Learning

AngularJs

A GUIDE TO ANGULARJS DEVELOPMENT

IKen Williamson

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning AngularJS

Ken Williamson

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning AngularJS

by Ken Williamson

Copyright © 2015 Ken Williamson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

= Editor: Meg Foley

= Production Editor: Nicole Shelby

= Copyeditor: Rachel Head

m Proofreader: Rachel Monaghan

= Indexer: WordCo. Indexing Services
m Interior Designer: David Futato

= Cover Designer: Ellie Volckhausen
m [llustrator: Rebecca Demarest

m March 2015: First Edition

www.it-ebooks.info

http://safaribooksonline.com
http://www.it-ebooks.info/

Revision History for the First Edition
m 2015-03-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491916759 for release details.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
author disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the
information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-491-91675-9
[LSI]

www.it-ebooks.info

http://oreilly.com/catalog/errata.csp?isbn=9781491916759
http://www.it-ebooks.info/

I would like to thank my son Chris for all his help and for being a sounding board.
Thanks, Chris.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The world of software development has changed drastically over the last few decades.
Many software methodologies and concepts that were considered “cutting edge” 20 or so
years ago are now common practice in the field of software development, and have been
for years. One example is the World Wide Web and the use of web browsers to deliver
software to users. In 1993, the concept of delivering software over the Internet that could
then run in a web browser on any machine running on any operating system was
considered bleeding edge. But as any computer user knows, that practice has been
commonplace for years now.

When JavaScript client-side web application frameworks like AngularJS, Backbone.js,
and Ember.js first appeared, they were considered too cutting edge for most serious
software projects. As they matured, however, software architects and developers saw great
potential in these frameworks. Applications built with JavaScript client-side frameworks
exist and run entirely on the user’s hardware, much like conventional thick-client
applications. Applications written using these frameworks are much faster than
conventional web applications and provide a much better user experience.

Over the last couple of years, JavaScript client-side frameworks have made great strides in
functionality and reliability, and they are now heavily used to build mobile HTML5
applications. But mobile applications are only the starting point. These frameworks now
have the potential to radically change the way we build modern web application software.
Of all the JavaScript frameworks available, AngularJS, backed by Google, is the one that
shines the brightest.

AngularJS has many advantages over other JavaScript client-side frameworks. AngularJS
uses the MVC design pattern and embraces that pattern completely. The model, view, and
controller are all clearly defined in AngularJS and serve to greatly simplify the
development process. With AngularJS, developers can build applications that have a clear
separation between their functional layers.

One of the greatest advantages of AngularJS over other JavaScript client-side frameworks
is the unique way in which it lets developers interact with RESTful web services.
AngularJS’s resource object lets developers interact with REST services like standard
objects. The complexity of REST services can be greatly simplified using this approach:
with only a few lines of code, you can create an AngularJS service that interacts with
multiple backend REST services. Those services can then be used throughout your
application, reducing the total number of lines of code.

In fact, one of the biggest advantages of AngularJS over other client-side frameworks is its
concept of services. AngularJS services help to greatly simplify an application by
compartmentalizing client-side logic into single units of code. Those single units, called

www.it-ebooks.info

http://www.it-ebooks.info/

services, can then be used repeatedly throughout an application. AngularJS services prove
especially powerful when you’re building large enterprise applications with many lines of
code and much complexity. Complex logic can be written only once inside an AngularJS
service and then used wherever needed. That alone makes AngularJS the best choice for
your next JavaScript project.

Thanks to this use of services and its all-inclusive design, AngularJS helps developers
write less code, thereby greatly reducing application complexity. The simplicity of
AngularJS makes it easy to learn and easy to use. Any time spent learning AngularJS is
time well spent. Any time spent developing AngularJS applications is time spent turning a
cutting-edge technology into a commonplace technology. In this book I strive to help you
do both, encouraging design concepts and practices that will help you build better
AngularJS applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Why I Wrote This Book

I constantly see development teams avoid using AngularJS because of its perceived steep
learning curve. Those same teams often choose other JavaScript frameworks because they
initially seem easier to learn. But AngularJS is not hard to learn at all. It is actually much
easier to learn than other JavaScript frameworks, if the learning process is approached
correctly. Like many others, I struggled to learn AngularJS in the beginning. This book
was written to help developers avoid the early struggles associated with learning
AngularJS and get started building AngularJS applications and websites very quickly.

www.it-ebooks.info

http://www.it-ebooks.info/

What This Book Covers

This book covers everything you need to know to build fully functional AngularJS
applications. The book starts off with the basics of AngularJS. You will learn about
AngularJS components in early chapters. As chapters progress, you will get hands-on
experience building working AngularJS projects.

Near the end of the book, you will write the AngularJS part of a working MEAN stack
blog application and deploy the application to the cloud. MEAN stands for MongoDB,
ExpressJS, AngularJS, and Node.js. Many industry experts believe the MEAN stack will
be a dominant web development platform in coming years.

After reading this book, you will have the knowledge to start building high-quality
AngularJS applications and websites. You will also gain a clear understanding of the
design concepts associated with AngularJS applications, and of security as it relates to
AngularJS applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Who Should Read This Book

This book is intended for anyone who has an interest in learning to develop AngularJS
applications or websites quickly. It will also be helpful to anyone interested in learning
how AngularJS is used in a MEAN stack application. The reader will gain not only a
conceptual understanding of AngularJS, but hands-on experience as well. Anyone reading
this book should have some knowledge of JavaScript, software design concepts, and
software design patterns. A prior knowledge of web development will also be helpful.

www.it-ebooks.info

http://www.it-ebooks.info/

The Chapters in This Book

This book starts off with the very basics of AngularJS and assumes the reader has no prior
knowledge of the framework. The chapters are arranged as follows:

Chapter 1, Introduction to AngularJS, starts off with a basic introduction to AngularJS.
It helps the reader understand how AngularJS differs from other frameworks.

Chapter 2, The IDE and AngularJS Projects, covers setting up a development
environment and building AngularJS projects. It also covers how to set up a test
environment for AngularJS.

Chapter 3, MVC and AngularJS, compares AngularJS to traditional web MVC
frameworks. It shows why AngularJS is a better framework for building modern web
applications and websites.

Chapter 4, AngularJS Controllers, is a discussion of AngularJS controllers. The reader
will build part of a working application and implement controller testing near the end
of the chapter.

Chapter 5, AngularJS Views and Bootstrap, covers AngularJS views built with Twitter
Bootstrap. The reader will continue working on a functional application and implement
testing.

Chapter 6, AngularJS and REST Services, covers AngularJS services as they relate to
REST services. The reader will continue working on the application and connect it to
public REST services written for this book.

Chapter 7, AngularJS Models, covers AngularJS models and how they relate to
controllers and views. The reader will continue working on the application started
earlier.

Chapter 8, Services and Business Logic, covers non-REST Angular]S services. In this
chapter the reader will build part of the security layer used later in the book.

Chapter 9, AngularJS Directives, covers the basics of building and testing AngularJS
directives.

Chapter 10, AngularJS Security, shows the reader how to use the security layer
introduced in Chapter 8 to secure the AngularJS application started earlier.

Chapter 11, MEAN Cloud and Mobile, shows the reader how to use the AngularJS
application developed in previous chapters in a MEAN stack application and in a
mobile application.

Chapter 12, AngularJS and SEO, covers search engine optimization as it relates to
AngularJS applications and websites.

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values determined
by context.

NOTE

This element signifies a general note.

WARNING

This element signifies a warning or caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/KenWilliamson.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly books
does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning AngularJS by Ken Williamson
(O’Reilly). Copyright 2015 Ken Williamson, 978-1-491-91675-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

www.it-ebooks.info

https://github.com/KenWilliamson
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

= O’Reilly Media, Inc.

= 1005 Gravenstein Highway North

m Sebastopol, CA 95472

= 800-998-9938 (in the United States or Canada)
m 707-829-0515 (international or local)

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-angularyjs.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

www.it-ebooks.info

http://bit.ly/learning-angularjs
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Introduction to AngularJS

Google’s AngularJS is an all-inclusive JavaScript model-view-controller (MVC)
framework that makes it very easy to quickly build applications that run well on any
desktop or mobile platform. In a very short period of time, AngularJS has moved from
being an unknown open source offering to one of the best known and most widely used
JavaScript client-side frameworks offered. AngularJS 1.3 and greater combined with
jQuery and Twitter Bootstrap give you everything you need to rapidly build HTML5
JavaScript application frontends that use REST web services for the backend processes.
This book will show you how to use all three frontend components to harness the power of
REST services on the backend and quickly build powerful mobile and desktop
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Client-Side Frameworks

JavaScript client-side applications run on the user’s device or PC, and therefore shift the
workload to the user’s hardware and away from the server. Until fairly recently, server-
side web MV C frameworks like Struts, Spring MVC, and ASP.NET were the frameworks
of choice for most web-based software development projects. JavaScript client-side
frameworks, however, are sustainable models that offer many advantages over
conventional web frameworks, such as simplicity, rapid development, speed of operation,
testability, and the ability to package the entire application and deploy it to all mobile
devices and the Web with relative ease. You can build your application one time and
deploy and run it anywhere, on any platform, with no modifications. That’s powerful.

AngularJS makes that process even faster and easier. It helps you build frontend
applications in days rather than months and has complete support for unit testing to help
reduce quality assurance (QA) time. AngularJS has a rich set of user documentation and
great community support to help answer questions during your development process.
Models and views in AngularJS are much simpler than what you find in most JavaScript
client-side frameworks. Controllers, often missing in other JavaScript client-side
frameworks, are key functional components in AngularJS.

Figure 1-1 shows a diagram of an AngularJS application and all related MVC
components. Once the AngularJS application is launched, the model, view, controller, and
all HTML documents are loaded on the user’s mobile or desktop device and run entirely
on the user’s hardware. As you can see, calls are made to the backend REST services,
where all business logic and business processes are located. The backend REST services
can be located on a private web server or in the cloud (which is most often the case).
Cloud REST services can scale from a handful of users to millions of users with relative
ease.

HTML5 Partials

-
B _

‘ i

Controller

Figure 1-1. Diagram of an AngularJS MVC application

www.it-ebooks.info

http://www.it-ebooks.info/

Single-Page Applications

AngularJS is most often used to build applications that conform to the single-page
application (SPA) concept. SPAs are applications that have one entry point HTML page;
all the application content is dynamically added to and removed from that one page. You
can see the entry point of our SPA in the index.html code that follows. The tag <div ng-
view></div> is where all dynamic content is inserted into index.html:

<!-- chapteri/index.html -->

<!DOCTYPE html>

<html lang="en" ng-app="helloWorldApp">

<head>

<title>AngularJS Hello World</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js'"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>

<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>
<script src="js/services.js'"></script>
</head>

<body>

<div ng-view></div>

</body>

</html>

As the user clicks on links in the application, existing content attached to the tag is
removed and new dynamic content is then attached to the same tag. Rather than the user
waiting for a new page to load, new content is dynamically displayed in a fraction of the
time that it would take to load a new HTML web page.

TIP

You can download the source for the Chapter 1 “Hello, World” application from GitHub.

www.it-ebooks.info

http://bit.ly/lajs-github
http://www.it-ebooks.info/

Bootstrapping the Application

Bootstrapping AngularJS is the process of loading AngularJS when an application first
starts. Loading the AngularJS libraries in a page will start the bootstrap process. The
index.html file is analyzed, and the parser looks for the ng-app tag. The line <html
lang="en" ng-app="helloWorldApp"></html> shows how ng-app is defined. The
following code shows the JavaScript that is fired by that line in the index.html file. As you
can see, app.js is where the AngularJS application helloWorldApp is defined as an
AngularJS module, and this is the entry point into the application. The variable
hellowWorldApp in this file could be named anything. I will, however, call it
helloworldApp for the sake of uniformity:

/* chapter1/app.js excerpt */
'use strict';
/* App Module */

var helloWorldApp = angular.module('hellowWorldApp', [
'ngRoute’,
'"helloWorldControllers'

1);

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Injection

Dependency injection (DI) is a design pattern where dependencies are defined in an
application as part of the configuration. Dependency injection helps you avoid having to
manually create application dependencies. AngularJS uses dependency injection to load
module dependencies when an application first starts. The app.js code in the previous
section shows how AngularJS dependencies are defined.

As you can see, two dependencies are defined as needed by the helloWorldApp application
at startup. The dependencies are defined in an array in the module definition. The first
dependency is the AngularJS ngRoute module, which provides routing to the application.
The second dependency is our controller module, helloworldControllers. We will cover
controllers in depth later, but for now just understand that controllers are needed by our
applications at startup time.

Dependency injection is not a new concept. It was introduced over 10 years ago and has
been used consistently in various application frameworks; DI was at the core of the
popular Spring framework written in Java. One of its main advantages is that it reduces
the need for boilerplate code, writing of which would normally be a time-consuming
process for a development team.

Dependency injection also helps to make an application more testable. That is one of the
main advantages of using AngularJS to build JavaScript applications. AngularJS
applications are much easier to test than applications written with most JavaScript
frameworks. In fact, there is a test framework that has been specifically written to make
testing AngularJS applications easy. We will talk more about testing at the end of this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Routes

AngularJS routes are defined through the $routeProvider API. Routes are dependent on
the ngRoute module, and that’s why it is a requirement when the application starts. The

following code from app.js shows how we define routes in an AngularJS application. Two
routes are defined — the first is / and the second is /show:

/* chapterl/app.js excerpt */

helloworldApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider){
$routeProvider.

when('/", {

templateUrl: 'partials/main.html',

controller: 'MainCtrl' }).
when('/show', {

templateUrl: 'partials/show.html',

controller: 'ShowCtrl'

1,

The two defined routes map directly to URLs defined in the application. If a user clicks on
a link in the application specified as www.someDomainName/show, the /show route will be
followed and the content associated with that URL will be displayed. If the user clicks on
a link specified as www.someDomainName/, the / route will be followed and that content
will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 Mode

The complete app.js file is shown next. The last line in app.js
($locationProvider.html5Mode(false).hashPrefix('!"');) uses the
locationProvider service. This line of code turns off the HTML5 mode and turns on the

hashbang mode of AngularJS. If you were to turn on HTML5 mode instead by passing
true, the application would use the HTML5 History API. HTML5 mode also gives the

application pretty URLSs like /someAppName/blogPost/5 instead of the standard AngularJS
URLs like /someAppName/#!/blogPost/5 that use the #!, known as the hashbang.

/* chapter1/app.js complete file */

'use strict';
/* App Module */

var helloWorldApp = angular.module('helloworldApp', [
'ngRoute’,
'helloWorldControllers'

1);

helloworldApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.

when('/"', {
templateUrl: 'partials/main.html',
controller: 'MainCtrl'

}).when('/show', {
templateUrl: 'partials/show.html',
controller: 'ShowCtrl'

1)
$locationProvider.html5Mode(false).hashPrefix('!");

31

HTML5 mode can provide pretty URLSs, but it does require configuration changes on the
web server in most cases. The changes are different for each individual web server, and
can differ for different server installations as well. HTML5 mode also handles URL
changes in a different way, by using the HTML History API for navigation.

Using HTML5 mode is just a configuration change in AngularJS, and we won’t cover the
needed server changes in this book as our focus is on AngularJS. The AngularJS site has

documentation on the changes needed for all modern web servers when HTML5 mode is
enabled. Using this mode has some benefits, but we will stick with hashbang mode in our
chapter exercises.

Hashbang mode is used to support conventional search engines that don’t have the ability
to execute JavaScript on Ajax sites like those built with AngularJS. When a conventional
search engine searches a site built with AngularJS that uses hashbangs, the search engine
replaces the #! with ?_escaped_fragment_=. Conventional search engines expect the
server to have HTML snapshots at the location where _escaped_fragment_= is configured
to point. HTML snapshots are merely copies of the HTML rendered version of the website
or application.

www.it-ebooks.info

http://www.it-ebooks.info/

Modern Search Engines

Fortunately, modern search engines have the ability to execute JavaScript, as announced
by Google in a news release on May 23, 2014. Hashbang mode also allows AngularJS
applications to store Ajax requested pages in the browser’s history. That process often
simplifies browser bookmarks.

www.it-ebooks.info

http://bit.ly/1EWcX3P
http://www.it-ebooks.info/

AngularJS Templates

AngularJS partials, also called templates, are code sections that contain HTML code that
are bound to the <div ng-view></div></div> tag shown in the index.html file earlier in
this chapter. If you look back at the complete app.js file, you can see that different
templateUrl values are defined for each route.

The main.html and show.html files listed next show the two defined partials (templates).
The templates contain just HTML code, with nothing special at this time. Later, we will
use AngularJS’s built-in template language to display dynamic data in our templates:

<!-- chapteri/main.html -->

<div>Hello World</div>

<!-- chapteri/show.html -->

<div>Show The World</div>

As the user clicks on the different links, the value assigned to <div ng-view> is replaced
with the content of the associated template files. The value of controller defined for each
route references the controller component (of the MVC pattern) that is defined for each
particular route.

The next sections provide a brief overview of each AngularJS MVC component and how
it is used, to give you a better understanding of how AngularJS works. Unlike most
JavaScript client-side frameworks, AngularJS provides the model, view, and controller
components for use in all applications. That often helps developers familiar with design
patterns to quickly grasp AngularJS concepts.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Views (MVC)

Many JavaScript client-side frameworks require you to actually define the view classes in
JavaScript, and they can contain anywhere from a few to hundreds of lines of code. Such
is not the case with AngularJS. AngularJS pulls in all the templates defined for an
application and builds the views in the document object model (DOM) for you. Therefore,
the only work you need to do to build the views is to create the templates.

Building views in AngularJS is a simple process that uses mostly HTML and CSS. The
simplicity of AngularJS views is a huge time-saver when you’re building AngularJS
applications. We will cover creating templates in more detail in Chapter 5.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Models (MVC)

Many JavaScript client-side frameworks also require you to create JavaScript model
classes. That is also not the case with AngularJS. AngularJS has a $scope object that is
used to store the application model. Scopes are attached to the DOM. The way to access
the model is by using data properties assigned to the $scope object.

The AngularJS $scope helps to simplify JavaScript applications considerably. Other
JavaScript frameworks often encourage placing large amounts of business logic inside the
model classes for the particular framework. Unfortunately, that practice often leads to
duplicated business logic. In a large project, that can lead to thousands of lines of useless
code. We will talk more about models in Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Controllers (MVC)

AngularJS controllers are the tape that holds the models and views together. The controller
is where you should place all business logic specific to a particular view when it’s not
possible to place the logic inside a REST service. Business logic should almost always be
placed in backend REST services whenever possible; this helps to simplify AngularJS
applications.

When business logic placed inside an application is used by multiple controllers, it should
be placed in AngularJS non-REST services instead. Those services can then be injected
into any controller that needs access to the logic. We will cover non-REST services in
Chapter 8 in great detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Controller Business Logic

The following code shows the contents of the controllers.js file. At the start of the file we
define the helloworldController module. We then define two new controllers, MainCtrl

and ShowCtrl, and attach them to the helloworldController module. Business logic
specific to the Mainctrl controller is defined inside that controller. Likewise, business
logic specific to the showCtr1 controller is defined inside the ShowCtr1 controller. Notice
that $scope is injected into both controllers. The $scope that is injected into each
controller is specific to that controller and not visible to other controllers:

/* chapterl/controllers.js */

'use strict';
/* Controllers */

var hellowWorldControllers =
angular.module('hellowWorldControllers', []);

helloworldControllers.controller('MainCtrl', ['$scope’,

function MainCtrl($scope) {
$scope.message = "Hello World";

)
helloworldControllers.controller('ShowCtrl', ['$scope',

function ShowCtrl($scope) {
$scope.message = "Show The World";

31

As you can see, we are now using the model to populate the messages that get displayed in
the templates. The following code shows the modified templates that use the newly
created model values. The line $scope.message = "Hello World" in the MainCtrl

controller is used to create a property named message that is added to the scope (which
holds the model attributes). We then use the double curly braces markup ({{}}) inside the
main.html template to gain access to and display the value assigned to $scope.message:

<!-- chapteri/main.html -->

<div>{{message}}</div>

Using double curly braces is AngularJS’s way of displaying scope properties in the view.
The double curly braces syntax is actually part of the built-in AngularJS template
language.

Likewise, we use the value assigned to the message property with the line
$scope.message = "Show The World" in the ShowCtrl controller to populate the

message displayed in the show.html template. We use the double curly braces markup
inside the show.html template as before to gain access to and display the model property:

<!-- chapteri/show.html -->

<div>{{message}}</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating AngularJS with Other Frameworks

AngularJS can be integrated into existing applications that use other frameworks. Those
may be other JavaScript client-side frameworks, or web frameworks like Spring MVC or
CakePHP. You could take an application written in Java and add some new client-side
functionality very easily using AngularJS, cutting development time considerably.

Adding a new AngularJS shopping cart to an existing Java application would be a good
example to consider. The existing Java application could be written with the Spring
framework and use Spring MVC as the web framework. Adding a shopping cart built with
Java using Spring MVC could be a time-consuming process. That, however, would not be
the case with AngularJS.

You could quickly build a shopping cart with AngularJS and be up and running in a few
hours, easily integrating the cart into the existing Java application. Not only would you be
able to build the cart faster, but you could quickly add unit testing to increase coverage
and reduce the application’s defects. AngularJS was designed to be testable from the very
beginning; that is one of the key features of AngularJS and a major reason for selecting it
over other JavaScript client-side frameworks. We will talk about testing AngularJS
applications in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing AngularJS Applications

In recent years continuous integration (CI) build tools such as Travis CI, Jenkins, and
others have risen in popularity and usage. CI tools have the ability to run test scripts
during a build process and give immediate feedback by way of test results. CI tools help to
automate the process of testing software and can often alert developers of software defects
as soon as they occur.

There are two types of AngularJS tests that integrate well with CI tools. The first type of
testing is unit testing. Most developers are familiar with unit testing; they can often
identify software defects early in the development process by testing small units of code.
The second type of testing is end-to-end (E2E) testing. E2E testing helps to identify
software defects by testing how software components connect and interact.

There are many testing tools used for unit testing AngularJS applications. Two of the most
popular are Karma and JS Test Driver. Karma, however, is quickly becoming the top
choice for AngularJS development teams. The most popular E2E test tool for end-to-end
testing of AngularJS applications is a new tool called Protractor. Both tools integrate well
with CI build tools.

Large AngularJS development teams will find testing AngularJS applications with
continuous integration tools to be a huge time-saver. Often a failed CI test is the first
indication of a defect for large teams. Small teams will also see many advantages to CI-
based testing. AngularJS developers should always develop both unit tests and end-to-end
tests whenever possible.

Throughout this book, we will cover both unit testing and end-to-end testing. We will use
both Karma and JsTestDrive for unit testing, and we will use Protractor for E2E testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

We will cover models, views, and controllers in great detail in later chapters, using those
components to build working applications that show the power of AngularJS. We will
show how all three components work together to simplify the job of building JavaScript
client-side applications. We will also cover building both unit tests and end-to-end tests for
AngularJS applications.

Chapter 2 will focus on helping you set up a development environment for HTML5. We
will also download the latest versions of AngularJS, jQuery, and Twitter Bootstrap and
add those to our sample project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. The IDE and AngularJS
Projects

Many JavaScript editors are used by AngularJS developers. Using an integrated
development environment (IDE) with a good JavaScript editor is a huge time-saver and
speeds up the development process considerably. IDEs with good JavaScript tools usually
have good HTML5 and CSS3 tools as well, which helps to increase a developer’s
productivity substantially. We will harness the power of an IDE in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

The IDE

We will be using NetBeans as our integrated development environment. You can,
however, use any IDE or editor that you prefer. Most of this chapter will be generic and
will work fine with any modern IDE. To get started, do the following:

1. Download and install the latest version of NetBeans from the NetBeans website (or
download another IDE of your choice).

2. Download the latest versions of the following AngularJS files:

a. angular.min.js (main libs)

b. angular-route.min.js (routing libs)

c. angular-cookies.min.js (cookie libs)

d. angular-resource.min.js (REST service libs)
3. Download the latest version of jQuery.
4. Download the latest version of Twitter Bootstrap.

Start NetBeans and create a new HTMLS5 project, as shown in Figure 2-1. Name the
project AngularJsHelloWorld_chapter?2.

www.it-ebooks.info

https://netbeans.org/downloads
https://angularjs.org
http://jquery.com/download
http://getbootstrap.com/getting-started/#download
http://www.it-ebooks.info/

4 <TITLEe=ANgULAN)Y HEeLLO WorLa<s/TlTLe>
5 =meta name="viewport" content="width=device-width, initial-scale=1.
i i - t=UTF-8">

New Project

Skeps Choose Project

1. Choose Project Q, Filter:
e a
Categories: Projecks:
@ Java =S HTMLS Application
JavaFX E HTMLS Application with Existing ¢

Java Web ® cCordova Application
Java EE

Java ME Embedded

MNodeJs Projects

Maven

PHP

Groovy - AT 0 >, v

CoGoohooDo

Description:

Creates a new HTMLS application configured for HTML, CSS and
Jawvascript.

U

= Back 'Ne;t,_:-' Finish |Cancel| | Help
_

Figure 2-1. Creating your new HTMLS5 project
Now do the following:

1. Create the directory structure shown in Figure 2-2 under Site Root.
2. Copy the AngularJS, jQuery, and Bootstrap files into the libs folder.

3. Right-click the js folder and create the following .js files:
a. app.js (where the application is defined)

b. controllers.js (where controllers are defined)
c. services.js (where services are defined)

d. main.html under the partials folder

e. show.html under the partials folder

f. index.html under the Site Root folder

www.it-ebooks.info

http://www.it-ebooks.info/

PE S D@ | @ T @ P- B
Projects x| Files Services ==

* S5 AngularJsHelloworld_chapterz

v & Site Root

angular-cookies.min.js
angular-resource.min.js
angular-route.min.js
angular.min.js
bootstrap.min.js
jquery-1.10.2.min.js

app.js

controllers.js

services.js

v & partials
[€] main.html
[é show.html
[@ index.html

» & Important Files

EAN R R R R

Figure 2-2. Creating the directory structure

www.it-ebooks.info

http://www.it-ebooks.info/

Editing the HTML Code

Now we must edit the index.html file to create bootstrapping for the application and to use
the libraries and .js files just added. Edit your newly created index.html file to match the
code that follows. These are all the changes that we need to make to this file for now.
Next, we will edit the app.js and controllers.js files:

<!-- chapter2/index.html -->

<IDOCTYPE html>

<html lang="en" ng-app="helloWorldApp">
<head>

<title>AngularJS Hello World</title>

<meta name="viewport" content="width=device-width,
initial-scale=1.0">

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<script src="js/libs/jquery-1.10.2.min.js"></script>

<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js'"></script>

<script src="js/libs/angular-resource.min.js'"></script>

<script src="js/libs/angular-cookies.min.js'"></script>

<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>

<script src="js/services.js'"></script>

</head>
<body>
<div ng-view></div>

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Editing the JavaScript Code

Update your newly created app.js file with the code shown here. As you can see, it is the
same code we covered in Chapter 1:

/* chapter2/app.js */

'use strict';
/* App Module */

var helloWorldApp = angular.module('hellowWorldApp', [
'ngRoute’,
'"helloworldControllers'

1);

hellowWorldApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'MainCtrl'
}) .when('/show', {
templateUrl: 'partials/show.html',
controller: 'ShowCtrl'

13K

$locationProvider.html5Mode(false).hashPrefix('!");

3

Likewise, update your newly created controllers.js file with the code shown next. This is
also the same code covered in Chapter 1 for the controller:

/* chapter2/controllers.js */

'use strict';
/* Controllers */

var helloWorldControllers =
angular.module('helloworldControllers', []);

helloworldControllers.controller('MainCtrl',
['$scope', '$location', '$http',

function MainCtrl($scope, $location, $http) {
$scope.message = "Hello World";

31

helloworldControllers.controller('ShowCtrl',
['$scope', '$location', '$http',

function ShowCtrl($scope, $location, $http) {
$scope.message = "Show The world";

31

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the Templates

Now all that is left is to create the templates (partials). Do the following:

<!-- chapter2/main.html -->

<div>{{message}}</div>

1. Edit the new main.html and add the code shown here:

2. Edit show.html and add the code shown here:

<!-- chapter2/show.html -->

<div>{{message}}</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Applications

That concludes the code changes needed in the Chapter 2 project for now. Right-click on
the new HTML5 project and select “Run.” At the URL
http://localhost:8383/AngularJsHelloWorld_chapter2/index.html#!/, you should see the
words “Hello World” in the top-left corner of the browser.

Now change the URL to
http://localhost:8383/AngularJsHelloWorld_chapter2/index.html#!/show, and you should
see the words “Show The World” in the top-left corner of the browser. If you get the
correct results, your project is configured correctly. If you get a different result, go back
through this chapter and verify that you completed all the steps.

If you continue to have problems, download the Chapter 2 source from GitHub and try to
run that code.

www.it-ebooks.info

http://bit.ly/lajs-github
http://www.it-ebooks.info/

Testing AngularJS Applications in the IDE

As I mentioned in the previous chapter, there are two types of tests that are used for testing
AngularJS applications. The first type of test is the unit test. Unit testing is usually the first
place where issues with the code are found, through testing small units of code. The
second type of test is end-to-end (E2E) testing. E2E testing helps to identify software
defects by testing how components connect and interact together as a whole.

NetBeans can easily work with both JsTestDriver and Karma for unit testing AngularJS
applications. Karma is quickly becoming the most popular choice for AngularJS
development teams, so we will focus more on Karma in later chapters. Protractor is the
most popular test framework for E2E testing of AngularJS applications. Currently, most
development environments don’t have built-in support for Protractor. Protractor is a new
testing framework, and it may take a while before most IDEs and editors support it.
NetBeans currently has no support for Protractor.

Both Karma and Protractor run on Node.js. Node.js is an open source cross-platform
framework built on the Google V8 JavaScript engine. We will use Node.js later in this
book, when we focus on building MEAN stack applications. Installing Karma and
Protractor is a relatively easy process that uses the Node.js package manager (npm) for the
installation process.

Node.js-based projects use a JSON file named package.json as the project configuration
file. The following is a standard package.json file used in a NetBeans project. If you look
at the dependencies section of the file, you will see that we actually define Karma as a
dependency of the application. That is because Karma is usually installed locally at the
project level for each individual project:

{"chapter": 2, "name": "package.json"},

{

"name" : "UlboraCmsMean",
"version" : "2.0.0",
"description" : "UlboraCms",
"keywords" : ["Ulbora CMS", "Node.js", "Ken",
"williamson", "micbutton.com"],
"author" : {
"name" : "Ken Williamson",
"email" : "sales@drivensolutions.com",
"url" : "http://www.drivensolutions.com/"

3

"homepage" : "http://www.ulboracms.org",
"repository" : {

Iltypell : llgitll,

"url" : "https://github.com/Ulbora/ulboracms"”
H

"engines" : {
"node" : ">= 0.6.0",
Ilnpmll : Il>: 1.0.0”
H

"dependencies" : {
"express" : "~3.4.4",
Ilmongoosell : ll*ll,
Ilatob": II*II’

Ilbtoall: II*II’

www.it-ebooks.info

http://www.it-ebooks.info/

"node-rest-client": "*",
"consolidate": "*",
Ilejsll: H*H’
"handlebars": "*",
"nodemailer": "*",
Ilkarmall : mnmxn

iy

"bundleDependencies" : [],
"private" : true,
"main" : "./server.js",
"bugs" : {

"url" : "null"

b
3

A file similar to this one will be used later in the book when we build the MEAN stack
blog application. NetBeans, using a Node.js plugin, can generate the package.json file for
you. The generated file will need to be modified to include the specifics of your particular
project.

TIP

You can also use npm init to generate the package.json file. After typing npm init at the command

prompt, you will be presented with a few questions. Your responses will then be used to create a default
package.json file.

www.it-ebooks.info

http://www.it-ebooks.info/

JsTestRunner

NetBeans has built-in support for JsTestRunner. The JsTestRunner configuration file can
be generated and requires few changes to get unit testing running on your local
environment.

Unlike Karma, JsTestRunner is not based on Node.js. The following is a standard
JsTestRunner configuration file created by NetBeans for an AngularJS project. Notice in
the first line that the test server URL and port are specified:

/* chapter2/jsTestDriver.conf */

server: http://localhost:42442
load:
- test/lib/jasmine/jasmine.js
- test/lib/jasmine-jstd-adapter/JasmineAdapter.js

- public_html/js/libs/angular.min.js

- public_html/js/libs/angular-mocks.js

- public_html/js/libs/angular-cookies.min.js
- public_html/js/libs/angular-resource.min.js
- public_html/js/libs/angular-route.min.js

- public_html/js/*.js

- test/unit/*.js

exclude:

The locations of the test library files are specified under 1load. We also specify the
locations of each unit test script that should be run by JsTestDriver. Test filenames usually
end with “Spec.” The following code shows a test specification file used to test AngularJS
controllers. We will cover test specification in later chapters, when we run our first unit
tests:

/* chapter2/controllerSpec.js */

/* Jasmine specs for controllers go here */
describe('Hello World', function() {

beforekEach(module('helloworldApp'));

describe('MainCtrl', function(){
var scope, ctrl;

beforeEach(inject(function($rootScope, $controller) {

scope = $rootScope.$new();
ctrl = $controller('MainCtrl', {$scope: scope});
D)

it('should create initialed message', function() {
expect(scope.message).toEqual("Hello World");
1)
1)

describe('ShowCtrl', function(){
var scope, ctrl;

beforeEach(inject(function($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('ShowCtrl', {$scope: scope});

1)

www.it-ebooks.info

http://www.it-ebooks.info/

it('should create initialed message', function() {
expect(scope.message).toEqual("Show The World");

13K
I3F

describe('CustomerCtrl', function(){
var scope, ctrl;

beforeEach(inject(function($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('CustomerCtrl', {$scope: scope});

)i

it('should create initialed message', function() {
expect(scope.customerName).toEqual("Bob's Burgers'");

I3F

13K
1,

Currently one of the big disadvantages of testing JavaScript applications is the lack of
tools that generate test scripts based on the actual source files that need to be tested. Those
tools have existed in the Java world for years, but they are still relatively nonexistent in
the realm of JavaScript. So, a file like this one needs to be created by hand to unit test each
AngularJS controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Runner

As I mentioned earlier, Karma is a test runner based on Node.js. The Karma team
recommends installing Karma locally at the project level. So, we will add Karma in the
package.json file of each of our projects, then use the following command to pull down
and install Karma on a per-project basis:

npm install

When you run this command, npm reads the package.json file and installs the packages
defined in the dependencies section of the file. After you run the command, Karma will be
located under the node_modules folder within your project folder. Any other Node.js
dependencies defined in the package.json file will also be located under the node_modules
folder.

