

ng-book 2

Felipe Coury, Ari Lerner, Nate Murray, & Carlos Taborda

© 2015 - 2016 Felipe Coury, Ari Lerner, Nate Murray, & Carlos Taborda

Contents

Book Revision e 1
Bug Reports 1
Chat With The Community! 1
Be notified of updates via Twitter oL 1
We'd love to hear fromyou! 1
Writing your First Angular 2 Web Application 1
Simple Reddit Clone 1
Getting started 4
TypeScript. 4
angular-cli 4
Example Project 5
Writing Application Code 9
Running the application L 9
Making aComponent 10
Importing Dependencies 12
Component Annotations L oo 12
Adding a template with templateUrl 13
Addingatemplate 13
Adding CSS Styles with styleUrls 14
Loading Our Component 15
Adding Data to the Component 16
Working With Arrays 19
Using the User Item Component 22
Rendering the UserItemComponent 23
AcceptingInputs 24
Passing anInput value L 25
Bootstrapping Crash Course 26
Expanding our Application 28
Adding CSS 30
The Application Component L 30
Adding Interaction L 32
Adding the Article Component 36

Rendering Multiple Rows 45

CONTENTS

Creating an Articleclass 45
Storing Multiple Articles 49
Configuring the ArticleComponent with inputs, 50
Rendering a List of Articles L 52
Adding New Articles o oot i 54
Finishing Touches 55
Displaying the Article Domain 55
Re-sorting Based on Score 56
Full Code Listing e 57
Wrapping Up o e 57
Getting Help o o 57
TypeScript e 58
Angular 2 is built in TypeScript 58
What do we get with TypeSeript? 59
TYPES . o o e 60
Tryingitout witha REPL 61
Built-in types 62
Classes o o 64
Properties e 64
Methods 65
Constructors 67
Inheritance 68
Utilities o o 70
Fat Arrow Functions 70
Template Strings 72
Wrapping up L e 73
How Angular Works 74
Application L 74
The Navigation Component 75
The Breadcrumbs Component 75
The Product List Component 76
Product Model 78
Components 79
Component Annotation L L e 81
Component selector e 81
Component template 82
Adding AProduct 82
Viewing the Product with Template Binding 84
Adding More Products 85
Selecting aProduct 86

Listing products using <products-list> 86

CONTENTS

The ProductsList Component 89
Configuring the ProductsList @Component Options 90
Component inputs L L 90
Componentoutputs 93
Emitting Custom Events o 95
Writing the ProductsList Controller Class 96
Writing the ProductsList View Template 97
The Full ProductsList Component 99

The ProductRow Component 101
ProductRow Component Configuration 101
ProductRow Component Definition Class 102
ProductRow template e e e e e 103
ProductRow Full Listing 103

The ProductImage Component 104

The PriceDisplay Componentt 105

The ProductDepartment Component 105

NgModule and Bootingthe App 106
Bootingtheapp 108

The Completed Project 108

A Word on Data Architecture 109

Built-in Directives 110

Introduction 110

NGIE o o o e e e e 110

NgSwitch . . . e e e e e e e e e e e e e e e e e 110

NGStyle o e e e e e e e e e e e e e e e e e e e 113

NGCLass v o o i e 115

NGFOT . . . o e 118
Gettinganindex 122

NgNonBindable e 122

Conclusion e 123

Formsin Angular2 124

Forms are Crucial, Forms are Complex 124

FormControls and FOrmGroups v v v v vt e e e e e e e e e 124
FormControl o e 124
FOormGroup o e e e e e e e e e e e e e e e 125

OurFirstForm 126
Loading the FormsModule 127
Simple SKU Form: @Component Annotation. 128
Simple SKU Form: template o i 128
Simple SKU Form: Component Definition Class 132

CONTENTS

Using FormBuilder o ittt e e 134
Reactive Forms with FormBuilder 135
Using FormBuilder o o i it it e e e e e e 135
UsingmyFormintheview. 136
Tryitout! L 137
Adding Validations 138
Explicitly setting the sku FormControl as an instance variable 140
Custom Validations L 145
Watching For Changes 146
ngModel e 148
Wrapping Up L e 150
HTTP . . . e e 151
Introduction 151
Using @angular/http o oL e 152
import from @angular/http oo 152

A BasicRequest 153
Building the SimpleHTTPComponent @Component 154
Building the SimpleHTTPComponent template 154
Building the SimpleHTTPComponent Controller 155
Full SimpleHTTPComponent v v v it e e s e e e e e e 157
Writing a YouTubeSearchComponent o 158
Writing a SearchResult L 160
Writing the YouTubeService 160
Writing the SearchBox 169
Writing SearchResultComponent L L 176
Writing YouTubeSearchComponent oo 177
@angular/http APL 181
Making a POST request o v v it e e 181
PUT /PATCH /DELETE /HEAD ittt 181
RequestOptions e e e e e e e e e e e e 182
Summaryo 183
Routing e 184
Why Do We Need Routing? 184
How client-side routing works o o 185
The beginning: using anchortags 186
The evolution: HTMLS5 client-side routing 186
Writing our first routes L. 187
Components of Angular 2 routing L 187
Imports e 187
Routes o o e 188

Installing our Routes L 189

CONTENTS

RouterOutlet using <router-outlet> 190
RouterLink using [routerLink] L Lo 191
Putting it all together 192
Creating the Components 194
HomeComponent e e e e e e e e e e e e e e e 194
AboutComponent e e e e e e e e e e e e e e e 194
ContactComponent L e e e e e e e e e 194
Application Component 195
Configuringthe Routes L 197
Routing Strategies 198
Path location strategy 199
Running the application 200
Route Parameters 202
ActivatedRoute 203
Music Search App L 204
First Steps o L o 206
The SpotifyService 0 e 207
The SearchComponent o o i i e 208
Tryingthesearch 218
TrackComponent o e 220
Wrapping up musicsearch L Lo 222
Router Hooks. o 222
AuthService 223
LoginComponent o L e e e e e e e e e e e e e e e 224
ProtectedComponent and Route Guards 226
Nested Routes 232
Configuring Routes 233
ProductsComponent L e e e e e e e e e e e 233
Summary 238
Dependency Injection 239
Injections Example: PriceService o 240
Don’t Call Us..” o 242
Dependency Injection Parts 244
Playing with an Injector 245
Providing Dependencies with NgModule 247
Providers e 248
Usinga Class 248
UsingaFactory 249
UsingaValue 251
Usinganaliaso e 251
Dependency Injection in Appso 251

Working with Injectors 253

CONTENTS

Substituting values 260
NgModule 264
NgModule vs. JavaScript Modules oo oL 264
The Compiler and Components 265
Dependency Injection and Providers 265
Component Visibility 266
Specifying Providers 268
Conclusion 269
Data Architecture in Angular2 270
An Overview of Data Architecture 270
Data Architecture in Angular2 oL 271
Data Architecture with Observables - Part 1: Services 272
Observablesand RXJS 272
Note: Some RxJS Knowledge Required 272
Learning Reactive Programmingand RxJS 272
Chat App OVEIVIEW o o it it e e e e e 274
Components e 275
Models 276
Services 277
Summaryo 277
Implementing the Models L 278
User o e e 278
Thread L e e e 278
MESSAgEt i e 279
Implementing UserService L 279
currentUser stream L. L e e 280
Settinganew user 281
UserService.ts o o e 282
The MessagesService o v i i i e e e 283
the newMessages stream e 283
themessages stream 285
The Operation Stream Pattern, 285
Sharing the Stream 287
Adding Messages to the messages Stream 288
Our completed MessagesService s 291
Trying out MessagesService Lo o 294
The ThreadsService o o i i e 296
A map of the current set of Threads (inthreads) 296

A chronological list of Threads, newest-first (in orderedthreads) 301
The currently selected Thread (in currentThread) 301

The list of Messages for the currently selected Thread (in currentThreadMessages) . . 303

CONTENTS

Our Completed ThreadsService o o vttt i it e i 306
Data Model Summary 308
Data Architecture with Observables - Part 2: View Components 309
Building Our Views: The ChatApp Top-Level Component 309
The ChatThreads Component it 312
ChatThreads Controller 312
ChatThreads template @ 0 i i i e e e e e e e e e e e e e 313
The Single ChatThread Component v 314
ChatThread Controller and ngOnInit i v i it it 315
ChatThread template e e e e e e e e 316
ChatThread Complete Code, 317
The ChatWindow Component 318
The ChatMessage Componentt i 328
Setting incoming L 329
The ChatMessage template 0 i i i 330
The Complete ChatMessage Code Listing 331
The ChatNavBar Component 336
The ChatNavBar @Component v . v v v i v e e e e e e 336
The ChatNavBar Controller. 336
The ChatNavBar template o i it e 338
The Completed ChatNavBar oo ittt ittt 338
Summary 340
Next Steps e 341
Introduction to Redux with TypeScript 342
Redux o e 343
Redux: Key Ideas 343
CoreReduxIdeas 344
What’s a reducer? 344
Defining Action and Reducer Interfaces 345
Creating Our FirstReducer 346
Running Our FirstReducer oo 346
Adjusting the Counter With actions 347
Reducerswitch o 348
Action “Arguments” 350
Storing Our State 351
Using the Store 352
Being Notified with subscribe L Lo L 352
The Coreof Redux 356

A Messaging Appo e e 357
Messaging Appstate 357

Messaging Appactions 358

CONTENTS

Messaging Appreducer e e e e 359
Trying Out Our Actions 362
Action Creators e 363
UsingReal Redux 365
Using Reduxin Angular L 367
Planning Our App o o i 368
Setting UpRedux 368
Defining the Application State oL 369
Defining the Reducers 369
Defining Action Creators 370
Creating the Store 370
CounterApp Component 372
Providing the Store 373
Bootstrapping the App L 374
The CounterComponent o v i i e e 375
IMports . . o e e e e e e e e e e e e e 375
Thetemplate 375
Theconstructor e 377
Putting It All Together 378
What's Next 380
References 381
Intermediate Redux in Angular Lo oo 382
Context For This Chapter 382
Chat App OVEIVIEW o o it i e e e e e 383
Components e 384
Models 384
Reducers 385
Summaryo 385
Implementing the Models 386
User o e 386
Thread o 0 o e e e e e e 386
MESSAgEt i e 387
App State L e e 387
A Wordon Code Layout 388
The Root Reducer 388
TheUsersState e 389
The ThreadsState e e e 389
Visualizing Our AppState L 391
Building the Reducers (and Action Creators) 392
Set Current User Action Creators 392
UsersReducer - Set Current User 393

Thread and Messages Overview 394

CONTENTS

Adding a New Thread Action Creators 394
Adding a New Thread Reducer 395
Adding New Messages Action Creators 396
Adding A New Message Reducer 397
Selecting A Thread Action Creators 399
Selecting A Thread Reducer 400
Reducers Summary 401
Building the Angular Chat App 401
The top-level ChatApp 403
The ChatPage o o e 404
Container vs. Presentational Components. 405
Building the ChatNavBar e 406
Redux Selectors L 408
Threads Selectors 409
Unread Messages Count Selector 410
Building the ChatThreads Component 411
ChatThreads Controller, 412
ChatThreads template e e e e e 413
The Single ChatThread Component 414
ChatThread @Component and template v ... 415
Building the ChatWindow Component 416
The ChatMessage Component i 424
Setting incoming 424
The ChatMessage template e 425
Summary 426
Advanced Components 428
Styling 428
View (Style) Encapsulation 430
Shadow DOM Encapsulation 434
No Encapsulation 436
Creating a Popup - Referencing and Modifying Host Elements 439
Popup Structure L 439
Using ElementRef e 441
Bindingtothehost L 443
Adding a Button using exportAs 446
Creating a Message Pane with Content Projection 448
Changing thehost CSS 449
Usingng-content L L 449
Querying Neighbor Directives - Writing Tabs 451
Tab Component e 452
Tabset Component L 452

Using the Tabset 454

CONTENTS

Lifecycle Hooks 456
OnInit and OnDestroy v i e e e 457
ONChanges v v i e 461
DoCheck o o o e e e e e e e e e e e e e e e 467
AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked 479

Advanced Templates 487
Rewriting ngIf -ngBookIf e 488
Rewriting ngFor -ngBookRepeat L. L oo 490

Change Detection 496
Customizing Change Detection 500
ZONES . . . e e e 507
Observablesand OnPush 508

Summary 512

Testing 513

Test driven? L 513

End-to-end vs. Unit Testing 513

Testing Tools e 514
Jasmine L e e e e e e e e e e 514
Karma e 515

Writing Unit Tests o e 515

Angular Unit testing framework 515

Setting Up Testing 516

Testing Servicesand HTTP 519
HTTP Considerations i 520
Stubs . .. 520
Mocks 521
Http MockBackend e e e e e e e e e 522
TestBed.configureTestingModule and Providers 522
Testing getTrack o o o i 523

Testing Routing to Components L 529
Creating a Router for Testing 530
Mocking dependencies 533
Spies e 533

Backto Testing Code 536
fakeAsync and advance e 538
inject . . L L e e e e e e e e e e e e e 539
Testing ArtistComponent’s Initialization 539
Testing ArtistComponent Methods L. 541
Testing ArtistComponent DOM Template Values 542

Testing Forms L e 545
Creating aConsoleSpy . . .« v v v v v v v it e e e 547

Installing the ConsoleSpy 548

CONTENTS

Configuring the Testing Module 549
Testing The Form 549
Refactoring Our Form Test 552
Testing HTTP requests o i i e 555
Testing aPOST o o e 556
Testing DELETE o v v v et e e e e e e e e e e e e e 557
Testing HTTP Headers 558
Testing YouTubeService i i it 560
Conclusion 566
Converting an Angular 1 ApptoAngular2 L. 567
Peripheral Concepts 567
What We're Building 568
Mapping Angular 1to Angular2 L 569
Requirements for Interoperability Lo L 571
The Angular TApp o o 571
Thengl-app HTML 573
Code OVerview it t 574
ngl:PinsService L e 574
ngl: Configuring Routes 576
ngl:HomeController e 577
ngl: / HomeController template 577
ngl:pin Directive 578
ngl: pin Directive template Lo 578
ngl: AddController e 580
ngl: AddController template 582
NEL:SUMMATY v v vttt e e e e e e e e e e e e 585
Building AHybrid 585
Hybrid Project Structure 585
Bootstrapping our Hybrid App L 590
What We'll Upgrade 591

A Minor Detour: Typing Files 594
Writing ng2 PinControlsComponent o 600
Using ng2 PinControlsComponentttt 601
Downgrading ng2 PinControlsComponent tongl 602
Adding Pinswithng2 604
Upgrading ngl PinsService and $statetong2 606
Writing ng2 AddPinComponent Lo 607
Using AddPinComponent 613
Exposing an ng2 servicetongl L o Lo 613
Writing the AnalyticsService 614
Downgrade ng2 AnalyticsServicetongl 614

Using AnalyticsServiceinngl L oo 615

CONTENTS

Summary 616
References e 617
Changelog 618
Revision 45 -2016-12-05 e e e e e 618
Revision 44 - 2016-11-17 0 v i i e e e e e e e 618
Revision 43 - 2016-11-08 e e 618
Revision 42 - 2016-10-14 e 618
Revision 41 -2016-09-28 e e e 618
Revision 40 - 2016-09-20 e e e e e e e 619
Revision 39 - 2016-09-03 e e e e 619
Revision 38 - 2016-08-29 e e e 619
Revision 37 - 2016-08-02 e e 619
Revision 36 - 2016-07-20 i o e e e 619
Revision 35-2016-06-30 e e e e e e 619
Revision 34 - 2016-06-15 e e e e e e 619
Revision 33 -2016-05-11 o e e e e 620
Revision 32 - 2016-05-06 e e e 620
Revision 31 -2016-04-28 e e e 620
Revision 30 -2016-04-20 e e e e e 621
Revision 29 - 2016-04-08 e e 621
Revision 28 - 2016-04-01 e e e 621
Revision 27 - 2016-03-25 e e 621
Revision 26 - 2016-03-24 e e e e 621
Revision 25 -2016-03-21 e e e e e 621
Revision 24 - 2016-03-10 e e e e e 621
Revision 23 -2016-03-04 e e e 621
Revision 22 - 2016-02-24 e e e e 622
Revision 21 -2016-02-20 e e 622
Revision 20 - 2016-02-11 e e e e e 622
Revision 19 -2016-02-04 e e e e e 623
Revision 18 - 2016-01-29 e e e 623
Revision 17 - 2016-01-28 e e e 623
Revision 16 - 2016-01-14 0 o i e e e e 623
Revision 15 -2016-01-07 v it e e e e e 623
Revision 14 - 2015-12-23 e e e e e e 623
Revision 13 -2015-12-17 0 i i e e e e e e e e 624
Revision 12 -2015-11-16 0 o e e e e 624
Revision 11-2015-11-09 o e 625
Revision 10 - 2015-10-30 o e 625
Revision 9 - 2015-10-15 e e e e e 625
Revision 8 - 2015-10-08 e e e e e e e 626

Revision 7 - 2015-09-23 e e e e e e e e 626

CONTENTS

Revision 6 - 2015-08-28 e e e e e e e 626
Revision 5 e e e 626
Revision 4 e e 626
Revision 3 e e 627
Revision 2 e 627

Revision 1 o o o e 627

CONTENTS 1

Book Revision

Revision 45 - Covers up to Angular 2 (2.3.0, 2016-12-05)

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: us@fullstack.io’.

Chat With The Community!

We're experimenting with a community chat room for this book using Gitter. If you’d like to hang
out with other people learning Angular 2, come join us on Gitter?!

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio®

We'd love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: us@fullstack.io®*.

"mailto:us@fullstack.io?Subject=ng-book%202%20feedback
*https://gitter.im/ng-book/ng-book
*https://twitter.com/fullstackio
“mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

mailto:us@fullstack.io?Subject=ng-book%202%20feedback
https://gitter.im/ng-book/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial
mailto:us@fullstack.io?Subject=ng-book%202%20feedback
https://gitter.im/ng-book/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

CONTENTS 2

Consulting

Engineering
Training

Considering Angular.JS for your next project?

- Using Angular for your Internal Tools on top of an existing API?
- Building a modern single page app, cross-device mobile app?
- Having issues implementing Angular on Rails?

- Need a project that needs to be rescued?

You don't have to do it alone, we - the authors of ng-book can help.

We can help you:

- Build your next MVP

- Testing and Code Coverage

- Implement Build and Deployment automation

- We support Rails, Backbone.JS, React.JS and others.

We offer a free 30min discussion where we can help you identify if you might
need our assistance either doing consulting, engineering or training your team
in Angular.JS.

Get in touch with carlos@ng-book.com or http://ng-book.com/consulting

*mailto:us@fullstack.io

mailto:us@fullstack.io
mailto:us@fullstack.io

Writing your First Angular 2 Web
Application

Simple Reddit Clone

In this chapter we’re going to build an application that allows the user to post an article (with a
title and a URL) and then vote on the posts.

You can think of this app as the beginnings of a site like Reddit® or Product Hunt’.

In this simple app we’re going to cover most of the essentials of Angular 2 including:

Building custom components

Accepting user input from forms

Rendering lists of objects into views

Intercepting user clicks and acting on them

By the time you’re finished with this chapter you’ll have a good grasp on how to build basic Angular
2 applications.

Here’s a screenshot of what our app will look like when it’s done:

*http://reddit.com
"http://producthunt.com

http://reddit.com/
http://producthunt.com/
http://reddit.com/
http://producthunt.com/

Writing your First Angular 2 Web Application 2

® O ® Y angular2 - Simple Reddit x| \ ng-book
| = = = -

€& - C [localhost:8080

r
m

wwoz Angular 2 Simple Reddit

Add a Link
Title:

iPad Game for Cats

Link:

http://ipadgameforcats.com| ‘

Angular 2
3 (angular.io)
POINTS 4 upvote < downvote
Fullstack
2 (fullstack.io)
POINTS

4 upvote < downvote

Angular Homepage

1 (angular.io)

POINTS
4 upvote < downvote

Completed application

First, a user will submit a new link and after submitting the users will be able to upvote or downvote
each article. Each link will have a score and we can vote on which links we find useful.

Writing your First Angular 2 Web Application

[] L] [Angular 2 - Simple Reddit

| ng-book |

<« C' [Y localhost:8080

e

1§

g wwoz Angular 2 Simple Reddit

Add a Link

Title:

Link:

6

POINTS

4

POINTS

3

POINTS

Angular 2

(angular.ic)

4 upvote downvote

iPad Game for Cats

(ipadgameforcats.com)

4 upvote downvote

Angular Homepage

(angular.ic)

4 upvote downvote

*ﬁ

App with new article

In this project, and throughout the book, we’re going to use TypeScript. TypeScript is a superset of
JavaScript ES6 that adds types. We’re not going to talk about TypeScript in depth in this chapter, but
if you’re familiar with ES5 (“normal” javascript) / ES6 (ES2015) you should be able to follow along

without any problems.

We’ll go over TypeScript more in depth in the next chapter. So don’t worry if you’re having
trouble with some of the new syntax.

Writing your First Angular 2 Web Application 4

Getting started

TypeScript

To get started with TypeScript, you’ll need to have Node.js installed. There are a couple of different
ways you can install Node.js, so please refer to the Node.js website® for detailed information.

0 Do I have to use TypeScript? No, you don’t have to use TypeScript to use Angular 2, but
you probably should. ng2 does have an ES5 AP, but Angular 2 is written in TypeScript
and generally that’s what everyone is using. We're going to use TypeScript in this book
because it’s great and it makes working with Angular 2 easier. That said, it isn’t strictly
required.

Once you have Node.js setup, the next step is to install TypeScript. Make sure you install at least
version 1.7 or greater. To install it, run the following npm command:

1 $ npm install -g typescript

0 npm is installed as part of Node.js. If you don’t have npm on your system, make sure you
used a Node.js installer that includes it.

9 Windows Users: We'll be using Linux/Mac-style commands on the command line through-
out this book. We’d highly recommend you install Cygwin® as it will let you run commands
just as we have them written out in this book.

angular-cli

Angular provides a utility to allow users to create and manage projects from the command line. It
automates tasks like creating projects, adding new controllers, etc. It’s generally a good idea to use
angular-cli as it will help create and maintain common patterns across our application.

To install angular-cli, just run the following command:
1 $ npm install -g angular-cli@1.0.0-beta.18

Once it’s installed you’ll be able to run it from the command line using the ng command. When you
do, you'll see a lot of output, but if you scroll back, you should be able to see the following:

®https://nodejs.org/download/
*https://www.cygwin.com/

https://nodejs.org/download/
https://www.cygwin.com/
https://nodejs.org/download/
https://www.cygwin.com/

W N -

Writing your First Angular 2 Web Application 5

$ ng

Could not start watchman; falling back to NodeWatcher for file system events.
Visit http://ember-cli.com/user-guide/#watchman for more info.

Usage: ng <command (Default: help)>

The reason we got that huge output is because when we run ng with no arguments, it runs the
default help command, which explains how to use the tool.

If you’re running OSX or Linux, you probably received this line among the output:
Could not start watchman; falling back to NodeWatcher for file system events.

This means that we don’t have a tool called watchman installed. This tool helps angular-cli when
it needs to monitor files in your filesystem for changes. If you’re running OSX, it’s recommended
to install it using Homebrew with the following command:

$ brew install watchman

0 If you’re on OSX and got an error when running brew, it means that you probably don’t
have Homebrew installed. Please refer to the page http://brew.sh/ to learn how to install it
and try again.

If you’re on Linux, you may refer to the page https://ember-cli.com/user-guide/#watchman
for more information about how to install watchman.

If you’re on Windows instead, you don’t need to install anything and angular-cli will
use the native Node.js watcher.

And with that we have angular-cli and its dependencies installed. Throughout this chapter we’re
going to use this tool to create our first application.

Example Project

Now that you have your environment ready, let’s start writing our first Angular application!

Let’s open up the terminal and run the ng new command to create a new project from scratch:
$ ng new angular2_hello_world

Once you run it, you'll see the following output:

Writing your First Angular 2 Web Application 6

installing ng2
create .editorconfig
create README.md
create src/app/app.component.css
create src/app/app.component.html
create src/app/app.component.spec.ts
create src/app/app.component.ts

create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create
create

src/app/app.module.ts

src/app/index.ts

src/app/shared/index.ts

src/assets/.gitkeep

src/assets/.npmignore
src/environments/environment.dev.ts
src/environments/environment.prod.ts
src/environments/environment.ts

src/favicon.ico
src/index.html
src/main.ts
src/polyfills.ts
src/styles.css
src/test.ts
src/tsconfig. json
src/typings.d.ts
angular-cli. json
e2e/app.e2e-spec.ts
e2e/app.po.ts
e2e/tsconfig. json
.gitignore
karma.conf. js
package. json
protractor.conf. js
tslint. json

Successfully initialized git.

0 Installing packages for tooling via npm

This will run for a while while it’s installing npm dependencies. Once it finishes we’ll see a success
message:

Installed packages for tooling via npm.
There are a lot of files generated! Don’t worry too much about all of them yet. We’ll walk through

what each one means and is used for throughout the book. For now, let’s focus on getting started
with Angular code.

0 N O O B W N -

N S U
B WO N = O O

0 N O O & W N -~

OIS T S G G G G
_, O O 00 39 0 O b N~ OO O

Writing your First Angular 2 Web Application

Let’s go inside the angular2_hello_world directory, which the ng command created for us and see

what has been created:

$ cd angular2_hello_world
$ tree -F -L 1

— README .md

— angular-cli. json
F— e2e/

— karma.conf. js
F— node_modules/

— package. json
— protractor.conf. js

F— src/

L— tslint.json

3 directories, 6 files

For now, the folder we’re interested in is src, where our application lives. Let’s take a look at what

was created there:

$ cd src
$ tree -F

| -- app.component.css
| -- app.component.html

//
//
//
//
//
//
//
//
//

| -- app.component.spec.ts

|

|

|

| | -- app.component.ts
| |-- app.module.ts
| |-- index.ts
| *-- shared/
| “-- index.ts

| -- assets/

| -- environments/

| | -- environment.dev.ts
| | -- environment.prod.ts
| “-- environment.ts

| -- favicon.ico

[-- index.html

[-- main.ts

|-- polyfills.ts

an useful README

angular-cli configuration file
end to end tests

unit test configuration
installed dependencies

npm configuration

eZ2e test configuration
application source

linter config file

22
23
24
25
26
27

0 N O O &~ W N =

N S
B W N =S O O

O O b W N =~

Writing your First Angular 2 Web Application 8

|-- styles.css
|-- test.ts

|-- tsconfig. json
"-- typings.d.ts

4 directories, 18 files

Using your favorite text editor, let’s open index.html. You should see this code:

code/first_app/angular2_hello_world/src/index.html

<!doctype html>

<html>

<head>
<meta charset="utf-8">
<title>Angular2HelloWorld</title>
<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>
<app-root>Loading...</app-root>

</body>

</html>

Let’s break it down a bit:

code/first_app/angular2_hello_world/src/index.html

<!doctype html>

<html>

<head>
<meta charset="utf-8">
<title>Angular2HelloWorld</title>
<base href="/">

If you're familiar with writing HTML file, this first part should be trivial, we’re declaring the page
charset, title and base href.

12
13
14

O = W N =

Writing your First Angular 2 Web Application 9

code/first_app/angular2_hello_world/src/index.html

<meta name="viewport" content="width=device-width, initial-scale=1">

If we continue to the template body, we see the following:

code/first_app/angular2_hello_world/src/index.html

<app-root>Loading...</app-root>
</body>
</html>

The app-root tag is where our application will be rendered. We’ll see this later when we inspect
other parts of the source code. The text Loading... is a placeholder that will be displayed before our
app code loads. We can use this technique to inform the user the application is still loading by using
either a message like we’re doing here, or a spinner or other kind of progress notification we see fit.

Writing Application Code

Running the application

Before making any changes, let’s load our app from the generated application into the browser.
angular-cli has a built in HTTP server that we can use to start our app. Back in the terminal, at
the root of our application (for the previously generated application, this will be in the directory the
generated created . /angular2_hello_world) and run:

$ ng serve
** NG Live Development Server is running on http://localhost:4200. **
// a bunch of debug messages

Build successful - 1342ms.

Our application is now running on localhost port 4200. Let’s open the browser and visit:

http://localhost:4200"°

Note that if for some reason port 4200 is taken it may start on another port number. Be
sure to read the messages on your machine to find your exact development URL

http://localhost:4200

http://localhost:4200/
http://localhost:4200/

Writing your First Angular 2 Web Application 10

) Angular2Redadit x Felipe

€« C' | [1 localhost:4200 o =

app works!

Running application

Alright, now that we the setup for the application in place, and we know how to run it, it’s time to
start writing some code.

Making a Component

One of the big ideas behind Angular is the idea of components.

In our Angular apps, we write HTML markup that becomes our interactive application, but the
browser understands only so many markup tags; Built-ins like <select> or <form> or <video> all
have functionality defined by our browser creator.

What if we want to teach the browser new tags? What if we wanted to have a <weather> tag that
shows the weather? Or what if we wanted to have a <login> tag that creates a login panel?

This is the fundamental idea behind components: we will teach the browser new tags that have
custom functionality.

0 If you have a background in Angular 1, Components are the new version of directives.

Let’s create our very first component. When we have this component written, we will be able to use
it in our HTML document like so:

O Ol & W N -

0 N O O & W N~

[U
g P W N =~ O O

Writing your First Angular 2 Web Application 11

<app-hello-world></app-hello-world>

To create a new component using angular-cli, we’ll use the generate command.

To generate the hello-world component, we need to run the following command:

$ ng generate component hello-world

installing component
create src/app/hello-world/hello-world.component.css
create src/app/hello-world/hello-world.component.html
create src/app/hello-world/hello-world.component.spec.ts
create src/app/hello-world/hello-world.component.ts

So how do we actually define a new Component? A basic Component has two parts:

1. A Component annotation
2. A component definition class

Let’s look at the component code and then take these one at a time. Open up our first TypeScript
file: src/app/hello-world/hello-world.component.ts.

code/first_app/angular2_hello_world/src/app/hello-world/hello-world.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

b
export class HelloWorldComponent implements OnInit {

constructor() { }

ngOnInit() {
}

0 Notice that we suffix our TypeScript file with . ts instead of . js The problem is our browser
doesn’t know how to interpret TypeScript files. To solve this gap, the ng serve command
live-compiles our .ts to a . js file automatically.

This snippet may seem scary at first, but don’t worry. We're going to walk through it step by step.

~N O O s~ W

Writing your First Angular 2 Web Application 12

Importing Dependencies

The import statement defines the modules we want to use to write our code. Here we’re importing
two things: Component, and OnInit.

We import Component from the module "@angular/core". The "@angular/core" portion tells
our program where to find the dependencies that we’re looking for. In this case, we're telling
the compiler that "@angular/core" defines and exports two JavaScript/TypeScript objects called
Component and OnInit.

Similarly, we import OnInit from the same module. As we’ll learn later, OnInit helps us to run code
when we initialize the component. For now, let’s not worry about it.

Notice that the structure of this import is of the format import { things } from wherever. In the
{ things } part what we are doing is called destructuring. Destructuring is a feature provided by
ES6 and TypeScript. We will talk more about it in the next chapter.

The idea with the import is a lot like import in Java or require in Ruby: we’re pulling in these
dependencies from another module and making these dependencies available for use in this file.

Component Annotations

After importing our dependencies, we are declaring the component:

code/first_app/angular2_hello_world/src/app/hello-world/hello-world.component.ts

@Component ({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

1))

If you’ve been programming in JavaScript for a while then this next statement might seem a little
weird:

@Component ({
Y/
})

What is going on here? If you have a Java background it may look familiar to you. These are
annotations.

Angular 1’s dependency injection used the annotation concept behind the scenes. Even
if you’re not familiar with them, annotations are a way to add functionality to code
using the compiler.

B W N -

Writing your First Angular 2 Web Application 13

We can think of annotations as metadata added to your code. When we use @Component on the
HelloWorld class, we are “decorating” the HelloWorld as a Component.

We want to be able to use this component in our markup by using a <app-hello-world> tag. To do
that we configure the @Component and specify the selector as app-hello-world.

@Component({
selector: 'app-hello-world'
// ... more here

b

Similar to CSS selectors, XPath, or JQuery selectors, there are lots of ways to configure a selector.
Angular Components adds their own special sauce to the selector mix, and we’ll cover that later on.
For now, keep in mind that we’re defining a new HTML markup tag.

The selector property here indicates which DOM element this component is going to use. This way
any <app-hello-world></app-hello-world> tags that appear within a template will be compiled
using this Component class and all of it’s definitions within it.

Adding a template with templateurl

In our component we are specifying a templateUrl of . /hello-world.component.html. This means
that we will load our template from the file hello-world.component.html in the same directory as
our component. Let’s take a look at that file:

code/first_app/angular2_hello_world/src/app/hello-world/hello-world.component.html

<p>
hello-world works!
</p>

Here we’re defining a p tag with some basic text in the middle. When Angular loads this component
it will also read from this file and use it as the template for our component.

Adding a template

We can define templates two ways, either by using the template key in our @Component object or
by specifying a templateUrl.

We could add a template to our @Component by passing the template option:

0 = O O b W N =

Writing your First Angular 2 Web Application 14

@Component ({
selector: 'app-hello-world',
template:
<p>
hello-world works inline!
</p>

P

Notice that we're defining our template string between backticks (* ... >). This is a new (and
fantastic) feature of ES6 that allows us to do multiline strings. Using backticks for multiline strings
makes it easy to put templates inside your code files.

o Should you really be putting templates in your code files? The answer is: it depends. For

a long time the commonly held belief was that you should keep your code and templates

separate. While this might be easier for some teams, for some projects it adds overhead
because you have switch between a lot of files.

Personally, if our templates are shorter than a page, we much prefer to have the templates
alongside the code (that is, within the .ts file). When we see both the logic and the view
together, it’s easy to understand how they interact with one another.

The biggest drawback to mixing views and our code is that many editors don’t support syn-
tax highlighting of the internal strings (yet). Hopefully, we’ll see more editors supporting
syntax highlighting HTML within template strings soon.

Adding CSS Styles with styleuris

Notice the key styleUrls:
styleUrls: ['./hello-world.component.css']

This code says that we want to use the CSS in the file hello-world.component.css as the styles
for this component. Angular 2 uses a concept called “style-encapsulation” which means that styles
specified for a particular component only apply to that component. We talk more about this in-depth
later on in the book in the Styling section of Advanced Components.

For now, we're not going to use any component-local styles, so you can leave this as-is (or delete
the key entirely).

You may have noticed that this key is different from template in that it accepts an array
as it’s argument. This is because we can load multiple stylesheets for a single component.

O b W N =

Writing your First Angular 2 Web Application 15

Loading Our Component

Now that we have our first component code filled out, how do we load it in our page?

If we visit our application again in the browser, we’ll see that nothing changed. That’s because we
only created the component, but we’re not using it yet.

In order to change that, we need to add our component tag to a template that is already being
rendered. Open up the file: first_app/angular2_hello_world/src/app/app.component.html

Remember that because we configured our HelloWorldComponent with the app-hello-world
selector, we need to use the <app-hello-world></app-hello-world> in a template. Let’s add the
<app-hello-world> tag to app.component.html:

code/first_app/angular2_hello_world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>
</h1>

Now refresh the page and take a look:

Writing your First Angular 2 Web Application 16

® O ® | yanguiarzHelioworld x ng-book

« C Y localhost:4200 s

app works!

hello-world works!

Hello world works

It works!

Adding Data to the Component

Right now our component renders a static template, which means our component isn’t very
interesting.

Let’s imagine that we have an app which will show a list of users and we want to show their names.
Before we render the whole list, we first need to render an individual user. So let’s create a new
component that will show a user’s name.

To do this, we will use the ng generate command again:
ng generate component user-item

Remember that in order to see a component we’ve created, we need to add it to a template.

Let’s add our app-user-item tag to app . component . html so that we can see our changes as we make
them. Modify app . component . html to look like this:

N O O B W N -

10
11
12
13
14
15
16
17
18

Writing your First Angular 2 Web Application 17

code/first_app/angular2_hello_world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>

<app-user-item></app-user-item>
</h1>

Then refresh the page and confirm that you see the user-item works! text on the page.
We want our User ItemComponent to show the name of a particular user .

Let’s introduce name as a new property of our component. By having a name property, we will be
able to reuse this component for different users (but keep the same markup, logic, and styles).

In order to add a name, we’ll introduce a property on the User ItemComponent class to declare it has
a local variable named name.

code/first_app/angular2_hello_world/src/app/user-item/user-item.component.ts

export class UserItemComponent implements OnInit {
name: string; // <-- added name property

constructor() {

this.name = 'Felipe'; // set the name

ngOnInit() {
}

Notice that we’ve changed two things:

1. name Property

On the UserItemComponent class we added a property. Notice that the syntax is new relative to ES5
Javascript. When we write name: string; it means name is the name of the attribute we want to set
and string is the type.

The typing of the name is a feature of using TypeScript and gives some assurances of the value that
it will be a string. This sets up a name property on instances of our UserItemComponent class and
the compiler ensures that name is a string.

11
12
13

Writing your First Angular 2 Web Application 18

2. A Constructor

On the UserItemComponent class we defined a constructor, i.e. function that is called when we create
new instances of this class.

In our constructor we can assign our name property by using this.name

When we write:

code/first_app/angular2_hello_world/src/app/user-item/user-item.component.ts

constructor() {
this.name = 'Felipe'; // set the name

We’re saying that whenever a new UserItemComponent is created, set the name to 'Felipe'.

Rendering The Template

With the value filled out, we can use the templating syntax (which is two squiggly brackets {{ }})
to display the value of the variable in our template. For instance:

code/first_app/angular2_hello_world/src/app/user-item/user-item.component.html

<p>
Hello {{ name }}
</p>

On the template notice that we added a new syntax: {{ name }}. The brackets are called “template-
tags” (or “mustache tags”). Whatever is between the template tags will be expanded as an expression.
Here, because the template is bound to our Component, the name will expand to the value of
this.name i.e. 'Felipe'.

Try it out

After making these changes reload the page and the page should display Hello Felipe

Writing your First Angular 2 Web Application 19

® O ® | yanguiarzHelioworld x ng-book

« C Y localhost:4200 s

app works!
hello-world works!

Hello Felipe

Application with Data

Working With Arrays

Now we are able to say “Hello” to a single name, but what if we want to say “Hello” to a collection
of names?

If you’ve worked with Angular 1 before, you've probably used the ng-repeat directive. In Angular
2, the analogous directive is called NgFor (we use it in the markup as *ngFor, which we’ll talk about
soon). Its syntax is slightly different but they have the same purpose: repeat the same markup for
a collection of objects.

Let’s create a new component that will render a list of users. We start by generating a new
component:

ng generate component user-list

And let’s replace our <app-user-item> tag with <app-user-1list> in our app.component.html file:

<N O O B W N =

10
11
12
13
14
15
16
17
18

Writing your First Angular 2 Web Application 20

code/first_app/angular2_hello_world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>

<app-user-list></app-user-list>
</h1>

In the same way that we added a name property to our User ItemComponent, let’s add a names property
to this UserListComponent.

However, instead of storing only a single string, let’s set the type of this property to an array of
strings. An array is notated by the [] after the type, and we can it like this:

code/first_app/angular2_hello_world/src/app/user-list/user-list.component.ts

export class UserListComponent implements OnInit {
names: string[];

constructor() {

this.names = ['Ari', 'Carlos', 'Felipe', 'Nate'];

ngOnInit() {
}

The first change to point out is the new string[] property on our UserListComponent class. This
syntax means that names is typed as an Array of strings. Another way to write this would be
Array<string>.

We changed our constructor to set the value of this.names to ['Ari', 'Carlos', 'Felipe’,
"Nate'].

Now we can update our template to render this list of names. To do this, we will use *ngFor, which
will iterate over a list of items and generate a new tag for each one. Here’s what our new template

will look like:

Writing your First Angular 2 Web Application 21

code/first_app/angular2_hello_world/src/app/user-list/user-list.component.html

<li *ngFor="let name of names">Hello {{ name }}</1i>

We updated the template with one ul and one 1i with a new *ngFor="1et name of names"
attribute. The * character and let syntax can be a little overwhelming at first, so let’s break it
down:

The *ngFor syntax says we want to use the NgFor directive on this attribute. You can think of NgFor
akin to a for loop; the idea is that we're creating a new DOM element for every item in a collection.

The value states: "let name of names".names is our array of names as specified on the HelloWor1ld
object. let name is called a reference. When we say "let name of names" we're saying loop over
each element in names and assign each one to a local variable called name.

The NgFor directive will render one 11 tag for each entry found on the names array and declare a
local variable name to hold the current item being iterated. This new variable will then be replaced
inside the Hello {{ name }} snippet.

&Q We didn’t have to call the reference variable name. We could just as well have written:
1 <li *ngFor="let foobar of names">Hello {{ foobar }}
But what about the reverse? Quiz question: what would have happened if we wrote:
1 <li *ngFor="let name of foobar">Hello {{ name }}</1i>
We’d get an error because foobar isn’t a property on the component.

Q NgFor repeats the element that the ngFor is called. That is, we put it on the 1i tag and not
the ul tag because we want to repeat the list element (1i) and not the list itself (ul).

0 If you’re feeling adventurous you can learn a lot about how the Angular core team writes
Components by reading the source directly. For instance, you can find the source of the
NgFor directive here

When we reload the page now, we’ll see that we now have have one 11 for each string on the array:

"https://github.com/angular/angular/blob/master/modules/%40angular/common/src/directives/ng_for.ts

https://github.com/angular/angular/blob/master/modules/@angular/common/src/directives/ng_for.ts
https://github.com/angular/angular/blob/master/modules/@angular/common/src/directives/ng_for.ts

Writing your First Angular 2 Web Application 22

® O ® | yanguiarzHelioworld x ng-book

- C [localhost:4200

app works!
hello-world works!

Hello Ari
Hello Carlos
Hello Felipe
Hello Nate

Application with Data

Using the User Item Component

Remember that earlier we created a User ItemComponent? Instead of rendering each name within
the UserListComponent, we ought to use User ItemComponent as a child component - that is, instead
of repeating over 1i tags directly, we should let our UserItemComponent specify the template (and
functionality) of each item in the list.

To do this, we need to do three things:
1. Configure the UserListComponent to render to UserItemComponent (in the template)

2. Configure the UserItemComponent to accept the name variable as an input and
3. Configure the UserlListComponent template to pass the name to the UserItemComponent.

Let’s perform these steps one-by-one.

O = W N =

Writing your First Angular 2 Web Application 23

Rendering the userItemComponent

Our UserItemComponent specifies the selector app-user-item - let’s add that tag to our template.
What we’re going to do is replace the <1i> tag with the app-user-item tag:

code/first_app/angular2_hello_world/src/app/user-list/user-list.component.html

<app-user-item
*ngFor="1et name of names">
</app-user-item>

Notice that while we swapped out the 1i tag for app-user -item we left in the ngFor attribute because
we still want to loop over the list of names.

Notice that we also removed the inner content of this template because the component has it’s own
template. If we reload our browser, this is what we will see:

® O ® | gyanguiarzHelloworld x ng-book

&« C' | [} localhost:4200 b

app works!

hello-world works!
Hello Felipe
Hello Felipe
Hello Felipe

Hello Felipe

Application with Data

0 N O O & W N =

N N N S s s s sl
N P, © © 0 0 O b W N~ OO O

Writing your First Angular 2 Web Application 24

It repeats, but something is wrong here - every name says “Felipe”! We need a way to pass data into
the child component.

Thankfully, Angular provides a way to do this: the @Input annotation.

Accepting Inputs

Remember that in our User ItemComponent we had set this.name = 'Felipe'; in the constructor
of that component. Now we need to change this component to accept a value for this property.

Here’s what we need to change our User ItemComponent to:

code/first_app/angular2_hello_world/src/app/user-item/user-item.component.ts

import ({

Component,

OnInit,

Input // <--- added this
} from '@angular/core';

@Component({
selector: 'app-user-item',
templateUrl: './user-item.component.html',
styleUrls: ['./user-item.component.css']

})

export class UserItemComponent implements OnInit {
@Input() name: string; // <-- added Input annotation

constructor() {

// removed setting name

ngOnInit() {
}

Notice that we changed the name property to have an annotation of @Input. We talk a lot more about
Inputs (and Outputs) in the next chapter, but for now, just know that this syntax allows us to pass
in a value from the parent template.

In order to use Input we also had to add it to the list of constants in import.
Lastly, we don’t want to set a default value for name so we remove that from the ‘constructor.

So now that we have a name Input, how do we actually use it?

O O b W N~

W N -~

Writing your First Angular 2 Web Application 25

Passing an Input value

To pass values to a component we use the bracket [] syntax in our template - let’s take a look at
our updated template:

code/first_app/angular2_hello_world/src/app/user-list/user-list.component.html

<app-user-item
*ngFor="1et name of names"
[name]="name">
</app-user-item>

Notice that we’ve added a new attribute on our app-user-item tag: [name]="name" — in Angular
when we add an attribute in brackets like [foo] we’re saying we want to pass a value to the input
named foo on that component.

In this case notice that the name on the right-hand side comes from the let name ... statement in
ngFor. That is, consider if we had this instead:

<app-user-item
*ngFor="1et individualUserName of names"
[name]="individualUserName">

</app-user-item>

The [name] part designates the Input on the UserItemComponent. Notice that were not passing the
literal string "individualUserName" instead we’re passing the value of individualUserName, which
is each element of names.

We talk more about inputs and outputs in detail in the next chapter. For now, know that we’re:
1. Iterating over names
2. Creating a new UserItemComponent for each element in names and

3. Passing the value of that name into the name Input property on the User ItemComponent

Now rendering our list of names is working!

Writing your First Angular 2 Web Application 26

® O ® | yanguiarzHelioworld x ng-book

- C' | [localhost:4200 <7 =

app works!
hello-world works!
Hello Ari
Hello Carlos
Hello Felipe

Hello Nate

Application with Names Working

Congratulations! You've built your first Angular app with components!

Of course, this app is very simple and we’d like to build much more sophisticated applications. Don’t
worry, in this book we’ll show you how to become an expert writing Angular apps. In fact, in this
chapter we’re going to build a voting-app (think Reddit or Product Hunt). This app will feature user
interaction, and even more components!

But before we start building a new app, let’s take a closer look at how Angular apps are bootstrapped.

Bootstrapping Crash Course

Every app has a main entry point. This application was built using angular-cli which is built on
a tool called webpack. You don’t have to understand webpack to use Angular, but it is helpful to
understand the flow of how your application boots.

We run this app by calling the command:

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Writing your First Angular 2 Web Application 27
ng serve

ng will look at the file angular-cli. json to find the entry point to our app. Let’s trace how ng finds
the components we just built.

At a high level, it looks like this:

 angular-cli. json specifies a "main" file, which in this case ismain.ts
« main.ts is the entry-point for our app and it bootstraps our application

« The bootstrap process boots an Angular module — we haven’t talked about modules yet, but
we will in a minute

« We use the AppModule to bootstrap the app. AppModule is specified in src/app/app.module. ts

+ AppModule specifies which component to use as the top-level component. In this case it is
AppComponent

« AppComponent has <app-user-1list> tags in the template and this renders our list of users.

We'll talk about this process more later in the book, but for now the thing I want to focus on is the
Angular module system: NgModules.

Angular also has a powerful concept of modules. When you boot an Angular app, you’re not booting
a component directly, but instead you create an NgModule which points to the component you want
to load.

Let’s a look at the code:

code/first_app/angular2_hello_world/src/app/app.module.ts

@NgModule({

declarations: |
AppComponent,
HelloWor1ldComponent,
User ItemComponent,
UserListComponent

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

9
export class AppModule { }

Writing your First Angular 2 Web Application 28

The first thing we see is an @NgModule annotation. Like all annotations, this @NgModule(...) code
adds metadata to the class immediately following (AppModule).

Our @NgModule annotation has three keys: declarations, imports, and bootstrap.

declarations specifies the components that are defined in this module. You may have noticed that
when we used ng generate it automatically added our components to this list! This is an important
idea in Angular:

You have to declare components in a NgModule before you can use them in your templates.

imports describes which dependencies this module has. We're creating a browser app, so we want
to import the BrowserModule.

bootstrap tells Angular that when this module is used to bootstrap an app, we need to load the
AppComponent component as the top-level component.

Q We talk more about NgModules in the section on NgModules

Expanding our Application

Now that we know how to create a basic application, let’s build our Reddit clone. Before we start
coding, it’s a good idea to look over our app and break it down into its logical components.

Writing your First Angular 2 Web Application

e0e / | Angular 2 - Simple Reddit *
e —

ng-book

€& - C | [localhost:8080

£r

wooz Angular 2 Simple Reddit

Title:

iPad Game for Cats

Link:

g Application

http://ipadgameforcats.com|

Angular2 Article
3 (angular.io)
POINTS 4 upvote ¥ downvote
Fullstack :
2 (fullstack.io) A rtl C | e
POINTS 4 upvote ¥ downvote
Angular Homepage :
1 (angular.io) Artl C | e
POINTS 4 upvote ¥ downvote

Application with Data

We’re going to make two components in this app:

29

1. The overall application, which contains the form used to submit new articles (marked in

magenta in the picture).
2. Each article (marked in mint green).

