Dependency Injection
with AngularJS

Design, control, and manage your dependencies with AngularJS
dependency injection

Dependency Injection with
AngulardS

Design, control, and manage your dependencies with
AngularJS dependency injection

Alex Knol

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Dependency Injection with AngulardS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013
Production Reference: 1111213

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-656-6
www . packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandeyl210@gmail . com)

Credits

Author
Alex Knol

Reviewers
Iwan van Staveren

Ruoyu Sun

Acquisition Editor
James Jones

Commissioning Editor
Neil Alexander

Technical Editors
Sharvari H. Baet

Dennis John

Copy Editors
Alisha Aranha

Roshni Banerjee
Tanvi Gaitonde
Gladson Monteiro
Shambhavi Pai
Adithi Shetty

Project Coordinator
Sherin Padayatty

Proofreader
Simran Bhogal

Indexer
Rekha Nair

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Alex Knol is a lifelong tech geek with a passion for automation. After spending some
years away from software development, around the beginning of this century, he took
up PHP development based on his early experiences with C and Pascal. Surprisingly,
he has never really used web tools, but applications instead, to make websites, such as
the platform that's driving kaizegine . com. Having built various applications using
web technologies and frameworks, such as Symfony, he discovered AngularJS at the
beginning of 2008, while searching for a way to structure frontend application code
and make development easy. He used Angular]S, among other technologies, for a
job-matching project in the Netherlands and, more recently, for an online website
designer named Risingtool.com.

I'd like to thank the Angular]S team for continuously improving the
framework and documentation; my employer, Risingtool. com,

for allowing me to work on this book, partly on their time. This book
also took time away from my family time, for which I'd like to thank
my wife and children.

About the Reviewers

Iwan van Staveren is a software architect. He has over 14 years of experience in
developing all kinds of web applications. He loves working with the Symfony2 and
Angular]s frameworks. He is owner of the privately-owned E-one Software.

Ruoyu Sun is a designer and developer living in Hong Kong. He is passionate
about programming and has been contributing to several open source projects.

He has founded several tech startups, using a variety of technologies, before going
into the IT industry. He is the author of the book Designing for XOOPS, O'Reilly
Media, July 2011.

I would like to thank all my friends and family who have always
supported me.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www . Packt Pub . com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ]PA(:KT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On-demand and accessible via web browsers

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Learning to Fly 5
Let's get going 5
Adding a controller 8
What about routes? 9
Showing a list 1"
Adding a filter 12
Chart directives 13
Using services 15
Summary 16
Chapter 2: Better Code 17
Wiring up the backend 17
Duplicating code 19
Angular service to the rescue 21
The theory behind Dependency Injection 24
Summary 28
Chapter 3: The Magic 29
Application flow 29
Different ways of injecting 31
Summary 34
Chapter 4: Testing 35
Test automation 35
Test your code, not the framework 37
Testing the parts 37
The Karma test runner 47
End-to-end testing 50
Setting up the Protractor 51
Summary 54

Table of Contents

Chapter 5: Large Applications 55
Organizing your application 55
Going a bit larger 57
Organizing using dynamic teams 58
Using modules 58
Organizing using directives 60
Nesting controllers 60
More powerful nesting 61
Application communication 62
Events 62
Let the model speak 62
Summary 63
Index 65

Lii]

Preface

Dependency Injection is a term often used in the world of object-oriented software
design. AngularJS depends on it at its core. This book teaches you why and how to
use Dependency Injection with Angular]S.

What this book covers

Chapter 1, Learning to Fly, will take you through the basics of an Angular
application. This chapter prepares a sample app that will be used throughout
the examples in the book.

Chapter 2, Better Code, takes you from bad coding practices to maintainable
and testable software using Dependency Injection. It also shows you the
theory of Dependency Injection and some of its positive effects.

Chapter 3, The Magic, is a technical explanation of how Dependency Injection
can be used with Angular]S and the caveats to watch out for.

Chapter 4, Testing, is a chapter that will show you the advantages that Dependency
Injection brings when testing your application. Integration testing and unit testing
are covered. The set up and use of recommended Angular]S testing frameworks
are covered as well.

Chapter 5, Large Applications, will show you ways to implement the theory
and techniques used in large applications. The result will be less code and
better maintainability.

Preface

What you need for this book

To play along with the examples in this book, you just need a working installation
of NodeJS and a text editor. To view the output, a web browser is required.

Who this book is for

If you are a developer or software engineer, this book is ideal for you. You should
have a basic understanding of JavaScript and web development.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Earlier, you saw how to use the ng-app attribute to bootstrap the application."

A block of code is set as follows:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></scripts>

<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></script>

<script src="http://cdn.oesmith.co.uk/morris-0.4.1.min.js"></
scripts>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></scripts>

<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></script>

<script src="http://cdn.oesmith.co.uk/morris-0.4.1.min.js"></
scripts>

[2]

Preface

New terms and important words are shown in bold.

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[31]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

Learning to Fly

When you code larger applications in JavaScript, you soon run into a need for some
kind of organization for your code. There are a great number of frameworks out there
that can help you; the sheer number is enough to just keep you coding as you have
done for years. Although there is a learning curve involved like in any framework or
tool library, it will help you deliver a better end result with fewer headaches. A handy
guide for choosing a framework is http: //addyosmani .github.com/todomve/.

It shows you the same app using different tools and libraries.

Let's get going

The traditional way of getting started with any kind of JavaScript library is
downloading it from its website or repository and including it in your HTML file.
The first thing you see when you go to http://angularjs.org/ is a big Download
button. It will take you right to a pop up to download Angular]S. The defaults will
be for the latest stable version. Unless you are interested in the source, the minified
version will be fine, as shown in the following screenshot:

Download AngularJS

Branch | Stable Unstable ©

Bulld ' rinified Uncompressed zip @
CDN i - ey o , L
hitps :/fajax.googleapis.com/ajax/libs/angularjs/1.0.7/angular.min.js 7]
Bower hower install angular]

Extras Previous Versions |!| Download

Learning to Fly

This will download just a minified JavaScript file that you have to include in your
HTML file. To get started, your HTML could look like the following;:

<!doctype htmls>
<html lang="en" ng-app="myApp">
<head>
<meta charset="utf-8">
<title>My First html page with AngularJdS</titles>
</head>
<body>
<script src="lib/angular. min. js"></scripts>
</body>
</html>

In our first code excerpt we have used a local version of the Angular JavaScript files.
It is recommended to use the CDN version for production applications:

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.8/
angular.min.js"></script>

While AngularJS does a good job of helping you get organized, along the way, it also
makes you think a bit differently about DOM and how to manipulate it. When you
are used to working just with tools such as jQuery or Prototype, a new dimension
and a model, will be added to your world. When you use other frameworks such as
Knockout]S or BackBone]S, you will feel right at home, but will experience a more
opinionated way of writing substantially less code than you were used to.

Let's dive into some code! Let's say you want to ask the user to type a temperature,
and depending on the number, show a different response. A simple HTML file with
this content would be enough to do that for you, shown as follows:

//index.html

<ldoctype htmls>
<html lang="en" ng-app>
<head>
<meta charset="utf-8">
<title>My AngularJS App</title>
<link rel="stylesheet" href="css/app.css"/>
</head>
<body>
Current temperature: <input ng-model='temp' type='number'/> Celcius
<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10
}} would be a little cold</p>
<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp
+ 10 }} would be a nicer</p>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js"></script>
</body>
</html>

[6]

Chapter 1

Valid HTML
"Q If you like valid HTML, Angular offers ways to specify instructions

so that your pages will be completely valid HTML. For instance,
you can prefix all the ng- * notations with x- or data-.

Now what exactly is happening here? Just below the doctype declaration, you see
ng-app. This is a general bootstrapping directive for Angular. In this case, it means
that anything between the <HTML> tags can contain instructions for Angular to add its
magic to your page. Further down you see some more ng- attributes. The attribute
ng-model="temp" binds the value of the input to the variable named temp. Now that
the input value is bound, setting the value of the input in the HTML file with
value="17" won't work anymore because Angular has bound it to an empty variable.
The ng- show attribute triggers a function to show or hide the node it is applied to,
based on the evaluation of the expression. All values of the Angular name="value"
pairs can contain something that resembles regular JavaScript, although there are
differences. Check the documentation to read about the differences at http://docs.
angularjs.org/guide/expression. In general, you should keep the amount of
"code" in your templates to a minimum to avoid mixing presentation with logic.

Now that we have the input, we need something to display the temp variable.
Angular, by default, uses double curly braces for interpolating variables in a
template, for example, {{ temp }}. Asyou can see, the interpolation can also
contain any valid JavaScript expression; for example, {{ temp + 10 }}.

Delimiters {{ ... }}

When you serve your Angular application from a framework like
Symfony, the double curly braces {{ }} will conflict with the
Twig templating engine, because it also uses the same characters as
delimiters. To stay compatible with any plugins that rely on these
. delimiters on the server side, you should not change them. Angular
% offers a way to change the delimiters into something else:
~ var myAppModule = angular.module ('myApp', [],
function ($interpolateProvider) ({
SinterpolateProvider.startSymbol ('<[');
SinterpolateProvider.endSymbol (']>") ;
P
This will change the stock {{ }} to <[1> for the current Angular app.

[71

Learning to Fly

As you saw earlier, the input field was bound to an empty variable temp to begin
with. What if we wanted to start with a temperature of, say, 17 degrees? Technically,
we could set the value of temp to 17 in the template, but because one of our goals
here is to have better code organization, we'll place this nicely inside a JavaScript file.

Adding a controller

Earlier in the chapter, you saw how to use the ng-app attribute to bootstrap the
application. We can specialize this bootstrapping to apply a specific piece of
JavaScript to the containing nodes. So we could have the <BoDY> tag enriched by
a bit of Angular. To do this, the file should look like the following:

// index.html

</head>

<body ng-controller="TempCtrl">

Current temperature: <input ng-model='temp' type='number'/> Celcius
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js">

<script src="app/js/app.js">

This will tell Angular to look for a function named Tempctrl inside the included
JavaScript files. The JavaScript file that will contain the code will be app. js
so, we will need to include that in the HTML file.

To start off with a temperature of 17 degrees, the controller would look like
the following:

//app/js/app.js

'use strict';

function TempCtrl (Sscope) {
Sscope.temp = 17;

}

The controller function is called with the $scope variable. This variable represents

the scope the controller is responsible for. All properties of the $scope variable are
magically bound to variables of the same name in the HTML template. As you can see,
the temperature is simply set to 17 and the manipulation done inside this controller
gets synchronized to the template by Angular. The reverse is also true; when a variable
is changed in the template, it also gets synced to the controller. Angular has added a
two-way binding between the JavaScript code and the HTML template, as shown in
the following screenshot:

[8]

Chapter 1

Current | History

Y

Current temperature: [17 7| Celcius

Not too bad! 17 degrees, 7 would be a little cold

use strict is optional but helps you, as a developer, to create
ECMAScript 5-compatible JavaScript and provides more feedback
a in supported browsers. For more information, refer to the following
link, which is a good read among others http://ejohn.org/blog/
ecmascript-5-strict-mode-json-and-more/.

