AngularJS Web Application
Development Cookbook

Over 90 hands-on recipes to architect performant applications
and implement best practices in AngularJS

Matt Frisbie [] 9pen source

PUBLISHING
www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Web
Application
Development
Cookbook

Over 90 hands-on recipes to architect performant
applications and implement best practices in AngularJS

Matt Frisbie

open source

community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Web Application Development
Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Production reference: 1191214

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-335-4
www . packtpub.com

Cover image by Suyog Gharat (yogiee@me . com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Matt Frisbie

Reviewers
Pawel Czekaj

Patrick Gillespie
Aakash Patel
Adam Stipak

Commissioning Editor
Akram Hussain

Acquisition Editor
Sam Wood

Content Development Editor
Govindan K

Technical Editors
Taabish Khan

Parag Topre

Copy Editors
Deepa Nambiar

Neha Vyas

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould
Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Matt Frisbie is currently a full stack developer at DoorDash (YC S13), where he joined
as the first engineer. He led their adoption of AngularJS, and he also focuses on the
infrastructural, predictive, and data projects within the company.

Matt has a degree in Computer Engineering from the University of lllinois at Urbana-Champaign.
He is the author of the video series Learning AngularJS, available through O'Reilly Media.
Previously, he worked as an engineer at several educational technology start-ups.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Pawel Czekaj has a Bachelor's degree in Computer Science. He is a web developer

with strong backend (PHP, MySQL, and Unix systems) and frontend (AngularJS, Backbone.
js, jQuery, and PhoneGap) experience. He loves JavaScript and AngularJS. Previously, he has
worked as a senior full stack web developer. Currently, he is working as a frontend developer
for Cognifide and as a web developer for SMS Air Inc. In his free time, he likes to develop
mobile games. You can contact him at http://yadue.eu.

Patrick Gillespie is a senior software engineer at PROTEUS Technologies. He has
been working in the field of web development for over 15 years and has both a Master's
and Bachelor's degree in Computer Science. In his spare time, he enjoys working on web
projects for his personal site (http://patorjk.com), spending time with his family,
and listening to music.

Aakash Patel is the cofounder and CTO of Flytenow, a ride sharing platform for small
planes. He has industry experience of client-side development using AngularJS, and he
is a student at Carnegie Mellon University (CMU).

Adam étipék is currently a full stack developer. He has more than 8 years of professional
experience with web development. He specializes in AMP technologies (where A stands for
Apache, M for MySQL, and P for PHP). He also likes other technologies such as JavaScript,
AngularJS, and Grunt. He is also interested in functional programming in Scala. He likes
open source software in general.

www.it-ebooks.info

http://yadue.eu
http://patorjk.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print

book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@]PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Writing about a subject as tumultuous as JavaScript frameworks
is a bit like bull riding.

To Jordan, my family, and my friends—you helped me hang on.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Maximizing AngularlS Directives 7
Introduction 7
Building a simple element directive 8
Working through the directive spectrum 9
Manipulating the DOM 15
Linking directives 17
Interfacing with a directive using isolate scope 20
Interaction between nested directives 24
Optional nested directive controllers 26
Directive scope inheritance 28
Directive templating 30
Isolate scope 33
Directive transclusion 35
Recursive directives 37
Chapter 2: Expanding Your Toolkit with Filters and Service Types 45
Introduction 46
Using the uppercase and lowercase filters 46
Using the number and currency filters 48
Using the date filter 51
Debugging using the json filter 53
Using data filters outside the template 55
Using built-in search filters 56
Chaining filters 59
Creating custom data filters 61
Creating custom search filters 64
Filtering with custom comparators 65
Building a search filter from scratch 68

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Building a custom search filter expression from scratch
Using service values and constants

Using service factories

Using services

Using service providers

Using service decorators

Chapter 3: AngularJS Animations

71
73
75
76
78
80

83

Introduction

Creating a simple fade in/out animation

Replicating jQuery's slideUp() and slideDown() methods
Creating enter animations with nglf

Creating leave and concurrent animations with ngView
Creating move animations with ngRepeat

Creating addClass animations with ngShow

Creating removeClass animations with ngClass
Staggering batched animations

Chapter 4: Sculpting and Organizing your Application

83
84
89
92
98
105
115
120
125

131

Introduction

Manually bootstrapping an application
Using safe Sapply

Application file and module organization
Hiding AngularJS from the user
Managing application templates

The "Controller as" syntax

131
132
135
140
143
145
149

153

Chapter 5: Working with the Scope and Model
Introduction
Configuring and using AngularJS events
Managing $scope inheritance
Working with AngularJS forms
Working with <select> and ngOptions
Building an event bus

Chapter 6: Testing in Angular)JS

153
153
157
168
175
182

189

Introduction

Configuring and running your test environment in Yeoman and Grunt
Understanding Protractor

Incorporating E2E tests and Protractor in Grunt

Writing basic unit tests

Writing basic E2E tests

Setting up a simple mock backend server

189
190
193
194
197
204
209

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Writing DAMP tests 212
Using the Page Object test pattern 214
Chapter 7: Screaming Fast AngularJS 221
Introduction 222
Recognizing AngularJS landmines 222
Creating a universal watch callback 224
Inspecting your application's watchers 225
Deploying and managing Swatch types efficiently 228
Optimizing the application using reference $watch 229
Optimizing the application using equality $watch 232
Optimizing the application using $watchCollection 234
Optimizing the application using Swatch deregistration 236
Optimizing template-binding watch expressions 237
Optimizing the application with the compile phase in ng-repeat 239
Optimizing the application using track by in ng-repeat 241
Trimming down watched models 242
Chapter 8: Promises 245
Introduction 245
Understanding and implementing a basic promise 246
Chaining promises and promise handlers 253
Implementing promise notifications 258
Implementing promise barriers with $q.all() 260
Creating promise wrappers with $q.when() 263
Using promises with Shttp 264
Using promises with Sresource 267
Using promises with Restangular 268
Incorporating promises into native route resolves 270
Implementing nested ui-router resolves 273
Chapter 9: What's New in AngularJS 1.3 277
Introduction 277
Using HTMLS5 datetime input types 278
Combining watchers with $watchGroup 279
Sanity checking with ng-strict-di 281
Controlling model input with ngModelOptions 282
Incorporating $touched and $submitted states 287
Cleaning up form errors with ngMessages 289
Trimming your watch list with lazy binding 292
Creating and integrating custom form validators 295

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Chapter 10: Angular)S Hacks 301
Introduction 301
Manipulating your application from the console 302
DRYing up your controllers 304
Using ng-bind instead of ng-cloak 306
Commenting JSON files 308
Creating custom AngularJS comments 309
Referencing deep properties safely using $parse 312
Preventing redundant parsing 316

Index 321

—{iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

"Make it work. Make it right. Make it fast.”

Back when the world was young, Kent Beck forged this prophetic sentiment. Even today, in
the ultra-modern realm of performant single-page application JavaScript frameworks, his idea
still holds sway. This nine-word expression describes the general progression through which a
pragmatic developer creates high-quality software.

In the process of discovering how to optimally wield a technology, a developer will execute
this progression many times, and each time will be a learning experience regarding some
new understanding of the technology.

This cookbook is intended to act as a companion guide through this process. The recipes in this
book will intimately examine every major aspect of the framework in order to maximize your
comprehension. Every time you open this book, you should gain an expanded understanding of
the brilliance of the AngularJS framework.

What this book covers

Chapter 1, Maximizing AngularJS Directives, dissects the various components of directives and
demonstrates how to wield them in your applications. Directives are the bread and butter of
Angular]S, and the tools presented in this chapter will maximize your ability to take advantage
of their extensibility.

Chapter 2, Expanding Your Toolkit with Filters and Service Types, covers two major tools for
code abstraction in your application. Filters are an important pipeline between the model and
its appearance in the view, and are essential tools for managing data presentation. Services
act as broadly applicable houses for dependency-injectable modules and resource access.

Chapter 3, AngularJS Animations, offers a collection of recipes that demonstrate various ways
to effectively incorporate animations into your application. Additionally, it will dive deep down
into the internals of animations in order to give you a complete perspective on how everything
really works under the hood.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Sculpting and Organizing Your Application, gives you strategies for controlling the
application initialization, organizing your files and modules, and managing your template delivery.

Chapter 5, Working with the Scope and Model, breaks open the various components
involving ngModel and provides details of the ways in which they can integrate into
your application flow.

Chapter 6, Testing in AngularJS, gives you all the pieces you need to jump into writing test-driven
applications. It demonstrates how to configure a fully operational testing environment, how

to organize your test files and modules, and everything involved in creating a suite of unit

and E2E tests.

Chapter 7, Screaming Fast AngularJS, is a response to anyone who has ever complained
about AngularJS being slow. The recipes in this chapter give you all the tools you need to tune
all aspects of your application's performance and take it from a steam engine to a bullet train.

Chapter 8, Promises, breaks apart the asynchronous program flow construct, exposes
its internals, then builds it all the way back up to discuss strategies for your application's
integration. This chapter also demonstrates how promises can and should integrate into
your application's routing and resource access utilities.

Chapter 9, What's New in AngularJS 1.3, goes through how your application can integrate
the slew of new features and changes that were introduced in the Angular]S 1.3 and the
later AngularJS 1.2.x releases.

Chapter 10, AngularJS Hacks, is a collection of clever and interesting strategies that you can
use to stretch the boundaries of AngularJS's organization and performance.

What you need for this book

Almost every example in this book has been added to JSFiddle, with the links provided in the
text. This allows you to merely visit a URL in order to test and modify the code with no setup of
any kind, on any major browser and on any major operating system. If you want to replicate an
example outside of JSFiddle, all the external content (Angular]S, AngularJS modules, third-party
libraries and modules) is served from https://code.angularjs.org/ and https://
cdnjs.com/.

Chapter 6, Testing in AngularJS, involves setting up a testing framework, which should be
able to be accomplished on any major Unix-based operating system (OS X and, Linux). The
test suite is built on top of Grunt, Karma, Selenium, and Protractor; all of these and their
dependencies can be installed through npm.

www.it-ebooks.info

https://code.angularjs.org/
https://cdnjs.com/
https://cdnjs.com/
http://www.it-ebooks.info/

Preface

Who this book is for

There are already plenty of introductory resources to guide a green developer into the thick
of AngularJS. This cookbook is for developers with at least basic knowledge of JavaScript
and Angular]S, and who are looking to expand their perspective on the framework.

The goal of this text is to have you walk away from reading about an AngularJS concept armed
with a solid understanding of how it works, insight into the best ways to wield it in real-world
applications, and annotated code examples to get you started.

In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

This section usually consists of a detailed explanation of what happened in the previous section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "By cleverly using directives
and the $Scompile service, this exact directive functionality is possible."

A block of code is set as follows:

(index.html)

<!-- specify root element of application -->
<div ng-app="myApp">
<!-- register 'my-template.html' with S$templateCache -->
<script type="text/ng-template" id="my-template.html">
<div ng-repeat="num in [1,2,3,4,5]1">{{ num }}</div>
</scripts>

<!-- your custom element -->
<my-directives></my-directives>

</div>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

(app.js)

.directive('iso', function () {
return {
scope: {}
Vi
3N

Any command-line input or output is written as follows:

npm install protractor grunt-protractor-runner --save-dev

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The following directive
will display NW, NE, SW, or SE depending on where the cursor is relative to it."

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub. com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will

be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub . com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub. com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Maximizing AngularJsS
Directives

In this chapter, we will cover the following recipes:

» Building a simple element directive

» Working through the directive spectrum
» Manipulating the DOM

» Linking directives

» Interfacing with a directive using isolate scope
» Interaction between nested directives
» Optional nested directive controllers

» Directive scope inheritance

» Directive templating

» Isolate scope

» Directive transclusion

» Recursive directives

Introduction

In this chapter, you will learn how to shape AngularJS directives in order to perform meaningful
work in your applications. Directives are perhaps the most flexible and powerful tool available
to you in this framework and utilizing them effectively is integral to architecting clean and
scalable applications. By the same token, it is very easy to fall prey to directive antipatterns,
and in this chapter, you will learn how to use the features of directives appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

Building a simple element directive

One of the most common use cases of directives is to create custom HTML elements that
are able to encapsulate their own template and behavior. Directive complexity increases
very quickly, so ensuring your understanding of its foundation is essential. This recipe will
demonstrate some of the most basic features of directives.

How to do it...

Creating directives in Angularl]S is accomplished with a directive definition object. This object,
which is returned from the definition function, contains various properties that serve to shape
how a directive will act in your application.

You can build a simple custom element directive easily with the following code:
(app.js)

// application module definition

angular.module ('myApp', [])

.directive ('myDirective', function() {
// return the directive definition object
return {

// only match this directive to element tags
restrict: 'E',
// insert the template matching 'my-template.html'
templateUrl: 'my-template.html'
Vi
3N

As you might have guessed, it's bad practice to define your directive template with the
template property unless it is very small, so this example will skip right to what you will
be using in production: templateUrl and StemplateCache. For this recipe, you'll use a
relatively simple template, which can be added to $templateCache using ng-template.
An example application will appear as follows:

(index.html)
<!-- specify root element of application -->
<div ng-app="myApp">
<!-- register 'my-template.html' with S$templateCache -->

<script type="text/ng-template" id="my-template.html">
<div ng-repeat="num in [1,2,3,4,5]1">{{ num }}</div>

</scripts>

<!-- your custom element -->

<my-directives></my-directives>
</div>

—e1]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

When AngularJS encounters an instance of a custom directive in the index.html template, it
will compile the directive into HTML that makes sense to the browser, which will look as follows:

<div>l</divs>
<div>2</divs>
<div>3</divs>
<div>4</divs

<div>5</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/uwpdptLn/]

The restrict: 'E' statementindicates that your directive will appear as an element. It simply
instructs AngularJS to search for an element in the DOM that has the my-directive tag.

Especially in the context of directives, you should always think of Angular]S as an HTML compiler.
AngularJS traverses the DOM tree of the page to look for directives (among many other things)
that it needs to perform an action for. Here, AngularJS looks at the <my-directives> element,
locates the relevant template in StemplateCache, and inserts it into the page for the browser
to handle. The provided template will be compiled in the same way, so the use of ng-repeat
and other AngularJS directives is fair game, as demonstrated here.

There's more...

A directive in this fashion, though useful, isn't really what directives are for. It provides a nice
jumping-off point and gives you a feel of how it can be used. However, the purpose that your
custom directive is serving can be better implemented with the built-in ng-include directive,
which inserts a template into the designated part of HTML. This is not to say that directives
shouldn't ever be used this way, but it's always good practice to not reinvent the wheel.
Directives can do much more than template insertion (which you will soon see), and it's

best to leave the simple tasks to the tools that AngularJS already provides to you.

Working through the directive spectrum

Directives can be incorporated into HTML in several different ways. Depending on how this
incorporation is done, the way the directive will interact with the DOM will change.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/uwpdptLn/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

How to do it...

All directives are able to define a 1ink function, which defines how that particular directive
instance will interact with the part of the DOM it is attached to. The 1ink functions have three
parameters by default: the directive scope (which you will learn more about later), the relevant
DOM element, and the element's attributes as key-value pairs.

A directive can exist in a template in four different ways: as an HTML pseudo-element, as an
HTML element attribute, as a class, and as a comment.

The element directive

The element directive takes the form of an HTML tag. As with any HTML tag, it can wrap
content, have attributes, and live inside other HTML elements.

The directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
<element-directive some-attr="myvalue">
<!-- directive's HTML contents -->
</element-directives
</div>

This will result in the directive template replacing the wrapped contents of the <element -
directive> tag with the template. This element directive can be defined as follows:

(app.js)

angular.module ('myApp', [1)
.directive ('elementDirective', function ($log) {
return {
restrict: 'E',
template: '<p>Ze template!</p>',
link: function(scope, el, attrs) {
$log.log(el.html());
// <p>Ze template!</p>
$log.log(attrs.someAttr) ;
// myvalue

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[Q JSFiddle: http://jsfiddle.net/msfrisbie/sajhgjat/]

Note that for both the tag string and the attribute string, AngularJS will match the CamelCase
for elementDirective and someAttr to their hyphenated element-directive and
some-attr counterparts in the markup.

If you want to replace the directive tag entirely with the content instead, the directive will
be defined as follows:

(index.html)
angular.module ('myApp', [])
.directive('elementDirective', function ($log) {
return {
restrict: 'E',

replace: true,
template: '<p>Ze template!</p>"',
link: function(scope, el, attrs) ({
$log.log(el.html()) ;
// Ze template!
$log.log(attrs.someAttr) ;
// wmyvalue

3N

[Q JSFiddle: http://jsfiddle.net/msfrisbie/oLhrm194/]

This approach will operate in an identical fashion, but the directive's inner HTML will not be
wrapped with <element -directives tags in the compiled HTML. Also, note that the logged
template is missing its <p></p> tags that have become the root directive element as they are
the top-level tags inside the template.

The attribute directive

Attribute directives are the most commonly used form of directives, and for good reason.
They have the following advantages:

» They can be added to existing HTML as standalone attributes, which is especially
convenient if the directive's purpose doesn't require you to break up an existing
template into fragments

s

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/sajhgjat/
http://jsfiddle.net/msfrisbie/oLhrm194/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

» Itis possible to add an unlimited amount of attribute directives to an HTML element,
which is obviously not possible with an element directive

» Attribute directives attached to the same HTML element are able to communicate
with each other (refer to the Interaction between nested directives recipe)

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
<div attribute-directive="aval"
some-attr="myvalue">
</div>

</div>

M A nonstandard element's attributes need the data- prefix to be
Q compliant with the HTML5 specification. That being said, pretty
much every modern browser will have no problem if you leave it out.

The attribute directive can be defined as follows:
(app.js)

angular.module ('myApp', [])
.directive('attributeDirective', function ($log) {
return {
// restrict defaults to A
restrict: 'A',
template: '<p>An attribute directive</p>',
link: function(scope, el, attrs) ({
$log.log(el.html());
// <p>An attribute directive</p>
$log.log(attrs.attributeDirective) ;
// aval
$log.log(attrs.someAttr) ;
// myvalue

CIE JSFiddle: http://jsfiddle.net/msfrisbie/y2tsgxjt/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/y2tsgxjt/
http://www.it-ebooks.info/

Chapter 1

Other than its form in the HTML template, the attribute directive functions in pretty much
the same way as an element directive. It assumes its attribute values from the container
element's attributes, including the attribute directive and other directives (whether or not
they are assigned a value).

The class directive

Class directives are not altogether that different from attribute directives. They provide the
ability to have multiple directive assignments, unrestricted local attribute value access, and
local directive communication.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
<div class="class-directive: cval; normal-class"
some-attr="myvalue">
</div>

</div>
This attribute directive can be defined as follows:
(app.js)

angular.module ('myApp', [])
.directive('classDirective', function ($log) {
return {
restrict: 'C',
template: '<p>A class directive</p>',
link: function(scope, el, attrs) ({
$log.log(el.html());
// <p>A class directive</p>
$log.log(el.hasClass ('normal-class')) ;
// true
$log.log(attrs.classDirective) ;
// cval
$log.log(attrs.someAttr) ;
// myvalue

C:l JSFiddle: http://jsfiddle.net/msfrisbie/rtl1f4gxx/

[}

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/rt1f4qxx/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

It's possible to reuse class directives and assign CSS styling to them, as AngularJS leaves
them alone when compiling the directive. Additionally, a value can be directly applied to
the directive class name attribute by passing it in the CSS string.

The comment directive

Comment directives are the runt of the group. You will very infrequently find their use
necessary, but it's useful to know that they are available in your application.

This directive can be used in a template in the following fashion:

(index.html)

<div ng-app="myApp">
<!-- directive: comment-directive wvall val2 val3 -->

</div>

The comment directive can be defined as follows:

(app.Js)

angular.module ('my2App', [])

.directive ('commentDirective', function ($log)
return {

restrict: 'M',

// without replace: true, the template cannot

// be inserted into the DOM

replace: true,

template: '<p>A comment directive</p>',

link: function(scope, el, attrs) ({
$log.log(el.html ())
// <p>A comment directive</p>
$log.log(attrs.commentDirective)
// 'vall val2 val3'

C:l JSFiddle: http://jsfiddle.net/msfrisbie/thfvx275/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/thfvx275/
http://www.it-ebooks.info/

Chapter 1

Formerly, the primary use of comment directives was to handle scenarios where the DOM
APl made it difficult to create directives with multiple siblings. Since the release of AngularJS
1.2 and the inclusion of ng-repeat-start and ng-repeat-end, comment directives
are considered an inferior solution to this problem, and therefore, they have largely been
relegated to obscurity. Nevertheless, they can still be employed effectively.

AngularJS actively compiles the template, searching for matches to defined directives.
It's possible to chain directive forms together within the same definition. The mydir
directive with restrict: 'EACM' can appear as follows:

<mydirs</mydirs>
<div mydirs</divs>
<div class="mydir"></dir>

<!-- directive: mydir -->

The $1log.log () statements in this recipe should have given you some insight into the
extraordinary use that directives can have in your application.

See also

» The Interaction between nested directives recipe demonstrates how to allow
directives attached to the same element to communicate with each other

Manipulating the DOM

In the previous recipe, you built a directive that didn't care what it was attached to, what it was
in, or what was around it. Directives exist for you to program the DOM, and the equivalent of the
last recipe is to instantiate a variable. In this recipe, you will actually implement some logic.

]

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

How to do it...

The far more common use case of directives is to create them as an HTML element attribute
(this is the default behavior for restrict). As you can imagine, this allows us to decorate
existing material in the DOM, as follows:

(app-Jjs)

angular.module ('myApp', [1)
.directive ('counter', function () {
return {
restrict: 'A',
link: function (scope, el, attrs) {
// read element attribute if it exists

var incr = parselnt (attrs.incr || 1)

, val = 0;
// define callback for vanilla DOM click event
el.bind('click', function () {

el.html (val += incr);

3N

3N
This directive can then be used on a <button> element as follows:
(index.html)
<div ng-app="myApp">
<button counters</buttons

<button counter incr="5"></buttons>
</div>

~\l
(ZE JSFiddle: http://jsfiddle.net/msfrisbie/knk5znke/

AngularJS includes a subset of jQuery (dubbed jgLite) that lets you use a core toolset to
modify the DOM. Here, your directive is attached to a singular element that the directive
sees in its linking function as the element parameter. You are able to define your DOM
modification logic here, which includes initial element modification and the setup of events.

6]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/knk5znke/
http://www.it-ebooks.info/

Chapter 1

In this recipe, you are consuming a static attribute value incr inside the 1ink function as
well as invoking several jglLite methods on the element. The element parameter provided to
you is already packaged as a jqlite object, so you are free to inspect and modify it at your will.
In this example, you are manually increasing the integer value of a counter, the result of which
is inserted as text inside the button.

There's more...

Here, it's important to note that you will never need to modify the DOM in your controller,
whether it is a directive controller or a general application controller. Because Angular]S

and JavaScript are very flexible languages, it's possible to contort them to perform DOM
manipulation. However, managing the DOM transformation out of place causes an undesirable
dependency between the controller and the DOM (they should be totally decoupled) as well as
makes testing more difficult. Thus, a well-formed AngularJS application will never modify the
DOM in controllers. Directives are tailor-made to layer and group DOM modification tasks, and
you should have no trouble using them as such.

Additionally, it's worth mentioning that the attrs object is read-only, and you cannot set
attributes through this channel. It's still possible to modify attributes using the element
attribute, but state variables for elements can be much more elegantly implemented, which
will be discussed in a later recipe.

» Inthis recipe, you saw the 1ink function used for the first time in a fairly rudimentary
fashion. The next recipe, Linking directives, goes into further detail.

» The Isolate scope recipe goes over the writable DOM element attributes that can be
used as state variables.

Linking directives

For a large subset of the directives you will eventually build, the bulk of the heavy lifting will
be done inside the directive's 1ink function. This function is returned from the preceding
compile function, and as seen in the previous recipe, it has the ability to manipulate the
DOM in and around it.

How to do it...

The following directive will display NW, NE, SW, or SE depending on where the cursor is
relative to it:

angular.module ('my2App', [])
.directive ('vectorText', function ($document) {

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

return {
template: '{{ heading }}"',
link: function (scope, el, attrs) {

// initialize the css
el.css ({
'float': 'left',
'padding': attrs.buffer+"px"

3N

// initialize the scope variable
scope.heading = '';

// set event listener and handler

Sdocument .on ('mousemove', function (event) {
// mousemove event does not start $digest,
// scope.$apply does this manually

scope. $apply (function () {
if (event.pageY < 300) {
scope.heading = 'N';
} else {
scope.heading = 'S';

}

if (event.pageX < 300) {
scope.heading += 'W';
} else {
scope.heading += 'E';

This directive will appear in the template as follows:

(index.html)

<div ng-app="myApp">
<div buffer="300"
vector-text>
</div>
</div>

]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[Q JSFiddle: http://jsfiddle.net/msfrisbie/a0ywomgl/]

This directive has a lot more to wrap your head around. You can see that it has $document
injected into it, as you need to define event listeners relevant to this directive all across
$document. Here, a very simple template is defined, which would preferably be in its

own file, but for the sake of simplicity, it is merely incorporated as a string.

This directive first initializes the element with some basic CSS in order to have the relevant
anchor point somewhere you can move the cursor around fully. This value is taken from an
element attribute in the same fashion it was used in the previous recipe.

Here, our directive is listening to a $document mousemove event, with a handler inside
wrapped in the scope . Sapply () wrapper. If you remove this scope . Sapply () wrapper
and test the directive, you will notice that while the handler code does execute, the DOM does
not get updated. This is because the event that the application is listening for does not occur
in the Angular]S context—it is merely a browser DOM event, which Angular]S does not listen
for. In order to inform AngularJS that models might have been altered, you must utilize the
scope . Sapply () wrapper to trigger the update of the DOM.

With all of this, your cursor movement should constantly be invoking the event handler,
and you should see a real-time description of your cursor's relative cardinal locality.

In this directive, we have used the scope parameter for the first time. You might be
wondering, "Which scope am | using? | haven't declared any specific scope anywhere else
in the application." Recall that a directive will inherit a scope unless otherwise specified,
and this recipe is no different. If you were to inject $rootScope to the directive and log
to the SrootScope . heading console inside the event handler, you would see that this
directive is writing to the heading attribute of the $rootScope of the entire application!

See also

» The Isolate scope recipe goes into further details on directive scope management

[}

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/a0ywomq1/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

Interfacing with a directive using isolate

scope

Scopes and their inheritance is something you will frequently be dealing with in Angular]S
applications. This is especially true in the context of directives, as they are subject to the
scopes they are inserted into and, therefore, require careful management in order to prevent
unexpected functionalities. Fortunately, AngularJS directives afford several robust tools that
help manage visibility of and interaction with the surrounding scopes.

If a directive is not instructed to provide a new scope for itself, it will inherit the parent scope.
In the case that this is not desirable behavior, you will need to create an isolate scope for that
directive, and inside that isolate scope, you can define a whitelist of parent scope elements
that the directive will need.

Getting ready

For this recipe, assume your directive exists inside the following setup:
(index.html)
<div ng-app="myApp">

<div ng-controller="MainCtrl">
<div iso></div>

</div>

</div>

(app.Jjs)

angular.module ('myApp', [1)

.controller ('MainCtrl', function (log, Sscope) {
$scope.outerval = 'mydata’';
$scope.func = function ()

$log.log('invoked!') ;
Vi
)
.directive('iso', function () {
return {};

3N

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

To declare a directive with an isolate scope, simply pass an empty object literal as the
scope property:

(app.js)
.directive('iso', function () {
return {
scope: {}

¥
3N

With this, there will be no inheritance from the parent scope in MainCtrl, and the directive
will be unable to use methods or variables in the parent scope.

If you want to pass a read-only value to the directive, you will use @ inside the isolate scope
declaration to indicate that a named attribute of the relevant HTML element contains a value
that should be incorporated into the directive's isolate scope. This can be done as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<div>Outer: {{ outerval }}</div>
<div iso myattr="{{ outerval }}"></div>
</div>
</div>

(app.js)

.directive('iso', function () {
return {
template: 'Inner: {{ innerval }}',
scope: {
innerval: '@myattr’'

3N

With this, the scope inside the directive now contains an innerval attribute with the value
of outerval in the parent scope. AngularJS evaluates the expression string, and the result is
provided to the directive's scope. Setting the value of the variable does nothing to the parent
scope or the attribute in the HTML,; it is merely copied into the scope of the directive.

s

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

[Q JSFiddle: http://jsfiddle.net /msfrisbie/cikgénin/]

While this approach is useful, it doesn't involve data binding, which you have come to love in
Angular]S, and it isn't all that more convenient than passing in a static string value. What is
far more likely to be useful to you is a true whitelist of the data binding from the parent scope.
This can be accomplished with the = definition, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="MainCtrl"s>
<divsOuter: {{ outerval }}</div>
<div iso myattr="outerval"></div>
</div>
</div>

(app.js)

.directive('iso', function () {
return {
template: 'Inner: {{ innerval }}',
scope: {
innerval: '=myattr'

3N
Q JSFiddle: http://jsfiddle.net/msfrisbie/b0g903xq/

Here, you are instructing the child directive scope to examine the parent controller scope,
and bind the parent outerval attribute inside the child scope, aliased as the innerval
attribute. Full data binding between scopes is supported, and all unnamed attributes and
methods in the parent scope are ignored.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cjkq6n1n/
http://jsfiddle.net/msfrisbie/b0g9o3xq/
http://www.it-ebooks.info/

Chapter 1

Taking a step further, methods can also be pulled down from the parent scope for use in the
directive. In the same way that a model variable can be bound to the child scope, you can
alias methods that are defined in the parent scope to be invoked from the child scope but
are still in the parent scope context. This is accomplished with the & definition, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<div iso myattr="func()"></div>
</div>

</div>

(app.Js)

.directive('iso', function () {
return {

scope: {
innerval: '&myattr'

3

link: function (scope) {
scope.innerval () ;
// invoked!

13N
(:l JSFiddle: http://jsfiddle.net/msfrisbie/1u24c408/

Here, you are instructing the child directive to evaluate the expression passed to the myattr
attribute within the context of the parent controller. In this case, the expression will invoke the
func () method, but any valid AngularJS expression will also work. You can invoke it as you
would invoke any other scope method, including parameters as required.

s

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/1u24c4o8/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

Isolate scope is entirely managed within the scope attribute in the directive's returned
definition object. Using @, =, and &, you are instructing the directive to ignore the scopes
it would normally inherit, and only utilize data, variables, and methods that you have
provided interfaces for instead.

There's more...

If the directive is designed as a specific modifier for an aspect of your application, you might
find that using isolate scope isn't necessary. On the other hand, if you're building a reusable,
monolithic component that can be reused across multiple applications, it is unlikely that

the directive will be using the parent scope in which it is used. Hence, isolate scope will be
significantly more useful.

See also

» The Recursive directives recipe utilizes the isolate scope to maintain inheritance and
separation in a recursive DOM tree

Interaction between nested directives

AngularJS provides a useful structure that allows you to build channels of communication
between directive siblings (within the same HTML element) or parents in the same DOM
ancestry without having to rely on AngularJS events.

Getting ready

For this recipe, suppose that your application template includes the following:

(index.html)

<div ng-app="myApp">
<div parent-directives>
<div child-directive
sibling-directives>
</div>
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

How to do it...

Inter-directive communication is accomplished with the require attribute, as follows:

return {
require: ['”“parentDirective', '“siblingDirective'],
link: function (scope, el, attrs, ctrls) {
$log.log(ctrls) ;
// logs array of in-order required controller objects

}
}i

Using the stringified directive names passed through require, AngularJS will examine the
current and parent HTML elements that match the directive names. The controller objects of
these directives will be returned in an array as the ctrls parameter in the original directive's
1link function.

These directives can expose methods as follows:

(app-Jjs)

angular.module ('myApp', [1)

.directive ('parentDirective', function ($log) {
return {

controller: function () {
this.identify = function () {
$log.log ('Parent!') ;

}i

}i
3
.directive('siblingDirective', function ($log) {
return {
controller: function () {
this.identify = function () {
$log.log('Sibling!"') ;

}i

}i
3

.directive ('childDirective', function ($log) {
return {
require: ['”“parentDirective', '“siblingDirective'],

link: function (scope, el, attrs, ctrls) {
ctrls[0] .identify () ;
// Parent!

=]

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

ctrls[1l] .identify () ;
// Sibling!

[Q JSFiddle: http://jsfiddle.net/msfrisbie/Lnxeyj60/]

The childDirective fetches the requested controllers and passes them to the 1ink
function, which can use them as regular JavaScript objects. The order in which directives
are defined is not important, but the controller objects will be returned in the order in which
they are requested.

» The Optional nested directive controllers recipe demonstrates how to handle a
scenario where parent or sibling controllers might not be present

Optional nested directive controllers

The AngularJS construct that allows you to build channels of communication between directive
siblings or parents in the same DOM ancestry also allows you to optionally require a directive
controller of a sibling or parent.

Getting ready

Suppose that your application includes the following;:

(index.html)

<div ng-app="myApp">
<div parent-directives>
<div child-directive
sibling-directives>
</divs>

</divs>

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/Lnxeyj60/
http://www.it-ebooks.info/

Chapter 1

</div>
(app-Jjs)

angular.module ('myApp', [1)

.directive ('parentDirective', function ($log)
return {

controller: function () {
this.identify = function () {
$log.log ('Parent!') ;

bi

}i
)
.directive('siblingDirective', function ($log) {
return {
controller: function () {
this.identify = function () {
$log.log('Sibling!"') ;

How to do it...

Note that in index.html, the missingDirective is not present. A ? prefixed to the

require array element denotes an optional controller directive. This is shown in the
following code:

(app.js)

.directive('childDirective', function ($log) {
return {

require: [
'“parentDirective’,
'“siblingDirective',
'“?missingDirective’

1,

link: function (scope, el, attrs, ctrls) ({
ctrls[0] .identify () ;
// Parent!
ctrls[1l] .identify () ;

e

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

// Sibling!
$log.log(ctrls([2]);
// null

3N

[Q JSFiddle: http://jsfiddle.net/msfrisbie/kré6w2hvb/]

If the controller exists, it will be served in the same fashion as the others. If not, the returned
array will be a null value at the corresponding index.

An AngularJS controller is merely a JavaScript constructor function, and when
parentDirective and siblingDirective are required, each directive returns their
controller object. As you are using the controller object and not the controller scope, you must
define your public controller methods on this instead of $scope. The $scope doesn't make
sense in the context of a foreign directive—recall that the directive is in the process of being
linked when all of this happens.

Directive scope inheritance

When a directive is not instructed to create its own isolate scope, it will inherit the scope of
whatever scope it exists inside.

Getting ready

Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
<div ng-controller="MainCtrl"s>
<my-directives>
<p>HTML template</p>
<p>Scope from {{origin}}</p>
<p>Overwritten? {{overwrite}}</p>
</my-directives>

</div>

=]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/kr6w2hvb/
http://www.it-ebooks.info/

Chapter 1

</div>

(app.js)

angular.module ('myApp', [1)

.controller ('MainCtrl', function ($scope) {
$Sscope.overwrite = false;
$scope.origin = 'parent controller';

3N

How to do it...

The most basic setup is to have the directive scope inherit from the parent scope that will
be used by the directive within the 1ink function. This allows the directive to manipulate
the parent scope. This can be done as follows:

(app.js)

.directive ('myDirective', function () {
return {
restrict: 'E',
link: function (scope) ({
scope.overwrite = !lscope.origin;
scope.origin = 'link function';

13N
This will compile into the following:

(index.html - compiled)

<my-directives>
<p>HTML template</p>
<p>Scope from link function</p>
<p>Overwritten? true</p>
</my-directives>

<:l JSFiddle: http://jsfiddle.net/msfrisbie/c3b3a38t/

s

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/c3b3a38t/
http://www.it-ebooks.info/

Maximizing AngularJS Directives

There's nothing tricky going on here. The directive has no template, and the HTML inside it

is subject to the modifications that the 1ink function makes to the scope. As this does not
use isolate scope and there is no transclusion, the parent scope is provided as the scope
parameter, and the 1ink function writes to the parent scope's models. The HTML output tells
us that the template was rendered from our index.html markup, the 1ink function was the
last to modify the scope, and the 1ink function overwrote the original values set up in the
parent controller.

See also

» The Directive templating recipe examines how a directive can apply an external scope
to a transplated template

» The Isolate scope recipe gives details on how a directive can be decoupled from its
parent scope

» The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

Directive templating

Directives will frequently load HTML templates from outside their definition. When using them
in an application, you will need to understand how to properly manage them, how they interact
(if at all) with the directive's parent scope, and how they interact with the content nested
inside them.

Getting ready

Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<my-directives>
Stuff inside
</my-directives>
</div>

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

</div>

(app.js)

angular.module ('myApp', [1)

.controller('MainCtrl', function ($scope) {
$Sscope.overwrite = false;
$scope.origin = 'parent controller';

3N

How to do it...

Introduce a template to the directive as follows:

(index.html - uncompiled)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<my-directives>
Stuff inside
</my-directives>
</div>

<script type="text/ng-template" id="my-directive.html">
<div>
<p>Directive template</p>
<p>Scope from {{origin}}</p>
<p>Overwritten? {{overwrite}}</p>
</div>
</script>
</div>

(app.js)

angular.module ('myApp', [1)
.controller('MainCtrl', function ($scope) {
$Sscope.overwrite = false;
$scope.origin = 'parent controller';
1)

.directive ('myDirective', function() {

Es

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

return {
restrict: 'E',
replace: true,
templateUrl: 'my-directive.html',
link: function (scope) ({
scope.overwrite = !lscope.origin;
scope.origin = 'link function';

13N,
This snippet will compile the directive element into the following:

(index.html - compiled)

<divs>
<p>Directive template</p>
<p>Scope from link function</p>
<p>Overwritten? true</p>

</divs>

<:;g JSFiddle: http://jsfiddle.net/msfrisbie/cojb59b1/

The parent scope from MainCtrl is inherited by the directive and is provided as the scope
parameter inside the directive's 1ink function. The directive template is inserted to replace
the <my-directives tag and its contents, but the supplanting template HTML is still subject
to the inherited scope. The 1ink function is able to modify the parent scope as though it
were the directive's own. In other words, the link scope and the controller scope are the same
object in this example.

» The Directive scope inheritance recipe goes over the basics that involve carrying the
parent scope through a directive

» The Isolate scope recipe gives details on how a directive can be decoupled from its
parent scope

» The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cojb59b1/
http://www.it-ebooks.info/

Chapter 1

Isolate scope

Often, you will find that the inheritance of a directive's parent scope is undesirable somewhere
in your application. To prevent inheritance and to create a blank slate scope for the directive,
isolate scope is utilized.

Getting ready

Suppose that you begin with the following skeleton application:

(index.html - uncompiled)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<my-directives
Stuff inside
</my-directives>

</div>

<script type="text/ng-template" id="my-directive.html">
<divs>
<p>Directive template</p>
<p>Scope from {{origin}}</p>
<p>Overwritten? {{overwrite}}</p>
</div>
</scripts>
</div>

(app.Js)

angular.module ('myApp', [])
.controller('MainCtrl', function ($scope) {
$Sscope.overwrite = false;
$scope.origin = 'parent controller';

3N

How to do it...

Assign an isolate scope to the directive with an empty object literal, as follows:
(app.Jjs)

.directive ('myDirective', function() {
return {

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

templateUrl: 'my-directive.html',

replace: true,

scope: {},

link: function (scope) ({
scope.overwrite = !lscope.origin;
scope.origin = 'link function';

13N,
This will compile into the following:

(index.html - compiled)

<divs>
<p>Directive template</p>
<p>Scope from link function</p>
<p>Overwritten? false</p>
</divs>

Q JSFiddle: http://jsfiddle.net/msfrisbie/a2vmuhd3/

The directive creates its own scope and performs the modifications on the scope instead
of performing them inside the 1ink function. The parent scope is unchanged and obscured
from inside the directive's 1ink function.

» The Directive scope inheritance recipe goes over the basics that involve carrying the
parent scope through a directive

» The Directive templating recipe examines how a directive can apply an external scope
to an interpolated template

» The Directive transclusion recipe demonstrates how a directive handles the
application of a scope to the interpolated existing nested content

S E

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/a2vmuhd3/
http://www.it-ebooks.info/

Chapter 1

Directive transclusion

Transclusion on its own is a relatively simple construct in AngularJS. This simplicity becomes
muddied when mixed with the complexity of directives and scope inheritance. Directive
transclusion is frequently used when the directive either needs to inherit from the parent
scope, manage nested HTML, or both.

How to do it...

Assemble all the pieces required to use transclusion. This is shown here:

(index.html - uncompiled)

<div ng-app="myApp">
<div ng-controller="MainCtrl">
<my-directives
<p>HTML template</p>
<p>Scope from {{origin}}</p>
<p>Overwritten? {{overwrite}}</p>
</my-directives>

</div>

<script type="text/ng-template" id="my-directive.html">
<ng-transclude></ng-transclude>

</scripts>
</div>
(app.Jjs)
angular.module ('myApp', [])
.controller('MainCtrl', function ($scope) {
$scope.overwrite = false;
$scope.origin = 'parent controller';
3
.directive ('myDirective', function()

return {
restrict: 'E',
templateUrl: 'my-directive.html',
scope: {},
transclude: true,
link: function (scope) ({
scope.overwrite = !!scope.origin;

s

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

scope.origin = 'link function';

13N
This will compile into the following:

(index.html - compiled)

<p>HTML template</p>
<p>Scope from parent controller</p>
<p>Overwritten? false</p>

In the directive's template, the location of ng-transclude informs Scompile that the
directive's original HTML contents are to replace the contents of the specified element.
Furthermore, using transclusion means that the parent scope will continue to be in the
directive to be used for the interpolated HTML.

To see the main reason to use transclusion more clearly, modify the my-directive.html
directive template slightly in order to see the results side by side. This can be done as follows:

(index.html - uncompiled)

<script type="text/ng-template" id="my-directive.html">
<ng-transclude></ng-transclude>
<hr />
<p>Directive template</p>
<p>Scope from {{origin}}</p>
<p>Overwritten? {{overwrite}}</p>
</script>

This will compile into the following:

(index.html - compiled)

<p>HTML template</p>

<p>Scope from parent controller</p>
<p>Overwritten? false</p>

<hr />

<p>Directive template</p>

<p>Scope from link function</p>
<p>Overwritten? false</p>

~\l
C:l JSFiddle: http://jsfiddle.net/msfrisbie/l1alld3mk/

NEQ

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/1a11d3mk/
http://www.it-ebooks.info/

Chapter 1

It should now be apparent exactly what is going on inside the directive that uses transclusion.
The directive's template is subject to the 1ink function (which necessarily uses the isolate
scope), and the original wrapped HTML template maintains its relationship with the parent
scope without the directive interfering.

See also

» The Directive scope inheritance recipe goes over the basics that involve carrying the
parent scope through a directive

» The Directive templating recipe examines how a directive can apply external scope to
an interpolated template

» The Isolate scope recipe details how a directive can be decoupled from its parent scope

Recursive directives

The power of directives can also be effectively applied when consuming data in a more
unwieldy format. Consider the case in which you have a JavaScript object that exists in some
sort of recursive tree structure. The view that you will generate for this object will also reflect its
recursive nature and will have nested HTML elements that match the underlying data structure.

Getting ready

Suppose you had a recursive data object in your controller as follows:

(app.js)

angular.module ('myApp', [1)
.controller ('MainCtrl', function($scope) {
$scope.data = {
text: 'Primates’',
items: [
{
text: 'Anthropoidea',
items: [
{
text: 'New World Anthropoids'
I
{

text: '0ld World Anthropoids',

Eis

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

items: [
{
text: 'Apes',
items: [
{
text: 'Lesser Apes'
1
{
text: 'Greater Apes'
}
1
1
{

text: 'Monkeys'

text: 'Prosimii'

How to do it...

As you might imagine, iteratively constructing a view or only partially using directives to
accomplish this will become extremely messy very quickly. Instead, it would be better if

you were able to create a directive that would seamlessly break apart the data recursively,
and define and render the sub-HTML fragments cleanly. By cleverly using directives and the
$compile service, this exact directive functionality is possible.

The ideal directive in this scenario will be able to handle the recursive object without any
additional parameters or outside assistance in parsing and rendering the object. So, in the
main view, your directive will look something like this:

<recursive value="nestedObject"></recursives>

The directive is accepting an isolate scope = binding to the parent scope object, which will
remain structurally identical as the directive descends through the recursive object.

NED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The $compile service

You will need to inject the Scompile service in order to make the recursive directive work.
The reason for this is that each level of the directive can instantiate directives inside it and
convert them from an uncompiled template to real DOM material.

The angular.element() method

The angular.element () method can be thought of as the jQuery $ () equivalent. It
accepts a string template or DOM fragment and returns a jglLite object that can be modified,
inserted, or compiled for your purposes. If the jQuery library is present when the application is
initialized, AngularJS will use that instead of jqLite. If you use the AngularJS template cache,
retrieved templates will already exist as if you had called the angular.element () method
on the template text.

The $templateCache

Inside a directive, it's possible to create a template using angular.element () and a string
of HTML similar to an underscore. js template. However, it's completely unnecessary and
quite unwieldy to use compared to Angular]S templates. When you declare a template and
register it with AngularJS, it can be accessed through the injected $templateCache, which
acts as a key-value store for your templates.

The recursive template is as follows:

<script type="text/ng-template" id="recursive.html">
{{ val.text }}
<button ng-click="delSubtree () ">delete</buttons>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
<tree val="item" parent-data="val.items"></tree>
</1li>

</script>

The and <button> elements are present at each instance of a node, and they
present the data at that node as well as an interface to the click event (which we will
define in a moment) that will destroy it and all its children.