Karma requires a configuration file named karma.conf.js that specifies how it should run
unit tests. You can use NetBeans to generate the karma.conf.js file. The following code
shows a Karma configuration file generated by NetBeans. You can see there are sections
of the file to specify the locations of library files, test scripts, and browser plugins:

/* chapter2/karma.conf.js */

/*
* To change this license header, choose License Headers 1in
* Project Properties.
* To change this template file, choose Tools -> Templates
* and open the template in the editor.
*/

module.exports = function (config) {
config.set({
basePath: '../',
files: [
1,
exclude: [
1,
autowatch: true,
frameworks: [
1,
browsers: [
1,
plugins: [
1
1)
}

We will cover Karma in more detail when we run our first unit test using Karma, in
Chapter 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor

Most development environments do not yet have built-in support for Protractor. Protractor
is a Node.js-based framework, just like Karma. The installation process is much like the
process for Karma. Protractor is built on top of WebDriverJS. The Protractor team
recommends installing Protractor globally on your system.

To install Protractor on your development machine, issue the following command. Notice
the -g flag in the command line — that tells npm to install Protractor globally for all

projects and applications to use:

npm install -g protractor

Since Protractor is built on WebDriverJS, we must also configure WebDriverJS for our
test environment. Run this command to update WebDriverJS with all the latest binaries:

webdriver-manager update

Once that command executes successfully, run the following command to start the
Selenium Server that WebDriverJS uses to run Protractor test scripts:

webdriver-manager start

Protractor needs a configuration file that tells it how to run test scripts. Here are the
contents of the conf.js file used to configure Protractor:

/* chapter2/conf.js Protractor configuration file */
exports.config = {
seleniumAddress: 'http://localhost:4444/wd/hub',

specs: ['blog-spec.js']
}

Once Protractor is installed and configured on your system, all that is left is to create the
test scripts (test specifications) and run the scripts. Here’s a sample script for a Protractor
test:

/* chapter2/blog-spec.js */

describe('MEAN Blog', function() {

it('test the MEAN Blog', function() {
browser.get('http://localhost:8080"');

element(by.model('blogList')).
sendKeys('this is a blog post');

element(by.css('[value="add"]"')).click();
var blogList = element.all(by.repeater('blog in blogs'));
expect(blogList.count()).toEqual(3);

expect(blogList.get(2).getText()).

www.it-ebooks.info

http://www.it-ebooks.info/

toEqual('this is a blog post');

13K
1

To run Protractor, issue the following command. Once you run the command, the browser
window should open and display the test results:

protractor conf.js

Both Karma and Protractor can be integrated with continuous integration (CI) build
systems like Travis CI and Jenkins, as I mentioned in Chapter 1. Many open source
projects and enterprise development teams are moving toward CI build systems. Building
Karma and Protractor testing into your AngularJS project is a vital part of the software
development process. Time spent writing test scripts will ultimately be worth the effort in
the long run.

We will cover both Karma and Protractor testing in great detail in later chapters. At that
time we will install and configure both Karma and Protractor. Since both run on Node.js,
you will also need to install that and the Node.js package manager (npm) on your system
to power the test platforms.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

In this chapter, we covered how to set up a development environment for AngularJS and
built and ran a project with AngularJS. We also covered how to install a test environment
with both JsTestDriver and Karma for unit testing our AngularJS projects. Finally, we
looked at how to install and configure Protractor for doing end-to-end testing of
AngularJS projects. With the knowledge gained from this chapter, we are ready to start
working with more complex projects.

We are now ready to move on to Chapter 3, where we will cover MVC as it applies to
AngularJS in more detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. MVC and AngularJS

AngularJS presents a new and powerful way to develop web applications and websites —
it has the power and functionality of conventional web frameworks, but with many
advantages. AngularJS provides a way to build web apps and sites without the overhead
normally associated with web frameworks.

Conventional web frameworks often tolerate server-side page scripting using PHP, Active
Server Pages (ASP), and Java Server Pages (JSP). While server-side page scripting works
sufficiently well on the server side, it does pose many maintenance issues for developers.
But that is not the biggest issue with conventional web frameworks. Conventional web
frameworks tend to run slower and be sluggish on mobile devices. And mobile users have
a much lower tolerance for system delays and slow page loads than desktop users.

We must compare conventional web frameworks to AngularJS to understand the
advantages that AngularJS presents. The next section will give you a clear understanding
of the advantages of AngularJS over frameworks that you may have used in the past. With
that understanding, we will be set to start building more maintainable applications in a
better way.

www.it-ebooks.info

http://www.it-ebooks.info/

The Old Way

Web MVC frameworks such as Apache Struts, Spring MVC, and the Zend Framework
dominated the web development framework space for more than 15 years. Those same
frameworks still dominate the space even today. There are some cases where web
frameworks do present a better application design than more modern client-side
frameworks, but those cases have diminished considerably over the last couple of years.

Web MVC frameworks reside entirely on the server. All functions such as database access,
business logic, display logic, and UI activities happen on the server, using server memory
and resources. Web MV C frameworks often use various page scripting techniques such as
ASP, JSP, and PHP to control presentation logic, and in some cases business logic is also
placed inside the pages.

Figure 3-1 shows a diagram of a conventional web MVC framework. From the diagram,
you can see that the application or website runs on the backend server, and only the web
browser runs on the user’s hardware. Although the design in Figure 3-1 is old technology,
it is still in heavy use today.

Back End

User’s Hardware
Web Server

Web Page |

Database

)
Controller
J

Figure 3-1. Conventional web MVC framework

Web applications and sites built with Ruby on Rails, the Zend Framework, Spring MVC,
CakePHP, and other web frameworks are based on this design. Although the design works
well in many situations, it does have several flaws.

One such design flaw is related to mobile applications and mobile websites. While web
pages associated with web frameworks can be designed with HTML5 and CSS3 and be
made responsive and look good on mobile devices, the application or website is dependent
on the web server to make the different pages available to the mobile device. In

addition, the web pages must run in the mobile device’s web browser.

The application or site developer has very little control over the mobile device’s web

www.it-ebooks.info

http://www.it-ebooks.info/

browser. A user must find the site or application and enter its URL into the browser’s
address bar in order to view the web page or to run the application. Mobile users,
however, often find that process too time-consuming.

While mobile sites and applications distributed as web-based designs have the advantage
of saving development hours and money, they do pose a problem in many situations.
Often, mobile developers need to build custom device applications and have those
applications distributed via the various online stores. Not only does a custom application
offer a higher level of customer service, but it also serves as a marketing tool. As the
number of mobile devices in use increases, the demand for custom mobile applications
will also increase.

Consider, for example, a doctor’s office that needs to allow patients to make appointments
from their mobile devices. Such an application would need to be fast and have almost no
delay when patients are navigating from page to page. The application would also need to
look good on any device. A user with a small smartphone should have the same user
experience as a user with a 10-inch tablet.

An application developer or architect attempting a mobile design based on the system
design shown in Figure 3-1 really only has two choices to consider.

www.it-ebooks.info

http://www.it-ebooks.info/

Choice One

The first option is to build a custom mobile application as a “wrapper” around the
conventional site shown in Figure 3-1. Figure 3-2 shows an Android application designed
as a wrapper application. As you can see, the Android application consists solely of an
Android webview component that is configured to point to the web application URL.

Android Mobile Application

Web Server and
Native Android Code Web Application

Wrapper

Web Page Android WebView

Figure 3-2. An Android wrapper around a traditional web application

The webview component serves as a browser control inside the Android application. The
developer can custom-configure the webview component for the needs of the particular

mobile application. All application operations still, however, run on the backend server
(the web server), and the speed and responsiveness of the Android application are still
highly dependent on that server and the quality of the user’s Internet connection.

The following code shows a segment of an Android main Activity. A new Android
WebView object is first instantiated. JavaScript is then enabled for the new instance.
Finally, the URL of the website is loaded into the new instance with the loadurl method:

/* chapter3 excerpt from an Android WebView shown loading a

conventional website */

WebView webview = new WebView(this);

webview.getSettings().setJavaScriptEnabled(true);

final Activity activity = this;

webview.setWebViewClient (new WebViewClient() {

www.it-ebooks.info

http://www.it-ebooks.info/

webview.loadUrl("http://www.google.com");

The webView instance shown here is just a control for the device’s internal web browser.
The Android device’s browser is completely dependent on the website for functionality. If
the website that is linked to goes down or the network connection is lost, the user’s
browser will hang and completely stop working. That functionality is very frustrating for
mobile device users. It is, however, a common configuration for mobile applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Choice Two

The second option would require the developer to write a native or HTML5 mobile
application that called web services on the backend for business functions. This approach
would require adding REST web services to the existing web application to make use of
existing business logic. Option two is, in effect, a complete rewrite of the application.
Adding REST services to the existing web application would not be a trivial matter.
Option two would, however, offer the best application design and would provide the best
user experience.

The design shown in Figure 3-1 isn’t directly transferable to mobile devices. Fifteen years
ago, when mobile devices were not in heavy use, that design was a common choice for
application developers and architects, and posed few problems. Mobile device sales
reached an all-time high in 2014, however, and most analysts predict that trend will only
increase in the coming years.

Mobile is the future of everything. As wireless systems improve and evolve, mobile
devices will evolve too and play a major role in all our daily activities. A mobile device
will alert you when your table is ready at your favorite restaurant. That same device will
replace your debit card or credit card when it’s time to pay the bill and tip the server.

So, developers must plan for the future now. It’s time to stop building software based on
an old and outdated technology. That’s where JavaScript client-side frameworks come into
play, and that’s where AngularJS shines the brightest of all the JavaScript frameworks
available. AngularJS is a solid foundation for building scalable applications that run well
on desktops and a broad array of mobile devices, with few if any modifications needed for
each platform.

www.it-ebooks.info

http://www.it-ebooks.info/

A New and Better Way

AngularJS is a JavaScript MVC framework that cuts development time for both web
applications and mobile applications that run on multiple device platforms. Figure 3-3
shows a diagram of an AngularJS application that uses business logic that’s exposed
through REST web services. The REST services can run anywhere and be written in any
programming language. Two popular frameworks used to build REST services are the
Spring framework, written in Java, and ExpressJS for Node.js.

Web Browser (Desktop or Mobile Device

AngularJS JavaScript Application

REST Services (Server)

)
Controller
J

Figure 3-3. AngularJS application design

If you look closely at Figure 3-3, you can see that the entire AngularJS application runs on
the user’s hardware, in the user’s web browser. That may be a desktop browser or the
browser of a mobile device. With this design we shift the display logic from the server to
the user’s hardware, resulting in a much better user experience. The application runs faster
and is much more responsive — more like a thick-client or native application than a
browser-based application.

Angular]S applications harness the power of the user’s hardware. The approach that’s
taken frees the server or servers to handle nothing but business logic and data access.
Using REST services that send and receive JSON helps to greatly simplify AngularJS
applications: JSON is a data-interchange format for REST services that is easy to read and
understand.

Figure 3-4 shows the same AngularJS application deployed as part of an Android
application. The JavaScript, CSS3, and HTML5 code is all the same regardless of where
the application is deployed. If the application was designed from a mobile-first
perspective, it should look great and run well on any platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Android Mobile Application

AngularJ$S Application

REST Services (Server)

Native Android Code

Android odel

Web Page . WebView
Controller

Figure 3-4. The AngularJS application deployed as an Android app

Not only does the design in Figure 3-4 produce a better user experience, but it also cuts
development time significantly. And as with the design in Figure 3-3, the application runs
entirely on the user’s hardware, shifting the load from the server to the user’s device.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Considerations

We covered some of the basics of testing AngularJS applications back in Chapter 2. The
ability to effectively and easily test AngularJS applications is one of the strongest
motivators for using the framework. Not only are AngularJS applications faster to write,
but they are also much faster and easier to test than conventional web framework—based
applications. Here is why.

Test scripts for AngularJS, known as test specifications, are always written in JavaScript.
There are no complex test frameworks to install like you find with traditional web
frameworks. One more thing: JavaScript tests run faster than tests written for conventional
web frameworks. That is very important when a continuous integration system is used.

Test execution speeds may not seem like a serious concern at first. But consider the
continuous integration platforms like Travis CI and Jenkins that we discussed back in
Chapter 2. If you had a small shop with five or six developers, test script execution speeds
wouldn’t usually be a concern. If you had a large enterprise shop, however, with a few
hundred developers all running CI builds at the same time, then concerns would change
quickly.

The two most popular test frameworks used for client-side JavaScript and AngularJS,
Karma and Protractor, run on the Node.js framework. Applications and test scripts that run
on Node.js run extremely fast. That is one of the major advantages of using Node.js.
Continuous integration systems also use Node.js for JavaScript builds and to run test
scripts. It is easy to see, then, why JavaScript testing is faster in a CI environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Design Considerations

Another consideration when you are comparing traditional web frameworks to AngularJS
is how well responsive design is accomplished. A strong responsive design looks good
both on a desktop and on all mobile devices that use the software. While you can build
responsive applications with traditional web frameworks, it’s not often done.
Unfortunately, many web application developers often target desktops and maybe tablets
and ignore the various smaller devices that use their websites.

Take, for example, the CSS3 code shown next. The code is taken from a server-side
application written with CakePHP, a web MVC framework:

/* chapter3 server-side css3 */
/* not built for mobile */

.page-container{
float: left;
margin: 3% 0 0 0;
padding: 0 0 0 0;
width: 100%;
}
img {
max-width: 50%;
}
.partner-form{
float: left;
width: 50%;
margin: 0 0 0 25%;
padding: 1% 5% 1% 5%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
border: #230fba solid 1px;
}
.new-article-upload-wrapper{
float: left;
width: 30%;
margin: 0 0 0 35%;
padding: 1%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
border: #230fba solid 1px;
}
.login-title{
float: left;
width: 100%;
margin: 6% 0 1% 0;
text-align: center;
font-size: 18pt;
font-weight: bold;
}
.config-form-wrapper{
float: left;
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
border: #230fba solid 1px;

}

.comment -form-wrapper {
float: left;
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
border: #230fba solid 1px;

www.it-ebooks.info

http://www.it-ebooks.info/

}

.summary-cell{
height: 300px;
3

.summary-cell-data{
height: 250px;
font-size: 12pt;

}

An application styled with this code would look fine on a desktop, and maybe a tablet.
There would be major styling issues with a small mobile device, however. A mobile
wrapper application like the one I mentioned earlier that wrapped a website that used this

code would be at a great disadvantage. You could never make the application look good
on a small phone.

The code that follows is taken from a mobile application built with AngularJS. Notice the
media query lines like @media screen and (min-width: 1200px) that wrap parts of the
CSS3. Media queries let developers style AngularJS applications to specific screen sizes:

/* chapter3 mobile css3 */
/* built for mobile */

@media screen and (min-width: 1200px){
.page-container{
margin: 3% 0 0 0;
padding: 0 0 0 0;
width: 100%;
}
img {
max-width: 50%;
}
.partner-form{
width: 50%;
margin: 0 0 0 25%;
padding: 1% 5% 1% 5%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.new-article-upload-wrapper{
width: 30%;
margin: 0 0 O 35%;
padding: 1%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.login-title{
width: 100%;
margin: 6% 0 1% O;
font-size: 18pt;
}
.config-form-wrapper{
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.comment - form-wrapper {
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.summary-cell{
height: 300px;

www.it-ebooks.info

http://www.it-ebooks.info/

}

.summary-cell-data{
height: 250px;
font-size: 12pt;
}
}
@media screen and (max-width: 1200px){
.page-container{
margin: 5% 0 0 0;
padding: 0 0 0 0,
width: 100%;

3
img {

max-width: 60%;
}
.nav-ds{

margin: 0 0 0 O;
}

.nav-ds 1i{
width: 11%;

3

.nav-ds 1i a{
margin: 0 0 0 0O;
padding: 4% 0 4% 0;
}
.partner-form{
width: 50%;
margin: 0 0 0 25%;
padding: 1% 5% 1% 5%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.new-article-upload-wrapper{
margin: 0 0 0 30%;
padding: 1%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.login-title{
width: 100%;
margin: 6% 0 1% 0O;
font-size: 18pt;
}
.config-form-wrapper{
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.comment - form-wrapper {
width: 60%;
padding: 0 0 0 0;
margin: 0 0 0 20%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.summary-cell{
height: 300px;
}

.summary-cell-data{
height: 250px;
font-size: 12pt;

}

}
@media screen and (max-width: 800px){

.page-container{
margin: 7% 0 0 0;
padding: 0 0 0 0;
width: 100%;

}

img {
max-width: 70%;

}

.hav-ds{

www.it-ebooks.info

http://www.it-ebooks.info/

margin: 0 0 0 0O;
}
.nav-ds 1i{

width: 11%;

3

.nav-ds 1i a{
margin: 0 0 0 O;
padding: 4% 0 4% 0;
}

.partner-form{
width: 60%;
margin: 0 0 0 20%;
padding: 1% 5% 1% 5%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.new-article-upload-wrapper{
width: 50%;
margin: 0 0 0 25%;
padding: 1%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.login-title{
width: 100%;
margin: 6% 0 1% 0O;
font-size: 16pt;
}
.config-form-wrapper{
width: 80%;
padding: 0 0 0 0;
margin: 0 0 0 10%;
border-radius:7px;
-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.comment -form-wrapper {
width: 80%;
padding: 0 0 0 0;
margin: 0 0 0 10%;
border-radius:7px;
}
.summary-cell{
height: 300px;
}

.summary-cell-data{
height: 250px;
font-size: 10pt;
}
}
@media screen and (max-width: 450px){
.page-container{
margin: 12% 0 0 O;
padding: 0 0 0 0;
width: 100%;

}
img {

max-width: 100%;
}
.nav-ds{

margin: 0 0 0 0;
}

.nav-ds 1i{
width: 15%;

}

.nav-ds 1li a{
margin: 0 0 0 0;
padding: 4% 0 4% 0;

}

.partner-form{
width: 100%;
margin: 0 0 0 0%;
padding: 1% 5% 1% 5%;
border-radius:7px;

www.it-ebooks.info

http://www.it-ebooks.info/

-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.new-article-upload-wrapper{

width: 100%;

margin: 0 0 0 0%;

padding: 1%;

border-radius:7px;

-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.login-title{

width: 100%;

margin: 6% 0 1% 0O;

font-size: 14pt;
}
.config-form-wrapper{

width: 100%;

padding: 0 0 0 0;

margin: 0 0 0 0O;

border-radius:7px;

-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.comment -form-wrapper{

float: left;

width: 100%;

padding: 0 0 0 0;

margin: 0 0 0 0O;

border-radius:7px;

-moz-border-radius:7px; /* Firefox 3.6 and earlier */
}
.summary-cell{

height: 150px;
}

.summary-cell-data{

height: 120px;
font-size: 6pt;

If the web application shown previously had been written with AngularJS, it would have
been a simple task to convert the AngularJS application into a mobile application. The
development team could then have fixed the CSS3 issues and been done. The application
written with CakePHP had to be completely rewritten, however.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

In this chapter we compared AngularJS applications to applications built with
conventional server-side web frameworks. We identified many of the shortcomings of
conventional server-side frameworks, especially as they relate to mobile applications, and
gained an understanding of the serious limitations they pose on how developers build
mobile applications.

We also looked at the many advantages of building applications with AngularJS, such as
shorter development times and increased application speed and testability. We saw how
Angular]JS greatly simplifies the process of building responsive mobile applications, then
looked at a real-world situation where a simple issue like poorly written CSS posed a
serious problem for a mobile development team working with an application built using a
conventional server-side web framework.

The information presented in this chapter is a great foundation for the material covered in
the following chapters. We will now take our understanding of the advantages of
AngularJS to the next level, exploring how AngularJS helps to simplify the process of
interacting with backend systems using REST services.

Although this is not a book on REST services, we will cover the basics of REST services
in Chapter 6, looking in detail at how AngularJS connects to these services and how to
interface with JSON payloads. Chapter 7 will provide you with information on public
REST service endpoints written especially for this book that you can use to complete the
chapter exercises.

The REST services that you will use in Chapter 7 are built with ExpressJS, run on
Node.js, and use JSON as the data-interchange format. The services used in that and other
chapters are deployed to the cloud and open to anyone using this book as a learning tool.
Before we get into all of that, however, we’re going to take a look at AngularJS
controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. AngularJS Controllers

AngularJS controllers are at the center of AngularJS applications and are probably the
most important component to understand. Controllers are not always clearly defined in
some JavaScript client-side frameworks, and that tends to confuse developers who have
experience with MVC frameworks. That is not the case with AngularJS. AngularJS clearly
defines controllers, and controllers are at the center of AngularJS applications.

Almost everything that happens in an AngularJS application passes through a controller at
some point. Dependency injection is used to add the needed dependencies, as shown in the
following example file, which illustrates how to create a new controller:

/* chapter4/controllers.js - a new controller */

var addonsControllers =
angular.module('addonsControllers', []);

addonsControllers.controller('AddonsCtrl',
['$scope', 'checkCreds', '$location', 'AddonsList', '$http', 'getToken',
function AddonsCtrl($scope, checkCreds, $location, AddonsList,
$http, getToken) {
if (checkCreds() !'== true) {
$location.path('/loginForm');
}

$http.defaults.headers.common['Authorization'] =
'Basic ' + getToken();
AddonsList.getList({},
function success(response) {
console.log("Success:" +
JSON.stringify(response));
$scope.addonsList = response;

3

function error(errorResponse) {
console.log("Error:" +
JSON.stringify(errorResponse));

}
)
$scope.addonsActiveClass = "active";

31

In this code, we first create a new module named addonsController by making a call to
the module method of angular. On the second line, we create a new controller named
AddonsCtrl by calling the controller method of the addonsControllers module. Doing

that attaches the new controller to that module. All controllers created in the controllers.js
file will be added to the addonsControllers module.

Also notice the line console.log("Success:" + JSON.stringify(response)). Most
modern browsers have accompanying developer tools that give developers easy access to
the JavaScript console. This line uses the JSON.stringify method to log the JSON that’s
returned from the web service to the JavaScript console. Developers can easily use the
JavaScript console to troubleshoot REST service issues by viewing the JSON logged in
the success callback function, or in the error callback function if a service call fails.

www.it-ebooks.info

http://www.it-ebooks.info/

Most developer tools and some IDEs, like NetBeans, also include JavaScript debuggers
that allow developers to place breakpoints in both the success and error callback
functions. Doing so allows the developer to take a fine-grained approach to
troubleshooting REST services. Quite often, the developer can resolve otherwise complex
REST service issues very quickly by using a JavaScript debugger.

The following code is an excerpt of the previous file. It shows how we use dependency
injection to add dependencies to the new controller. This code shows $scope, checkCreds,

$location, AddonsList, $http, and getTokens as dependencies for the new controller.
We have already covered the $scope briefly. For now it’s not important what the other

dependencies actually represent; you only need to understand they are required by the new
controller:

/* chapter4/controllers.js excerpt */
/* using dependency injection */

['$scope', 'checkCreds', '$location', 'AddonsList', '$http', 'getToken',

function AddonsCtrl($scope, checkCreds, $location, AddonsList,
$http, getToken) {
}

This controller plays a major role in the application in which it was defined. Controllers
really have two primary responsibilities in an application. We will take a look at those
responsibilities in more detail in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the Model with Controllers

AngularJS controllers have two primary duties in an application. First, controllers should
be used to initialize the model scope properties. When a controller is created and attached
to the DOM, a child scope is created. The child scope holds a model used specifically for
the controller to which it is attached. You can access the child scope by using the $scope

object.

Create a copy of the Chapter 2 project and name it AngularJsHelloWorld_chapter4. We
will use this new project for the rest of this chapter. You can also download the project
from the GitHub project site.

Model properties can be added to the scope, and once added they are available inside the
view templates. The controller code shown here illustrates how to add two properties to
the scope. After adding the customer name and customer number to the scope, both are
available to the view and can be accessed with double curly braces:

/* chapter4/controllers.js excerpt */
helloworldControllers.controller('CustomerCtrl', ['$scope',
function CustomerCtrl($scope) {

$scope.customerName = "Bob's Burgers";
$scope.customerNumber = "44522";

31

Now add the new controller, CustomercCtrl, to your project’s controllers.js file. We will
make several additions to the controllers.js file in this chapter.

The following view template code shows how to access the newly added model properties
inside the view template. All properties that need to be accessed from the view should be
added to the $scope object:

<!-- chapter4/partials/customer.html -->

<div>Customer Name: {{customerName}}</div>
<div>Customer Number: {{customerNumber}}</div>

Now add a new HTML file under the partials folder and name it customer.html. Replace
the generated code with the code just shown.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

Adding Behavior with Controllers

The second primary use for controllers is adding behavior to the $scope object. We add

behavior by adding methods to the scope, as shown in the following controller code. Here,
we attach a changeCustomer method to $scope so that it can be invoked from inside the

view. By doing this, we are adding behavior that allows us to change the customer name
and customer number:

/* chapter4/controllers.js excerpt */

helloworldControllers.controller('CustomerCtrl', ['$scope',
function CustomerCtrl($scope) {

$scope.customerName = "Bob's Burgers";
$scope.customerNumber = 44522;

// add method to scope
$scope.changeCustomer = function(){

$scope.customerName = $scope.cName;
$scope.customerNumber = $scope.cNumber;

3
31

Add the changecCustomer method shown here to the Customerctrl controller defined in
your controllers.js file.

The following code shows the customer.html file and the changes needed in the view to
make use of the new behavior that was just added. We add two new properties to the
model by using ng-model="cName" and ng-model="cNumber". We use ng-

click="changeCustomer();" to invoke the new changeCustomer method that is attached
to the scope:

<!-- chapter4/partials/customer.html -->

<div>Customer Name: {{customerName}}</div>
<div>Customer Number: {{customerNumber}}</div>

<form>
<div>
<input type="text" ng-model="cName" required/>
</div>
<div>
<input type="number" ng-model="cNumber" required/>
</div>
<div>
<button ng-click="changeCustomer();" >Change Customer</button>
</div>

</form>

Modify the customer.html file to include the new form defined here.

Once the changeCustomer method is invoked, the new properties are attached to $scope
and available to the controller. As you can see, we simply assign the two new properties

www.it-ebooks.info

http://www.it-ebooks.info/

bound to the model back to the original two properties, customerName and
customerNumber, inside the changeCustomer method. Both ng-model and ng-click are
AngularJS directives. We will cover directives in detail in Chapter 9.

www.it-ebooks.info

http://www.it-ebooks.info/

Controller Business Logic

Controllers are used as just demonstrated to add business logic to an application. Business
logic added in the controller, however, should be specific to the view associated with that
one controller and used to support some display logic functionality of that one view. Any
business logic that can be pushed off the client-side application should be implemented as
a REST service and not actually inside the AngularJS application.

There is one caveat to this concept, however: REST services must have a response time of
two (2) seconds or less. Long-running services will only cause delays in the UI and make
for a bad user experience. Meeting the two-seconds-or-less rule requires having REST
services that are properly designed and running on a backend system that scales well to
load demand changes. There are other concerns related to mobile applications, but we will
cover those in Chapter 7 and Chapter 8.

Business logic that can’t be placed in REST services but needs to be available to multiple
controllers should not be placed in the controller but should instead be placed in
AngularJS non-REST services. In Chapter 8, we will cover business logic services in more
detail. Business logic that is placed in the controller should be simple logic that relates
only to the controller in which it is defined. Placing too much business logic inside an
AngularJS application would be a bad design decision, however.

www.it-ebooks.info

http://www.it-ebooks.info/

Presentation Logic and Formatting Data

Presentation logic should not be placed inside the controller but instead should be placed
in the view. AngularJS has many features for DOM manipulation that help you avoid
placing presentation logic in the controllers. The controller is also not the place where you
should format data. AngularJS has features especially designed for formatting data, and
that’s where data formatting should take place. Some of those features will be covered in
detail in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Form Submission

Now we will look at how form submissions are handled in AngularJS using controllers.
The following code for the newCustomer.html file shows the view for a new form. Create
a new HTML file under the partials folder and replace the generated code with the code
listed here:

<!-- chapter4/partials/newCustomer.html -->
<form ng-submit="submit()" ng-controller="AddCustomerCtrl">
<div>
<input type="text" ng-model="cName" required/>
</div>
<div>
<input type="text" ng-model="cCity" required/>
</div>
<div>
<button type="submit" >Add Customer</button>
</div>

</form>

As you can see, we use standard HTML for the form with nothing really special except the
directives. The directive ng-submit binds the method named submit, defined in the
AddcustomercCtrl controller, to the form for form submission. The ng-model directive
binds the two input elements to scope properties.

Two or more controllers can be applied to the same element, and we can use controller
as to identify each individual controller. The following code shows how controller as is
used. You can see that addCust identifies the AddCustomerctrl controller. We use
addCust to access the properties and methods of the controller, as shown:

<!-- chapter4/partials/newCustomer.html (with controller as) -->

<form ng-submit="addCust.submit()"
ng-controller="AddCustomerCtrl as addCust'">

<div>

<input type="text" ng-model="addCust.cName" required/>
</div>
<div>

<input type="text" ng-model="addCust.cCity" required/>
</div>
<div>

<button id="f1" type="submit" >Add Customer</button>
</div>

</form>

The following code shows the AddCustomerctrl controller and how we use it to handle
the submitted form data. Here we use the path method on the AngularJS service
$location to change the path after the form is submitted. The new path is
http://localhost:8383/AngularJsHelloWorld_chapter4/index.html#!/addedCustomer/name/(

www.it-ebooks.info

http://www.it-ebooks.info/

Add this code to the controllers.js file:

/* chapter4/controllers.js */

helloworldControllers.controller('AddCustomerCtrl',
['$scope', '$location',
function AddCustomerCtrl($scope, $location) {
$scope.submit = function(){
$location.path('/addedCustomer/' + $scope.cName + "/" + $scope.cCity);
3
1)

That’s all that is needed to handle the form substitution process. We will now look at how
we get access to the submitted values inside another controller.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Submitted Form Data

The app.js file shown next includes the new route definitions. Modify the app.js file in the
Chapter 3 project and add the new routes. Make sure your file looks like the file shown
here:

/* chapter4/app.js */
/* App Module */

var helloWorldApp = angular.module('hellowWorldApp', [
'ngRoute’,
'helloworldControllers'

1);

helloworldApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/', {
templateUrl: 'partials/main.html',
controller: 'MainCtrl'
}) .when('/show', {
templateUrl: 'partials/show.html',
controller: 'ShowCtrl'
}) .when('/customer', {
templateUrl: 'partials/customer.html',
controller: 'CustomerCtrl'
}) .when('/addCustomer', {
templateUrl: 'partials/newCustomer.html',
controller: 'AddCustomercCtrl'
}) .when('/addedCustomer/:customer/:city', {
templateUrl: 'partials/addedCustomer.html',
controller: 'AddedCustomerCtrl'

3K

$locationProvider.html5Mode(false).hashPrefix('!");
)

You can see there are two path parameters, customer and city, for the addedCustomer
route. The values are passed as arguments to a new controller, AddedCustomercCtrl, shown
in the following excerpt. We use the $routeParams service in the new controller to get

access to the values passed as path parameter arguments in the URL. By using
$routeParams.customer we get access to the customer name, and $routeParams.city
gets us access to the city:

/* chapter4/controllers.js excerpt */

helloworldControllers.controller('AddedCustomerCtrl',
['$scope', '$routeParams',
function AddedCustomerCtrl($scope, $routeParams) {

$scope.customerName
$scope.customerCity

$routeParams.customer;
$routeParams.city;

1)

Add the new controller, AddedCustomercCtrl, to your controllers.js file now.

The code for our new addedCustomer template is shown next. Once again, we use
Angular]JS double curly braces to get access to and display both the customerName and
customerCity properties in the view:

www.it-ebooks.info

http://www.it-ebooks.info/

<!-- chapter4/addedCustomer.html -->
<div>Customer Name: {{customerName}}</div>

<div>Customer City: {{customerCity}}</div>

To add the template to the project, create a new HTML file in the partials folder and name
it addedCustomer.html. Replace the generated code with the code just shown. Note how
simple it is to submit forms with AngularJS. Simplicity is one of the factors that makes
AngularJS a great choice for any JavaScript client-side application project.

www.it-ebooks.info

http://www.it-ebooks.info/

JS Test Driver

The rest of this chapter will cover setting up a test environment and testing AngularJS
controllers. NetBeans has a great testing environment for both JS Test Driver and Karma.
We will focus first on setting up JS Test Driver for unit testing. We will then take a look at
Karma for unit testing. To begin, do the following:

1.

2.

10.

Download the JS Test Driver JAR.

In the Services tab, right-click “JS Test Driver” and click “Configure” (see Figure 4-
1).

Select the location of the JS Test Driver JAR just downloaded and choose the
browser of your choice (see Figure 4-2).

Right-click the project node, then click “New” — “Other” - “Unit Tests.”
Select “jsTestDriver Configuration File” and click “Next.”

Make sure the file is placed in the config subfolder, as shown in Figure 4-3.
Make sure the checkbox for “Download and setup Jasmine” is checked.

Click “Finish.”

Right-click the project node, click Properties, and select “JavaScript Testing.”

