http) {
 return {
 addUKEmcee: function(emcee) {
 return $http.post('/emcees/uk', emcee);
 }
 };
});

Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter8'));

How to do it…
1.	 Create three variables, one for the service we are testing, another for the HTTP mock,

and the last for a reference to a URL that we will use throughout the recipe
 var emcees;
 var httpMock;
 var url;

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

130

2.	 Next, write a beforeEach function to load our mock module and inject the
$provide service in an initialization function:
beforeEach(module('cookbook', function($provide) {}));

3.	 Now, within the initialization function, create a new spy object providing the $http
service as the object name to mock and the GET method that will be created as a spy:
httpMock = jasmine.createSpyObj('$http', ['post']);

4.	 Use the $provide service to register our newly created spy object with the $http
service:
$provide.value('$http', httpMock);

5.	 Write a beforeEach function to inject the $injector service and retrieve and
assign our services to the variables created in step 1. Also, define a URL to test the
service:
beforeEach(inject(function ($injector) {
 emcees = $injector.get('emcees');
 url = '/emcees/uk';
}));

6.	 Next, create a test such that our service makes a POST request:
it('should make a POST request', function() {});

7.	 Create a dummy object to be sent as part of the POST request:
var emcee = {
 'name': 'alkaline'
};

8.	 Call the addUKEmcee method on our service providing the emcee object from step 5:
emcees.addUKEmcee(emcee);

9.	 Finally, create an expectation so that our spy post method is called:

expect(httpMock.post).toHaveBeenCalled();

How it works…
We mock the $http service in step 3 using the Jasmine createSpyObj method and spy on
the post method. In step 4, we use the $provide service to register it with the injector. The
data supplied to the POST request is created in, and sent as an argument for our service
addUKEmcee method. Finally, in step 8, we confirm that our $http service mock had its
POST method called.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

131

There's more…
In this recipe, we supply an object to our service method, which is then sent as part of the
POST request. Here, you will see how to confirm that the data supplied to the POST request is
as expected:

1.	 Create a test such that our service makes a POST request with the correct data:
it('should make a POST request with correct data',
function() {});

2.	 Next, create a dummy object to be sent as part of the POST request:
var emcee = {
 'name': 'tlp'
};

3.	 Next, call the addUKEmcee method on our service providing the emcee object from
step 5 in the preceding recipe:
emcees.addUKEmcee(emcee);

4.	 Finally, create an expectation that our spy POST method was called with the expected
URL and emcee data:

expect(httpMock.post).toHaveBeenCalledWith(url, emcee);

Now that you know how to test the data sent in a request, you can modify and adapt this for
services that transform data prior to a request.

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP GET requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP GET requests recipe in this chapter

ff The Testing service data using mock helpers recipe in this chapter

ff The Testing rejected $http promises recipe in this chapter

ff The Mocking injected instances using an object recipe in Chapter 2, Getting Started
with Testing and AngularJS

ff The Mocking injected instances using spies recipe in Chapter 2, Getting Started with
Testing and AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

132

Testing service data using mock helpers
The Using spies to test HTTP POST requests recipe uses a mock data object to be sent along
with the POST request. However, it's quite feasible that your application may repeatedly use
specific objects in different locations, for example, sending within HTTP requests, or using as
mock responses, and so on.

This can result in you mocking out the same (or similar) objects in multiple test files. There
are different approaches that you can take to overcome this issue. In this recipe, you will see
how to DRY (http://en.wikipedia.org/wiki/Don%27t_repeat_yourself) up some
of your test code in the Getting ready section and then how to use this mock data in a test.
In this recipe, you will also learn how to resolve a promise returned by the $http service,
ensuring that the response data is set on our service object.

Getting ready
1.	 First, a service is required with a method exposed that, when called, makes an

HTTP GET request. For this recipe, I use an example service named emcees and a
method named getUKEmcee that requests an emcee using an id paramter. The GET
response is then assigned to a property named emcee on the emcees service API:
.service('emcees', function($http) {
 return {
 emcee: {},
 getUKEmcee: function(id) {
 var that = this;
 return $http.get('/emcees/uk/' + id)
 .then(function(response) {
 that.emcee = response;
 });
 }
 };
});

2.	 Next, let's create our mock data file that we will use within this recipe test:

�� First, create a file named mockData.js in the same directory as your test
specs

�� Next, within the file, add a new property to the Jasmine object named
mockData:
jasmine.mockData = (typeof jasmine.mockData ===
'undefined') ? {} : jasmine.mockData;

www.it-ebooks.info

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://www.it-ebooks.info/

Chapter 8

133

�� Now, add a method named emcee to the mockdata object that returns
some fake data that we will use in our test:

jasmine.mockData.emcee = function() {
 return {
 "name": "Spye",
 "crew": "Undivided Attention",
 "label": "Hairy Parents"
 };
};

3.	 Ensure that you've loaded your module, for example:

beforeEach(module('chapter8'));

How to do it…
1.	 Create variables that will be used throughout this test:

 var emcees;
 var httpMock;
 var $q;
 var $scope;

2.	 Next, write a beforeEach function to load our mock module and inject the
$provide service in an initialization function:
beforeEach(module('cookbook', function($provide) {}));

3.	 Within the initialization function, create a new spy object providing the $http service
as the object name to mock and the get method that will be created as a spy:
httpMock = jasmine.createSpyObj('$http', ['get']);

4.	 Next, use the $provide service to register our newly created spy object with the
$http service:
$provide.value('$http', httpMock);

5.	 Now, write a beforeEach function to inject the $injector service and retrieve
our service, assigning it to the variable created in step 1. Also, within this function,
retrieve references to the $q service and create a new $scope object:
beforeEach(inject(function ($injector) {
 	 emcees = $injector.get('emcees');
	 $q = $injector.get('$q');
 	 $scope = $injector.get('$rootScope').$new();
 }));