Following these, the conditional element renders only if the isParent flagis set in
the scope, and it repeats through the items array, recursing the child data and creating new
instances of the directive. Here, you can see the full template definition of the directive:

<tree val="item" parent-data="val.items"></tree>

s

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

Not only does the directive take a val attribute for the local node data, but you can also
see its parent -data attribute, which is the point of scope indirection that allows the
tree structure. To make more sense of this, examine the following directive code:

(app.js)

.directive('tree', function(Scompile, S$StemplateCache) {

return {
restrict: 'E',
scope: {
val: '="',
parentData: '='

b
link: function(scope, el, attrs) (
scope.isParent = angular.isArray (scope.val.items)
scope.delSubtree = function() {
if (scope.parentData) {
scope.parentData.splice (
scope.parentData. indexOf (scope.val),
1
)
}
scope.val={};
}
el.replaceWith (
Scompile (
StemplateCache.get ('recursive.html')
) (scope)
)

13N

With all of this, if you provide the recursive directive with the data object provided at
the beginning of this recipe, it will result in the following (presented here without the
auto-added AngularJS comments and directives):

(index.html - uncompiled)
<div ng-app="myApp">
<div ng-controller="MainCtrl">

<tree val="data"></tree>

</div>

<script type="text/ng-template" id="recursive.html"s>

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

{{ val.text }}
<button ng-click="deleteSubtree () ">delete</button>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
<tree val="item" parent-data="val.items"></tree>
</1li>

</script>
</div>

The recursive nature of the directive templates enables nesting, and when compiled using the
recursive data object located in the wrapping controller, it will compile into the following HTML:

(index.html - compiled)

<div ng-controller="MainController"> Primates</spans>
<button ng-click="delSubtree () ">delete</button>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
Anthropoidea
<button ng-click="delSubtree () ">delete</button>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
New World Anthropoids
<button ng-click="delSubtree () ">delete</button>
</1li>
<li ng-repeat="item in val.items">
01d World Anthropoids
<button ng-click="delSubtree () ">delete</button>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
Apes
<button ng-click="delSubtree () ">delete</button>
<ul ng-if="isParent" style="margin-left:30px">
<li ng-repeat="item in val.items">
Lesser Apes
<button ng-click="delSubtree () ">delete</button>
</1li>
<li ng-repeat="item in val.items">
Greater Apes
<button ng-click="delSubtree () ">delete</button>
</1li>

</1li>

@l

www.it-ebooks.info

http://www.it-ebooks.info/

Maximizing AngularJS Directives

<li ng-repeat="item in val.items">
Monkeys
<button ng-click="delSubtree () ">delete</button>
</1li>

</1li>

</1li>
<li ng-repeat="item in val.items">
Prosimii</spans>
<button ng-click="delSubtree () ">delete</button>
</1li>

</div>

[@ JSFiddle: http://jsfiddle.net/msfrisbie/kad6yx4u/]

The definition of the isolate scope through the nested directives described in the previous
section allows all or part of the recursive objects to be bound through parentData to the
appropriate directive instance, all the while maintaining the nested connectedness afforded
by the directive hierarchy. When a parent node is deleted, the lower directives are still bound
to the data object and the removal propagates through cleanly.

The meatiest and most important part of this directive is, of course, the 1ink function. Here,
the 1ink function determines whether the node has any children (which simply checks for the
existence of an array in the local data node) and declares the deleting method, which simply
removes the relevant portion from the recursive object and cleans up the local node. Up

until this point, there haven't been any recursive calls, and there shouldn't need to be. If your
directive is constructed correctly, Angular]S data binding and inherent template management
will take care of the template cleanup for you. This, of course, leads into the final line of the
link function, which is broken up here for readability:

el.replaceWith (
Scompile (
StemplateCache.get ('recursive.html')
) (scope)

) ;

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ka46yx4u/
http://www.it-ebooks.info/

Chapter 1

Recall that in a 1ink function, the second parameter is the jgLite-wrapped DOM object that
the directive is linking—here, the <tree> element. This exposes to you a subset of jQuery
object methods, including replaceWith (), which you will use here. The top-level instance
of the directive will be replaced by the recursively-defined template, and this will carry down
through the tree.

At this point, you should have an idea of how the recursive structure is coming together. The
element parameter needs to be replaced with a recursively-compiled template, and for this, you
will employ the $compile service. This service accepts a template as a parameter and returns
a function that you will invoke with the current scope inside the directive's 1ink function. The
template is retrieved from $templateCache by the recursive.html key, and then it's
compiled. When the compiler reaches the nested <tree> directive, the recursive directive is
realized all the way down through the data in the recursive object.

This recipe demonstrates the power of constructing a directive to convert a complex data
object into a large DOM object. Relevant portions can be broken into individual templates,
handled with distributed directive logic, and combined together in an elegant fashion to
maximize modularity and reusability.

See also

» The Optional nested directive controllers recipe covers vertical communication
between directives through their controller objects

&1

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your
Toolkit with Filters
and Service Types

In this chapter, we will cover the following recipes:

» Using the uppercase and lowercase filters
» Using the number and currency filters

» Using the date filter

» Debugging using the json filter

» Using data filters outside the template

» Using built-in search filters

» Chaining filters

» Creating custom data filters

» Creating custom search filters

» Filtering with custom comparators

» Building a search filter from scratch

» Building a custom search filter expression from scratch
» Using service values and constants

» Using service factories

» Using services

» Using service providers

» Using service decorators

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

Introduction

In this chapter, you will learn how to effectively utilize AngularJS filters and services in your
applications. Service types are essential tools required for code reuse, abstraction, and
resource consumption in your application. Filters, however, are frequently glazed over in
introductory courses as they are not considered integral to learning the framework basics.
This is a pity as filters let you afford the ability to abstract and compartmentalize large
chunks of application functionality cleanly.

All AngularJsS filters perform the same class of operations on the data they are passed,
but it is easier to think about filters in the context of a pseudo-dichotomy in which there
are two kinds: data filters and search filters.

At a very high level, Angular]S data filters are merely tools that modulate JavaScript objects
cleanly in the template. On the other half of the spectrum, search filters have the ability to
select elements of an enumerable collection that match some of the criteria you have defined.
They should be thought of as black box modifiers in your template—well-defined layers of
indirection that keep your scopes free of messy data-parsing functions. They both enable your
HTML code to be more declarative, and your code to be DRY.

Service types can be thought of as injectable singleton classes to be used throughout your
application in order to house the utility functionality and maintain states. The AngularJS
service types can appear as values, constants, factories, services, or providers.

Although filters and services are used very differently, a cunning developer can use them both
as powerful tools for code abstraction.

Using the uppercase and lowercase filters

Two of the most basic built-in filters are uppercase and lowercase filters, and they can be
used in the following fashion.

How to do it...

Suppose that you define the following controller in your application:
(app.Js)

angular.module ('myApp', [])
.controller('Ctrl', function ($scope) {
$scope.data = {
text: 'The QUICK brown Fox JUMPS over The LAZY dog',
nums: '0123456789"',

=)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

specialChars: '!@#$%"&* ()",
whitespace: ' !
}i
I

You will then be able to use the filters in the template by passing them via the pipe operator,
as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<p>{{ data.text | uppercase }}</p>
<p>{{ data.nums | uppercase }}</p>
<p>{{ data.specialChars | uppercase }}</p>
<p> {{ data.whitespace | uppercase }} </p>
</div>
</div>

The output rendered will be as follows:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
0123456789
1e#3%7&* ()

Similarly, the 1lowercase filter can be used with predictable results:

(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl">
<p>{{ data.text | lowercase }}</p>

<p>{{ data.nums | lowercase }}</p>
<p>{{ data.specialChars | lowercase }}</p>
<p> {{ data.whitespace | lowercase }} </p>
</div>
</div>

The output rendered will be as follows:

the quick brown fox jumps over the lazy dog
0123456789
l@#$% &* ()

@1

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

[Q JSFiddle: http://jsfiddle.net/msfrisbie/vcuvxrom/]

The uppercase and lowercase filters are essentially simple Angular]S wrappers used

for native string methods toUpperCase () and toLowerCase () available in JavaScript.
These filters ignore number characters, special characters, and whitespace when performing
appropriate substitutions.

As these filters are merely wrappers for native JavaScript methods, you almost certainly

won't ever have a need to use them anywhere outside the template. Their primary utility is

in their ability to be invoked in the template and their ability to chain themselves alongside
other filters that might require them. For example, if you had created a search filter that only
matched identical string matches in its results, you might want to pass a search string through
a lowercase filter before passing it through the search comparator.

» The Chaining filters recipe demonstrates how you would go about using 1owercase
filters in conjunction with other filters

Using the number and currency filters

AngularJS has some built-in filters that are less simple, such as number and currency; they
can be used to format numbers into normalized strings. They also accept optional arguments
that can further customize how the filters work.

Getting ready...

Suppose that you define the following controller in your application:
(app.Js)

angular.module ('myApp', [])
.controller('Ctrl', function ($scope) {
$scope.data = {
bignum: 1000000,
num: 1.0,

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/vcuvxrom/
http://www.it-ebooks.info/

Chapter 2

smallnum: 0.9999,
tinynum: 0.0000001

¥
3N

How to do it...

You can apply the number filter in your template, as follows:

(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl">
<p>{{ data.bignum | number }}</p>

<p>{{ data.num | number }}</p>
<p>{{ data.smallnum | number }}</p>
<p>{{ data.tinynum | number }}</p>
</divs>
</div>

The output rendered will be as follows:

1,000,000
1

1.000
le-7

This outcome might seem a bit arbitrary, but it demonstrates the next facet of filters examined
here, which are arguments. Filters can take arguments to further customize the output. The
number filter takes a fractionSize argument, which defines how many decimal places it
will round to, defaulting to 3. This is shown in the following code:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<!—- data | number : fractionSize (optional) -->
<p>{{ data.smallnum | number : 4 }}</p>
<p>{{ data.tinynum | number: 7 }}</p>
<p>{{ 012345.6789 | number : 2 }}</p>
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types
The output rendered will be as follows:

0.9999
0.0000001
12,345.68

The currency filter is another AngularJS filter that takes an optional argument, symbo1l:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<!—- data | currency : symbol (optional) -->
<p>{{ 1234.56 | currency }}</p>
<p>{{ 0.02 | currency }}</p>
<p>{{ 45682.78 | currency : "€" }}</p>
</divs>

</div>

The output rendered will be as follows:

$1,234.56
$0.02
€45,682.78

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/Lcb33vnz/]

JavaScript has a single format in which it stores numbers as 64-bit double precision floating
point numbers. These AngularJS filters exist to neatly format this raw number format by
examining the values passed to it and by deciding how to appropriately format it as a string.
The number filter handles rounding, truncation, and compression in negative exponents.

It optionally accepts the fractionSize argument, in order to allow you to customize the
filter to your needs, something that greatly increases the utility of filters. The currency filter
handles rounding and appending of the designated currency symbol. It optionally accepts the
symbol argument, which will insert the provided symbol in front of the formatted number.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/Lcb33vnz/
http://www.it-ebooks.info/

Chapter 2

There's more...

Both of these filters inherently utilize the $1ocale service, which acts as a fallback for default
arguments (for example, providing a $ character for the currency filter in regions that use
dollar, ordering of dates, and more). This service exists as a part of AngularJS's mission to act
as a region agnostic framework.

See also...

» The Chaining filters recipe demonstrates how you will go about using these filters in
conjunction with other filters

Using the date filter

The date filter is an extremely robust and customizable filter that can handle many different
kinds of raw date strings and convert them into human readable versions. This is useful in
situations when you want to let your server defer datetime processing to the client and just
be able to pass it a Unix timestamp or an ISO date.

Getting ready...

Suppose, you have your controller set up in the following fashion:
(app.Jjs)

angular.module ('myApp', [1)
.controller('Ctrl', function ($scope) {
$scope.data = {
unix: 1394787566535,
iso: '2014-03-14T08:59:262"',
date: new Date (2014, 2, 14, 1, 59, 26, 535)
}i
13N

How to do it...

All the date formats can be used seamlessly with the date filter inside the template, as follows:
(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl">
<p>{{ data.unix | date }}</p>

i

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

<p>{{ data.iso | date }}</p>
<p>{{ data.date | date }}</p>
</div>
</div>

The output rendered will be as follows:

Mar 14, 2014
Mar 14, 2014
Mar 14, 2014

The date filter is heavily customizable, giving you the ability to generate a date and time
representation using any piece of the datetime passed to it:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">

<!—- AngularJS matches the expression components
to datetime components, then stringifies as specified -->
<p>{{ data.unix | date : "EEEE 'at' H:mma" }}</p>
<p>{{ data.iso | date : "longDate" }}</p>
<p>{{ data.date | date : "M/d H:m:s.sss" }}</p>
</div>
</div>

This code uses various pieces of the date filter syntax to pull out elements from the datetime
generated inside the filter, and assemble them together in the output string, the template for
which is provided in the optional format argument. The output rendered will be as follows:

Friday at 1:59AM
March 14, 2014
3/14 1:59:26.535

(::E JSFiddle: http://jsfiddle.net/msfrisbie/mvdqfv5z/

The date filter wraps a robust set of complex regular expressions inside the framework, which
exists to parse the string passed to it into a normalized JavaScript date object. This date
object is then broken apart and molded into the desired string format specified by the filter's
argument syntax.

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/mvdqfv5z/
http://www.it-ebooks.info/

Chapter 2

M The Angular]S documentation at https://docs.angularjs.org/
Q api/ng/filter/date provides the details of all the possible input
and output formats required for date filters.

There's more...

The date filter provides you with two levels of indirection: normalized conversion from various
datetime formats and normalized conversion into almost any human readable format. Note
that in the absence of a provided time zone, the time zone assumed is the local time zone,
which in this example is Pacific Daylight Time (UTC - 7), which is accommodated through the
$locale service

Debugging using the json filter

AngularJS provides you with a JSON conversion tool, the json filter, to serialize JavaScript
objects into prettified JSON code. This filter isn't so much in use for production applications
as it is used for real-time inspection of your scope objects.

Getting ready...

Suppose your controller is set up as follows with a prefilled user data object:

(app.Jjs)
angular.module ('myApp', [])
.controller('Ctrl', function ($scope) {
$scope.user = {
id: 123,
name: {

first: 'Jake',
last: 'Hsu'
b
username: 'papatango',
friendids: [5, 13, 3, 1, 2, 8, 21],
// properties prefixed with $$ will be excluded
$sno_show: 'Hide me!'

-

www.it-ebooks.info

https://docs.angularjs.org/api/ng/filter/date
https://docs.angularjs.org/api/ng/filter/date
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

How to do it...

Your user object can be serialized in the template, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<pre>{{ user | json }}</pres>
</div>
</div>

The output will be rendered in HTML, as follows:

{
ridv: 123,
"name": {
"first": "Jake",
"last": "Hsu"
I
"username": "papatango",
"friendIds": [
5,
13,

2

~

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/yk0zxc9b/]

The json filter simply wraps the JSON. stringify () method in JavaScript in order to
provide you with an easy way to spit out formatted objects for inspection. When the filtered
object is fed into a <pre> tag, the JSON string will be properly indented in the rendered
template. Properties prefixed with $$ will be skipped by the serializer as this notation is
used internally in AngularJS as a private identifier.

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/yk0zxc9b/
http://www.it-ebooks.info/

Chapter 2

There's more...

As AngularJS lets you afford two-way data binding in the template, you can see the filtered
object update in real time in your template, as various interactions with your application
change it; this is extremely useful for debugging.

Using data filters outside the template

Filters are built to perform template data processing, so their utilization outside the template
will be infrequent. Nonetheless, Angular]S provides you with the ability to use filter functions
via an injection of $filter.

Getting ready

Suppose that you have an application, as follows:
(app.Jjs)

angular.module ('myApp', [1)
.controller('Ctrl', function ($scope) {
$Sscope.val = 1234.56789;

1)
How to do it...

In the view templates, the argument order is scrambled with the following format:
data | filter : optionalArgument

For this example, it would take the form in the template as follows:
<p>{{ val | number : 4 }}</p>

This will give the following result:
1,234.5679

In this example, it's cleanest to apply the filter in the view template, as the purpose of
formatting the number is merely for readability. If, however, the number filter is needed
to be used in a controller, $filter can be injected and used as follows:

(app.js)

angular.module ('myApp', [1)

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

.controller('Ctrl', function ($scope, S$filter) {
$Sscope.val = 1234.56789;
$scope.filteredval = $filter ('number') ($scope.val, 4);

3N

With this, the values of $scope.val and $scope.filteredval will be identical.

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/9bzu85uu/]

Although the syntax is very different compared to what is found in a template, using
a dependency injected filter is functionally the same as applying it in the view template.
The same filter method is invoked for both formats and both generate the same output.

There's more...

Although there are no cardinal sins committed by injecting $filter and using your filters
that way, the syntax is awkward and verbose. Filters aren't really designed for that sort of
use anyway. AngularJS is meant for building declarative templates, and that is exactly what
data filters provide when used in templates—lightweight and flexible modulation functions
for cleaning and organizing your data.

One of the primary use cases for using filters outside the template is when you are building
a custom filter that uses one or more existing filters inside it. For example, you might want to
use the currency filter inside a custom filter, which decides whether to use a $ or a ¢ prefix
based on whether or not the amount is greater or less than $1.00.

Using built-in search filters

Search filters serve to evaluate individual elements in an enumerable object and return
whether or not they belong in the resultant set. The returned value from the filter will also be
an enumerable set with none, some, or all of the original values that were removed. Angular]S
provides a rich suite of ways to filter an enumerable object.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/9bzu85uu/
http://www.it-ebooks.info/

Chapter 2

Getting ready

Search filters return a subset of an enumerable object, so prepare a controller as follows,
with a simple array of strings:

(app.js)

angular.module ('myApp', [1)
.controller('Ctrl', function ($scope) {
$scope.users = [
'Albert Pai',
'Jake Hsu',
'Jack Hanford',
'Scott Robinson',
'Diwank Singh'
1
13N

How to do it...

The default search filter is used in the template in the same fashion as a data filter, but
invoked with the pipe operator. It takes a mandatory argument, that is, the object that the
filter will compare against.

The easiest way to test a search filter is by tying an input field to a model and using that model
as the search filter argument, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input type="text" ng-model="search.val" />
</div>
</div>

This model can then be applied in a search filter on an enumerable data object. The filter is
most commonly applied inside an ng-repeat expression:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input type="text" ng-model="search.val" />
<p ng-repeat="user in users | filter : search.val"s>

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

{{ user }}
</p>
</div>
</divs>

Entering ja will return the following output:

Jake Hsu
Jack Hanford

Entering s will return the following output:

Jake Hsu
Scott Robinson
Diwank Singh

Entering a will return the following output:

Albert Pai
Jake Hsu
Jack Hanford
Diwank Singh

[Q JSFiddle: http://jsfiddle.net/msfrisbie/hldbover/]

With this setup, the string in the search.val model will be matched (case insensitive)
against each element in the enumerable object and will only return the matches for the
repeater to iterate through. This transformation occurs before the object is passed to the
repeater, so the filter combined with AngularJS data binding results in a very impressive
real-time, in-browser filtering system with minimal overhead.

» The Chaining filters recipe demonstrates how to utilize a string search filter in
conjunction with existing AngularJS string modulation filters

» The Filtering with custom comparators recipe demonstrates how to further customize
the way an enumerable collection is compared to the reference object

NED

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/h1dbover/
http://www.it-ebooks.info/

Chapter 2

Chaining filters

As AngularJS search filters simply reduce the modulation functions that return a subset of the
object that is passed to it, it is possible to chain multiple filters together.

When filtering enumerable objects, Angular]S provides two built-in enumeration filters that are
commonly used in conjunction with the search filters: 1imitTo and orderBy.

Getting ready

Suppose that your application contains a controller as follows with a simple array of objects
containing a name string property:

(app.Jjs)

angular.module ('my2App', [])

.controller('Ctrl', function ($scope) {
$scope.users = [

{name: 'Albert Pai'},
name: 'Jake Hsu'},
name: 'Jack Hanford'},
name: 'Scott Robinson'},
name: 'Diwank Singh'}

1;
3N

In addition, suppose that the application template is set up as follows:
(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl">
<input type="text" ng-model="gearch.val" />

<!—- simple repeater filtering against search.val -->
<p ng-repeat="user in users | filter : search.val'"s>
{{ user.name }}
</p>
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

How to do it...

You can chain another filter following your first with an identical syntax by merely adding
another pipe operator and the filter name with arguments. Here, you can see the setup
to apply the 1imitTo filter to the matching results:

(index.html)

<p ng-repeat="user in users | filter : search.val | limitTo: 2">
{{ user.name }}

</p>

Searching for h will result in the following output:

Jake Hsu
Jack Hanford

You can chain another filter, orderBy, which will sort the array, as follows:

(index.html)

<p ng-repeat="user in users | filter : search.val | orderBy: 'name'
limitTo : 2">

{{ user.name }}
</p>

Searching for h will result in the following output:

Diwank Singh
Jack Hanford

~\l
[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/ht3hfLrt/]

AngularJS search filters are functions that return a Boolean, representing whether or not the
particular element of the enumerable object belongs to the resultant set. For the array of
string primitives in the preceding code, the filter performs a simple case-insensitive substring
match operation against the provided matching string taken from the model bound to the
<inputs> tag.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ht3hfLrt/
http://www.it-ebooks.info/

Chapter 2

The subsequent chained filters orderBy and 1imitTo also take an enumerable object as an
argument and perform an additional operation on it. In the preceding example, the filter first
reduces the string array to a subset string array, which is first passed to the orderBy filter.
This filter sorts the subset string array by the expression provided, which here is alphabetical
order, as the argument is a string. This sorted array is then passed to the 1imitTo filter which
truncates the sorted substring subset string array to the number of characters specified in the
argument. This final array is then fed into the repeater in the template for rendering.

There's more...

It's worth mentioning that chained AngularJS filters are not necessarily commutative; the order
in which filters are chained matters, as they are evaluated sequentially. In the last example,
reversing the order of the chained filters (1imitTo followed by orderBy) will truncate the
subset string array and then sort only the truncated results. The proper way to think about this
is to compare them to nested functions—similar to how foo (bar (x)) is obviously not the
same as bar (foo (x)),andx | foo | barisnotthesameasx | bar | foo.

Creating custom data filters

At some point, the provided AngularJS data filters will not be enough to fill your needs, and you
will need to create your own data filters. For example, assume that in an application that you
are building, you have a region of the page that is limited in physical dimensions, but contains
an arbitrary amount of text. You would like to truncate that text to a length which is guaranteed
to fit in the limited space. A custom filter, as you might imagine, is perfect for this task.

How to do it...

The filter you wish to build accepts a string argument and returns another string. For now, the
filter will truncate the string to 100 characters and append an ellipsis at the point of truncation:

(app.Js)

angular.module ('myApp', [])
.filter ('simpletruncate', function () {
// the text parameter
return function (text) ({
var truncated = text.slice(0, 100);
if (text.length > 100) {
truncated += '...';
}
return truncated;
}i
1)

[ei-

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

This will be used in the template, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<p>{{ myText | simpletruncate }}</p>
</div>

</div>

This filter works well, but it feels a bit brittle. Instead of just defaulting to 100 characters
and an ellipsis, the filter should also accept parameters that allow undefined input and
optional definition of how many characters to truncate to and what the stop character(s)
should be. It would be even better if the filter only cut off the text at a set of whitespace
characters if possible:

(app.Js)

angular.module ('myApp', [])
.filter ('regextruncate', function()
return function (text,limit,stoptext) {
var regex = /\s/;
if (langular.isDefined(limit)) {
limit = 100;
}
if (langular.isDefined (stoptext)) ({
stoptext = '...';
}
limit = Math.min(limit, text.length);
for(var i=0;i<limit;i++)
if (regex.exec (text [limit-1])
&& !regex.exec (text[(limit-i)-11))
limit = limit-i;
break;

}
var truncated = text.slice (0, limit);
if (text.length>limit)
truncated += stoptext;
}
return truncated;
Vi
1

&

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This will be used in the template as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<p>{{ myText | regextruncate : 150 : '???' }}</p>
</div>

</div>

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/a4ez926f/]

The final version of the filter uses a simple whitespace-detecting regular expression to find
the first point in the string that it can truncate. After setting the default values of 1imit and
stoptext, the data filter iterates backwards through the relevant string values, watching for
the first point at which it sees a non whitespace character followed by a whitespace character.
This is the point at which it sets the truncation, and the string is broken apart, and then the
relevant segment is returned with the appended stoptext statement.

These filter examples don't modify the model in any way, they are merely context-free data
wrappers that package your model data neatly into a format that your template can easily
digest. Each model change causes the filter to be invoked in order to keep the data in the
template up-to-date, so the filter processing must be lightweight as it is assumed that the
filter will be frequently invoked.

There's more...

A rich suite of data filters in your application will allow a cleaner decoupling of the
presentation layer and model. The demonstration in this recipe was limited to the string
primitive, but there is no reason you could not extend your filter logic to encompass and
handle complex data objects in your application's models.

The entire purpose of filters is to improve readability and reusability, so if the construction
and application of a custom filter enables you to do that, you are encouraged to do so.

(&5}

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/a4ez926f/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

Creating custom search filters

AngularJS search filters work exceedingly well out of the box, but you will quickly develop the
desire to introduce some customization of how the filter actually relates the search object to
the enumerable collection. This collection is frequently composed of complex data objects;
a simple string comparison will not suffice, especially when you want to modify the rules by
which matches are governed.

Searching against data objects is simply a matter of building the search object in the same
mould as the enumerable collection objects.

Getting ready

Suppose, for example, your controller looks as follows:

(app.Jjs)

angular.module ('my2App', [])

.controller('Ctrl', function($scope)
$scope.users = [

{

firstName: 'John',
lastName: 'Stockton'

firstName: 'Michael',
lastName: 'Jordan'

3N

How to do it...

When searching against this collection, in the case where the search filter is passed a string
primitive, it will perform a wildcard search, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input ng-model="search" />

<p ng-repeat="user in users | filter:search"s
{{ user.firstName}} {{ user.lastName }}
</p>
</div>
</div>

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[Q JSFiddle: http://jsfiddle.net/msfrisbie/ghsa3nym/]

With this, if you were to enter jo in the input field, both John Stockton and Michael
Jordan will be returned. When asked to compare a string primitive to an object, Angular]S
has no choice but to compare the string to every field it can, and any objects that match are
declared to be a part of the match-positive resultant set.

If instead you only want to compare against specific attributes of the enumerable collection,
you can set the search object to have correlating attributes that should be matched against
the collection attributes, as shown here:

(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl"s>
<input ng-model="search.firstName" />

<p ng-repeat="user in users | filter:search"s
{{ user.firstName}} {{ user.lastName }}
</p>
</div>
</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/72qucbhp/]

Now, if you were to enter jo in the input field, only John Stockton will be returned.

Filtering with custom comparators

If you want to search only for exact matches, vanilla wildcard filtering becomes problematic

as the default comparator uses the search object to match against substrings in the collection
object. Instead, you might want a way to specify exactly what constitutes a match between the
reference object and enumerable collection.

Getting ready

Suppose that your controller contains the following data object:
(app.Js)

angular.module ('myApp', [1)

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ghsa3nym/
http://jsfiddle.net/msfrisbie/72qucbhp/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

.controller('Ctrl', function($scope) {

$Sscope.users = [
firstName: 'John’',
lastName: 'Stockton',
number: '12'
firstName: 'Michael'’',
lastName: 'Jordan',
number: '23'
firstName: 'Allen',
lastName: 'Iverson',
number: '3

3N

How to do it...

Instead of using just a single search box, the application will use two search fields, one for the
name and one for the number. Having a wildcard search for the first name and last name is
more useful, but searching for wildcard numbers is not useful in this situation.

The search fields are constructed as follows:
(index.html)
<div ng-app="myApp">
<div ng-controller="Ctrl">

<input ng-model="sgearch.s" />
<input ng-model="search.number" />

<p ng-repeat="user in users | filter:search"s
{{ user.firstName}} {{ user.lastName }}
</p>
</div>
</divs>

The first input field appears with $; this is done merely to assign the wildcard search to the
entire search object so that it does not interfere with other assigned search attributes. The
second input field specifies that the application should only search against the collection's
number attribute.

(&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As expected, testing this code reveals that the number search field is performing a wildcard
search, which is not desirable. To specify exact matches when searching, the filter takes an
optional comparator argument that mandates how matches will be ascertained. A true
value passed will enable exact matches:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<input ng-model="gearch.$" required />
<input ng-model="search.number" required />

<p ng-repeat="user in users | filter:search:true"s>
{{ user.firstName}} {{ user.lastName }}
</p>
</div>
</div>

With this setup, both inputs will create an AND filter to select data from the array with one
or multiple criteria. The required statement will cause the model bound to it to reset to
undefined, when the input is an empty string.

(:K JSFiddle: http://jsfiddle.net/msfrisbie/on394s02/

The comparator argument will be resolved to a function in all cases. When passing in true,
AngularJS will treat it as an alias for the following code:

function (actual, expected) {
return angular.equals (expected, actual);

}

This will function as a strict comparison of the element in the enumerable collection and the
reference object.

More generally, you can also pass in your own comparator function, which will return true or
false based on whether or not actual matches expected. This will take the following form:

function (actual, expected) {
// logic to determine if actual
// should count as a match for expected

}

The functions from the comparator argument are the ones used to determine whether each
piece of the enumerable collection belongs in the resultant subset.

&7}

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/on394so2/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

» The Building a search filter from scratch and Building a custom search filter
expression from scratch recipes demonstrate alternate methods of architecting
search filters to match your application's needs

Building a search filter from scratch

The provided search filters can serve your application's purposes only to a point. Eventually,
you will need to construct a complete solution in order to filter an enumerable collection.

Getting ready

Suppose that your controller contains the following data object:

(app.Jjs)

angular.module ('myApp', [1)

.controller ('Ctrl', function($scope) {
$Sscope.users = [

{

firstName: 'John’',
lastName: 'Stockton',
number: '12'
firstName: 'Michael'’',
lastName: 'Jordan',
number: '23'
firstName: 'Allen',
lastName: 'Iverson',
number: '3

&)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

How to do it...

Suppose you wanted to create an OR filter for the name and number values. The brute force
way to do this is to create an entirely new filter in order to replace the AngularJS filter. The filter
takes an enumerable object and returns a subset of the object. Adding the following will do

exactly that:
(app.Js)

function () {
search) {

.filter ('userSearch',
return function (users,

[1;

angular.forEach (users,
if

var matches =
function

langular.isDefined (search))
return false;

}

// initialize match conditions

var nameMatch = false,
numberMatch = false;
if (angular.isDefined (search.name)

search.name.length > 0) {

(user)
(tangular.isDefined (users) ||

{

&&

// substring of first or last name will match

if

nameMatch = nameMatch ||

user.firstName.indexOf (search.name) >

}
if

nameMatch = nameMatch ||

user.lastName. indexOf (search.name) >

}
}

if

(angular.isDefined (user.number)

(angular.isDefined (user.firstName))

_l;

(angular.isDefined (user.lastName)) {

_1’-

&&

angular.isDefined (search.number))
// only match if number is exact match

numberMatch = user.number ===

}

// either match should populate

if (nameMatch || numberMatch) {
matches.push (user) ;

!
3N
// this is the array that will be
return matches;
Vi
3N

search.number;

the results with user

fed to the repeater

[}

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

This would then be used as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<input ng-model="search.name"
required />
<input ng-model="search.number"
required />
<p ng-repeat="user in users | userSearch : search"s>
{{ user.firstName }} {{ user.lastName }}
</p>
</div>

</div>

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/k4umoj3p/]

Since this filter is built from scratch, it's constructed to handle all the edge cases of missing
attributes and objects in the parameters. The filter performs substring lookups on the first and
last name attributes and exact matches on number attributes. Once this is done, it performs
the actual OR operation on the two results. However, having entirely rebuilt the search filter,

it must return the entire collection subset.

There's more...

Rebuilding the filtering mechanism from top to bottom, as shown in this recipe, only makes
sense if you need to significantly diverge from the existing filtering mechanism functionality.

See also

» The Building a custom search filter expression from scratch recipe shows you how to
perform custom filtering while working within the existing search filter mechanisms

[

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/k4umoj3p/
http://www.it-ebooks.info/

Chapter 2

Building a custom search filter expression

from scratch

Instead of reinventing the wheel, you can create a search filter expression that evaluates to
true or f£alse for each iteration in the enumerable collection.

How to do it...

The simplest way to do this is to define a function on your scope, as follows:

(app.js)

angular.module ('myApp', [1)
.controller('Ctrl', function ($scope) {
$Sscope.users = [

1
$scope.usermatch = function (user) ({
if (!langular.isDefined (user) ||
langular.isDefined ($scope.search)) {
return false;
}
var nameMatch = false,
numberMatch = false;
if (angular.isDefined($scope.search.name) &&
$scope.search.name.length > 0) {
if (angular.isDefined (user.firstName))
nameMatch = nameMatch ||
user.firstName.indexOf ($scope.search.name) > -1;
}
if (angular.isDefined(user.lastName)) {
nameMatch = nameMatch ||
user.lastName.indexOf ($scope.search.name) > -1;

}

if (angular.isDefined(user.number) &&
angular.isDefined ($scope.search.number)) {
numberMatch = user.number === S$scope.search.number;
}
return nameMatch || numberMatch;
Vi
1)

7}

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

Now, this can be passed to the built-in filter as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input ng-model="search.name" required />
<input ng-model="gearch.number" required />

<p ng-repeat="user in users | filter:usermatch"s
{{ user.firstName }} {{ user.lastName }}
</p>
</divs>
</div>

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/76874ygr/]

In the Name search box, typing Jo now returns Michael Jordan and John Stockton
and in the Number search box, typing 3 only returns Allen Iverson. Searching for both Mi
and 3 will return Michael Jordan and Allen Iverson, as the filter constructed here is
an OR filter. If you want to change it to an AND filter, you can simply change the return line to
the following;:

return nameMatch && numberMatch;

All of these search filter techniques can be framed through a perspective that pays attention
to what you are filtering. Search filters merely apply the question: "Does this fit my definition
of a match?", over and over again. Angular]S's data binding causes this question to be asked
to each member of the enumerable collection each time the object changes in content or
population. The preceding recipes merely define how this question gets asked.

Filters are merely applied JavaScript functions and the mechanisms by which they can
be configured are flexible. Rarely in production applications will the built-in search filter
infrastructure be sufficient, so it is advantageous to instead be able to mould exactly how
the filter interprets a match.

Furthermore, as you begin to examine performance limitations, you will begin to consider
ways to optimize repeaters and filters. If kept lightweight, filters are inexpensive and can be
run hundreds of times in rapid succession without consequence. As complexity and data
magnitude scale, filters can allow you to maintain a performant and responsive application.

=

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/76874ygr/
http://www.it-ebooks.info/

Chapter 2

Using service values and constants

Angular]S service types, at their core, are singleton containers used for unified resource access
across your application. Sometimes, the resource access will just be a single JS object. For this,
AngularJS offers service values and service constants.

How to do it...

Service values and service constants both act in a very similar way, but with one
important difference.

Service value

The service value is the simplest of all service types. The value service acts as a key-value
pair and can be injected and used as follows:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope, MyValue)
$Sscope.data = MyValue;
$scope.update = function()
MyValue.name = 'Brandon Marshall';
Vi
3]
.value ('MyValue', {
name: 'Tim Tebow',
number: 15

E
An example of template use is as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="update () ">Update</buttons>
{{ data.name }} #{{ data.number }}
</div>

</div>

<:l JSFiddle: http://jsfiddle.net/msfrisbie/hs7ully0/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/hs7uL1y0/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

You'll notice that Angular]S has no problem with you updating the service value. Since it is a
singleton, any part of your application that injects the value service and reads/writes to it will
be accessing the same data. Service values act like service factories (discussed in the Using
service factories recipe) and cannot be injected into the providers or the config () phase of
your application.

Service constant

Like service values, service constants also act as singleton key-value pairs. The important
difference is that service constants act like service providers and can be injected into the
config () phase and service providers. They can be used as follows:

(app.Js)

angular.module ('myApp', [])
.config(function (MyConstant)
// can't inject $log into config()
console.log(MyConstant) ;
3]
.controller('Ctrl', function($scope, MyConstant)
$scope.data = MyConstant;
$scope.update = function()
MyConstant.name = 'Brandon Marshall';
Vi
3]
.constant ('MyConstant', {
name: 'Tim Tebow',
number: 15

RE

The template remains unchanged from the service value example.

~\l
[(::K JSFiddle: http://jsfiddle.net/msfrisbie/whaealyl/]

Service values and service constants act as read/write key-value pairs. The main difference
is that you can choose one over the other based on whether you will need to have the data
available to you when the application is being initialized.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/whaea0y1/
http://www.it-ebooks.info/

Chapter 2

See also

» The Using service providers recipe provides details of the ancestor service type and
how it relates to the service type life cycle

» The Using service decorators recipe demonstrates how a service type initialization
can be intercepted for a just in time modification

Using service factories

A service factory is the simplest general purpose service type that allows you to use the
singleton nature of AngularJS services with encapsulation.

How to do it...

The service factory's return value is what will be injected when the factory is listed as a
dependency. A common and useful pattern is to define private data and functions outside this
object, and define an API to them through a returned object. This is shown in the following code:

(app.js)
angular.module ('myApp', [1)
.controller('Ctrl', function($scope, MyFactory) {

$scope.data = MyFactory.getPlayer() ;
$scope.update = MyFactory.swapPlayer;
1)
.factory ('MyFactory', function() {
// private variables and functions
var player = ({
name: 'Peyton Manning',
number: 18
}, swap = function() {
player.name = 'A.J. Green';
Vi
// public API
return {
getPlayer: function() {
return player;
b
swapPlayer: function() ({
swap () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

Since the service factory values are now bound to $scope, they can be used in the template
normally, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="update () ">Update</button>
{{ data.name }} #{{ data.number }}
</div>

</div>

[(:;l JSFiddle: http://jsfiddle.net/msfrisbie/5gydkrjw/]

This example might feel a bit contrived, but it demonstrates the basic usage pattern that

can be used with service factories for great effect. As with all service types, this is a singleton,
so any modifications done by a component of the application will be reflected anywhere the
factory is injected.

See also

» The Using services recipe shows how the sibling type of service factories is
incorporated into applications

» The Using service providers recipe provides you with the details of the ancestor
service type and how it relates to the service type life cycle

» The Using service decorators recipe demonstrates how service type initialization can
be intercepted for a just in time modification

Using services

Services act in much the same way as service factories. Private data and methods can be
defined and an API can be implemented on the service object through it.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5gydkrjw/
http://www.it-ebooks.info/

Chapter 2

How to do it...

A service is consumed in the same way as a factory. It differs in that the object to be injected
is the controller itself. It can be used in the following way:

(app.js)

angular.module ('myApp', [1)
.controller('Ctrl', function($scope, MyService) {
$scope.data = MyService.getPlayer() ;
$scope.update = MyService.swapPlayer;
1)
.service ('MyService', function () {
var player = {
name: 'Philip Rivers',
number: 17
}, swap = function() {
player.name = 'Alshon Jeffery';
}i
this.getPlayer = function() ({
return player;
}:
this.swapPlayer = function() {
swap () ;
}:
1)

When bound to $scope, the service interface is indistinguishable from a factory.
This is shown here:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="update () ">Update</button>
{{ data.name }} #{{ data.number }}
</div>
</div>

<:l JSFiddle: http://jsfiddle.net/msfrisbie/5wnlédyk/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5wn16dyk/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

Services invoke a constructor with the new operator, and the instantiated service object is the
delivered injectable. Like a factory, it still exists as a singleton and the instantiation is deferred
until the service is actually injected.

See also

» The Using service factories recipe shows how the sibling type of service is
incorporated in applications

» The Using service providers recipe provides the details of the ancestor service type
and how it relates to the service type life cycle

» The Using service decorators recipe demonstrates how service type initialization can
be intercepted for a just in time modification

Using service providers

Service providers are the parent service type used for factories and services. They are the
most configurable and extensible of the service types, and allow you to inspect and modify
other service types during the application's initialization.

How to do it...

Service providers take a function parameter that returns an object that has a $get method.
This method is what AngularJS will use to produce the injected value after the application has
been initialized. The object wrapping the $get method is what will be supplied if the service
provider is injected into the config phase. This can be implemented as follows:

(app.js)

angular.module ('myApp', [1)

.config(function (PlayerProvider) {
// appending 'Provider' to the injectable
// i1s an Angular config() provider convention
PlayerProvider.configSwapPlayer () ;
console.log(PlayerProvider.configGetPlayer()) ;

1)

.controller('Ctrl', function($scope, Player) {
$scope.data = Player.getPlayer() ;
$Sscope.update = Player.swapPlayer;

1)

.provider ('Player', function() {

@

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

var player = {
name: 'Aaron Rodgers',
number: 12

}, swap = function() {
player.name = 'Tom Brady';

}i

return {
configSwapPlayer: function() ({
player.name = 'Andrew Luck';
b
configGetPlayer: function() {
return player;
b
$get: function()
return {
getPlayer: function() {
return player;
b
swapPlayer: function() ({
swap () ;

When used this way, the provider appears to the controller as a normal service type,
as follows:

(app.-Jjs)

.controller('Ctrl', function($scope, Player) {
$scope.data = Player.getPlayer() ;
$scope.update = Player.swapPlayer;

3]
(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="update () ">Update</buttons>
{{ data.name }} #{{ data.number }}
</div>
</div>

(7]

www.it-ebooks.info

http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

[<:3> JSFiddle: http://jsfiddle.net/msfrisbie/49wjk54L/]

Providers is the only service type that can be passed into a config function. Injecting a
provider into the conf ig function gives access to the wrapper object, and injecting a provider
into an initialized application component will give you access to the return value of the $get
method. This is useful when you need to configure aspects of a service type before it is used
throughout the application.

There's more...

Providers can only be injected as their configured services in an initialized application. Similarly,
types like service factories and services cannot be injected in a provider, as they will not yet exist
during the config phase.

See also

» The Using service decorators recipe demonstrates how a service type initialization
can be intercepted for a just in time modification

Using service decorators

An often overlooked aspect of AngularJS services is their ability to decorate service types in
the initialization logic. This allows you to add or modify how factories or services will behave
in the conf ig phase before they are injected in the application.

How to do it...

In the config phase, the $provide service offers a decorator method that allows you to
inject a service and modify its definition before it is formally instantiated. This is shown here:

(app.Js)

angular.module ('myApp', [])
.config(function ($provide) ({
$provide.decorator ('Player', function($delegate) {
// $delegate is the Player service instance

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/49wjk54L/
http://www.it-ebooks.info/

Chapter 2

$delegate.setPlayer ('Eli Manning');
return $delegate;
E;
)
.controller('Ctrl', function($scope, Player) {
$scope.data = Player.getPlayer() ;
$scope.update = Player.swapPlayer;

3]

.factory('Player', function() {
var player = {
number: 10
}, swap = function() {
player.name = 'DeSean Jackson';
}i
return {

setPlayer: function (newName) {
player.name = newName;

1

getPlayer: function() {
return player;

1

swapPlayer: function() ({
swap () ;

3N

As you have merely modified a regular factory, it can be used in the template normally,
as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="update () ">Update</buttons>
{{ data.name }} #{{ data.number }}
</div>
</div>

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/cd3286rt/

s

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cd3286rt/
http://www.it-ebooks.info/

Expanding Your Toolkit with Filters and Service Types

The decorator acts to intercept the creation of a service upon instantiation that allows you to
modify or replace the service type as desired. This is especially useful when you are looking
to cleanly monkeypatch a third-party library.

[Constants cannot be decorated.]
See also

» The Using service providers recipe provides details of the ancestor service type and
how it relates to the service type life cycle

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

In this chapter, we will cover the following recipes:

» Creating a simple fade in/out animation

» Replicating jQuery's s1ideUp () and slideDown () methods
» Creating enter animations with ngIf

» Creating leave and concurrent animations with ngview

» Creating move animations with ngRepeat

» Creating addClass animations with ngShow

» Creating removeClass animations with ngClass

» Staggering batched animations

Introduction

Angularl]S incorporates its animation infrastructure as a separate module, ngAnimate.
With this, you are able to tackle animating your application in several different ways,
which are as follows:

» (CSS3 transitions

» (CSS3 animations

» JavaScript animations
Using any one of these three, you are able to fully animate your application in an extremely
clean and modular fashion. In many cases, you will find that it is possible to add robust

animations to your existing application using only the Angular]S class event progression
and CSS definitions—no extra HTML or JS code is needed.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

This chapter assumes that you are at least broadly familiar with the major topics involved in
browser animations. We will focus more on how to integrate these animations into an AngularJS
application without having to rely on jQuery or other animation libraries. As you will see in this
chapter, there are a multitude of reasons why utilizing AngularJS/CSS animations is preferred to
their respective counterparts in libraries such as jQuery.

For the sake of brevity, the recipes in this chapter will not include any
vendor prefixes in the CSS class or animation definitions. Production
applications should obviously include them for cross-browser compatibility,
~ but in the context of this chapter, they are merely a distraction as Angular)S
Q is unconcerned with the content of CSS definitions.

The ngAnimate module comes separately packaged in angular-
animate. js. This file must be included alongside angular. js for the
recipes in this chapter to work.

Creating a simple fade in/out animation

AngularJS animations work by integrating CSS animations into a directive class-based finite state
machine. In other words, elements in AngularJS that serve to manipulate the DOM have defined
class states that can be used to take full advantage of CSS animations, and the system moves
between these states on well-defined events. This recipe will demonstrate how to make use of
the directive finite state machine in order to create a simple fade in/out animation.

A finite state machine (FSM) is a computational system model defined by

the states and transition conditions between them. The system can only

exist in one state at any given time, and the system changes state when
% triggered by certain events. In the context of Angular]S animations, states are

represented by the presence of CSS classes associated with the progress of

a certain animation, and the events that trigger the state transformations are

controlled by data binding and the directives controlling the classes.