Select “jsTestDriver” from the drop-down box.

www.it-ebooks.info

http://bit.ly/js-test-driver
http://www.it-ebooks.info/

NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Windo
TS D @ | O Ty b-B

Projects Files Services x =
E Databases
® web services
Servers
@ Maven Repositories
Cloud
¥5 Hudson Builders
i@ Task Repositories
¥= c/c++ Build Hosts

. JS Test Driver |

¥ ¥ " ¥F %V %" W W

Figure 4-1. Right-click “JS Test Driver” in the Services tab

i 30 helloWorldControllers.controller('AddCustomerCtrl', ['$scope', '$locati
31 function AddCustomerCtrl{$scope, $location) {

Configure JSTestDriver installation and its startup

JsTestDriver JAR: [,fhome,-'ken;'developmenI:,.-'NeI:BeansF'rojecl:s,-'jsTesl:Driver,.-'JsTesI:Driver-1.3.5.jar] |Browse |

Server URL: |heep://localhost:42442

Browsers to use For testing:

[chrome with NetBeans Connector
& chrome

[] chromium with NetBeans Connector
[chromium

[] Firefox

[] Mozilla

[] Android Device (Chrome) with NetBeans Connector =

[] start browsers in STRICT mode

_chapl:1 [oK -J |Cancel | | Help |
™

| Output - Browser Log Test Results | Git - configuration.js [UlboraCmsAdminUI] - master x

Figure 4-2. Select your browser(s)

www.it-ebooks.info

http://www.it-ebooks.info/

27| - HY S

MNew jsTestDriver Configuration File o

Skteps Name and Location

1. Choose File Type

- File Name: |jsTestDriver
2. Name and Location

Projeck: AngularJsHelloworld_chapter]

Folder: Browse...

Created File: igularJsHelloworld_chapter2/config/jsTestDriver.conf

& pownload and setup Jasmine For js-test-driver

finde

< Back| | Next > | Einish] Cancel| Help UI] - master x

T —

Figure 4-3. Make sure the file is created in the config subfolder

The following code shows the JS Test Driver configuration file. Inside the file, we specify
the server URL that is used by JS Test Driver. We also specify the needed library files in
the load section of the file, along with the locations of our JavaScript files and test scripts:

/* chapter4/jsTestdriver.conf */

server: http://localhost:42442

load:

- test/lib/jasmine/jasmine.js

- test/lib/jasmine-jstd-adapter/JasmineAdapter.js

- public_html/js/libs/angular.min.js

- public_html/js/libs/angular-mocks.js

- public_html/js/libs/angular-cookies.min.js
- public_html/js/libs/angular-resource.min.js
- public_html/js/libs/angular-route.min.js

- public_html/js/*.js

- test/unit/*.js
exclude:

Notice we’ve added angular-mocks.js to the list of required AngularJS library files. That
file is needed for unit testing AngularJS applications. So, before continuing, add the
angular-mocks.js file to the js/libs folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Test Scripts

Next, create a new JavaScript file in the unit subfolder of the newly created Unit Test
folder, as shown in Figure 4-4. Name the new file controllerSpec.js.

AngularJsHelloWorld_chapter4 - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Winda

" S D E e T w P B

Projects x Files Services =
v B angularJsHelloworld_chaptera
» 3 Site Root
¥ & Unit Tesks
» @ lib
* @ unit

B controllerSpec.js
» @ Configuration Files
» & Important Files

Figure 4-4. Create the controllerSpec.js file in the unit subfolder

The contents of the controllerSpec.js file are shown next. Our test script filename will end
with Spec. The file specifies a standard set of unit tests commonly used to test AngularJS
controllers. Notice that we have a test for each of our controllers defined in the
controllers.js file:

/* chapter4/controllerSpec.js */

/* Jasmine specs for controllers go here */
describe('Hello World', function() {

beforeEach(module('helloworldApp'));

describe('MainCtrl', function(){
var scope, ctrl;
beforeEach(inject(function($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('MainCtrl', {$scope: scope});
)

it('should create initialed message', function() {
expect(scope.message).toEqual("Hello World");

1K

www.it-ebooks.info

http://www.it-ebooks.info/

13K

describe('ShowCtrl', function(){
var scope, ctrl;

beforeEach(inject(function($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('ShowCtrl', {$scope: scope});

)i

it('should create initialed message', function() {
expect(scope.message).toEqual("Show The World");

iI9F
13K

describe('CustomerCtrl', function(){
var scope, ctrl;

beforeEach(inject(function($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('CustomerCtrl', {$scope: scope});

)i

it('should create initialed message', function() {
expect(scope.customerName).toEqual("Bob's Burgers'");

B

This test script uses Jasmine as the behavior-driven development framework for testing
our code. We will use Jasmine for all our test scripts in this book.

Here is the complete controllers.js file:

/* chapter4/controllers.js */

'use strict';

/* Controllers */

var helloWorldControllers =
angular.module('helloworldControllers', []);

helloworldControllers.controller('MainCtrl', ['$scope',
function MainCtrl($scope) {
$scope.message = "Hello World";

31

helloworldControllers.controller('ShowCtrl', ['$scope',
function ShowCtrl($scope) {
$scope.message = "Show The World";

31

helloworldControllers.controller('CustomerCtrl', ['$scope',
function CustomerCtrl($scope) {
$scope.customerName = "Bob's Burgers";
$scope.customerNumber = 44522;
$scope.changeCustomer = function(){
$scope.customerName = $scope.cName;
$scope.customerNumber = $scope.cNumber;
}
)

helloWorldControllers.controller('AddCustomerCtrl’,
['$scope', '$location',
function AddCustomerCtrl($scope, $location) {
$scope.submit = function(){
$location.path('/addedCustomer/' + $scope.cName + "/" + $scope.cCity);
}
)

helloWorldControllers.controller('AddedCustomerCtrl',
['$scope', '$routeParams',

www.it-ebooks.info

http://www.it-ebooks.info/

function AddedCustomerCtrl($scope, $routeParams) {
$scope.customerName = $routeParams.customer;
$scope.customerCity = $routeParams.city;

311

TIP

To save time, you can download the Chapter 4 code from GitHub. For a complete guide to JavaScript
testing in NetBeans, see the documentation at on the NetBeans website.

www.it-ebooks.info

http://bit.ly/lajs-github
http://bit.ly/nb-debug
http://www.it-ebooks.info/

Testing with JS Test Driver

Now to actually test the controllers we’ve defined, just right-click the project node and
select “Test” from the menu. If your project is configured correctly, you should see a
success message for all three controllers that were tested. If you have any issues with the
test results, go back over the configuration files and validate that all your files match those
listed in this chapter. If you continue to have problems, download and run the source code
from the project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

Testing with Karma

Karma is a new and fun way to unit test AngularJS applications. We will use Karma here
to test the controllers that we tested earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Karma

Karma runs on Node.js, as mentioned in Chapter 2, so first you must install Node.js if it’s
not already installed. Refer to nodejs.org for installation details for your particular

operating system. You’ll also need to install the Node.js package manager (npm) on your
system. npm is a command-line tool used to add the needed Node.js modules to a project.

Now, in the root of the Chapter 4 project, create a JSON file named package.json and add
the following content. The package.json file is used as a configuration file for Node.js:

{

"name": "package.json",

"devDependencies": {
llkarmall: ll*ll,
"karma-chrome-launcher":
"karma-firefox-launcher":
"karma-jasmine": "*",
"karma-junit-reporter": "*",
"karma-coverage": "*"

nxn
r

nmsn
4

Open a command-line window on your system, and navigate to the root of the Chapter 4
project. You should see the package.json file when you list out the files in the folder.

Type this command to actually install the Node.js dependencies defined in the
package.json file:

npm install

Now install the Karma command-line interface (karma-cli) by typing the following
command:

npm install -g karma-cli

WARNING

Make sure to record the location where karma-cli was installed. You will need the location later in this
chapter.

This command installs the command-line tool globally on your system.

All the Node.js dependencies specified in the package.json file will be installed under the
node_modules folder inside the project root folder. If you list out the files and folders, you
should see the new folder. You won’t be able to see the new folder inside NetBeans,
however.

www.it-ebooks.info

http://nodejs.org
http://www.it-ebooks.info/

Karma Configuration

Next, create a new Karma configuration file named karma.conf.js inside the project test
folder. Do the following:

1. Right-click the project in NetBeans.
2. Select “New” - “Other” — “Unit Tests.”
3. Create a new Karma configuration file inside the test folder.

Edit the new karma.conf.js file and add the following code:

/* chapter4/karma.conf.js */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/*.js",
"test/**/*Spec.js"

1

exclude: [

1

autowatch: true,

frameworks: [
"jasmine"

1

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine"

]

1)
}

Now do the following to set Karma as the test framework:

1. Right-click the project.

2. Select “Properties.”

3. Select “JavaScript Testing” from the list of categories.
4. Select “Karma” as the testing provider.

5. Select the location of the karma-cli tool installed earlier.
6. Select the location of the karma.conf.js file just created.

7. Select “OK.”

www.it-ebooks.info

http://www.it-ebooks.info/

Running Karma Unit Tests

Now to actually run the unit tests (using the test specification written earlier) under
Karma, right-click the project and select “Test” from the menu. Karma will start. You
should see both Chrome and Firefox browser windows open. The NetBeans test results
window should open and display three passed tests for Chrome and three passed tests for
Firefox.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 4
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing with Protractor

Protractor is a new test framework for running end-to-end (E2E) tests. Protractor lets you
run tests that exercise the application as a user would. With Protractor E2E testing, you
can test various pages, navigate through each page from within the test script, and find any
potential defects. Protractor also integrates with most continuous integration build
systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing Protractor

Like Karma, Protractor is a Node.js-based test framework. The Protractor team
recommends installing Protractor globally. To do so, open a command-line window and
type the command:

npm install -g protractor

Protractor relies on WebDriverJS, so we will also use this command to update
WebDriverJS with the latest libraries:

webdriver-manager update

www.it-ebooks.info

http://www.it-ebooks.info/

Configuring Protractor

Next, we will create a Protractor configuration file for our project. Create a new
JavaScript file named conf.js under the test folder of the Chapter 4 project. Enter the code
shown here in the new file:

/ *chapter4/conf.js */

exports.config = {
seleniumAddress: 'http://localhost:4444/wd/hub',

specs: ['e2e/Hw-spec.js']

3

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Protractor Test Specifications
Now we need to create a Protractor test specification. Do the following:

1. Create a new folder under the test folder of the project and name it eZe.
2. Create a new JavaScript file inside the new e2e folder and name it Hw-spec.js.

Now copy the code shown here into the new Hw-spec.js file:

/* chapter4/Hw-spec.js Protractor test specification */

describe("Hello World Test", function(){
it("should test the main page", function(){
browser.get(
"http://localhost:8383/AngularJsHelloworld_chapter4/");
expect(browser.getTitle()).toEqual("AngularJS Hello World");

var msg = element(by.binding("message")).getText();
expect(msg).toEqual("Hello World");

browser.get(
"http://localhost:8383/AngularJsHelloworld_chapter4/#!/show");
expect(browser.getTitle()).toEqual("AngularJS Hello World");

var msg = element(by.binding("message")).getText();
expect(msg).toEqual("Show The World");

browser.get(
"http://localhost:8383/AngularJsHellowWorld_chapter4/#!/
addCustomer");

element (by.model("cName")).sendKeys("tester");
element (by.model("cCity")).sendKeys("Atlanta");
element(by.id("f1")).click();

browser.get(
"http://localhost:8383/
AngularJsHelloworld_chapter4/#!/addedCustomer/tester/Atlanta");

var msg = element(by.binding("customerName")).getText();
expect(msg).toEqual("Customer Name: tester");

var msg = element(by.binding("customerCity")).getText();
expect(msg).toEqual("Customer City: Atlanta");
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Starting the Selenium Server

WebDriverJS runs on the Selenium Server. To start the Selenium Server that runs
Protractor tests (using the webdriver-manager tool), open a new command window and
enter the following command:

webdriver-manager start

www.it-ebooks.info

http://www.it-ebooks.info/

Running Protractor

Now that the Selenium Server is running, we can run our Protractor tests. Open a new
command window, navigate to the root of the Chapter 4 project, and type this command:

protractor test/conf.js

You should see a browser window open. You should then see the test script navigate
through the pages of the Chapter 4 application. If you watch the browser window closely,
you will see the script enter values in the form that adds a new customer. When the
Protractor script has finished, the browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 3.368 seconds
1 test, 6 assertions, 0 failures

NOTE

For more information on testing with Protractor, see the project site on GitHub. Protractor has a complete
set of documentation to help you get started.

www.it-ebooks.info

http://angular.github.io/protractor
http://www.it-ebooks.info/

Conclusion

Unit testing AngularJS controllers allows us to validate the basic functionality of each
controller. For now, our tests are very simple. Testing a controller that retrieves data from
a REST service, for example, would be a more complex task.

End-to-end testing is a bit more involved, and can be designed to completely exercise the
entire application. For now, our E2E tests are also simple. E2E tests help to identify
software defects early in the development process when used with CI build systems.

We’ll be doing more testing in the next chapter, where we focus on AngularJS views.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. AngularJS Views and
Bootstrap

We will now start a new AngularJS blog project that uses public REST services created
especially for this book. We will work on the blog project for the rest of this book. You
can also download the project code from GitHub. We will start off by building the views
and the controllers for those views.

Twitter Bootstrap is a free collection of HTML and CSS templates. We will build the
AngularJS views with the help of Twitter Bootstrap to help cut development time. Once
we have the views and controllers in place and understand their operation, we will focus
on the model and REST services (in the next two chapters).

www.it-ebooks.info

http://bit.ly/lajs-github
http://www.it-ebooks.info/

AngularJS Templates

AngularJS views are defined by building templates (partials). Views in AngularJS are
composed of HTML code with directives added, such as the ng-model directive shown

previously. AngularJS builds the views dynamically at runtime by merging the templates
with the properties passed to the templates in the $scope object. The end result is pure
HTML code bound to the ng-view directive, as explained back in Chapter 1. We will
cover the ng-view directive again in this chapter as a review.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the Blog Project

Start a new HTMLS5 project in NetBeans and call it AngularJsBlog. Set up the folder
structure as shown in Figure 5-1. Move the downloaded AngularJS, jQuery, and Bootstrap
library files to the js/libs folder, as shown.

AngularJsBlog - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Windo
PEES 9D e TwH LB

Projects x Files | Services =]
v 5 AngularJsBlog
v & Site Root
¥ 5 jS
* @ libs
5| angular-cookies.min.js
angular-mocks.js
angular-resource.min.js
angular-route.min.js
angular.min.js
bootstrap.min.js
jquery-1.10.2.min.js
[E app.js
controllers.js
‘& partials
[@ index.html
» & Important Files

E E B B E E E

Figure 5-1. Blog project folder structure

We’ll begin with the code for the index.html file. As you can see, we load the needed
library files with the <script> tag in the <head> section of the page. The tag <div ng-
view></div> is where all dynamic content is inserted. As the user clicks on links in the
application, existing content attached to the tag is removed and new dynamic content is
then attached to that same tag:

<!-- chapter5/index.html -->

<!DOCTYPE html>
<html lang="en" ng-app="blogApp">

<head>
<title>AngularJS Blog</title>

www.it-ebooks.info

http://www.it-ebooks.info/

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js'"></script>
<script src="js/libs/angular-cookies.min.js"></script>
<script src="js/app.js"></script>

<script src="js/controllers.js"></script>

</head>
<body>

<div ng-view></div>

</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a New Blog Controller

Next we will set up the controllers for our new blog application. The following code
defines the blogControllers module and the BlogCtr1 controller for that module. We
will define more controllers on the blogControllers module as we work on the blog
application. For now, the controllers.js file is relatively small:

/* chapter5/controllers.js */

'use strict';
/* Controllers */

var blogControllers =
angular.module('blogControllers', []);

blogControllers.controller('BlogCtrl', ['$scope',
function BlogCtrl($scope) {

$scope.blogArticle =
"This is a blog post about Angulards.
We will cover how to build a blog and how to add
comments to the blog post.";

31

Next is the code for the app.js file that starts the booting process for the blog application.
This is where we define the route for the main page of the blog. As you can see, we define
ngRoute and blogControllers as dependencies of the application at startup time, using
inline array annotations. The two dependencies are injected into the application using DI
and are available throughout the application when we need them. Any controllers attached
to the blogControllers module are accessible to the blogApp module (the AngularJS
application):

/* chapter5/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers'

1)

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'

1

$locationProvider.html5Mode(false).hashPrefix('!");
)

The routes are defined in the application configuration block. For now, we will only define
the main page of the blog. We define BlogCtrl as the controller and

'partials/main.html' as the template used for the main route. We will add more routes
as we need them.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a New Blog Template

Now we will add a simple template file and test run the application before adding code to
the template. Right-click the NetBeans project folder and add a new HTML page named
main.html in the partials folder. Replace the generated HTML code with the code shown
here:

<!-- chapter5/main.html -->

{{blogArticle}}

Right-click the project folder and select “Run” from the menu. If you set up the project
correctly, the browser should open with the following text displayed: “This is a blog post
about AngularJS. We will cover how to build a blog and how to add comments to the blog
post.” This tells us our application is properly configured. Now we will use Twitter
Bootstrap and HTML to build a menu and main page for our blog.

www.it-ebooks.info

http://www.it-ebooks.info/

Twitter Bootstrap

You should have already added bootstrap.min.js to the project. If you run into JavaScript
errors related to Twitter Bootstrap, you can easily replace the bootstrap.min.js file with the
nonminified bootstrap.js file distributed by Twitter. Using the nonminified version of the
file allows the developer to place breakpoints in the Bootstrap JavaScript file and debug
any related issues. We will only cover the basics of Twitter Bootstrap here. For more
documentation and tutorials on Bootstrap, see the project site.

First, we need to add three more folders and some additional Twitter Bootstrap files to the
project. We will add all the Bootstrap files here, although much of Bootstrap is not
actually used in this project. Do the following:

1. Add a subfolder named css under the Site Root folder.

2. Add a subfolder named fonts under the Site Root folder.

3. Add a subfolder named lib-css under the Site Root folder.

4. Copy the bootstrap-theme.min.css and bootstrap.min.css files into the lib-css folder.

5. Copy the following files to the fonts folder:

QO

. glyphicons-halflings-regular.eot

b. glyphicons-halflings-regular.svg

N

. glyphicons-halflings-regular.ttf
d. glyphicons-halflings-regular.woff

6. Add the two lines of code shown next to the index.html file. These two lines are all
that we need to make use of Twitter Bootstrap:

<!/-- chapter5/index.html excerpt -->
<link rel="stylesheet" href="1lib-css/bootstrap.min.css" media="screen"/>

<script src="js/libs/bootstrap.min.js"></script>

Here is the completed index.html file:

<!-- chapter5/index.html complete file -->

<!DOCTYPE html>
<html lang="en" ng-app="blogApp">

<head>
<title>Blog</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link rel="stylesheet" href="1lib-css/bootstrap.min.css" media="screen'"/>
<script src="js/libs/bootstrap.min.js"></script>

www.it-ebooks.info

http://getbootstrap.com/getting-started
http://www.it-ebooks.info/

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>
<script src="js/app.js"></script>

<script src="js/controllers.js"></script>

</head>
<body>
<div ng-view></div>

</body>

</html>

Figure 5-2 shows the project file structure. Make sure your project is set up as shown. The
added CSS files and fonts will give us access to many time-saving features of Twitter
Bootstrap. We will now add a Bootstrap menu to our project.

AngularJsBlog - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Windo
i =% D@ - T % P-B
Projects x Files @ Services =]

R T

v & Site Root Il
» [css
* 3 fontks

[glyphicons-halflings-regular.eot
glyphicons-halflings-regular.svg
[glyphicons-halflings-regular.ttf
[glyphicons-halflings-regular.woff
¥ 5 jS
* @ libs

angular-cookies.min.js
angular-mocks.js
angular-resource.min.js
angular-route.min.js
angular.min.js
bootstrap.min.js

jquery-1.10.2.min.js

app.js
controllers.js

* & lib-css
T bootstrap-theme.min.css
T, bootstrap.min.css

» @ partials

[@ index.html
» & Important Files

E B B B E E E

Figure 5-2. The completed file structure for the blog project

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Bootstrap Menu

The following are the contents of the menu.html file. Most of the code shown is clearly
explained on the Bootstrap project site. The styles added to the menu here are defined in
the bootstrap.min.css file added in the previous section. If you have questions on
Bootstrap menus, please refer to the Bootstrap project documentation for a fuller
explanation. Your menu.html file should look like this:

<!-- chapter5/menu.html -->
<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">

<!-- Brand and toggle get grouped for better mobile display -->

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse'">

Toggle navigation

</button>

Angular Blog
</div>

<!-- Collect the nav links, forms, and other content for toggling -->

<div class="collapse navbar-collapse'">

<ul class='"nav navbar-nav">

<li class="{{aboutActiveClass}}">About</1i>

<1li class="">

Download Project Code</1li>

</div><!-- /.navbar-collapse -->

</div>
</nav>

Here’s how to add the menu.html file inside the main.html file:

<!-- chapter5/main.html -->
<div ng-include src="'partials/menu.html'"></div>

{{blogArticle}}

The first line shows the needed addition to main.html. As you see, we use the ng-include
directive to include the menu template inside the main template. This approach allows us
to keep the menu completely separate from the other templates. Using this approach
makes the code base easy to maintain and understand. We will now focus on using other
Bootstrap styles to enhance our blog.

www.it-ebooks.info

http://getbootstrap.com/getting-started/
http://www.it-ebooks.info/

Adding Mock Blog Data

We will modify the Blogctrl controller and set a list of blog posts as a scope property
named blogList. The modified controllers.js code is shown here. The JSON list
represents the data that will eventually be retrieved from a REST service. For now,
however, we will just hardcode the JSON into the controller as mock data. There are more
advanced ways to add mock data to an AngularJS application, but that is beyond the scope
of this book. Let’s take a look at the controllers file:

/* chapter5/controllers.js */

'use strict';
/* Controllers */
var blogControllers =
angular .module('blogControllers', []);

blogControllers.controller('BlogCtrl', ['$scope',
function BlogCtrl($scope) {
$scope.blogList = [

{
lliidll: 1,
"date": 1400623623107,
"introText": "This is a blog post about AngularJs.
We will cover how to build",
"blogText": "This is a blog post about AngularJs.
We will cover how to build a blog and how to add
comments to the blog post."
iy
{

"_id": 2,

"date": 1400267723107,

"introText": "In this blog post we will learn how to
build applications based on REST",

"blogText": "In this blog post we will learn how to
build applications based on REST web services that
contain most of the business logic needed for the
application.”

}

1;
1)

As you can see, there is no presentation logic in this code, and no data formatting is done
in the controller. The date, for instance, is sent to the view as a long value that is a
standard representation of a date in most programming languages. Trying to format the
date in the controller would be an incorrect design that shouldn’t be used. AngularJS has
many features that make formatting and presenting data easy; we’ll look at some of these
next.

www.it-ebooks.info

http://www.it-ebooks.info/

Using CSS3 to Style the Page

Now we will add some CSS3 to style our pages. Do the following:

1. Right-click the project node and create a new CSS file named style.css.

2. Place the following code into the new CSS file:

/* chapter5/styles.css */

body {
font-family: arial,;
font-size: 12pt;
color: #2a6496;

}

.post-wrapper{
float: left;
width: 100%;
margin: 5% 0 0 0;
padding: 0 0 0 0;

}

.blog-post-label{
float: left;
width: 100%;
margin: 10% 0 0 0;
padding: 0 0 0 0;
text-align: center;
font-weight: bold;
font-size: 16pt;

}

.blog-post-outer{
float: left;
width: 60%;
margin: 2% 0 2% 20%;
padding: 1%;
background: #e0e0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

}

.blog-intro-text{
float: left;
width: 100%;
margin: 0 0 0 0;
padding: 0 0 0 0;
text-align: center;

}

.blog-read-more{
float: left;
width: 100%;
margin: 2% 0 0 0O;
padding: 0 0 0 0;
text-align: center;

Now modify the index.html file, adding the line shown here to load the newly created CSS
file:

<!-- chapter5/index.html excerpt -->

<link rel="stylesheet" href="css/styles.css" media="screen"/>

www.it-ebooks.info

http://www.it-ebooks.info/

The complete index.html file is shown here. Make sure your version of the file matches
this one:

<!-- chapter5/index.html complete file -->

<IDOCTYPE html>
<html lang="en" ng-app="blogApp">

<head>
<title>Blog</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link rel="stylesheet" href="lib-css/bootstrap.min.css" media="screen"/>

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/bootstrap.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>

<link rel="stylesheet" href='"css/styles.css" media="screen'"/>
<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>

</head>

<body>

<div ng-view></div>

</body>

</html>

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Styles and Presentation Logic

You must modify the main.html template to make use of the new styles and to add proper
presentation logic for displaying blog posts and formatting data. Modify your main.html to
match the code shown here. The second line, <div id="container"
class="container">, sets up a Bootstrap container and is standard practice with Twitter
Bootstrap:

<!-- chapter5/main.html -->

<div ng-include src="'partials/menu.html'"></div>
<div id="container" class="container'">

<div class="blog-post-label">Blog Posts</div>

<div class="post-wrapper">

<div ng-repeat="blogPost in blogList">

<div class="blog-post-outer">

<div class="blog-intro-text">

Posted: {{blogPost.date | date:'MM/dd/yyyy @ h:mma'}}
</div>

<div class="blog-intro-text">
{{blogPost.introText}}

</div>

<div class="blog-read-more">

Read More
</div>

</div>

</div>

</div>
</div>

The Bootstrap container handles much of the page styling for various screen sizes to make
the page responsive for any screen size on any device. Inside the container we use the CSS
that was added in the styles.css file. We won’t focus much on the custom CSS, because it
is not specific to AngularJS and is covered in many other books on Cascading Style
Sheets.

We will, however, take a look at the AngularJS directives that allow us to build the
presentation logic in the view and handle formatting. The line <div ng-

repeat="blogPost in blogList"> is very important to understanding AngularJS views.
The directive ng-repeat works like a for loop, iterating over the list of blog posts in the
scope property blogList.

Each iteration through the list gives access to each item in the list through the variable
blogPost. We use the line {{blogPost.introText}} to display the intro text (the value of

the introText property of the blogPost variable).

Another line that is very important is the HTML template binding {{blogPost.date |
date: 'MM/dd/yyyy @ h:mma'}}, which allows us to format the date in the view, where it

should be formatted. As I stated previously, there are many features of AngularJS for
formatting data, and this is just one. As you can see, the template code is simple and easy

www.it-ebooks.info

http://www.it-ebooks.info/

to understand.

We will now add a controller, route, and view to display the individual blog post when a
user clicks on the “View More” link. If you look closely, you can see that the link passes
blogPost.id as a path parameter argument to a new route, /blogPost. We will now add the

needed code to view a blog post.

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing the Blog Post
To add the extra functionality, first append this CSS code to the end of the styles.css file:

/* chapter5/styles.css excerpt */

.blog-entry-wrapper{
float: left;
width: 100%;
margin: 1% 0 0 0;
padding: 0 0 0 0;

}

.blog-entry-outer{
float: left;
width: 60%;
margin: 2% 0 2% 20%;
padding: 1%;
background: #e0Qe0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

}

.blog-comment -wrapper{
float: left;
width: 50%;an HTML5 project
margin: 2% 0 2% 25%;
padding: 1%;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

}

.blog-entry-comments{
float: left;
width: 96%;
margin: 2% 0 2% 2%;
padding: 1%;
background: #f5e79¢;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

}

.blog-comment-label{
float: left;
width: 100%;
margin: 1% 0 0 0;
padding: 0 0 0 0;
text-align: center;
font-weight: bold;
font-size: 16pt;

Then add this code to the bottom of the controllers.js file:

/* chapter5/controllers.js excerpt */

blogControllers.controller('BlogVviewCtrl',
['$scope', '$routeParams',
function BlogViewCtrl($scope, $routeParams) {

var blogId = $routeParams.id;
var blogl = {
Il_idll: 1[
"date": 1400623623107,
"introText": "This is a blog post about AngularJs.
We will cover how to build",
"blogText": "This is a blog post about Angulards.

www.it-ebooks.info

http://www.it-ebooks.info/

We will cover how to build a blog and how to add
comments to the blog post.",
"comments" :[

{
"commentText" : "Very good post. I love it."
+
{
"commentText" : "When can we learn services."
}
]
3
var blog2 = {
"_id": 2,
"date": 1400267723107,
"introText": "In this blog post we will learn how to
build applications based on REST",
"blogText": "In this blog post we will learn how to

build applications based on REST web services that
contain most of the business logic needed for the application.",
"comments" :[

{
"commentText" : "REST is great. I want to know more."
3
{
"commentText" : "Will we use Node.js for REST services?."
}
]
3
if(blogId === '1'){
$scope.blogEntry = blogil;
}else if(blogId === '2"){
$scope.blogEntry = blog2;
}
1

Next, add a new template file named blogPost.html in the partials folder and replace the
generated code with the code shown here:

<!-- chapter5/blogPost.html -->
<div ng-include src="'partials/menu.html'"></div>
<div id="container" class="container'">

<div class="blog-post-label">Blog Entry</div>
<div class="blog-entry-wrapper">

<div class="blog-intro-text">
Posted: {{blogEntry.date| date:'MM/dd/yyyy @ h:mma'}}
</div>

<div class="blog-entry-outer">
{{blogEntry.blogText}}
</div>

<div class="blog-comment-wrapper">

<div class="blog-comment-label">Blog Comments</div>
<div class="blog-entry-comments" ng-repeat="comment in
blogEntry.comments">

{{comment.commentText}}

</div>

</div>

</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

And add this code to the route provider section of app.js:

/* chapter5/app.js excerpt */
.when('/blogPost/:id"', {

templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'

The complete route definition is shown here:

/* chapter5/app.js excerpt - complete route */

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {

$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}).when('/blogPost/:id"', {

templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'

3K

$locationProvider.html5Mode(false).hashPrefix('!");

31

As you can see, the effort required to add a new page was minimal. If you look at the route
definition, you’ll see the id passed as a path parameter argument. L.ook at the new

controller and you can see how we handle the id parameter. Since we do not yet have
REST services in place, we hardcoded the JSON for the two blog posts into the controller.

Once we retrieve the passed id from $routeParams, we use that to determine which blog

entry to set as a scope property. Notice that we never actually set a scope property until we
know which blog entry gets sent to the view. Notice also that blogl and blog2 are defined
as local variables. Only the variables needed in the page are set as scope properties.

WARNING

You should never add properties to the scope that are not needed in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Blog Application

Now let’s run the project to test our work. Right-click the project node and select “Run”
from the menu. If you made all the changes correctly, you should see the screen shown in
Figure 5-3. If you get a different result, go back over the changes in this chapter and verify
that you made all the needed modifications.

Sat Jun 28, 17:18:23

Activities (§fGoogle Chrome

AngularJs Blog - Google Chrome

1 AngularJs Blog

O 9 | =

L4 & [localhost:83

i Apps (1 Imported From Fir W globalrevolution- ¥ (500) Twitter /Se= [l (1) Google+ [#] https;/flocalhost:t ¥ Bookmark Manage (3 Development EB MontyPython'sCh (3 Social [M Adminhtml [# localhost:8080/Ac

Blog Posts

Posted: 05/20/2014 @ 6:07PM
This is a blog post about AngularJS. We will cover how to build

Read More

Posted: 05/16/2014 @ 3:15PM
In this blog post we will learn how to build applications based on REST

Read More

Figure 5-3. Successful result from running the project

If you have problems that you can’t resolve, download the project code from GitHub and
run that code. Once the project is running, click the “Read More” link on the first blog
post. You should then see the screen shown in Figure 5-4. Click the “Read More” link on
the second blog post, and you should see a similar page.

www.it-ebooks.info

http://bit.ly/lajs-github
http://www.it-ebooks.info/

Activities CG-)DQIF: Chrome Sat Jun 28, 17:21:43
AngularJs Blog - Google Chrome

W 2 WMgen
1 AngularJs Blog B W
(4 € [localhost A 0
£t Apps (3 Imported From Fi

/ O 9 &
N globalrevolution - ¥ (500) Twitter /Se= [l (1) Google+ [https://localhost:e # BookmarkManage (3 Development B MontyPython'sCh (J Social [Admin.html [# localhost:8080/Ac

Blog Entry
Posted: 05/20/2014 @ 6:07PM

This is a blog post about AngularJS. We will cover how fo build a blog and how to add
comments to the blog post.

Blog Comments

[Ve{y good post. | love it. }

[Wnen can we leam services]

Figure 5-4. Viewing the comments on the first blog post

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with Karma

We will use Karma now to test our view. From the root of the Chapter 5 project, create a
JSON file named package.json and add the following contents. The package.json file is
used as a configuration file for Node.js, as mentioned in Chapter 4:

{

"name": "package.json",

"devDependencies": {
I|karmall : I|*I|,
"karma-chrome-launcher": "*",
"karma-firefox-launcher": "*",
"karma-jasmine": "*",
"karma-junit-reporter": "*",
"karma-coverage": "*"

Open a command-line window on your system, and navigate to the root of the Chapter 5
project. You should see the package.json file when you list out the files in the folder. Now
type the following command to install the Node.js dependencies defined in the
package.json file. This is the same process described in Chapter 4:

npm install

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Configuration

Now we will create a new Karma configuration file named karma.conf.js inside the
project’s test folder, as we did in Chapter 4. Do the following;:

1. Right-click the project in NetBeans.
2. Select “New” - “Other” — “Unit Tests.”
3. Create a new Karma configuration file inside the test folder.

Edit the new karma.conf.js file and add the code shown here:

/* chapter5/karma.conf.js */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/*.js",
"test/**/*Spec.js"

1

exclude: [

1

autowatch: true,

frameworks: [
"jasmine"

1

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine"

]

1)
}

Now do the following to configure Karma as the test framework:

1. Right-click the project.

2. Select “Properties.”

3. Select “JavaScript Testing” from the list of categories.

4. Select “Karma” as the testing provider.

5. Select the location of the karma-cli tool installed in Chapter 4.

6. Select the location of the karma.conf.js file just created, and select “OK.”

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Specifications
Now we need to add new test specifications for the Chapter 5 project. Do the following:

1. Create a new folder named unit under the test folder of the project.
2. Create a new JavaScript file named controllerSpec.js under the unit folder.