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

134

6.	 Create a test to demonstrate that our service is accessible and exposes a method:
it('should store the response from the HTTP GET request',
function() {});

7.	 Create a reference to the promise instance by calling defer on the $q service:
var defer = $q.defer();

8.	 Next, create a local variable populated using the emcee method on the mockData
object:
var emcee = jasmine.mockData.emcee();

9.	 Resolve our promise with the mock data from step 8:
defer.resolve(emcee);

10.	 Using the spy that we created in step 3, chain the spy with and.returnValue to
return the promise instance:
httpMock.get.and.returnValue(defer.promise);

11.	 Next, call the getUKEmcee method on our service providing a value:
emcees.getUKEmcee('1');

12.	 Use $scope.$digest to process all the watchers:
$scope.$digest();

13.	 Finally, within the test created in step 6, add an expectation that the emcee object
stored in our emcees service returns a value matching our mock data from step 8:

expect(emcees.emcee.name).toBe(emcee.name);

How it works…
Please refer to the Using spies to test HTTP GET requests recipe in this chapter, which
explains the spy-related logic within this recipe. We started off with this recipe's Getting ready
section by creating our mock data. In step 8, you can see how easily we reference that data
using the global Jasmine object. The $http service returns a promise, and on a successful
response, assigns the data to an object in our service.

We need that promise to resolve, which involves first grabbing a reference to the promise
instance in step 7 and then resolving it with the mock data in step 9. In step 10, we stipulate
that our spy method should return a specific value, which is our promise.

After progressing through calling our service and ensuring all watchers are processed in steps
11 and 12, we can then match the mock response against the service object data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

135

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP GET requests using $httpBackend recipe in this chapter

ff The Testing HTTP POST requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP GET requests recipe in this chapter

ff The Using spies to test HTTP POST requests recipe in this chapter

ff The Testing rejected $http promises recipe in this chapter

ff The Mocking injected instances using spies recipe in Chapter 2, Getting Started with
Testing and AngularJS

Testing rejected $http promises
In this recipe, we will address the unfortunate occurrence of an HTTP request returning an
error. AngularJS uses promises (https://docs.angularjs.org/api/ng/service/$q),
which offer a single point to handle errors that may arise from an HTTP request. The promise
error handler, based on your application preference, can handle the error accordingly.

For example, you may want to dispatch an event with the error message or throw an actual
JavaScript Error (https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Error) that your application consumes and handles. For
this recipe, I will choose the latter and reject a promise and then throw an error. We'll write a
test to ensure that an error is thrown when our HTTP GET request is rejected.

Getting ready
A service is required with a method exposed that, when called, makes an HTTP GET request.
For this recipe, I use an example service named emcees and a method named getUKEmcee
that requests an emcee using an id value. Using the catch method on the promise API,
we pass the error provided by the callback to throw an error:

.service('emcees', function($http) {
 return {
 getUKEmcee: function(id) {
 return $http.get('/emcees/uk/' + id)
 .catch(function(error) {
 throw Error(error);
 });
 }
 };
});

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/$q
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

136

Ensure that you've loaded your module, for example:

beforeEach(module('chapter8'));

How to do it…
1.	 First, create a variable for the service we are testing:

 var emcees;
 var httpMock;
 var $q;
 var $scope;

2.	 Next, write a beforeEach function to load our mock module and inject the
$provide service in an initialization function:
beforeEach(module('cookbook', function($provide) {}));

3.	 Within the initialization function, create a new spy object providing the $http service
as the object name to mock and the get method that will be created as a spy:
httpMock = jasmine.createSpyObj('$http', ['get']);

4.	 Next, use the $provide service to register our newly created spy object with the
$http service:
$provide.value('$http', httpMock);

5.	 Now, write a beforeEach function to inject the $injector service and retrieve
our service, assigning it to the variable created in step 1. Also, within this function,
retrieve references to the $q service and create a new $scope object:
beforeEach(inject(function ($injector) {
 emcees = $injector.get('emcees');
 $q = $injector.get('$q');
 $scope = $injector.get('$rootScope').$new();
}));

6.	 Create a test to demonstrate that our service is accessible and exposes a method:
it('should throw an error', function() {});

7.	 Create a reference to the promise instance by calling defer on the $q service:
var defer = $q.defer();

8.	 Create an error message string:
var errorMsg = 'Unauthorized';

9.	 Now, reject our promise with the error message from step 8:
defer.reject(errorMsg);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

137

10.	 Using the spy we created in step 3, chain the spy with and.returnValue to return
the promise instance:
httpMock.get.and.returnValue(defer.promise);

11.	 Next, provide an anonymous function as a value for the expect function and use the
toThrowError matcher expecting our error message:
expect(function() {}).toThrowError(errorMsg);

12.	 Call the getUKEmcee method on our service providing a value:
emcees.getUKEmcee('1');

13.	 Finally, use $scope.$digest to process all the watchers:

$scope.$digest();

How it works…
Please refer to the Using spies to test HTTP GET requests recipe, which explains the spy-
related logic within this recipe. In step 7, we grab a reference to the promise that we reject
in step 9 providing an error message defined in step 8. To test throwing errors using the
toThrowError method from Jasmine, we need to provide the expect function with an
anonymous function as seen in step 11. In steps 12 and 13, we add to the function and call
our service method and ensure that all watchers are processed.

There's more…
If throwing an error within a catch handler in your application is not your preference, you can
remove the catch() method in your service and then update the function we used in the
recipe, as follows:

it('should catch a failure', function() {
 var errorMsg = 'Unauthorized';
 var defer = $q.defer();

 defer.reject(errorMsg);
 httpMock.get.and.returnValue(defer.promise);

 emcees.getUKEmcee('1').catch(function(error) {
 expect(error).toEqual(errorMsg);
 })
 $scope.$digest();
});

We now add the expectation to the catch method in our test and compare the error message
that the promise returns to match our expected message.