Q In a larger application, the form for submitting articles would probably become its own
component. However, having the form be its own component makes the data passing more
complex, so we’re going to simplify in this chapter and only have two components.

For now, we’ll just make two components, but we’ll learn how to deal with more

sophisticated data architectures in later chapters of this book.

Writing your First Angular 2 Web Application 30

But first thing’s first, let’s generate a new application by running the same ng new command we
ran before to create a new application passing it the name of the app we want to create (here, we’ll
create an application called angular2_reddit):

ng new angular2_reddit

0 We provide a completed version of our angular2_reddit in the example code download

Adding CSS

First thing we want to do is add some CSS styling so that our app isn’t completely unstyled.

o If you’re building your app from scratch, you’ll want to copy over a few files from our
completed example in the first_app/angular2_reddit folder.

Copy:

e src/index.html
e src/styles.css
e src/app/vendor

e src/assets/images

into your application’s folder.

For this project we’re going to be using Semantic-UI'? to help with the styling. Semantic-UI
is a CSS framework, similar to Zurb Foundation® or Twitter Bootstrap'. We’ve included
it in the sample code download so all you need to do is copy over the files specified above.

The Application Component

Let’s now build a new component which will:

1. store our current list of articles
2. contain the form for submitting new articles.

We can find the main application component on the src/app/app . component . ts file. Let’s open this
file. Again, we’ll see the same initial contents we saw previously.

http://semantic-ui.com/
http://foundation.zurb.com
“http://getbootstrap.com

http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/
http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/

S © W I O O b W N =

[N

0 N O O & W N =

RN
N »~ O ©

Writing your First Angular 2 Web Application 31

code/first_app/angular2_reddit/src/app/app.component.ts

import { Component } from '@angular/core’;

@Component({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
9
export class AppComponent {
title = 'app works!"';

Let’s change the template a bit to include a form for adding links. We’ll use a bit of styling from the
semantic-ui package to make the form look a bit nicer:

code/first_app/angular2_reddit/src/app/app.component.html

<form class="ui large form segment">
<h3 class="ui header">Add a Link</h3>

<div class="field">
<label for="title">Title:</label>
<input name="title">

</div>

<div class="field">
<label for="1link">Link:</label>
<input name="link">

</div>

</form>

We’re creating a template that defines two input tags: one for the title of the article and the other
for the 1ink URL.

When we load the browser you should see the rendered form:

D W N -

Writing your First Angular 2 Web Application 32

® O ® yanguiarzreddit x ng-book

- C [localhost:4200 e

E ooz Angular 2 Simple Reddit

Add a Link

Title:

Link:

Form

Adding Interaction

Now we have the form with input tags but we don’t have any way to submit the data. Let’s add
some interaction by adding a submit button to our form.

When the form is submitted, we’ll want to call a function to create and add a link. We can do this
by adding an interaction event on the <button /> element.

We tell Angular we want to respond to an event by surrounding the event name in parenthesis ().
For instance, to add a function call to the <button /> onClick event, we can pass it through like so:

<button (click)="addArticle()"
class="ui positive right floated button">
Submit link
</button>

Now, when the button is clicked, it will call a function called addArticle(), which we need to define
on the AppComponent class. Let’s do that now:

10
11
12
13

0 N O O B~ W N -

U U U
O© 00 9 O O » WO NN~ O ©

Writing your First Angular 2 Web Application 33

code/first_app/angular2_reddit/src/app/app.component.ts

export class AppComponent {
addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
return false;

With the addArticle() function added to the AppComponent and the (click) event added to
the <button /> element, this function will be called when the button is clicked. Notice that the
addArticle() function can accept two arguments: the title and the 1ink arguments. We need to
change our template button to pass those into the call to the addArticle().

We do this by populating a template variable by adding a special syntax to the input elements on
our form. Here’s what our template will look like:

code/first_app/angular2_reddit/src/app/app.component.html

<form class="ui large form segment">
<h8 class="ui header">Add a Link</h3>

<div class="field">

<label for="title">Title:</label>

<input name="title" #newtitle> </-- changed -->
</div>
<div class="field">

<label for="link">Link:</label>

<input name="link" #newlink> </-- changed -->
</div>

<I-- added this button -->
<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

</form>

Notice that in the input tags we used the # (hash) to tell Angular to assign those tags to a local
variable. By adding the #title and #1ink to the appropriate <input /> elements, we can pass them
as variables into the addArticle() function on the button!

To recap what we’ve done, we’ve made four changes:

Writing your First Angular 2 Web Application 34

1. Created a button tag in our markup that shows the user where to click

2. We created a function named addArticle that defines what we want to do when the button
is clicked

3. We added a (click) attribute on the button that says “call the function addArticle when
this button is pressed”.

4. We added the attribute #newtitle and #newlink to the <input> tags
Let’s cover each one of these steps in reverse order:

Binding inputs to values

Notice in our first input tag we have the following:
<input name="title" #newtitle>

This markup tells Angular to bind this <input> to the variable newtitle. The #newtitle syntax
is called a resolve. The effect is that this makes the variable newtitle available to the expressions
within this view.

newtitle is now an object that represents this input DOM element (specifically, the type is
HTMLInputElement). Because newtitle is an object, that means we get the value of the input tag
using newtitle.value.

Similarly we add #newlink to the other <input> tag, so that we’ll be able to extract the value from
it as well.

Binding actions to events

On our button tag we add the attribute (click) to define what should happen when the button is
clicked on. When the (click) event happens we call addArticle with two arguments: newtitle
and newlink. Where did this function and two arguments come from?

1. addArticle is a function on our component definition class AppComponent
2. newtitle comes from the resolve (¥newtitle) on our <input> tag named title

3. newlink comes from the resolve (¥newlink) on our <input> tag named 1ink

All together:

Writing your First Angular 2 Web Application 35

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

W N -

The markup class="ui positive right floated button" comes from Semantic Ul and
it gives the button the pleasant green color.

Defining the Action Logic

On our class AppComponent we define a new function called addArticle. It takes two arguments:
title and link. Again, it’s important to realize that title and link are both objects of type
HTMLInputElement and not the input values directly. To get the value from the input we have to
call title.value. For now, we’re just going to console. log out those arguments.

code/first_app/angular2_reddit/src/app/app.component.ts

9 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

10 console.log(Adding article title: ${title.value} and link: ${link.value});
11 return false;
12 }

Q Notice that we’re using backtick strings again. This is a really handy feature of ES6: backtick
strings will expand template variables!

Here we’re putting ${title.value} in the string and this will be replaced with the value
of title.value in the string.

Try it out!

Now when you click the submit button, you can see that the message is printed on the console:

Writing your First Angular 2 Web Application

eoce / .Angu\ar2-3\mplaﬂsdd\z x4

= = C #f |[) localhost:8080

E wwoz Angular 2 Simple Reddit

AddaLink
Title:

Ng Newsletter
Link:

http://ng-newsletter.com)|

>

& 0 Elements Console Sources MNetwork Timeline Profiles Resources Audits X
®© W <topframe> ¥ ¥ Preserve log
Adding article with title: NG Newsletter and link: http://ng-newsletter.com app.ts:129

Clicking the Button

Adding the Article Component

36

Now we have a form to submit new articles, but we aren’t showing the new articles anywhere.
Because every article submitted is going to be displayed as a list on the page, this is the perfect

candidate for a new component.

Let’s create a new component to represent the individual submitted articles.

{angular.io)

Angular 2
3

POINTS
4 upvote ¥ downvote

A reddit-article

For that, let’s use the ng tool to generate a new component:

W N O O b W N =~

NN NN NN N B 1 1 |l s s s
O O b WO N O © 03O0 O b WO NN O O

Writing your First Angular 2 Web Application 37
ng generate component article
We have three parts to defining this new component:

1. Define the ArticleComponent view in the template

2. Define the ArticleComponent properties by annotating the class with @Component

3. Define a component-definition class (ArticleComponent) which houses our component logic

Let’s talk through each part in detail:

Creating the ArticleComponent template
We define the template using the file article.component.html:

code/first_app/angular2_reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

{{ title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

Writing your First Angular 2 Web Application 38

27 </1li>
28
29 </div>

There’s a lot of markup here, so let’s break it down :

3

POINTS

Angular 2

4 upvote < downvote

A Single reddit-article Row

We have two columns:

1. the number of votes on the left and
2. the article information on the right.

We specify these columns with the CSS classes four wide column and twelve wide column
respectively (remember that these come from SemanticUI’s CSS).

We’re showing votes and the title with the template expansion strings {{ votes }} and {{ title
}}. The values come from the value of votes and title property of the ArticleComponent class,
which we’ll define in a minute.

Notice that we can use template strings in attribute values, as in the href of the a tag: href="{{
link }}".In this case, the value of the href will be dynamically populated with the value of 1ink
from the component class

On our upvote/downvote links we have an action. We use (click) to bind voteUp()/voteDown() to
their respective buttons. When the upvote button is pressed, the voteUp() function will be called on
the ArticleComponent class (similarly with downvote and voteDown()).

Creating the ArticleComponent

N

© © 0 9 O O b W

Writing your First Angular 2 Web Application 39

code/first_app/angular2_reddit/src/app/article/article.component.ts

@Component ({
selector: 'app-article',
templateUrl: './article.component.html',
styleUrls: ['./article.component.css'],
host: {
class: 'row'
}
b

First, we define a new Component with @Component. The selector says that this component is
placed on the page by using the tag <app-article> (i.e. the selector is a tag name).

So the most essential way to use this component would be to place the following tag in our markup:

<app-article>
</app-article>

These tags will remain in our view when the page is rendered.

We want each app-article to be on its own row. We’re using Semantic Ul, and Semantic provides
a CSS class for rows" called row.

In Angular, a component host is the element this component is attached to. You’ll notice on our
@Component we're passing the option: host: { class: 'row' }. This tells Angular that on the host
element (the app-article tag) we want to set the class attribute to have “row”.

Q Using the host option is nice because it means we can encapsulate the app-article markup

within our component. That is, we don’t have to both use a app-article tag and require

a class="row" in the markup of the parent view. By using the host option, we’re able to
configure our host element from within the component.

Creating the ArticleComponent Definition Class

Finally, we create the ArticleComponent definition class:

P http://semantic-ui.com/collections/grid.html

http://semantic-ui.com/collections/grid.html
http://semantic-ui.com/collections/grid.html

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Writing your First Angular 2 Web Application

code/first_app/angular2_reddit/src/app/article/article.component.ts

40

export class ArticleComponent implements OnlInit {
votes: number;
title: string;
link: string;

constructor() {
this.title = 'Angular 2';
this.link = 'http://angular.io’;
this.votes = 10;

voteUp() {
this.votes += 1;

voteDown() {
this.votes -= 1;

ngOnInit() {
}

Here we create three properties on ArticleComponent:

1. votes - a number representing the sum of all upvotes, minus the downvotes
2. title - a string holding the title of the article
3. link - a string holding the URL of the article

In the constructor() we set some default attributes:

16
17
18
19
20

22
23
24
25
26
27
28

© © 00 N O O b W N =~

[N

Writing your First Angular 2 Web Application 41

code/first_app/angular2_reddit/src/app/article/article.component.ts

constructor() {
this.title = 'Angular 2°';
this.link = 'http://angular.io';
this.votes = 10;

And we define two functions for voting, one for voting up voteUp and one for voting down voteDown:

code/first_app/angular2_reddit/src/app/article/article.component.ts

voteUp() {
this.votes += 1;

voteDown() {
this.votes -= 1;

In voteUp we increment this.votes by one. Similarly we decrement for voteDown.

Using the app-article Component

In order to use this component and make the data visible, we have to add a <app-article></app-
article> tag somewhere in our markup.

In this case, we want the AppComponent to render this new component, so let’s update the code in
that component. Add the <app-article> tag to the AppComponent’s template right after the closing
</form> tag:

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>
</form>

<div class="ui grid posts">
<app-article>
</app-article>

</div>

Writing your First Angular 2 Web Application

If we reload the browser now, we will see that the <app-article> tag wasn’t compiled. Oh no!

Whenever hitting a problem like this, the first thing to do is open up your browser’s developer
console. If we inspect our markup (see screenshot below), we can see that the app-article tag is on

our page, but it hasn’t been compiled into markup. Why not?

L e gAngularZReddit x \W
€« C' [localhost:4200

g ngbook2 Angular 2 Simple Reddit

Add aLink

Title:

Link:

app-article | 28x0

ng-book

(S

J
7
]

v ﬂ Elements Console Sources Network Timeline >

X

v<form _ngcontent-1if-1 class="ui large form segment">
<h3 _ngcontent-1if-1 class="ui header">Add a Link</h3>
»<div _ngcontent-1if-1 class="field">..</div>
»<div _ngcontent-1if-1 class="field">..</div>
<button _ngcontent-1if-1 class="ui positive right floated
button">
Submit link
</button>
v<div _ngcontent-1if-1 class="ui grid posts">
<app-article _ngcontent-lif-1>
</app-article> == $0
</div>
::after
</form>
</app-root>
<!-— <——— Our app loads here! ——>

html body div app-root form.ui.large.form.segment div.uigrid.posts

Styles | Event Listeners DOM Breakpoints Properties

:hov @ .cls +‘
element.style {
}
Lui.grid>* { <style>.</style>
padding-left: 1rem;
padding-right: 1rem;

*, :after, :before { <style>.</style> =
box-sizing: inherit;

Inherited from | form.ui.large.form.segment

.ui.large.form { <style>.</style>

Show all
font-size: 1.14285714rem;

} > box-sizing border-.
.ui.form { <styles.</styles|” color M rgba(..
font-sizer Llrem; display block
3} » font-family Lato, ".

» font-size 16px

Unexpanded tag when inspecting the DOM

This happens because the AppComponent component doesn’t know about the ArticleComponent

component yet.

0 Angular 1 Note: If you've used Angular 1 it might be surprising that our app doesn’t
know about our new app-article component. This is because in Angular 1, directives

match globally. However, in Angular you need to explicitly specify which components
(and therefore, which selectors) you want to use.

On the one hand, this requires a little more configuration. On the other hand, it’s great for
building scalable apps because it means we don’t have to share our directive selectors in a

global namespace.

In order to tell our AppComponent about our new ArticleComponent component, we need to add the

ArticleComponent to the list of declarations in this NgModule.

o N O

11
12
13

Writing your First Angular 2 Web Application

Q We add ArticleComponent to our declarations because ArticleComponent is part of
this module (RedditAppModule). However, if ArticleComponent were part of a different
module, then we might import it with imports.

We’ll discuss more about NgModules later on, but for now, know that when you create a
new component, you have to put in a declarations in NgModules.

code/first_app/angular2_reddit/src/app/app.module.ts

43

import { AppComponent } from './app.component';
import { ArticleComponent } from './article/article.component.ts';

@NgModule({
declarations: |
AppComponent,
ArticleComponent // <-- added this

] !

See here that we are:

1. importing ArticleComponent and then
2. Adding ArticleComponent to the list of declarations

After you’ve added ArticleComponent to declarations in the NgModule, if we reload the browser

we should see the article properly rendered:

O = W N =

Writing your First Angular 2 Web Application 44

ece B Angular 2 - Simple Reddit ng-book

& C' | [localhest:8080 7

E wweoz Angular 2 Simple Reddit

Add a Link

Title:

Link:

Angular 2

10

POINTS 4 upvote ¥ downvote

Rendered ArticleComponent component

However, clicking on the vote up or vote down links will cause the page to reload instead of
updating the article list.

JavaScript, by default, propagates the click event to all the parent components. Because the
click event is propagated to parents, our browser is trying to follow the empty link, which tells the
browser to reload.

To fix that, we need to make the click event handler to return false. This will ensure the browser
won’t try to refresh the page. Let’s update our code so that each of the functions voteUp() and
voteDown() return a boolean value of false (tells the browser not to propagate the event upwards):

voteDown(): boolean {
this.votes -= 1;
return false;

}
// and similarly with “voteUp()"

Now when we click the links we’ll see that the votes increase and decrease properly without a page
refresh.

© 00 N O U b W N =

NN
= o

Writing your First Angular 2 Web Application 45

Rendering Multiple Rows

Right now we only have one article on the page and there’s no way to render more, unless we paste
another <app-article> tag. And even if we did that all the articles would have the same content,
so it wouldn’t be very interesting.

Creating an Article class

A good practice when writing Angular code is to try to isolate the data structures we are using from
the component code. To do this, let’s create a data structure that represents a single article. Let’s add
a new file article.model.ts to define an Article class that we can use.

code/first_app/angular2_reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;
votes: number;

constructor(title: string, link: string, votes?: number) {
this.title = title;
this.link = link;
this.votes = votes || 0;

Here we are creating a new class that represents an Article. Note that this is a plain class and not
an Angular component. In the Model-View-Controller pattern this would be the Model.

Each article has a title, a 1ink, and a total for the votes. When creating a new article we need the
title and the 1ink. The votes parameter is optional (denoted by the ? at the end of the name) and
defaults to zero.

Now let’s update the ArticleComponent code to use our new Article class. Instead of storing the
properties directly on the ArticleComponent component let’s store the properties on an instance
of the Article class.

First let’s import the class: {lang=javascript,crop-start-line=2,crop-end-line=2,starting-line-num-
ber=2} <<code/first_app/angular2_reddit/src/app/article/article.component.ts'

Then let’s use it: {lang=javascript,crop-start-line=12,crop-end-line=35,starting-line-number=12} <<code/-

tirst_app/angular2_reddit/src/app/article/article.component.ts'’

code/first_app/angular2_reddit/src/app/article/article.component.2.ts
Ycode/first_app/angular2_reddit/src/app/article/article.component.2.ts

code/first_app/angular2_reddit/src/app/article/article.component.2.ts
code/first_app/angular2_reddit/src/app/article/article.component.2.ts
code/first_app/angular2_reddit/src/app/article/article.component.2.ts
code/first_app/angular2_reddit/src/app/article/article.component.2.ts
code/first_app/angular2_reddit/src/app/article/article.component.2.ts

0 N O O & W N =~

NN NN DNNDDNDNDNDDN S A B 1 s
© 0 9 0O O & W NP O O W10 U d Wh+»r O ©

Writing your First Angular 2 Web Application 46

Notice what we’ve changed: instead of storing the title, 1ink, and votes properties directly on the
component, we're storing a reference to an article. What’s neat is that we’ve defined the type of
article to be our new Article class.

When it comes to voteUp (and voteDown), we don’t increment votes on the component, but rather,
we need to increment the votes on the article.

However, this refactoring introduces another change: we need to update our view to get the template
variables from the right location. To do that, we need to change our template tags to read from
article. That is, where before we had {{ votes }}, we need to change itto {{ article.votes }},
and same with title and link:

code/first_app/angular2_reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ article.votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

{{ article.title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

</1li>

</div>

Reload the browser and everything still works.

0 N O O & W N~

NN NN DNDDNDNDNDDNA B B 1 1 s s
0 3 0 O b W N~ OO O 00 3O O b W N~ O O

Writing your First Angular 2 Web Application 47

This situation is better but something in our code is still off: our voteUp and voteDown methods break
the encapsulation of the Article class by changing the article’s internal properties directly.

0 voteUp and voteDown currently break the Law of Demeter'® which says that a given object
should assume as little as possible about the structure or properties of other objects.

The problem is that our ArticleComponent component knows too much about the Article class
internals. To fix that, let’s add voteUp and voteDown methods on the Article class.

code/first_app/angular2_reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;
votes: number;

constructor(title: string, link: string, votes?: number) {
this.title = title;
this.link = link;
this.votes = votes || 0;

voteUp(): void {
this.votes += 1;

voteDown(): void {
this.votes -= 1;

domain(): string {
try {
const link: string = this.link.split('//')[1];
return link.split('/')[0];
} cateh (err) {
return null;

We can then change ArticleComponent to call these methods:

®http://en.wikipedia.org/wiki/Law_of_Demeter

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Writing your First Angular 2 Web Application

code/first_app/angular2_reddit/src/app/article/article.component.ts

48

export class ArticleComponent implements OnlInit {

article: Article;

constructor() {

this.article = new Article(

"Angular 2',

"http://angular.io’,

10);

voteUp(): boolean {

this.article.voteUp();

return false;

voteDown(): boolean {

this.article.voteDown();

return false;

ngOnInit() {

}

o

Why do we have a voteUp function in both the model and the component?

The reason we have a voteUp() and a voteDown() on both classes is because each function
does a slightly different thing. The idea is that the voteUp() on the ArticleComponent
relates to the component view, whereas the Article model voteUp() defines what
mutations happen in the model.

That is, it allows the Article class to encapsulate what functionality should happen to a
model when voting happens. In a “real” app, the internals of the Article model would
probably be more complicated, e.g. make an API request to a webserver, and you wouldn’t
want to have that sort of model-specific code in your component controller.

Similarly, in the ArticleComponent wereturn false; asaway to say “don’t propagate the
event” - this is a view-specific piece of logic and we shouldn’t allow the Article model’s
voteUp() function to have to knowledge about that sort of view-specific API. That is, the
Article model should allow voting apart from the specific view.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1

Writing your First Angular 2 Web Application 49

After reloading our browser, we’ll notice everything works the same way, but we now have clearer,
simpler code.

0 Checkout our ArticleComponent component definition now: it’s so short! We've moved a
lot of logic out of our component and into our models. The corresponding MVC guideline
here might be Fat Models, Skinny Controllers®. The idea is that we want to move most of

our logic to our models so that our components do the minimum work possible.

Storing Multiple Articles

Let’s write the code that allows us to have a list of multiple Articles.

Let’s start by changing AppComponent to have a collection of articles:

code/first_app/angular2_reddit/src/app/app.component.ts

export class AppComponent {
articles: Article[];

constructor() {
this.articles = |
new Article('Angular 2', 'http://angular.io', 3),
new Article('Fullstack', 'http://fullstack.io', 2),
new Article('Angular Homepage', 'http://angular.io', 1),
1;

addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
this.articles.push(new Article(title.value, link.value, 0));

[
!

title.value =

link.value = ;
return false;

Notice that our AppComponent has the line:

articles: Article[];

’http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

12
13
14
15
16
17
18

12
13
14
15
16
17
18
19
20

Writing your First Angular 2 Web Application 50

The Article[] might look a little unfamiliar. We’re saying here that articles is an Array of
Articles. Another way this could be written is Array<Article>. The word for this pattern is
generics. It’s a concept seen in Java, C#, and other languages. The idea is that our collection (the
Array) is typed. That is, the Array is a collection that will only hold objects of type Article.

We populate this Array by setting this.articles in the constructor:

code/first_app/angular2_reddit/src/app/app.component.ts

constructor() {
this.articles = |
new Article('Angular 2', 'http://angular.io', 3),
new Article('Fullstack', 'http://fullstack.io', 2),
new Article('Angular Homepage', 'http://angular.io', 1),
1;

Configuring the ArticleComponent With inputs

Now that we have a list of Article models, how can we pass them to our ArticleComponent
component?

Here again we use Inputs. Previously we had our ArticleComponent class defined like this:

code/first_app/angular2_reddit/src/app/article/article.component.ts

export class ArticleComponent implements Onlnit {
article: Article;

constructor() {
this.article = new Article(
"Angular 2',
"http://angular.io’,
10);

The problem here is that we’ve hard coded a particular Article in the constructor. The point of
making components is not only encapsulation, but also reusability.

What we would really like to do is to configure the Article we want to display. If, for instance,
we had two articles, articlel and article2, we would like to be able to reuse the app-article
component by passing an Article as a “parameter” to the component like this:

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Writing your First Angular 2 Web Application 51

<app-article [article]="articlel"></app-article>
<app-article [article]="article2"></app-article>

Angular allows us to do this by using the Input annotation on a property of a Component:

class ArticleComponent {
@Input() article: Article;
/S

Now if we have an Article in a variable myArticle we could pass it to our ArticleComponent in
our view. Remember, we can pass a variable in an element by surrounding it in square brackets
[variableName], like so:

<app-article [article]="myArticle"></app-article>

Notice the syntax here: we put the name of the input in brackets as in: [article] and the value of
the attribute is what we want to pass in to that input.

Then, and this is important, the this.article on the ArticleComponent instance will be set to
myArticle. We can think about the variable myArticle as being passed as a parameter (i.e. input)
to our components.

Here’s what our ArticleComponent component now looks like using @Input:

code/first_app/angular2_reddit/src/app/article/article.component.ts

export class ArticleComponent implements OnlInit {
@Input() article: Article;

voteUp(): boolean {
this.article.voteUp();
return false;

voteDown(): boolean {
this.article.voteDown();
return false;

ngOnInit() {
}

0w I O O P W N =

(RN
N »~ O ©

Writing your First Angular 2 Web Application 52

Rendering a List of Articles

Earlier we configured our AppComponent to store an array of articles. Now let’s configure
AppComponent to render all the articles. To do so, instead of having the <app-article> tag alone,
we are going to use the NgFor directive to iterate over the list of articles and render a app-article
for each one:

Let’s add this in the template of the AppComponent @Component, just below the closing <form> tag:

Submit link
</button>
</form>

<!-- start adding here -->
<div class="ui grid posts">
<app-article
*ngFor="1et article of articles"
[article]="article">
</app-article>
</div>

<!-- end adding here -->

Remember when we rendered a list of names as a bullet list using the NgFor directive earlier in the
chapter? This syntax also works for rendering multiple components.

The *ngFor="1et article of articles" syntax will iterate through the list of articles and create
the local variable article (for each item in the list).

To specify the article input on a component, we are using the [inputName]="inputValue"
expression. In this case, we're saying that we want to set the article input to the value of the
local variable article set by ngFor.

Writing your First Angular 2 Web Application

We are using the variable article many times in that previous code snippet, it’s (poten-
tially) clearer if we rename the temporary variable created by NgFor to foobar:

<app-article
*ngFor="1let foobar of articles”
[article]="foobar">

B W N -

</app-article>

So here we have three variables:

1. articles which is an Array of Articles, defined on the RedditApp component
2. foobar which is a single element of articles (an Article), defined by NgFor
3. article which is the name of the field defined on inputs of the ArticleComponent

Basically, NgFor generates a temporary variable foobar and then we’re passing it in to
app-article

Reloading our browser now, we will see all articles will be rendered:

53

54

Writing your First Angular 2 Web Application

e0ce /B Angular 2 - Simple Reddit S ng-book
=~ = C [J localhost:8080 ol =
u iz Angular 2 Simple Reddit
Add a Link
Title:
Link:
3 Angular 2
POINTS 4 upvote ¥ downvote
2 Fullstack
POINTS 4 upvote ¥ downvote
1 Angular Homepage
POINTS 4 upvote ¥ downvote
e —

Multiple articles being rendered

Adding New ArticleS

Now we need to change addArticle to actually add new articles when the button is pressed. Change

the addArticle method to match the following:

20
21
22
23
24
25
26

Writing your First Angular 2 Web Application 55

code/first_app/angular2_reddit/src/app/app.component.ts

addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
this.articles.push(new Article(title.value, link.value, 0));

(]

title.value = ;

link.value = ;
return false;

This will:

1. create a new Article instance with the submitted title and URL
2. add it to the array of Articles and
3. clear the input field values

How are we clearing the input field values? Well, if you recall, title and link are
HTMLInputElement objects. That means we can set their properties. When we change the
value property , the input tag on our page changes.

After adding a new article in our input fields and clicking the Submit Link we will see the new
article added!

Finishing Touches

Displaying the Article Domain

As a nice touch, let’s add a hint next to the link that shows the domain where the user will be
redirected to when the link is clicked.

Let’s add a domain method to the Article class:

20
21
22
23
24
25
26
27

28
29
30

Writing your First Angular 2 Web Application 56

code/first_app/angular2_reddit/src/app/article/article.model.ts

domain(): string {
try {
const link: string = this.link.split('//')[1];
return link.split('/')[0];
} catch (err) {
return null;

Let’s add a call to this function on the ArticleComponent’s template:

<div class="twelve wide column">

{{ article.title }}

<!-- right here -->
<div class="meta">({{ article.domain() }})</div>
<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">

And now when we reload the browser, we will see the domain name of each URL (note: URL must
include http://).

Re-sorting Based on Score

Clicking and voting on articles, we’ll see that something doesn’t feel quite right: our articles don’t
sort based on score! We definitely want to see the highest-rated items on top and the lower ranking
ones sink to the bottom.

We’re storing the articles in an Array in our AppComponent class, but that Array is unsorted. An
easy way to handle this is to create a new method sortedArticles on AppComponent:

code/first_app/angular2_reddit/src/app/app.component.ts

sortedArticles(): Article[] {
return this.articles.sort((a: Article, b: Article) => b.votes - a.votes);

In our ngFor we can iterate over sortedArticles() (instead of articles directly):

O O b W N -

Writing your First Angular 2 Web Application 57

<div class="ui grid posts">
<app-article
*ngFor="1let article of sortedArticles()"
[article]="article">
</app-article>
</div>

Full Code Listing

We’ve been exploring many small pieces of code for this chapter. You can find all of the files and
the complete TypeScript code for our app in the example code download included with this book.

Wrapping Up

We did it! We've created our first Angular 2 App. That wasn’t so bad, was it? There’s lots more to
learn: understanding data flow, making AJAX requests, built-in directives, routing, manipulating
the DOM etc.

But for now, bask in our success! Much of writing Angular apps is just as we did above:

Split your app into components
Create the views

Define your models

Display your models

M

Add interaction

In the future chapters of this book we’ll cover everything you need to write sophisticated apps with
Angular.

Getting Help

Did you have any trouble with this chapter? Did you find a bug or have trouble getting the code
running? We’d love to hear from you!

« Come join our (free!) community and chat with us on Gitter*
« Email us directly at us@fullstack.io®

Onward!

*%https://gitter.im/ng-book/ng-book
mailto:us@fullstack.io

https://gitter.im/ng-book/ng-book
mailto:us@fullstack.io
https://gitter.im/ng-book/ng-book
mailto:us@fullstack.io

TypeScript

Angular 2 is built in TypeScript

Angular 2 is built in a Javascript-like language called TypeScript.

You might be skeptical of using a new language just for Angular, but it turns out, there are a lot of
great reasons to use TypeScript instead of plain Javascript.

TypeScript isn’t a completely new language, it’s a superset of ES6. If we write ES6 code, it’s perfectly
valid and compilable TypeScript code. Here’s a diagram that shows the relationship between the
languages:

TypeScript

- types
- annotations

ES6

- classes
- modules

ES5

ES5, ES6, and TypeScript

o What is ES5? What is ES6? ES5 is short for “SECMAScript 57, otherwise known as “regular
Javascript”. ES5 is the normal Javascript we all know and love. It runs in more-or-less every
browser. ES6 is the next version of Javascript, which we talk more about below.

“http://www.typescriptlang.org/

http://www.typescriptlang.org/
http://www.typescriptlang.org/

TypeScript 59

At the publishing of this book, very few browsers will run ES6 out of the box, much less TypeScript.
To solve this issue we have transpilers (or sometimes called transcompiler). The TypeScript transpiler
takes our TypeScript code as input and outputs ES5 code that nearly all browsers understand.

0 For converting TypeScript to ES5 there is a single transpiler written by the core TypeScript
team. However if we wanted to convert ES6 code (not TypeScript) to ES5 there are two
major ES6-to-ES5 transpilers: traceur® by Google and babel** created by the JavaScript
community. We're not going to be using either directly for this book, but they’re both

great projects that are worth knowing about.

We installed TypeScript in the last chapter, but in case you're just starting out in this
chapter, you can install it like so:

npm install -g typescript

TypeScript is an official collaboration between Microsoft and Google. That’s great news because
with two tech heavyweights behind it we know that it will be supported for a long time. Both
groups are committed to moving the web forward and as developers we win because of it.

One of the great things about transpilers is that they allow relatively small teams to make
improvements to a language without requiring everyone on the internet upgrade their browser.

One thing to point out: we don’t have to use TypeScript with Angular2. If you want to use ES5 (i.e.
“regular” JavaScript), you definitely can. There is an ES5 API that provides access to all functionality
of Angular2. Then why should we use TypeScript at all? Because there are some great features in
TypeScript that make development a lot better.

What do we get with TypeScript?

There are five big improvements that TypeScript bring over ES5:

 types

« classes

- annotations

» imports

« language utilities (e.g. destructuring)

Let’s deal with these one at a time.

“https://github.com/google/traceur-compiler
**https://babeljs.io/

https://github.com/google/traceur-compiler
https://babeljs.io/
https://github.com/google/traceur-compiler
https://babeljs.io/

TypeScript 60

Types

The major improvement of TypeScript over ES6, that gives the language its name, is the typing
system.

For some people the lack of type checking is considered one of the benefits of using a language like
JavaScript. You might be a little skeptical of type checking but I'd encourage you to give it a chance.
One of the great things about type checking is that

1. it helps when writing code because it can prevent bugs at compile time and
2. it helps when reading code because it clarifies your intentions

It’s also worth noting that types are optional in TypeScript. If we want to write some quick code or
prototype a feature, we can omit types and gradually add them as the code becomes more mature.

TypeScript’s basic types are the same ones we’ve been using implicitly when we write “normal”
JavaScript code: strings, numbers, booleans, etc.

Up until ES5, we would define variables with the var keyword, like var name;.

The new TypeScript syntax is a natural evolution from ES5, we still use var but now we can
optionally provide the variable type along with its name:

var name: string;
When declaring functions we can use types for arguments and return values:

function greetText(name: string): string {
return "Hello " + name;

In the example above we are defining a new function called greetText which takes one argument:
name. The syntax name: string says that this function expects name to be a string. Our code won’t
compile if we call this function with anything other than a string and that’s a good thing because
otherwise we’d introduce a bug.

Notice that the greetText function also has a new syntax after the parentheses: : string {. The
colon indicates that we will specify the return type for this function, which in this case is a string.
This is helpful because 1. if we accidentally return anything other than a string in our code, the
compiler will tell us that we made a mistake and 2. any other developers who want to use this
function know precisely what type of object they’ll be getting.

Let’s see what happens if we try to write code that doesn’t conform to our declared typing:

TypeScript 61

function hello(name: string): string {
return 12;

If we try to compile it, we'll see the following error:

$ tsc compile-error.ts
compile-error.ts(2,12): error TS2322: Type 'number' is not assignable to type 's\
tring'.

What happened here? We tried to return 12 which is a number, but we stated that hello would return
a string (by putting the): string { after the argument declaration).

In order to correct this, we need to update the function declaration to return a number:
function hello(name: string): number {

return 12;

This is one small example, but already we can see that by using types it can save us from a lot of
bugs down the road.

So now that we know how to use types, how can we know what types are available to use? Let’s
look at the list of built-in types, and then we’ll figure out how to create our own.

Trying it out with a REPL

To play with the examples on this chapter, let’s install a nice little utility called TSUN*® (TypeScript
Upgraded Node):

$ npm install -g tsun

Now start tsun:

*https://github.com/HerringtonDarkholme/typescript-repl

https://github.com/HerringtonDarkholme/typescript-repl
https://github.com/HerringtonDarkholme/typescript-repl

O O b W N -

TypeScript 62

$ tsun

TSUN : TypeScript Upgraded Node

type in TypeScript expression to evaluate
type :help for commands in repl

That little > is the prompt indicating that TSUN is ready to take in commands.

In most of the examples below, you can copy and paste into this terminal and follow along.

Built-in types

String

A string holds text and is declared using the string type:
var name: string = 'Felipe’;

Number

A number is any type of numeric value. In TypeScript, all numbers are represented as floating point.
The type for numbers is number:

var age: number = 36;

Boolean

The boolean holds either true or false as the value.
var married: boolean = true;

Array

Arrays are declared with the Array type. However, because an Array is a collection, we also need
to specify the type of the objects in the Array.

We specify the type of the items in the array with either the Array<type> or type[] notations:

TypeScript 63

var jobs: Array<string> = ['IBM', 'Microsoft', 'Google'];
var jobs: string/] = ['Apple', 'Dell', 'HP'];

Or similarly with a number:

var jobs: Array<number> = [1, 2, 3];
var jobs: number/] = [4, 5, 6];

Enums

Enums work by naming numeric values. For instance, if we wanted to have a fixed list of roles a
person may have we could write this:

enum Role {Employee, Manager, Admin};
var role: Role = Role.Employee;

The default initial value for an enum is 0. You can tweak either the start of the range:

enum Role {Employee = 3, Manager, Admin};
var role: Role = Role.Employee;

In the code above, instead of Employee being 0, Employee is 3. The value of the enum increments
from there, which means Manager is 4 and Admin is 5, and we can even set individual values:

enum Role {Employee = 3, Manager = 5, Admin = 7};
var role: Role = Role.Employee;

You can also look up the name of a given enum by using its value:

enum Role {Employee, Manager, Admin};
console.log('Roles: ', Role/@], ',', Role[1], 'and', Role[2]);

Any

any is the default type if we omit typing for a given variable. Having a variable of type any allows
it to receive any kind of value:

TypeScript 64

var something: any = 'as string';
something = 1;
something = [1, 2, 3];

Void

Using void means there’s no type expected. This is usually in functions with no return value:

function setName(name: string): void {
this.name = name;

Classes

In Javascript ES5 object oriented programming was accomplished by using prototype-based objects.
This model doesn’t use classes, but instead relies on prototypes.

A number of good practices have been adopted by the JavaScript community to compensate the lack
of classes. A good summary of those good practices can be found in Mozilla Developer Network’s
JavaScript Guide?, and you can find a good overview on the Introduction to Object-Oriented
Javascript® page.

However, in ES6 we finally have built-in classes in Javascript.

To define a class we use the new class keyword and give our class a name and a body:

class Vehicle {

}

Classes may have properties, methods, and constructors.

Properties
Properties define data attached to an instance of a class. For example, a class named Person might
have properties like first_name, last_name and age.

Each property in a class can optionally have a type. For example, we could say that the first_name
and last_name properties are strings and the age property is a number.

The declaration for a Person class that looks like this:

*Shttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
*"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

O = W N =

O© 00 9 O O b W N =

TypeScript 65

class Person {
first_name: string;
last_name: string;
age: number;

Methods

Methods are functions that run in context of an object. To call a method on an object, we first have
to have an instance of that object.

To instantiate a class, we use the new keyword. Use new Person() to create a new instance
of the Person class, for example.

If we wanted to add a way to greet a Person using the class above, we would write something like:

class Person {
first_name: string;
last_name: string;
age: number;

greet() {
console.log("Hello", this.first_name);

Notice that we’re able to access the first_name for this Person by using the this keyword and
calling this. first_name.

When methods don’t declare an explicit returning type and return a value, it’s assumed they can
return anything (any type). However, in this case we are returning void, since there’s no explicit
return statement.

0 Note that a void value is also a valid any value.

In order to invoke the greet method, you would need to first have an instance of the Person class.
Here’s how we do that:

, O O 0 9 O O b W N =~

[ENEN

0 N O O & W N =

_ R
W N~ O

TypeScript

// declare a variable of type Person

var p: Person;

// instantiate a new Person instance
p = new Person();

// give it a first_name
p.first_name = 'Felipe’;

// call the greet method
p.greet();

0 You can declare a variable and instantiate a class on the same line if you want:

1 var p: Person = new Person();

class Person {
first_name: string;
last_name: string;
age: number;

greet() {

console.log("Hello", this.first_name);

agelnYears(years: number): number {
return this.age + years;

66

Say we want to have a method on the Person class that returns a value. For instance, to know the
age of a Person in a number of years from now, we could write:

Y

© © 0 I O O b W N+~

O &= W N =

TypeScript

// Instantiate a new Person instance

var p: Person = new Person();

// set initial age
p.age = 06;

// how old will he be in 12 years?
p.agelnYears(12);

// -> 18

Constructors

67

A constructor is a special method that is executed when a new instance of the class is being created.

Usually, the constructor is where you perform any initial setup for new objects.

Constructor methods must be named constructor. They can optionally take parameters but they

can’t return any values, since they are called when the class is being instantiated (i.e. an instance of

the class is being created, no other value can be returned).

0 In order to instantiate a class we call the class constructor method by using the class name:
new ClassName().

When a class has no constructor defined explicitly one will be created automatically:

class Vehicle {

}

var v = new Vehicle();
Is the same as:

class Vehicle {
constructor() {

}
}

var v = new Vehicle();

0 In TypeScript you can have only one constructor per class.

That is a departure from ES6 which allows one class to have more than one constructor as
long as they have a different number of parameters.

Constructors can take parameters when we want to parameterize our new instance creation.

For example, we can change Person to have a constructor that initializes our data:

0 = O O b W N =

B S s s
O 00 3 O U b W DN~ OO O

TypeScript 68

class Person {
first_name: string;
last_name: string;
age: number;

constructor(first_name: string, last_name: string, age: number) {
this.first_name = first_name;
this.last_name = last_name;
this.age = age;

greet() {
console.log("Hello", this.first_name);

agelnYears(years: number): number ({
return this.age + years;

It makes our previous example a little easier to write:

var p: Person = new Person('Felipe', 'Coury', 36);
p.greet();

This way the person’s names and age are set for us when the object is created.

Inheritance

Another important aspect of object oriented programming is inheritance. Inheritance is a way to
indicate that a class receives behavior from a parent class. Then we can override, modify or augment
those behaviors on the new class.

0 If you want to have a deeper understanding of how inheritance used to work in ES5, take
a look at the Mozilla Developer Network article about it: Inheritance and the prototype
chain®.

TypeScript fully supports inheritance and, unlike ES5, it’s built into the core language. Inheritance
is achieved through the extends keyword.

To illustrate, let’s say we’ve created a Report class:

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

[ENEN

, O O 0 9 O O b W N =~

TypeScript 69

class Report {
data: Array<string>;

constructor(data: Array<string>) {
this.data = data;

run() {

this.data. forEach(function(line) { console.log(line); });

This report has a property data which is an Array of strings. When we call run we loop over each
element of data and print them out using console. log

0 .forEach is a method on Array that accepts a function as an argument and calls that
function for each element in the Array.

This Report works by adding lines and then calling run to print out the lines:

var r: Report = new Report(/'First line', 'Second line']);
r.run();

Running this should show:

First line
Second line

Now let’s say we want to have a second report that takes some headers and some data but we still
want to reuse how the Report class presents the data to the user.

To reuse that behavior from the Report class we can use inheritance with the extends keyword:

O N O O & W N~

e
W N~ O

B W N -

2
3

TypeScript 70

class TabbedReport extends Report {
headers: Array<string>;

constructor(headers: string[], values: string[]) {
super(values)
this.headers = headers;

run() {

console.log(this.headers);
super.run();

var headers: string/]/ = ['Name'];

var data: string/] = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
var r: TabbedReport = new TabbedReport(headers, data)

r.run();

Utilities

ES6, and by extension TypeScript provides a number of syntax features that make programming
really enjoyable. Two important ones are:

« fat arrow function syntax
« template strings

Fat Arrow Functions

Fat arrow => functions are a shorthand notation for writing functions.

In ES5, whenever we want to use a function as an argument we have to use the function keyword
along with {} braces like so:

// ES5-1like example
var data = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
data. forEach(function(line) { console.log(line); });

However with the => syntax we can instead rewrite it like so:

[EEY

, O O 0 9 O O b W N -

TypeScript 71

// Typescript example
var data: string// = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
data. forEach((line) => console.log(line));

Parentheses are optional when there’s only one parameter. The => syntax can be used both as an
expression:

var evens = [2,4,6,8];
var odds = evens.map(v => v + 1);

Or as a statement:

data. forEach(line => {
console.log(line.toUpperCase())

});

One important feature of the => syntax is that it shares the same this as the surrounding code. This
is important and different than what happens when you normally create a function in Javascript.
Generally when you write a function in Javascript that function is given its own this. Sometimes
in Javascript we see code like this:

var nate = {
name: "Nate",
guitars: ["Gibson", "Martin", "Taylor"],
printGuitars: function() {
var self = this;
this.guitars. forEach(function(g) {
// this.name is undefined so we have to use self.name
console.log(self.name + " plays a " + g);
1)
}
1

Because the fat arrow shares this with its surrounding code, we can instead write this:

<N O O & W N =

TypeScript 79

var nate = {
name: "Nate",
guitars: ["Gibson", "Martin", "Taylor"],
printGuitars: function() {
this.guitars. forEach((g) => {
console.log(this.name + " plays a " + g);
1
}
1

Arrows are a great way to cleanup your inline functions. It makes it even easier to use higher-order
functions in Javascript.

Template Strings

In ES6 new template strings were introduced. The two great features of template strings are

1. Variables within strings (without being forced to concatenate with +) and
2. Multi-line strings

Variables in strings

This feature is also called “string interpolation.” The idea is that you can put variables right in your
strings. Here’s how:

var firstName = "Nate";
var lastName = "Murray";

// interpolate a string
var greeting = “Hello ${firstName] ${lastName]";

console. log(greeting);

Note that to use string interpolation you must enclose your string in backticks not single or double
quotes.

Multiline strings

Another great feature of backtick strings is multi-line strings:

0 = O O b W N =

TypeScript 73

var template = °
<div>

<h1>Hello</h1>

<p>This is a great website</p>
</div>

// do something with “template”

Multiline strings are a huge help when we want to put strings in our code that are a little long, like
templates.

Wrapping up
There are a variety of other features in TypeScript/ES6 such as:

Interfaces

Generics

Importing and Exporting Modules
Annotations

Destructuring

We'll be touching on these concepts as we use them throughout the book, but for now these basics
should get you started.

Let’s get back to Angular!

How Angular Works

In this chapter, we're going to talk about the high-level concepts of Angular 2. We’re going to take
a step back so that we can see how all the pieces fit together.

0 If you’ve used Angular 1, you’ll notice that Angular 2 has a new mental-model for
building applications. Don’t panic! As Angular 1 users we’ve found Angular 2 to be both
straightforward and familiar. A little later in this book we’re going to talk specifically about

how to convert your Angular 1 apps to Angular 2.

In the chapters that follow, we’ll be taking a deep dive into each concept, but here we’re just going
to give an overview and explain the foundational ideas.

The first big idea is that an Angular 2 application is made up of Components. One way to think
of Components is a way to teach the browser new tags. If you have an Angular 1 background,
Components are analogous to directives in Angular 1 (it turns out, Angular 2 has directives too, but
we’ll talk more about this distinction later on).

However, Angular 2 Components have some significant advantages over Angular 1 directives and
we’ll talk about that below. First, let’s start at the top: the Application.

Application

An Angular 2 Application is nothing more than a tree of Components.

At the root of that tree, the top level Component is the application itself. And that’s what the browser
will render when “booting” (a.k.a bootstrapping) the app.

One of the great things about Components is that they’re composable. This means that we can build
up larger Components from smaller ones. The Application is simply a Component that renders other
Components.

Because Components are structured in a parent/child tree, when each Component renders, it
recursively renders its children Components.

For example, let’s create a simple inventory management application that is represented by the
following page mockup:

How Angular Works 75

Inventory Management App

QA X3) @ D
I Home | Products Help \

Products » Products List

|

. | SKU#104544.2 $£109.99
Image Nykee Running Shoes

/ \ Men > Shoes > Running Shoes

|

N\, /| sKus 1876110 $23899
Image South Face Jacket

/ \ Women > Apparel > Jackets & Vests

N\, /| sKus443102-9 $23899
Image Adeeds Active Hat

/" | Men > Accessories > Hats

Inventory Management App

Given this mockup, to write this application the first thing we want to do is split it into components.

In this example, we could group the page into three high level components

1. The Navigation Component
2. The Breadcrumbs Component
3. The Product Info Component

The Navigation Component

This component would render the navigation section. This would allow the user to visit other areas
of the application.

i Home | Products Help ‘

Navigation Component

The Breadcrumbs Component

This would render a hierarchical representation of where in the application the user currently is.

How Angular Works 76

Products » Products List

Breadcrumbs Component

The Product List Component

The Products List component would be a representation of a collection of products.

\ / SKU# 104544.-2 $109.499
Image Nykee Running Shoes

/ \ Men = Shoes > Running Shoes

|

\ / SKU# 187611-0 $23899
Image South Face Jacket

/ \. Women > Apparel > Jackets & Vests

. | SKU#443102-9 $23899
Image Adeeds Active Hat

/ \. Men = Accessories > Hats

——

Product List Component

Breaking this component down into the next level of smaller components, we could say that the
Product List is composed of multiple Product Rows.

. | SKU#104544.2 $109.99
Image Nykee Running Shoes
/ \ Men = Shoes > Running Shoes

Product Row Component

And of course, we could continue one step further, breaking each Product Row into smaller pieces:

« the Product Image component would be responsible for rendering a product image, given its
image name

« the Product Department component would render the department tree, like Men > Shoes >
Running Shoes

« the Price Display component would render the price. Imagine that our implementation
customizes the pricing if the user is logged in to include system-wide tier discounts or include
shipping for instance. We could implement all this behavior into this component.