What about routes?

Next to seeing the actual temperature in the current page, it would be nice to have a
page showing some history of what the temperature has been in the past. To do this,
we need some kind of routing to navigate between the pages. Along with the routing
feature, you will see the Angular module system to organize the various components,
shown as follows:

// index.html

<ldoctype htmls>
<html lang="en" ng-app="tempApp">
<head>
<meta charset="utf-8">
<title>My AngularJdS App</title>
<link rel="stylesheet" href="css/app.css"/>
</head>
<body>
<ul class="menu">
Current
History</1li>
</uls>

<div ng-views></div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js"></script>

[o]

Learning to Fly

<script src="app/js/app.js"></script>

</body>
</html>

// partials/current.html

Current temperature: <input ng-model='temp' type='number'/> Celcius

<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10 }}
would be a little cold</p>

<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp +
10 }} would be a nicer</p>

// partials/history.html
<p>This will show some history</p>

The observant reader will have noticed that the ng-app attribute has been extended
with ="tempapp". This is to tell Angular to use a specific module to bootstrap this
part of the HTML page. The code that was inside the <BoDY> tag has been moved
to the partial folder and has been replaced by a navigation menu. The navigation
menu just refers to routes using hashbangs (#!). The following manual can help
you use the HTML5 History API and allow correct indexing using search engine
bots: http://docs.angularjs.org/guide/dev _guide.services.$location.
Our module is defined in the following JavaScript file:

// app/js/app.Js
'use strict';

var tempApp = angular.module ('tempZpp', []).

config(['$routeProvider', function ($routeProvider) ({
$routeProvider.when('/current', {templateUrl: 'partials/current.
html', controller: 'CurrentCtrl'});

$routeProvider.when('/history', {templateUrl: 'partials/history.
html', controller: 'Historthrl'});
$routeProvider.otherwise ({redirectTo: '/current'});

1)

// app/js/controllers.js
'use strict';

tempApp.controller ('CurrentCtrl', ['Sscope',
function ($scope) {
Sscope.temp = 17;
1)

tempApp.controller ('HistoryCtrl', ['Sscope',
function ($scope) {

1)

[10]

Chapter 1

First the module is initialized with the name from the template tempapp. The empty
array after the module name can contain dependencies for the module. Then the
module is configured using $routeProvider as a dependency, which is used to
redirect a URI to a partial HTML template using a specific controller. The notation of
the controllers has also significantly changed. They are now contained in the module
as a property. While defining the controllers as a function in the global scope will
still work fine, . controller is the recommended way of writing Angular modules.
As before, the temp controller is still depending on $scope to be present inside

the function.

Showing a list

The History tab is only showing a placeholder, so let's go ahead and change that.
Let's assume we have stored some temperature data in a database and we have
read that data into a variable. For demonstration purposes we have just defined
some data inside the controller. Fetching data from a backend is beyond the scope
of this book:

tempApp.controller ('HistoryCtrl', ['S$Sscope',
function ($scope) {
$scope.historyData = [

{ day: 'saturday', temp: 8},
day: 'sunday', temp: 13},
day: 'monday',temp: 15},
day: 'tuesday', temp: 11},
day: 'wednesday', temp: 15},
day: 'thursday', temp: 17}

’

e R M

1
day: 'friday', temp: 21}

1)

The controller just depends on $scope and has assigned some data inside an array
to the property historyData. The template looks like the following:

<ul ng-repeat="value in historyData">
<1li>{{ value.day }} : {{ value.temp }}</1i>

ng-repeat is an Angular function to do something similar to a for-each loop.
Because it is declared on the tag, it will repeat the elements inside the list for
every element it finds in the array historyData. value.day just refers to the day
property day inside the hash.

[11]

Learning to Fly

Adding a filter

Let's say our users are only interested in temperatures above 15 degrees. We could
modify the data in the controller. If we need this same data elsewhere, we could
create a copy of the data and modify that for display. Angular has a neat feature
called filters. There are several filters included with Angular, but it is simple to
create your own filters. First, we'll use a standard Angular filter to convert the
names of all days to uppercase:

<ul ng-repeat="value in historyData">
<1li>{{ value.day | uppercase}} : {{ value.temp }}</1li>

Angular follows the Unix-style pipe to transfer data down the line using a | symbol.
To just show temperatures above 15, we need to filter the historyData array:

tempApp.filter ('plusFifteen', [function() ({
return function (arrTemp) {
var arrReturn = new Array () ;
angular.forEach (arrTemp, function(value, key) {
if (value.temp>=15) arrReturn.push(value) ;

3N

return arrReturn;

1)

This filter takes an array as its argument and returns only those elements with a higher
temperature than 15. This piece of code is tightly coupled with the example we have
here. The filter is used in a similar way as the uppercase filter we used before:

<ul ng-repeat="value in historyData | plusFifteen"s>
<1li>{{ value.day | uppercase}} : {{ value.temp }}</1li>
</uls>

Now we could make our filter a bit more configurable by making the minimum
temperature configurable in the template. That way we can also reuse this filter
for lists where we want to see other minimum temperatures:

tempApp.filter ('minimum', [function() ({
return function(arrTemp, minimum) {
var arrReturn = new Array () ;
var min = minimum ? minimum : 15;
angular.forEach (arrTemp, function(value, key) {
if (value.temp>=min) arrReturn.push(value) ;
1

return arrReturn;

1) ;

[12]

Chapter 1

The filter now takes an optional argument as the minimum value to display.
When you run the code without changing the template, it works exactly like
before. To reflect the new functionality of our filter, we now also have changed
the filter's name to minimum. To take advantage of the new feature, we have to
specify the minimum temperature as a filter argument. While we are at it, we will
let our users decide for themselves what minimum temperature they wish to see:

Minimum temperature: <input ng-model='tempMin' type='number'/> Celcius
<ul ng-repeat="value in historyData | minimum:tempMin"s>

<1li>{{ value.day | uppercase}} : {{ value.temp }}</1li>

Our template now has an input box in which the value tempMin is bound to the filter
as an argument, shown as follows:

Current | History

Minimum temperature: |15 = Celcius
* MONDAY : 15
* WEDNESDAY : 15
* THURSDAY : 17

« FRIDAY :21

As the user changes the value of the input box, the list is dynamically filtered. To start
the input box with the value 15, all we have to do is add $scope.tempMin = 15 to our
history controller.

Chart directives

It is not bad to see our data as an unordered list, but showing it in a chart would
really make our users happy. We will be using a third-party library to render our
chart and wrap it inside an Angular directive. The goal of this exercise is to use

our directive as a new HTML tag <chart ...></charts. This is, by far, one of the
coolest features of Angular. For a while the subtitle of the Angular website was after
all "teaching HTML new tricks". Let's go ahead and change our template, so it uses
our new directive:

Minimum temperature: <input ng-model='tempMin' type='number'/> Celcius
<chart historyData | minimum:tempMin"s></charts>

[13]

Learning to Fly

The real work is now delegated to our new directive, leaving the template clean
and concise:

tempApp.
directive ('tempChart', [function(version) {
return {
template: '<div id="container"s></divs>"',
link: function(scope, element, attrs) {
var chart = new Morris.Line ({
// ID of the element in which to draw the chart.
element: 'container',
// The name of the data record attribute that contains
x-values.
xkey: 'date',
// A list of names of data record attributes that contain
y-values.
vkeys: ['temp'],
// Labels for the vkeys -- will be displayed when you hover
over the
// chart.
labels: ['Temperature']
3N
scope. $watch (function () {
chart.setData (angular.copy (JSON.parse (attrs.data))) ;

The tempChart directive encapsulates a charting library by taking data from the
template and returning the rendered chart. One of the key elements in the code
snippet is the scope . $watch statement without a specific watchExpression.

It simply waits for a $digest run by Angular and will update the data for the
chart. $digest is run anytime a key is pressed and Angular calls $apply
internally. A good explanation of these concepts is in the Angular manual at
http://docs.angularjs.org/guide/concepts

The chart library we used is Morris.js (http://www.oesmith.co.uk/morris.js)
and the chart-specific code is annotated because the details of that library are beyond
the scope of this book. To get Morris to work correctly, add the following lines to the
index.html file:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></script>

<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></scripts>

<script src="http://cdn.ocesmith.co.uk/morris-0.4.1.min.js"></
scripts>

[14]

Chapter 1

The output is shown as follows:

Current | History

Minimum temperature: |15 +| Celcius

2 2013-08-03
Temperature: 17

. .

2013-05-05 2013-05-20 2013-06-04 2013-06-19 2013-07-04 20130719 2013-08-03 2013-08-18 2013-08-0f

The result is a page where the user can now use the number input to control the data
visualized in the chart.

Using services

One last element of Angular that deserves attention is the concept of services.

One of the built-in services is the location service. The location service provides
read and write accesses to URLs and lets the developer use it for navigating around
the application. It can be used to read and change the URL. Changes can then be
picked up by the route service, as we have already seen before. Services are injected
into controllers or other services that depend on them.

These are the basic building blocks to create single-page applications using
Angular]S. In the following chapters you will learn more about injecting
dependencies and why this will benefit you as a developer and your clients.

Downloading the example code

purchased from your account at http: //www. packtpub. com. If you
purchased this book elsewhere, you can visit http: //www. packtpub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

[15]

Learning to Fly

Summary

In this chapter you have seen how to get started with Angular]S. First, we looked at
the setup of an Angular project. Then we created a simple page with some angular
bindings. We added a controller and another page. The second page showed just a
list at first, but got upgraded to a nice chart. We immediately encapsulated the chart
in a directive. Lastly, we mentioned services since we had already used them.

[16]

Better Code

When we created our HistoryController, we put the historyData object containing
days and their corresponding temperatures inside it. For demonstration purposes,

this is not the end of the world, but the controller is useless without it. So the controller
depends on this object to function correctly. The best thing to do here is to take the
hash object out of our controller and replace it with something that will retrieve the
data for us. After all, we are not building a static application. Let us refactor that to
make it a bit more lifelike by using an external source. For this example, we will use
parse.com, a Backend as a Service (BaaS) that functions like an API. This service

can handle all the tasks that we would normally have to handcode in the backend of
our applications. Since it is beyond the scope of this book, using a Baas, let us use a
backend without coding one up.

Wiring up the backend

We have created a free developer account and imported our sample data into the
Parse class Reading using the Parse dashboard.