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

138

See also
ff The Getting started with testing a service recipe in this chapter

ff The Testing HTTP GET requests using $httpBackend recipe in this chapter

ff The Using spies to test HTTP GET requests recipe in this chapter

ff The Using spies to test HTTP POST requests recipe in this chapter

ff The Testing service data using mock helpers recipe in this chapter

Testing constants
This recipe is a quick and easy overview of how to test a constant service (https://
docs.angularjs.org/api/auto/service/$provide#constant). Constants can
be useful for a variety of reasons, ranging from defining responsive breakpoints, global
strings for notifications/errors, or access keys to libraries such as https://keen.io.
If you're interested in environment-based constants for configuration of your AngularJS
application, ensure that you read my blog post at http://newtriks.com/2013/11/29/
environment-specific-configuration-in-angularjs-using-grunt/, which
makes use of a Yeoman generator I wrote called env-config. This recipe will show you how
to test whether a constant has been defined and then take it further by testing whether it
returns an object with a correct string value.

Getting ready
For this recipe, a constant service is required. As an example, here is what I use to test
in this recipe, which defines a constant named MESSAGES and exposes an object with
a property named errors. The value of emcees is an object containing properties with
error string values:

.constant('MESSAGES', {
 'errors': {
 'ukemcees': 'There was an error loading emcees based in good old
blighty.'
 }
});

Ensure that you've loaded your module, for example:

beforeEach(module('chapter8'));

www.it-ebooks.info

https://docs.angularjs.org/api/auto/service/$provide#constant
https://docs.angularjs.org/api/auto/service/$provide#constant
https://keen.io
http://newtriks.com/2013/11/29/environment-specific-configuration-in-angularjs-using-grunt/
http://newtriks.com/2013/11/29/environment-specific-configuration-in-angularjs-using-grunt/
http://www.it-ebooks.info/

Chapter 8

139

How to do it…
1.	 First, create a variable for the service we are testing:

 var MESSAGES;

2.	 Next, write a beforeEach function to inject the MESSAGES service and retrieve our
service, assigning it to the variable created in step 1:
beforeEach(inject(function (_MESSAGES_) {
 MESSAGES = _MESSAGES_;
}));

3.	 Now, create a test to demonstrate that our service is accessible and exposes
a method:

it('should have a MESSAGES constant object', function()
{});

4.	 Finally, within the test created in step 3, add an expectation that the service method
getUKEmcees is defined:

expect(MESSAGES).toBeDefined();

How it works…
We first need to inject our constant service in step 2. The final step is easy; we match against
the service being defined.

There's more…
We will take this recipe a little further and actually test whether a constant value is as we
would expect. I will be completely honest and state that I can not justify one hundred percent
the necessity to test constant values, but here we go:

1.	 Create a test to demonstrate that our service is accessible and exposes a method:
it('should have correct errors.http.ukemcees constant',
function() {});

2.	 Next, create a message that should match our constant string value:
var message = 'There was an error loading emcees based in
good old blighty.';

3.	 Finally, retrieve the value of ukemcees and match it against the message variable
from step 2:

expect(MESSAGES.errors.ukemcees).toBe(message);

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

140

See also
ff The Getting started with testing a service recipe in this chapter

Using Protractor to test HTTP requests
In this recipe, we will use Protractor to test the broader spectrum of events related to an HTTP
request and ensure that our application UI updates are as expected. The school of thought I
follow is that end-to-end tests should reflect the application in the closest state possible to its
running in the production environment. This helps identify potential problems between client
and server communication, which can be obscured using HTTP mocks.

I have known end-to-end tests to actually highlight a problem with the server API before
any other potential source. If, however, you do not, or cannot, test against an actual server
for HTTP requests, then AngularJS provides a fake backend implementation at https://
docs.angularjs.org/api/ngMockE2E/service/$httpBackend, plus there are
other modules that can be used to set up mocks for HTTP calls (https://github.com/
atecarlos/protractor-http-mock).

For this recipe, we will use a fantastic fake online REST API called JSONPlaceholder
(http://jsonplaceholder.typicode.com). You can also run JSONPlaceholder
locally using npm (https://www.npmjs.com/package/jsonplaceholder); please refer
to the main website for instructions on how to do this.

Getting ready
In this example, you need to have a button that, when clicked, will make an HTTP request
and assign the response data as a collection on scope. In the HTML, the collection should
be displayed using the ng-repeat directive (https://docs.angularjs.org/api/ng/
directive/ngRepeat).

Here are the steps for the example code I use for this recipe's end-to-end testing:

1.	 In your HTML, add a button that calls a function on scope, and also a repeater as
well:
<body ng-controller="HomeCtrl">
 <button ng-click="onLoadUsers()" ng-
 show="!users.length">Load Users</button>
 <div ng-repeat="user in users">
 {{user.name}}
 </div>
</body>

www.it-ebooks.info

https://docs.angularjs.org/api/ngMockE2E/service/$httpBackend
https://docs.angularjs.org/api/ngMockE2E/service/$httpBackend
https://github.com/atecarlos/protractor-http-mock
https://github.com/atecarlos/protractor-http-mock
http://jsonplaceholder.typicode.com
https://www.npmjs.com/package/jsonplaceholder
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://docs.angularjs.org/api/ng/directive/ngRepeat
http://www.it-ebooks.info/

Chapter 8

141

2.	 Create a controller that defines a handler for the button click and calls a service to
request users:
var HomeCtrl = function($scope, users) {
 $scope.onLoadUsers = function() {
 users.getUsers().then(function(response) {
 $scope.users = response.data;
 });
 };
};

3.	 Create a service that makes a request to an API and returns suitable data to populate
the repeater:

.service('users', function($http) {
 return {
 getUsers: function() {
 return
 $http.get('http://jsonplaceholder.typicode.com/users');
 }
 };
})

Ensure that you have Protractor installed and running and if you need guidance on setting up
Protractor, please read the Installing Protractor recipe in Chapter 1, Setup and Configuration.
Please update your URL and port based on your configuration.

