Learning AngularJS
Animations

Enhance user experience with awesome animations in AngularJS
using CSS and JavaScript

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Learning AngularJS Animations

Enhance user experience with awesome animations in
AngularJS using CSS and JavaScript

Richard Keller

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning AngulardS Animations

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014
Production reference: 1251014

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-442-8

www . packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Richard Keller

Reviewers
Douglas Duteil

Amit Gharat
Daniel Mackay
Sathish VJ

Commissioning Editor
Pramila Balan

Acquisition Editor
Greg Wild

Content Development Editor
Rohit Kumar Singh

Technical Editors
Mrunmayee Patil

Shruti Rawool

Copy Editors
Deepa Nambiar

Stuti Srivastava

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Ameesha Green
Paul Hindle
Clyde Jenkins

Indexer
Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Richard Keller obtained his BSc in Computer Science from State University of
Campinas (UNICAMP), Brazil. He is currently a software engineer at Spring Mobile
Solutions in the Latin America headquarters located in Sdo Paulo. His work there
includes analysis and implementation of systems used by customer's headquarters
and development of internal tools to enhance the company's productivity. He
works with the Angular]S framework on a daily basis and with a variety of other
technologies including TypeScript, C#, and SQL Server.

He previously worked for an online marketplace for handmade items, a mobile
payment company, and an open source e-learning project in an institute at UNICAMP.

I would like to thank my parents and family for all their support

for my education and personal growth. In addition, I would like to
thank the open source community of Angular]S and the Angular]S
core team for developing and improving this great framework every
day. Finally, I am thankful to my girlfriend for supporting me while
writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Douglas Duteil is a young open source contributor and a part of the Directory
team of the Angular Ul organization since 2012. He's passionate about web user
interfaces, web user experience, and web components.

While pursuing his Master's degree in Computer Science at University of Paris 8,
Douglas had the opportunity to work on digital literature with a group of artists
such as Kalamar-e Kidz and the New Fire Tree Press.

He's now working with SFEIR, Paris, a software development company, and
participates in the ngParis meetup.

Amit Gharat is a full stack engineer, open source contributor, and co-author for
Angular]S UI Development, Packt Publishing. He has built and made some of his
personal projects open source, such as Directives, SPAs, and Chrome Extensions
written in Angular]S. He has an urge to share his programming experiences in an
easy-to-understand language through his personal blog (http://amitgharat.
wordpress . com) in order to inspire and help others. When not programming,
Amit enjoys reading and watching YouTube and comedy shows with his family.

I would like to thank my family who has encouraged me to do so.

www.it-ebooks.info

http://www.it-ebooks.info/

Daniel Mackay has 9 years of commercial experience, primarily in the
Microsoft stack, and is currently a lead developer at a software consultancy
in Sydney, Australia.

He is passionate about all things in web and particularly enjoys working with
ASP.NET MVC, Web API, and Entity Framework. He considers himself a very
well-rounded developer and is not afraid to get thrown into the deep end of
frontend development. Over the past few years, he has been concentrating on
full-stack web development, including technologies such as HTMLS5, JavaScript,
and CSS3. He has built a large commercial single-page application with Angular]S,
which is used by a major telecommunications company in Australia. He is a big
believer of process and is always searching for the most productive tool for the job.

He is very passionate about technology and is continually improving himself
whenever possible through conferences, blogs, books, and personal projects.

When not coding, you'll probably find him halfway up a cliff in the Blue Mountains,
or catching a wave at one of Sydney's many beautiful beaches.

Sathish V] is a technologist who is passionate about software specifically —where
he is most prolific—and all science, engineering, and technology in general. He
regularly attends hackathons, quickly prototyping new ideas on various emerging
technologies. He has always been particularly interested in Angular]S, conducting
many workshops and training events for the community and has created almost all
his recent apps in Angular]S.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www . PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Getting Started 7
The definition of animation and the web context 8
The need for AngularJS animation 9
Choosing when to use JavaScript for animations 10
AngularJS — combining JavaScript and CSS3 16
Do it yourself exercises 17
Summary 17
Chapter 2: Understanding CSS3 Transitions and Animations 19
CSS3 transitions 19
The transition-timing-function property 24
The transition-delay property 28
Animatable properties 28
CSS3 keyframe animations 32
Defining an animation using keyframes 32
Separating timing functions for each keyframe interval 35
Other CSS keyframe animations' properties 36
CSS3 transforms 37
The scale function 41
The translate function 42
The skew function 44
Exercise 45
Summary 45
Chapter 3: Creating Our First Animation in AngularJS 47
The ngAnimate module setup and usage 47
AngularJS directives with native support for animations 49
Fade animations using AngularJS 49
The AngularJS animations convention 51

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

AngularJS animation with CSS transitions 52
The ng-enter class 54
The ng-leave class 56

AngularJS animation with CSS keyframe animations 58

The CSS naming convention 62
The ngClass directive animation sample 62
The ngHide and ngShow animation sample 66
The ngModel directive and form animations 69

The ngMessage and ngMessages directive animations 70

The ngView directive animation 74
The ngSwitch directive animation 77
The nglinclude directive sample 79

Do it yourself exercises 81

Summary 81

Chapter 4: JavaScript Animations in AngularJS 83

Creating AngularJS animation without CSS3 83
The ngHide JavaScript animation 90
The nglf JavaScript animation 92
The ngRepeat JavaScript animation 95

JavaScript animations as a fallback for CSS animations 97

Do it yourself exercises 100

Summary 101

Chapter 5: Custom Directives and the $animate Service 103

Triggering animations on custom directives 103

Animating the enter and leave events 107
Using the $animate.move method 111

Creating a custom directive animated with JavaScript 113

Exercises 116

Summary 117

Chapter 6: Animations for Mobile Devices 119

Enhance UX on mobile devices with animations 119

Transition between views 120

Mobile AngularJS frameworks 129

Summary 129

Chapter 7: Staggering Animations 131

Creating staggering animations 131
Staggering animations with a CSS transition 132
Staggering animations with a CSS keyframes animation 136

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Creating staggering animations for other native directives 138
Create staggering animations for custom directives 140
Summary 143
Chapter 8: Animations' Performance Optimization 145
The display and the frame rate 145
Finding performance bottlenecks using Chrome DevTools 148
Checking FPS using Show fps meter 150
Measuring browser layers and Jank on Chrome 152
CSS styles in animations you should avoid 161
Summary 162
Index 163

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The Angular]S framework is a turning point in the evolution of web development.
It really helps developers to produce professional web apps by writing less
JavaScript code.

The ngAnimate module, developed by the core team of Angular]S and the open source
community, integrated Angular]S features with animation web standards, providing
all the benefits from standardization with Angular]S development patterns.

Before animations were introduced to Angular]S, integrating animations was a bit
tricky, as in Angular]S, changes to the model affect the view implicitly (it's part of
the two-way data binding concept). In other words, the DOM life cycle management
is often controlled by the AngularJS core and animations should be triggered in
between those manipulations. To solve this problem, the ngAnimate module was
written and redesigned to be completely based on CSS classes. This means that
animations should be applied based on element classes. Classes are appended or
removed from elements on specific events, so we are able to apply animations as

the entry of an element on DOM and the imminent exit of an element from DOM.

This book will help you learn from the beginning how to add animations to Angular]S
web apps, focusing on the ngAnimate module. It's an optional module in Angular]S
because the framework is going in a direction that will allow you to choose which
modules to use so that the module can fit your needs and be as light as you desire.

What this book covers

Chapter 1, Getting Started, will introduce you to the history of animations in web
development and explain why the Angular]S animation module is so important.
Then, you will get started on the modern web standards of animation, introducing
you to when to use each of them.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 2, Understanding CSS3 Transitions and Animations, will teach you how to
create animations using CSS transitions, CSS animations, and how to animate
using the CSS transform, giving us a good base to start using animations with
the AngularJS framework in the next chapter.

Chapter 3, Creating Our First Animation in Angular]S, will walk you through setting
up an Angular]S application using the ngAnimate module. Then, we will create
basic animations using CSS transitions and an animation keyframe integrated with
Angular]S native directives. This chapter will introduce the Angular]S directives
that support animation events.

Chapter 4, JavaScript Animations in Angular]S, will tell you how to create animations
using JavaScript and create animations with jQuery integrated with Angular]S native
directives. You will learn how to create animations using CSS and JavaScript as a
fallback when the browser does not support CSS animations.

Chapter 5, Custom Directives and the $animate Service, will teach you how to use

CSS animations together with custom directives by giving you an overview of what
happens in the life cycle of an AngularJS animation inside the $animate service. Then,
it will teach you how to create animations in custom directives using only JavaScript.

Chapter 6, Animations for Mobile Devices, will help you apply animations to enhance
usability on smartphones and small devices and introduces the Google material
design, a guideline for mobile development.

Chapter 7, Staggering Animations, will teach you how to create animations that appear
in a consistent sequence, which are usually difficult to create without the ngAnimate
module, and can improve user experience. This chapter will teach you the rules to be
followed and how to apply these animations in native and custom directives.

Chapter 8, Animations Performance Optimization, will provide you with an introduction
to animation performance diagnostics and solutions by teaching you how to find
performance bottlenecks using Chrome DevTools. Then, it will teach you about
rendering layers and animations that you should avoid or are that replaced by others.

What you need for this book

In order to run the example code in this book, you will need a modern web
browser such as Google Chrome, IE10 or newer, Safari, or Firefox, as support
for CSS animations and CSS transitions is mandatory.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A basic text editor is mandatory to test samples and answer exercises.

Sourece files of Angular]S and angular animate are needed too, although we will use a
CDN for all samples.

Who this book is for

This book is intended for those who are familiar with the Angular]S framework, as
we will focus on the animations module. You need to know the basics of HTML and
CSS. Some previous knowledge about the most essential Angular]S directives (such
as ngRepeat, ngView, nglf, and ngSwitch) is expected, but no previous knowledge of
JavaScript animations, CSS3 animations, or any animations library is required.

By reading this book, you will be prepared to create animations and integrate them
with Angular]S web apps.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First we created an animation with JavaScript without requestFrameRrate."

A block of code is set as follows:

var app = angular.module ('myApp', ['ngAnimate'])
.animation(".firstJsAnimation", firstJsAnimation) ;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<body>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.0/angular-animate.min.js"></script>
<scripts>
var app = angular.module ('myApp', ['ngAnimate']);
</script>
</body>

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "For this
sample, we have a Toggle fade button that changes the ngshow model value, so we
can see what happens when the element fades in and fades out from the DOM."

“ Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/44280S_ColoredImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

For the past few years, web development has been growing and changing
continuously, as phones are getting smarter and Internet connections, tablets,
desktops, and web browsers are getting faster. Nowadays, creating and hosting a
website is cheap, but creating a web app with good user experience for all device
sizes and resolutions is not that easy. Angular]S was created for us —full stack
developers, frontend developers, and/or web designers—in order to avoid wasting
time repeating ourselves so that we can produce more apps with scalability,
maintainability, and testability as well as apps that are developed fast enough to
accomplish time to market.

There is a key Angular]S module that has been designed for animations. This
AngularJS animation module's purpose is not to be a library of precreated animations
but to be a way in which great Angular]S built-in tools can be easily integrated with
well-known CSS3 animations and JavaScript animations, besides giving the developer
the liberty to extend it for custom directives and custom animations.

In this chapter, we will cover the following topics:

* The definition of animation and the web context
* The need for Angular]S animations
* Choosing when to use JavaScript for animations

* Angular]S - combining JavaScript and CSS3

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

The definition of animation and the web
context

Animation, by definition, is the process of creating a continuous motion over a
period of time. The World Wide Web started with static HTML pages, and then
.gifs and JavaScript animations started to appear. There were nonstandard
<blink> and <marquee> HTML tags too, which were very annoying and limited.
These were supported only by very old browsers and are currently deprecated.

Since technologies improved and the Internet bandwidth increased, animations have
been a big deal on web browsers across the years. Developers started using Adobe
Flash™, Java applets, Microsoft Silverlight, and other third-party solutions that
lacked interoperability. Until recently, it was hard to rely 100 percent on a solution.
This problem led to the creation of standards such as CSS3 Transition and CSS3
keyframe animations.

Check out http://www.w3.0org/TR/css3-animations/ and http://www.w3.org/
TR/css3-transitions/ for W3C's working drafts.

Another key improvement to animations on web browsers is the evolution of
JavaScript engines and layout engines. Together, these improvements created an
environment that enabled us to animate our web applications with cross-devices
and the interoperability safety of operating systems. Standardization is the solution.

HTML, CSS, and JavaScript have been used to create web applications, and recently,
they have even been used to create native apps for iOS, Android, and other devices
with solutions such as PhoneGap.

Check out http://phonegap . com for more information on creating apps using
web technologies.

Microsoft adopted this stack (HTML, CSS, and JavaScript) as an option in order
to create native apps for Windows 8 as well. This is evidence that CSS3 and
ECMAScript will evolve faster and in partnership with big companies such as
Google, Microsoft, and Apple.

Currently, all major web browsers are evergreen, which means that they
automatically update themselves without asking the user to accept them; they
update themselves silently. This is a new era for web development. Old browsers
that used poor JavaScript engines and lacked support for CSS3 are dying.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The need for AngularJS animation

Angular]S calls itself a superheroic JavaScript Model View Whatever (MVW)
framework —no kidding; this is on the main page. Angular]S is an extensive
framework that helps frontend developers on many different aspects. One of these
aspects is how to animate all the stuff that magically appears on the browser when
we manipulate the scope variables.

Check out the website of Angular]JS at https://angularjs.org/ for more
information on this framework's awesomeness.

M The Angular]JS animation module ngAnimate is separate
Q from the AngularJS core module, so it's necessary to include
it as a dependency of your application.

The framework is already modular as of Version 1.3 and has the intention to be even
more modularized with future releases. The ngAnimate module lets you animate
the common directives built in Angular]S, such as ngRepeat, ngShow, ngHide, nglf,
nglnclude, ngSwitch, and ngView.

Including the ngAnimate module in the framework enables hooks that trigger
animations that you want to be displayed during the normal life cycle of native
directives and custom directives.

We just need to create the animation declarations that will be triggered by these
hooks using CSS3 transitions, CSS3 keyframe animations, or even JavaScript
animations with callback functions. We will learn how to create these animations
in Chapter 3, Creating Our First Animation in Angular]S.

Angular]S follows the convention of the configuration design paradigm, so
animations can be placed using plain CSS3 animations just by following the
naming conventions that will be listed later.

Animations on Angular]S are completely based on CSS classes. Animation

hooks enabled by the ngAnimate module are provided by classes that are added

or removed from elements in specific events. The events in which we can hook
animations are the enter, move, and leave events of the DOM element and the
addition or removal of a class from the element. This is a simple but powerful
unique concept, as animations should be used on these events. This approach makes
animations on Angular]S very intuitive without much effort or using a lot of code.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

This Angular]S approach is different from jQuery animate, as we declare animations
based on classes instead of imperatively adding an animation using JavaScript
wherever a DOM manipulation is expected to occur. As most of these DOM
manipulations are implicit in Angular]S, the animations' approach is mainly
declarative and the animation hook is not intrusive.

Animations are useful for users when they grab the user's attention, catching the
users' eye for specific elements, and making their lives easier. Motion builds meaning
about relationships between elements, functionality, and intention of the system; it
enhances the user cognition.

Animations can create responsiveness when a button element is touched and clicked
on and a new element is added to the view from the origin point of the button.

Animations can tell a user when an element is moved from point A to point B of the
view, guiding the user's attention. They can improve conversion; in this case, we
should always use split tests.

It is easily possible to implement all the cases that I described previously using the
events hooks that ngAnimate provides to us.

Google Material Design is a great resource that tells you how to apply animations to
a web app. Check out http://www.google.com/design/ for more information.

Choosing when to use JavaScript for
animations

The CSS3 animations and transitions created a way for modern browsers to
recognize what animations are. They also created a way for modern browsers to
differentiate animations from other operations so that they can use the Graphics
Processing Unit (GPU) to accelerate the hardware of the animation instead of the
Central Processing Unit (CPU), which receives all other operations.

Another advantage of using CSS transitions and animations instead of JavaScript
is the fact that JavaScript runs on a browser's main thread. CSS animations enable
browsers to run operations on new threads and create different layers, which are
separated from everything else happening on the main thread. In other words,
while your main UI thread will be in heavy use, JavaScript animations might
freeze although CSS animations will continue to work.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

CSS3 animations, CSS3 transitions, and JavaScript animations

that use requestAnimationFrame are the best options in
’ order to avoid the poor performance of animations.

Nowadays, web apps run on devices too, and browsers can stop CSS3
animations when the app is in the background tab, resulting in improved
battery life. This is just one of the possibilities for the browser to improve its
performance. In Chapter 8, Animations' Performance Optimization, we will see
how to optimize an animation's performance.

Check out http://www.html5rocks.com/en/tutorials/speed/high-
performance-animations/ for more information on high performance animations.

Here, we see one example of animation that can be easily created with CSS3 as well
as JavaScript.

The HTML code for the page is as follows:

<!DOCTYPE html>
<html>
<head>
<title>Getting Started</title>
<link href="animations.css" rel="stylesheet" />
</head>
<body>
<div>
<hl>Animation with JavaScript</hls>
<!--There is a click listener for this button -->
<button id="jsBtn">Click here to move the element below with
JS</button>
<div id="jsanimation"s>
This block will be moved by JavaScript
</divs>
<hl>Animation with jQuery</hl>
<!--There is a click listener for this button -->
<button id="jQBtn">Click here to move the element below
with jQuery</button>
<div id="jQanimation"s>
This block will be moved by jQuery
</div>
<hl>Animation with CSS3 transition</hls>
<!--There is a click listener for this button -->
<button id="cssBtn">Click here to move the element below
with CSS3 transition</buttons>

<div id="csstransition">

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

This block will be moved by CSS3 transition

</div>
<hls>Animation with CSS3 animation</hl>
<!--There is a click listener for this button -->

<button id="cssAnimationBtn">Click here to move the
element below with CSS3 animation</buttons>
<div id="cssanimation">
This block will be moved by CSS3 animation
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/jquery/
2.1.1/jquery.min.js"></scripts>
<script src="animations.js"></scripts>
</body>
</html>

Downloading the example code

\ You can download the example code files for all Packt books
5 you have purchased from your account at http: //www.
Q packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

The declarative way to animate is CSS. In CSS, we defined the translate transform
for objects with the .move-to-right class. This declaration makes the move but
does not create the animation between the moves. We declared how the div element
to be moved should be transitioned; it should last 2 seconds and be slow towards the
start and end.

The animations.css CSS file is as follows:

/* Code used by JavaScript animation sample */
#jsanimation {
position: relative;

/* Code used by jQuery animation sample */
#jQanimation {
position: relative;

/* Code used by CSS Transition animation sample */
#csstransition {

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

position: relative;

/* Here we should add -moz-transition, -webkit-transition,
-o-transition for browsers compatibility, we will explain about vendor
prefixes later */

transition: all 2s ease-in-out;

.move-to-right {
/* Here we should add vendor prefixes too */
transform: translate (100px,0);

/* Code used by CSS Animation sample */
#cssanimation {
position: relative;

@-webkit-keyframes move-to-right-animation {
from {
left: Opx;

@keyframes move-to-right-animation
from {
left: Opx;

}

to {
left: 100px;

}

.move-to-right-animation
position: relative;
left: 100px;
/* Here we should add -moz-animation, -o-animation for browsers
compatibility*/
-webkit-animation: move-to-right-animation 1ls ease-in-out;
animation: move-to-right-animation 1ls ease-in-out;

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

The animations. js JavaScript file is as follows:

/* Code used by JavaScript animation sample */
var jsAnimationElement = document.getElementById('jsanimation') ;
var jsAnimationBtn = document.getElementById('jsBtn') ;

/**
* Listener of the "Click here to move the element below with JS"
button
*/
jsAnimationBtn.addEventListener('click', function
moveBtnClickListener () {

//This variable holds the position left of the div

var positionLeft = 0;

/**

* function that moves jsAnimationElement 10px more to right until
the positionLeft is 100
*/
function moveToRight () {
positionLeft += 10;

/* Set position left of the jsanimation div */
jsAnimationElement.style.left = positionLeft + 'px';

if (positionLeft < 100) {
/* This recursive function calls itself until the object
is 100px from the left, every 100 milliseconds */
setTimeout (moveToRight, 100) ;

moveToRight () ;
}, false);

/* Code used by jQuery Animation sample */

/**

* Listener of the "Click here to move the element below with jQuery"
button

*/

$("#jQBtn") .click (function ()

/** Use the jQuery animate function to send the element to more
100px to right in 1s */
$("#jQanimation") .animate ({
left: "+=100"
}, 1000);

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3N

/* Code used by CSS transition animation sample */
var cssTransitionElement = document.getElementById('csstransition');
var cssTransitionBtn = document.getElementById('cssBtn') ;

/**

* Listener of the "Click here to move the element below with CSS3"
button

*/

cssTransitionBtn.addEventListener ('click', function
moveCssBtnClickListener ()

/* Add class "move-to-right" to the block on button click */
cssTransitionElement.classList.add('move-to-right') ;

3N

/* Code used by CSS Animation sample */

var cssAnimationElement = document.getElementById('cssanimation') ;
var cssAnimationBtn = document.getElementById('cssAnimationBtn') ;
/**

* Listener of the "Click here to move the element below with CSS3"
button

*/

cssAnimationBtn.addEventListener ('click', function
moveCssAnimationBtnClickListener () {

/* Add class "move-to-right" to the block on button click */
cssAnimationElement.classList.add ('move-to-right-animation') ;

3N

This code shows you four approaches for the same animation. The intention is to
move a div element 100 px to the right smoothly. This is not the Angular]S way to
create animations, but before you learn how to create an animation with Angular]s,
you should know all the options.

First we created an animation with JavaScript without requestFrameRate. The
result is not so good, and its code is not so pretty. The second animation uses jQuery
animate; the code is simpler than the JavaScript version, is imperative, and the result
is OK. The third animation uses the CSS transition; it's very clean code with a great
and smooth result, declarative way. The fourth animation uses the CSS animation
with the same result as the transition version. It made the animation declarative and
a little more powerful than the transition, as we can add frames between 0 percent
and 100 percent of the animation, although the code is bigger. At this time of writing
this, it's necessary to use the -webkit- vendor prefix for the animation to work,
even for Chrome.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

Although CSS3 animations and transitions have huge advantages, they have
disadvantages as well. Creating complex, combined animations is still hard

or impossible in order to achieve a good result. In cases like these, JavaScript
animations are a better option. JavaScript animations are an option for fallback
too when transitions and CSS animations aren't available, which is a common
scenario when your project supports old browsers.

A good website that will help you know which browsers have support for CSS
animations and transitions is http://caniuse. com.

AngularJS - combining JavaScript and
CSS3

Angular]S has adopted the standards for animation on the Web. It embraces CSS3
Transitions, animations, and JavaScript. It's great because the developers can choose
the animation option that best fits their needs. As you have already read, sometimes,
one option fits better than other, so this is a great feature of ngAnimate.