Finally, putting it all together into a tree representation, we end up with the following diagram:

How Angular Works 77

Inventory Management App

MNavigation Products List Breadcrumbs

ST

Product Row Product Row
Product Row

Product Image Product Department Price Display

App Tree Diagram

At the top we see Inventory Management App: that’s our application.

Under the application we have the Navigation, the Breadcrumb and the Products List components.
The Products List component has Product Rows, one for each product.

And the Product Row uses three components itself: one for the image, the department, and the price.

Let’s work together to build this application.

Q You can find the full code listing for this chapter in the downloads under how_angular_-

works/inventory_app.

Here’s a screenshot of what our app will look like when we’re done:

How Angular Works

ece B ng-book 2: Inventory App

78

ng-book

« C' | [localhost:8080

E ngbook2 Angular 2 Inventory App

Black Running Shoes
SKU #MYSHOES

Men > Shoes > Running Shoes

Blue Jacket
SKU #NEATOJACKET

Women > Apparel > Jackets & Vests

A Nice Black Hat
SKU #NICEHAT

Men > Accessories > Hats

$109.99

$238.99

$29.99

Completed Inventory App

Product Model

One of the key things to realize about Angular is that it doesn’t prescribe a particular model

library.

Angular is flexible enough to be support many different kinds of models (and data architectures).
However, this means the choice is left to you as the user to determine how to implement these things.

We’ll have a lot to say about data architectures in future chapters. For now, though, we’re going to

have our models be plain JavaScript objects.

18
19
20
21
22
23
24
25
26
27
28
29

How Angular Works 79

code/how_angular_works/inventory_app/app.ts

/**
* Provides a “Product® object
*/

class Product {

constructor(
public sku: string,
public name: string,
public imageUrl: string,
public department: stringl],
public price: number) {

If you’re new to ES6/TypeScript this syntax might be a bit unfamiliar.
We’re creating a new Product class and the constructor takes 5 arguments. When we write public

sku: string, we're saying two things:

« there is a public variable on instances of this class called sku
« sku is of type string.

If you're already familiar with JavaScript, you can quickly catch up on some of the
differences, including the public constructor shorthand, here at learnxinyminutes®

This Product class doesn’t have any dependencies on Angular, it’s just a model that we’ll use in our
app.

Components

As we mentioned before, Components are the fundamental building block of Angular 2 applications.
The “application” itself is just the top-level Component. Then we break our application into smaller
child Components.

TIP: When building a new Angular application, mockup the design and then break it down
into Components.

We'll be using Components a lot, so it’s worth looking at them more closely.

Each components is composed of three parts:

*https://learnxinyminutes.com/docs/typescript/

https://learnxinyminutes.com/docs/typescript/
https://learnxinyminutes.com/docs/typescript/

© 00 39 O Ol b W N =~

How Angular Works

« Component Annotation
« A View
« A Controller

To illustrate the key concepts we need to understand about components, we’ll start with the top level

Inventory App and then focus on the Products List and child components:

Inventory Management App

!

MNavigation

Products List

S

Breadcrumbs

Product Row

Product Image

Product Department

Products List Component

Here’s what a basic, top-level InventoryApp looks like:

@Component ({

selector: 'inventory-app',

template:

<div class="inventory-app">

(Products will go here soon)

</div>

D)

class InventoryApp {

Price Display

80

10
11
12
13

How Angular Works 81

// Inventory logic here

}

// module boot here. .

If you’ve been using Angular 1 the syntax might look pretty foreign! But the ideas are pretty similar,
so let’s take them step by step:

The @Component is called a annotation. It adds metadata to the class that follows it (InventoryApp).
The @Component annotation specifies:

+ aselector, which tells Angular what element to match
« atemplate, which defines the view

The Component controller is defined by a class, the InventoryApp class, in this case.

Let’s take a look into each part now in more detail.

Component Annotation

The @Component annotation is where you configure your component. Primarily, @omponent will
configure how the outside world will interact with your component.

There are lots of options available to configure a component (many of which we cover in the
Advanced Components Chapter). In this chapter we’re just going to touch on some of the basics.

Component selector

With the selector key, you indicate how your component will be recognized when rendering HTML
templates. The idea is similar to CSS or XPath selectors. The selector is a way to define what
elements in the HTML will match this component. In this case, by saying selector: 'inventory-
app', we're saying that in our HTML we want to match the inventory-app tag, that is, we're defining
a new tag that has new functionality whenever we use it. E.g. when we put this in our HTML:

<inventory-app></inventory-app>

Angular will use the InventoryApp component to implement the functionality.

Alternatively, with this selector, we can also use a regular div and specify the component as an
attribute:

0 I O O b W N =~

O O b W N =~

How Angular Works 82

<div inventory-app></div>

Component template

The view is the visual part of the component. By using the template option on @Component, we
declare the HTML template that the component will have.

@Component ({
selector: 'inventory-app',
template:
<div class="inventory-app">
(Products will go here soon)
</div>

1))

For this template, notice that we’re using TypeScript’s backtick multi-line string syntax. Our
template so far is pretty sparse: just a div with some placeholder text.

We could use the option templateUr1 instead of template if we wanted to put the template
in a separate file.

Adding A Product

Our app isn’t very interesting without Products to view. Let’s add some now.

We can create a new Product like this:

let newProduct = new Product(

"NICEHAT', // sku

"A Nice Black Hat', // name
'/resources/images/products/black-hat. jpg', // imageUrl
['Men', 'Accessories', 'Hats'], // department
29.99); // price

Our constructor for Product takes 5 arguments. We can create a new Product by using the new
keyword.

0 N O O s~ W N -

S Gy
D W NN, O

0 = O O b W N =~

(AN
N =~ O O

How Angular Works 83

0 Normally, I probably wouldn’t pass more than 5 arguments to a function. Another option
here is to configure the Product class to take an Object in the constructor, then if we
wouldn’t have to remember the order of the arguments. That is, Product could be changed

to do something like this:

1 new Product({sku: "MYHAT", name: "A green hat"})

But for now, a 5 argument constructor is fine.

We want to be able to show this Product in the view. In order to make properties accessible to our
template we add them as instance variables to the Component.

For instance, if we want to access newProduct in our view we would write:

class InventoryApp {
product: Product;

constructor() {
let newProduct = new Product(
"NICEHAT',
"A Nice Black Hat',
' /resources/images/products/black-hat. jpg"',
['Men', 'Accessories', 'Hats'],
29.99);

this.product = newProduct;

or more concisely:

class InventoryApp {
product: Product;

constructor() {
this.product = new Product(
"NICEHAT',
"A Nice Black Hat',
' /Tesources/images/products/black-hat. jpg"',
['Men', 'Accessories', 'Hats'],
29.99);

© 00 N O U b W N =

How Angular Works 84

Notice that we did three things here:

1. We added a constructor - When Angular creates a new instance of this Component, it calls
the constructor function. This is where we can put setup for this Component.

2. We described an instance variable - On InventoryApp, when we write: product: Product,
we’re specifying that the InventoryApp instances have a property product which is a Product
object.

3. We assigned a Product to product - In the constructor we create an instance of Product
and assigned it to the instance variable

Viewing the product with Template Binding

Now that we have product assigned, we can use that variable in our view. Let’s change our template
to the following:

@Component ({
selector: 'inventory-app',
template: °

<div class="inventory-app">
<h1>{{ product.name }}</h1>
{{ product.sku }}

</div>

P

Using the {{...}} syntax is called template binding. It tells the view we want to use the value of the
expression inside the brackets at this location in our template.

So in this case, we have two bindings:

e {{ product.name }}
e {{ product.sku }}

The product variable comes from the instance variable product on our Component instance of
InventoryApp.

What’s neat about template binding is that the code inside the brackets is an expression. That means
you can do things like this:

o {{ count + 1 }}
e {{ myFunction(myArguments) }}

In the first case, we're using an operator to change the displayed value of count. In the second
case, we're able to replace the tags with the value of the function myFunction(myArguments). Using
template binding tags is the main way that you’ll show data in your Angular applications.

=N O O & W N =

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

How Angular Works 85

Adding More Products

We actually don’t want to show only a single product in our app - we actually want to show a whole
list of products. So let’s change our InventoryApp to store an array of Products rather than a single
Product:

class InventoryApp {
products: Product[];

constructor() {
this.products = [];

Notice that we've renamed the variable product to products, and we’ve changed the type to
Product[]. The [] characters at the end mean we want products to be an Array of Products. We
also could have written this as: Array<Product>.

Now that our InventoryApp holds an array of Products. Let’s create some Products in the
constructor:

code/how_angular_works/inventory_app/app.ts

class InventoryApp {
products: Product[];

constructor() {
this.products = |
new Product(
"MYSHOES ',
'Black Running Shoes',
' /resources/images/products/black-shoes. jpg’,
['Men', 'Shoes', 'Running Shoes'],
109.99),
new Product(
"NEATOJACKET"',
'Blue Jacket',
' /resources/images/products/blue- jacket. jpg’,
['Women', 'Apparel', 'Jackets & Vests'],
238.99),
new Product(
"NICEHAT',
"A Nice Black Hat',
' /resources/images/products/black-hat. jpg',

196
197
198
199

201
202
203

164
165
166
167
168
169
170
171
172
173
174
175

How Angular Works 86

['Men', 'Accessories', 'Hats'],
29.99)

1;

This code will give us some Products to work with in our app.

Selecting a Product

We want to support user interaction in our app. For instance, the user might select a particular
product to view more information about the product, add it to the cart, etc.

Let’s add some functionality here in our InventoryApp to handle what happens when a new Product
is selected. To do that, let’s define a new function, productWasSelected:

code/how_angular_works/inventory_app/app.ts

productWasSelected(product: Product): void {
console.log('Product clicked: ', product);

Listing products using <products-1list>

Now that we have our top-level InventoryApp component, we need to add a new component for
rendering a list of products. In the next section we’ll create the implementation of a ProductsList
component that matches the selector products-1ist. Before we dive into the implementation details,
here’s how we will use this new component:

code/how_angular_works/inventory_app/app.ts

@Component({
selector: 'inventory-app',
template:
<div class="inventory-app">
<products-list
[productlList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

D)
class InventoryApp {

There’s some new syntax and options here, so let’s talk about each of them:

B W N -

How Angular Works 87

Inputs and Outputs

When we use products-1ist we're using a key feature of Angular components: inputs and outputs:

<products-list
[productList]="products" <I-- input -->
(onProductSelected)="productWasSelected($event)"> </-- output -->
</products-list>

The [squareBrackets] pass inputs and the (parenthesis) handle outputs.

Data flows in to your component via input bindings and events flow out of your component through
output bindings.

Think of the set of input + output bindings as defining the public API of your component.

[squareBrackets] pass inputs

In Angular, you pass data into child components via inputs.

In our code where we show:

<products-list
[productList]="products"

We’re using an input of the ProductList component.

It can be tricky to understand where products/productlList are coming from. There are two sides
to this attribute:

 [productList] (the left-hand side) and
 "products" (the right-hand side)

The left-hand side [productList] says we want to use the productList input of the products-1list
component

The right-hand side "products" says we want to send the value of the expression products. That is,
the array this.products in the InventoryApp class.

0 You might ask, “how would I know that productList is a valid input to the products-1list
component? The answer is: you’d read the docs for that component. The inputs (and
outputs) are part of the “public API” of a component.

You’d know the inputs for a component that you’re using in the same way that you’d know
what the arguments are for a function that you’re using.

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

How Angular Works 88

(parens) handle outputs

In Angular, you send data out of components via outputs.

In our code where we show:

<products-list

(onProductSelected)="productWasSelected($event)">

We're saying that we want to listen to the onProductSelected output from the ProductslList
component.

That is:

« (onProductSelected), the left-hand side is the name of the output we want to “listen” on

+ "productWasSelected", the right-hand side is the function we want to call when something
new is on this output

+ $event is a special variable here that represents the thing emitted on the output.

Now, we haven'’t talked about how to define inputs or outputs on our own components yet, but we
will shortly when we define the ProductsList component.

Full InventoryApp Listing
Here’s the full code listing of our InventoryApp component:

code/how_angular_works/inventory_app/app.ts

@Component ({
selector: 'inventory-app',
template: °
<div class="inventory-app">
<products-list
[productList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

~

)
class InventoryApp {

products: Product[];

constructor () {

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

How Angular Works 89

this.products = |

new Product(
'MYSHOES ',
'Black Running Shoes',
' /resources/images/products/black-shoes. jpg’,
['Men', 'Shoes', 'Running Shoes'],
109.99),

new Product(
"NEATOJACKET,
'Blue Jacket',
' /resources/images/products/blue- jacket. jpg’,
['Women', 'Apparel', 'Jackets & Vests'],
238.99),

new Product(
"NICEHAT',
"A Nice Black Hat',
'/resources/images/products/black-hat. jpg"',
['Men', 'Accessories', 'Hats'],
29.99)

productWasSelected(product: Product): void {

console.log('Product clicked: ', product);

The ProductsList Component

Now that we have our top-level application component, let’s write the ProductsList component,
which will render a list of product rows.

We want to allow the user to select one Product and we want to keep track of which Product is the
currently selected one. The ProductsList component is a great place to do this because it “knows”
all of the Products at the same time.

Let’s write the ProductsList Component in three steps:

« Configuring the ProductsL ist @Component options
+ Writing the ProductsList controller class
+ Writing the ProductsList view template

106
107
108
109
110
111
112
113
114

0 N O O b W N =~

How Angular Works 90

Configuring the ProductsList @Component Options

Let’s take a look at the @Component configuration for ProductsList:

code/how_angular_works/inventory_app/app.ts

Ak

* @ProductslList: A component for rendering all ProductRows and

* storing the currently selected Product

*/
@Component({

selector: 'products-list',

inputs: ['productlList'],
outputs: ['onProductSelected'],
template:

We start our ProductsList Component with a familiar option: selector. This selector means we
can place our ProductsList component with the tag <products-1list>.

There are two new options though: inputs and outputs.

Component inputs
With the inputs option, we're specifying the parameters we expect our component to receive. inputs
takes an array of strings which specify the input keys.

When we specify that a Component takes an input, it is expected that the definition class will have
an instance variable that will receive the value. For example, say we have the following code:

@Component ({
selector: 'my-component',
inputs: ['name', 'age']
)

class MyComponent {
name: string;
age: number;

The name and age inputs map to the name and age properties on instances of the MyComponent class.

Another way we can specify that a Component takes an input is to use the @Input annotation. You
would first import Input and then add @Input() to the property declaration like below: “‘javascript
import { Component, Input } from ‘@angular/core’;

~N O O B W N -

O N O O B W N~

N N S sy s
© ©W 0O 1 O O b W N~ O O

0 N O O & W N =

How Angular Works

@Component ({
selector: 'my-component'

})

class MyComponent {
@Input() name: string;
@Input() age: number;

If we need to use two different names for the attribute and the property, we cou\
1d for example write “@Input('firstname') name: String; .

But it is recommended to avoid this by the [Angular Style Guide](https://angular\
.io/docs/ts/latest/guide/style-guide.html).

I> You should choose one or the other style for the _inputs_, they will give you\
the same result. In this chapter we will use the “inputs: []> style. In other c\
hapters we are using the “@Input()” style.

If we want to use “MyComponent™ from another template, we write something like: \
*<my-component [name]="myName" [age]="myAge"></my-component>" .

Notice that the attribute “name”™ matches the input “name™, which in turn matches\
the “MyComponent®™ property “name”. They don't always have to match.

For instance, say we wanted our attribute key and instance property to differ. T\
hat is, we want to use our component like this:

" html
<my-component [shortName]="myName" [oldAge]="myAge"></my-component>

To do this, we would change the format of the string in the inputs option:

@Component ({

selector: 'my-component',

inputs: ['name: shortName', 'age: oldAge']
)
class MyComponent {

name: string;

age: number;

More generally, inputs strings can have the format ' componentProperty: exposedProperty'.

For instance we could have a different component that looks like this:

91

S © 00 I O O b W N =

[N

0 N O O & W N =~

I U
B W N0 O

S © W I O O b W N =

[N

How Angular Works 92

@Component ({
/S
inputs: ['name', 'age', 'enabled']
/S

)

class MyComponent {
name: string;
age: number;
enabled: boolean;

However, if we wanted to represent the exposed property enabled in my component as isEnabled,
we could use the alternative notation, like this:

@Component ({
Y
inputs: [

'name: name',
'age: age',
'"iskEnabled: enabled’
]
s
)
class MyComponent {
name: string;
age: number;
isEnabled: boolean;

And going a little further, since the only property that requires an explicit mapping is enabled to
isEnabled, we could even simplify and write it like this:

@Component ({
/S
inputs: ['name', 'age', 'isEnabled: enabled']
/S

)

class MyComponent {
name: string;
age: number;
isEnabled: boolean;

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

How Angular Works 93

In the inputs array, when the strings are in the key: value format, each have a specific meaning:

+ The key (name, age and isEnabled) represent how that incoming property will be visible
(“bound”) in the controller.

+ The value (name, age and enabled) configures how the property is visible to the outside
world.

Passing products through via the inputs

If you recall, in our InventoryApp, we passed products to our products-1ist via the [productlList]
input:

code/how_angular_works/inventory_app/app.ts

Rk
* @InventoryApp: the top-level component for our application
*/

@Component ({

selector: 'inventory-app',
template:
<div class="inventory-app">
{products-list
[productList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

<

)
class InventoryApp {

products: Product[];

constructor() {
this.products = |

Hopefully this now makes a bit more sense: we’re passing this.products in via an input on
ProductslList.

Component outputs

When you want to send data from your component to the outside world, you use output bindings.

Let’s say a component we’re writing has a button and we need to do something when that button
is clicked.

© 00 9 O Ol b W N

NN NN N N B 1 s s
O b 0O N~ O O 0N O Ol b W N~ O

How Angular Works 94

The way to do this is by binding the click output of the button to a method declared on our
component’s controller. You do that using the (output)="action" notation.

Here’s an example where we keep a counter and increment (or decrement) based on which button
is pressed:

@Component ({
selector: 'counter',
template:
{{ value }}
<button (click)="increase()">Increase</button>
<button (click)="decrease()">Decrease</button>

1))

class Counter {

value: number;

constructor() {
this.value = 1;

increase() {
this.value = this.value + 1;
return false;

decrease() {
this.value = this.value - 1;
return false;

}

In this example we’re saying that every time the first button is clicked, we want the increase()
method on our controller to be invoked. And, similarly, when the second button clicked, we want
to call the decrease() method.

The parentheses attribute syntax looks like this: (output)="action". In this case, the output we’re
listening for is click event on this button. There are many other built-in events you can listen to:
mousedown, mousemove, dbl-click, etc.

In this example, the event is internal to the component. When creating our own components we can
also expose “public events” (component outputs) that allow the component to talk to the outside
world.

The key thing to understand here is that in a view, we can listen to an event by using the
(output)="action" syntax.

[EEY

, O © 0 9 O O b W N+~

How Angular Works 95

Emitting Custom Events

Let’s say we want to create a component that emits a custom event, like click or mousedown above.
To create a custom output event we do three things:

1. Specify outputs in the @Component configuration
2. Attach an EventEmitter to the output property
3. Emit an event from the EventEmitter, at the right time

0 Perhaps EventEmitter is unfamiliar to you. Don’t panic! It’s not too hard.

An EventEmitter is simply an object that helps you implement the Observer Pattern®.
That is, it’s an object that can maintain a list of subscribers and publish events to them.
That’s it.

Here’s a short and sweet example of how you can use EventEmitter

let ee = new EventEmitter();
ee.subscribe((name: string) => console.log(Hello ${name}));
ee.emit("Nate");

O > W N =

// -> "Hello Nate"

When we assign an EventEmitter to an output Angular automatically subscribes for us.
You don’t need to do the subscription yourself (necessarily, though you can add your own
subscriptions if you want to).

Here’s a code example of how we write a component that has outputs:

@Component ({
selector: 'single-component',
outputs: ['putRingOnIt'],

template:
<button (click)="liked()">Like it?</button>

1))

class SingleComponent {
putRingOnIt: EventEmitter<string>;

constructor() {

**https://en.wikipedia.org/wiki/Observer_pattern

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

12
13
14
15
16
17
18

0 N O O & W N~

S =Y
<N O O WD r OO O

How Angular Works

this.putRingOnIt = new EventEmitter();

liked(): void {
this.putRingOnIt.emit("oh oh oh");

Notice that we did all three steps: 1. specified outputs, 2. created an EventEmitter that we attached

to the output property putRingOnIt and 3. Emitted an event when 1iked is called.

If we wanted to use this output in a parent component we could do something like this:

@Component ({
selector: 'club',
template:
<div>
<single-component
(putRingOnlIt)="ringWasPlaced($event)"
></single-component>
</div>

1))

class ClubComponent {
ringWasPlaced(message: string) {
console.log(Put your hands up: ${message}”);

// logged -> "Put your hands up: oh oh oh"
Again, notice that:
e putRingOnIt comes from the outputs of SingleComponent

« ringWasPlaced is a function on the ClubComponent
+ $event contains the thing that was emitted, in this case a string

Writing the ProductsList Controller Class

Back to our store example, our ProductsList controller class needs three instance variables:

« One to hold the list of Products (that come from the productList input)

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

How Angular Works 97

+ One to output events (that emit from the onProductSelected output)
+ One to hold a reference to the currently selected product

Here’s how we define those in code:

code/how_angular_works/inventory_app/app.ts

class ProductsList {
J*k
* @input productlList - the Product[] passed to us
*/
productlList: Product[];

Rk
* @output onProductSelected - outputs the current
* Product whenever a new Product is selected
*/

onProductSelected: EventEmitter<Product>;

J*k
* @property currentProduct - local state containing
* the currently selected “Product-

*/

private currentProduct: Product;

constructor() {
this.onProductSelected = new EventEmitter();

Notice that our productList is an Array of Products - this comes in from the inputs.
onProductSelected is our output.

currentProduct is a property internal to ProductsList. You might also hear this being referred to
as “local component state”. It’s only used here within the component.

Writing the ProductsList View Template

Here’s the template for our products-1list component:

114
115
116
117
118
119
120
121
122
123

How Angular Works 98

code/how_angular_works/inventory_app/app.ts

template:
<div class="ui items">
<{product-row
*ngFor="1et myProduct of productList"
[product]="myProduct"
(click)="clicked(myProduct)'
[class.selected]="isSelected(myProduct)">
</product-row>
</div>

Here we're using the product-row tag, which comes from the ProductRow component, which we’ll
define in a minute.

We’re using ngFor to iterate over each Product in productList. We've talked about ngFor before
in this book, but just as a reminder the let thing of things syntax says, “iterate over things and
create a copy of this element for each item, and assign each item to the variable thing™.

So in this case, we're iterating over the Products in productList and generating a local variable
myProduct for each one.

Q Stylistically, I probably wouldn’t call this variable myProduct in a real app. I’d probably
just call it product, or even p. But I want to be explicit about what we’re passing around,
and so myProduct is slightly clearer.

The interesting thing to note about this myProduct variable is that we can now use it even on the
same tag. As you can see, we do this on the following three lines.

The line that reads [product]="myProduct" says that we want to pass myProduct (the local variable)
to the input product of the product-row. (We'll define this input when we define the ProductRow
component below.)

The (click)="clicked(myProduct)' line describes what we want to do when this element is clicked.
click is a built-in event that is triggered when the host element is clicked on. In this case, we want
to call the component function clicked on ProductslList whenever this element is clicked on.

The line [class.selected]="isSelected(myProduct)" is a fun one: Angular allows us to set
classes conditionally on an element using this syntax. This syntax says “add the CSS class selected
if isSelected(myProduct) returns true.” This is a really handy way for us to mark the currently
selected product.

You may have noticed that we didn’t define clicked nor isSelected yet, so let’s do that now (in
ProductslList):

clicked

147
148
149
150

152
153
154
155
156
157

106
107
108
109
110
111
112
113
114
115

How Angular Works 99

code/how_angular_works/inventory_app/app.ts

clicked(product: Product): void {
this.currentProduct = product;
this.onProductSelected.emit(product);

This function does two things:

1. Set this.currentProduct to the Product that was passed in.
2. Emit the Product that was clicked on our output

isSelected

code/how_angular_works/inventory_app/app.ts

isSelected(product: Product): boolean {

if (!product || !this.currentProduct) {
return false;
}
return product.sku === this.currentProduct.sku;

This function accepts a Product and returns true if product’s sku matches the currentProduct’s
sku. It returns false otherwise.

The Full productsList Component

Here’s the full code listing so we can see everything in context:

code/how_angular_works/inventory_app/app.ts

J Rk
* @ProductsList: A component for rendering all ProductRows and
* storing the currently selected Product
*/

@Component ({

selector: 'products-list',
inputs: ['productList'],
outputs: ['onProductSelected'],
template:

<div class="ui items">

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

How Angular Works

<product-row
*ngFor="1et myProduct of productlList"
[product]="myProduct"
(click)="clicked(myProduct)'
[class.selected]="isSelected(myProduct)">
</product-row>
</div>

~

1))

class ProductsList {
Rk
* @input productlList - the Product[] passed to us
*/
productlList: Product[];

J Rk
* @output onProductSelected - outputs the current
* Product whenever a new Product is selected
*/

onProductSelected: EventEmitter<Product>;

J Rk
* @property currentProduct - local state containing
* the currently selected “Product’

*/

private currentProduct: Product;

constructor() {
this.onProductSelected = new EventEmitter();

clicked(product: Product): void {
this.currentProduct = product;
this.onProductSelected.emit(product);

isSelected(product: Product): boolean {
if (!product || !this.currentProduct) ({
return false;

}

return product.sku === this.currentProduct.sku;

100

158
159

How Angular Works 101

The ProductRow Component

Blue Jacket
SKU #NEATOJACKET

$238.99

Women > Apparel > Jackets & Vests

A Selected Product Row Component

Our ProductRow displays our Product. ProductRow will have its own template, but will also be split
up into three smaller Components:

* ProductImage - for the image
« ProductDepartment - for the department “breadcrumbs”
 PriceDisplay - for showing the product’s price

Here’s a visual of the three Components that will be used within the ProductRow:

plue Jacket
$238.99
SKU #NEATOJACKET

Women > Apparel > Jackets & Vests PriceDiSplay

Productimage

ProductRow’s Sub-components

Let’s take a look at the ProductRow’s Component configuration, definition class, and template:

ProductRow Component Configuration

81
82
83
84
85
86
87
88

102
103
104

How Angular Works 102

code/how_angular_works/inventory_app/app.ts

/**
* @ProductRow: A component for the view of single Product
*/
@Component ({
selector: 'product-row',
inputs: ['product'],
host: {'class': 'item'},
template:

We start by defining the selector of product-row. We've seen this several times now - this defines
that this component will match the tag product-row.

Next we define that this row takes an input of product. This will be the Product that was passed in
from our parent Component.

The host option lets us set attributes on the host element. In this case, we’re using the Semantic Ul
item class®’. Here when we say host: {'class': 'item'} we're saying that we want to attach the
CSS class “item” to the host element.

O Using host is nice because it means we can configure our host element from within the
component. This is great because otherwise we’d require the host element to specify the

CSS tag and that is bad because we would then make assigning a CSS class part of the
requirement to using the Component.

We’ll talk about the template in a minute.

ProductRow Component Definition Class

The ProductRow Component definition class is straightforward:

code/how_angular_works/inventory_app/app.ts

class ProductRow {
product: Product;

Here we're specifying that the ProductRow will have an instance variable product. Because we
specified an input of product, when Angular creates an instance of this Component, it will
automatically assign the product for us. We don’t need to do it manually, and we don’t need a
constructor.

*'http://semantic-ui.com/views/item.html

http://semantic-ui.com/views/item.html
http://semantic-ui.com/views/item.html
http://semantic-ui.com/views/item.html

88
89
90
91
92
93
94
95
96
o7
98
99
100

81
82
83
84
85
86
87
88

How Angular Works 103

ProductRow template

Now let’s take a look at the template:

code/how_angular_works/inventory_app/app.ts

template:
<product-image [product]="product"></product-image>
<div class="content">
<div class="header">{{ product.name }}</div>
<div class="meta">
<div class="product-sku">SKU #{{ product.sku }}</div>
</div>
<div class="description">
<product-department [product]="product"></product-department>
</div>
</div>
<price-display [price]="product.price"></price-display>

~

Our template doesn’t have anything conceptually new.

In the first line we use our product-image directive and we pass our product to the product input
of the ProductImage component. We use the product-department directive in the same way.

We use the price-display directive slightly differently in that we pass the product.price, instead
of the product directly.

The rest of the template is standard HTML elements with custom CSS classes and some template

bindings.

ProductRow Full Listing

Here’s the ProductRow component all together:

code/how_angular_works/inventory_app/app.ts

J*k
* @ProductRow: A component for the view of single Product
*/

@Component ({

selector: 'product-row',
inputs: ['product'],
host: {'class': 'item'},
template:

89
90
91
92
93
94
95
96
o
98
99
100
101
102
103
104

31
32
33
34
35
36
37
38
39
40
41
42
43
44

How Angular Works
<product-image [product]="product"></product-image>
<div class="content">
<div class="header">{{ product.name }}</div>
<div class="meta">
<div class="product-sku">SKU #{{ product.sku }}</div>
</div>
<div class="description">
<product-department [product]="product"></product-department>
</div>
</div>
<price-display [price]="product.price"></price-display>
b
class ProductRow {

product: Product;

104

Now let’s talk about the three components we used. They’re pretty short.

The ProductIimage COmponent

code/how_angular_works/inventory_app/app.ts

J Rk
* @ProductlImage: A component to show a single Product's image
*/

@Component({

selector: 'product-image',

host: {class: 'ui small image'},

inputs: ['product'],

template:

~

1))

class ProductlImage {
product: Product;

The one thing to note here is in the img tag, notice how we use the [src] input to img.

We could have written this tag this way:

66
67
68
69
%
71
T2
73
T4
)
76
T
78
79

How Angular Works 105

<!-- wrong, don't do it this way -->

Why is that wrong? Well, because in the case where your browser loads that template before Angular
has run, your browser will try to load the image with the literal string {{ product.imageUrl }} and
then it will get a 404 not found, which can show a broken image on your page until Angular runs.

By using the [src] attribute, we're telling Angular that we want to use the [src] input on this img
tag. Angular will then replace the value of the src attribute once the expression is resolved.

The PriceDisplay Component

Next, let’s look at PriceDisplay:

code/how_angular_works/inventory_app/app.ts

Ak
* @PriceDisplay: A component to show the price of a
* Product
*/
@Component({
selector: 'price-display’,
inputs: ['price'],
template:
<div class="price-display">\${{ price }}</div>

1))

class PriceDisplay {
price: number;

It’s pretty straightforward, but one thing to note is that we’re escaping the dollar sign $ because this
is a backtick string and the dollar sign is used for template variables.

The ProductDepartment COmponent

46
47
48
49
90
o1
52
53
o4
95
56
o7
58
59
60
61
62
63
64

How Angular Works 106

code/how_angular_works/inventory_app/app.ts

Sk

* @ProductDepartment: A component to show the breadcrumbs to a

* Product's department
*/
@Component({
selector: 'product-department',
inputs: ['product'],
template:
<div class="product-department">

{{ name }}
{{i < (product.department.length-1) ? '>' : ''}}

</div>

1))

class ProductDepartment {
product: Product;

The thing to note about the ProductDepartment Component is the ngFor and the span tag.

Our ngFor loops over product.department and assigns each department string to name. The new
part is the second expression that says: let i=index. This is how you get the iteration number out
of ngFor.

In the span tag, we use the i variable to determine if we should show the greater-than > symbol.

The idea is that given a department, we want to show the department string like:
Women > Apparel > Jackets & Vests

The expression {{i < (product.department.length-1) ? '>' : ''}} says that we only want to
use the '>' character if we're not the last department. On the last department just show an empty
string ' '.

0 This format: test ? valuelfTrue : valuelfFalse is called the ternary operator.

NgModule and Booting the App

The final thing we have to do is create the NgModule for this app and boot it up:

206
207
208
209
210
211
212
213
214
215
216
217
218

How Angular Works 107

code/how_angular_works/inventory_app/app.ts

@NgModule({
declarations: |

InventoryApp,
ProductImage,
ProductDepartment,
PriceDisplay,
ProductRow,
ProductsList
1,
imports: [BrowserModule],
bootstrap: [InventoryApp]

1}
class InventoryAppModule {}

Angular provides a module system that helps organize our code. Unlike Angular 1, where all
directives are essentially globals, in Angular 2 you must specifically say which components you’re
going to be using in your app.

While it is a bit more configuration to do it this way, it’s a lifesaver for larger apps.

When you create new components in Angular, in order to use them they must be accessible from the
current module. That is, if we want to use the ProductsList component with the products-1list
selector in the InventoryApp template, then we need to make sure that the InventoryApp’s module
either:

1. is in the same module as the ProductsList component or
2. The InventoryApp’s module imports the module that contains ProductsList

Remember every component you write must be declared in one NgModule before it can be
used in a template.

In this case, we’re putting InventoryApp, ProductsList, and all the other components for this app
in one module. This is easy and it means they can all “see” each other.

Notice that we tell NgModule that we want to bootstrap with InventoryApp. This says that
InventoryApp will be the top-level component.

Because we are writing a browser app, we also put BrowserModule in the imports of the NgModule.

Q To learn more about NgModule checkout the section on NgModule later in the book

How Angular Works 108

Booting the app

We're writing a browser app with no “ahead-of-time” compilation (more on this later in the book).
So to bootstrap we do this:

code/how_angular_works/inventory_app/app.ts

219 platformBrowserDynamic().bootstrapModule(InventoryAppModule);

The Completed Project

Now we have all the pieces we need for the working project!

Here’s what it will look like when we’re done:

ece B ng-book 2: Inventory App ng-book

&« C' [localhost:8080 e =

2

E ngbook2 Angular 2 Inventory App

Black Running Shoes

$109.99
SKU #MYSHOES
Men > Shoes > Running Shoes
Blue Jacket $238.99
SKU #NEATOJACKET
Women > Apparel > Jackets & Vests
A Nice Black Hat $29.99

SKU #NICEHAT

Men > Accessories > Hats

Completed Inventory App

You can run the code example in how_angular_works/inventory_app. See the README
there.

How Angular Works 109

Now you can click to select a particular product and have it render a nice purple outline when
selected. If you add new Products in your code, you’ll see them rendered.

A Word on Data Architecture

You might be wondering at this point how we would manage the data flow if we started adding
more functionality to this app.

For instance, say we wanted to add a shopping cart view and then we would add items to our cart.
How could we implement this?

The only tools we’ve talked about are emitting output events. When we click add-to-cart do we
simply bubble up an addedToCart event and handle at the root component? That feels a bit awkward.

Data architecture is a large topic with many opinions. Thankfully, Angular is flexible enough to
handle a wide variety of data architectures, but that means that you have to decide for yourself
which to use.

In Angular 1, the default option was two-way data binding. Two-way data binding is super easy
to get started: your controllers have data, your forms manipulate that data directly, and your views
show the data.

The problem with two-way data binding is that it often causes cascading effects throughout your
application and makes it really difficult to trace data flow as your project grows.

Another problem with two-way data binding is that because you’re passing data down through
components it often forces your “data layout tree” to match your “dom view tree”. In practice, these
two things should really be separate.

One way you might handle this scenario would be to create a ShoppingCartService, which would
be a singleton that would hold the list of the current items in the cart. This service could notify any
interested objects when an item in the cart changes.

The idea is easy enough, but in practice there are a lot of details to be worked out.

The recommended way in Angular 2, and in many modern web frameworks (such as React), is to
adopt a pattern of one-way data binding. That is, your data flows only down through components.
If you need to make changes, you emit events that cause changes to happen “at the top” which then
trickle down.

One-way data binding can seem like it adds some overhead in the beginning but it saves a lot of
complication around change detection and it makes your systems easier to reason about.

Thankfully there are two major contenders for managing your data architecture:

1. Use an Observables-based architecture like Rx]JS
2. Use a Flux-based architecture

Later in this book we’ll talk about how to implement a scalable data architecture for your app. For
now, bask in the joy of your new Component-based application!

O O b W N~

Built-in Directives

Introduction

Angular 2 provides a number of built-in directives. In this chapter, we're going to cover each built-in
directive and show you examples of how to use them.

The built-in directives are imported and made available to your components automatically,
so you don’t need to inject them as a directive like you would do with your own
components.

NgIf

The ngIf directive is used when you want to display or hide an element based on a condition. The
condition is determined by the result of the expression that you pass into the directive.

If the result of the expression returns a false value, the element will be removed from the DOM.

Some examples are:

<div *nglf="false"></div> <!-- never displayed -->

<div *nglf="a > b"></div> <!-- displayed if a is more than b -->

<div *nglf="str == 'yes'"></div> <!-- displayed if str holds the string "yes" -\
->

<div *ngIf="myFunc()"></div> <I-- displayed if myFunc returns a true value \

>

0 If you have experience with Angular 1, you probably used ngIf directive before. You can
think of the Angular 2 version as a direct substitute. On the other hand, Angular 2 offers
no built-in alternative for ng-show. So, if your goal is to just change the CSS visibility of an
element, you should look into either the ng_style or the class directives, described later

in this chapter.

NgSwitch

Sometimes you need to render different elements depending on a given condition.

When you run into this situation, you could use ngI f several times like this:

O = W N =

N O O B W N -~

O = W N -

Built-in Directives 111

<div class="container">

<div *nglf="myVar == 'A'">Var is A</div>

<div *nglf="myVar == 'B'">Var is B</div>

<div *nglf="myVar != 'A' && myVar != 'B'">Var is something else</div>
</div>

But as you can see, the scenario where myVar is neither A nor B is pretty verbose, all we’re really
trying to express is an else. And as we add more values the last ngIf condition will become more
complex.

To illustrate this growth in complexity, let’s say we wanted to handle a new hypothetical C value.

In order to do that, we’d have to not only add the new element with ngIf, but also change the last
case:

<div class="container">

<div *nglf="myVar == 'A'">Var is A</div>

<div *nglf="myVar == 'B'">Var is B</div>

<div *ngIf="myVar == 'C'">Var is C</div>

<div *ngIf="myVar != 'A' && myVar != 'B' && myVar != 'C'">Var is something els\
e</div>
</div>

For cases like this, Angular 2 introduces the ngSwitch directive.
If you’re familiar with the switch statement then you’ll feel very at home.

The idea behind this directive is the same: allow a single evaluation of an expression, and then
display nested elements based on the value that resulted from that evaluation.

Once we have the result then we can:

« Describe the known results, using the ngSwitchCase directive
- Handle all the other unknown cases with ngSwitchDefault

Let’s rewrite our example using this new set of directives:

<div class="container" [ngSwitch]="myVar">

<div *ngSwitchCase=""A'">Var is A</div>

<div *ngSwitchCase="'B'">Var is B</div>

<div *ngSwitchDefault>Var is something else</div>
</div>

Then if we want to handle the new value C we insert a single line:

O O B W N~

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Built-in Directives

<div class="container" [ngSwitch]="myVar">

<div
<div
<div
<div
</div>

*ngSwitchCase=""A"">Var is A</div>
*ngSwitchCase=""'B'">Var is B</div>
*ngSwitchCase=""'C'">Var is C</div>

*ngSwitchDefault>Var is something else</div>

And we don’t have to touch the default (i.e. fallback) condition.

Having the ngSwitchDefault element is optional. If we leave it out, nothing will be rendered when

myVar fails to match any of the expected values.

You can also declare the same *ngSwitchCase value for different elements, so you're not limited to

matching only a single time. Here’s an example:

code/built_in_directives/app/ts/ng_switch/ng_switch.ts

template:

<h4 class="ui horizontal divider header">

Current choice is {{ choice }}

</h4>

<div class="ui raised segment">

<ul [ngSwitch]="choice">

<li *ngSwitchCase="1">First choice</1li>
<li *ngSwitchCase="2">Second choice</1i>
<li *ngSwitchCase="3">Third choice</1i>
<1li *ngSwitchCase="4">Fourth choice</1i>
<li *ngSwitchCase="2">Second choice, again
<1li *ngSwitchDefault>Default choice</1i>

</div>

<div style="margin-top: 20px;">

<button class="ui primary button" (click)="nextChoice()">

Next choice

</button>

</div>

In the example above when the choice is 2, both the second and fifth 1is will be rendered.

12
13
14

20
21
22

Built-in Directives 113

NgStyle

With the NgStyle directive, you can set a given DOM element CSS properties from Angular
expressions.

The simplest way to use this directive is by doing [style. <cssproperty>]="value". For example:

code/built_in_directives/app/ts/ng_style/ng_style.ts

<div [style.background-color]=""'yellow'">
Uses fixed yellow background
</div>

This snippet is using the NgStyle directive to set the background-color CSS property to the literal
string 'yellow'.

Another way to set fixed values is by using the NgSty1le attribute and using key value pairs for each
property you want to set, like this:

code/built_in_directives/app/ts/ng_style/ng_style.ts

<div [ngStyle]="{color: 'white', 'background-color': 'blue'}">
Uses fixed white text on blue background
</div>

Q Notice that in the ng-style specification we have single quotes around background-color
but not around color. Why is that? Well, the argument tong-style is a Javascript object and
color is a valid key, without quotes. With background-color, however, the dash character

isn’t allowed in an object key, unless it’s a string so we have to quote it.

Generally I'd leave out quoting as much as possible in object keys and only quote keys
when we have to.

Here we are setting both the color and the background-color properties.
But the real power of the NgStyle directive comes with using dynamic values.

In our example, we are defining two input boxes with an apply settings button:

63
64
65
66
67
68
69
%
71
T2
73
T4

28
29
30
31
32

Built-in Directives 114

code/built_in_directives/app/ts/ng_style/ng_style.ts

<div class="ui input">
<input type="text" name="color" value="{{color}}" #colorinput>
</div>

<div class="ui input">
<input type="text" name="fontSize" value="{{fontSize}}" #fontinput>
</div>

<button class="ui primary button" (click)="apply(colorinput.value, fontinput\
.value)">
Apply settings
</button>

And then using their values to set the CSS properties for three elements.

On the first one, we’re setting the font size based on the input value:

code/built_in_directives/app/ts/ng_style/ng_style.ts

<div>

red text

</div>

It’s important to note that we have to specify units where appropriate. For instance, it isn’t valid
CSS to set a font-size of 12 - we have to specify a unit such as 12px or 1.2em. Angular provides a
handy syntax for specifying units: here we used the notation [style. font-size.px].

The . px suffix indicates that we’re setting the font-size property value in pixels. You could easily
replace that by [style. font-size.em] to express the font size in ems or even in percentage using
[style. font-size.%].

The other two elements use the #colorinput to set the text and background colors:

40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o

98
99
100
101

Built-in Directives 115

code/built_in_directives/app/ts/ng_style/ng_style.ts

<h4 class="ui horizontal divider header">
ngStyle with object property from variable
</h4>

<div>

{{ color }} text

</div>

<h4 class="ui horizontal divider header">
style from variable
</h4>

<div [style.background-color]="color"
style="color: white;">
{{ color }} background
</div>

This way, when we click the Apply settings button, we call a method that sets the new values:

code/built_in_directives/app/ts/ng_style/ng_style.ts

apply(color: string, fontSize: number) {
this.color = color;
this. fontSize = fontSize;

And with that, both the color and the font size will be applied to the elements using the NgStyle
directive.

NgClass

The NgClass directive, represented by a ngClass attribute in your HTML template, allows you to
dynamically set and change the CSS classes for a given DOM element.

0 If you’re coming from Angular 1, the NgClass directive will feel very similar to what
ngClass used to do in Angular 1.

11
12
13
14

10

12
13
14

Built-in Directives 116

The first way to use this directive is by passing in an object literal. The object is expected to have
the keys as the class names and the values should be a truthy/falsy value to indicate whether the
class should be applied or not.

Let’s assume we have a CSS class called bordered that adds a dashed black border to an element:

code/built_in_directives/app/css/styles.scss

.bordered {
1px dashed black;

#eee,

Let’s add two div elements: one always having the bordered class (and therefore always having the
border) and another one never having it:

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div [ngClass]="{bordered: false}">This is never bordered</div>
<div [ngClass]="{bordered: true}">This is always bordered</div>

As expected, this is how those two divs would be rendered :

A

Simple class directive usage

Of course, it’s a lot more useful to use the NgClass directive to make class assignments dynamic.

To make it dynamic we add a variable as the value for the object value, like this:

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div [ngClass]="{bordered: isBordered}">
Using object literal. Border {{ isBordered ? "ON" : "OFF" }}
</div>

Alternatively, we can define the object in our component:

50
o1
92
53

16
17
18

37
38
39
40

Built-in Directives 117

code/built_in_directives/app/ts/ng_class/ng_class.ts

export class NgClassSampleApp {
isBordered: boolean;
classesObj: Object;
classList: string[];

And use the object directly:

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div [ngClass]="classesObj">
Using object var. Border {{ classesObj.bordered ? "ON" : "OFF" }}
</div>

ﬂ Again, be careful when you have class names that contains dashes, like bordered-box.
JavaScript objects don’t allow literal keys to have dashes. If you need to use them, you
must make the key a string like this:

1 <«div [ngClass]="{'bordered-box': false}">...</div>

We can also use a list of class names to specify which class names should be added to the element.
For that, we can either pass in an array literal:

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div class="base" [ngClass]="['blue', 'round']">
This will always have a blue background and
round corners

</div>

Or declare an array variable in our component:

this.classlList = ['blue', 'round'];

And passing it in:

42
43
44
45

37
38
39
40

Built-in Directives 118

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div class="base" [ngClass]="classlList">

This is {{ classList.indexOf('blue') > -1 ? "" : "NOT" }} blue
and {{ classlList.indexOf('round') > -1 2 "" : "NOT" }} round
</div>

In this last example, the [ngClass] assignment works alongside existing values assigned by the
HTML class attribute.

The resulting classes added to the element will always be the set of the classes provided by usual
class HTML attribute and the result of the evaluation of the [class] directive.

In this example:

code/built_in_directives/app/ts/ng_class/ng_class.ts

<div class="base" [ngClass]="['blue', 'round']">
This will always have a blue background and
round corners

</div>

The element will have all three classes: base from the class HTML attribute and also blue and

round from the [class] assigment:

Classes from both the attribute and directive

NgFor

The role of this directive is to repeat a given DOM element (or a collection of DOM elements),
each time passing it a different value from an array.

0 This directive is the successor of ng1’s ng-repeat.

The syntax is *ngFor="1et item of items".

« The let item syntax specifies a (template) variable that’s receiving each element of the i tems
array;
+ The items is the collection of items from your controller.

To illustrate, we can take a look at the code example. We declare an array of cities on our component
controller:

10
11
12
13
14

T2
73
T4
)
76

16
17
18
19
20
21
22
23
24
25

Built-in Directives 119
this.cities = ['Miami', 'Sao Paulo', 'New York'];

And then, in our template we can have the following HTML snippet:

code/built_in_directives/app/ts/ng_for/ng_for.ts

<h4 class="ui horizontal divider header">
Simple list of strings
</h4>

<div class="ui list" *ngFor="let c of cities">
<div class="item">{{ ¢ }}</div>
</div>

And it will render each city inside the div as you would expect:

A

Result of the ng_for directive usage
We can also iterate through an array of objects like these:

code/built_in_directives/app/ts/ng_for/ng_for.ts

this.people = |
{ name: 'Anderson', age: 35, city: 'Sao Paulo' },
{ name: 'John', age: 12, city: 'Miami' },
{ name: 'Peter', age: 22, city: 'New York' }

1;

And then render a table based on each row of data:

code/built_in_directives/app/ts/ng_for/ng_for.ts

<h4 class="ui horizontal divider header">
List of objects
</h4>

<table class="ui celled table">
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>City</th>

26
27
28
29
30
31
32
33

T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Built-in Directives

</tr>

</thead>

<tr *ngFor="let p of people">
<td>{{ p.name }}</td>
<td>{{ p.age }}</td>
<td>{{ p.city }}</td>

</tr>

</table>

120

Getting the following result:

A

Rendering array of objects

We can also work with nested arrays. If we wanted to have the same table as above, broken down

by city, we could easily declare a new array of objects:

code/built_in_directives/app/ts/ng_for/ng_for.ts

this.peopleByCity = |
{
city: 'Miami',
people: [
{ name: 'John', age: 12 },
{ name: 'Angel', age: 22 }
]
1
{
city: 'Sao Paulo’,
people: [
{ name: 'Anderson', age: 35 },
{ name: 'Felipe', age: 36 }

And then we could use NgFor to render one h2 for each city :

39
40

42
43
44
45
46
47
48
49
50
o1
92
53

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

Built-in Directives

code/built_in_directives/app/ts/ng_for/ng_for.ts

121

<div *ngFor="let item of peopleByCity">
<h2 class="ui header">{{ item.city }}</h2>

And use a nested directive to iterate through the people for a given city :

code/built_in_directives/app/ts/ng_for/ng_for.ts

<table class="ui celled table">
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tr *ngFor="let p of item.people">
<td>{{ p.name }}</td>
<td>{{ p.age }}</td>
</tr>
</table>

Resulting in the following template code:

code/built_in_directives/app/ts/ng_for/ng_for.ts

<h4 class="ui horizontal divider header">
Nested data
</h4>

<div *ngFor="let item of peopleByCity">
<h2 class="ui header">{{ item.city }}</h2>

<table class="ui celled table">
<thead>
<tr»
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tr *ngFor="let p of item.people">
<td>{{ p.name }}</td>
<td>{{ p.age }}</td>

52
53
o4

60
61
62

Built-in Directives 122

</tr>
</table>
</div>

And it would render one table for each city:

A

Rendering nested arrays

Getting an index

There are times that we need the index of each item when we’re iterating an array.