Getting ready

As of Angular]S 1.2, animation comes as a completely separate module in AngularJS—
ngAnimate. Your initial files should appear as follows:

(style.css)

.animated-container {
padding: 20px;

=

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

border: 5px solid black;

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<label>
<button ng-click="boxHidden=!boxHidden">
Toggle Visibility
</button>
</labels>
<div class="animated-container" ng-hide="boxHidden">
Awesome text!
</div>
</div>
</div>

(app.js)

angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($Sscope) {
$scope.boxHidden = true;

3N

You can see that the given code simply provides a button that instantly toggles the visibility of
the styled <div> element.

How to do it...

There are several ways to accomplish a fade in/out animation, but the simplest is to use CSS
transitions as they integrate very nicely into the AngularJS animation class state machine.

The animation CSS classes need to cover both cases, where the element is hidden and needs
to fade in, and where the element is shown and needs to fade out. As is the case with CSS
transitions, you need to define the initial state, the final state, and the transition parameters.
This can be done as follows:

(style.css)

.animated-container
padding: 20px;
border: 5px solid black;

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

.animated-container.ng-hide-add,
.animated-container.ng-hide-remove
transition: all linear 1s;
.animated-container.ng-hide-remove,
.animated-container.ng-hide-add.ng-hide-add-active {
opacity: 0;
.animated-container.ng-hide-add,
.animated-container.ng-hide-remove.ng-hide-remove-active {
opacity: 1;

}

(:l JSFiddle: http://jsfiddle.net/msfrisbie/fgxwvyvy/

These CSS classes cover the bi-directional transition to fade between opacity: 0 and
opacity: 1in 1 second. Clicking on the <button> element to toggle the visibility will
work to trigger the fade in and fade out of the styled <div> element.

Since CSS transitions are triggered by the change of relevant CSS classes, using the
AngularJS class state machine allows you to animate when a directive manipulates

the DOM. The show/hide state machine is cyclical and operates as shown in the following
table (this is a simplified version of the full ng-show/ng-hide state machine, which is
provided in detail in the Creating addClass animations with ngShow recipe):

Event Directive state Styled element classes | Element state
Initial state ng- animated- display:none
hide=true container
ng-hide
boxHidden=false | ng- animated- opacity:0
hide=false container
ng-animate
ng-hide-remove

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/fqxwvyvj/
http://www.it-ebooks.info/

ng-animate

Event Directive state Styled element classes | Element state
Time quanta elapses | ng- animated- The animation is
hide=false container triggered; transition to
ng-animate opacity:1 occurs
ng-hide-remove
ng-hide-remove-
active
Animation completes | ng- animated- display:block
hide=false container
boxHidden=true ng- animated- opacity:1
hide=true container

ng-animate
ng-hide
ng-hide-add

ng-hide-add-
active

ng-hide
ng-hide-add
Time quanta elapses | ng- animated- The animation is
hide=true container triggered; transition to

opacity:0 occurs

Animation completes

ng-
hide=true

animated-
container

ng-hide

display:none

The state machine shown in the preceding table is a
simplified version of the actual animation state machine.

You can now see how the CSS classes utilize the animation class state machine to trigger
the animation. When the directive state changes (in this case, the Boolean is negated),
AngularJS applies sequential CSS classes to the element, intending them to be used as
anchors for a CSS animation. Here, Time quanta elapses refers to the separate addition of

Chapter 3

ng-hide-add or ng-hide-remove followed by the ng-hide-add-active or ng-hide-
remove-active classes. These classes are added sequentially and separately (this appears
to be instantaneous, you will be unable to see the separation when watching the classes in

a browser inspector), but the nature of the offset addition causes the CSS transition to be
triggered properly.

7}

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

In the case of moving from hidden to visible, the CSS styling defines a transition between the
.animated-container.ng-hide-add selector and the .animated-container.ng-
hide-add.ng-hide-add-active selector, with the transition definition attached under
the .animated-container.ng-hide-remove selector.

In the case of moving from visible to hidden, the styling defines the opposite transition between
the .animated-container.ng-hide-add selector and the .animated-container.ng-
hide-add.ng-hide-add-active selector, with the transition definition attached under the
.animated-container.ng-hide-add selector.

There's more...

As the class state machine is controlled entirely by the ng-hide directive, if you want to
invert the animation (initially start as shown and then make the transition to hidden), all that
is needed is the use of ng-show on the HTML element instead of ng-hide. These opposing
directives will implement the class state machine appropriately for their definition, but will
always use the ng-hide class as the default reference. In other words, using the ng-show
directive will not utilize ng- show-add or ng-show-remove or anything of the sort; it will
still be ng-hide, ng-hide-add or ng-hide-remove, and ng-hide-add-active or
ng-hide-remove-active.

Keeping things clean
Since the animation starts as hidden, and you are loading the JS files at the bottom of the

body, this is the perfect opportunity to utilize ng-cloak in order to prevent the styled div
element from flashing before compilation. Modify your CSS and HTML as follows:

(style.css)

[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak,
.x-ng-cloak
display: none !important;

}

(index.html)

<div class="animated-container" ng-show="boxHidden" ng-cloak>
Awesome text!

</div>

No more boilerplate animation styling

Formerly, when animating ng-hide or ng-show, the display property needed to incorporate
display:block!important during the animation states. As of AngularJS 1.3, this is no
longer necessary; the ngAnimate module will handle this for you.

(e

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

» The Creating addClass animations with ngShow and Creating removeClass
animations with ngClass recipes go into further depth with the state machines
that drive the directive animations

Replicating jQuery's slideUp() and

slideDown() methods

jQuery provides a very useful pair of animation methods, s1ideUp () and slideDown (),
which use JavaScript in order to accomplish the desired results. With the animation hooks
provided for you by Angularl]S, these animations can be accomplished with CSS.

Getting ready

Suppose that you want to slide a <div> element up and down in the following setup:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="displayToggle=!displayToggle">
Toggle Visibility
</button>
<div>Slide me up and down!</divs>

</div>
</div>
(app.js)
angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {

$scope.displayToggle = true;

1) s

How to do it...

A sliding animation requires truncation of the overflowing element and a transition involving
the height of the element. The following implementation utilizes ng-class:

(style.css)

.container {
overflow: hidden;

]

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

}

.slide-tile {
transition: all 0.5s ease-in-out;
width: 300px;
line-height: 300px;
text-align: center;
border: 1lpx solid black;
transform: translateY(0) ;

}

.slide-up {
transform: translateY(-100%) ;

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="displayToggle=!displayToggle">
Toggle Visibility
</buttons>
<div class="container">
<div class="slide-tile"
ng-class="{'slide-up': !displayToggle}">
Slide me up and down!
</div>
</div>
</div>
</div>

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/eqgcsldzr/

A slightly more lightweight implementation is to tie the class definitions into the ng-show
state machine:

(style.css)

.container ({
overflow: hidden;
}
.slide-tile {
transition: all 0.5s ease-in-out;
width: 300px;
line-height: 300px;

5]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/eqcs1dzr/
http://www.it-ebooks.info/

Chapter 3

text-align: center;
border: 1lpx solid black;
transform: translateY(0) ;

}

.slide-tile.ng-hide {
transform: translateY(-100%) ;

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="displayToggle=!displayToggle">
Toggle Visibility
</button>
<div class="container">
<div class="slide-tile" ng-show="displayToggle">
Slide me up and down!
</divs>
</div>
</div>
</div>

Q JSFiddle: http://jsfiddle.net/msfrisbie/bx01lmuha/

CSS transitions afford the convenience of a bi-directional animation as long as the endpoints
and transitions are defined. For both of these implementations, the translateY CSS
property is used to implement the sliding, and the hidden state (slide up for the ng-class
implementation, and ng-hide for the ng-show implementation) is used as the concealed
transition state endpoint.

» The Creating addClass animations with ngShow and Creating removeClass
animations with ngClass recipes go into further depth with the state machines
that drive the directive animations

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/bx01muha/
http://www.it-ebooks.info/

AngularJS Animations

Creating enter animations with nglf

AngularJS provides hooks to define a custom animation when a directive fires an enter
event. The following directives will generate enter events:

» ngIf: This fires the enter event just after the ngIf contents change, and a new
DOM element is created and injected into the ngIf container

» ngInclude: This fires the enter event when new content needs to be brought into
the browser

» ngRepeat: This fires the enter event when a new item is added to the list or when
an item is revealed after a filter

» ngSwitch: This fires the enter event after the ngSwitch contents change, and the
matched child element is placed inside the container

» ngView: This fires the enter event when new content needs to be brought into
the browser

» ngMessage: This fires the enter event when an inner message is attached

Getting ready

Suppose that you want to attach a fade-in animation to a piece of the DOM that has a ng-if
directive attached to it. When the ng-1if expression evaluates to true, the enter animation
will trigger, as the template is brought into the page.

The ngIf directive also has a complementary set of 1eave

animation hooks, but those are not needed in this recipe and

can be safely ignored if they are not being used.

The initial setup, before animation is implemented, can be structured as follows:
(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="visible=!visible">Toggle</button>
Bring me in!
</div>
</div>

(app.Js)

angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope)
$Sscope.visible = true;

13K
[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The example in this recipe only uses ngIf, but it could have just as
easily been performed with ngInclude, ngRepeat, ngSwitch
~ or ngView. All of the enter events fired for these directives involve
Q content being introduced to the DOM in some way, so the animation
hooks and procedures surrounding the animation definition can be
handled in a more or less identical fashion.

How to do it...

When the button is clicked, this code instantaneously brings the <div> element with a ngIf
expression attached to it into view as soon as the expression evaluates to true. However, with
the inclusion of the ngAanimate module, AngularJS will add in animation hooks, upon which you
can define an animation when the <divs> element enters the page.

An animation can be defined by a CSS transition, CSS animation, or by JavaScript.
The animation definition can be constructed in different ways. CSS transitions and
CSS animations will use the ng-enter CSS class hooks to define the animation,
whereas JavaScript animations will use the ngAnimate module's enter () method.

CSS3 transition

To animate with transitions, only the beginning and end state class styles need to be defined.
This is shown here:

(style.css)

.target.ng-enter

{

transition: all linear 1s;
opacity: 0;

.target.ng-enter.ng-enter-active {
opacity: 1;

}

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/zhuffnfj/]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/zhuffnfj/
http://www.it-ebooks.info/

AngularJS Animations

CSS3 animation

Similar to CSS3 transition, it is relatively simple to accomplish the same animation with CSS
keyframes. Since the animation is defined entirely within the keyframes, only a single class
reference is needed in order to trigger the animation. This can be done as follows:

(style.css)

.target.ng-enter {
animation: 1ls target-enter;

}
@keyframes target-enter
from {
opacity: 0;
}
to {
opacity: 1;
}
}

[(:3> JSFiddle: http://jsfiddle.net/msfrisbie/rp4mjgkL/]

JavaScript animation

Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jgLite objects don't
have an animation method, you will need to use the jQuery object's animate () method:

(app.Js)

angular.module ('myApp', ['ngAnimate'l])
.controller('Ctrl', function ($scope) {
Sscope.visible = false;
1)
.animation('.target', function () {
return {
enter: function (element, done)
$ (element)
.css (
'opacity': 0
13N
$ (element)
.animate ({
'opacity': 1

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/rp4mjgkL/
http://www.it-ebooks.info/

Chapter 3

[Q JSFiddle: http://jsfiddle.net/msfrisbie/2jt853no/]

The enter animation behaves as a state machine. It cannot assume that either CSS
transitions/animations or JavaScript animations are defined upon the <div> DOM element,
and it must be able to apply all of them without creating conflicts. As a result, AngularJS will
trigger the JavaScript animations and immediately begin the progression of the animation
class sequence, which will trigger any CSS transitions/animations that might be defined
upon them. In this way, both JavaScript and CSS animations can be used on the same DOM
element simultaneously.

AngularJS uses a standard class naming convention for different states, which allows you to
uniquely define each set of animations for the component being animated. The following set
of tables define how the enter animation state machine operates.

The initial state of the animation components is defined as follows:

element [
Bring me in!
,
<!-- end ngIf: visible -->]
parentElement [<div>
</div>]
afterElement [<!-- ngIf: visible -->]

The following table represents a full enter animation transition:

Event DOM

The $animate.enter () method is <div>

called after the directive detects that <!-- ngIf: visible -->
ng-1if evaluates to true </div>

[55]-

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/2jt853no/
http://www.it-ebooks.info/

AngularJS Animations

afterElement

Event DOM
The element is inserted into <divs>
parentElement or beside <!-- ngIf: visible -->

<span class="target"
ng-if="visible">
Bring me in!

ng-animate class is added

<!-- end ngIf: visible -->
</div>
The $animate service waits for a new <div>
digest cycle to begin animating; the <!-- ngIf: visible -->

<span class="target ng-animate"
ng-if="visible">
Bring me in!

<!-- end ngIf: visible -->

</div>

The Sanimate service runs the
JavaScript-defined animations detected
on the element

No change in DOM

The ng-enter class is added to the
element

<div>

<!-- ngIf: visible -->
<span class="target ng-animate ng-
enter"
ng-if="visible">
Bring me in!

<!-- end ngIf:

visible -->

</div>

The Sanimate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The $animate service blocks CSS
transitions involving the element in
order to ensure the ng-enter class
styling is correctly applied without
interference

No change in DOM

The $animate service waits for a
single animation frame, which performs
a reflow

No change in DOM

The Sanimate service removes the
CSS transition block placed on the
element

No change in DOM

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Event DOM

The ng-enter-active class <div>

is added; CSS transitions or CSS <!-- ngIf: visible -->
animations are triggered <span class="target ng-animate

ng-enter ng-enter-active"
ng-if="visible">
Bring me in!

<!-- end ngIf: visible -->
</div>
The Sanimate service waits for the No change in DOM
animation to complete
Animation completes; animation <div>
classes are stripped from the element <!-- ngIf: visible -->

<span class="target"
ng-if="visible">
Bring me in!

<!-- end ngIf: visible -->
</divs>
The doneCallback () method is fired | No change in DOM
(if provided)

M Since it does not affect animation proceedings, this recipe intentionally
Q ignores the presence of the ng-scope class, which in reality would be
present on the DOM elements.

JavaScript and CSS transitions/animations are executed in a parallel. Since they are defined
independently, they can be run independently even though they can modify the same DOM
element(s) entering the page.

» The Creating leave and concurrent animations with ngView recipe provides the
details of the complementary 1eave event

o7}

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

Creating leave and concurrent animations

with ngView

AngularJS provides hooks used to define a custom animation when a directive fires a 1eave
event. The following directives will generate 1eave events:

» ngIf: This fires the leave event just before the ngIf contents are removed from
the DOM

» ngInclude: This fires the 1eave event when the existing included content needs to
be animated away

» ngRepeat: This fires the 1eave event when an item is removed from the list or when
an item is filtered out

» ngSwitch: This fires the 1eave event just after the ngSwitch contents change and
just before the former contents are removed from the DOM

» ngView: This fires the 1eave event when the existing ngview content needs to be
animated away

» ngMessage: This fires the 1eave event when an inner message is removed

Getting ready

Suppose that you want to attach a slide-in or slide-out animation to a piece of the DOM that
exists inside the ng-view directive. Route changes that cause the content of ng-view to be
altered will trigger an enter animation for the content about to be brought into the page, as
well as trigger a 1eave animation for the content about to leave the page.

The initial setup, before animation is implemented, can be structured as follows:

(style.css)

.link-container {
position: absolute;
top: 320px;

.animate-container {
position: absolute;

.animate-container div {
width: 300px;
text-align: center;
line-height: 300px;

5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

border: 1lpx solid black;

(index.html)

<div ng-app="myApp">
<ng-view class="animate-container"s></ng-views>
<div class="link-container"s
Foo
Bar
</div>

<script type="text/ng-template" id="foo.html"s>
<divs>
Foo
</div>
</script>
<script type="text/ng-template" id="bar.html"s>
<divs>
Bar
</div>
</script>
</div>

(app.js)

angular.module ('myApp', ['ngAnimate', 'ngRoute'])
.config(function (SrouteProvider) {

SrouteProvider

.when (' /bar', {

templateUrl: 'bar.html'

1)

.otherwise ({
templateUrl: 'foo.html'

The example in this recipe only uses ngView, but it could have just as
easily been performed with ngInclude, ngRepeat, ngSwitch, or

~\‘ ngIf. Allthe 1eave events fired for these directives involve content
being removed from the DOM in some way, so the animation's hooks
and procedures surrounding the animation definition can be handled
in a more or less identical fashion. However, not all of these directives
trigger enter and 1leave events concurrently.

s

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

How to do it...

When the route changes, AngularJS instantaneously injects the appropriate template into the
ng-view directive. However, with the inclusion of the ngAnimate module, AngularJS will add
in animation hooks, upon which you can define animations for how the templates will enter
and leave the page.

An animation can be defined by a CSS transition, CSS animation, or by JavaScript. The animation
definition can be constructed in different ways. CSS transitions and CSS animations will use the
ng-leave CSS class hooks to define the animation, whereas JavaScript animations will use the
ngAnimate directive's leave () method.

It is important to note here that ng-view triggers the leave and enter animations
simultaneously. Therefore, your animation definitions must take this into account
in order to prevent animation conflicts.

CSS3 transition

To animate with transitions, only the beginning and end state class styles need to be defined.
Remember that the enter and leave animations begin at the same instant, so you must
either define an animation that gracefully accounts for any overlap that might occur, or
introduce a delay in animations in order to serialize them.

CSS transitions accept a transition-delay value, so serializing the animations is the easiest
way to accomplish the desired animation here. Adding the following to the style sheet is all
that is needed in order to define the slide-in or slide-out animation:

(style.css)

.animate-container.ng-enter
/* final value is the transition delay */
transition: all 0.5s 0.5s;
.animate-container.ng-leave
transition: all 0.5s;
.animate-container.ng-enter,
.animate-container.ng-leave.ng-leave-active
top: -300px;
.animate-container.ng-leave,
.animate-container.ng-enter.ng-enter-active
top: O0px;

}

100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

(;l JSFiddle: http://jsfiddle.net/msfrisbie/y9de80ga/

CSS3 animation

Building this animation with CSS keyframes is also easy to accomplish. Keyframe percentages
allow you to effectively delay the enter animation by a set length of time until the leave animation
finishes. This can be done as follows:

(style.css)

.animate-container.ng-enter {
animation: 1ls view-enter;
.animate-container.ng-leave {

animation: 0.5s view-leave;
@keyframes view-enter {
%, 50% {
top: -300px;
100% {
top: Opx;

@keyframes view-leave {
0% {
top: Opx;
}
100% {
top: -300px;
}
}

(:l JSFiddle: http://jsfiddle.net/msfrisbie/penaakxy/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/y9de80ga/
http://jsfiddle.net/msfrisbie/penaakxy/
http://www.it-ebooks.info/

AngularJS Animations

JavaScript animation

Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since Angular]S and jgLite objects don't
have an animation method, you will need to use the jQuery object's animate () method.
The delay between the serialized animations can be accomplished with the jQuery delay ()
method. The animation can be defined as follows:

(app.js)

angular.module ('myApp', ['ngAnimate', 'ngRoute'])

.config(function ($routeProvider) {
SrouteProvider

.when (' /bar', {
templateUrl: 'bar.html'
})
.otherwise ({
templateUrl: 'foo.html'
I
})
.animation('.animate-container', function|() {
return {
enter: function(element, done) {
$ (element)
.css ({
'top': '-300px'
P
$ (element)
.delay (500)
.animate ({
'top': 'Opx'
}, 500, done);
b
leave: function(element, done) {
$ (element)
.css ({
'top': 'Opx'
I
S (element)
.animate ({
'top': '-300px'
}, 500, done);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Q JSFiddle: http://jsfiddle.net/msfrisbie/b4L35nrt/

The leave animation state machine has a good deal of parity with the enter animation. State
machine class progressions work in a very similar way; sequentially adding the beginning and
final animation hook classes in order to match the element coming in and out of existence.
AngularJS uses the same standard class naming convention used by the enter animation for
the different animation states. The following set of tables define how the 1eave animation state
machine operates.

The initial state of the animation components is defined as follows:

element [<ng-view class="animate-container"s
<div>
Bar
</div>
</ng-views]

The following table represents a full leave animation transition:

Event DOM
The $animate.leave () method is <ng-view class="animate-container"s>
called when a new view needs to be <div>
introduced Bar
</div>

</ng-views>

The Sanimate service runs the <ng-view class="animate-container ng-
JavaScript-defined animations detected animate'">
on the element; the ng-animate <divs>
class is added Bar
</div>

</ng-views>

The $animate service waits fora new | No change in DOM
digest cycle to begin animating

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/b4L35nrt/
http://www.it-ebooks.info/

AngularJS Animations

Event

DOM

The ng-1leave class is added to the
element

<ng-view class="animate-container ng-
animate ng-leave'">

<div>
Bar
</div>

</ng-views>

The Sanimate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The Sanimate service blocks CSS
transitions that involve the element in
order to ensure that the ng-leave
class styling is correctly applied without
interference

No change in DOM

The Sanimate service waits for a
single animation frame, which performs
a reflow

No change in DOM

The $Sanimate service removes the
CSS transition block placed on the
element

No change in DOM

The ng-leave-active class
is added; CSS transitions or CSS
animations are triggered

<ng-view class="animate-container ng-
animate ng-leave ng-leave-active'">
<div>
Bar
</div>
</ng-views>

The Sanimate service waits for the
animation to get completed

No change in DOM

The animation is complete; animation
classes are stripped from the element

<ng-view class="animate-container">
<div>
Bar
</divs>

</ng-views

The element is removed from DOM

<ng-view class="animate-container">
</ng-views>

The doneCallback () method is fired
(if provided)

No change in DOM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Since it does not affect the animation proceedings, this recipe

intentionally ignores the presence of the ng-scope class, which
T~ in reality would be present in the DOM elements.

See also

» The Creating enter animations with nglf recipe provides the details of the
complementary enter event

Creating move animations with ngRepeat

AngularJS provides hooks to define a custom animation when a directive fires a move event.
The only Angular]S directive that fires a move event by default is ngRepeat; it fires a move
event when an adjacent item is filtered out causing a reorder or when the item contents

are reordered.

Getting ready

Suppose that you want to attach a slide-in or slide-out animation to a piece of the DOM that
exists inside the ng-view directive. Route changes that cause the content of ng-view to be
altered will trigger an enter animation for the content about to be brought into the page, as
well as trigger a 1eave animation for the content about to leave the page.

Suppose that you want to animate individual pieces of a list when they are initially added,
moved, or removed. Additions and removals should slide in and out from the left-hand side,
and move events should slide up and down.

The initial setup, before animation is implemented, can be structured as follows:

(style.css)

.animate-container {
position: relative;
margin-bottom: -1px;
width: 300px;
text-align: center;
border: 1lpx solid black;
line-height: 40px;

}

.repeat-container {

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

position: absolute;

}

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<div style="repeat-container"s>
<input ng-model="search.val" />
<button ng-click="shuffle()">Shuffle</buttons>
<div ng-repeat="el in arr | filter:search.val"
class="animate-container">
{{ el }}
</div>
</div>
</div>
</div>

(app.js)

angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($Sscope) {
$scope.arr = [10,15,25,40,45];

// implementation of Knuth in-place shuffle
function knuthShuffle(a) ({
for(var i = a.length, j, k; i;
j = Math.floor (Math.random() * i),
k = al--1i],
alil = aljl,
aljl = k);
return a;

$scope.shuffle = function()
$scope.arr = knuthShuffle($scope.arr);

3N

\ In this recipe, the ng-repeat search filter is implemented merely to
~ provide the ability to add and remove elements from the list. As search
Q filtering does not reorder the elements as defined by AngularJS (this
will be explored later in this recipe), it will never generate move events.

106

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

When the order of the displayed iterable collection changes, AngularlS injects the appropriate
template into the corresponding location in the list, and sibling elements whose indices have
changed will instantaneously shift. However, with the inclusion of the ngAnimate module,
AngularJS will add in animation hooks, upon which you can define animations for how the
templates will move within the list.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript. The
animation definition can be constructed in different ways. CSS transitions and CSS animations
will use the ng-move CSS class hooks in order to define the animation, whereas JavaScript
animations will use the ngAnimate module's move () method.

It is important to note here that ng-repeat triggers enter, leave, and move animations
simultaneously. Therefore, your animation definitions must take this into account to prevent
animation conflicts.

CSS3 transition

To animate with transitions, you can utilize the animation hook class states to define the
set of endpoints for each type of animation. Animations on each individual element in the
collection will begin simultaneously, so you must define animations that gracefully account
for any overlap that might occur.

Adding the following to the style sheet is all that is needed in order to define the slide-in or
slide-out animation for the enter and leave events and a fade in for the move event:

(style.css)

.animate-container.ng-move
transition: all 1s;
opacity: 0;
max-height: 0;

}

.animate-container.ng-move-active
opacity: 1;
max-height: 40px;

}

.animate-container.ng-enter
transition: left 0.5s, max-height 1s;
left: -300px;
max-height: 0;

}

.animate-container.ng-enter-active {
left: Opx;
max-height: 40px;

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

}

.animate-container.ng-leave
transition: left 0.5s, max-height 1s;
left: Opx;
max-height: 40px;

}

.animate-container.ng-leave-active {
left: -300px;
max-height: 0;

}

(:l JSFiddle: http://jsfiddle.net/msfrisbie/f4puyv58/

CSS3 animation

Building this animation with CSS keyframes allows you to have the advantage of being

able to explicitly define the offset between animation segments, which allows you a cleaner
enter/leave animation without tiles sweeping over each other. The enter and leave animations
can take advantage of this by animating to full height before sliding into view. Add the
following to the style sheet in order to define the desired animations:

(style.css)

.animate-container.ng-enter
animation: 0.5s item-enter;
.animate-container.ng-leave
animation: 0.5s item-leave;
.animate-container.ng-move
animation: 0.5s item-move;
@keyframes item-enter
0% {
max-height: 0;
left: -300px;

max-height: 40px;
left: -300px;

}
100% {
max-height: 40px;

108

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/f4puyv58/
http://www.it-ebooks.info/

Chapter 3

left: Opx;

}

@keyframes item-leave
0% {
left: Opx;
max-height: 40px;
}
50% {
left: -300px;
max-height: 40px;
}
100% {
left: -300px;
max-height: 0;
}
}

@keyframes item-move {

0% {
opacity: 0;
max-height: 0px;

}

100% {
opacity: 1;
max-height: 40px;

}

<:l JSFiddle: http://jsfiddle.net/msfrisbie/1632jm5g/

JavaScript animation

JavaScript animations are also relatively easy to define here, even though the desired effect
has both serialized and parallel animation effects. This can be done as follows:

(app.js)

angular.module ('myApp', ['ngAnimate'])

.controller('Ctrl', function ($scope) {

1)

.animation('.animate-container', function|() {
return {

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/1632jm5g/
http://www.it-ebooks.info/

AngularJS Animations

enter: function(element, done) {
S (element)

.css ({
'left': '-300px',
'max-height': '0'
1

S (element)
.animate ({
'max-height': '40px'
}, 250)
.animate ({
'left': 'Opx'
}, 250, done);
I
leave: function(element, done) {
S (element)

.css ({
'left': '0px!',
'max-height': '40px'

13N
S (element)
.animate ({

'left': '-300px'
}, 250)
.animate ({
'max-height': '0'
}, 250, done);

I
move: function(element, done) {
S (element)
.css ({
'opacity': '0',
'max-height': '0'
1)
S (element)
.animate ({

'opacity': '1"',
'max-height': '40px'
}, 500, done);
}
}i
1)
110

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Al

CIE JSFiddle: http://jsfiddle.net/msfrisbie/rjag5tqc/

The move animation state machine is very similar to the enter animation. State machine class
progressions sequentially add the beginning and final animation hook classes in order to match
the element that is being reintroduced into the list at its new index. AngularJS uses the same
standard class naming convention used by the enter animation for different animation states.

For the purpose of simplification, the following modifications and
assumptions affect the content of the following state machine:

>

The ng-repeat directive is assumed to be passed an array
of [1,2]. The move event is triggered by the array's order being
reversed to [2,1].

The ng-repeat filter has been removed; a search filter
cannot fire move events.

The ng-scope and ng-binding directive classes have been
removed from where they would normally occur, as they do not
affect the state machine.

The following set of tables define how the move animation state machine operates.

The initial state of the animation components is defined as follows:

element [<div ng-repeat="el in arr"
class="animate-container">
1l
</divs>,
<!-- end ngRepeat: el in arr -->]
parentElement null
afterElement [<!-- ngRepeat: el in arr -->]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/rjaq5tqc/
http://www.it-ebooks.info/

AngularJS Animations

The following table represents a full move animation transition:

Event

DOM

The Sanimate.move () method is
invoked

<!-- ngRepeat: el in arr -->

<div ng-repeat="el in arr"
class="animate-container">

1l

</div>

<!-- end ngRepeat: el in arr -->

<div ng-repeat="el in arr "
class="animate-container">

parentElement or beside
afterElement

2
</div>
<!-- end ngRepeat: el in arr -->
The element is moved into <!-- ngRepeat: el in arr -->

<div ng-repeat="el in arr"
class="animate-container">
2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
class="animate-container">

new digest cycle to begin animation;
ng-animate is added

1l
</div>
<!-- end ngRepeat: el in arr -->
The Sanimate service waits for a <!-- ngRepeat: el in arr -->

<div ng-repeat="el in arr "
class="animate-container ng-
animate">
2
</divs>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
class="animate-container"s>
1l
</divs>
<!-- end ngRepeat: el in arr -->

The Sanimate service runs the
JavaScript-defined animations
detected in the element

No change in DOM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Event

DOM

The ng-move directive is added to
the element's classes

<!-- ngRepeat: el in arr --»>
<div ng-repeat="el in arr"
class="animate-container ng-
animate ng-move"s>
2
</div>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
class="animate-container">
1l
</div>

<!-- end ngRepeat: el in arr -->

The Sanimate service reads the
element styles in order to get the CSS
transition or CSS animation definition

No change in DOM

The $Sanimate service blocks CSS
transitions that involve the element
to ensure that the ng-move class
styling is correctly applied without
interference

No change in DOM

The $animate service waits for
a single animation frame, which
performs a reflow

No change in DOM

The $Sanimate service removes the
CSS transition block placed on the
element

No change in DOM

The ng-move-active directive
is added; CSS transitions or CSS
animations are triggered

<!-- ngRepeat: el in arr -->

<div ng-repeat="el in arr"
class="animate-container ng-

animate ng-move ng-move-active'">

2
</divs>
<!-- end ngRepeat: el in arr -->
<div ng-repeat="el in arr "
class="animate-container">
1l
</divs>
<!-- end ngRepeat: el in arr -->

The Sanimate service waits for the
animation to get completed

No change in DOM

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

Event DOM
Animation is complete; animation <!-- ngRepeat: el in arr -->
classes are stripped from the <div ng-repeat="el in arr"
element class="animate-container">
2
</div>
<!-- end ngRepeat: el in arr -->

<div ng-repeat="el in arr "
class="animate-container">
1l
</div>
<!-- end ngRepeat: el in arr -->
The doneCallback () method is No change in DOM
fired (if provided)

The move animation's name can be a bit confusing as move implies a starting and ending
location. A better way to think of it is as a secondary entrance animation used in order to
demonstrate when new content is not being added to the list. You will notice that the move
animation is triggered simultaneously for all the elements whose relative order in the list has
changed, and that the animation triggers when it is in its new position.

Also note that even though the index of both elements changed, only one move animation was
triggered. This is due to the way the movement within an enumerable collection is defined.
AngularJS preserves the old ordering of the collection and compares its values in order to the
entire new ordering, and all mismatches will fire move events. For example, if the old order is
1, 2, 3,4, 5 and the new order is 5, 4, 2, 1, 3, then the comparison strategy works as follows:

Comparison Evaluation
0ld[0] == new([O0] False, fire the move event
0ld[0] == new[1] False, fire the move event
01d[0] == new([2] False, fire the move event
0ld[0] == new([3] True, increment the old order comparison index until an element,

which was not yet seen, is reached (2 was already seen in the new
order; skip to 3)

old[2] == new[4] True

M Astute developers will note that, with this order comparison
@ implementation, a simple order shuffling will never mark the
last element as "moved".

114

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

See also

» The Staggering batched animations recipe demonstrates how to introduce an
animation delay between batched events in an ngRepeat context

Creating addClass animations with ngShow

AngularJS provides hooks used to define a custom animation when a directive fires an
addcClass event. The following directives will generate addClass events:

» ngShow: This fires the addClass event after the ngShow expression evaluates to a
truthy value, and just before the contents are set to visible

» ngHide: This fires the addClass event after the ngHide expression evaluates to a
non-truthy value, and just before the contents are set to visible

» ngClass: This fires the addClass event just before the class is applied to the element
» ngForm: This fires the addClass event to add validation classes
» ngModel: This fires the addClass event to add validation classes

» ngMessages: This is fired to add the ng-active class when one or more messages
are visible, or to add the ng-inactive class when there are no messages

Getting ready

Suppose that you want to attach a fade-out animation to a piece of the DOM that has an
ng-show directive. Remember that ng-show does not add or remove anything from the
DOM; it merely toggles the CSS display property to set the visibility.

The initial setup, before animation is implemented, can be structured as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="displayToggle=!displayToggle">
Toggle Visibility
</button>
<div class="animate-container" ng-show="displayToggle">
Fade me out!
</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

</div>

(app.js)

angular.module ('myApp', ['ngAnimate'])
.controller ('Ctrl', function ($scope) {
$scope.displayToggle = true;

1) s

How to do it...

When the ng-show expression evaluates to false, the DOM element is immediately hidden.
However, with the inclusion of the ngAnimate module, AngularJS will add in animation hooks,
upon which you can define animations for how the element will be removed from the page.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript.
The animation definition can be constructed in different ways. CSS transitions and CSS
animations will use the addClass CSS class hooks to define the animation, whereas
JavaScript animations will use the ngAnimate directive's addClass () method.

CSS transitions

Animating a fade-in effect with CSS transitions simply requires attaching opposite opacity
values when the ng-hide class is added. Remember that ng-show and ng-hide are
merely toggling the presence of this ng-hide class through the use of the addClass
and removeClass animation events. This can be done as follows:

(style.css)

.animate-container.ng-hide-add {
transition: all linear 1s;
opacity: 1;

}

.animate-container.ng-hide-add.ng-hide-add-active {
opacity: 0;

}

[Q JSFiddle: http://jsfiddle.net/msfrisbie/bewso5sd/]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/bewso5sd/
http://www.it-ebooks.info/

Chapter 3

CSS animation
Animating with a CSS animation is just as simple as CSS transitions, as follows:

(style.css)

.animate-container.ng-hide-add {
animation: 1s fade-out;
@keyframes fade-out
0% {
opacity: 1;
100% {
opacity: 0;

}

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/aez97r46/

JavaScript animation

Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jgLite objects don't
have an animation method, you will need to use the jQuery object's animate () method.
This can be done as follows:

(app.Js)

angular.module ('myApp', ['ngAnimate'l])
.controller('Ctrl', function($scope)
Sscope.displayToggle = true;

3]

.animation('.animate-container', function() {
return {
addClass: function(element, className, done) {
if (className==='ng-hide') {

$ (element)
.removeClass ('ng-hide")
.css('opacity', 1)
.animate (

{ropacity': 0},

1000,

function()

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/aez97r46/
http://www.it-ebooks.info/

AngularJS Animations

S (element)

.addClass ('ng-hide")
.css('opacity', 1);

done () ;

}
)i
} else {
done () ;

JSFiddle: http://jsfiddle.net/msfrisbie/4taodale/

~ Note that here, the opacity value is used for the animation, but is not the
active class that hides the element. After its use in the animation, it must be
reset to 1 in order to not interfere with the subsequent display toggling.

Independent of what is defined in the actual class that is being added, ngAnimate provides
animation hooks for the class that is being added to define animations. In the context of

the ng-show directive, the ng-hide CSS class is defined implicitly within AngularJS, but
the animation hooks are completely decoupled from the original class in order to provide a
fresh animation definition interface. The following set of tables defines how the addClass
animation state machine operates.

The initial state of the animation components is defined as follows:

element <div class="animate-container"
ng-show="displayToggle">
Fade me out!
</div>
className 'ng-hide'

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/4taoda1e/
http://www.it-ebooks.info/

Chapter 3

The following table represents a full addClass animation transition:

Event

DOM

The $Sanimate.
addClass (element,
hide') method is called

lng_

<div class="animate-container"
ng-show="displayToggle">
Fade me out!

</div>

The Sanimate service runs the
JavaScript-defined animations detected
on the element; ng-animate is added

<div class="animate-container ng-
animate"
ng-show="displayToggle">
Fade me out!

</div>

The .ng-hide-add class is added to
the element

<div class="animate-container ng-
animate ng-hide-add"

ng-show="displayToggle">
Fade me out!

</divs>

The Sanimate service waits for a
single animation frame (this performs
a reflow)

No change in DOM

The .ng-hide and .ng-hide-
add-active classes are added (this
triggers the CSS transition/animation)

<div class="animate-container ng-
animate ng-hide ng-hide-add ng-hide-
add-active"
ng-show="displayToggle">
Fade me out!

</div>

The $animate service scans

the element styles to get the CSS
transition/animation duration and
delay

No change in DOM

The $animate service waits for the
animation to get completed (via events
and timeout)

No change in DOM

The animation ends and all the
generated CSS classes are removed
from the element

<div class="animate-container ng-
hide"
ng-show="displayToggle">
Fade me out!

</div>

The ng-hide class is kept on the
element

No change in DOM

The doneCallback () callback is
fired (if provided)

No change in DOM

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

» The Creating removeClass animations with ngClass recipe provides the details of the
complementary removeClass event

Creating removeClass animations with

ngClass

AngularJS provides hooks that can be used to define a custom animation when a directive
fires a removeClass event. The following directives will generate removeClass events:

» ngShow: This fires the removeClass event after the ngShow expression evaluates
to a non-truthy value, and just before the contents are set to hidden

» ngHide: This fires the removeClass event after the ngHide expression evaluates
to a truthy value, and just before the contents are set to hidden

» ngClass: This fires the removeClass event just before the class is removed from
the element

» ngForm: This fires the removeClass event to remove validation classes
» ngModel: This fires the removeClass event to remove validation classes

» ngMessages: This fires the removeClass event to remove the ng-active class
when there are no messages, or to remove the ng-inactive class when one or
more messages are visible

Getting ready

Suppose that you want to have a div element slide out of the view when a class is removed.
Remember that ng-class does not add or remove any elements from the DOM; it merely
adds or removes the classes defined within the directive expression.

The initial setup, before animation is implemented, can be structured as follows:
(style.css)
.container {

background-color: black;
width: 200px;

120

www.it-ebooks.info

http://www.it-ebooks.info/

height: 200px;
overflow: hidden;

}

.prompt {
position: absolute;
margin: 10px;
font-family: courier;
color: lime;

}

.cover {
position: relative;
width: 200px;
height: 200px;
left: 200px;
background-color: black;

}

.blackout {
left: 0O;

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="displayToggle=!displayToggle">
Toggle Visibility
</buttons>
<div class="container">
Wake up, Neo...
<div class="cover"
ng-class="{blackout: displayToggle}">
</div>
</div>
</div>
</div>

(app.js)

angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($scope) {
$scope.displayToggle = true;

1) s

Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

How to do it...

When the ng-class value for blackout evaluates to false, it will immediately be stripped
out. However, with the inclusion of the ngAnimate module, Angular]S will add in animation
hooks, upon which you can define animations for how the class will be removed.

The animation can be defined by a CSS transition, CSS animation, or by JavaScript. The
animation definition can be constructed in different ways. CSS transitions and CSS animations
will use the removeClass CSS class hooks to define the animation, whereas JavaScript
animations will use the ngAnimate directive's removeClass () method.

CSS transitions

Animating a slide-out effect with CSS transitions simply requires a transition that defines the
left positioning distance. Remember that ng-class is merely toggling the presence of the
blackout class through the use of the addClass and removeClass animation events.
This can be done as follows:

(style.css)

.blackout-remove
left: 0O;

}

.blackout-remove
transition: all 3s;

}

.blackout-remove-active
left: 200px;

}

[Q JSFiddle: http://jsfiddle.net/msfrisbie/L6udnzv7/]

CSS animation
Animating with a CSS animation is just as simple as CSS transitions, as follows:

(style.css)

.blackout-remove
animation: 1s slide-out;
}
@keyframes slide-out
0% {
left: 0;

122

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/L6u4nzv7/
http://www.it-ebooks.info/

Chapter 3

100% {
left: 200px;

(:l JSFiddle: http://jsfiddle.net/msfrisbie/og5ha3zqg/

JavaScript animation

Animating with JavaScript requires that you manually add and remove the relevant CSS
classes, as well as explicitly call the animations. Since AngularJS and jgLite objects don't
have an animation method, you will need to use the jQuery object's animate () method.
This can be done as follows:

(app.js)
angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function (Sscope) {

Sscope.displayToggle = true;

|3)

.animation('.blackout', function() {
return {
removeClass: function(element, className, done){
if (className==='blackout') ({

$ (element)
.removeClass ('blackout')
.css('left', 0)
.animate (
{rleft': '200px"'},
3000,
function() {
$(element) .css('left','");
done () ;
}
) ;
} else {
done () ;

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/oq5ha3zq/
http://www.it-ebooks.info/

AngularJS Animations

Q JSFiddle: http://jsfiddle.net/msfrisbie/4adnokg2o/

The ngAnimate directive provides animation hooks for the class that is being removed in order
to define animations independent of the actual class. In the context of this ng-class directive
implementation, the blackout CSS class is defined explicitly, and the animation hooks build
on top of this class name. The following set of tables defines how the removeClass animation
state machine operates.

The animation components are defined as follows:

element <div class="cover blackout"
ng-class="{blackout: displayToggle}">
</div>
className 'blackout'’

The following table represents a full removeClass animation transition:

Event DOM
The Sanimate. <div class="cover blackout"
removeClass (element, ng—class:"{blackout:
'blackout ') method is called displayToggle}">
</div>
The $animate service runs the <div class="cover blackout ng-
JavaScript-defined animations detected animate"
in the element; ng-animate is added ng-class="{blackout:
displayToggle}">
</divs>
The .blackout-remove class is <div class="cover blackout ng-
added to the element animate blackout-remove"
ng-class="{blackout:
displayToggle}">
</div>
The Sanimate service waits for a single | No change in DOM
animation frame (this performs a reflow)

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/4dnokg2o/
http://www.it-ebooks.info/

Chapter 3

Event

DOM

The .blackout-remove-active
class is added and .blackout is
removed (this triggers the CSS transition/
animation)

<div class="cover ng-animate
blackout-remove blackout-remove-
active"
ng-class="{blackout:
displayToggle}">
</divs>

The Sanimate service scans
the element styles to get the CSS
transition/animation duration and delay

No change in DOM

The Sanimate service waits for the
animation to get completed (via events
and timeout)

No change in DOM

The animation ends and all the
generated CSS classes are removed from
the element

<div class="cover"
ng-class="{blackout:

displayToggle}">

</divs>

The doneCallback () callback is fired
(if provided)

No change in DOM

» The Creating addClass animations with ngShow recipe provides the details of the

complementary addClass event

Staggering batched animations

AngularJS incorporates native support for staggering animations that happen as a batch.
This will almost exclusively occur in the context of ng-repeat.

Getting ready

Suppose that you have an animated ng-repeat implementation, as follows:

(style.css)

.container ({
line-height: 30px;
.container.ng-enter,
.container.ng-leave,
.container.ng-move {

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Animations

transition: all linear 0.2s;

}

.container.ng-enter,
.container.ng-leave.ng-leave-active,
.container.ng-move

opacity: 0;

max-height: 0;
}
.container.ng-enter.ng-enter-active,
.container.ng-leave,
.container.ng-move.ng-move-active {

opacity: 1;

max-height: 30px;

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input ng-model="search" />
<div ng-repeat="name in names | filter:search"
class="container">
{{ name }}
</div>
</div>
</div>

(app.js)

angular.module ('myApp', ['ngAnimate'])
.controller('Ctrl', function($Sscope) {
$scope.names = [

'Jake',

'Henry',

'Roger’,

'Joe',

'Robert',

'John'

126

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

How to do it...

Since the animation is accomplished through the use of CSS transitions, you can tap into the
CSS class staggering that is afforded to you by adding the following to the style sheet:

(style.css)

.container.ng-enter-stagger,

.container.ng-leave-stagger,

.container.ng-move-stagger {
transition-delay: 0.2s;
transition-duration: 0;

~\‘
<:l JSFiddle: http://jsfiddle.net/msfrisbie/emxszedq/

For the example dataset, filtering with J will cause multiple elements to be removed, as well
as multiple elements to change their index. All of these changes correspond to an animation
event. Since these animations occur simultaneously, Angular)S can take advantage of the fact
that animations are queued up and executed in batches within a single reflow to compensate
for the fact that reflows are computationally expensive.

The -stagger classes essentially act as shims for successive animations. Instead of running
all the animations in parallel, they are run serially, delimited by the additional stagger transition.

It is also possible to stagger animations using keyframes. This can be accomplished as follows:

(style.css)

.container.ng-enter-stagger,

.container.ng-leave-stagger,

.container.ng-move-stagger {
animation-delay: 0.2s;
animation-duration: 0;

}

.container.ng-leave {
animation: 0.5s repeat-leave;

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/emxsze4q/
http://www.it-ebooks.info/

AngularJS Animations

}

.container.ng-enter
animation: 0.5s repeat-enter;
.container.ng-move
animation: 0.5s repeat-move;
@keyframes repeat-enter {
from {
opacity: 0;
max-height: 0;
to {
opacity: 1;
max-height: 30px;

@keyframes repeat-leave
from {
opacity: 1;
max-height: 30px;
}
to {
opacity: 0;
max-height: 0;
}
}

@keyframes repeat-move {

from {
opacity: 0;
max-height: 0;

}

to {
opacity: 1;
max-height: 30px;

}

<:l JSFiddle: http://jsfiddle.net/msfrisbie/bbetcplm/

128

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/bbetcp1m/
http://www.it-ebooks.info/

Chapter 3

See also

» The Creating move animations with ngRepeat recipe goes through all the intricacies
of animating an ngRepeat directive's events

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and
Organizing your
Application

In this chapter, we will cover the following recipes:

» Manually bootstrapping an application
» Using safe sapply

» Application file and module organization
» Hiding AngularJS from the user

» Managing application templates

» The "Controller as" syntax

Introduction

In this chapter, you will discover strategies to keep your application clean—visually, structurally,
and organizationally.