// /path/to/file/history.json
[

{ "date": "2013-04-01T17:01:22.634Z", "temp": 8},

{ "date": "2013-04-02T17:01:22.634Z", "temp": 13},
{ "date": "2013-04-03T17:01:22.634Z", "temp": 15},
{ "date": "2013-04-04T17:01:22.634Z", "temp": 11},
{ "date": "2013-04-05T17:01:22.634Z", "temp": 15},
{ "date": "2013-04-06T17:01:22.634Z", "temp": 17},
{ 1}

"date": "2013-04-07T17:01:22.634Z", "temp": 2

Better Code

First the data is moved out of the controller into a file somewhere on the filesystem.
Notice the difference in the notation of JSON compared to the previous JavaScript
notation. JSON doesn't allow keys to be unquoted. Next, we have to somehow

get our controller to use the Parse SDK to get data from the backend. There are

a few design patterns that could help us here. The first one is as suggested by
Parse the documentation. Just load the following script

before the Angular script tag:

// index.html

<script type="text/javascript
src="http://www.parsecdn.com/js/parse-1.2.3.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.0.4/angular.min.js"></script>

<script src="app/js/app.js"></scripts>

<script src="app/js/controllers factory.js"></script>

After loading the script, you will have to update the controller to get data from
Parse.com, using the Parse object from the global scope:

//app/controllers.js

tempApp.controller ('HistoryCtrl', ['$scope', function ($scope) {
Parse.initialize ("wNpkWuOOBGAAajJlnngYPW3wsOT3T43LMn0e3VFb",

"04wgQGg62frJjEWzDOhISMrmt WDRFPjGuCoD4zWi") ;

var Reading = Parse.Object.extend ("Reading") ;
var query = new Parse.Query(Reading) ;
query.find ({
success: function (results) {
$scope.historyData = [];
angular.forEach(results, function (i, e, a) {
$scope.historyData.push ({
date: i.get('date'),
temp: i.get('temp')
1)
1)
Sscope. Sapply () ;
b
error: function (error) {
alert ("Error: " + error.code + " " + error.message) ;
}
I3

//below unchanged
$scope.tempMin = 15;
$scope.minimum = function (value) {
if (value.temp >= S$scope.tempMin) return value;

[18]

Chapter 2

First, the Parse library needs to know our credentials in order to access the service.
This is done in the Parse.initialize call. After that is done a local Reading object is
created by extending Parse.Object. This connects our local object to a remote entity
named reading. Then, a query is created on the collection of the Reading entities

that is used by the Parse service to return all objects in the collection. Upon success,

the result is then iterated and pushed into the $scope.historyData property. The end
result is the same as before; the template renders our chart directive with the

correct historyData object.

Duplicating code

Duplicating code seems like a good approach. We're using a cool service to get our
data and insert it in the scope variable. It also looks very clean and concise. There are,
however, several problems here. The first is that the credentials are hardcoded and
there is a lot of code specific to Parse in our controller now. To illustrate one of the
difficulties, we will change our current page so that it will allow users to save the
temperature they selected, using the Parse service, shown as follows:

// partials/current.html

Current temperature: <input ng-model='temp' type='number'/> Celcius

<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10 }}
would be a little cold</p>

<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp +
10 }} would be a nicer</p>

<input type="button" ng-click="save ()" value="save"/>

First, we have to change the template because we want the user to decide which
values get saved to the database using a button. We just added this button as an
Angular attribute ng-click="save () ". This means that it will execute the function
that $scope . save returns when the button is clicked.

// app/controllers.js

tempApp.controller ('CurrentCtrl', ['$scope', function ($scope) ({
$Sscope.temp = 17;
Parse.initialize ("wNpkWuOOBGAAajJ1lnngqYPW3wsOT3T43LMn0e3VFb",
"04wgQGg62frJjEWzDOhRISMrmtWDRFPjGuCoD4zWi") ;

var Reading = Parse.Object.extend("Reading") ;
var reading = new Reading() ;

$scope.save = function () {
reading.set ("date", new Date () .toISOString()) ;
reading.set ("temp", $scope.temp) ;
reading.save (null,
success: function (gameScore) {
alert ('reading saved') ;

[19]

Better Code

b
error: function (gameScore, error) {
// The save failed.
// error is a Parse.Error with an error code and
description.

The first few lines are copied straight from our HistoryController. Next,

the $scope. save function gets invoked when the user presses the button.

We use the Parse SDK syntax to create a new Reading object, fill it with the
current date and the selected temperature in it and persist it in the Parse backend.
The two-way binding takes care of propagating the value that the user selected
from the input element to the $scope . temp variable. To confirm that the save
action worked, an alert will be shown with a success message. The same could
be done in case of an error. So now when we have an application that works well
and performs all that we have asked of it.

Current | History

Current temperature: 19 &1 Celcius
Mot too bad! 19 degrees, 9 would be a little cold

sava

However, we have duplicated code which is not very DRY (Don't Repeat Yourself).
This means that every time something changes, we have to keep it all in sync with
our credentials or the Parse API every time something changes. Secondly, the way to
test this service is a bit tricky since we need to have a live Internet connection and a
valid Parse account with known data at all times.

When developing in a test-driven manner, you would create your tests at the same

time or even before you create the actual code you are testing. We have dedicated a
chapter to testing and the advantages of Dependency Injection for testing. So don't

worry; we won't forget to create the tests!

[20]

Chapter 2

Angular service to the rescue

To circumvent all these problems, Angular has a concept of services that we
mentioned at the end of Chapter 1, Learning to Fly. Talking to the Parse API or
service can be viewed as a service to the application. The service is responsible
for initializing Parse and instantiating the Reading object that is ready for
manipulation. The service can then be injected in the two controllers and

the shared code is nicely centralized:

// app/services.js
angular.module ('serviceModule', [function ($provide) {
$provide.factory ('parse', [function ()
// inti Parse SDK

Parse.initialize ("wNpkWuOOBGAAajJlnngYPW3wsOT3T43LMn0e3VFb",
"04wgQGg62frJjEWzDOhISMrmt WDRFPjGuCoD4zWi") ;

To make our service completely separate from our application, we create a new
module named serviceModule. You can read more about organizing your
application in the Chapter 5, Large Applications. The service simply initializes the
Parse service with the required credentials and returns the instance. When you
look closely, you see that the factory registers a function instead of the Parse
instance. This means that the service is only instantiated when actually called.
Creating our service inside a new module means our tempApp has no knowledge
of our service yet. It means we need to inject this new module in our application.

// app/app.js
var tempApp = angular.module ('tempApp', ['serviceModule']).
config(['$routeProvider', function ($routeProvider) ({

$routeProvider.when('/current', {templateUrl: 'partials/current.
html', controller: 'CurrentCtrl' }) ;

[21]

Better Code

Let's take our new serviceModule one step further and extend it with a second
service on top of our generic Parse service that will use the Parse instance to expose
methods for query and save. This allows us to take some more code out of

our controllers.

angular.module ('serviceModule', [function ($provide) {
$provide.factory('parse', [function () {
// init Parse SDK
Parse.initialize ("wNpoWuOOBGAAajJ1lnngYPW3wsOT3T43
LMn0e3VFb", "04wgQGg62frJjEWzDOhISMZmtWDRFPjGuCoD4zWi") ;
1)
$provide.factory('reading', ['parse', function () {
// our reading object
var Reading = Parse.Object.extend ("Reading") ;
// the service that will be returned
var servicelnstance = {
save: function (temp) {
reading = new Reading() ;
reading.set ("date", new Date () .toISOString()) ;

reading.set ("temp", temp) ;
reading.save (null, {
success: function (reading) {
alert ('reading saved') ;
b

error: function (reading, error) {
// The save failed.
alert ("Error: " + error.code + " " +
error.message) ;

3N
¥

query: function (callback) {
var query = new Parse.Query(Reading) ;
query.£find ({
success: function (results) {
var historyData = [];
angular.forEach(results,
function (i, e, a) {
historyData.push ({
date: i.get('date'),
temp: i.get('temp')
3]
3]
callback (historyData) ;
b

error: function (error) {

[22]

Chapter 2

alert ("Exrror: " + error.code + " " + error.
message) ;

3N
¥

return servicelnstance;

Using the array notation that have seen before, we inject the Parse service into

our Reading service and use it to return serviceInstance. The Reading object is
instantiated and exposed locally. Then, a public method for querying the Reading
objects is exposed through query. Lastly, we created a method for creating and
persisting an object by the save method. That's all we need for now, but we can freely
extend the functionality if we need to. As you can see, we have wrapped the native
Parse methods with our own methods. This means that if we should ever want to swap
Parse for something else, all we have to change is the service and nothing else.

tempApp.controller ('CurrentCtrl', ['Sscope', 'reading',6 function
($scope, reading)
Sscope.temp = 17;

$scope.save = function ()
reading.save ($scope.temp) ;

1)

tempApp.controller ('HistoryCtrl', ['Sscope', 'reading',6 function
($scope, reading)
reading.query (function (data) {
$scope.historyData = data;
$scope. $Sapply () ;

3N

//below unchanged
$scope.tempMin = 15;
$scope.minimum = function (value)
if (value.temp >= $scope.tempMin) return value;

[23]

Better Code

First of all, the Parse-specific code has been centralized and is extracted from the
controllers. We can very easily use the reading service in many more classes with
minimal lines of code. Reducing lines of code is not a goal of Dependency Injection
but a side effect. Another advantage of separating the responsibilities is that the
separate parts are now smaller chunks of code. This means it will be easier for a

new developer coming to your team or (open source) project, to learn the purpose
and the functionality of the code. Fewer lines of code also means that there are less
possibilities for errors. The way we have now separated the responsibilities naturally
benefits testing because we can test individual functions and we are not forced to test
a bunch of different functions in one single body of code.

We have now abstracted our service into a module. This means it has been separated
totally from our application and our shiny new service has been injected into our
controllers. Not only can we share the Parse module in our own application, but we
can also share it with others. A good place to look for existing modules, or share your
modules for Angular is http://www.ngmodules.org. This is a registry for public
modules to be used for your Angular applications. It includes modules for using
jQuery UI or Twitter Bootstrap in your project. Have a look around; there are many
useful modules available. After all, the first rule of software development is to make
sure that you are not going to make something that is already available.

The theory behind Dependency Injection

We have now used Dependency Injection and seen it in action. By now you should
have a decent grasp of why it is useful, but what about the theory behind it? Let's start
with SOLID. This is a basic principle by Robert C. Martin that was introduced in the
year 2000. It is an acronym that describes the five basic principles of object-oriented
software design. It advocates a method of development that allows you to produce
software that can easily be extended and is also easier to read. The following table lists
the five SOLID principles:

Initial Stands for Concept
Single o ers This principle states that a class should have only a
5 responsibility single responsibilit
principle (SRP) & P y:
o Open/closed This principle states that software entities should be
principle (OCP) open for extension, but closed for modification.

Liskov substitution This principle str:}tes.that objects in a program should
L rinciple (LSP) be replaceable with instances of their subtypes
P P without altering the correctness of that program.

[24]

Chapter 2

Initial Stands for Concept

I irel;zfga:tei on This principle states that many client-specific interfaces
principle (ISP) are better than one general-purpose interface.
Dependency This prlpapal states that one should depepd upon
. . . abstractions. Do not depend upon concretions.

D inversion principle S .
(DIP) Dependency injection is one method following

this principle.

Source: http://en.wikipedia.org/wiki/SOLID

Let's see the principles of object-oriented software design in detail, shown as follows:

Single responsibility principle: This principle dictates that a class can

only have one responsibility, just as our services are divided into one that
configures the Parse service and the other that uses the configured Parse
service for providing a Reading object with some basic methods. This seems
like a very straightforward principle but can very easily be overlooked when
you're in a hurry. The benefit is that your code will be easy to test and less
likely to break when something in the code needs change.