With the ngAnimate module, it is far easier to animate in Angular]S because it brings
a code pattern and convention that is already integrated with AngularJS native
directives. This allows us —the developers and the open source community — to have
a quick start to animation and a pattern to develop our custom animations. In later
chapters, we will see how to integrate custom directives with Angular]S animations
using the $animate service, which is the main topic of Chapter 5, Custom Directives and
the $animate Service.

This is all possible due to the class-bases approach that Angular]S uses. We will see
more of this in Chapter 3, Creating Our First Animation in Angular]|S, when we create
our first Angular]S animation.

Another advantage is that it's easy to integrate CSS animation libraries such as
animate.css and Effeckt . css, as these libraries use CSS3 transitions and animations.

Check out http://daneden.github.io/animate.css/ and http://h5bp.github.
io/Effeckt.css/ for CSS animations libraries.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Do it yourself exercises

Create the same JavaScript animation as the one in our sample, but instead of
setTimeout, use requestAnimationFrame. Check out https://developer.
mozilla.org/en-US/docs/Web/API/window. requestAnimationFrame for
more information on requestAnimationFrame.

Summary

In this chapter, we gave an introduction on how the AngularJS animations module
and web standards work together, a notion of what can be achieved using them, and
an overview of the differences between JavaScript, CSS3 animations, and transitions.

We took a quick overview of animations in web history and how attached they are to
the evolution of web standards in Angular]S. We saw samples of simple animations
created with JavaScript and CSS3, and we got an idea about how we should choose
each one of them so that we can achieve the best performance and result.

In the next chapter, you will learn how to create animations using CSS3 in order to
create smooth Angular]S animations, which are known as jank free animations.

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3
Transitions and Animations

CSS3 transitions and CSS3 animations are standard ways to create web animations
nowadays. With only a few lines of code, we can achieve great and smooth results.
In this chapter, we will learn how to use CSS3 to create the animations we want so
that we can hook the animations into the Angular]S pipeline.

In this chapter, we will learn:

* (SS53 transitions
* (SS3 keyframe animations

e (CSS transforms

CSS3 transitions

Before CSS3 transitions, when style properties of DOM elements were changed,

web browsers applied new styles immediately after the operation, so the effects
were rendered abruptly. As we saw in the last chapter, we could use JavaScript or
jQuery to imperatively add a transition while changing the style. This is an option,
but we already saw some reasons why CSS transitions might be a better choice.

In Chapter 8, Animation Performance Optimization, we will learn more about the
optimization of animations. CSS3 transitions enable developers to create implicit,
smooth transitions when changing the CSS property of elements. We can avoid a
loading animation to get frozen while JavaScript is under heavy processing by using
CSS transitions. This will make a huge difference to the user's perception of quality.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

Let's check a complete transition animation declaration and see how it works:

<!DOCTYPE htmls>
<html>
<head>
<title>Chapter 2 - First sample</title>
<style>
.cssanimationTimes
transition-property: width, background-color;
transition-duration: 2s, 10s;
width: 100px;

.large {
width: 300px;

.red {
background-color: red;
}
</style>
</head>
<body>
<h1>CSS Transition animation</hl>
<div class="cssanimationTimes">
Element with cssanimationTimes class
</divs>
<button id="trigger">Trigger animation</buttons>
<button id="triggerReset">Reset animation</button>

<scripts>
document .getElementById('trigger') .addEventListener
('click', function () {
var element = document.getElementsByClassName
('cssanimationTimes') [0] ;

//Append classes red and large, to change the background
color to red and the width to 300px

element.className = element.className + " red large";

13N

document .getElementById ('triggerReset') .addEventListener

('click', function () {
var element = document.getElementsByClassName
('cssanimationTimes') [0] ;

//Append classes red and large, to change the background
color to red and the width to 300px

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

element.className = "cssanimationTimes";
13N
</script>
</body>
</html>

The cssanimationTimes class declares that changes in the width and background
color should get transitioned by the duration of 2 seconds and 10 seconds,
respectively. We added the cssanimationTimes class to a div element in the DOM.

Now, we just need to replace the width or background color of the target div with
the cssanimationTimes class in order to see the animation. For this, we create two
buttons. The first button is the Trigger animation button that has a trigger ID.
This button has a click listener that will append the .red and . 1large classes to our
target div element; these classes will change the width from 100 px to 300 px and
the background color from transparent to red. The second button, which is the reset
button of triggerreset ID, just removes all other classes of the target div, leaving
only the cssanimationTimes class.

When we click on the Trigger animation button, the browser already knows that the
properties should be transitioned, so the animation will occur like in the upcoming
sequence of screenshots.

The following page appears before you click on the Trigger animation button:

CSS Transition animation

Element with
cssanimation Times
class

Trigger animation Reset animation

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

The following page appears 1 second after clicking on the Trigger animation button:

CSS Transition animation

Element with cssanimationTimes
class

Trigger animation Reset animation

The following page appears 2 seconds after clicking on the Trigger animation
button. At this time, the width transition is complete.

CSS Transition animation

Element with cssanimationTimes class

Trigger animation Reset animation

The following page appears 10 seconds after clicking on the Trigger animation
button. At this time, the background-color transition is complete.

CSS Transition animation

Trigger animation | | Reset animation

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If we click on the Reset animation button, we will see the same transition as

the screenshot sequence but in the reverse order. This is because the transition
will apply, but this time, it will apply from the width of 300 px to 100 px and the
background color will change from red to transparent.

As we saw in the last example, every transition requires a specified transition
duration (transition-duration) and an animatable property to be transitioned
(the transition property). The animatable property can be defined as al1, so all
animatable properties will be transitioned when they are changed. An animatable
property is a CSS property that browsers can transition or animate. The animatable
properties topic related to this property is explained later in this chapter.

In the following example, changes to any animatable property of elements with the
cssanimation class are transitioned. This is declared as follows:

.cssanimation {
transition: all 2g;

}
or

.cssanimation {
transition-property: all;
transition-duration: 2s;

}

These last samples of the CSS code define that when elements within the
cssanimation class change in width or any other animatable property,
they will transition over a period of 2 seconds.

Defining the specific transition property value instead of a1l enables us to create
different transition durations for each property of the same element.

Check out this example, which is the same CSS as the first example of this chapter:

.cssanimationTimes
transition-property: width, background-color;
transition-duration: 2s, 10s;

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

Also, check out the following:

.cssanimationTimes
transition: width 2s, background-color 10s;

}

In both these samples, when we change the width and background color at the same
time, the width will have a transition duration of 2 seconds and the background
color will have a transition duration of 10 seconds to complete the animations.

Here, you might think that all transitions have a constant speed between the
transition duration, but we can define how the transition will behave by setting
the transition timing function's property.

The transition-timing-function property
The transition timing function defines how the intermediate values used during a

transition are calculated. This might change the animation speed over the function's
duration, accelerating and slowing the animation.

You might want the behavior of your animations' speed as per your choice. The
CSS3 transition timing function enables you to choose one of the standard speed
curves (ease, linear, ease-in, and so on) that are listed, or you can define yours. This
is useful because in real life, an object's movement isn't linear (constant speed), so we
can simulate a natural movement by using transition timing functions. This could

be different to creating a mechanical movement in order to create an interesting,
familiar, and understandable movement that changes the user perception of your
app transitions' aesthetics.

The default value is ease, which means that the animation effect will have a slow
start, then become fast, and then end slowly.

The speed of the animation duration is commonly defined by the cubic Bézier curve.
This enables great customization of the speed of the animation, if required.

M There is a great website in order to create, compare, and
Q preview animations with different cubic Bézier curves.
Check out http://cubic-bezier.com/.

To get the same effect as transition-timing-function: ease, you can define
transition-timing-function: cubic-bezier (0.25, 0.1, 0.25, 1). The values
ease, ease-1in, ease-out, ease-in-out are just easier to use than to write the
corresponding cubic Bézier curve.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The valid values for this property are as follows:

* Ease: This is the default value. It starts slowly, then becomes fast, and then
ends slowly. The ease timing function represented as a cubic Bézier curve
is displayed in the following screenshot:

TIME

* Linear: This maintains the linear speed. The speed doesn't change from the
start to the end. The linear timing function represented as a cubic Bézier
curve is displayed in the following screenshot:

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

* Ease-in: In this, the start of the animation is slow. The ease-in timing function
represented as a cubic Bézier curve is displayed as follows:

TIME .

* Ease-out: In this, the end of the animation is slow. The ease-out timing function
represented as a cubic Bézier curve is displayed in the following screenshot:

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

¢ Ease-in-out: In this, both the start and end of the animation are slow. The
ease-in-out timing function represented as a cubic Bézier curve is displayed
in the following screenshot:

TIME .

* Step-start: This moves to the final state of the animation at the start.
* Step-end: This moves to the final state of the animation only at the end.

* steps(<integer>[[start | end]]?): Steps allow us to create a segmented
animation rather than a continuous animation from an initial state to a final
state. It divides in N steps the animation (the first parameter); the second
parameter is optional (the end is the default) and defines the point at which
the change of values happens. The steps are often poorly understood. If you
want to learn more about this, I recommend that you read this great article
available at http://designmodo.com/steps-css-animations/; it has
demos and some cases where steps are useful.

* Cubic-bezier(<number>,<number>,<number>,<number>): This specifies
the cubic Bézier curve. With this, you have the flexibility to create your
speed curve.

The animation demos used in all the chapters are available at the Packt
Publishing website for download and testing (www . packtpub . com).
% They are also available at https://github.com/richardkeller/
’~ AngularJS-animations-book and http://richardkeller.
github.io/AngularJS-animations-book/.

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

The transition-delay property

Another option that CSS3 transitions provide is to delay the start of an animation.
The default value is 0 seconds, which means that the animation will promptly start
when a property is changed. If a positive value is set, the transition will delay the
execution by the time defined.

Negative values are valid too. Animations will start when the property changes
as the Os value, but it will appear to have started the animation with the value
in seconds defined into the animation sequence in advance. In other words, the
transition will appear to begin partway through its play cycle. It's useful to start
animations midway.

Animatable properties

There are a lot of properties that can be animated using CSS Transitions and CSS
animations, which are called animatable properties. It's important to know which
properties can be transitioned and which values of the property can be used by an
animation. The list of animatable properties is huge and almost every property that
you try to animate will work. Just keep in mind that if an animation you create isn't
working, check whether it's an animatable property.

The current list of animatable properties and what is animatable is available at
http://www.w3.org/TR/css3-transitions/#animatable-properties.

Some examples of values of animatable properties are color, length, percentage,
calc, and font-weight.

Here, we can see a sample of the HTML that will be used by three different
animations using Transitions:

<div class="cssanimation"s>
cssAnimation

</div>

<div class="cssAnimationTimesOneLine">
cssAnimationTimesOneLine

</div>

<div class="cssanimationEasing">
cssAnimationEasing

</div>

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

From now on, we will omit some CSS vendor-specific prefixes in order to
M . . .
~ have better clarity on the examples. We will focus on working examples
for the Chrome browser, although readers can add vendor-specific
prefixes to test the files on any other modern browser.

The first animation transition declaration will get animated when the width changes,
as follows:

.cssanimation {
width: 200px;
border: 1lpx solid black;
transition-property: width;
transition-duration: 2s;

}

.cssanimation:hover {
width:400px;

}

The second animation transition declaration will get animated when the width and
background color changes, as follows:

.cssAnimationTimesOneLine {
width: 100px;
background-color: white;
transition: width 2s, background-color 10s;

}

.cssAnimationTimesOneLine:hover {
width: 200px;
background-color: red;

}

The third animation transition declaration will get animated when all animatable
properties change:

.cssanimationEasing {
width: 200px;
background-color: black;
transition-property: all;
transition-timing-function: ease;
transition-duration: 2s;

}

.cssanimationEasing:hover {
background-color: red;

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

The initial value of the elements is given in this figure:

Transitions

||:55.i'mjma1iun |
cssAnimationTimesOneline

After 1 second of hovering the mouse over the cssAnimation element (the first
item), the width is halfway there.

Transitions

||: ssAnimation
cssAnimation TimesOneline

After 2 seconds of hovering the mouse over the cssAnimation element (the first
item), the width is as defined in the hover declaration.

Transitions

||:5 sAnimation
cssAnimationTimesOneline

After 5 seconds of hovering the mouse over the cssAnimationTimesOneLine
element (the second item), you can see that the color is between white and red
but the width transition is already complete. This happens because we used two
different durations for the transitions.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Transitions

|c55.i'mjmatiun |
cssAnimation TimesOneline

After 10 seconds of hovering the mouse over the second item, both the width and
the background color are on the end of the animations, as the biggest transition
was defined lasts for 10 seconds.

Transitions

cssdAnimation

The third item hovered after 1 second. The animation of the background color is in

the middle of the cycle.

Transitions

lessAnimation |
cezdmimationTimesOneline

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

The third item hovered after 2 seconds when the animation cycle was complete:

Transitions

lessAnimation |
cesdmimationTimesOnel ine

These samples showed us the result of transitioning the width and background color,
and we even have different transitions in the same element.

CSS3 keyframe animations

CSS transitions allowed us to create animations using CSS for the first time. With CSS
Transitions, we can define the initial and final state of the transition animation, but the
progress in between the transition duration is a little out of control. It is just controlled
using the transition-timing-function and transition-delay properties. This
enables us to define a start and end point for the animation, and the transition connects
these together. What if we want to create an animation with multiple steps and take a
nonlinear path in between the start and end of the animation?

CSS keyframe animations allow us to create multiple steps between an animation
duration with different timing functions between these steps. This makes our life easy
as it creates complex animations using the concept of keyframes; otherwise, we will
have to create multiple transitions in a sequence in order to create the full animation.
In other words, transitions are a subset of what we can do using CSS keyframes.

CSS animations give developers more control over the animation's progress-defining
keyframes. A keyframe is the explicit definition of the element style in a specific phase
of the animation in between the animation progress. This is a different approach from
transitions; transition keyframes are defined implicitly, and animation keyframes are
defined explicitly.

Defining an animation using keyframes

The definition of an animation using keyframes is different from the
transition definition.

First, we declare the animation states between the animation time on a
@keyframes rule.

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The keyframe can be defined using the from and to keywords or using a list of
percentages, so the definition is relative to the animation duration. Here are two
samples of valid keyframe declaration:

@-webkit-keyframes first-animation {
from {

border-color:blue;

}

to {
border-color:red;

@keyframes first-animation {
from {
border-color:blue;

}

to {
border-color:red;

}
Also, take a look at the following example:

@-webkit-keyframes first-animation-percentage {
0% {
border-color: blue;

}

100% {
border-color: red;

@keyframes first-animation-percentage
0% {
border-color: blue;

}

100% {
border-color: red;

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

So far, it seems clear that we defined the property value for the beginning and end
of an animation using both approaches of percentage and keywords. Using CSS
Animations, unlike CSS Transitions, we can add multiple steps using keyframes'
percentage definitions for a single CSS animation. However, which elements will
display the declared animation?

We define the animation that should be triggered on the element selector by adding
the animation-name property with the keyframes' name as the value or a list of
keyframes if we want to apply more than one animation to the same selector.

Here, we have a sample that applies the first-animation CSS animation to
elements with the animationoOne class:

.animationOne {
border: 2px solid black;

-webkit-animation-name:first-animation;

animation-name:first-animation;

-webkit-animation-duration:5s;

animation-duration: 5s;

}

As the preceding example shows, there is an animation-duration property that
defines how long the animation lasts once it is triggered.

The animation will be displayed as soon the page is loaded or when the animation is
defined for an element.

Before the animation, this is what appears:

CSS Keyframe animation

|.i‘s_njmationOne - Kevframes: first-animation |

After 5 seconds of the animation, this is what appears:

CSS Keyframe animation

|.i‘s_njmaticnOne - Kevframes: first-animation |

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Separating timing functions for each
keyframe interval

Another cool feature of CSS animations is that we can set the timing function like we
could on CSS transitions, but we can choose one different timing function for each
keyframe interval as well.

Here, we have a sample:

@keyframes second-animation-timing
0% {
animation-timing-function:ease-in;

}

25% {
transform:translateX (50px) ;
animation-timing-function:ease-out;

}

50% {
transform:translateX (100px) ;
animation-timing-function:linear;

}

100% {
transform:translateX (200px) ;
}
}

The first percentage determines animation-timing-function until the next
percentage, and so on until the last percentage. In the sample, the animation will be
displayed as the ease-in timing from 0 percent to 25 percent, the ease-out timing
from 25 percent to 50 percent, and the 1inear timing from 50 percent to 100 percent.

To facilitate the coding of CSS animations, we need to use
preprocessors such as LESS and SASS. With CSS preprocessors, we
can use mixins in order to avoid missing out on some vendor-specific

~ properties and duplicate less code.
I won't use mixins in my samples to show pure CSS. However, I
wouldn't start a web app nowadays without using CSS preprocessors;
they are really useful.

Another option is to use the Grunt task auto-prefixer.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

Other CSS keyframe animations' properties

There are some more animation properties listed as follows:

The animation-fill-mode: This is a way to change the elements' properties

to a value other than the original one; animations don't change the elements'
property values because the default value of the animation-fill-mode is none.
So, when the animation is complete, the animated element returns to the
original state and property values. This is the reason why the last animations'
samples return to the initial state. There is a great video on the animation-
fill-mode at http://www.valhead.com/2013/01/04/tutorial-css-
animation-fill-mode/.

The animation-iteration-count: CSS keyframe animations have the
animation-iteration-count property that determines how many times the
animation cycle will repeat; the default value is 1. You can use noninteger
values too in order to have an animation that only has a partial cycle, without
displaying the whole animation sequence. Even "infinite" values are allowed
so that you can create infinite loops for animations.

The animation-direction: We can create reversed animations using the
animation-direction property. The valid values are normal (the default
value), reverse (so the animation is rendered backwards), alternate
(which will display one cycle frontwards and the other backwards),

and alternate-reverse is the same as alternate but the first cycle is
reversed instead of normal. This is useful because we can avoid creating
two animations when we only want to display the same animation, but
backwards, this is just a property change instead of creating two animations.

The animation-delay: The animation-delay property exists and behaves

in the same way as the transition-delay. If we set the animation-fill-mode

to forwards, the animated element properties after the animation ends are
set to the last value determined by the animation, which might be different
from the original values, as this comes from the "from" values when the
animation-direction is normal. If the value is defined backwards, the value
set while the animation is on animation-delay time is the same from the
beginning of the animation; the "from" in the case of the animation-direction
is normal. There is a value called both too, which makes the animation
behave in such a way as if backwards and forwards were set.

The animation-play-state: Another useful property is the animation-play-state.
This property can be dynamically set to paused so that it pauses the execution,
and after that, it can be set to running so that it continues to run from the last
state. This allows us to control the animation state using JavaScript.

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

1
~ There is a cool tool where you can create CSS animations
and preview them available at http://cssanimate. com.

CSS3 transforms

Now that we know how to declare an animation either by CSS Transitions or by
CSS Animations, we will learn how to transform elements so that we will get able
to create cool and useful animations.

CSS transforms allow us to transform an element by scaling, skewing, translating,
or rotating it in two or three dimensions.

Here, you can imagine how to use a transform with our animations and transitions.
The good news is that transform is an animatable property, which means that we
can use this feature with keyframes and transitions in order to achieve animation
effects. Transforms aren't strictly used for animations, but they are often useful in
combination with animations.

This method is useful because it's relative, it's generic, and it can be reused on

many occasions. If we want to scale an item to two times its size, we can use it for an
element with a width of 100 px or 1000 px. The size doesn't matter, it will just double
it. The same applies to moving elements using translate; it's better than to change
the absolute values of the top, right, bottom, and left values using translate. The
element will move relatively, independent of its initial state.

This follows the Angular]S philosophy of declaratively creating reusable components
that can be used across different contexts rather than writing imperative code that
only works in a particular situation.

A CSS transform can be declared as follows:

.transformOne {
display: block;
width: 50px;
height: 50px;
border: 1lpx solid black;

}

.transformOne:hover {
-webkit-transform: rotate (90deg) ;
transform: rotate (90deg) ;

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

Although the element will be rotated 90 degrees clockwise when the transformone
element is hovered, it won't be smooth.

The result of the last sample before the hovering is as follows:

rotate(90deg)

.transformOne

The result of the last sample after the hover is as follows:

rotate(90deg)

U QuULIOJSUEI)”

To create a smooth rotate animation, we can integrate CSS Transform and CSS
Transition, as shown in the following sample:

.transformTwo {
display: block;
width: 50px;
height: 50px;
border: 1lpx solid black;
-webkit-transition: -webkit-transform ease-in 1s;

transition: transform ease-in 1s;

.transformTwo:hover {
-webkit-transform: rotate (90deg) ;
transform: rotate (90deg) ;

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following is the result of the last sample before the hover:

rotate(90deg)

LtransformTwo

The following is the result of the last sample 0.5 seconds after the hover:

rotate(90deg)

I’
%,
£/ }
I
(/]

The following is the result of the last sample after the hover:

rotate(90deg)

oM JuLIOJSUE.I)”

In the last example, we added a transition to the element, so the transform will be
transitioned for one second on the hover, as we can see in the preceding images.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

A similar transform rotate can be applied using the CSS animation, as follows:

@-webkit-keyframes animation-transform
from {
-webkit-transform:rotate (0deg) ;
transform: rotate (0deg) ;

50% {
-webkit-transform: rotate (90deg) ;
transform: rotate (90deg) ;

to {
-webkit-transform: rotate (360deg) ;
transform: rotate (360deg) ;

@keyframes animation-transform
from {

transform: rotate (0deg) ;

transform: rotate (90deg) ;

transform: rotate (360deg) ;

.transformThree {
display: block;
width: 100px;
height: 50px;
border: 1lpx solid red;
-webkit-animation-name: animation-transform;
animation-name: animation-transform;
-webkit-animation-duration: 5s;
animation-duration: 5s;

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This last sample showed us an animation of an element that rotates 360 degrees in
two phases: 90 degrees on the first half of the execution and until 360 degrees on the
second half. Creating this animation in JavaScript can be complex, or it would not be
as easy as it is on CSS at least, and wouldn't be as smooth as it is on CSS.

Now, we have the power to create animations that we will use on Angular]S
directives as well.

The transform accepts beyond rotate () values as scale (), translate (), skew(),
and the relative one-axis functions: translateX (), translateY (), scaleX (),
scaleY (), skewx (), and skewY ().

The scale function

The scale function is used to scale elements in proportion to the original size.

The scale (1) value is the original size, scale (0.5) will be half the size, and
scale (2) will be double the original size.

In the following sample, we will see how to double the size of an image in both the x
and y axis just by hovering it:

.transformFour img:hover
-webkit-transform: scale(2);
transform: scale(2);

}

The scale () function accepts two parameters if we use both x and y axes. The

first one is relative to the x axis, and the second one is relative to the y axis. We can
deform the image using scale with two parameters; this is a little-used feature that
can produce fun, interesting effects, as shown in the following sample:

.transformFive img:hover
-webkit-transform: scale(2,1);
transform: scale(2,1);

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

Check the transformFive element before hovering your mouse over it:

The Angular]JS shield logo, provided by the Angular]S team at https://github.
com/angular/angular.js/tree/master/images/logo, is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License (http://
creativecommons.org/licenses/by-sa/3. 0/).