3. Enter the code shown here in the new file:

/* chapter5/controllerSpec.js */
describe('AngularJS Blog Application', function () {
beforeEach(module('blogApp'));

describe('BlogCtrl', function () {
var scope, ctrl;

beforeEach(inject(function ($rootScope, $controller) {

scope = $rootScope.$new();
ctrl = $controller('BlogCtrl', {$scope: scope});

)i

it('should create show blog entry count', function () {
console.log("blogList:" + scope.blogList.length);
expect(scope.blogList.length).toEqual(2);
1)
1)

describe('BlogVviewCtrl', function () {
var scope, ctrl, $httpBackend;

beforeEach(inject (function (_$httpBackend_,
$routeParams, $rootScope, $controller) {
$httpBackend = _$httpBackend_;
$httpBackend.expectGET('blogPost').respond({_id: '1'});

$routeParams.id = '1"';
scope = $rootScope.$new();

ctrl = $controller('BlogviewCtrl', {$scope: scope});
i9DF

it('should show blog entry id', function () {
expect(scope.blogEntry._id).toEqual(l);
ioF
i9F
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing

The new test specification will unit test both controllers. Right-click the project and select
“Test” from the menu. Karma will start. You should see both Chrome and Firefox browser
windows open. The NetBeans test results window should open and display two passed
tests for Chrome and two passed tests for Firefox.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 5
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing

Next, we need to create a Protractor configuration file for the project. Create a new
JavaScript file named conf.js under the test folder of the Chapter 5 project. Enter the code
shown here in the new file:

/* chapter5/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification
Now we need to create a Protractor test specification. Do the following:

1. Create a new folder under the test folder of the project and name it eZe.
2. Create a new JavaScript file inside the new eZe folder and name it blog-spec.js.

Then copy the code shown next into the new blog-spec.js file.

WARNING

Make sure the lines browser.get("http://localhost:8383/AngularJsBlog/"); match the URL that you
use on your system to call the blog application. The URL can be different for different development
environments and can depend on how you named your project.

/* chapter5/blog-spec.js */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){

browser.get("http://localhost:8383/AngularJsBlog/");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the blog list
var blogList = element.all(by.repeater('blogPost in blogList'));

//tests the size of the blogList
expect(blogList.count()).toEqual(2);

browser.get(
"http://localhost:8383/AngularJsBlog/#!/blogPost/1");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment list
var commentList = element.all(
by.repeater('comment in blogEntry.comments'));

//checks the size of the commentList
expect(commentList.count()).toEqual(2);
1)
1

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing

Start a new command window and enter the following command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 5 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script navigate
through the pages of the blog application. When the Protractor script has finished, the
browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 1.377 seconds
1 test, 4 assertions, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

In this chapter we built our view using Twitter Bootstrap. We also made our application
responsive to different screen sizes using CSS3. We configured both Karma and Protractor
for our blog project, and ran both unit and end-to-end tests.

We will now cover REST services and how they are used in AngularJS. Then we will
move on to the model.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. AngularJS and REST Services

In the new era of mobile everywhere, the business logic for AngularJS applications should
always be placed in REST services whenever possible. AngularJS applications should be
kept clean and simple. Why? As AngularJS evolves over the next few years, it is very
possible that most AngularJS applications will be rewritten.

This means that any business logic placed inside an AngularJS application will need to be
rewritten as well — a serious consideration for applications containing large amounts of
business logic. REST services, on the other hand, may be around for years to come. As
web services technologies evolve, many REST services may undergo upgrades and
modifications, but a complete service rewrite is unlikely in most cases. The best place for
business logic is the place that will undergo the least amount of change and be available to
all types of applications, now and in the future.

www.it-ebooks.info

http://www.it-ebooks.info/

REST Services

REST (REpresentational State Transfer) services allow for a “separation of concerns.”
REST services are not concerned with the user interface or user state, and clients that use
REST services are not concerned with data storage or business logic. Clients can be
developed independently of the REST services, as we have shown in previous chapters,
using mock data. REST services can likewise be developed independently of the client,
with no concern for client specifics or even the types of clients using the services. REST
services should perform in the same way for all clients.

REST services should be stateless. A REST service should never hold data in a session
variable. All information needed for a REST service call should be contained in the
request and header passed from the client to the service. Any state should be held in the
client and not in the service. There are many ways to hold state in an AngularJS
application, including local storage, cookies, or cache storage.

A REST web service is said to be RESTful when it adheres to the following constrants:

m [t’s URL-based (e.g., http://www.micbutton.com/rs/blogPost).
m [t uses an Internet media type such as JSON for data interchange.
m [t uses standard HTTP methods (GET, PUT, POST, DELETE).

HTTP methods have a particular purpose when used with REST services. The following is
the standard way that HTTP methods should be used with REST services:

1. posT should be used to:

a. Create a new resources.

b. Retrieve a list of resources when a large amount of request data is required to
be passed to the service.

2. PUT should be used to update a resource.
3. GET should be used to retrieve a resource or a list of resources.
4. DELETE should be used to delete a resource.

For example, the following would be the proper use of HTTP methods:

1. POST: http://www.micbutton.com/rs/blogPost to create a new blog post
2. PUT: http://www.micbutton.com/rs/blogPost to update a blog post

3. GET: http://www.micbutton.com/rs/blogPost/50 to get the blog post with id
equal to 50

4. DELETE: http://www.micbutton.com/rs/blogPost/50 to delete the blog post with

www.it-ebooks.info

http://www.it-ebooks.info/

id equal to 50

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS and REST Services

AngularJS REST service calls are asynchronous Ajax calls based on the $q service’s
promise and deferred APIs. We will not cover promises, deferred objects, or Ajax in this
book. If you do not understand how Ajax is used to make asynchronous calls, now would
be a good time to research these topics. Making asynchronous Ajax REST service calls is
not specific to AngularJS or any other client-side JavaScript framework. Many libraries
provide Ajax functionality, including jQuery, Dojo, and others.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways to Create AngularJS Services

There are three ways to create and register services in AngularJS. They are as follows:

m Using the service function
m Using the provider function
m Using the factory function

Here’s how to create a service with the service function (we will not use this method to
create services in this book):

/* chapter6/ service function */

var blogServices = angular.module('blogServices', ['ngResource']);
blogServices.service('BlogPost', [..]

You can also create services with the provider function, as shown here:

/* chapter6/ provider function */

var blogServices = angular.module('blogServices', ['ngResource']);
blogServices.provider('BlogPost', [..]

The third way to create services in AngularJS is with the factory function. This is the

most commonly used method, and the method we will use to create AngularJS services
throughout this book:

/* chapter6/ factory function */

var blogServices = angular.module('blogServices', ['ngResource']);
blogServices.factory('BlogPost', [..]

We will now look at how to connect to REST services in AngularJS, although we will not
actually implement the service code in our blog application until Chapter 7. We need to
get a good theoretical understanding of AngularJS services before we start coding. Once
we have that understanding, we will be set for Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Ways to Communicate with REST Services

There are currently two ways to communicate with REST services using AngularJS:
The $http service

This service provides low-level interaction with REST services using the browser’s
XMLHt tpRequest object.

The $resource object

This object provides a high-level approach to interacting with REST services,
simplifying the process considerably.

We will focus mostly on using the $resource object for communicating with REST
services and leave the s$http service discussion to other books (although we will use the
$http service in later chapters for handling Basic Authentication headers). All our project
code uses the $resource object.

The following code shows how to define an AngularJS service that can be used to interact
with the BlogPost REST service. Notice that we pass the REST service URL to the

$resource object. The methods defined match the REST services that are defined on that
particular URL. Once the BlogPost service is defined, it can be used like a standard
JavaScript object to access the different REST services defined on this URL:

/* chapter6/services.js */

'use strict';
/* Services */

var blogServices =
angular.module('blogServices', ['ngResource']);

blogServices.factory('BlogPost', ['$resource',
function($resource) {

return $resource("http://www.micbutton.com/rs/blogPost", {3}, {
get: {method: 'GET', cache: false, isArray: false},
save: {method: 'POST', cache: false, isArray: false},

update: {method: 'PUT', cache: false, isArray: false},
delete: {method: 'DELETE', cache: false, isArray: false}

1
1)

Using the $resource object is by far the easiest way to call REST services. As you can see
from this example, the AngularJS service code is straightforward and really fairly
uncomplicated. Even when many services are defined, the services.js file is relatively
simple.

The AngularJS shttp service mentioned earlier is another way to call REST services.
However, using the $http service would require many more lines of code related to REST
service calls than we need using the $resource object. We do use the $http service in
several places in the blog application, though, such as to send a Basic Authentication

www.it-ebooks.info

http://www.it-ebooks.info/

header to REST services. We will cover that in later chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Project for REST

Before we can use our service, the new services.js file must be loaded at runtime and the
new services module, blogServices, must be specified as a dependency of the application
at startup time. Here is the line that should be added to the index.html file to load the
services.js file:

/* chapter6/index.html excerpt */

<script src="js/services.js"></script>

And here is the complete index.html file, with this addition:

<!-- chapter6/index.html complete file -->

<IDOCTYPE html>
<html lang="en" ng-app="blogApp">

<head>
<title>AngularJS Blog</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link rel="stylesheet" href="1lib-css/bootstrap.min.css" media="screen"/>
<link rel="stylesheet" href='"css/styles.css" media="screen'"/>

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/bootstrap.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>

<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>
<script src="js/services.js'"></script>
</head>

<body>

<div ng-view></div>

</body>

</html>

The following code shows how we use inline annotations to add the new BlogServices

module as a dependency of the application at startup time. Once the new module is added
here, the services defined on the module can be used by any controller in the application:

/* chapter6/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers’,
'blogServices'

1);

www.it-ebooks.info

http://www.it-ebooks.info/

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html",
controller: 'BlogCtrl'
}) .when('/blogPost/:id", {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'

IOF

$locationProvider.html5Mode(false).hashPrefix('!");
1

www.it-ebooks.info

http://www.it-ebooks.info/

REST Services and Controllers

Now let’s look at how to use the BlogPost service inside the BlogviewCtrl controller.
First we must define the service as a requirement of the controller, as shown here. We then
make a call to the get method and pass the id as an argument. We also define two
callback functions, success and error (if you do not understand JavaScript callback
functions, now would be a good time to stop and research how they work):

/* chapteré6/controllers.js excerpt */

blogControllers.controller('BlogViewCtrl',
['$scope', '$routeParams', 'BlogPost’,

function BlogViewCtrl($scope, $routeParams, BlogPost) {
var blogId = $routeParams.id;

BlogPost.get({id: blogId},
function success(response) {

console.log("Success:" + JSON.stringify(response));
$scope.blogEntry = response;

i

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
}
)i
1)

When a call is made to the BlogviewCtrl controller, the id is retrieved from
$routeParams. A call is then made to the get method of the BlogPost service, passing the
id as an argument. At that point, the call to the controller completes.

Theoretically we don’t know when the REST service call will return results, but when it
does, either the success callback function or the error callback function will be called. If

the REST service call fails, the code inside the error callback function should handle the
error condition. If the REST service call is successful, the code inside the success
callback function handles the success functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

The JSON Response

Now let’s take a look at the JSON response object returned upon success. If the REST
service call is successful, we set the JSON returned as the value of a scope property named
blogEntry. The property is at that point bound to the view, and AngularJS updates the
view with the new values that were retrieved from the REST service call. If the REST
service call fails, the screen is not updated, but we log the error to the console to help
diagnose the failure. The JSON response object returned from a successful call looks like
this:

{ "chapter: 6,"JSON": "response'"}

{

Hiid” : 1,

"date":1400623623107,

"introText":"This is a blog post about AngularJs.
We will cover how to build",

"blogText":"This is a blog post about AngularJs.
We will cover how to build a blog and how to add
comments to the blog post.",

"comments": [

{

"commentText":"Very good post. I love it."
iy
{

"commentText":"When can we learn services."
}

]
}

www.it-ebooks.info

http://www.it-ebooks.info/

List Services

If we wanted a list of blog posts, we could define the following REST service: GET:
http://www.micbutton.com/rs/blogList. Let’s take a look at how we would define that
service in the services.js file. Notice that we specify isArray: true. This defines the
service as returning a list and not an individual resource:

/* chapter6/services.js excerpt */

blogServices.factory('BlogList', ['$resource',
function($resource) {

return
$resource
("http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",
{3, {

get: {method: 'GET', cache: false, isArray: true}
1

31

Following is the controller code used to access the BlogList service. We inject the service
into the controller as we did earlier, and like before, we pass success and error callback

functions to the service call. The response from a successful service call is assigned to the
blogList property of the scope and passed to the view:

/* chapter6/controllers.js excerpt */

blogControllers.controller('BlogCtrl', ['$scope', 'BlogList',
function BlogCtrl($scope, BlogList) {

BlogList.get({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogList = response;

+
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
}
)i
)

We access the JSON inside the view by using the blogList scope property, as shown here.

This is the same technique we used in Chapter 5. We use the ng-repeat directive to iterate
over the list as before:

<!-- chapter6/main.html excerpt -->
<div ng-repeat="blogPost in blogList">

<div class="blog-post-outer">
<div class="blog-intro-text">

Posted: {{blogPost.date | date:'MM/dd/yyyy @ h:mma'}} </div>
<div class="blog-intro-text"> {{blogPost.introText}} </div>

<div class="blog-read-more">
Read More

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Services with Karma

The best way to test AngularJS services is with Karma. We used Karma as one of our test
frameworks in previous chapters. Unit testing a service lets us validate that the unit of
code that is used to build the service is working correctly. Unit testing an AngularJS
service that connects to a REST service is a potential cause of errors, however.

REST service calls are asynchronous, so there can be a delay before the service call results
are available to the part of the application that initiated the REST call. Considering that a
REST service is not actually part of the unit of code that we would be testing with a unit
test, we shouldn’t be too concerned about REST calls when unit testing.

Karma, as I mentioned before, should be the unit test framework for our blog application.
The following code shows how we modify a normal Karma configuration file to allow us
to test code where the AngularJS $resource object is used. Notice the line

"public_html/js/libs/angular-resource.min.js". With that line, we tell Karma to use

the AngularJS angular-resource.min.js file. That file is needed only when we’re working
with code that calls REST services:

/* chapter6/karma.conf.js */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/*.js",
"test/**/*Spec.js"

1,

exclude: [

1,

autowatch: true,

frameworks: [
"jasmine"

1,

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine"

13K
}

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Service Specifications

In order to test AngularJS services, we need to add a test specification specifically for the
blog application services. The following code shows a servicesSpec.js file. The test
specification has unit testing for two services. The first unit test is for the BlogList

service, and the second test is for the BlogPost service:

/* chapter6/servicesSpec.js */
describe('AngularJS Blog Service Testing', function () {

describe('test BlogList', function () {
var $rootScope;
var blogList;

beforeEach(module('blogServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogList = $injector.get('BloglList');
1)

it('should test BloglList service', function () {
expect(blogList).toBeDefined();

1K

1)

describe('test BlogPost', function () {
var $rootScope;
var blogPost;

beforeEach(module('blogServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogPost = $injector.get('BlogPost');
)

it('should test BlogPost service', function () {
expect(blogPost).toBeDefined();
1)

13K
s

Notice in this code that we use $injector to inject the two services directly into the test

scripts. As I mentioned earlier, we are not testing the REST services themselves; we are
only testing the AngularJS services that connect to REST services. The tests should
succeed even if the REST services are down for some reason.

www.it-ebooks.info

http://www.it-ebooks.info/

End-to-End Testing

End-to-end testing done with Protractor is a much better way to test the functionality of
REST services and the applications associated with them. Most modern software
development teams use some type of continuous integration (CI) build system. Most CI
systems can be configured to run end-to-end tests using Protractor.

Protractor E2E testing can even be configured to run tests against production
environments. More often, however, E2E testing is written to run against services running
on QA servers. E2E testing is a good way to test an application the same way a user would
use the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Configuration

The following is a configuration file for Protractor. A specification file named blog-spec.js
is referenced from the configuration file:

/* chapter6/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

Let’s take a look at the contents of the blog-spec.js file. You can see that the
browser.get (URL) call can be made against any accessible URL. The URL could point to

a local development box, a QA server, or a production server. REST services can be
thoroughly tested with a Protractor test script:

/* chapter6/blog-spec.js Protractor test specification */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){

browser.get(
"http://localhost:8383/AngularJsBlogChapter6/");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the blog list
var blogList =
element.all(by.repeater('blogPost in blogList'));

//tests the size of the blogList
expect(blogList.count()).toEqual(l);

browser.get(
"http://localhost:8383/AngularJsBlogChapter6
/#!/blogPost/5394e59c4f50850000e6b7ea");

expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment 1list
var commentList =
element.all(by.repeater('comment in blogEntry.comments'));

//checks the size of the commentList
expect(commentList.count()).toEqual(2);
1)
b

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

This concludes our discussion of REST service basics. Throughout the rest of this book
we’ll be working with live REST services. As we proceed, you will gain a better
understanding of REST service concepts. We will now start working with actual REST

services created especially for this book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. AngularJS Models

AngularJS models are held in the $scope object. In AngularJS, $scope is used to gain
access to the model related to a particular controller. $rootScope is a parent scope that can

be used to save and access model properties that span multiple controllers. The use of
$rootScope is highly discouraged in most designs, however. There is only one
$rootScope in an application. $scope is a child scope of $rootScope.

A properly designed AngularJS application will have little or no use for $rootScope to
store model properties. In this chapter we will focus only on $scope, used to store the
model retrieved from REST services.

www.it-ebooks.info

http://www.it-ebooks.info/

Public REST Services

The REST services used for this chapter are available at http://nodeblog-
micbuttoncloud.rhcloud.com/NodeBlog. The services are open to the public and written in
JavaScript using Node.js, ExpressJS, and MongoDB. In Chapter 11, you will deploy the
same REST services with your AngularJS blog application as a MEAN stack (MongoDB,
ExpressJS, AngularJS, and Node.js) application. You will then deploy the MEAN stack to
the cloud using a free RedHat OpenShift account.

The following excerpt shows how AngularJS services access the REST services used for
this chapter. The REST services return the same JSON that was previously hardcoded in
the controllers:

/* chapter7/services.js excerpt */

$resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id"

$resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList"

The complete modified services.js file is shown here:

/* chapter7/services.js complete file */
'use strict';
/* Services */

var blogServices =
angular.module('blogServices', ['ngResource']);

blogServices.factory('BlogPost', ['$resource',
function($resource) {
return $resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id",
{3 {
get: {method: 'GET', cache: false, isArray: false},
save: {method: 'POST', cache: false, isArray: false},
update: {method: 'PUT', cache: false, isArray: false},
delete: {method: 'DELETE', cache: false, isArray: false}
1
)

blogServices.factory('BlogList', ['$resource',
function($resource) {
return $resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",

{3 {
get: {method: 'GET', cache: false, isArray: true}
1)

1)

www.it-ebooks.info

http://www.it-ebooks.info/

Changes to the Controllers

Shown next is the controllers.js file. The changes made here greatly simplify the
controllers. The services needed for each individual controller are injected and made
accessible for that particular controller to use. The blog ID is passed as a path parameter
argument to the BlogPost service. A path parameter is used because we defined /id: at

the end of the BlogPost service URL in the services.js file. If we removed the /:id from
the end of the service URL, AngularJS would pass the value as a query parameter
argument instead. The updated file looks like this:

/* chapter7/controllers.js */

'use strict';
/* Controllers */

var blogControllers =
angular.module('blogControllers', []);

blogControllers.controller('BlogCtrl’,
['$scope', 'BlogList',
function BlogCtrl($scope, BlogList) {
$scope.blogList = [];
BlogList.get({},
function success(response) {
console.log("Success:" +
JSON.stringify(response));
$scope.bloglList = response;

iy

function error(errorResponse) {
console.log("Error:" +
JSON.stringify(errorResponse));

)
1)

blogControllers.controller('BlogVviewCtrl', ['$scope',
'$routeParams’', 'BlogPost',
function BlogViewCtrl($scope, $routeParams, BlogPost) {
var blogId = $routeParams.id;
$scope.blg = 1;
BlogPost.get({id: blogId},
function success(response) {
console.log("Success:" +
JSON.stringify(response));
$scope.blogEntry = response;

iy

function error(errorResponse) {
console.log("Error:" +
JSON.stringify(errorResponse));

1)

www.it-ebooks.info

http://www.it-ebooks.info/

Model Properties

Once you’ve added the JSON returned from the REST service to the model by assigning it
to a scope property, that JSON is made available to the view. All scope properties are
accessed from inside the view, as described in previous chapters. There are no changes
that need to be made in the view.

If you have used other JavaScript client-side frameworks, by now you should see the
simplicity of AngularJS models. With AngularJS, there are no model classes that need to
be defined; you don’t need to write model Ajax code or create model objects that have to
be bound to the views. All you have to do is assign model properties to the scope. The
AngularJS framework handles the rest.

AngularJS models greatly simplify the creation of JavaScript applications. You can cut
what potentially could be thousands of lines of model-related code down to only a few
lines. By cutting lines of code you also cut valuable development time, and potentially the
number of developers needed on a project. The simplicity of the model code also makes
applications easier to maintain or enhance, once again cutting costs by cutting
development time.

www.it-ebooks.info

http://www.it-ebooks.info/

Blog Application Public Services

Now we will make the needed changes to enable our blog application to use the public
REST services discussed in the previous chapter. First, we must add the services.js file to
our project.

Right-click the project and add a new JavaScript file named services.js under the js folder,
as shown in Figure 7-1.

AngularJsBlogChapter7 - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Windo

i & H @ e- T3 b-B

Projects x Files Services =
v B AngularJsBlogChapter?
v & Site Root
> [css
» @ Ffonts
v i jS
» @ libs
app.js
controllers.js

B services.js
» @ lib-css
» @ partials
[€ index.html
» & Important Files

Figure 7-1. Adding the services.js file

Add this code to the newly created file:

/* chapter7/services.js */

'use strict';
/* Services */

var blogServices =
angular.module('blogServices', ['ngResource']);

blogServices.factory('BlogPost', ['$resource',

function($resource) {
return $resource(

www.it-ebooks.info

http://www.it-ebooks.info/

"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blog/:id",
3 {
get: {method: 'GET', cache: false, isArray: false},
save: {method: 'POST', cache: false, isArray: false},
update: {method: 'PUT', cache: false, isArray: false},
delete: {method: 'DELETE', cache: false, isArray: false}
1)
1

blogServices.factory('BlogList', ['$resource',
function($resource) {
return $resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/blogList",

i {
get: {method: 'GET', cache: false, isArray: true}

IOF
)

Now add the new services.js file to the index.html file’s <head> section, as shown here, so
the file can be loaded by our AngularJS application:

<!-- chapter7/index.html excerpt -->

<script src="js/services.js'"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying the HTML

The complete index.html file is shown here for convenience:

<!-- chapter7/index.html -->

<IDOCTYPE html>
<html lang="en" ng-app="blogApp">

<head>

<title>AngularJS Blog</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link rel="stylesheet" href="lib-css/bootstrap.min.css" media="screen"/>
<link rel="stylesheet" href="css/styles.css" media="screen"/>

<script
<script
<script
<script
<script
<script

<script
<script
<script

</head>
<body>

<div ng-

</body>
</html>

src="js/libs/jquery-1.10.2.min.js"></script>
src="js/libs/bootstrap.min.js"></script>
src="js/libs/angular.min.js"></script>
src="js/libs/angular-route.min.js"></script>
src="js/libs/angular-resource.min.js"></script>
src="js/libs/angular-cookies.min.js"></script>

src="js/app.js"></script>
src="js/controllers.js"></script>
src="js/services.js"></script>

view></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying App.js

The newly created services module must be added to the application before it can be used.
We add the new blogServices module as a dependency of the application at startup time

using inline array annotations, as shown here. Now the new services can be injected and
used in controllers whenever needed. We can now replace the hardcoded JSON used as
mock data in previous chapters:

/* chapter7/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers"',
'blogServices'

1)

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}) .when('/blogPost/:id", {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'
3

$locationProvider.html5Mode(false).hashPrefix('!");
1

www.it-ebooks.info

http://www.it-ebooks.info/

Modifying the Controllers

Now let’s see how to use the new services in our controllers. Replace the previous code in
controllers.js with the code shown next. The code shows how we inject the services into
each controller. We populate the scope properties inside the success callback function, as
explained in previous chapters.

As explained earlier, the success callback function is only called when the REST service

call returns successfully. At that point, we can safely populate the scope properties. The
scope properties are then bound to the view by the AngularJS framework:

/* chapter7/controllers.js */

'use strict';
/* Controllers */

var blogControllers =
angular.module('blogControllers', []);

blogControllers.controller('BlogCtrl’,
['$scope', 'BlogList',
function BlogCtrl($scope, BlogList) {
BlogList.get({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogList = response;
+
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
1)
)

blogControllers.controller('BlogviewCtrl',
['$scope', '$routeParams', 'BlogPost',
function BlogViewCtrl($scope, $routeParams, BlogPost) {

var blogId = $routeParams.id;

BlogPost.get({id: blogId},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogEntry = response;

iy

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
1)
)

We also made some changes to the controllers.js file to make testing easier. Testing
AngularJS controllers can be more complex when REST services are involved. As
mentioned previously, we don’t know when REST services will return results, because
they are asynchronous calls.

Asynchronous REST service calls will always cause controller unit tests to fail. Unit tests
of controllers that depend on REST services will finish execution before the REST
services ever return results, so any scope properties used by controller unit tests will be
missing when the test script executes if those properties are returned from a REST service
call.

There are ways to add a delay and make unit test scripts wait on the REST service results,
but they add an unneeded level of complexity to the test scripts. Unit testing, after all,

www.it-ebooks.info

http://www.it-ebooks.info/

should be a test of a unit of code and not an end-to-end test. Protractor E2E tests are a
better way to test REST services.

Look at the code that follows. The BlogList service is injected into the BlogCtrl
controller. We make an asynchronous call to the get method of the BlogList service by
passing two callback functions to the call. The success callback function returns a
successful service response object, and the error callback function returns any errors if
the service call fails:

/* chapter7/controllers.js excerpt */

blogControllers.controller('BlogCtrl', ['$scope', 'BlogList',
function BlogCtrl($scope, BlogList) {
$scope.blogList = [];
BlogList.get({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogList = response;

3

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

}
);
1)

It may take a second or more for the REST service to return results. Once the REST
service does return results, the success callback function will be called. Unfortunately, the

unit test script will have finished execution long before. We remedy this issue by making a
change to the controller.

Notice the assignment $scope.blogList = []; in the preceding code. The assignment

has no impact on the functionality of the controller, but it has a major impact on the unit
test script associated with the BlogCtr1 controller. The assignment initializes the scope

blogList property with an empty array.

The following code shows how the empty array is used to test the blogCtrl controller.
Notice the line of code checks that the array length is equal to O:

/* chapter7/controllerSpec.js excerpt */

expect(scope.blogList.length).toEqual(0);

We can then rest assured that the controller is working successfully from a “unit of code”
perspective. You will see later how to make sure the REST service worked as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Application

In NetBeans, right-click and run your AngularJS blog application. You should see the
same data displayed on the screen that was there when the data was hardcoded. If you are
using Chrome as your browser, you can turn on “Developer Tools” and click the
“Network” menu button to see the REST service calls that are made as you click various
links in the application. You can also click the Headers, Preview, Response, and Timing
tabs in Developer Tools to see specific information about each service call.

Using Chrome Developer Tools is also a great way to troubleshoot issues with AngularJS
REST service calls if you have problems. There’s a great JavaScript debugger that can be
used to debug REST service calls and other JavaScript issues.

If you are not familiar with Chrome Developer Tools, see the Google Chrome site for
more information. In addition to the Chrome debugger, NetBeans also has a debugger
built in for debugging JavaScript applications. For more information on debugging
JavaScript in NetBeans, take a look at the NetBeans website.

www.it-ebooks.info

https://developer.chrome.com/devtools
http://www.it-ebooks.info/

Testing Services with Karma

The best way to test AngularJS services is with Karma. We used Karma as one of our test
frameworks in previous chapters. You should have already created the package.json file
for the blog project back in Chapter 5. The file is shown again here for reference:

/* chapter7/package.json */

{

"name": "package.json",

"devDependencies": {
llkarmall: ll*ll,
"karma-chrome-launcher": "*",
"karma-firefox-launcher": "*",
"karma-jasmine": "*",
"karma-junit-reporter": "*",
"karma-coverage": "*"

We also created the Karma configuration file for the blog project back in Chapter 5, but
we need to make a small change to that: we need to add the AngularJS angular-
resource.min.js file to the karma.conf.js file to test our services. The angular-
resource.min.js file is used by both the BlogList and BlogPost services. The modified
karma.conf.js file looks like this:

/* chapter7/karma.conf.js */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/*.js",
"test/**/*Spec.js"

1,

exclude: [

1,

autowatch: true,

frameworks: [
"jasmine"

1,

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine"

13K
};

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Service Specifications
Now we need to add new service test specifications for the blog project. Do the following:

1. Create a new JavaScript file named servicesSpec.js under the unit folder.

2. Enter the following code in the new file:

/* chapter7/servicesSpec.js */

/* Jasmine specs for controllers */
describe('AngularJS Blog Service Testing', function () {
describe('test BlogList', function () {
var $rootScope;
var bloglList;

beforeEach(module('blogServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogList = $injector.get('BlogList');
1)

it('should test BlogList service', function () {
expect(blogList).toBeDefined();
1}
1
describe('test BlogPost', function () {
var $rootScope;
var blogPost;
beforekEach(module('blogServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogPost = $injector.get('BlogPost');
1)
it('should test BlogPost service', function () {
expect(blogPost).toBeDefined();
1)
1
1

It is important to point out here that our test specifications for the blog services do not
depend on the presence and functionality of the associated REST services that get called
by those services. Karma unit tests should test that the AngularJS services can be injected.
If the tests are successful, that proves that the services are constructed properly. Our unit
testing of services does not, however, prove that the REST services are working.

As I mentioned before, Karma unit tests often run inside some continuous integration (CI)
framework. CI systems are often configured to trigger the running of unit tests every time
a change is pushed to the source repository. The existence and accessibility of REST
services can’t always be guaranteed when you’re unit testing inside a CI.

Unit tests shouldn’t depend on the existence of REST services or other network-related
devices. Unit testing should test the individual units of code and not try to do end-to-end
testing. We will test the functionality of our REST services when we do E2E testing with
Protractor. Any problems related to the calling of REST services will show as failures in
Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing

The new test specifications will unit test the new services. The controllers will also be
tested because we still have the controllerSpec.js file in our system. Our Karma
configuration file looks for all test files that end in Spec.js.

Right-click the project and select “Test” from the menu. Karma will start. You should see
both Chrome and Firefox browser windows open. The NetBeans test results window
should open and display four passed tests for Chrome and four passed tests for Firefox.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 7
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing

We already created a Protractor configuration file for the blog application in Chapter 5.
The Protractor configuration file is shown here for reference:

/* chapter7/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

Now we need to change the Protractor test specifications created earlier. The new
Protractor tests need to interact with the REST services that we use in this chapter.

Copy the code shown here into the blog-spec.js file. Make sure the lines like
browser.get("http://localhost:8383/AngularJsBlog/"); match the URL that you

use on your system to call the blog application. The URL can be different for different
development environments and can depend on how you named your project:

/* chapter7/blog-spec.js Protractor test specification */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){

browser.get(
"http://localhost:8383/AngularJsBlogChapter7/");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the blog list
var blogList =
element.all(by.repeater('blogPost in blogList'));

//tests the size of the blogList
expect(blogList.count()).toEqual(l);
browser.get(
"http://localhost:8383/AngularJsBlogChapter?
/#!/blogPost/5394e59c4f50850000e6b7ea");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment 1list
var commentList =
element.all(by.repeater('comment in blogEntry.comments'));

//checks the size of the commentList
expect(commentList.count()).toEqual(2);
i9F
1

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing

Start a new command window and enter the following command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 5 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script navigate
through the pages of the blog application. When the Protractor script has finished, the
browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 1.52 seconds
1 test, 4 assertions, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

This concludes our discussion of AngularJS models. We added code to make our blog
application work with REST services running in the cloud, and we wrote unit tests to test
the new services that we added. We then used Protractor to do end-to-end testing that
validated the functionality of our REST services and the AngularJS services associated
with those REST services.

We will talk about models again in Chapter 11, when we deploy our application to the
cloud as a MEAN stack application. Next, we will add some non-REST services to handle
business logic and see the power of AngularJS in action.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Services and Business Logic

Not all AngularJS services connect to REST services. Services can also contain business
logic that is used by multiple controllers. As I mentioned before, if the business logic can
be moved to a REST service, that is where it should be defined. Defining business logic in
REST services assures that the same logic will be readily available to all client-side
applications.

Often, however, it is not possible to move all business logic to REST services. Often that
same business logic is needed across multiple controllers. That is where AngularJS non-
REST services come in handy once again. In this chapter we will look at several examples
of where AngularJS non-REST services are useful.

Take, for example, a situation where a user needs to authenticate across multiple REST
services. One way to do that is by using Basic Authentication, where the user’s username
and password are passed to a service as a token in the HTTPS header during a service call.
The token is in the form of “username:password” and encoded with base64.

As we know, a REST service shouldn’t hold state, and holding a user’s credentials in a
session variable on the server is a serious security concern. Using a session variable to
hold authentication state on the server side is usually not acceptable in most REST service
designs. AngularJS services are great for handling such situations.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling User Authentication

First, we need a way to validate a user’s credentials over HTTPS. The following code
shows a REST service used to authenticate a user:

/* chapter8/ login REST service URL from services.js */

POST: https://www.micbutton.com/user/login

Here is the JSON request for the REST service:

{

"username":"ken",
"password": "password"

}

And here is the JSON response for the REST service:

"authenticated":true

}

This particular service call would normally be open to any user and therefore would not
require authentication. Allowing all users to access this service uninhibited means any
user can try to validate against the service. If there is a possibility of abuse, the service
could be secured at the network level, or a challenge and response system could be used to
discourage unwanted users.