We can get the index by appending the syntax let idx = index to the value of our ngFor directive,
separated by a semi-colon. When we do this, ng2 will assign the current index into the variable we
provide (in this case, the variable idx).

9 Note that, like JavaScript, the index is always zero based. So the index for first element is
0, 1 for the second and so on...

Making some changes to our first example, adding the let num = index snippet like below:

code/built_in_directives/app/ts/ng_for/ng_for.ts

<div eclass="ui list" *ngFor="let c of cities; let num = index">
<div class="item">{{ num+1 }} - {{ ¢ }}</div>
</div>

It will add the position of the city before the name, like this:

A

Using an index

NgNonBindable

We use ngNonBindable when we want tell Angular not to compile or bind a particular section of
our page.

10
11
12
13
14

Built-in Directives 123

Let’s say we want to render the literal text {{ content }} in our template. Normally that text will
be bound to the value of the content variable because we’re using the {{ }} template syntax.

So how can we render the exact text {{ content }}? We use the ngNonBindable directive.

Let’s say we want to have a div that renders the contents of that content variable and right after
we want to point that out by outputting <- this is what {{ content }} rendered next to the actual value
of the variable.

To do that, here’s the template we’d have to use:

code/built_in_directives/app/ts/ng_non_bindable/ng_non_bindable.ts

template:
<div class="'ngNonBindableDemo'>
{{ content }}

← This is what {{ content }} rendered

</div>

And with that ngNonBindable attribute, ng2 will not compile within that second span’s context,

leaving it intact:

Result of using ngNonBindable

Conclusion

Angular 2 has only a few core directives, but we can combine these simple pieces to create dynamic
apps.

Forms in Angular 2

Forms are Crucial, Forms are Complex

Forms are probably the most crucial aspect of your web application. While we often get events from
clicking on links or moving the mouse, it’s through forms where we get the majority of our rich data
input from users.

On the surface, forms seem straightforward: you make an input tag, the user fills it out, and hits
submit. How hard could it be?

It turns out, forms can end up being really complex. Here’s a few reasons why:

« Form inputs are meant to modify data, both on the page and the server
Changes often need to be reflected elsewhere on the page

« Users have a lot of leeway in what they enter, so you need to validate values
« The Ul needs to clearly state expectations and errors, if any

Dependent fields can have complex logic

We want to be able to test our forms, without relying on DOM selectors

Thankfully, Angular 2 has tools to help with all of these things.

+ FormControls encapsulate the inputs in our forms and give us objects to work with them
« Validators give us the ability to validate inputs, any way we’d like
+ Observers let us watch our form for changes and respond accordingly

In this chapter we’re going to walk through building forms, step by step. We’ll start with some simple
forms and build up to more complicated logic.

FormControlS and FormGroup$S
The two fundamental objects in Angular 2 forms are FormControl and FormGroup.

FormControl

A FormControl represents a single input field - it is the smallest unit of an Angular form.

FormControls encapsulate the field’s value, and states such as being valid, dirty (changed), or has
errors.

For instance, here’s how we might use a FormControl in TypeScript:

[N

S © 00 I O O b W N =

O = W N =

Forms in Angular 2 125

// create a new FormControl with the value "Nate"

let nameControl = new FormControl("Nate");
let name = nameControl.value; // -> Nate

// now we can query this control for certain values:
nameControl .errors // -> StringMap<string, any> of errors
nameControl .dirty // -> false

nameControl.valid // -> true

// etc.

To build up forms we create FormControls (and groups of FormControls) and then attach metadata
and logic to them.

Like many things in Angular, we have a class (FormControl, in this case) that we attach to the DOM
with an attribute (formControl, in this case). For instance, we might have the following in our form:

<!-- part of some bigger form -->
<input type="text" [formControl]="name" />

This will create a new FormControl object within the context of our form. We’'ll talk more about
how that works below.

FormGroup

Most forms have more than one field, so we need a way to manage multiple FormControls. If we
wanted to check the validity of our form, it’s cumbersome to iterate over an array of FormControls
and check each FormControl for validity. FormGroups solve this issue by providing a wrapper
interface around a collection of FormControls.

Here’s how you create a FormGroup:

let personIinfo = new FormGroup({
firstName: new FormControl("Nate"),
lastName: new FormControl("Murray"),
zip: new FormControl("90210")

D)

FormGroup and FormControl have a common ancestor (AbstractControl®?). That means we can
check the status or value of personInfo just as easily as a single FormControl:

*2https://github.com/angular/angular/blob/master/modules/@angular/forms/src/model.ts

https://github.com/angular/angular/blob/master/modules/@angular/forms/src/model.ts
https://github.com/angular/angular/blob/master/modules/@angular/forms/src/model.ts

© 00 9 O O b W N =

(RN
N~ O

Forms in Angular 2 126

personInfo.value; // -> {
// firstName: "Nate",
// lastName: "Murray",
// zip: "90210"

/)

// now we can query this control group for certain values, which have sensible
// values depending on the children FormControl's values:

personlnfo.errors // -> StringMap<string, any> of errors

personInfo.dirty // -> false

personlnfo.valid // -> true

// etc.

Notice that when we tried to get the value from the FormGroup we received an object with key-value
pairs. This is a really handy way to get the full set of values from our form without having to iterate
over each FormControl individually.

Our First Form

There are lots of moving pieces to create a form, and several important ones we haven’t touched on.
Let’s jump in to a full example and I'll explain each piece as we go along.

o You can find the full code listing for this section in the code download under forms/

Here’s a screenshot of the very first form we’re going to build:

Demo Form: Sku

SKU

Submit

Demo Form with Sku: Simple Version

In our imaginary application we’re creating an e-commerce-type site where we’re listing products
for sale. In this app we need to store the product’s SKU, so let’s create a simple form that takes the
SKU as the only input field.

0 N O O b W N =

(o]

10
11
12
13
14
15
16
17
18
19
20
21

Forms in Angular 2 127

0 SKU is an abbreviation for “stockkeeping unit”. It’s a term for a unique id for a product
that is going to be tracked in inventory. When we talk about a SKU, we’re talking about a
human-readable item ID.

Our form is super simple: we have a single input for sku (with a label) and a submit button.

Let’s turn this form into a Component. If you recall, there are three parts to defining a component:

+ Configure the @Component() annotation
+ Create the template
+ Implement custom functionality in the component definition class

Let’s take these in turn:

Loading the FormsModule

In order to use the new forms library we need to first make sure we import the forms library in our
NgModule.

There are two ways of using forms in Angular and we’ll talk about them both in this chapter: using
FormsModule or using ReactiveFormsModule. Since we’ll use both, we’ll import them both into our
module. To do this we do the following in our app.ts where we bootstrap the app:

import
FormsModule,
ReactiveFormsModule

} from '@angular/forms';

// farther down. ..

@NgModule({

declarations: |
FormsDemoApp,
DemoFormSku,
// ... our declarations here

1,

imports: [
BrowserModule,
FormsModule, // <-- add this
ReactiveFormsModule // <-- and this

1,
bootstrap: [FormsDemoApp]

D)

class FormsDemoAppModule {}

W N -

Forms in Angular 2 128

This ensures that we're able to use the form directives in our views. At the risk of jumping ahead,
the FormsModule gives us template driven directives such as:

« ngModel and
e NgForm

Whereas ReactiveFormsModule gives us directives like

« formControl and

¢ ngFormGroup

... and several more. We haven’t talked about how to use these directives or what they do, but we
will shortly. For now, just know that by importing FormsModule and ReactiveFormsModule into our
NgModule means we can use any of the directives in that list in our view template or inject any of
their respective providers into our components.

Simple SKU Form: @Component Annotation

Now we can start creating our component:

code/forms/app/forms/demo_form_sku.ts

import { Component } from '@angular/core’;

@Component ({
selector: 'demo-form-sku',

Here we define a selector of demo-form-sku. If you recall, selector tells Angular what elements
this component will bind to. In this case we can use this component by having a demo- form-sku tag
like so:

<demo- form-sku></demo- form-sku>

Simple SKU Form: template

Let’s look at our template:

o 3 O

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Forms in Angular 2 129

code/forms/app/ts/forms/demo_form_sku.ts

N

template:
<div class="ui raised segment">
<h2 class="ui header">Demo Form: Sku</h2>
<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

class="ui form">

<div class="field"»
<label for="skulnput">SKU</label>
<input type="text"
id="skuInput"
placeholder="SKU"
name="sku" ngModel>
</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

N

form & NgForm

Now things get interesting: because we imported FormsModule, that makes NgForm available to our
view. Remember that whenever we make directives available to our view, they will get attached to
any element that matches their selector.

NgForm does something handy but non-obvious: it includes the form tag in its selector (instead
of requiring you to explicitly add ngForm as an attribute). What this means is that if you import
FormsModule, NgForm will get automatically attached to any <form> tags you have in your view.
This is really useful but potentially confusing because it happens behind the scenes.

There are two important pieces of functionality that NgForm gives us:

1. A FormGroup named ngForm
2. A (ngSubmit) output

You can see that we use both of these in the <form> tag in our view:

Forms in Angular 2 130

code/forms/app/ts/forms/demo_form_sku.ts

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

First we have #f="ngForm". The #v=thing syntax says that we want to create a local variable for
this view.

Here we’re creating an alias to ngForm, for this view, bound to the variable #f. Where did ngForm
come from in the first place? It came from the NgForm directive.

And what type of object is ngForm? It is a FormGroup. That means we can use f as a FormGroup in
our view. And that’s exactly what we do in the (ngSubmit) output.

A Astute readers might notice that I just said above that NgForm is automatically attached to
<form> tags (because of the default NgForm selector), which means we don’t have to add an
ngForm attribute to use NgForm. But here we’re putting ngForm in an attribute (value) tag.

Is this a typo?

No, it’s not a typo. If ngForm were the key of the attribute then we would be telling Angular
that we want to use NgForm on this attribute. In this case, we're using ngForm as the
attribute when we're assigning a _reference_. That is, we're saying the value
of the evaluated expression ngForm should be assigned to a local template
variable f*.

ngForm is already on this element and you can think of it as if we are “exporting” this
FormGroup so that we can reference it elsewhere in our view.

We bind to the ngSubmit action of our form by using the syntax: (ngSubmit)="onSubmit(f.value)".

e (ngSubmit) - comes from NgForm

« onSubmit() - will be implemented in our component definition class (below)

« f.value - f is the FormGroup that we specified above. And .value will return the key/value
pairs of this FormGroup

Put it all together and that line says “when I submit the form, call onSubmit on my component
instance, passing the value of the form as the arguments”.

input & NgModel

Our input tag has a few things we should touch on before we talk about NgMode1:

10
11
12
13
14
15
16
17
18
19

Forms in Angular 2 131

code/forms/app/ts/forms/demo_form_sku.ts

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

class="ui form">

<div class="field">
<label for="skulnput">SKU</label>
<input type="text"
id="skuInput"
placeholder="SKU"
name="sku" ngModel>
</div>

« class="ui form" andclass="field" - these two classes are totally optional. They come from
the CSS framework Semantic UI*’. I've added them in some of our examples just to give them
a nice coat of CSS but they’re not part of Angular.

« The label “for” attribute and the input “id” attribute are to match, as per W3C standard**

« We set a placeholder of “SKU”, which is just a hint to the user for what this input should
say when it is blank

The NgModel directive specifies a selector of ngModel. This means we can attach it to our input
tag by adding this sort of attribute: ngModel="whatever". In this case, we specify ngModel with no
attribute value.

There are a couple of different ways to specify ngModel in your templates and this is the first. When
we use ngModel with no attribute value we are specifying:

1. a one-way data binding

2. we want to create a FormControl on this form with the name sku (because of the name attribute
on the input tag)

NgModel creates a new FormControl that is automatically added to the parent FormGroup (in this
case, on the form) and then binds a DOM element to that new FormControl. That is, it sets up an
association between the input tag in our view and the FormControl and the association is matched
by a name, in this case "sku".

**http://semantic-ui.com/
**http://www.w3.org/ TR/WCAG20- TECHS/H44.html

http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html
http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html

26
27
28
29
30

o < O O P W N =~

Forms in Angular 2 132

0 NgModel vs. ngModel: what’s the difference? Generally, when we use PascalCase, like
NgModel, we’re specifying the class and referring to the object as it’s defined in code. The
lower case (CamelCase), as in ngMode1, comes from the selector of the directive and it’s

only used in the DOM / template.

It’s also worth pointing out that NgModel and FormControl are separate objects. NgModel
is the directive that you use in your view, whereas FormControl is the object used for
representing the data and validations in your form.

& Sometimes we want to do two-way binding with ngModel like we used to do in Angular 1.
We’ll look at how to do that towards the end of this chapter.

Simple SKU Form: Component Definition Class

Now let’s look at our class definition:

code/forms/app/ts/forms/demo_form_sku.ts

export class DemoFormSku {
onSubmit(form: any): void {
console.log('you submitted value:', form);

Here our class defines one function: onSubmit. This is the function that is called when the form is
submitted. For now, we’ll just console. log out the value that is passed in.

Try it out!

Putting it all together, here’s what our code listing looks like:

code/forms/app/ts/forms/demo_form_sku.ts

import { Component } from '@angular/core’;

@Component ({
selector: 'demo-form-sku',

template:
<div class="ui raised segment">
<h2 class="ui header">Demo Form: Sku</h2>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Forms in Angular 2

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"
class="ui form">

<div class="field">
<label for="skulnput">SKU</label>
<input type="text"
id="skuInput"
placeholder="SKU"
name="sku" ngModel>
</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

N

1))

export class DemoFormSku {
onSubmit(form: any): void {
console.log('you submitted value:', form);

133

If we try this out in our browser, here’s what it looks like:

Forms in Angular 2 134

e ®] Angular 2 - Forms: Forms | ng-book

C | [localhost:8080 | =

& 0 Elements Console Sources Network Timeline 4

Eng-bookz Angular 2 Forms Example ©® T <topframe> ¥ [JPreserve log

you submitted value: Object {sku: “ABC123"} demo_form sku.ts:16

>

Demo Form: Sku
SKU

ABC123

Submit

Demo Form with Sku: Simple Version, Submitted

Using FormBuilder

Building our FormControls and FormGroups implicitly using ngForm and ngControl is convenient,
but doesn’t give us a lot of customization options. A more flexible and common way to configure
forms is to use a FormBuilder.

FormBuilder is an aptly-named helper class that helps us build forms. As you recall, forms are made
up of FormControls and FormGroups and the FormBuilder helps us make them (you can think of it
as a “factory” object).

Let’s add a FormBuilder to our previous example. Let’s look at:

+ how to use the FormBuilder in our component definition class
« how to use our custom FormGroup on a form in the view

o < O O B W N =~

29
30
31
32
33
34
35
36
37
38
39
40
41

Forms in Angular 2 135

Reactive Forms with FormBuilder

For this component we’re going to be using the formGroup and formControl directives which means
we need to import the appropriate classes. We start by importing them like so:

code/forms/app/ts/forms/demo_form_sku_with_builder.ts

import { Component } from '@angular/core’;
import

FormBuilder,

FormGroup
} from '@angular/forms';

@Component ({
selector: 'demo-form-sku-builder',

Using FormBuilder

We inject FormBuilder by creating an argument in the constructor of our component class:

A What does inject mean? We haven’t talked much about dependency injection (DI) or
how DI relates to the hierarchy tree, so that last sentence may not make a lot of sense.
We talk a lot more about dependency injection in the Dependency Injection chapter, so go

there if you’d like to learn more about it in depth.

At a high level, Dependency Injection is a way to tell Angular what dependencies this
component needs to function properly.

code/forms/app/ts/forms/demo_form_sku_with_builder.ts

export class DemoFormSkuBuilder ({
myForm: FormGroup;

constructor(fb: FormBuilder) ({
this.myForm = fb.group({
sku': ['ABC123']

});

onSubmit(value: string): void {

[

console.log('you submitted value: ', value);

1
12

Forms in Angular 2 136

During injection an instance of FormBuilder will be created and we assign it to the fb variable (in
the constructor).

There are two main functions we’ll use on FormBuilder:

e control - creates a new FormControl
e group - creates a new FormGroup

Notice that we’ve setup a new instance variable called myForm on this class. (We could have just as
easily called it form, but I want to differentiate between our FormGroup and the form we had before.)

myForm is typed to be a FormGroup. We create a FormGroup by calling fb.group(). .group takes an
object of key-value pairs that specify the FormControls in this group.

In this case, we’re setting up one control sku, and the value is ["ABC123"] - this says that the default
value of this control is "ABC123". (You’ll notice that is an array. That’s because we’ll be adding more
configuration options there later.)

Now that we have myForm we need to use that in the view (i.e. we need to bind it to our form
element).

Using myForm in the view

We want to change our <form> to use myForm. If you recall, in the last section we said that ngForm is
applied for us automatically when we use FormsModule. We also mentioned that ngForm creates its
own FormGroup. Well, in this case, we don’t want to use an outside FormGroup. Instead we want to
use our instance variable myForm, which we created with our FormBuilder. How can we do that?

Angular provides another directive that we use when we have an existing FormGroup: it’s called
formGroup and we use it like this:

code/forms/app/ts/forms/demo_form_sku_with_builder.ts

<h2 class="ui header">Demo Form: Sku with Builder</h2>

<form [formGroup]="myForm"

Here we’re telling Angular that we want to use myForm as the FormGroup for this form.

Q Remember how earlier we said that when using FormsModule that NgForm will be automat-
ically applied to a <form> element? There is an exception: NgForm won’t be applied to a
<form> that has formGroup.

If you’re curious, the selector for NgForm is:
1 form:not([ngNoForm]):not([formGroup]),ngForm, [ngForm]

This means you could have a form that doesn’t get NgForm applied by using the ngNoForm
attribute.

17
18
19
20
21

0 N O O &~ W N -

PR s s s
0 9 0 O b 0ON =~ O

Forms in Angular 2 137

We also need to change onSubmit to use myForm instead of f, because now it is myForm that has our
configuration and values.

There’s one last thing we need to do to make this work: bind our FormControl to the input
tag. Remember that ngControl creates a new FormControl object, and attaches it to the parent
FormGroup. But in this case, we used FormBuilder to create our own FormControls.

When we want to bind an existing FormControl to an input we use formControl:

code/forms/app/ts/forms/demo_form_sku_with_builder.ts

<label for="skulnput">SKU</label>
<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="myForm.controls['sku']">

Here we are instructing the formControl directive to look at myForm.controls and use the existing
sku FormControl for this input.

Try it out!

Here’s what it looks like all together:

code/forms/app/ts/forms/demo_form_sku_with_builder.ts

import { Component } from '@angular/core’;
import {

FormBuilder,

FormGroup

} from '@angular/forms';

@Component({
selector: 'demo-form-sku-builder',
template:
<div class="ui raised segment">
<h2 class="ui header">Demo Form: Sku with Builder</h2>
<form [formGroup]="myForm"
(ngSubmit)="onSubmit(myForm.value)"
class="ui form">

<div class="field">
<label for="skulnput">SKU</label>
<input type="text"

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Forms in Angular 2

id="skuInput"

placeholder="SKU"

[formControl]="myForm.controls['sku']">
</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

1))

export class DemoFormSkuBuilder {

138

myForm: FormGroup;
constructor(fb: FormBuilder) {
this.myForm = fb.group({
'sku': ['ABC123']
1)
}
onSubmit(value: string): void {
console.log('you submitted value: ', value);
}
}
Remember:

To create a new FormGroup and FormControls implicitly use:

« ngForm and
¢ ngModel

But to bind to an existing FormGroup and FormControls use:

« formGroup and

e formControl

Adding Validations

Our users aren’t always going to enter data in exactly the right format. If someone enters data in
the wrong format, we want to give them feedback and not allow the form to be submitted. For this

we use validators.

44
45
46
47
48
49
o0

Forms in Angular 2 139

Validators are provided by the Validators module and the simplest validator isValidators.required
which simply says that the designated field is required or else the FormControl will be considered
invalid.

To use validators we need to do two things:

1. Assign a validator to the FormControl object
2. Check the status of the validator in the view and take action accordingly

To assign a validator to a FormControl object we simply pass it as the second argument to our
FormControl constructor:

let control = new FormControl('sku', Validators.required);

Or in our case, because we’re using FormBuilder we will use the following syntax:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

constructor(fb: FormBuilder) ({
this.myForm = fb.group({

});

sku ['', Validators.required]

this.sku = this.myForm.controls|'sku'];

Now we need to use our validation in the view. There are two ways we can access the validation
value in the view:

1. We can explicitly assign the FormControl sku to an instance variable of the class - which is
more verbose, but gives us easy access to the FormControl in the view.

2. We can lookup the FormControl sku from myForm in the view. This requires less work in the
component definition class, but is slightly more verbose in the view.

To make this difference clearer, let’s look at this example both ways:

40
41
42
43
44
45
46
47

Forms in Angular 2

Explicitly setting the sku FormControl as an instance variable

Here’s a screenshot of what our form is going to look like with validations:

] Angular 2 - Forms: Forms | x

ng-book

C [localhost:8080

o1
NG

Eng-mm Angular 2 Forms Example

Demo Form: with validations (explicit)
SKU

SKU

SKU isinvalid
SKU is required

Form s invalid

Submit

Demo Form with Validations

140

The most flexible way to deal with individual FormControls in your view is to set each FormControl
up as an instance variable in your component definition class. Here’s how we could setup sku in our

class:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

export class DemoFormWithValidationsExplicit {

myForm: FormGroup;
AbstractControl;

sku:

constructor(fb: FormBuilder) {

this.myForm = fb.group({

});

sku

(I

['", Validators.required]

48
49
o0
o1
52
53
o4
o5

26
27

Forms in Angular 2 141

this.sku = this.myForm.controls|'sku'];

}
onSubmit(value: string): void {
console.log('you submitted value: ', value);
}
}
Notice that:

1. We setup sku: AbstractControl at the top of the class and
2. We assign this.sku after we’ve created myForm with the FormBuilder

This is great because it means we can reference sku anywhere in our component view. The downside
is that by doing it this way, we’d have to setup an instance variable for every field in our form.
For large forms, this can get pretty verbose.

Now that we have our sku being validated, I want to look at four different ways we can use it in
our view:

Checking the validity of our whole form and displaying a message
Checking the validity of our individual field and displaying a message
Checking the validity of our individual field and coloring the field red if it’s invalid

L

Checking the validity of our individual field on a particular requirement and displaying a
message

Form message
We can check the validity of our whole form by looking at myForm.valid:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

<div *ngIlf="Isku.valid"
class="ui error message">SKU is invalid</div>

Remember, myForm is a FormGroup and a FormGroup is valid if all of the children FormControls are
also valid.

Field message

We can also display a message for the specific field if that field’s FormControl is invalid:

26
27
28
29

19
20

28
29

Forms in Angular 2 142

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

<div *nglf="Isku.valid"

class="ui error message">SKU is invalid</div>
<div *nglf="sku.hasError('required')"

class="ui error message">SKU is required</div>

Field coloring

I’'m using the Semantic UI CSS Framework’s CSS class .error, which means if I add the class error
to the <div class= "field"> it will show the input tag with a red border.

To do this, we can use the property syntax to set conditional classes:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

<div class="field"
[class.error]="!sku.valid && sku.touched">

Notice here that we have two conditions for setting the . error class: We're checking for !sku.valid
and sku. touched. The idea here is that we only want to show the error state if the user has tried
editing the form (“touched” it) and it’s now invalid.

To try this out, enter some data into the input tag and then delete the contents of the field.

Specific validation

A form field can be invalid for many reasons. We often want to show a different message depending
on the reason for a failed validation.

To look up a specific validation failure we use the hasError method:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

<div *nglf="sku.hasError('required')"

class="ul error message">SKU is required</div>

Note that hasError is defined on both FormControl and FormGroup. This means you can pass a
second argument of path to lookup a specific field from FormGroup. For example, we could have
written the previous example as:

0 N O O & W N =~

-
o O

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Forms in Angular 2 143

<div *nglf="myForm.hasError('required', 'sku')"
class="error">SKU is required</div>

Putting it together

Here’s the full code listing of our form with validations with the FormControl set as an instance
variable:

code/forms/app/ts/forms/demo_form_with_validations_explicit.ts

/* tslint:disable:no-string-literal */
import { Component } from '@angular/core';
import {

FormBuilder,

FormGroup,

Validators,

AbstractControl
} from '@angular/forms';

@Component ({
selector: 'demo-form-with-validations-explicit',
template: °
<div class="ui raised segment">
<h2 class="ui header">Demo Form: with validations (explicit)</h2>
<form [formGroup]="myForm"
(ngSubmit)="onSubmit(myForm.value)"

class="ui form">

<div class="field"
[class.error]|="!sku.valid && sku.touched"»>
<label for="skulnput">SKU</label>
<input type="text"
id="skuInput"
placeholder="SKU"
[formControl]="sku">
<div *ngIf="Isku.valid"
class="ui error message">SKU is invalid</div>
<div *nglf="sku.hasError('required')"
class="ui error message">SKU is required</div>
</div>

<div *ngIlf="!myForm.valid"
class="ui error message">Form is invalid</div>

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55

20
21
22
23
24
25
26
27

Forms in Angular 2

<button type="submit" class="ui button">Submit</button>
</form>
</div>
B
export class DemoFormWithValidationsExplicit {

myForm: FormGroup;
sku: AbstractControl;

constructor(fb: FormBuilder) ({
this.myForm = fb.group({

});

sku ['', Validators.required]

this.sku = this.myForm.controls['sku'];

onSubmit(value: string): void {

1

console.log('you submitted value: ', value);

144

Removing the sku instance variable

In the example above we set sku: AbstractControl as an instance variable. We often wont want to
create an instance variable for each AbstractControl, so how would we reference this FormControl

in our view without an instance variable?

Instead we can use the myForm.controls property as in:

code/forms/app/ts/forms/demo_form_with_validations_shorthand.ts

<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="myForm.controls['sku']">
<div *ngIf="!myForm.controls|'sku'].valid"
class="ui error message">SKU is invalid</div>
<div *nglf="myForm.controls['sku'].hasError('required")
class="ui error message">SKU is required</div>

In this way we can access the sku control without being forced to explicitly add it as an instance

variable on the component class.

W N -

19
20
21
22
23

Forms in Angular 2 145

Custom Validations

We often are going to want to write our own custom validations. Let’s take a look at how to do that.

To see how validators are implemented, let’s look at Validators.required from the Angular core
source:

export class Validators {
static required(c: FormControl): StringMap<string, boolean> {
return isBlank(c.value) || c.value == "" ? {"required": true} : null;

A validator: - Takes a FormControl as its input and - Returns a StringMap<string, boolean> where
the key is “error code” and the value is true if it fails

Writing the Validator

Let’s say we have specific requirements for our sku. For example, say our sku needs to begin with
123. We could write a validator like so:

code/forms/app/ts/forms/demo_form_with_custom_validations.ts

function skuValidator(control: FormControl): { [s: string]: boolean } {
if (!control.value.match(/"123/)) {
return {invalidSku: true};

This validator will return an error code invalidSku if the input (the control .value) does not begin
with 123.

Assigning the Validator to the FormControl

Now we need to add the validator to our FormControl. However, there’s one small problem: we
already have a validator on sku. How can we add multiple validators to a single field?

For that, we use Validators.compose:

60
61
62
63
64

45
46

Forms in Angular 2 146

code/forms/app/ts/forms/demo_form_with_custom_validations.ts

constructor(fb: FormBuilder) {
this.myForm = fb.group({

sku ['", Validators.compose(|
Validators.required, skuValidator])]

});

Validators.compose wraps our two validators and lets us assign them both to the FormControl.
The FormControl is not valid unless both validations are valid.

Now we can use our new validator in the view:

code/forms/app/ts/forms/demo_form_with_custom_validations.ts

<div *nglf="sku.hasError('invalidSku')"
class="ui error message">SKU must begin with 123</div>

Note that in this section, I'm using “explicit” notation of adding an instance variable for
each FormControl. That means that in the view in this section, sku refers to a FormControl.

If you run the sample code, one neat thing you’ll notice is that if you type something in to the field,
the required validation will be fulfilled, but the invalidSku validation may not. This is great - it
means we can partially-validate our fields and show the appropriate messages.

Watching For Changes

So far we’ve only extracted the value from our form by calling onSubmit when the form is submitted.
But often we want to watch for any value changes on a control.

Both FormGroup and FormControl have an EventEmitter that we can use to observe changes.

0 EventEmitter is an Observable, which means it conforms to a defined specification for
watching for changes. If you’re interested in the Observable spec, you can find it here*

To watch for changes on a control we:

1. get access to the EventEmitter by calling control .valueChanges. Then we
2. add an observer using the .subscribe method

Here’s an example:

*https://github.com/jhusain/observable-spec

https://github.com/jhusain/observable-spec
https://github.com/jhusain/observable-spec

44
45
46
47
48
49
50
o1
52
53
54
99
o6
o7
o8
59
60
61
62
63

W N -

Forms in Angular 2 147

code/forms/app/ts/forms/demo_form_with_events.ts

constructor(fb: FormBuilder) ({
this.myForm = fb.group({

});

sku ['', Validators.required]

this.sku = this.myForm.controls|'sku'];

this.sku.valueChanges.subscribe(
(value: string) => {
console.log('sku changed to:', value);
}
);

this.myForm.valueChanges.subscribe(
(form: any) => {
console.log(' form changed to:', form);

Here we’re observing two separate events: changes on the sku field and changes on the form as a
whole.

The observable that we pass in is an object with a single key: next (there are other keys you can
pass in, but we’re not going to worry about those now). next is the function we want to call with
the new value whenever the value changes.

If we type ‘kj’ into the text box we will see in our console:

sku changed to: k
form changed to: Object {sku: "k"}
sku changed to: kj
form changed to: Object {sku: "kj"}

As you can see each keystroke causes the control to change, so our observable is triggered. When
we observe the individual FormControl we receive a value (e.g. kj), but when we observe the whole
form, we get an object of key-value pairs (e.g. {sku: "kj"}).

39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Forms in Angular 2 148

ngModel

NgModel is a special directive: it binds a model to a form. ngModel is special in that it implements
two-way data binding. Two-way data binding is almost always more complicated and difficult to
reason about vs. one-way data binding. Angular 2 is built to generally have data flow one-way: top-
down. However, when it comes to forms, there are times where it is easier to opt-in to a two-way

bind.

A Just because you’ve used ng-model in Angular 1 in the past, don’t rush to use ngMode1 right
away. There are good reasons to avoid two-way data binding. Of course, ngModel can be
really handy, but know that we don’t necessarily rely on two-way data binding it as much

as we did in Angular 1.

Let’s change our form a little bit and say we want to input productName. We're going to use ngModel
to keep the component instance variable in sync with the view.

First, here’s our component definition class:

code/forms/app/ts/forms/demo_form_ng_model.ts

export class DemoFormNgModel {
myForm: FormGroup;
productName: string;

constructor(fb: FormBuilder) {
this.myForm = fb.group({
'productName': ['', Validators.required]

});

onSubmit(value: string): void {

1

console.log('you submitted value: ', value);

Notice that we’re simply storing productName: string as an instance variable.

Next, let’s use ngModel on our input tag:

23
24
25
26
27
28

14
15
16

Forms in Angular 2 149

code/forms/app/ts/forms/demo_form_ng_model.ts

<label for="productNamelnput">Product Name</label>
<input type="text"
id="productNamelnput"
placeholder="Product Name"
[formControl]="myForm.get('productName"')"
[(ngModel)]="productName">

Now notice something - the syntax for ngModel is funny: we are using both brackets and parenthesis
around the ngModel attribute! The idea this is intended to invoke is that we’re using both the input
[] brackets and the output () parenthesis. It’s an indication of the two-way bind.

Notice something else here: we’re still using formControl to specify that this input should be bound
to the FormControl on our form. We do this because ngModel is only binding the input to the instance
variable - the FormControl is completely separate. But because we still want to validate this value
and submit it as part of the form, we keep the formControl directive.

Last, let’s display our productName value in the view:

code/forms/app/ts/forms/demo_form_ng_model.ts

<div class="ui info message">
The product name is: {{productName}}
</div>

Here’s what it looks like:

Forms in Angular 2 150

® O ® B angular2 - Forms: Forms | x| ng-baok

= = € | [} localhost:8080 =

R D Elements Console Sources MNetwork Timeline > 4
A -
.ng-bookl Angular 2 Forms Example ©® T <topframe> ¥ [JPreserve log

you submitted value:
Object {productName: "Blue Widget"}
>

demo_form ng model.ts:19
Demo Form: with ng-model

The product name is: Blue Widget

Product Name

Blue Widget

Submit

Demo Form with ngModel

Easy!

Wrapping Up

Forms have a lot of moving pieces, but Angular 2 makes it fairly straightforward. Once you get a
handle on how to use FormGroups, FormControls, and Validations, it’s pretty easy going from there!

HTTP

Introduction

Angular comes with its own HTTP library which we can use to call out to external APIs.

When we make calls to an external server, we want our user to continue to be able to interact with
the page. That is, we don’t want our page to freeze until the HTTP request returns from the external
server. To achieve this effect, our HTTP requests are asynchronous.

Dealing with asynchronous code is, historically, more tricky than dealing with synchronous code.
In Javascript, there are generally three approaches to dealing with async code:

1. Callbacks
2. Promises
3. Observables

In Angular 2, the preferred method of dealing with async code is using Observables, and so that’s
what we’ll cover in this chapter.

o There’s a whole chapter on RxJS and Observables: In this chapter we’re going to be
using Observables and not explaining them much. If you’re just starting to read this book
at this chapter, you should know that there’s a whole chapter on Observables that goes into

Rx]JS in more detail.

In this chapter we're going to:

1. show a basic example of Http
2. create a YouTube search-as-you-type component
3. discuss API details about the Http library

o Sample Code The complete code for the examples in this chapter can be found in the http
folder of the sample code. That folder contains a README .md which gives instructions for
building and running the project.

Try running the code while reading the chapter and feel free play around to get a deeper
insight about how it all works.

© © 00 9 O O b W N =~

RN

48
49
50
51
52
53
o4
55
56
ST
58
959

HTTP 152

Using @angular/http

HTTP has been split into a separate module in Angular 2. This means that to use it you need to import
constants from @angular/http. For instance, we might import constants from @angular/http like
this:

import { Http, Response, RequestOptions, Headers } from '@angular/http';

import from @angular/http

In our app . ts we're going to import HttpModule which is a convenience collection of modules.

code/http/app/ts/app.ts

Sk
* Angular
*/
import ({
Component
} from '@angular/core’;
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { HttpModule } from '@angular/http';

In our NgModule we will add HttpModule to the list of imports. The effect is that we will be able to
inject Http (and a few other modules) into our components.

code/http/app/ts/app.ts

@NgModule({

declarations: |
HttpApp,
SimpleHTTPComponent,
MoreHTTPRequests,
YouTubeSearchComponent,
SearchBox,
SearchResultComponent

1,

imports: [
BrowserModule,
HttpModule // <--- right here

60
61
62
63
64
65
66

0 I O O P W N =

HTTP 153

1,

bootstrap: [HttpApp],

providers: [
youTubeServicelnjectables

]

B
class HttpAppModule {}

Now we can inject the Http service into our components (or anywhere we use DI, actually).

class MyFooComponent {
constructor(public http: Http) {

}

makeRequest(): void {
// do something with this.http ...

A Basic Request

The first thing we’re going to do is make a simple GET request to the jsonplaceholder API*.

What we’re going to do is:

1. Have a button that calls makeRequest
2. makeRequest will call the http library to perform a GET request on our API

3. When the request returns, we’ll update this.data with the results of the data, which will be
rendered in the view.

Here’s a screenshot of our example:

*¢http://jsonplaceholder.typicode.com

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/

0 I O O b W N =

HTTP 154

Basic Request

{
"userId": 1,
"id": 1,
"title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit",

"body": "quia et suscipit\nsuscipit recusandae consequuntur expedita et cum\nreprehende
rit molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet architecto"

}

Basic Request

Building the SimpleHTTPComponent @Component

The first thing we’re going to do is import a few modules and then specify a selector for our
@Component:

code/http/app/ts/components/Simple HTTPComponent.ts

J*

* Angular

*/

import {Component} from '@angular/core';
import {Http, Response} from '@angular/http';

@Component({
selector: 'simple-http',

Building the simpleHTTPComponent template

Next we build our view:

10
11
12
13
14

16
17
18

HTTP 155

code/http/app/ts/components/Simple HTTPComponent.ts

template:

<h2>Basic Request</h2>

<button type="button" (click)="makeRequest()">Make Request</button>
<div *nglf="loading">loading...</div>

<pre>{{data | json}}</pre>

Our template has three interesting parts:

1. The button
2. The loading indicator
3. The data

On the button we bind to (click) to call the makeRequest function in our controller, which we’ll
define in a minute.

We want to indicate to the user that our request is loading, so to do that we will show loading. . .
if the instance variable loading is true, using ngI f.

The data is an Object. A great way to debug objects is to use the json pipe as we do here. We’ve
put this in a pre tag to give us nice, easy to read formatting.

Building the simp1eHTTPComponent Controller

We start by defining a new class for our SimpleHTTPComponent:

code/http/app/ts/components/Simple HTTPComponent.ts

export class SimpleHTTPComponent {
data: Object;
loading: boolean;

We have two instance variables: data and loading. This will be used for our API return value and
loading indicator respectively.

Next we define our constructor:

20
21

23
24
25
26
27
28
29
30

HTTP 156

code/http/app/ts/components/Simple HTTPComponent.ts

constructor(private http: Http) {
}

The constructor body is empty, but we inject one key module: Http.

Remember that when we use the public keyword in public http: Http TypeScript will
assign http to this.http. It’s a shorthand for:

// other instance variables here
http: Http;

constructor(http: Http) {
this.http = http;

O O B W N

Now let’s make our first HTTP request by implementing the makeRequest function:

code/http/app/ts/components/SimpleHTTPComponent.ts

makeRequest(): void {
this.loading = true;
this.http.request('http://jsonplaceholder.typicode.com/posts/1")
.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

});

When we call makeRequest, the first thing we do is set this.loading = true. This will turn on the
loading indicator in our view.

To make an HTTP request is straightforward: we call this.http.request and pass the URL to which
we want to make a GET request.

http.request returns an Observable. We can subscribe to changes (akin to using then from a
Promise) using subscribe.

HTTP 157

code/http/app/ts/components/Simple HTTPComponent.ts

25 this.http.request('http://jsonplaceholder.typicode.com/posts/1")
26 .subscribe((res: Response) => {

When our http.request returns (from the server) the stream will emit a Response object. We extract
the body of the response as an Object by using json and then we set this.data to that Object.

Since we have a response, we’re not loading anymore so we set this.loading = false

Q .subscribe can also handle failures and stream completion by passing a function to the
second and third arguments respectively. In a production app it would be a good idea to
handle those cases, too. That is, this.loading should also be set to false if the request

fails (i.e. the stream emits an error).

Full simp1eHTTPComponent

Here’s what our SimpleHTTPComponent looks like altogether:

code/http/app/ts/components/SimpleHTTPComponent.ts

1 /%
2 * Angular
3 */
4 import {Component} from '@angular/core';
5 import {Http, Response} from '@angular/http';
6
7 @Component({
8 selector: 'simple-http',
9 template: °
10 <h2>Basic Request</h2>
11 <button type="button" (click)="makeRequest()">Make Request</button>
12 <div *nglf="loading">loading...</div>
13 <pre>{{data | json}}</pre>
14 °
15 1)
16 export class SimpleHTTPComponent {
17 data: Object;
18 loading: boolean;
19

20 constructor(private http: Http) {
21 }

22
23
24
25
26
27
28
29
30
31

HTTP 158

makeRequest(): void {
this.loading = true;
this.http.request('http://jsonplaceholder.typicode.com/posts/1")
.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

});

Writing a YouTubeSearchComponent

The last example was a minimal way to get the data from an API server into your code. Now let’s
try to build a more involved example.

In this section, we're going to build a way to search YouTube as you type. When the search returns
we’ll show a list of video thumbnail results, along with a description and link to each video.

Here’s a screenshot of what happens when I search for “cats playing ipads”:

HTTP

YouTube Search

cats playing ipads|

Funny Cats Playing
On iPads
Compilation - Funny
Videos 2015

‘You may or may not be surprised,
but there are many animals playing
on tablet computer. New video funny
2015 Thanks for watching, rating the
video and ...

Watch

Animals Playing On
iPads Compilation

‘You may or may not be surprised,
but there are many animals playing
on tablet computer. Join Us On
Facebook
http://www.facebook.com/Compilariz
No ..

Watch

Cute cats try to
catch a mouse from
an IPad

Cute cats try to catch a mouse from
an IPad.

Watch

Charlie The Cat -
Kitten Playing iPad 2
Il Game For Cats
Cute Funny Clever
Pets Bloopers

HELLO REDDIT, Thanks for the
support! More Charlie the Cat Videos
- http:/fyoutu.be/XxZHWYNFWdO
Check My Other Videos Kitten
HArlem Shake ...

Watch

Cats playing "Game
for Cats" with Apple
iPad

Two Siberian cats like to play “Game
for Cats" with Apple iPad :) Note that
the iPad has Invisible Shield screen
protector. Siperiankissat leikkivét

White Tiger Plays
iPad - Game for Cats
Gone Wild! Lions,
servals, and more!

http://www.ipadgameforcats.com
and
htto:ffwww. conservatarscentar ara/

Cat Plays with iPad -

Friskies Games for
Cats

Mr. Kitty playing Cat Fishing on my
glirifriends 1st gen IPad, via Friskies
Games for Cats
http://www.gamesforcats.com.

Can I get my cat to write Angular 2?

For this example we’re going to write several things:

Cute Cat plays on
iPad
Cute Cat plays on iPad.

Watch

1. A SearchResult object that will hold the data we want from each result

159

2. A YouTubeService which will manage the API request to YouTube and convert the results to
a stream of SearchResult[]

3. A SearchBox component which will call out to the YouTube service as the user types

4. A SearchResultComponent which will render a specific SearchResult

5. A YouTubeSearchComponent which will encapsulate our whole YouTube searching app and
render the list of results

Let’s handle each part one at a time.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

HTTP 160

0 Patrick Stapleton has an excellent repository named angular2-webpack-starter®. This repo
has an Rx]JS example which autocompletes Github repositories. Some of the ideas in this
section are inspired from that example. It’s a fantastic project with lots of examples and

you should check it out.

Writing a SearchResult

First let’s start with writing a basic SearchResult class. This class is just a convenient way to store
the specific fields we’re interested in from our search results.

code/http/app/ts/components/YouTubeSearchComponent.ts

class SearchResult {
id: string;
title: string;
description: string;
thumbnailUrl: string;
videoUrl: string;

constructor(obj?: any) {

this.id = obj && obj.id | null;
this.title = obj && obj.title [l null;
this.description = obj && obj.description [l null;
this.thumbnailUrl = obj && obj.thumbnailUrl [l null;
this.videoUrl = obj && obj.videoUrl [

“https://www.youtube.com/watch?v=${this.id}";

This pattern of taking an obj?: any lets us simulate keyword arguments. The idea is that we can
create a new SearchResult and just pass in an object containing the keys we want to specify.

The only thing to point out here is that we’re constructing the videoUr1 using a hard-coded URL
format. You're welcome to change this to a function which takes more arguments, or use the video
id directly in your view to build this URL if you need to.

Writing the YouTubeService

The API

For this example we’re going to be using the YouTube v3 search APT*®.

*"https://github.com/angular-class/angular2-webpack-starter
*https://developers.google.com/youtube/v3/docs/search/list

https://github.com/angular-class/angular2-webpack-starter
https://developers.google.com/youtube/v3/docs/search/list
https://github.com/angular-class/angular2-webpack-starter
https://developers.google.com/youtube/v3/docs/search/list

82
83
84
85
86

HTTP 161

0 In order to use this API you need to have an API key. I've included an APIkey in the sample
code which you can use. However, by the time you read this, you may find it’s over the
rate limits. If that happens, you’ll need to issue your own key.

To issue your own key see this documentation®. For the sake of simplicity, I've registered a
server key, but you should probably use a browser key if you’re going to put your javascript
code online.

We’re going to setup two constants for our YouTubeService mapping to our API key and the API
URL:

let YOUTUBE_API_KEY: string = "XXX_YOUR_KEY_HERE_XXX";
let YOUTUBE_API_URL: string = "https://www.googleapis.com/youtube/v3/search";

Eventually we’re going to want to test our app. One of the things we find when testing is that we
don’t always want to test against production - we often want to test against staging or a development
APIL.

To help with this environment configuration, one of the things we can do is make these constants
injectable.

Why should we inject these constants instead of just using them in the normal way? Because if we
make them injectable we can

1. have code that injects the right constants for a given environment at deploy time and
2. replace the injected value easily at test-time

By injecting these values, we have a lot more flexibility about their values down the line.

In order to make these values injectable, we use the { provide:
like this:

, useValue: ... } syntax

code/http/app/ts/components/YouTubeSearchComponent.ts

export var youTubeServicelnjectables: Array<any> = [
{provide: YouTubeService, useClass: YouTubeService},
{provide: YOUTUBE_API_KEY, useValue: YOUTUBE_API_KEY},
{provide: YOUTUBE_API_URL, useValue: YOUTUBE_API_URL}
1;

Here we’re specifying that we want to bind YOUTUBE_API_KEY “injectably” to the value of YOUTUBE_-
API_KEY. (Same for YOUTUBE_API_URL, and we’ll define YouTubeService in a minute.)

If you recall, to make something available to be injected throughout our application, we need to put
it in providers for our NgModule. Since we’re exporting youTubeServicelnjectables here we can
use it in our app.ts

*https://developers.google.com/youtube/registering_an_application#Create_API_Keys

https://developers.google.com/youtube/registering_an_application#Create_API_Keys
https://developers.google.com/youtube/registering_an_application#Create_API_Keys

O N O O & W N~

N N N S L sy s
© © 0 1 O O b W N~ O O

47
48
49
50
o1
52
53
o4
55
56

HTTP 162

// http/app.ts
import { HttpModule } from '@angular/http';
import { youTubeServicelnjectables } from "components/YouTubeSearchComponent";

/)
// further down

/AR

@NgModule({
declarations: |
HttpApp,
// others
1,
imports: [BrowserModule, HttpModule],
bootstrap: [HttpApp],
providers: [
youTubeServicelnjectables // <--- right here
]

19
class HttpAppModule {}

Now we can inject YOUTUBE_API_KEY (from the youTubeServicelnjectables) instead of using the
variable directly.

YouTubeService constructor
We create our YouTubeService by making a class and annotating it as @Injectable:

code/http/app/ts/components/YouTubeSearchComponent.ts

Jkk
* YouTubeService connects to the YouTube API
* See: * https://developers.google.com/youtube/v3/docs/search/1ist
*/
@Injectable()
export class YouTubeService {
constructor(private http: Http,
@Inject(YOUTUBE_API_KEY) private apiKey: string,
@Inject(YOUTUBE_API_URL) private apiUrl: string) {

In the constructor we inject three things:

o8
59
60
61
62
63
64
65
66

HTTP 163

1. Http
2. YOUTUBE_API_KEY
3. YOUTUBE_API_URL

Notice that we make instance variables from all three arguments, meaning we can access them as
this.http, this.apiKey, and this.apiUrl respectively.

Notice that we explicitly inject using the @Inject(YOUTUBE_API_KEY) notation.

YouTubeService Search

Next let’s implement the search function. search takes a query string and returns an Observable
which will emit a stream of SearchResult[]. That is, each item emitted is an array of SearchRe-
sults.

code/http/app/ts/components/YouTubeSearchComponent.ts

search(query: string): Observable<SearchResult[]> {
let params: string = [
“g=${query} ",
“key=${this.apiKey} ",
“part=snippet”,
“type=video”,
“maxResults=10"
].join('&");
let queryUrl: string = “${this.apiUrl}?${params}";

We’re building the queryUr1 in a manual way here. We start by simply putting the query params in
the params variable. (You can find the meaning of each of those values by reading the search API
docs®.)

Then we build the queryUr1 by concatenating the apiUrl and the params.