Check the transformFive element after hovering your mouse over it:

In this sample, just the x axis of the image has been doubled; the y axis will keep its
original size.

If you prefer, you can still use the scalex () and scaleY () functions; each one scales
the element to its corresponding axis. This means that transform: scale(1,3); has
the same result as transform:scaleY (3) combined with scalex(1).

The translate function

The translate function allows us to move one element on the x and y axis.

If we define transform: translate (100px,50px) in an element, it will be moved
100 px on the x axis and 50 px on the y axis.

If we define transform: translate(100px) in an element, it will be moved 100 px
on the x axis, and the second parameter is optional.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Another possibility is to use axis-specific functions, such as translatex()
and translateY().

If we define transform: translateX(100px) in an element, it will be moved 100 px
on the x axis.

Check out the translateX (100px) effect in the following sample:

.transformTranslate
display: block;
width: 400px;
height: 50px;
border: 1lpx solid red;
background-color: grey;

}

.transformTranslate:hover
-webkit-transform: translateX(100px) ;
transform: translateX(100px) ;

}

Before the execution of translatex (100px), the following screenshot appears:

transform: translateX(100px)

After hovering your mouse over the element when translateX (100px) is applied,
the following screenshot will appear:

transform: translateX(100px)

If we define transform: translateY(100px) in an element, it will be moved 100 px
on the y axis.

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding CSS3 Transitions and Animations

The skew function

The skew function is used to lean the element in one direction or another. The skew
function parameters expect angles to be leaned, and values such as 45deg are valid.

We should use skewx () and skewY () only in order to skew around the respective
axis by the angle passed as the parameter.

One sample of skew of 45 degrees on x axis is as follows:

.transformSix {
display: block;
width: 100px;
height: 50px;
border: 1lpx solid red;
background-color: grey;

}

.transformSix:hover {
-webkit-transform: skewX (45deg) ;
transform: skewX (45deg) ;

}

The result before the skew is applied is as follows:

transform: skewX(43deg)

The result after hovering on the element when skewX (45deg) is applied is as follows:

transform: skewX(45deg)

e

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Exercise

1. Create one simple loading animation using three div elements that contain
an animation. Each one should be filled by a black background color that
increases the size from 0 to 20 px in height and width in a sequence. So, the
first animation starts first, the second has a longer delay than the first one,
and the third has more delay than the second one in an infinite loop.

Create a loading animation using transform:rotate and CSS animations.

Create an animation of a ball image or a circle that goes 100px to the right, gets
back 50 px to the left, and goes 150 px to the right—all in a single animation.

Create the same animation as the one in exercise 2 but in the reverse order.

Create two animations similar to the animations in the guidelines of Google
Material Design described at http://www.google.com/design/spec/
animation/authentic-motion.html#

Summary

With the CSS3 specifications learned in this chapter, we should now be able to

create simple-to-medium complex animations using CSS transitions, CSS animations,
and CSS transforms. We can create loading spins, move elements smoothly, create
animations with the timing we want as long as we want and professionally decide
when to use CSS Transition or CSS Animation for a specific animation.

We are now ready to create our first animation on Angular]S, which will be the topic
of the next chapter.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First
Animation in AngulardS

Now that we know how to create CSS animations, we will learn how to apply
them within the context of Angular]S by creating animations using CSS transitions
and CSS keyframe animations that are integrated with Angular]S native directives
using the ngAnimate module. The later chapters will cover custom directives and
JavaScript animations integrated with Angular]S as well.

In this chapter, we will learn:

* The ngAnimate module setup and usage

* Angular]S directives with support for out-of-the-box animation
* Angular]S animations with the CSS transition

e Angular]S animations with CSS keyframe animations

* The naming convention of the CSS animation classes

e Animation of the ngMessage and ngMessages directives

The ngAnimate module setup and usage

Angular]S is a module-based framework; if we want our Angular]S application to
have the animation feature, we need to add the animation module (ngAnimate).
We have to include this module in the application by adding the module as a
dependency in our AngularJS application.

However, before that, we should include the JavaScript angular-animate.js file in
HTML. Both files are available on the Google content distribution network (CDN),
Bower, Google Code, and https://angularjs.org/.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

The Google developers CDN hosts many versions of Angular]S, as listed here:
https://developers.google.com/speed/libraries/devguide#fangularjs

Currently, Angular]S Version 1.3.0 is the latest stable version, so we will use
Angular]S Version 1.3.0 on all sample files of this book; we can get them from
https://ajax.googleapis.com/ajax/libs/angularjs/1.3.0/angular.min.
js and https://ajax.googleapis.com/ajax/libs/angularjs/1.3.0/angular-
animate.min.js

M You might want to use Bower. To do so, check out this great video
(:l article at https://thinkster.io/egghead/intro-to-
bower/, explaining how to use Bower to get Angular]S.

We include the JavaScript files of Angular]JS and the nganimate module, and then
we include the ngAnimate module as a dependency of our app. This is shown in
the following sample, using the Google CDN and the minified versions of both files:

<!DOCTYPE html>
<html ng-app"myApp">
<head>
<title>AngularJdS animation installation</title>
</head>
<body>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.3.0/angular-animate.min.js"></script>
<scripts
var app = angular.module ('myApp', ['ngAnimate'l]) ;
</scripts>
</body>
</html>

Here, we already have an Angular]S web app configured to use animations.
Now, we will learn how to animate using AngularJS directives.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

AngularJS directives with native support
for animations

Angular]JS has the purpose of changing the way web developers and designers
manipulate the Document Object Model (DOM). We don't directly manipulate the
DOM when developing controllers, services, and templates. Angular]S does all the
DOM manipulation work for us. The only place where an application touches the
DOM is within directives. For most of the DOM manipulation requirements, Angular]S
already provides built-in directives that fit our needs. There are many important
Angular]JS directives that already have built-in support for animations, and they

use the ngAnimate module. This is why this module is so useful; it allows us to use
animations within Angular]S directives DOM manipulation. This way, we don't have
to replicate native directives by extending them just to add animation functionality.

The ngAnimate module provides us a way to hook animations in between Angular]S
directives execution. It even allows us to hook on custom directives. This will be the
main topic of Chapter 5, Custom Directives and the $animate Service.

As we are dealing with animations between DOM manipulations, we can have
animations before and after an element is added to or removed from the DOM, after an
element changes (by adding or removing classes), and before and after an element is
moved in the DOM. These events are the moments when we might add animations.

Fade animations using AngularJS

Now that we already know how to install a web app with the ngAnimate
module enabled, let's create fade-in and fade-out animations to get started
with Angular]S animations.

We will use the same HTML from the installation topic and add a simple controller,
just to change an ngshow directive model value and add a CSS transition.

The ngsShow directive shows or hides the given element based on the expression
provided to the ng-show attribute.

For this sample, we have a Toggle fade button that changes the ngshow model value,
so we can see what happens when the element fades in and fades out from the DOM.
The ngShow directive shows and hides an element by adding and removing the
ng-hide class from the element that contains the directive, shown as follows:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJdS animation installation</title>

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

</head>
<body>
<style type="text/css">
.firstSampleAnimation.ng-hide-add,
.firstSampleAnimation.ng-hide-remove {
-webkit-transition: 1ls ease-in-out opacity;
transition: 1ls ease-in-out opacity;
opacity: 1;

.firstSampleAnimation.ng-hide
opacity: 0;
}
</style>
<div>
<div ng-controller="animationsCtrl"s
<hl>ngShow animation</hl>
<button ng-click="fadeAnimation =
|fadeAnimation">Toggle fade</buttons>
fadeAnimation value: {{fadeAnimation}}
<div class="firstSampleAnimation" ng-show="fadeAnimation">

This element appears when the fadeAnimation model
is true

</div>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularijs/
1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularijs/
1.3.0/angular-animate.min.js"></script>

<scripts
var app = angular.module ('myApp', ['ngAnimate']);
app.controller ('animationsCtrl', function ($scope) {

$scope.fadeAnimation = false;
13N
</scripts>
</body>
</html>

In the CSS code, we declared an opacity transition to elements with the
firstAnimationSample and ng-hide-add classes, or elements with the
firstAnimationSample and ng-hide-remove classes.

We also added the firstAnimationSample class to the same element that has the
ng-show directive attribute.

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The fadeAnimation model is initially false, so the element with the ngShow
directive is initially hidden, as the ngShow directive adds the ng-hide class
to the element to set the display property as none.

When we first click on the Toggle fade button, the fadeAnimation model will
become true. Then, the ngshow directive will remove the ng-hide class to display
the element. But before that, the nganimate module knows there is a transition
declared for this element. Because of that, the ngAnimate module will append the
ng-hide-remove class to trigger the hide animation.

Then, nganimate will add the ng-hide-remove-active class that can contain the
final state of the animation to the element and remove the ng-hide class at the same
time. Both classes will last until the animation (1 second in this sample) finishes, and
then they are removed. This is the fade-in animation; ngAnimate triggers animations
by adding and removing the classes that contain the animations; this is why we say
that Angular]S animations are class based.

This is where the magic happens. All that we did to create this fade-in animation
was declare a CSS transition with the class name ng-hide-remove. This class name
means that it's appended when the ng-hide class is removed.

The fade-out animation will happen when we click on the Toggle fade button again,
and then, the fadeAnimation model will become false. The ngShow directive

will add the ng-hide class to remove the element, but before this, the nganimate
module knows that there is a transition declared for that element too. The nganimate
module will append the ng-hide-add class and then add the ng-hide and ng-hide-
add-active classes to the element at the same time. Both classes will last until the
animation (1 second in this sample) finishes, then they are removed, and only the
ng-hide class is kept to hide the element.

The fade-out animation was created by just declaring the CSS transition with the
class name ng-hide-add. It is easy to understand that this class is appended
to the element when the ng-hide class is about to be added.

The AngularJS animations convention

As this chapter is intended to teach you how to create animations with Angular]s,
you need to know which directives already have built-in support for Angular]S
animations to make your life easier.

Here, we have a table of directives with the directive names and the events of the
directive life cycle when animation hooks are supported.

The first row means that the ngrepeat directive supports animation on enter, leave,
and move event times.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

All events are relative to DOM manipulations, for example, when an element enters
or leaves the DOM, or when a class is added to or removed from an element.

Directive Supported animations
ngRepeat Enter, leave, and move
ngView Enter and leave
ngInclude Enter and leave
ngSwitch Enter and leave

nglf Enter and leave
ngClass Add and remove
ngShow and ngHide Add and remove
form and ngModel Add and remove
ngMessages Add and remove
ngMessage Enter and leave

Perhaps the more experienced AngularJS users have noticed that the most frequently
used directives are attended in this list. This is great; it means that animating with
Angular]S isn't hard for most use cases.

AngularJS animation with CSS
transitions

We need to know how to bind the CSS animation we learned about in Chapter 2,
Understanding CSS3 Transitions and Animations, as well as the Angular]S directives
listed in the previous table. The ngIf directive, for example, has support for the enter
and leave animations.

When the value of the ngIf model is changed to true, it triggers the animation by
adding the ng-enter class to the element just after the ngif DOM element is created
and injected. This triggers the animation, and the classes are kept for the duration

of the transition. Then, the ng-enter class is removed. When the value of ngIf is
changed to false, the ng-1leave class is added to the element just before the ng1f
content is removed from the DOM, and so, the animation is triggered while the
element still exists.

To illustrate the Angular]S ngIf directive and ngAnimate module behavior, let's see
what happens in a sample.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

First, we have to declare a button that toggles the value of the fadeAnimation model
and one div tag that uses ng-if="fadeAnimation" so we can see what happens
when the element is removed and added back.

Here, we create the HTML code using the HTML template we used in the last topic
to install the ngAnimate module:

<!DOCTYPE htmls>
<html ng-app="myApp">

<head>
<title>AngulardS ngIlf sample</title>
</head>
<body>
<style>
/* ngIf animation */
.animationIf.ng-enter,
.animationIf.ng-leave {
-webkit-transition: opacity ease-in-out 1s;
transition: opacity ease-in-out 1s;
}
.animationIf.ng-enter,
.animationIf.ng-leave.ng-leave-active {
opacity: 0;
}
.animationIf.ng-leave,
.animationIf.ng-enter.ng-enter-active {
opacity: 1;
}
</style>

<div ng-controller="animationsCtrl"s>
<hl>ngIf animation</hls>
<div>
fadeAnimation value: {{fadeAnimation}}
</divs>
<button ng-click="fadeAnimation = !fadeAnimation"s>
Toggle fade</button>
<div ng-if="fadeAnimation" class="animationIf">
This element appears when the fadeAnimation model is true
</div>
</divs>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></script>
<scripts>

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

var app = angular.module ('myApp', ['ngAnimate']);
app.controller ('animationsCtrl', function ($scope) {
$scope.fadeAnimation = false;
1)
</script>
</body>
</html>

So, let's see what happens in the DOM just after we click on the Toggle fade button.
We will use Chrome Developer Tools (Chrome DevTools) to check the HTML in
each animation step. It's a native tool that comes with the Chrome browser. To open
Chrome DevTools, you just need to right-click on any part of the page and click on
Inspect Element.

The ng-enter class

Our CSS declaration added an animation to the element with the animationIf and
ng-enter classes. So, the transition is applied when the element has the ng-enter
class too. This class is appended to the element when the element has just entered
the DOM. It's important to add the specific class of the element you want to animate
in the selector, which in this case is the animationIf class, because many other
elements might trigger animation and add the ng-enter class too. We should be
careful to use the specific target element class.

Until the animation is completed, the resulting HTML fragment will be as follows:

nglf animation

fadeAnimation value: true
Toggle fade

Q D | Elements | Network Sources Timeline Profiles Resources Audits Console PageSpeed » »= ﬁ ﬂ‘x

»

¥ <html ng-app="myApp" class="ng-scope">

:: head> 1
yler.</style> ;ﬂ
¥ <div ng-controller="animationsCtrl™ class="ng-scope"> o
<hl>ngIf animation: n
<div class="ng-bind " t
fadeAnimation value: true .
<fdiv> <
<button ng-click="fadeAnimation = !fadeAnimation™>Toggle fade</button: t
<!-- ngIf: fadeAnimation --» ¥
<div ng-if="fadeAnimation"” class="animationIf ng-scope ng-animate ng-enter ng-enter- 1
actives =
This element appears when the fadeAnimation model is true {
</div> ¥

<!-- end ngIf: fadeAnimation --» LT
</div> -

htmlng-scope body QIR

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Consider the following snippet:

<div ng-if="fadeAnimation" class="animationIf ng-scope
ng-animate ng-enter ng-enter-active">
fadeAnimation value: true

</divs>

We can see that the ng-animate, ng-enter, and ng-enter-active classes were
added to the element.

After the animation is completed, the DOM will have the animation classes removed
as the next screenshot shows:

nglf animation

fadeAnimation value: true

Toggle fade

This element appears when the fadeAnimation model 15 true

Q D | Elements | Network Sources Timeline Profiles Resources Audits Console PageSpeed » = ﬁ E‘ %
¥ {ctyles..{/style

3

¥ «div ng-controller="animationsCtrl™ class="ng-scope”> |St5‘|95| ”
<hl>ngIf animation</hl:> ele\{ﬁniﬁg’g -
<div class="ng-binding"> tyle {
fadeAnimation value: true ¥
</div>
<button ng-click="fadeAnimation = !fadeAnimation”>Toggle fade</button> User age..
<!-- ngIf: fadeAnimation --> EHY
<div ng-if="fadeAnimation" class="animationIf ng-scope™> display:
This element appears when the fadeAnimation meodel is true b..
</div> }
<!-- end ngIf: fadeAnimation -->
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.2.0¢/ B ________
angular.min.js"></script: -
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.8/angular- = -
animate.min.js"></script> - q e

htmlng-scope body diving-scope QERELTUEIELIIEY R

As you can see, the animation classes are removed:

<div ng-if="fadeAnimation" class="animationIf ng-scope">
This element appears when the fadeAnimation model is true
</divs>

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

The ng-leave class

We added the same transition of the ng-enter class to the element with the

animationIf and ng-leave classes. The ng-1leave class is added to the element
before the element leaves the DOM. So, before the element vanishes, it will display

the fade effect too.

If we click again on the Toggle fade button, the leave animation will be displayed

and the following HTML fragment and screen will be rendered:

nglf animation

fadeAnimation value: false
Toggle fade

Q [] |Elements| Network Sources Timeline Profiles Resources Audits Console PageSpeed » =

¥ chtml ng-app="myApp"” c¢lass="ng-scope">
» <head>.</head>
¥ <body>
P <styled..</style>
¥ <div ng-controller="animaticnsCtrl™ class="ng-scope">
<hl>ngIf animation</hl>
<div class="ng-binding":
fadeAnimation value: false

</fdiv>
<button ng-click="fadeAnimation = !fadeAnimation”>Toggle fade</button>
¢<!-- ngIf: fadeAnimation -->
<div ng-if="fadeAnimaticn™ class="animationIf ng-scope ng-animate ng-leave ng-leave-
active”>
This element appears when the fadeAnimation model is true
<fdivy
<!-- end ngIf: fadeAnimation -->
<fdivs
LTI R TeT. (N AT Bl div.animationlf.ng-scope.ng-animate.ng-leave.ng-leave-active

L= = B

e e o -

The fragment rendered is as follows:

<div ng-if="fadeAnimation" class="animationIf ng-scope
g-animate ng-leave ng-leave-active">
This element appears when the fadeAnimation model is true

</div>

We can notice that the ng-animate, ng-leave, and ng-leave-active classes were

added to the element.

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Finally, after the element is removed from the DOM, the rendered result will be
as follows:

nglf animation

fade Animation value: false
Toggle fade

Q D | Elements | Metwork Sources Timeline Profiles Resources Audits Console PageSpeed » = # |El‘>§

>.&/style> Styles | »
ng-controller="animationsCtrl” class="ng-scope™> elemenifis
<hl>ngIf animation</hl:> tyle {

<div class="ng-binding"> T

fadeAnimation value: false
</div> user age.

<button ng-click="fadeAnimation = !fadeAnimation”>Toggle fade</button: R o]

.< - nglf: fadeAnimation --» display:
<fdiv> b...
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.8/ }
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.@/angular-
animate.min.js"»</script>

P ¢scriptr.</script> =
</body> L h
</html> »

htmlng-scope body button

The code after removing the element is as follows:

<div ng-controller="animationsCtrl" class="ng-scope">
<div class="ng-binding">
fadeAnimation value: false
</div>
<button ng-click="fadeAnimation = !fadeAnimation">
Toggle fade</buttons>
<!-- ngIf: fadeAnimation -->

</div>

Furthermore, there are the ng-enter-active and ng-leave-active classes.

They are appended to the element classes too. Both are used to define the target
value of the transition, and the -active classes define the destination CSS so that

we can create a transition between the start and the end of an event. For example,
ng-enter is the initial class of the enter event and ng-enter-active is the final class
of the enter event. They are used to determine the style applied at the start of the
animation and the final transition style, and they are displayed when the transition
completes the cycle. A use case of the -active class is when we want to set an initial
color and a final color using the CSS transition.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

In the last sample case, the ng-1leave class has opacity set to 1 and the ng-leave-
active class has opacity set to 0; so, the element will fade away at the end of
the animation.

Great, we just created our first animation using Angular]S and CSS transitions.

AngularJS animation with CSS keyframe
animations

We created an animation using the ngIf directive and CSS transitions. Now we are
going to create an animation using ngrRepeat and CSS animations (keyframes).

As we saw in the earlier table on directives and the supported animation events,
the ngrepeat directive supports animation on the enter, leave, and move events.
We already used the enter and leave events in the last sample. The move event is
triggered when an item is moved around on the list of items.

For this sample, we will create three functions on the controller scope: one to add
elements to the list in order to execute the enter event, one to remove an item from
the list in order to execute the leave event, and one to sort the elements so that we
can see the move event.

Here is the JavaScript with the functions; $scope . items is the array that we will use
on the ngRepeat directive:

var app = angular.module ('myApp', ['ngAnimate'l]);
app.controller ('animationsCtrl', function ($scope) {
$scope.items = [{ name: 'Richard' }, { name: 'Bruno' }
, { name: 'Jobson' }1;
$scope.counter = 0;
$scope.addItem = function ()
var name = 'Item' + $scope.counter++;

$scope.items.push({ name: name });
}i
$scope.removeltem = function () {
var length = $scope.items.length;
var indexRemoved = Math.floor (Math.random() * length) ;
$scope.items.splice (indexRemoved, 1) ;
}i
$scope.sortItems = function () {
$scope.items.sort (function (a, b) { return a[name]
< blname] ? -1 : 1 });

}i
)

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The HTML is as follows; it is without the CSS styles because we will see them later
separating each animation block:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngulardS ngRepeat sample</titles>
</head>
<body>
<div ng-controller="animationsCtrl"s>
<hls>ngRepeat Animation</hl>
<divs>
<div ng-repeat="item in items" class="repeatItem">
{{item.name}}
</div>
<button ng-click="addItem()">Add item</buttons>
<button ng-click="removeItem() ">Remove

item</button><button ng-click="sortItems()">
Sort items</buttons>

</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></scripts>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></script>
</body>
</html>

We will add an animation to the element with the repeatItem and ng-enter classes,
and we will declare the from and to keyframes. So, when an element appears, it
starts with opacity set to 0 and color set as red and will animate for 1 second

until opacityis 1 and color is black. This will be seen when an item is added

to the ngrepeat array.

The enter animation definition is declared as follows:

/* ngRepeat ng-enter animation */
.repeatItem.ng-enter {
-webkit-animation: 1s ng-enter-repeat-animation;
animation: 1s ng-enter-repeat-animation;
}
@-webkit-keyframes ng-enter-repeat-animation {
from {
opacity: 0;
color: red;

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

to {
opacity: 1;
color: black;

}

@keyframes ng-enter-repeat-animation {
from {
opacity: 0;
color: red;
}
to {
opacity: 1;
color: black;

}

The move animation is declared next, to be triggered when we move an item of
ngRepeat. We will add a keyframe animation to the element with the repeatItem
and ng-move classes. We will declare the £rom and to keyframes; so, when an
element moves, it starts with opacity set to 0 and color set as black and will
animate for 1 second until opacityis 0.5 and color is blue, shown as follows:

/* ngRepeat ng-move animation */
.repeatItem.ng-move {
-webkit-animation: 1s ng-move-repeat-animation;
animation: 1ls ng-move-repeat-animation;
}
@-webkit-keyframes ng-move-repeat-animation {
from {
opacity: 1;
color: black;
}
to {
opacity: 0.5;
color: blue;

}

@keyframes ng-move-repeat-animation {
from {
opacity: 1;
color: black;

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

to {
opacity: 0.5;
color: blue;

}

The leave animation is declared next and is to be triggered when we remove an item
of ngrepeat. We will add a keyframe animation to the element with the repeatItem
and ng-leave classes; we will declare the £rom and to keyframes. So, when an
element leaves the DOV, it starts with opacity setto 1 and color set asblack

and animates for 1 second until opacity is 0 and color is red, shown as follows:

/* ngRepeat ng-leave animation */
.repeatItem.ng-leave
-webkit-animation: 1s ng-leave-repeat-animation;
animation: 1ls ng-leave-repeat-animation;
}
@-webkit-keyframes ng-leave-repeat-animation
from {
opacity: 1;
color: black;
}
to {
opacity: 0;
color: red;

}

@keyframes ng-leave-repeat-animation {
from {
opacity: 1;
color: black;
}
to {
opacity: 0;
color: red;

}

We can see that the ng-enter-active and ng-leave-active classes aren't used
on this sample, as the keyframe animation already determines the initial and
final properties' states. In this case, as we used CSS keyframes, the classes with
the -active suffix are useless, although for CSS transitions, it's useful to set an
animation destination.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

The CSS naming convention

In the last few sections, we saw how to create animations using Angular]S, CSS
transitions, and CSS keyframe animations. Creating animations using both CSS
transitions and CSS animations is very similar because all animations in Angular]S
are class based, and AngularJS animations have a well-defined class name pattern.