Once a user makes a call to the login service and the user’s credentials are validated, it is
the job of the AngularJS application to temporarily store those credentials. It is also the
job of the AngularJS application to direct the user to a login page when the user has not
authenticated. AngularJS non-REST services play a major role in this process.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Basic Authentication

If the REST services are designed properly to require authentication on all services that
contain private data, the AngularJS application user will never have access to private data
without providing the proper credentials. Once the user provides valid user credentials, the
AngularJS application can store those credentials in a cookie or some other temporary
storage. Cookies are a good place to store user credentials because all modern browsers
store cookies mapped to a particular web domain. Cookie access is then granted only to
the application that actually created the cookie on that particular domain. Other JavaScript
applications running in the browser only have access to cookies they create, which are
associated with their respective domains.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating AngularJS Services

As I mentioned in Chapter 6, there are three ways to create services in AngularJS. A
service can be created with the service function, as shown here:

/* chapter8/ service function */

var blogServices = angular.module('blogServices',
["'ngResource']); blogServices.service('BlogPost', [..]

or with the provider function:

/* chapter8/ provider function */

var blogServices = angular.module('blogServices"',
["'ngResource']); blogServices.provider('BlogPost', [..]

The third way to create services in AngularJS is with the factory function. This is the

method we will use to create AngularJS services in this chapter and throughout this book,
because it is the most commonly used method. The following code shows how to create a
service with the factory function:

/* chapter8/ factory function */

var blogServices = angular.module('blogServices"',
['ngResource']); blogServices.factory('BlogPost', [..]

www.it-ebooks.info

http://www.it-ebooks.info/

Holding User Credentials

Now let’s take a look at an AngularJS business logic service designed to save the user’s
credentials once the user has authenticated. The service makes use of AngularJS cookies,
which we can include in an application by including the angular-cookies.min.js library
file. The service has two parameters defined: the username (un) and password (pw).

The two values assigned to the service are used to build the token that is sent in the
HTTPS header of each REST service call. The AngularJS service then stores the token
and the username as cookies for use later:

/* chapter8/ non-REST business service to set user credentials */

blogBusinessServices.factory('setCreds',
['$cookies', function($cookies) {
return function(un, pw) {
var token = un.concat(":", pw);
$cookies.blogCreds = token;
$cookies.blogUsername = un;
}
1)

Here’s what a call to the setCreds business logic service to save an authenticated user’s
credentials looks like:

/* chapter8/controllers.js excerpt */

setCreds($scope.username, $scope.password);

www.it-ebooks.info

http://www.it-ebooks.info/

Checking User Credentials

Now let’s look at a business logic service that checks the status of a user’s credentials. If
the service returns false, the AngularJS application should redirect the user to the login
page. It is also important to remember to save the user’s credentials by making a call to
setCreds any time the user’s password is changed:

/* chapter8/ non-REST business logic service to check credentials */

blogBusinessServices.factory('checkCreds',
['$cookies', function($cookies) {

return function() {
var returnval = false;
var blogCreds = $cookies.blogCreds;
if (blogCreds !== undefined && blogCreds !== "") {
returnval = true;

}
return returnval;

B
)

The service simply looks for the existence of the blogCreds cookie and returns true if the

cookie exists. If a subsequent service call fails with the saved credentials and returns an
HTTP 401 error code, it is the job of the AngularJS application to delete the saved cookies
and redirect the user to the login page. The following code shows a call to the checkCreds
service:

/* chapter8/controllers.js excerpt */

if (checkCreds()){
// do something to continue

}

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting User Credentials

Our next service deletes the user’s credentials once the user’s session has ended, or when
the user’s credentials failed to authenticate during a REST service call. Once the
blogCreds cookie is removed, the Angular]S application should redirect the user to the

login page:

/* chapter8/ non-REST business logic service to delete credentials */

blogBusinessServices.factory('deleteCreds',
['$cookies', function($cookies) {
return function() {
$cookies.blogCreds = "";
$cookies.blogUsername = "";
3
1)

Here’s what a call to the deletecCreds service looks like:

/* chapter8/controllers.js excerpt */

deleteCreds();

www.it-ebooks.info

http://www.it-ebooks.info/

Retrieving User Credentials

The following code shows a business logic service that retrieves the user’s token from the
blogCreds cookie. A token passed to a REST service in the HTTPS header must be

encoded with base64. The business service encodes the token in base64 and then returns
that encoded token:

/* chapter8/ non-REST business logic service to retrieve credentials */

blogBusinessServices.factory('getToken',
['$cookies', function($cookies) {
return function() {
var returnval = "";
var blogCreds = $cookies.blogCreds;
if (blogCreds !'== undefined && blogCreds !== "") {
returnval = btoa(blogCreds);

}

return returnval;
};
1)

The following code shows how the token returned from the service is used to build the
Basic Authentication header when we’re calling a REST service. This line should be
defined before every REST service call that requires authentication. The call makes use of
the AngularJS $http service:

/* chapter8/controllers.js excerpt */

$http.defaults.headers.common['Authorization'] = 'Basic ' + getToken();

The following code shows how to use the getToken service to authenticate to the Blog
service when we are saving a blog post:

/* chapter8/controllers.js excerpt */

blogControllers.controller('NewBlogCtrl',
['$scope', 'checkCreds', '$location', '$http', 'getToken',
function NewBlogCtrl($scope, checkCreds, $location, $http, getToken) {

$http.defaults.headers.common['Authorization'] = 'Basic ' + getToken();

Blog.save({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.status = response;

+
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

}
);
1)

One final business logic service that would be useful is shown next. The service retrieves
the user’s username from the blogUsername cookie. The username is then returned for use

in multiple places throughout the application. Using the getUsername service simplifies
storing and accessing the user’s username:

/* chapter8/ non-REST business logic service to retrieve username */

www.it-ebooks.info

http://www.it-ebooks.info/

blogBusinessServices.factory('getUsername',
["$cookies', function($cookies) {
return function() {
var returnval = "";
var blogUsername = $cookies.blogUsername;

if (blogUsername !== undefined && blogUsername !== "") {
returnval = blogUsername;

b

return returnval;

B
)

It should be obvious by now that AngularJS services are very valuable to have in an
application. Any time AngularJS business logic needs to be used by multiple controllers,
that logic should be defined in services.

We will now add everything that we have covered in this chapter into one file, called
businessServices.js, and add the services in that file to our blog project. In Chapter 10 we
will add a login screen and security to our blog application. With security in place, we will
then deploy our application to the cloud in Chapter 11. Before we deploy our blog
application to the cloud, however, we will add new screens in Chapter 11 to allow a user
to submit new blog posts and comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Blog Application Business Logic

Now, to add the new business services, right-click the project node and add a new
JavaScript file named businessServices.js under the js folder. Here is the code that should
be placed in the newly created services file. Notice that we have made AngularJS cookies
available by injecting ngCookies. AngularJS cookies are provided by angular-
cookies.min.js, which we already added to the project earlier:

/* chapter8/businessServices.js */

'use strict';
/* business logic services only */

var blogBusinessServices =
angular.module('blogBusinessServices', ['ngCookies']);

blogBusinessServices.factory('checkCreds',
["$cookies', function($cookies) {
return function() {
var returnval = false;
var blogCreds = $cookies.blogCreds;
if (blogCreds !== undefined && blogCreds !== "") {
returnval = true;
}
return returnval;
}
)

blogBusinessServices.factory('getToken',
['$cookies', function($cookies) {
return function() {
var returnval = "";
var blogCreds = $cookies.blogCreds;
if (blogCreds !'== undefined && blogCreds !== "") {
returnval = btoa(blogCreds);
}
return returnval;
Y
)

blogBusinessServices.factory('getUsername',
['$cookies', function($cookies) {
return function() {
var returnval = "";
var blogUsername = $cookies.blogUsername;
if (blogUsername !== undefined && blogUsername !== "") {
returnval = blogUsername;
}
return returnval;
};
)

blogBusinessServices.factory('setCreds"',
['$cookies', function($cookies) {
return function(un, pw) {
var token = un.concat(":", pw);
$cookies.blogCreds = token;
$cookies.blogUsername = un;
}
1)

blogBusinessServices.factory('deleteCreds"',
['$cookies', function($cookies) {
return function() {
$cookies.blogCreds = "";
$cookies.blogUsername = "";
1
)

www.it-ebooks.info

http://www.it-ebooks.info/

Using the Business Logic

Now to load the new business logic services, we must add the businessServices.js file to
the <head> section of index.html, as shown here:

<!-- chapter8/index.html excerpt -->

<script src="js/businessServices.js"></script>

The complete index.html file is shown here for convenience:

<!-- chapter8/index.html -->

<IDOCTYPE html>

<html lang="en" ng-app="blogApp">

<head>

<title>AngularJS Blog</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link rel="stylesheet" href="1lib-css/bootstrap.min.css" media="screen"/>
<link rel="stylesheet" href='"css/styles.css" media="screen'"/>

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/bootstrap.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>
<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>

<script src="js/services.js'"></script>

<script src="js/businessServices.js"></script>

</head>
<body>
<div ng-view></div>
</body>
</html>

We must also add the new blogBusinessServices module as a dependency of the
application at startup time. We do this using inline array annotations:

/* chapter8/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers’,
'blogServices',
'blogBusinessServices'

1);

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}).when('/blogPost/:id", {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'

13K

$locationProvider.html5Mode(false).hashPrefix('!");

www.it-ebooks.info

http://www.it-ebooks.info/

311

www.it-ebooks.info

http://www.it-ebooks.info/

Testing Services with Karma

Unit testing services is how we find defects early in the development process. In fact, unit
tests for each individual service should be written when the service is written. Although
our services in this chapter are not overly complicated, unit testing is still very important.
We will continue to use Karma for unit testing in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Configuration

We already have a Karma configuration file for our blog project, but we need to make a
modification to the file to accommodate AngularJS cookies in our Karma unit test scripts.
Since the services in this chapter rely on AngularJS cookies, we need to make the
karma.conf.js file aware of the angular-cookies.min.js file in our project.

The line in the karma.conf.js file that makes Karma aware of AngularJS cookies is shown
here:

/* chapter8/karma.conf.js excerpt */
files: [
"public_html/js/libs/angular-cookies.min.js",

1

The complete karma.conf.js file is shown here. Make the needed change to the
karma.conf.js file in your blog project, and then we will look at how we test our new
business services:

/* chapter8/karma.conf.js complete file */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/libs/angular-cookies.min.js",
"public_html/js/*.js",
"test/**/*Spec.js"

1,

exclude: [

1,

autowatch: true,

frameworks: [
"jasmine"

1,

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine"

IOF
}

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Specifications

Now we need to add unit test specifications for each of the five business logic services
that we added earlier in the chapter. We will talk briefly about each individual unit test to
gain a full understanding of the test specifications.

First we will take a look at the unit test for the setCreds service. If you remember, the
setCreds service takes two parameters, the username and password. We will test the

operation of the service thoroughly in the unit tests that follow, but for now our unit test
will only check that the setCreds service can be injected:

/* chapter8/businessServicesSpec.js excerpt - setCreds service */

describe('test setCreds', function () {
var $rootScope;
var setCreds;

beforeEach(module('blogBusinessServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
setCreds = $injector.get('setCreds');
setCreds("test", "test");

)i

it('should test setCreds service exist', function () {
expect(setCreds).toBeDefined();
1)
1)

Next we will look at the unit test for the checkCreds service. The unit test script uses both
the setCreds service and the checkCreds service. Recall that the checkCreds service uses

AngularJS cookies. When cookies are created from a unit test script, the cookies created
exist only for the duration of the test script. When the unit test script ends, so do the
cookies. Our checkCreds unit test looks like this:

/* chapter8/businessServicesSpec.js excerpt - checkCreds service */

describe('test checkCreds', function () {
var $rootScope;
var checkCreds;
var setCreds;

beforekEach(module('blogBusinessServices'));

beforekach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
checkCreds = $injector.get('checkCreds");
setCreds = $injector.get('setCreds');
setCreds("test", "test");

D)

it('should test setCreds service exist', function () {
expect(checkCreds()).toEqual(true);

1

i9F

The test script first makes a call to the setCreds service, passing a username of “test” and

a password of “test” as parameters. Those values are stored in a cookie valid only for this
test script run. We then validate that the checkCreds service returns true, indicating that

both the setCreds and checkCreds service calls were successful. We can now rest assured

www.it-ebooks.info

http://www.it-ebooks.info/

that both services are working as expected.

Now we will take a look at the unit test for the getToken service. Just as before, we make
a call to the setCreds service and pass a username of “test” and a password of “test” to
the service. We then make a call to the getToken service. The returned value from the

service is a base64-encoded string that is composed of the username and the password. We
will only validate that a value is returned, with the toBeDefined method:

/* chapter8/businessServicesSpec.js excerpt - getToken service */

describe('test getToken', function () {
var $rootScope;
var getToken;
var setCreds;

beforeEach(module('blogBusinessServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
getToken = $injector.get('getToken');
setCreds = $injector.get('setCreds');
setCreds("test", "test");

1)

it('should test setCreds service exist', function () {
expect(getToken()).toBeDefined();

1)

1)

When we test the getUsername service, we can actually validate the value set for the
username. The following code shows the unit test for the getUsername service. Just as
before, we make a call to the setCreds service and pass a username of “test” and a
password of “test.” We then make a call to the getUsername service and validate that it
returns “test” as the username:

/* chapter8/businessServicesSpec.js excerpt - getUsername service */

describe('test getUsername', function () {
var $rootScope;
var getUsername;
var setCreds;

beforekEach(module('blogBusinessServices'));

beforekach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
getUsername = $injector.get('getUsername');
setCreds = $injector.get('setCreds');
setCreds("test", "test");

)

it('should test setCreds service exist', function () {
expect(getUsername()).toEqual("test");

1)

1)

The last unit test is shown next. It is a test of the deleteCreds service. In this test script
we make a call to the setCreds service, then we call the deleteCreds service to remove
the credentials that we just added. We then call the checkCreds service to validate that no
credentials are stored by checking for a returned value of false:

/* chapter8/businessServicesSpec.js excerpt - deleteCreds service */

www.it-ebooks.info

http://www.it-ebooks.info/

describe('test deleteCreds', function () {
var $rootScope;
var deleteCreds;
var setCreds;
var checkCreds;
beforeEach(module('blogBusinessServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
deleteCreds = $injector.get('deleteCreds');
setCreds = $injector.get('setCreds');
checkCreds = $injector.get('checkCreds');
setCreds("test", "test");
deleteCreds();
1)
it('should test setCreds service exist', function () {
expect(checkCreds()).toEqual(false);
1)
1)

Following is the complete businessServicesSpec.js file. Right-click the unit folder under
the test folder, create a new JavaScript file named businessServicesSpec.js, and enter the
code shown here:

/* chapter8/businessServicesSpec.js complete file */

describe('AngularJS Blog Business Service Testing', function () {
describe('test setCreds', function () {
var $rootScope;
var setCreds;
beforeEach(module('blogBusinessServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
setCreds = $injector.get('setCreds');
setCreds("test", "test");
1)
it('should test setCreds service exist', function () {
expect(setCreds).toBeDefined();
1)
1)

describe('test checkCreds', function () {
var $rootScope;
var checkCreds;
var setCreds;
beforeEach(module('blogBusinessServices'));
beforekEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
checkCreds = $injector.get('checkCreds');
setCreds = $injector.get('setCreds');
setCreds("test", "test");
1)
it('should test setCreds service exist', function ()
expect(checkCreds()).toEqual(true);
i9F
1

describe('test getToken', function () {
var $rootScope;
var getToken;
var setCreds;
beforeEach(module('blogBusinessServices'));
beforekEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
getToken = $injector.get('getToken');
setCreds = $injector.get('setCreds');
setCreds("test", "test");
D)
it('should test setCreds service exist', function ()
expect(getToken()).toBeDefined();
1
1

www.it-ebooks.info

http://www.it-ebooks.info/

describe('test getUsername', function () {
var $rootScope;
var getUsername;
var setCreds;
beforeEach(module('blogBusinessServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
getUsername = $injector.get('getUsername');
setCreds = $injector.get('setCreds');
setCreds("test", "test");
1)
it('should test setCreds service exist', function () {
expect(getUsername()).toEqual("test");
1)
1)

describe('test deleteCreds', function () {
var $rootScope;
var deleteCreds;
var setCreds;
var checkCreds;
beforeEach(module('blogBusinessServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
deleteCreds = $injector.get('deleteCreds');
setCreds = $injector.get('setCreds');
checkCreds = $injector.get('checkCreds');
setCreds("test", "test");
deleteCreds();
)
it('should test setCreds service exist', function () {
expect(checkCreds()).toEqual(false);
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing

The preceding test specifications will test all the new business logic services added in this
chapter. The controller test specification and the REST service test specification unit tests
will also run when Karma starts.

Right-click the project and select “Test” from the menu. Karma will start. You should see
both Chrome and Firefox browser windows open. The NetBeans test results window
should open and display nine passed tests for Chrome and nine passed tests for Firefox.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 8
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing

We haven’t yet added the business logic services created in this chapter to our controllers,
so we should see no change in the end-to-end testing. We will validate that no adverse
issues were introduced in this chapter with Protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Configuration

We already created a Protractor configuration file for the blog application in Chapter 5.
The Protractor configuration file is shown here for reference:

/* chapter8/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

No changes are required to the Protractor test specification, shown here for reference:

/* chapter8/blog-spec.js Protractor test specification */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){
browser.get(

"http://localhost:8383/AngularJsBlog/");
expect(browser.getTitle()).toEqual("AngularJS Blog");
//gets the blog list
var bloglList =

element.all(by.repeater('blogPost in blogList'));
//tests the size of the blogList
expect(blogList.count()).toEqual(l);

browser.get(
"http://localhost:8383/AngularJsBlog/
#!/blogPost/5394e59c4f50850000e6b7ea");
expect(browser.getTitle()).toEqual("AngularJS Blog");
//gets the comment 1list
var commentList =
element.all(by.repeater('comment in blogEntry.comments'));
//checks the size of the commentList
expect(commentList.count()).toEqual(2);
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing

Start a new command window and enter this command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 5 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script navigate
through the pages of the blog application. When the Protractor script has finished, the
browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 1.768 seconds
1 test, 4 assertions, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

The changes to our blog application made in this chapter give us everything we need to
enable us to work with REST service authentication. As mentioned before, our AngularJS
application doesn’t actually handle authentication, but instead holds the status of
authentication.

The business logic services that we added in this chapter greatly simplify the process of
tracking authentication across multiple controllers. We will talk more about security in
Chapter 10. We will now move on to AngularJS directives.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. AngularJS Directives

From a user’s perspective, directives are nothing more than custom HTML tags that are
added to application templates. Directives can be simple, or they can be very complex.
Directives are used by the AngularJS HTML compiler to enhance the functionality of the
associated template. Some examples of AngularJS directives are ngModel, ngView, and

ngRepeat.

www.it-ebooks.info

http://www.it-ebooks.info/

The HTML Compiler

Let’s talk briefly about the AngularJS HTML compiler. The use of the word compiler in
relation to AngularJS is often confusing for experienced developers new to the framework.
Experienced developers don’t normally associate compilers with HTML. The word
compiler, however, takes on a whole new meaning in the context of AngularJS.

Compiling HTML in AngularJS is simply the process of searching through the DOM tree
to identify HTML elements associated with directives. The compiler then builds the
template and assigns events to the associated elements in the template. This, however, is a
greatly simplified description of the AngularJS HTML compiler and the compiler
processes. If you would like to know more about the compiler, take a look at the
AngularJS website documentation, which covers the HTML compiler in great detail.

www.it-ebooks.info

http://www.it-ebooks.info/

What Are Directives?

Directives are very valuable in AngularJS and are what sets AngularJS apart from most
JavaScript client-side frameworks. Thanks to directives, we can avoid creating model
classes with hundreds of lines of code. Thanks to directives, we have a simplified model
and view in AngularJS that allows developers to quickly create powerful JavaScript
applications.

Although building custom directives in AngularJS is a bit more complex to learn than
other areas of the framework, I will try to simplify the learning process by showing you
how to create a fairly simple directive. There are complete books that cover the AngularJS
directive design process, so if you have a desire to learn about AngularJS directives in
great detail, a book that covers only directives would be a good starting point after you
finish this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Custom Directives

If you remember back in Chapter 5, we built a menu for our blog application and used
<div ng-include src="'partials/menu.html'"></div> to include that menu into each
template. The menu was defined in the menu.html file as HTML. While that approach
works well and is a common way to add an application menu, there is another way to add
a menu that is a bit more elegant.

Our new menu approach will involve building a custom directive to handle the inclusion
of a menu into our templates. First we must add a new directives file to our blog project.
We then define the new directive and inject the directive into our application. Once that is
done, we can replace <div ng-include src="'partials/menu.html'"></div> with a tag
that uses our custom directive.

Open your editor, right-click the application node, and create a new JavaScript file named
directives.js under the js folder. The code to place in the file is shown next. We will walk
through the code, and I’ll explain how the directive actually works. We will then configure
our blog application to use the new directive and see it in action:

/* chapter9/directives.js */

'use strict';
/* Directives */

var blogDirectives =
angular.module('blogDirectives', []);

blogDirectives.directive('blgMenu', function () {
return {
restrict: 'A',
templateUrl: 'partials/menu.html',
link: function (scope, el, attrs) {
scope.label = attrs.menuTitle;
}
};
1)

First we must create a new module named blogbirectives. We will then create a new

directive on that module. We pass both the directive name and a callback function to the
directives call on the blogbirectives module.

www.it-ebooks.info

http://www.it-ebooks.info/

Naming Conventions for Directives

Take notice of the camel case directive name blgMenu. Since HTML is case-insensitive,
we refer to the new directive inside an HTML template file as b1g-menu. The AngularJS

HTML compiler then normalizes the directive name into its camel case equivalent,
blgMenu.

Also take notice of the b1lg prefix on the new directive name. All directive names used in

templates must be unique. Directive names cannot match any existing HTML tag name, or
any future HTML tag name. Custom directives also cannot use the ng prefix already used

by AngularJS directives.

So, we must use a unique directive name that won’t conflict with current or future HTML
names or with AngularJS directive names. The best way to do that is to use a unique name
prefix for custom directives. We will use blg for our prefix because it is unlikely to cause

a problem now or in the future.

www.it-ebooks.info

http://www.it-ebooks.info/

The Restrict Option

Also take notice of the line restrict: 'A' in our directive. That is known as the restrict

option. The restrict option is how AngularJS triggers the directive inside a template. The
value of "A" causes the directive to be triggered on the attribute name. The following table

shows all the possible values for the restrict option. The default value for the restrict
option is 'A'.

Table 9-1. Restrict option
Value Usage in AngularJS

A Only match the attribute name (<div blg-menu></div>) (default)

'E' Only match the element name (<blg-menu></blg-menu>)
'c' Only match the class name (<div class="blg-menu"></div>)
™! Only match the comment name (<!-- directive: blg-menu -->)

www.it-ebooks.info

http://www.it-ebooks.info/

The Template URL

Also notice the attribute assignment templateUrl: 'partials/menu.html'. The
templateUrl attribute tells the AngularJS HTML compiler to replace the directive blg-
menu inside a template with HTML content located inside a separate file. The b1g-menu

attribute will be replaced with the content of our original menu template file
(partials/menu.html).

There is one small change that needs to be made in the menu template file to allow us to
pass the site title to the directive as an argument. I will show that change shortly. Passing
the title as an argument is not required or even needed, but I show it here to help explain
how directives work.

www.it-ebooks.info

http://www.it-ebooks.info/

Template Attributes

The following code shows how we pass menu-title as an argument to our new directive.
All values are passed to the method named 1ink as a parameter named attrs. We gain
access to the title value by assigning the value of attrs.menuTitle to a scope property:

/* chapter9/directives.js excerpt */

link: function (scope, el, attrs) {
scope.label = attrs.menuTitle;

}

The scope is passed as an argument to the 1ink method and is accessible inside the
method, as seen by the assignment of the menuTitle attribute. Directives are used inside a
template as shown next, in the main.html template. blg-menu is the name of the directive,
and menu-title is the name passed to the directive as the title attribute of the new
directive. The AngularJS HTML compiler also normalizes the attribute name into its
camel case form, so it becomes menuTitle inside the template (as shown before in the
template code from directives.js):

<!-- chapter9/main.html excerpt -->

<div blg-menu menu-title="AngularJS Blog'></div>

www.it-ebooks.info

http://www.it-ebooks.info/

Adding the Custom Directive

Now we must configure our blog application to use the newly created custom directive. To
load the new directives file, we need to add one line in the index.html file:

<!-- chapter9/index.html excerpt -->

<script src="js/directives.]js"></script>

The complete index.html file is shown here for convenience:

<!-- chapter9/index.html -->

<IDOCTYPE html>

<html lang="en" ng-app="blogApp">

<head>

<title>AngularJS Blog</title>

<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<link rel="stylesheet" href="1lib-css/bootstrap.min.css" media="screen"/>
<link rel="stylesheet" href='"css/styles.css" media="screen'"/>

<script src="js/libs/jquery-1.10.2.min.js"></script>
<script src="js/libs/bootstrap.min.js"></script>
<script src="js/libs/angular.min.js"></script>

<script src="js/libs/angular-route.min.js"></script>
<script src="js/libs/angular-resource.min.js"></script>
<script src="js/libs/angular-cookies.min.js"></script>

<script src="js/app.js'"></script>

<script src="js/controllers.js"></script>
<script src="js/services.js'"></script>

<script src="js/businessServices.js'"></script>
<script src="js/directives.js'"></script>

</head>
<body>
<div ng-view></div>
</body>
</html>

We also need to make a change to the app.js file. We add the new blogDirectives
module as a dependency of the application at startup time, using inline array annotations:

/* chapter9/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers’,
'blogServices',
'blogBusinessServices',
'blogDirectives'

1);

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}).when('/blogPost/:id"', {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'

www.it-ebooks.info

http://www.it-ebooks.info/

3

$locationProvider.html5Mode(false).hashPrefix('!");
1

Now we must modify our template files to use the newly created custom directive. In the
main.html template file, we replace the line <div ng-include

src=""'partials/menu.html'"> </div> with the line shown here:

<!-- chapter9/main.html excerpt -->

<div blg-menu menu-title="AngularJS Blog'"></div>

The complete main.html file is shown here for convenience:

<!-- chapter9/main.html -->
<div blg-menu menu-title="AngularJS Blog'"></div>
<div id="container" class="container'">

<div class="blog-post-label">Blog Posts</div>
<div class="post-wrapper">
<div ng-repeat="blogPost in blogList">

<div class="blog-post-outer'">

<div class="blog-intro-text">

Posted: {{blogPost.date | date:'MM/dd/yyyy @ h:mma'}}
</div>

<div class="blog-intro-text'">

{{blogPost.introText}}

</div>

<div class="blog-read-more">

Read More
</div>

</div>

</div>

</div>
</div>

We make the same change to the blogPost.html template, as shown here:

<!-- chapter9/blogPost.html -->
<div blg-menu menu-title="AngularJS Blog"></div>

<div id="container" class="container'">
<div class="blog-post-label">Blog Entry</div>
<div class="blog-entry-wrapper">

<div class="blog-intro-text">

Posted: {{blogEntry.date| date:'MM/dd/yyyy @ h:mma'}}
</div>

<div class="blog-entry-outer">

{{blogEntry.blogText}}

</div>

<div class="blog-comment-wrapper">

<div class="blog-comment-label">Blog Comments</div>

<div class="blog-entry-comments" ng-repeat="comment in blogEntry.comments'">
{{comment.commentText}}

</div>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Passing the Title Attribute

Finally, we must make one last change to the menu.html template file to make use of the
title value passed to the directive in the menu-title attribute. Replace the hardcoded title
with {{label}}, as shown here:

<!-- chapter9/menu.html -->

<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="container">
<div class="navbar-header">
<button type="button"
class="navbar-toggle" data-
toggle="collapse"
data-target=".navbar-collapse">
Toggle navigation

</button>

{{label}}
</div>

<!--Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse'>

<ul class="nav navbar-nav'">

<li class="{{aboutActiveClass}}">About</1i>
<li class="">

Download Project Code
</1i>

</div><!-- /.navbar-collapse -->
</div>
</nav>

With this change made, we can run the application and test our new menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Blog Application

Now we will run our blog project to check that all changes were made successfully. Save
all your changes and right-click the project node. Select “Run” from the menu, and the
application should launch. If all changes were made correctly, you should see the menu
bar across the top of the page just as before.

Turn on developer tools for your browser and check for any errors. If you have any
problems, go over what we covered and validate that all the changes were made correctly.
If you have issues that can’t be resolved, download the code for Chapter 9 from the project
site. Run the downloaded project to see the changes made in this chapter, and compare it
to your code to find and fix any issues.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

Testing Directives with Karma

Writing a test specification for a directive that uses an external HTML template file is a bit
more complicated than writing most test specifications. The test script will fail when it
tries to load the template file using HTTP from the server. If you were to use hardcoded
HTML for the menu inside the directive, everything would work fine. Not so with external
HTML templates, however.

One way around the problem is to use a preprocessor that converts our HTML template
file into a JavaScript string and then generates an AngularJS module from that string. The
preprocessed module is then loaded into the $templateCache and made available to
Karma. That way we can use the cached version of our template file and our directive
works as expected.

One way to handle the preprocessing is to use the karma-ng-html2js-preprocessor
Karma plugin. Although the plugin is a bit tricky to configure properly, it quickly solves
the external template problem. Pay particular attention to the way the plugin is configured.
If you are using an IDE other than NetBeans, you may need to look for documentation
specific to your IDE.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Configuration

First, we need to edit the package.json file used to configure Node.js dependencies. Here
is the needed change:

/* chapter9/package.json excerpt */

"karma-ng-html2js-preprocessor": "~0.1"

The complete package.json file is shown next. The added line makes the karma-ng-
html2js-preprocessor plugin a Node.js dependency. The module is then accessible to
Karma. Edit the existing blog project package.json file and add the required line as shown:

"name": "package.json",

"devDependencies": {
llkarmall : ll*ll,
"karma-chrome-launcher": "*",
"karma-firefox-launcher": "*",
"karma-jasmine": "*",
"karma-junit-reporter": "*",
"karma-coverage": "*",
"karma-ng-html2js-preprocessor": "~0.1"

After we change the package.json file, we need to use npm to install the plugin.

Open a new command window and navigate to the root of the Chapter 9 project. You
should see the package.json file when you list out the files in the folder.

Now type the following command to install the karma-ng-html2js-preprocessor plugin
defined in the package.json file:

npm install

We need to make several changes to the karma.conf.js file that we created earlier. The
changes are configuration changes for the new plugin just installed; they are subtle but
important.

First, notice in the following code that we’ve added a new line in the files section. The
new line, 'public_html/partials/*.html', tells the plugin where to find the template
file used in our directive:

/* chapter9/karma.conf.js excerpt */

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/libs/angular-cookies.min.js",
"public_html/js/*.js",
"public_html/partials/*.html",
"test/**/*Spec.js"

www.it-ebooks.info

http://www.it-ebooks.info/

We must also add a preprocessors section to the file. The entry in this section maps the
location of the template files to the new Karma plugin:

/* chapter9/karma.conf.js excerpt */

preprocessors: {
'public_html/partials/*.html': ['ng-html2js']
}

Next, we need to add the new plugin to the list of Karma plugins, as shown here — the
last line tells Karma that this plugin will be used:

/* chapter9/karma.conf.js excerpt */

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine",
"karma-ng-html2js-preprocessor"

There is one more change that we need to make to the karma.conf.js file. We need to tell
the new plugin to strip "public_html/" from the path to the template files:

/* chapter9/karma.conf.js excerpt */

ngHtml2JsPreprocessor: {
stripPrefix: 'public_html/'
}

Following is the complete modified karma.conf.js file. Open the karma.conf.js file in the
blog project and make the needed changes:

/* chapter9/karma.conf.js complete file */

module.exports = function (config) {
config.set({
basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/libs/angular-cookies.min.js",
"public_html/js/*.js",
"public_html/partials/*.html",
"test/**/*Spec.js"

1,

preprocessors: {
'public_html/partials/*.html': ['ng-html2js']

+

exclude: [

1,

autowWatch: true,

frameworks: [
"jasmine"

1,

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",

www.it-ebooks.info

http://www.it-ebooks.info/

"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine",
"karma-ng-html2js-preprocessor"

1,

ngHtml2JsPreprocessor: {
stripPrefix: 'public_html/'

}

13K
}

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Specification
Now we need to add a new test specification to the blog project. Do the following:

1. Right-click the unit folder under the test folder and add a new JavaScript file named
directivesSpec.js to the project.

2. Copy this code into the new directivesSpec.js file:

/* chapter9/directivesSpec.js */
describe('AngularJS Blog Application', function () {
beforeEach(module('blogDirectives'));

describe('Unit test of Menu Directive', function () {
var rootScope, compile;

// The external template file referenced by templateUrl
beforeEach(module('partials/menu.html'));

beforekEach(inject(function (_$compile_, _$rootScope_) {

compile = _$compile_;
rootScope = _$rootScope_;

1)
it('Replaces the menu attribute with the menu', function () {
var elm = angular.element(
"<div blg-menu menu-title=\"AngularJS Blog\"></div>");
var menu = compile(elm)(rootScope);
rootScope.$digest();

expect(menu.html()).toContain("AngularJS Blog");

K
13K

13K

This code differs a bit from the test specifications that we have seen so far. Remember that
directives need to be compiled by the HTML compiler. The test specification accounts for
that need.