Now that we have a queryUrl we can make our request:

““https://developers.google.com/youtube/v3/docs/search/list

https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list

o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79

HTTP 164

code/http/app/ts/components/YouTubeSearchComponent.ts

search(query: string): Observable<SearchResult[]> {
let params: string = [
“g=${query} ",
“key=${this.apiKey} ",
“part=snippet”,
“type=video”,
“maxResults=10"
].join('&");
let queryUrl: string = “${this.apiUrl}?${params}";
return this.http.get(queryUrl)
.map((response: Response) => {
return (<any>response.json()).items.map(item => {
// console.log("raw item", item); // uncomment if you want to debug
return new SearchResult({
id: item.id.videold,
title: item.snippet.title,
description: item.snippet.description,
thumbnailUrl: item.snippet.thumbnails.high.url
1)
1)
1)

Here we take the return value of http.get and use map to get the Response from the request. From
that response we extract the body as an object using . json() and then we iterate over each item
and convert it to a SearchResult.

Q If you’d like to see what the raw item looks like, just uncomment the console.log and
inspect it in your browsers developer console.

9 Notice that we’re calling (<any>response. json()).items. What’s going on here? We’re
telling TypeScript that we're not interested in doing strict type checking,.

When working with a JSON API, we don’t generally have typing definitions for the API
responses, and so TypeScript won’t know that the Ob ject returned even has an items key,
so the compiler will complain.

We could call response. json()["items"] and then cast that to an Array etc., but in this
case (and in creating the SearchResult, it’s just cleaner to use an any type, at the expense
of strict type checking

0 N O O B W N -

W W W W W W WwWwWwWNNDNDNDNDDNDNDNDDNDDNNDNNAESRAEPRrEPSEPS,EPS, PSS
0 N O Ol & WN~-O O© 00 30 Ol WON-O © 03O0 O b N~ O O

HTTP 165

YouTubeService Full Listing
Here’s the full listing of our YouTubeService:

code/http/app/ts/components/YouTubeSearchComponent.ts

/>I<>I<
* YouTubeSearchComponent is a tiny app that will autocomplete search YouTube.
*/

import
Component,
Injectable,
OnInit,
ElementRef,
EventEmitter,
Inject
} from '@angular/core’;
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs';

J*
This API key may or may not work for you. Your best bet is to issue your own
API key by following these instructions:
https://developers.google.com/youtube/registering_an_application#Create_API_Ke\

ys
Here I've used a **server key** and make sure you enable YouTube.

Note that if you do use this API key, it will only work if the URL in

your browser is "localhost"
*/
export var YOUTUBE_API_KEY: string = 'AIzaSyDOfT_BO81aEZScosfTYMruJobmpjgNeEk";
export var YOUTUBE_API_URL: string = 'https://www.googleapis.com/youtube/v3/sear\
ch';
let loadingGif: string = ((<any>window).__karma__) ?
g.gif');

. require('images/loadin\

class SearchResult {
id: string;
title: string;
description: string;
thumbnailUrl: string;
videoUrl: string;

39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80

HTTP

constructor(obj?: any)
this.id
this.title
this.description
this.thumbnailUrl
this.videoUrl

Kk

= obj
= obj
= obj
= obj
= obj

&&
&&
&&
&&
&&

obj

obj.

obj
obj
obj

j.id

title

.description
.thumbnaillrl
.videoUrl
“https://www.youtube.com/watch?v=${this.id}";

* YouTubeService connects to the YouTube API

* See: * https://developers.google.com/youtube/v3/docs/search/1ist

*/
@Injectable()

export class YouTubeService {

constructor(private http: Http,
@Inject(YOUTUBE_API_KEY) private apiKey:
@Inject(YOUTUBE_API_URL) private apiUrl:

search(query: string): Observable<SearchResult[]> {

let params: string =
“g=${query} ",

[

“key=${this.apiKey} ",

“part=snippet”,

“type=video~,

"maxResults=10"
I.join('&");

let queryUrl: string = “${this.apiUrl}?${params}";

return this.http.get(queryUrl)

.map((response: Response) => {

null;
null;
null;
null;

string,
string) {

return (<any>response.json()).items.map(item => {

// console.log("raw item", item), // uncomment if you want to debug

return new SearchResult({

id: item.id.videold,

title: item.snippet.title,

description:
thumbnailUrl:
1)
1)

item.snippet.description,

item.snippet.thumbnails.high.url

166

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

HTTP

1
}
}
export var youTubeServicelnjectables: Array<any> = [
{provide: YouTubeService, useClass: YouTubeService},
{provide: YOUTUBE_API_KEY, useValue: YOUTUBE_API_KEY},
{provide: YOUTUBE_API_URL, useValue: YOUTUBE_API_URL}
1;
Rk

* SearchBox displays the search box and emits events based on the results

*/

@Component ({
outputs: ['loading', 'results'],
selector: 'search-box',
template:
<input type="text" class="form-control" placeholder="Search" autofocus>

1))

export class SearchBox implements OnlInit {
loading: EventEmitter<boolean> = new EventEmitter<boolean>();
results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

constructor(private youtube: YouTubeService,
private el: ElementRef) {

ngOnInit(): void {

// convert the “keyup™ event into an observable stream

Observable. fromEvent(this.el.nativeElement, 'keyup')
.map((e: any) => e.target.value) // extract the value of the input
.filter((text: string) => text.length > 1) // filter out if empty
.debounceTime(250) // only once every 250ms
.do(() => this.loading.next(true)) // enable loading
// search, discarding old events if new input comes in
.map((query: string) => this.youtube.search(query))
.switeh()
// act on the return of the search
.subscribe(

(results: SearchResult[]) => { // on sucesss

167

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

HTTP

this.loading.next(false);
this.results.next(results);

},

(err: any) => { // on error
console.log(err);
this.loading.next(false);

3,

() => { // on completion
this.loading.next(false);

@Component ({
inputs: ['result'],
selector: 'search-result',
template:
<div class="col-sm-6 col-md-3">
<div class="thumbnail">

<div class="caption">
<h3>{{result.title}}</h3>
<p>{{result.description}}</p>
<p><a href="{{result.videoUrl}}"
class="btn btn-default" role="button">
Watch</p>
</div>
</div>
</div>

1))

export class SearchResultComponent {
result: SearchResult;

@Component ({
selector: 'youtube-search',
template: °

<div class='container'>

<div class="page-header">

168

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

HTTP 169

<h1>YouTube Search
<img
style="float: right;"
*nglf="1loading"
src="'${loadingGif}"' />
</h1>
</div>

<div class="row">
<div class="input-group input-group-1g col-md-12">
<search-box
(loading)="1loading = $event"
(results)="updateResults($event)"
></search-box>
</div>
</div>

<div class="row">
{search-result
*ngFor="1et result of results"”
[result]="result">
</search-result>
</div>
</div>

<

D)

export class YouTubeSearchComponent {
results: SearchResult[];

updateResults(results: SearchResult[]): void {
this.results = results;

// console.log("results:", this.results); // uncomment to take a look

Writing the searchBox

The SearchBox component plays a key role in our app: it is the mediator between our Ul and the
YouTubeService.

The SearchBox will:

1. Watch for keyup on an input and submit a search to the YouTubeService

88
89
90
91
92
93
94

D W N

HTTP 170

2. Emit a 1oading event when we’re loading (or not)
3. Emit a results event when we have new results

SearchBox @Component Definition
Let’s define our SearchBox @Component:

code/http/app/ts/components/YouTubeSearchComponent.ts

/**
* SearchBox displays the search box and emits events based on the results

*/

@Component ({
outputs: ['loading', 'results'],
selector: 'search-box',

The selector we’ve seen many times before: this allows us to create a <search-box> tag.

The outputs key specifies events that will be emitted from this component. That is, we can use
the (output)="callback()" syntax in our view to listen to events on this component. For example,
here’s how we will use the search-box tag in our view later on:

<search-box

(loading)="1loading = $event"
(results)="updateResults($event)"
></search-box>

In this example, when the SearchBox component emits a loading event, we will set the variable
loading in the parent context. Likewise, when the SearchBox emits a results event, we will call
the updateResults() function, with the value, in the parent’s context.

In the @Component configuration we’re simply specifying the names of the events with the strings
"loading" and "results". In this example, each event will have a corresponding EventEmitter as
an instance variable of the controller class. We’ll implement that in a few minutes.

For now, remember that @Component is like the public API for our component, so here we’re just
specifying the name of the events, and we’ll worry about implementing the EventEmitters later.

SearchBox template Definition

Our template is straightforward. We have one input tag:

88
89
90
91
92
93
94
95
96
o7
98

99
100
101

103
104
105

HTTP 171

code/http/app/ts/components/YouTubeSearchComponent.ts
kK

* SearchBox displays the search box and emits events based on the results

*/
@Component({

outputs: ['loading', 'results'],

selector: 'search-box',

template:

<input type="text" class="form-control" placeholder="Search" autofocus>

19

SearchBox Controller Definition
Our SearchBox controller is a new class:

code/http/app/ts/components/YouTubeSearchComponent.ts

export class SearchBox implements OnInit {
loading: EventEmitter<boolean> = new EventEmitter<boolean>();
results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

We say that this class implements OnInit because we want to use the ngonInit lifecycle callback. If
a class implements OnInit then the ngonInit function will be called after the first change detection

check.

ngOnInit is a good place to do initialization (vs. the constructor) because inputs set on a component
are not available in the constructor.

SearchBox Controller Definition constructor
Let’s talk about the SearchBox constructor:

code/http/app/ts/components/YouTubeSearchComponent.ts

constructor(private youtube: YouTubeService,
private el: ElementRef) {

In our constructor we inject:

1. Our YouTubeService and
2. The element el that this component is attached to. el is an object of type ElementRef, which
is an Angular wrapper around a native element.

We set both injections as instance variables.

107
108
109

HTTP 172

SearchBox Controller Definition ngoninit

On this input box we want to watch for keyup events. The thing is, if we simply did a search after
every keyup that wouldn’t work very well. There are three things we can do to improve the user
experience:

1. Filter out any empty or short queries

2. “debounce” the input, that is, don’t search on every character but only after the user has
stopped typing after a short amount of time

3. discard any old searches, if the user has made a new search

We could manually bind to keyup and call a function on each keyup event and then implement
filtering and debouncing from there. However, there is a better way: turn the keyup events into an
observable stream.

RxJS provides a way to listen to events on an element using Rx.Observable. fromEvent. We can use
it like so:

code/http/app/ts/components/YouTubeSearchComponent.ts

ngOnInit(): void {
// convert the “keyup™ event into an observable stream
Observable. fromEvent(this.el.nativeElement, 'keyup')

Notice that in fromEvent:

« the first argument is this.el.nativeElement (the native DOM element this component is
attached to)

« the second argument is the string 'keyup', which is the name of the event we want to turn
into a stream

We can now perform some RxJS magic over this stream to turn it into SearchResults. Let’s walk
through step by step.

Given the stream of keyup events we can chain on more methods. In the next few paragraphs we’re
going to chain several functions on to our stream which will transform the stream. Then at the end
we’ll show the whole example together.

First, let’s extract the value of the input tag:
.map((e: any) => e.target.value) // extract the value of the input

Above says, map over each keyup event, then find the event target (e.target, that is, our input
element) and extract the value of that element. This means our stream is now a stream of strings.

Next:

HTTP 173
.filter((text: string) => text.length > 1)

This filter means the stream will not emit any search strings for which the length is less than one.
You could set this to a higher number if you want to ignore short searches.

.debounceTime(250)

debounceTime means we will throttle requests that come in faster than 250ms. That is, we won’t
search on every keystroke, but rather after the user has paused a small amount.

.do(() => this.loading.next(true)) // enable loading

Using do on a stream is a way to perform a function mid-stream for each event, but it does not
change anything in the stream. The idea here is that we’ve got our search, it has enough characters,
and we’ve debounced, so now we’re about to search, so we turn on loading.

this.loading isanEventEmitter. We “turn on” loading by emitting true as the next event. We emit
something on an EventEmitter by calling next. Writing this.loading.next(true) means, emit a
true event on the loading EventEmitter. When we listen to the loading event on this component,
the $event value will now be true (we’ll look more closely at using $event below).

.map((query: string) => this.youtube.search(query))
.switch()

We use .map to call perform a search for each query that is emitted. By using switch we’re,
essentially, saying “ignore all search events but the most recent”. That is, if a new search comes
in, we want to use the most recent and discard the rest.

Reactive experts will note that I'm handwaving here. switch has a more specific
technical definition which you can read about in the RxJS docs here*".

For each query that comes in, we’re going to perform a search on our YouTubeService.

Putting the chain together we have this:

“Thttps://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

107
108
109
110
111
112
113
114
115
116
117
118

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

HTTP 174

code/http/app/ts/components/YouTubeSearchComponent.ts

ngOnInit(): void {

// convert the “keyup™ event into an observable stream

Observable. fromEvent(this.el.nativeElement, 'keyup')
.map((e: any) => e.target.value) // extract the value of the input
.filter((text: string) => text.length > 1) // filter out if empty
.debounceTime(250) // only once every 250ms
.do(() => this.loading.next(true)) // enable loading
// search, discarding old events if new input comes in
.map((query: string) => this.youtube.search(query))
.switch()
// act on the return of the search

.subscribe(

The API of RxJS can be a little intimidating because the API surface area is large. That said, we've
implemented a sophisticated event-handling stream in very few lines of code!

Because we are calling out to our YouTubeService our stream is now a stream of SearchResult[].
We can subscribe to this stream and perform actions accordingly.

subscribe takes three arguments: onSuccess, onError, onCompletion.

code/http/app/ts/components/YouTubeSearchComponent.ts

.subscribe(

(results: SearchResult[]) => { // on sucesss
this.loading.next(false);
this.results.next(results);

1,

(err: any) => { // on error
console.log(err);
this.loading.next(false);

1

() => { // on completion
this.loading.next(false);

The first argument specifies what we want to do when the stream emits a regular event. Here we
emit an event on both of our EventEmitters:

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

HTTP 175

1. We call this.loading.next(false), indicating we've stopped loading
2. We call this.results.next(results), which will emit an event containing the list of results

The second argument specifies what should happen when the stream has an error. Here we set
this.loading.next(false) and log out the error.

The third argument specifies what should happen when the stream completes. Here we also emit
that we’re done loading.

SearchBox Component: Full Listing
All together, here’s the full listing of our SearchBox Component:

code/http/app/ts/components/YouTubeSearchComponent.ts

J*k
* SearchBox displays the search box and emits events based on the results
*/
@Component({
outputs: ['loading', 'results'],
selector: 'search-box',
template:
<input type="text" class="form-control" placeholder="Search" autofocus>
})
export class SearchBox implements OnInit {

loading: EventEmitter<boolean> = new EventEmitter<boolean>();
results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResult[]>();

constructor(private youtube: YouTubeService,
private el: ElementRef) {

ngOnInit(): void {

// convert the “keyup™ event into an observable stream

Observable. fromEvent(this.el.nativeElement, 'keyup')
.map((e: any) => e.target.value) // extract the value of the input
.filter((text: string) => text.length > 1) // filter out if empty
.debounceTime(250) // only once every 250ms
.do(() => this.loading.next(true)) // enable loading
// search, discarding old events if new input comes in
.map((query: string) => this.youtube.search(query))
.switch()

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

HTTP

// act on the return of the search
.subscribe(

(results: SearchResult[]) => { // on sucesss
this.loading.next(false);
this.results.next(results);

1,

(err: any) => { // on error
console. log(err);
this.loading.next(false);

}

() = { // on completion
this.loading.next(false);

176

WFriting searchResultComponent

The SearchBox was pretty complicated. Let’s handle a much eas-
ier component now: the SearchResultComponent. The SearchRe-
sultComponent’s job is to render a single SearchResult.

There’s not really any new ideas here, so let’s take it all at once:

code/http/app/ts/components/YouTubeSearchComponent.ts

@Component ({
inputs: ['result'],
selector: 'search-result',
template: °
<div class="col-sm-6 col-md-3">
<div class="thumbnail">

<div class="caption">
<h3>{{result.title}}</h3>
<p>{{result.description}}</p>
<p><a href="{{result.videoUrl}}"
class="btn btn-default" role="button">
Watch</p>
</div>
</div>

Charlie The Cat -
Kitten Playing iPad 2
Il Game For Cats
Cute Funny Clever
Pets Bloopers

HELLO REDDIT, Thanks for the
support! More Charlie the Cat Videos
- http://youtu.be/xZHwWYNrfWd0
Check My Other Videos Kitten
HArlem Shake ...

Watch

Single Search Result Component

150
151
152
153
154
155

157
158

HTTP

</div>

1))

export class SearchResultComponent {
result: SearchResult;

177

A few things:

The @Component takes a single input result, on which we will put
the SearchResult assigned to this component.

The template shows the title, description, and thumbnail of the
video and then links to the video via a button.

The SearchResultComponent simply stores the SearchResult in
the instance variable result.

WFriting YouTubeSearchComponent

The last component we have to implement is the YouTubeSearch-
Component. This is the component that ties everything together.

YouTubeSearchComponent @Component

code/http/app/ts/components/YouTubeSearchComponent.ts

@Component ({
selector: 'youtube-search',

Our @Component annotation is straightforward: use the selector
youtube-search.

YouTubeSearchComponent Controller

Before we look at the template, let’s take a look at the YouTube-
SearchComponent controller:

188
189
190
191
192
193
194
195

159
160
161
162
163
164
165
166
167
168

HTTP 178

code/http/app/ts/components/YouTubeSearchComponent.ts

export class YouTubeSearchComponent {
results: SearchResult[];

updateResults(results: SearchResult[]): void {
this.results = results;
// console.log("results:", this.results),; // uncomment to take a look

This component holds one instance variable: results which is an array of SearchResults.

We also define one function: updateResults. updateResults simply takes whatever new SearchRe-
sult[] it’s given and sets this.results to the new value.

We’ll use both results and updateResults in our template.

YouTubeSearchComponent template
Our view needs to do three things:
1. Show the loading indicator, if we’re loading

2. Listen to events on the search-box
3. Show the search results

Next lets look at our template. Let’s build some basic structure and show the loading gif next to the
header:

code/http/app/ts/components/YouTubeSearchComponent.ts

template:
<div class='container'>
<div class="page-header">
<h1>YouTube Search
<img
style="float: right;"
*nglf="1oading"
src="'${loadingGif}"' />
</h1>
</div>

169
170
171
172
173
174
175

178
179
180
181
182
183
184

HTTP 179

0 Notice that our img has a src of ${1loadingGif} - that loadingGif variable came from a
require statement earlier in the program. Here we’re taking advantage of webpack’s image
loading feature. If you want to learn more about how this works, take a look at the webpack

config in the sample code for this chapter or checkout image-webpack-1loader*.

We only want to show this loading image if loading is true, so we use ngIf to implement that
functionality.

Next, let’s look at the markup where we use our search-box:

code/http/app/ts/components/YouTubeSearchComponent.ts

<div class="row">
<div elass="input-group input-group-1g col-md-12">
<{search-box
(loading)="1loading = $event"
(results)="updateResults($event)"
></search-box>
</div>

The interesting part here is how we bind to the loading and results outputs. Notice, that we use
the (output)="action()" syntax here.

For the loading output, we run the expression loading = $event. $event will be substituted with
the value of the event that is emitted from the EventEmitter. That is, in our SearchBox component,
when we call this.loading.next(true) then $event will be true.

Similarly, for the results output, we call the updateResults() function whenever a new set of
results are emitted. This has the effect of updating our components results instance variable.

Lastly, we want to take the list of results in this component and render a search-result for each
one:

code/http/app/ts/components/YouTubeSearchComponent.ts

<div class="row">
<search-result
*ngFor="1et result of results"”
[result]="result">
</search-result>
</div>
</div>

YouTubeSearchComponent Full Listing

Here’s the full listing for the YouTubeSearchComponent:

““https://github.com/tcoopman/image-webpack-loader

https://github.com/tcoopman/image-webpack-loader
https://github.com/tcoopman/image-webpack-loader

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

HTTP 180

code/http/app/ts/components/YouTubeSearchComponent.ts

@Component ({
selector: 'youtube-search',
template: °
<div class='container'>
<div class="page-header">
<h1>YouTube Search
<img
style="float: right;"
*nglf="1oading"
src="'${loadingGif}' />
</h1>
</div>

<div class="row">
<div class="input-group input-group-1g col-md-12">
<search-box
(loading)="1loading = $event"
(results)="updateResults($event)"
></search-box>
</div>
</div>

<div class="row">
{search-result
*ngFor="1et result of results"”
[result]="result">
</search-result>
</div>
</div>

~

1))

export class YouTubeSearchComponent {
results: SearchResult[];

updateResults(results: SearchResult[]): void {
this.results = results;
// console.log("results:", this.results); // uncomment to take a look

There we have it! A functional search-as-you-type implemented for YouTube videos! Try running it

30
31
32
33
34
35
36
37
38
39
40
41
42
43

HTTP 181

from the code examples if you haven’t already.
@angular/http API

Of course, all of the HTTP requests we've made so far have simply been GET requests. It’s important
that we know how we can make other requests too.

Making a posT request

Making POST request with @angular/http is very much like making a GET request except that we
have one additional parameter: a body.

jsonplaceholder API** also provides a convent URL for testing our POST requests, so let’s use it for
a POST:

code/http/app/ts/components/MoreHTTPRequests.ts
makePost(): void {
this.loading = true;
this.http.post(
"http://jsonplaceholder.typicode.com/posts’,
JSON.stringify({

body: 'bar',
title: 'foo',
userld: 1

)

.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

});

Notice in the second argument we’re taking an Object and converting it to a JSON string using
JSON.stringify.

PUT / PATCH / DELETE / HEAD

There are a few other fairly common HTTP requests and we call them in much the same way.

« http.put and http.patch map to PUT and PATCH respectively and both take a URL and a body
 http.delete and http.head map to DELETE and HEAD respectively and both take a URL (no
body)

Here’s how we might make a DELETE request:

“*http://jsonplaceholder.typicode.com

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/

45
46
47
48
49
50
o1
52

54
55
56
o7
o8
59
60
61
62
63
64
65

HTTP 182

code/http/app/ts/components/MoreHTTPRequests.ts

makeDelete(): void {
this.loading = true;
this.http.delete('http://jsonplaceholder.typicode.com/posts/1")
.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

1),

RequestOptions

All of the http methods we’ve covered so far also take an optional last argument: RequestOptions.
The RequestOptions object encapsulates:

- method

« headers

« body

« mode

« credentials
« cache

o url

. search

Let’s say we want to craft a GET request that uses a special X-API-TOKEN header. We can create a
request with this header like so:

code/http/app/ts/components/MoreHTTPRequests.ts

makeHeaders(): void {
let headers: Headers = new Headers();
headers.append('X-API-TOKEN', 'ng-book');

let opts: RequestOptions = new RequestOptions();
opts.headers = headers;

this.http.get('http://jsonplaceholder.typicode.com/posts/1', opts)
.subscribe((res: Response) => {
this.data = res. json();

});

HTTP 183

summary

@angular/http is flexible and suitable for a wide variety of APIs.

One of the great things about @angular/http is that it has support for mocking the backend which
is very useful in testing. To learn about testing HTTP, flip on over to the testing chapter.

Routing

In web development, routing means splitting the application into different areas usually based on
rules that are derived from the current URL in the browser.

For instance, if we visit the / path of a website, we may be visiting the home route of that website.
Or if we visit /about we want to render the “about page”, and so on.

Why Do We Need Routing?

Defining routes in our application is useful because we can:

« separate different areas of the app;
 maintain the state in the app;
« protect areas of the app based on certain rules;

For example, imagine we are writing an inventory application similar to the one we described in
previous chapters.

When we first visit the application, we might see a search form where we can enter a search term
and get a list of products that match that term.

After that, we might click a given product to visit that product’s details page.

Because our app is client-side, it’s not technically required that we change the URL when we change
“pages”. But it’s worth thinking about for a minute: what would be the consequences of using the
same URL for all pages?

+ You wouldn’t be able to refresh the page and keep your location within the app
+ You wouldn’t be able to bookmark a page and come back to it later
+ You wouldn’t be able to share the URL of that page with others

Or put in a positive light, routing lets us define a URL string that specifies where within our app a
user should be.

In our inventory example we could determine a series of different routes for each activity, for
instance:

The initial root URL could be represented by http://our-app/. When we visit this page, we could
be redirected to our “home” route at http://our-app/home.

When accessing the ‘About Us’ area, the URL could become http: //our -app/about. This way if we
sent the URL http://our-app/about to another user they would see same page.

=N O O & W N =

© 00 9 O O b W N -

Routing 185

How client-side routing works

Perhaps you’ve written server-side routing code before (though, it isn’t necessary to complete this
chapter). Generally with server-side routing, the HTTP request comes in and the server will render
a different controller depending on the incoming URL.

For instance, with Express.js* you might write something like this:

var express = require('express');
var router = express.Router();

// define the about route
router.get('/about', function(req, res) {
res.send('About us');

1)
Or with Ruby on Rails** you might have:

routes.rb
get '/about', to: 'pages#about'

PagesController.rb
class PagesController < ActionController: :Base
def about
render
end
end

The pattern varies per framework, but in both of these cases you have a server that accepts a request
and routes to a controller and the controller runs a specific action, depending on the path and
parameters.

Client-side routing is very similar in concept but different in implementation. With client-side
routing we’re not necessarily making a request to the server on every URL change. With our
Angular apps, we refer to them as “Single Page Apps” (SPA) because our server only gives us a
single page and it’s our JavaScript that renders the different pages.

So how can we have different routes in our JavaScript code?

“*http://expressjs.com/guide/routing. html
“Shttp://rubyonrails.org/

http://expressjs.com/guide/routing.html
http://rubyonrails.org/
http://expressjs.com/guide/routing.html
http://rubyonrails.org/

Routing 186

The beginning: using anchor tags
Client-side routing started out with a clever hack: Instead of using the page page, instead use the
anchor tag as the client-side URL.

As you may already know, anchor tags were traditionally used to link directly to a place within the
webpage and make the browser scroll all the way to where that anchor was defined. For instance, if
we define an anchor tag in an HTML page:

<I-- ... lots of page content here ... -->
<h1>About</h1>

And we visited the URL http: //something/#about, the browser would jump straight to that H1 tag
that identified by the about anchor.

The clever move for client-side frameworks used for SPAs was to take the anchor tags and use them
represent the routes within the app by formatting them as paths.

For example, the about route for an SPA would be something like http: //something/#*/about. This
is what is known as hash-based routing,.

What’s neat about this trick is that it looks like a “normal” URL because we’re starting our anchor
with a slash (/about).

The evolution: HTMLS client-side routing
With the introduction of HTMLS5, browsers acquired the ability to programmatically create new
browser history entries that change the displayed URL without the need for a new request.

This is achieved using the history.pushState method that exposes the browser’s navigational
history to JavaScript.

So now, instead of relying on the anchor hack to navigate routes, modern frameworks can rely on
pushState to perform history manipulation without reloads.

Angular 1 Note: This way of routing already works in Angular 1, but it needs to be
explicitly enabled using $1ocationProvider.html5Mode(true).

In Angular 2, however, the HTMLS5 is the default mode. Later in this chapter we show how to change
from HTML5 mode to the old anchor tag mode.

Routing 187
9 There’s two things you need to be aware of when using HTML5 mode routing, though

1. Not all browsers support HTML5 mode routing, so if you need to support older
browsers you might be stuck with hash-based routing for a while.
2. The server has to support HTML5 based routing.

It may not be immediately clear why the server has to support HTML5 based-routing, we’ll
talk more about why later in this chapter.

Writing our first routes

9 The Angular docs recommends using HTML5 mode routing*®. But due to the challenges
mentioned in the previous section we will for simplicity be using hash based routing in our
examples.

In Angular we configure routes by mapping paths to the component that will handle them.
Let’s create a small app that has multiple routes. On this sample application we will have 3 routes:

« A main page route, using the /#/home path;
« An about page, using the /#/about path;
+ A contact us page, using the /*/contact path;

And when the user visits the root path (/#/), it will redirect to the home path.

Components of Angular 2 routing

There are three main components that we use to configure routing in Angular:

« Routes describes the routes our application supports

« RouterOutlet is a “placeholder” component that shows Angular where to put the content of
each route

+ RouterLink directive is used to link to routes

Let’s look at each one more closely.

Imports

In order to use the router in Angular, we import constants from the @angular/router package:

“Shttps://angular.io/docs/ts/latest/guide/router.html#!#browser-url-styles

https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles
https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles

10
11
12
13

48
49
o0
o1
52
53
54

Routing 188

code/routes/basic/app/ts/app.ts

import {
RouterModule,
Routes
} from '@angular/router’;

Now we can define our router configuration.

Routes

To define routes for our application, create a Routes configuration and then use RouterMod-
ule. forRoot(routes) to provide our application with the dependencies necessary to use the router:

code/routes/basic/app/ts/app.ts

const routes: Routes = |
{ path: '', redirectTo: 'home', pathMatch: 'full' },
{ path: 'home', component: HomeComponent },
{ path: 'about', component: AboutComponent },
{ path: 'contact', component: ContactComponent },
{ path: 'contactus', redirectTo: 'contact' },

l;

Notice a few things about the routes:

« path specifies the URL this route will handle
« component is what ties a given route path to a component that will handle the route
« the optional redirectTo is used to redirect a given path to an existing route

As a summary, the goal of routes is to specify which component will handle a given path.

Redirections

When we use redirectTo on a route definition, it will tell the router that when we visit the path of
the route, we want the browser to be redirected to another route.

In our sample code above, if we visit the root path at http://localhost:8080/#/*’, we’ll be redirected
to the route home.

Another example is the contactus route:

“"http://localhost:8080/4#/

http://localhost:8080/#/
http://localhost:8080/#/

53

48
49
50
51
52
33
o4
55
56
ST

Routing

code/routes/basic/app/ts/app.ts

189

{ path: '

contactus', redirectTo: 'contact' },

In this case, if we visit the URL http://localhost:8080/#/contactus*®, we’ll see that the browser
redirects to /contact.

i

Sample Code The complete code for the examples in this section can be found in the
routes/basic folder of the sample code. That folder contains a README .md, which gives
instructions for building and running the project.

There are many different imports required for routing and we don’t list every single one in
every code example below. However we do list the filename and line number from which
almost every example is taken from. If you’re having trouble figuring out how to import a
particular class, open up the code using your editor to see the entire code listing.

Try running the code while reading this section and feel free play around to get a deeper
insight about how it all works.

Installing our Routes

Now that we have our Routes routes, we need to install it. To use the routes in our app we do two
things to our NgModule:

1. Import the RouterModule

2. Install

the routes using RouterModule. forRoot(routes) in the imports of our NgModule

Here’s our routes configured into our NgModule for this app:

code/routes/basic/app/ts/app.ts

const routes: Routes = |

{ path: '
{ path: '
{ path: '
{ path: '
{ path: '
1;

@NgModule({
declarati

1

, redirectTo: 'home', pathMatch: 'full' },
home', component: HomeComponent },
about', component: AboutComponent },
contact', component: ContactComponent },
contactus', redirectTo: 'contact' },

ons: [

“®http://localhost:8080/#/contactus

http://localhost:8080/#/contactus
http://localhost:8080/#/contactus

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75

Routing 190

RoutesDemoApp,

HomeComponent,

AboutComponent,

ContactComponent
1,
imports: [

BrowserModule,

RouterModule. forRoot(routes) // <-- routes
1,
bootstrap: [RoutesDemoApp],
providers: |

{ provide: LocationStrategy, useClass: HashLocationStrategy }
]

9
class RoutesDemoAppModule {}

platformBrowserDynamic().bootstrapModule(RoutesDemoAppModule)
.catch((err: any) => console.error(err));

RouterOutlet using <router-outlet>
When we change routes, we want to keep our outer “layout” template and only substitute the “inner
section” of the page with the route’s component.

In order to describe to Angular where in our page we want to render the contents for each route,
we use the RouterOutlet directive.

Our component @Component has a template which specifies some div structure, a section for
Navigation, and a directive called router-outlet.

The router-outlet element indicates where the contents of each route component will be
rendered.

We are are able to use the router-outlet directive in our template because we imported
the RouterModule in our NgModule.

Here’s the component and template for the navigation wrapper of our app:

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Routing 191

code/routes/basic/app/ts/app.ts

@Component ({
selector: 'router-app',
template: °
<div>
<nav>
<a>Navigation:

<a [routerLink]="["'home']">Home</1i>
<a [routerLink]="['about']">About</11i>
<a [routerLink]="['contact']">Contact us</1i>

</nav>

<router-outlet></router-outlet>
</div>

1))

class RoutesDemoApp {

}

If we look at the template contents above, you will note the router-outlet element right below
the navigation menu. When we visit /home, that’s where HomeComponent template will be rendered.
The same happens for the other components.

RouterLink USiNg [routerLink]
Now that we know where route templates will be rendered, how do we tell Angular 2 to navigate
to a given route?

We might try linking to the routes directly using pure HTML:
Home

But if we do this, we’ll notice that clicking the link triggers a page reload and that’s definitely not
what we want when programming single page apps.

To solve this problem, Angular 2 provides a solution that can be used to link to routes with no page
reload: the RouterlLink directive.

This directive allows you to write links using a special syntax:

33
34
35
36
37
38

© 00 39 O O b W N -~

[¢
W N =~

Routing 192

code/routes/basic/app/ts/app.ts

<a>Navigation:

<a [routerLink]="["home']">Home</1i>

<a [routerLink]="["about']">About</11i>

<a [routerLink]="['contact']">Contact us</1li>
</Jul>

We can see on the left-hand side the [routerLink] that applies the directive to the current element
(in our case a tags).

Now, on the right-hand side we have an array with the route path as the first element, like
"['home']" or "['about']" that will indicate which route to navigate to when we click the element.

It might seem a little odd that the value of routerLink is a string with an array containing a string
("['home']", for example). This is because there are more things you can provide when linking to
routes, but we’ll look at this into more detail when we talk about child routes and route parameters.

For now, we're only using routes names from the root app component.

Putting it all together

So now that we have all the basic pieces, let’s make them work together to transition from one route
to the other.

The first thing we need to write for our application is the index.htm!1 file.

Here’s the full code for that:

code/routes/basic/app/index.html

<!doctype html>
<html>
<head>
<base href="/">
<title>ng-book 2: Angular 2 Router</title>

{% for (var css in o.htmlWebpackPlugin.files.css) { %}
<link href="{%=o.htmlWebpackPlugin.files.css[css] %}" rel="stylesheet">
{% } %}
</head>
<body>
<router-app></router-app>
<script src="/core. js"></script>

14
15
16
17

0 N O O & W N -

(]

11
12

Routing 193

<seript src="/vendor. js"></script>
<script src="/bundle. js"></script>
</body>
</html>

The section describing htmlWebpackPlugin comes from the webpack module bundler®.
We’re using webpack in this chapter because it’s a tool for bundling your assets

The code should be familiar by now, with the exception of this line:
<base href="/">

This line declares the base HTML tag. This tag is traditionally used to tell the browser where to look
for images and other resources declared using relative paths.

It turns out Angular Router also relies on this tag to determine how to construct its routing
information.

For instance, if we have a route with a path of /hello and our base element declares href="/app",
the application will use /app/#* as the concrete path.

Sometimes though, coders of an Angular application don’t have access to the head section of the
application HTML. This is true for instance, when reusing headers and footers of a larger, pre-
existing application.

Fortunately there is a workaround for this case. You can declare the application base path
programmatically, when configuring our NgModule by using the APP_BASE_HREF provider:

@NgModule({
declarations: [RoutesDemoApp],
imports: |
BrowserModule,
RouterModule. forRoot(routes) // <-- routes
1,
bootstrap: [RoutesDemoApp],
providers: |
{ provide: LocationStrategy, useClass: HashLocationStrategy },
{ provide: APP_BASE_HREF, useValue: '/' } // <--- this right here

]
P

Putting { provide: APP_BASE_HREF, useValue: '/' } intheproviders isthe equivalent of using
<base href="/"> on our application HTML header.

“’https://webpack.github.io/

https://webpack.github.io/
https://webpack.github.io/

O O 0 N O O b W N =~

NN

O O 0 N O O v W N -~

NN

Routing 194

Creating the Components

Before we get to the main app component, let’s create 3 simple components, one for each of the
routes.

HomeComponent

The HomeComponent will just have an h1 tag that says “Welcome!”. Here’s the full code for our
HomeComponent:

code/routes/basic/app/ts/components/HomeComponent.ts
J*

* Angular

*/

import {Component} from '@angular/core';

@Component ({

selector: 'home',

template: “<h1>Welcome!</h1>"
1))

export class HomeComponent {

}

AboutComponent

Similarly, the AboutComponent will just have a basic h1:

code/routes/basic/app/ts/components/AboutComponent.ts
/%

* Angular

*/

import {Component} from '@angular/core’;

@Component ({
selector: 'about',
template: ~<h1>About</h1>"
P

export class AboutComponent {

}

ContactComponent

And, likewise with AboutComponent:

, O O 0 N O O b W N =

[EEY

O N O O B W N~

S G
D WD, O

Routing 195

code/routes/basic/app/ts/components/ContactComponent.ts

J*
* Angular
*/

import {Component} from '@angular/core';

@Component ({

selector: 'contact',

template: “<h1>Contact Us</h1>"
D)

export class ContactComponent {

}

Nothing really very interesting about those components, so let’s move on to the main app. ts file.

Application Component

Now we need to create the root-level “application” component that will tie everything together.

We start with the imports we’ll need, both from the core and router bundles:

code/routes/basic/app/ts/app.ts

/¥
* Angular Imports
*/
import
NgModule,
Component
} from '@angular/core';
import {BrowserModule} from '@angular/platform-browser";
import {platformBrowserDynamic} from '@angular/platform-browser-dynamic';
import
RouterModule,
Routes
} from '@angular/router’;
import {LocationStrategy, HashLocationStrategy} from '@angular/common';

Next step is to import the three components we created above:

19
20
21

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Routing 196

code/routes/basic/app/ts/app.ts

import {HomeComponent} from 'components/HomeComponent';
import {AboutComponent} from 'components/AboutComponent';
import {ContactComponent} from 'components/ContactComponent';

Now let’s get to the real component code. We start with the declaration of the component selector
and template:

code/routes/basic/app/ts/app.ts

@Component ({
selector: 'router-app',
template: °
<div>
<nav>
<a>Navigation:

<a [routerLink]="["home']">Home</1i>
<a [routerLink]="['about']">About</11i>
<a [routerLink]="['contact']">Contact us</1i>

</nav>
<router-outlet></router-outlet>
</div>
b
class RoutesDemoApp {
}

For this component, we're going to use two router directives: RouterOutlet and the RouterLink.
Those directives, along with all other common router directives are imported when we put
RouterModule in the imports section of our NgModule.

As a recap, the RouterOutlet directive is then used to indicate where in our template the route
contents should be rendered. That’s represented by the <router-outlet></router-outlet> snippet
in our template code.

The RouterLink directive is used to create navigation links to our routes:

33
34
35
36
37
38

48
49
50
o1
52
53
54

o6
o7
o8
59
60
61
62
63
64
65
66
o7
68

Routing 197

code/routes/basic/app/ts/app.ts

<a>Navigation:

<a [routerLink]="["home']">Home</1i>

<a [routerLink]="["about']">About</11i>

<a [routerLink]="['contact']">Contact us</1i>
</Jul>

Using [routerLink] will instruct Angular to take ownership of the click event and then initiate a
route switch to the right place, based on the route definition.

Configuring the Routes
Next, we declare the routes creating an array of objects that conform to the Routes type:

code/routes/basic/app/ts/app.ts

const routes: Routes = |
{ path: '', redirectTo: 'home', pathMatch: 'full' },
{ path: 'home', component: HomeComponent },
{ path: 'about', component: AboutComponent },
{ path: 'contact', component: ContactComponent },
{ path: 'contactus', redirectTo: 'contact' },

1;

In the last section of the app. ts file, we bootstrap the application:

code/routes/basic/app/ts/app.ts

@NgModule({

declarations: |
RoutesDemoApp,
HomeComponent,
AboutComponent,
ContactComponent

1,

imports: [
BrowserModule,
RouterModule. forRoot(routes) // <-- routes

1,

bootstrap: [RoutesDemoApp],

providers: |

69
70
71
T2
73
T4
75

Routing 198

{ provide: LocationStrategy, useClass: HashlLocationStrategy }

]

)
class RoutesDemoAppModule {}

platformBrowserDynamic().bootstrapModule(RoutesDemoAppModule)
.catch((err: any) => console.error(err));

Just like we have been doing so far, we are now bootstrapping the app and telling that RoutesDemoApp
is the root component.

Notice that we put all necessary components in our declarations. If we're going to route to a
component, then it needs to be declared in some NgModule (either this module or imported).

In our imports we have RouterModule. forRoot(routes). RouterModule. forRoot(routes) is a
function that will take our routes, configure the router, and return a list of dependencies like
RouteRegistry, Location, and several other classes that are necessary to make routing work.

In our providers we have this:
{ provide: LocationStrategy, useClass: HashLocationStrategy }

Let’s take an in depth look of what we want to achieve with this line.

Routing Strategies

The way the Angular application parses and creates paths from and to route definitions is called
location strategy.

0 In Angular 1 this is called routing modes instead

The default strategy is PathLocationStrategy, which is what we call HTML5 routing. While using
this strategy, routes are represented by regular paths, like /home or /contact.

We can change the location strategy used for our application by binding the LocationStrategy class
to a new, concrete strategy class.

Instead of using the default PathLocationStrategy we can also use the HashLocationStrategy.

The reason we’re using the hash strategy as a default is because if we were using HTMLS5 routing,
our URLs would end up being regular paths (that is, not using hash/anchor tags).

14

68
69
70

Routing 199

This way, the routes would work when you click a link and navigate on the client side, let’s say from
/about to /contact.

If we were to refresh the page, instead of asking the server for the root URL, which is what is being
served, instead we’d be asking for /about or /contact. Because there’s no known page at /about
the server would return a 404.

This default strategy works with hash based paths, like /#/home or /#/contact that the server
understands as being the / path. (This is also the default mode in Angular 1.)

0 Let’s say you want to use HTML5 mode in production, what can you do?

In order to use HTML5 mode routing, you have to configure your server to redirect every
“missing” route to the root URL.

In the routes/basic project we've included a script you can use to develop with
webpack-dev-server and use HTML5 paths at the same time.

To use it cd routes/basic and run node html5-dev-server. js.

Finally, in order to make our example application work with this new strategy, first we have to
import LocationStrategy and HashLocationStrategy:

code/routes/basic/app/ts/app.ts

import {LocationStrategy, HashLocationStrategy} from '@angular/common';

and then just add that location strategy to the providers of our NgModule:

code/routes/basic/app/ts/app.ts

providers: [
{ provide: LocationStrategy, useClass: HashlLocationStrategy }

You could write your own strategy if you wanted to. All you need to do is extend the
LocationStrategy class and implement the methods. A good way to start is reading the
Angular 2 source for the HashLocationStrategy or PathLocationStrategy classes.

Path location strategy

In our sample application folder, you’ll find a file called app/ts/app.html5.ts.

If we want to play with the default PathLocationStrategy, we just need to copy the contents of
that file to app/ts/app . ts, then reload the application.

Routing 200

Running the application

You can now go into the application root folder (code/routes) and run npm run server to boot the
application.

When you type http://localhost:8080/°° into your browser you should see the home route rendered:

! ng-book 2: Angular 2 Rout Felipe

<« C' [localhost:8080/#/home w =

Navigation: Home About Contact us

Welcome!

Home Route

Notice that the URL in the browser got redirected to http://localhost:8080/#/home’".

Now clicking each link will render the appropriate routes:

%http://localhost:8080/
*thttp://localhost:8080/#/home

http://localhost:8080/
http://localhost:8080/#/home
http://localhost:8080/
http://localhost:8080/#/home

Routing 201

' ng-book 2: Angular 2 Rout X

¢« > C 'D localhost:8080/#/about

H

Felipe

w) =
Navigation: Home About Contactus

About

About Route

Routing 202

! ng-book 2: Angular 2 Rout Felipe

€« C | [3 localhost:B080/#/contact e =

Navigation: Home About Contact us

Contact Us

Contact Us Route

Route Parameters

In our apps we often want to navigate to a specific resource. For instance, say we had a news website
and we had many articles. Each article may have an ID, and if we had an article with ID 3 then we
might navigate to that article by visiting the URL:

/articles/3

And if we had an article with an ID of 4 we would access it at
/articles/4

and so on.

Obviously we’re not going to want to write a route for each article, but instead we want to use a
variable, or route parameter. We can specify that a route takes a parameter by putting a colon : in
front of the path segment like this:

/route/:param

So in our example news site, we might specify our route as:

o0
o1
52
53
54
55
o6

Routing 203

/articles/:id

To add a parameter to our router configuration, we specify the route path like this:

code/routes/music/app/ts/app.ts

const routes: Routes = |
{ path: '', redirectTo: 'search', pathMatch: 'full' },
path: 'search', component: SearchComponent },

{
{ path: 'artists/:id', component: ArtistComponent },
{ path: 'tracks/:id', component: TrackComponent },

{

path: 'albums/:id', component: AlbumComponent },

1;

When we visit the route /artist/123, the 123 part will be passed as the id route parameter to our
route.

But how can we retrieve the parameter for a given route? That’s where we use route parameters.
ActivatedRoute

In order to use route parameters, we need to first import ActivatedRoute:

import { ActivatedRoute } from '@angular/router’;

Next, we inject the ActivatedRoute into the constructor of our component. For example, let’s say
we have a Routes that specifies the following:

const routes: Routes = |
{ path: 'articles/:id', component: ArticlesComponent }

] 7

Then when we write the ArticleComponent, we add the ActivatedRoute as one of the constructor
arguments:

N O O & W N =

Routing 204

export class ArticleComponent {
id: string;

constructor(private route: ActivatedRoute) {
route.params.subscribe(params => { this.id = params['id']; });

}

Notice that route.params is an observable. We can extract the value of the param into a hard value
by using .subscribe. In this case, we assign the value of params['id"'] to the id instance variable
on the component.

Now when we visit /articles/230, our component’s id attribute should receive 230.

Music Search App

Let’s now work on a more complex application. We will build a music search application that has
the following features:

Search for tracks that match a given term

Show matching tracks in a grid

Show singer details when the singer name is clicked

Show album details and show a list of tracks when the album name is clicked

M e

Show song details allow the user to play a preview when the song name is clicked

Routing

Sportify music for active people

Search
rhapsody in blue Search
Results

TEAIiY ACCIAIMIG SICORETNET OV AT

g Hhaely o asiely s At
e, with the gront bhues tene el phrasrd " Pompee S e o

FF""

RHAPSODY IN BLUE
AN AM[IIII:AN IN PARIS

'PHILHARMONIC

George Gershwin
Rhapsody In Blue

Gershwin: Rhapsody in BluefAn American in
Paris

JOM NAKAMATSU ...

ROCHESTER
PHILHARMONIC
ORCHESTRA

GERSHWIN

PIANC CONCERTO I F
RHAPSODY IM BLUE
CUBAN OVERTURE

George Gershwin
Rhapsody in Blue

Gershwin: Piano Concerto in F, Rhapsody in

[he

iano

Holls

George Gershwin
Rhapsody In Blue

Gershwin Plays Gershwin: The Piano Rolls

GERSHWIN:apredy ntie.

versions for two pian

KATIA & MARIEL

George Gershwin
Rhapsody in Blue

Gershwin: Rhapsody in Blue; Piano Concerto in

The Search View of our Music App

The routes we will need for this application will be:

+ /search - search form and results
« /artists/:id - artist info, represented by a Spotify ID

George Gershwin
Rhapsody in Blue

Gershwin: Rhapsody in Blue / An American in
Paris

GERSHWIN *
Rhapsody In Blue
AND

George Gershwin
Rhapsody in Blue

Gerswin - Rhapsody in Blue and Beyond

205

0 N O Ol & W N =~

NN NN N S B 1 | s s s s
B WO N A, OO O© 03O0 O b W NN O O

Routing

206

+ /albums/:id - album info, with a list of tracks using the Spotify ID

+ /tracks/:id - track info and preview, also using the Spotify ID

i

Sample Code The complete code for the examples in this section can be found in the
routes/music folder of the sample code. That folder contains a README . md, which gives
instructions for building and running the project.

We will use the Spotify API°* to get information about tracks, artists and albums.

First Steps

The first file we need work on is app . ts. Let’s start by importing classes we’ll use from Angular:

code/routes/music/app/ts/app.ts

J*

* Angular Imports

*/
import

{

Component

} from '@angular/core';

import
import
import
import
import
import

{
{
{
{
{

{

NgModule } from '@angular/core';

BrowserModule } from '@angular/platform-browser';
platformBrowserDynamic } from '@angular/platform-browser-dynamic';
HttpModule } from '@angular/http';

FormsModule } from '@angular/forms';

RouterModule,

Routes

} from '@angular/router’;

import

{

LocationStrategy,

HashLocationStrategy,
APP_BASE_HREF

} from '@angular/common';

J*

* Components

*/

>2https://developer.spotify.com/web-api

https://developer.spotify.com/web-api
https://developer.spotify.com/web-api

O© 00 9 O O P W N =

Routing 207
Now that we have the imports there, let’s think about the components we’ll use for each route.