How to do it…
1.	 Firstly, use the get method to load the page by passing the URL to the local

development server running our application:
beforeEach(function () {
 browser.get('http://0.0.0.0:8000/');
});

2.	 Next, create a test stating our intention that the HTML displays users and hides the
button to load users:
 it('should do display users and hide the load users
button on success', function (){});

3.	 Find the load users button by text using the buttonText method:
var button = element(by.buttonText('Load Users'));

4.	 Now, click on the button to load the users:
 button.click();

www.it-ebooks.info

http://www.it-ebooks.info/

Service and Factory Testing with Mocks and Spies

142

5.	 Find the element inside the ng-repeat directive using by.repeater:
var firstUsername = element(by.repeater('user in users')
 .row(0).column('{{user.name}}'));

6.	 Next, add an expectation that the first element that displays the username is defined:
 expect(firstUsername).toBeDefined();

7.	 Finally, add an expectation that the button is not displayed:

 expect(button.isDisplayed()).toBeFalsy();

How it works…
In step 3, we use the buttonText locator (http://angular.github.io/
protractor/#/api?view=ProtractorBy.prototype.buttonText) to find the filter
button. In step 4, we click the button (http://angular.github.io/protractor/#/
api?view=webdriver.WebElement.prototype.click), and this calls a handler to
make the service request for users. We should expect at this point that we have a collection
of users and our repeater should display at least one item.

In step 5, we use the repeater locator (http://angular.github.io/protractor/#/
api?view=ProtractorBy.prototype.repeater) to find elements inside of an ng-
repeat directive. The repeater locator API enables us to retrieve a specific row (https://
github.com/angular/protractor/blob/master/lib/locators.js#L293) and
column (https://github.com/angular/protractor/blob/master/lib/locators.
js#L318) that expects a binding. We provide our user.name binding and then run an
expectation that the element is defined.

Finally, in step 7, we test whether the element is currently displayed using the isDisplayed
method (http://angular.github.io/protractor/#/api?view=webdriver.
WebElement.prototype.isDisplayed).

See also
ff The Getting started with testing a service recipe in this chapter

ff The Installing Protractor recipe in Chapter 1, Setup and Configuration

www.it-ebooks.info

http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.buttonText
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.buttonText
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.click
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.click
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.repeater
http://angular.github.io/protractor/#/api?view=ProtractorBy.prototype.repeater
https://github.com/angular/protractor/blob/master/lib/locators.js#L293
https://github.com/angular/protractor/blob/master/lib/locators.js#L293
https://github.com/angular/protractor/blob/master/lib/locators.js#L318
https://github.com/angular/protractor/blob/master/lib/locators.js#L318
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.isDisplayed
http://angular.github.io/protractor/#/api?view=webdriver.WebElement.prototype.isDisplayed
http://www.it-ebooks.info/

143

9
A Brief Look at Testing

Animations

In this chapter, you will learn the following recipes:

ff Synchronous testing of animations

ff Testing animations with ngAnimateMock

ff Asynchronous testing of animations

Introduction
JavaScript, CSS3 transitions, and key frame animations offer a wealth of creative visual
effects, for example when transitioning between two states. AngularJS offers hooks into these
using the ngAnimate module. There are a range of directives that support animations, out of
the box, and a full list can be found at https://docs.angularjs.org/api/ngAnimate.
If you're looking for animation detection support while performing DOM operations in custom
directives, then look no further than the $animation service (https://docs.angularjs.
org/api/ngAnimate/service/$animate).

For information on animations, I highly recommend that you read this great article at http://
www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.
html#testing-animations. This chapter will briefly introduce you to unit testing JavaScript
animations, first using a synchronous approach and then asynchronously. The AngularJS
team provides the animation mock module to help test animations (https://github.com/
angular/angular.js/blob/v1.2.26/src/ngMock/angular-mocks.js#L759), which
I will also demonstrate how to use in this chapter.

www.it-ebooks.info

https://docs.angularjs.org/api/ngAnimate
https://docs.angularjs.org/api/ngAnimate/service/$animate
https://docs.angularjs.org/api/ngAnimate/service/$animate
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations
http://www.yearofmoo.com/2013/08/remastered-animation-in-angularjs-1-2.html#testing-animations
https://github.com/angular/angular.js/blob/v1.2.26/src/ngMock/angular-mocks.js#L759
https://github.com/angular/angular.js/blob/v1.2.26/src/ngMock/angular-mocks.js#L759
http://www.it-ebooks.info/

A Brief Look at Testing Animations

144

Synchronous testing of animations
This recipe will show you how to test a JavaScript animation in a synchronous approach by
creating a mock replacement for the event handlers using the $animateProvider service.

Getting ready
For this example, you'll need a JavaScript animation that runs with show/hide options. I use
jQuery (http://jquery.com) for the animations and transitions based on the opacity.
The following are the steps to create the recipe test example :

1.	 Register a JavaScript animation via the myModule.animation() function. Also,
create an object containing event callback animation functions that are triggered
based on the ng-show animation event callbacks (https://docs.angularjs.
org/api/ng/directive/ngShow#animations).