First, notice in the line shown here that we load the AngularJS module that represents the
template HTML file that is needed by the directive. Remember that the template HTML
file was converted to a JavaScript string, and then that string was used by the Karma
preprocessor plugin to generate an AngularJS module:

/* chapter9/directivesSpec.js excerpt */

// The external template file referenced by templateUrl
beforeEach(module('partials/menu.html'));

Also notice that we now inject the HTML compiler with _$compile_. We also inject the
rootScope with _$rootScope_:

/* chapter9/directivesSpec.js excerpt */

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach(inject(function (_$compile $rootScope_) {

—r =

compile = _$compile_;
rootScope = _$rootScope_;

)i

Recall that when we included our new directive inside the main.html template, we used
the line <div blg-menu menu-title="AngularJS Blog"\></div> to include the new
directive-based menu into the page. The following code shows that same line getting
passed to the angular.element method:

/* chapter9/directivesSpec.js excerpt */

var elm = angular.
element("<div blg-menu menu-title=\"AngularJS Blog\"></div>");

var menu = compile(elm)(rootScope);
rootScope.$digest();

The resulting elm variable is then passed to the compiler along with the root scope
reference, as shown here. Then we call $digest, and that tells AngularJS to update
bindings and fire any watches.

Finally, we evaluate the HTML by calling the menu.html method and looking for the title
that we passed to the directive with menu-title="AngularJS Blog".

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing
Now, with all the changes made to the blog project, we are ready to test our new directive.

Right-click the project and select “Test” from the menu. Karma will start. You should see
both Chrome and Firefox browser windows open. The NetBeans test results window
should open and display 10 passed tests for Chrome and 10 passed tests for Firefox.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 9
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing

We will make one small change to allow us to test the new directive-based menu during
end-to-end testing. The modification will involve our Protractor test script clicking the
main menu link after navigating to a blog entry.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Configuration

We already created a Protractor configuration file for the blog application in Chapter 5.
The Protractor configuration file is shown here for reference:

/* chapter9/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.]js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

We will make a small change to the test specification, shown next. Notice the last line in
the file. The line uses the navbar-brand CSS class to look up the link to the main page.
The script then clicks the link and navigates back to the main page. The test validates that
the new menu is working correctly:

/* chapter9/blog-spec.js */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){

3

browser.get("http://localhost:8383/AngularJsBlogChapter9/");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the blog list
var blogList = element.all(by.repeater('blogPost in blogList'));

//tests the size of the blogList
expect(blogList.count()).toEqual(l);

browser.get(
"http://localhost:8383/AngularJsBlogChapter9/
#!/blogPost/5394e59c4f50850000e6b7ea");

expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment 1list
var commentList =
element.all(by.repeater('comment in blogEntry.comments'));

//checks the size of the commentList
expect(commentList.count()).toEqual(2);
element(by.css('.navbar-brand')).click();

.});

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing
With those changes made, we are ready to start the end-to-end testing.

Start a new command window and enter this command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 9 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script navigate
through the pages of the blog application. When the Protractor script has finished, the
browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 1.91 seconds
1 test, 4 assertions, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

In this chapter you learned how to create a custom AngularJS directive. You also learned
how to write test specifications for AngularJS directives. We made all the needed changes
to our blog application to add a new directive-based menu to our blog.

Once your blog application is running correctly, we can move on. This concludes our
discussion of directives; we’ll start adding security features to our blog application in the
next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10. AngularJS Security

You might wonder why we are covering security in a book on AngularJS. Well, quite
simply, security is one of the most important and most challenging tasks faced by an
AngularJS developer. It’s not that the developer is actually responsible for implementing
the security layer — that is not the case at all — but it is very important for an AngularJS
developer to understand the role that AngularJS plays in the overall security model of an
application or website.

You should never attempt to implement an independent client-side security layer in an
AngularJS application, or any other JavaScript application for that matter. Security should
always be implemented on the backend services where the data resides. That is the only
safe place to implement a security layer.

Remember the user has full access to the JavaScript running in the browser. As I said
before, our AngularJS application runs in the user’s browser on the user’s hardware. The
user can save the JavaScript locally and easily make modifications circumventing any
security layer implemented by an unsuspecting JavaScript developer.

With that in mind, there are several rules that AngularJS developers and backend
developers need to remember. Although actually implementing the security layer is not
usually the job of an AngularJS developer, it is often a collaborative effort for all
developers involved in a project. The following rules should always be considered:

1. Always use SSL to communicate with REST services that contain private data
(HTTPS).

2. Always use some type of authentication on each REST service call that contains
private data (Basic Authentication, for example).

3. Never hold REST service authentication status in a session variable on the server.
Doing that opens your server-side application up to cross-origin attacks and other
serious security concerns.

4. Never implement a Cross-Origin Resource Sharing (CORS) layer that returns * as
the list of allowed domains. For example, (Access-Control-Allow-Origin: *)
would allow all domains to make cross-origin calls to the REST services on the site.
Doing that circumvents the browser’s CORS security implementation completely.

5. Always make sure that any JavaScript that may get injected inside a JSON property
does not get executed on the server side. This design flaw is at the core of the
NoSQL injection attack, where JavaScript functions are injected in the JSON request
of a service and unknowingly executed by the server, in order to breach the security
of a NoSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

Always remember that any security-related JavaScript code can be viewed and modified
by the user. While most modern browsers do offer built-in security, JavaScript developers
should never rely on the browser for security. The responsibility for security rests entirely
on the shoulders of the backend service developers. With that said, I will show some
techniques for developing AngularJS applications that work well with a security layer
implemented properly in the backend services.

www.it-ebooks.info

http://www.it-ebooks.info/

Authentication

We will start our discussion of security by building a login screen and the associated
controller and service for our blog application. We will send the user’s credentials to a
login REST service for validation. We will also make use of the business logic services
that we developed back in Chapter 8.

We don’t actually use HTTPS for our blog application because it’s not a production
application. But in a production environment, SSL should always be used to protect
private data and the user’s credentials when calling a login REST service. Additional
security steps could even be taken in the REST services to limit access to a particular
machine or a particular IP address. We will not, however, be concerned with that level of
security in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Login Service

We will start off by adding an AngularJS login service. Open your editor and add the
following code to the bottom of your project’s services.js file. The new AngularJS login
service maps to a login REST service on our backend server. The code is much like that of
the other AngularJS services we’ve set up so far. It has one method, 1ogin, that maps to a

POST method on the REST service:

/* chapterl10/services.js excerpt */

blogServices.factory('Login', ['$resource',
function($resource) {

return
$resource(
"http://nodeblog-micbuttoncloud.rhcloud.com/NodeBlog/login",
{3 {
login: {method: 'POST', cache: false, isArray: false}
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Login Controller

Now we need to add a login controller. Open your editor and add the code shown next to
the bottom of the controllers.js file. Notice that we inject the new Login service and the

setCreds business logic service that we developed back in Chapter 8. We also inject the
$location service to allow us to redirect the user once authenticated. The new controller
has a submit method that is attached to the scope. Attaching the method to the scope

allows us to call the method from inside the login template. We build the JSON request
that gets passed to the service in the variable named postbData, using the scope properties

submitted by the form:

/* chapter10/controllers.js excerpt */

blogControllers.controller('LoginCtrl’,
['$scope', '$location', 'Login', 'setCreds',
function LoginCtrl($scope, $location, Login, setCreds) {

$scope.submit = function(){

$scope.sub = true;

var postData = {
"username" : $scope.username,
"password" : $scope.password

i

Login.login({}, postData,
function success(response) {
console.log("Success:" + JSON.stringify(response));
if(response.authenticated){
setCreds($scope.username, $scope.password)
$location.path('/"');
}else{
$scope.error = "Login Failed"
}
+
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

);
};
1

We also add a scope property named error. This property is populated any time the user

fails to authenticate, displaying a “Login Failed” message. We will see how the error is
presented later in the chapter. Once the user authenticates, we make a call to the
Angular]JS business logic service setCreds and pass the user’s username and password to

be saved in a cookie. We then redirect the user to the main application link.

www.it-ebooks.info

http://www.it-ebooks.info/

Security Modifications to Other Controllers

We must also make minor modifications to the other two controllers in our blog project.
Open your editor and replace the two controllers added earlier with the code shown next.
Notice we now inject the $1ocation service and the checkCreds business service that we

added back in Chapter 8. The checkCreds service works by checking the user’s
credentials at the top of the controller. If the user has not authenticated, a call is made to
the path method on the $1location service to redirect the user to the login page (we will

cover the new login path shortly):

/* chapteri0@/controllers.js excerpt */

blogControllers.controller('BlogCtrl’,
['"$scope', 'BlogList', '$location', 'checkCreds',
function BlogCtrl($scope, BlogList, $location, checkCreds) {
if(!checkCreds()){
$location.path('/login');
}

BlogList.get({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.bloglList = response;
+
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
}
)i
)

blogControllers.controller('BlogviewCtrl',
['$scope', '$routeParams', 'BlogPost', '$location', 'checkCreds',
function BlogvViewCtrl($scope, $routeParams, BlogPost,
$location, checkCreds) {
if(!checkCreds()){
$location.path('/login');

var blogId = $routeParams.id;

BlogPost.get({id: blogId},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogEntry = response;
i
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

}
31

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Logout Controller

We have one more change to make to the controllers.js file: we need to add a new
controller to log the user out of the system and reset his credentials. Add the code shown
here to the bottom of the controllers.js file. Once again, we make use of the AngularJS
business logic services written back in Chapter 8 by adding a call to the deleteCreds

service. The service call removes the user’s credentials, and then we redirect the user to
the login page:

/* chapter10/controllers.js excerpt */

blogControllers.controller('LogoutCtrl',
['$location', 'deleteCreds',
function LogoutCtrl($location, deleteCreds) {

deleteCreds();
$location.path('/login');

31

The entire controllers.js file is shown here to help make the changes clearer:

/* chapteri0/controllers.js */

'use strict';
/* Controllers */

var blogControllers =
angular.module('blogControllers', []);
blogControllers.controller('BlogCtrl’',
['$scope', 'BlogList', '$location', 'checkCreds',
function BlogCtrl($scope, BlogList, $location, checkCreds) {
if(!checkCreds()){
$location.path('/login');
}

BlogList.get({},

function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogList = response;

H

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

i9F

)

blogControllers.controller('BlogviewCtrl',
['$scope', '$routeParams', 'BlogPost', '$location', 'checkCreds',
function BlogviewCtrl($scope, $routeParams, BlogPost,
$location, checkCreds) {
if(!'checkCreds()){
$location.path('/login');

var blogId = $routeParams.id;

BlogPost.get({id: blogId},

function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogEntry = response;

iy

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

1K

1)

blogControllers.controller('LoginCtrl’,

www.it-ebooks.info

http://www.it-ebooks.info/

['$scope', '$location', 'Login', 'setCreds',
function LoginCtrl($scope, $location, Login, setCreds) {

$scope.submit = function(){
$scope.sub = true;
var postData = {
"username" : $scope.username,
"password" : $scope.password

i

Login.login({}, postbData,
function success(response) {

console.log("Success:" + JSON.stringify(response));

if(response.authenticated){
setCreds($scope.username, $scope.password)
$location.path('/");

}else{
$scope.error = "Login Failed"

}
iy
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
1
3
1)

blogControllers.controller('LogoutCtrl’,
['$location', 'deleteCreds',
function LogoutCtrl($location, deleteCreds) {

deleteCreds();
$location.path('/login');
1)
Next, we will added a new login template and the associated CSS. We will then add two

new paths to the $routeProvider section of the app.js file.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Login Template

Right-click the project node and add a new HTML file to the partials folder. Name the
new file login.html. Replace the content of the newly created file with the code shown
here. Notice that we use the ng-submit directive to connect the submit method in our

Loginctrl to the form for form submission:

<!-- chapteri10/login.html -->
<div class="blog-login-wrapper">

<form class="" ng-submit="submit()" ng-controller="LoginCtrl">

<div class="blog-login-error">{{error}}</div>

<div class="blog-login-label">

<label for="username'">Username:</label></div>

<div class="blog-login-element">

<input type="text" ng-model="username" name="username"
placeholder="username" required/></div>

<div class="blog-login-label">

<label for="password">Password:</label></div>

<div class="blog-login-element">

<input type="password" ng-model="password" name="password"
placeholder="password" required/></div>

<div class="blog-login-button">

<button type="submit" class="form-button">Sign in</button></div>

</form>

</div>

Now open the CSS file styles.css in your editor and add the following code to the bottom
of the file. Notice that we use CSS3 media queries like @media screen and (min-width:

1200px) to make our login template be responsive and look good on any mobile or
desktop platform:

/* chapterl10/styles.css */

.blog-login-wrapper{
float: left;
background: #e0@e0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

}

@media screen and (min-width: 1200px){
.blog-login-wrapper{
width: 40%;
margin: 10% 0 0 30%;
padding: 1%;
background: #e0e0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;
}
}

@media screen and (max-width: 1200px){
.blog-login-wrapper{
width: 40%;
margin: 10% 0 0 30%;
padding: 1%;
background: #e0e0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;

www.it-ebooks.info

http://www.it-ebooks.info/

}

@media screen and (max-width: 600px){
.blog-login-wrapper{
width: 80%;
margin: 10% 0 0 10%;
padding: 1%;
background: #e0Qe0e0;
border-radius:6px;
-moz-border-radius:6px; /* Firefox 3.6 and earlier */
border: darkgreen solid 1px;
}
}

.blog-login-label{
float: left;
width: 70%;
margin: 0 0 0 15%;
padding: 1% 0 0 0,
text-align: center;

}

.blog-login-element{
float: left;
width: 70%;
margin: 0 0 0 15%;
padding: 1% 0 0 0,
text-align: center;

}

.blog-login-button{
float: left;
width: 100%;
margin: 0 0 0 0;
padding: 5% 0 0 0,
text-align: center;

}

.blog-login-error{
float: left;
width: 100%;
margin: 0 0 0 0;
padding: 0 0 0 0;
text-align: center;
color: red;

www.it-ebooks.info

http://www.it-ebooks.info/

Adding New Routes

Now we need to add the two new routes to our route provider in the app.js file. The
following code shows the changes needed for this file. As you can see, the two new routes
make use of the two new controllers and the new template file:

/* chapteri10/app.js */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers’,
'blogServices',
'blogBusinessServices',
'blogDirectives'

1)

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/"', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}) .when('/blogPost/:id", {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'
}).when('/login', {
templateUrl: 'partials/login.html',
controller: 'LoginCtrl'
}).when('/logout', {
templateUrl: 'partials/login.html',
controller: 'LogoutCtrl'
3

$locationProvider.html5Mode (false).hashPrefix('!");
)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Logout Link

Finally, we need to make one more change to our blog application: we need to modify the
menu.html file and add the new “Logout” menu link. Here is the line you’ll need to add to
the menu.html file. The new logout link maps to the logout route that we just added:

<!-- chapteri10/menu.html excerpt -->

Logout</1i>

The complete menu.html file is shown here for convenience:

<!-- chapteri10/menu.html complete file -->

<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<!-- Brand and toggle get grouped for better mobile display -->

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse'">

Toggle navigation

</button>

{{label}}
</div>

<!--Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse'>

<ul class="nav navbar-nav'">

<1li class="{{aboutActiveClass}}">About</1i>
<li class="">

Download Project Code
</1li>

Logout</1i>

</div><!-- /.navbar-collapse -->
</div>

</nav>

Once you have made all the changes outlined in this chapter, your blog application should
have all the needed security additions that were specified. To test the changes that were
made, we will run the project and check for errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Blog Application

Right-click the project node and select “Run” from the menu. Your project should run and
you should see the screen in Figure 10-1. If you do not see the login screen, check that all
the changes outlined in this chapter were performed correctly. Turn on developer tools for
your browser and look for errors, as described in previous chapters.

Activities CGI)K)Q[E' Chrome FriJun 6, 21:12:22

AngularJs Blog - Google Chrome

1 AngularJs Blog
L4 € [localhost:83 . [0% 9 | =

i Apps (1 Imported From Fir W globalrevolution - ¥ (500) Twitter /Se= [l (1) Google+ [#] https;/flocalhost:é ¥ Bookmark Manage (3 Development EB MontyPython'sCh (3 Social [M Adminhtml [# localhost:8080/Ac

Username:

Password:

| signin

Figure 10-1. The login screen

www.it-ebooks.info

http://www.it-ebooks.info/

Logging In
Once your project is running, do the following;:

1. Enter “node” as the username.
2. Enter “password” as the password.
3. Click the “Sign in” button.

You should now see the same blog screens that you built in the previous chapters. The
application should function just as before with no changes. Navigate through the
application to validate that everything works correctly.

If you were to enter incorrect user credentials, you would see the error message described
earlier (“Login Failed”) displayed in red. Notice the new menu item “Logout” at the right
end of the menu bar. Click “Logout” and your session should end. You should then be
taken back to the login screen. If the login and logout process work correctly, your
security changes were implemented successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with Karma

We’ve added a new AngularJS service and two new controllers to our blog application.
We now need to test the application to make certain there are no defects in our code. We
also need to validate that all previous unit tests are still passing.

We will start off by writing a test specification for the new service. We will then write two
new test specifications for the two new controllers. Once our unit testing is complete, we
will make changes to our end-to-end testing.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Configuration

We already have an up-to-date Karma configuration file for our blog project. There should
be no changes to the file at this point. The complete karma.conf.js file is shown here for
reference:

/* chapteri10/karma.conf.js */

module.exports = function (config) {
config.set({

basePath: '../',

files: [
"public_html/js/libs/angular.min.js",
"public_html/js/libs/angular-mocks.js",
"public_html/js/libs/angular-route.min.js",
"public_html/js/libs/angular-resource.min.js",
"public_html/js/libs/angular-cookies.min.js",
"public_html/js/*.js",
"public_html/partials/*.html",
"test/**/*Spec.js"

1

preprocessors: {
'"public_html/partials/*.html': ['ng-html2js']

iy

exclude: [

1,

autowatch: true,
frameworks: [

"jasmine"

1,

browsers: [
"Chrome",
"Firefox"

1,

plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine",
"karma-ng-html2js-preprocessor"

1,

ngHtml2JsPreprocessor: {
stripPrefix: 'public_html/'
1)
}

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Specifications

We need to add unit test specifications for the new Login service and the two new
controllers. The following code shows the new test specification for the Login service.

The service relies on a REST service, so we will only test to make sure we can inject the
service. We will actually test the service interaction with the REST service during end-to-
end testing. If there are any issues, we will find them there. Add this test specification to
the project’s servicesSpec.js file:

/* chapter10/servicesSpec.js excerpt */

describe('test Login', function () {
var $rootScope;
var login;

beforeEach(module('blogServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
login = $injector.get('Login');

1)

it('should test Login service', function () {
expect(login).toBeDefined();
1)
1)

The complete servicesSpec.js file is shown here:

/* chapter10/servicesSpec.js complete file */

describe('AngularJS Blog Service Testing', function () {
describe('test BlogList', function () {
var $rootScope;
var bloglList;
beforekEach(module('blogServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogList = $injector.get('BlogList');
1)
it('should test BlogList service', function () {
expect(blogList).toBeDefined();
1)
1)

describe('test BlogPost', function () {
var $rootScope;
var blogPost;
beforeEach(module('blogServices'));
beforekEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogPost = $injector.get('BlogPost');
D)
it('should test BlogPost service', function () {
expect(blogPost).toBeDefined();
1
1

describe('test Login', function () {
var $rootScope;

var login;

beforeEach(module('blogServices'));

beforekach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
login = $injector.get('Login');

1)

it('should test Login service', function () {

www.it-ebooks.info

http://www.it-ebooks.info/

expect(login).toBeDefined();
3);
1)
1)

Now we need test specifications for the two new controllers. First we show the test
specification for the LoginCtrl controller. We first get a reference to the controller and

then call the submit method attached to the scope. We use a scope property to validate that
the method call was successful:

/* chapter10/controllerSpec.js excerpt */

describe('LoginCtrl', function () {
var scope, ctrl;

beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LoginCtrl', {$scope: scope});
scope.submit();

1))

it('should show submit success', function () {
console.log("LoginCtrl:" + scope.sub);
expect(scope.sub).toEqual(true);
1)
1)

Next is the test specification for the LogoutCtrl controller. In this case, we just validate
that we can get a reference to the controller. We will validate that the controller actually
handles logout correctly when we do end-to-end testing:

/* chapter10/controllerSpec.js excerpt */

describe('LogoutCtrl', function () {
var scope, ctrl;

beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LogoutCtrl', {$scope: scope});

)i

it('should create LogoutCtrl controller', function () {
console.log("LogoutCtrl:" + ctrl);
expect(ctrl).toBeDefined();
//expect (scope.blogList).toBeUndefined(),
1)
1)

The complete controllerSpec.js file is shown next. Make the changes to your file in the
blog application and validate that it matches the version shown here:

/* chapterl16/controllerSpec.js complete file */

describe('AngularJS Blog Application', function () {
beforeEach(module('blogApp'));
//beforeEach(module('blogServices'));

describe('BlogCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('BlogCtrl', {$scope: scope});
D)

it('should create show blog entry count', function () {

www.it-ebooks.info

http://www.it-ebooks.info/

console.log("blogList:" + scope.blogList);
expect(scope.blogList.length).toEqual(0);
//expect(scope.blogList).toBeUndefined();
1)
1)

describe('BlogViewCtrl', function () {
var scope, ctrl, $httpBackend;
beforekEach(inject(function (_$httpBackend_, $routeParams,
$rootScope, $controller) {

$httpBackend = _$httpBackend_;
$httpBackend.expectGET('blogPost').respond({_id: '1'});
$routeParams.id = '1"';

scope = $rootScope.$new();
ctrl = $controller('BlogViewCtrl', {$scope: scope});
1)
it('should show blog entry id', function () {
//expect(scope.blogEntry._id).toEqual(1);
//expect(scope.bloglList).toBeUndefined(),;
expect(scope.blg).toEqual(1l);
1)

3K

describe('LoginCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LoginCtrl', {$scope: scope});
scope.submit();
)
it('should show submit success', function () {
console.log("LoginCtrl:" + scope.sub);
expect(scope.sub).toEqual(true);
//expect(scope.bloglList).toBeUndefined(),;
1)
1)

describe('LogoutCtrl', function () {

var scope, ctrl;

beforekach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LogoutCtrl', {$scope: scope});

)

it('should create LogoutCtrl controller', function () {
console.log("LogoutCtrl:" + ctrl);
expect(ctrl).toBeDefined();
//expect(scope.blogList).toBeUndefined(),;

1

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing

The test specifications just added will test the new service and the two new controllers. We
will also test all the existing controllers, the existing services, and the existing directive
when Karma runs.

Right-click the project and select “Test” from the menu. Karma will start. You should see
both Chrome and Firefox browser windows open. The NetBeans test results window
should open and display a total of 26 passed test cases.

If you get any error messages or failed tests, go back over this section and verify that you
completed all the configurations and installations. You can also download the Chapter 10
code from the GitHub project site.

www.it-ebooks.info

https://github.com/KenWilliamson
http://www.it-ebooks.info/

End-to-End Testing

We will make several changes to the end-to-end test specifications for our blog application
here. We will need to log into the blog application with the script. Then, once logged in,
we will navigate through the blog as before to verify that all previous E2E functionality
still works. We will then need to log out with the test script to test the logout functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Configuration

We already created a Protractor configuration file for the blog application in Chapter 5.
The Protractor configuration file is shown here for reference:

/* chapter16/conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.]js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

The blog-spec.js file shown here contains several changes. First notice that the script
needs to complete the login form by populating the username and password fields. Then it
looks up the login form button by the CSS class name, and clicks the button:

/* chapter10/blog-spec.js Protractor test specification */

describe("Blog Application Test", function(){

it("should test the main blog page", function(){
browser.get("http://localhost:8383/AngularJsBlog/");
//1logs into the blog application
element(by.model("username")).sendKeys('"node");
element (by.model("password")).sendKeys('"password");
element(by.css('.form-button')).click();
expect(browser.getTitle()).toEqual("AngularJS Blog");
//gets the blog list
var blogList =

element.all(by.repeater('blogPost in blogList'));

//tests the size of the blogList
expect(blogList.count()).toEqual(l);

browser.get(
"http://localhost:8383/AngularJsBlog/#!/
blogPost/5394e59c4f50850000e6b7ea");
expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment 1list

var commentList =
element.all(by.repeater('comment in blogEntry.comments'));
//checks the size of the commentList
expect(commentList.count()).toEqual(2);
element(by.css('.navbar-brand')).click();
//logs out of the blog application
element(by.id('lo')).click();
expect(browser.getTitle()).toEqual("AngularJS Blog");

1)

1)

Once the script has successfully logged into the application, it navigates through the
application as before. Then, at the end of the test script, it looks up the logout link by id. It

then clicks the link, logging out of the application.

The end-to-end test specification validates that the login process works. It also validates
all the previous functionality tested in Chapter 9. Then it validates that the logout process
works correctly.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing
Now, with those changes added, we are ready to start the end-to-end testing.

Start a new command window and enter the following command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 10 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script log into the
blog application and navigate through the pages of the application, and finally log out of
the application. When the Protractor script has finished, the browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 3.285 seconds
1 test, 5 assertions, 0 failures

www.it-ebooks.info

http://www.it-ebooks.info/

One Last Point on Security

I want to emphasize one last thing about implementing security in a JavaScript
application. Any security that you implement in JavaScript can be circumvented by the
user, as I explained at the start of the chapter. The login screen and security that we
implemented in this chapter are completely dependent on the login REST service.

The login screen is used just as a way to gather and store the user’s credentials in a safe
place temporarily and to control the authentication process for each REST service that
contains private data. The user’s credentials are removed after each session and have to be
entered again at each login, unless the user chooses to save their credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

In the next chapter you will see how the user’s credentials are used to gain access to
private REST services that add new blog posts and comments. You will first deploy the
REST services and the AngularJS application together in a MEAN stack deployment to
your local machine to see the whole process in action. Once the application is up and
running on your local machine, you will be able to use the developer tools in Chrome to
view the REST service logs at runtime: you’ll be able to view the URL, request, and
response of each service call.

You will also see any errors that occur. Once you have tested the MEAN stack on your
local machine, you will deploy the project to the cloud using Git, which is a distributed
version control and source code management (SCM) system initially developed by Linus
Torvalds.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11. MEAN Cloud and Mobile

This chapter will cover both the cloud deployment of our blog application and a short
discussion on building a mobile HTMLS5 version of our application. The cloud deployment
will be to a free account on RedHat’s OpenShift platform. The mobile discussion will
cover the steps needed to build a mobile version of the blog application that will run on
any mobile device and can be distributed through the respective mobile application stores.
The mobile version will use the same REST services that we use for the cloud version of
our blog application.

www.it-ebooks.info

http://www.it-ebooks.info/

Local Deployment

Before we deploy our blog application to the cloud, we will set up a local project in
NetBeans that we will later use to deploy our blog to OpenShift. We can also run and test
our blog application locally before pushing it to the cloud. All the code for this chapter has
already been written and can be downloaded from GitHub. We will walk through the code
and discuss the changes that have been made to our AngularJS application to allow for a
deployment to the cloud.

Our cloud deployment uses Node.js as the server platform, ExpressJS as the web
application framework, and MongoDB as the database. We will discuss how AngularJS
integrates with all three of these to form a MEAN (MongoDB, ExpressJS, AngularJS, and
Node.js) stack deployment. We will primarily focus on the role that AngularJS plays in a
MEAN stack application.

We will not cover the Node.js code in great detail. Although the Node.js server-side code
is JavaScript, it can often be quite complex. If you have server-side experience, feel free to
experiment with the server code. Books written specifically on the MEAN stack will cover
the Node.js and ExpressJS code of MEAN stack applications in much greater depth than
we will here.

www.it-ebooks.info

http://bit.ly/lajs-github
http://www.it-ebooks.info/

Installing Node.js, npm, and MongoDB

Before you can run the new MEAN blog application locally, you must install Node.js,
MongoDB, and npm (the Node.js package manager) on your local system. The
installations are different for each operating system, but you can find more information
about Node.js at nodejs.org and you can find information about MongoDB at
http://www.mongodb.org. If you are using one of the Linux distributions, you can usually
install and configure both Node.js and MongoDB through the OS package management
system. Before we continue, install and configure Node.js, npm, and MongoDB if you
haven’t done so already.

www.it-ebooks.info

http://nodejs.org/
http://www.mongodb.org/
http://www.it-ebooks.info/

Installing the NetBeans Node.js Plugin

Now we will install a Node.js plugin for NetBeans to simplify our interaction with
Node.js. Do the following:

1. Follow the directions on Tim Boudreau’s blog.
2. Download and install the plugin.
3. Configure the plugin as specified.

Once you have the Node.js plugin for NetBeans installed and configured, download the
source for this chapter from GitHub. Unzip the file somewhere on your local drive. In
NetBeans, click “File” and select “Open Project” from the menu, then navigate to the
project source that you just downloaded and open the Node.js project. You should see the
NodeBlog project, as shown in Figure 11-1.

ModeBlog - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Windo
i S5 5 @ O T & - B

Projects x Files Services =

* @ NodeBlog
B server.js
| README.md

» @ db
v @ public

@ css

@ fonts

@ js

&= lib-css

d partials

[about.html
[é] blogPost.html
[@ login.html
[main.html
[menu.html
[é] newPost.html

[é] index.html

» & Libraries

v J Important Files
[package.json

4 ¥ ¥ ¥V V¥

Figure 11-1. The NodeBlog project in NetBeans

www.it-ebooks.info

http://bit.ly/tb-nodejs
http://bit.ly/nodemeanblog
http://www.it-ebooks.info/

The MEAN Application

We’ll use MongoDB as our server-side database. MongoDB is a NoSQL database that is
fast and easy to use. With MongoDB, there is no concern about writing SQL queries; we
just use the MongoDB API to interact with the database. We’ll actually simplify our
interaction with MongoDB even more by using Mongoose.js, an object data modeling
(ODM) library that allows us to interact with MongoDB using JSON via a greatly
simplified API interface.

Our MEAN stack uses REST services built with ExpressJS. ExpressJS is a web
framework that is lightweight and easy to use. REST services built on ExpressJS can be
used exclusively in our application or exposed to the outside world for use by external
applications.

MEAN stack applications run on Node.js, which runs on Google’s V8 JavaScript engine.
Node.js is a very powerful platform for developing server-side software applications in
JavaScript. AngularJS sits on top of the other three pieces of the MEAN stack and is used
to build JavaScript applications that interact directly with the REST services built with
ExpressJS.

www.it-ebooks.info

http://mongoosejs.com/
http://expressjs.com/
http://www.it-ebooks.info/

Node.js Public Folder

You will notice our AngularJS blog code is now located under the public folder in the
MEAN project. Placing the AngularJS code in the public folder is common practice when
you’re building MEAN applications. Open the public folder and you should see the same
code that we developed in the previous chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

MEAN Services

Several changes were needed to our services.js file, as shown in the following code.
Notice that we changed the URL for each service from http://nodeblog-
micbuttoncloud.rhcloud.com/NodeBlog/ to ./NodeBlog/. That small change makes our
application transportable to any cloud platform. Without making that change, we would
need to configure the service URLs every time we moved the application to a new cloud
platform:

/* chapterill/services.js */

'use strict';
/* Services */

var blogServices =
angular.module('blogServices', ['ngResource']);

blogServices.factory('BlogPost', ['$resource',
function($resource) {
return $resource("./NodeBlog/blog/:id", {3}, {
get: {method: 'GET', cache: false, isArray: false},
save: {method: 'POST', cache: false, isArray: false},
update: {method: 'PUT', cache: false, isArray: false},
delete: {method: 'DELETE', cache: false, isArray: false}
1)
1)

blogServices.factory('BlogList', ['$resource',
function($resource) {
return $resource("./NodeBlog/blogList", {3}, {
get: {method: 'GET', cache: false, isArray: true}
1)
)

blogServices.factory('Login', ['$resource',
function($resource) {
return $resource("./NodeBlog/login", {3}, {
login: {method: 'POST', cache: false, isArray: false}
1)
)

blogServices.factory('BlogPostComments', ['$resource',
function($resource) {
return $resource("./NodeBlog/comment/:id", {3}, {
save: {method: 'POST', cache: false, isArray: false}
1)
)

We also made changes to the application to allow the user to create new blog posts and to
add comments to posts. One of those changes was to this file as well: notice that we added
a new BlogPostComments service at the bottom of the file. There were also changes made

to other files in the application. We will first discuss the changes to controllers.js.

www.it-ebooks.info

http://www.it-ebooks.info/

MEAN Blog Controllers

Following is the new controllers.js file, which we’ve modified to give us the ability to add
new blog posts and comments. Notice first the changes that were made to the
BlogviewCtrl controller. We’ve injected several new services into the controller,

including the BlogPostComments service just shown. We’ve also added a new submit

method to the controller that handles the process of adding a new comment to a blog post.
The new submit method makes a call to the save method on the BlogPostComments

service:

/* chapteril/controllers.js */

'use strict';
/* Controllers */

var blogControllers =
angular.module('blogControllers', []);

blogControllers.controller('BlogCtrl',
['"$scope', 'BlogList', '$location', 'checkCreds',
function BlogCtrl($scope, BlogList, $location, checkCreds) {
if (!checkCreds()) {
$location.path('/login');
}
$scope.brandColor = "color: white;";
$scope.blogList = [];
BlogList.get({},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogList = response;
iy
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

1K
1)

blogControllers.controller('BlogviewCtrl',

['$scope', '$routeParams', 'BlogPost', 'BlogPostComments',
'$location', 'checkCreds', '$http', 'getToken', 'S$route',
function BlogViewCtrl($scope, $routeParams, BlogPost,

BlogPostComments, $location, checkCreds, $http, getToken,
$route) {

if (!checkCreds()) {
$location.path('/login');

$routeParams.id;
1;

}
var blogId =
$scope.blg =
BlogPost.get({id: blogId},
function success(response) {
console.log("Success:" + JSON.stringify(response));
$scope.blogEntry = response;
$scope.blogId = response._id;
H
function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

}
):

$scope.submit = function() {

$scope.sub = true;

$http.defaults.headers.common['Authorization'] = 'Basic ' +
getToken();

var postData = {

"commentText": $scope.commentText,

"blog" : $scope.blogId

}i

www.it-ebooks.info

http://www.it-ebooks.info/

BlogPostComments.save({}, postData,

function success(response) {
console.log("Success:" + JSON.stringify(response));
$location.path('/blogPost/'+$scope.blogId);
$route.reload();

+

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));

13K
3
1

blogControllers.controller('LoginCtrl', ['$scope',
'$location', 'Login', 'setCreds',
function LoginCtrl($scope, $location, Login, setCreds) {
$scope.submit = function() {
$scope.sub = true;
var postData = {
"username'": $scope.username,
"password": $scope.password
1
Login.login({}, postData,
function success(response) {
console.log("Success:" + JSON.stringify(response));
if (response.authenticated) {
setCreds($scope.username, $scope.password)
$location.path('/"');
} else {
$scope.error = "Login Failed"
}
iy

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
1)
3
1)

blogControllers.controller('LogoutCtrl', ['$location', 'deleteCreds',
function LogoutCtrl($location, deleteCreds) {
deleteCreds();
$location.path('/login');
)

blogControllers.controller('NewBlogPostCtrl',
['$scope', 'BlogPost', '$location', 'checkCreds', '$http', 'getToken',
function NewBlogPostCtrl($scope, BlogPost, $location, checkCreds,
$http, getToken) {
if (!checkCreds()) {
$location.path('/login');

}
$scope.languageList = [
{
"id": 1,
"name" : "English"
H
{
"id": 2,
"name" : "Spanish"
}
1
$scope.languageld = 1;
$scope.newActiveClass = "active";

$scope.submit = function() {
$scope.sub = true;
$http.defaults.headers.common['Authorization'] = 'Basic ' +
getToken();
var postData = {
"introText": $scope.introText,
"blogText" : $scope.blogText,
"languageId": $scope.languageld

3

BlogPost.save({}, postData,
function success(response) {

www.it-ebooks.info

http://www.it-ebooks.info/

console.log("Success:" + JSON.stringify(response));
$location.path('/");
iy

function error(errorResponse) {
console.log("Error:" + JSON.stringify(errorResponse));
1)
3
1)

blogControllers.controller('AboutBlogCtrl', ['$scope',
'$location', 'checkCreds',
function AboutBlogCtrl($scope, $location, checkCreds) {
if (!checkCreds()) {
$location.path('/login');
}

$scope.aboutActiveClass = "active";

311

The REST service linked to the BlogPostComments service requires Basic Authentication.
If you look at the first line of the new submit method added to the BlogviewCtrl
controller ($http.defaults.headers.common['Authorization'] = 'Basic' +
getToken();), you will see how REST service Basic Authentication is handled in
AngularJS. The code on that line makes use of the $http service to add a Basic
Authentication header to the REST service call.