We must follow the CSS naming convention by adding a specific class to the
directive element so that we can determine the element animation. Otherwise,
the nganimate module will not be able to recognize which element the animation
applies to.

We already know that both ngIf and ngRepeat use the ng-enter, ng-enter-
active, ng-leave, and ng-leave-active classes that are added to the element in
the enter and leave events. It's the same naming convention used by the ngInclude,
ngSwitch, ngMessage, and ngview directives.

The ngHide and ngShow directives follow a different convention. They add the
ng-hide-add and ng-hide-add-active classes when the element is going to be
hidden. When the element is going to be shown, they add the ng-hide-remove
and ng-hide-remove-active classes. These class names are more intuitive for
the purpose of hiding and showing elements. There is also the ngclass directive
convention that uses the class name added to create the animation classes with
the -add, -add-active, -remove, and -remove-active suffixes, similar to the
ngHide directive.

The ngRepeat directive uses the ng-move and ng-move-active classes when
elements move position in the DOM, as we already saw in the last sample.

The ngClass directive animation sample

The ngClass directive allows us to dynamically set CSS classes. So, we can
programmatically add and remove CSS from DOM elements. Classes are already
used to change element styles, so it's good to see how useful animating the ngClass
directive is.

Let's see a sample of ngClass so that it's easier to understand.

We will create the HTML code with a Toggle ngClass button that will add and
remove the animationClass class from the element with the initialClass class
through the ngClass directive:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<title>AngulardS ngClass sample</titles>
</head>
<body>
<link href="ngClassSample.css" rel="stylesheet" />
<div>
<hl>ngClass Animation</hl>
<div>
<button ng-click="toggleNgClass = !toggleNgClass">Toggle
ngClass</button>
<div class="initialClass" ng-class="
{'animationClass' : toggleNgClass}">
This element has class 'initialClass' and
the ngClass directive is declared as
ng-class="{'animationClass' : toggleNgClass}"
</div>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>
<scripts
var app = angular.module ('myApp', ['ngAnimate']);
</script>
</body>
</html>

For this sample, we will use two basic classes: an initial class and the class that the
ngClass directive will add to and remove from the element:

/* ngclass animation */
/*This is the initialClass, that keeps in the element*/
.initialcClass {

background-color: white;

color: black;

border: 1lpx solid black;

}

/* This is the animationClass, that is added or removed by the ngClass
expression*/
.animationClass {

background-color: black;

color: white;

border: 1lpx solid white;

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

To create the animation, we will define a CSS animation using keyframes; so, we
only need to use the animationClass-add and animationClass-remove classes
to add animations:

@-webkit-keyframes ng-class-animation
from {
background-color: white;
color:black;
border: 1px solid black;

}
to {
background-color: black;
color: white;
border: 1lpx solid white;
}

@keyframes ng-class-animation
from {
background-color: white;
color:black;
border: 1px solid black;

}
to {
background-color: black;
color: white;
border: 1lpx solid white;
}

}

The initial state is shown as follows:

ngClass Animation

Toggle ngClass

This element has class 'tnitialClass” and the ngClass directive 15 declared as ng-
class="{'anmimationClass' : toggleNgClass}"

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

So, we want to display an animation when animationClass is added to the element
with the initialClass class by the ngClass directive. This way, our animation
selector will be:

.initialClass.animationClass-add{
-webkit-animation: 1s ng-class-animation;
animation: 1ls ng-class-animation;

}

After 500 ms, the result should be a complete gray div tag because the text, border,
and background colors are halfway through the transition between black and white,
as we can see in this screenshot:

ngClass Animation

Toggle ngClass

After a second of animation, this is the result:

ngClass Animation

Toggle ngClass

his element has class 'imitialClass’ and the ngClass directive 1s declared as ng-

S

lass=" {'amimationClass' : toggleNgClass}"

The remove animation, which occurs when animationClass is removed, is similar
to the enter animation. However, this animation should be the reverse of the enter
animation, and so, the CSS selector of the animation will be:

initialClass.animationClass-remove {
-webkit-animation: 1s ng-class-animation reverse;
animation: 1s ng-class-animation reverse;

}

The animation result will be the same as we saw in previous screenshots, but in the
reverse order.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

The ngHide and ngShow animation sample

Let's see one sample of the ngHide animation, which is the directive that shows and
hides the given HTML code based on an expression, such as the ngshow directive.
We will use this directive to create a success notification message that fades in

and out.

To have a lean CSS file in this sample, we will use the Bootstrap CSS library,
which is a great library to use with Angular]S. There is an Angular]S version

of this library created by the Angular UI team available at http://angular-ui.
github.io/bootstrap/.

The Twitter Bootstrap library is available at http://getbootstrap.com/.

For this sample, we will use the Microsoft CDN; you can check out the Microsoft
CDN libraries at http://www.asp.net/ajax/cdn.

Consider the following HTML:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngularJdS ngHide sample</title>
</head>
<body>
<link href="http://ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/css/
bootstrap.css" rel="stylesheet" />

<style>
/* ngHide animation */
.ngHideSample {
padding: 10px;

}

.ngHideSample.ng-hide-add {
-webkit-transition: all linear 0.3s;
-moz-transition: all linear 0.3s;
-ms-transition: all linear 0.3s;
-o-transition: all linear 0.3s;
opacity: 1;

.ngHideSample.ng-hide-add-active {
opacity: 0;

}

.ngHideSample.ng-hide-remove

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

-webkit-transition: all linear 0.3s;
-moz-transition: all linear 0.3s;
-ms-transition: all linear 0.3s;
-o-transition: all linear 0.3s;
opacity: 0;

.ngHideSample.ng-hide-remove-active
opacity: 1;
}
</style>
<div>
<hl>ngHide animation</hl>
<divs>

<button ng-click="disabled = !disabled">Toggle ngHide
animation</buttons>

<div ng-hide="disabled" class="ngHideSample bg-success">
This element has the ng-hide directive.
</div>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>
<scripts
var app = angular.module ('myApp', ['ngAnimate']);
</script>
</body>
</html>

In this sample, we created an animation in which when the element is going to hide,
its opacity is transitioned until it's set to 0. Also, when the element appears again, its
opacity transitions back to 1 as we can see in the following sequence of screenshots.

In the initial state, the output is as follows:

ngHide animation

Toggle ngHide animation

This element has the ng-hide directive.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

After we click on the button, the notification message starts to fade:

ngHide animation

I Toggle ngHide animation |

This element has the ng-hide directive.

After the add (ng-hide-add) animation has completed, the output is as follows:

ngHide animation

. Toggle ngHide animation |

Then, if we toggle again, we will see the success message fading in:

ngHide animation

| Toggle ngHide animation |

This element has the ng-hide directive.

After the animation has completed, it returns to the initial state:

ngHide animation

[Toggle ngHide animation |

This element has the ng-hide directive.

The ngshow directive uses the same convention; the only difference is that each
directive has the opposite behavior for the model value. When the model is true,
ngShow removes the ng-hide class and ngHide adds the ng-hide class, as we saw
in the first sample of this chapter.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The ngModel directive and form animations

We can easily animate form controls such as input, select, and textarea on
ngModel changes. Form controls already work with validation CSS classes such as
ng-valid, ng-invalid, ng-dirty, and ng-pristine. These classes are appended to
form controls by Angular]S, based on validations and the current form control status.
We are able to animate on the add and remove features of those classes.

So, let's see an example of how to change the input color to red when a field

becomes invalid. This helps users to check for errors while filling in the form before it
is submitted. The animation eases the validation error experience. For this sample, a
valid input will contain only digits and will become invalid once a character is entered.

Consider the following HTML:

<hl>ngModel and form animation</hl>
<div>
<form>
<input ng-model="ngModelSample" ng-pattern="/"*\d+$/"
class="inputSample" />
</form>
</div>

This ng-pattern directive validates using the regular expression if the model
ngModelSample is a number. So, if we want to warn the user when the input is
invalid, we will set the input text color to red using a CSS transition.

Consider the following CSS:

/* ngModel animation */
.inputSample.ng-invalid-add
-webkit-transition: 1s linear all;
transition: 1s linear all;
color: black;

}

.inputSample.ng-invalid
color: red;

}

.inputSample.ng-invalid-add-active {
color: red;

}

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

We followed the same pattern as ngClass. So, when the ng-invalid class is added,
it will append the ng-invalid-add class and the transition will change the text color
to red in a second; it will then continue to be red, as we have defined the ng-invalid
color as red too. The test is easy; we just need to type in one non-numeric character
on the input and it will display the animation.

The ngMessage and ngMessages
directive animations

Both the ngMessage and ngMessages directives are complimentary, but you can
choose which one you want to animate, or even animate both of them. They became
separated from the core module, so we have to add the ngMessages module as a
dependency of our AngularJS application.

These directives were added to Angular]S in Version 1.3, and they are useful to display
messages based on the state of the model of a form control. So, we can easily display

a custom message if an input has a specific validation error, for example, when the
input is required but is not filled in yet. Without these directives, we would rely on
JavaScript code and/or complex ngIf statements to accomplish the same result.

For this sample, we will create three different error messages for three different
validations of a password field, as described in the following HTML:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>ngMessages animation</title>
</head>
<body>
<link href="ngMessageAnimation.css" rel="stylesheet" />
<hls>ngMessage and ngMessages animation</hl>
<div>
<form name="messageAnimationForm">
<label for="modelSample">Password validation input</labels
<div>
<input ng-model="ngModelSample" id="modelSample"
name="modelSample" type="password" ng-pattern=
"/*\d+$/" ng-minlength="5" ng-maxlength="10"
required class="ngMessageSample" />
<div ng-messages="messageAnimationForm.
modelSample.$error" class="ngMessagesClass"
ng-messages-multiples>
<div ng-message="pattern" class="ngMessageClass">*
This field is invalid, only numbers are allowed</div>

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

<div ng-message="minlength"

It's mandatory at least 5

<div ng-message="maxlength"

It's mandatory at most 10

</div>
</div>
</form>
</div>

class="ngMessageClass">*
characters</div>
class="ngMessageClass">*
characters</div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs

/1.3.0/angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>

<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-messages.min.js"></script>

<scripts
var app = angular.module ('myApp',
'ngMessages']) ;
</script>
</body>
</html>

['ngAnimate’',

We included the ngMessage file too, as it's required for this sample.

For the ngMessages directive, that is, the container of the ngMessage directives, we
included an animation on ng-active-add that changes the container background
color from white to red and ng-inactive-add that does the opposite, changing the

background color from red to white.

This works because the ngMessages directive appends the ng-active class when
there is any message to be displayed. When there is no message, it appends the
ng-inactive class to the element. Let's see the ngMessages animation's declaration:

.ngMessagesClass {
height:
width:

50px;
350px%;

.ngMessagesClass.ng-active-add {
transition: 0.3s linear all;

background-color: red;

.ngMessagesClass.ng-active {

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

background-color: red;

.ngMessagesClass.ng-inactive-add {
transition: 0.3s linear all;
background-color: white;

.ngMessagesClass.ng-inactive {
background-color: white;

}

For the ngMessage directive, which contains a message, we created an animation that
changes the color of the error message from transparent to white when the message
enters the DOM, and changes the color from white to transparent when the message
leaves DOM, shown as follows:

.ngMessageClass {
color: white;

.ngMessageClass.ng-enter {
transition: 0.3s linear all;
color: transparent;

.ngMessageClass.ng-enter-active {
color: white;

.ngMessageClass.ng-leave
transition: 0.3s linear all;
color: white;

.ngMessageClass.ng-leave-active
color: transparent;

}

This sample illustrates two animations for two directives that are related to each other.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The initial result, before we add a password, is as follows:

ngMessage and ngMessages animation

Password validation mnput

We can see both animations being triggered when we type in the a character,
for example, in the password input.

Between 0 and 300 ms of the animation, we will see both the background and text
appearing for two validation messages:

ngMessage and ngMessages animation

Password validation input

After 300 ms, the animation has completed, and the output is as follows:

ngMessage and ngMessages animation

Password validation input

|
* This field 1s invalid, only numbers are allowed
* It's mandatory at least 5 characters

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

The ngView directive animation

The ngview directive is used to add a template to the main layout. It has support for

animation, for both enter and leave events. It's nice to have an animation for ngview

so the user has a better notion that we are switching views. For this directive sample,
we need to add the ngRoute JavaScript file to the HTML and the ngRoute module as
a dependency of our app.

We will create a sample that slides the content of the current view to the left, and the
new view appears sliding from the right to the left too so that we can see the current
view leaving and the next view appearing.

Consider the following HTML:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngulardS ngView sample</title>
</head>
<body>
<style>
.ngViewRelative {
position: relative;
height: 300px;

}

.ngViewContainer {
position: absolute;
width: 500px;
display: block;

.ngViewContainer.ng-enter,

.ngViewContainer.ng-leave {
-webkit-transition: 600ms linear all;
transition: 600ms linear all;

.ngViewContainer.ng-enter
transform: translateX (500px) ;

}

.ngViewContainer.ng-enter-active {

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

transform: translateX(0px) ;

.ngViewContainer.ng-leave
transform: translateX(0px) ;

.ngViewContainer.ng-leave-active {
transform: translateX(-1000px) ;
}
</style>
<hl>ngView sample</hl>
<div class="ngViewRelative"s
First page
Second page
<div ng-view class="ngViewContainer"s
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-route.min.js"></script>
<scripts
var app = angular.module ('myApp', ['ngAnimate', 'ngRoute'l);
app.config(['SrouteProvider',
function ($routeProvider)
SrouteProvider
.when('/First', {
templateUrl: 'first.html'
)
.when ('/Second', {
templateUrl: 'second.html'
)

.otherwise ({

redirectTo: '/First!'
13N,
1)
</script>
</body>
</html>
[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

We need to configure the routes on config, as the JavaScript shows us. We then
create two HTML templates on the same directory. The content of the templates
are just plain lorem ipsum.

The first.html file content is shown as follows:

<div>
<h2>First page</h2>
<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Cras consectetur dui nunc, vel feugiat lectus imperdiet et.
In hac habitasse platea dictumst. In rutrum malesuada justo,
sed porttitor dolor rutrum eu. Sed condimentum tempus est at
euismod. Donec in faucibus urna. Fusce fermentum in mauris
at pretium. Aenean ut orci nunc. Nulla id velit interdum
nibh feugiat ultricies eu fermentum dolor. Pellentesque
lobortis rhoncus nisi, imperdiet viverra leo ullamcorper
sed. Donec condimentum tincidunt mollis. Curabitur lorem
nibh, mattis non euismod quis, pharetra eu nibh.
</p>
</div>

The second.html file content is shown as follows:

<div>
<h2>Second page</h2>
<p>
Ut eu metus vel ipsum tristique fringilla. Proin hendrerit
augue quis nisl pellentesque posuere. Aliquam sollicitudin
ligula elit, sit amet placerat augue pulvinar eget. Aliquam
bibendum pulvinar nisi, gquis commodo lorem volutpat in.
Donec et felis sit amet mauris venenatis feugiat non id
metus. Fusce leo elit, egestas non turpis sed, tincidunt
consequat tellus. Fusce quis auctor neque, a ultricies urna.
Cras varius purus id sagittis luctus. Sed id lectus
tristique, euismod ipsum ut, congue augue.
</p>
</divs>

Great, we now have our app set up to enable ngview and routes. The animation was
defined by adding animation to the enter and leave events using translateX().

This animation is defined to the new view coming from 500 px from the right and
animating until the position on the x-axis is 0, leaving the view in the left corner.
The leaving view goes from the initial position until it is at -1000 px on the x-axis.
Then, it leaves the DOM. This animation creates a sliding effect; the leaving view
leaves faster as it has to move double the distance of the entering view in the same
animation duration.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We can change the translation using the y-axis to change the animation direction,
creating the same sliding effect but with different aesthetics.

The ngSwitch directive animation

The ngswitch directive is a directive that is used to conditionally swap the DOM
structure based on an expression. It supports animation on the enter and leave
events, for example, the ngview directive animation events.

For this sample, we will create the same sliding effect of the ngview sample, but in
this case, we will create a sliding effect from top to bottom instead of right to left.
This animation helps the user to understand that one item is being replaced by

the other.

The ngswitch sample HTML is shown as follows:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngulardS ngSwitch sample</titles>
</head>
<body>
<div ng-controller="animationsCtrl"s>
<hl>ngSwitch sample</hl>
<p>Choose an item:</p>
<select ng-model="ngSwitchSelected" ng-options="item for item
in ngSwitchItems"></select>
<p>Selected item:</p>
<div class="switchItemRelative" ng-switch
on="ngSwitchSelected">
<div class="switchItem" ng-switch-when="iteml">Item
1</div>
<div class="switchItem" ng-switch-when="item2">Item
2</div>
<div class="switchItem" ng-switch-when="item3">Item
3</div>
<div class="switchItem" ng-switch-default>Default
Item</div>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></script>
<scripts>

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

var app = angular.module ('myApp', ['ngAnimate']);
app.controller ('animationsCtrl', function ($scope) {
$scope.ngSwitchItems = ['iteml', 'item2', 'item3'];
1)
</script>
</body>
</html>

In the JavaScript controller, we added the ngSwitchItems array to the scope, and the
animation CSS is defined as follows:

/* ngSwitch animation */

.switchItemRelative
position: relative;
height: 25px;
overflow: hidden;

.switchItem
position: absolute;
width: 500px;
display: block;

}

/*The transition is added when the switch item is about to
enter or about to leave DOM*/

.switchItem.ng-enter,

.switchItem.ng-leave {
-webkit-transition: 300ms linear all;
-moz-transition: 300ms linear all;
-ms-transition: 300ms linear all;
-o-transition: 300ms linear all;
transition: 300ms linear all;

/* When the element is about to enter DOM*/
.switchItem.ng-enter {
bottom: 100%;

/* When the element completes the enter transition */
.switchItem.ng-enter-active

bottom: 0;
/* When the element is about to leave DOM*/
.switchItem.ng-leave {

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

bottom: 0;
/*When the element end the leave transition*/
.switchItem.ng-leave-active

bottom: -100%;

}

This is almost the same CSS as the ngview sample; we just used the bottom
property, added a different height to the switchItemRelative class, and
included overflow:hidden.

The nginclude directive sample

The ngInclude directive is used to fetch, compile, and include an HTML fragment;
it supports animations for the enter and leave events, such as the ngview and
ngSwitch directives. For this sample, we will use both templates created in the

last ngview sample, first.html and second.html.

The ngInclude animation sample HTML with JavaScript and CSS included is shown
as follows:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngulardS ngInclude sample</titles>
</head>
<body>
<style>
.ngIncludeRelative {
position: relative;
height: 500px;
overflow: hidden;

.ngIncludeltem {
position: absolute;
width: 500px;
display: block;

.ngIncludelItem.ng-enter,
.ngIncludeltem.ng-leave {
-webkit-transition: 300ms linear all;

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Our First Animation in Angular]S

transition: 300ms linear all;

.ngIncludeltem.ng-enter
top: 100%;

.ngIncludeltem.ng-enter-active {
top: 0;

.ngIncludeltem.ng-leave
top: 0;

.ngIncludeltem.ng-leave-active {
top: -100%;
}
</style>
<div ng-controller="animationsCtrl"s
<hl>ngInclude sample</hl>
<p>Choose one template</p>

<select ng-model="ngIncludeSelected" ng-options="item.name for
item in ngIncludeTemplates"></selects>
<p>ngInclude:</p>
<div class="ngIncludeRelative">
<div class="ngIncludeltem" ng-
include="ngIncludeSelected.url"></div>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>

<scripts
var app = angular.module ('myApp', ['ngAnimate']);
app.controller ('animationsCtrl', function ($scope) {
$scope.nglncludeTemplates = [{ name: 'first',6 url:
"first.html' }, { name: 'second', url: 'second.html' }];
3]
</scripts>
</body>
</html>

In the JavaScript controller, we included the templates array.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Finally, we can animate ngInclude using CSS. In this sample, we will animate
by sliding the templates using the top property, using the enter and leave events
animation. To test this sample, just change the template value selected.

Do it yourself exercises

The following are some exercises that you can refer to that will help you understand
the concepts of this chapter better:

1. Create a spinning loading animation using the ngShow or ngHide directives
that appears when the scope controller variable, $scope. isLoading, is equal
to true.

2. Using exercise 1, create a gray background layer with opacity 0.5 that
smoothly fills the entire page behind the loading spin, and after page
content is loaded, covers all the content until i sProcessing becomes
false. The effect should be that of a drop of ink that is dropped on a
piece of paper and spreads until it's completely stained.

3. Create a success notification animation, similar to the ngshow example, but
instead of using the fade animation, use a slide-down animation. So, the
success message starts with height : 0px. Check http://api.jquery.com/
slidedown/ for the expected animation effect.

4. Copy any animation from the http://capptivate.co/ website, using
Angular]S and CSS animations.

Summary

In this chapter, we learned how to animate AngularJS native directives using the
CSS transitions and CSS keyframe concepts that we learned in the previous chapter.
This chapter taught you how to create animations on Angular]S web apps.

Now we are capable of creating the most common animations. We had a good
introduction to how Angular]S nganimate fits together with CSS animations, and
we are now prepared to know how to create Angular]S animations using JavaScript,
which we will learn in the next chapter.

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations
iIn AngulardS

We have already learned how to create animations using CSS in the context
of Angular]S. Now we will learn how to create animations using JavaScript
in Angular]S.

In this chapter, we will learn the following topics:

* Creating Angular]S animations without CSS3
* The ngHide directive JavaScript animation

* The ng1f directive JavaScript animation

* The ngrRepeat directive JavaScript animation

* JavaScript animations as fallback for CSS animations

Creating AngularJS animation without
CSS3

The AngularJS animation module enables us to create animations with CSS3 or
JavaScript. Now we will learn how to animate an Angular]S directive using purely
JavaScript so that we can create animations even for browsers without support of
CSS3, or integrate with some commonly used JavaScript animations libraries such as
jQuery animate and GSAP JS.

For this chapter, we will use jQuery as the JavaScript animations library because it's
very intuitive and well known. We will integrate this library with Angular]S native
directives so that we can easily get the built-in benefits of Angular]JS and animate using
jQuery. The documentation can be found at http://api.jquery.com/animate/.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

First, we have to declare the animation using the animation () method; the
declaration is really similar to the way in which you define an Angular]S factory.