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

Manually bootstrapping an application

When initializing an Angular]S application, very frequently you will allow the framework to

do it transparently with the ng-app directive. When attached to a DOM node, the application
will be automatically initialized upon the DOMContentLoaded event, or when the framework
script is evaluated and the document . readyState === 'complete ' statement
becomes true. The application parses the DOM for the ng-app directive, which becomes
the root element of the application. It will then begin initializing itself and compiling the
application template. However, in some scenarios, you will want more control over when this
initialization occurs, and AngularJS provides you with the ability to do this with angular.
bootstrap (). Some examples of this include the following:

» Your application uses script loaders
» You want to modify the template before AngularJS begins compilation
» You want to use multiple Angularl]S applications on the same page

Getting ready

When manually bootstrapping, the application will no longer use the ng-app directive.
Suppose that this is your application template:

(index.html)

<!doctype htmls>
<html>
<body>
<div ng-controller="Ctrl">
{{ mydata }}

</div>
<script src="angular.js"s></scripts>
<script src="app.js"></scripts>

</body>
</html>
(app.js)
angular.module ('my2App', I[])
.controller('Ctrl', function($scope)
$scope.mydata = 'Some scope data';
1)
132

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

How to do it...

The Angular]S initialization needs to be triggered by an event after the angular. jsfileis
loaded, and it must be directed to a DOM element to be used as the root of the application.
This can be accomplished in the following way:

(app-Jjs)

angular.module ('myApp', [1)
.controller ('Ctrl', function($scope) {
$scope.mydata = 'Some scope data';

1) s

angular.element (document) .ready (function() {
angular.bootstrap (document, ['myApp']l):;

R

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/5nfgyxsz/]

The angular.bootstrap () method is used to link an existing application module to the
designated DOM root node. In this example, the jglLite ready () method is passed a callback,
which indicates that the browser's document object should be used as the root node of the

myApp application module. If you were to use ng-app to auto-bootstrap, the following would
roughly be the equivalent:

(index.html)

<ldoctype htmls>
<html ng-app="myApp">
<body>
<div ng-controller="Ctrl"s>
{{ mydata }}
</divs>
<script src="angular.js"></script>
<script src="app.js"></script>
</body>
</html>

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5nfgyxsz/
http://www.it-ebooks.info/

Sculpting and Organizing your Application

There's more...

By no means are you required to use the <html > element as the root of your application.
You can just as easily attach the application to an inner DOM element if your application
only needed to manage a subset of the DOM. This can be done as follows:

(index.html)

<!doctype htmls>
<html ng-app="myApp">
<body>
<div id="child">
<div ng-controller="Ctrl">
{{ mydata }}
</div>
</div>
<script src="angular.js"></script>
<script src="app.js"></scripts>
</body>
</html>

(app.js)

angular.module ('myApp', [1)

.controller ('Ctrl', function($scope) {
$scope.mydata = 'Some scope data';
13N
angular.element (document) .ready (function() {
angular.bootstrap (document.getElementById('child'), ['myApp'l);
13N
Al

(:l JSFiddle: http://jsfiddle.net/msfrisbie/k4nn5Lha/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/k4nn5Lha/
http://www.it-ebooks.info/

Chapter 4

Using safe $apply

In the course of developing AngularJS applications, you will become very familiar with
Sapply () and its implications. The $Sapply () function cannot be invoked while the
Sapply () phase is already in progress without causing AngularJS to raise an exception.
While in simpler applications, this problem can be solved by being careful and methodical
about where you invoke Sapply () ; however, this becomes increasingly more difficult when
applications incorporate third-party extensions with high DOM event density. The resulting
problem is one where the necessity of invoking sapply is indeterminate.

As it is entirely possible to ascertain the state of the application when $apply () might
need to be invoked, you can create a wrapper for Sapply () to ascertain the state of
the application, and conditionally invoke $Sapply () only when not in the $apply phase,
essentially creating an idempotent $apply () method.

\ This recipe contains content that the Angular)S wiki considers
~ an anti-pattern, but it proffers an interesting discussion on the
Q application life cycle as well as architecting scope utilities. As

consolation, it includes a solution that is more idiomatic.

Getting ready

Suppose that this is your application:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<button ng-click="increment ()">Increment</buttons>
{{ val }}
</div>

</div>

(app.js)
angular.module ('my2pp', [])
.controller ('MainController', function ($scope) {

Sscope.val = 0;

$scope.increment = function() {

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

$Sscope.val++;

}i

setInterval (function() {
$scope. increment () ;
}, 1000);
13N
M Angular]S has its own $interval service that would ameliorate

Q the problem with this code, but this recipe is trying to demonstrate
a scenario where safeApply () might come in handy.

How to do it...

In this example, the use of setInterval () means that a DOM event is occurring and
AngularJS is not paying attention to it or what it does. The model is correctly being modified,
but Angular]S's data binding is not propagating that change to the view. The button click,
however, is using a directive that starts the Sapply phase. This would be fine; however, as it
presently exists, clicking the button will update the DOM, but the setInterval () callback
will not.

Worse yet, incorporating a call to $scope . Sapply () inside the increment () method does
not solve the problem. This is because when the button is clicked, the method will attempt to
invoke $Sapply () while already in the $Sapply phase, which as mentioned before, will cause
an exception to be raised. The setInterval () callback, however, will function properly.

The ideal solution is one where you are able to reuse the same method for both events,
but sapply () will be conditionally invoked only when it is needed. The most trivial and
straightforward method of achieving this is to attach a safeApply () method to the
parent controller scope of the application and let inheritance propagate it throughout
your application. This can be done as follows:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function ($scope) {
$scope.safeApply = function (func) {
var currentPhase = this.$root.$$phase;

// determine if already in $apply/$digest phase

if (currentPhase === 'S$apply' ||
currentPhase === '$digest') {

136

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

// already inside $apply/$digest phase

// if safeApply() was passed a function, invoke it
if (typeof func === 'function') ({
func () ;

}

} else {
// not inside $apply/$digest phase, safe to invoke S$apply
this.$apply (func) ;

}

};

$scope.val = 0;

// method that may or may not be called from somewhere
// that will not trigger a $digest
$scope.increment = function () ({

Sscope.val++;

$scope.safelApply () ;

}i

// application component that modifies the model without
// triggering a $digest
setInterval (function () {
$Sscope.increment () ;
}, 1000);

3N

[Q JSFiddle: http://jsfiddle.net/msfrisbie/pnhmo2gx/]

The current phase of the application can be determined by reading the $$phase attribute

of the root scope of the application. If it is either in the Sapply or $digest phase, it should
not invoke $apply (). The reason for this is that $scope . $digest () is the actual method
that will check to see whether any binding values have changed, but this should only be called
after the non-Angular]S events have occurred. The $scope. $Sapply () method does this for
you, and it will invoke $digest () only after evaluating any function passed to it. Thus, inside
the safeApply () method, it should only invoke $Sapply () if the application is not in either
of these phases.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/pnhmo2gx/
http://www.it-ebooks.info/

Sculpting and Organizing your Application

There's more...

The preceding example will work fine as long as all scopes that want to use safeApply ()
inherit from the controller scope on which it is defined. Even so, controllers are initialized
relatively late in the application's bootstrap process, so safefApply () cannot be invoked until
this point. On top of this, defining something like safeApply () inside a controller introduces a
bit of code smell, as you would ideally like a method of this persuasion to be implicitly available
throughout the entire application without relegating it to a specific controller.

A much more robust way of doing this is to decorate $rootScope of the application with
the method during the config phase. This ensures that it will be available to any services,
controllers, or directives that try to use it. This can be accomplished in the following fashion:

(app.Jjs)

angular.module ('myApp', [1)
.config (function ($provide) {
// define decorator for $rootScope service
return $provide.decorator('$rootScope', function($delegate) {
// $delegate acts as the $rootScope instance
$delegate.safeApply = function(func) {
var currentPhase = $delegate.$$phase;

// determine if already in $apply/$digest phase
if (currentPhase === "$apply" ||

currentPhase === "$digest") {

// already inside $apply/$digest phase

// if safeApply() was passed a function, invoke it
if (typeof func === 'function') {
func() ;
}
}

else {
// not inside $apply/$digest phase,
// safe to invoke $apply
$delegate. $apply (func) ;
}
};
return $delegate;
R
hH

.controller('Ctrl', function ($scope) {

138

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

$scope.val = 0;

// method that may or may not be called from somewhere
// that will not trigger a $digest
$scope.increment = function () ({

Sscope.val++;

$scope.safelpply () ;

}i

// application component that modifies the model without
// triggering a $digest
setInterval (function () {
$Sscope.increment () ;
}, 1000);

3N

(:l JSFiddle: http://jsfiddle.net/msfrisbie/a0xcnoy4/

Anti-pattern awareness

The AngularJS wiki notes that if your application needs to use a construct such as
safelApply (), then the location where you are invoking $scope. Sapply () isn't high
enough in the call stack. This is true, and if you can avoid using safeApply (), you should
do so. That being said, it is easy to think up a number of scenarios similar to this recipe's
example where using safefApply () allows your code to remain DRY and concise, and for
smaller applications, perhaps this is acceptable.

By the same token, the rigorous developer will not be satisfied with this and will desire an
idiomatic solution to this problem aside from laborious code refactoring. One solution is to
use $timeout, as shown here:

(app.js)

angular.module ('myBApp', [1)

.controller('Ctrl', function ($scope, $timeout) {
$scope.val = 0;

// method that may or may not be called from somewhere
// that will not trigger a $digest
$scope.increment = function () {
// wraps model modification in S$timeout promise
$timeout (function() {
$scope.val++;

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/a0xcn9y4/
http://www.it-ebooks.info/

Sculpting and Organizing your Application

R
Vi

// application component that modifies the model without
// triggering a $digest
setInterval (function () {
$Sscope.increment () ;
}, 1000);

3N

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/sagmbkft/]

The stimeout wrapper is the AngularJS wrapper for window. setTimeout. What this does
is effectively schedule the model modification inside a promise that will be resolved as soon
as possible and when sapply can be invoked without consequence. In most cases, this
solution is acceptable as long as the deferred $sapply phase does not affect other portions
of the application.

Application file and module organization

Few things are less enjoyable than working on a project where the organization of the
application files and modules is garbage, especially if the application is written by people
other than you. Keeping your application file tree and module hierarchy clean and tidy will
save you and whoever is reading and using your code lots of time in the long run.

Getting ready

Assume that an application you are working on is a generic e-commerce site, with many users
who can view and purchase products, leave reviews, and so on.

How to do it...

There are several guidelines that can be followed to yield extremely tight and clean
applications that are able to scale without bloating.

140

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/sagmbkft/
http://www.it-ebooks.info/

Chapter 4

One module, one file, and one name

This might seem obvious, but the benefits of following the one module, one file, and one name
approach are plentiful:

>

Keep only one module per file. A module can be extended in other files in the subfiles
and subdirectories as necessary, but angular.module ('my-module') should only
ever appear once. A file should not contain all or part of the two different modules.

Name your files after your modules. It should be easy to figure out what to expect
when opening inventory-controller. js.

Module names should reflect the hierarchy in which it exists. The module in
/inventory/inventory-controller.js should reflect its location in the
hierarchy by being named something along the lines of inventory.controller.

Keep your related files close, keep your unit tests closer

Proper locality and organization of test files is not always obvious. Rigorously following this
style guide is not mandatory, but choosing a unified naming and organization convention
will save you a lot of headaches later on. This approach entails the following;:

>

Name your unit test files by appending _test to whatever module file it is testing.
The inventory-controller.js module will have its unit tests located in
inventory-controller test.js.

Keep unit tests in the same folder as the JS file they are testing. This will encourage
you to write your tests as you develop the application. Additionally, you won't need to
spend time mirroring your test directory structure to that of your application directory
(see Chapter 6, Testing in AngularJS, for more information on testing procedures).

Group by feature, not by component type

Applications that group by component type (all directives in one place and all controllers in
another) will scale poorly. The file and module locality should reflect that which appears in
AngularJS dependencies. This includes the following:

>

Grouping by feature allows your file and module structure to imitate how the
application code is connected. As the application begins to scale, it is cleaner
and makes more sense for code that is more closely related in execution to have
matching spatial locality.

Feature grouping also allows nested directories of functionality within larger features.

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

Don’'t fight reusability

Some parts of your application will be used almost everywhere and some parts will only be
used once. Your application structure should reflect this. This approach includes the following:

» Keep common unspecialized components that are used throughout the application
inside a components/ directory. This directory can also hold common asset files
and other shared application pieces.

» Directives, services, and filters are all application components that can potentially
see a lot of reuse. Don't hesitate to house them in the components/ directory if it
makes sense to do so.

An example directory structure

With the tips mentioned in the preceding section, the e-commerce application will look
something like this:

ng-commerce/
index.html
app.js
app-controller.js
app-controller test.js
components/
login/
login.js
login-controller.js
login-controller test.js
login-directive.js
login-directive test.js
login.css
login.tpl.html
search/
search.js
search-directive.js
search-directive test.js
search-filter.js
search-filter test.js
search.css
search.tpl.html
shopping-cart/
checkout/
checkout.js
checkout-conroller.js
checkout-controller test.js
checkout-directive.js
checkout-directive test.js

142

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

checkout.tpl.html

checkout.css
shopping-cart.js
shopping-cart-controller.js
shopping-cart-controller test.js
shopping-cart.tpl.html
shopping-cart.css

The app . js file is the top-level configuration file, complete with route definitions and
initialization logic. JS files matching their directory names are the combinatorial files
that bind all the directory modules together.

CSS files provide styling that is only used by that component in that directory. Templates also
follow this convention.

Hiding AngularJS from the user

As unique and elegant as AngularJS is, the reality of the situation is that it is a framework that
lives inside asynchronously executed client-side code, and this requires some considerations.
One of these considerations is the first-time delivery initialization latency. Especially when your
application JS files are located at the end of the page, you might experience a phenomenon
called "template flashing," where the uncompiled template is presented to the user before
AngularJS bootstraps and compiles the page. This can be elegantly prevented using ng-cloak.

Getting ready

Suppose that this is your application:
(index.html)
<body>

{{ youShouldntSeeThisBecauseltIsUndefined }}
</body>

How to do it...

The solution is to simply declare sections of the DOM that the browser should treat as
hidden until AngularJS tells it otherwise. This can be accomplished with the ng-cloak
directive, as follows:

(app.css)

/* this css rule is provided in the angular.js file, but
if AngularJdS is not included in <heads>, you must

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

define this style yourself */

[ng\:cloak], [ng-cloak], [data-ng-cloak], [x-ng-cloak], .ng-cloak,
.x-ng-cloak
display: none !important;

}

(index.html)

<body ng-cloaks>
{{ youShouldntSeeThisBecauselItIsUndefined }}
</body>

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/6tnxoozn/]

Any section with ng-cloak initially applied to it will be hidden by the browser. AngularJS will
delete the ng-cloak directive when it begins to compile the application template, so the
page will only be revealed once compilation is complete, effectively shielding the user from
the uncompiled template. In this case, as the entire <body> element has the ng-cloak
directive, the user will be presented with a blank page until AngularJS is initialized and
compiles the page.

It might not behoove you to cloak the entire application until it's ready. First, if you only
need to compile a subset or subsets of a page, you should take advantage of that by
compartmentalizing ng-cloak to those sections. Often, it's better to present the user with
something while the page is being assembled than with a blank screen. Second, breaking
ng-cloak apart into multiple locations will allow the page to progressively render each
component it must compile. This will probably give the feeling of a faster load as you are
presenting compiled pieces of the view as they become available instead of waiting for
everything to be ready.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/6tnxoozn/
http://www.it-ebooks.info/

Chapter 4

Managing application templates

As is to be expected with a single-page application, you will be managing a large number of
templates in your application. Angular)S has several template management solutions baked
into it, which offer a range of ways for your application to handle template delivery.

Getting ready

Suppose you are using the following template in your application:

<div class="btn-group">
#{{ player.number }} {{ player.name }}
</div>

The content of the template is unimportant; it is merely to demonstrate that this template has
HTML and uncompiled AngularJS content inside it.

Additionally, assume you have the following directive that is trying to use the preceding template:

(app.Js)
angular.module ('my2App', [])
.directive ('playerBox', function() {

return {
link: function (scope) {
scope.player = ({
name: 'Jimmy Butler',
number: 21

The top-level template will look as follows:
(index.html)
<div ng-app="myApp">

<player-box></player-box>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

How to do it...

There are four primary ways to provide the directive with the template's HTML. All of these will
feed the template into $templateCache, which is where the directive and other components
tasked with locating a template will search first.

The string template

AngularJS is capable of generating a template from a string of uncompiled HTML. This can be
accomplished as follows:

(app.js)

angular.module ('myApp', [])
.directive ('playerBox', function() {
return {
template: '<div>' +
' #{{ player.number }} {{ player.name }}' +
'</div>"',
link: function (scope) {
scope.player = {
name: 'Jimmy Butler',
number: 21

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/8ct0u33z/]

Remote server templates

When the component cannot find a template in $templateCache, it will make a request
to the corresponding location on the server. This template will then receive an entry in
StemplateCache, which can be used as follows:

(app.js)

angular.module ('myApp', [])
.directive ('playerBox', function() {
return {
// will attempt to acquire the template at this relative URL
templateUrl: '/static/js/templates/player-box.html',
link: function (scope) {

146

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/8ct0u33z/
http://www.it-ebooks.info/

Chapter 4

scope.player = {
name: 'Jimmy Butler',
number: 21

On the server, your file directory structure will look something like the following:

yourApp/
static/
is/
templates/
player-box.html

Inline templates using ng-template

It is also possible to serve and register the templates along with another template. HTML
inside <script> tags with type="text/ng-template" and the id attribute set to the
key for $StemplateCache will be registered and available in your application. This can be
done as follows:

(app.js)

angular.module ('myApp', [1)

.directive ('playerBox', function() {
return {

templateUrl: 'player-box.html',
link: function (scope)
scope.player = {
name: 'Jimmy Butler',
number: 21

(index.html)

<div ng-app="myApp">
<player-box></player-box>

<script type="text/ng-template" id="player-box.html">
<div>
#{{ player.number }} {{ player.name }}
</div>
</script>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

(:l JSFiddle: http://jsfiddle.net/msfrisbie/kg95bnog/

Pre-defined templates in the cache

Even cleaner is the ability to directly insert your templates into $templateCache on
application startup. This can be done as follows:

(app.Js)

angular.module ('myApp', [])
.run (function ($templateCache) {
$templateCache.put (
// the template key
'player-box.html',
// the template markup
'<div>' +

' #{{ player.number }} {{ player.name }}' +

'</div>"
)i
hH
.directive ('playerBox', function() ({
return {
templateUrl: 'player-box.html',
link: function (scope) {
scope.player = {
name: 'Jimmy Butler',
number: 21
}i
}

[@ JSFiddle: http://jsfiddle.net/msfrisbie/mp79srjf/]

All these denominations of template definitions are different flavors of the same thing;:
uncompiled templates are accumulated and served from within StemplateCache.
The only real decision to be made is how you want it to affect your development flow
and where you want to expose the latency.

148

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/kg95bn9g/
http://jsfiddle.net/msfrisbie/mp79srjf/
http://www.it-ebooks.info/

Chapter 4

Accessing the templates from a remote server ensures that you aren't delivering content to
the user that they won't need, but when different pieces of the application are rendering,

they will all need to generate requests for templates from the server. This can make your
application sluggish at times. On the other hand, delivering all the templates with the initial
application load can slow things down quite a bit, so it's important to make informed decisions
on which part of your application flow is more latency-tolerant.

There's more...

The last method of defining templates is provided in a popular Grunt extension, called
grunt-angular-templates. During the application build, this extension will automatically
locate your templates and interpolate them into your index . html file as JavaScript string
templates, registering them in $templateCache. Managing your application with build tools
such as Grunt has huge and obvious benefits, and this recipe is no exception.

The "Controller as™ syntax

AngularJS 1.2 introduced the ability to namespace your controller methods using the
"controller as" syntax. This allows you to abstract $scope in controllers and provide
more contextual information in the template.

Getting ready

Suppose you had a simple application set up as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
{{ data }}
</div>

</div>

(app.js)

angular.module ('my2pp', [])
.controller('Ctrl', function($scope)
$scope.data = "This is string data";

3N

www.it-ebooks.info

http://www.it-ebooks.info/

Sculpting and Organizing your Application

How to do it...

The simplest way to take advantage of the "controller as" syntax is inside the ng-controller
directive in a template. This allows you to namespace pieces of data in the view, which should
feel good to you as more declarative views are the AngularJS way. The initial example can be
refactored to appear as follows:

(index.html)
<div ng-app="myApp">
<div ng-controller="Ctrl as MyCtrl">
{{ Myctrl.data }}

</div>
</div>

(app.Jjs)

angular.module ('myApp', [1)
.controller('Ctrl', function|() {
this.data = "This is string data";

3N

[<:3> JSFiddle: http://jsfiddle.net/msfrisbie/yh3r2tér/]

Note that there is no longer a need to inject Sscope, as you are instead attaching the string
attribute to the controller object.

This syntax can also be extended for use in directives. Suppose the application was retooled
to exist as follows:

(index.html)
<div ng-app="myApp">
<foo-directives></foo-directive>

</div>

(app.Jjs)

angular.module ('my2App', [])

150

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/yh3r2t6r/
http://www.it-ebooks.info/

Chapter 4

.directive ('fooDirective', function/() {
return {
restrict: 'E',
template: '<div>{{ data }}</div>",
controller: function($scope) ({
Sscope.data = 'This is controller scope data';

3N

This works, but the "controller as" syntactic sugar can be applied here to make the content of
the directive template a little less ambiguous:

(app.js)

angular.module ('myApp', [1)
.directive ('fooDirective', function/() {
return {
restrict: 'E',
template: '<div>{{ fooController.data }}</div>"',
controller: function() ({
this.data = 'This is controller data';

}

controllerAs: 'fooController'

~\l
<:;g JSFiddle: http://jsfiddle.net/msfrisbie/7uobd20v/

Using the "controller as" syntax allows you to directly reference the controller object within the
template. By doing this, you are able to assign attributes to the controller object itself rather
than to $scope.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/7uobd20v/
http://www.it-ebooks.info/

Sculpting and Organizing your Application

There's more...

There are a couple of main benefits of using this style, which are as follows:

» You get more information in the view. By using this syntax, you are able to directly
infer the source of the object from only the template, which is something you could
not do before.

» You are able to define directive controllers anonymously and define them where you
choose. Being able to rebrand a function object in a directive allows a lot of flexibility
in the application structure and locality of definition.

» Testing is easier. Controllers defined in this way by nature are easier to set up, as injecting
$scope into controllers means that unit tests need some boilerplate initialization.

152

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope

and Model

In this chapter, we will cover the following recipes:

>

>

Configuring and using AngularJS events
Managing $scope inheritance

Working with AngularJS forms

Working with <select> and ngOptions

Building an event bus

Introduction

Angular]S provides faculties to manage data alteration throughout the application, largely based
around the model modification architecture. Angular]S' powerful data binding affords you the
ability to build robust tools on top of the architecture as well as channels of communication that
can efficiently reach throughout the application.

Configuring and using AngularJS events

AngularlS offers a powerful event infrastructure that affords you the ability to control the
application in scenarios where data binding might not be suitable or pragmatic. Even with a
rigorously organized application topology, there are lots of applications for events in AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope and Model

How to do it...

AngularJS events are identified by strings and carry with them a payload that can take the
form of an object, a function, or a primitive. The event can either be delivered via a parent
scope that invokes $Sscope. sbroadcast (), or a child scope (or the same scope) that
invokes $scope.Semit ().

The $scope. $on () method can be used anywhere a scope object can be used, as shown here:
(app.Js)

angular.module ('myApp', [1)

.controller('Ctrl', function($scope, $log) {
$Sscope.son('myEvent', function(event, data) {
$log.log(event .name + ' observed with payload ', data);

3N
3N

Broadcasting an event

The $scope. $Sbroadcast () method triggers the event in itself and all child scopes. The
1.2.7 release of Angular]S introduced an optimization for $scope. $broadcast (), but
since this action will still bubble down through the scope hierarchy to reach the listening child
scopes, it is possible to introduce performance problems if this is overused. Broadcasting can
be implemented as follows:

(app.js)

angular.module ('myApp', [1)
.directive ('myListener', function($log) {
return {
restrict: 'E',
// each directive should be given its own scope
scope: true,
link: function(scope, el, attrs) {
// method to generate event
scope.sendDown = function() {
scope. $broadcast ('myEvent', {origin: attrs.local});
}i
// method to listen for event
scope.$on ('myEvent', function (event, data) {
$log.log (
event .name +
' observed in ' +
attrs.local +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

', originated from ' +
data.origin

(index.html)

<div ng-app="myApp">
<my-listener local="outer"s>
<button ng-click="sendDown () ">Send Down</buttons>
<my-listener local="middle"s>
<my-listener local="first inner"></my-listener>
<my-listener local="second inner"></my-listeners>
</my-listener>
</my-listener>
</div>

In this setup, clicking on the Send Down button will log the following in the browser console:

myEvent observed in outer, originated from outer
myEvent observed in middle, originated from outer
myEvent observed in first inner, originated from outer
myEvent observed in second inner, originated from outer

C:l JSFiddle: http://jsfiddle.net/msfrisbie/dn0zjep9/

Emitting an event

As you might expect, $Sscope. $emit () does the opposite of $scope. Sbroadcast ().

It will trigger all listeners of the event that exist within that same scope, or any of the parent
scopes along the prototype chain, all the way up to SrootScope. This can be implemented
as follows:

(app.js)

angular.module ('myApp', [])
.directive ('myListener', function ($log) {
return {
restrict: 'E',
// each directive should be given its own scope
scope: true,

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/dn0zjep9/
http://www.it-ebooks.info/

Working with the Scope and Model

link: function(scope, el, attrs) {
// method to generate event
scope.sendUp = function() {
scope.$emit ('myEvent', {origin: attrs.local});
}i
// method to listen for event
scope.$on ('myEvent', function (event, data) {
$log.log (
event .name +
' observed in ' +
attrs.local +
', originated from ' +
data.origin
) ;
13N

3N
(index.html)

<div ng-app="myApp">
<my-listener local="outer"s>
<my-listener local="middle"s>
<my-listener local="first inner"s
<button ng-click="sendUp () ">
Send First Up
</buttons>
</my-listener>
<my-listener local="second inner">
<button ng-click="sendUp () ">
Send Second Up
</buttons>
</my-listener>
</my-listener>
</my-listener>
</div>

In this example, clicking on the Send First Up button will log the following to the browser console:

myEvent observed in first inner, originated from first inner
myEvent observed in middle, originated from first inner
myEvent observed in outer, originated from first inner

156

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Clicking on the Send Second Up button will log the following to the browser console:

myEvent observed in second inner, originated from second inner
myEvent observed in middle, originated from second inner
myEvent observed in outer, originated from second inner

[Q JSFiddle: http://jsfiddle.net/msfrisbie/a34407vo/]

Deregistering an event listener

Similar to $scope. $watch (), once an event listener is created, it will last the lifetime of
the scope object they are added in. The $scope. $on () method returns the deregistration
function, which must be captured upon declaration. Invoking this deregistration function will
prevent the scope from evaluating the callback function for this event. This can be toggled
with a setup/teardown pattern, as follows:

(app.js)

angular.module ('myApp', [1)

.controller('Ctrl', function($Sscope, $log) {
$scope.setup = function()
$scope.teardown = $scope.$on('myEvent', function(event, data) ({
$log.log(event .name + ' observed with payload ', data);

Invoking $scope . setup () will initialize the event binding, and invoking $Sscope .
teardown () will destroy that binding.

Managing $scope inheritance

Scopes in AngularJS are bound to the same rules of prototypical inheritance as plain

old JavaScript objects. When wielded properly, they can be used very effectively in your
application, but there are some "gotchas" to be aware of that can be avoided by adhering
to best practices.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/a344o7vo/
http://www.it-ebooks.info/

Working with the Scope and Model

Getting ready

Suppose that your application contained the following:
(app.Js)

angular.module ('myApp', [1)
.controller('Ctrl', function() {})

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl" ng-init="data=123">
<input ng-model="data" />
<div ng-controller="Ctrl">
<input ng-model="data" />
</div>
<div ng-controller="Ctrl">
<input ng-model="data" />
</div>
</div>
</div>

How to do it...

In the current setup, the $scope instances in the nested Ctr1 instances will prototypically
inherit from the parent Ctrl $scope. When the page is loaded, all three inputs will be filled
with 123, and when you change the value of the parent Ctrl <inputs, both inputs bound
to the child $scope instances will update in turn, as all three are bound to the same object.
However, when you change the values of either input bound to a child $scope object, the
other inputs will not reflect that value, and the data binding from that input is broken until
the application is reloaded.

To fix this, simply add an object that is nested to any primitive types on your scope. This can
be accomplished in the following fashion:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl" ng-init="data.value=123">
<input ng-model="data.value" />
<div ng-controller="Ctrl">
<input ng-model="data.value" />
</div>
<div ng-controller="Ctrl">

158

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

<input ng-model="data.value" />
</div>
</div>
</divs>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/obe24zet/]

Now, any of the three inputs can be altered, and the change will reflect in the other two.
All three remain bound to the same $scope object in the parent Ctrl Sscope object.

The rule of thumb is to always maintain one layer of object indirection for anything (especially
primitive types) in your scope if you are relying on the $scope inheritance in any way. This is
colloquially referred to as "always using a dot."

When the value of a $scope property is altered from an input, this performs an assignment on
the $scope property to which it is bound. As is the case with prototypical inheritance, assignment
to an object property will follow the prototype chain all the way up to the original instance,

but assignment to a primitive will create a new instance of the primitive in the local $scope
property. In the preceding example, before the .value fix was added, the new local instance was
detached from the ancestral value, which resulted in the dual $scope property values.

There's more...

The following two examples are considered to be bad practice (for hopefully obvious reasons),
and it is much easier to just maintain at least one level of object indirection for any data that
needs to be inherited down through the application's $scope tree.

It's possible to reestablish this inheritance by removing the primitive property from the
local $scope object:

(app.js)

angular.module ('myApp', [])
.controller ('outerCtrl', function ($scope) {
$scope.data = 123;
P
.controller ('innerCtrl', function ($scope) {
$scope.reattach = function() ({
delete ($scope.data) ;

Vi

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/obe24zet/
http://www.it-ebooks.info/

Working with the Scope and Model

3N
(index.html)

<div ng-app="myApp">
<div ng-controller="outerCtrl"s>
<input ng-model="data" />
<div ng-controller="innerCtrl"s>
<input ng-model="data" />
</div>
<div ng-controller="innerCtrl"s>
<input ng-model="data" />
<button ng-click="reattach()">Reattach</button>
</div>
</div>
</div>

CZE JSFiddle: http://jsfiddle.net/msfrisbie/r33nekbg/

It is also possible to directly access the parent $scope object using Sscope . $Sparent and
ignore the inheritance completely. This can be done as follows:

(app.Jjs)

angular.module ('my2pp', I[1)
.controller('Ctrl', function() {});
(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl" ng-init="data=123">
<input ng-model="data" />
<div ng-controller="Ctrl">
<input ng-model="S$parent.data" />
</div>
<div ng-controller="Ctrl">
<input ng-model="S$parent.data" />
</div>
</div>

</div>

160

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/r33nekbg/
http://www.it-ebooks.info/

Chapter 5

Troublemaker built-in directives

The preceding examples explicitly demonstrate nested scopes that prototypically inherit from
the parent $scope object. In a real application, this would likely be very easy to detect and
debug. However, AngularJS comes bundled with a number of built-in directives that silently
create their own scopes, and if prototypical scope inheritance is not heeded, this can cause
problems. There are six built-in directives that create their own scope: ngController,
ngInclude, ngView, ngRepeat, ngIf, and ngSwitch.

The following examples will interpolate the $scope $id into the template to demonstrate the
creation of a new scope.

ngController

The use of ngController should be obvious, as your controller logic relies on attaching
functions and data to the new child scope created by the ngController directive.

nginclude

Irrespective of the HTML content of whatever is being included, ng-include will wrap
it inside a new scope. As ng-include is normally used to insert monolithic application
components that do not depend on their surroundings, it is less likely that you would run
into the Sscope inheritance problems using it.

The following is an incorrect solution:

(app.js)
angular.module ('myApp', [])
.controller('Ctrl', function(Sscope) {

Sscope.data = 123;

I3
(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
Scope id: {{ $id }}
<input ng-model="data " />
<ng-include src="'innerTemplate.html'"></ng-include>
</divs>

<script type="text/ng-template" id="innerTemplate.html">
<div>
Scope id: {{ $id }}
<input ng-model="data " />
</divs>
</script>
</divs>

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope and Model

The new scope inside the compiled ng-include directive inherits from the controller
$scope, but binding to its primitive value sets up the same problem.

The following is the correct solution:
(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope)
$scope.data = {
val: 123
}i
P

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
Scope id: {{ $id }}
<input ng-model="data.val" />
<ng-include src="'innerTemplate.html'"></ng-include>

</div>

<script type="text/ng-template" id="innerTemplate.html">
<divs>
Scope id: {{ s$id }}
<input ng-model="data.val" />
</div>
</scripts>

</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/c8nLké676/

ngView

With respect to prototypal inheritance, ng-view operates identically to ng-include. The
inserted compiled template is provided its own new child $scope, and correctly inheriting
from the parent $scope can be accomplished in the exact same fashion.

ngRepeat

The ngRepeat directive is the most problematic directive when it comes to incorrectly
managing the sscope inheritance. Each element that the repeater creates is given its own
scope, and modifications to these child scopes (such as inline editing of data in a list) will
not affect the original object if it is bound to primitives.

162

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/c8nLk676/
http://www.it-ebooks.info/

The following is an incorrect solution:
(app.Js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope)
$scope.names = [
'Alshon Jeffrey',
'Brandon Marshall',
'Matt Forte',
'Martellus Bennett',
'Jay Cutler'
1;
P

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
Scope id: {{ $id }}
<pre>{{ names | json }}</pres>
<div ng-repeat="name in names'">
Scope id: {{ $id }}
<input ng-model="name" />
</div>
</div>

</div>

Chapter 5

As described earlier, changing the value of the input fields only serves to modify the instance
of the primitive in the child scope, not the original object. One way to fix this is to restructure
the data object so that instead of iterating through primitive types, it iterates through objects

wrapping the primitive types.
The following is the correct solution:
(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope)
$Sscope.players = [
{ name: 'Alshon Jeffrey' },
name: 'Brandon Marshall' },
name: 'Matt Forte' },
name: 'Martellus Bennett' },

et Nt N

name: 'Jay Cutler' }

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope and Model

1;
3N

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
Scope id: {{ $id }}
<pre>{{ players | json }}</pre>
<div ng-repeat="player in players">
Scope id: {{ $id }}
<input ng-model="player.name" />
</div>
</div>
</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/zesjlgb6/

With this, the original array is being modified properly, and all is right with the world. However,
sometimes restructuring an object is not a feasible solution for an application. In this case,
changing an array of strings to an array of objects seems like an odd workaround. Ideally,

you would prefer to be able to iterate through the string array without modifying it first.

Using track by as part of the ng-repeat expression, this is possible.

The following is also a correct solution:

(app.Jjs)
angular.module ('my2App', I[1)
.controller ('Ctrl', function($scope) {

$Sscope.players = [
'Alshon Jeffrey',
'Brandon Marshall',
'Matt Forte',
'Martellus Bennett',
'Jay Cutler'

1:

3N

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/zesj1gb6/
http://www.it-ebooks.info/

Chapter 5

Scope id: {{ $id }}

<pre>{{ players | json }}</pre>

<div ng-repeat="player in players track by $index">
Scope id: {{ $id }}
<input ng-model="players[$index]" />

</div>

</div>
</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/ovas398h/]

Now, even though the repeater is iterating through the players array elements, as the child
$scope objects created for each element will still prototypically inherit the players array, it
simply binds to the respective element in the array using the sindex repeater.

As primitive types are immutable in JavaScript, altering a primitive element in the array will
replace it entirely. When this replacement occurs, as a vanilla utilization of ng-repeat
identifies array elements by their string value, ng-repeat thinks a new element has been
added, and the entire array will re-render—a functionality which is obviously undesirable
for usability and performance reasons. The track by $index clause in the ng-repeat
expression solves this problem by identifying array elements by their index rather than their
string value, which prevents constant re-rendering.

nglf

As the ng-if directive destroys the DOM content nested inside it every time its expression
evaluates as false, it will re-inherit the parent $scope object every time the inner content

is compiled. If anything inside the ng-if element directive inherits incorrectly from the parent
$scope object, the child Sscope data will be wiped out every time recompilation occurs.

The following is an incorrect solution:

(app.Jjs)
angular.module ('my2pp', I[1)
.controller ('Ctrl', function($scope) {

$Sscope.data 123;
$scope.show = false;

1)
(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl">
Scope id: {{ $id }}

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ovas398h/
http://www.it-ebooks.info/

Working with the Scope and Model

<input ng-model="data " />
<input type="checkbox" ng-model="show" />
<div ng-if="show">
Scope id: {{ $id }}
<input ng-model="data " />
</div>
</div>
</div>

Every time the checkbox is toggled, the newly created child $scope object will re-inherit from
the parent $scope object and wipe out the existing data. This is obviously undesirable in many
scenarios. Instead, the simple utilization of one level of object indirection solves this problem.

The following is the correct solution:

(app-Jjs)
angular.module ('myApp', [1)
.controller('Ctrl', function($scope) {

$scope.data = {
val: 123
};

$scope.show = false;

3N
(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
Scope id: {{ $id }}
<input ng-model="data.val" />
<input type="checkbox" ng-model="show" />
<div ng-if="show">
Scope id: {{ $id }}
<input ng-model="data.val" />
</div>
</div>
</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/hg7r5frm/

166

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/hq7r5frm/
http://www.it-ebooks.info/

ngSwitch

Chapter 5

The ngSwitch directive acts much in the same way as if you were to combine several ngIf
statements together. If anything inside the active ng-switch $scope inherits incorrectly

from the parent $scope object, the child $scope data will be wiped out every time
recompilation occurs when the watched switch value is altered.

The following is an incorrect solution:

(app.js)
angular.module ('myApp', [])
.controller('Ctrl', function(Sscope) {

Sscope.data = 123;

I3
(index.html)

<div ng-app="myApp">

<div ng-controller="Ctrl"s>

Scope id: {{ $id }}
<input ng-model="data

n />

<div ng-switch on="data ">

<div ng-switch-when="123">
Scope id: {{ $id }}
<input ng-model="data " />

</divs>

<div ng-switch-default>
Scope id: {{ $id }}

Default
</div>
</divs>
</divs>
</divs>

In this example, when the outer <input > tag is set to the matching value 123, the inner
<input > tag nested in ng-switch will inherit that value, as expected. However, when
altering the inner input, it doesn't modify the inherited value as the prototypical inheritance

chain is broken.

The following is the correct solution:

(app.js)
angular.module ('myBRpp', [1)
.controller('Ctrl', function(Sscope) {

$scope.data = {

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope and Model

val: 123
};
3N

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
Scope id: {{ $id }}
<input ng-model="data.val" />
<div ng-switch on="data.val">
<div ng-switch-when="123">
Scope id: {{ $id }}
<input ng-model="data.val" />
</div>
<div ng-switch-defaults>
Scope id: {{ $id }}
Default
</div>
</div>
</div>
</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/8kh41wdm/]

Working with AngularJS forms

AngularJS offers close integration with HTML form elements in the form of directives to
afford you the ability to build animated and styled form pages, complete with validation,
quickly and easily.

How to do it...

AngularJS forms exist inside the <form> tag, which corresponds to a native AngularJS
directive, as shown in the following code. The novalidate attribute instructs the browser
to ignore its native form validation:

<form novalidate>
<!-- form inputs -->
</form>

168

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/8kh41wdm/
http://www.it-ebooks.info/

Chapter 5

Your HTML input elements will reside inside the <form> tags. Each instance of the <form>
tag creates a FormController, which keeps track of all its controls and nested forms. The
entire AngularJS form infrastructure is built on top of this.

1
> As browsers don't allow nested form tags, ng-form
should be used to nest forms.

What the form offers you
Suppose you have a controller; a form in your application is as follows:

<div ng-controller="Ctrl">
<form novalidate name="myform">
<input name="myinput" ng-model="formdata.myinput" />
</form>
</div>

With this, Ctrl $scope is provided a constructor for the FormController as
$scope.myform, which contains a lot of useful attributes and functions. The individual

form entries for each input can be accessed as child FormController objects on the parent
FormController object; for example, $scope .myform.myinput is the FormController
object for the text input.

1
~ The inputs must be coupled with an ng-model directive
for the state and validation bindings to work.

Tracking the form state

Inputs and forms are provided with their own controllers, and AngularJS tracks the state of
both the individual inputs and the entire form using a pristine/dirty dichotomy. "Pristine" refers
to the state in which inputs are set to their default values, and "dirty" refers to any modifying
action taken on the model corresponding to the inputs. The "pristine" state of the entire form
is a logical AND result of all the input pristine states or a NOR result of all the dirty states; by
its inverted definition, the "dirty" state of the entire form represents an OR result of all the
dirty states or a NAND result of all the pristine states.

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/trjfzdwc/]

These states can be used in several different ways.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/trjfzdwc/
http://www.it-ebooks.info/

Working with the Scope and Model

Both the <form> and <input> elements have the CSS classes, ng-pristine and
ng-dirty, automatically applied to them based on the state the form is in. These
CSS classes can be used to style the inputs based on their state, as follows:

form.ng-pristine {
}

input.ng-pristine {
}

form.ng-dirty {

}

input.ng-dirty ({

}

All instances of the FormController and the ngModelController instances inside it
have the $Spristine and $dirty Boolean properties available. These can be used in the
controller business logic or to control the user flow through the form.

The following example shows Enter a value until the input has been modified:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope)
$scope.$watch ('myform.myinput.$pristine', function(newval) ({
$scope.isPristine = newval;
1)
3N

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<form novalidate name="myform">
<input name="myinput" ng-model="formdata.myinput" />
</form>
<div ng-show="isPristine">
Enter a value
</div>
</div>

</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/unxbyun2/

170

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/unxbyun2/
http://www.it-ebooks.info/

Chapter 5

Alternately, as the form object is attached to the scope, it is possible to directly detect whether
the input is pristine in the view:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<form novalidate name="myform">
<input name="myinput" ng-model="formdata.myinput" />
<div ng-show="myform.myinput.$pristine">
Enter a value
</div>
</form>
</div>

</div>

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/pr3Lle2b/]

It's also possible to force a form or input into a pristine or dirty state using the $setDirty ()
or $setPristine () methods. This has no bearing on what exists inside the inputs at that
point in time; it simply overrides the Booleans values, Spristine and $dirty, and sets
the corresponding CSS class, ng-pristine or ng-dirty. Invoking these methods will
propagate to any parent forms.

Validating the form

Similar to the pristine/dirty dichotomy, Angular]S forms also have a valid/invalid dichotomy.
Input fields in a form can be assigned validation rules that must be satisfied for the form to
be valid. AngularJS tracks the validity of both the individual inputs and the entire form using
the valid/invalid dichotomy. "Valid" refers to the state in which the inputs satisfy all validation
requirements assigned to it, and "invalid" refers to an input that fails one or more validation
requirements. The "valid" state of the entire form is a logical AND result of all the input valid
states or a NOR result of all the invalid states; by its inverted definition, the "invalid" state of
the entire form represents an OR result of all the invalid states or a NAND result of all the
valid states.

[(:3) JSFiddle: http://jsfiddle.net/msfrisbie/ejpsrfgz/]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/pr3L1e2b/
http://jsfiddle.net/msfrisbie/ejpsrfgz/
http://www.it-ebooks.info/

Working with the Scope and Model

Similar to pristine and dirty, both the <form> and <input> elements have the CSS classes,
ng-valid and ng-invalid, automatically applied to them based on the state the form is in.
These CSS classes can be used to style the inputs based on their state, as follows:

form.ng-valid {

}

input.ng-valid {

}

form.ng-invalid
}

input.ng-invalid ({

}

All instances of FormController and the ngModelController instances inside it have
the $valid and $invalid Boolean attributes available. These can be used in the controller
business logic or to control the user flow through the form.

The following example shows Input field cannot be blank while the input field is empty:
(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope)
$scope.$watch ('myform.myinput.$invalid', function(newval) {
$scope.isInvalid = newval;
1)
1)

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<form novalidate name="myform">
<input name="myinput"
ng-model="formdata.myinput"
required />
</form>
<div ng-show="isInvalid">
Input field cannot be blank
</div>
</div>
</div>

CZE JSFiddle: http://jsfiddle.net/msfrisbie/40bdaey4/

172

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/40bdaey4/
http://www.it-ebooks.info/

Chapter 5

Alternately, as the form object is attached to the scope, it is possible to directly detect whether
the input is valid in the view:

(app.js)

angular.module ('my2App', [])
.controller('Ctrl', function() {});

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<form novalidate name="myform">
<input name="myinput"
ng-model="formdata.myinput"
required />
<div ng-show="myform.myinput.$invalid">
Input field cannot be blank
</div>
</form>
</div>

</div>

<:l JSFiddle: http://jsfiddle.net/msfrisbie/bc2hn05p/

Built-in and custom validators
AngularJS comes bundled with the following basic validators:

» email

> max

» maxlength
» min

» minlength
» number

» pattern

» required

» url

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/bc2hn05p/
http://www.it-ebooks.info/

Working with the Scope and Model

While they are useful and largely self-explanatory, you'll likely want to build a custom
validator. To do this, you'll need to construct a directive that will watch the model value
of that input field, perform some analysis of it, and manually set the validity of that field
using the $setVvalidity () method.