We use the getToken AngularJS business logic service developed in Chapter 8 to add the

base64 token to the header, as described in that chapter. Once a new comment is added
successfully, we then make a call to the path method on the $location service

($location.path('/blogPost/'+$scope.blogId);) and a call to the reload method on
the $route service ($route.reload();). Making those two calls refreshes the blog post
page to show the newly added comment.

We also added a new controller named NewBlogPostCtrl. The new controller has a
submit method that makes a call to the BlogPost service used previously. The save
method is called on the BlogPost service, and the REST service mapped to the save

method requires Basic Authentication, as described previously. The implementation for
authentication is the same.

www.it-ebooks.info

http://www.it-ebooks.info/

MEAN Blog Templates

The new controller also has a new languageList JSON array that is used to populate a
new HTML <select> element in the template used for new blog posts. The language field

is not actually used by our blog application but is included to show how to populate a
<select> element in an AngularJS view. We preselect the <select> element with

“English” by setting the languageId scope property ($scope.languageId = 1;).

There were no other significant changes made to the controllers.js file. We will now talk
about the new template added to allow users to add new blog posts. We will also cover
changes made to the blog post template needed for adding comments to blog entries.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Comments

The following code shows the modifications needed to the existing blog post template.
You will notice that we’ve added a new form for submitting new comments. The new
form is mapped to the new submit method of the BlogEntrycCtrl controller. Also notice

that we hold the blog ID in a hidden element and pass that ID back to the controller when
the user submits the form. The blog ID is passed to the REST service that adds new
comments:

<!-- chapterii/blogPost.html -->

<div blg-menu menu-title="AngularJS MEAN Blog"></div>
<div id="container" class="container'">

<div class="blog-post-label">Blog Entry</div>

<div class="blog-entry-wrapper">

<div class="blog-intro-text">

Posted: {{blogEntry.date| date:'MM/dd/yyyy @ h:mma'}}
</div>

<div class="blog-entry-outer">

{{blogEntry.blogText}}

</div>

<div class="blog-comment-wrapper'">

<div class="blog-comment-label">Blog Comments</div>
<div class="blog-entry-comments" ng-repeat="comment in blogEntry.comments">
{{comment.commentText}}

</div>

</div>

<div class="blog-comment-entry-wrapper'">
<form class="" ng-submit="submit()" ng-controller="BlogViewCtrl">

<input type="hidden" ng-model="blogId"/>

<div class="blog-post-entry-label">

<label for="commentText">New Comment:</label>

</div>

<div class="blog-post-entry-element">

<textarea class="blog-post-textarea" type="text"
ng-model="commentText" name="commentText" placeholder="Comment" required/>
</div>

<div class="blog-post-button">

<button type="submit" class="form-button">Submit</button>
</div>

</form>
</div>

</div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Blog Entries

The following code shows the new template used to add new blog posts. The template
maps form submission to the submit method of the NewBlogPostCtrl controller using the
ng-submit directive, as before:

<!-- chapterii/newPost.html -->

<div blg-menu menu-title="AngularJS MEAN Blog'"></div>
<div id="container" class="container'">

<div class="blog-post-label">New Blog Posts</div>
<div class="blog-post-wrapper'">

<form class="" ng-submit="submit()" ng-controller="NewBlogPostCtrl">

<div class="blog-post-entry-label">

<label for="introText">Intro Text:</label></div>

<div class="blog-post-entry-element">

<textarea class="blog-post-textarea" type="text"

ng-model="introText" name="introText" placeholder="Intro Text" required/></div>

<div class="blog-post-entry-label">

<label for="blogText">Blog Text:</label></div>

<div class="blog-post-entry-element">

<textarea class="blog-post-textarea" type="text"

ng-model="blogText" name="blogText" placeholder="Blog Text" required/></div>

<div class="blog-post-entry-label">

<label for="blogText'">Language:</label></div>

<div class="blog-post-entry-element">

<select class="form-select-element-left" ng-model="languageId"
ng-options="1lan.id as lan.name for lan in languagelList"
name="languageId" required>

</select>

</div>

<div class="blog-post-button"><button type="submit"
class="form-button">Submit</button></div>

</form>
</div>
</div>

The following code shows the change needed to the menu.html file: we’ve added a link in
the menu to the new blog post creation view. The new path configuration is also shown:

<!-- chapterii/menu.html -->

<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">

<!-- Brand and toggle get grouped for better mobile display -->

<div class="container">

<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">

Toggle navigation

</button>

{{label}}

</div>

<!--Collect the nav links, forms, and other content for toggling -->
<div class='"collapse navbar-collapse'">

<ul class='"nav navbar-nav">

<1li class="{{aboutActiveClass}}">About</1i>

www.it-ebooks.info

http://www.it-ebooks.info/

<1li class="{{newActiveClass}}">New</1i>

<li class="">

Download Project Code
</1i>

Logout</1i>

</div><!-- /.navbar-collapse -->
</div>

</nav>

www.it-ebooks.info

http://www.it-ebooks.info/

Adding New Routes

The following code shows the changes needed for the app.js file. The new route used to
add a new blog post is shown. The route was added to the $routeProvider as before:

/* chapterli/app.js excerpt */

.when('/newBlogPost', {
templateUrl: 'partials/newPost.html',
controller: 'NewBlogPostCtrl'

})

The complete app.js file is shown here for convenience:

/* chapterii/app.js complete file */

'use strict';
/* App Module */

var blogApp = angular.module('blogApp', [
'ngRoute’,
'blogControllers"',
'blogServices',
'blogBusinessServices',
'blogDirectives'

1)

blogApp.config(['$routeProvider', '$locationProvider',
function($routeProvider, $locationProvider) {
$routeProvider.
when('/', {
templateUrl: 'partials/main.html',
controller: 'BlogCtrl'
}).when('/blogPost/:id', {
templateUrl: 'partials/blogPost.html',
controller: 'BlogViewCtrl'
}) .when('/newBlogPost', {
templateUrl: 'partials/newPost.html',
controller: 'NewBlogPostCtrl'
}).when('/about', {
templateUrl: 'partials/about.html',
controller: 'AboutBlogCtrl'
}).when('/login', {
templateUrl: 'partials/login.html',
controller: 'LoginCtrl'
}).when('/logout', {
templateUrl: 'partials/login.html',
controller: 'LogoutCtrl'
1)
$locationProvider.html5Mode(false).hashPrefix('!");
)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Node.js Dependencies

No other significant changes were made to the blog application. We will now run the
application locally before deploying to the cloud.

There is one small command-line task that needs to be performed before you can run the
blog application locally. This is standard practice when working with Node.js. Do the
following:

1. Open a command window and navigate to the location on your drive where you
unzipped the NodeBlog project.

2. You should see the package.json file at that location.

3. In the command window, do the following:

a. Type npm install.
b. Press Enter.

This command uses npm to install all the blog application dependencies. If the installation
was successful, you should see all the required Node.js packages installed in the current
directory under a new folder named node_modules.

When you run the npm install command, npm reads the package.json file and installs all
the required packages that are defined in that file. If there were errors and the new folder
didn’t get created, there is a problem with the Node.js installation on your machine. Once
you have the required Node.js packages installed in your project, you are ready to run the
project.

www.it-ebooks.info

http://www.it-ebooks.info/

Running the Blog Application Locally

Right-click the NodeBlog project and select “Run” from the menu. You should see a small
indicator at the bottom right of NetBeans, as shown in Figure 11-2. If you see “Running,”
your project and Node.js are installed correctly. Open a browser and navigate to
http://localhost:8080, and you should see the login screen as before.

Sun Jun 8, 15:57:22

NodeBlog - NetBeans IDE 8.0

File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help

) 9 ¢ -

i app.js
@ businessServices.js
i controllers.js
@ directives.js
& services.js
» @ lib-css
v & partials
& about.html
% blogPost.html
& login.html
@ main.html
& menu.html
¢ newPost.html
3 index.html
* B Libraries
¥ © Important Files
| package.json

Navigator x =}
¥ @ AboutBlogCtrl($scope, Slocation, checkCreds)
¥ & $scope
[aboutActiveClass: s
¥ © BlogCtri($scope, BlogList, $location, checkCreds)
% error(errorResponse) : undefine
% success(response) : = NodeBlog * | NodeBlog #2 *
v A Sscope B Noo =
[blogList |
[brandColor : Skr s
v © BlogViewCtrl($scope, SrouteParams, BlogPost, BlogPostComments, $locatic
& error(errorResponse) d
% success(response)
v & $Sscope
* @ submit() "
% error(errorResponse)

Output x| Test Results Git - server.js [nodejs] - master Search Results 151

Filters: (@15 (&

NodeBlog Running

Figure 11-2. Running the NodeBlog project

Log in with the following credentials:

® username = “node”

m password = “password”

The application should perform just as it did before. If you have any issues running the
application locally, resolve those issues before you continue. Once the application runs
locally on your machine, continue on to the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with Karma

We’ve added a new BlogPostComments service to the services.js file, and made changes to

the controllers.js file. In order to validate that everything is working correctly, we need to
update the test specifications as well. If you look at the test specifications for controllers
and services in the downloaded code for this chapter, you will see the needed changes and
additions.

First I will show how to configure Karma in a MEAN stack environment. Then we will
look at the test specification for the new BlogPostComments service and the changes to the

test specifications for controllers.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Configuration

The Karma configuration file was modified from the file we used in Chapter 10. Now the
AngularJS application is located under the public folder of the MEAN blog application. In
Chapter 10, the public_html folder was used instead. The Karma configuration file was
modified to account for that change. The full Karma configuration file is shown here:

/* chapterli/karma.conf.js Karma configuration file */

module.exports = function (config) {
config.set({
basePath: '../',
files: [
"public/js/libs/angular.min.js",
"public/js/1libs/angular-mocks.js",
"public/js/libs/angular-route.min.js",
"public/js/libs/angular-resource.min.js",
"public/js/libs/angular-cookies.min.js",
"public/js/*.js",
"public/partials/*.html",
"test/**/*Spec.js"
1,
preprocessors: {
'public/partials/*.html': ['ng-html2js']
+
exclude: [
1
autowatch: true,
frameworks: [
"jasmine"
1
browsers: [
"Chrome",
"Firefox"
1,
plugins: [
"karma-junit-reporter",
"karma-chrome-launcher",
"karma-firefox-launcher",
"karma-jasmine",
"karma-ng-html2js-preprocessor"
1
ngHtml2JsPreprocessor: {
stripPrefix: 'public/'
}
1)
}

There is one other thing to note if you are using NetBeans: a Node.js project in NetBeans
does not have built-in support for Karma. That is not really a problem; we just need to
launch Karma from the command line instead. We will cover that in the next section.

Now, before we start unit testing, we need to install all the Node.js dependencies defined
in the project’s package.json file. Do the following:

1. Navigate to the location where you unzipped the MEAN blog project.
2. Navigate to the location of the package.json file.

3. Type the following command to install all dependencies:

npm install

www.it-ebooks.info

http://www.it-ebooks.info/

The install process will run for several minutes. When all packages are installed, you will
be ready to move on to the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Test Specifications

The test specification for the new BlogPostComments service is shown next. We will only

verify that we can inject the service at this point. We will completely check the service
when we do E2E testing:

/* chapterll/servicesSpec.js excerpt */

describe('test BlogPostComments', function () {
var $rootScope;
var comment;
beforeEach(module('blogServices'));
beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
comment = $injector.get('BlogPostComments"');
1)
it('should test BlogPostComments service', function () {
expect(comment).toBeDefined();
1)
1)

The new test specification for the NewBlogPostcCtrl controller is shown next. Notice that
we make a call to the submit method that is attached to the controller’s scope. We then
validate that the call to the submit method was successful:

/* chapterli/controllerSpec.js excerpt */

describe('NewBlogPostCtrl', function () {
var scope, ctrl;
beforekach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('NewBlogPostCtrl', {$scope: scope});
scope.submit();
1)
it('should show submit success of NewBlogPostCtrl',
function () {
console.log("NewBlogPostCtrl:" + scope.sub);
expect(scope.sub).toEqual(true);
1)
i9F

Next up is the test specification for the AboutBlogCtrl controller. We validate the
functionality of the controller by checking the value assigned to the aboutActiveClass
variable:

/* chapterlil/controllerSpec.js excerpt */

describe('AboutBlogCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('AboutBlogCtrl', {$scope: scope});
D)
it('should create AboutBlogCtrl controller', function () {
console.log("AboutBlogCtrl:" + ctrl);
expect(scope.aboutActiveClass).toEqual("active");
1
b

We also made a change to the test specification for the BlogviewCtr1l controller, as shown
here. We now need to validate a call to the new submit method attached to the scope of

www.it-ebooks.info

http://www.it-ebooks.info/

that controller:

/* chapterll/controllerSpec.js excerpt */

describe('BlogViewCtrl', function () {
var scope, ctrl, $httpBackend;
beforeEach(inject(function (_$httpBackend_,
$routeParams, $rootScope, $controller) {

$httpBackend = _$httpBackend_;
$httpBackend.expectGET('blogPost').respond({_id: '1'});
$routeParams.id = '1';

scope = $rootScope.$new();
ctrl = $controller('BlogViewCtrl', {$scope: scope});
scope.submit();

N

it('should show blog entry id', function () {
expect(scope.blg).toEqual(1l);
expect(scope.sub).toEqual(true);

1

i

The complete servicesSpec.js and controllerSpec.js files are shown next for reference:

/* chapterll/servicesSpec.js complete file */

describe('AngularJS Blog Service Testing', function () {
describe('test BlogList', function () {
var $rootScope;
var bloglList;

beforekEach(module('blogServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogList = $injector.get('BlogList');
)

it('should test BlogList service', function () {
expect(blogList).toBeDefined();
1)

13K

describe('test BlogPost', function () {
var $rootScope;
var blogPost;

beforeEach(module('blogServices'));

beforekach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
blogPost = $injector.get('BlogPost');
)

it('should test BlogPost service', function () {
expect(blogPost).toBeDefined();
1
1

describe('test Login', function () {
var $rootScope;
var login;

beforeEach(module('blogServices'));

beforekEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
login = $injector.get('Login');

1)

it('should test Login service', function () {
expect(login).toBeDefined();

www.it-ebooks.info

http://www.it-ebooks.info/

13K
iOF

describe('test BlogPostComments', function () {
var $rootScope;
var comment;

beforeEach(module('blogServices'));

beforeEach(inject(function ($injector) {
$rootScope = $injector.get('$rootScope');
comment = $injector.get('BlogPostComments"');

)i

it('should test BlogPostComments service', function () {
expect(comment).toBeDefined();

B

/* chapter1i/controllerSpec.js complete file */

describe('AngularJdS Blog Application', function () {
beforekEach(module('blogApp'));
//beforeEach(module('blogServices'));

describe('BlogCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('BlogCtrl', {$scope: scope});
N
it('should create show blog entry count', function () {
console.log("blogList:" + scope.blogList);
expect(scope.blogList.length).toEqual(0);
//expect(scope.bloglList).toBeUndefined(),;
1)
1)

describe('BlogVviewCtrl', function () {
var scope, ctrl, $httpBackend;
beforeEach(inject(function (_$httpBackend_, $routeParams,
$rootScope, $controller) {

$httpBackend = _$httpBackend_;
$httpBackend.expectGET('blogPost').respond({_id: '1'});
$routeParams.id = '1';

scope = $rootScope.$new();
ctrl = $controller('BlogviewCtrl', {$scope: scope});
scope.submit();

)i

it('should show blog entry id', function () {
//expect(scope.blogEntry._id).toEqual(1),;
//expect(scope.blogList).toBeUndefined(),;
expect(scope.blg).toEqual(l);
expect(scope.sub).toEqual(true);
1)
1)

describe('LoginCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LoginCtrl', {$scope: scope});
scope.submit();
D)
it('should show submit success', function () {
console.log("LoginCtrl:" + scope.sub);
expect(scope.sub).toEqual(true);
//expect(scope.blogList).toBeUndefined();
1
1

describe('LogoutCtrl', function () {
var scope, ctrl;

www.it-ebooks.info

http://www.it-ebooks.info/

beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('LogoutCtrl', {$scope: scope});
1)

it('should create LogoutCtrl controller', function () {
console.log("LogoutCtrl:" + ctrl);
expect(ctrl).toBeDefined();
//expect(scope.bloglList).toBeUndefined();
1)
1)

describe('NewBlogPostCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
ctrl = $controller('NewBlogPostCtrl', {$scope: scope});
scope.submit();

)i

it('should show submit success of NewBlogPostCtrl',
function () {
console.log("NewBlogPostCtrl:" + scope.sub);
expect(scope.sub).toEqual(true);
//expect(scope.bloglList).toBeUndefined();
1)
1)

describe('AboutBlogCtrl', function () {
var scope, ctrl;
beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.S$new();
ctrl = $controller('AboutBlogCtrl', {$scope: scope});

)i

it('should create AboutBlogCtrl controller', function () {
console.log("AboutBlogCtrl:" + ctrl);
expect(scope.aboutActiveClass).toEqual("active");
//expect(scope.bloglList).toBeUndefined(),;
1)
1)
1)

www.it-ebooks.info

http://www.it-ebooks.info/

Karma Testing

Now we need to launch Karma and verify that all tests were successful. We need to use the
command line to launch Karma, as mentioned earlier. Do the following:

1. Open a command window.
2. Navigate to the location of the MEAN blog project.

3. Navigate inside the project to where the test folder and the package.json file are
located.

4. Type this command to launch Karma:

karma start test/karma.conf.js

You should see a Chrome and a Firefox browser window open. You should then see text
like the following displayed in the command window, indicating success:

Chrome 38.0.2125 (Linux): Executed 16 of 16 SUCCESS (0.17 secs)
Firefox 33.0.0 (Ubuntu): Executed 16 of 16 SUCCESS (0.157 secs)
TOTAL: 32 SUCCESS

www.it-ebooks.info

http://www.it-ebooks.info/

End-to-End Testing

The MEAN blog application requires a change to the URL in the E2E test specifications.

As in Chapter 10, the script will need to log into the blog application. Then, once logged

in, it will navigate through the blog as before to verify that all previous E2E functionality
still works. It will then need to log out to test the logout functionality as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Configuration

We already created a Protractor configuration file for the blog application in Chapter 5,
and we’ve just moved that file into the MEAN application. The Protractor configuration
file is shown here for reference:

/* chapter11/ conf.js Protractor configuration file */

exports.config = {

seleniumAddress: 'http://localhost:4444/wd/hub',
specs: ['e2e/blog-spec.js']

}

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Test Specification

The modified Protractor test specification is shown next. Notice the new URL, as
mentioned previously:

/* chapter1i/blog-spec.js Protractor test specification */

describe("Blog Application Test", function(){
it("should test the main blog page", function(){

browser.get("http://localhost:8080/#!/");
//1logs into the blog application
element (by.model("username")).sendKeys("node");
element (by.model("password")).sendKeys("password");
element(by.css('.form-button')).click();
expect(browser.getTitle()).toEqual("AngularJS Blog");
//gets the blog list
var blogList = element.all(by.repeater('blogPost in blogList'));

//test the size of the blogList
expect(blogList.count()).toEqual(3);
browser.get("http://localhost:8080/#!/blogPost/5387bafel85e4e972996adff");

expect(browser.getTitle()).toEqual("AngularJS Blog");

//gets the comment 1list
var commentList = element.all(by.repeater('comment in blogEntry.comments'));

//checks the size of the commentList
expect(commentList.count()).toEqual(2);

element(by.css('.navbar-brand')).click();
//1log out of the blog application

element(by.id('lo')).click();
expect(browser.getTitle()).toEqual("AngularJS Blog");

www.it-ebooks.info

http://www.it-ebooks.info/

Protractor Testing

We are now ready to start the end-to-end testing. Start a new command window and enter
the following command to start the test server:

webdriver-manager start

Open a new command window and navigate to the root of the Chapter 11 project. Type the
command:

protractor test/conf.js

You should see a browser window open. You should then see the test script log into the
blog application and navigate through the pages of the application, as in Chapter 10. The
script should then log out of the application. When the Protractor script has finished, the
browser window will close.

You should see results like the following in the command window when the Protractor
script completes. The number of seconds that it takes the script to finish will vary
depending on your particular system:

Finished in 2.644 seconds
1 test, 5 assertions, 0 failures

We are now ready to continue with our deployment to the cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

MEAN Deployment to the Cloud

Now we will deploy our blog application to OpenShift using Git. NetBeans comes with a
built-in version of Git that is very easy to configure and use when you’re deploying to
OpenShift. First you must open a free OpenShift account, which gives you three free gears
(cloud server instances) that can run Node.js. Do the following:

1. Go to https://www.openshift.com/app/account/new and create a new account.

2. Click the “Add Application” button and create a new Node.js 0.10 application (save
a copy of the page for reference later).

3. Add a MongoDB cartridge to the application (save a copy of the page for reference
later).

4. Follow the OpenShift documentation and set up Git on your development
environment. You’ll need a public SSH key to use Git on the OpenShift system.

5. Once Git is configured, clone the application with Git to a location on your drive
separate from the location where you unzipped the NodeBlog download.

6. Open the new OpenShift project, and copy the following files from the NodeBlog
project to the new OpenShift project, replacing the existing versions:

a. package.json

b. server.js
7. Copy the public folder from the NodeBlog project to the new OpenShift project.
8. Copy the db folder from the NodeBlog project to the new OpenShift project.

Now we need to test the cloud version of the application locally. Open a command
window and navigate to the folder where you placed the new OpenShift project. Make
sure you see the package.json file, and enter npm install in the command window as you
did earlier. Now right-click the OpenShift project and select “Run” from the menu. If you
see the running indicator as shown before, the application is working properly.

Now, using the Git credentials that you set up earlier for your OpenShift application, do a
Git remote push in NetBeans and the application will be deployed to OpenShift. If you see
any errors, use the OpenShift documentation to resolve the error condition. Most problems
are usually related to credentials and can be resolved easily.

www.it-ebooks.info

https://www.openshift.com/app/account/new
http://www.it-ebooks.info/

Testing the Cloud Blog

Once the application is deployed to the cloud, open a browser and navigate to the
OpenShift-supplied link for your application. If you didn’t keep a copy of the application
page, log in to your OpenShift account and click the application that you just created. The
link to the application will be shown on the details pages.

Once you navigate to the link for your application, you should see the login screen as
before. If you see the login screen, your application was successfully deployed to the
cloud. Log in to your blog application and add a new blog post. Add a comment to the
post. Your blog application should display the new post and the comment. If you would
like to view the application logfiles, follow the OpenShift documentation related to
viewing logfiles for more help.

This concludes our discussion on cloud deployment. Next, we’ll take a brief look at how
to turn your blog application into a mobile HTML5 application.

www.it-ebooks.info

http://www.it-ebooks.info/

Mobile Version

The AngularJS blog application has all that we need to build a mobile version for any
mobile platform. Our business logic is in the REST services, and all modern mobile
devices can access REST services. We used a responsive design, so the application should
look good on any mobile device. All modern mobile devices also have web browsers and
native browser controls such as the Android WebVview that can launch internal HTML

pages.

The process for building a mobile blog application is straightforward for any mobile
device. The process involves the following steps:

1. Create a new mobile project for the particular mobile device of choice.
2. Follow the Cordova documentation and add Cordova to your mobile project.

3. Copy the entire contents of the Chapter 10 project (AngularJsBlogChapter10) to the
folder in the mobile project specified by Cordova as a destination for HTML files for
your particular mobile platform.

4. Follow the Cordova documentation and configure your mobile application to launch
the index.html file copied from the Chapter 10 project.

5. Once the mobile project is configured according to the Cordova specifications, run
the project on an emulator or a mobile device.

The application should run and look the same as the web version. There are no AngularJS-
specific changes that we need to make to the project code. If you are interested in building
AngularJS-based mobile applications, feel free to take the code from Chapter 10 and build
a Cordova-based HTML5 mobile application for your platform of choice. The Cordova
website has documentation for all modern platforms to help you get started with your
project.

www.it-ebooks.info

http://cordova.apache.org/
http://cordova.apache.org/
http://www.it-ebooks.info/

Conclusion

In this chapter we made a few modifications and deployed our blog application to the
cloud. We ran the application locally, and also ran the cloud-deployed application. We also
took a quick look at how easy it is to build mobile applications with AngularJS. We will
now focus on how to get your application found by search engines.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12. AngularJS and SEO

You might wonder why we are covering search engine optimization (SEO) in an
AngularJS book. The answer is simple.

Currently, AngularJS and most JavaScript client-side frameworks are used mostly for web
applications. Often, SEO is really not that important where web applications are
concerned. As AngularJS gains in popularity, however, it could very well become a major
player in the world of website design. AngularJS could potentially replace client-side code
that is currently written in Java, PHP, Ruby, and Python.

That is not to say that those languages will be completely replaced — they won’t. Java,
PHP, Ruby, and Python will continue to be as important as ever in the world of software
development, but in a different way. Those languages and their associated frameworks will
take on the role of providing the backend REST services needed for AngularJS and other
JavaScript client-side frameworks. When you consider that complete websites could soon
be written with AngularJS, it’s clear that SEO should then become a major concern for
AngularJS developers. This chapter will help you to better understand AngularJS and
SEO.

It is always best to focus more on building a great web application or website, and less on
the specifics of search engines. Good design and performance are always by far the most
important considerations for a new software project. Although search engine optimization
is important, focusing too much on SEO during the design and implementation phase of a
project can ultimately cost you valuable development hours.

Eventually, however, you do have to focus on getting your application or site found by all
the major search engines. In this final chapter we will look at some of the ways to get your
new AngularJS software found. Many of the practices presented here are recommended by
Google.

www.it-ebooks.info

http://www.it-ebooks.info/

Old Versus New AngularJS SEO

In the past, users of websites built with AngularJS had to follow a rather archaic process in
which page snapshots were made for an entire site, and the website could then forward
search engines to the snapshots so that they would see the prerendered version of the site
rather than the actual JavaScript version of the site. Since conventional search engines
didn’t have the ability to execute JavaScript, pages built with AngularJS were rendered to
older search engines as a blank white page with no content.

However, in a news release on May 23, 2014, Google confirmed that it now has the
capability to index JavaScript websites and applications. That is, the Googlebot has
undergone upgrades to make it possible to index sites and applications that use Google’s
AngularJS and other JavaScript frameworks. For Google, that time-consuming and often
expensive process of SEO for AngularJS is no longer necessary. Although the state of
other search engines and their ability to execute JavaScript is unknown at this time, they
will undoubtedly follow Google’s lead very quickly, being forced to follow suit or get left
behind.

There are also several companies that specialize in helping clients with the website
prerendering process. Even though search engines are changing, many of these companies
will doubtless continue offering prerendering services for several years, if you feel the
need for those services.

www.it-ebooks.info

http://bit.ly/1EWcX3P
http://www.it-ebooks.info/

Getting Found by Search Engines

With all that said, there are still some ways to increase your chances of getting a better
ranking with Google and other search engines. We will cover the SEO tasks that are
absolutely necessary:

1. Sign up for a Google Webmaster Tools account, add your site to the account, and
follow Google’s advice.

2. Build a sitemap.xml file for your site.
3. Add microformat tags to your site.
4. Make sure your JavaScript is clean and easy for search engines to execute.

5. Avoid calling REST services that take longer than two seconds to return results.

www.it-ebooks.info

http://www.it-ebooks.info/

Google Webmaster Tools

One of the first things that you should do for SEO is to get a Google Webmaster Tools
account. Once you add your site and start to follow Google’s advice, you will see
immediate improvements in your ranking and the number of pages of your site that are
indexed by Google. The advice given by Google applies to other search engines as well.
Don’t expect to see SEO improvements drastically increase your ranking, however; SEO
is an ongoing and time-consuming process that can take months or even years to render
significant results.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Sitemap

According to Google, a sitemap file is very important to SEO. Google’s Webmaster Tools
will help you with the process of building a sitemap and uploading it to Google. Using a
sitemap speeds up the process of getting your site indexed by making search engines
aware of the pages and links on your site. You should keep the sitemap up-to-date, with
any new pages added. Make sure to remove any pages from the sitemap that no longer
exist on the site.

www.it-ebooks.info

http://www.it-ebooks.info/

Microformat Tags

Another thing that improves SEQ is the use of microformat tags (tag-based navigation).
The use of tag-based navigation started on blog sites but has spread considerably over the
last few years; it is now used on business websites as well.

Tag-based navigation uses the format shown here to indicate to search engines that the
page content contains the related keywords. As you can see, the href attribute contains a

link to a page on the site, and the rel attribute tells search engines that the page contains
the referenced keywords:

<!-- chapteri12/ tag-based navigation -->

<p> Tags: Ulbora CMS,
Java CMS,

REST service,

JSON REST,

<a href="http://

www.ulboracms.org/#!/article/26" rel="tag">REST web services</p>

Tag-based navigation is supported by all major search engines.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Clean Client Code

One of the best ways to improve SEO is to create a clean and efficient AngularJS
application. Unnecessary JavaScript should always be avoided. JavaScript methods should
execute quickly, with no unnecessary processes running in the background.

Search engines take page speed into consideration when ranking sites. Pages that contain
long-running JavaScript functions may get dropped by Google and other search engines
and not get indexed. Once a page gets dropped by a search engine, it can take a long time
to get that page indexed again.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Fast REST Services

One last thing that can directly affect page speed and SEO is the speed of the REST web
services used to populate page content. Pages that rely on slow REST services can suffer
as a result. REST services should return results in two seconds or less.

Services that return results in under a second are best for SEO and site performance.
Although REST service design is beyond the scope of this particular book, I want to
emphasize how important web service design is to SEO when web pages rely on those
services for content. When your site depends on REST services, always make sure those
services perform well and add no unnecessary delay to your site or application. Always
insist on peak-performing services.

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion

That brings us to the end of this chapter and the end of the book. I've done my best to
present AngularJS in a way that will make it easy to understand for both beginners and
experienced developers alike. The concept of using JavaScript client-side frameworks to
build complete frontend applications and websites is relatively new, and often referred to
as “cutting edge” by many. The recent Google announcement related to JavaScript and
SEO mentioned earlier attests to that.