We specify the class of target elements where we want to display the animation on
the first parameter of the animation method. The nganimate module of Angular]S
checks whether there is any animation defined for the DOM manipulation event that
is being triggered. It also checks for transitions, animations, and JavaScript animation
callback functions. If at least one of these exists, it triggers the animations.

For the JavaScript animations declaration, we define callback functions to be called
when an element with the same class as defined on the animation method triggers an
event like addclass. If there is a callback defined for this addclass event, it's called;
otherwise, it skips the animation step.

Check the following animation sample for the ngClass directive. In this sample,
we will create a button that closes an info message using the s1ideup effect from
jQuery and opens the info message using the s1ideDown effect from jQuery, shown
as follows:

/**

* @name firstJsAnimation

* @desc The first sample animation function
*/

function firstJdsAnimation|() {

/**
* @name addClassAnimation

* @desc The animation function called when a class is removed
from the element

* @param element - The element that will have the class
removed

* @param className - The name of the class that will be
removed from the element

* @param done - Callback function, it must be called to
finish the animation

*/
var addClassAnimation = function (element, className, done) {

//Check if the class added is the one that triggers
the animation

if (className != 'animationClass') {
return;

//Animate to slide up and then call done function

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

jQuery (element) .s1ideUp (300, done) ;

// Here is the optional return function that treats
completed or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

/**
* @name removeClassAnimation
* @desc The animation function called when a class is
removed from the element
* @param element - The element that will have the
class removed
* @param className - The name of the class that will be
removed from the element
* @param done - Callback function, it must be called to
finish the animation
*/
var removeClassAnimation = function (element,
className, done) {
//Check if the class removed is the one that
triggers the animation
if (className != 'animationClass') ({
return;

//Animate to slide down and then call done function
jQuery (element) .slideDown (300, done) ;

// Here is the optional return function that
treats completed or cancelled animations

return function (isCancelled) {
if (isCancelled) {
element.stop() ;

}i

return {
addClass: addClassAnimation,

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

removeClass: removeClassAnimation

}i

var app = angular.module ('myApp', ['ngAnimate'])
.animation(".firstJsAnimation", firstJsAnimation) ;

We defined two animation callback functions for directives with the
firstJsAnimation class.

Here is the HTML in which we included the bootstrap CSS just to add information
style for the animation div:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJdS JavaScript animations - ngClass</title>
</head>
<body>
<link href="http://ajax.aspnetcdn.com/ajax/bootstrap
/3.2.0/css/bootstrap.css" rel="stylesheet" />
<h2>ngClass JavaScript Animation</h2>

<button ng-click="toggleNgClass = !toggleNgClass">
Toggle ngClass animation</button>

<div ng-class="{'animationClass' : toggleNgClass}"
class="firstJsAnimation alert alert-info">

This element has class 'ngClassAnimationSample' and
the ngClass directive is declared as
ng-class="{'animationClass' : toggleNgClass}"

</div>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1
/jquery.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs
/1.3.0/angular-animate.min.js"></scripts>
<script src="jsAnimationNgClass.js"></scripts>
</body>
</html>

When we click on the Toggle ngClass animation button, animationClass is added
to the element with the firstJsAnimation class, so the nganimate module will
check if there is an addClass animation callback function for elements with the
firstJsAnimation class. If there is any, it will trigger the animation by calling the
callback function.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Angular]S JavaScript animation works on the principle of callback functions. Each
callback function has at least two parameters: element, which is the DOM element to
be animated, and done, which is a callback function used to tell Angular]S when the
animations are completed by calling it. We have passed the done function to jQuery's
animate callback parameter in the sample; it's mandatory to call this function so that
the sanimate service knows when the animation is completed.

Each callback function can return an optional function that is called when the
animation is completed or the execution has been canceled. We can tell whether the
animation has been canceled or executed by the first parameter that is a Boolean;

if that is true, it means that the animation has been cancelled and if it is false, it
means the animation has been executed. In our samples, we added a treatment for
cancelled animations, stopping the element jQuery animation. This might happen,
for example, if you click twice on the Toggle ngClass animation button before the
first animation has completed.

Let's see what happens on the last ngclass sample using JavaScript for the slide
animation. The last sample starts with:

ngClass JavaScript Animation

Toggle ngClass animation

This element has class 'ngClassAnimationSample’ and the ngClass directive is declared
as ng-class="{'animationClass' - toggleNgClass}"

After we click on the Toggle ngClass animation button, it starts to slide up, shown
as follows:

ngClass JavaScript Animation

| Toggle ngClass animation |

This element has class 'ngClassAnimationSample' and the ngClass directive is declared
as ng-class="{"animationClass' : toggleNgClass}"

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

After the animation is completed, it vanishes, shown as follows:

ngClass JavaScript Animation

Toggle ngClass animation

The animate module expects the return of an object with at least one of the following
callback functions defined. The events that can be defined in this object are enter,
leave, move, beforeAddClass, addClass, beforeRemoveClass, and removeClass.
They are the same events that trigger CSS animations, so for each animation
directive, you should create the relative animation callback functions.

Each callback function has its proper signature, so you should follow this:

function enter (element, done) {
return function finish (isCancelled){} }

function leave (element, done) {
return function finish (isCancelled){} }

function move (element, done) {
return function finish (isCancelled){} }

function beforeAddClass (element, className, done) {
return function finish (isCancelled){} }

function addClass (element, className, done) {
return function finish (isCancelled){} }

function beforeRemoveClass (element, className, done) {
return function finish (isCancelled){} }

function removeClass (element, className, done) {
return function finish (isCancelled){} }

The first parameter is always the DOM element.

The className class name is passed to the beforeaddcClass, addClass,
removeClass, and beforeRemoveClass callback functions, so in these functions,
you know if the class added or removed is the one you want to animate or some
other class for the same element.

The beforeaddclass callback function is called before the class is added,

and the addclass function is called after the class is added. The same for
beforeRemoveClass that is called before the class is removed and removeClass
is called after the class is removed.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The convention here is similar to the CSS naming convention, and the table of
directives and events supported from the previous chapter are the same; it's just
different the way we define the animation. Refer to the following table:

Directive Supported animations | Function
ngRepeat Enter, leave, and move function (element, done)
{ return function
finish(isCancelled){} }
ngvView Enter and leave function(element, done)
{ return function
finish(isCancelled) {} }
ngInclude Enter and leave function(element, done)
{ return function
finish(isCancelled) {} }
ngSwitch Enter and leave function(element, done)
{ return function
finish(isCancelled) {} }
ngIf Enter and leave function(element, done)
{ return function
finish(isCancelled) {} }
ngClass Add and remove function (element,

className, done){ return
function finish(isCancelled)

{3}

ngShow and ngHide

Add and remove

function (element,
className, done){ return
function finish(isCancelled)

{3}

formand ngModel

Add and remove

function (element,
className, done){ return
function finish(isCancelled)

{3}

ngMessages Add and remove function (element,
className, done){ return
function finish(isCancelled)
{} }

ngMessage Enter and leave function (element, done)

{ return function
finish(isCancelled) {} }

The preceding table shows us the native directives with the respective supported
animations and the callback function signature of each animation event.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

The ngHide JavaScript animation

Let's see another sample of JavaScript animation with the ngide native directive.
As we saw in the previous table, the ngHide directive has two animation events
(the add and remove classes). So, our JavaScript animation should have two
callback functions, beforeaddClass and removeClass

We use the beforeaddclass callback function because when the ng-hide

class is added, the display:none; style is applied. The removeclass callback
function is used instead of the beforeRemoveClass callback function because the
display:none; style is still applied.

Consider the following animation definition:

/**
* @name hidedsAnimation
* @desc The ngHide sample animation function
*/
function hideJdsAnimation() {
function animateOpacity(element, done, opacity) ({
jQuery (element) .animate ({
opacity: opacity,
height: ["toggle", "swing"]
}, 3000, done);

/**

* @name beforeAddClassAnimation

* @desc The animation function called before a class is added to
the element

* @param element - The element that will have the class appended

* @param className - The name of the class that will be appended
to the element

* @param done - Callback function, it must be called to finish the
animation

*/

var beforeAddClassAnimation = function (element, className, done)

//Animate the opacity and style the height to display a
curtain effect
animateOpacity (element, done, 0);

// Here is the optional return function that treats completed
or cancelled animations

return function (isCancelled) {
if (isCancelled) {

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

element .stop () ;

i

i**

* @name removeClassAnimation

* @desc The animation function called when a class is removed from
the element

* @param element - The element that will have the class removed

* @param className - The name of the class that will be removed
from the element

* @param done - Callback function, it must be called to finish the
animation

*/

var removeClassAnimation = function (element, className, done) {

animateOpacity (element, done, 1);

// Here is the optional return function that treats completed
or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

}i

return {
beforeAddClass: beforeAddClassAnimation,
removeClass: removeClassAnimation

}i

var app = angular.module ('myApp', ['ngAnimate'])
.animation(".hideJsAnimation", hidedsAnimation) ;

This animation used jQuery's animate swing effect to apply a certain effect to

the element. In this sample, we didn't check whether the className parameter

is ng-hide because in this sample, there won't be any other class being added or
removed from this element. However, it's recommended to add a check function to
check whether it's really the class added or removed that we are expecting to trigger
the animation, just like we did in the other sample.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

Consider the following HTML code:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJS JavaScript animations - ngHide</title>
</head>
<body>
<div>
<h2>ngHide Animation</h2>
<button ng-click="hide = !'hide">Hide/Show the div below</buttons>
<div ng-hide="hide" class="hideJdsAnimation">
This is a div element with ng-hide="hide"
</divs>
</divs>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></scripts>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>
<script src="jsAnimationNgHide.js"></scripts>
</body>
</html>

The HTML has just a simple button that toggles the hide variable that will trigger
the ng-hide directive on the div element with the hideJsAnimation class.

The nglf JavaScript animation

Now, we will see a sample of the ngIf JavaScript animation. As listed in the table
where we have discussed about directives and supported animations, we know
that this directive supports animations in the enter and leave events.

So, we will create a fade effect similar to the ngHide sample; the difference is in the
events that each directive triggers.

Consider the following JavaScript animation declaration:

/**
* @name ifJsAnimation
* @desc The ngIf sample animation function
*/
function ifJsAnimation() {
function animateOpacity(element, done, opacity) ({

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

jQuery (element) .animate ({
opacity: opacity
}, 3000, done);

/**
* @name enterAnimation
* @desc The enter animation function called when an element enters
DOM
* @param element - The element that is entering DOM
* @param done - Callback function, it must be called to finish the
animation
*/
var enterAnimation = function (element, done) {
//Animate the opacity
jQuery (element) .css ({ opacity: 0 });
animateOpacity (element, done, 1);

// Here is the optional return function that treats completed
or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

/**

* @name leaveAnimation

* @desc The leave animation function called when an element leaves
DOM

* @param element - The element that is leaving DOM

* @param done - Callback function, it must be called to finish the
animation

*/

var leaveAnimation = function (element, done) {

animateOpacity (element, done, 0);

// Here is the optional return function that treats completed
or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

}

return {
enter: enterAnimation,
leave: leaveAnimation
var app = angular.module ('myApp',

.animation(".ifJsAnimation",

['ngAnimate'])
ifJsAnimation) ;

As we can see, it's almost the same; the only difference is that we don't have the
className parameter as the element enters or leaves DOM during the events.

Consider the following HTML that uses ngIf:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>

<title>AngulardS JavaScript animations - ngIf</titles

</head>

<body>

<div>
<h2>ngIf Animation</h2>

<button ng-click="toggling =

below</buttons>

ltoggleNgIf">Display/Remove the div

<div ng-if="toggling" class="ifJsAnimation">

This is a div element with ng-if="toggling"

</div>

</div>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.

min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/

angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/

angular-animate.min.js"></script>

<script src="jsAnimationNgIf.js"></script>

</body>
</html>

The HTML is very straightforward; there is a button that changes the value of the
toggling variable and the div element using the ngIf directive and the toggling

variable with the ifJsAnimation class.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The ngRepeat JavaScript animation

We have already learned how the enter, leave, addClass, and removeClass events
can be handled by JavaScript animations. Let's see how we can animate the move
event, which is used only by the ngrepeat directive.

Consider the following HTML with the ngRepeat directive and a sort button similar
to the ngrepeat CSS animation sample:

< !DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngulardS JavaScript animations - ngRepeat</title>
</head>
<body>
<div ng-controller="repeatController as rc">
<h2>ngRepeat Animation</h2>
<button ng-click="rc.sortItems () ">Sort items</buttons
<div ng-repeat="item in rc.items" class="repeatItemAnimation">
{{item.name}}
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></scripts>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></script>
<script src="jsAnimations.js"></script>
</body>
</html>

The JavaScript with the controller and animation is as follows:

/**
* @name repeatControllerFn
* @desc Repeat sample controller

*/
function repeatControllerFn() {

var rc = this;

rc.items = [{ name: 'David' }, { name: 'Adailton' }, { name:
'Claudio' }, { name: 'Cleomar' }, { name: 'Filipe' }];

[**

* @name sortItems
* @desc Sort items array

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

*/
rc.sortItems = function () ({
rc.items.sort (function (a, b) { return al[name] < b[name] ? -1
11

}i

/**
* @name repeatItemAnimation
* @desc The ngRepeat sample animation function
*/
function repeatItemAnimation() {
/**
* @name moveAnimation
* @desc The move animation function called when an element moves
in DOM
* @param element - The element that is moving in DOM
* @param done - Callback function, it must be called to finish the
animation
*/
var moveAnimation = function (element, done) {
.css ({ opacity: 0 });
.animate ({

jQuery (element)
jQuery (element)
opacity: 1

}, 3000, done);

// Here is the optional return function that treats completed
or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

}i

return {
move: moveAnimation

}i

var app = angular.module ('javascriptSample', ['ngAnimate'l])
.controller ("repeatController", repeatControllerFn)
.animation (".repeatItemAnimation", repeatItemAnimation) ;

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The move callback function signature is the same as the enter and leave callback
functions. We used the same animation as used on the 1eave event of the ngIf
directive sample. When we click on the Sort Items button, the elements are sorted,
and so, it triggers the ngRepeat animation for the moved elements.

JavaScript animations as a fallback for
CSS animations

We might have to create animations for browsers that do not have support for CSS
animations and transitions yet. It might be part of a project's requirements.

In this case, we can still use JavaScript animations as a fallback for CSS animations.
However, what if we add a CSS animation and a JavaScript animation for the same
element and the browser has support for CSS animations?

We don't want to display the same animation twice, so we will use Modernizr, a
JavaScript library that detects HTML5 and CSS3 features in the user's browser.

[% Learn more about Modernizr at http://modernizr . com.]

In such cases, we will trigger the JavaScript animations only if CSS transitions are not
supported by the browser.

Here, we have a sample of the ngIf animation that uses a transition if the browser
has support for CSS transitions; otherwise, it triggers the JavaScript animation
fallback with the same animation effect, shown as follows:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngulardS JavaScript animations - ngIf</titles>
</head>
<body>
<style>
/* ngIf animation */
.1fJsAnimation.ng-enter,
.1fJsAnimation.ng-leave
-webkit-transition: opacity ease-in-out 1s;

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

transition: opacity ease-in-out 1s;

.1fJsAnimation.ng-enter,
.1fJsAnimation.ng-leave.ng-leave-active
opacity: 0;

.1fJsAnimation.ng-leave,
.1fJsAnimation.ng-enter.ng-enter-active
opacity: 1;

</style>

<div>

<h2>ngIf with CSS Animation and fallback for JavaScript
animation</h2>

<button ng-click="toggleNgIf = !toggleNgIf">Display/Remove the div
below</buttons>

<div ng-if="toggleNgIf" class="ifJsAnimation"s>
This is a div element with ng-if="toggleNgIf™"
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>
<script src="modernizr.js"></script>
<script src="jsAnimationNgIfFallback.js"></scripts>
</body>
</html>

The JavaScript will remain the same as that from the ngIf sample, but we will check
whether the browser has support for CSS transitions, shown as follows:

/**
* @name ifJsAnimation
* @desc The ngIf sample animation function
*/
function ifJsAnimation() ({
function animateOpacity(element, done, opacity)
jQuery (element) .animate ({
opacity: opacity

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

}, 1000, done);

/**
* @name enterAnimation
* @desc The enter animation function called when an element enters

DOM

* @param element - The element that is entering DOM

* @param done - Callback function, it must be called to finish the
animation

*/

var enterAnimation = function (element, done) {

if (!Modernizr.csstransitions) ({
//Animate the opacity
jQuery (element) .css ({ opacity: 0 });
animateOpacity (element, done, 1);

// Here is the optional return function that treats
completed or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

Vi
} else {
done () ;

/**

* @name leaveAnimation

* @desc The leave animation function called when an element leaves
DOM

* @param element - The element that is leaving DOM

* @param done - Callback function, it must be called to finish the

animation
*/
var leaveAnimation = function (element, done) {
if (!Modernizr.csstransitions) ({
animateOpacity (element, done, 0);

// Here is the optional return function that treats

completed or cancelled animations
return function (isCancelled) {

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Animations in Angular]S

if (isCancelled) {
element.stop () ;

return {
enter: enterAnimation,
leave: leaveAnimation

}i

var app = angular.module ('myApp', ['ngAnimate'])
.animation(".ifJsAnimation", ifJdsAnimation) ;

If you want to test this sample and only have modern browsers installed, you
can test using Internet Explorer 11. It has a simulator for older IE browsers in
the developer tools; try with IE9 for this sample.

The same strategy works for CSS keyframe animations, but we should check using
the Modernizr.cssanimations property.

Do it yourself exercises

The following are some exercises that will help you understand the concept of this
chapter better:

1. Create a fade-in/fade-out animation using CSS animation, but create a
fallback for CSS transition in case CSS animation is not supported, and then
create a JavaScript fallback if both CSS animation and CSS transitions are not
supported. Tip: use Modernizr.

2. Create a single JavaScript animation for Angular]S using jQuery and apply
the single animation for more than one element.

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Summary

In this chapter, we learned how to animate Angular]S native directives using
JavaScript animations and how similar it is to the CSS convention. We created
JavaScript animation samples using jQuery animate.

Now we are capable of creating the most common animations using CSS or
JavaScript. There is something still missing; how can we integrate Angular]S
with custom directives? This is the topic of the next chapter.

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the
$animate Service

We already learned how to create animations using both JavaScript and CSS in the
Angular]S context for native directives. Now, we will learn how to animate custom
directives and how to use the $animate service.

In this chapter, we will learn the following topics:

* Triggering animations on custom directives
* Animating the enter and leave events
* Using the $animate.move method

* Creating a custom directive animation with JavaScript

Triggering animations on custom
directives

Now that we already know how to create animations for native directives, it would
be nice if we could add animations to custom directives too. Sometimes, we might
want to add motion to custom directives, think about a responsive menu directive
that hides the menu when it's on a small device, and have a button to open or slide
the menu items. An animation triggered inside this directive would be great.

This is accomplished by injecting the $animate service into the directive function.
This is the same service used by native directives to trigger the animation events
we learned in Chapter 3, Creating Our First Animation in Angular]S, and Chapter 4,
JavaScript Animations in Angular]S.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

In the custom directive, we can trigger events by calling $animate methods such as
enter, leave, move, addClass, removeClass, and setClass.

Here, we will see a sample of the addClass and removeClass animations on a
custom directive, which are the same events used by the ngClass, ngHide and
ngShow, and ngMessages native directives.

To create our first custom directive animation, we need to know the $animate
method's signatures:

Sanimate.addClass (element, className) ;
Sanimate.removeClass (element, className) ;

Both functions receive the element parameter that will have a class added or
removed and the className class that will be used and return a promise that is
resolved once the animation has completed itself or has been cancelled. This is
different from just appending and removing a class from the element by jQuery,
because the $animate service checks whether there is any animation for the element
and triggers the animation.

Check this basic directive that triggers the animation events by adding and removing
the customClick class when the $element service is clicked:

var app = angular.module ('myApp', ['ngAnimate'])
.directive ('customDirective', function ($Sanimate) {
return {

link: function ($scope, $element, $attrs)

var isActive = true;

Selement.on('click', function () {
isActive = !isActive;
// Toggle between add class and remove class
if (isActive) {

Sanimate.addClass (Selement, 'customClick');

} else {

Sanimate.removeClass (Selement,
'customClick!') ;

}

//Trigger digest in this case, because this
listener function is out of the angular world

Sscope. Sapply () ;

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Here is the HTML code:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJS Custom Directives animations</titles
<link href="custom.css" rel="stylesheet" />
</head>
<body>
<hl>AngularJS Custom Directives animations</hls>
<div custom-directive class="customAnimation"s>

<p>This element has class 'customAnimation' and the directive
attribute "custom-directive"</p>
<p>Click here to toggle animation</p>
</divs>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0
/angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0
/angular-animate.min.js"></script>
<script src="customDirective.js"></scripts>
</body>
</html>

We will use the same animation as was used in the ngClass sample:

.customAnimation {
background-color: blue;
padding: 20px;
transition: all linear 1s;

.customClick ({
background-color: yellow;
padding: 40px;

.customAnimation.customClick-add {
animation: 1s ng-class-animation;

@keyframes ng-class-animation
from {
background-color: white;

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

border: 1lpx solid black;

}

to {
background-color: black;
border: 1lpx solid white;

}

The $animate.addclass method adds the className class to the element. It follows
the same steps as triggered by the ngClass directive.
1. $animate.addClass(element, 'className') is called by the directive.

2. If there is any JavaScript animation defined for the element, the $animate
service runs the JavaScript animation.

3. The .className-add class is added to the element.

The $animate service waits for a single animation frame, which causes a
page reflow.

5. Both the .className and .className-add-active classes are added to the
element, triggering the CSS transitions and animations.

6. The $animate service scans the element styles to get the CSS transitions
and/or animations duration and delay.

The $animate service waits until the animation is completed.

The animation ends and all generated CSS classes are removed from the
element but the . className class is kept on the element.

9. The returned promise is resolved.

This is a step-by-step procedure that occurs on native and custom directives that uses
$animate.addClass as the ngClass and our custom directive directives.

The steps from the $animate.removeClass method are similar:

1. $animate.removeClass (element, 'className') is called by the directive.

2. If there is any JavaScript animation defined for the element, the $animate
service runs the JavaScript animation.

3. The .className-remove classis added to the element.

The $animate service waits for a single animation frame, which causes a
page reflow.

5. The .className-remove-active classis added to the element, and the class
.className is removed triggering the CSS transitions and/or animations.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

6. The $animate service scans the element styles to get the CSS transitions or
animations duration and delay.

The $animate service waits until the animation is completed.

The animation ends and all generated CSS classes are removed from
the element.

9. The returned promise is resolved.

In this section, we learned how to use $animate.addClass and $animate.
removeClass. There are three more methods that can be used to trigger animations:

Sanimate.enter (element, parentElement, afterElement) ;
Sanimation.leave (element) ;
Sanimation.move (element, parentElement, afterElement) ;

Animating the enter and leave events

The methods used to trigger the enter and leave animation events from the
$animate service are $animate.enter and $animate.leave. They are the same
animation events triggered by the nglf, ngInclude, ngView, ngSwitch, ngRepeat,
and ngMessage directives when an element is entered or removed from DOM.