2.	 Secondly, add a class name to each of the callback's logic to check whether the
className provided is ng-hide. Within the beforeAddClass callback, animate
the element to opacity of value 0 and vice versa in the removeClass callback.
Ensure that the done callback is made regardless of className in each function:
.animation('.js-fade', function() {
 return {
 beforeAddClass: function(element, className, done) {
 if (className === 'ng-hide') {
 element.animate({
 opacity: 0
 }, 1000, done);
 }
 else {
 done();
 }
 },
 removeClass: function(element, className, done) {
 if (className === 'ng-hide') {
 element.animate({
 opacity: 1
 }, 500, done);
 }
 else {
 done();
 }
 }
 };
})

www.it-ebooks.info

http://jquery.com
https://docs.angularjs.org/api/ng/directive/ngShow#animations
https://docs.angularjs.org/api/ng/directive/ngShow#animations
http://www.it-ebooks.info/

Chapter 9

145

3.	 Ensure that you've loaded AngularJS mocks (https://code.angularjs.
org/1.2.28/angular-mocks.js) and AngularJS animate (https://code.
angularjs.org/1.2.28/angular-animate.js) in your SpecRunner.html file.

4.	 Ensure that you've loaded your module, for example:

beforeEach(module('chapter9'));

How to do it…
Follow these steps to test JavaScript animations synchronously:

1.	 Create the following variables for the animation we're testing:
var scope;
var element;
var $rootElement;
var animatedShow = false;
var animatedHide = false;

2.	 Next, write a beforeEach function to inject the $injector service and retrieve our
dependencies assigning them to the variables created in step 1:
beforeEach(inject(function($injector, $compile) {
 scope = $injector.get('$rootScope').$new();
 $rootElement = $injector.get('$rootElement');
}));

3.	 Within the beforeEach function in step 2, create a new AngularJS element using a
string of HTML that adds a class named after our example JavaScript animation plus
the ng-show directive based on a hint value:
element = angular.element('<div class="js-fade" ng-
show="hint"></div>');

4.	 Still within the beforeEach function in step 2, run the steps to compile and digest
the element providing the scope object from step 2. Append the element returned
to the $rootElement service (https://docs.angularjs.org/api/ng/
service/$rootElement):
$compile(element)(scope);
scope.$digest();
$rootElement.append(element);

5.	 Next, within a beforeEach function use the module function to initialize an
anonymous function:
beforeEach(module(function($animateProvider) {}));

www.it-ebooks.info

https://code.angularjs.org/1.2.28/angular-mocks.js
https://code.angularjs.org/1.2.28/angular-mocks.js
https://code.angularjs.org/1.2.28/angular-animate.js
https://code.angularjs.org/1.2.28/angular-animate.js
https://docs.angularjs.org/api/ng/service/$rootElement
https://docs.angularjs.org/api/ng/service/$rootElement
http://www.it-ebooks.info/

A Brief Look at Testing Animations

146

6.	 Within the function, use the $animateProvider service to register our animation
event handlers directly inside the module. Within each update, the corresponding
Boolean values from step 1 need to be updated accordingly. We must also trigger
the done callback:
$animateProvider.register('.js-fade', function() {
 return {
 beforeAddClass: function(element, className, done) {
 animatedHide = true;
 done();
 },
 removeClass: function(element, className, done) {
 animatedShow = true;
 done();
 }
 };
});

7.	 Next, create a test to ensure that the animation callback showing the element was
called:
it('should animate to show', function() {});

8.	 Within the test, set the hint value on the scope to true:
Scope.hint = true;

9.	 Next, within the test, process all the watchers:
scope.$digest();

10.	 Finally, within the test created in step 7, add an expectation that the animatedShow
Boolean value has been updated to true:

expect(animatedShow).toBeTruthy();

How it works…
We need an element to actually test our animation and additionally enable us to use the ng-
show directive. This element is created in step 3 and adds the element CSS class attribute
value to match the animation. If the $animate service discovers a match, then the callback
function will be executed.

In step 6, we register mock JavaScript animation event handlers using the
$animateProvider service. This is a key step to enable us to test our animation. AngularJS
operates on the principle that whichever service is last registered with the $injector service
will be the one provided when injected. So by registering an animation with the same name as
the original from the application, we essentially ensure that our mock animation will be used.
In step 6, we define the callback hooks mimicking our actual animation and update a Boolean
value to test against.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

147

In this recipe, we test whether the animation to display the element is functioning so we need
to ensure that our scope.hint value is true; this we do in step 8. In step 10, we expect the
ng-show directive to respond to the scope.hint value being true and display the element
triggering the animation callback hooks and update our animatedShow value to true.

There's more…
To test whether the animation runs to hide the element, we can build on the preceding code
and simply go through the motions to show and hide the element. Write a test as follows:

1.	 First, create a test that the animation callback for hiding the element was called:
it('should animate to hide', function() {});

2.	 Next, within the test, set the hint value on the scope to true to show the animation,
then false, and ensure that you digest the watchers in between each scope update:
Scope.hint = true;
Scope.$digest();
Scope.hint = false;
Scope.$digest();

3.	 Finally, add an expectation that the animatedHide Boolean value is updated to
true:

expect(animatedHide).toBeTruthy();

See also
ff The Asynchronous testing of animations recipe in this chapter

ff The Testing animations with ngAnimateMock recipe in this chapter

Testing animations with ngAnimateMock
The ngAnimateMock module replaces the $animate method with mock functions that are
pushed into an animate queue. Each function has:

ff Associated events, for example, enter

ff Arguments, for example, class name

ff An element

www.it-ebooks.info

http://www.it-ebooks.info/

A Brief Look at Testing Animations

148

As opposed to the asynchronous approach, we cannot test the actual animation using
the ngAnimateMock directive. Testing animations is a process of working through what
animation logic has been added to the queue and whether it matches up to our expectations.
In this recipe, we will test the enter event callback animation function, which appends the
element to parentElement within the document and then runs the enter animation.

Getting ready
I use jQuery (http://jquery.com) for the animations and transitions based on the opacity.
Here is the example code I use for testing this recipe that registers a JavaScript animation via
the myModule.animation() function. I simply define an enter event callback animation
function that animates the element to an opacity of 1:

.animation('.js-enter', function() {
 return {
 enter: function(element, className, done) {
 element.animate({
 opacity: 1
 }, done);
 }
 };
})

Ensure that you've loaded the AngularJS mocks file (https://code.angularjs.
org/1.2.28/angular-mocks.js) and AngularJS animate (https://code.angularjs.
org/1.2.28/angular-animate.js) in your SpecRunner.html file.