But things that are considered cutting edge today will be commonplace in a few years. I
believe AngularJS will be at the forefront of application development in coming years,
and is well worth the time spent learning the framework. This book is only a starting
point, however. Now you must go out and develop great applications with AngularJS, and
have fun building those applications too! Remember, the best AngularJS application is a
well-designed AngularJS application. Always build the best applications that you possibly
can. It’s worth the effort in the end.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

References

= AngularJS

= Bootstrap

= jQuery

m Wikipedia entry for MVC

m Wikipedia entry for REST

m Wikipedia entry for Web service
m Ulbora CMS

m Ulbora CMS at SourceForge

m Wikipedia entry for SPA

m Wikipedia entry for RWD

www.it-ebooks.info

https://angularjs.org/
http://getbootstrap.com/
http://jquery.com/
http://bit.ly/mvc-wiki
http://bit.ly/restful_web_services
http://bit.ly/wiki-web-service
http://www.ulboracms.org
http://bit.ly/dl-ulbora
http://bit.ly/dwc-spa
http://bit.ly/wiki-rwd
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols

$location service, Adding a Login Controller
$rootScope object, AngularJS Models

$scope object, AngularJS Models (MVC)

adding behavior to, Initializing the Model with Controllers
attaching methods to, Adding a Login Controller
models in, AngularJS Models

<select> element (HTML), MEAN Blog Templates

{{}} (double curly braces), Controller Business Logic

A
Active Server Pages (ASP), MVC and AngularJS

Ajax
REST services and, AngularJS and REST Services

sites, HTML5 Mode

AngularJS

as client-side framework, JavaScript Client-Side Frameworks
as MVC framework, A New and Better Way

bootstrapping with, Bootstrapping the Application

business logic in, Controller Business Logic

controllers, AngularJS Controllers (MVC)

dependency injection, Dependency Injection

www.it-ebooks.info

http://www.it-ebooks.info/

directives, AngularJS Directives-Conclusion
downloading files for, The IDE

HTML compiler, The HTML Compiler
HTML5 and, HTML5 Mode

integrating with other frameworks, Integrating AngularJS with Other
Frameworks

model classes, AngularJS Models (MVC)
routes, AngularJS Routes
search engines and, Modern Search Engines
SEO for, AngularJS and SEO-Conclusion
services, non-REST, Creating AngularJS Services
single-page applications in, Single-Page Applications
templates, AngularJS Templates
testing, Testing AngularJS Applications
view classes in, AngularJS Views (MVC)
Apache Cordova, Mobile Version

applications

adding service modules to, Modifying App.js

running in IDEs, Running the Applications, Running the Blog Application
running with models, Running the Application

testing in IDEs, Testing AngularJS Applications in the IDE-Protractor
transportable, MEAN Services

using REST services in, Blog Application Public Services

www.it-ebooks.info

http://www.it-ebooks.info/

ASP.NET framework, JavaScript Client-Side Frameworks

authentication, Handling User Authentication-Retrieving User Credentials

B
Basic Authentication, Using Basic Authentication, MEAN Blog Controllers

bootstrapping, Bootstrapping the Application
HTML code and, Editing the HTML Code

business logic, Services and Business Logic-Conclusion

adding to projects, Blog Application Business Logic-Testing Services with Karma
controller, Controller Business Logic

in controllers, Controller Business Logic

REST services and, REST Services

user authentication, Handling User Authentication-Retrieving User Credentials

using, Using the Business Logic

C
CakePHP framework, The Old Way

integrating with AngularJS, Integrating AngularJS with Other Frameworks
callback functions, REST Services and Controllers
cascading style sheets, Adding Styles and Presentation Logic
Chrome Developer Tools, Running the Application
client code, Building Clean Client Code

client-side frameworks, JavaScript Client-Side Frameworks

integrating AngularJS with, Integrating AngularJS with Other Frameworks
model classes, AngularJS Models (MVC)

view classes in, AngularJS Views (MVC)

www.it-ebooks.info

http://www.it-ebooks.info/

client-side security, AngularJS Security

cloud deployment, MEAN Deployment to the Cloud

making apps transportable, MEAN Services

continuous integration (CI), Testing AngularJS Applications

end-to-end testing and, End-to-End Testing
controller as, Form Submission

controllers, AngularJS Controllers (MVC), AngularJS Controllers-Conclusion

behavior, adding with, Adding Behavior with Controllers-Adding Behavior with
Controllers

business logic in, Controller Business Logic, Controller Business Logic
editing JavaScript code for, Editing the JavaScript Code

end-to-end testing of, End-to-End Testing with Protractor-Running Protractor
form data, using, Using Submitted Form Data

form submissions and, Form Submission-Form Submission
initializing models with, Initializing the Model with Controllers

JS Test Driver and, JS Test Driver-Testing with JS Test Driver
Karma, testing with, Testing with Karma-Running Karma Unit Tests
login, adding, Adding a Login Service

logout, Adding a Logout Controller-Adding a Logout Controller
MEAN, MEAN Blog Controllers-MEAN Blog Controllers

models and, Changes to the Controllers, Modifying the Controllers-Modifying the
Controllers

multiple, for single elements, Form Submission

presentation logic and, Presentation Logic and Formatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

projects, adding to, Adding a New Blog Controller

Protractor, testing with, End-to-End Testing with Protractor-Running Protractor
REST services and, REST Services and Controllers

security modifications for, Security Modifications to Other Controllers

templates and, AngularJS Templates

cookies, Using Basic Authentication

checking, Checking User Credentials

deleting, Deleting User Credentials

holding user credentials in, Holding User Credentials

retrieving information from, Retrieving User Credentials
Cross-Origin Resource Sharing (CORS) layer, AngularJS Security

CSS3

media queries in, Adding a Login Template
styling pages with, Using CSS3 to Style the Page

D
data

formatting with controllers, Presentation Logic and Formatting Data, Adding
Mock Blog Data

mock, adding to projects, Adding Mock Blog Data
storage, REST services and, REST Services
dates, formatting, Adding Mock Blog Data, Adding Styles and Presentation Logic

dependency injection (DI), Dependency Injection

npm install command and, Adding Node.js Dependencies

OpenShift and, MEAN Deployment to the Cloud

www.it-ebooks.info

http://www.it-ebooks.info/

services module and, Updating the Project for REST

deployment, MEAN Cloud and Mobile-Conclusion
cloud, MEAN Deployment to the Cloud

local, Local Deployment-Protractor Testing

directives, AngularJS Directives-Conclusion

adding to projects, Adding the Custom Directive-Passing the Title Attribute
building presentation logic with, Adding Styles and Presentation Logic
custom, building, Building Custom Directives

defined, What Are Directives?

end-to-end testing of, End-to-End Testing

Karma and, Testing Directives with Karma-Karma Testing

naming conventions for, Naming Conventions for Directives

ng-click, Adding Behavior with Controllers, Adding Behavior with Controllers
ng-include, Building Custom Directives

ng-model, Adding Behavior with Controllers, Adding Behavior with Controllers,
AngularJS Templates

ng-repeat, Adding Styles and Presentation Logic, List Services

ng-submit, Form Submission, Adding a Login Template, Adding Blog Entries
ng-view, AngularJS Templates

passing title attribute, Passing the Title Attribute

Protractor and, End-to-End Testing

restrict option, The Restrict Option

template attributes for, Template Attributes

www.it-ebooks.info

http://www.it-ebooks.info/

templateUrl attribute, The Template URL
unit testing for, Testing Directives with Karma-Karma Testing

views and, Adding Styles and Presentation Logic

E
end-to-end testing (E2E), Testing AngularJS Applications, Protractor

business logic, End-to-End Testing

MEAN stack deployment, End-to-End Testing-Protractor Testing
models, End-to-End Testing

non-REST services, End-to-End Testing

of directives, End-to-End Testing

of security, End-to-End Testing

REST services, End-to-End Testing

ExpressJS, The MEAN Application
building REST services with, A New and Better Way

F

factory function, Ways to Create AngularJS Services, Creating AngularJS Services
failed REST service calls, The JSON Response
Firefox, Running Karma Unit Tests

forms, Form Submission-Using Submitted Form Data

data, using, Using Submitted Form Data
submissions from, Form Submission-Form Submission

frameworks

ASP.NET, JavaScript Client-Side Frameworks

CakePHP, Integrating AngularJS with Other Frameworks, The Old Way

www.it-ebooks.info

http://www.it-ebooks.info/

client-side, JavaScript Client-Side Frameworks, AngularJS Views (MVC),
AngularJS Models (MVC)

Jasmine, Creating Test Scripts
MVC, AngularJS Views (MVC), MVC and AngularJS-Conclusion
server-side web MVC, JavaScript Client-Side Frameworks

Spring MVC, JavaScript Client-Side Frameworks, Dependency Injection,
Integrating AngularJS with Other Frameworks, The Old Way, A New and Better
Way

Struts, JavaScript Client-Side Frameworks, The Old Way
web, The Old Way-Choice Two
web MVC, JavaScript Client-Side Frameworks

Zend, The Old Way

G
Git, Conclusion, MEAN Deployment to the Cloud

Google, Old Versus New AngularJS SEO
Google Chrome, Running Karma Unit Tests

Google Webmaster Tools, Google Webmaster Tools

H
hashbang mode, HTML5 Mode, HTML5 Mode

HTML compiler, The HTML Compiler

HTML5, HTML5 Mode
editing, Editing the HTML Code

History API, HTML5 Mode

mobile applications for, Mobile Version

www.it-ebooks.info

http://www.it-ebooks.info/

mode, turning off, HTML5 Mode
modifying to use models, Modifying the HTML
HTTP methods, REST Services

HTTPS, Authentication

I
IDE, The IDE and AngularJS Projects-Conclusion

HTML, editing, Editing the HTML Code
JavaScript, editing, Editing the JavaScript Code
NetBeans, The IDE

running applications in, Running the Applications
templates, creating, Creating the Templates

testing applications in, Testing AngularJS Applications in the IDE-Testing
AngularJS Applications in the IDE

input elements (from forms), Using Submitted Form Data

J

Jasmine framework, Creating Test Scripts
Java, AngularJS and SEO
Java Server Pages (JSP), MVC and AngularJS

JavaScript

console, accessing, AngularJS Controllers
editing, Editing the JavaScript Code

Jenkins CI system, Protractor

testing and, Testing Considerations

JQuery, Introduction to AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

downloading, The IDE

JS Test Driver, Testing AngularJS Applications, JS Test Driver-Testing with JS Test
Driver

test scripts, creating, Creating Test Scripts
testing with, Testing with JS Test Driver
JSON, REST response objects as, The JSON Response

JsTestRunner, JsTestRunner

K

Karma, Testing AngularJS Applications, Karma Test Runner

business logic and, Karma Configuration-Karma Testing

configuring, Karma Configuration, Karma Configuration
configuring for MEAN stack deployment, Karma Configuration
directives and, Testing Directives with Karma-Karma Testing
installing, Installing Karma

MEAN stack deployment, testing, Testing with Karma-Karma Testing
models, testing, Testing Services with Karma-Karma Testing
non-REST services and, Karma Configuration-Karma Testing

REST services, testing with, Testing Services with Karma-Karma Service
Specifications

security, testing with, Testing with Karma-Karma Testing
service specifications for, Karma Service Specifications
testing considerations for, Testing Considerations

unit tests, running, Running Karma Unit Tests

karma-ng-html2js-preprocessor Karma plugin, Testing Directives with Karma

www.it-ebooks.info

http://www.it-ebooks.info/

L

list services, List Services
lists, returning, List Services
locationProvider service, HTML5 Mode

login services, Adding a Login Service

controllers and, Adding a Login Service

login controllers and, Adding a Login Controller

non-REST, Adding a Login Service

security, Adding a Login Controller, Adding a Login Template
templates, Adding a Login Template

user authentication, Adding a Login Service, Adding a Login Template

M

MEAN (MongoDB, ExpressJS, AngularJS, and Node.js) stack deployment, MEAN
Cloud and Mobile-Conclusion

changing service URL for, MEAN Services

cloud deployment, MEAN Deployment to the Cloud
controllers, MEAN Blog Controllers-MEAN Blog Controllers
end-to-end testing of, End-to-End Testing-Protractor Testing
Karma and, Testing with Karma-Karma Testing

mobile apps, Mobile Version

Node.js dependencies, adding, Adding Node.js Dependencies
Protractor and, End-to-End Testing-Protractor Testing
running locally, Running the Blog Application Locally

services, MEAN Services

www.it-ebooks.info

http://www.it-ebooks.info/

templates, MEAN Blog Templates
unit testing, Testing with Karma-Karma Testing
microformat tags, Microformat Tags

mobile apps

as wrapper for server-side application, Choice One
converting web applications to, Choice Two

devices, designing for, Responsive Design Considerations-Responsive Design
Considerations

MEAN stack deployments for, Mobile Version

responsive design and, Responsive Design Considerations-Responsive Design
Considerations

web MVC frameworks and, The Old Way

models, AngularJS Models (MVC), AngularJS Models-Conclusion

adding to app, Modifying App.js

controllers and, AngularJS Controllers (MVC), Changes to the Controllers,
Modifying the Controllers-Modifying the Controllers

end-to-end testing, End-to-End Testing

initializing with controllers, Initializing the Model with Controllers
Karma, testing with, Testing Services with Karma-Karma Testing
properties of, Model Properties

Protractor, testing with, End-to-End Testing

REST services as source of, Public REST Services

scope properties and, Model Properties

unit testing, Testing Services with Karma-Karma Testing

www.it-ebooks.info

http://www.it-ebooks.info/

MongoDB, Installing Node.js, npm, and MongoDB
interacting with, The MEAN Application

Mongoose.js ODM library, The MEAN Application

MVC frameworks, MVC and AngularJS-Conclusion
AngularJS as, A New and Better Way

controllers, AngularJS Controllers (MVC)
model classes, AngularJS Models (MVC)

responsive design and, Responsive Design Considerations-Responsive Design
Considerations

testing considerations for, Testing Considerations
view classes, AngularJS Views (MVC)
web, The Old Way-Choice Two

N
NetBeans

configuring, The IDE

installing, The IDE

JS Test Driver, JS Test Driver-Testing with JS Test Driver

JsTestRunner support in, JsTestRunner

Karma and, Karma Configuration

Node.js plugin, installing, Installing the NetBeans Node.js Plugin

Protractor and, Testing AngularJS Applications in the IDE
ng-app tag, Bootstrapping the Application

ng-click directive, Adding Behavior with Controllers, Adding Behavior with
Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

ng-include directive, Building Custom Directives

ng-model directive, Adding Behavior with Controllers, Adding Behavior with
Controllers, AngularJS Templates

ng-repeat directive, List Services

ng-submit directive, Form Submission, Adding Blog Entries

user authentication and, Adding a Login Template

ng-view directive, AngularJS Templates

dynamic content and, Creating the Blog Project
single-page applications in, Single-Page Applications, AngularJS Templates
ngRoute module, Dependency Injection

Node.js, Installing Node.js, npm, and MongoDB
dependencies, adding, Adding Node.js Dependencies

Karma and, Testing AngularJS Applications in the IDE
Protractor and, Testing AngularJS Applications in the IDE

NoSQL, The MEAN Application

injection attack, AngularJS Security
npm (Node.js package manager), Installing Node.js, npm, and MongoDB
npm install command, Adding Node.js Dependencies

0]
OpenShift, MEAN Deployment to the Cloud

P
package.json file, Testing AngularJS Applications in the IDE

performance and SEO, Building Clean Client Code

PHP, MVC and AngularJS, AngularJS and SEO

www.it-ebooks.info

http://www.it-ebooks.info/

presentation logic

adding to projects, Adding Styles and Presentation Logic
controllers and, Presentation Logic and Formatting Data, Adding Mock Blog Data
directives and, Adding Styles and Presentation Logic

projects, AngularJS Views and Bootstrap-Conclusion

application, running, Running the Blog Application

controllers, adding, Adding a New Blog Controller

creating, Creating the Blog Project

directives, adding, Adding the Custom Directive-Passing the Title Attribute
end-to-end testing, End-to-End Testing

functionality, adding, Viewing the Blog Post-Viewing the Blog Post

Karma, testing with, Testing with Karma-Protractor Testing

menus, adding, Adding a Bootstrap Menu

mock data, adding, Adding Mock Blog Data

non-REST services, adding, Blog Application Business Logic-Testing Services with
Karma

presentation logic, adding, Adding Styles and Presentation Logic
Protractor, testing with, End-to-End Testing

REST services, updating for, Updating the Project for REST
service modules, adding, Modifying App.js

styles, adding to, Adding Styles and Presentation Logic

styling pages in, Using CSS3 to Style the Page

templates, adding, Adding a New Blog Template

www.it-ebooks.info

http://www.it-ebooks.info/

testing, Testing with Karma-Karma Testing
Twitter Bootstrap, adding, Twitter Bootstrap
unit testing, Testing with Karma-Karma Testing

Protractor, Testing AngularJS Applications, Protractor

business logic and, End-to-End Testing
configuring, Configuring Protractor

directives and, End-to-End Testing

installing, Installing Protractor

MEAN stack deployment and, Testing with Karma-Karma Testing
models, testing with, End-to-End Testing
non-REST services and, End-to-End Testing
REST services, testing with, End-to-End Testing
running, Running Protractor

security and, End-to-End Testing

Selenium Server and, Starting the Selenium Server
test server, starting, Protractor Testing

test specifications, creating, Creating Protractor Test Specifications, Protractor
Test Specification

testing considerations for, Testing Considerations

testing with, Protractor Testing
provider function, Ways to Create AngularJS Services, Creating AngularJS Services
public SSH keys, MEAN Deployment to the Cloud

Python, AngularJS and SEO

www.it-ebooks.info

http://www.it-ebooks.info/

R

responsive design, Responsive Design Considerations-Responsive Design
Considerations

HTMLS5 mobile applications and, Mobile Version

REST services, AngularJS and REST Services-Conclusion
AngularJS and, AngularJS and REST Services

as objects, Ways to Communicate with REST Services
authenticating across multiple, Services and Business Logic
Chrome Developer Tools and, Running the Application
communicating with, Ways to Communicate with REST Services
controllers and, REST Services and Controllers

creating AngularJS services, Ways to Create AngularJS Services
end-to-end testing of, End-to-End Testing

failed calls, The JSON Response

JavaScript debuggers and, AngularJS Controllers

Karma, testing with, Testing Services with Karma-Karma Service Specifications,
Karma Service Specifications

lists, displaying with, List Services

lists, returning, List Services

Protractor, testing with, End-to-End Testing

response objects from, The JSON Response

response times for, Controller Business Logic, Building Fast REST Services
SEO and, Building Fast REST Services

testing specifications for, Karma Service Specifications

www.it-ebooks.info

http://www.it-ebooks.info/

troubleshooting, Running the Application
unit tests and, Modifying the Controllers
restrict option (directives), The Restrict Option

routes, AngularJS Routes

adding, for security, Adding New Routes
templates and, AngularJS Templates
Ruby, AngularJS and SEO
Ruby on Rails, The Old Way

S

scope properties, Model Properties

displaying, Controller Business Logic
error handling with, Adding a Login Controller
passing values to, Template Attributes

search engine optimization (SEQ), AngularJS and SEO-Conclusion

client code and, Building Clean Client Code
Google Webmaster Tools, Google Webmaster Tools
microformat tags, Microformat Tags
performance and, Building Clean Client Code
REST services and, Building Fast REST Services
sitemaps, Adding a Sitemap
tag-based navigation, Microformat Tags

search engines, Modern Search Engines

security, AngularJS Security-Conclusion

end-to-end testing for, End-to-End Testing

www.it-ebooks.info

http://www.it-ebooks.info/

Karma, testing with, Testing with Karma-Karma Testing

login controllers, Adding a Login Controller

login template, Adding a Login Template

logout controllers and, Adding a Logout Controller-Adding a Logout Controller
logout link and, Adding a Logout Link

modifications of controllers, Security Modifications to Other Controllers
non-REST services and, Services and Business Logic

Protractor and, End-to-End Testing

routes, adding, Adding New Routes

unit testing, Testing with Karma-Karma Testing

user authentication and, Authentication

Selenium Server, Starting the Selenium Server

running, Protractor
SEO companies, Old Versus New AngularJS SEO
server-side web MVC frameworks, JavaScript Client-Side Frameworks
service function, Ways to Create AngularJS Services, Creating AngularJS Services

services module, Updating the Project for REST

modifying to make apps transportable, MEAN Services

services, non-REST, Services and Business Logic-Conclusion

checking data with, Checking User Credentials
cookies, reading with, Retrieving User Credentials
creating, Creating AngularJS Services

deleting data with, Deleting User Credentials

www.it-ebooks.info

http://www.it-ebooks.info/

holding data with, Holding User Credentials

login, Adding a Login Service

MEAN, MEAN Services

user authentication, Handling User Authentication-Retrieving User Credentials
single-page applications, Single-Page Applications
sitemaps, Adding a Sitemap

Spring MVC framework, JavaScript Client-Side Frameworks, Dependency
Injection, The Old Way

building REST services with, A New and Better Way

integrating with AngularJS, Integrating AngularJS with Other Frameworks
SSL, AngularJS Security
Struts framework, JavaScript Client-Side Frameworks, The Old Way

styles

adding to projects, Adding Styles and Presentation Logic
Bootstrap and, Adding Styles and Presentation Logic

success callback function, REST Services and Controllers, Modifying the Controllers

T

tag-based navigation, Microformat Tags

templates, AngularJS Templates

creating, Creating the Templates

login, Adding a Login Template

MEAN, MEAN Blog Templates

projects, adding to, Adding a New Blog Template

views as, AngularJS Templates

www.it-ebooks.info

http://www.it-ebooks.info/

templateUrl attribute (directives), The Template URL
test scripts, creating, Creating Test Scripts
test specifications, Testing Considerations

testing, Testing AngularJS Applications
cloud deployments, Testing the Cloud Blog

considerations for MVC, Testing Considerations
end-to-end, Protractor
in IDE, Testing AngularJS Applications in the IDE-Protractor
Karma, Karma Test Runner
library files, location of, JsTestRunner
Protractor, Protractor
unit, Karma Test Runner
with JS Test Driver, Testing with JS Test Driver
with JsTestRunner, JsTestRunner
Torvalds, Linus, Conclusion

Travis CI system, Protractor

testing and, Testing Considerations

Twitter Bootstrap, Introduction to AngularJS, AngularJS Views and Bootstrap,
Twitter Bootstrap

downloading, The IDE

menus, adding, Adding a Bootstrap Menu

U

unit testing, Testing AngularJS Applications, Karma Test Runner

asynchronous calls, Modifying the Controllers

www.it-ebooks.info

http://www.it-ebooks.info/

business logic, Karma Configuration-Karma Testing
directives, Testing Directives with Karma-Karma Testing
MEAN stack deployment, Testing with Karma-Karma Testing
models, Testing Services with Karma-Karma Testing
non-REST services, Karma Configuration-Karma Testing
REST services, Modifying the Controllers

security, testing, Testing with Karma-Karma Testing

with JS Test Driver, JS Test Driver-Testing with JS Test Driver

user authentication, Handling User Authentication-Retrieving User Credentials

basic, Using Basic Authentication

login controllers, Adding a Login Controller

login services, Adding a Login Service

login template, Adding a Login Template

logout controllers and, Adding a Logout Controller-Adding a Logout Controller
logout link, Adding a Logout Link

security and, AngularJS Security

testing with Karma, Karma Test Specifications-Karma Testing

unit testing, Karma Test Specifications-Karma Testing

user credentials

checking, Checking User Credentials
deleting, Deleting User Credentials
holding, Holding User Credentials

retrieving, Retrieving User Credentials

www.it-ebooks.info

http://www.it-ebooks.info/

\%
V8 JavaScript engine (Google), The MEAN Application

views

as templates, AngularJS Templates
controllers and, AngularJS Controllers (MVC)
directives and, Adding Styles and Presentation Logic

testing with Karma, Testing with Karma-Karma Testing

W

web applications

converting to mobile, Choice Two

wrappers for, Choice One
web browsers, security and, AngularJS Security
web frameworks, The Old Way-Choice Two
web MVC frameworks, JavaScript Client-Side Frameworks
webdriver-manager tool, Starting the Selenium Server
WebDriverJS, Protractor

WebView component (Android), Choice One

Z
Zend Framework, The Old Way

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ken Williamson is a software engineer and architect with over twenty years of experience
in the technology industry. Ken’s first programming language was Assembly using the
6502 chip. He moved on to C and C++ and eventually to Java and JavaScript. Ken has
designed and written mobile, desktop, and server software for some of the biggest
companies in the world.

Ken holds a BS in Computer Science from Kennesaw State University. He is the founder
of several open source projects including Ulbora CMS; he has also contributed to many
other open source projects over the years. Ken makes his home in Atlanta, Georgia with
his wife, Sherry. You can find Ken at www.ken-williamson.com.

www.it-ebooks.info

http://www.ken-williamson.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon

The animals on the cover of Learning AngularJS are Florida cricket frogs (Acris gryllus
dorsalis), which are subspecies of the Southern cricket frog. They can be found all
throughout Florida, with the exception of the extreme northwestern panhandle.

Cricket frogs prefer a freshwater environment, such as puddles, lakes, marshes, and
streams. They are easily recognized by the triangular mark on their heads and the two dark
stripes on their rear.

Breeding occurs from April into the fall, with small clusters of eggs attached to submerged
plants. Males advertise their readiness with a loud, rapid call of gick, gick, gick, which has
been described by some as the sound of marbles clicking together.

Adult Florida cricket frogs grow to be about 1.25 inches long, and vary in color from dark
brown to tan or green. They enjoy healthy population growth and are not considered
threatened in any way.

Many of the animals on O’Reilly covers are endangered; all of them are important to the
world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://animals.oreilly.com
http://www.it-ebooks.info/

Preface
Why I Wrote This Book

What This Book Covers

Who Should Read This Book
The Chapters in This Book
Conventions Used in This Book
Using Code Examples

Safari® Books Online

How to Contact Us

1. Introduction to AngularJS

JavaScript Client-Side Frameworks
Single-Page Applications
Bootstrapping the Application
Dependency Injection

AngularJS Routes

HTML5 Mode

Modern Search Engines

AngularJS Templates

AngularJS Views (MVC)
AngularJS Models (MVC)
Angular]JS Controllers (MVC)
Controller Business Logic
Integrating AngularJS with Other Frameworks
Testing AngularJS Applications

Conclusion

www.it-ebooks.info

http://www.it-ebooks.info/

2. The IDE and AngularJS Projects
The IDE

Editing the HTML Code

Editing the JavaScript Code

Creating the Templates

Running the Applications

Testing AngularJS Applications in the IDE
JsTestRunner

Karma Test Runner

Protractor

Conclusion

3. MVC and AngularJS
The Old Way
Choice One

Choice Two
A New and Better Way
Testing Considerations
Responsive Design Considerations
Conclusion

4. AngularJS Controllers
Initializing the Model with Controllers

Adding Behavior with Controllers
Controller Business Logic

Presentation Logic and Formatting Data
Form Submission

Using Submitted Form Data

www.it-ebooks.info

http://www.it-ebooks.info/

JS Test Driver
Creating Test Scripts

Testing with JS Test Driver

Testing with Karma

Installing Karma
Karma Configuration
Running Karma Unit Tests

End-to-End Testing with Protractor

Installing Protractor
Configuring Protractor
Creating Protractor Test Specifications
Starting the Selenium Server
Running Protractor
Conclusion

5. AngularJS Views and Bootstrap
AngularJS Templates

Creating the Blog Project

Adding a New Blog Controller
Adding a New Blog Template

Twitter Bootstrap

Adding a Bootstrap Menu

Adding Mock Blog Data

Using CSS3 to Style the Page
Adding Styles and Presentation Logic
Viewing the Blog Post

Running the Blog Application

www.it-ebooks.info

http://www.it-ebooks.info/

Testing with Karma

Karma Configuration
Karma Test Specifications
Karma Testing

End-to-End Testing

Protractor Test Specification
Protractor Testing
Conclusion

6. AngularJS and REST Services
REST Services

AngularJS and REST Services

Ways to Create AngularJS Services

Ways to Communicate with REST Services
Updating the Project for REST

REST Services and Controllers

The JSON Response

List Services

Testing Services with Karma

Karma Service Specifications

End-to-End Testing

Protractor Configuration
Protractor Test Specification
Conclusion

7. AngularJS Models
Public REST Services

Changes to the Controllers

Model Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Blog Application Public Services
Modifying the HTML

Modifying App.js

Modifying the Controllers
Running the Application

Testing Services with Karma

Karma Service Specifications
Karma Testing

End-to-End Testing

Protractor Test Specification
Protractor Testing
Conclusion

8. Services and Business Logic

Handling User Authentication
Using Basic Authentication
Creating Angular]JS Services
Holding User Credentials
Checking User Credentials
Deleting User Credentials
Retrieving User Credentials
Blog Application Business Logic
Using the Business Logic

Testing Services with Karma

Karma Configuration
Karma Test Specifications

Karma Testing

www.it-ebooks.info

http://www.it-ebooks.info/

End-to-End Testing
Protractor Configuration
Protractor Test Specification
Protractor Testing
Conclusion

9. AngularJS Directives
The HTML Compiler

What Are Directives?

Building Custom Directives
Naming Conventions for Directives
The Restrict Option

The Template URL

Template Attributes

Adding the Custom Directive
Passing the Title Attribute

Running the Blog Application

Testing Directives with Karma

Karma Configuration
Karma Test Specification
Karma Testing

End-to-End Testing

Protractor Configuration

Protractor Test Specification

Protractor Testing
Conclusion

10. AngularJS Security

www.it-ebooks.info

http://www.it-ebooks.info/

Authentication

Adding a Login Service

Adding a Login Controller

Security Modifications to Other Controllers
Adding a Logout Controller

Adding a Login Template

Adding New Routes

Adding a Logout Link

Running the Blog Application
Logging In

Testing with Karma

Karma Configuration
Karma Test Specifications
Karma Testing

End-to-End Testing

Protractor Configuration
Protractor Test Specification
Protractor Testing
One Last Point on Security
Conclusion

11. MEAN Cloud and Mobile
Local Deployment

Installing Node.js, npm, and MongoDB
Installing the NetBeans Node.js Plugin
The MEAN Application

Node.js Public Folder

www.it-ebooks.info

http://www.it-ebooks.info/

MEAN Services

MEAN Blog Controllers

MEAN Blog Templates

Adding Comments

Adding Blog Entries

Adding New Routes

Adding Node.js Dependencies
Running the Blog Application Locally

Testing with Karma

Karma Configuration
Karma Test Specifications
Karma Testing

End-to-End Testing

Protractor Configuration
Protractor Test Specification
Protractor Testing

MEAN Deployment to the Cloud

Testing the Cloud Blog

Mobile Version

Conclusion

12. AngularJS and SEO
Old Versus New AngularJS SEO

Getting Found by Search Engines
Google Webmaster Tools
Adding a Sitemap

Microformat Tags

www.it-ebooks.info

http://www.it-ebooks.info/

Building Clean Client Code
Building Fast REST Services
Conclusion

References

Index

www.it-ebooks.info

http://www.it-ebooks.info/

	Preface
	Why I Wrote This Book
	What This Book Covers
	Who Should Read This Book
	The Chapters in This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	1. Introduction to AngularJS
	JavaScript Client-Side Frameworks
	Single-Page Applications
	Bootstrapping the Application
	Dependency Injection
	AngularJS Routes
	HTML5 Mode
	Modern Search Engines
	AngularJS Templates
	AngularJS Views (MVC)
	AngularJS Models (MVC)
	AngularJS Controllers (MVC)
	Controller Business Logic
	Integrating AngularJS with Other Frameworks
	Testing AngularJS Applications
	Conclusion

	2. The IDE and AngularJS Projects
	The IDE
	Editing the HTML Code
	Editing the JavaScript Code
	Creating the Templates
	Running the Applications
	Testing AngularJS Applications in the IDE
	JsTestRunner
	Karma Test Runner
	Protractor
	Conclusion

	3. MVC and AngularJS
	The Old Way
	Choice One
	Choice Two

	A New and Better Way
	Testing Considerations
	Responsive Design Considerations
	Conclusion

	4. AngularJS Controllers
	Initializing the Model with Controllers
	Adding Behavior with Controllers
	Controller Business Logic
	Presentation Logic and Formatting Data
	Form Submission
	Using Submitted Form Data
	JS Test Driver
	Creating Test Scripts
	Testing with JS Test Driver

	Testing with Karma
	Installing Karma
	Karma Configuration
	Running Karma Unit Tests

	End-to-End Testing with Protractor
	Installing Protractor
	Configuring Protractor
	Creating Protractor Test Specifications
	Starting the Selenium Server
	Running Protractor

	Conclusion

	5. AngularJS Views and Bootstrap
	AngularJS Templates
	Creating the Blog Project
	Adding a New Blog Controller
	Adding a New Blog Template
	Twitter Bootstrap
	Adding a Bootstrap Menu
	Adding Mock Blog Data
	Using CSS3 to Style the Page
	Adding Styles and Presentation Logic
	Viewing the Blog Post
	Running the Blog Application
	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Test Specification
	Protractor Testing

	Conclusion

	6. AngularJS and REST Services
	REST Services
	AngularJS and REST Services
	Ways to Create AngularJS Services
	Ways to Communicate with REST Services
	Updating the Project for REST
	REST Services and Controllers
	The JSON Response
	List Services
	Testing Services with Karma
	Karma Service Specifications

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification

	Conclusion

	7. AngularJS Models
	Public REST Services
	Changes to the Controllers
	Model Properties
	Blog Application Public Services
	Modifying the HTML
	Modifying App.js
	Modifying the Controllers
	Running the Application
	Testing Services with Karma
	Karma Service Specifications
	Karma Testing

	End-to-End Testing
	Protractor Test Specification
	Protractor Testing

	Conclusion

	8. Services and Business Logic
	Handling User Authentication
	Using Basic Authentication
	Creating AngularJS Services
	Holding User Credentials
	Checking User Credentials
	Deleting User Credentials
	Retrieving User Credentials
	Blog Application Business Logic
	Using the Business Logic
	Testing Services with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing
	Conclusion

	9. AngularJS Directives
	The HTML Compiler
	What Are Directives?
	Building Custom Directives
	Naming Conventions for Directives
	The Restrict Option
	The Template URL
	Template Attributes
	Adding the Custom Directive
	Passing the Title Attribute
	Running the Blog Application
	Testing Directives with Karma
	Karma Configuration
	Karma Test Specification
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	Conclusion

	10. AngularJS Security
	Authentication
	Adding a Login Service
	Adding a Login Controller
	Security Modifications to Other Controllers
	Adding a Logout Controller
	Adding a Login Template
	Adding New Routes
	Adding a Logout Link
	Running the Blog Application
	Logging In

	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	One Last Point on Security
	Conclusion

	11. MEAN Cloud and Mobile
	Local Deployment
	Installing Node.js, npm, and MongoDB
	Installing the NetBeans Node.js Plugin
	The MEAN Application
	Node.js Public Folder
	MEAN Services
	MEAN Blog Controllers
	MEAN Blog Templates
	Adding Comments
	Adding Blog Entries
	Adding New Routes
	Adding Node.js Dependencies
	Running the Blog Application Locally
	Testing with Karma
	Karma Configuration
	Karma Test Specifications
	Karma Testing

	End-to-End Testing
	Protractor Configuration
	Protractor Test Specification
	Protractor Testing

	MEAN Deployment to the Cloud
	Testing the Cloud Blog
	Mobile Version
	Conclusion

	12. AngularJS and SEO
	Old Versus New AngularJS SEO
	Getting Found by Search Engines
	Google Webmaster Tools
	Adding a Sitemap
	Microformat Tags
	Building Clean Client Code
	Building Fast REST Services
	Conclusion

	References
	Index