Open/closed principle: This principle states that code should be designed
in such a way that they are open to extension but closed for modifications.
Code written in this way will never change unless there is a bug in it.

This means that everything that depends on the code will always
understand it, and tests written for it will not have to be changed either
because they keep passing.

Liskov's principle: This principle reminds us of something that should already
be a common practice for any object-oriented developer: subclasses should be
behaviorally compatible with their superclass. A simple example would be

a new object named highestReading that is based on the Reading object.

This new object may not change temp to, say, highestTemp. This principle
really works together with the open/close principle. It allows you to re-use
your subclasses just like the superclass.

Interface Segregation principle: This principle tells us we should not force
users of a class to depend on methods they do not use. So our Reading
service should not force the caller to call unnecessary methods that are not
relevant for performing either a query or a save operation.

[25]

Better Code

Dependency Inversion principle: This principle resembles the subject of
this book quite closely and is, in fact, related to it, but not as closely as you
might think. Dependency inversion is about having high- and low-level
components in a software project that depends on abstractions. Abstractions
can be thought of as standard interfaces. In traditional software development,
lower-level code was consumed by higher-level components to create more
complex systems. This resulted in a close coupling of the different levels of
code. By depending on the different levels on abstractions, this coupling has
been largely reduced and code can be maintained and reused in an easier
way. Dependency Injection is one of the ways these dependencies can be
made available to the code. Others are plugins or a service locator.

Law of Demeter (LaD): This is another design principle that has some
significance in the context of Dependency Injection. It roughly states that
when calling classes or functions, you should not reach through the callee
and use functions of another object or class inside the one you called.
This causes tight coupling and makes maintenance and adaptability more
difficult. When applied to JavaScript, breaking the Law of Demeter could
look like this:

// service
angular.module ('serviceModule', [function ($provide) {
$provide.factory('parse', [function ()
// init Parse SDK
Parse.initialize ("wNpoWuOOBGAAajJlnngYPW3...... ") ;
return Parse;
1)
Sprovide.factory('reading', ['parse', function
(backend) {
// our reading object
var Reading = backend.Object.extend ("Reading") ;
// the service that will be returned
var servicelnstance =
save: function (temp) {...

backend: backend
return servicelnstance;
// return the Parse object tool

1)
1)

//controller
var currentCtrl = function ($scope, reading) {
$Sscope.temp = 17;

$scope.bad idea = reading.backend.VERSION
//reach through the 'reading' service

[26]

Chapter 2

$scope.save = function ()
reading.save ($scope.temp) ;

}
}i

In the preceding example, we exposed the Parse service through the
"reading" service. In the controller, we reached through the reading

service and called a method on the Parse service with reading.backend.
VERSION. This is a bad idea, because when something changes in the Parse
APIJ, all its uses have to be changed throughout your code. Also, replacing
Parse with another service will mean a bigger search and replacement of
tasks. It means we should have written wrappers for the Parse methods that
we want to expose through the reading class. This would be the correct way
to get the version of the parse backend in the controller.

// service
angular.module ('serviceModule', [function ($Sprovide) {
Sprovide.factory ('parse', [function () {
// init Parse SDK
Parse.initialize ("wNpoWuOOBGAAajJlnngYPW3...... ") ;
return Parse;
11
Sprovide.factory('reading', ['parse', function
(backend)
// our reading object
var Reading = backend.Object.extend ("Reading") ;
// the service that will be returned
var servicelnstance = {
save: function (temp) {....
version: backend.VERSION
return servicelnstance;

//controller
var currentCtrl = function ($scope, reading) {
$scope. temp 17;

$sopce.good idea = reading.version

$scope.save = function () ({
reading.save ($scope. temp) ;
}
}i

[27]

Better Code

Summary

In this chapter we have looked at simplifying our application by removing duplicate
code and abstracting that functionality away into a service and then injecting that
into different parts of the application. Afterwards, we looked at the SOLID principles
and how they play a role in Dependency Injection. The Law of Demeter was the
closing piece of to back up the Dependency Injection paradigm.

[28]

The Magic

It is time we explain some of the inner workings of Angular. Angular does some
neat things for us. It saves us from having to write a bunch of boilerplate code.
Dependency Injection is baked into Angular]S and heavily used throughout.
Another feature is a built-in subset of a jQuery functionality called jQLite.

It contains all the necessary functions to make AngularJS run without jQuery

and has the exact same interface. If jQuery is available in your application, it will
be used instead. Angular also takes the burden of bootstrapping your application,
which will be covered later in this chapter.

Application flow

In the following diagram, from the Angular manual, you find a comprehensive
schematic depiction of the program flow inside Angular:

{view) [$rootScope)

|HTML|
‘Browser h ‘AngularJs]
DOM ;
Static Content " w |
‘ DOM Loaded | ng-app="module ‘ :
Event * :
: | Sinjectar | :
: » !
| | Scompile || SrootScope ‘]
Dynamic : Scompile :
DOomM 1 i dom) 1

The Magic

After the browser loads the HTML and parses it into a DOM, the angular.js
script file is loaded. This can be added before or at the bottom of the <body> tag,
although adding it at the bottom is preferred. Angular waits for the browser to fire
the DoMContentLoaded event. This is similar to the way jQuery is bootstrapped,

as illustrated in the following code:

$(document).ready(function(){
// do jQuery
1)

In the Angular. js file, towards the end, after the entire code has been parsed by the
browser, you will find the following code:

jgLite (document) .ready (function () {
angularInit (document, bootstrap) ;

13N

The preceding code calls the function that looks for various flavors of the ng-app
directive that you can use to bootstrap your Angular application.

['ng:app', 'ng-app', 'x-ng-app', 'data-ng-app']

Typically, the ng-app directive will be the HTML tag, but in theory, it could be any
tag as long as there is only one of them. The module specification is optional and can
tell the $injector service which of the defined modules to load.

//index.html
<!doctype htmls>
<html lang="en" ng-app="tempApp">

<head>
// app.Js
angular.module ('tempApp', ['serviceModule'l])

In turn, the $injector service will create $rootscope, the parent scope of all Angular
scopes, as the name suggests. This $rootscope is linked to DOM itself as a parent to
all other Angular scopes. The $injector service will also create the $compile service
that will traverse the DOM and look for directives. These directives are searched for
within the complete list of declared Angular internal directives and custom directives
at hand. This way, it can recognize directives declared as an element, as attributes,
inside the class definition, or as a comment. Now that Angular is properly
Bootstrapped, we can actually start executing some application code. This can be
done in a variety of ways, shown as follows:

* In the initial examples, we started creating some Angular code with curly
braces using some built-in Angular functions

[30]

Chapter 3

» Itis also possible to define a controller to control a specific part of the HTML
page, as we have shown in the first tempCtrl code snippet

* We have also shown you how to use Angular's built-in router to manage
your application using client-side routing

As you can see, Angular extends the capabilities of HTML by providing a clever
way to add new directives. The key ingredient here is the $injector service,
which provides a way to look up for dependencies and create $rootscope.

Different ways of injecting

Let's look a bit more at how $injector does its work. Throughout all the examples
in this book, we have used the array-style notation to define our controllers, modules,
services, and directives.

// app/ controllers.js
tempApp.controller ('CurrentCtrl', ['S$scope', 'reading',
function ($scope, reading)
Sscope.temp = 17;

This style is commonly referred to as annotation. Each injected value is annotated in
the same order inside an array. You may have looked through the Angular]s website
and may have seen different ways of defining functions.

// angulards home page JavaScript Projects example
functionListCtrl ($scope, Project) {
$Sscope.projects = Project.query() ;

}

So, what is the difference and why are we using another way of defining functions?
The first difference you may notice is the definition of all the functions in the global
scope. For reference, let's call this the simple injection method. The documentation
states that this is a concise notation that really is only suited for demo applications
because it is nothing but a potential clash waiting to happen. Any other JS library or
framework you may have included could potentially have a function with the same
name and cause your software to malfunction by executing this function instead of
yours. After assigning the Angular module to a variable such as tempapp, we will
chain the methods to that variable like we have done in this book so far; you could
also just chain them directly as follows:

angular.module ('tempApp') .controller ('CurrentCtrl', function ($scope)

{h

[31]

The Magic

These are essentially the same definitions and don't cause pollution in the global scope.
The second difference that you may have noticed is in the way the dependencies

are injected in the function. At the time of writing this book, most, if not all of the
examples on the Angular]s website use the simple injection method. The dependencies
are just parameters in the function definitions. Magically, Angular is able to figure

out which parameter is what by the name because the order does not matter. So the
preceding example could be rewritten as follows, and it would still function correctly:

// reversedangularJs home page JavaScript Projects example
functionListCtrl (Project, Scope) {
Sscope.projects = Project.query() ;

}

This is not a feature of the JavaScript language, so it must have been added by
those smart Angular engineers. The magic behind this can be found in the injector.
The parameters of the function are scanned, and Angular extracts the names of the
parameters to be able to resolve them.

The problem with this approach is that when you deploy a wonderful new
application to production, it will probably be minified and even obfuscated.

This will rename $scope and Project to something like a and b. Even Angular
will then be unable to resolve the dependencies. There are two ways to solve
this problem in Angular. You have seen one of them already, but we will explain
it further. You can wrap the function in an array and type the names of the
dependencies as strings before the function definition in the order in which

you supplied them as arguments to the function.

// app/ controllers.js
tempApp.controller ('CurrentCtrl', ['Sscope', 'reading',
function (Sscope, reading) {
Sscope.temp = 17;

The corresponding order of the strings and the function arguments is significant
here. Also, the strings should appear before the function arguments.

[32]

Chapter 3

If you prefer the definition without the array notation, there is still some hope.
Angular provides a way to inform the injector service of the dependencies you
are trying to inject.

varCurrentCtrl = function($scope, reading) {
Sscope.temp = 17;

Sscope.save = function() {
reading.save ($Sscope.temp) ;

}
bi

CurrentCtrl.$inject = ['Sscope', 'reading'];
tempApp.controller ('CurrentCtrl', CurrentCtrl) ;

As you can see, the definition is a bit more sizable, but essentially the same thing
is happening here. The injector is informed by filling the $inject property of the
function with an array of the injected dependencies. This is where Angular will
then pick them up from.

To understand how Angular accomplishes all of this, you should read
M this excellent blog post by Alex Rothenberg. Here, he explains how all of
Q this works internally. The link to his blog is as follows:

http://www.alexrothenberg.com/2013/02/11/the-magic-
behind-angularjs-dependency-injection.html.

Angular cleverly uses the tostring () function of objects to be able to examine in
which order the arguments were specified and what their names are.