Also ensure that you've loaded your module including the AngularJS ngAnimate module,
for example:

beforeEach(module('chapter9, ngAnimate'));

How to do it…
Follow these steps to test an animation using the ngAnimateMock directive:

1.	 Create the following variables for the animation we're testing:
var scope;
var element;
var $rootElement;
var $animate;

www.it-ebooks.info

http://jquery.com
https://code.angularjs.org/1.2.28/angular-mocks.js
https://code.angularjs.org/1.2.28/angular-mocks.js
https://code.angularjs.org/1.2.28/angular-animate.js
https://code.angularjs.org/1.2.28/angular-animate.js
http://www.it-ebooks.info/

Chapter 9

149

2.	 Next, write a beforeEach function to inject the $injector service and retrieve our
dependencies assigning them to the variables created in step 1:
beforeEach(inject(function($injector, $compile) {
 scope = $injector.get('$rootScope').$new();
 $animate = $injector.get('$animate');
 $rootElement = $injector.get('$rootElement');
}));

3.	 Next, within the beforeEach function in step 2, create a new AngularJS element
using a string of HTML that adds a class named after our example JavaScript
animation:
element = angular.element('<div class="js-enter"></div>');

4.	 Create a test to check whether the element is appended to the parent element and
create a variable for a queued object to be used in the expectation:
it('should append the element to parent element',
function() {
 var queuedObject;
});

5.	 Within the test, call the enter method providing the element created in step 3 and the
$rootElement service from step 4:
$animate.enter(element, $rootElement);

6.	 Still within the test, remove the first element from the $animate queue assigning the
value to the queuedObject variable from step 4:
queuedObject = $animate.queue.shift();

7.	 Finally, within the test created in step 4, run an expectation that the animated queue
object HTML element is appended to the $rootElement service:

expect(queuedObject.element[0]).toEqual($rootElement.children()
[0]);

How it works…
In step 5, when we call the enter method providing the element and $rootElement as the
only arguments that'll push an object into the queue. In step 6, we use the shift() method
(https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Array/shift) to remove the first element in the queue and store the
returned object. We can then retrieve the element of that object and compare it against the
actual object that the $animate service adds to the parent object ($rootElement).

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
http://www.it-ebooks.info/

A Brief Look at Testing Animations

150

See also
ff The Synchronous testing of animations recipe in this chapter

ff The Asynchronous testing of animations recipe in this chapter

Asynchronous testing of animations
This recipe will show you how to test a JavaScript animation in an asynchronous fashion.
There are (as with most things) pros and cons to this approach. You will see in this recipe with
asynchronous testing that we can verify whether the relevant CSS properties were updated.
However, to do this, we need to wait for the transition time to complete, which increases the
time it takes for our tests to complete.

Getting ready
Please refer to the Getting ready section in the Synchronous testing of animations recipe in
this chapter. Ensure that you've loaded AngularJS animate (https://code.angularjs.
org/1.2.28/angular-animate.js) in your SpecRunner.html file.

Also, ensure that you've loaded your module, for example:

beforeEach(module('chapter9'));

How to do it…
Follow these steps to test JavaScript animations asynchronously:

1.	 Create the following variables for the animation we're testing:
var scope;
var element;
var $rootElement;

2.	 Next, write a beforeEach function to inject the $injector service and retrieve our
dependencies assigning them to the variables created in step 1:
beforeEach(inject(function($injector, $compile) {
 scope = $injector.get('$rootScope').$new();
 $rootElement = $injector.get('$rootElement');
}));

www.it-ebooks.info

https://code.angularjs.org/1.2.28/angular-animate.js
https://code.angularjs.org/1.2.28/angular-animate.js
http://www.it-ebooks.info/

Chapter 9

151

3.	 Next, within the beforeEach function in step 2, create a new AngularJS element
using a string of HTML that adds a class named after our example JavaScript
animation plus the ng-show directive based on a hint value:
element = angular.element('<div class="js-fade" ng-show="hint"></
div>');

4.	 Still within the beforeEach function in step 2, run the steps to compile and digest
the element providing the scope object from step 2. Append the element returned
to the $rootElement service (https://docs.angularjs.org/api/ng/
service/$rootElement):
$compile(element)(scope);
scope.$digest();
$rootElement.append(element);

5.	 Create a test to ensure that the element animates to an opacity of 0 value:
it('should animate to an opacity of 0', function(done) {});

6.	 Next, within the test, set the hint value on the scope to true to show the animation,
then false, and ensure that you digest the watchers in between each scope update:
Scope.hint = true;
Scope.$digest();
Scope.hint = false;
Scope.$digest();

7.	 Finally, within a setTimeout function, add an expectation that the opacity of the
element is now less than value 1 and call the done callback:

setTimeout(function() {
 expect(element.css('opacity') < 1).toBeTruthy();
 done();
}, 1000);

How it works…
Step 3 starts with defining our Angular element with the CSS class attribute matching the
animation and the ng-show directive. We use Jasmine's asynchronous support (http://
jasmine.github.io/2.0/introduction.html#section-Asynchronous_Support)
to enable us to decide when the spec will be run. Providing the done argument to our test
function, as seen in step 5, informs Jasmine that we are running an asynchronous test. Step 6
sets the scope.hint value to true, and this will display the element. Then we set the value
to false that will hide the element and trigger the animation.

www.it-ebooks.info

https://docs.angularjs.org/api/ng/service/$rootElement
https://docs.angularjs.org/api/ng/service/$rootElement
http://jasmine.github.io/2.0/introduction.html#section-Asynchronous_Support
http://jasmine.github.io/2.0/introduction.html#section-Asynchronous_Support
http://www.it-ebooks.info/

A Brief Look at Testing Animations

152

Our expectation has to be executed after the given time for the element transition to take
place; therefore the logic is hooked into a setTimeout function (https://developer.
mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout). Also, within the
setTimeout function we ensured that the done() callback is called so that Jasmine runs
the test.