« For the Search route, we’ll create a SearchComponent. This component will talk to the Spotify
API to perform the search and then display the results on a grid.

« For the Artists route, we’ll create an ArtistComponent which will show the artist’s informa-
tion

« For the Albums route, we’ll create an AlbumComponent which will show the list of tracks in the
album

« For the Tracks route, we’ll create a TrackComponent which will show the track and let us play
a preview of the song

Since this new component will need to interact with the Spotify API, it seems like we need to build
a service that uses the http module to call out to the API server.

Everything in our app depends on the data, so let’s build the Spoti fyService first.

The spotifyService

0 You can find the full code for the SpotifyService in the routes/music/app/ts/services
folder of the sample code.

The first method we’ll implement is searchByTrack which will search for track, given a search term.
One of the endpoints documented on Spotify API docs is the Search endpoint™.

This endpoint does exactly what we want: it takes a query (using the q parameter) and a type
parameter.

Query in this case is the search term. And since we’re searching for songs, we should use type=track.

Here’s what a first version of the service could look like:

class SpotifyService {
constructor(public http: Http) {

}

searchByTrack(query: string) {
let params: string = [
“g=${query} ",
“type=track”
].join("&");

**https://developer.spotify.com/web-api/search-item/

https://developer.spotify.com/web-api/search-item/
https://developer.spotify.com/web-api/search-item/

10
11
12
13

0 N O O B~ W N -

[Gy
D W NN, O

Routing 208

let queryURL: string = “https://api.spotify.com/vi/search?${params}";
return this.http.request(queryURL).map(res => res.json());

This code performs an HTTP GET request to the URL https://api.spotify.com/v1/search®®, passing our
query as the search term and type hardcoded to track.

This http call returns an Observable. We are going one step further and using the RxJS function
map to transform the result we would get (which is an http module’s Response object) and parsing
it as JSON, resulting on an object.

Any function that calls searchByQuery then will have to use the Observable API to subscribe to the
response like this:

service
.searchTrack('query')
.subscribe((res: any) => console.log('Got object', res))

The searchComponent

Now that we have a service that will perform track searches, we can start coding the SearchCompo-
nent.

Again, we start with an import section:

code/routes/music/app/ts/components/SearchComponent.ts

J*
* Angular

*/

import {Component, OnInit} from '@angular/core';
import {

Router,

ActivatedRoute,
} from '@angular/router’;

/¥
* Services
*/

import {SpotifyService} from 'services/SpotifyService';

*https://api.spotify.com/v1/search

https://api.spotify.com/v1/search
https://api.spotify.com/v1/search

16
17
18
19
20
21
22
23
24
25
26

Routing 209

Here we’re importing, among other things, the Spoti fyService class we just created.

The goal here is to render each resulting track side by side on a card like below:

Huckleberry Flint
Whiskey Before Breakfast

A Brief And True Report Concerning Huckleberry Flint

Music App Card

We then start coding the component. We're using search as the selector, making a few imports and
using the following template. The template is a bit long because we’re putting some reasonable styles
on it, but it isn’t particularly complicated, relative to what we’ve done so far:

code/routes/music/app/ts/components/SearchComponent.ts

@Component ({
selector: 'search',
template:
<h1>Search</h1>

<p>
<input type="text" #newquery
[value]="query"
(keydown.enter)="submit(newquery.value)">
<button (click)="submit(newquery.value)">Search</button>
</p>

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60
61
62
63
64
65
66
67
68

Routing

)

<div *nglf="results">
<div *nglf="!results.length">
No tracks were found with the term '{{ query }}'
</div>

<div *nglf="results.length">
<h1>Results</h1>

<div class="row">
<div class="col-sm-6 col-md-4" *ngFor="let t of results">
<div class="thumbnail">
<div class="content">

<div class="caption">
<h3>
<a [routerLink]="['/artists', t.artists[Q].id]">
{{ t.artists[@] .name }}

</h3>

<p>
<a [routerLink]="['/tracks', t.id]"»
{{ t.name }}
</Ja>
</p>
</div>
<div class="attribution">
<h4>
<a [routerLink]="['/albums', t.album.id]">
{{ t.album.name }}

</h4>
</div>
</div>
</div>
</div>
</div>
</div>
</div>

N

210

21
22
23
24
25
26

36
37
38

Routing 211

The Search Field

Let’s break down the HTML template a bit.

This first section will have the search field:

code/routes/music/app/ts/components/SearchComponent.ts

<{p>
<input type="text" #newquery
[value]="query"
(keydown.enter)="submit(newquery.value)">
<button (click)="submit(newquery.value)">Search</button>
</p>

Here we have the input field and we’re binding its DOM element value property the query property
of our component.

We also give this element a template variable named #newquery. We can now access the value of
this input within our template code by using newquery .value.

The button will trigger the submit method of the component, passing the value of the input field as
a parameter.

We also want to trigger submit when the user hits “Enter” so we bind to the keydown.enter event
on the input.

Search Results and Links

The next section displays the results. We're relying on the NgFor directive to iterate through each
track from our results object:

code/routes/music/app/ts/components/SearchComponent.ts

<div class="row">
<div class="col-sm-6 col-md-4" *ngFor="let t of results">
<div class="thumbnail">

For each track, we display the artist name:

42
43
44
45
46

48
49
50
51
52

95
56
o7
58
59

Routing 212

code/routes/music/app/ts/components/SearchComponent.ts

<h3>
<a [routerLink]="['/artists', t.artists[0Q].id]">
{{ t.artists[@] .name }}

</h3>

Notice how we’re using the RouterLink directive to redirect to ['/artists', t.artists[@].id].

This is how we set route parameters for a given route. Say we have an artist with an id abc123.
When this link is clicked, the app would then navigate to /artist/abc123 (where abc123 is the : id
parameter).

Further down we’ll show how we can retrieve this value inside the component that handles this
route.

Now we display the track:

code/routes/music/app/ts/components/SearchComponent.ts

<p>
<a [routerLink]="['/tracks', t.id]">
{{ t.name }}

</p>

And the album:

code/routes/music/app/ts/components/SearchComponent.ts

<h4>
<a [routerLink]="["'/albums', t.album.id]">
{{ t.album.name }}

</h4>

SearchComponent Class

Let’s take a look at the constructor first:

69
70
7
T2
73
T4
)
76
T
78
79

Routing 213

code/routes/music/app/ts/components/SearchComponent.ts

export class SearchComponent implements OnInit
query: string;
results: Object;

constructor(private spotify: SpotifyService,
private router: Router,
private route: ActivatedRoute) {
this.route
.queryParams
.subscribe(params => { this.query = params['query'] || ''; });

Here we're declaring two properties:

« query for current search term and
 results for the search results

On the constructor we're injecting the SpotifyService (that we created above), Router, and the
ActivatedRoute and making them properties of our class.

In our constructor we subscribe to the queryParams property - this lets us access query parameters,
such as the search term (params['query']).

In a URL like: http://localhost/#*/search?query=cats&order=ascending, queryParams gives us
the parameters in an object. This means we could access the order with params['order'] (in this
case, ascending).

Also note that queryParams are different than route.params. Whereas route . params match param-
eters in the route queryParams match parameters in the query string.

In this case, if there is no query param, we set this.query to the empty string.

search

In our SearchComponent we will call out to the Spoti fyService and render the results. There are
two cases when we want to run a search:

We want to run a search when the user:
« enters a search query and submits the form
« navigates to this page with a given URL in the query parameters (e.g. someone shared a link

or bookmarked the page)

To perform the actual search for both cases, we create the search method:

90
91
92
93
94
95
96
o
98
99

101
102
103
104
105
106

Routing 214

code/routes/music/app/ts/components/SearchComponent.ts

search(): void {
console.log('this.query', this.query);
if (!this.query) {
return;

this.spotify
.searchTrack(this.query)
.subscribe((res: any) => this.renderResults(res));

The search function uses the current value of this.query to know what to search for. Because we
subscribed to the queryParams in the constructor, we can be sure that this.query will always have
the most up-to-date value.

We then subscribe to the searchTrack Observable and whenever new results are emitted we call
renderResults.

code/routes/music/app/ts/components/SearchComponent.ts

renderResults(res: any): void {
this.results = null;
if (res &% res.tracks && res.tracks.items) {
this.results = res.tracks.items;

We declared results as a component property. Whenever its value is changed, the view will be
automatically updated by Angular.

Searching on Page Load

As we pointed out above, we want to be able to jump straight into the results if the URL includes a
search query.

To do that, we are going to implement a hook Angular router provides for us to run whenever our

component is initialized.

0 But isn’t that what constructors are for? Well, yes and no. Yes, constructors are used to

initialize values, but if you want to write good, testable code, you want to minimize the side

effects of constructing an object. So keep in mind that you should put your component’s
initialization login always on a hook like below.

Here’s the implementation of the ngOnInit method:

81
82
83

85
86
87
88

0 I O O b W N =

Routing 215

code/routes/music/app/ts/components/SearchComponent.ts

ngOnInit(): void {
this.search();

To use ngOnInit we imported the OnInit class and declared that our component
implements OnlInit.

As you can see, we're just performing the search here. Since the term we’re searching for comes
from the URL, we're good.

submit
Now let’s see what we do when the user submits the form.

code/routes/music/app/ts/components/SearchComponent.ts

submit(query: string): void {
this.router.navigate(['search'], { queryParams: { query: query } })
.then(_ => this.search());

We’re manually telling the router to navigate to the search route, and providing a query parameter,
then performing the actual search.

Doing things this way gives us a great benefit: if we reload the browser, we're going to see the same
search result rendered. We can say that we’re persisting the search term on the URL.

Putting it all together
Here’s the full listing for the SearchComponent class:

code/routes/music/app/ts/components/SearchComponent.ts

J*
* Angular

*/

import {Component, OnInit} from '@angular/core’;
import

Router,

ActivatedRoute,

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Routing

} from '@angular/router’;

J*
* Services
*/

import {SpotifyService} from 'services/SpotifyService';

@Component ({
selector: 'search',

template:
<h1>Search</h1>

<{p>
<input type="text" #newquery
[value]="query"
(keydown.enter)="submit(newquery.value)">
<button (click)="submit(newquery.value)">Search</button>
</p>

<div *nglf="results">
<div *nglf="!results.length">
No tracks were found with the term '{{ query }}'
</div>

<div *nglf="results.length">
<h1>Results</h1>

<div class="row">
<div class="col-sm-6 col-md-4" *ngFor="let t of results">
<div class="thumbnail">
<div class="content">

<div class="caption">
<h3>
<a [routerLink]="['/artists', t.artists[0Q].id]">
{{ t.artists[@] .name }}

</h3>

<p>
<a [routerLink]="['/tracks', t.id]">
{{ t.name }}

216

o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Routing

</p>
</div>
<div class="attribution">
<h4>
<a [routerLink]="["'/albums', t.album.id]">
{{ t.album.name }}

</h4>
</div>
</div>
</div>
</div>
</div>
</div>
</div>

N

1))

export class SearchComponent implements OnInit
query: string;
results: Object;

constructor(private spotify: SpotifyService,
private router: Router,
private route: ActivatedRoute) {
this.route
.queryParams
.subscribe(params => { this.query = params['query'] || ''; });

ngOnInit(): void {
this.search();

submit(query: string): void {
this.router.navigate(['search'], { queryParams: { query: query } })
.then(_ => this.search());

search(): void {
console.log('this.query', this.query);
if (!this.query) {

217

93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107

Routing

return;

this.spotify
.searchTrack(this.query)
.subscribe((res: any) => this.renderResults(res));

renderResults(res: any): void {
this.results = null;
if (res &% res.tracks && res.tracks.items) {
this.results = res.tracks.items;

218

Trying the search

Now that we have completed the code for the search, let’s try it out:

Routing 219

Sportify music for active people

Home Add

Search

andre de sapatonovo || Search

Results

BRNp,,

Qg,ﬁ ﬁe,@ CHORINHO

Alramiroe Carrilhe
vandro do Bando

Paulinheo Nogueird

Toguinho e outros
Bando De Macambira Ordinarius Evandro Do Bandolim
André do Sapato Novo André de Sapato Novo / Tico Tico no Fuba André De Sapato Novo
Chorinho Rio de Choro Chorinhos De Ouro

INETES AD LIBITUM

Pixinguinha |

Pixinguinha Clarinetes Ad Libitum Pixinguinha

André de Sapato Novo André de Sapato Movo Andre De Sapato Novo

Benedito Lacerda E Pixinguinha Contradanza Latin Jazz Roots
Trying out Search

We can click the artist, track or album links to navigate to the proper route.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Routing 220

TrackComponent

For the track route, we use the TrackComponent. It basically displays the track name, the album cover
image and allow the user to play a preview using an HTML5 audio tag:

code/routes/music/app/ts/components/TrackComponent.ts

template:
<div *nglf="track">
<h1>{{ track.name }}</h1>

<p>

</p>

<p>
<audio controls src="{{ track.preview_url }}"></audio>
</p>

<p><a href (click)="back()">Back</p>
</div>

~

Like we did for the search before, we’re going to use the Spotify API. Let’s refactor the method
searchTrack and extract two other useful methods we can reuse:

code/routes/music/app/ts/services/SpotifyService.ts

export class SpotifyService {
static BASE_URL: string = 'https://api.spotify.com/vil"';

constructor(private http: Http) {
}

query(URL: string, params?: Array<string>): Observable<any[]> {
let queryURL: string = “${SpotifyService.BASE_URL}${URL}";
if (params) {
queryURL = “${queryURL}?${params.join('&')}";

return this.http.request(queryURL).map((res: any) => res.json());

search(query: string, type: string): Observable<any[]> {

29
30
31
32
33

35
36
37

39
40
41

45
46
47
48
49

Routing 221

return this.query(/search™, [
“g=${query} ",

“type=${type}"

1);

Now that we’ve extracted those methods into the SpotifyService, notice how much simpler
searchTrack becomes:

code/routes/music/app/ts/services/SpotifyService.ts

searchTrack(query: string): Observable<any[]> {
return this.search(query, 'track');

Now let’s create a method to allow the component we’re building retrieve track information, based
in the track ID:

code/routes/music/app/ts/services/SpotifyService.ts

getTrack(id: string): Observable<any[]> {
return this.query(/tracks/${id}");

And now we can now use getTrack from a new ngOnInit method on the TrackComponent:

code/routes/music/app/ts/components/TrackComponent.ts

ngOnInit(): void {
this.spotify
.getTrack(this.id)
.subscribe((res: any) => this.renderTrack(res));

The other components work in a similar way and use get* methods from the SpotifyService to
retrieve information about either an Artist or a Track based on their ID.

Routing 222

Wrapping up music search

Now we have a pretty functional music search and preview app. Try searching for a few of your
favorite tunes and try it out!

It Had To Be You (Big Band and Vocals)

Whe arry
trhal)

n = 0:17 o) o=m@

Back

It Had to Route You

Router Hooks

There are times that we may want to do some action when changing routes. A classical example of
that is authentication. Let’s say we have a login route and a protected route.

We want to only allow the app to go to the protected route if the correct username and password
were provided on the login page.

In order to do that, we need to hook into the lifecycle of the router and ask to be notified when the
protected route is being activated. We then can call an authentication service and ask whether or
not the user provided the right credentials.

In order to check if a component can be activated we add a guard class to the key canActivate in
our router configuration.

Let’s revisit our initial application, adding login and password input fields and a new protected route
that only works if we provide a certain username and password combination.

0 I O O b W N =

(RN
N »~ O ©

Routing 223

0 Sample Code The complete code for the examples in this section can be found in the
routes/auth folder of the sample code. That folder contains a README.md, which gives
instructions for building and running the project.

AuthService

Let’s create a very simple and minimal implementation of a service, responsible for authentication
and authorization of resources:

code/routes/auth/app/ts/services/AuthService.ts

import { Injectable } from '@angular/core’;

@Injectable()
export class AuthService {
login(user: string, password: string): boolean {
if (user === 'user' && password === 'password') {
localStorage.setItem('username', user);

return true;

return false;

The 1ogin method will return true if the provided user/password pair equals 'user ' and 'password’,
respectively. Also, when it is matched, it’s going to use localStorage to save the username. This
will also serve as a flag to indicate whether or not there is an active logged user.

0 If you’re not familiar, localStorage is an HTMLS5 provided key/value pair that allows you

to persist information on the browser. The API is very simple, and basically allows the

setting, retrieval and deletion of items. For more information, see the Storage interface
documents on MDN??

The logout method just clears the username value:

>*https://developer.mozilla.org/en-US/docs/Web/API/Storage

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Storage

14
15
16

18
19
20
21
22
23
24

27
28
29

Routing 224

code/routes/auth/app/ts/services/AuthService.ts

logout(): any {
localStorage.removeltem('username');

And the final two methods:

 getUser returns the username or null
« isloggedIn uses getUser() to return true if we have a user

Here’s the code for those methods:

code/routes/auth/app/ts/services/AuthService.ts

getUser(): any {
return localStorage.getItem('username');

isLoggedIn(): boolean {
return this.getUser() !== null;

The last thing we do is export an AUTH_PROVIDERS, so it can be injected into our app:

code/routes/auth/app/ts/services/AuthService.ts

export var AUTH_PROVIDERS: Array<any> = [
{ provide: AuthService, useClass: AuthService }

1;

Now that we have the AuthService we can inject it in our components to log the user in, check for
the currently logged in user, log the user out, etc.

In a little bit, we’ll also use it in our router to protect the ProtectedComponent. But first, let’s create
the component that we use to log in.

LoginComponent

This component will either show a login form, for the case when there is no logged user, or display
a little banner with user information along with a logout link.

The relevant code here is the 1ogin and logout methods:

Routing 225

code/routes/auth/app/ts/components/LoginComponent.ts

40 export class LoginComponent {

41 message: string;

42

43 constructor(private authService: AuthService) {
44 this.message = '';

45 }

46

47 login(username: string, password: string): boolean {
48 this.message = '';

49 if (!this.authService.login(username, password)) {
50 this.message = 'Incorrect credentials.';

51 setTimeout(function() ({

52 this.message = '';

53 }.bind(this), 2500);

54 }

55 return false;

56 }

57

58 logout(): boolean {

59 this.authService.logout();

60 return false;

61 }

Once our service validates the credentials, we log the user in.

The component template has two snippets that are displayed based on whether the user is logged in
or not.

The first is a login form, protected by *ngIf=""!authService.getUser()":

code/routes/auth/app/ts/components/LoginComponent.ts

18 <form class="form-inline" *nglf="l!authService.getUser()">

19 <div class="form-group">

20 <label for="username">User:</label>

21 <input class="form-control" name="username" #username>

22 </div>

23

24 <div class="form-group">

25 <label for="password">Password:</label>

26 <input class="form-control" type="password" name="password" #password>

27 </div>

28
29
30
31
32

34
35
36
37

14
15
16

Routing 226

Submit

</form>

And the information banner, containing the logout link, protected by the inverse -

*nglf="authService.getUser()":

code/routes/auth/app/ts/components/LoginComponent.ts

<div class="well" *nglf="authService.getUser()">
Logged in as {{ authService.getUser() }}
<a href (click)="logout()">Log out

</div>

There’s another snippet of code that is displayed when we have an authentication error:

code/routes/auth/app/ts/components/LoginComponent.ts

<div class="alert alert-danger" role="alert" *nglf="message">

{{ message }}
</div>

Now that we can handle the user login, let’s create a resource that we are going to protect behind a
user login.

ProtectedComponent and Route Guards

The protectedComponent

Before we can protect the component, it needs to exist. Our ProtectedComponent is straightforward:

, O O 0 9 O O b W N =~

(AN

0 = O O b WO N =~

(AN
N O ©

Routing 227

code/routes/auth/app/ts/components/ProtectedComponent.ts

J*
* Angular
*/

import {Component} from '@angular/core';

@Component ({

selector: 'protected',

template: “<h1>Protected content</h1>"
})

export class ProtectedComponent {

}

We want this component to only be accessible to logged in users. But how can we do that?
The answer is to use the router hook canActivate with a guard class that implements CanActivate.
The LoggedInGuard

We create a new folder called guards and create loggedIn.guard.ts:

code/routes/auth/app/ts/guards/loggedIn.guard.ts

import { Injectable } from '@angular/core’;
import { CanActivate } from '@angular/router';
import { AuthService } from 'services/AuthService';

@Injectable()
export class LoggedInGuard implements CanActivate {
constructor(private authService: AuthService) {}

canActivate(): boolean {
return this.authService.isLoggedIn();

Our guard states that it implements the CanActivate interface. This is satisfied by implementing a
method canActive.

We inject the AuthService into this class in the constructor and save it as a private variable
authService.

In our canActivate function we check this.authService to see if the user isLoggedIn.

28
29

68
69
70
71
72
73
T4
)

92
93
94
95
96

Routing 228

Configuring the Router

To configure the router to use this guard we need to do the following:

1. import the LoggedInGuard
2. Use the LoggedInGuard in a route configuration
3. Include LoggedInGuard in the list of providers (so that it can be injected)

We do all of these steps in our app . ts.

We import the LoggedInGuard:

code/routes/auth/app/ts/app.ts

import {AUTH_PROVIDERS} from 'services/AuthService';
import {LoggedInGuard} from 'guards/loggedIn.guard';

We add canActivate with our guard to the protected route:

code/routes/auth/app/ts/app.ts

const routes: Routes = |

{ path: '', redirectTo: 'home', pathMatch: 'full' },
{ path: 'home', component: HomeComponent },

{ path: 'about', component: AboutComponent },

{ path: 'contact', component: ContactComponent 1},

{ path: 'protected', component: ProtectedComponent,

canActivate: [LoggedInGuard]}
1;

We add LoggedInGuard to our list of providers:

code/routes/auth/app/ts/app.ts

providers: [
AUTH_PROVIDERS,
LoggedInGuard,
{ provide: LocationStrategy, useClass: HashLocationStrategy },

Logging in

We import the LoginComponent:

19

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66

Routing

code/routes/auth/app/ts/app.ts

229

import {LoginComponent} from 'components/LoginComponent’;

And then we have to add:

1. a new link to the protected route
2. a<login> tag to the template, to render the new component

Here’s what it should look like:

code/routes/auth/app/ts/app.ts

@Component ({
selector: 'router-app',
template:
<div class="page-header">
<div class="container">
<h1>Router Sample</h1>
<div class="navLinks">
<a [routerLink]="["'/home']">Home
<a [routerLink]="["'/about']">About
<a [routerLink]="["'/contact']">Contact us
]="["'/protected']">Protected

<a [routerLink
</div>
</div>
</div>

<div id="content">

<div class="container">

<login></login>

<hr>

<router-outlet></router-outlet>
</div>
</div>

N

P
class RoutesDemoApp {
constructor(private router: Router) {

}

Routing 230

Now when we open the application on the browser, we can see the new login form and the new
protected link:

® O ® / [ngnook2: Angular2 HTT: % || ‘ Felipe ‘

& = € [1 localhost:8080/#/home O xR O@ (SR=

Router Sample

Home About Contact us Protected

User: Password: Submit

Welcome!

Auth App - Initial Page
If you click the Protected link, you’ll see nothing happens. The same happens if you try to manually
visit http://localhost:8080/#/protected™®.

Now enter user and password on the form and click Submit. You’ll see that we now get the current
user displayed on a banner:

*http://localhost:8080/#/protected

http://localhost:8080/#/protected
http://localhost:8080/#/protected

231

Routing

4
8

O« 20 9PQS 0O

® O ® | ["1gbook 2: Angular 2 Rou: x TR
& € [localhost:8080/4/home

Router Sample

Home About Contact us Protected

Logged in as user Log out

Welcome!

Auth App - Logged In

And, sure enough, if we click the Protected link, it gets redirected and the component is rendered:

Routing 232

® ®] ng-book 2: Angular 2 Rout % Felipe

« C' | [localhost:8080/#/protected O % & Q O -

Router Sample

Home About Contact us Protected

Logged in as user Log out

Protected content

Auth App - Protected Area

9 A Note on Security: It’s important to know how client-side route protection is working
before you rely too heavily on it for security. That is, you should consider client-side route
protection a form of user-experience and not one of security.

Ultimately all of the javascript in your app that gets served to the client can be inspected,
whether the user is logged in or not.

So if you have sensitive data that needs to be protected, you must protect it with server-
side authentication. That is, require an API key (or auth token) from the user which is
validated by the server on every request for data.

Writing a full-stack authentication system is beyond the scope of this book. The important
thing to know is that protecting routes on the client-side don’t necessarily keep anyone
from viewing the javascript pages behind those routes.

Nested Routes

Nested routes is the concept of containing routes within other routes. With nested routes we’re able
to encapsulate the functionality of parent routes and have that functionality apply to the child routes.

Let’s say we have a website with one area to allow users to know our team, called Who we are?
and another one for our Products.

58
59
60
61
62

Routing 233

We could think that the perfect route for Who we are? would be /about and for products /products.
And we’re happily displaying all our team and all our products when visiting this areas.

What happens when the website grows and we now need to display individual information about
each person in our team and also for each product we sell?

In order to support scenarios like these, the router allows the user to define nested routes.

To do that, you can have multiple, nested router-outlet. So each area of our application can have
their own child components, that also have their own router-outlets.

Let’s work on an example to clear things up.

In this example, we’ll have a products section where the user will be able to view two highlighted
products by visiting a nice URL. For all the other products, the routes will use the product ID.

0 Sample Code The complete code for the examples in this section can be found in the
routes/nested folder of the sample code. That folder contains a README .md, which gives
instructions for building and running the project.

Configuring Routes

We will start by describing two top-level routes on the app. ts file:

code/routes/nested/app/ts/app.ts

const routes: Routes = |
{ path: '', redirectTo: 'home', pathMatch: 'full' },
{ path: 'home', component: HomeComponent },
{ path: 'products', component: ProductsComponent, children: childRoutes }

1;

The home route looks very familiar, notice that products has a children parameter. Where does this
come from? We’ve defined the childRoutes alongside the ProductsComponent. Let’s take a look:

ProductsComponent

This component will have its own route configuration:

51
52
953
54
55
56
o7

29
30
31

25
26
27
28
29
30
31
32

Routing 234

code/routes/nested/app/ts/components/ProductsComponent.ts

export const routes: Routes = |
{ path: '', redirectTo: 'main' },
{ path: 'main', component: MainComponent },
{ path: ':id', component: ByIdComponent },
{ path: 'interest', component: InterestComponent },
{ path: 'sportify', component: SportifyComponent },
1;

Notice here that we have an empty path on the first object. We do this so that when we visit
/products, we’'ll be redirected to the main route.

The other route we need to look at is :id. In this case, when the user visits something that doesn’t
match any other route, it will fallback to this route. Everything that is passed after / will be extracted
to a parameter of the route, called id.

Now on the component template, we’ll have a link to each of those static child routes:

code/routes/nested/app/ts/components/ProductsComponent.ts

<a [routerLink]="['./main']">Main |
<a [routerLink]="["'./interest']">Interest |
<a [routerLink]="["./sportify']">Sportify |

You can see that the route links are all in the format ['. /main"'], with a preceding . /. This indicates
that you want to navigate the Main route relative to the current route context.

You could also declare the routes with the ['products', 'main'] notation. The downside is that by
doing it this way, the child route is aware of the parent route and if you were to move this component
around or reuse it, you would have to rewrite your route links.

After the links, we’ll add an input where the user will be able to enter a product id, along with a
button to navigate to it, and lastly add our router-outlet:

code/routes/nested/app/ts/components/ProductsComponent.ts

template:
<h2>Products</h2>

<div class="navLinks">
<a [routerLink]="["./main']">Main |
<a [routerLink]="["'./interest']">Interest |
<a [routerLink]="["./sportify']">Sportify |
Enter id: <input #id size="6">

33
34
35
36
37
38
39

42
43
44
45
46
47
48
49

Routing 235

<button (click)="goToProduct(id.value)">Go</button>
</div>

<div class="products-area">
<router-outlet></router-outlet>
</div>

Let’s look at the ProductsComponent definition:

code/routes/nested/app/ts/components/ProductsComponent.ts

export class ProductsComponent {
constructor(private router: Router, private route: ActivatedRoute) {

}

goToProduct(id:string): void {
this.router.navigate(['./', id], {relativeTo: this.route});

First on the constructor we’re declaring an instance variable for the Router, since we’re going to use
that instance to navigate to the product by id.

When we want to go to a particular product we use the goToProduct method. In goToProduct we call
the router’s navigate method and providing the route name and an object with route parameters.
In our case we’re just passing the id.

Notice that we use the relative ./ path in the navigate function. In order to use this we also pass
the relativeTo object to the options, which tells the router what that route is relative to.

Now, if we run the application we will see the main page:

236

Routing

g
8

O« 209 QS 0O

® O ® [ngnook2: Angular2 Rour x TR
& & C [localhost:8080/4/home

Router Sample

Home Products

Welcome!

Nested Routes App

If you click on the Products link, you’ll be redirected to /products/main that will render as follows:

Routing 237

©® O ® | [4ng 000k 2 Angular 2 Rou % | Felips |

L 2 C' [localhost:8080/#/products/main O %« & QO CHME=

Router Sample

Home Products

Products

Main | Interest | Sportify | Enter id: Go

Welcome to the products section. Please select a preduct above.

Nested Routes App - Products Section

Everything below that thin grey line is being rendered using the main application’s router-outlet.

And the contents of the dotted red line is being rendered inside the ProductComponent’s router-
outlet. That’s how you indicate how the parent and child routes will be rendered.

When we visit one of the product links, or if we an ID on the textbox and click Go, the new content
is rendered inside the ProductComponent’s outlet:

Routing 238

® ® L] ng-book 2: Angular 2 Rout % Felipe

&« C [localhost:8080/#/products/abc123 O % & Q O -

Router Sample

Home Products

Products

Main | Interest | Sportify | Enter id: abc123 | Go

You selected product: abc123

Nested Routes App - Product By Id

It’s also worth noting that the Angular router is smart enough to prioritize concrete routes first (like
/products/sportify) over the parameterized ones (like /products/123). This way /products/s-
portify will never be handled by the more generic, catch-all route /products/:id.

Redirecting and linking nested routes
Just to recap, if we want to go to a route named MyRoute on your top-level routing context, you use
["myRoute"']. This will only work if you’re in that same top-level context.

If you are on a child component, and you try to link or redirect to ['myRoute'], it will try to find a
sibling route, and error out. In this case, you need to use ['/myRoute'] with a leading slash.

In a similar way, if we are on the top-level context and we want to link or redirect to a child route,
we have to need to use multiple elements on the route definition array.

Let’s say we want to visit the Show route, which is a child of the Product route. In this case, we use
['product', 'show'] as the route definition.

Summary

As we can see, the new Angular router is very powerful and flexible. Now go out and route your
apps!

W N -

Dependency Injection

As our programs grow in size, we often find that different parts of the app need to communicate
with other modules. When module A requires module B to run, we say that B is a dependency of A.

One of the most common ways to get access to dependencies is to simply import a file. For instance,
in this hypothetical module we might do the following:

// in A.ts
import {B} from 'B'; // a dependency!

B.foo(); // using B

In many cases, simply importing other code is sufficient. However there are times where we need
to provide dependencies in a more sophisticated way. For instance:

« What if we wanted to substitute out the implementation of B for MockB during testing?

« What if we wanted to share a single instance of the B class across our whole app (e.g. the
Singleton pattern)

» What if we wanted to create a new instance of the B class every time it was used? (e.g. the
Factory pattern)

Dependency Injection can solve these problems.

Dependency Injection (DI) is a system to make parts of our program accessible to other parts of the
program - and we can configure how that happens.

Q One way to think about an injector is as a replacement for the new operator

The term Dependency Injection is used to describe both a design pattern (that used in many different
frameworks) and also the specific implementation DI library that is built-in to Angular.

The major benefit of using dependency injection is that the client component doesn’t have to be
aware of how to create the dependencies, all the component needs to know is how to interact with
those dependencies.

© 00 N O U b W N =

Y
(]

© 00 N O U b W N =

(AN
Ll)

Dependency Injection 240

Injections Example: PriceService

Let’s imagine we have a Product class. Each product has a base price. In order to calculate the full
price for this product, we rely on a service that takes as input

» the base price of the product and
« the state we're selling it to.

Here’s how this would look without dependency injection:

class Product {
constructor(basePrice: number) {
this.service = new PriceService();

this.basePrice = basePrice;

price(state: string) {
return this.service.calculate(this.basePrice, state);

Now let’s imagine we need to write a test for this Product class. Let’s assume the PriceService
class above uses a database lookup to retrieve taxes for a given state. If we write a test like:

let product;

beforeEach(() => {
product = new Product(11);
1)

describe('price', () => {
it('is calculated based on the basePrice and the state', () => {
expect(product.price('FL"')).toBe(11.66);
1)
b

Even though the test may work, there are a few shortcomings to this approach. In order for the test
to success a few preconditions have to be met:

1. The database must be running;

© © 0 N O O b W N =

[N

© 00 39 O O b W N =~

Dependency Injection 241
2. The tax entry for Florida must be what we’re expecting;

Basically we're making our tests more brittle by adding an unexpected dependency between the
Product class and the PriceService that, in turn, depends on a database.

What if we could write the Product class a little differently:

class Product {
constructor(service: PriceService, basePrice: number) {
this.service = service;
this.basePrice = basePrice;

price(state: string) {
return this.service.calculate(this.basePrice, state);

Now, when creating a Product the client class becomes responsible for deciding which concrete
implementation of the PriceService is going to be given to the new instance.

With that, we can make our tests a lot simpler by creating a mock version of the PriceService class:

class MockPriceService {
calculate(basePrice: number, state: string) {
if (state === 'FL') {
return basePrice * 1.006;

return basePrice;

And with this small change, we can tweak our test slightly and get rid of the database dependency:

© 00 N O U b W N =

(RN
N~ O

Dependency Injection 242

let product;

beforeEach(() => {
const service = new MockPriceService();
product = new Product(service, 11);

1)

describe('price', () => {
it('is calculated based on the basePrice and the state', () => {
expect(product.price('FL')).toBe(11.66);
1)
P

We also get the bonus of having confidence that we’re testing the Product class in isolation. That
is, we're making sure that our class works with a predictable dependency.

“Don’t Call Us...”

This technique of injecting the dependencies relies on a principle called the inversion of control.

The inversion of control (or IoC) principle is also called informally the “Hollywood
principle”, that is a reference to the Hollywood motto “don’t call us, we’ll call you”.

Over the years it was very common for every component to be aware of the complete application
context and be responsible for creating and setting up the dependencies. This can be seen clearly on
our example, where the Product class had to be aware of the PriceService.

The setback of doing things that way is that once a component becomes aware of the dependency,
the component itself becomes more brittle and therefore harder to change. If we make change to a
component on which many other components are dependent upon, we end up having to propagate
the changes to a lot of different areas of our application and sometimes even outside the boundaries
of it. In other words, we’re making our components tightly coupled.

When we use DI we are moving towards a more loosely coupled architecture where changing bits
and pieces of a single component affects the other areas of the application less. And, as long as the
interface between those components don’t change, we can even swap them altogether, without any
other components even realizing.

One of the great features that ng2 inherited from ng1 is that both frameworks uses this Inversion of
Control pattern. Angular uses dependency injection to resolve dependencies out of the box.

Traditionally, if a component A depends on component B, what would happen is that an instance
of B would be created inside A. This implies that now A depends on B.

Dependency Injection 243

creates instance of

\

Service A Service B

/

depends on

Without a Dependency Injection Framework

Angular uses the Dependency Injection to change things around in a way that if we need component
B inside component A, we expect that B will be passed to A.

Service B Service A

1. gets registered 2. declares dependency of B

DI
Framework

3. injects B

With a Dependency Injection Framework

This brings many advantages over the traditional scenario. One example of an advantage is that, if
we’re testing A in isolation we can easily create a mocked version of B and inject it into A.

We have used services and therefore dependency injection a lot of times earlier in this book. For
example, when we created the music application back on the Routing chapter. To interact with the
Spotify API, we created the SpotifyService that was injected on a number of components as we can
see on this snippet from the AlbumComponent:

37
38
39
40
41
42
43
44
45

Dependency Injection 244

code/routes/music/app/ts/components/AlbumComponent.ts

export class AlbumComponent implements OnInit {
id: string;
album: Object;

constructor(private route: ActivatedRoute,
private spotify: SpotifyService, // <-- injected
private location: Location) {
route.params.subscribe(params => { this.id = params['id']; });

}

Now let’s learn how to create our own services and the different forms we can inject them.

Dependency Injection Parts

To register a dependency we have to bind it to something that will identify that dependency. This
identification is called the dependency token. For instance, if we want to register the URL of an
API, we can use the string API_URL as the token. Similarly, if we’re registering a class, we can use
the class itself as its token as we’ll see below.

Dependency injection in Angular has three pieces:

« the Provider (also often referred to as a binding) maps a token (that can be a string or a class)
to a list of dependencies. It tells Angular how to create an object, given a token.

« the Injector that holds a set of bindings and is responsible for resolving dependencies and
injecting them when creating objects

« the Dependency that is what’s being injected

We can think of the role of each piece as illustrated below:

17
18
19
20
21
22
23
24

Dependency Injection

245

Injector

registers

Provider
I Token |—>| Dependency |
<

resolves

Dependency
Registry

Dependency Injection

There are a lot of different options when dealing with DI, so let’s see how each of them work.

One of the most common cases is providing a service or value that is the same across our whole
application. This scenario would be what we would use 99% of the time in our apps.

If this is all we want to do, we’ll cover how to write a basic service in the next section and that is
going to be all we need for most of our apps most of the time.

Enough talk, let’s code!

Playing with an Injector

As mentioned above, Angular is going to setup DI for us behind the scenes. But before we deal with
annotations and the integrating injections into our components, let’s first play with the injector by

itself.

Let’s create a sample service that only returns a string:

code/dependency_injection/injector/app/ts/app.ts

J*
* The injectable service
*/
class MyService {
getValue(): string {
return 'a value';

Next, we want to create the app component:

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Dependency Injection 246

code/dependency_injection/injector/app/ts/app.ts

@Component ({
selector: 'di-sample-app',

template:
<button (click)="invokeService()">Get Value</button>

N

3]
class DiSampleApp {

myService: MyService;

constructor() {
let injector: any = Reflectivelnjector.resolveAndCreate([MyService]);
this.myService = injector.get(MyService);
console.log('Same instance?', this.myService === injector.get(MyService));

invokeService(): void {
console.log('MyService returned', this.myService.getValue());

Let’s break things down a bit. We are declaring the DiSampleApp component that will render a
button. When that button is clicked we call the invokeService method.

Focusing on the constructor of the component we can see that we are using a static method
from Reflectivelnjector called resolveAndCreate. That method is responsible for creating a new
injector. The parameter we pass in is an array with all the injectable things we want this new injector
to know. In our case, we just wanted it to know about the MyService injectable.

The Reflectivelnjector is a concrete implementation of Injector that uses reflection
to look up the proper parameter types. While there are other injectors that are possible
ReflectivelInjector is the “normal” injector we’ll be using in most apps.

One important thing to notice is that it will inject a singleton instance of the class.

This can be verified by the last two lines of our constructor. We are first asking our newly created
injector to give us the instance for the MyService class. We then store that into our component’s
myService field. Right after that, we have a console. log that asks the injector to give us the instance
of MyService again. When the result of the comparison of the next line executes:

47
48
49
50
o1
92
53
54

o I O O B W N =

Dependency Injection 247
console.log('Same instance?', this.myService === injector.get(MyService));

We get the confirmation that both instances are actually the exact same object on the console:
Same instance? true

Notice that, since we’re using our own injector, we didn’t have to add MyService to the NgModule
providers list as we're used to during bootstrapping:

code/dependency_injection/injector/app/ts/app.ts

@NgModule({
declarations: [DiSampleApp],
imports: [BrowserModule],
bootstrap: [DiSampleApp]

19
class DiSampleAppModule {}

platformBrowserDynamic().bootstrapModule(DiSampleAppModule);

Providing Dependencies with NgModule

However, normally we do need to tell our NgModule about the providers of things we will inject.
For instance, say we wanted to allow a singleton instance MyService to be injected across our app.

In order to be able to inject these things we must add them to the providers key of a NgModule.
Here’s an example:

@NgModule({
declarations: |
MyAppComponent,
// other components ...

]I

providers: [MyService | // <--- here

9
class MyAppModule {}

Now MyAppComponent could inject MyService in the constructor like so:

0 = O O b W N =

Dependency Injection 248

export class MyAppComponent {

constructor(private myService: MyService /* <-- injected */) {
// do something with myService here

}

VA

When we put the class itself into the list of providers like this:
providers: [MyService]
That is telling Angular that we want to provide a singleton instance of MyService whenever
MyService is injected. Because this pattern is so common, the class by itself is shorthand notation
for the following, equivalent configuration:
providers: |

{ provide: MyComponent, useClass: MyComponent }

There are many different ways of injecting things beyond creating an instance of a class. let’s take
a look.

Providers

One of the neat things about Angular’s DI system is that there are several ways we can configure
the injection. For instance we can:

Inject a (singleton) instance of a class

Call any function and inject the return value of that function

Inject a value
o Create an alias

For instance,

Let’s look at how we could create each one:

Using a Class

Injecting a singleton instance of a class is probably the most common type of injection.

Here’s how we configure it:

26
27
28
29
30
31
32
33
34

Dependency Injection 249

{ provide: MyComponent, useClass: MyComponent }

What’s interesting to note is that the provide configuration method takes two keys. The first provide
is the token that we use to identify the injection and the second useClass is how and what to inject.

So here we’re mapping the MyComponent class to the MyComponent token. In this case, the name of
the class and the token match. This is the common case, but know that the token and the injected
thing don’t have to have the same name.

As we’ve seen above, in this case the injector will create a singleton behind the scenes and return
the same instance every time we inject it .

Of course, the first time it is injected, it hasn’t been instantiated yet, so when creating the
MyComponent instance for the first time, the DI system will trigger the class constructor method.

Now what happens if a service’s constructor requires some parameter? Let’s say we have this
service:

code/dependency_injection/misc/app/ts/app.ts

class ParamService {
constructor(private phrase: string) {
console.log('ParamService is being created with phrase', phrase);

getValue(): string {
return this.phrase;

Notice how its constructor method takes a phrase as a parameter? If we try to use the regular
injection mechanism w:e would see an error on the browser:

Cannot resolve all parameters for 'ParameterService'(?). Make sure that all the lang. js:375
parameters are decorated with Inject or have valid type annotations and that 'ParameterService' is
decorated with Injectable.

Injection error

This happens because we didn’t provide the injector with enough information about the class we’re
trying to build. In order to resolve this problem, we need to tell the injector which parameter we
want it to use when creating the service’s instance.

If we need to pass in parameters when creating a service, we would need to use a factory instead.

Using a Factory

When we use a factory injection, we write a function that can return any object.

© 00 9 O O b W N =

S © 00 I O O b W N =

[N

52
53
54
55
56
S7
58
959
60
61
62
63

Dependency Injection 250

provide: MyComponent,
useFactory: () => {
if (loggedIn) {
return new MylLoggedComponent();

}

return new MyComponent();

Notice in the case above, we inject on the token MyComponent but this will check the (out
of scope) loggedIn variable. If loggedIn is truthy then the injection will give an instance of
MyLoggedComponent, otherwise we will receive MyComponent.

Factories can also have dependencies:

provide: MyComponent,
useFactory: (user) => {
if (user.loggedIn()) {
return new MylLoggedComponent(user);

}

return new MyComponent();
1,
deps: [User]

So if we wanted to use our ParamService from above, we can wrap it with useFactory like so:

code/dependency_injection/misc/app/ts/app.ts

@NgModule({
declarations: [DiSampleApp],
imports: [BrowserModule],
bootstrap: [DiSampleApp],
providers: [
SimpleService,
{
provide: ParamService,
useFactory: (): ParamService => new ParamService('YOLO')

P

64
65
66
67

Dependency Injection 251

class DiSampleAppAppModule {}

platformBrowserDynamic().bootstrapModule(DiSampleAppAppModule)
.catch((err: any) => console.error(err));

Q In the providers value we can put SimpleService in the list of providers directly because
SimpleService doesn’t need any parameters. It will get translated to:

1 { provide: SimpleService, useClass: SimpleService }

Using a factory is the most powerful way to create injectables, because we can do whatever we want
within the factory function.

Using a Value

This is useful when we want to register a constant that can be redefined by another part of the
application or even by environment (e.g. test or production).

{ provide: 'API_URL', useValue: 'http://my.api.com/v1' }

We’re going to do a more thorough example that uses values further down on the Substituting Values
section.

Using an alias
We can also make an alias to reference a previously registered token, like so:

{ provide: NewComponent, useClass: MyComponent }

Dependency Injection in Apps

When writing our apps there are three steps we need to take in order to perform an injection:

1. Create the service class
2. Declare the dependencies on the receiving component and
3. Configure the injection (i.e. register the injection with Angular in our NgModule)

The first thing we do is create the service class, that is, the class that exposes some behavior we want
to use. This will be called the injectable because it is the thing that our components will receive via
the injection.

Here is how we would create a service:

O = W N =

11
12
13
14

27
28
29

Dependency Injection 252

code/dependency_injection/simple/app/ts/services/ApiService.ts

export class ApiService {
get(): void {
console.log('Getting resource...");

}

Now that we have the thing to be injected, we have to take the next step, which is declare the
dependencies we want to receive when Angular creates our component.

Earlier we used the Injector class directly, but Angular provides two shortcuts for us we can use
when writing our components.

The first and typical way of doing it, is by declaring the injectables we want in our component’s
constructor.

To do that, we require the service:

code/dependency_injection/simple/app/ts/app.ts

J*
* Services
*/

import { ApiService } from 'services/ApiService';

And then we declare it on the constructor:

code/dependency_injection/simple/app/ts/app.ts

class DiSampleApp {
constructor(private apiService: ApiService) {

}

When we declare the injection in our component constructor, Angular will do some reflection to
figure out what class to inject. That is, Angular will see that we are looking for an object of type
ApiService in the constructor and check the DI system for an appropriate injection.

Sometimes we need to give Angular more hints about what we’re trying to inject. In that case we
use the second method by using the @Inject annotation:

36
37
38
39
40
41
42
43
44
45

Dependency Injection 253

class DiSampleApp {
private apiService: ApiService;
constructor(@Inject(ApiService) apiService) {
this.apiService = apiService;

0 If you want to play with the equivalent version, use theapp. long. ts file provided alongside
the app . ts file, just copy its contents over app. ts.

The final step for using dependency injection is to connect the things our components want injected
with the injectables. In other words, we are telling Angular which thing to inject when a component
declares its dependencies.

{ provide: ApiService, useClass: ApiService }

In this case, we use the token ApiService to expose the singleton of the class ApiService.

Finally, we add this ApiService to the providers key of our NgModule:

code/dependency_injection/simple/app/ts/app.ts

@NgModule({

declarations: [DiSampleApp],

imports: [BrowserModule],

bootstrap: [DiSampleApp],

providers: [ApiService] // <-- here
})
class DiSampleAppAppModule {}

platformBrowserDynamic().bootstrapModule(DiSampleAppAppModule)
.catch((err: any) => console.error(err));

Working with Injectors

We’ve played a little bit with injectors already, so let’s talk a little more about when we would need
to use them explicitly.

One case would be when we need to control the moment where the singleton instance of our
dependency gets created.

To illustrate a scenario where that could happen, let’s build another app that uses the ApiService
we created above, along with a new service.

Dependency Injection 254

This service will be used to instantiate two other services, based on the size of the browser viewport.
If it’s less than 800 pixels, it will return a new instance of a service called SmallService. Otherwise,
it will return an instance of LargeService.

Here’s how SmallService look like:

code/dependency_injection/complex/app/ts/services/SmallService.ts

1 export class SmallService {
2 run(): void {
3 console.log('Small service...');
4 }
5 }
And LargeService:
code/dependency_injection/complex/app/ts/services/LargeService.ts
1 export class LargeService {
2 run(): void {
3 console.log('Large service...');
4 }
5 1}
Then we’ll write the ViewPortService that choses between the two:
code/dependency_injection/complex/app/ts/services/ViewPortService.ts
1 import {LargeService} from './LargeService';
2 import {SmallService} from './SmallService';
3
4 export class ViewPortService {
5 determineService(): any ({
6 let w: number = Math.max(document.documentElement.clientWidth,
7 window.innerWidth || 0);
8
9 if (w < 800) {
10 return new SmallService();
11 }
12 return new LargeService();
13 }
14}

Now let’s create an app that uses our services:

31
32
33
34
35

59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76

Dependency Injection 255

code/dependency_injection/complex/app/ts/app.ts

class DiSampleApp {
constructor(private apiService: ApiService,
@Inject('ApiServiceAlias') private aliasService: ApiService,
@Inject('SizeService') private sizeService: any) {

Here we are getting an instance of ApiService the way we saw ealier. But alongside we’re also
getting an instance of the same service, aliased as 'ApiServiceAlias'. Finally we're getting an
instance of a 'SizeService' that is not yet defined.