There is actually a third way to specify dependencies called ngmin,
which is not native to Angular. It lets you use the simple injection
method and parses and translates it to avoid minification problems.

https://github.com/btford/ngmin

~ Consider the following code:
angular.module ('whatever') .controller ('MyCtrl',
function ($scope, $http) { ... });

ngmin will turn the preceding code into the following;:

angular.module ('whatever') .controller ('MyCtrl',
['Sscope', '$http', function ($scope, $http) { ... }1);

[33]

The Magic

Summary

In this chapter, we started by looking at how Angular]S is bootstrapped.
Then, we looked at how the injector works and why minification might
ruin your plans there. We also saw that there are ways to avoid these
problems by specifying dependencies differently.

[34]

Testing

During the course of this book we have spoken about testing a few times, but never
actually got into it. Now is the time to get our (testing) hands dirty. The reason we
reserved a section for testing is because it is the second most important part of the
development process, after your awesome code, of course.

Any modern software development process should include testing, and all
developers test their code by executing it to see if the correct behavior is delivered
by the code. For web developers this means looking at their work in a browser and
interacting with it. For many developers and even teams, testing is something that
comes at the end of programming what they made. While this is fine for most small
projects up to a few hundred lines of code for a single developer, it will quickly
become a royal pain if there are more developers involved or the code base grows.

Test automation

Automated testing to the rescue! Automated testing will test your code without you
having to go to the browser, and click on things and fill out forms. The tests will do
this for you, as if they were a real person visiting your application. The advantage is
that once you have defined your tests, they will be able to run exactly like that every
time, unlike your manual tests, where you have to take care to remember to test
every case every time. They are also able to run much faster than you could inside

a browser window. For those who haven't found the need for automated testing,
imagine having an Angular application behind an Ajax login form. As on every test
you will need to fill out the login form to test the functionality behind it, this will get
very tedious later.

Testing

With the rise of open source software, the adoption of test driven development has
taken flight. When you want to contribute to a project, most of the time you will

be required to accompany your code with tests. Writing decent tests for your code
involves testing the definition of the functionality. You basically write down your
requirements in a special test language and your test is defined. A test could read
something like the following:

// pseudo code

describe "home page"
it "should show the 10 latest tweets"
expect ("tweets") .count to_equal (10)

The output of this test reads almost like a story: "Home page should show the 10
latest tweets", and "expect the tweets count to equal 10;" as you can see, this natural
language resembles the actual testing syntax.

One could even argue that if you'd write down your thoughts about how to construct
a piece of code, you would have a large part of your tests already written. The thing
that is missing for now is the negative testing. We are now expecting things to be there,
but it gets more interesting when we start testing for edge negatives. A scenario that
describes typing a name in an e-mail input field could look like the following:

// pseudo code
describe "login form"
it "should require an email address"
element ('#submit') .click ()
expect (input#email ('name')) .to raise(validation exception)

This will test if an exception was raised when the input was filled with some
unacceptable value. This test implies a rendered form in a web browser, but it
could just as easily have been testing a validation on a model class or a controller.
Writing your tests before you actually start coding will make you think about your
code in a way that you might not directly do so when you would have tested in the
browser afterwards. Test-driven development is built on the premise that when
you write your tests before you code, you will have thought about more edge cases
and caught more anomalies. When the tests are written first, they will naturally fail.
This is called the red. After you start coding to meet the requirements in your tests,
they will start turning green. This change from red to green creates eagerness in the
developer's mind, which is called The Flow in psychological terms.

[36]

Chapter 4

Test your code, not the framework

This eagerness is also a danger, because testing is a means to an end, not a purpose!
You should only test your code and not the tools you embedded. An example is a
test that checks if a scope variable was correctly shown on the page using the curly
braces {{ }}, shown as follows:

// pseudo code for our tempApp project
describe ('tempApp', function() {

it ('should automatically redirect to /viewl when location hash/

fragment is empty', function() ({
browser () .navigateTo('../../app/index.html#/current') ;
expect (element (' [ng-view] p:first') .text()).

toMatch(/17/) ;

3N

This test checks if the Angular assignment $scope.temp = 17; was correctly
bound to the {{ temp }} value in the template. Here, we are actually testing
the Angular framework and not the code we wrote. When are interested in
the state of the Angular tests, you should check out their Travis CI state at
https://travis-ci.org/angular/angular.js.

Testing the parts

Angular projects can be tested with two types of tests. To test your entire application
front to back, end-to-end tests should be used. To test the full stack of an Angular
application, the best tool for the job would be to use Protractor. To test individual
components, unit testing is the way to go. Before we get our hands dirty, we need to
set up the testing environment. Jasmine will be used in this book to run Angular]S
unit tests using a behavior-driven approach seen in many server-side testing
frameworks. There are certainly other options out there, such as Mocha or QUnit,
and they integrate quite nicely with Angular]S as well. The Angular]S integration

of Jasmine solves dependency resolving quite nicely, whereas, others leave more to
the developer. Jasmine is the default framework in the documentation and seems to
be the most widely adopted option for Angular]S projects. This means that you can
easily find help on the web for Jasmine. The behavior-driven approach means that
the tests have some resemblance to human language. Have a look at the following
sample taken from the Jasmine website:

describe ("Adding function", function() {
it ("should add two arguments", function() ({
expect (add(1,2)) .toBe(3);
3N
13N

[37]

Testing

When the test is executed, it will read like human language: "Adding a function
should add two arguments". The describe function is used to put a description

on your group of tests, or assertions, as they are sometimes called. This string has

no functionality. The it () function starts a new test, which is also named with a
string. Be sure to group and name your tests in such a way that when you have a few
hundred, they are still descriptive enough to know what they are about. The actual
test is as follows:

expect (add (1,2)) .toBe(3) ;

We are comparing whether the function add (a,b) produces 3 when fed with 1 and
2 as arguments. This seems silly to test, and maybe it is, because you made the add ()
function to add numbers and return the result. But what about negative numbers,

or what happens if I feed it a string or a binary number? The fun part about testing is
that as you are writing your tests and thinking of ways to "break" your code, you are
actually shaping the way your function should look.

Most developers enter the testing arena by creating some tests after the code has
been created, and most of the time, has even been stabilized. When you take the step
to start creating tests while you are contemplating your awesome new code, you will
find that the code you produce will be better from the start and remain "watched" by
the tests you created.

To get started with Jasmine is very easy. Just head over to http://tryjasmine.com/
and try some tests to get used to the syntax. Another thing to familiarize yourself with
is the matchers. Matchers take the output of the expect () function and compare it to
something for success or failure.

After you have gotten familiar with the Jasmine syntax, head over to https://
github.com/pivotal/jasmine/downloads and download the latest version.
Inside the ZIP file, you will find the Jasmine files in the /1ib directory. The most
interesting file is specRunner . html, because this will actually run the tests. There are
some example functions and accompanying tests to get you started. The source code
is in src and the tests are in spec. When you extract this ZIP file somewhere in your
local web root, you can navigate to the specRunner.html file and see the Jasmine
tests in action. Your screen should look something like the following:

[38]

Chapter 4

Jasmine 1.3.1 revision 1354556913 finished in ©.006s

Passing 5 specs No try/catch @

Player
should be able to play a Song

when song has been paused
should indicate that the song is currently paused
should be possible to resume

tells the current song if the user has made it a favorite

#resume
should throw an exception if song is already playing

Before we look at the tests, let's examine the specRunner . html file to find out how
Jasmine gets all the files together. The header of the file looks like the following:

<title>Jasmine Spec Runner</title>

<link rel="ghortcut icon" type="image/png" href="lib/jasmine-1.3.1/
jasmine favicon.png">

<link rel="stylesheet" type="text/css" href="1lib/jasmine-1.3.1/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine.js"></
scripts>

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine-html.
js"></script>

<!-- include source files here... -->
<script type="text/javascript" src="src/Player.js"></script>
<script type="text/javascript" src="src/Song.js"></scripts>

<!-- include spec files here... -->
<script type="text/javascript" src="spec/SpecHelper.js"></script>
<script type="text/javascript" src="spec/PlayerSpec.js"></script>

[39]

Testing

After loading the Jasmine styles and libraries, the source files are loaded first and
then the tests under /spec; although the order in which the files are loaded doesn't
matter. By the way, the term "spec" comes from "behavior specification", which is
what drives behavior-driven tests. The inline JavaScript in the following code snippet
is the configuration of Jasmine and the reporter that is used to output the test results.
The default is the HTML reporter inside the jasmine-hmt1.js file, but there are
options available on the Web to produce output in other formats. At the bottom,

the Jasmine suite is bootstrapped.

The following snippet from the /spec/Playerspec. js file shows us an actual
behavior specification, so let's take a look:

describe ("Player", function() {
var player;

var song;

beforeEach (function()
player = new Player();
song = new Song() ;

3N

This file specifies the behavior of the Player () function (class). BeforeEach will
be executed before every player test, defined by it (). So, every test will have an
instantiated player and song available, shown as follows:

it ("should be able to play a Song", function() ({
player.play (song) ;
expect (player.currentlyPlayingSong) . toEqual (song) ;

//demonstrates use of custom matcher
expect (player) .toBePlaying (song) ;

13N

The first test specifies the ability to play a song by expecting the player's current
song to be the song that was asked to play. The last line in spec uses a custom
matcher. There is no magic here. The toBePlaying () assertion has been defined
in the specHelper. js file:

beforeEach (function() {
this.addMatchers ({
toBePlaying: function (expectedSong) {
var player = this.actual;
return player.currentlyPlayingSong === expectedSong &&
player.isPlaying;

[40]

Chapter 4

As this beforeEach block has not been included in a describe () block, it will

be executed before any Jasmine test. The value passed to the custom matcher is
this.actual. An explanation of how to add a custom failure message can be

found at https://github.com/pivotal/jasmine/wiki/Matchers#writing-new-
matchers.

Now let's change this to test the code that we have made so far. We will start by
configuring Jasmine correctly in the SpecRunner . html file. We will need to let
Jasmine know about Angular and the code we have made:

// test/SpecRunner.html

<link rel="stylesheet" type="text/css" href="1lib/jasmine-1.3.1/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine.
js"></script>

<script type="text/javascript" src="1lib/jasmine-1.3.1/jasmine-
html.js"></script>

<!-- include angular specific files here... -->

<script type="text/javascript" src="lib/angular.js"></script>

<script type="text/javascript" src="lib/angular-mocks.js"></

scripts>

<!-- include source files here... -->

<script type="text/javascript" src="../app/js/app.js"></script>

<script type="text/javascript" src="../app/js/controllers.js"></
scripts>

<script type="text/javascript" src="../app/js/services.js"></
scripts>

<script type="text/javascript" src="../app/js/directives.js"></
scripts>

<script type="text/javascript" src="../app/js/filters.js"></
scripts>

<!-- include spec files here... -->

<script type="text/javascript" src="/test/spec/app/js/filterSpec.
js"></script>

[41]

Testing

We started by adding a section for Angular that includes the Angular.js file.