See also
ff The Synchronous testing of animations recipe in this chapter

ff The Testing animations with ngAnimateMock recipe in this chapter

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers.setTimeout
http://www.it-ebooks.info/

153

Index
Symbols
$httpBackend service

used, for testing HTTP GET
requests 122, 123

used, for testing HTTP POST
requests 124-126

A
angular animate

reference link 145
angular-debaser library

reference link 34
AngularJS

about 1, 45
URL, for tutorial 4

AngularJS code
debugging 37-39

AngularJS elements
reference link 103

angular.js file
URL, for downloading 33

angular.mock.module function 32, 33
angular-mocks.js file

URL, for downloading 33
angular-mocks.js library 7
animations

asynchronous testing 150, 151
references 143
synchronous testing 144-147
testing, with ngAnimateMock

module 147-149
API methods, Protractor

URL 10
asynchronous testing,

of animations 150, 151

B
basic AngularJS application

creating 2-4
basic html content

accessing 84
Batarang

about 39
URL 39

Behavior-Driven Development (BDD) 31
Brunch

URL 25

C
Chrome

URL 9
Chrome DevTools, Twitter feed

reference link 39
class changes, based on windows

properties 91-93
clean slate 32
configuration file docs, Testem

URL 20
configuration, of ngRoute

reference link 47
configuration options, Karma

autoWatch 17
Browsers 17
files 17
frameworks 17

configuration options, Testem
framework 20
launch_in_dev 20
src_files 20

www.it-ebooks.info

http://www.it-ebooks.info/

154

constants
references 138
testing 138, 139

controller
about 65
reference link 65
testing, setting up for 65-67

createSpyObj method 44

D
directive changes, on interactions

with Protractor 93-95
directives

about 75
testing 76-78

Don't Repeat Yourself (DRY) principle
about 32
references 91, 132

E
ElementFinder feature

reference link 59
elements

searching, selectors used 82, 83
event dispatches

testing 98-100
events

testing, Protractor used 107, 108
event system, Angular

reference link 97

F
factory service

reference link 105
fake backend implementation

reference link 140
filter

about 109
testing, that formats number as text 110, 111
testing, that formats seconds to time

string 112, 113
filter changes, based on events

testing, with Protractor 115-118
filter changes, based on input

testing, with Protractor 114, 115

G
Grunt

about 1
end-to-end tests, automating 25
unit tests, automating 24
URL 21
used, for automating test runners 21-24

grunt-cli plugin
URL 24

grunt-contrib-connect plugin
URL 25

grunt-karma plugin
URL 24

grunt-protractor-runner plugin
URL 25

grunt-protractor-webdriver plugin
URL 25

Gulp
about 1
end-to-end tests , automating 29
reference link, for template cache 81
references 26
unit tests, automating 29
used, for automating test runners 26-28

Gulpfile 26
gulp-protractor plugin

URL 29

H
handling, of callbacks

testing 105-107
handling, of dispatched events

testing 100-102
handling, of external events

testing 103-105
HTTP GET requests

testing, $httpBackend service used 122, 123
testing, spies used 127, 128

HTTP POST requests
testing, $httpBackend service used 124-126
testing, spies used 129-131

HTTP requests
testing, Protractor used 140-142

www.it-ebooks.info

http://www.it-ebooks.info/

155

I
initial state, of scope object

testing 67, 68
testing, with Protractor 69, 70

injected instances
mocking, object used 39-41
mocking, spies used 42-44

interactive scope changes
testing, with Protractor 70-72

it function 34

J
Jasmine

about 31
URL 5
URL, for documentation 4
used, for running simple test 4-7

JavaScript Error
URL 135

jqLite 82
jQuery

URL 144
jQuery attribute equals selector

reference link 108
jQuery click event

reference link 108
jQuery methods, for element interaction

reference link 78
JSFiddle

URL 2
JW player

reference link 105

K
Karma

about 1, 13
installing 14, 15
references 13, 16
used, for running tests 16, 17

karma-ng-html2js-preprocessor plugin
about 81
URL, for configuring 79
URL, for installing 79

L
Lineman

URL 18

M
matchers

about 36, 37
references 7, 36

Mocha
URL 31

mock helpers
used, for testing service data 132-134

mocks 7
mocks, for HTTP calls

URL 140
modularity, AngularJS application

reference link 97
module

loading 32, 33
multiple modules

configuring 34

N
navigation

testing, Protractor used 60, 61
navigation scope changes

testing, with Protractor 72-74
ngAnimateMock module

animations, testing with 147-149
ngAnimate module

references 143
ng-inspector tool

URL 39
ngMock module

URL 7
ng-repeat directive

URL 140
ngRoute

about 46
used, for testing 46, 47
used, for testing route parameters 49-51

ngRoute module
URL 45

www.it-ebooks.info

http://www.it-ebooks.info/

156

ng-show animation event callbacks
reference link 144

Node.js
URL 8

npm, JSONPlaceholder
URL 140

number filter AngularJS
reference link 110

O
object

used, for mocking injected instances 39-41
one expectation per spec rule 34
on() method

reference link 103

P
page loading

testing, Protractor used 58
Page Objects

reference link 61
Plunker

URL 2
promise 122
Protractor

about 1
installing 8, 9
URL 8
URL, for browser setup guide 9
used, for directives changes on

interactions 93-95
used, for running simple test 10-12
used, for testing events 107, 108
used, for testing filter changes based

on events 115-118
used, for testing filter changes based

on input 114, 115
used, for testing HTTP requests 140-142
used, for testing initial state of scope