To understand what each service represents, let’s look at the NgModule:

code/dependency_injection/complex/app/ts/app.ts

@NgModule({
declarations: [DiSampleApp],
imports: [BrowserModule],
bootstrap: [DiSampleApp],
providers: [
ApiService,
ViewPortService,
{ provide: 'ApiServiceAlias', useExisting: ApiService },
{
provide: 'SizeService',
useFactory: (viewport: any) => {
return viewport.determineService();

}I

deps: [ViewPortService]

]
P
class DiSampleAppAppModule {}

Here we are saying that we want the app injector to be aware of the ApiService and ViewPortSer-
vice injectables as they are.

We are then declaring that we want to use the existing ApiService with another token: the string
ApiServiceAlias.

Next, we're declaring another injectable defined by the string token SizeService. This factory
will receive an instance of the ViewPortService that is listed on its deps array. Then it will

37
38
39
40
41

Dependency Injection 256

invoke the determineService() method on that class and that call will return either an instance
of SmallService or LargeService, depending on our browser’s width.

When we click a button in our template, we want to do three calls: one to the ApiService, one to its
alias ApiServiceAlias and finally one to SizeService:

code/dependency_injection/complex/app/ts/app.ts

invokeApi(): void {
this.apiService.get();
this.aliasService.get();
this.sizeService.run();

Now if we run the app and click the Invoke API button with a small browser window:

Dependency Injection

Ll ' ng-book 2: Angular 2 Depr X \

e

Felipe

H

&~ = | [} localhost:8080

4
n

Dependency Injection

| Invoke API || Use Injectors |

& O Elements Console Sources Network »

X
© W <top frame> v [Preserve log
Getting resource... ApiService.ts:3
Getting resource... ApiService.ts:3
Small service... SmallService.ts:3
>

Small browser window

We get one log from the ApiService, another one from the aliased service and finally we get a log
from the SmallService.

If we make our browser window larger, reload the page and click the button again:

257

258

Dependency Injection

o0e / B ng-book 2: Angular 2 Depe % _ Felipe
“~ = € [localhost:8080 el =
| Invoke API || Use Injectors |
[Elements Console Sources Network Timeline Profiles Resources Security Audits IS 4
® ¥ <topframe> ¥ [Preserve log
Getting resource... ApiService.ts:3
Getting resource... ApiService.ts:3
Large service... LargeService.ts:3
b

Large browser window

We get the LargeService log instead. However, if we try to make the browser window smaller and
click the button without reloading the page, we still get the LargeService log:

Dependency Injection

Ll ' ng-book 2: Angular 2 Depr X

W—

H

Felipe

&~ = | [} localhost:8080

| Invoke API || Use Injectors |

Dependency Injection

& O
© W <top frame>

Getting resource...

Elements Console

Getting resource...
Large service...
Getting resource...
Getting resource...
Large service...

Sources Network » :

¥ [Preserve log

ApiService.ts5:3

ApiService.ts5:3
LargeService.ts:3

ApiService.ts:3
ApiService.ts:3

LargeService.ts:3

Small browser window - resized

That’s because the factory was executed once: during the application bootstrap.

259

To overcome that, we can create our own injectors and get the instance of the proper service by

doing the following:

43
44
45
46
47
48
49
S50
o1
52
53
o4
95
56

Dependency Injection 260

code/dependency_injection/complex/app/ts/app.ts

uselnjectors(): void {
let injector: any = Reflectivelnjector.resolveAndCreate([
ViewPortService,
{
provide: 'OtherSizeService',
useFactory: (viewport: any) => {
return viewport.determineService();
1
deps: [ViewPortService]
}
D

let sizeService: any = injector.get('OtherSizeService');
sizeService.run();

Here we are creating an injector that knows the ViewPortService and another injectable with the
string OtherSizeService as its token. This injectable uses the same factory as the SizeService we
used before.

Finally, it uses the injector we created to get an instance of the OtherSizeService.line

Now if we run the app with a large browser window and click the Use Injector button, we get the
large service log. However, if we resize it to a small width, even without reloading we now get the
proper log. That’s because the factory is being executed every time we click the button, since the
injector is being created on demand. Neat!

Substituting values

Another reason to use DI is to change the hard value of the injection at runtime. That could happen
if we have an API service that performs the HTTP requests to our application’s API. On the context
of our unit or integration tests, we don’t want our code to hit the production database. In this case,
we could write a Mock API service that seamlessly replaces our concrete implementation. Let’s take
a look at that now.

For instance, if we are running the app in development we might hit a different API server than if
we were running the app in production.

This is even more true if we were publishing an open-source or reusable service. In that case we
may want the allow the client application define or override an API URL.

Let’s write a simple example of an application that injects different values as the API URL depending
on whether it’s running on production or dev mode. We start with the ApiService class:

W N O O & W N =

RN
N »~ O ©

21
22
23
24
25
26
27
28
29
30
31
32
33
34

Dependency Injection 261

code/dependency_injection/value/app/ts/services/ApiService.ts

import { Inject } from '@angular/core';

export const API_URL: string = '"API_URL';

export class ApiService {
constructor(@Inject(API_URL) private apiUrl: string) {

}

get(): void {
console.log(Calling ${this.apiUrl}/endpoint...");

We are declaring a constant that will be used as the token for our API URL dependency. In other
words, Angular will use the string 'API_URL ' to store the information about which URL to call. This
way when we @Inject(API_URL) the proper value will be injected into the variable.

Notice we are exporting the API_URL constant so that client applications can use API_URL to inject
the correct value from outside the service.

Now that we have the service, let’s write the application component that will use the service and
provide different values for the URL, depending on the environment the app will be running on.

code/dependency_injection/value/app/ts/app.ts

@Component ({
selector: 'di-value-app',
template:
<button (click)="invokeApi()">Invoke API</button>

<

9]
class DiValueApp {

constructor(private apiService: ApiService) {

}

invokeApi(): void {
this.apiService.get();

This is the component code. On the constructor we can see that we are declaring a ApiService
variable called apiService. Here Angular will infer that we need to get the ApiService dependency
and inject it at runtime. If we wanted to be explicit about it we could have used:

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4

Dependency Injection 262

constructor(@Inject(ApiService) private apiService: ApiService) {

}

The idea behind this component is to have an Invoke API button. When we click this button, we’ll
call the get () method of the ApiService. This method will then log to the console the API_URL we’re
using.

The next step is to configure the application with the providers:

code/dependency_injection/value/app/ts/app.ts

const isProduction: boolean = false;

@NgModule({
declarations: [DiValueApp],
imports: [BrowserModule],
bootstrap: [DiValueApp],
providers: [
{ provide: ApiService, useClass: ApiService },
{
provide: API_URL,
useValue: isProduction ?
"https://production-api.sample.com’
'http://dev-api.sample.com’

]

)
class DiValueAppAppModule {}

platformBrowserDynamic().bootstrapModule(DiValueAppAppModule)

First we declare a constant called isProduction and set it to false. We can pretend that we’re
doing something here to determine whether or not we are in production mode. This setting could
be hardcoded like we’re doing, or it could be set using some technique like using WebPack and an
.env file, for instance.

Finally we bootstrap the application and setup 2 providers: one for ApiService using the real class
implementation and the other for API_URL. If we are in production we’re using one value and if not,
we’re using another value.

To test this we can run the application with isProduction = true and when we click the button
we’ll see the production URL being logged:

263

Dependency Injection
Felipe

' ng-bock 2: Angular 2 Dep:

€« C | [Y localhost:8080

Dependency Injection

Invoke API
[w ﬂ Elements Console Sources Network Timeline Profiles Resources Security » i X
¥ [] Preserve log
ApiService.ts:10

Q V¥ top
Calling https://production-api.sample.com/endpoint...

Production environment
false, we see the dev URL instead:

And if we change it to isProduction

Dependency Injection 264

e e ! ng-book 2: Angular 2 Depr % Felipe

<« C | [Y localhost:8080

5
m

Dependency Injection

Invoke APIL
[w ﬂ Elements Console Sources Network Timeline Profiles Resources Security » : X
® V¥ top v Preserve log
Calling http://dev-api.sample.com/endpoint... ApiService.ts:1@

> |

Dev environment

NgModule

NgModule is a way to organize your dependencies for 1. the compiler and 2. dependency injection.
Here we’ll explain why we need NgModules and how to work with them.

The context here is to think about the two roles of the compiler and dependency injection in Angular.
Briefly, Angular needs to know what components define valid tags and where dependencies are
coming from.

NgModule VS. JavaScript Modules

You might be asking, why do we need a new module system at all? Why can’t we just use
ES6/TypeScript modules?

The reason is, whereas using import will load code modules into JavaScript, the NgModule system
is a way of organizing dependencies within the Angular framework. Specifically around what tags
are compiled and what dependencies should be injected.

O O b W N =~

Dependency Injection 265

The Compiler and Components

For the compiler, when you have an Angular template that has custom tags you have to tell the
compiler what tags are valid (and what functionality should be attached to them).

E.g. if we have this component:

@Component ({
selector: 'hello-world',
template: “<div>Hello world</div>"

b
class HelloWorld {

}

We want the compiler to know that the following HTML should use our hello-world component
(and that hello-world isn’t some random invalid tag):

<div>
<hello-world></hello-world>
</div>

In Angular 1, the hello-world selector would have been registered globally which is convenient
until your app grows and you start having naming conflicts. For instance, it’s not hard to imagine
two open-source projects that might use the same selector.

If you've been using Angular 2 since the earlier versions, you may remember that previous versions
required that you specify adirectives option in your @omponent annotation. This was good in that
it was less “magic” and removed the surface area for conflicts. The problem was it’s a bit onerous
to specify all directives necessary for all components.

Instead, using NgModules we can tell Angular what components are dependencies at a “module”
level. More on this in a second.

Dependency Injection and Providers

Recall that Dependency Injection (DI) is an organized way to make dependencies available across
our app. It’s an improvement over simply importing code because we have a standardized way to
share singletons, create factories, and override dependencies at testing time.

In earlier versions of Angular 2 we had to specify all things-that-would-be-injected (with providers)
as an argument to the bootstrap function.

Reminder on terminology: a provider provides (creates, instantiates, etc.) the injectable
(the thing you want). In Angular when you want to access an injectable you inject a
dependency into a function and Angular’s dependency injection framework will locate
it and provide it to you.

O© 00 9 O U b W N =

[N
(]

Dependency Injection 266

Now with NgModule each provider is specified as part of a module.

So now that we understand why we need NgModules how do we actually use it? Here’s the simplest
case:

// app.ts

@NgModule({
imports: [BrowserModule],
declarations: [HelloWorld],
bootstrap: [HelloWorld]

9
class HelloWorldAppModule {}

platformBrowserDynamic().bootstrapModule(HelloWor1dAppModule);

In this case we’re defining a class HelloWor1ldAppModule - this is going to be the entry point of our
application. Starting with RCS5, instead of bootstrapping our app with a component, we bootstrap a
module with bootstrapModule, as you see here.

NgModules can import other modules as dependencies. We're going to be running this app in our
browser and so we import BrowserModule.

We want to use the HelloWorld component in this app. Here’s a key thing to keep in mind: Every
component must be declared in some NgModule. Here we put HelloWorld into the declarations
of this NgModule.

We say the HelloWorld component belongs to the HelloWor1dAppModule - every component can
belong to only one NgModule.

You’'ll often group multiple components together into one NgModule, much like you might use a
namespace in a language like Java.

If you want to bootstrap this module (that is, use this module as the entry point for an application),
then you provide a bootstrap key which specifies the component that will be used as the entry-point
component for this module.

So in this case we're going to bootstrap theHelloWor1d component as the root component. However,
the bootstrap key is optional if you're creating a module that doesn’t need to be the entry-point of
an application.

Component Visibility

In order to use any component, the current NgModule has to know about it. For instance, say we
wanted to use a user-greeting component in our hello-world component like this:

O = W N =

0 N O O & W N =~

TN
N »~ O O

Dependency Injection 267

<I-- hello-world template -->

<div>
<user-greeting></user-greeting>
world

</div>

For any component to use another component it must be accessible via the NgModule system. There
are two ways to make this happen:

1. Either the user-greeting component is part of the same NgModule (e.g. HelloWor 1dAppMod-
ule) or
2. The HelloWorldAppModule imports the module that the UserGreeting component is in.

Let’s say we want to go the second route. Here’s the implementation of our UserGreeting component
along with the UserGreetingModule:

@Component({
selector: 'user-greeting',
template: “hello"
1))

class UserGreeting {

}

@NgModule({
declarations: [UserGreeting],
exports: [UserGreeting]

P

export class UserGreetingModule {}

Notice here that we added a new key: exports. Think of exports as the list of public components
for this NgModule. The implication here is that you can easily have private components by simply
not listing them in exports.

If you forget to put your component in both declarations and exports (and then try to use it in
another module via imports) it won’t work. In order to use a component in another module via
imports you must put your component in both places.

Now we can use this in our HelloWor1ld component by importing it into the HelloWor1dAppModule
like so:

O N O O & W N~

0 N O O & W N - O W N =~

O b W N =

Dependency Injection 268

// updated HelloWorldAppModule

@NgModule({
declarations: [HelloWorld],
imports: [BrowserModule, UserGreetingModule], // <-- added
bootstrap: [HelloWorld],

P
class HelloWorldAppModule {}

Specifying Providers

Specitying providers of injectable things is done by adding them to the providers key of aNgModule.

For instance, say we have this simple service:

export class ApiService {
get(): void {
console.log('Getting resource...");

and we want to be able to inject it on a component like this:

class ApiDataComponent {
constructor(private apiService: ApiService) {

}

getData(): void {
this.apiService.get();

To do this with NgModule is easy: we pass ApiService to the providers key of the module:

@NgModule({
declarations: [ApiDataComponent],

providers: [ApiService] // <-- here

P
class ApiAppModule {}

Passing the constant ApiService here is the shorthand version of using provide like this:

N O O & W N =

Dependency Injection 269

@NgModule({
declarations: [ApiDataComponent],
providers: [
provide(ApiService, { useClass: ApiService })

]

B
class ApiAppModule {}

We're telling Angular that when the ApiService is to be injected, create and maintain a singleton
instance of that class and pass it in the injection.

In order to use those providers from another module, you guessed it, you have to import that module.

Because the ApiDataComponent and ApiService are in the same NgModule the ApiDataComponent is
able to inject the ApiService. If they were in different modules, then you would need to import the
module containing ApiService into the ApiAppModule.

Conclusion

As we can see, Dependency Injection and NgModule coordinate to provide a powerful way to manage
dependencies within our app. Here are a few more resources where you can learn more about it:

» Official Angular DI Docs*’
« Victor Savkin Comparse DI in Angular 1 vs. Angular 2°°

*"https://angular.io/docs/ts/latest/guide/dependency-injection.html
*®http://victorsavkin.com/post/126514197956/dependency-injection-in-angular- 1-and-angular-2

https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2
https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

Data Architecture in Angular 2

An Overview of Data Architecture

Managing data can be one of the trickiest aspects of writing a maintainable app. There are tons of
ways to get data into your application:

« AJAX HTTP Requests
« Websockets

« Indexdb

+ LocalStorage

« Service Workers

» etc.

The problem of data architecture addresses questions like:

« How can we aggregate all of these different sources into a coherent system?

« How can we avoid bugs caused by unintended side-effects?

« How can we structure the code sensibly so that it’s easier to maintain and on-board new team
members?

« How can we make the app run as fast as possible when data changes?

For many years MVC was a standard pattern for architecting data in applications: the Models
contained the domain logic, the View displayed the data, and the Controller tied it all together.
The problem is, we’ve learned that MVC doesn’t translate directly into client-side web applications
very well.

There has been a renaissance in the area of data architectures and many new ideas are being
explored. For instance:

« MVW / Two-way data binding: Model-View-Whatever is a term used* to describe Angular
1’s default architecture. The $scope provides a two-way data-binding - the whole application
shares the same data structures and a change in one area propagates to the rest of the app.

o Flux®’: uses a unidirectional data flow. In Flux, Stores hold data, Views render what’s in the
Store, and Actions change the data in the Store. There is a bit more ceremony to setup Flux,
but the idea is that because data only flows in one direction, it’s easier to reason about.

+ Observables: Observables give us streams of data. We subscribe to the streams and then
perform operations to react to changes. RxJs®" is the most popular reactive streams library for

>*See: Model View Whatever
“®https://facebook.github.io/flux/
®'https://github.com/Reactive- Extensions/RxJS

https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS

Data Architecture in Angular 2 271

Javascript and it gives us powerful operators for composing operations on streams of data.

0 There are a lot of variations on these ideas. For instance:

« Flux is a pattern, and not an implementation. There are many different implemen-
tations of Flux (just like there are many implementations of MVC)

« Immutability is a common variant on all of the above data architectures.
« Falcor®® is a powerful framework that helps bind your client-side models to the
server-side data. Falcor often used with an Observables-type data architecture.

Data Architecture in Angular 2

Angular 2 is extremely flexible in what it allows for data architecture. A data strategy that works
for one project doesn’t necessarily work for another. So Angular doesn’t prescribe a particular stack,
but instead tries to make it easy to use whatever architecture we choose (while still retaining fast
performance).

The benefit of this is that you have flexibility to fit Angular into almost any situation. The downside
is that you have to make your own decisions about what’s right for your project.

Don’t worry, we're not going to leave you to make this decision on your own! In the chapters that
follow, we’re going to cover how to build applications using some of these patterns.

“http://netflix.github.io/falcor/

http://netflix.github.io/falcor/
http://netflix.github.io/falcor/

Data Architecture with Observables -
Part 1: Services

Observables and RxJS

In Angular, we can structure our application to use Observables as the backbone of our data
architecture. Using Observables to structure our data is called Reactive Programming.

But what are Observables, and Reactive Programming anyway? Reactive Programming is a way
to work with asynchronous streams of data. Observables are the main data structure we use to
implement Reactive Programming. But I'll admit, those terms may not be that clarifying. So we’ll
look at concrete examples through the rest of this chapter that should be more enlightening.

Note: Some RxJS Knowledge Required

I want to point out this book is not primarily about Reactive Programming. There are several
other good resources that can teach you the basics of Reactive Programming and you should read
them. We’ve listed a few below.

Consider this chapter a tutorial on how to work with RxJS and Angular rather than an
exhaustive introduction to RxJS and Reactive Programming.

In this chapter, I'll explain in detail the RxJS concepts and APIs that we encounter. But know
that you may need to supplement the content here with other resources if Rx]S is still new to you.

0 Use of Underscore.js in this chapter

Underscore.js** is a popular library that provides functional operators on Javascript data
structures such as Array and Object. We use it a bunch in this chapter alongside RxJS. If
you see the _ in code, such as _.map or _.sortBy know that we’re using the Underscore.js
library. You can find the docs for Underscore.js here®*.

Learning Reactive Programming and RxJS

If you’re just learning RxJS I recommend that you read this article first:

“http://underscorejs.org/
**http://underscorejs.org/

http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/

Data Architecture with Observables - Part 1: Services 273
« The introduction to Reactive Programming you’ve been missing®® by Andre Staltz

After you’ve become a bit more familiar with the concepts behind RxJS, here are a few more links
that can help you along the way:

« Which static operators to use to create streams?°
« Which instance operators to use on streams?®’
« RxMarbles®® - Interactive diagrams of the various operations on streams

Throughout this chapter I'll provide links to the API documentation of Rx]JS. The RxJS docs have
tons of great example code that shed light on how the different streams and operators work.

Do I have to use RxJS to use Angular 2? - No, you definitely don’t. Observables are just
one pattern out of many that you can use with Angular 2. We talk more about other data
patterns you can use here.

[want to give you fair warning: learning RxJS can be a bit mind-bending at first. But trust me, you’ll
get the hang of it and it’s worth it. Here’s a few big ideas about streams that you might find helpful:

1. Promises emit a single value whereas streams emit many values. - Streams fulfill the same
role in your application as promises. If you’ve made the jump from callbacks to promises, you
know that promises are a big improvement in readability and data maintenance vs. callbacks.
In the same way, streams improve upon the promise pattern in that we can continuously
respond to data changes on a stream (vs. a one-time resolve from a promise)

2. Imperative code “pulls” data whereas reactive streams “push” data - In Reactive Program-
ming our code subscribes to be notified of changes and the streams “push” data to these
subscribers

3. RxJS is functional - If you're a fan of functional operators like map, reduce, and filter
then you’ll feel right at home with RxJS because streams are, in some sense, lists and so the
powerful functional operators all apply

4. Streams are composable - Think of streams like a pipeline of operations over your data. You
can subscribe to any part of your stream and even combine them to create new streams

https://gist.github.com/staltz/868¢7e9bc2a7b8c1f754

“https://github.com/Reactive- Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
"https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://staltz.com/rxmarbles

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://staltz.com/rxmarbles
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://staltz.com/rxmarbles

Data Architecture with Observables - Part 1: Services

Chat App Overview

In this chapter, we’re going to use Rx]JS to build a chat app. Here’s a screenshot:

® O ® [Angular 2 - Chat with RxJS *

| Blank |

€« C [} Iocalhost:8080

el »| =

ng-book 2

Echo Bot »
I'll echo whatever you send me

Waiting Bot

I'll wait however many seconds you send 1o me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

Reverse Bot
- I'll reverse whatever you send me

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

Completed Chat Application

0 Usually we try to show every line of code here in the book text. However, this chat
application has a lot of moving parts, so in this chapter we’re not going to have every
single line of code in the text. You can find the sample code for this chapter in the

folder code/rx js/chat. We'll call out each filter where you can view the context, where

appropriate.

274

In this application we’ve provided a few bots you can chat with. Open up the code and try it out:

cd code/rxjs/chat
npm install
npm run go

Data Architecture with Observables - Part 1: Services 275

Now open your browser to http://localhost:8080.

Q If the above URL doesn’t work, try this URL:http: //localhost : 8080/webpack -dev-server/index. html

ﬁ Some Windows users may have trouble doing an npm install on this repo. If this causes
problems for you, make sure you’re running these commands inside Cygwin®’.

Notice a few things about this application:

+ You can click on the threads to chat with another person
+ The bots will send you messages back, depending on their personality
+ The unread message count in the top corner stays in sync with the number of unread messages

Let’s look at an overview of how this app is constructed. We have

+ 3 top-level Angular Components
+ 3 models
« and 3 services

Let’s look at them one at a time.

Components

The page is broken down into three top-level components:

*https://www.cygwin.com/

https://www.cygwin.com/
https://www.cygwin.com/

Data Architecture with Observables - Part 1: Services

® O ® | [Yangular2 - Ghat with RxJS %

% h

[localhost:8080

ChatNavBar

Chat Top-Level Components

« ChatNavBar - contains the unread messages count

Echo Bot » h h d
n I'll echo whatever you send me C atT rea S
Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'
Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

276

+ ChatThreads - shows a clickable list of threads, along with the most recent message and the

conversation avatar

+ ChatWindow - shows the messages in the current thread with an input box to send new

messages

Models

This application also has three models:

Data Architecture with Observables - Part 1: Services 277

Message
Thread id User
id sentAt -
lastMessage id
name T e isRead
tarSrc text author ——| name
ava
. avatarsrc

lastMessage thread — | author

thread

Chat Models

» User - stores information about a chat participant
+ Message - stores an individual message
« Thread - stores a collection of Messages as well as some data about the conversation

Services

In this app, each of our models has a corresponding service. The services are singleton objects that
play two roles:

1. Provide streams of data that our application can subscribe to
2. Provide operations to add or modify data

For instance, the UserService:

« publishes a stream that emits the current user and
« offers a setCurrentUser function which will set the current user (that is, emit the current user
from the currentUser stream)

summary

At a high level, the application data architecture is straightforward:

+ The services maintain streams which emit models (e.g. Messages)
+ The components subscribe to those streams and render according to the most recent values

For instance, the ChatThreads component listens for the most recent list of threads from the
ThreadService and the ChatWindow subscribes for the most recent list of messages.

In the rest of this chapter, we’re going to go in-depth on how we implement this using Angular 2
and RxJS. We'll start by implementing our models, then look at how we create Services to manage
our streams, and then finally implement the Components.

Data Architecture with Observables - Part 1: Services 278

Implementing the Models

Let’s start with the easy stuff and take a look at the models.

User

Our User class is straightforward. We have an id, name, and avatarSrec.

code/rxjs/chat/app/ts/models.ts

3 export class User ({

4 id: string;

)

6 constructor(public name: string,

7 public avatarSrc: string) {

8 this.id = uuid();

9 }

10 '}
Notice above that we're using a TypeScript shorthand in the constructor. When we say
0 public name: string we'’re telling TypeScript that 1. we want name to be a public property
on this class and 2. assign the argument value to that property when a new instance is
created.
Thread

Similarly, Thread is also a straightforward TypeScript class:

code/rxjs/chat/app/ts/models.ts

12 export class Thread {
13 id: string;

14 lastMessage: Message;

15 name: string;

16 avatarSrc: string;

17

18 constructor(id?: string,

19 name?: string,

20 avatarSrc?: string) {
21 this.id = id || uwuid();

22 this.name = name;

23
24
25

14

<N O O B W N =

Data Architecture with Observables - Part 1: Services 279

this.avatarSrc = avatarSrc;

Note that we store a reference to the lastMessage in our Thread. This lets us show a preview of the
most recent message in the threads list.

Message

Message is also a simple TypeScript class, however in this case we use a slightly different form of
constructor:

code/rxjs/chat/app/ts/models.ts

lastMessage: Message;

The pattern you see here in the constructor allows us to simulate using keyword arguments in the
constructor. Using this pattern, we can create a new Message using whatever data we have available
and we don’t have to worry about the order of the arguments. For instance we could do this:

let msgl = new Message();
or this
let msg2 = new Message({

text: "Hello Nate Murray!"
D)

Now that we’ve looked at our models, let’s take a look at our first service: the UserService.

Implementing userService

The point of the UserService is to provide a place where our application can learn about the current
user and also notify the rest of the application if the current user changes.

The first thing we need to do is create a TypeScript class and make it injectable by using the
@Injectable annotation.

10
11
12
13
14
15
16
17

12

Data Architecture with Observables - Part 1: Services

code/rxjs/chat/app/ts/services/UserService.ts

280

export class UserService {
// “currentUser® contains the current user
currentUser: Subject<User> = new BehaviorSubject<User>(null);

public setCurrentUser(newUser: User): void {
this.currentUser.next(newUser);

O When we make something injectable that means we will be able to use it as a dependency
to other components in our application. Briefly, two benefits of dependency-injection are:

1. we let Angular handle the lifecycle of the object and
2. it’s easier to test injected components.

We talk more about @Injectable in the chapter on dependency injection, but the result is
that now we can inject it as a dependency to our components like so:

class MyComponent {
constructor(public userService: UserService) {

// do something with “userService” here

O > W N -

currentUser Stream

Next we setup a stream which we will use to manage our current user:

code/rxjs/chat/app/ts/services/UserService.ts

currentUser: Subject<User> = new BehaviorSubject<User>(null);

There’s a lot going on here, so let’s break it down:

« We're defining an instance variable currentUser which is a Subject stream.
« Concretely, currentUser is a BehaviorSubject which will contain User.

Y

© © 00 N O O b W N+~

Data Architecture with Observables - Part 1: Services 281
» However, the first value of this stream is null (the constructor argument).

If you haven’t worked with RxJS much, then you may not know what Sub ject or BehaviorSubject
are. You can think of a Subject as a “read/write” stream.

0 Technically a Subject’® inherits from both Observable”™ and Observer’

One consequence of streams is that, because messages are published immediately, a new subscriber
risks missing the latest value of the stream. BehaviourSubject compensates for this.

BehaviourSubject’ has a special property in that it stores the last value. Meaning that any
subscriber to the stream will receive the latest value. This is great for us because it means that
any part of our application can subscribe to the UserService.currentUser stream and immediately
know who the current user is.

Setting a new user

We need a way to publish a new user to the stream whenever the current user changes (e.g. logging
in).

There’s two ways we can expose an API for doing this:

1. Add new users to the stream directly:

The most straightforward way to update the current user is to have clients of the UserService simply
publish a new User directly to the stream like this:

userService.subscribe((newUser) => {

console.log('New User is: ', newUser.name);

1))

// => New User is: originalUserName

let u = new User('Nate', 'anImgSrc');
userService.currentUser.next(u);

// => New User is: Nate

"https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
"Thttps://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
"2https://github.com/Reactive- Extensions/RxJS/blob/master/doc/api/core/observer.md
"https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md

14
15
16

Data Architecture with Observables - Part 1: Services 282

0 Note here that we use the next method on a Subject to push a new value to the stream

The pro here is that we’re able to reuse the existing API from the stream, so we’re not introducing
any new code or APIs

2. Create a setCurrentUser(newUser: User) method

The other way we could update the current user is to create a helper method on the UserService
like this:

code/rxjs/chat/app/ts/services/UserService.ts

public setCurrentUser(newUser: User): void {
this.currentUser.next(newUser);

You’ll notice that we’re still using the next method on the currentUser stream, so why bother doing
this?

Because there is value in decoupling the implementation of the currentUser from the implementation
of the stream. By wrapping the next in the setCurrentUser call we give ourselves room to change
the implementation of the UserService without breaking our clients.

In this case, I wouldn’t recommend one method very strongly over the other, but it can make a big
difference on the maintainability of larger projects.

A third option could be to have the updates expose streams of their own (that is, a stream
where we place the action of changing the current user). We explore this pattern in the
MessagesService below.

UserService.ts

Putting it together, our UserService looks like this:

W N O O & W N =~

N N P S s s sy s
, O © 00 O O b WO N~ OO O

Data Architecture with Observables - Part 1: Services

code/rxjs/chat/app/ts/services/UserService.ts

283

import {Injectable} from '@angular/core';
import {Subject, BehaviorSubject} from 'rxjs';

import {User} from '../models';

%k
* UserService manages our current user
*/

@Injectable()

export class UserService {
// “currentUser® contains the current user
currentUser: Subject<User> = new BehaviorSubject<User>(null);

public setCurrentUser(newUser: User): void {

this.currentUser.next(newUser);

export var userServicelnjectables: Array<any> = [

UserService

1;

The MessagesService

The MessagesService is the backbone of this application. In our app, all messages flow through the

MessagesService.

Our MessagesService has much more sophisticated streams compared to our UserService. There
are five streams that make up our MessagesService: 3 “data management” streams and 2 “action”

streams.

The three data management streams are:

+ newMessages - emits each new Message only once
+ messages - emits an array of the current Messages

« updates - performs operations on messages

the newMessages stream

newMessages is a Subject that will publish each new Message only once.

12
13
14

88
89
90

Data Architecture with Observables - Part 1: Services 284

code/rxjs/chat/app/ts/services/MessagesService.ts

export class MessagesService {
// a stream that publishes new messages only once
newMessages: Subject<Message> = new Subject<Message>();

If we want, we can define a helper method to add Messages to this stream:

code/rxjs/chat/app/ts/services/MessagesService.ts

addMessage(message: Message): void {
this.newMessages.next(message);

It would also be helpful to have a stream that will get all of the messages from a thread that are not
from a particular user. For instance, consider the Echo Bot:

¥ Chat - Echo Bot

I'll echo whatewver you send me

0 Stop copying me

[y

Stop copying me

Write your message here... m

Real mature, Echo Bot

When we are implementing the Echo Bot, we don’t want to enter an infinite loop and repeat back
the bot’s messages to itself.

To implement this we can subscribe to the newMessages stream and filter out all messages that are

1. part of this thread and
2. not written by the bot.

You can think of this as saying, for a given Thread I want a stream of the messages that are “for”
this User.

92
93
94
95
96
o7
98
99
100

17

Data Architecture with Observables - Part 1: Services 285

code/rxjs/chat/app/ts/services/MessagesService.ts

messagesForThreadUser (thread: Thread, user: User): Observable<Message> {
return this.newMessages
.filter((message: Message) => {
// belongs to this thread
return (message.thread.id === thread.id) &&
// and isn't authored by this user
(message.author.id !== user.id);

});

messagesForThreadUser takes a Thread and a User and returns a new stream of Messages that are

s »

filtered on that Thread and not authored by the User. That is, it is a stream of “everyone else’s
messages in this Thread.

the messages stream

Whereas newMessages emits individual Messages, the messages stream emits an Array of the most
recent Messages.

code/rxjs/chat/app/ts/services/MessagesService.ts

messages: Observable<Message[]>;

o The type Message[] is the same as Array<Message>. Another way of writing the same

thing would be: Observable<Array<Message>>. When we define the type of messages to

be Observable<Message[]> we mean that this stream emits an Array (of Messages), not
individual Messages.

So how does messages get populated? For that we need to talk about the updates stream and a new
pattern: the Operation stream.

The Operation Stream Pattern

Here’s the idea:

« We'll maintain state in messages which will hold an Array of the most current Messages
« We use an updates stream which is a stream of functions to apply to messages

You can think of it this way: any function that is put on the updates stream will change the list of
the current messages. A function that is put on the updates stream should accept a list of Messages
and then return a list of Messages. Let’s formalize this idea by creating an interface in code:

19
20
21
22

28
29
30
31
32
33
34
35
36

Data Architecture with Observables - Part 1: Services 286

code/rxjs/chat/app/ts/services/MessagesService.ts

interface IMessagesOperation extends Function ({
(messages: Message[]): Message[];

Let’s define our updates stream:

code/rxjs/chat/app/ts/services/MessagesService.ts

// “updates” receives _operations_ to be applied to our “messages’

// it's a way we can perform changes on *all* messages (that are currently
// stored in ‘messages’)

updates: Subject<any> = new Subject<any>();

Remember, updates receives operations that will be applied to our list of messages. But how do we
make that connection? We do (in the constructor of our MessagesService) like this:

code/rxjs/chat/app/ts/services/MessagesService.ts

constructor() {
this.messages = this.updates
// watch the updates and accumulate operations on the messages
.scan((messages: Message|[],
operation: IMessagesOperation) => {
return operation(messages);
1,
initialMessages)
// make sure we can share the most recent list of messages across anyone

This code introduces a new stream function: scan’. If you’re familiar with functional programming,
scan is a lot like reduce: it runs the function for each element in the incoming stream and
accumulates a value. What’s special about scan is that it will emit a value for each intermediate
result. That is, it doesn’t wait for the stream to complete before emitting a result, which is exactly
what we want.

When we call this.updates.scan, we are creating a new stream that is subscribed to the updates
stream. On each pass, we’re given:

1. the messages we’re accumulating and
2. the new operation to apply.

and then we return the new Message[].

"*https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md

30
31
32
33
34
35
36
37
38
39
40

Data Architecture with Observables - Part 1: Services 287

Sharing the Stream

One thing to know about streams is that they aren’t shareable by default. That is, if one subscriber
reads a value from a stream, it can be gone forever. In the case of our messages, we want to 1. share
the same stream among many subscribers and 2. replay the last value for any subscribers who come
“late”.

To do that, we use two operators: publishReplay and refCount.

» publishReplay let’s us share a subscription between multiple subscribers and replay n number
of values to future subscribers. (see publish’ and replay’®)

« refCount’” - makes it easier to use the return value of publish, by managing when the
observable will emit values

Q Wait, so what does refCount do?

refCount can be a little tricky to understand because it relates to how one manages “hot”
and “cold” observables. We’re not going to dive deep into explaining how this works and
we direct the reader to:

« RxJS docs on refCount’®
« Introduction to Rx: Hot and Cold observables”
+ RefCount Marble Diagram®’

code/rxjs/chat/app/ts/services/MessagesService.ts

// watch the updates and accumulate operations on the messages
.scan((messages: Message|[],

operation: IMessagesOperation) => {

return operation(messages);

1,

initialMessages)
// make sure we can share the most recent list of messages across anyone
// who's interested in subscribing and cache the last known list of
// messages
.publishReplay(1)
.refCount();

"https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
"Shttps://github.com/Reactive-Extensions/Rx]JS/blob/master/doc/api/core/operators/replay.md
""https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
"®https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
79http://WWW.in‘[rotorx.corn/ Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
8%http://reactivex.io/documentation/operators/refcount.html

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html

O = W N =

© 00 N O U b W N =

Y
(]

Data Architecture with Observables - Part 1: Services 288

Adding Messages to the messages Stream

Now we could add a Message to the messages stream like so:

var myMessage = new Message(/* params here... */);

updates.next((messages: Message[]): Message[] => {
return messages.concat(myMessage);

1))

Above, we're adding an operation to the updates stream. messages is subscribe to that stream and
so it will apply that operation which will concat our newMessage on to the accumulated list of
messages.

o It’s okay if this takes a few minutes to mull over. It can feel a little foreign if you’re not
used to this style of programming.

One problem with the above approach is that it’s a bit verbose to use. It would be nice to not have
to write that inner function every time. We could do something like this:

addMessage(newMessage: Message) {
updates.next((messages: Message[]): Message[] => {
return messages.concat(newMessage);

P

// somewhere else

var myMessage = new Message(/* params here... */);
MessagesService.addMessage(myMessage) ;

This is a little bit better, but it’s not “the reactive way”. In part, because this action of creating a
message isn’t composable with other streams. (Also this method is circumventing our newMessages
stream. More on that later.)

A reactive way of creating a new message would be to have a stream that accepts Messages to add
to the list. Again, this can be a bit new if you’re not used to thinking this way. Here’s how you’d
implement it:

First we make an “action stream” called create. (The term “action stream” is only meant to describe
its role in our service. The stream itself is still a regular Subject):

24
25

56
57
958
959
60
61

56
ST
58
959
60
61
62

Data Architecture with Observables - Part 1: Services 289

code/rxjs/chat/app/ts/services/MessagesService.ts

// action streams
create: Subject<Message> = new Subject<Message>();

Next, in our constructor we configure the create stream:

code/rxjs/chat/app/ts/services/MessagesService.ts

this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
}s
)

The map®! operator is a lot like the built-in Array.map function in Javascript except that it works on
streams. That is, it runs the function once for each item in the stream and emits the return value of
the function.

In this case, we're saying “for each Message we receive as input, return an IMessagesOperation that
adds this message to the list”. Put another way, this stream will emit a function which accepts the
list of Messages and adds this Message to our list of messages.

Now that we have the create stream, we still have one thing left to do: we need to actually hook it
up to the updates stream. We do that by using subscribe®.

code/rxjs/chat/app/ts/services/MessagesService.ts

this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
1
)

.subscribe(this.updates);

What we’re doing here is subscribing the updates stream to listen to the create stream. This means
that if create receives a Message it will emit an IMessagesOperation that will be received by
updates and then the Message will be added to messages

Here’s a diagram that shows our current situation:

®https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
82https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

64
65

Data Architecture with Observables - Part 1: Services 290

Messages Operation
{closed over newMessage)

newMessage:
Message

hdds age
to messages

—_—

Creating a new message, starting with the create stream

This is great because it means we get a few things:

1. The current list of messages from messages
2. A way to process operations on the current list of messages (via updates)
3. An easy-to-use stream to put create operations on our updates stream (via create)

Anywhere in our code, if we want to get the most current list of messages, we just have to go to the
messages stream. But we have a problem, **we still haven’t connected this flow to the newMessages
stream.

It would be great if we had a way to easily connect this stream with any Message that comes from
newMessages. It turns out, it’s really easy:

code/rxjs/chat/app/ts/services/MessagesService.ts

this.newMessages
.subscribe(this.create);

Now our diagram looks like this:

Data Architecture with Observables - Part 1: Services 291

<:EEE%ESEEE;E:) <::EEEE§;€::> (::EE%%aEEE::> <:EE}Eh{%EE:>

newMessage:
Message sage >

Messages Operation
(closed over newMessage)

Adds age
to messages

Creating a new message, starting with the newMessages stream

Now our flow is complete! It’s the best of both worlds: we’re able to subscribe to the stream of
individual messages through newMessages, but if we just want the most up-to-date list, we can
subscribe to messages.

9 It’s worth pointing out some implications of this design: if you subscribe to newMessages
directly, you have to be careful about changes that may happen downstream. Here are three
things to consider:

First, you obviously won’t get any downstream updates that are applied to the Messages.

Second, in this case, we have mutable Message objects. So if you subscribe to newMessages
and store a reference to a Message, that Message’s attributes may change.

Third, in the case where you want to take advantage of the mutability of our Messages you
may not be able to. Consider the case where we could put an operation on the updates
queue that makes a copy of each Message and then mutates the copy. (This is probably a
better design than what we’re doing here.) In this case, you couldn’t rely on any Message
emitted directly from newMessages being in its “final” state.

That said, as long as you keep these considerations in mind, you shouldn’t have too much
trouble.

Our completed MessagesService

Here’s what the completed MessagesService looks like:

Data Architecture with Observables - Part 1: Services 292

code/rxjs/chat/app/ts/services/MessagesService.ts

1 import {Injectable} from '@angular/core';
2 import {Subject, Observable} from 'rxjs';
3 import {User, Thread, Message} from '../models';
4
5 let initialMessages: Message[] = [];
6
7 interface IMessagesOperation extends Function {
8 (messages: Message[]): Message[];
9 }
10
11 @Injectable()
12 export class MessagesService {
13 // a stream that publishes new messages only once
14 newMessages: Subject<Message> = new Subject<Message>();
15
16 // “messages” is a stream that emits an array of the most up to date messages
17 messages: Observable<Message[]>;
18
19 // “updates’ receives _operations_ to be applied to our ‘messages’
20 // it's a way we can perform changes on *all* messages (that are currently
21 // stored in ‘messages’)
22 updates: Subject<any> = new Subject<any>();
23
24 // action streams
25 create: Subject<Message> = new Subject<Message>();
26 markThreadAsRead: Subject<any> = new Subject<any>();
27
28 constructor() {
29 this.messages = this.updates
30 // watch the updates and accumulate operations on the messages
31 .scan((messages: Message|[],
32 operation: IMessagesOperation) => {
33 return operation(messages);
34 },
35 initialMessages)
36 // make sure we can share the most recent list of messages across anyone
37 // who's interested in subscribing and cache the last known list of
38 // messages
39 .publishReplay(1)
40 .refCount();

41

42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83

Data Architecture with Observables - Part 1: Services 293

// ‘create’ takes a Message and then puts an operation (the inner function)
// on the “updates® stream to add the Message to the list of messages.
//
// That is, for each item that gets added to ‘create’ (by using ‘next’)
// this stream emits a concat operation function.
//
// Next we subscribe “this.updates™ to listen to this stream, which means
// that it will receive each operation that is created
//
// Note that it would be perfectly acceptable to simply modify the
// "addMessage" function below to simply add the inner operation function to
// the update stream directly and get rid of this extra action stream
// entirely. The pros are that it is potentially clearer. The cons are that
// the stream is no longer composable.
this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
1
)

.subscribe(this.updates);

this.newMessages
.subscribe(this.create);

// similarly, “markThreadAsRead” takes a Thread and then puts an operation
// on the “updates® stream to mark the Messages as read
this.markThreadAsRead
.map((thread: Thread) => {
return (messages: Message[]) => {
return messages.map((message: Message) => {
// note that we're manipulating “message” directly here. Mutability
// can be confusing and there are lots of reasons why you might want
// to, say, copy the Message object or some other 'immutable' here
if (message.thread.id === thread.id) {
message.isRead = true;
}
return message;
1);
}s
)

.subscribe(this.updates);

84
85
86
87
88
89
90
91
92
93
94
95
96
o
98
99
100
101
102
103
104
105

Data Architecture with Observables - Part 1: Services 294

// an imperative function call to this action stream
addMessage(message: Message): void {
this.newMessages.next(message);

messagesForThreadUser (thread: Thread, user: User): Observable<Message> {
return this.newMessages
.filter((message: Message) => {
// belongs to this thread
return (message.thread.id === thread.id) &&
// and isn't authored by this user
(message.author.id !== user.id);

});

export var messagesServicelnjectables: Array<any> = |
MessagesService

1;

Trying out MessagesService
If you haven’t already, this would be a good time to open up the code and play around with

the MessagesService to get a feel for how it works. We've got an example you can start with in
test/services/MessagesService.spec.ts.

0 To run the tests in this project, open up your terminal then:

1 cd /path/to/code/rxjs/chat // <-- your path will vary
2 npm install
3 karma start

Let’s start by creating a few instances of our models to use:

0 N O O B W N =

B R | s s s
O© 00 1 O O i WO N~ O ©

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Data Architecture with Observables - Part 1: Services

code/rxjs/chat/test/services/MessagesService.spec.ts

295

import {MessagesService} from '../../app/ts/services/services';

import {Message, User, Thread} from '../../app/ts/models';

describe('MessagesService', () => {
it('should test', () => {

let user: User = new User('Nate', '');
let thread: Thread = new Thread('t1', 'Nate', '');
let ml: Message = new Message({
author: user,
text: 'Hil',
thread: thread
1

let m2: Message = new Message({
author: user,
text: 'Bye!',
thread: thread

1

Next let’s subscribe to a couple of our streams:

code/rxjs/chat/test/services/MessagesService.spec.ts

let messagesService: MessagesService = new MessagesService();

// listen to each message indivdually as it comes in
messagesService.newMessages
.subscribe((message: Message) => {
console.log('=> newMessages: ' + message.text);

});

// listen to the stream of most current messages
messagesService.messages
.subscribe((messages: Message[]) => {

console.log('=> messages:

});

+ messages.length);

messagesService.addMessage(ml);
messagesService.addMessage(m2);

38
39
40
41
42
43
44
45

Data Architecture with Observables - Part 1: Services 296

// => messages: 1
// => newMessages: Hi!
// => messages: 2
// => newMessages: Bye!

});

});

Notice that even though we subscribed to newMessages first and newMessages is called directly
by addMessage, our messages subscription is logged first. The reason for this is because messages
subscribed to newMessages earlier than our subscription in this test (when MessagesService was
instantiated). (You shouldn’t be relying on the ordering of independent streams in your code, but
why it works this way is worth thinking about.)

Play around with the MessagesService and get a feel for the streams there. We're going to be using
them in the next section where we build the ThreadsService.

The ThreadsService

On our ThreadsService were going to define four streams that emit respectively:

1. A map of the current set of Threads (in threads)

2. A chronological list of Threads, newest-first (in orderedthreads)

3. The currently selected Thread (in currentThread)

4. The list of Messages for the currently selected Thread (in currentThreadMessages)

Let’s walk through how to build each of these streams, and we’ll learn a little more about RxJS along
the way.

A map of the current set of Threads (in threads)

Let’s start by defining our ThreadsService class and the instance variable that will emit the Threads:

, O O 0 N O O b W N =

[EEY

11

26
27
28
29
30
31
32

Data Architecture with Observables - Part 1: Services 297

code/rxjs/chat/app/ts/services/ThreadsService.ts

import {Injectable} from '@angular/core';
import {Subject, BehaviorSubject, Observable} from 'rxjs';

1

import {Thread, Message} from '../models';

1

import {MessagesService} from './MessagesService';

import * as _ from 'underscore';

@Injectable()
export class ThreadsService {

// “threads” is a observable that contains the most up to date list of threads
threads: Observable<{ [key: string]: Thread }>;

Notice that this stream will emit a map (an object) with the id of the Thread being the string key
and the Thread itself will be the value.

To create a stream that maintains the current list of threads, we start by attaching to the
messagesService.messages stream:

code/rxjs/chat/app/ts/services/ThreadsService.ts

threads: Observable<{ [key: string]: Thread }>;

Recall that each time a new Message is added to the steam, messages will emit an array of the current
Messages. We're going to look at each Message and we want to return a unique list of the Threads.

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.threads = messagesService.messages
.map((messages: Message[]) => {
let threads: {[key: string]: Thread} = {};
// Store the message's thread in our accumulator ‘“threads’
messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id] ||
message.thread;

Notice above that each time we will create a new list of threads. The reason for this is because we
might delete some messages down the line (e.g. leave the conversation). Because we’re recalculating
the list of threads each time, we naturally will “delete” a thread if it has no messages.

In the threads list, we want to show a preview of the chat by using the text of the most recent
Message in that Thread.

33
34
35
36
37
38
39
40
41

26
27
28
29
30
31
32
33
34

Data Architecture with Observables - Part 1: Services

Echo Bot »

I'll echo whatever you send me

Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’

Lady Capulet

So shall you feel the loss, but not the
friend which you weep for.