The $animate.enter method adds the element sibling to the afterElement node or
appends to the parentElement parameter and then runs the enter animation. After
the animation is finished, the returned promise is resolved.

The method signature is as follows:
Sanimate.enter (element, parentElement, afterElement)
The enter method follows these steps:
1. Sanimate.enter (element, parentElement, afterElement) is called by

the directive.

2. The element is inserted in parentElement or sibling to afterElement if the
parentElement is not defined.

3. $animate waits for the next digest to start the animation.

If there is any JavaScript animation defined for the element, the $animate
service runs the JavaScript animation.

The .ng-enter class is added to the element.

The $animate service scans the element styles to get the CSS transitions or
animations duration and delay.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

7. $animate blocks all CSS transitions on the element, so the .ng-enter class is
affected immediately.

8. The $animate service waits for a single animation frame, and this causes a
page reflow.

9. $animate unblocks the CSS transitions from the element.

10. The .ng-enter-active class is added to the element, triggering the CSS
transitions and animations.

11. The $animate service waits until the animation is completed.

12. The animation ends and all generated CSS classes are removed from
the element.

13. The returned promise is resolved.
The sanimate.leave method executes the 1eave animation and then removes

the element from DOM. If the donecallback is defined, call this function after
the animation is finished.

The $animate.leave method signature is as follows:

Sanimate.leave (element)
The 1eave method follows these steps:

1. $animate.leave (element) is called by the directive.

2. If there is any JavaScript animation defined for the element, the $animate
service runs the JavaScript animation.

3. $animate waits for the next digest to start the animation.
The .ng-1leave class is added to the element.

The $animate service scans the element styles to get the duration of and
delay in CSS transitions or animations.

6. $animate blocks all CSS transitions on the element, so the .ng-1leave class
is affected immediately.

7. The $animate service waits for a single animation frame. This causes a
page reflow.

$animate unblocks the CSS transitions from the element.

The .ng-leave-active class is added to the element triggering the CSS
transitions and animations.

10. The $animate service waits until the animation is completed.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

11. The animation ends, and all generated CSS classes are removed from
the element.

12. The element is removed from DOM.
13. The returned promise is resolved.
To illustrate the use of both methods, we will create a directive named

toggleDirective that toggles two elements. So, on every click, while
one element enters, the other one leaves.

The toggleDirective sample directive code that uses the enter and leave events is
as follows:

var app = angular.module ('myApp', ['ngAnimate'])
.directive ('toggleDirective', function (Sanimate) {
return {

link: function ($scope, $element, $attrs)
var firstElement = angular.element ('<div
class="toggleAnimation">First element! Click here
to trigger $animate.leave for this element and $animate.enter for the
second element</divs>"') ;
var secondElement = angular.element ('<div
class="toggleAnimation">Second element! Click
here to trigger $animate.leave for this
element and Sanimate.enter for the first
element</divs>"') ;

//Adds the firstElement
Sanimate.enter (firstElement, Selement) ;

var isActive = false;
Selement.on('click', function () {
isActive = !isActive;

// Toggle between firstElement and secondElement
if (isActive) {
Sanimate.leave (firstElement) ;
Sanimate.enter (secondElement, Selement) ;
} else {
Sanimate.leave (secondElement) ;
Sanimate.enter (firstElement, Selement) ;

}

//Trigger digest in this case, because this
listener function is out of the angular world

Sscope. Sapply () ;

13N

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

}

13N,
The HTML code that uses toggleDirective is as follows:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngularJS Custom Directives animations</titles
<link href="custom.css" rel="stylesheet" />
</head>
<body>
<h2>Toggle using enter and leave</h2>
<div toggle-directive="" class="enterAnimation"></div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></script>
<script src="toggleDirective.js"></script>
</body>
</html>

The animation CSS that will be used by this sample is as follows:

/* toggle animation */
.toggleAnimation.ng-enter,
.toggleAnimation.ng-leave
-webkit-transition: opacity ease-in-out 1s;
transition: opacity ease-in-out 1s;

.toggleAnimation.ng-enter,
.toggleAnimation.ng-leave.ng-leave-active
opacity: 0;

.toggleAnimation.ng-leave,
.toggleAnimation.ng-enter.ng-enter-active
opacity: 1;

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This sample shows a simple use case where we add one element to DOM and
remove another element. The same animation can be defined in JavaScript too.

The same method called by our custom directive is called from the native directives,
so the animation definition is the same in both cases.

Using the $animate.move method

The method that moves one element from one place to another in DOM and triggers
animation is $animate.move. It's used by the ngRepeat directive, and it can be used
in any custom directive that moves DOM elements too.

The signature is the same as the $animate.enter method; the only difference is that
the element is not added to DOM, but it's moved:

Sanimate.move (element, parentElement, afterElement) ;
The steps are similar to the $animate.enter method:
1. $animate.move (element, parentElement, afterElement) is called by

the directive.

2. The element is moved in parentElement or a sibling to afterElement if
parentElement is not defined.

$animate waits for the next digest to start the animation.

If there is any JavaScript animation defined for the element, the $animate
service runs the JavaScript animation.

The .ng-move class is added to the element.

The $animate service scans the element styles to get the duration of and
delay in CSS transitions or animations.

7. $animate blocks all CSS transitions on the element, so the .ng-move class is
affected immediately.

8. The $animate service waits for a single animation frame, and this causes a
page reflow.

9. $animate unblocks the CSS transitions from the element.

10. The .ng-move-active class is added to the element, triggering the CSS
transitions and animations.

11. The $animate service waits until the animation is completed.

12. The animation ends and all generated CSS classes are removed from
the element.

13. The returned promise is resolved.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

For this sample, we will create a directive with three elements and move these
elements on click.

The HTML code for the moveDirective custom directive is as follows:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJS Custom Directives animations</titles
<link href="custom.css" rel="stylesheet" />
</head>
<body>
<h2>$animate move sample</h2>
<p>Click on any element below to move elements:</p>
<div move-directive="">
<div class="elementl moveltem">Element 1</div>
<div class="element2 moveltem">Element 2</div>
<div class="element3 moveltem">Element 3</div>
</divs>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>
<script src="moveDirective.js"></script>
</body>
</html>

The moveDirective directive will move the last element to the top on each click:

var app = angular.module ('myApp', ['ngAnimate'])
.directive ('moveDirective', function (Sanimate) {
return {

link: function ($scope, $element, $attrs)

var elements = Selement.children() ;

var count = 0;

$element.on('click', function ()
count++;

// Toggle between firstElement and secondElement
if (count % 3 == 1) {
Sanimate.move (angular.element (elements [2]),
Selement) ;
} else if (count % 3 == 2) {
Sanimate.move (angular.element (elements[1]),
Selement) ;
} else {

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Sanimate.move (angular.element (elements [0]),
Selement) ;

}

//Trigger digest in this case, because this
listener function is out of the angular world

$scope. $Sapply () ;

We will use the same CSS animation as was used in the ngRepeat move sample in
Chapter 3, Creating Our First Animation in Angular]S:

.moveltem.ng-move
-webkit-animation: 1s ng-move-repeat-animation;
animation: 1ls ng-move-repeat-animation;

}

This sample shows us how to animate elements from a custom directive by
triggering the move animation.

Creating a custom directive animated
with JavaScript

We already learned how to create CSS animations for custom directives. What if we
still want to use JavaScript animations for those directives?

Remember the nglf JavaScript animation from Chapter 4, JavaScript Animations in
Angular]S? We can reuse that JavaScript animation here. We will keep using the
same JavaScript declaration method that we learned in Chapter 4, JavaScript
Animations in Angular]S.

For this sample, we will create a directive similar to the toggleDirective sample
using the enter and leave animation methods. Check the HTML code of the
following sample without any CSS:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngularJS Custom Directives animations</titles
</head>

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

<body>
<hl>AngularJdS Custom Directives animations</hl>
<div toggle-Js-class-directive="" class="ifJsAnimation"s
</div>

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.
min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>

<script src="toggledsDirective.js"></scripts>
</body>
</html>

Now, we will use the same JavaScript animation declaration from the nglf JavaScript
animation sample. Our directive will use the $animate.enter and Sanimate.leave

methods to the enter and leave elements with the i fJsAnimation class from DOM,
and this is where the animation will be hooked; check the following JavaScript:

/**
* @name ifJsAnimation
* @desc The ngIf sample animation function
*/
function ifJsAnimation()
function animateOpacity(element, done, opacity) ({
jQuery (element) .animate ({
opacity: opacity
}, 3000, done);

/**
* @name enterAnimation
* @desc The enter animation function called when an element enters
DOM
* @param element - The element that is entering DOM
* @param done - Callback function, it must be called to finish the
animation
*/
var enterAnimation = function (element, done) {
//Animate the opacity
jQuery (element) .css ({ opacity: 0 });
animateOpacity (element, done, 1);

// Here is the optional return function that treats completed
or cancelled animations

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

return function (isCancelled) {
if (isCancelled) {
element.stop() ;

/**

* @name leaveAnimation

* @desc The leave animation function called when an element leaves
DOM

* @param element - The element that is leaving DOM

* @param done - Callback function, it must be called to finish the
animation

*/

var leaveAnimation = function (element, done) {

animateOpacity (element, done, 0);

// Here is the optional return function that treats completed
or cancelled animations
return function (isCancelled) {
if (isCancelled) {
element.stop() ;

}i

return {
enter: enterAnimation,
leave: leaveAnimation

}i

function toggleClassFn ($animate) {

return {
link: function ($scope, $element, $attrs)
var isActive = false;
var firstElement = angular.element ('<div

class="ifJsAnimation">First element! Click here to trigger S$animate.
leave for this element and Sanimate.enter for the second element</
divs>"') ;

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Directives and the $animate Service

var secondElement = angular.element ('<div
class="ifJsAnimation">Second element! Click here to trigger S$Sanimate.
leave for this element and $animate.enter for the first element</
divs>"') ;

//Adds the firstElement
Sanimate.enter (firstElement, Selement) ;

Selement.on('click', function () {
isActive = !isActive;
// Toggle between firstElement and secondElement
if (isActive) {
Sanimate.leave (firstElement) ;
Sanimate.enter (secondElement, S$Selement) ;
} else {
Sanimate.leave (secondElement) ;
Sanimate.enter (firstElement, Selement) ;
}
//Trigger digest in this case, because this listener
function is out of the angular world
$Sscope. Sapply () ;

3N

var app = angular.module ('myApp', ['ngAnimate'])
.directive ('toggledsClassDirective', toggleClassFn)
.animation('.ifJdsAnimation', ifJsAnimation) ;

At this point, we already saw how flexible the Angular ngAnimate module is and
how reusable our animation's declarations are. We are even able to create a CSS
animation definition with a fallback for the JavaScript animation and reuse it in
native and custom directives.

Exercises

1. Create a "hamburger" menu, a commonly used menu in mobile apps with
three lines on a button, which when clicked, slides the menu items from the
left or top. Use the $animate service to hook animations in the enter and
leave events.

2. Create an animation using CSS animations with a fallback for the JavaScript
animation. Apply this single animation in both native and custom directives.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

3. Create a card custom directive, similar to a Google+ post, or similar to a
Windows 8 tile, that contains a button to flip it, to see the cover of the card.
Create the flip animation using CSS animations.

4. Create a magazine page directive, which when clicked on the page, opens
the following page by flipping the current page to the left. This is similar to
Steller animations (http://steller.co/).

Summary

In this chapter, we learned how to animate AngularJS custom directives and how to
use the $animate service.

We learned what happens inside the native Angular]S directives and how to use the
same animation events on any custom directive.

Now, we are able to create animations in any directive using CSS or JavaScript. The
next chapter will explain how to use animations and enhance the usability on small
devices such as smartphones.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for
Mobile Devices

We already learned how to create animations using both JavaScript and CSS
in the Angular]S context for native and custom directives. Now, we will learn
how to enhance the user experience of our Angular]S web app, especially on
mobile devices and tablets.

In this chapter, we will learn the following topics:

¢ Enhance the UX on mobile devices with animations
e Transition between views

* Mobile Angular]S frameworks

Enhance UX on mobile devices with
animations

With the increasing use of smartphones and tablet devices, more people have started
to visit websites via smartphones and other devices, so not optimizing a web app for
small devices is not an option anymore.

Nowadays, we create a single web app that is responsive to the device width using
CSS3 media queries. So, we are able to define different styles for each device width
size. We can provide a better experience based on the screen size.

Currently, web apps are run on small screens of devices such as smartphones and
also on screens as big as that of TVs. It's impossible to create a CSS style for each
device width in the world, so usually, we work with different ranges of screen
widths: smartphones, tablets and small desktops, and big desktops monitors.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for Mobile Devices

As we usually use CSS animations to animate in the Angular]S context, we are
able to define animations in a specific media query. So, we might disable some
heavy-processing animations and enable other GPU-accelerated animations for
small screens. We will learn more about GPU-accelerated animations in Chapter §,
Animations' Performance Optimization.

To learn more about media query, check out https://developer.mozilla.org/
en-US/docs/Web/Guide/CSS/Media queries.

A recently launched design guideline from Google, called material design (visit
http://www.google.com/design) helps us enhance the UX of our web apps on
mobile devices and desktops too.

The motion created by animations on web apps is better delivered when it seems
more realistic. One of the material design guidelines is to avoid linear animations
as it's a more mechanical and artificial movement than animations with acceleration
and deceleration at the beginning and ending of an animation curve. This guideline
is called authentic motion. Another important guideline is meaningful transitions,
the next section's subject.

Transition between views

The Google material design website explains transitioning as follows:

"Transitioning between two visual states should be smooth, appear effortless, and
above all, provide clarity to the user, not confusion. A well-designed transition does
the heavy lifting and enables the user to clearly understand where their attention
should be focused. A transition has three categories of elements."

The three categories of elements are the incoming elements, outgoing elements, and
shared elements.

A common transition to web apps is changing the main content view, for instance,
using ngView or ngInclude. Smartphones and devices with touchscreens provide
a different interaction for the user. Taps and gestures are used instead of clicks.
The ngTouch module enables us to use swipe gestures and the ngClick directive is
replaced for a better tap experience on touchscreen devices.

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

For this transition, we will create an animation of pages (the incoming element)
sliding from the right to the left over another page (the outgoing element) by a
swipe-to-left gesture; the leave page will slide to the same direction.

The followings pages, except the last one, have the swipe-to-right and swipe-to-left
gesture listeners, so the user can go forward or go back to pages and the slide
animation follows the use swipe direction. This is a common approach in mobile
apps user interaction. Currently, the Facebook app has a similar behavior.

When we swipe the second page to the right (the outgoing element), the first
page enters sliding it from the left to the right as the second page is sliding in
the same direction.

The following screenshot sequence shows the swipe-to-left gesture animation effect:

As we saw in the last sequence of screenshots, we swiped from the right to the left
and users still could click on the tab buttons on the top if they didn't want to swipe.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for Mobile Devices

The next sequence shows what happens when we keep swiping to the left. Pages
keep sliding from the right to the left:

First Second Third Fourth First Second Third Fourth First Second Third Fourth

Fourth page

Swipe to the right to go to third page

Now, we will swipe to the right once, and then, we will click on the First button to
open the first page. The following screenshot sequence shows the effect:

First Second Thira Fourth First Second Third Fourth First Second Third Fourth First Second Thira Fourth

Fourth page Fourth page

Swipe to the right to go to third page right to ga to third page

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Finally, in the first page shown in the following screenshot, the animation direction
follows the tab bar order. It's much more intuitive than views sliding from the right
to the left:

First Second Third Fourth

To create this transition of views animation, we will use the ngInclude directive
and a source code similar to our ngInclude sample from Chapter 3, Creating Our
First Animation in Angular]S.

The HTML code is as follows; we included the Bootstrap CSS only to use the top
buttons style:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>AngulardS Swipe Slider animation</titles>
<meta name="viewport" content="width=device-width,height=device-
height,user-scalable=no">

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for Mobile Devices

<link href="mobile.css" rel="stylesheet" />

<link href="http://ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/css/
bootstrap.css" rel="stylesheet" />
</head>
<body>

<div ng-controller="tabsSwipeCtrl as responsive"s>

<div class="btn-group btn-group-justified"s
<div class="btn-group">
<button type="button" class="btn btn-default" ng-

click="responsive.selectPage (0)" ng-class="{'active': responsive.
ngIncludeSelected.index == 0}">First</buttons>
</div>

<div class="btn-group">
<button type="button" class="btn btn-default" ng-

click="responsive.selectPage (1) " ng-class="{'active': responsive.
ngIncludeSelected.index == 1}">Second</button>
</div>

<div class="btn-group">
<button type="button" class="btn btn-default" ng-

click="responsive.selectPage (2)" ng-class="{'active': responsive.
ngIncludeSelected.index == 2}">Third</buttons>
</div>

<div class="btn-group">
<button type="button" class="btn btn-default" ng-

click="responsive.selectPage (3)" ng-class="{'active': responsive.
ngIncludeSelected.index == 3}">Fourth</button>
</div>
</div>

<div class="ngIncludeRelative">
<div class="ngIncludeltem" ng-include="responsive.
ngIncludeSelected.url" ng-class="{'moveToLeft' : responsive.
moveToLeft}"></divs>
</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-touch.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>
<script src="tabsSwipeCtrl.js"></script>
</body>
</html>

We added the ngswipeLeft and ngSwipeRight directives from the ngTouch module
to the partial view, so the user can change between views by swiping gestures.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The firstSwipe.html partial view is as follows:

<div class="firstPage page" ng-swipe-left="responsive.selectPage(1l)">
<h2>First page</h2>
<p>Swipe to the left to go to second page</p>

</divs>

The secondswipe . html partial view is as follows:

<div class="secondPage page" ng-swipe-left="responsive.selectPage(2)"
ng-swipe-right="responsive.selectPage (0) ">

<h2>Second page</h2>

<p>Swipe to the right to go to first page</p>

<p>Swipe to the left to go to third page</p>

</div>
The thirdSwipe.html partial view is as follows:

<div class="thirdPage page" ng-swipe-left="responsive.selectPage(3)"
ng-swipe-right="responsive.selectPage (1) ">

<h2>Third page</h2>

<p>Swipe to the left to go to fourth page</p>

<p>Swipe to the right to go to second page</p>
</divs>

The fourthSwipe.html partial view is as follows:

<div class="page" ng-swipe-right="responsive.selectPage(2)">
<h2>Fourth page</h2>
<p>Swipe to the right to go to third page</p>

</div>

To create the desired animation effect, we will use a combination of ngInclude and
ngClass. The ngClass directive will be used to learn the direction of the animation
on the enter and leave events of the pages.

We will define the controller in the tabsSwipeCtrl.js file:

function tabsSwipeCtrlFn() ({

var responsive = this;
responsive.nglncludeTemplates = [{ index: 0, name: 'first',6 url:
'firstSwipe.html' }, { index: 1, name: 'second', url: 'secondSwipe.

html' }, { index: 2, name: 'third', url: 'thirdSwipe.html' }, { index:
3, name: 'fourth', url: 'fourthSwipe.html' }];

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for Mobile Devices

responsive.selectPage = selectPage;

/**

* Initialize with the first page opened
*/

responsive.ngIncludeSelected =
responsive.ngIncludeTemplates[0];

/**

* @name selectPage

* @desc The function that includes the page of the indexSelected
* @param indexSelected the index of the page to be included

*/

function selectPage (indexSelected) ({

if (responsive.ngIncludeTemplates[indexSelected] .index >
responsive.ngIncludeSelected. index) {

responsive.moveToLeft = false;
} else {
responsive.moveToLeft = true;

}

responsive.ngIncludeSelected =
responsive.ngIncludeTemplates [indexSelected] ;

var app = angular.module ('myApp', ['ngAnimate', 'ngTouch'])
.controller ('tabsSwipeCtrl', tabsSwipeCtrlFn) ;

This combination of the moveToLeft, ng-enter, and ng-1leave classes are used to
trigger the animations in the mobile. css file using the direction based on the current
page and the tab page the user will navigate to:

/* To avoid a horizontal scrollbar when the page enters/leaves the
view */
body {

overflow-x: hidden;

.ngIncludeltem {
position: absolute;
top: 35px;
bottom: 0;
right: 0;
left: 0;
animation-duration: 0.30s;

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

animation-timing-function: ease-in-out;

.page {
position: inherit;
top: 0;
right: inherit;
bottom: inherit;
left: inherit;

.firstPage {
background-color: blue;

.secondPage {
background-color: red;

.thirdpage {
background-color: green;

/* When the page enters, slide it from the right */
.ngIncludeltem.ng-enter

animation-name: slideFromRight;

-webkit-animation-name: slideFromRight;
}
/* When the page enters and moveToLeft is true, slide it from the
left (out of the user view) to the right (left corner) */
.ngIncludeltem.moveToLeft.ng-enter

animation-name: slideFromLeft;

-webkit-animation-name: slideFromLeft;
}
/* When the page leaves, slide it to left(out of the user view) from
the left corner,

in other words slide it from the left (out of the view) to the left
corner but in reverse order */
.ngIncludeltem.ng-leave

animation-name: slideFromLeft;

animation-direction: reverse;

-webkit-animation-name: slideFromLeft;

-webkit-animation-direction: reverse;

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations for Mobile Devices

/* When the page leaves, slide it to the right (out of the user view)
from the the left corner,

in other words, slide it from the right but in reverse order */
.ngIncludeltem.moveToLeft.ng-leave

animation-name: slideFromRight;

animation-direction: reverse;

-webkit-animation-name: slideFromRight;

-webkit-animation-direction: reverse;

@keyframes slideFromRight
0% {
transform: translateX(100%) ;

100% {
transform: translateX(0);

@keyframes slideFromLeft (
0% {
transform: translateX(-100%) ;

100% {
transform: translateX(0);

}

We saw a good sample of how to get a more native app feeling to the user using pure
Angular]S animations with native directives.

Angular]S 2.0 Touch Animations is currently being drafted, and

its focus is to provide better solutions for mobile devices, the same

focus as that of Angular]S 2.0. This draft includes better handling of

scrolling through a list using a finger, circling through pictures in a
% carousel, removing of items on swipe, and more native app features.

We can expect improvements for the future on Angular]S core, so
things such as the infinite scrolling core will be standardized and not
spread to many third-party Angular]S modules, as it's on the time this
book is been written.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Mobile AngularJS frameworks

Nowadays, mobile features can be added to Angular]S web apps using external
frameworks such as Ionic (see http://ionicframework.com/). It provides some
great directives that uses the ngAnimate module behind the scenes to create those
touch animations features.

The Ionic framework is a framework for hybrid mobile apps with HTML5. In other
words, the framework is focused on the use of native apps, not for responsive web
apps. This is a good choice if you want to create native apps using HTML, CSS, and
JavaScript together with Apache Cordova or PhoneGap.

To learn more about Cordova, check out http://cordova.apache.org/.
To know more about PhoneGap, see http://phonegap.com/.

Another framework for mobile development built on top of Angular]JS is the Mobile
Angular UL For more information, visit http://mobileangularui.com/.