The next inclusion is angular-mocks . js. This file contains all kinds of functions
that help us, or even better, help our testing framework test our Angular code after
we simply include all our application code. Our first actual test specification is a
file that doesn't exist yet—filterCtrlSpec.js. In this file we will test the filter we
have written. We will create the file inside the spec/app/js directory and add the
following content:

describe("filters", function () {
beforeEach (
module ('tempApp')
)i

describe ("minimum filter", function() {
it ('should be available', function () {
inject (function ($filter)
expect ($filter ('minimum')) .toBeDefined() ;

This will perform a simple test to see if the filter exists. Before we look into how the
test is constructed, let's take a look at the output in the browser. When the Node. js
web server is running, the output can be viewed at http://localhost:8000/test/
SpecRunner.html.

Jasmine

HistoryController
minimum filter
should be available

[42]

Chapter 4

Every time you refresh the browser, the tests are run again and the result is shown.
Now for the test code there are two describe blocks: the outer one tests filters and
the inner one specifies the minimum filter. In the outer loop of the beforeEach block,

the module for our application is loaded:

beforeEach (
module ('tempApp')
)i

This happens before any of the inner blocks that follow inside the outer block. Like in
our application, this exposes all filters, controllers, directives, and so on, inside this
module. Inside the actual test, the $£ilter object is injected, which should contain all

the filters of this module:

it ('should filter an array to be above a minimum value',

{
inject (function ($filter)
expect ($filter ('minimum')) .toBeDefined () ;
)
1)

function ()

This simple filter just checks if the minimum filter is registered inside the module.
Of course this is not a real test, because we are actually testing the Angular
framework. Let's refactor and test some conditions to test our minimum filter:

it ('should filter an array to be above or equal to the default 15°',

function ()
inject (function ($filter)

var unfiltered = [
{ "date": "2013-04-01T17:01:22.6342z",
{ "date": "2013-04-02T17:01:22.63427",
{ "date": "2013-04-03T17:01:22.63427",
{ "date": "2013-04-04T17:01:22.63427",
{ "date": "2013-04-05T17:01:22.63427",
{ "date": "2013-04-06T17:01:22.63427",
{ "date": "2013-04-07T17:01:22.63427",
1

var filtered = S$filter('minimum') (unfiltered) ;

console.log(filtered)
expect (filtered.length) .toBe (4) ;

"temp":
"temp":
"temp":
"temp":
"temp":
"temp":
"temp":

[43]

Testing

This new test prepares an array with data from the history. json file that was used
in the first chapter. It then runs the array through the filter and checks if the correct
number of items are returned. A more thorough test would be to iterate over the
resulting array and check if there really aren't any values below 15. Feel free to play
with this example a bit to get the hang of it. The important thing to note here is that
we have isolated the filter from our template and controller and are able to test it
with a predefined input value and test our expectations:

Jasmine

filters
minimum filter
should be available

minimum filter
should filter an array to be above the default 15

This is just a simple example of unit testing with Angular. Next, we will do something
more advanced —test our historyController. The controller has one function and
one property. To test these, our test could look something like the following;:

beforeEach (function () {
module ('tempApp') ;

)

beforeEach (inject (function ($rootScope, $controller, currentUser) {
scope = SrootScope.$new () ;
$controller ('HistoryCtrl', ({
Sscope: scope

)

describe ('tempMin', function () {
it ('should be defined', function () {
expect (scope.tempMin) . toBeDefined () ;
P
3

[44]

Chapter 4

This simple start of a test will fail, as shown in the following screenshot:

Jasmine 1.3.1 revision 1354556913 fimished in 0.065s

« XX

Failing 2 specs No try/catch @

3 specs | 2 failing

HistoryController tempMin should be defined.

ReferenceError: Parse is not defined

Iv]

ReferenceError: Parse is not defined
at Object.<anonymous> (http://localhost:8000/app/js/services.js:4:3)
at Object.invoke (http://localhost:8000/test/lib/angular.js:2864:28)
at http://localhost:8000/test/libfangular.js:2702:37
at getService (http://localhost:8000/test/lib/angular.js:2824:39)
at Object.invoke (http://localhost:B8000/test/lib/angular.js:2842:13)
at http://localhost:8008/test/1ibsfangular.js:2702:37
at getService (http://localhost:8000/test/lib/angular.js:2824:39)
at invoke (http://localhost:8000/test/lib/angular.js:2842:13)
at Object.instantiate (http://localhost:5000/test/lib/angular.js:2874:23)
at http://localhost:8000/test/libsangular.js:4759:24

Error: Declaration Location

(4]

~k srimdoie dimdect cnealor mack dndoct fhibn. P 0l acalbhoct GABA FEack M1 ih fanmnlar macke G0, T TAALIEN

Expected undefined to be defined.

As seen before, we have loaded the module tempapp. After which we instantiated
the controller, as stated in the documentation:

beforeEach (inject (function ($rootScope, S$controller)
scope = SrootScope.S$new () ;
$controller ('HistoryCtrl', {
$scope: scope

[45]

Testing

This is where it went wrong! The controller not only depends on the $scope variable,
but also on our reading service. Since the controller depends on it, we can feed

the controller a special version of this reading service that will supply static data.
The benefit is that the outcome can be predefined and we don't need an Internet
connection to run the test. The test will also run a lot faster. We will update the
controller test to instantiate a mock version of the reading service:

beforeEach (module (function ($provide) {
$provide.service ('reading', [function (Project) ({
this.query = function () {

return [

{ "date": "2013-04-01T17:01:22.634Z", "temp": 8},
{ "date": "2013-04-02T17:01:22.634Z", "temp": 13},
{ "date": "2013-04-03T17:01:22.634Z", "temp": 15},
{ "date": "2013-04-04T17:01:22.634Z", "temp": 11}

1;
}i
1)
)

The instantiation uses the $provide function of Angular and it just returns a static
version of some history data. We have injected this dependency so our controller
can function and the outcome is predictable. When we visit the SpecRunner.html
file again, you will see that the test will now pass. The Jasmine output will now look
something like the following:

Jasmine

filters
minimum filter
should be available

minimum filter
should filter an array to be above the default 15

HistoryController
tempMin
should be defined

[46]

Chapter 4

In these simple examples, the power of dependency injection really shows it's
strength. We would have had a hard time testing the controller without it. If you
want to see how the unit tests for other parts of the application are constructed,
have a look in the Git repository for this book <packpub git urls.

The Karma test runner

The Angular team has made a test runner that will watch your files and re-run
your tests when needed, so you don't have to refresh your browser to find out if
your tests pass or not. It is a small inconvenience, but having it automated will
lower the barrier to writing tests. The Karma test runner runs your unit tests inside
real browsers and reports the results back to you. You can run several browsers in
parallel and verify that your "Angularized" JavaScript code actually runs in those
browsers. The setup is very easy when you have node, and thereby npm, installed.
Just run npm [CODE IN TEXT]install -g karma[END CODE IN TEXT] ina
command prompt window.

After Karma is installed, we need to create a new file in the config directory for the
unit tests. In the following code snippet you will find an example that will run our
test suite:

// Karma configuration
// Generated on Fri Aug 16 2013 16:33:21 GMT+0200 (CEST)

module.exports = function (config) {
config.set ({

// base path, that will be used to resolve files and exclude
basePath: './',

// frameworks to use
frameworks: ['jasmine'],

// list of files / patterns to load in the browser
files: [
'../test/lib/angular.js',
'../test/lib/angular-mocks.js"',

'../app/js/*.3js"',
'../test/spec/app/**/*.js"'
1,

// list of files to exclude

[47]

Testing

exclude: [
1,

// test results reporter to use

// possible values: 'dots', 'progress', 'junit', 'growl',
'coverage'
reporters: ['progress'],

// web server port
port: 9876,

// enable / disable colors in the output (reporters and logs)
colors: true,

// level of logging

// possible values: config.LOG DISABLE || config.LOG_ERROR | |
config.LOG _WARN || config.LOG INFO || config.LOG_DEBUG

logLevel: config.LOG_ INFO,

// enable / disable watching file and executing tests whenever any
file changes
autoWatch: true,

// Start these browsers, currently available:
// - Chrome

// - ChromeCanary

// - Firefox

// - Opera

// - Safari (only Mac)

// - PhantomJS

// - IE (only Windows)

browsers: ['Chrome'],

// If browser does not capture in given timeout [ms], kill it
captureTimeout: 60000,

// Continuous Integration mode
// 1if true, it capture browsers, run tests and exit

[48]

Chapter 4

singleRun: false,

preprocessors: {

}

3N
¥

The config will load the same files as the Jasmine SpecRunner.html file we
created before. There are some additional configuration parameters for the
Karma test runner that are explained in the comments of the preceding code
snippet. Additional information on the configuration can be found on the
projects homepage at http://karma-runner.github.io.

The second thing to do is create a script to run Karma with this configuration.
This script will go in the /scripts folder and looks like the following:

#!/bin/bash
BASE DIR="dirname $0°

echo ""

echo "Starting Testacular Server (https://github.com/karma-runner/
karma) "

karma start $BASE DIR/../config/karma.conf.js s$*

It just prints a startup message and then starts Karma with our configuration file.
On Windows, this file just needs to be saved with the .bat extension and contain
the following:

@ECHO OFF

ECHO

ECHO Starting Testacular Server (https://github.com/karma-runner/
karma)
ECHO === == == == = = oo o e o e e o e e e

node modules/.bin/testacular start test/karma.conf.js

[49]

Testing

When we fire up Karma by executing this script, the output should look like
the following;:

File Edit View Search Terminal Help
Starting Testacular Server (https://github.com/karma-runner/karma)

Karma vB8.10.2 server started at http://localhost:9876/
Starting browser Chrome

Connected on socket Z137fNPYS5DhyDZI-Wobj

Chrome 30.0.1599 (Linux): Executed 2 of 2 (8.167 secs / B.834 secs)

As long as you keep this window open, Karma will keep watching your files and
rerunning all the unit tests. Notice the time it took to run the tests? The entire test
suite for the Angular framework itself takes less than a second to run. To keep
Karma running while you develop is very useful, because it will give you almost
instant feedback!

End-to-end testing

End-to-end testing should actually be the start of your test-driven development cycle
when you adhere to the BDD standard. While behavior-driven development (BDD)

is much more than just testing, one of the pillars is that you start by defining a test

for a behavior at the highest possible level. This test will obviously fail if the parts
underneath aren't ready yet. It will allow a well-defined behavior and all the different
parts that will power this feature will get their own special unit test. We have seen how
these unit tests are constructed and how dependency injection plays a role in there.
After all the underlying unit tests are made to pass, the end-to-end test should pass as
well. In the end, the end-to-end tests should test the entire stack including all the code
tested by the unit tests.

The following is a quote from an article by Dan North on BDD:
http://dannorth.net/introducing-bdd/:

"At first, the fragments are implemented using mocks to set an account to be

in credit or a card to be valid. These form the starting points for implementing
behavior. As you implement the application, the givens and outcomes are changed
to use the actual classes you have implemented, so that by the time the scenario is
completed, they have become proper end-to-end functional tests."

[50]

Chapter 4

The end-to-end tests require us to have a running application server because

this type of testing will act like a "real user," clicking and interacting with your
application in other ways. We need to have a way to navigate pages and simulate
this user interaction. The tool for this job is Protractor —a brand new testing
framework based on Selenium and WebDriver. Here we will explain how to use
some of the specific additions that Protractor adds to the WebDriver syntax.