As part of the 1.3 release, there is now an alternate method of creating

custom form validators. See the Creating and integrating custom form
T~ validators recipe in Chapter 9, What's New in AngularJS 1.3.

The following example creates a custom validator that checks whether an input field is a
prime number:

(app.Js)

angular.module ('my2App', [])

.directive ('ensurePrime', function() {
return {

require: 'ngModel',
link: function(scope, element, attrs, ctrl) (
function isPrime (n)
if (n<2) {
return false;

var m = Math.sgrt (n);

for (var i=2; i<=m; i++)
if (n%i === 0) {
return false;
}
}

return true;

scope.$watch (attrs.ngModel, function (newval) {
if (isPrime (newval))
ctrl.S$setValidity ('prime', true);
}
else {
ctrl.S$setValidity ('prime', false);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3N
(index.html)

<div ng-app="myApp">
<form novalidate name="myform">
<input type="number"
ensure-prime name="myinput"
ng-model="formdata.myinput"
required />
</form>
<div ng-show="myform.myinput.$invalid"s>
Input field must be a prime number
</div>
</div>

C:l JSFiddle: http://jsfiddle.net/msfrisbie/7mhgvgcp/

AngularJS forms tap into the existing data binding architecture to determine the form state
and validation state. The FormController instances tied to the form and the input inside
it provide a very pleasant, modular way of managing the form flow.

Working with <select> and ngOptions

AngularJS provides an ngOptions directive to populate the <select> elements in your
application. Although this is at first glance a trivial matter, ngopt ions utilizes a convoluted
comprehension_ expression that can populate the dropdown from a data object in a
variety of ways.

Getting ready

Assume that your application is as follows:
(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function(Sscope) {
Sscope.players = [

{

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/7mhqvgcp/
http://www.it-ebooks.info/

Working with the Scope and Model

176

1;

number: 17,
'Alshon',

'"WR'

name:
position:

number: 15,
'Brandon',

'"WR'

name:
position:

number: 22,
'Matt',

'RB!

name:
position:

number: 83,
'Martellus',

'TRE!

name:
position:

number: 6,
!Jay! ,

!QBI

name:
position:

}

$scope.team = {

"3B':
number: 9,

name: 'Brandon'

¥
"2B':
number: 19,

name: 'Marco'

¥

"3B':
number: 48,

name: 'Pablo'

Q. {
number: 28,

name: 'Buster'

b

1sst:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

number: 35,
name: 'Brandon'

3N

How to do it...

The ngOptions directive allows you to populate a <select> element with both an array and
an object's attributes.

Populating with an array

The comprehension expression lets you define how you want to map the data array to a set of
<options> tags and its string label and corresponding values. The easier implementation is
to only define the label string, in which case the application will default to set the <option>
value to the entire array element, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<!—- label for value in array -—>
<select ng-model="player"
ng-options="p.name for p in players"s>
</select>
</div>
</div>

This will compile into the following (with the form CSS classes stripped):

<select ng-model="player"
ng-options="player.name for player in players"s
<option value="?" selected="selected"></option>
<option value="0">Alshon</options>
<option value="1">Brandon</options>
<option value="2">Matt</options>
<option value="3">Martellus</option>
<option value="4">Jay</options>
</select>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/vy62c575/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/vy62c575/
http://www.it-ebooks.info/

Working with the Scope and Model

Here, the values of each option are the array indices of the corresponding element. As the
model it is attached to is not initialized to any of the present elements, AngularJS inserts a
temporary null value into the list until a selection is made, at which point the empty value
will be stripped out. When a selection is made, the player model will be assigned to the
entire object at that array index.

Explicitly defining the option values

If you don't want to have the <option> HTML value assigned the array index, you can
override this with a track by clause, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<!—- label for value in array -—»>
<select ng-model="player"
ng-options="p.name for p in players track by p.number"s>
</select>
</div>

</div>
This will compile into the following:

<select ng-model="player"
ng-options="p.name for p in players track by p.number"s>
<option value="?" selected="selected"></options>
<option value="17">Alshon</option>
<option value="15">Brandon</options>
<option value="22">Matt</optionx>
<option value="83">Martellus</option>
<option value="6">Jay</option>
</select>

CZE JSFiddle: http://jsfiddle.net/msfrisbie/umehb407/

Making a selection will still assign the corresponding object in the array to the player model.

178

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/umehb407/
http://www.it-ebooks.info/

Chapter 5

Explicitly defining the option model assignment

If instead you wanted to explicitly control the value of each <option> element and force it to
be the number attribute of each array element, you can do the following:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<!—- label for value in array -—>
<select ng-model="player"
ng-options="p.number as p.name for p in players"s>
</select>
</divs>
</divs>

This will compile into the following (with the form CSS classes stripped):

<select ng-model="player"
ng-options="p.number as p.name for p in players"s>
<option value="?" selected="selected"></option>
<option value="17">Alshon</option>
<option value="15">Brandon</options>
<option value="22">Matt</option>
<option value="83">Martellus</options>
<option value="6">Jay</option>
</select>

~\l
(;K JSFiddle: http://jsfiddle.net/msfrisbie/jtsz46cp/

However, now when an <option> element is selected, the player model will only be
assigned the number attribute of the corresponding object.

Implementing option groups
If you want to take advantage of the grouping abilities for the <select> elements, you can
add a group by clause, as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<!—- label for value in array -—>
<select ng-model="player"

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/jtsz46cp/
http://www.it-ebooks.info/

Working with the Scope and Model

ng-options="p.name group by p.position for p in
players">
</select>
</div>
</div>

This will compile to the following:

<select ng-model="player"
ng-options="p.name group by p.position for p in players"s
<option value="?" selected="selected"></option>
<optgroup label="WR">
<option value="0">Alshon</options>
<option value="1">Brandon</options>
</optgroup>
<optgroup label="RB">
<option value="2">Matt</options>
</optgroup>
<optgroup label="TE">
<option value="3">Martellus</option>
</optgroup>
<optgroup label="QB">
<option value="4">Jay</options>
</optgroup>
</select>

C:l JSFiddle: http://jsfiddle.net/msfrisbie/2d6mdt9m/

Null options

If you want to allow a null option, you can explicitly define one inside your <select> tag,
as follows:

(index.html)
<select ng-model="player" ng-options="comprehension expression"s>

<option value="">Choose a player</options>
</select>

180

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/2d6mdt9m/
http://www.it-ebooks.info/

Chapter 5

Populating with an object

The <select> elements that use ngOptions can also be populated from an object's
attributes. It functions similarly to how you would process a data array; the only difference
being that you must define how the key-value pairs in the object will be used to generate the
list of <option> elements. For a simple utilization to map the value object's number property
to the entire value object, you can do the following:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<!—- label for value in array -—>
<select ng-model="player"
ng-options="p.number for (pos, p) in team">
</select>
</divs>
</divs>

This will compile into the following:

<select ng-model="player"
ng-options="p.number for (pos, p) in team">
<option value="?" selected="selected"></option>
<option value="1B">9</option>
<option value="2B">19</option>
<option value="3B">48</option>
<option value="C">28</option>
<option value="SS">35</option>
</select>

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/zofojs7n/

The <options values default to the key string, but the player model assignment will still be
assigned the entire object that the key refers to.

Explicitly defining option values

If you don't want to have the <option> HTML value assigned the property key, you can
override this with a select as clause:

(index.html)
<div ng-app="myApp">

<div ng-controller="Ctrl"s>
<!—- label for value in array -—>

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/zofojs7n/
http://www.it-ebooks.info/

Working with the Scope and Model

<select ng-model="player"
ng-options="p.number as p.name for (pos, p) in team">
</select>
</div>
</div>

This will compile into the following:

<select ng-model="player"
ng-options="p.number as p.name for (pos, p) in team">
<option value="?" selected="selected"></option>
<option value="1B">Brandon</option>
<option value="2B">Marco</options>
<option value="3B">Pablo</options>
<option value="C">Buster</options>
<option value="SS">Brandon</option>
</select>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/ssLzvtat/

Now, when an <option> element is selected, the player model will only be assigned the
number property of the corresponding object.

The ngOpt ions directive simply breaks apart the enumerable entity it is passed, into digestible
pieces that can be converted into <option> tags.

There's more...

Inside a <select> tag, ngOptions is heavily preferred to ngRepeat for performance
reasons. Data binding isn't as necessary in the case of dropdown values, so an ngRepeat
implementation for a dropdown that must watch many values in the collection adds
unnecessary data binding overhead to the application.

Building an event bus

Depending on the purpose of your application, you might find yourself with the need to utilize
a publish-subscribe (pub-sub) architecture to accomplish certain features. AngularJS provides
the proper toolkit to accomplish this, but there are considerations that need to be made to
prevent performance degradation and keep the application organized.

182

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ssLzvtaf/
http://www.it-ebooks.info/

Chapter 5

Formerly, using the $broadcast service from a scope with a large number of descendant
scopes incurred a significant performance hit due to the large number of potential listeners
that needed to be handled. In the AngularJS 1.2.7 release, an optimization was introduced
to $broadcast that limits the reach of the event to only the scopes that are listening for it.
With this, Sbroadcast can be used more freely throughout your application, but there is
still a void to be filled to service applications that demand a pub-sub architecture. Simply put,
your application should be able to broadcast an event to subscribers throughout the entire
application without utilizing $rootScope . $broadcast ().

Getting ready

Suppose you have an application that has multiple disparate scopes existing throughout it
that need to react to a singular event, as shown here:

(app.js)

angular.module ('pubSubApp', [])
.controller('Ctrl', function($scope) {})
.directive ('myDir', function() {
return {
scope: {},
link: function(scope, el, attrs) {}

13N

Only a single controller and directive are shown here, but an unlimited
number of application components that have access to a scope object
T~ can tap into the event bus.

How to do it...

In order to avoid using $SrootScope. Sbroadcast (), the SrootScope will instead be used
as a unification point for application-wide messaging. Utilizing $rootScope. $on () and

SrootScope.Semit () allows you to compartmentalize the actual message broadcasting to
a single scope and have child scopes inject $SrootScope and tap into the event bus within it.

Basic implementation

The most basic and naive implementation is to inject SrootScope into every location where
you need to access the event bus and configure the events locally, as shown here:

(index.html)

<div ng-app="myApp">

www.it-ebooks.info

http://www.it-ebooks.info/

Working with the Scope and Model

<div ng-controller="Ctrl">
<button ng-click="generateEvent () ">Generate event</buttons>
</div>
<div my-dir></divs>
</div>

(app.js)

angular.module ('myApp', [1)
.controller('Ctrl', function($scope, S$SrootScope, $log) {
$scope.generateEvent = function()
SrootScope. Semit ('busEvent') ;
}i
$rootScope. $on ('busEvent', function()
$log.log ('Handler called!');
1)
)
.directive ('myDir', function ($rootScope, $log) {
return {
scope: {},
link: function(scope, el, attrs) {
$rootScope. $on ('busEvent', function()
$log.log ('Handler called!');

1) s

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/50t5scja/

With this setup, even a directive with an isolate scope can utilize the event bus to communicate
with a controller that it otherwise would not be able to.

Cleanup

If you're paying close attention, you might have noticed that using this pattern introduces a
small problem. Controllers in Angularl]S are not singletons, and therefore they require more
careful memory management when using this type of cross-application architecture.

184

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5ot5scja/
http://www.it-ebooks.info/

Chapter 5

Specifically, when a controller in your application is destroyed, the event listener attached to a
foreign scope that was declared inside it will not be garbage collected, which will lead to memory
leaks. To prevent this, registering an event listener with $Son () will return a deregistration
function that must be called on the $destroy event. This can be done as follows:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope, S$rootScope, $log)
$scope.generateEvent = function() {
SrootScope. $emit ('busEvent') ;

Vi

var unbind = $rootScope.$on ('busEvent', function()
$log.log('Handler called!');

1) s

$scope.$on('$destroy', unbind);

1)
.directive ('myDir', function($SrootScope, $log)
return {
scope: {},
link: function(scope, el, attrs) (
var unbind = $rootScope.$on ('busEvent', function()
$log.log('Handler called!');

1) s

scope.$on('$destroy', unbind);

<:l JSFiddle: http://jsfiddle.net/msfrisbie/xg05p9dt/

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/xq05p9dt/
http://www.it-ebooks.info/

Working with the Scope and Model

Event bus as a service

The event bus logic can be delegated to a service factory. This service can then be
dependency-injected anywhere to communicate application-wide events to wherever
else listeners exist. This can be done as follows:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($scope, EventBus, S$log) {
$scope.generateEvent = function () {
EventBus.emitMsg ('busEvent') ;

bi

EventBus.onMsg (
'busEvent',
function() {
$log.log('Handler called!');
b
$Sscope
) ;
})
.directive ('myDir', function($log, EventBus) {
return {
scope: {},
link: function(scope, el, attrs) {
EventBus.onMsg (
'busEvent',
function() {
$log.log ('Handler called!');

b

scope
) ;
}
}i
})
.factory ('EventBus', function ($SrootScope) {
var eventBus = {};

eventBus.emitMsg = function(msg, data) {
data = data || {};
t

SrootScope. Semit (msg, data) ;

}i

eventBus.onMsg = function(msg, func, scope) {
var unbind = $rootScope.S$on(msg, func);
if (scope) ({

186

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

scope.$on ('S$destroy', unbind) ;
1
return unbind;
Vi

return eventBus;

3N

(:1 JSFiddle: http://jsfiddle.net/msfrisbie/m88ruycx/

Event bus as a decorator

The best and cleanest implementation of an event bus is to implicitly add the publish and
subscribe utility methods to all scopes by decorating the $rootScope object during the
application's initialization, specifically, the config phase:

(app.js)

angular.module ('myApp', [])
.config(function ($provide) {
$provide.decorator ('$rootScope', function($delegate) {
// adds to the constructor prototype to allow
// use in isolate scopes
var proto = Sdelegate.constructor.prototype;

proto.subscribe = function(event, listener) {
var unsubscribe = $delegate.Son(event, listener);
this.Son('S$destroy', unsubscribe) ;

bi

proto.publish = function (event, data) {
Sdelegate.semit (event, data) ;

bi

return $delegate;
P
})
.controller('Ctrl', function($scope, $log) {
$scope.generateEvent = function () {
Sscope.publish ('busEvent') ;

bi

Sscope.subscribe ('busEvent', function() {
$log.log ('Handler called!');

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/m88ruycx/
http://www.it-ebooks.info/

Working with the Scope and Model

1
3]
.directive ('myDir', function($log) {
return {
scope: {},

link: function(scope, el, attrs) ({
scope.subscribe ('busEvent', function() ({
$log.log('Handler called!');

1)

[Q JSFiddle: http://jsfiddle.net/msfrisbie/5madmyzt/]

The event bus acts as a single target of indirection between the disparate entities in the
application. As the events do not escape the srootScope object, and SrootScope can
be dependency-injected, you are creating an application-wide messaging network.

Performance is always a consideration when it comes to events. It is cleaner and more efficient
to delegate as much of your application as possible to the data binding/model layer, but when
there are global events that require you to propagate events (such as a login/logout), events can
be an extremely useful tool.

188

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5madmyzt/
http://www.it-ebooks.info/

Testing in AngularJdS

In this chapter, we will cover the following recipes:

» Configuring and running your test environment in Yeoman and Grunt
» Understanding Protractor

» Incorporating E2E tests and Protractor in Grunt

» Writing basic unit tests

» Writing basic E2E tests

» Setting up a simple mock backend server

» Writing DAMP tests

» Using the Page Object test pattern

Introduction

Since its inception, AngularJS has always been a framework built with maximum testability in
mind. Developers are often averse to devoting substantial time towards creating a test suite
for their application, yet we all know only too well how wrong things can go when untested

or partially tested code is shipped to production.

One could fill an entire book with the various tools and methodologies available for
testing AngularJS applications, but a pragmatic developer likely desires a solution that
is uncomplicated and gets out of the way of the application's development. This chapter
will focus on the most commonly used components and practices that are at the core of
the majority of test suites, as well as the best practices that yield the most useful and
maintainable tests.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

Furthermore, preferred testing utilities have evolved substantially over the AngularJS releases
spanning the past year. This chapter will only cover the most up-to-date strategies used for
AngularJS testing.

The AngularJS testing ecosystem is incredibly dynamic in nature. It would be
futile to attempt to describe the exact methods by which you can set up an
_ entire testing infrastructure as their components and relationships constantly
evolve, and will certainly differ as the core team continues to churn out new
i releases. Instead, this chapter will describe the supporting test software

setup from a high level and the test syntax at the code level of detail. | will

add errata and updates to this chapter at https://gist.github.com/

msfrisbie/b0c6eceblladfbcbf482.

Configuring and running your test

environment in Yeoman and Grunt

The Yeoman project is an extremely popular scaffolding tool that allows the quick startup and
growth of an Angular]S codebase. Bundled in it is Grunt, which is the JavaScript task runner
that you will use in order to automate your application's environment, including running and
managing your test utilities. Yeoman will provide much of your project structure for you out of
the box, including but not limited to the npm and Bower dependencies and also the Gruntfile,
which is the file used for the definition of the Grunt automation.

How to do it...

There is some disagreement over the taxonomy of test types, but with AngularJS, the tests
will fall into two types: unit tests and end-to-end tests. Unit tests are the black-box-style
tests where a piece of the application is isolated, has external components mocked out for
simulation, is fed controlled input, and has its functionality/output verified. End-to-end tests
simulate proper application-level behavior by simulating a user interacting with components
of the application and making sure that they operate properly by creating an actual browser
instance that loads and executes your application code.

Using the right tools for the job

AngularJS unit tests utilize the Karma test runner to run unit tests. Karma has long been the
gold standard for AngularJS tests, and it integrates well with Yeoman and Grunt for automatic
test file generation and test running. Much of the setup for Karma unit testing is already done
for you with Yeoman.

190

www.it-ebooks.info

https://gist.github.com/msfrisbie/b0c6eceb11adfbcbf482
https://gist.github.com/msfrisbie/b0c6eceb11adfbcbf482
http://www.it-ebooks.info/

Chapter 6

Formerly, AngularJS provided a tool called the Angular Scenario Runner to run end-to-end
tests. This is no longer the case; a modern test suite will now utilize Protractor, which is a
new end-to-end testing framework built specifically for Angular]S. Protractor currently does
not come configured by default when bootstrapping Angularl]S project files, so a manual
integration of it into your Gruntfile will be necessary.

Conveniently, both Karma unit tests and Protractor end-to-end tests utilize the Jasmine
test syntax.

Both Karma and Protractor will require * . conf . js files, which will act as the test suite
directors when invoked by Grunt. Protractor installation requires manual work, which is
provided in detail in the Incorporating E2E tests and Protractor in Grunt recipe.

Once the testing is set up, running and evaluating your test suite is simple. Karma and
Protractor will run separately, one after the other (depending on which comes first in the
grunt test task). Each of them will spawn some form of browser in which they will perform
the tests. Karma will generally utilize PhantomJS to run the unit tests in a headless browser,
and Protractor will utilize Selenium WebDriver to spawn an actual browser instance (or
instances, depending on how it is configured) and run the end-to-end tests on your actual
application that is running in the browser, which you will be able to see happening if it is
running on your local environment.

Downloading the example code
\ You can download the example code files for all Packt books you have
~ purchased from your account at http://www.packtpub.com.
Q If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed
directly to you.

After running the test suite, the console output of Grunt will inform you of any test failures and
other metadata about the test run. The output of a successfully run test suite, both unit tests
and end-to-end tests with no errors, will include something similar to the following:

Running "karma:unit" (karma) task
INFO [karma]: Karma v0.12.23 server started at http://localhost:8080/
INFO [launcher]: Starting browser PhantomJS

INFO [PhantomdS 1.9.7 (Mac OS X)]: Connected on socket
sYgu4c8ZxNFs73zBe xg with id 75044421

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Testing in AngularJS

PhantomJS 1.9.7 (Mac OS X): Executed 3 of 3 SUCCESS (0.017 secs /
0.015 secs)

Running "protractor:run" (protractor) task
Starting selenium standalone server...

Selenium standalone server started at http://192.168.1.120:59539/wd/
hub

Finished in 7.965 seconds
5 tests, 19 assertions, 0 failures

Shutting down selenium standalone server.

Done, without errors.
Total 19.3s

Error messages in AngularJS are always getting better, and the Angular]S team is actively
working to make failures easier to diagnose by providing detailed error messages and
better stack traces. When a test fails, the string identifiers that Jasmine allows you to
provide while writing the tests will quickly allow the developer who is running the tests

to identify the problem. This is shown in the following error output:

Running "karma:unit" (karma) task
INFO [karma]: Karma v0.12.23 server started at http://localhost:8080/
INFO [launcher]: Starting browser PhantomJS

INFO [PhantomdS 1.9.7 (Mac OS X)]: Connected on socket
HVy4JBf IMACZUGR8gPFY with id 29687037

PhantomJS 1.9.7 (Mac OS X) Controller: HandleCtrl Should mark handles
which are too short as invalid FAILED

Expected false to be true.
PhantomJS 1.9.7 (Mac OS X): Executed 3 of 3 (1 FAILED) (0.018 secs /
0.014 secs)
Warning: Task "karma:unit" failed. Use --force to continue.

Aborted due to warnings.

See also

» The Understanding Protractor recipe provides greater insight into what the Protractor
test runner really is

» The Incorporating E2E tests and Protractor in Grunt recipe gives a thorough
explanation of how to set up your test suite in order to use Protractor as its
end-to-end test runner

192

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Understanding Protractor

Protractor is new to the scene in Angular]S and is intended to fully supplant the now
deprecated Angular Scenario Runner.

Selenium WebDriver (also referred to as just "WebDriver") is a browser automation tool that
provides faculties to script the control of web browsers and the applications that run within

them. For the purposes of end-to-end testing, the test runner manifests as three interacting
components, as follows:

» The formal Selenium WebDriver process, which takes the form of a standalone server
with the ability to spawn a browser instance and pipe native events into the page

» The test process, which is a Node.js script that runs and checks all the test files

» The actual browser instance, which runs the application

Protractor is built on top of WebDriver. It acts as both an extension of WebDriver and also
provides supporting software utilities to make end-to-end testing easier. Protractor includes
the webdriver-manager binary, which exists to make the management of WebDriver easier.

There's more...

Within the tests themselves, Protractor exports a couple of global variables for you to use,
which are as follows:

» browser: This exists to enable you to interact with the URL of the page and the page
source. It acts as a WebDriver wrapper, so anything that WebDriver does, Protractor
can do too.

» element: This enables you to interact with specific elements in the DOM using
selectors. Besides standard CSS selectors, this also allows you to select the
elements with a specific ng-model directive or binding.

See also

» The Incorporating E2E tests and Protractor in Grunt recipe gives a thorough
explanation of how to set up your test suite in order to use Protractor as its
end-to-end test runner

» The Writing basic E2E tests recipe demonstrates how to build an end-to-end test
foundation for a simple application

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

Incorporating E2E tests and Protractor in

Grunt

Out of the box, Yeoman does not integrate Protractor into its test suite; doing so requires
manual work. The Grunt Protractor setup is extremely similar to that of Karma, as they both
use the Jasmine syntax and * . conf . js files.

This recipe demonstrates the process of installing and configuring
Protractor, but much of this can be generalized to incorporate any
’ new package into Grunt.

Getting ready

The following is a checklist of things to do in order to ensure that your test suite will run correctly:
» Ensure that the grunt -karma extension is installed using the npm install
grunt-karma --save-dev command

» Save yourself the trouble of having to list out all the needed Grunt tasks in your
Gruntfile by automatically loading them, as follows:

o Install the load-grunt-tasks module using the npm install load-
grunt-tasks --save-dev command

o Add require ('load-grunt-tasks') (grunt) ; inside the module.
exports function in your Gruntfile

How to do it...

Adding Protractor to your application's test configuration requires you to follow a number of
steps in order to get it installed, configured, and automated.

Installation
Incorporating Protractor into Grunt requires the following two npm packages to be installed:

> protractor

> grunt-protractor-runner

They can be installed by being added to the package . json file and by running npm
install. Alternately, they can be installed from the command line as follows:

npm install protractor grunt-protractor-runner --save-dev

The --save-dev flag will automatically add the packages to the devDependencies object
in package. json if it is present.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Selenium's WebDriver manager

Protractor requires Selenium, a web browser automation tool, to operate. The previous
commands will have already incorporated the needed dependencies into your package. json
file. As a convenience, you should bind the Selenium WebDriver update command to run when
you invoke npm install. This can be accomplished by adding the highlighted line of the
following code snippet (the path to the webdriver-manager binary might differ in your

local environment):

(package.json)

{

"devDependencies": {
// long list of node package dependencies

b

"scripts": {
// additional existing script additions may be listed here
"install": "node node modules/protractor/bin/webdriver-manager
update"

}
}

The order in which the dependencies are listed is not important.

JSON does not support comments; they are shown in the preceding

code only to provide you context within the file. Attempting to provide
i a JSON file with JavaScript-style comments in it to the npm installer

will cause the installer to fail.

Modifying your Gruntfile

Grunt needs to be informed of where to look for the Protractor configuration file as well as
how to use it now that the npm module has been installed. Modify your Gruntfile.js file
as follows:

(Gruntfile.js)

module.exports = function (grunt) {

// Define the configuration for all the tasks
grunt.initConfig ({

// long list of configuration options for

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

// grunt tasks like minification, JS linting, etc.

protractor: {
options: {
keepAlive: true,
configFile: "protractor.conf.js"
Y
run: {}
}
}

If this is done correctly, it should enable you to call protractor : run within a Grunt task.

In order to run Protractor and the E2E test suite when you invoke the grunt test command,
you must extend the relevant Grunt task, as follows:

(Gruntfile.js)

grunt.registerTask('test', [
// list of subtasks to run during “grunt test”
'karma',
'protractor:run'

1);

The order of these tasks is not set in stone, but karma and protractor: run must be

ordered to follow any tasks that are involved with the setup of the test servers; so it is
prudent to list them last.

Setting your Protractor configuration

Obviously, the Protractor configuration you just set in the Gruntfile refers to a file that doesn't
exist yet. Create the protractor.conf. js file and add the following:

(protractor.conf.js)

exports.config = {
specs: ['test/e2e/* test.js'l],
baseUrl: 'http://localhost:9001"',
// your filenames, versions, and paths may differ

seleniumServerJar: 'node modules/protractor/selenium/selenium-
server-standalone-2.42.2.jar',

chromeDriver: 'node modules/protractor/selenium/chromedriver'

196

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This points Protractor to your test directory(ies), the Yeoman baseUr1 that acts as the
default test port (9001), and the Selenium server and browser setup files. This Protractor
configuration will boot a new instance of a Selenium server every time you run tests, run the
E2E tests in the Chrome browser, and strip it down when the tests have finished running.

Running the test suite

If all of these steps were successfully accomplished, running grunt test should pound out
your entire test suite.

Much of the power and utility that Grunt has to offer stems from its modular automation
topology. The setup you just configured works roughly as follows:

1. The grunt test command is run from the command line.

2. Grunt matches the test to its corresponding task definition in the Gruntfile. js file.

3. The tasks defined within the test are run sequentially, eventually coming to the
protractor:run entry.

4. Gruntruns protractor:run and matches this to the Protractor configuration
definition, which resides in the protractor.conf. js file.

5. Protractor locates protractor.conf.js, which at a minimum tells Grunt how to
boot a Selenium server, where to find the test files, and the location of the test server.

6. All found tests are run.

» The Understanding Protractor recipe provides greater insight into what the Protractor
test runner really is

» The Writing basic E2E tests recipe demonstrates how to build an end-to-end test
foundation for a simple application

Writing basic unit tests

Unit tests should be the foundation of your test suite. Compared to end-to-end tests, they

are generally faster, easier to write, easier to maintain, require less overhead while setting up,
more readily scale with the application, and provide a more obvious path to the problem area
of the application when you debug a failed test run.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

There is a surplus of extremely simplistic testing examples available online and rarely do they
present a component or test case that is applicable in a real-world application. Instead, this
recipe will jump directly to an understandable application component and show you how to
write a full set of tests for it.

Getting ready

For this recipe, it is assumed that you have correctly configured your local setup so that Grunt
will be able to find your test file(s) and run them on the Karma test runner.

Suppose that you have the following controller within your application:
(app.Js)

angular.module ('myApp"')
.controller ('HandleCtrl', function($scope, S$http) {
$scope.handle = '';
$scope.$watch('handle', function(value)
if (value.length < 6) {
$scope.valid = false;
} else {
$http ({
method: 'GET',
url: '/api/handle/' + value
}) .success (function(data, status) {

if (status == 200 &&
data.handle == $scope.handle &&
data.id === null)
$scope.valid = true;

} else {

$scope.valid = false;

In this example application, a user named Jake Hsu will go through a signhup flow and attempt
to select a unique handle. In order to guarantee the selection of a unique handle while still

in the signup flow, a scope watcher is set up against the server to check whether that handle
already exists. Through a mechanism outside the controller (and presumably in the view),

the value of $scope.handle will be manipulated, and each time its value changes, the
application will send a request to the backend server and set $scope.valid based on
what the server returns.

198

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

An exhaustive set of unit tests for something like the situation mentioned in the previous
section can become quite lengthy. When writing tests for a production application, rarely is it
prudent to spend time to create an exhaustive set of unit tests for a component, unless it is
critical to the application (payments and authentication come to mind).

Here, it is probably sufficient to create a set of tests that attempts to cover scenarios that
mark a handle as invalid on the client side, invalid on the server side, and valid on the
server side.

Initializing the unit tests

Before writing the actual tests, it is necessary to create and mock the external components
that the test component will interact with. This can be done as follows:

(handle controller test.js)

// monolithic test suite for HandleCtrl

describe ('Controller: HandleCtrl', function() {
// the components to be tested reside in the myApp module
// therefore it must be injected
beforeEach (module ('myApp"')) ;

// values which will be used in multiple closures
var HandleCtrl, scope, httpBackend, createEndpointExpectation;

// this will be run before each it (function() {}) clause
// to create or refresh the involved components
beforeEach (inject (function ($controller, S$rootScope, ShttpBackend)

// creates the mock backend server
httpBackend = shttpBackend;

// creates a fresh scope
scope = S$rootScope.S$new () ;

// creates a new controller instance and inserts
// the created scope into it
HandleCtrl = S$Scontroller('HandleCtrl', {

$scope: scope

3N

// configures the httpBackend to match outgoing requests
// that are expected to be generated by the controller

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

// and return payloads based on what the request contained;
// this will only be invoked when needed
createEndpointExpectation = function() ({
// URL matching utilizes a simple regex here
// expectGET requires that a request be created
httpBackend.expectGET (/\/api\/handle\/\w+/1i) .respond (
function (method, url, data, headers){
var urlComponents = url.split("/")
, handle = urlComponents [urlComponents.length - 1]
, payload = {handle: handle};
if (handle == 'jakehsu') {
// handle exists in database, return ID
payload.id = 1;
} else {
// handle does not exist in database
payload.id = null;

}i

// AngulardS allows for this return format;
// [status code, data, configuration]

return [200, payload, {}1;

// configures the httpBackend to check that the mock
// server did not receive extra requests or did not
// see a request when it should have expected one

afterEach (function() {
// verify that all expect<HTTPverb>() expectations were filled

httpBackend.verifyNoOutstandingExpectation() ;
// verify that the mock server did not receive requests it

// was not expecting
httpBackend.verifyNoOutstandingRequest () ;

3N

// unit tests go here

3N

200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Creating the unit tests

With the unit test initialization complete, you will now be able to formally create the unit tests.
Each it (function() {}) clause will count as one unit test towards the counted total,
which can be found in the grunt test readout. The unit test is as follows:

(handle controller test.js)

// describe () serves to annotate what the module will test

describe ('Controller: HandleCtrl', function() {

// unit test initialization
beforeEach(...);
afterEach(...);

// client invalidation unit test

it ('Should mark handles which are too short as invalid',

) ;

}

function() {

// attempt test handle beneath the character count floor
scope.handle = 'jake';

// S$watch will not be run until you force a digest loop
scope. Sapply () ;

// this clause must be fulfilled for the test to pass
expect (scope.valid) .toBe (false) ;

// client validation, server invalidation unit test

it ('Should mark handles which exist on the server as invalid',

function() {

// server is set up to expect a specific request
createEndpointExpectation () ;

// attempt test handle above character count floor,
// but which is defined in the mock server to have already
// been taken

scope.handle = 'jakehsu';

// force a digest loop

scope. Sapply () ;

// the mock server will not return a response until
// flush() is invoked

httpBackend.flush() ;

// this clause must be fulfilled for the test to pass
expect (scope.valid) .toBe (false) ;

201

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

)i

// client validation, server invalidation unit test
it ('Should mark handles available on the server as valid',
function()
// server is set up to expect a specific request
createEndpointExpectation() ;
// attempt handle above character floor and
// which is defined to be available on the mock server
scope.handle = 'jakehsul23';
// force a digest loop
scope. $apply () ;
// return a response
httpBackend.flush() ;
// this clause must be fulfilled for the test to pass
expect (scope.valid) .toBe (true) ;

)i

Each unit test describes the sequential components that describe a scenario that the
application is supposed to handle. Though the JavaScript that is natively executed in the
browser is heavily asynchronous, the unit test faculties provide a great deal of control over these
operations such that you can control the completion of asynchronous operations, and therefore
test your application's handling of it in different ways. The Shttp and $digest cycles are both
components of AngularJS that are expected to take indeterminate amounts of time to complete.
Here though, you are given fine-grained control over their execution, and it is to your advantage
to incorporate that ability into the test suite for more extensive test coverage.

Initializing the controller

To test the controller, it and the components it uses must be created or mocked. Creating the
controller instance can be easily accomplished with $controller (), butin order to test
how it handles scope transformations, it must be provided with a scope instance. Since all
scopes prototypically inherit from SrootScope, it is sufficient here to create an instance of
SrootScope and provide that as the created controller's scope.

Initializing the HTTP backend

Mocking a backend server can at times seem to be tedious and verbose, but it allows
you to very precisely define how your single-page application is expected to interact with
remote components.

202

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Here, you invoke expectGET () with a URL regex in order to match an outgoing request
generated by the controller. You are able to define exactly what happens when that URL sees
a request come through, much in the same way that you would when you build a server API.

Here, it is prudent to encapsulate all the backend endpoint initialization within a

function because its definition specifies how the application controller must behave

for the test to pass. The $httpBackend service offers expect<HTTPverb> () and
when<HTTPverb> () for use, and together they allow powerful unit test definition. The
expect () methods require that they see a matching request to the endpoint during the
unit test, whereas the when () methods merely enable the mock backend to appropriately
handle that request. At the conclusion of each unit test, the afterEach () clause verifies
that the mock backend has seen all the requests that it was expected to, using the
verifyNoOutstandingExpectation () method, and that it didn't see any requests it
wasn't expected to, using the verifyNoOutstandingRequest () method.

Formally running the unit tests

When running the unit tests, AngularJS makes no assumptions about how your application
should or might behave with regard to interfacing with components that involve variable
latent periods and asynchronous callbacks. The Swatch expressions and ShttpBackend
will behave exactly as instructed and exactly when instructed.

By their nature, the Swatch expressions can take a variable amount of time depending on
how long it takes the model changes to propagate throughout the scope, and how many
digest loops are required for the model to reach equilibrium. When you run a unit test, a scope
change (as demonstrated here) will not trigger a Swatch expression callback until $Sapply ()
is explicitly invoked. This allows you to use the intermediate logic and other modifications to
be made in different ways to fully exercise the conditions under which a $watch expression
might occur.

Furthermore, it should be obvious that a remote server cannot be relied upon to respond

in a timely fashion, or even at all. When you run a unit test, requests can be dispatched to
the mock server normally, but the server will delay sending a response and triggering the
asynchronous callbacks until it is explicitly instructed to with £1ush (). In a similar fashion,
the Swatch expressions allow you to test the handling of requests that return normally or
slowly, as malformed or failed, or time out altogether.

There's more...

Unit tests should be the core of your test suite as they provide the best assurance that the
components of your application are behaving as expected. The rule of thumb is: if it's possible
to effectively test a component with a unit test, then you should use a unit test.

203

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

Writing basic E2E tests

End-to-end tests effectively complement unit tests. Unit tests make no assumptions about the
state of the encompassing systems (and thereby require manual work to mock or fabricate
that state for the sake of simulation). Unit tests are also intended to test extremely small

and often irreducible pieces of functionality. End-to-end tests take an orthogonal approach

by creating and manipulating the system state via the means that are usually available to

the client or end user and make sure that a complete user interface flow can be successfully
executed. End-to-end test failures often cannot pinpoint the exact coordinate from which the
error originated. However, they are absolutely a necessity in a testing suite since they ensure
cooperation between the interacting application components and provide a safety net to catch
the application's misbehavior that results from the complexities of a software interconnection.

Getting ready

This recipe will use the same application controller setup from the preceding recipe, Writing
basic unit tests. Please refer to the setup instructions and code explained there.

In order to provide an interface to utilize the controller, the application will also incorporate
the following;:

(app.js)

angular.module ('myApp', [
'ngRoute’
1)
.config ([
'SrouteProvider',
function ($routeProvider) {
SrouteProvider
.when ('/signup', {
templateUrl: 'views/main.html'
1y
.otherwise ({
redirectTo: '/',
template: 'Go to signup page'

(views/main.html)

<div ng-controller="HandleCtrl"s>
<input type="text" ng-model="handle" />

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<h2 id="success-msg" ng-show="valid">
That handle is available!
</h2>
<h2 id="failure-msg" ng-hide="valid">
Sorry, that handle cannot be used.
</h2>
</div>

(index.html)

<body ng-app="myApp">
<div ng-view=""></div>

</body>

Take note that here, these files are only the notable pieces required

for a working application that the Protractor test runner will use. You
i will need to incorporate these into a full AngularJS application for

Protractor to be able to use them.

How to do it...

Your end-to-end test suite should cover all user flows as best as you can. Ideally, you will
optimize for a balance between modularity, independence, and redundancy avoidance when
you write tests. For example, each individual test probably doesn't need you to log out at the
end of the test since this would only serve to slow down the completion of the tests. However,
if you are writing E2E tests to verify that your application's authentication scheme prevents
unwanted navigation after authentication credentials have been revoked. Then, an array of
tests that test actions after logout would be very appropriate. The focus of your tests will vary
depending on the style and purpose of your application, and also the bulk and complexity of
the codebase behind it.

Since the protractor.conf. js file has been instructed to look for test files in the
test/e2e/ directory, the following would be an appropriate test suite in that location:

(test/e2e/signup flow test.js)
describe ('signup flow tests', function() {
it ('should link to /signup if not already there', function() {
// direct browser to relative url,
// page will load synchronously

browser.get ('/');

// locate and grab <a> from page

205

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

var link = element(by.css('a'));

// check that the correct <a> is selected
// by matching contained text
expect (link.getText ()) .toEqual ('Go to signup page') ;

// direct browser to nonsense url
browser.get ('/#/hooplah') ;

// simulated click
link.click () ;

// protractor waits for the page to render,
// then checks the url
expect (browser.getCurrentUrl ()) .toMatch('/signup') ;

3N
3N

describe ('routing tests', function() {

var handleInput,

successMessage,
failureMessage;
function verifyInvalid() ({
expect (successMessage.isDisplayed()) .toBe (false) ;
expect (failureMessage.isDisplayed()) .toBe (true) ;
}
function verifyvalid()
expect (successMessage.isDisplayed()) .toBe (true) ;
expect (failureMessage.isDisplayed()) .toBe (false) ;

beforeEach (function()
browser.get ('/#/signup’') ;

var messages = element.all(by.css('h2'));
expect (messages.count ()) .toEqual (2) ;

successMessage = messages.get (0) ;

206

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

failureMessage = messages.get (1) ;
handleInput = element (by.model ('handle')) ;
expect (handleInput.getText ()) .toEqual('');
3]
it ('should display invalid handle on pageload', function() ({
verifyInvalid() ;

expect (failureMessage.getText ()) .
toEqual ('Sorry, that handle cannot be used.');

3N

it ('should display invalid handle for insufficient characters',
function()

// type to modify model and trigger Swatch expression
handleInput.sendKeys ('jake') ;

verifyInvalid() ;

3]
it ('should display invalid handle for a taken handle', function() ({

// type to modify model and trigger Swatch expression
handleInput.sendKeys ('jakehsu') ;

verifyInvalid() ;

3]
it ('should display valid handle for an untaken handle', function() ({

// type to modify model and trigger Swatch expression
handleInput.sendKeys ('jakehsul23"') ;

verifyValid() ;

3
3N

207

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

Protractor utilizes a Selenium server and WebDriver to fully render your application in the
browser and to simulate a user interacting with it. The end-to-end test suite provides faculties
for you to simulate native browser events in the context of an actual running instance of your
application. The end-to-end tests verify correctness not by the JavaScript object state of the
application, but rather by inspecting the state of either the browser or the DOM.

Since end-to-end tests are interacting with an actual browser instance, they must be able

to manage asynchronicity and uncertainty during execution. To do this, each of the element
selectors and assertions in these end-to-end tests return promises. Protractor automatically
waits for each promise to get completed before continuing to the next test statement.

There's more...

AngularJS provides the ngMockE2E module, which allows you to mock a backend server.
Incorporating the module gives you the ability to prevent the application from making actual
requests to a server, and instead simulates request handling in a fashion similar to that

of the unit tests. However, incorporating this module into your application is actually not
recommended in many cases, for the following reasons:

» Currently, integrating ngMockE2E correctly into your end-to-end test runner involves a
lot of red tape and can cause problems involving synchronization with Protractor.

» Mocking out the spectrum of end-to-end backend server responses in the ngMock
syntax can become very tedious and verbose, as larger applications will demand
more complexity in the mock server's response logic.

» Mocking out the backend endpoints for end-to-end tests defeats much of the
purpose of the tests in the first place. The end-to-end tests you write are intended to
simulate all components of the application that bind and perform together properly
in the context of the user interface. Creating fake responses from the server might
ameliorate edge cases that involve backend communication that would otherwise be
caught by tests that send requests to a real server.

Therefore, it is encouraged to structure your end-to-end tests in order to send requests
to a legitimate backend in order to effectively and more realistically simulate client-server
HTTP conversations.

See also

» The Setting up a simple mock backend server recipe demonstrates a clever method
that will allow you to iterate quickly with your test suite and application

208

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

» The Writing DAMP tests recipe demonstrates even more best practices for writing
AngularJS tests effectively

» The Using the Page Object test pattern recipe demonstrates even more best practices
for writing AngularJS tests effectively

Setting up a simple mock backend server

It isn't hard to realize why having end-to-end tests that communicate with a real server

that returns mock responses can be useful. Outside of the testing complexity that involves
the business logic your application uses to handle the data returned from the server, the
spectrum of possible outcomes when relying upon HTTP communication (timeouts, server
errors, and more) should be included in a robust end-to-end test suite. It's no stretch of

the imagination then that a superb way of testing these corner cases is to actually create a
mock server that your application can hit. You can then configure the mock server to support
different endpoints that will have predetermined behavior, such as failing, slow response
times, and different response data payloads to name a few.

You are fully able to have your end-to-end tests communicate with the APl as they normally
would, as the end-to-end test runner does not mock the backend server by default. If this

is suitable for your testing purposes, then setting up a mock backend server is probably
unnecessary. However, if you wish for your tests to cover operations that are not idempotent
or will irreversibly change the state of the backend server, then setting up a mock server
makes a good deal of sense.

How to do it...

Selecting a mock server style has essentially no limitations as the only requirement is for it
to allow you to manually configure responses upon expected HTTP requests. As you might
imagine, this can get as simple or as complex as you want, but the nature of end-to-end
testing tends to lead to frequent overhaul and repair of large pieces of the mock HTTP
endpoints if they try and replicate large amounts of the production application logic.

If you are able to (and in most cases, you absolutely should be able to design or refactor
your tests in such a way) have your end-to-end tests perform more concise application user
flows and mock out the API that it communicates with as simply as possible, you should do
it—usually, this mostly means hardcoding the responses. Enter the file-based API server!

(httpMockBackend. js)

// Define some initial variables.

var applicationRoot = _ dirname.replace(/\\/g,'/")
, lpaddress = process.env.OPENSHIFT NODEJS IP || '127.0.0.1"
, port = process.env.OPENSHIFT NODEJS PORT || 5001

, mockRoot = applicationRoot + '/test/mocks/api'

209

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

, mockFilePattern '.json'

, mockRootPattern = mockRoot + '/**/*' 4 mockFilePattern
, apiRoot = '/api'

, £fs = require("fs")

, glob = require("glob") ;

// Create Express application
var express = require ('express');
var app = express();

// Read the directory tree according to the pattern specified above.
var files = glob.sync (mockRootPattern) ;

// Register mappings for each file found in the directory tree.
if(files && files.length > 0) {
files.forEach (function (filePath) ({

var mapping = apiRoot + filePath.replace (mockRoot, '').
replace (mockFilePattern, '')

, fileName = filePath.replace(/".*[\\\/1/, '");

// set CORS headers so this can be used with local AJAX
app.all('*', function(req, res, next) {
res.header ("Access-Control-Allow-Origin", "*");
res.header (
'Access-Control-Allow-Headers',
'X-Requested-With'
)
next () ;

3N

// any HTTP verbs you might need
[/"GET/, /*“POST/, /"PUT/, /"PATCH/, /"DELETE/].forEach (
function (httpVerbRegex) {

// perform the initial regex of the HTTP verb
// against the filename
var match = fileName.match (httpVerbRegex) ;

if (match != null) {
// remove the HTTP verb prefix from the filename

mapping = mapping.replace(match[0] + ' ', "');

// create the endpoint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

app [match[0] . toLowerCase ()] (mapping, function (req,res) {

// handle the request by responding
// with the JSON contents of the file

var data = fs.readFileSync(filePath, 'utf8');
res.writeHead (200,
'Content-Type': 'application/json'

3N
res.write (data) ;
res.end() ;

console.log('Registered mapping: %s -> %s', mapping,
filePath) ;
1)
} else {

console.log('No mappings found! Please check the
configuration.') ;

// Start the API mock server.

console.log('Application root directory: [' + applicationRoot
+'11);

console.log('Mock Api Server listening: [http://' + ipaddress +
':' + port + '1');

app.listen(port, ipaddress);

This is a simple node program that can be run using the following command:
$ node httpMockServer.js
This Node.js program is dependent on several npm packages,

which can be installed using the npm install glob fs
’ express command.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

This simple express. js server conveniently matches the incoming request URLs to the
corresponding JSON file in the test /mocks/api/ child directory, and it matches the HTTP
verb of the request to the file prefixed with that verb. So, a GET request to localhost:5001/
api/user will return the JSON contents of /test/mocks/api/GET user.json, a PATCH
request to localhost :5001/api/user/1 will return the JSON contents of /test /mocks/
api/user/PATCH 1.json, and so on. Since files are automatically discovered and added
to the express routing, this allows you to easily simulate a backend server with very different
request types, quickly.