Summary

In this chapter, we learned how to use animations with AngularJS to provide a better
experience for responsive web apps, especially on small devices such as smartphones
and tablets. We were introduced to the material design guideline and how to
implement better animations and enhance the use of Angular]S web apps on mobile
devices. We got a preview of what would come natively in the future of Angular]JS too.

In the next chapter, we will learn about staggering animations.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

A staggering animation is a group of animations that are triggered with a small
delay between each successive operation. It's an often desirable animation and
Angular]S 1.3 has support for these animations natively.

In this chapter, we will learn the following topics:

* Creating staggering animations
* Creating staggering animations for other native directives

* Adding staggering animations for custom directives

Creating staggering animations

Staggering animations provides a curtain effect; each animation starts with a small
delay from the start of the last animation and before the last animation finishes.

Staggering animations are very useful to support the information hierarchy, as
it creates a path for the eyes to follow, and it's useful to keep a consistent motion
choreography so that the user doesn't get disoriented. Imagine a photo gallery
website that might load all photos and show all of them at once or append the
photos in a sequence, so the user don't get a lot of information at the same time.

Both points are explained in the Meaningful Transitions section of Google Material
Design. Learn more about it at http: //www.google.com/design/spec/animation/
meaningful-transitions.html.

Angular]S has native support for these animations. It's as easy to create as declaring
a .ng-EVENT-stagger CSS definition. This will apply the delay between animations
for the EVENT animation, the EVENT being one of the animation events such as
enter, leave, add, remove, and move.

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

The .ng-EVENT-stagger class has to define the transition-delay or animation-
delay property. The first property is for transition animations and the second for
keyframes animations.

Staggering animations with a CSS transition

We will create a staggering animation sample for the ngrepeat directive to
understand it better. We will use filters on the repeaters so that we can remove and
add back elements easily just by changing the input values with the filter's models.
We will reuse the same stagger animations with the nglf directive too:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJS Staggering animations</title>

<link href="http://ajax.aspnetcdn.com/ajax/bootstrap
/3.2.0/css/bootstrap.css" rel="stylesheet" />

<link href="staggered.css" rel="stylesheet" />
</head>
<body>
<div ng-controller="staggeredCtrl as stagger"s>

<hl>ngRepeat Transition staggering sample</hl>

<button ng-click="showEmailsTransitions =
!showEmailsTransitions">Show/Hide email list</buttons>

<button ng-click="stagger.archive () ">Archive AngulardS
emails</button>

<label for="filterBy">Filter email by:</label>

<input ng-model="stagger.filterBy" name="filterBy" />

<div ng-repeat="item in stagger.emails |
filter:stagger.filterBy" ng-if="showEmailsTransitions"
class="repeatItemTransition bg-primary">
{{item}}

</divs>

<hl>ngRepeat Animation staggering sample</hl>

<button ng-click="showEmails = !showEmails">Show/Hide email
list</buttons>

<button ng-click="stagger.archive () ">Archive AngulardS
emails</button>

<label for="animationFilterBy">Filter items by:</label>

<input ng-model="stagger.animationFilterBy"
name="animationFilterBy" />

<div ng-repeat="item in stagger.emails |
filter:stagger.animationFilterBy" ng-if="showEmails"
class="repeatItem bg-primary">

{{item}}

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

</div>
</div>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0
/angular.min.js"></scripts>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0
/angular-animate.min.js"></scripts>
<script src="staggeredCtrl.js"></script>
</body>
</html>

In this HTML code, we used the ngRepeat directive twice for the same item's model
just to learn how to stagger animations using transitions or keyframes animations.

The transition animation is described by the CSS fragment of the staggered. css file:

/* ngRepeat animation*/

.repeatItemTransition.ng-enter,

.repeatItemTransition.ng-leave {
-webkit-transition: opacity ease-in-out 1s;
transition: opacity ease-in-out 1s;

.repeatItemTransition.ng-enter,
.repeatItemTransition.ng-leave.ng-leave-active {
opacity: 0;

.repeatItemTransition.ng-leave,
.repeatItemTransition.ng-enter.ng-enter-active {
opacity: 1;

.repeatItemTransition.ng-enter-stagger,
.repeatItemTransition.ng-leave-stagger {

/* This is the delay between each animation of the staggered
animation sequence */

-webkit-transition-delay: 0.1ls;

transition-delay: 0.1s;

/* This should be set to 0s to avoid problems, this element could
inherit the value from the repeatItemTransition element */

-webkit-transition-duration: 0s;
transition-duration: 0s;

[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

The ng-enter and ng-1leave classes usage is already well known in this chapter of
the book. The only new detail in this sample is that to create staggering animations,
we use the .ng-enter-stagger and .ng-leave-stagger classes on the same
element with the .repeatItemTransition class.

These classes are where we should declare the delay time between the animations
to be staggered, using the transition-delay property. Notice that we must set the
duration of this animation to 0s, using the transition-duration property, just to
avoid the undesirable CSS inheritance that can remove the stagger effect.

The staggeredctrl.js content is as follows:

function staggeredCtrlFn () {

var stagger = this;

stagger.emails = ["AngularJS news", "AngulardS rocks!", "AngulardS
animations", "Packt Publishing news", "AngulardS Jobs"];

stagger.archive = archiveFn;

function archiveFn() ({
stagger.emails = ["Packt Publishing news"];
}
}
angular.module ('myApp', ['ngAnimate'])

.controller('staggeredCtrl', staggeredCtrlFn);

The controller scope just contains an array of e-mail items to be displayed with
the ngRepeat directive and a dumb archive function that removes the e-mail items
related to Angular]S.

Initially, we will get the following screenshot result:

ngRepeat Transition staggering sample

Show/Hide email list || Archive AngularJS emails | Filter email by:

ngRepeat Animation staggering sample

Show/Hide email list || Archive AngularJS emails | Filter items by:

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

When we click on the Show/Hide email list button of the transition sample, we
will change the value of the nglf directive expression. It will then trigger the enter
animation with a curtain effect, as we can see in the next screenshot:

ngRepeat Transition staggering sample

| Show/Hide email st || Archive AngularJs emails | Filter email by: | |

ngRepeat Animation staggering sample

| Show/Hide email ist || Archive AngularJs emails | Filter items by: | |

Finally, after the last animation is completed, we will have the following result:

ngRepeat Transition staggering sample

| Show/Hide emaillist || Archive AngularJS emails | Filter email by: | |

AngularJS news
AngularJS rocks!

AngularJS animations
PacktPublishing news
AngularJs Jobs

ngRepeat Animation staggering sample

| Show/Hide emaillist || Archive AngularJS emails | Filter items by: |

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

In this sample, if we set p in the filter input that uses £ilterBy, we will see each
of the e-mails that doesn't contain "p" in the text disappearing gracefully one after
the other, as the leave animations will be staggered. This transition gives time for
the user to understand which e-mails are being filtered from the view. The next
screenshot displays the leave animations in different transition steps for each item:

ngRepeat Transition staggering sample

| Show/Hide email list || Archive AngularJs emais | Filter email by: |p |

ngRepeat Animation staggering sample

l Show/Hide email list || Archive AngularJS emails |Fi|ter items by:

The same leave staggered effect is displayed if we click on the Archive Angular]S
emails button when there is no filter set, as the only e-mail left would be Packt
Publishing news. The user will see which e-mails are being removed.

Staggering animations with a CSS keyframes
animation

In the last sample template, the second ngRepeat directive doesn't have the
.repeatItemTransition class, but it contains the .repeatItem class. So, to create
a staggering animation with a similar effect of the last sample using keyframes
animation, we should declare the following CSS:

.repeatItem.ng-enter-stagger,
.repeatItem.ng-leave- stagger{

/* This is the delay between each animation of the staggered
animation sequence, now for keyframes animations */

-webkit-animation-delay: 0.2s;
animation-delay: 0.2s;

/* This should be set to 0s to avoid problems too, this element
could inherit the value from the repeatItem element */

-webkit-animation-duration: 0;
animation-duration: 0;

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This is the CSS fragment that defines the staggered animation delay. It's almost the
same as the transition sample, we just exchanged the transition-delay property
for animation-delay and transition-duration for animation-duration; both
properties are used for the same purpose as the first element to set the delay between
animations and avoid an inheritance that can break the staggering effect.

For this sample, we will use the same animation used in Chapter 3, Creating Our
First Animation in Angular]S, in the ngRepeat directive sample; so the CSS fragment
needed is:

.repeatItem.ng-enter
-webkit-animation: 1s ng-enter-repeat-animation;
animation: 1s ng-enter-repeat-animation;

}

.repeatItem.ng-leave
-webkit-animation: 1s ng-leave-repeat-animation;
animation: 1s ng-leave-repeat-animation;

}

If we set "p" in the filter input named animationFilterBy, we will see each of the
items that doesn't contain "p" in the text disappearing gracefully one after the other,
as the next screenshot displays:

ngRepeat Transition staggering sample

| Show/Hide email list || Archive AngularJS emails |Filter email by:

ngRepeat Animation staggering sample

| Show/Hide email list || Archive AngularJs emails |Filter items by: |p| |

AngularJs rocks!

Packt Publishing news

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

Creating staggering animations for other
native directives

Alright, now we know how to create the staggering effect using the ngrepeat
and ngIf directives in the enter and leave animation events; but, how to create
staggering effects for other directives?

First, we need to understand how staggering happens. Angular enqueues the
animations for elements with the same parent element, the same animation event,
and the same CSS classes, and the animations should be triggered in less than 10 ms
of each animation to be staggered. Otherwise, they will be considered as separated
animations that should not be queued in the same sequence, and this doesn't mean
that the delay should be less than 10 ms.

You might think that this happens only when we use ngrepeat, but it's not true.
To prove it might apply for other directives too, let's create an ngClass staggering
animation sample with the preceding rule in mind.

It's hard to figure out how to apply different staggering animations if we have all
these restrictions to apply the stagger effect. We will show how to do it by using
the :nth-child () CSS3 pseudo-class.

Check out the following HTML code, we have created two div elements with the
same classes and the ngClass directive, below the same common parent of the ID,
parentElement:

<!DOCTYPE htmls>
<html ng-app="myApp">
<head>
<title>AngularJS Staggering animations</title>
<link href="staggered.css" rel="stylesheet" />
</head>
<body>
<hl>ngClass Staggering animation </hl>
<div id="parentElement">

<button ng-click="toggleNgClass = !toggleNgClass">Toggle ngClass
animation</buttons>

<div ng-class="{'animationClass' : toggleNgClass}"
class="ngClassAnimationSample">
First element
</div>
<div ng-class="{'animationClass' : toggleNgClass}"
class="ngClassAnimationSample">
Second element
</div>

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

</div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>

<scripts

angular.module ('myApp', ['ngAnimate'l]) ;

</script>
</body>
</html>

The ngClass directive will add the animationClass class to each element when the
toggleNgClass variable becomes true.

The initial state is represented in the following screenshot:

ngClass Staggering animation

Toggle ngClass animation

[First element
Second element

When we click on the Toggle ngClass animation button for the first time, it

will change the toggleNgClass variable to true. So, the two div elements

with the ngClassAnimationSample class of the same div parent element of the
parentElement ID will simultaneously trigger the add class animations. So, if

we define the animationClass-add-stagger class besides the animation classes
CSS, we will have the staggering effect for this animation. The big difference in

this sample is that we will use two different definitions of .animationClass-add-
active for each element even though they have the same CSS. We will use the
#parentElement>div:nth-child (2n+1) .animationClass-add-active selector,
so all even div elements that are children of the element with the parentElement ID
will have a different active class. So, the animation result will be different for the first
and second elements:

/* ngclass animation */

.ngClassAnimationSample {
background-color: white;
border: 1px solid black;

.ngClassAnimationSample.animationClass-add-stagger (

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

-webkit-transition-delay: 0.3s;
transition-delay: 0.3s;
-webkit-transition-duration: O0;
transition-duration: 0;

}

.ngClassAnimationSample.animationClass-add {
-webkit-transition: all ease-in-out 1s;
transition: all ease-in-out 1s;

}

.ngClassAnimationSample.animationClass-add-active {
background-color: black;

}

#parentElement>div:nth-child (2n+1) .animationClass-add-active {
background-color: red;

}

Following the rule described in this topic, we can figure out many ways to create
staggering animations with native directives and animation events.

The result after clicking on the Toggle ngClass animation button is as follows:

ngClass Staggering animation

| Toggle ngClass animation |

Second element

We can see that the first element gets darker before the second element becomes red.

Create staggering animations for custom
directives

Alright, now we know how to create the staggering effect using native directives.
What about creating staggering effects for custom directives?

[140]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We must keep this in mind: Angular]S enqueues the animations for the same parent
element, the same classes, and the same animation event, and the animations
should be triggered between 0 ms and 10 ms to be staggered. This has already been
explained in the last topic, but this is important and deserves a reminder.

This is what happened in the first sample; the ngRepeat called $animate.enter
and $animate.leave for many elements with the same parent element in a short
amount of time, less than 10 ms. In the second sample, the ngclass directive called
$animate.addClass for three elements of the same parent element at the same time.

So, if we want to create staggering effects for custom directives, we just have to
follow the same rule.

Let's see a sample, check the HTML content with our custom directive,
addDirective:

<!DOCTYPE html>
<html ng-app="myApp">
<head>

<title>AngularJS Staggering animations</titles

<link href="staggered.css" rel="stylesheet" />
</head>
<body>

<hl>Custom directive Staggering animation</hl>

<p>Click on above to create elements:</p>

<div add-directive="">

<div>Click here!</divs>

</div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></script>

<script src="staggeredCtrl.js"></scripts>
</body>
</html>

The following is the custom directive JavaScript in the staggeredctrl. js file:

function addDirectiveFn (Sanimate) {
return {
link: function ($scope, $element, $attrs)
var firstElement = angular.element ('<div
class="addAnimation">1l</div>") ;
var secondElement = angular.element ('<div
class="addAnimation">2</div>") ;

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

Staggering Animations

var thirdElement = angular.element ('<div
class="addAnimation">3</div>") ;

Selement.on('click', function () {
Sanimate.enter (firstElement, Selement) ;
Sanimate.enter (secondElement, S$Selement) ;
Sanimate.enter (thirdElement, Selement) ;

//Trigger digest in this case, because this listener
function is out of the angular world
$scope. $Sapply () ;

3N

angular.module ('myApp', ['ngAnimate'])
.directive ('addDirective', addDirectiveFn) ;

The addDirective custom directive just entered three elements on the div element
by clicking on the click Here text.

The CSS with the stagger class definition is as follows:

/* add custom directive animation */
.addAnimation.ng-enter {
-webkit-transition: opacity ease-in-out 1s;
transition: opacity ease-in-out 1s;

.addAnimation.ng-enter {
opacity: 0;

.addAnimation.ng-enter-stagger {
-webkit-transition-delay: 0.2s;
transition-delay: 0.2s;
-webkit-transition-duration: 0;
transition-duration: 0;

.addAnimation.ng-enter.ng-enter-active {
opacity: 1;

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This a basic sample of how to create staggering animations on custom directives.
This might be useful if you create a custom ngRepeat directive and many other
cases, as long as we follow the staggering constraints described on the last topic.

At the time of writing this book, there is no trivial way to create staggering
animations using JavaScript animations.

You can learn more about staggering animations and a nontrivial workaround
to trigger staggering animations using JavaScript at http://www.yearofmoo.
com/2013/12/staggering-animations-in-angularjs.html.

This is a great blog with a lot of articles about Angular]JS animations and samples too.

Summary

In this chapter, we learned how to create staggering animations with Angular]S
native and custom directives, so we can now create better animations for web apps.

This feature enables us to accomplish one of the animation guidelines from the
material design and the hierarchical timing by creating a motion that supports the
information hierarchy. A staggering animation can create a path for the eyes to
follow the information being added to the view.

At this point of the book, we might be very excited about how much can be done
by so little CSS and JavaScript code with Angular]S. However, we should not forget
about the performance of our web app, so the next chapter will focus on how to
avoid animation jank and how to find bottlenecks in our web apps.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance
Optimization

We have already learned how to create different animations using AngularJS, CSS,
and JavaScript, but we must always be concerned with the user experience. All
animations in separate samples are great, and performance is not an issue. However,
when we are dealing with big single-page applications with heavy processing, a

lot of CSS and a big DOM, we should focus on keeping our web app fast and the
animations smooth; this is the topic of this chapter.

In this chapter, we will learn the following topics:

* Display and the frame rate
* Finding performance bottlenecks using Chrome DevTools
* Measuring browser layers and Jank on Chrome

* (SS styles in animations you should avoid

The display and the frame rate

Each device and monitor display has a regular refresh interval. A usual monitor
frequency is 60 Hz, which means that the display will refresh 60 times per second,
and a new frame will be displayed approximately every 16 ms.

JavaScript animations can use setInterval or setTimeout using 16 ms (60 frames
per second), as this is a commonly used refresh rate. It's not a good idea to use this
hardcoded value, as different devices have different refresh rates and the timer
precision is not reliable.

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

We are able to work around this vulnerability using the requestAnimationFrame
function. It receives callback functions like the setInterval and setTimeout
functions do, but requestAnimationFrame only calls the callback function

when the browser is going to produce a new frame before the next repaint.

To support older browsers, some vendor-specific code can be used as well,
as described in the following code:

window.requestAnimationFrame = window.requestAnimationFrame || window.
mozRequestAnimationFrame || window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame;

Check the next animation sample using requestAnimationframe, based on the
animations of Chapter 1, Getting Started, which we created using JavaScript and
CSS without Angular]S.

The HTML of this sample is as follows:

<!DOCTYPE html>
<html>
<head>
<titlesPerformance</title>
<link href="performance.css" rel="stylesheet" />
</head>
<body>
<hl>Animation with javascript</hls>
<!--There is a click listener for this button -->
<button id="jsBtn">Click here to move with JS</buttons
<div id="jsanimation">
This block will be moved
</div>
<script src="performance.js"></scripts>
</body>
</html>

The CSS of the performance. css file is as follows:

#jsanimation

position: relative;
#cssanimation {
position:relative;
-webkit-transition: all 2s ease-in-out;

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

transition: all 2s ease-in-out;

.move-to-right {
-webkit-transform: translate(100px,0) ;
transform: translate (100px,0);

}

The JavaScript animation that uses the requestAnimationFrame function in the
performance. js file is as follows:

window.requestAnimationFrame = window.requestAnimationFrame || window.
mozRequestAnimationFrame || window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame;

var jsAnimationElement = document.getElementById('jsanimation') ;
var jsAnimationBtn = document.getElementById('jsBtn') ;

//This global variable holds the position left of the div
var positionLeft = 0;

function moveToRight () ({
positionLeft += 10;
/* Set position left of the jsanimation div */
jsAnimationElement.style.left = positionLeft + 'px';
if (positionLeft < 100) {
requestAnimationFrame (moveToRight) ;

jsAnimationBtn.addEventListener ('click', function
moveBtnClickListener () ({

requestAnimationFrame (moveToRight) ;
}, false);

This sample uses Request Animation Frame (RAF); so, the callback function that
moves the element 10 px will be called before each repaint until the element has
moved 100 px to the right. If we set a hardcoded time interval using the setTimeout
function, we might lose a repaint. Losing repaints gives the user a feeling of lag.

Although RAF helps improve the animation quality, we still have to keep in mind
that a new frame is often generated every 16 ms, so the browser has 16 ms to compute
the JavaScript, manipulate DOM, execute the layout, paint and anything else,
otherwise you will lose a frame and the animation smoothness might be degraded.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

There is a great article on the request animation frame and rendering performance at
http://www.htmlS5rocks.com/en/tutorials/speed/rendering/.

In Chapter 1, Getting Started, we talked about browsers that could layer CSS
animations and separate rendering from the JavaScript thread and other
page layers, like Chrome and Chrome for Android do.

As CSS animations' execution is separated from the JavaScript execution, it's easy to
see that modern browsers can improve the animation's smoothness. The animation
frame is ready independent of the JavaScript execution. If you execute a heavy loop
and it keeps processing in JavaScript, your JavaScript animation might fail (freeze),
as the thread will already be busy processing the loop. This is why we should always
prefer CSS animations instead of JavaScript animations, in my humble opinion.

In the following topic, we will learn how to find out whether our animations are
losing frames.

Finding performance bottlenecks using
Chrome DevTools

We just learned the benefits of using requestFrameRate and CSS animations.
However, if we want to improve our animations' performance, how can we
find out what is slowing things down?

Nowadays, we have tools that help us find these bottlenecks, and one of them

is Chrome DevTools, which is a collection of tools that comes with the Chrome
browser. To open Chrome DevTools, just press F12 or click on any part of a page,
and then click on Inspect element. This tool is very familiar for web developers.
Now, we will learn how to analyze the timeline frames mode.

We need to record the execution, so Chrome will show us a real-time report with the
frame rate, as shown in the following screenshot:

[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Q, Elements MNetwork Sources | Timeline| Profiles Resources Audits Console = &% 0, =
® O v ¥ il
[+ Capture stacks l

U]

RECORDS 311s
B Update layer tree]
B Paint (844 x 247)
B Composite Layers]
O Function Call (keyboard-shor...
@ Event (mousedown)
B Recalculate Style
O Event (focus)
B Recalculate Style
B Layout

() Capture memory

il

3

DETAILS: 0-3.81s

3.81s

12,000 ms Scripting
W 4.000 ms Painting
18.000 ms Other
B Update layer tree 3.79s Idle
B Paint (844 = 247)
B Composite Layers

© Event (click) |

- Em s ==

The top-right timeline has lines for 30 fps and 60 fps, and the height of each vertical
bar on Frames View represents the time it took to complete a frame and send it to
the screen. So, if we have vertical bars above the 60 fps horizontal line or above the
30 fps line, we are skipping frames. We can focus on a specific time range in order to
analyze what happened in between.

Usually, a frame is displayed after the JavaScript execution, Style and layout, Paint,
and Compositing Layers. The paint phase is the biggest one, so we should be careful

with it; this is a common scrolling bottleneck.

Chrome DevTools separate the steps of a frame and how long each step takes, as

shown in the following screenshot:

O, Elements Network Sources | Tameline| Profdes Resources Audits Console

o x= & 0O,%

® &V ¥ il
Capturestacks 11
= i fted Ld
Capture memao
v o im SR SRS NS = SN SO o R T, ey e e e e e 40 fpn.
L I- - : b ‘l
RECORDS 1468 me + | DETAILE: Paint

W Eecalcutate Style []

Function Call (kevbioard-ghor... .
@ Event (focus)]
Recalculate Style]
B Layout []

Event (moutedewn) | |
8 Recalculate Style]
B Update layes tree (]
» Pgarit Setup

& Compesite Layers []
B Update |
® Pant (15
& Composit

ayers 1

W VL00 s Painting

Self Tiene= 100888 =5
Start Time: 594 =5
Locatiom: (@, 8}
Dimenslons: 1526 = 518
Layer root: sgdogument

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

There are some operations that trigger layout, others trigger paint, and a few only
trigger composite layers:

* Changing the width, height, margin, left, right, top, and bottom position
will cause a layout step.

* Applying box-shadow, border-radius, and background will cause a
paint step.

* Using transformand opacity will just cause a layer-compositing phase.