Setting up the Protractor

This setup is similar to the one we did for Karma; it also needs a configuration
file and a startup script. However, the first thing to do is install Protractor with
npm install protractor -g. This will make Protractor available for all of
your projects. The following is the content for those two files to get started:

// config/selenium-conf.js

// protractor configuration file.

// fully annotated config file can be found here:

// https://github.com/angular/protractor/blob/master/referenceConf.js

exports.config = {
// The address of a running selenium server. If this is specified,
// seleniumServerJar and seleniumPort will be ignored.
seleniumAddress: 'http://localhost:4444/wd/hub',

// A base URL for your application under test. Calls to protractor.
get ()

// with relative paths will be prepended with this.

baseUrl: 'http://localhost:8000',

// Capabilities to be passed to the webdriver instance.
capabilities: {

'browserName': 'firefox'
I

// Spec patterns are relative to the current working directly when
// protractor is called.
specs: ['../test/e2e/**/*.js'],

// Options to be passed to Jasmine-node.
jasmineNodeOpts: {

igVerbose: true,

showColors: true,

includeStackTrace: true

}
Vi
// scripts/test-e2e.sh
#!/bin/bash

[51]

Testing

BASE DIR="dirname $0°

echo nn

echo "Starting Protractor Server (https://github.com/angular/
protractor) "

echo "--------"--"--"-"-"-"-"-"-"-"-""-""“"“"“"“" "~

protractor config/selenium-conf.js

Since Protractor runs on top of Selenium, there are many different setups and
options available that go too far for our book. This setup will read end-to-end tests
from the /test/e2e/ folder and execute them inside a Firefox browser. The tests
can be started by simply executing /scripts/test-e2e.sh.

The difference is that this time as well the application server has to be started along
with the Selenium server. Starting the server is, the same as before, to be able to
access the application in a browser:

node scripts/web-server.js

Installing Selenium is as easy as downloading the appropriate JAR files from
https://code.google.com/p/selenium/downloads/1list. Since it is a Java
executable, you do need to have Java installed on your machine. Most Mac and
Linux systems will have it by default, but any platform can be outfitted with
Java by visiting http://www.java.com/en/download/index. jsp.

Once all is in place, execute the JAR file by typing java -jar <path to selenium
server files. This will start the Selenium server, which can be verified by opening
this http://localhost:4444/wd/hub link in your browser. You should see
something like the following if all is well:

Sessions

Create Session | | | Refresh Sessions

No Sessions

[52]

Chapter 4

Now that we are all set up, we can start coding our first test. This will be done in a
new file in the test/e2e folder:

// /test/e2e/app.js
'use strict';

describe ('tempApp', function() {

var ptor;

describe ('current page', function()
ptor = protractor.getInstance() ;

beforeEach (function()
ptor.get ('/index.html') ;

3N

it ('should find an element by binding', function() ({
var binding = ptor.findElement (protractor.By.binding('{{ temp
ISR

expect (binding.getText ()) .toContain (17) ;

The syntax is similar to the unit tests we created with Jasmine, so it follows the same
patterns. First, describe what you are testing and then write your test in the it ()
function. This test just tests to see if 17 is present in the text node that contains the

{{ temp }} binding. If you started both, the Node]JS server and the Selenium server,
you can run the tests. The output of this test should be similar to the following:

File Edit View Search Terminal Tabs Help

alex@asus53swv:~/dev_partition/angular-di b4 ‘ alex@asus53sv:~/dev_partition/angular-di b 4

Starting Protractor Server (https://github.com/angular/protractor)

Using the selenium server at http://localhost:4444/wd/hub

tempApp

current page

Finished in 2.957 seconds

alex

[53]

Testing

Even the output looks like the Karma output! More importantly, the browser opened
your application and "saw" in the page that string 17 was present.

In the next test we will try to have our test runner change the input box to something
else and then test the outcome. The second test is appended to the test file within the
current describe page function:

it ('should reflect a change in the input field', function () {
var binding = ptor.findElement (protractor.By.binding('{{ temp

Y

expect (binding.getText ()) .toContain(17) ;
ptor.findElement (protractor.By.tagName ('input')) .clear () ;
ptor.findElement (protractor.By.tagName ('input')) .sendKeys('20"') ;

var binding = ptor.findElement (protractor.By.binding('{{ temp

Y

expect (binding.getText ()) .toContain (20) ;

|3)

First we check if {{ temp }} contains 17 before we change it. Then the temp input

is cleared and filled with the new value 20. Afterwards, there is a check to see if the
value has changed to 20. When you run the test, you will see all of this happening on
the screen. Also, you will notice that these tests take a lot longer than the unit tests.
A few simple tests only take a few seconds on a fast system to complete. That's one
of the reasons you want to run these tests manually, unlike the Karma unit tests.
Ideally, you'd run these and the unit tests on different browsers on a continuous
integration system. This is, however, outside the scope of this book.

To get the most out of Angular e2e testing with Protractor, you are
M strongly encouraged to refer to https://github.com/angular/
Q protractor and all the linked documentation in that page. At the
time of writing this book, Protractor is still very much in development,
but the Angular team has already adopted the framework.

Summary

In this chapter we have covered some of the reasons behind testing after which we
dove right into the testing, starting with unit tests in Jasmine, and then automating
them so they are re-run after each file change. Lastly we introduced end-to-end
testing with the Angular-specific Protractor test framework.

[54]

Large Applications

Writing a large, single-page application using traditional methods that are based on
DOM manipulation has turned out to be difficult to manage and maintain. As we
have seen in this book, Angular brings a new paradigm to the table for creating more
maintainable applications by using dependency injection. Even when using Angular,
it is still entirely possible to create unmaintainable and untestable code. In this
chapter, we will look at the patterns that can be used with Angular to further ease
your work as a developer.

Organizing your application
Most newcomers to Angular start off by cloning the Angular seed project on

GitHub. This roughly resembles the setup that you have seen in this book so far
https://github.com/angular/angular-seed.git

This basic project contains most of the elements that we have discussed so far in
this book. There is some sample code that uses routes, controllers, service, directive,
and a filter. All of the code has accompanying tests, and testing has been set up
with Karma and Jasmine. Although the Angular team themselves have titled the
repository as a basic skeleton, many people find the setup sufficient for sizable
applications that have lengths of up to several hundred lines of code. The project
layout on the GitHub page explains the different parts quite well:

app/ --> all of the files to be used in production

css/ --> css files

app.css --> default stylesheet

img/ --> image files

index.html --> app layout file (the main html template file
of the app)

index-async.html --> just like index.html, but loads js files
asynchronously

js/ --> javascript files

Large Applications

app.js -->
controllers.js -->
directives.js -->
filters.js -->
services.js -->

lib/ -->
angular/

angular.js
angular.min.js
angular-*.js
version.txt

partials/
templates)

partiall.html
partial2.html

config/karma.conf.js
with Karma

config/karma-e2e.conf.js

Karma
scripts/ -->
e2e-test.sh -->
e2e-test.bat -->
test.bat -->
test.sh -->
web-server.js -->
test/ -->
e2e/ -->
runner.html -->
to run)
scenarios.js -->
lib/
angular/

angular-mocks.js
services in tests

angular-scenario.j
runner library
version.txt
unit/
controllersSpec.js
directivessSpec.js
filtersSpec.js
servicesSpec.js

application

application controllers

application directives

custom angular filters

custom angular services

angular and 3rd party javascript libraries

--> the latest angular js

--> the latest minified angular js

--> angular add-on modules

--> version number

--> angular view partials (partial html

--> config file for running unit tests

--> config file for running e2e tests with

handy shell/js/ruby scripts

runs end-to-end tests with Karma (*nix)

runs end-to-end tests with Karma (windows)
autotests unit tests with Karma (windows)
autotests unit tests with Karma (*nix)

simple development webserver based on node.js

test source files and libraries

end-to-end test runner (open in your browser

end-to-end specs

--> angular testing libraries
--> mocks that replace certain angular

s --> angular's scenario (end-to-end) test

--> version file

--> unit level specs/tests
--> specs for controllers
--> specs for directives
--> specs for filters

--> specs for services

[56]

Chapter 5

Thanks to Igor Minar for the annotated directory structure. This being a "seed"
application, it's tailored for simple projects. This setup puts all the Angular
application code in sing]le files, which will work fine for small to medium sized
projects. The repository comes with a complete test setup with end-to-end unit tests
to get you started. The scripts directory houses a simple Node]S server script next
to the test startup scripts. Although, strictly speaking, you don't need a server to
serve the static files, this makes it really easy to get started —without any limitations
some browsers put on running scripts from the local filesystem.

This setup has its limitations. When your app grows, the number of controllers,
directives, filters, and services will probably grow too. This implies that you'd
have to search through large files for your code. When you get to the point where
you have to use your editor's search function to find a specific piece of code in a
file, it's time to reorganize.

Going a bit larger

The next step is to organize your application by separating all similar code.
For example, all controllers can be separated into single files under a specific
directory. It would look something like the following;:

app/ --> all of the files to be used in production

js/ --> javascript files
app.js --> application
controllers/

main.js --> main application controller

subl.js --> another application controller
directives/

chart.js --> the chart directive

another.js --> another directive
filters/

translate.js --> a translation filter filters
services/

parse.js --> parse data backend service

Naturally, this setup will have to be mirrored in the test directory, so that things are
easily locatable. It should serve you quite well until the number of files becomes so
big that you can't find what you're looking for anymore. In a well-built application,
you will see many directives. Grouping related functionality into a directory may
help organize things a little more.

[57]

Large Applications

The changing filesystem

You would have to manually change files that are included in the main
HTML file to stay in sync with your filesystem changes. When your
JavaScript application is served from within a framework such as Ruby on

M Rails, Symfony (PHP), or Node]S using Brunch.io, organizing your app is
simplified considerably. They, and others, provide tools to automatically
select, compile, and minify your files and more. This means that you only
configure this once and changes in your files are noticed, and the files
served to the browser are updated.

Check out the following sites for reference: http://rubyonrails.
org/,http://brunch.io/, and http://symfony.com/.

Organizing using dynamic teams

Organizing your code according to the type hierarchy doesn't help new developers
find the code related to a certain function or application area. A new developer or a
reviewer would have to look through all four top level js/ directories to find what
they are looking for.

So, when the project gets to a level where the team has to grow and will most likely
have a more dynamic nature, organizing according to functional area is a good
alternative. This is also where the Angular module system comes into play.

Using modules

Angular modules are a way to organize your code in a functional manner.
Modules can contain any kind of Angular code. They are injected into each
other to make the Angular code available. It makes sense to do this in a
functional manner because a group of functionalities such as charting functions
is not needed in areas where they are not shown.