There's more...

This setup is obviously extremely limited in a number of ways, including conditional request
handling and authentication, to name a few. This is not intended as a full replacement for a
backend by any means, but if you are trying to quickly build a test suite or build a piece of
your application that sits atop an HTTP API, you will find this tool very useful.

See also

» The Writing E2E tests recipe demonstrates the core strategies that should be
incorporated into your end-to-end test suite

Writing DAMP tests

Any seasoned developer will almost certainly be familiar with the Don't Repeat Yourself
(DRY) programming principle. When architecting production applications, the DRY principle
promotes improved code maintainability by ensuring that there is no logic duplication (or as
little as feasibly possible) in order to allow efficient system additions and modifications.

Descriptive And Meaningful Phrases (DAMP) on the other hand promotes improved code
readability by ensuring that there is not too much abstraction to cause the code to be difficult
to understand, even if it is at the expense of introducing redundancy. Jasmine encourages
this by providing a Domain Specific Language (DSL) syntax, which approximates how humans
would linguistically declare and reason about how the program should work.

212

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

How to do it...

The following tests are a sample of unit tests from the Writing basic unit tests recipe,
presented here unchanged:

it ('should display invalid handle for insufficient characters',
function()

// type to modify model and trigger Swatch expression
handleInput.sendKeys ('jake') ;

verifyInvalid() ;

3]
it ('should display invalid handle for a taken handle', function() ({

// type to modify model and trigger Swatch expression
handleInput.sendKeys ('jakehsu') ;

verifyInvalid() ;

3]

As is, this would be considered a set of DAMP tests. A developer running these tests would
have little trouble quickly piecing together what is supposed to happen, where in the code
it's happening, and why the tests might be failing.

However, a DRY-minded developer would examine these tests, identify the redundancy
between them, and refactor them into something like the following:

it ('should reject invalid handles', function|() {
// type to modify model and trigger Swatch expression
['jake', 'jakehsu'].forEach (function (handle) {
handleInput.clear() ;
handleInput.sendKeys (handle) ;
verifyInvalid() ;
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

This code is definitely more in line with the DRY principle than the previous one, and the

tests will still pass and still test the proper behavior, but there is already a measurable loss of
information that hurts the quality of the tests. The initial version of the unit tests presented

two test cases that were both supposed to be marked as invalid, but for different reasons—one
because of a minimum handle length, one because the request to the mock server reveals that
the handle is already taken. If one of those tests were to fail, the developer running them would
be directed to the exact test case that was failing, would have good insight into which aspect

of the validation was failing, and would be able to quickly act accordingly. In the DRY version of
the unit tests, the developer running them would see a failed test, but since the two unit tests
were condensed, it isn't immediately obvious which one of them is causing the failure or why it
is failing. In this scenario, the DAMP tests are more conducive to rapidly locate and repair bugs
that might crop up in the application.

There's more...

The example in this recipe is a relatively simple one, but it demonstrates the fundamental
difference between the DAMP and DRY practices. In general, the rule of thumb is for
production code to be as DRY as possible, and for test suites to be as DAMP as possible.
Production code should be optimized for maintainability, and tests for understandability.

Perhaps counterintuitively, the DAMP principle is not necessarily mutually exclusive with the
DRY principle—they are merely suited for different purposes. Unit and end-to-end tests should
be DRYed wherever it will make the code more maintainable as long as it doesn't hurt the
readability of the tests. Generally, this will fall under the setup and teardown routines for
tests—use the DRY principle for these routines as much as possible, since they infrequently
contain information or procedures that are relevant to the application component(s) that the
test is covering. Authentication and navigation are both good examples of test setup/teardown
that respond well to DRY refactoring.

» The Writing basic E2E tests recipe demonstrates the core strategies that should be
incorporated into your end-to-end test suite

» The Using the Page Object test pattern recipe demonstrates even more best practices
for writing AngularJS tests effectively

Using the Page Object test pattern

Creating and maintaining a test suite for an application is a considerable amount of overhead,
and a prudent developer will mold a test suite such that the normal evolution of a software
application will not force developers to spend an unduly long amount of time to maintain the
test code.

214

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

A surprisingly sensible design pattern called the Page Object pattern encapsulates segments
of the page-specific user experience and abstracts it away from the logic of the actual tests.

How to do it...

The test/e2e/signup flow test.js file presented in the Writing basic E2E tests recipe
can be refactored into the following files using the Page Object pattern.

The test/pages/main. js file can be refactored as follows:

(test/pages/main.js)

var MainPage = function () {
// direct the browser when the page object is initialized
browser.get ('/');

Vi

MainPage.prototype = Object.create ({},
{

// getter for element in page
signupLink: {

get: function() {

return element (by.css('a'));

}

}

}
)i

module.exports = MainPage;

The test/pages/signup. js file can be refactored as follows:

(test/pages/signup.js)

var SignupPage = function () ({
// direct the browser when the page object is initialized
browser.get (' /#/signup') ;

Vi

SignupPage.prototype = Object.create ({},
{
// getters for elements in the page
messages: {
get: function() {
return element.all(by.css('h2'));

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

}
b
successMessage: {
get: function() {
return this.messages.get (0) ;

}
b
failureMessage:
get: function() {
return this.messages.get (1) ;

}
I
handleInput:
get: function() {
return element (by.model ('handle')) ;

}
b
// getters for page validation
successMessageVisibility: {
get: function() {
return this.successMessage.isDisplayed() ;
}
b
failureMessageVisibility:
get: function() {
return this.failureMessage.isDisplayed() ;
}
b
// interface for page element
typeHandle: {
value: function(handle)
this.handleInput.sendKeys (handle) ;

!
)i

module.exports = SignupPage;
The test/e2e/signup flow test.js file can be refactored as follows:

(test/e2e/signup flow test.js)

var SignupPage = require('../pages/signup.js')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

, MainPage = require('../pages/main.js');
describe ('signup flow tests', function() {
var page;

beforeEach (function () {
// initialize the page object
page = new MainPage () ;

1)

it ('should link to /signup if not already there', function() ({

// check that the correct <a> is selected

// by matching contained text

// expect (link.getText ()).toEqual ('Go to signup page') ;

expect (page.signupLink.getText ()) .toEqual ('Go to signup page') ;

// direct browser to nonsense url
browser.get ('/#/hooplah') ;

// simulated click
page.signupLink.click() ;

// protractor waits for the page to render,
// then checks the url

expect (browser.getCurrentUrl ()) .toMatch('/signup') ;
1)
1)
describe ('routing tests', function() {
var page;
function verifyInvalid()

expect (page.successMessageVisibility) .toBe (false) ;
expect (page.failureMessageVisibility) .toBe (true) ;

function verifyvalid()
expect (page.successMessageVisibility) .toBe (true) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Testing in AngularJS

expect (page.failureMessageVisibility) .toBe (false) ;

beforeEach (function () {

// initialize the page object
page = new SignupPage () ;

// check that there are two messages on the page
expect (page.messages.count ()) . toEqual (2) ;

// check that the handle input text is empty
expect (page.handleInput.getText ()) .toEqual ('') ;

1)
it ('should display invalid handle on pageload', function() ({

// check that initial page state is invalid
verifyInvalid() ;

expect (page.failureMessage.getText ()) .
toEqual ('Sorry, that handle cannot be used.');

3N

it ('should display invalid handle for insufficient characters',
function()

// type to modify model and trigger Swatch expression
page.typeHandle ('jake') ;

verifyInvalid() ;

3]

it ('should display invalid handle for a taken handle', function() ({

// type to modify model and trigger Swatch expression
page.typeHandle ('jakehsu') ;

verifyInvalid() ;

3]

it ('should display valid handle for an untaken handle', function() ({

// type to modify model and trigger Swatch expression

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

page.typeHandle ('jakehsul23"') ;

verifyvValid() ;
)
)

It should be immediately obvious as to why this test pattern is desirable. Looking through the
actual tests, you now do not need to know any information about the specifics of the page
contents to understand how the test is manipulating the application.

The page objects take advantage of the second and optional objectProperties argument
of Object.create () to build a very pleasant interface to the page. By using these page
objects, you are able to avoid all of the nastiness of creating a sea of local variables to store
references to the pieces of the page. They also offer a great deal of flexibility in terms of
where the bulk of your test logic lies. These tests could potentially be refactored even more
to move the validation logic into the page objects. Decisions like these are ultimately up to
the developer, and it boils down to their preference in terms of how dense the page objects
should be.

There's more...

In this example, the page object getter interface is especially useful since the nature of
end-to-end tests implies that you will need to evaluate the page state at several checkpoints
in the lifetime of the test, and a defined getter that performs this evaluation while appearing
as a page object property yields an extremely clean test syntax.

Also note the multiple layers of indirection within the SignupPage object. Layering in
this fashion is absolutely to your advantage, and the page object is a prime place in your
end-to-end tests where it really does pay to be DRY. Repetitious location of elements on
the page is not the place for verbosity!

See also

» The Writing basic E2E tests recipe demonstrates the core strategies that should be
incorporated into your end-to-end test suite

» The Writing DAMP tests recipe demonstrates even more best practices for writing
AngularJS tests effectively

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast
AngularJdS

In this chapter, we will cover the following recipes:

» Recognizing AngularJS landmines

» Creating a universal watch callback

» Inspecting your application's watchers

» Deploying and managing $watch types efficiently

» Optimizing the application using reference swatch

» Optimizing the application using equality $watch

» Optimizing the application using $watchCollection
» Optimizing the application using $watch deregistration
» Optimizing template-binding watch expressions

» Optimizing the application with the compile phase in ng-repeat
» Optimizing the application using track by in ng-repeat

» Trimming down watched models

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast AngularJS

Introduction

As with most technologies, in AngularJS, the devil is in the details.

In general, the lion's share of encounters with Angular]S's sluggishness is a result of overloading
the application's data-binding bandwidth. Doing so is quite easy, and a normative production
application contains a substantial amount of data binding, which makes architecting a snappy
application all the more difficult. Thankfully, for all the difficulties and snags that one can
encounter involving scaled data binding, the use of regimented best practices and gaining an
appreciation of the underlying framework structure will allow you to effectively circumnavigate
performance pitfalls.

Recognizing AngularJS landmines

Implementation of configurations and combinations that lead to severe performance
degradation is often difficult to pinpoint as the contributing components by themselves
often appear to be totally innocuous.

How to do it...

The following scenarios are just a handful of the commonly encountered scenarios that
degrade the application's performance and responsiveness.

Expensive filters in ng-repeat

Filters will be executed every single time the enumerable collection detects a change,
as shown here:

<div ng-repeat="val in values | filter:slowFilter"s</divs>
Building and using filters that require a great deal of processing is not advisable as you must

assume that filters will be called a huge number of times throughout the life of the application.

Deep watching a large object

You might find it tempting to create a scope watcher that evaluates the entirety of a model
object; this is accomplished by passing in true as the final argument, as shown here:

$scope.$watch(giganticObject, function() { ... }, true);

This is a poor design decision as Angular)S needs to be able to determine whether or not the
object has changed between $digest cycles, which of course means storing a history of the
object's exact value, as well as exhaustively comparing it each time.

222

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Using $watchCollection when the index of change is needed

Although it is extremely convenient in a number of scenarios, $watchCollection can trap
you if you try to locate the index of change within it. Consider the following code:

Sscope.SwatchCollection (giganticArray, function(newVal, oldval, scope)

{

var count = 0;

// iterate through newVal array

angular.forEach (newVal, function(oldval) {
// if the array snapshot index doesn't match,
// this implies a change in model value
if (newVal [count] !== oldVval [count]) {

// logic for matched object delta

}
count++;

I

I

In every sdigest cycle, the watcher will iterate through each watched array in order to find
the index/indices that have changed. Since this watcher is expected to be invoked quite often,
this approach has the potential to introduce performance-related problems as the watched
collection grows.

Keeping template watchers under control

Each bound expression in a template will register its own watch list entry in order to keep the
data fully bound to the view. Suppose that you were working with data in a 2D grid, as follows:

<div ng-repeat="row in rows">
<div ng-repeat="val in row">
{{ val }}
</divs>
</divs>

Assuming that rows is an array of arrays, this template fragment creates a watcher for every
individual element in the 2D array. Since watch lists are processed linearly, this approach
obviously has the potential to severely degrade the application's performance.

There's more...

These are only a handful of scenarios that can cause problems for your application. There
is a virtually unlimited number of possible configurations that can cause an unexpected
slowdown in your application, but being vigilant and watching out for common performance
anti-patterns will ameliorate much of the headache that comes along with debugging the
slowness of an application.

223

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast AngularJS

See also

» The Creating a universal watch callback recipe provides the details of how to keep
track of how often your application's watchers are being invoked

» The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application in order to find where your watchers are concentrated

» The Deploying and managing $watch types efficiently recipe describes the methods
for keeping your application's watch bloat under control

Creating a universal watch callback

Since a multiplicity of AngularJS watchers is so commonly the root cause of performance
problems, it is quite valuable to be able to monitor your application's watch list and activity.
Few beginner level Angular]S developers realize just how often the framework is doing

the dirty checking for them, and having a tool that gives them direct insight into when the
framework is spending time to perform model history comparisons can be extremely useful.

How to do it...

The $scope. $watch (), $Sscope. SwatchGroup (), and $scope. SwatchCollection ()
methods are normally keyed with a stringified object path, which becomes the target of the
change listener. However, if you wish to register a callback for any watch callback irrespective
of the change listener target, you can decline to provide a change listener target, as follows:

// invoked once every time S$scope.foo is modified
Sscope.$watch('foo!', function(newVal, oldval, scope) {
// newvVal is the current value of $scope.foo
// oldval is the previous value of $scope.foo
// scope === $scope

1)

// invoked once every time S$scope.bar is modified
Sscope.$watch('bar', function(newVal, oldval, scope) {
// newvVal is the current value of S$scope.bar
// oldval is the previous value of $scope.bar
// scope === $scope

1) s

// invoked once every $digest cycle
$scope.$watch (function (scope) {

// scope === $scope
R

224

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[Q JSFiddle: http://jsfiddle.net/msfrisbie/r36akémy/]

There's no trickery here; the universal watcher is a feature that is explicitly provided by
AngularJS. Although it invokes Swatch () on a scope object, the callback will be executed
for every model's modification, independent of the scope upon which it is defined.

Although the watch callback will occur for model modifications anywhere, the lone scope
parameter for the callback will always be the scope upon which the watcher was defined,
not the scope in which the modification occurred.

Since using a universal watcher attaches additional logic to

every $Sdigest cycle, it will severely degrade the application's

performance and should only be used for debugging purposes.

» The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application in order to find where your watchers are concentrated

» The Deploying and managing $watch types efficiently recipe describes the methods
to keep your application's watch bloat under control

Inspecting your application's watchers

The Batarang browser plugin allows you to inspect the application's watch tree, but there are
many scenarios where dynamically inspecting the watch list within the console or application
code can be more helpful when debugging or making design decisions.

How to do it...

The following function can be used to inspect all or part of the DOM for watchers. It accepts
an optional DOM element as an argument.

var getWatchers = function (element) ({
// convert to a jgLite/jQuery element
// angular.element is idempotent

225

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/r36ak6my/
http://www.it-ebooks.info/

Screaming Fast AngularJS

var el = angular.element (
// defaults to the body element
element || document.getElementsByTagName ('body')
)
// extract the DOM element data
, elData = el.data()
// initalize returned watchers array
, watchers = [];

// AngularJdS lists watches in 3 categories
// each contains an independent watch list
angular.forEach ([
// general inherited scope
elData.$scope,
// isolate scope attached to templated directive
elData.$isolateScope,
// isolate scope attached to templateless directive
elData.$isolateScopeNoTemplate
1,
function (scope) ({
// each element may not have a scope class attached
if (scope) {
// attach the watch list
watchers = watchers.concat (scope.S$$watchers || [1);

!
)i

// recurse through DOM tree

angular.forEach(el.children(), function (childgl) {
watchers = watchers.concat (getWatchers (childEgl)) ;

3N

return watchers;

C:l JSFiddle: http://jsfiddle.net/msfrisbie/d58g77ml/

226

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/d58g77m1/
http://www.it-ebooks.info/

Chapter 7

With this, you are able to call the function with a DOM node and ascertain which watchers
exist inside it, as follows:

// all watchers in the document
getWatchers (document) ;

// all watchers in the signup form with a selector
getWatchers (document .getElementById ('signup-form')) ;

// all watchers in <div class="container"></divs>
getWatchers ($('div.container')) ;

It is possible to access a DOM element's $scope object (without injecting it) through the
jQuery/jgLite element object's data () method. The $scope object has a $$watchers
property that lists how many watchers are actively defined upon that $scope object.

The preceding function exhaustively recurses through the DOM tree and inspects each node
in order to determine whether it has a scope attached to it. If it does, any watchers defined on
that scope are read and entered into the master watch list.

This is only a single, general implementation of watcher inspection. Since watchers are
localized to a single scope, it might behoove you to utilize components of this function
in order to inspect single scope instances instead of the child DOM subtree.

See also

» The Recognizing AngularJS landmines recipe demonstrates common
performance-leeching scenarios

» The Creating a universal watch callback recipe provides the details of how to keep
track of how often your application's watchers are being invoked

» The Deploying and managing $watch types efficiently recipe describes the methods
for keeping your application's watch bloat under control

227

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast AngularJS

Deploying and managing $watch types

efficiently

The beast behind AngularJS's data binding is its dirty checking and the overhead that
comes along with it. As you tease apart your application's innards, you will find that even
the most elegantly architected applications incur a substantial amount of dirty checking.
This, of course, is normal, and the framework is architected as to be able to handle the
hugely variable loads of dirty checking that different sorts of applications might throw at it.
Nevertheless, the nature of object comparison performance at scale (hint—it is slow) requires
that dirty checking is minimally deployed, efficiently organized, and appropriately targeted.
Even with the rigorous engineering and optimization behind AngularJS's dirty checking, it
remains the case that it is still deceptively easy to bog down an application's performance
with superfluous data comparison. In the same way that a single uncooperative person
backpaddling in a canoe can bring a vessel to a halt, a single careless watch statement can
bring an AngularJS application's responsiveness to its knees.

How to do it...

Strategies to deploy watchers efficiently can be summed up as follows.

Watch as little of the model as possible

Watchers check the portion of the model they are bound to extremely frequently. If a
change in a piece of the model does not affect what the watch callback does, then the
watcher shouldn't need to worry about it.

Keep watch expressions as lightweight as possible

The watch expression $scope. $watch ('myWatchExpression', function() {});
will be evaluated in every digest cycle in order to determine the output. You'll be able to put
expressions such as 3 + 6 or myFunc () as the expression, but these will be evaluated

in every single digest cycle in an effort to obtain a fresh return value in order to compare

it against the last recorded return value. Very rarely is this necessary, so stick to binding
watchers to model properties.

Use the fewest number of watchers possible

It stands to reason that, as the entire watch list must be evaluated in every $digest cycle,
fewer watchers in that list will yield a speedier $digest cycle.

Keep the watch callbacks small and light

The watch callbacks get called as often as the watch expression changes, which can be quite
a lot depending on the application. As a result, it is unwise to keep high-latency calculations or
requests in the callback.

228

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Create DRY watchers

Though unrelated to performance, maintaining huge groups of watchers can become
extremely tedious. The $SwatchCollection and sSwatchGroup utilities provided by
AngularJS greatly assist in watcher consolidation.

» The Recognizing AngularJS landmines recipe demonstrates common
performance-leeching scenarios

» The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

» The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

» The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

» The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

» The Optimizing template-binding watch expressions recipe explains how AngularJS
manages your implicitly-created watchers for template data binding

Optimizing the application using reference

Swatch

Reference watches register a listener that uses strict equality (===) as the comparator,
which verifies the congruent object identity or primitive equality. The implication of this

is that a change will only be registered if the model the watcher is listening to is assigned
to a new object.

How to do it...

The reference watcher should be used when the object's properties are unimportant. It is the
most efficient of the $watch types as it only demands top-level object comparison.

The watcher can be created as follows:

$scope.myObj = {
myPrim: 'Go Bears!',
myArr: [3,1,4,1,5,9]

}i
// watch myObj by reference

229

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast AngularJS

$scope.$watch ('myObj', function(newVal, oldval, scope) ({
// callback logic

1)

// watch only the myPrim property of myObj by reference
$scope.$watch ('myObj.myPrim', function(newVal, oldval, scope) {
// callback logic

3N

// watch only the second element of myObj.myArr by reference
$scope.$watch ('myObj.myArr[1]', function(newVal, oldval, scope) ({
// callback logic

1) s

M An observant reader will note that some of these examples are
Q technically redundant in what they demonstrate; this will be
explained further in the How it works... section.

The reference comparator will only invoke the watch callback upon object reassignment.
Suppose that a $scope object was initialized as follows:

$scope.myObj = {
myPrim: 'Go Bears!'
Vi

$scope.myArr = [3,1,4,1,5,9];

// watch myObj by reference

$scope.$watch('myObj', function() {
// callback logic

I3

// watch myArr by reference

$scope.$watch('myArr', function() {
// callback logic

I3F;

Any assignment of the watched object to a different primitive or object will register as dirty.
The following examples will cause a callback to execute:

$scope.myArr = [];
$scope .myObj
$scope .myObj

1]
[y

1]
—_
— =

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Beneath the top-level reference watching, any changes that affect the inside of the object will
not register as changes. This includes modification, creation, and deletion. The following will
not cause the callback to execute:

// replace existing property
$scope.myObj.myPrim = 'Go Giants!';

// add new property
$scope.myObj .newProp = {};

// push onto array
$scope.myArr.push(2) ;

// modify element of array
$Sscope.myArr [0] = 6;

// delete property
delete myObj.myPrim;

[Q JSFiddle: http://jsfiddle.net/msfrisbie/h7hvbfkg/]

The long and short of it is that reference watchers are the most efficient type of watchers,
so when you are looking to set up a watcher, reach for this one first.

» The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

» The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

» The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when no longer required

231

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/h7hvbfkg/
http://www.it-ebooks.info/

Screaming Fast AngularJS

Optimizing the application using equality

Swatch

Equality watches register a listener that uses angular.equals () asthe comparator,
which exhaustively examines the entirety of all objects to ensure that their respective
object hierarchies are identical. Both a new object assignment and property modification
will register as a change and invoke the watch callback.

This watcher should be used when any modification to an object is considered as a change
event, such as a user object having its properties at various depths modified.

How to do it...

The equality comparator is used when the optional Boolean third argument is set to true.
Other than that, these watchers are syntactically identical to reference comparator watchers,
as shown here:

$scope.myObj = {
myPrim: 'Go Bears!',
myArr: [3,1,4,1,5,9]

}i

// watch myObj by equality

$scope.$watch ('myObj', function(newVal, oldval, scope) ({
// callback logic

}, true);

The equality comparator will invoke the watch callback on every modification anywhere on or
inside the watched object.

Suppose that a $scope object is initialized as follows:

$scope.myObj = {
myPrim: 'Go Bears!'
Vi

$scope.myArr = [3,1,4,1,5,9];

// watch myObj by equality

$scope.$watch ('myObj', function()
// callback logic

}, true);

// watch myArr by equality

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

$scope.$watch ('myArr', function()
// callback logic
}, true);

All of the following examples will cause a callback to be executed:

$scope.myArr = [];

$Sscope.myObj = 1;

$scope.myObj = {};
$scope.myObj.myPrim = 'Go Giants!';
$scope.myObj.newProp = {};
$scope.myArr.push(2) ;
$scope.myArr [0] = 6;

delete myObj.myPrim;

[Q JSFiddle: http://jsfiddle.net/msfrisbie/w24mrkfm/]

Since a watcher must store the past version of the watched object to compare against it
and perform the actual comparison, equality watchers utilize both the angular.copy ()
method to store the object and the angular.equals () method to test the equality. For
large objects, it is not difficult to discern that these operations will introduce latency into the
application. Equality comparator watchers should not be used unless absolutely necessary.

See also

» The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

» The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

» The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

233

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/w24mrkfm/
http://www.it-ebooks.info/

Screaming Fast AngularJS

Optimizing the application using

$watchCollection

AngularJS offers the SwatchCollection intermediate watch type to register a listener that
utilizes a shallow watch depth for comparison. The $watchCollection type will register

a change event when any of the object's properties are modified, but it is unconcerned with
what those properties refer to.

How to do it...

This watcher is best used with arrays or flat objects that undergo frequent top-level property
modifications or reassignments. Currently, it does not provide the modified property(s)
responsible for the callback, only the entire objects, so the callback is responsible for
determining which properties or indices are incongruent. This can be done as follows:

$scope.myObj = {
myPrimitive: 'Go Bears!',
myArray: [3,1,4,1,5,9]

}i

// watch myObj and all top-level properties by reference
$scope.$watchCollection ('myObj', function(newVal, oldval, scope) ({
// callback logic

3N

// watch myObj.myArr and all its elements by reference
$Sscope.$watchCollection ('myObj.myArr', function(newVal, oldval, scope)

{

// callback logic

3N

The swatchCollection utility will set up reference watchers on the model object and all
its existing properties. This will invoke the watch callback upon object reassignment or upon
top-level property reassignment.

Suppose that a $scope object is initialized as follows:

$scope.myObj = {
myPrim: 'Go Bears!',
innerObj:
innerProp: 'Go Bulls!'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

}i

$scope.myArr = [3,1,4,1,5,9];

// watch myObj as a collection

$scope.$watchCollection ('myObj', function()
// callback logic

1)

// watch myArr as a collection

$scope.$watchCollection ('myArr', function()

// callback logic

1) i
The following examples will cause a callback to be executed:

// object reassignment
$scope.myArr = [];
$Sscope.myObj = 1;
$scope.myObj = {};

// top-level property reassignment
$scope.myObj.myPrim = 'Go Giants!';

// array element reassignment
$scope.myArr [0] = 6;

// deletion of top level property
delete myObj.myPrim;

The following will not cause the callback to be executed:

// add new property
$scope.myObj.newProp = {};

// push new element onto array
$scope.myArr.push(2) ;

// modify, create, or delete nested property
$scope.myObj.innerObj.innerProp = 'Go Blackhawks!';
$scope.myObj.innerObj.otherProp = 'Go Sox!';

delete $scope.myObj.innerObj.innerProp;

C:l JSFiddle: http://jsfiddle.net/msfrisbie/jnLl2sck/

235

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/jnL12sck/
http://www.it-ebooks.info/

Screaming Fast AngularJS

There's more...

The name SwatchCollection is a bit deceptive (depending on how you think about
enumerable collections in JavaScript) as it might not perform how you would expect—
especially since it doesn't watch for elements that are being added to the collection. Since
explicitly-defined properties and array indices are effectively identical at the object property
level, SwatchCollection is really more of a single-depth reference watcher.

See also

» The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

» The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

» The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

» The Optimizing the application using $watch deregistration recipe shows how your
application can evict watch list entries when they are no longer required

Optimizing the application using $watch

deregistration

Nothing boosts watcher performance quite like destroying the watcher altogether. Should you
encounter a scenario where you no longer have a need to watch a model component, invoking
watch creation returns a deregistration function that will unbind that watcher when called.

How to do it...

When a watcher is initialized, it will return its deregistration function. You must store this
deregistration function until it needs to be invoked. This can be done as follows:

$scope.myObj = {}

// watch myObj by reference

var deregister = $scope.S$watch('myObj', function(newvVal, oldval,
scope) {
// callback logic

3N

// prevent additional modifications from invoking the callback
deregister () ;

236

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[Q JSFiddle: http://jsfiddle.net/msfrisbie/yLhwifvwL/]

The sSwatch destruction will normally be needed when a change in application state causes a
watch to no longer be useful while the scope that it is defined inside still exists. When a scope
is destroyed—either manually or automatically—the watchers defined upon it will be flagged as
eligible for garbage collection, and therefore, manual teardown is not required.

However, this is contingent upon the scope on which the watcher is destroyed. If your
application has watchers defined on a parent scope or $rootScope, they will not be
flagged for garbage collection and must be destroyed manually upon scope destruction
(usually accomplished with $scope. $on ('$destroy', function() {})), or else your
application is subject to potential memory leaks in the form of orphaned watchers.

» The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

» The Optimizing the application using reference $watch recipe demonstrates how to
effectively deploy the basic watch type

» The Optimizing the application using equality $watch recipe demonstrates how to
effectively deploy the deep watch type

» The Optimizing the application using $watchCollection recipe demonstrates how to
utilize the intermediate depth watcher in your application

Optimizing template-binding watch

expressions

Any Angular)S template expression inside double braces ({{ }}) will register an equality
watcher using the enclosed Angular]S expression upon compilation.

How to do it...

Curly braces are easily recognized as the AngularJS syntax for template data binding. The
following is an example:

<div ng-show="{{myFunc() }}">

{{ myobj }}
</div>

237

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/yLhwfvwL/
http://www.it-ebooks.info/

Screaming Fast AngularJS

On a high level, even to a beginner level Angular]S developer, this is painfully obvious.

Interpolating the two preceding expressions into the view implicitly creates two watchers for
each of these expressions. The corresponding watchers will be approximately equivalent to
the following;:

$scope.$watch('myFunc() ', function() { ... }, true);
$scope.$watch('myObj', function() { ... }, true);

The AngularJS expression contained within {{ }} in the template will be the exact entry
registered in the watch list. Any method or logic within that expression will necessarily be
evaluated for its return value every time dirty checking is performed. An observant developer
will note that any logic contained in myFunc () will be evaluated on every single digest

cycle, which can degrade the performance extremely rapidly. Therefore, it will benefit your
application greatly to have the value of the watch entry calculable as quickly as possible. An
easy way to accomplish this is to not provide methods or logic as expressions at all, but to
calculate the output of the method and store it in a model property, which can then be passed
to the template.

Template watch entries have setup and teardown processes automatically taken care of for
you. You must be careful though, as using {{ }} in your template will sneakily cause your

watch count to balloon. Angular)S 1.3 introduces bind once capabilities, which allow you to
interpolate model data into the view upon compilation, but not to bring along the overhead

of data binding, if it will not be necessary.

See also

» The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application to find where your watchers are concentrated

» The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

» The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

» The Optimizing the application using track by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

» The Trimming down watched models recipe provides the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

238

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Optimizing the application with the compile

phase in ng-repeat

An extremely common pattern in an Angular]S application is to have an ng-repeat

directive instance spit out a list of child directives corresponding to an enumerable collection.
This pattern can obviously lead to performance problems at scale, especially as directive
complexity increases. One of the best ways to curb directive processing bloat is to eliminate
any processing redundancy by migrating it to the compile phase.

Getting ready

Suppose that your application contains the following pseudo-setup. This is what we need for
the next section:

(index.html)

<div ng-repeat="element in largeCollection"s

</div>

(app.Jjs)

angular.module ('myApp', [1)

.directive ('myDirective', function () {
return {

link: function(scope, el, attrs) {
// general directive logic and initialization
// instance-specific logic and initialization

3N

How to do it...

A clever developer will note that since a directive's 1ink function executes once for each
instance of the directive in the repeater, the current implementation is wasting time performing
the same actions for each instance.

Since the compile phase will only occur once for all directives inside an ng-repeat directive,
it makes sense to perform all generalized logic and initialization within that phase, and share
the results with the returned 1ink function. This can be done as follows:

(app.Js)
angular.module ('myApp', [1)
.directive ('myDirective', function () {

239

www.it-ebooks.info

http://www.it-ebooks.info/

Screaming Fast AngularJS

return {
compile: function(el, attrs) {
// general directive logic and initialization
return function link(scope, el, attrs) {
// instance-specific logic and initialization
// link function closure can access compile vars

[Q JSFiddle: http://jsfiddle.net/msfrisbie/mopuxnsgh/]

The ng-repeat directive will implicitly reuse the same compile function for all the directive
instances it creates. Therefore, it's a no-brainer that any redundant processing done inside
1link functions should be moved to the compile function as far as possible.

This is by no means a fix all for the sluggishness of ng-repeat, as high latency can stem
from a large number of common problems when iterating through huge amounts of bound
data. However, using the compile phase effectively is an often overlooked strategy that has
the potential to yield huge performance gains from a relatively simple refactoring.

Furthermore, even though this condenses logic into a single compile phase per ng-repeat,
the compile logic will still get executed once for every instance of the directive in the template.
If you truly want the logic to only get executed once for the entire application, use the fact that
service types are singletons to your advantage, and migrate the logic inside one of them.

» The Recognizing AngularJS landmines recipe demonstrates common
performance-leeching scenarios

» The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

» The Optimizing the application using track by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

» The Trimming down watched models recipe provides the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

240

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/mopuxn8h/
http://www.it-ebooks.info/

Chapter 7

Optimizing the application using track by in

ng-repeat

By default, ng-repeat creates a DOM node for each item in the collection and destroys
that DOM node when the item is removed. It is often the case that this is suboptimal for your
application's performance, as a constant stream of re-rendering a sizeable collection will
rarely be necessary at the repeater level and will tax your application's performance heavily.
The solution is to utilize the track by expression, which allows you to define how Angular]S
associates DOM nodes with the elements of the collection.

How to do it...

When track by $index is used as an addendum to the repeat expression, AngularJS will
reuse any existing DOM nodes instead of re-rendering them.

The original, suboptimal version is as follows:

<div ng-repeat="element in largeCollection"s
<!-- element repeater content --»>
</div>

The optimized version is as follows:

<div ng-repeat="element in largeCollection track by $index">
<!-- element repeater content --»>
</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/0dbj5rgt/]

By default, ng-repeat associates each collection element by reference to a DOM node.
Using the track by expression allows you to customize what that association is referencing
instead of the collection element itself. If the element is an object with a unique ID, that is
suitable. Otherwise, each repeated element is provided with $index on its scope, which can
be used to uniquely identify that element to the repeater. By doing this, the repeater will not
destroy the DOM node unless the index changes.

241

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/0dbj5rgt/
http://www.it-ebooks.info/

Screaming Fast AngularJS

See also

» The Recognizing AngularJS landmines recipe demonstrates common performance-
leeching scenarios

» The Inspecting your application's watchers recipe shows you how to inspect the
internals of your application to find where your watchers are concentrated

» The Deploying and managing $watch types efficiently recipe describes methods to
keep your application's watch bloat under control

» The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

» The Trimming down watched models recipe provide the details of how you can
consolidate deep-watched models to reduce comparison and copy latency

Trimming down watched models

The equality comparator watcher can be a fickle beast when tuning the application for better
performance. It's always best to avoid it when possible, but of course, that holds true until you
actually need to deep watch a collection of large objects. The overhead of watching a large
object is so cumbersome that sometimes distilling objects down to a subset for the purposes
of comparison can actually yield performance gains.

How to do it...

The following is the naive method of an exhaustive equality comparator watch:

$scope.$watch ('bigObjectArray', function()
// watch callback
}, true);

Instead of watching the entire object, it is possible to call map () on a collection of large
objects in order to extract only the components of the objects that actually need to be
watched. This can be done as follows:

Sscope. Swatch (
// function that returns object to be watched
function ($scope) {
// map the array to distill the relevant properties
// this return value is what will be compared against
return $scope.bigObjectArray.map (function (bigObject) {
// return only the property we want

242

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

)i

return bigObject.relevantProperty;
13N
}I
function (newvVal, oldval, scope) {
// watch callback
}I
// equality comparator
true

[Q JSFiddle: http://jsfiddle.net/msfrisbie/p45jb4dh/]

The Swatch expression can be passed anything that it can compare to a past value; it does
not have to be an AngularJS string expression. The outer function is evaluated for its return
value, which is used as the value to compare against. For each cycle, the dirty checking
mechanism will map the array, test it against the old value, and record the new value.

If the time it takes to copy and compare the entire object array is greater than the time it
takes to use map () on the array and compare the subsets, then using the watcher in this
way will yield a performance boost.

>

The Recognizing AngularJS landmines recipe demonstrates common
performance-leeching scenarios

The Deploying and managing $watch types efficiently recipe describes the methods
to keep your application's watch bloat under control

The Optimizing the application with the compile phase in ng-repeat recipe
demonstrates how to reduce redundant processing inside repeaters

The Optimizing the application using track-by in ng-repeat recipe demonstrates how
to configure your application to prevent unnecessary rendering inside a repeater

243

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/p45jb4dh/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

In this chapter, we will cover the following recipes:

» Understanding and implementing a basic promise
» Chaining promises and promise handlers

» Implementing promise notifications

» Implementing promise barriers with $g.all ()

» Creating promise wrappers with $q.when ()

» Using promises with shttp

» Using promises with Sresource

» Using promises with Restangular

» Incorporating promises into native route resolves

» Implementing nested ui-router resolves

Introduction

Angular]S promises are an odd and fascinating component of the framework. They are integral
to a large number of core components, and yet many references only mention them in passing.
They offer an extremely robust and advanced mechanism of application control, and as
application complexity begins to scale up, you as an Angular]S developer will find that promises
are nearly impossible to ignore. This, however, is a good thing; promises are extraordinarily
powerful, and they will make your life much simpler once they are fully understood.

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

Angular]S promises will soon be subjected to a good deal of modification
+ with the upcoming ES6 promise implementation. Currently, they are a bit of a
hybrid implementation, with the CommonJS promise proposal as the primary
’ influence. As ES6 becomes more widely disseminated, the AngularJS promise
implementation will begin to converge with that of native ES6 promises.

Understanding and implementing a basic

promise

Promises are absolutely essential to many of the core aspects of AngularJS. When learning
about promises for the first time, the formal terms can be an impediment to their complete
understanding as their literal definitions convey very little about how the actual promise
components act.

How to do it...

A promise implementation in one of its simplest forms is as follows:

// create deferred object through $gq api
var deferred = Sqg.defer();

// deferred objects are created with a promise attached
var promise = deferred.promise;

// define handlers to execute once promise state becomes definite
promise.then (function success(data) {

// deferred.resolve() handler

// in this implementation, data === 'resolved'
}, function error(data) {

// deferred.reject () handler

// in this implementation, data === 'rejected'

I3F;

// this function can be called anywhere to resolve the promise
function asyncResolve () {
deferred.resolve ('resolved!') ;

bi

// this function can be called anywhere to reject the promise
function asyncReject () {
deferred.reject ('rejected') ;

bi

246

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

To a person seeing promises for the first time, what makes them difficult to comprehend is
quite plain: much of what is going on here is not intuitive.

The promise ecosystem can be more readily decoded by gaining a better understanding of the
nomenclature behind it, and what problems it intends to solve.

Promises are by no means a new concept in AngularJS, or even in JavaScript; part of the
inspiration for $q was taken from Kris Kowal's Q library, and for a long time, jQuery has
had key promise concepts incorporated into many of its features.

Promises in JavaScript confer to the developer the ability to write asynchronous code in
parallel with synchronous code more easily. In JavaScript, this was formerly solved with
nested callbacks, colloquially referred to as callback hell. A single callback-oriented
function might be written as follows:

// a prototypical asynchronous callback function

function asyncFunction(data, successCallback, errorCallback) {
// this will perform some operation that may succeed,
// may fail, or may not return at all, any of which
// occurs in an unknown amount of time

// this pseudo-response contains a success boolean,
// and the returned data if successful
var response = asyncOperation (data);

if (response.success === true) {
successCallback (response.data) ;
} else {
errorCallback () ;

}
Vi

If your application does not demand any semblance of in-order or collective completion,
then the following will suffice:

function successCallback (data)

// asyncFunction succeeded, handle data appropriately
}i
function errorCallback() {

// asyncFunction failed, handle appropriately

Vi

asyncFunction(datal, successCallback, errorCallback);
asyncFunction(data2, successCallback, errorCallback) ;
asyncFunction(data3, successCallback, errorCallback) ;

247

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

This is almost never the case though, since your application will often demand either that
the data should be acquired in a sequence or that an operation that requires multiple
asynchronously-acquired pieces of data should only be executed once all the pieces have
been successfully acquired. In this case, without access to promises, the callback hell
emerges, as follows:

asyncFunction(datal, function(foo) {
asyncFunction(data2, function(bar) {
asyncFunction(data3, function(baz) {
// foo, bar, baz can now all be used together
combinatoricFunction (foo, bar, baz);
}, errorCallback) ;
}, errorCallback) ;
}, errorCallback) ;

This so-called callback hell is really just attempting to serialize three asynchronous calls,
but the parametric topology of these asynchronous functions forces the developer to subject
their application to this ugliness. Promises to the rescue!

From this point forward in this recipe, promises will be discussed
p pertaining to how they are implemented within AngularJ]S, rather than
@@j@‘\ the conceptual definition of a promise API. There is a substantial overlap
’ between the two, but for your benefit, the discussion in this recipe will lean
towards the side of implementation rather than theory.

Basic components and behavior of a promise

The Angular]S promise architecture exposed by the $g service decomposes into a
dichotomy: deferreds and promises.

Deferreds

A deferred is the interface through which the application will set and alter the state of
the promise.

An AngularJS deferred object has exactly one promise attached to it by default, which is
accessible through the promise property, as follows:

var deferred = $g.defer()
, promise = deferred.promise;

In the same way that a single promise can have multiple handlers bound to a single state, a
single deferred can be resolved or rejected in multiple places in the application, as shown here:

var deferred = $g.defer ()
, promise = deferred.promise;

// the following are pseudo-methods, each of which can be called

248

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

// independently and asynchronously, or not at all
function canHappenFirst () { deferred.resolve(); }

}

function mayHappenFirst () { deferred.resolve() ;
function mightHappenFirst () { deferred.reject(); }

Once a deferred's state is set to resolved or rejected anywhere in the application, attempts to
reject or resolve that deferred further will be silently ignored. A promise state transition occurs
only once, and it cannot be altered or reversed. Refer to the following code:

var deferred = $qg.defer()
, promise = deferred.promise;

// define handlers on the promise to gain visibility
// into their execution
promise.then (function resolved() {
$log.log('success') ;
}, function rejected() ({
$log.log('rejected') ;

1) s

// verify initial state
$log.log (promise.S$$state.status); // 0

// resolve the promise
deferred.resolve () ;

// >> "resolved"

$log.log (promise.$$state.status); // 1
// output and state check verify state transition

// attempt to reject the already resolved promise
deferred.reject () ;

$log.log (promise.S$$state.status); // 1
// output and state check verify no state transition

C:l JSFiddle: http://jsfiddle.net/msfrisbie/ed4saopyr/

249

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/e4saopyr/
http://www.it-ebooks.info/

Promises

Promises
A promise represents an unknown state that could transition into a known state at some point
in the future.

A promise can only exist in one of three states. AngularJS represents these states within the
promises with an integer status:

» 0: This is the pending state that represents an unfulfilled promise waiting for
evaluation. This is the initial state. An example is as follows:

var deferred = $qg.defer()
, promise = deferred.promise;

$log.log (promise.$Sstate.status); // 0

» 1: This is the resolved state that represents a successful and fulfilled promise.
A transition to this state cannot be altered or reversed. An example is as follows:

var deferred = $qg.defer()
, promise = deferred.promise;

$log.log (promise.S$$Sstate.status); // O
deferred.resolve ('resolved!') ;

$log.log (promise.$Sstate.status); // 1
$log.log (promise.$sstate.value); // "resolved"

» 2:This is the rejected state that represents an unsuccessful and rejected
promise caused by an error. A transition to this state cannot be altered
or reversed. An example is as follows:

var deferred = $qg.defer()
, promise = deferred.promise;

$log.log (promise.$Sstate.status); // 0
deferred.reject ('rejected') ;

$log.log (promise.S$Sstate.status); // 2
$log.log (promise.$sSstate.value); // "rejected"

250

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

States do not necessarily have a data value associated with them—they only confer to the
promise a defined state of evaluation. Take a look at the following code:

var deferred = $qg.defer()
, promise = deferred.promise;

promise.then (successHandler, failureHandler) ;

// state can be defined with any of the following:
// deferred.resolve () ;

// deferred.reject () ;

// deferred.resolve (myData) ;

// deferred.reject (myData) ;

An evaluated promise (resolved or rejected) is associated with a handler for each of the
states. This handler is invoked upon the promise's transition into that respective state.
These handlers can access data returned by the resolution or rejection, as shown here:

var deferred = $qg.defer()
, promise = deferred.promise;

// $log.info is the resolve handler,
// $log.error is the reject handler
promise.then($log.info, $log.error) ;

deferred.resolve (123) ;
// (info) 123

// reset to demonstrate reject ()
deferred = $qg.defer();
promise = deferred.promise;

promise.then($log.log, $log.error) ;

deferred.reject (123) ;
// (error) 123

CIE JSFiddle: http://jsfiddle.net/msfrisbie/rz2s9uaqg/

251

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/rz2s9uaq/
http://www.it-ebooks.info/

Promises

Unlike callbacks, handlers can be defined at any point in the promise life cycle, including after
the promise state has been defined, as shown here:

var deferred = $qg.defer()
, promise = deferred.promise;

// immediately resolve the promise
deferred.resolve (123) ;

// subsequently define a handler, will be immediately
// invoked since promise is already resolved
promise.then($log.log) ;

// 123

In the same way that a single deferred can be resolved or rejected in multiple places in the
application, a single promise can have multiple handlers bound to a single state. For example, a
single promise with multiple resolved handlers attached to it will invoke all of the handlers if the
resolved state is reached; the same is true for rejected handlers as well. This is shown here:

var deferred = $qg.defer()
, promise = deferred.promise
, ¢cb = function() { $log.log('called'); };

promise.then (cb) ;
promise.then (cb) ;

deferred.resolve () ;
// called
// called

. Variables, object properties, or methods preceded with $$ denote

~ that they are private, and while they are very handy for inspection

Q and debugging purposes, they shouldn't be touched in production
applications without good reason.