These rules apply for Chrome at the time of writing this book; this might change in
the future as browsers are constantly evolving,.

There is a reference with full CSS properties and the operations they trigger at
http://csstriggers.com/.

What we always need to do is use tools in order to find the bottlenecks in our
web apps.

Checking FPS using Show fps meter

We can use the Show fps meter rendering tool from Chrome DevTools too so that
we can check the frames per second as we trigger animations. On Chrome DevTools,
open the drawer. The following screenshot shows us the position of the drawer button:

Q, Elements Metwork Sources | Timeline | Profiles Resources Audits Console »= ﬁ ﬂj X

@ (] h
© ¥ ¥ il Fovime] |

Capture stacks I
30fps)

I Capture memory 601
Ps |

Go to the drawer Rendering tab and check Show FPS meter, so that an FPS meter
will be displayed over the page; we can start triggering animations and check
whether any of them is causing a problem.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We can see the Show FPS meter option enabled in the following screenshot:

ss="{'animationClass' :

Q, Elements Network Sources |Timeline | Profiles Resources »

= % O

® O Y ¥ il

[Capture stacks

30 fps

[Capture memory

Recalculate Style (jguery-1....

RECORDS
B Paint Setup |
» o Timer Fired (22) >

B Update layer tree

B Paint (1018 = 510)

B Composite Layers
» @ Timer Fired (22) [

B Recalculate Style (jguery-1..

B Update layer tree

B Paint (1018 = 510)

B Composite Lavers

=

¥Y'mE BN

4|

DETAILS: Recalculate Style

Console Search Emulation | Rendering

¥ Show paint rectangles
) show composited layer borders

¥ show FPS meter

[Enable continuous page repainting

[show potential scroll bottlenecks

We are able to diagnose Android devices with remote debugging too. Using the
remote debugger with Chrome, a timeline on our desktop browser is displayed

with the data from the Chrome device in real time.

You can learn more about Chrome's remote debugging setup at
https://developer.chrome.com/devtools/docs/remote-debugging.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

Measuring browser layers and Jank on
Chrome

We just saw that using Chrome DevTools helps us find performance bottlenecks.
Now, we are going to see how to find paint layers and enhance an animation just
by replacing some CSS properties.

For this sample, we will create a sliding menu such that when we click on a button
and it slides from the left menu items, the page content slides to the right too. When
we click on the button again, both the menu and page content slides to the left until
the menu vanishes from the viewport.

The following HTML will be used:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
<title>Performance</titles>
<link href="http://ajax.aspnetcdn.com/ajax/bootstrap/3.2.0/css/
bootstrap.css" rel="stylesheet" />
<link href="performance.css" rel="stylesheet" />
</head>
<body>
<div id="menu" data-ng-show="showMenu">
<nav class="navbar-collapse bs-navbar-collapse collapse in">
<ul class="nav navbar-nav'"s
<lis><a>menu item 1l</1li>
<lis><a>menu item 2</1li>
<lis><a>menu item 3</1li>
<lis><a>menu item 4</1li>
<lis><a>menu item 5</1li>
<lis><a>menu item 6</1li>
<lis><a>menu item 7</1li>
</uls>
</navs>
</div>
<div id="content"s>
<button ng-click="showMenu = !showMenu">Menu</button>
<hl>Main content</hl>
<p>
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum
text Lorem ipsum text

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum
text Lorem

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text

Lorem ipsum text

</div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular.min.js"></script>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.3.0/
angular-animate.min.js"></scripts>

<scripts

angular.module ('myApp', ['ngAnimate'l]l) ;

</script>
</body>
</html>

We will add the slide animation using the CSS transition for the left property, as we
can see in the following CSS code:

#menu.ng-hide-add ({
transition: transform ease-in-out 0.3s;
transform: translateX(0px) ;

#menu.ng-hide-add-active {
transform: translateX(-150px) ;

#menu.ng-hide-remove {
transition: transform ease-in-out 0.3s;
transform: translateX(-150px) ;

#menu.ng-hide-remove-active
transform: translateX(0px) ;

#menu {
position: absolute;
width: 130px;
background-color: white;
transform: translateZ(0) ;

#menu.ng-hide + #content {

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

transform: translateX(0px) ;

1i {
box-shadow: 1px 1lpx 1lpx black;

#content {
width: 80%;
transition: transform ease-in-out 0.3s;
transform: translateX (150px) ;

}

Now that we have our sample running, let's check its timeline on Chrome DevTools.
This is the initial status before recording:

Main content

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text

2 imeli i =
Q Elements Network ScurceshTm}ellne‘ Profiles Resources Audits Console » @z # Q‘x

® O v ¥ 1l

I#l Capture stacks

O

Capture memory

3

RECORDS “ | | Details: Selected Range

Range: 0 —-

- Idle

4]

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now, we will click on the Record button, and then click on the Menu button, wait
until the animation has finished, and click again on the Menu button and wait until
the animation has finished again.

Menu
Main content

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text

Q, Elements MNetwork Sources | Timeline| Profiles Resources Audits Console » = & =, x
® © ¥V ¥ i
¥ Capture stacks
30 fps
8 capt
apture memory B - sofps
S e ecscen W e]
RECORDS 5000ms | | Details: Selected Range |
B Update layer tree] |——J i G -
B Paint (694 x 221} [ANGE D SRS
® Composite Layers]
B Recalculate Style
B Layout 4885

@ Function Call (keyboard-s...
@ Event (focus)

B Recalculate Style

B Layout

B Update layer tree

B Paint (694 x 221)

[116.000 ms Scripting

[l 21.000 ms Rendering —

W 74.717 ms Painting
154.283 ms Other

| - OEE O BN D B N .

As we can see, we have small peaks of yellow, blue, and purple bars. Yellow means
that JavaScript was being processed, blue means that a layout/rendering operation
was running, and green means that the painting was happening. For this sample on a
desktop, the animation was below the 60 fps line, which sounds good. However, we
can see that there are small green bars between the peaks. If we had a web app with
more paint expensive properties, these bars would grow and might cause Jank. The
real-world cases are worse than what we reproduced in this sample, as many CSS
codes might be changing DOM at the same time, increasing the layout, paint, and
JavaScript bars.

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

Just to show a worse case, let's add more content to the main view and text -shadow
to all the text. We will check the same steps being reproduced in the timeline, as
shown in the following screenshot:

Q Elements Metwork Sources }ﬁmehne{ Profiles Resources Audits Console » = ﬁ n‘
® © ¥V ¥ i

¥ capture stacks

O capture memory

RECORDS . oooms 2000ms S000thE 4000hs 5000 ms
= Update layer tree
B Composite Layers
B Update layer tree

B Compaosite Layers
@ GC Event {943 KB collected) il

® Update layer tree]

B Paint Setup []
H Paint (256 x 256) i

B Composite Layers i

B Recalculate Style

B Layout

B Function Call (keyboard-s...
@ Event (focus)

B Recalculate Style

H Layout

@ Update layer tree

B Paint Setup i
B Paint (764 = 764)

B Composite Layers
@ Event (mousedown)
B Recalculate Style

B Layout

B Update layer tree

B Paint Setup |
H Paint (764 x 256)

B site b s B
| Details: Selected Range |

- O Il

- s o

We can see that the paint bars have increased their size, even above the 60 fps line,
which is undesirable.

So, we will try to reduce the paint cost by changing the 1eft property animation
using the transform:translatex () CSS property to be animated.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

So, the same initial situation or sample will have the same HTML. However, a new

performance.css file is as follows:

#menu.ng-hide-add

transition: transform ease-in-out 0.3s;

transform: translateX (0px) ;

#menu.ng-hide-add-active {
transform: translateX(-150px) ;

#menu.ng-hide-remove {

transition: transform ease-in-out 0.3s;

transform: translateX(-150px) ;

#menu.ng-hide-remove-active {
transform: translateX (0px) ;

#menu
position: absolute;
width: 130px;
background-color: white;
transform: translateZ(0) ;

#menu.ng-hide + #content {
transform: translateX (0px) ;

1i {
box-shadow: 1px lpx lpx black;

#content {
width: 80%;

transition: transform ease-in-out 0.3s;

transform: translateX (150px) ;

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

We will try again, following the same steps that we used the last time and record the
timeline. The result will be as follows:

Main content

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem

ipsum text
Q Elements Network Sources | Timeline| Profiles Resources Audits » = & E‘ ®
® © ¥ ¥ il
¥ Capture stacks 3018
O capture memory . Et}fps
RECORDS e | |-Deta|'ls: Selected Range|
B Update layer tree | | -
B Paint Setup | | i
B Paint (256 = 256) i \ /
B Composite Layers | \\.L_h_r_,/f
2
0 GC Event (652 KB collected) g [1126.000 ms Scripting
B Recalculate Style i I 16.000 ms Rendering
H Layout] B 22.825 ms Painting
& Function Call (keyboard-s... i [147.175 ms Other
B Event (focus) 1] - 3.98 5 Idle =

As we can see, the total paint time has been reduced to 23 ms, which is way less than
the case in which we used the 1eft CSS property animation, which took 74 ms.

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Now, let's check the timeline of the same steps but using more content for the main
view and text -shadow, as we did in the last sample's worse case too. The new
timeline performance will be as follows:

Q Elements Network Sources | Timeline| Profiles Resources Audits Console » 3= & =,
® © ¥V ¥ il
) Capture stacks

B L [30fps
) Capture memory

- L1l |60

RECORDS 200 ms 400mms 500 ms BO0™S 1000ms -
= Update layer tree]
B Paint (256 = 256) [}
B Composite Layers |
B Recalculate Style
B Layout
B Function Call (keyboard-s...
@ Event (focus)

B Recalculate Style

B Layout

B Update layer tree

B Paint (764 = 764)

B Composite Layers

B Event (mousedown)

B Recalculate Style

B Layout

® Update layer tree]
B Paint (764 = 256)
B Composite Layers]

» @ Event (click)

» O Animation Frame Fired (10)

B Layout

-I:I---IZIIZI-

¥y ¥
- mm

| Details: Selected Range |

As we can see, there are still some peaks but smaller than the same case using the
left property and more acceptable. In the time between these peaks, the paint was
not required or was much smaller than the last sample.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

Alright, but where is the trick? Why does one solution have better results than
the other?

We used the transform property to animate, so Chrome will create a layer that uses
the GPU processor instead of the CPU. Okay, but how can we see whether there is a
separated layer or not?

Now, we will use another feature of Chrome DevTools. The Show paint rectangles
and Show composited layer borders options are available at the drawer rendering
tab, near the Show FPS meter option that we saw in the previous section.

Then, we will follow the same steps that we used to check the timeline. The
composited layers will be separated by rectangles and the layers painted will
be highlighted as green rectangles too.

We can see that the menu has its own layer rectangle, as shown in the
following screenshot:

Menu

menu item 1
nwenz - Naln content
menu item 3 ' Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
. ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum
menu item 4 Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
ipsum text
MG R Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
- ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum
MR Rans Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
psumtext | |
menu item 7

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum {
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
ipsum text

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem
ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum |
Lorem ipsum text Lorem ipsum text Lorem ipsum text Loréem ipsum text Lorem
ipsum text

Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem

ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum
Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem ipsum text Lorem

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

If you are still not convinced, Paul Irish, who is a part of the Google Chrome team,
created a video that explains why animations with transform:translate () are
better than position:absolute with top/left properties. You can check out

the video at http://www.paulirish.com/2012/why-moving-elements-with-
translate-is-better-than-posabs-topleft/.

CSS styles in animations you should
avoid

Position, scale, rotation, and opacity are properties that can be animated without
much cost using transform: translate, transform: scale, transform:

rotate, and opacity. A great tip is to change the top and 1left animations using
tranform:translate () instead, as we did in the last sample. These properties are
not frame budget expensive because they only affect composite layers and therefore,
they do not need layout and paint steps.

Some styles affect the layout. This means that if you change the width of an element,
other elements might be affected, so the browser will have to recalculate all trees a
of elements before rendering the next frame. This is expensive, and the time it takes
increases with the rise in the number of elements in this tree.

There is an article on high performance animations at http://www.html5rocks.
com/en/tutorials/speed/high-performance-animations/.

Some styles that affect the layout, apart from many others, are listed in the this
order of the most used layouts to the least used: width, height, padding, margin,
display, border-width, border, top, position, font-size, float, background-
color, border-color, text-align, overflow, font-weight, right, and bottom.

The separation of layers helps the performance, because it is assisted by GPU. The
layer-creation rules are determined by each browser; browsers that use WebKit and
Blink such as Chrome, Opera, and Safari create layers. There are many variables
that Chrome uses in order to determine whether it will create a layer; here, I list two
important rules:

* The layer has 3D or perspective transform CSS properties.

* The layer uses a CSS animation for its opacity. It uses an animated
webkit transform.

So, there is a trick to create layers if we use the following;:

-webkit-transform: translateZ(0) ;
transform: translateZ(0) ;

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Animations' Performance Optimization

Or, we can use the following;:

-webkit-transform: translate3d(0,0,0);
transform: translate3d(0,0,0);

A new layer will be created for the element and will help in rendering the
performance. You should test adding it to an element in order to measure
whether FPS was improved upon.

However, if we add too many layers, processing might cause poor performance,
because the video memory might be very limited on devices. The overuse of layers
processed by the GPU can slow down the page too.

A great article on the layer performance hack can be found at http://aerotwist.
com/blog/on-translate3d-and-layer-creation-hacks/

We must keep in mind that we can enhance the user experience by creating
animations, but if we don't test and analyze each use case, we might have created
a rendering bottleneck instead of delivering a best quality app. There is no way
to simulate performance on mobile devices using desktops, as each browser has
different behaviors and different cores in different platforms.

There is a website that is focused on articles and videos that teach how to avoid,
diagnose, and solve the poor performance of websites, including the performance
of animations that I recommend for all the readers to check out. The website is
http://jankfree.org/.

Summary

In this final chapter, we learned how to diagnose animations' performance using
Chrome DevTools so that we can create smooth animations for web apps and find
out when our animations need to be changed or adjusted.

At this point, we are ready to create the most versatile animations using Angular]S
and web standards using different approaches, analyze how to accomplish this, and
diagnose whether they're skipping frames. Now, we are able to deliver single-page
applications with animations and the best quality user experience after knowing the
limitations of modern web browsers and how to measure performance.

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

$animate.addClass method 106
$animate.enter method 107
$animate.leave method 108
$animate methods 104
$animate.move method

using 111-113
$animate.removeClass method 106

A

Angular]S

about 7,47,49

animations convention 51, 52

URL 47, 66

used, for creating fade animations 49-51

versions 48
Angular]S 2.0 Touch Animations 128
AngularJS animation

binding, with CSS keyframe

animations 58-61

binding, with CSS transitions 52-54

creating, without CSS3 83-88

need for 9,10

ng-enter class, using 54

ngHide JavaScript animation 90

nglf JavaScript animation 92

ng-leave class, using 56

ngRepeat JavaScript animation 95
Angular]S animations convention 51, 52
animatable properties

about 28-31

examples 28

URL 28

Index

animation-delay property 36
animation-direction property 36
animation-fill-mode property 36
animation-iteration-count property 36
animation-name property 34
animation-play-state property 36
animations
definition 8
JavaScript usage, selecting 10-16
triggering, on custom directives 103-107
used, for enhancing UX on mobile
devices 119, 120
authentic motion 120

B

beforeAddClass callback function 90
Bower
URL 48
browser layers
measuring, on Chrome 152
measuring, on Jank 152-161

Cc

Central Processing Unit (CPU) 10
Chrome
browser layers, measuring on 152
Chrome DevTools (Chrome Developer
Tools)
about 54
used, for searching performance
bottlenecks 148, 149
content distribution network (CDN) 47
Cordova
URL 129

www.it-ebooks.info

http://www.it-ebooks.info/

CSS3
advantage 16
combining, with JavaScript 16
CSS3 keyframe animations
about 32
defining, keyframes used 32-34
properties 36
timing functions, separating for keyframe
interval 35
CSS3 media queries
about 119
URL 120
CSS3 transforms
about 37-41
scale function 41, 42
skew function 44
translate function 43
CSS3 transitions
about 19-23
animatable properties 28
transition-delay 28
transition-timing-function property 24
CSS animations
JavaScript animations, using as
fallback for 97-100
URL 37
CSS keyframe animations
Angular]S animation, binding with 58-61

staggering animations, using with 136, 137

CSS naming convention
about 62
form animations 69
ngClass directive animation sample 62
ngHide animation 66-68
ngModel directive 69
ngShow animation 66-68
CSS styles, in animations
avoiding 161, 162
CSS transitions
Angular]S animation, binding with 52-54
staggering animations, using with 132-136
cubic Bézier curves

URL 24

custom directives

animated with JavaScript, creating 113-116

animations, triggering on 103-107

staggering animations, creating for 141-143

D

directives
form 89
ngClass 89
ngHide 89
nglf 89
nglnclude 89
ngMessage 89
ngMessages 89
ngModel 89
ngRepeat 89
ngShow 89
ngSwitch 89
ngView 89

Document Object Model (DOM) 49

E

ease-in-out property 27
ease-in property 26
ease-out property 26
ease property 25
enter events

animating 107-110

F

fade animations

creating, with Angular]JS 49-51
form animations 69, 70
FPS

checking, with Show fps meter 150
frame rate

displaying 145-148

G

Google Material Design
URL 10
Graphics Processing Unit (GPU) 10

[164]

www.it-ebooks.info

http://www.it-ebooks.info/

H

high performance animations
URL 11, 161

Ionic
URL 129

J

Jank

browser layers, measuring on 152-161
JavaScript

combining, with CSS3 16
JavaScript animations

using, as fallback for CSS

animations 97-100

jQuery

URL 83

K

keyframes
used, for defining animations 32-34

L

leave events
animating 107-110
linear property 25

material design
URL 120
Microsoft CDN libraries
URL 66
mobile Angular]S frameworks
Cordova 129
Ionic 129
Mobile Angular UI 129
PhoneGap 129
Mobile Angular UI
URL 129
Model View Whatever MVW) 9
Modernizr
about 97

URL 97
Modernizr.cssanimations property 100

N

native directives
staggering animations,
creating for 138-140
ngAnimate module
about 9
setup 47, 48
usage 47,48

ngClass directive animation sample 62-65

ng-enter class 54, 55
ngHide JavaScript animation 90, 91
nglf JavaScript animation 92-94
nglnclude directive sample 79-81
ng-leave class 56-58
ngMessages directive animation 70-73
ngModel directive 69, 70
ngRepeat directive 62
ngRepeat JavaScript animation 95-97
ngSwitch directive animation 77-79
ngView directive animation
about 74-76
nglnclude directive sample 79
ngSwitch directive animation 77

P

performance bottlenecks

searching, with Chrome DevTools 148, 149

PhoneGap
URL 129

properties, CSS3 keyframe animations
animation-delay 36
animation-direction 36
animation-fill-mode 36
animation-iteration-count 36
animation-play-state 36

R

remote debugging setup, Chrome 151
removeClass callback function 90
Request Animation Frame (RAF)
about 147
URL 148

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

S

scale function
about 41, 42
using 41
Show fps meter
used, for checking FPS 150, 151
skew function
about 44
using 44
skewX() function 44
skewY() function 44
staggering animations
about 131
creating 131, 132
creating, for custom directives 141-143
creating, for other native directives 138-140
using, with CSS keyframes
animation 136, 137
using, with CSS transition 132-136
Steller animations
URL 117
step-end property 27

T

timing functions

separating, for keyframe interval 35
transition-delay property 28
transitioning 120
transition-timing-function property 24
translate function 42,43
Twitter Bootstrap library

URL 66

U

UXx
enhancing on mobile devices, with
animations 119, 120

\'

views
transitioning between 120-128

w

steps(<integer>|[,[start | end]]?) property 27 W3C
step-start property 27 URL 8
swipe-to-left gesture animation effect 121

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning AngulardS Animations

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any Angular]S-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations,
and real-world examples.

2. Dissect the life cycle of a directive and
understand why they are the base of the
Angular]S framework.

Mastering AngularJS Directives

3. Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to Angular]S.

Dependency Injection with
AngularJS
ISBN: 978-1-78216-656-6 Paperback: 78 pages

Design, control, and manage your dependencies with
AngularJS dependency injection

1. Understand the concept of dependency
injection.

Dependency Injection
with AngularJS

2. Isolate units of code during testing JavaScript
using Jasmine.

3. Create reusable components in Angular]JS.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

AngularJS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamic directives to fuel your
single-page web applications using Angular]S

1. Learn how to build an Angular]S directive.

2. Create extendable modules for plug-and-play
usability.

3. Build apps that react in real time to changes in
your data model.

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of Angular]S

1. Make the most out of Angular]S by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

Mastering Web Application
Development with AngularJS 2. Effectively structure, write, test, and finally
deploy your application.

3. Add security and optimization features to your
Angular]S applications.

4. Harness the full power of Angular]S by
creating your own directives.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	The definition of animation and the web context
	The need for AngularJS animation
	Choosing when to use JavaScript for animations
	AngularJS – combining JavaScript and CSS3
	Do it yourself exercises
	Summary

	Chapter 2: Understanding CSS3 Transitions and Animations
	CSS3 transitions
	The transition-timing-function property
	The transition-delay property
	Animatable properties

	CSS3 keyframe animations
	Defining an animation using keyframes
	Separating timing functions for each keyframe interval
	Other CSS keyframe animations' properties

	CSS3 transforms
	The scale function
	The translate function
	The skew function

	Exercise
	Summary

	Chapter 3: Creating Our First
Animation in AngularJS
	The ngAnimate module setup and usage
	AngularJS directives with native support for animations
	Fade animations using AngularJS
	The AngularJS animations convention

	AngularJS animation with CSS transitions
	The ng-enter class
	The ng-leave class

	AngularJS animation with CSS keyframe animations
	The CSS naming convention
	The ngClass directive animation sample
	The ngHide and ngShow animation sample
	The ngModel directive and form animations

	The ngMessage and ngMessages directive animations
	The ngView directive animation
	The ngSwitch directive animation
	The ngInclude directive sample

	Do it yourself exercises
	Summary

	Chapter 4: JavaScript Animations
in AngularJS
	Creating AngularJS animation without CSS3
	The ngHide JavaScript animation
	The ngIf JavaScript animation
	The ngRepeat JavaScript animation

	JavaScript animations as a fallback for CSS animations
	Do it yourself exercises
	Summary

	Chapter 5: Custom Directives and the $animate Service
	Triggering animations on custom directives
	Animating the enter and leave events
	Using the $animate.move method

	Creating a custom directive animated with JavaScript
	Exercises
	Summary

	Chapter 6: Animations for
Mobile Devices
	Enhance UX on mobile devices with animations
	Transition between views
	Mobile AngularJS frameworks
	Summary

	Chapter 7: Staggering Animations
	Creating staggering animations
	Staggering animations with a CSS transition
	Staggering animations with a CSS keyframes animation

	Creating staggering animations for other native directives
	Create staggering animations for custom directives
	Summary

	Chapter 8: Animations' Performance Optimization
	The display and the frame rate
	Finding performance bottlenecks using Chrome DevTools
	Checking FPS using Show fps meter

	Measuring browser layers and Jank on Chrome
	CSS styles in animations you should avoid
	Summary

	Index