In the filesystem, the result of our functional approach could look like the following:

App/ - all of the files to be used in production
js/ - Jjavascript files
app.js - application
common/ - common module
filters/
translation.js - translation filter
directives/

[58]

Chapter 5

checkbox.js
services/
logging.js
parse.js
config.js
admin/
controller.js
sidebar/
controller.js
tree.js
main/
controller.js
controller
directives/
chart.js
twitter.js

- checkbox directive

central application logging service
parse data backend service

central configuration service

admin module

Vv vy

the main admin controller

sidebars controller
tree directive specific for sidebar
main module

Vvl

the main user facing application

v

a directive for a specific chart widget

v

a directive for a twitter widget

Then, the various modules can be easily injected in the following manner:

var App = angular.module('App', ['commonModule', 'adminModule',

'mainModule'])

There are different ways to bundle functionality into modules, but it makes sense to
have submodules independent of any other modules, so that they can be tested and

shared more easily.

Testing with module separation becomes easy because you only need to bootstrap

the module you are testing. This means you are sure there are no hidden dependencies,
such as some property attached to the application global variable. For instance,

testing your chart directive in the previous example would require you to just

write the following:

'use strict';

describe ('chart', function () {

var scope;

beforeEach (module ('mainModule')) ;

describe ("chart",
it (...

function () {

[59]

Large Applications

Organizing using directives

Directives have been mentioned a few times already in this chapter. So far, we have
used them to encapsulate JavaScript code which is not Angular aware, such as the
third-party charting library from the previous chapters. Another way to use directives
is to abstract pieces of functionality, so that their complexity is encapsulated inside the
directive. Even when we don't need the possibilities that are not available outside a
directive, such as DOM manipulation, code clarity and legibility can be served by this
kind of encapsulation. Directives can only be "used" and not injected, although the
module they belong to has to be injected.

Nesting controllers

An interesting topic, which is not covered in the documentation, is nested modules.
However, they offer a great way to organize code. Besides that, they also fit well
with the functional organization because all code is grouped in a layered structure
like the parts that the user sees on the screen. Nested controllers can be used at any
level of an Angular application and all the properties and methods of their parents
are available.

Nested controllers copies the scope variables in the inheritance
\ chain. Updating a parent property in a child controller affects only
~ its own child level and the lower levels. If you want to update the
Q property at the top level, use a setter. Using the $scope. $parent
notation to update the property will work, but it makes unit testing
the subcontroller problematic.

With this setup, a page that is navigated using an Angular route will have one main
controller and several subcontrollers, which in turn can have more sub controllers.
The file structure could look something like the following:

main/ - main module

controller.js - the main user facing application
controller
toptoolbar/
controller.js - controls the top toolbar
leftsidebar/
controller.js - controller for entire sidebar
navigator/
controller.js - controller for the navigator
properties/
controller.js - controller for the properties

[60]

Chapter 5

When testing nested controllers, it is very easy to stub scope variables of the parent
controllers so that they are available inside the sub controller. When you used a
setter to set a parent scope variable, it should also be stubbed in the test:

describe ('nested controller', function() {

var $scope, ctrl;

it ('should have a value', inject (function (SrootScope, Scontroller)

SrootScope.myValue = 1;

SrootScope.setMyValue = function (val) {
SrootScope.myValue = val;

}

Sscope = $rootScope.S$new() ;

ctrl = $controller ('nestedController', ({
Sscope: $scope

13N

expect ($scope.myValue) .toEqual (1) ;
D)
I3

More powerful nesting

While the previous approach with nested controllers is useful, it does have its
limitations. For instance, there is no natural way to open a page in your routing

in a certain state; we could have a list view in our main controller and a detail view
based on the user interaction. In the default AngularJS routing setup, you would
have to use query parameters to achieve this and then still re-render the client-side
view. The Ul-router project from the Angular-UI team has a great solution for this
at https://github.com/angular-ui/ui-router

The following is taken from the readme . md file:

Main Goal

To evolve the concept of an Angular]S route into a more general concept of a state
for managing complex application Ul states.

[61]

Large Applications

We won't even try to replace their excellent documentation, but it centers around
state instead of URL and makes it possible to access pages in a certain state using a
URL. So, the state of a page becomes a part of the routing possibilities, and as such,
will allow you to step over the limitation of the default routing system. So, hop on
over to the GitHub page and have a look.

Application communication

Even though we have options to organize our application in different ways, the parts
still need to communicate with each other. Imagine a protected part of your application
has a feature implemented that a session times out when there is no user interaction.
This requires the user to log in again.

Events

The traditional way of handling this is to set up events and handlers to take of
this. This approach is very acceptable and can also be implemented in Angular.
Angular supports scope events out of the box using the scope . $broadcast,
scope.$emit and scope. $on methods. $broadcast is used to send an event
down the scope, and it is mostly used from the rootScope to notify listeners.
$emit sends events upwards so it is used to notify the rootScope. A listener is
defined with $on on any event.

In the example, the expired session would send an event up the scope chain and
the rootScope would catch that and initiate route change to the login page. This is
a familiar way for many JavaScript applications that do not use Angular.

Let the model speak

With Angular following a model-driven approach, there is an alternative.
For example, in a situation where a dataset needs to be rendered in a specific
way based on its content. An example of this is a model describing a DOM
element that's being moved by the user by dragging inside a workspace:

//pseudo code
{
id: "box1",
style: {
left: 10px,
top:10px
}
}

[62]

Chapter 5

In Angular, it makes sense to capture the dragging events and update the position in
the model so the renderer can update its position on the screen. When the element is
moving over the screen, we might need to show the actual coordinates of the object,
the 1eft and top CSS properties, in the sidebar. This can then easily be done by
binding scope values to the top and left properties of the model and showing these
in the view template. This approach requires that the model should be separated
from the original controller and should be encapsulated inside a "model service."
This is done so that it can be injected in both the workspace and the sidebar. As the
model is updated by the JS drag events, the dependent scope variables will change
along with the models' values.

In contrast, we could have just updated the DOM to reflect the position changes,
but that would have left us unable to share or store the data in a consistent manner.

Summary

This chapter discussed the different ways to organize larger Angular applications,
from the Angular Seed repository, to more complex projects layouts. Also, the way
different parts of your application communicate was covered. This can be done using
inheritance, events, or simply by using the model. After reading this chapter, you now
have a larger set of tools to organize your application in a more structured way.

[63]

Symbols

$inject property 33
$provide function 46
$scope.save function 20
$scope.temp variable 20
<BODY> tag 10

A

add() function 38
Angular

about 29

program flow 29, 30
Angular e2e testing 54
Angular JS

downloading 5, 6,7
Angular projects

testing 37
angular service 21, 23, 24
annotation 31
application communication

events 62

model-driven approach 62, 63
automated testing 35, 36

B

BackBone]S 6
backend
wiring up 17-19
beforeEach block 43
behavior-driven approach 37
behavior-driven development (BDD) 50

C

chart directive
about 13

Index

location service 15

services, using 15
code

duplicating 19, 20

testing 37
controller

adding 8

nesting 60

D

delimiters 7
Dependency Injection
SOLID principles 24
Dependency inversion principle
(DIP) 25,26
describe() block 41
DOMContentLoaded event 30
Download button 5
DRY (Don't Repeat Yourself) 20
dynamic teams organization
directives, using 60
modules, using 58, 59

E

end-to-end testing

about 50, 51

Protractor, setting up 51-54
events 62
expect() function 38

F

filter
adding 12,13

G

green 36

H

hashbangs (#!) 10
HistoryController 17
historyData property 11

injecting

ways 31-33
Interface segregation principle (ISP) 25
it() function 38, 53

J

Jasmine 37

JavaScript library
getting started 5

jQuery tool 6

K

Karma test runner 47, 49, 50
Knockout]S 6

L

larger application
organizing 57, 58
Law of Demeter 26, 27
Liskov substitution principle (LSP) 24, 25
list
displaying 11
location service 15

Matchers 38
Morris.js
URL 14

N

nested modules 60
nesting 61

ng-app attribute 10
ng-repeat 11

(0

Open/closed principle (OCP) 24, 25
P

Player() function 40
program flow, Angular
about 30
application code, executing 30
diagram 30
Prototype tool
about 6, 37
setting up 51-54

R

red 36
routes 9,10

S

save method 23

simple injection method 31

Single responsibility principle (SRP) 24, 25

SOLID principles
Dependency inversion principle (DIP) 25
Interface segregation principle (ISP) 25
Liskov substitution principle (LSP) 24
Open/closed principle (OCP) 24
Single responsibility principle (SRP) 24

T

tempChart directive 14
test driven development 36
testing 35

The Flow 36

toBePlaying() assertion 40
toString() function 33

U

use strict 9

[66]

open source

community experience distilled

PUBLISHING

Thank you for buying
Dependency Injection with AngularJS

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

AngularJS Directives

Angular JS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamics directives to fuel your
single-page web applications using Angular]S

1. Learn how to build an Angular]S directive

2. Create extendable modules for plug-and-play
usability

3. Build apps that react in real-time to changes in
your data model

Mastering Web Application
Development with AngularJS

Build single-page web applications using the power of A

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of Angular]S

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

2. Effectively structure, write, test, and finally
deploy your application

3. Add security and optimization features to your
Angular]S applications

4. Harness the full power of Angular]S by
creating your own directives

Please check www.PacktPub.com for information on our titles

[PACKT] open source™

PUBLISHING

Ext JS 4 Plugin and Extension
Development
ISBN: 978-1-78216-372-5 Paperback: 116 pages

A hands-on development of several Ext JS plugins
and extensions

1. Easy-to-follow examples on ExtJS plugins
and extensions

Ext JS 4 Plugin and 2. Step-by-step instructions on developing ExtJS
Extension Development plugins and extensions

3. Provides a walkthrough of several useful Ext]S

libraries and communities
Abdullah Al Mohammad

Social Data Visualization with

HTML5 and JavaScript
- ISBN: 9781782166542 Paperback: 104 pages
/»\,7" Leverage the power of HTML5 and JavaScript to
build compelling visualizations of social data from
Twitter, Facebook, and more

‘
"\
L e
L = ni n
3 by

ce Distilled 1

Learn how to use JavaScript to create

Soclal Data Visualization compelling visualizations of social data

with HTMLS and JavaScript 2. Use the d3 library to create impressive SVGs

A A oA e e W Ao, g 3. Master OAuth and how to authenticate with
social media sites
Simon Timms

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning to Fly
	Let's get going
	Adding a controller
	What about routes?
	Showing a list
	Adding a filter
	Chart directives
	Using services

	Summary

	Chapter 2: Better Code
	Wiring up the backend
	Duplicating code
	Angular service to the rescue
	The theory behind Dependency Injection
	Summary

	Chapter 3: The Magic
	Application flow
	Different ways of injecting
	Summary

	Chapter 4: Testing
	Test automation
	Test your code, not the framework
	Testing the parts
	The Karma test runner
	End-to-end testing
	Setting up Protractor

	Summary

	Chapter 5: Large Applications
	Organizing your application
	Going a bit larger

	Organizing using dynamic teams
	Using modules
	Organizing using directives

	Nesting controllers
	More powerful nesting
	Application communication
	Events
	Let the model speak

	Summary

	Index