» The Chaining promises and promise handlers recipe provides the details of
combinatorial strategies involving promises in order to create an advanced
application flow

» The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

252

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

» The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

» The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

Chaining promises and promise handlers

Much of the purpose of promises is to allow the developer to serialize and reason
about independent asynchronous actions. This can be accomplished by utilizing
promise chaining in AngularJS.

Getting ready

Assume that all the examples in this recipe have been set up in the following manner:

var deferred = $qg.defer()
, promise = deferred.promise;

Also, assume that $g and other built-in AngularJS services have already been injected into the
current lexical scope.

How to do it...

The promise handler definition method then () returns another promise, which can further
have handlers defined upon it in a chain handler, as shown here:

var successHandler = function() { $log.log('called'); };

promise
.then (successHandler)
.then (successHandler)
.then (successHandler) ;

deferred.resolve () ;
// called
// called
// called

253

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

Data handoff for chained handlers
Chained handlers can pass data to their subsequent handlers, as follows:

var successHandler = function(val) {
$log.log(val) ;
return val+l;

bi

promise
.then (successHandler)
.then (successHandler)
.then (successHandler) ;

deferred.resolve (0) ;
// 0
/] 1
/] 2

CZE JSFiddle: http://jsfiddle.net/msfrisbie/n03ncuby/

Rejecting a chained handler

Returning normally from a promise handler will, by default, signal child promise states to
become resolved. If you want to signal child promises to get rejected, you can do so by
returning $qg.reject (). This can be done as follows:

promise
.then(function () {
// initial promise resolved handler instructs handlers
// child promise(s) to be rejected
return $gq.reject(123);
)
.then (
// child promise resolved handler
function(data)
$log.log("resolved", data);
b
// child promise rejected handler
function(data)
$log.log("rejected", data);

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/n03ncuby/
http://www.it-ebooks.info/

Chapter 8

)i

deferred.resolve () ;
// "rejected", 123

<::§ JSFiddle: http://jsfiddle.net/msfrisbie/h5au7j2£/

A promise reaching a final state will trigger child promises to follow it in turn. This simple but
powerful concept allows you to build broad and fault-tolerant promise structures that elegantly
mesh collections of dependent asynchronous actions.

The topology of AngularJS promises lends itself to some interesting utilization patterns,
as follows.

Promise handler trees

Promise handlers will be executed in the order that the promises are defined. If a promise has
multiple handlers attached to a single state, then that state will execute all its handlers before
resolving the following chained promise. This is shown here:

var incr = function(val) {
$log.log(val) ;
return val+l;

// define the top level promise handler

promise.then (incr) ;

// append another handler for the first promise, and collect
// the returned promise in secondPromise

var secondPromise = promise.then (incr) ;

// append another handler for the second promise, and collect
// the returned promise in thirdPromise

var thirdPromise = secondPromise.then (incr) ;

// at this point, deferred.resolve() will:

// resolve promise; promise's handlers executes
// resolve secondPromise; secondPromises's handler executes

255

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/h5au7j2f/
http://www.it-ebooks.info/

Promises

// resolve thirdPromise; no handlers defined yet

// additional promise handler definition order is

// unimportant; they will be resolved as the promises

// sequentially have their states defined

secondPromise.then (incr) ;

promise.then (incr) ;

thirdPromise.then (incr) ;

//
//
//
//
//

the setup currently defined is as follows:

promise -> secondPromise -> thirdPromise

incr ()
incr ()
incr ()

incr () incr ()
incr ()

deferred.resolve (0) ;

//

0

// 0

//
//
//
//

S)

N

JSFiddle: http://jsfiddle.net/msfrisbie/4msybmc9/

Since the return value of a handler decides whether or not the promise
state is resolved or rejected, any of the handlers associated with a
promise are able to set the state—which, as you may recall, can only be
set once. The defining of the parent promise state will trigger the child
promise handlers to execute.

It should now be apparent how trees of the promise functionality can be derived from the

combinations of promise chaining and handler chaining. When used properly, they can
yield extremely elegant solutions to difficult and ugly asynchronous action serialization.

The catch() method

The catch () method is a shorthand for promise.then (null, errorCallback).
Using it can lead to slightly cleaner promise definitions, but it is no more than syntactical

sugar. It can be used as follows:

promise
.then (function () {
return $q.reject();

3]

.catch(function(data) {

256

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/4msybmc9/
http://www.it-ebooks.info/

Chapter 8

$log.log ("rejected") ;

1) s

deferred.resolve () ;
// "rejected"

[Q JSFiddle: http://jsfiddle.net/msfrisbie/rLg79m29/]

The finally() method

The £inally () method will execute irrespective of whether the promise was rejected
or resolved. It is convenient for applications that need to perform some sort of cleanup,
independent of what the final state of the promise becomes. It can be used as follows:

var deferredl = $qg.defer();
, promisel = deferredl.promise
, deferred2 = $qg.defer()
, promise2 = deferred2.promise
, ¢cb = slog.log("called") ;

promisel.finally(cb) ;
promise2.finally (cb) ;

deferredl.resolve() ;

// "called"
deferred2.reject () ;
// "called"

[Q JSFiddle: http://jsfiddle.net/msfrisbie/owucgmea/]

» The Understanding and implementing a basic promise recipe goes into more detail
about how Angular]S promises work

» The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

» The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

» The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

257

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/rLg79m29/
http://jsfiddle.net/msfrisbie/owucqmea/
http://www.it-ebooks.info/

Promises

Implementing promise notifications

AngularJS also offers the ability to provide notifications about promises before a final state
has been reached. This is especially useful when promises have long latencies and updates
on their progress is desirable, such as progress bars.

How to do it...

The promise.then () method accepts a third argument, a notification handler, which can be
accessed through the deferred an unlimited number of times until the promise state has been
resolved. This is shown here:

promise

.then (
// resolved handler
function() {

$log.log('success') ;

b
// empty rejected handler
null,
// notification handler
$log.log

)i

function resolveWithProgressNotifications() ({
for (var i=0; i<=100; i+=20) {
// pass the data to the notification handler
deferred.notify (i) ;
if (i>=100) { deferred.resolve() };
}i
}

resolveWithProgressNotifications () ;
// 0

// 20

// 40

// 60

// 80

// 100

// "success"

[Q JSFiddle: http://jsfiddle.net/msfrisbie/5798g0ru/]

258

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5798q0ru/
http://www.it-ebooks.info/

Chapter 8

The notification handler allows the notifications to be enqueued upon the promise, and they are
sequentially executed at the conclusion of the $digest cycle. Another example is as follows:

promise
.then(
function()
$log.log('success') ;
b
null,
$log.log
)i

function asyncNotification() ({
deferred.notify('Hello, ');

$log.log('world!") ;

deferred.resolve() ;

}i

// this function is invoked by some non-AngularJS entity
asyncNotification() ;

// world!

// Hello,

// success

(:l JSFiddle: http://jsfiddle.net/msfrisbie/cn4plbcw/

The order of the console log statements might surprise you. Since the notifications often arrive
from an event that is not bound to the Angular)S $digest cycle, a call to $scope. $apply ()
will push through the execution of the notification handler(s) immediately. This is shown here:

promise
.then (
function()
$log.log('success') ;
I
null,
$log.log
)i

function newAsyncNotification()
deferred.notify('Hello, ');

259

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cn4pLbcw/
http://www.it-ebooks.info/

Promises

$scope. $apply () ;
$log.log('world!") ;
deferred.resolve () ;

}i

// this function is invoked by some non-AngularJS entity
newAsyncNotification() ;

// Hello,

// world!

// success

(:l JSFiddle: http://jsfiddle.net/msfrisbie/0rpbul7z/

There's more...

The notification handler cannot transit the promise into a final state with its return value,
although it can use the deferred object to cause a state transition, as demonstrated earlier
in this recipe.

Notifications will not be executed after the promise has transitioned to a final state,
as shown here:

// resolve or reject handlers not needed in this example
promise.then (null, null, $log.log);

deferred.notify('Hello, ');
deferred.resolve () ;

deferred.notify ('world!") ;

// Hello,

Implementing promise barriers with $q.all()

You might find that your application requires the use of promises in an all-or-nothing type of
situation. That is, it will need to collectively evaluate a group of promises, and that collection
will be resolved as a single promise if and only if all of the contained promises are resolved;
if any one of them is rejected, the aggregate promise will be rejected.

260

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/0rpbu07z/
http://www.it-ebooks.info/

Chapter 8

How to do it...

The $g.all () method accepts an enumerable collection of promises, either an array of
promise objects or an object with a number of promise properties, and will attempt to resolve
all of them as a single aggregate promise. The parameter of the aggregate resolved handler
will be an array or object that matches the resolved values of the contained promises. This is

shown here:

var deferredl = $qg.defer()
, promisel = deferredl.promise
, deferred2 = $qg.defer()
promise2 = deferred2.promise;

’

$g.all ([promisel, promise2]) .then($log.log) ;

deferredl.resolve (456) ;
deferred2.resolve (123) ;
// 1456, 123]

<:l JSFiddle: http://jsfiddle.net/msfrisbie/L8Lxflho/

If any of the promises in the collection are rejected, the aggregate promise will be rejected.
The parameter of the aggregate rejected handler will be the returned value of the rejected
promise. This is shown here:

var deferredl = $qg.defer ()
, promisel = deferredl.promise
, deferred2 = $qg.defer()
promise2 = deferred2.promise;

$g.all([promisel, promise2]) .then($log.log, $log.error) ;

// resolve a collection promise, no handler execution
deferredl.resolve (456) ;

// reject a collection promise, rejection handler executes
deferred2.reject (123) ;
// (error) 123

(:l JSFiddle: http://jsfiddle.net/msfrisbie/0Omjbné62L/

261

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/L8Lxf1ho/
http://jsfiddle.net/msfrisbie/0mjbn62L/
http://www.it-ebooks.info/

Promises

As demonstrated, the aggregate promise will reach a final state only when all of the enclosed
promises are resolved, or when a single enclosed promise is rejected. Using this type of
promise is useful when the promises in a collection do not need to reason about one another,
but their collective completion is the only metric of success for the group.

In the case of a contained rejection, the aggregate promise will not wait for the remaining
promises to get completed, but those promises will not be prevented from reaching their
final state. Only the first promise to be rejected will be able to pass the rejection data to the
aggregate promise rejection handler.

There's more...

The $g.all () method is in many ways extremely similar to an operating-system-level process
synchronization barrier. A process barrier is a common point in a thread instruction execution,
which a collection of processes will reach independently and at different times, and none can
proceed until all have reached this point. In the same way, $g.all () will not proceed unless
either all of the contained promises have been resolved (reached the barrier) or a single
contained rejection has prevented that state from ever being achieved, in which case the
failover handler logic will take over.

Since $gq.all () allows the recombination of promises, this also allows your application's
promise chains to become a directed acyclic graph (DAG). The following diagram is an
example of a promise progression graph that has diverged and later converged:

v

‘ promiseB ’ ‘ promiseC

promiseD

A 4

‘ $q.all (promiseB. promiseD)

This level of complexity is uncommon, but it is available for use should your application
require it.

262

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

» The Understanding and implementing a basic promise recipe goes into more detail
about how Angular]S promises work

» The Chaining promises and promise handlers recipe provides the details of
combinatorial strategies that involve promises to create an advanced application flow

» The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

» The Creating promise wrappers with $q.when() recipe shows how to normalize
JavaScript objects into promises

Creating promise wrappers with $q.when()

AngularJS includes the $g.when () method that allows you to normalize JavaScript objects
into promise objects.

How to do it...

The $g.when () method accepts promise and non-promise objects, as follows:

var deferred = $qg.defer()
, promise = deferred.promise;

$g.when (123) ;
$g.when (promise) ;
// both create new promise objects

If $g.when () is passed a non-promise object, it is effectively the same as creating an
immediately resolved promise object, as shown here:

var newPromise = $g.when(123);

// promise will wait for a $digest cycle to update $Sstate.status,
// this forces it to update for inspection
$scope. Sapply () ;

// inspecting the status reveals it has already resolved
$log.log (newPromise.$S$state.status) ;

// 1

// since it is resolved, the handler will execute immediately
newPromise.then($log.log) ;
// 123

263

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

[Q JSFiddle: http://jsfiddle.net/msfrisbie/ftgydngn/]

The $g.when () method wraps whatever is passed to it with a new promise. If it is passed
a promise, the new promise will retain the state of that promise. Otherwise, if it is passed

a non-promise value, the new promise created will get resolved and pass that value to the
resolved handler.

Keep in mind that the Sg.reject () method returns a rejected

promise, so $g.when ($Sqg.reject ()) issimply wrapping an

already rejected promise.

There's more...

Since $gq.when () will return an identical promise when passed a promise, this method
is effectively idempotent. However, the promise argument and the returned promise are
different promise objects, as shown here:

$log.log ($g.when (promise) ===promise) ;
// false

» The Understanding and implementing a basic promise recipe goes into more detail
about how Angular]S promises work

» The Chaining promises and promise handlers recipe provides the details of
combinatorial strategies that involve promises to create an advanced application flow

» The Implementing promise notifications recipe demonstrates how to use notifications
for intermediate communication when a promise takes a long time to get resolved

» The Implementing promise barriers with $q.all() recipe shows how to combine a
group of promises into a single, all-or-nothing promise

Using promises with $http

HTTP requests are the quintessential variable latency operations that demand a promise
construct. Since it would appear that developers are stuck with the uncertainty stemming
from TCP/IP for the foreseeable future, it behooves you to architect your applications to
account for this.

264

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ftgydnqn/
http://www.it-ebooks.info/

Chapter 8

How to do it...

The $http service methods return an Angular]S promise with some extra methods,
success () and error (). These extra methods will return the same promise returned by
the Shttp service, as opposed to . then (), which returns a new promise. This allows you
to chain the methods as shttp () .success () .then () and have the . success () and
.then () promises attempt to resolve simultaneously.

The following two implementations are more or less identical, as everything is being chained
upon the Shttp promise:

// Implementation #1

// Shttp.get() returns a promise

Shttp.get (' /myUrl")

// .success() is an alias for the resolved handler

.success (function(data, status, headers, config, statusText) {
// resolved handler

)

// .error() is an alias for the rejected handler

.error (function(data, status, headers, config, statusText) {
// rejected handler

3N

// Implementation #2
Shttp.get ('/myUrl")
.then (
// resolved handler
function (response) {
// response object has the properties
// data, status, headers, config, statusText
I
// rejected handler
function (response) {
// response object has the properties
// data, status, headers, config, statusText
}
)i

However, the following two implementations are not identical:

// Implementation #3

// Shttp.get () returns a promise

Shttp.get ('/myUrl")

// .success() is an alias for the resolved handler

.success (function(data, status, headers, config, statusText) {

265

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

// resolved handler

P

// .error() is an alias for the rejected handler

.error (function(data, status, headers, config, statusText)
// rejected handler

P

.then(...);

// Implementation #4
Shttp.get (' /myUrl')
.then (
// resolved handler
function (response) {
// response object has the properties
// data, status, headers, config, statusText
b
// rejected handler
function (response) {
// response object has the properties
// data, status, headers, config, statusText

)
.then(...);

The differences are explained in the following example:

// these are split into variables to be able to inspect
// the returned promises
var a = Shttp.get('/")

, b = a.success (function() {})
, ¢ = b.error (function() {})
, d = c.then(function() {});

$1og'1og(a===b, a===c, a===d, b===c, b===d, c===d4d);
// true true false true false false

var e = Shttp.get('/")
e.then (function() {})
e.then (function() {});

Q +h
[Tl

$log.log(e===f, e===g, f===g);
// false false false

266

{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

JSFiddle: http://jsfiddle.net/msfrisbie/shé60bhc8/

K For the sake of this example, the shttp.get () requests are only
~ accessing routes from the same domain that served the page. Keep in
Q mind that using a foreign origin URL in the context of this example will
bring about Cross-origin resource sharing (CORS) errors unless you
properly modify the request headers to allow CORS requests.

The success/error dichotomy for an HTTP request is decided by the response status code,
as follows:

» Any code between 200 and 299 will register as a successful request and the resolved
handler will be executed

» Any code between 300 and 399 will indicate a redirect, and XMLHt tpRequest will
follow the redirect to acquire a concrete status code

» Any code between 400 and 599 will register as an error and the rejected handler will
be executed

See also

» The Using promises with $resource recipe discusses how ngRoute can be used as a
promise-centric resource manager

» The Using promises with Restangular recipe demonstrates how the popular third-party
resource manager is extensively integrated with AngularJS promise conventions

Using promises with $resource

As part of the ngResource module, Sresource provides a service to manage connections
with RESTful resources. As far as vanilla AngularJS goes, this is in some ways the closest you'll
get to a formal data object model infrastructure. The $resource tool is highly extensible

and is an excellent standalone tool upon which to build applications if third-party libraries like
Restangular aren't your cup of tea.

As the API-focused wrapper for $Shttp, Sresource also provides an interface for using
promises in conjunction with the HTTP requests that it generates.

267

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/sh60bhc8/
http://www.it-ebooks.info/

Promises

How to do it...

Although it wraps shttp, Sresource actually does not use promises in its default
implementation. The spromise property can be used to access the promise object
of the HTTP request, as follows:

// creates the resource object, which exposes get (), post(), etc.
var Widget = $resource('/widgets/:widgetId', {widgetId: '@id'});

// resource object must be coaxed into returning its promise
// this can be done with the Spromise property
Widget.get ({id: 8})
.Spromise
.then (function (widget) {
// widget is the returned object with id=8

3N

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/upzhlf97/]

A $resource object accepts success and error function callbacks as its second and third
arguments, which can be utilized if the developer desires a callback-driven request pattern
instead of promises. Since it does use shttp, promises are still very much integrated and
available to the developer.

» The Using promises with $http recipe demonstrates how AngularJS promises are
integrated with AJAX requests

» The Using promises with Restangular recipe demonstrates how the popular third-party
resource manager is extensively integrated with AngularJS promise conventions

Using promises with Restangular

Restangular, the extremely popular REST API extension to AngularJS, takes a much more
promise-centric approach compared to Sresource.

268

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/upzh1f97/
http://www.it-ebooks.info/

Chapter 8

How to do it...

The Restangular REST APl mapping will always return a promise. This is shown here:

(app.js)

angular.module ('myApp', ['restangular'])

.controller('Ctrl', function($scope, Restangular) {
Restangular

.one ('widget', 4)
// get() will return a promise for the GET request
.get ()
.then(
function(data)
// consume response data in success handler
$Sscope.status = 'One widget success!';
I
function (response) {
// consume response message in error handler
$Sscope.status = 'One widget failure!';
}
)i

// generally, the API mapping is stored in a variable,
// and the promise-returning method will be invoked as needed
var widgets = Restangular.all ('widgets') ;

// create the request promise
widgets.getList ()
.then (function (widgets) {

// success handler

$scope.status = 'Many widgets success!';
}, function() {

// error handler

$scope.status = 'Many widgets failure!';
1)

3N

<::§ JSFiddle: http://jsfiddle.net/msfrisbie/5ud5210n/

269

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5ud5210n/
http://www.it-ebooks.info/

Promises

Since Restangular objects don't create promises until the request method is invoked, it is
possible to chain Restangular route methods before creating the request promise, in order
to match the nested URL structure. This can be done as follows:

// GET request to /widgets/6/features/11
Restangular
.one ('widgets', 6)
.one ('features', 11)
.get ()
.then (function (feature)
// success handler

3N

[Q JSFiddle: http://jsfiddle.net/msfrisbie/8qgrkkyyv/]

Every Restangular object method can be chained to develop nested URL objects, and every
request to a remote API through Restangular returns a promise. In conjunction with its flexible
and extensible resource CRUD methods, it creates a powerful toolkit to communicate with
REST APIs.

» The Using promises with $http recipe demonstrates how AngularJS promises are
integrated with AJAX requests

» The Using promises with $resource recipe discusses how ngRoute can be used as a
promise-centric resource manager

Incorporating promises into native route

resolves

AngularJS routing supports resolves, which allow you to demand that some work should be
finished before the actual route change process begins. Routing resolves accept one or more
functions, which can either return values or promise objects that it will attempt to resolve.

270

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/8qrkkyyv/
http://www.it-ebooks.info/

Chapter 8

How to do it...

Resolves are declared in the route definition, as follows:
(app.js)

angular.module ('myApp', ['ngRoute'l])
.config(function (SrouteProvider) {
SrouteProvider
.when (' /myUrl', {
template: '<hl>Resolved!</hl>"',
// resolved values are injected by property name
controller: function($log, myPromise, myData) {
$log.log (myPromise, myData) ;
I
resolve: {
// $q injected into resolve function
myPromise: function($q) {
var deferred = $qg.defer()
, promise = deferred.promise;
deferred.resolve(123);
return promise;
Y
myData: function() {
return 456;

3N
P
.controller('Ctrl', function($scope, $location) {
$scope.navigate = function()
$location.url ('myUrl')
}i
3N

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">

<button ng-click="navigate () ">Navigate!</button>
<div ng-views></div>
<div>
</div>

271

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

With this configuration, navigating to /myUr1 will log 123, 456 and render the template.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/z0fymttz/]

The premise behind route resolves is that the promises gather data or perform tasks that
need to be done before the route changes and the controller is created. A resolved promise
signals the router that the page is safe to be rendered.

The object provided to the route resolve evaluates the functions provided to it and
consequently makes injectables available in the route controller.

There are several important details to keep in mind involving route resolves, which are
as follows:

» Route resolve functions that return raw values are not guaranteed to be executed
until they are injected, but functions that return promises are guaranteed to have
those promises get resolved or rejected before the route changes and the controller
is initialized.

» Route resolves can only be injected into controllers defined in the route definition.
Controllers named in the template via ng-controller cannot have the route
resolve dependencies injected into them.

» Routes with a specified route controller but without a specified template will never
initialize the route controller, but the route resolve functions will still get executed.

» Route resolves will wait for either all the promises to get resolved or one of the
promises to get rejected before proceeding to navigate to the URL.

There's more...

By definition, promises are not guaranteed to undergo a final state transition, and the
AngularJS router diligently waits for promises to get resolved unless they get rejected.
Therefore, if a promise never gets resolved, the route change will never occur and your
application will appear to hang.

See also

» The Implementing nested ui-router resolves recipe provides the details of basic
and advanced strategies used to integrate promises into nested views and their
accompanying resources

272

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/z0fymttz/
http://www.it-ebooks.info/

Chapter 8

Implementing nested ui-router resolves

As you gain experience as an AngularJS developer, you will come to realize that the built-in
router faculties are quite brittle in a number of ways—mainly that there can only be a single
instance of ng-view for dynamic route templating. AngularUl provides a superb solution to
this in ui-router, which allows nested states and views, named views, piecewise routing,
and nested resolves.

How to do it...

The ui-router framework supports resolves for states in the same way that ngRoute does
for routes. Suppose your application displayed individual widget pages that list the features
each widget has, as well as individual pages for each widget's features.

State promise inheritance

Since nested states can be defined with relative state routing, you might encounter the scenario
where the URL parameters are only available within the state in which they are defined. For this
application, the child state has a need to use the widgetId and the featureId value in the
child state controller. This can be solved with nested route promises, as shown here:

(app.Jjs)

angular.module ('myApp', ['ui.router'])
.config(function ($stateProvider)
$SstateProvider
.state('widget', {
url: '/widgets/:widgetId',
template: 'Widget ID: {{ widgetId }} <div ui-views></div>"',
controller: function ($scope, $stateParams, widgetId) {
// the widgetId is only available in this state due to
// the :widgetId variable definition in the state url
$scope.widgetId = S$SstateParams.widgetId;
Y
resolve: {
// the stateParam widget property is wrapped in a property
// to enable it to be injected in child states
widgetId: function($stateParams) {
return $stateParams.widgetId;
}
}
3

.state('widget.feature', {

273

www.it-ebooks.info

http://www.it-ebooks.info/

Promises

url: '/features/:featureId',
template: 'Feature ID: {{ featureId }}',

// widgetId can now be injected from the parent state
controller: function($scope, $stateParams, widgetId){
// both widgetId and featureId are made available

// in this state controller
Sscope.featureId = S$stateParams.featureld;
$Sscope.widgetId = widgetId;

(index.html)

<div ng-app="myApp">
<a ui-sref="widget ({widgetId:6}) ">
See Widget 6

<a ui-sref="widget.feature ({widgetId: 6, featureId:11})">
See Feature 11 of Widget 6

<div ui-views</div>
</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/Okposlxt/

Here, the child state has access to the injected widget Id value through the inherited
resolution defined in the parent state.

Single-state promise dependencies

A state's resolve promises have the ability to depend on one another, which allows you the
convenience of requesting data without explicitly defining the order or dependence. This can
be done as follows:

(app.js)

angular.module ('myApp', ['ui.router'])
.config(function ($stateProvider) {
SstateProvider
.state('widget', {
url: '/widgets',
template: 'Widget: {{ widget }} Features: {{ features }}',

274

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/0kpos1xt/
http://www.it-ebooks.info/

Chapter 8

controller: function($scope, widget, features){
// resolve promises are injectable in the route controller
$scope.widget = widget;
$Sscope.features = features;

b

resolve: {

// standard resolve value promise definition
widget: function() {
return {
name: 'myWidget'
};
3
// resolve promise injects sibling promise
features: function(widget) {
return ['featureA', 'featureB'].map(function(feature) {
return widget.name+':'+feature;

RE

(index.html)

<div ng-app="myApp">
<a ui-sref="widget ({widgetId:6})">See Widget 6
<div ui-views</div>

</div>

With this setup, navigating to /widgets will print the following:
Widget: {"name":"myWidget"}

Features: ["myWidget:featureA", "myWidget:featureB"]

C:l JSFiddle: http://jsfiddle.net/msfrisbie/ugsxé6clw/

275

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ugsx6c1w/
http://www.it-ebooks.info/

Promises

Route resolves effectively represent an amount of work that needs to be completed before a
route change can happen. These units of work, represented in the resolve as promises, are
able to be dependency injected anywhere in the route state construct, which allows you a
great deal of flexibility. Since the route change will only occur once all promises have resolved,
you are able to effectively chain the promises within the route by chaining them using
dependency injection.

M Be careful with promise dependencies within routes. It is entirely
Q possible to create circular dependencies with such types of
dependent declarations.

» The Incorporating promises into native route resolves recipe demonstrates how
vanilla AngularJS routing incorporates promises into the route life cycle

276

www.it-ebooks.info

http://www.it-ebooks.info/

What's New In
AngularJdsS 1.3

In this chapter, we will cover the following recipes:

» Using HTML5 datetime input types

» Combining watchers with $watchGroup

» Sanity checking with ng-strict-di

» Controlling model input with ngMode10Options

» Incorporating Stouched and $submitted states
» Cleaning up form errors with ngMessages

» Trimming your watch list with lazy binding

» Creating and integrating custom form validators

Introduction

The release of Angular]S 1.3 incorporates a sizeable number of additions that focus on

form usability and extensibility, maximizing an application's performance and integration with
modern browsers. These recipes aren't an exhaustive list of all the changes in Angular]S 1.3,
but here you will find all the new components that you will definitely want to start incorporating
into your applications right away.

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

Using HTMLS datetime input types

Formerly, AngularJS was limited to using antiquated input field types in forms. The 1.3 Angular]S
release added the AngularJS field and model support for HTML5 date and time types, which will
gracefully degrade when used on older browsers.

How to do it...

With Angular]S 1.3, your application is now able to bind to the date and time HTML5 input
types while preserving their native data format.

The <input type="date"> type

The <input type="date"> date input type binds to a JavaScript Date object and
extracts only the date from the Date object, ignoring the time component by letting it go
unmodified (it will not be forced to midnight). The string value for the date October 31, 2014
would be 2014-10-31.

The <input type="datetime-local"> type

The <input type="datetime-local"> date inputtype binds to a JavaScript Date object
and associates it with a time zone (by default, the browser time zone). The string value for
10:30 P.M. on October 31, 2014 would be 2014-10-31T20:30:00.

The <input type="time"> type
This <input type="time"> date input type binds to a JavaScript Date object and extracts

only the time from the Date object. The date value of the Date object will always be January
1, 1970, the Unix epoch time. The string value for 10:30 P.M. would be 20:30:00.

The <input type="week"> type

The <input type="week"> date input type binds to a JavaScript Date object and extracts
only the week from the Date object. This is a year-aware week field, for example, the string
value of the sixth week in 2014 would be 2014 -W06.

The <input type="month"> type

The <input type="month"> date input type binds to a JavaScript Date object and extracts
only the month from the Date object. This is a year-aware month field, for example, the string
value of the sixth month in 2014 would be 2014 -06.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/52b93whx/]

278

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/52b93whx/
http://www.it-ebooks.info/

Chapter 9

All of these input types offer built-in comprehension of Date objects, including their
bi-directional ISO 8601 conversion.

There's more...

If the browser does not support the HTML5 input type, the field will degrade to a simple
text field. AngularJS will then handle it as a simple ISO date string to the Date object
conversion mechanism.

All of the fields default to the browser time zone. If you wish to override the time zone, you can
specify this in ngModelOptions.

See also

» The Controlling model input with ngModelOptions recipe provides the details
of all the ways the ngModelOptions option lets you define how and when
your input-bound models will change

Combining watchers with $watchGroup

You might find that multiple model components need to be tied to the same sSwatch type
callback. As of the 1.3 release, Angular]S provides the $watchGroup method that accepts a
collection of watch targets in which all the watch targets need to bind to the same callback.

How to do it...

The change event callback parameters can be an ordered array of the current values, followed
by an ordered array of the previous values. This is shown here:

(app.js)

angular.module ('myApp"', [1)
.controller('Ctrl', function($scope, $log) {
$scope.ping = 'pong';

$scope.ding = {
dong: 'ditch'

}i

// watch ping and the ding.dong property by reference

279

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

$scope. SwatchGroup (['ping', 'ding.dong'l, function(newVals, oldvVals,
scope) {
// callback logic
$log.log(newVals, oldvals, scope);
1
1)

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl">
<input ng-model="ping" />
<input ng-model="ding.dong" />
</divs>
</div>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/80yr36qn/]

Invoking $watchGroup will create a set of reference watchers for each model component
provided in the first argument. Using $watchGroup does not reduce the number of watchers
created, as AngularJS still needs to independently check each element in the set to both
determine whether any of the watched values are dirty, and to determine what the new values
are that should be provided as arguments to the watch callback.

There's more...

Although swatchGroup () does not provide a direct performance benefit to your application,
the primary gain from using SwatchGroup () is to use the DRY principle on your controllers.

» The Trimming your watch list with lazy binding recipe provides the details of how the
new bind once functionality can help you greatly streamline your application

280

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/80yr36qn/
http://www.it-ebooks.info/

Chapter 9

Sanity checking with ng-strict-di

The ng-strict-di directive is new and extremely simple to understand. When declaring
the parent DOM node for your application, if ng-strict-di is included in that element,
functions without the minification-safe dependency injection syntax will fail to execute.

How to do it...

Using the ng-strict-di directive is as simple as adding an extra attribute to your ng-app
node, as follows:

(app.Js)

angular.module ('my2pp', [])
.controller('Ctrl', function($scope) {});

(index.html)

<div ng-app="myApp" ng-strict-di>
<div ng-controller="Ctrl"></div>
</div>

If you try to load the page in your browser, you will be greeted with the following error:

Error: [$injector:strictdi] function($provide) is not using explicit
annotation and cannot be invoked in strict mode

[Q JSFiddle: http://jsfiddle.net/msfrisbie/snqvypgl/]

There's more...

The ng-strict-di directive recognizing a minification-vulnerable application and consequently
throwing on the brakes is for the developer's benefit. Utilities such as ng-annotate and
ng-min are used to avoid the verbosity of minification-safe notations, but having a safeguard
like ng-strict-di to protect against the nastiness of minification-vulnerable code is extremely
useful when checking your application's validity.

281

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/snqvypgL/
http://www.it-ebooks.info/

What's New in AngularJS 1.3

Controlling model input with

ngModelOptions

This new helper directive introduces a new vector of control over model access and updating
to the developer. Formerly, using ng-model bound to an input meant that validation or any
verification of value change needed to happen in a controller helper method or in a scope
watcher, neither of which ever felt very clean. With ngMode10Options, you are now able to
make decisions about how and when the model will get updated.

Getting ready

The ngMode10Options directive will most directly benefit you while developing an Angular)S
form, since it implicitly provides namespaces to the inputs within the form that are used by some
of this directive's features. Suppose that for all the examples in this recipe, you begin, as follows:

<div ng-controller="PlayerCtrl"s
<form name="playerForm">
Name :
<input type="text"
name="playerName"
ng-model="player.name"
ng-model-options="" />
</form>
</div>

How to do it...

The ngModelOptions directive exposes several options that can be defined within its
template expression as object literals.

The updateOn option

When the updateOn option is set, the model does not change the value until a trigger event
occurs. The updateOn option accepts one or more DOM events in order to trigger the update.
In addition to normal DOM events, there is a special default event that matches the default
events belonging to the control. Using the default option allows you to incorporate extra events
on top of the standard ones. This can be done as follows:

(app.Jjs)
angular.module ('myApp', [1);
(index.html)

<div ng-app="myApp">

282

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

<form name="playerForm">
Name :
<input type="text"
name="playerName"
ng-model="player.name"
ng-model-options="{updateOn: 'blur click mousemove'}" />
</form>
{{ player.name }}
</div>

Of course, these DOM events are silly in the context of a text input, but they demonstrate that
there are broad possibilities when using updateOn.

(:l JSFiddle: http://jsfiddle.net/msfrisbie/tz319dpe/

The debounce option

The debounce option allows you to set a delay between when the value of the input changes

and when the model updates itself with that changed value. This can either accept an integer

millisecond value for all updateOn events, or it can accept an object with integer delay values
for each event. This can be done as follows:

<input type="text"

name="playerName"

ng-model="player.name"

ng-model-options="{ updateOn: 'blur click mousemove', debounce:
500 }" />

Alternately, this can also be done as follows:

<input type="text"

name="playerName"

ng-model="player.name"

ng-model-options="{ updateOn: 'blur click mousemove', debounce:
{'blur': 500, ‘'click': 300, ‘'mousemove': 0} }" />

CIE JSFiddle: http://jsfiddle.net/msfrisbie/rjxrgv7h/

283

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/tz319dpe/
http://jsfiddle.net/msfrisbie/rjxrgv7h/
http://www.it-ebooks.info/

What's New in AngularJS 1.3

The origin of the term debounce comes from the world of circuits. Mechanical
buttons or switches utilize metal contacts to open and close circuit
connections. When the metal contact switches are closed, they will collide
s\‘ with each other and rebound before settling, causing the bounce. This bounce
is problematic in the circuit as it is often registered as a repeat toggling of the
switch or button—obviously buggy behavior. The workaround is to find a way
to ignore the expected bounce noise—debouncing! This can be accomplished
either by ignoring the bounce noise or introducing a delay before reading the
value, both of which can be done with hardware or software.

The allowinvalid option

The allowInvalid option is quite uncomplicated. The normal behavior of validated

input is to not propagate an invalid value to the model, but to set it to undefined. Setting
allowInvalid to true overrides this behavior and propagates the invalid value through to
the model. You will still be able to catch the invalid value while validating the form as normal.

CZE JSFiddle: http://jsfiddle.net/msfrisbie/ejzpoo75/

The getterSetter option

The getterSetter option is an interesting option that allows you to inform the application
that the ng-model value should be used as a combination getter/setter instead of just a
value. This can be done as follows:

(index.html)

<div ng-app="myApp">
<div ng-controller="Ctrl"s>
<form name="playerForm">
Name :
<input type="text"
name="playerName"
ng-model="player.name"
ng-model-options="{ getterSetter: true }" />
</form>
</div>
</div>

(app.js)

angular.module ('my2App', [])
.controller('Ctrl', function ($scope) {
// private player name

284

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ejzpoo75/
http://www.it-ebooks.info/

Chapter 9

var playerName = 'Jordan Wilson';

// public getter/setter
$scope.player = {
name: function (newName)
console. log (newName)
if (angular.isUndefined(newName)) {
// getter
return playerName;
} else {
// setter
playerName = newName;

Behind the scenes, ngModelOptions is how transparently assigning the model value with
player.name (val) and reading the model value with player.name (). Since you have
defined your method of access within the getter/setter paradigm, this of course means that
interpolating and assigning the value manually must be done with the getters and setters as
well, as shown here:

<!-- interpolation with getter syntax -->
Name: {{ player.name() }}

<!-- assignment with setter syntax -->
<button ng-click="player.name('')">Reset Name</buttons

(:l JSFiddle: http://jsfiddle.net/msfrisbie/ugpd7xft/

The timezone option

The timezone option relates to the newly added support for HTML5 datetime input types.
The input defaults to the browser time zone. Setting this value allows you to override that
default time zone.

The S$rollbackViewValue option

The updateOn and debounce options in ngMode1Options introduce a Schrodinger's
cat-esque pattern, where there are technically two simultaneous values for a single model
that might be resolved at some point in the future. Fortunately, unlike quantum superposition,
we are able to reason about which state should get priority in a scenario of uncertainty—the
model of course!

285

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/uqpd7xft/
http://www.it-ebooks.info/

What's New in AngularJS 1.3

The SrollbackViewValue option acts as a reset button for the model. Invoking it will reset
the input to the value that exists in the model, and will also cancel any outstanding debounce
changes that are yet to occur. This can be done as follows:

(index.html)

<div ng-app="myApp">
<form name="playerForm">
Name :
<input type="text"
name="playerName"
ng-model="player.name"
ng-model-options="{ updateOn: 'click', debounce: 2000 }" />
<button ng-click="playerForm.playerName.$rollbackViewValue() ">
Revert changes
</buttons>
</form>
{{ player.name }}

</div>

(app.js)

angular.module ('myApp', [1);

[Q JSFiddle: http://jsfiddle.net/msfrisbie/tbft57zw/]

Conceptually, ngMode10pt ions should make a lot of sense to you in terms of how it fits
into AngularJS. The ngModelController (which existed in previous releases) acts as the
intermediary view/model arbiter by managing the parsing, validation, and transportation
of data between the model and the view. The ngMode10Options directive is simply acting
as a supplementary arbiter by giving the developer additional control over how the model
should change.

See also

» The Using HTML5 datetime input types recipe helps you wrap your head around how
AngularJS integrates with HTML5 data types

» The Incorporating $touched and $submitted states recipe takes you through how the
new Angular]S form states give you tighter control of the application flow

286

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/tbft57zw/
http://www.it-ebooks.info/

Chapter 9

» The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

» The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

Incorporating $touched and $submitted

states

Part of what makes form implementation so difficult to get exactly right is that they are highly
stateful. DOM events, page history, user state, and countless other factors can all play a role
in deciding what should be displayed to the user.

How to do it...

AngularJS 1.3 incorporates two more state representations into forms: $touched
and $submitted.

The $touched state

Formerly, the closest thing to $touched was $pristine, which would only be unset if some
input was entered into a field, but would not change if the field was merely entered and left as

is. Now, stouched will be set if the field notices a focus event, even if the model value does
not change. This can be done as follows:

(app.Jjs)
angular.module ('myApp', [1);

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input type="text"
name="playerName"
ng-model="player.name" />
</form>
<div ng-if="playerForm.playerName.$touched">
You touched the playerName field
</div>

</div>

The message in the preceding code will be displayed once the field notices a pair of
focus/blur events.

287

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

The $submitted state

It is not hard to imagine a scenario where you would only want to display error messages to
the user after the form has seen an unsuccessful submit attempt. The $submitted flag will
be set on the form controller object once it notices an unsuccessful submit attempt. This can
be done as follows:

(app.Js)
angular.module ('myBApp', [1);

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input type="text"
name="playerName"
ng-model="player.name" />
<button type="submit">Submit</button>
</form>
<div ng-if="playerForm. $submitted">
You clicked submit
</divs>
</divs>

The message in the preceding code will be displayed after a submit attempt.

[@ JSFiddle: http://jsfiddle.net/msfrisbie/cng82hn4/]

» The Controlling model input with ngModelOptions recipe provides the details of all
the ways in which the ngModelOptions option lets you define how and when your
input-bound models will change

» The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

» The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

288

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cng82hn4/
http://www.it-ebooks.info/

Chapter 9

Cleaning up form errors with ngMessages

The addition of the ngMessages directive aims to solve the problem of erratic and complicated
organization of error messages in forms. Traditionally, error messages were handled individually
and independently, and they also incorporated some semblance of meta-logic in order to decide
which messages should take priority, how many should be seen, and so on. The naive solution is
usually accomplished by sprinkling fistfuls of ng-1if directives in the page corresponding to the
error message corpus and delegating the display logic to the form controller. As you can imagine,
this can get messy very quickly in the wake of complex forms.

Getting ready

The ngMessages directive comes packaged in the ngMessage module. To use it, include it in
your application as follows:

(app.Jjs)

angular.module ('myApp', ['ngMessages']);

How to do it...

The ngMessages module exists as two separate directives: ng-messages and ng-message.
The ng-messages directive defines the error message block that will process a form $error
object. It will contain one or many instances of ng-message, which will refer to a specific
property within the Serror object. This can be done as follows:

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input type="text"
name="playerName"
ng-model="player.name"
minlength="4"
required />
<!-- ng-messages block will handle the field $error object -->
<div ng-messages="playerForm.playerName.$error">
<!-- each ng-message handles a single error condition -->
<div ng-message="required">
Player name is required
</div>
<div ng-message="minlength">
A player name must be at least 4 characters

</div>

289

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

</div>
</forms>
</div>

a1

Q JSFiddle: http://jsfiddle.net/msfrisbie/cd8udl10q/

Only a single error message per ng-messages block is displayed at a time, and the error
message priority is defined by the order in which the ng-message entities are ordered
within the block. This lets you afford a high degree of control over how and when error

messages are displayed.

Message blocks can be reused as templates. The preceding example can be refactored

as follows:

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input type="text"
name="playerName"
ng-model="player.name"
minlength="4"
required />
<div ng-messages="playerForm.playerName. Serror"
ng-messages-include="error-messages.html">
</divs>
</form>

<script type="text/ng-template" id="error-messages
<div ng-message="required">
Player name is required
</div>
<div ng-message="minlength">
A player name must be at least 4 characters
</div>
</script>
</divs>

290

.html">

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/cd8ud10q/
http://www.it-ebooks.info/

Chapter 9

<:l JSFiddle: http://jsfiddle.net/msfrisbie/dz7vids54/

This error-messages template can be reused by any ng-messages instance, and it will
match up the $error object properties to the corresponding ng-message fields within the
included template. The included error messages can be overridden if necessary by providing
an ng-message instance with the same ng-message value within the actual ng-messages
block. This can be done as follows:

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input type="text"
name="playerName"
ng-model="player.name"
minlength="8"
required />
<div ng-messages="playerForm.playerName. Serror"
ng-messages-include="error-messages.html">
<div ng-message="minlength">
A player name must be at least 8 characters
</div>
</div>
</form>

<script type="text/ng-template" id="error-messages.html">
<div ng-message="required">
Player name is required
</div>
<div ng-message="minlength">
A player name must be at least 4 characters
</div>
</script>
</div>

Any ng-message defined in the actual ng-messages block will be given priority over a
matching ng-message defined in an included ng-messages collection.

Q JSFiddle: http://jsfiddle.net/msfrisbie/5hd8d5hz/

291

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/dz7vfd54/
http://jsfiddle.net/msfrisbie/5hd8d5hz/
http://www.it-ebooks.info/

What's New in AngularJS 1.3

See also

» The Controlling model input with ngModelOptions recipe provides the details of all
the ways in which the ngMode10ptions option lets you define how and when your
input-bound models will change

» The Incorporating $touched and $submitted states recipe takes you through how the
new Angular]S form states give you tighter control of the application flow

» The Creating and integrating custom form validators recipe demonstrates how you
can now integrate forms directly with the validation pipeline

Trimming your watch list with lazy binding

A continuing gripe with AngularJS as a framework is targeted at the perceived inefficiencies of
its data binding facilities. While it is true that it can be easy to fall into bad performance traps,
a developer who understands what is going on under the hood and is able to make decisions
accordingly can wield AngularlS against any architectural challenge.

Bind once is one of the more heralded introductions in the AngularJS 1.3 release. It offers
one-time data binding, allowing the developer to reason about the necessity of real-time data
being interpolated in the template and elect to opt out of that data binding in order to improve
the overall performance of the application.

How to do it...

One-time data binding can be signaled inside the parsed expression at the time of compilation
by prepending the expression with : :, as demonstrated here:

{{ ::user.name }}

This will maintain normal data binding for the authenticated display state, but the

user .name value will only be watched until it is assigned a definite value, in which case,
AngularJS will schedule that watcher for deletion. The heuristic in this example would be
that the application should always check whether the user is still authenticated, but the
user's name isn't anticipated to ever change over the lifetime of the application, so it is
senseless to watch a value that you know won't change.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/Lxxmcveq/]

292

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/Lxxmcveq/
http://www.it-ebooks.info/

Chapter 9

This bind once logic, also referred to as lazy binding, occurs at the scope watcher level.
Recall that each expression in the template is registered with its own watcher. Prepending
that expression with : : signals the digest loop to store the value of the expression upon its
first evaluation. If that value is defined, AngularJS will mark that value as stabilized, and it

will schedule deregistration of that watch entry at the end of the digest loop. At the end of
the digest loop, Angular]S will check each scheduled watch removal for its value again; if the
value is still defined, the watch entry will deregister, otherwise the scheduled deregistration is
thrown out.