object 69, 70
used, for testing interactive scope

changes 70-72
used, for testing navigation 60, 61
used, for testing navigation scope

changes 72-74

used, for testing page loading 58
used, for testing redirection 62, 63

Protractor API
URL, for documentation 13

Q
querySelector() method

example 83

R
redirection

testing, Protractor used 62, 63
rejected $http promises

testing 135, 136
repeater content

accessing 85, 86
RESTful API

URL 120
route parameters

about 49
testing, ngRoute used 49-51

routeParam service
URL 49

Ruby on Rails 8

S
scope 65
scope changes, based on DOM events 89, 90
scope changes, based on user input 86-88
selectors

used, for searching elements 82, 83
Selenium 9
service

about 120
testing 120, 121
URL 120

service data
testing, mock helpers used 132-134

SimpleHTTPServer
URL 10

simple test
running, Jasmine used 4-7
running, Protractor used 10-12

Single-Page Applications (SPA) 45

www.it-ebooks.info

http://www.it-ebooks.info/

157

Sinon.JS library
URL 42

spies
about 42
URL 42
used, for mocking injected instances 42-44
used, for testing HTTP GET requests 127, 128
used, for testing HTTP POST

requests 129-131
Streams Handbook

URL 29
synchronous testing,

of animations 144-147

T
templateUrl

setting up 79-81
Test-Driven Development (TDD) 31
Testem

about 1
installing 18
URL 18
used, for running tests 19, 20

test runners
automating, Grunt used 21-24
automating, Gulp used 26-28

tests
running, Karma used 16, 17
running, Testem used 19, 20
setting up, for controller 65-67

test spec
writing 34-36

transitioning state
testing, with ui-router 54-56

U
ui-router

about 51
references 52, 72
transitioning state, testing with 54-56
URL parameters, testing with 56, 57
used, in testing 51-53

W
WebDriver

URL 8

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

AngularJS Testing Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering AngularJS
Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready directives
for any AngularJS-based application

1.	 Explore the options available for creating
directives, by reviewing detailed explanations and
real-world examples.

2.	 Dissect the life cycle of a directive and understand
why they are the base of the AngularJS framework.

3.	 Discover how to create structured, maintainable,
and testable directives through a step-by-step,
hands-on approach to AngularJS.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power of
AngularJS

1.	 Make the most out of AngularJS by understanding
the AngularJS philosophy and applying it to
real-life development tasks.

2.	 Effectively structure, write, test, and finally deploy
your application.

3.	 Add security and optimization features to your
AngularJS applications.

4.	 Harness the full power of AngularJS by creating
your own directives.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS UI Development
ISBN: 978-1-78328-847-2 Paperback: 258 pages

Design, build, and test production-ready applications
in AngularJS

1.	 Design and customize applications with
mobile users in mind using open source CSS3
frameworks.

2.	 Use polished UI components written from scratch
solely in AngularJS to build real-world applications
with a comprehensive, step-by-step guide.

3.	 Learn using a proven workflow from setting up the
environment to testing in order to be productive in
writing ambitious applications.

Deploying AngularJS [Video]
ISBN: 978-1-78355-447-8 Duration: 01:37 hours

Application development and deployment made easy
with AngularJS and Heroku

1.	 Create an easy-to-understand and flexible build
system for your application using GulpJS.

2.	 Deploy to Heroku and add monitoring tools for
error tracking.

3.	 Beginner-friendly introduction to writing tests and
utilizing best practices.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setup and Configuration
	Introduction
	Creating a basic AngularJS application
	Running a simple test using Jasmine
	Installing Protractor
	Running a simple test using Protractor
	Installing Karma
	Running tests using Karma
	Installing Testem
	Running tests using Testem
	Automating test runners using Grunt
	Automating test runners using Gulp

	Chapter 2: Getting Started with Testing and AngularJS
	Introduction
	Loading a module
	Writing a test spec
	Debugging AngularJS code
	Mocking injected instances using an object
	Mocking injected instances using spies

	Chapter 3: How to Test Navigation and Routing
	Introduction
	Getting started with testing using ngRoute
	Testing route parameters with ngRoute
	Getting started with testing using ui-router
	Testing the transitioning state with ui-router
	Testing URL parameters with ui-router
	Testing page loading using Protractor
	Testing navigation using Protractor
	Testing redirection using Protractor

	Chapter 4: Testing Controllers
	Introduction
	Setting up for testing a controller
	Testing the initial state of a scope object
	Testing the initial state of a scope object with Protractor
	Testing interactive scope changes with Protractor
	Testing navigation scope changes with Protractor

	Chapter 5: Testing User Interaction and Directives
	Introduction
	Starting with testing directives
	Setting up templateUrl
	Searching elements using selectors
	Accessing basic HTML content
	Accessing repeater content
	Scope changes based on user input
	Scope changes based on DOM events
	Class changes based on window properties
	Directive changes on interaction using Protractor

	Chapter 6: Using Spies to Test Events
	Introduction
	Testing event dispatches
	Testing the handling of dispatched events
	Testing the handling of external events
	Testing the handling of callbacks
	Testing events using Protractor

	Chapter 7: Testing Filters
	Introduction
	Testing a filter that formats a number as text
	Testing a filter that formats seconds to a time string
	Using Protractor to test filter changes based on input
	Using Protractor to test filter changes based on events

	Chapter 8: Service and Factory Testing with Mocks and Spies
	Introduction
	Getting started with testing a service
	Testing HTTP GET requests using $httpBackend
	Testing HTTP POST requests using $httpBackend
	Using spies to test HTTP GET requests
	Using spies to test HTTP POST requests
	Testing service data using mock helpers
	Testing rejected $http promises
	Testing constants
	Using Protractor to test HTTP requests

	Chapter 9: A Brief Look at Testing Animations
	Introduction
	Synchronous testing of animations
	Testing animations with ngAnimateMock
	Asynchronous testing of animations

	Index