In short, Angular]S will watch the expression until it becomes defined. This being the case,
in some ways, the term "bind once" doesn't seem to exactly match what is going on, which
is really that Angular]S will "bind until" a defined value is assigned.

that is not a JavaScript undefined value.

Bind once will only take effect when the parsed expression (which returns a function) is
passed to a watch expression. This can be demonstrated directly using the $parse service,
as follows:

[In this explanation, the quality of being defined refers to any value]
e

// uses lazy binding
var playerGetter = S$parse('::player');
scope.$watch (playerGetter) ;

The preceding code is effectively what happens when an expression is bound in the view. The
parse function will communicate to the watcher that it needs to use lazy binding. Consider the
following code:

// does not use lazy binding
var playerGetter = S$parse('::player');
playerGetter ($Sscope) ;

The preceding code will not use lazy binding; the return value from invoking the parse function
will provide you with the up-to-date value each time.

Bind once expression universality

AngularJS does not discriminate on the basis of where the expression is coming from while
registering the watcher, so the bind once feature is available anywhere you use expressions.

293

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

The ng-repeat directive

The ng-repeat directive's attribute string is parsed as piecewise expressions, so it is entirely
possible to target one-time binding in the enumerable collection, as follows:

<div ng-repeat="player in ::roster.players"s>
{{ ::player.name }}
</divs>

Also notice here that the encapsulated repeat expression has one-time binding. Even though
the collection is bound once, the repeated elements are still bound to the existing instances
and create separate watch entries unless instructed not to, as done here.

<:l JSFiddle: http://jsfiddle.net/msfrisbie/dg45qgdpu/

Isolate scope bindings

Sometimes, directives that have isolate scope attribute expressions do not expect the binding
references or content to change. This is an excellent opportunity to cut down on watchers, as
shown here:

(app.js)

angular.module ('myApp', [])
.directive ('playerProfile', function() {
return {
scope: {
draft: '@’
b
template: '<div>{{player.name}}: {{draft}}</div>"
}i
13N

(index.html)

<div ng-app="myApp">
<input ng-model="draft.year" />
<player-profile draft="Drafted in {{::draft.year}}">
</player-profile>
<hr />
<pre>{{ draft | json }} </pre>

</div>

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/dg45qdpu/
http://www.it-ebooks.info/

Chapter 9

Since the bindings in the directive declaration are evaluated upon compilation, it makes
sense to push the single bind prefix to the directive definition expressions, rather than
in the directive template itself.

~\l
[Q JSFiddle: http://jsfiddle.net/msfrisbie/ft3z53de/]

Methods and expressions requiring execution

AngularJS does not discriminate between types of expressions. Declaring a one-time binding
on a method in an expression is an excellent way of preventing that method from being
invoked for an insane amount of time. This can be done as follows:

Show me maybe</spans>

It is always desirable to make expressions as lightweight as possible, and this usually means
that using methods in the view is undesirable. However, if it cannot be avoided, using bind
once to cut the method execution count makes the application more efficient.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/y3ghdhhp/]

» The Combining watchers with $watchGroup recipe demonstrates how to use the nifty
new watch type to funnel multiple watchers to the same callback

Creating and integrating custom form

validators

With the addition of the validator pipeline, AngularJS's form validation is now highly extensible
and straightforward to expand.

How to do it...

Formerly, custom form validation required messiness involving parsers and formatters; this is
no longer the case. Custom validation can now be encapsulated cleanly within a directive.

295

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/ft3z53de/
http://jsfiddle.net/msfrisbie/y3qhdhhp/
http://www.it-ebooks.info/

What's New in AngularJS 1.3

Synchronous validation
The ngModel directive now exposes the Svalidators property, which allows you to directly
tap into its form validation.

The following directive definition is an example of a custom validator that ensures that a
model value is not Packers:

(app.js)

angular.module ('myBRpp', [1)

.directive('validateFavoriteTeam', function|() {
return {
require : 'ngModel',

link : function(scope, element, attrs, ngModel) ({
// define custom validator "favoriteTeam"
ngModel .$validators.favoriteTeam = function (team) {
// check string inequivalency
// a false return value indicates an error

return team !== "Packers";

You will then be able to use it as follows:

(index.html)

<div ng-app="myApp">
<form name="fanForm">
<input name="myTeam"
type="text"
ng-model="user.team"
validate-favorite-team />
<div ng-if="fanForm.myTeam. $Serror.favoriteTeam">
Your favorite team cannot be the Packers
</divs>
</form>
</div>

With this, the error message will only be shown if the input value is Packers.

<:l JSFiddle: http://jsfiddle.net/msfrisbie/d2t833ag/

296

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/d2t833ag/
http://www.it-ebooks.info/

Chapter 9

Asynchronous validation

Form values are expected to change frequently, so it makes sense that any high-latency
validation process should be treated differently from lightweight operations such as regex
matches. The most obvious validation class that would fall into this category is a validation
that requires an AJAX request to a remote entity, something that ostensibly will take a
substantially long time to get completed and should not be done ad nauseam.

The following directive definition is an example of a custom asynchronous validator that
ensures that a jersey number is not already taken on a certain team:

(app.js)

angular.module ('myBRpp', [1)

.directive('validateJerseyAvailable', function($http, $q, Stimeout) {
return {
require : 'ngModel',
link : function(scope, element, attrs, ngModel) ({
ngModel . $asyncValidators.jerseyAvailable = function (num)
if (!Number.isInteger (num)) {

// input value is not an int, invalid
// return rejected promise
return $qg.reject () ;
} else {
// send request to server, return promise
return shttp.get('/player/' + num)
// assume success () means a 200 response
.success (function() {
// jersey number exists
// 1is not available, invalid
return $qg.reject () ;
})
// assume error () means a 404 response
.error (function() {
// jersey number does not exist
// is available, wvalid
return true;

13K

297

www.it-ebooks.info

http://www.it-ebooks.info/

What's New in AngularJS 1.3

You will then be able to use it as follows:

(index.html)

<div ng-app="myApp">
<form name="playerForm">
<input name="myNumber"
type="number"
ng-model="player.number"
validate-jersey-available />
<div ng-if="playerForm.myNumber. $pending">
Checking for jersey number availability...
</div>
<div ng-if="playerForm.myNumber.$error.jerseyAvailable">
That jersey number is taken.
</divs>
</form>

</div>

If the promise is resolved, the model will validate; if the promise is rejected, the validator
error will be registered on the Serror object. For the sake of efficiency, validators defined on
SasyncValidators will not be evaluated until all the validators defined on $validators
(including the default ones) pass.

Asynchronous validators, as an unevaluated promise cannot be defined as $valid
or $invalid, introduce an intermediate state, $pending. This state follows all the
conventions of valid/invalid and can be used as follows:

<div ng-if="playerForm.myNumber.$pending">
Checking for jersey number availability...

</div>

(:l JSFiddle: http://jsfiddle.net/msfrisbie/odL6yLné/

The $validators and $SasyncValidators are vectors that allow you to directly integrate with
the validation flow of AngularJ]S forms by defining custom directives that interact with ngMode1.

298

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/odL6yLn6/
http://www.it-ebooks.info/

Chapter 9

Since the Angular]S form ecosystem is quite broad and robust—covering error handling,
validation, CSS styling, model transformation, and propagation—it behooves you to utilize
custom validators within your own application in order to take advantage of this synergy.

» The Controlling model input with ngModelOptions recipe provides the details of all

the ways in which this option lets you define how and when your input-bound models
will change

» The Incorporating $touched and $submitted states recipe takes you through how the
new Angular]S form states give you tighter control of the application flow

» The Cleaning up form errors with ngMessages recipe demonstrates how to use this
new module in order to radically reform how you handle form error messages

299

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

AngularJS Hacks

In this chapter, we will cover the following recipes:

» Manipulating your application from the console

» DRYing up your controllers

» Using ng-bind instead of ng-cloak

» Commenting JSON files

» Creating custom AngularJS comments

» Referencing deep properties safely using $parse

» Preventing redundant parsing

Introduction

Mastering a programming language or framework demands more than merely reading
through the documentation or cruising through one tutorial; it requires that you read a ton
of code written by other developers. For the same reason, art museums don't have works
from only one painter, or Beethoven's symphonies aren't written for one instrument, or the
best technology companies don't rely on the ideas of one engineer. Complex, analytical,
and creative thoughts are best stimulated by multitudinous, diverse, and often orthogonal
channels of input. Gleaning the inner machinations of someone else's mind by dissecting
their work is an intensely intimate and educational process, and reading their code will
provide you with an escape from the echo chamber of your own mind.

As you consume more and more code, you will be inundated with an understanding of the
idiomatic methodologies that can make a great technology just a little bit better. Often, within
that code, you will discover hacks, either of your own or someone else's, that you will become
quite fond of, for their sheer utility or clever nature. This chapter consists of a fistful of these
hacks that | have derived or encountered and enjoy using, and sincerely hope you will as well.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Hacks

Manipulating your application from the

console

Being able to directly manipulate components of your application manually while testing is
an extremely useful tool when debugging. It is often the case that framework abstractions
that provide you with improved application organization will, at the same time, make it more
difficult to inspect and manipulate application components at the console level. Breakpoint
debugging is more than suitable for these purposes most of the time, but being able to easily
inspect and manipulate services, scopes, and other Angular]JS components at the console
level can be extremely useful.

How to do it...

The angular object is exposed in the global browser namespace, and access to the
application internals will need to be routed through there. Scopes and services can
be manipulated as shown in the following sections:

Scopes

Inspecting and manipulating scopes throughout your application will likely be one of the
most common use cases when interacting with an AngularJS application in the console.

The Batarang plugin for Google Chrome is an excellent tool available to AngularJS developers,
and it offers among other things the ability to inspect your application's scopes.

If you want a floating scope object (that is not associated with any part of your application),
using $injector will help you create a new scope instance as follows:

(browser console)

// this creates a new scope object that is not yet associated with
// any part of your application
var scope = angular.injector(['ng']) .get ('SrootScope')

Often, you will only need access to $rootScope, or a nonspecific application scope to change
data or emit/broadcast events. If this is the case, SrootScope is the quickest to access, and
can be done as follows:

(browser console)

// 1f you know which DOM node is the root, you can use a query
// selector and extract with <nodes.scope()

// SrootScope typically is associated with <body>

var rs = angular.element (document.querySelector ('body')) .scope ()

// 1if you don't know the DOM node, use the furthest ancestral DOM

302

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

// node with the ng-scope class
var rs = angular.element (
document .querySelector ('.ng-scope')) .scope ()

// or if you're not manually bootstrapping,
// use the only node with the ng-app attribute
var rs = angular.element (

document .querySelector (' [ng-appl ')) .scope ()

If you're looking for a specific child scope inside the application, you can use the preceding
selector techniques to find the exact node associated with the scope.

If you're using Google Chrome, there is a built-in feature in the console that makes DOM node
selection easy. Inside the DOM inspector (the Elements tab in the inspection panel), if you
click on a DOM node to select it, it becomes available as $0 in the console. This can then be
used as normal to extract the associated scope:

(browser console)

// (user clicks <body> node to select it)

$0
// <body ng-app="playerApp" class="ng-scope"s>...</body>

angular.element ($0) . scope ()
// Scope {$id: 1, $$childTail: ChildScope, ...}

Chrome keeps an in-order history of DOM nodes selected in the inspector, so the last node
you clicked is available as $1, two nodes ago is $2, and so on.

Services

Even if your application might not take full advantage of the many benefits of service
type abstraction (which it should!), manipulating service types from the console can be
an extremely useful debugging tool for testing model manipulation, remote API access,
authentication, and more. This can be done as follows:

(browser console)

// injector allows you access to dependency injected components
// 'mg' is the umbrella module dependency for built-in services
var $injector = angular.injector(['ng'])
// Shttp can be now accessed with its string name via
// regular AngularJS dependency injection

, Shttp = $injector.get ('Shttp');

// combined into a single line:
var Shttp = angular.injector(['ng']) .get ('Shttp');

303

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Hacks

Of course, you might also access your application's non-AngularlS services as well:

(browser console)

var Player = angular.injector(
// access module in which the Player service is defined
['footballApp.players.services.player']

// grab Player service through dependency injection

) .get ('Player') ;

There's more...

Modification of the model, changing the page location through $1ocation, or any other
actions that modify the application state and are performed within the console will likely force
a $digest cycle to occur due to the fact that AngularJS does not pay attention to the console.
An easy way to do it is as follows:

(browser console)
angular.element (

document .querySelector ('.ng-scope')) .scope () .Sapply ()

Alternately, if you want to avoid a potential Sapply () conflict that arises due to the $digest
cycle possibly already being executed, an instantaneous $timeout callback will safely begin
a new $digest cycle if one is not already in progress. This can be done as follows:

(browser console)

angular.injector (['newApp']) .get ('Stimeout') (function() {}, 0)

DRYing up your controllers

When defining the model data and methods in controllers, you will quickly become tired of
typing $scope repeatedly. Some developers simply take this on the chin and accept it as
a necessity of the framework, but there is a superb method that avoids this verbosity and
simultaneously makes your controllers more DRY.

Getting ready

Suppose that you have a controller in a fantasy football application, appearing as follows:

app.module ('myApp', [1)
.controller('Ctrl' function($scope) {
$scope.team = {
name: 'Bears',

304

www.it-ebooks.info

http://www.it-ebooks.info/

city: 'Chicago'

}i

$scope.player = {
name: 'Jake Hsu',
team: 'Bears',
number: 29,
position: 'RB'

}i

$scope.trade = function(playerl, player2)
// S$scope.trade() logic

}i

$scope.drop = function(player) ({
// S$scope.drop() logic

}i

1)

How to do it...

Chapter 10

Even with two scope objects and two methods, the number of times $scope needs to be
typed here is extremely annoying. The central reason that demands this verbose syntax is
that $scope is an existing object being injected, and you are merely extending it. Therefore,

in this scenario, it makes sense to put the built-in angular.extend () method to use.
The controller can be refactored in the following way:
(app.Js)

angular.module ('myApp', [1)
.controller('Ctrl', function($Sscope) {
angular.extend ($scope, {
team: {
name: 'Bears',
city: 'Chicago'
b
player:
name: 'Jake Hsu',
team: 'Bears',
number: 29,
position: 'RB'
b
trade: function(playerl, player2) {
// $scope.trade() logic
b
drop: function(player) {
// S$scope.drop() logic

www.it-ebooks.info

305

http://www.it-ebooks.info/

AngularJS Hacks

[Q JSFiddle: http://jsfiddle.net/msfrisbie/3Laxmcn9/]

Instead of a cumbersome sequence of value and method property definitions, all of them can
be defined upon a single object and that object can be merged into the $scope object. Since
this only occurs when the controller is initialized, unless this controller is being created a huge
number of times, any performance hits taken from this are outweighed by the significantly
cleaner code.

There's more...

An observant developer will note that extending $scope with a monolithic object in this

way takes away a critical component that might be needed: the ability to individually manage
the events occurring during each $scope property assignment. Since the object that will
extend $scope must be instantiated before it can be merged, a property in the merged object
that throws an exception or takes a long time to complete (for example, a HTTP request), will
cause problems.

If one-off exception handling is needed during initialization, an IIFE can be used in a pinch,
although an excessive number of these will quickly become cumbersome and the benefit of
the angular.extend () method's brevity will be lost.

If the initialization data takes a long time to calculate, then that is probably something that
you should rethink before putting it in the controller initialization anyway.

Using ng-bind instead of ng-cloak

The ng-cloak directive is a workable solution to the rendering latency problem, but to the
seasoned developer, blanking out the entire page or sprinkling ng-cloak throughout the
application's templates seems like a suboptimal solution. In many scenarios, a more elegant
fix would be to display as much of the page as possible and interpolate data as it is calculated
to make the page load seem snappier to the end user.

306

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/3Laxmcn9/
http://www.it-ebooks.info/

Chapter 10

How to do it...

The {{ }} interpolation syntax in AngularJS causes problems when the template loads,
and is displayed before compilation can occur. The following is an example:

<div ng-controller="PlayerCtrl"s>
Player: {{ player.name }}
</div>

If this template is displayed before compilation, it will suffer from the uncompiled template
flash problem and display Player: {{ player.name }} momentarily.

The ng-cloak fix is as follows:

<div ng-cloak ng-controller="PlayerCtrl"s>
Player: {{ player.name }}
</div>

Of course, this hides the entire <div> element until Angular]S can compile it and strip away
the ng-cloak attribute. This works, but you can do better.

Instead of interpolating using {{ }}, the ng-bind directive will replace the contents of that
element with the evaluated expression passed to it. This can be done as follows:

<div ng-controller="PlayerCtrl"s>
Player:
</div>

With this, the uncompiled template will simply flash P1ayer :, which allows the page to
be displayed faster without hiding everything, and the bound data will be interpolated as
AngularJS transparently compiles the template.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/807L7Lbh/]

Since HTML element's attributes in the DOM aren't visible, the page will appear normal, but
unfilled until compilation. The bound data is then interpolated as it becomes available, and
the user simply sees the data pop into the page after a brief delay.

307

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/807L7Lbh/
http://www.it-ebooks.info/

AngularJS Hacks

Commenting JSON files

This isn't quite an AngularJS hack per se, but when you are writing JSON configuration

files (for example, in your Grunt configuration, Bower package definition, or npm package
definition), you might find that you forgot the purpose of a line. Inconveniently, JSON does not
support formal comments, but there are some clever (but highly controversial) workarounds
that can be used with a pinch.

How to do it...

If the JSON file is parsed in a certain way, you can take advantage of that by allowing the data
format to bleed outside the boundaries of the JSON specification.

Ignored properties

If you know that a section of JSON won't be exhaustively parsed, that is, there is a defined set
of keys that it will examine, then the easiest route is to just incorporate a property that the
program will ignore. This can be done as follows:

(package.json)

{

"name": "playerApp",

"version": "1.0.0",

" comment devDependencies": "External test, build, or documentation
framework components that the application does not directly depend
upon",

"devDependencies": {

"grunt": "*0.4.1",

}

Duplicate properties

An ignored property will suffice in many cases, but having to dodge whatever entity is
consuming the JSON is a bit like boxing with it, and it will often be the case that you won't

be able to sprinkle _comment properties everywhere you want to. If you determine that the
JSON parser will use only the last value encountered for a property, then you can incorporate
duplicate values for properties that the parser will theoretically ignore, as long as the last
encountered value is valid. This can be done as follows:

(package.json)

{

308

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

"name": "playerApp",
"version": "1.0.0",
"devDependencies": "External test, build, or documentation framework
components that the application does not directly depend upon",
"devDependencies": {
"grunt": "JavaScript task runner",
"grunt": "*0.4.1",
"grunt-autoprefixer": "Parse CSS and add vendor-prefixed CSS
properties",
"grunt-autoprefixer": "*0.7.3",

Don’'t run with scissors

If you're unwilling to take the risk of a nonstandard JSON file, the proper way of commenting
on a JSON file is to strip out the comments with a preprocessor before handing it off to the
parser using something such as JSMin.

| suspect that Douglas Crockford might like to take a swing at me for recommending the first
two solutions, but the fact of the matter is that there are certain scenarios, especially with
smaller projects, where they work just fine.

There's more...

As mentioned earlier, this strategy is highly controversial and has the potential to cause
trouble if you're not careful.

Since doing this sort of thing goes against the JSON specification, you are at the mercy of
whatever is using this JSON file. Various JSON interpreters will handle this in different ways.

If the JSON file is fed into a stream parser, or parsed into a dictionary where there is no
guarantee of key ordering, this will encounter problems. But hey, it's called a hack for a reason.

Creating custom AngularJS comments

An overlooked ability of Angular]S is its ability to wield directives with the intention of
streamlining the development process. One awesome way to do this is by using directives
to comment in your application.

309

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Hacks

How to do it...

Normally, nesting HTML comments requires variable syntax as shown here:

<l--
<div>
<p>I am the outer comment</p>
<l- -
<p>I am the inner comment</p>
- >
</div>

-->

This is completely obnoxious. It would be much better to be able to add comments
anywhere without having to worry about which comments are already in place. Since the
HTML comment convention doesn't suit your needs, you are able to just make your own
comment directive, as follows:

(app.js)

angular.module ('myApp', [1)
.directive('x', function() {
return {
restrict: 'AE',
compile: function(el) {
el.remove () ;

13N
Now, you are able to do the following, using attribute comments:

(index.html)

<div x>
<p>I am the outer comment</p>
<p x>I am the inner comment</p>
</div>

Alternately, you can do the following with element comments:
(index.html)
<X>

<div>

<p>I am the outer comment</p>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

<xX>
<p>I am the inner comment</p>
</x>

</div>

</x>

[Q JSFiddle: http://jsfiddle.net/msfrisbie/95nc7j7z/]

This commenting style allows you to instruct the client to strip out chunks of the DOM upon
template compilation. Every time AngularJS encounters the directive, it will just destroy that
entire DOM node during the compile phase and move on.

HTML comments aren't quite what you'd expect. The customary <! -- --> pairing actually
comprises SGML delimiters <! >, and within the delimiters is a single SGML comment that
is bookended by - - --. This is what prevents you from nesting comments without variable
syntax, or using - - within comments.

You also have quite a bit of freedom to make the HTML-compliant comment directive string

or SGML-compliant comment directive string appear how you want it to. Choosing a string of
alphabetic characters, such as x or cmnt, will always be a valid directive name, and you can

use this as both an element or attribute directive. However, since AngularJS will be handling

the compilation, you are able to choose special characters such as , or | to act as a directive
comment. You usually cannot use these as an element tag by themselves (< | ></ | >—you'll need
to use something as <a | >), but as long as it follows the HTML5 attribute specification
and the browser doesn't barf all over the place when it parses the HTML, the comment directive
world is your plaything—go crazy.

Keep in mind that this probably isn't something you would include in a production application;
this is more of a tool to be used in the development process. Since it's best to not serve the
client data you know they won't use or need, a production application's asset preparation is
usually smart enough to remove HTML comments during minification, so giving preference to
using them is recommended.

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/95nc7j7z/
http://www.it-ebooks.info/

AngularJS Hacks

Extensibility

It is also completely possible to extend these comment directives in ways that might suit your
development process. For example, if you wanted the directive to be cut out only when a flag
is set, you could do the following:

(app.js)

angular.module ('myBRpp', [1)

.directive('x', function() {
return {

restrict: 'AE',
link: function(scope, el)
scope.$watch ('flags.purgeComments', function (newvVal) {
if (newval)
el.remove () ;

[Q JSFiddle: http://jsfiddle.net/msfrisbie/5vejl1z39/]
Obviously, this example cannot be reversed since the DOM node is being destroyed.

Referencing deep properties safely using

$parse

When dealing with object access, a seasoned JavaScript developer will be quite familiar with
this error message:

TypeError: Cannot read property '...' of undefined

This, of course, is the result of attempting to access a property on an object that does
not exist in the current lexical scope. It is often the case that the developer is aware of
the possibility that the referenced object can be undefined, but it would be preferred
that a failed property access returns undefined instead of throwing an error.

How to do it...

The typical use case is an asynchronous method that references a piece of data that isn't
necessarily initialized before use.

312

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/5vej1z39/
http://www.it-ebooks.info/

Chapter 10

Suppose that the user object in this example is populated with a user object served from the
backend, filled upon login authentication, and cleared upon logging out, as shown here:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($log, $scope) {
$scope.$watch('user', function(newUserVal) ({
$log.log (newUserVal.address.city) ;
P
P

// console on pageload:
// TypeError: Cannot read property 'address' of undefined

This might appear safe, but if the user has not authenticated, this will throw an error when
attempts are made to access the address property.

To protect your application from this, you can inject the $parse service to protect against
TypeError when referencing a deep property:

(app.js)

angular.module ('myApp', [])
.controller('Ctrl', function($parse, $log, $scope)
$scope.$watch('user', function(newUservVal) ({
$log.log($parse('address.city') (newUserVal)) ;
1)
1)

// console on pageload:
// undefined

This parses the expression argument and returns a function to check the expression against.

The returned value will now be undefined for a reference, as shown here, that caused
TypeError in the previous example.

[Q JSFiddle: http://jsfiddle.net/msfrisbie/oao5ravs/]

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/oao5rav5/
http://www.it-ebooks.info/

AngularJS Hacks

The following would be the functional—though less idiomatic—equivalent to the
preceding example:

(app.js)

angular.module ('myApp', [1)
.controller('Ctrl', function($parse, $log, $scope) {
$scope.$watch('user', function() {
$log.log($parse ('user.address.city') ($scope)) ;
P
P

// console on pageload:
// undefined

Using $parse in this way takes advantage of Angularl]S's template interpolation conventions.

The Sparse service is used implicitly when interpolating expressions in the view, allowing
you to use {{ user.name }} inthe templates without having to worry about handling
an incomplete object hierarchy. If the property can be accessed, it will be returned and
interpolated; otherwise, it will be returned as undefined.

The $parse service can handle multipart expressions, as follows:

(app.Jjs)

angular.module ('myApp', [])
.controller('Ctrl', function($log, $scope, $parse) {
$scope.$watch('user', function(newUserVal) ({
$log.log(Sparse('"City: " + address.city') (newUserval)) ;
1
P

// console on pageload:
// "City: n

Note that this will not log "City: undefined", which is what would
s happen if you perform "City: " + undefined in a vanilla JavaScript.

314

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

It can also handle attempts to invoke of methods that might not exist:
(app.Jjs)

angular.module ('myApp', [])
.controller('Ctrl', function($log, $scope, S$parse)
$scope.$watch('user', function(newUserVal) ({
$log.log (Sparse (
'v"address: " + address.fullStr()') (newUserVal)

// console on pageload:
// "Address: "

We can add the scope data as follows:
(app.Jjs)

angular.module ('myApp', [])
.controller('Ctrl', function($log, $scope, S$parse) {
$scope.user = {
address: {
number: 1060,
street: 'W Addison St',
city: 'Chicago’',
state: 'IL',
zipCode: 60613,
fullStr: function()
return this.number + ' ' +
this.street + ', ' +
this.city + ', !
this.state + ' !
this.zipCode;

}
Vi

$scope.$watch('user', function(newUservVal) ({
$log.log (Sparse('"City: " + address.city') (newUserVal)) ;

1) s

$scope.$watch('user', function(newUservVal) ({
$log.log (Sparse (

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Hacks

'"Address: " + address.fullStr()'
) (newUserVal)) ;
13N
13N

// console on pageload:
// Address: 1060 W Addison St, Chicago, IL 60613

C:l JSFiddle: http://jsfiddle.net/msfrisbie/t12ym3as/

» The Preventing redundant parsing recipe demonstrates how to refactor your
application in order to trim down identical expression parsing

Preventing redundant parsing

The $parse operation can often be unnecessarily repetitive in certain situations. If your
application scales to the point where this redundancy is starting to become a performance
factor, then the parsing can be refactored in order to prevent reparsing the same expression
over and over.

Getting ready

Suppose that your application resembles the following code:

(index.html)

<div ng-app="myApp">
<div ng-controller="OuterCtrl">
<div ng-repeat="player in data.playerIds"
ng-controller="InnerCtrl">
</div>
</div>

</div>

(app.js)

angular.module ('myApp', [])
.controller('OuterCtrl', function($scope, $log) {
$scope.data = {

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/t12ym3as/
http://www.it-ebooks.info/

Chapter 10

playerIds: [1,2,3]
}i
)
.controller ('InnerCtrl', function($scope, $log, Sparse) {
$scope.myExp = function()
$log.log ('Expression evaluated') ;
return 'watchedValue';
}i

$Sscope. Swatch (

Sparse (
// this IIFE is structured so you can see when
// Sparse() is being invoked
(function()

$log.log ('Parse compilation called');
return 'myExp()';
O
),
function (newval) ({
$log.log('Watch handler called: ', newVal);

13N
This will log the following when the page is loaded:

(browser console)

Parse compilation called

Parse compilation called

Parse compilation called
Expression evaluated

Watch handler called: watchedValue
Expression evaluated

Watch handler called: watchedValue
Expression evaluated

Watch handler called: watchedValue
Expression evaluated

Expression evaluated

Expression evaluated

Here, your application is parsing an identical expression for every ng-repeat iteration.
This can be prevented!

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Hacks

How to do it...

The $parse () method returns a function that takes the object to which the evaluated
expression needs to be applied. This function can be saved and reused in order to prevent
redundant parsing, as follows:

(app-Jjs)

angular.module ('myApp', [1)
.controller ('OuterCtrl', function($scope, $log, Sparse) {
$scope.data = {
playerIds: [1,2,3],
// perform the Sparse once and expose the returned
// function on S$scope
repeatParsed: $parse(
(function() {
$log.log("Parse compilation called");
return 'myExp()';

Ho

}i
3
.controller ('InnerCtrl', function($scope, $log) {
$scope.myExp = function()
$log.log ("Expression evaluated") ;
return 'watchedValue';
}i
// each watcher will implicitly invoke the S$Sparse() return
// function with S$scope as the parameter
$Sscope. $watch ($scope.data.repeatParsed, function (newVal) {
$log.log ("Watch handler called: ", newVal);
3N
1)

~\l
(:l JSFiddle: http://jsfiddle.net/msfrisbie/hzevdLd7/

Now, the parsing occurs when the parent controller is initialized and will occur only once, as
shown here:

(browser console)

Parse compilation called
Expression evaluated

318

www.it-ebooks.info

http://jsfiddle.net/msfrisbie/hzevdLd7/
http://www.it-ebooks.info/

Chapter 10

Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Watch handler called: watchedValue
Expression evaluated
Expression evaluated
Expression evaluated

The $parse () method doesn't evaluate the expression; it only figures out how to extract the
expression from the string and prepares it for evaluation. Moving this preparatory computation
to earlier in the application setup allows you to reuse it.

See also

» The Referencing deep properties safely using $parse recipe shows how you can
utilize expression parsing to avoid boilerplate object inspection when interacting
with deep objects

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

$apply()

about 135

anti-pattern awareness 139, 140

invoking 135-137

safeApply() method 136
$compile service 39
$http

used, for creating promises 264-267
$parse

using, for property reference 312-316
$q.all()

URL 261

used, for implementing promise

barriers 260-263

$q.when()

used, for creating promise wrappers 263, 264
Sresource

used, for creating promises 267, 268
SrollbackViewValue option 285, 286
$scope.Son() method 154
$scope inheritance

managing 157-160
$submitted state 287, 288
$StemplateCache 39, 40
$timeout wrapper 140
Stouched state 287, 288
$watchCollection

about 223

used, for optimizing application 234-236
$Swatch deregistration

used, for optimizing application 236, 237
SwatchGroup

used, for combining watchers 279, 280

Index

$watch types
deploying 228, 229
DRY watchers, creating 229
managing 228, 229
watch callbacks 228
watchers 228
watch expressions 228
controller as syntax
benefits 152
using 149-151
<select> element 175-177

A

addClass animations
creating, with ngShow 115, 116
CSS animation 117
CSS transitions 116
JavaScript animation 117
working 118, 119
allowinvalid option 284
angular.element() method 39
AngularlJS
about 153, 222, 245
directives 7
filters 46
hiding, from user 143, 144
landmines, recognizing 222-224
services 46
AngularJS events
broadcasting 154, 155
configuring 153
emitting 155, 156
event listener, deregistering 157
using 153

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS forms
custom validators 173-175
state, tracking 169-171
validating 171-173
working with 168, 169
AngularJS landmines, recognizing
$watchCollection 223
filters in ng-repeat 222
large object 222
template watchers, controlling 223
AngularJS testing 189, 190
animations
about 83
addClass animations, creating
with ngShow 115, 116
batched animations, staggering 125-127
enter animations, creating with nglf 92, 93
leave and concurrent animations, creating
with ngView 98-101
move animations, creating with
ngRepeat 105, 107
removeClass animations, creating with
ngClass 120-122
simple fade in/out animation, creating 84-88
tackling ways 83
application
bootstrapping, manually 132, 133
manipulating 302-304
optimizing, $watchCollection used 234-236
optimizing, $watch deregistration
used 236, 237
optimizing, equality $watch used 232, 233
optimizing, reference $watch used 229-231
optimizing, track by in ng-repeat
used 241, 242
optimizing, with compile phase in
ng-repeat 239, 240
scopes, manipulating 302, 303
services, manipulating 303, 304
watchers, inspecting 225-227
application file and module organization
don't fight reusability approach 142
example directory structure 142, 143
group by feature 141
maintaining 140
one module, one file, and one name
approach 141

322

unified naming and organization convention,
selecting 141
application templates
managing 145, 146
ng-template, using 147
pre-defined templates, in cache 148
remote server templates 146, 147
string template 146
array
populating 177
asynchronous validation, custom form
validators 297, 298
attribute directive
about 11-13
advantages 11

batched animations
staggering 125-127
bind once
about 238, 292, 293
isolate scope bindings 294, 295
ng-repeat directive 294
browser global variable 193
built-in directives
about 161
ngController 161
nglf 165, 166
nginclude 161
ngRepeat 162-165
ngSwitch 167
ngView 162
built-in search filters
using 56-58

C

catch() method 256
chained handlers
about 254
rejecting 254
class directive 13, 14
comment directive 14, 15
compile phase in ng-repeat
used, for optimizing application 239, 240
config function 80

www.it-ebooks.info

http://www.it-ebooks.info/

controllers
initializing 304-306
currency filters
using 48-51
custom Angular]JS comments
creating 309-311
extending 312
custom comparators
used, for filtering 65-67
custom data filters
creating 61-63
custom form validators
about 295
asynchronous validation 297, 298
synchronous validation 296
working 298, 299
custom search filter expression
building 71, 72
custom search filters
creating 64, 65

D

DAMP tests
writing 212-214
data filters
using 55, 56
date filter
using 51-53
debounce option 283, 284
debugging
with json filter 53-55
decorator
event bus as 187, 188
deferred
about 248, 249
URL 249
Descriptive And Meaningful
Phrases (DAMP) 212
directed acyclic graph (DAG) 262
directives
about 7
attribute directive 11-13
class directive 13, 14
comment directive 14, 15
creating 8,9
element directive 10, 11

interfacing, isolate scope used 20-24
linking 17-19
scope inheritance 28-30
templating 30-32
transclusion 35-37
working through 9, 15
DOM
manipulating 15-17
Domain Specific Language (DSL) 212
Don't Repeat Yourself (DRY) 212
down watched models
trimming 242, 243
DRY watchers
creating 229

E2E tests

about 204

executing 197

incorporating, in Grunt 194, 197

writing 204-208
element directive 10, 11
element global variable 193
end-to-end tests. See E2E tests
enter animations

creating, with nglf 92, 93

CSS3 animation 94

CSS3 transition 93

JavaScript animation 94

working 95, 97
equality $watch

used, for optimizing application 232, 233
event bus

as decorator 187, 188

as service 186

basic implementation 183

building 182, 183

cleanup 184

F

filters
about 46
built-in search filters, using 56-58
chaining 59-61
currency filters, using 48-51

323

www.it-ebooks.info

http://www.it-ebooks.info/

custom data filters, creating 61-63
custom search filters, creating 64, 65
data filters, using 55, 56
date filter, using 51-53
json filter, using 53-55
lowercase filters, using 46-48
number filters, using 48-51
search filter, building 68-70
uppercase filters, using 46-48
finally() method 257
finite state machine (FSM) 84
form errors
cleaning up, ngMessages directive
used 289-291

G

getterSetter option 284, 285
Grunt
E2E tests, incorporating 194, 197
Protractor, incorporating 194, 197
test environment, configuring 190-192
test environment, executing 190-192
Gruntfile
modifying 195, 196

H

hack 309
HTML5 datetime input types
<input type="date"> type 278
<input type="datetime-local"> type 278
<input type="month"> type 278
<input type="time"> type 278
<input type="week"> type 278
using 278
working 279

isolate scope

used, for interfacing with directives 20-24

using 33, 34
isolate scope attribute expressions 295
isolate scope bindings 294, 295

324

J

JSON files
commenting 308, 309
duplicate properties, incorporating 308
ignored properties, incorporating 308
JSMin, using 309

json filter
using, for debugging 53-55

K

Karma test runner
using 190, 191

L
lazy binding

isolate scope attribute expressions 294, 295

methods and expressions 295
ng-repeat directive 294
used, for trimming watch list 292, 293
leave and concurrent animations
creating, with ngView 98-100
CSS3 animation 101
CSS3 transition 100
JavaScript animation 102
working 103-105
limitTo filters 59
lowercase filters
using 46-48

mock backend server
setting up 209-212
model input
controlling, with ngModelOptions 282
move animations
about 114
creating, with ngRepeat 105-107
CSS3 animation 108
CSS3 transition 107
JavaScript animation 109
working 111-114

www.it-ebooks.info

http://www.it-ebooks.info/

native route resolves

promises, incorporating into 270-272
nested directives

interaction between 24-26
nested ui-router resolves

implementing 273, 276

single-state promise dependencies 274, 275

state promise inheritance 273, 274
ng-bind

ng-cloak, avoiding with 306, 307
ngClass directive

about 115, 120

removeClass animations,

creating with 120-122

ng-cloak

about 306

avoiding, with ng-bind 306, 307
ngController directive 161
ngForm directive 115, 120
ngHide directive 115,120
nglf directive

about 92, 98, 165, 166

enter animations, creating with 92, 93
nginclude directive 92, 98, 161
ngMessage directive 92, 98
ngMessages directive

about 115, 120

used, for cleaning up form errors 289-292
ngMockE2E module 208
ngModel directive 115, 120
ngModelOptions

$rollbackViewValue option 285

allowlnvalid option 284

debounce option 283, 284

getterSetter option 284, 285

time zone option 285

updateOn option 282, 283

URL 283

used, for controlling model inputs 282

working 286, 287
ngO0ptions directive

about 175-177

array, populating within 177, 178

null options 180

object, populating within 181

option groups, implementing 179
option model assignment,
defining explicitly 179

option values, defining 178

option values, defining explicitly 181
ng-repeat directive 240, 294
ngRepeat directive

about 92, 98, 162-165

used, for creating move animations 105-107
ngShow directive

about 115, 120

addClass animations, creating with 115, 116
ng-strict-di directive

sanity checking with 281
ngSwitch directive 92, 98, 167
ngView directive

about 92, 98, 162

leave and concurrent animations,

creating with 98-100

null option 180
number filters

using 48-51

0

object
populating 181
optional nested directive controllers 26-28
option groups
defining, explicitly 179
option model assignment
defining, explicitly 179
option values
defining, explicitly 178-182
orderBy filters 59

P

Page Object test pattern

using 214-219
promise barriers

implementing, $g.all() used 260-263
promise handlers

about 255, 256

and promises, chaining 253
promise notifications

implementing 258-260

325

www.it-ebooks.info

http://www.it-ebooks.info/

promises
about 246, 250, 252
and promise handlers,
chaining 253-257
catch() method 256
chained handler data handoff 254
chained handler, rejecting 254
deferred 248, 249
finally() method 257
implementing 246
incorporating, into native route
resolves 270-272
using, with $http 264-267
using, with $resource 267, 268
using, with Restangular 268-270
working 247, 248
promise.then() method 258
promise wrappers
creating, $q.when() used 263, 264
Protractor
about 193
configuration file, setting 196, 197
Gruntfile, modifying 195, 196
incorporating, in Grunt 194, 197
installation 194
Selenium's WebDriver manager 195
publish-subscribe (pub-sub) architecture 182

recursive directives

$compile service 39

$templateCache 39, 40

about 37, 38, 42, 43

angular.element() method 39
redundant parsing

preventing 316-319
reference $watch

used, for optimizing application 229-231
remote server templates 146, 147
removeClass animations

creating, with ngClass 120

CSS animation 122

CSS transitions 122

JavaScript animation 123

working 124, 125

326

Restangular
used, for creating promises 268, 270

S

scope inheritance, directives 28-30
scopes, application
manipulating 302, 303
search filter
building, from scratch 68-70
Selenium's WebDriver manager
using 195
Selenium WebDriver 193
service constants
using 73, 74
service decorators
using 80-82
service factories
about 75
using 75, 76
service providers
using 78-80
services
about 46
using 76-78
service values
using 73, 74
simple fade in/out animation
creating 84-88
ng-cloak, utilizing 88
single-state promise dependencies 274, 275
slideDown() method
replicating 89-91
slideUp() method
replicating 89-91
string template 146
synchronous validation, custom form
validators 296

T

template-binding watch expressions
optimizing 237, 238

template watchers 223

time zone option 285

track by, in ng-repeat
used, for optimizing application 241, 242

www.it-ebooks.info

http://www.it-ebooks.info/

transclusion, directives
using 35-37

U

ui-router framework 273
unit tests

controller, initializing 202

creating 201

executing 203

HTTP backend, initializing 202

initializing 199

writing 197-202
universal watch callback

creating 224, 225
updateOn option 282, 283
uppercase filters

using 46-48

\'}

validators, AngularJS forms 173

w

watch callbacks 228
watchers
combining, with $watchGroup 279, 280
watchers, application
inspecting 225, 227
watch list
trimming, lazy binding used 292, 293

Y

Yeoman
test environment, configuring 190-192
test environment, executing 190-192

www.it-ebooks.info

321

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
AngularJS Web Application
Development Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home

to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Mastering AngularJS Directives

Mastering AngularJS

Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready directives
for any AngularJS-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2. Dissect the life cycle of a directive and understand
why they are the base of the AngularJS framework.

3. Discover how to create structured, maintainable,
and testable directives through a step-by-step,
hands-on approach to AngularJS.

Building an Application
with AngularJS

Gabriel Schenker

Building an Application with
AngularJsS [Video]

ISBN: 978-1-78328-369-9 Duration: 02:22 hours

Get creative with AngularJS to develop
exciting applications

1. Use views and controllers to build an application
from the ground up quickly.

2. Construct Angular services and implement
dependency injection with the help of
illustrative examples.

3. Master asynchronous programming through the
effective use of JavaScript coupled with Angular.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

community experience distilled

[open source

PUBLISHING

Mastering Web Application
Development with AngularJ$S
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by understanding
the Angular]S philosophy and applying it to

Mastering Web Application real-life development tasks.

Development with AngularJS

2. Effectively structure, write, test, and finally deploy
your application.

3. Add security and optimization features to your
Angular]S applications.

4. Harness the full power of AngularJS by creating
your own directives.

AngularJS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamic directives to fuel your
single-page web applications using AngularJS

1. Learn how to build an AngularJS directive.

2. Create extendable modules for plug-and-play
usability.

3. Build apps that react in real time to changes in
your data model.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Maximizing AngularJS Directives
	Introduction
	Building a simple element directive
	Working through the directive spectrum
	Manipulating the DOM
	Linking directives
	Interfacing with a directive using isolate scope
	Interaction between nested directives
	Optional nested directive controllers
	Directive scope inheritance
	Directive templating
	Isolate scope
	Directive transclusion
	Recursive directives

	Chapter 2: Expanding Your
Toolkit with Filters
and Service Types
	Introduction
	Using the uppercase and lowercase filters
	Using the number and currency filters
	Using the date filter
	Debugging using the json filter
	Using data filters outside the template
	Using built-in search filters
	Chaining filters
	Creating custom data filters
	Creating custom search filters
	Filtering with custom comparators
	Building a search filter from scratch
	Building a custom search filter expression from scratch
	Using service values and constants
	Using service factories
	Using services
	Using service providers
	Using service decorators

	Chapter 3: AngularJS Animations
	Introduction
	Creating a simple fade in/out animation
	Replicating jQuery's slideUp() and slideDown() methods
	Creating enter animations with ngIf
	Creating leave and concurrent animations with ngView
	Creating move animations with ngRepeat
	Creating addClass animations with ngShow
	Creating removeClass animations with ngClass
	Staggering batched animations

	Chapter 4: Sculpting and Organizing your Application
	Introduction
	Manually bootstrapping an application
	Using safe $apply
	Application file and module organization
	Hiding AngularJS from the user
	Managing application templates
	The "Controller as" syntax

	Chapter 5: Working with the Scope and Model
	Introduction
	Configuring and using AngularJS events
	Managing $scope inheritance
	Working with AngularJS forms
	 Working with <select> and ngOptions
	Building an event bus

	Chapter 6: Testing in AngularJS
	Introduction
	Configuring and running your test environment in Yeoman and Grunt
	Understanding Protractor
	Incorporating E2E tests and Protractor in Grunt
	Writing basic unit tests
	Writing basic E2E tests
	Setting up a simple mock backend server
	Writing DAMP tests
	Using the Page Object test pattern

	Chapter 7: Screaming Fast AngularJS
	Introduction
	Recognizing AngularJS landmines
	Creating a universal watch callback
	Inspecting your application's watchers
	Deploying and managing $watch types efficiently
	Optimizing the application using reference $watch
	Optimizing the application using equality $watch
	Optimizing the application using $watchCollection
	Optimizing the application using $watch deregistration
	Optimizing template-binding watch expressions
	Optimizing the application with the compile phase in ng-repeat
	Optimizing the application using track by in ng-repeat
	Trimming down watched models

	Chapter 8: Promises
	Introduction
	Understanding and implementing a basic promise
	Chaining promises and promise handlers
	Implementing promise notifications
	Implementing promise barriers with $q.all()
	Creating promise wrappers with $q.when()
	Using promises with $http
	Using promises with $resource
	Using promises with Restangular
	Incorporating promises into native route resolves
	Implementing nested ui-router resolves

	Chapter 9: What's New in AngularJS 1.3
	Introduction
	Using HTML5 datetime input types
	Combining watchers with $watchGroup
	Sanity checking with ng-strict-di
	Controlling model input with ngModelOptions
	Incorporating $touched and $submitted states
	Cleaning up form errors with ngMessages
	Trimming your watch list with lazy binding
	Creating and integrating custom form validators

	Chapter 10: AngularJS Hacks
	Introduction
	Manipulating your application from the console
	DRYing up your controllers
	Using ng-bind instead of ng-cloak
	Commenting JSON files
	Creating custom AngularJS comments
	Referencing deep properties safely using $parse
	Preventing redundant parsing

	Index