Reverse Bot
- I'll reverse whatever you send me

List of Threads with Chat Preview

298

In order to do that, we’ll store the most recent Message for each Thread. We know which Message

is newest by comparing the sentAt times:

code/rxjs/chat/app/ts/services/ThreadsService.ts

// Cache the most recent message for each thread
let messagesThread: Thread = threads[message.thread.id];
if (!messagesThread.lastMessage ||

messagesThread. lastMessage.sentAt < message.sentAt) {

messagesThread. lastMessage = message;

}
});

return threads;

});

Putting it all together, threads looks like this:

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.threads = messagesService.messages
.map((messages: Message[]) => {
let threads: {[key: string]: Thread} = {};
// Store the message's thread in our accumulator “threads’
messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id]
message.thread;

// Cache the most recent message for each thread

35
36
37
38
39
40
41
42

W N O O & W N =

NN NN DNDNDNN DN B 1 b 1 s s
O N1 O Ol b WO NP, O O 0 N0 0 b W N~ ©

Data Architecture with Observables - Part 1: Services 299

let messagesThread: Thread = threads[message.thread.id];
if (!messagesThread.lastMessage ||
messagesThread. lastMessage.sentAt < message.sentAt) {
messagesThread. lastMessage = message;
}
1);

return threads;

});

Trying out the ThreadsService
Let’s try out our ThreadsService. First we’ll create a few models to work with:

code/rxjs/chat/test/services/ThreadsService.spec.ts

1

import {MessagesService, ThreadsService} from '../../app/ts/services/services';
import {Message, User, Thread} from '../../app/ts/models';

import * as _ from 'underscore';

describe('ThreadsService', () => {
it('should collect the Threads from Messages', () => {

let nate: User = new User('Nate Murray', '');
let felipe: User = new User('Felipe Coury', '');

let t1: Thread = new Thread('t1', 'Thread 1', '');
let t2: Thread = new Thread('t2', 'Thread 2', '');

let m1: Message = new Message({

author: nate,

text: 'Hi!'

thread: t1
1)

’

let m2: Message = new Message({
author: felipe,
text: 'Where did you get that hat?',
thread: t1

});

let m3: Message = new Message({
author: nate,
text: 'Did you bring the briefcase?',

29
30

32
33

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Data Architecture with Observables - Part 1: Services

thread: t2
});

300

Now let’s create an instance of our services:

code/rxjs/chat/test/services/ThreadsService.spec.ts

let messagesService: MessagesService = new MessagesService();
let threadsService: ThreadsService = new ThreadsService(messagesService);

Notice here that we’re passing messagesService as an argument to the constructor of our
ThreadsService. Normally we let the Dependency Injection system handle this for us. But
in our test, we can provide the dependencies ourselves.

Let’s subscribe to threads and log out what comes through:

code/rxjs/chat/test/services/ThreadsService.spec.ts

let threadsService: ThreadsService = new ThreadsService(messagesService);

threadsService.threads
.subscribe((threadldx: { [key: string]: Thread }) => {

let threads: Thread[] = _.values(threadIdx);
let threadNames: string = _.map(threads, (t: Thread) => t.name)
Jjoin(', '),
console.log(=> threads (${threads.length}): ${threadNames} °);
1

messagesService.addMessage(m1);
messagesService.addMessage(m2);
messagesService.addMessage(m3);

// => threads (1): Thread 1
// => threads (1): Thread 1
// => threads (2): Thread 1, Thread 2

1)
1)

13
14

44
45
46
47
48

Data Architecture with Observables - Part 1: Services 301

A chronological list of Threads, newest-first (in orderedthreads)

threads gives us a map which acts as an “index” of our list of threads. But we want the threads view
to be ordered according the most recent message.

Echo Bot »
I'll echo whatever you send me

Reverse Bot

I'll reverse whatever you send me

Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’
n Lady Capulet

So shall you feel the loss, but not the
friend which you weep for.

Time Ordered List of Threads

Let’s create a new stream that returns an Array of Threads ordered by the most recent Message time:

We'll start by defining orderedThreads as an instance property:

code/rxjs/chat/app/ts/services/ThreadsService.ts

// “orderedThreads ™ contains a newest-first chronological list of threads
orderedThreads: Observable<Thread[]>;

Next, in the constructor we’ll define orderedThreads by subscribing to threads and ordered by
the most recent message:

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.orderedThreads = this.threads
.map((threadGroups: { [key: string]: Thread }) => {
let threads: Thread[] = _.values(threadGroups);
return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

});

The currently selected Thread (in currentThread)

Our application needs to know which Thread is the currently selected thread. This lets us knowr:

16
17
18

Data Architecture with Observables - Part 1: Services 302

1. which thread should be shown in the messages window
2. which thread should be marked as the current thread in the list of threads

Echo Bot
I'll echo whatever you send me

Reverse Bot =

n I'll reverse whatever you send ma
Waiting Bot
I'll wait however many seconds you send to me before responding. Try sending '3’

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

The current thread is marked by a ‘4€¢’ symbol
Let’s create a BehaviorSubject that will store the currentThread:

code/rxjs/chat/app/ts/services/ThreadsService.ts

// “currentThread™ contains the currently selected thread
currentThread: Subject<Thread> =
new BehaviorSubject<Thread>(new Thread());

Notice that we’re issuing an empty Thread as the default value. We don’t need to configure the
currentThread any further.

Setting the Current Thread

To set the current thread we can have clients either

1. submit new threads via next directly or
2. add a helper method to do it.

Let’s define a helper method setCurrentThread that we can use to set the next thread:

Data Architecture with Observables - Part 1: Services 303

code/rxjs/chat/app/ts/services/ThreadsService.ts
69 setCurrentThread(newThread: Thread): void ({
70 this.currentThread.next(newThread);
71 }

Marking the Current Thread as Read

We want to keep track of the number of unread messages. If we switch to a new Thread then we
want to mark all of the Messages in that Thread as read. We have the parts we need to do this:

1. The messagesService.makeThreadAsRead accepts a Thread and then will mark all Messages
in that Threaad as read
2. Our currentThread emits a single Thread that represents the current Thread

So all we need to do is hook them together:

code/rxjs/chat/app/ts/services/ThreadsService.ts

66 this.currentThread.subscribe(this.messagesService.markThreadAsRead);

The list of Messages for the currently selected Thread (in
currentThreadMessages)

Now that we have the currently selected thread, we need to make sure we can show the list of

Messages in that Thread.
¥ Chat - Reverse Bot
I'll reverse whatever you send me n

F okay

[y

- n

The current list of messages is for the Reverse Bot

Implementing this is a little bit more complicated than it may seem at the surface. Say we
implemented it like this:

0 = O O b W N =

e
W N~ OO O

50
51
52

Data Architecture with Observables - Part 1: Services 304

var theCurrentThread: Thread;

this.currentThread.subscribe((thread: Thread) => {
theCurrentThread = thread;

D)

this.currentThreadMessages.map(
(mesages: Message[]) => {
return _.filter(messages,
(message: Message) => {
return message.thread.id == theCurrentThread.id;

D)
P

What’s wrong with this approach? Well, if the currentThread changes, currentThreadMessages
won’t know about it and so we’ll have an outdated list of currentThreadMessages!

What if we reversed it, and stored the current list of messages in a variable and subscribed to the
changing of currentThread? We’d have the same problem only this time we would know when the
thread changes but not when a new message came in.

How can we solve this problem?

It turns out, Rx]JS has a set of operators that we can use to combine multiple streams. In this case
we want to say “if either currentThread or messagesService.messages changes, then we want to
emit something.” For this we use the combinelLatest®® operator.

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {

When we’re combining two streams one or the other will arrive first and there’s no guarantee that
we’ll have a value on both streams, so we need to check to make sure we have what we need
otherwise we’ll just return an empty list.

Now that we have both the current thread and messages, we can filter out just the messages we’re
interested in:

8https://github.com/Reactive- Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

50
51
92
93
54
55
56

54
55
o6
o7
58
59
60

S50
51
52
53
54
95
56
o7

Data Architecture with Observables - Part 1: Services 305

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))

One other detail, since we're already looking that the messages for the current thread, this is a
convenient area to mark these messages as read.

code/rxjs/chat/app/ts/services/ThreadsService.ts

return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))
.map((message: Message) => {
message.isRead = true;
return message; })
.value();

A Whether or not we should be marking messages as read here is debatable. The biggest
drawback is that we’re mutating objects in what is, essentially, a “read” thread. i.e. this is a
read operation with a side effect, which is generally a Bad Idea. That said, in this application
the currentThreadMessages only applies to the currentThread and the currentThread
should always have its messages marked as read. That said, the “read with side-effects” is

not a pattern I recommend in general.

Putting it together, here’s what currentThreadMessages looks like:

code/rxjs/chat/app/ts/services/ThreadsService.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))
.map((message: Message) => {

o8
59
60
61
62
63
64

0 N O Ol & W N =~

(]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Data Architecture with Observables - Part 1: Services

message.isRead = true;
return message; })

.value();
} else {
return [];
}
1)

306

Our Completed ThreadsService

Here’s what our ThreadService looks like:

code/rxjs/chat/app/ts/services/ThreadsService.ts

import {Injectable} from '@angular/core';
import {Subject, BehaviorSubject, Observable} from 'rxjs';

import {Thread, Message} from '../models';

import {MessagesService} from './MessagesService';

import * as _ from 'underscore';

@Injectable()
export class ThreadsService {

// “threads” is a observable that contains the most up to date list of threads
threads: Observable<{ [key: string]: Thread }>;

// “orderedThreads ™ contains a newest-first chronological list of threads
orderedThreads: Observable<Thread[]>;

// “currentThread™ contains the currently selected thread
currentThread: Subject<Thread> =
new BehaviorSubject<Thread>(new Thread());

// “currentThreadMessages ™ contains the set of messages for the currently
// selected thread
currentThreadMessages: Observable<Message[]>;

constructor(private messagesService: MessagesService) {

this.threads = messagesService.messages
.map((messages: Message[]) => {
let threads: {[key: string]: Thread} = {};
// Store the message's thread in our accumulator “threads"

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
S7
58
99
60
61
62
63
64
65
66
67
68
69
%
71

Data Architecture with Observables - Part 1: Services 307

messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id] ||
message.thread;

// Cache the most recent message for each thread
let messagesThread: Thread = threads[message.thread.id];
if (!messagesThread.lastMessage ||
messagesThread. lastMessage.sentAt < message.sentAt) {
messagesThread. lastMessage = message;

}
1)

return threads;

});

this.orderedThreads = this.threads
.map((threadGroups: { [key: string]: Thread }) => {
let threads: Thread[] = _.values(threadGroups);
return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

});

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))
.map((message: Message) => {
message.isRead = true;
return message; })

.value();
} else {
return [];

}
1),

this.currentThread.subscribe(this.messagesService.markThreadAsRead);

setCurrentThread(newThread: Thread): void {
this.currentThread.next(newThread);

T2
73
T4
)
76
7

Data Architecture with Observables - Part 1: Services 308

export var threadsServicelnjectables: Array<any> = [
ThreadsService

1;

Data Model Summary

Our data model and services are complete! Now we have everything we need now to start hooking
it up to our view components! In the next chapter we’ll build out our 3 major components to render
and interact with these streams.

Data Architecture with Observables -
Part 2: View Components

Building Our Views: The chatApp Top-Level Component

Let’s turn our attention to our app and implement our view components.

For the sake of clarity and space, in the following sections I'll be leaving out some import

o statements, CSS, and a few other similar things lines of code. If you’re curious about each
line of those details, open up the sample code because it contains everything we need to
run this app.

The first thing we’re going to do is create our top-level component chat-app

As we talked about earlier, the page is broken down into three top-level components:

Data Architecture with Observables - Part 2: View Components

® O ® | [Yangular2 - Ghat with RxJS %

% h

[localhost:8080

ChatNavBar

Chat Top-Level Components

« ChatNavBar - contains the unread messages count

Echo Bot » h h d
n I'll echo whatever you send me C atT rea S
Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'
Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

310

+ ChatThreads - shows a clickable list of threads, along with the most recent message and the

conversation avatar

+ ChatWindow - shows the messages in the current thread with an input box to send new

messages

Here’s what our component looks like in code:

54
o5
56
o7
o8
59
60
61
62
63
64
65
66
o7
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Data Architecture with Observables - Part 2: View Components

code/rxjs/chat/app/ts/app.ts

311

@Component ({
selector: 'chat-app',
template: °
<div>
<nav-bar></nav-bar>
<div class="container">
<chat-threads></chat-threads>
<chat-window></chat-window>
</div>
</div>
})
class ChatApp {

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService,
private userService: UserService) {
ChatExampleData.init(messagesService, threadsService, userService);

@NgModule({

declarations: |
ChatApp,
ChatNavBar,
ChatThreads,
ChatThread,
ChatWindow,
ChatMessage,
utillnjectables

1,

imports: [
BrowserModule,
FormsModule

1,

bootstrap: [ChatApp],

providers: [servicesInjectables]

)
export class ChatAppModule {}

platformBrowserDynamic().bootstrapModule(ChatAppModule);

Data Architecture with Observables - Part 2: View Components 312

Take a look at the constructor. Here we’re injecting our three services: the MessagesService,
ThreadsService, and UserService. We're using those services to initialize our example data.

0 If youre interested in the example data you can find it in
code/rxjs/chat/app/ts/ChatExampleData.ts.

The chatThreads Component

Next let’s build our thread list in the ChatThreads component.

Echo Bot »
I'll echo whatever you send me

Reverse Bot

I'll reverse whatever you send me

Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’
n Lady Capulet

So shall you feel the loss, but not the
friend which you weep for.

Time Ordered List of Threads
Our selector is straightforward, we want to match chat-threads.

code/rxjs/chat/app/ts/components/ChatThreads.ts

@Component ({
selector: 'chat-threads',

ChatThreads Controller

Take a look at our component controller ChatThreads:

69
70
7
T2
73
T4
75

952
53
54
55
56
o7
58
959
60
61
62
63
64
65
66
67

Data Architecture with Observables - Part 2: View Components 313

code/rxjs/chat/app/ts/components/ChatThreads.ts

export class ChatThreads ({
threads: Observable<any>;

constructor(private threadsService: ThreadsService) {
this.threads = threadsService.orderedThreads;

Here we’re injecting ThreadsService and then we're keeping a reference to the orderedThreads.

ChatThreads template

Lastly, let’s look at the template and its configuration:

code/rxjs/chat/app/ts/components/ChatThreads.ts

@Component ({
selector: 'chat-threads',
changeDetection: ChangeDetectionStrategy.OnPush,
template:
<!-- conversations -->
<div class="row">

<div class="conversation-wrap">

<chat-thread
*ngFor="1et thread of threads | async"
[thread]="thread"»>

</chat-thread>

</div>
</div>

There’s three things to look at here: NgFor with the async pipe, the ChangeDetectionStrategy and
ChatThread.

The ChatThread directive component (which matches chat-thread in the markup) will show the
view for the Threads. We’ll define that in a moment.

The NgFor iterates over our threads, and passes the input [thread] to our ChatThread directive.
But you probably notice something new in our *ngFor: the pipe to async.

52
53
o4
55
56
ST
58
99
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
I

Data Architecture with Observables - Part 2: View Components 314

async is implemented by AsyncPipe and it lets us use an RxJS Observable here in our view. What’s
great about async is that it lets us use our async observable as if it was a sync collection. This is
super convenient and really cool.

On this component we specify a custom changeDetection. Angular 2 has a flexible and efficient
change detection system. One of the benefits is that if we have a component which has immutable
or observable bindings, then we’re able to give the change detection system hints that will make our
application run very efficiently.

In this case, instead of watching for changes on an array of Threads, Angular will subscribe for
changes to the threads observable - and trigger an update when a new event is emitted.

Here’s what our total ChatThreads component looks like:

code/rxjs/chat/app/ts/components/ChatThreads.ts

@Component ({
selector: 'chat-threads',
changeDetection: ChangeDetectionStrategy.OnPush,
template:
<!-- conversations -->
<div class="row">

<div class="conversation-wrap">

<chat-thread
*ngFor="1let thread of threads | async"
[thread]="thread">

</chat-thread>

</div>
</div>

1))

export class ChatThreads {
threads: Observable<any>;

constructor(private threadsService: ThreadsService) {
this.threads = threadsService.orderedThreads;

The Single chatThread Component

Let’s look at our ChatThread component. This is the component that will be used to display a single
thread. Starting with the @Component:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41

Data Architecture with Observables - Part 2: View Components 315

code/rxjs/chat/app/ts/components/ChatThreads.ts

@Component ({
inputs: ['thread'],
selector: 'chat-thread',
template:
<div class="media conversation">
<div class="pull-left">
<img class="media-object avatar"
src="{{thread.avatarSrc}}">
</div>
<div class="media-body">
<h5 class="media-heading contact-name">{{thread.name}}
•
</h5>
<small class="message-preview">{{thread.lastMessage.text}}</small>
</div>
<a (click)="clicked($event)" class="div-link">Select
</div>
})

We'll come back and look at the template in a minute, but first let’s look at the component definition
controller.

ChatThread Controller and ngoninit

code/rxjs/chat/app/ts/components/ChatThreads.ts

export class ChatThread implements OnInit {
thread: Thread;
selected: boolean = false;

constructor(private threadsService: ThreadsService) {

}

ngOnInit(): void {
this.threadsService.currentThread
.subscribe((currentThread: Thread) => {
this.selected = currentThread &&
this.thread &&
(currentThread.id === this.thread.id);

42
43
44
45
46
47
48
49

13
14
15
16
17
18
19
20
21
22
23
24

Data Architecture with Observables - Part 2: View Components 316

});

clicked(event: any): void {
this.threadsService.setCurrentThread(this.thread);
event.preventDefault();

Notice that we're implementing a new interface here: OnInit. Angular components can declare that
they listen for certain lifecycle events. We talk more about lifecycle events here in the Advanced
Components chapter.

In this case, because we declared that we implement OnInit, the method ngonInit will be called on
our component after the component has been checked for changes the first time.

A key reason we will use ngOnInit is because our thread property won’t be available in the
constructor.

Above you can see that in ngOnInit we subscribe to threadsService.currentThread and if the
currentThread matches the thread property of this component, we set selected to true (conversely,
if the Thread doesn’t match, we set selected to false).

We also setup an event handler clicked. This is how we handle selecting the current thread. In our
template (below), we will bind clicked() to clicking on the thread view. If we receive clicked()
then we tell the threadsService we want to set the current thread to the Thread of this component.

ChatThread template

Here’s the code for our template:

code/rxjs/chat/app/ts/components/ChatThreads.ts

template:
<div class="media conversation">
<div class="pull-left">
<img class="media-object avatar"
src="{{thread.avatarSrc}}">
</div>
<div class="media-body">
<h5 class="media-heading contact-name">{{thread.name}}
•
</h5>
<small class="message-preview">{{thread.lastMessage.text}}</small>
</div>

25
26
27

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Data Architecture with Observables - Part 2: View Components 317

<a (click)="clicked($event)" class="div-link">Select
</div>

Notice we’ve got some straight-forward bindings like {{thread.avatarSrc}}, {{thread.name}},
and {{thread.lastMessage.text}}.

We’ve got an *ngIf which will show the & ul1; symbol only if this is the selected thread.

Lastly, we’re binding to the (click) event to call our clicked() handler. Notice that when we call
clicked we're passing the argument $event. This is a special variable provided by Angular that
describes the event. We use that in our clicked handler by calling event . preventDefault();. This
makes sure that we don’t navigate to a different page.

ChatThread Complete Code

Here’s the whole of the ChatThread component:

code/rxjs/chat/app/ts/components/ChatThreads.ts

@Component({
inputs: ['thread'],
selector: 'chat-thread',
template:
<div class="media conversation">
<div class="pull-left">
<img class="media-object avatar"
src="{{thread.avatarSrc}}">
</div>
<div class="media-body">
<h5 class="media-heading contact-name">{{thread.name}}
•
</h5>
<small class="message-preview">{{thread.lastMessage.text}}</small>
</div>
<a (click)="clicked($event)" class="div-link">Select
</div>
b
export class ChatThread implements OnlInit {

thread: Thread;
selected: boolean = false;

constructor(private threadsService: ThreadsService) {

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Data Architecture with Observables - Part 2:

ngOnInit(): void {
this.threadsService.currentT
.subscribe((currentThread
this.selected = currentT
this.thread &&
(currentThread.id ===

});

clicked(event: any): void {

View Components

hread
. Thread) => {
hread &&

this.thread.id);

this.threadsService.setCurrentThread(this.thread);

event.preventDefault();

318

The chatwindow Component

The ChatWindow is the most complicated component in our app. Let’s take it one section at a time:

¥ Chat - Reverse Bot

I'll reverse whatever you send me

(@)

[y

yako

okay

IWrite your message here...

We start by defining our @Component:

The Chat Window

61
62
63

110
111
112
113
114

Data Architecture with Observables - Part 2: View Components

code/rxjs/chat/app/ts/components/ChatWindow.ts

319

@Component ({
selector: 'chat-window',
changeDetection: ChangeDetectionStrategy.OnPush,

ChatWindow Component Class Properties
Our ChatWindow class has four properties:

code/rxjs/chat/app/ts/components/ChatWindow.ts

export class ChatWindow implements OnInit {
messages: Observable<any>;
currentThread: Thread;
draftMessage: Message;
currentUser: User;

Here’s a diagram of where each one is used:

M Chat - Reverse Bot

I'll reverse whatever you send me n

‘ [Write your message here... m

Chat Window Properties

In our constructor we're going to inject four things:

currentThread

Messages

currentUser

draftMessage

116
117
118
119
120

122
123
124
125

Data Architecture with Observables - Part 2: View Components 320

code/rxjs/chat/app/ts/components/ChatWindow.ts

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService,
private userService: UserService,
private el: ElementRef) {

The first three are our services. The fourth, el is an ElementRef which we can use to get access to
the host DOM element. We’ll use that when we scroll to the bottom of the chat window when we
create and receive new messages.

Remember: by using public messagesService: MessagesService in the constructor, we
are not only injecting the MessagesService but setting up an instance variable that we can
use later in our class via this.messagesService

ChatWindow ngOnInit

We’re going to put the initialization of this component inngOnInit. The main thing we’re going to be
doing here is setting up the subscriptions on our observables which will then change our component
properties.

code/rxjs/chat/app/ts/components/ChatWindow.ts

ngOnInit(): void {
this.messages = this.threadsService.currentThreadMessages;

this.draftMessage = new Message();

First, we'll save the currentThreadMessages into messages. Next we create an empty Message for
the default draftMessage.

When we send a new message we need to make sure that Message stores a reference to the sending
Thread. The sending thread is always going to be the current thread, so let’s store a reference to the
currently selected thread:

127
128
129
130

132
133
134
135
136

152
153
154
155
156
157
158
159

Data Architecture with Observables - Part 2: View Components 321

code/rxjs/chat/app/ts/components/ChatWindow.ts

this.threadsService.currentThread.subscribe(
(thread: Thread) => {
this.currentThread = thread;

});

We also want new messages to be sent from the current user, so let’s do the same with currentUser:

code/rxjs/chat/app/ts/components/ChatWindow.ts

this.userService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;

1)

ChatWindow sendMessage
Since we’re talking about it, let’s implement a sendMessage function that will send a new message:

code/rxjs/chat/app/ts/components/ChatWindow.ts

sendMessage(): void {
let m: Message = this.draftMessage;
m.author = this.currentUser;
m.thread = this.currentThread;
m.isRead = true;
this.messagesService.addMessage(m);
this.draftMessage = new Message();

The sendMessage function above takes the draftMessage, sets the author and thread using our
component properties. Every message we send has “been read” already (we wrote it) so we mark it
as read.

Notice here that we’re not updating the draftMessage text. That’s because we’re going to bind the
value of the messages text in the view in a few minutes.

After we’ve updated the draftMessage properties we send it off to the messagesService and then
create a new Message and set that new Message to this.draftMessage. We do this to make sure
we don’t mutate an already sent message.

147
148
149
150

161
162
163
164
165

137
138
139
140
141
142
143
144

Data Architecture with Observables - Part 2: View Components

ChatWindow onEnter

In our view, we want to send the message in two scenarios

1. the user hits the “Send” button or
2. the user hits the Enter (or Return) key.

Let’s define a function that will handle that event:

code/rxjs/chat/app/ts/components/ChatWindow.ts

322

onEnter(event: any): void {
this.sendMessage();
event.preventDefault();

ChatWindow scrollToBottom

When we send a message, or when a new message comes in, we want to scroll to the bottom of the

chat window. To do that, we’re going to set the scrol1Top property of our host element:

code/rxjs/chat/app/ts/components/ChatWindow.ts

scrollToBottom(): void {
let scrollPane: any = this.el

.nativeElement.querySelector('.msg-container-base');

scrollPane.scrollTop = scrollPane.scrollHeight;

Now that we have a function that will scroll to the bottom, we have to make sure that we call it at
the right time. Back in ngonInit let’s subscribe to the list of currentThreadMessages and scroll to

the bottom any time we get a new message:

code/rxjs/chat/app/ts/components/ChatWindow.ts

this.messages
.subscribe(
(messages: Array<Message>) => {
setTimeout(() => {
this.scrollToBottom();
1)
1)

61
62
63
64
65
66
o7
68
69
70
71
T2
73
T4
75
76
T
78
79
80

Data Architecture with Observables - Part 2: View Components 323

9 Why do we have the setTimeout?

If we call scrol1ToBottom immediately when we get a new message then what happens is
we scroll to the bottom before the new message is rendered. By using a setTimeout we're
telling Javascript that we want to run this function when it is finished with the current
execution queue. This happens after the component is rendered, so it does what we want.

ChatWindow template

The opening of our template should look familiar, we start by defining some markup and the panel
header:

code/rxjs/chat/app/ts/components/ChatWindow.ts

@Component({

selector: 'chat-window',

changeDetection: ChangeDetectionStrategy.OnPush,
template:

<div class="chat-window-container">
<div class="chat-window">
<div class="panel-container">
<div class="panel panel-default">

<div class="panel-heading top-bar">
<div class="panel-title-container">
<h3 class="panel-title">

Chat - {{currentThread.name}}
</h3>
</div>
<div class="panel-buttons-container">
<!-- you could put minimize or close buttons here -->
</div>
</div>

Next we show the list of messages. Here we use ngFor along with the async pipe to iterate over our
list of messages. We’ll describe the individual chat-message component in a minute.

82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107

Data Architecture with Observables - Part 2: View Components 324

code/rxjs/chat/app/ts/components/ChatWindow.ts

<div class="panel-body msg-container-base">
<chat-message
*ngFor="1et message of messages | async"
[message]="message">
</chat-message>
</div>

Lastly we have the message input box and closing tags :

code/rxjs/chat/app/ts/components/ChatWindow.ts

<div class="panel-footer">
<div eclass="input-group">
<input type="text"
class="chat-input”
placeholder="Write your message here..."
(keydown.enter)="onEnter ($event)"
[(ngModel)]="draftMessage.text" />

<button class="btn-chat"
(click)="onEnter($event)"
>Send</button>

</div>
</div>

</div>
</div>
</div>
</div>

The message input box is the most interesting part of this view, so let’s talk about two interesting
properties: 1. (keydown.enter) and 2. [(ngModel)].

Handling keystrokes

Angular provides a straightforward way to handle keyboard actions: we bind to the event on an
element. In this case, we're binding to keydown.enter which says if “Enter” is pressed, call the
function in the expression, which in this case is onEnter($event).

Data Architecture with Observables - Part 2: View Components 325

code/rxjs/chat/app/ts/components/ChatWindow.ts

91 <input type="text"

92 class="chat-input"

93 placeholder="Write your message here..."

94 (keydown.enter)="onEnter ($event)"

95 [(ngModel)]="draftMessage.text" />
Using ngModel

As we've talked about before, Angular doesn’t have a general model for two-way binding. However
it can be very useful to have a two-way binding between a component and its view. As long as the
side-effects are kept local to the component, it can be a very convenient way to keep a component
property in sync with the view.

In this case, we're establishing a two-way bind between the value of the input tag and draftMes-
sage.text. That is, if we type into the input tag, draftMessage.text will automatically be set to
the value of that input. Likewise, if we were to update draftMessage.text in our code, the value
in the input tag would change in the view.

code/rxjs/chat/app/ts/components/ChatWindow.ts

91 <input type="text"

92 class="chat-input"

93 placeholder="Write your message here..."
94 (keydown.enter)="onEnter ($event)"

95 [(ngModel)]="draftMessage.text" />

Clicking “Send”
On our “Send” button we bind the (click) property to the onEnter function of our component:

code/rxjs/chat/app/ts/components/ChatWindow.ts

96
o7 <button class="btn-chat"
98 (click)="onEnter($event)"
99 >Send</button>

100

The Entire chatWwindow Component

Here’s the code listing for the entire ChatWindow Component:

61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101

Data Architecture with Observables - Part 2: View Components

code/rxjs/chat/app/ts/components/ChatWindow.ts

326

@Component ({

selector: 'chat-window',

changeDetection: ChangeDetectionStrategy.OnPush,
template:

<div class="chat-window-container">
<div class="chat-window">
<div class="panel-container">
<div class="panel panel-default">

<div class="panel-heading top-bar">
<div class="panel-title-container">
<h3 class="panel-title">

Chat - {{currentThread.name}}
</h3>
</div>

<div class="panel-buttons-container">
<!-- you could put minimize or close buttons here -->

</div>
</div>

<div class="panel-body msg-container-base">

<chat-message

*ngFor="1et message of messages | async"

[message]="message" >
</chat-message>
</div>

<div class="panel-footer">
<div class="input-group">
<input type="text"
class="chat-input"”

placeholder="Write your message here. ..
(keydown.enter)="onEnter($event)"
[(ngModel)]="draftMessage.text" />

<button class="btn-chat"
(click)="onEnter($event)"
>Send</button>

</div>

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Data Architecture with Observables - Part 2: View Components

</div>

</div>
</div>
</div>
</div>

P

export class ChatWindow implements OnInit {
messages: Observable<any>;
currentThread: Thread;
draftMessage: Message;

currentUser: User;

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService,
private userService: UserService,
private el: ElementRef) {

ngOnInit(): void {
this.messages = this.threadsService.currentThreadMessages;

this.draftMessage = new Message();

this.threadsService.currentThread.subscribe(
(thread: Thread) => {
this.currentThread = thread;

});

this.userService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;

});

this.messages
.subscribe(
(messages: Array<Message>) => {
setTimeout(() => {
this.scrollToBottom();

});

327

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

Data Architecture with Observables - Part 2: View Components

});

onEnter(event: any): void {
this.sendMessage();
event.preventDefault();

sendMessage(): void {
let m: Message = this.draftMessage;
m.author = this.currentUser;
m.thread = this.currentThread;
m.isRead = true;
this.messagesService.addMessage(m);
this.draftMessage = new Message();

scrollToBottom(): void {
let scrollPane: any = this.el

.nativeElement.querySelector('.msg-container-base');
scrollPane.scrollTop = scrollPane.scrollHeight;

328

The chatMessage COmponent

Each Message is rendered by the ChatMessage component.

15
16
17

Data Architecture with Observables - Part 2: View Components 329

¥ Chat - Reverse Bot

I'll reverse whatever you send me n Ch atM essage

ChatMessage

= n ChatMessage
[Nrite your message here... m

The ChatMessage Component

This component is relatively straightforward. The main logic here is rendering a slightly different
view depending on if the message was authored by the current user. If the Message was not written
by the current user, then we consider the message incoming.

We start by defining the @Component:

code/rxjs/chat/app/ts/components/ChatWindow.ts

@Component ({
inputs: ['message'],
selector: 'chat-message'’,

Setting incoming

Remember that each ChatMessage belongs to one Message. So in ngOnInit we will subscribe to the
currentUser stream and set incoming depending on if this Message was written by the current user:

40
41
42
43
44
45
46
47
48
49
50
o1
92
53
54
55
56
o
o8
59

15
16
17
18
19
20
21
22

Data Architecture with Observables - Part 2: View Components

code/rxjs/chat/app/ts/components/ChatWindow.ts

330

export class ChatMessage implements OnInit {

message: Message;
currentUser: User;
incoming: boolean;
constructor(private userService: UserService) {
}
ngOnInit(): void {
this.userService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;
if (this.message.author && user) {
this.incoming = this.message.author.id !== user.id;
}
1);
}
}

The chatMessage template

In our template we have two interesting ideas:

1. the FromNowPipe
2. [ngClass]

First, here’s the code:

code/rxjs/chat/app/ts/components/ChatWindow.ts

@Component ({
inputs: ['message'],
selector: 'chat-message',

template:
<div class="msg-container"

[ngClass]="{'base-sent': l!incoming, 'base-receive':

<div class="avatar"

incoming}">

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Data Architecture with Observables - Part 2: View Components 331

*nglf="!incoming">

</div>
<div class="messages"
[ngClass]="{'msg-sent': l!incoming, 'msg-receive': incoming}">
<p>{{message.text}}</p>
<p class="time">{{message.author.name}} e {{message.sentAt | fromNow}}</p>
</div>
<div class="avatar"
*nglf="incoming">

</div>
</div>
b

The FromNowPipe is a pipe that casts our Messages sent-at time to a human-readable “x seconds ago”
message. You can see that we use it by: { {message.sentAt | fromNow}}

0 FromNowPipe uses the excellent moment.js®** library. If you’d like to learn
about creating your own custom pipes read the source of the FromNowPipe in
code/rxjs/chat/app/ts/util/FromNowPipe.ts

We also make extensive use of ngClass in this view. The idea is, when we say:
[ngClass]="{"'msg-sent': l!incoming, 'msg-receive': incoming}"
We're asking Angular to apply the msg-receive class if incoming is truthy (and apply msg-sent if

incoming is falsey).

By using the incoming property, we're able to display incoming and outgoing messages differently.

The Complete chatMessage Code Listing

Here’s our completed ChatMessage component:

#http://momentjs.com/

http://momentjs.com/
http://momentjs.com/

0 N O O &~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDNDNDNDNDNNNDNNNASEASPA,PS PSP s
O O 0 9 O O i WO NP O O 00N O O i+ WNPHO O 0WWNO O ik WOWN SO O

Data Architecture with Observables - Part 2: View Components

code/rxjs/chat/app/ts/components/ChatWindow.ts

332

import {
Component,
OnInit,
ElementRef,
ChangeDetectionStrategy
} from '@angular/core';
import {
MessagesService,
ThreadsService,
UserService

} from '../services/services';

import {Observable} from 'rxjs';

import {User, Thread, Message} from

@Component ({
inputs: ['message'],
selector: 'chat-message',
template:
<div class="msg-container"

[ngClass]="{'base-sent': l!incoming, 'base-receive':

<div class="avatar"
*nglf="!incoming">

</div>

<div class="messages"

[ngClass]="{'msg-sent': !incoming, 'msg-receive': incoming}">

<p>{{message.text}}</p>

<p class="time">{{message.author.name}} e {{message.sentAt | fromNow}}</p>

</div>

<div class="avatar"
*nglf="incoming">

</div>
</div>

N

1))

export class ChatMessage implements OnInit {
message: Message;

../models"’;

incoming}">

42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83

Data Architecture with Observables - Part 2: View Components

currentUser: User;
incoming: boolean;

constructor(private userService: UserService) {

}

ngOnInit(): void {
this.userService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;
if (this.message.author && user) ({
this.incoming = this.message.author.id !== user.id;

}
1)

@Component ({
selector: 'chat-window',
changeDetection: ChangeDetectionStrategy.OnPush,
template: °
<div class="chat-window-container">
<div class="chat-window">
<div class="panel-container">

<div class="panel panel-default">

<div class="panel-heading top-bar">
<div class="panel-title-container">
<h3 class="panel-title">

Chat - {{currentThread.name}}
</h3>
</div>
<div class="panel-buttons-container">
<!-- you could put minimize or close buttons here -->
</div>
</div>

<div class="panel-body msg-container-base">
<chat-message

333

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

Data Architecture with Observables - Part 2: View Components

*ngFor="1et message of messages | async"
[message]="message">
</chat-message>
</div>

<div class="panel-footer">
<div class="input-group">
<input type="text"
class="chat-input"

placeholder="Write your message here..."

(keydown.enter)="onEnter($event)"
[(ngModel)]="draftMessage.text" />

<button class="btn-chat"
(click)="onEnter($event)"
>Send</button>

</div>
</div>

</div>
</div>
</div>
</div>

D)

export class ChatWindow implements OnInit {
messages: Observable<any>;
currentThread: Thread;
draftMessage: Message;
currentUser: User;

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService,
private userService: UserService,
private el: ElementRef) {

ngOnInit(): void {

this.messages = this.threadsService.currentThreadMessages;

this.draftMessage = new Message();

334

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

Data Architecture with Observables - Part 2: View Components

this.threadsService.currentThread.subscribe(
(thread: Thread) => {
this.currentThread = thread;

});

this.userService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;

1)

this.messages
.subscribe(
(messages: Array<Message>) => {
setTimeout(() => {
this.scrollToBottom();
1)
1)

onEnter(event: any): void {
this.sendMessage();
event.preventDefault();

sendMessage(): void {
let m: Message = this.draftMessage;
m.author = this.currentUser;
m.thread = this.currentThread;
m.isRead = true;
this.messagesService.addMessage(m);
this.draftMessage = new Message();

scrollToBottom(): void {
let scrollPane: any = this.el
.nativeElement.querySelector('.msg-container-base')
scrollPane.scrollTop = scrollPane.scrollHeight;

!

335

Data Architecture with Observables - Part 2: View Components 336

The chatNavBar Component

The last component we have to talk about is the ChatNavBar. In the nav-bar we’ll show an unread
messages count to the user.

IS Echo Bot e

The Unread Count in the ChatNavBar Component

Q The best way to try out the unread messages count is to use the “Waiting Bot”. If you
haven’t already, try sending the message ‘3’ to the Waiting Bot and then switch to another
window. The Waiting Bot will then wait 3 seconds before sending you a message and you

will see the unread messages counter increment.

The chatNavBar @Component

First we define a pretty plain @omponent configuration:

code/rxjs/chat/app/ts/components/ChatNavBar.ts

@Component ({
selector: 'nav-bar',

The chatNavBar Controller

The only thing the ChatNavBar controller needs to keep track of is the unreadMessagesCount. This
is slightly more complicated than it seems on the surface.

The most straightforward way would be to simply listen to messagesService . messages and sum the
number of Messages where isRead is false. This works fine for all messages outside of the current
thread. However new messages in the current thread aren’t guaranteed to be marked as read by the
time messages emits new values.

The safest way to handle this is to combine the messages and currentThread streams and make sure
we don’t count any messages that are part of the current thread.

We do this using the combinelLatest operator, which we’ve already used earlier in the chapter:

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56

Data Architecture with Observables - Part 2: View Components 337

code/rxjs/chat/app/ts/components/ChatNavBar.ts

export class ChatNavBar implements OnInit {
unreadMessagesCount: number;

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService) {

ngOnInit(): void {
this.messagesService.messages
.combinelLatest(
this.threadsService.currentThread,
(messages: Message[], currentThread: Thread) =>
[currentThread, messages])

.subscribe(([currentThread, messages]: [Thread, Message[]]) => {
this.unreadMessagesCount =
_.reduce(
messages,
(sum: number, m: Message) => {
let messagelsInCurrentThread: boolean = m.thread &&
currentThread &&
(currentThread.id === m.thread.id);
if (m && !m.isRead && !messagelsInCurrentThread) ({
sum = sum + 1;
}
return sum;
3,
9);
1

If you’re not an expert in TypeScript you might find the above syntax a little bit hard to parse. In
the combineLatest callback function we’re returning an array with currentThread and messages
as its two elements.

Then we subscribe to that stream and we’re destructuring those objects in the function call. Next
we reduce over the messages and count the number of messages that are unread and not in the
current thread.

o N O

11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 = O O b W N =~

(AN
N =~ O O

Data Architecture with Observables - Part 2: View Components

The chatNavBar template

In our view, the only thing we have left to do is display our unreadMessagesCount:

code/rxjs/chat/app/ts/components/ChatNavBar.ts

338

@Component ({
selector: 'nav-bar',
template:
<nav class="navbar navbar-default">
<div class="container-fluid">
<div class="navbar-header">

ng-book 2

</div>
<p class="navbar-text navbar-right">
<button class="btn btn-primary" type="button">
Messages {{unreadMessagesCount}}
</button>
</p>
</div>

</nav>

~

The Completed chatNavBar

Here’s the full code listing for ChatNavBar:

code/rxjs/chat/app/ts/components/ChatNavBar.ts

import {Component, OnInit} from '@angular/core’;

import {MessagesService, ThreadsService} from '../services/services';
import {Message, Thread} from '../models';

import * as _ from 'underscore';

@Component ({
selector: 'nav-bar',
template:
<nav class="navbar navbar-default">
<div class="container-fluid">
<div class="navbar-header">

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54

Data Architecture with Observables - Part 2: View Components

ng-book 2

</div>
<p class="navbar-text navbar-right">
<button class="btn btn-primary" type="button">
Messages {{unreadMessagesCount}}
</button>
</p>
</div>

</nav>

N

export class ChatNavBar implements OnInit {

unreadMessagesCount: number;

constructor(private messagesService: MessagesService,
private threadsService: ThreadsService) {

ngOnInit(): void {
this.messagesService.messages
.combinelLatest(
this.threadsService.currentThread,
(messages: Message[], currentThread: Thread) =>
[currentThread, messages])

.subscribe(([currentThread, messages]: [Thread, Message[]]) => {
this.unreadMessagesCount =
_.reduce(
messages,
(sum: number, m: Message) => {
let messagelsInCurrentThread: boolean = m.thread &&
currentThread &&
(currentThread.id === m.thread.id);
if (m && !m.isRead && !messagelsInCurrentThread) {
sum = sum + 1;
}
return sum;
}
9);
1

339

55
56

Data Architecture with Observables - Part 2: View Components 340

Summary

There we go, if we put them all together we’ve got a fully functional chat app!

0@ / [Angular 2 - Chat with RxJS * |\ Blank
€ - C' [localhost:8080 77| »| =

Echo Bot +
I'll echo whatever you send me

Reverse Bot
- I'll reverse whatever you send me

Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

Completed Chat Application

If you checkout code/rxjs/chat/app/ts/ChatExampleData.ts you’ll see we've written a handful
of bots for you that you can chat with. Here’s a code excerpt from the Reverse Bot:

let rev: User = new User("Reverse Bot", require("images/avatars/female-avatar-4.\

png"));
let tRev: Thread = new Thread("tRev", rev.name, rev.avatarSrc);

88
89
90
91
92
93
94
95
96
o7

Data Architecture with Observables - Part 2: View Components 341

code/rxjs/chat/app/ts/ChatExampleData.ts

messagesService.messagesForThreadUser (tRev, rev)
.forEach((message: Message): void => {
messagesService.addMessage(
new Message({
author: rev,
text: message.text.split('').reverse().join('"),
thread: tRev
9
);
3,

Above you can see that we’ve subscribed to the messages for the “Reverse Bot” by using messages-
ForThreadUser. Try writing a few bots of your own.

Next Steps

Some ways to improve this chat app would be to become stronger at RxJS and then hook it up to an
actual API. We’ll talk about how to make API requests in the HTTP Chapter. For now, enjoy your
fancy chat application!

Introduction to Redux with
TypeScript

In this chapter and the next we’ll be looking at a data-architecture pattern called Redux.
In this chapter we’re going to discuss the ideas behind Redux, build our own mini
version, and then hook it up to Angular. In the next chapter we’ll use Redux to build a
bigger application.

In most of our projects so far, we’ve managed state in a fairly direct way: We tend to grab data from
services and render them in components, passing values down the component tree along the way.

Managing our apps in this way works fine for smaller apps, but as our apps grow, having multiple
components manage different parts of the state becomes cumbersome. For instance, passing all of
our values down our component tree suffers from the following downsides:

Intermediate property passing - In order to get state to any component we have to pass the values
down through inputs. This means we have many intermediate components passing state that it
isn’t directly using or concerned about

Inflexible refactoring - Because we're passing inputs down through the component tree, we’re
introducing a coupling between parent and child components that often isn’t necessary. This makes
it more difficult to put a child component somewhere else in the hierarchy because we have to
change all of the new parents to pass the state

State tree and DOM tree don’t match - The “shape” of our state often doesn’t match the “shape”
of our view/component hierarchy. By passing all data through the component tree via props we run
into difficulties when we need to reference data in a far branch of the tree

State throughout our app - If we manage state via components, it’s difficult to get a snapshot of
the total state of our app. This can make it hard to know which component “owns” a particular bit
of data, and which components are concerned about changes

Pulling data out of our components and into services helps a lot. At least if services are the “owners”
of our data, we have a better idea of where to put things. But this opens a new question: what are
the best practices for “service-owned” data? Are there any patterns we can follow? In fact, there are.

In this chapter, we're going to discuss a data-architecture pattern called Redux which was designed
to help with these issues. We’ll implement our own version of Redux which will store all of our
state in a single place. This idea of holding all of our application’s state in one place might sound
a little crazy, but the results are surprisingly delightful.

Introduction to Redux with TypeScript 343

Redux

If you haven’t heard of Redux yet you can read a bit about it on the official website®*. Web application
data architecture is evolving and the traditional ways of structuring data aren’t quite adequate
for large web apps. Redux has been extremely popular because it’s both powerful and easy to
understand.

Data architecture can be a complex topic and so Redux’s best feature is probably its simplicity. If
you strip Redux down to the essential core, Redux is fewer than 100 lines of code.

We can build rich, easy to understand, web apps by using Redux as the backbone of our application.
But first, let’s walk through how to write a minimal Redux and later we’ll work out patterns that
emerge as we work out these ideas in a larger app.

Q There are several attempts to use Redux or create a Redux-inspired system that works with
Angular. Two notable examples are:

+ ngrx/store® and
« angular2-redux®

ngrx is a Redux-inspired architecture that is heavily observables-based. angular2-redux
uses Redux itself as a dependency, and adds some Angular helpers (dependency-injection,
observable wrappers).

Here we’re not going to use either. Instead, we're going to use Redux directly in order to
show the concepts without introducing a new dependency. That said, both of these libraries
may be helpful to you when writing your apps.

Redux: Key Ideas

The key ideas of Redux are this:

« All of your application’s data is in a single data structure called the state which is held in the
store

Your app reads the state from this store

This store is never mutated directly
« User interaction (and other code) fires actions which describe what happened

« A new state is created by combining he old state and the action by a function called the
reducer.

8http://redux.js.org/
8Shttps://github.com/ngrx/store
8 https://github.com/InfomediaLtd/angular2-redux

http://redux.js.org/
https://github.com/ngrx/store
https://github.com/InfomediaLtd/angular2-redux
http://redux.js.org/
https://github.com/ngrx/store
https://github.com/InfomediaLtd/angular2-redux

Introduction to Redux with TypeScript 344

¥

Y

Reducer()

Old State

Redux Core

If the above bullet list isn’t clear yet, don’t worry about it - putting these ideas into practice is the
goal of the rest of this chapter.

Core Redux Ideas

What's a reducer?

Let’s talk about the reducer first. Here’s the idea of a reducer: it takes the old state and an action
and returns a new state.

A reducer must be a pure function®®. That is:

1. It must not mutate the current state directly
2. It must not use any data outside of its arguments

Put another way, a pure function will always return the same value, given the same set of
arguments. And a pure function won'’t call any functions which have an effect on the outside world,
e.g. no database calls, no HTTP calls, and no mutating outside data structures.

Reducers should always treat the current state as read-only. A reducer does not change the state
instead, it returns a new state. (Often this new state will start with a copy of old state, but let’s not
get ahead of ourselves.)

Let’s define our very first reducer. Remember, there are three things involved:

https://en.wikipedia.org/wiki/Pure_function

https://en.wikipedia.org/wiki/Pure_function
https://en.wikipedia.org/wiki/Pure_function

W N -

Introduction to Redux with TypeScript 345

1. An Action, which defines what to do (with optional arguments)
2. The state, which stores all of the data in our application
3. The Reducer which takes the state and the Action and returns a new state.

Defining Action and Reducer Interfaces

Since we’re using TypeScript we want to make sure this whole process is typed, so let’s setup an
interface for our Action and our Reducer:

The Action Interface
Our Action interface looks like this:

code/redux/angular2-redux-chat/minimal/tutorial/01-identity-reducer.ts

interface Action {
type: string;
payload?: any;

Notice that our Action has two fields:

1. type and
2. payload

The type will be an identifying string that describes the action like INCREMENT or ADD_USER. The
payload can be an object of any kind. The ? on payload? means that this field is optional.

The Reducer Interface
Our Reducer interface looks like this:

code/redux/angular2-redux-chat/minimal/tutorial/01-identity-reducer.ts

interface Reducer<T> {
(state: T, action: Action): T;

Our Reducer is using a feature of TypeScript called generics. In this case type T is the type of the
state. Notice that we're saying that a valid Reducer has a function which takes a state (of type T)
and an action and returns a new state (also of type T).

10
11
12

Introduction to Redux with TypeScript 346

Creating Our First Reducer

The simplest possible reducer returns the state itself. (You might call this the identity reducer because
it applies the identity function®” on the state. This is the default case for all reducers, as we will soon
see).

code/redux/angular2-redux-chat/minimal/tutorial/01-identity-reducer.ts

let reducer: Reducer<number> = (state: number, action: Action) => {
return state;

};

Notice that this Reducer makes the generic type concrete to number by the syntax Reducer <number>.
We'll define more sophisticated states beyond a single number soon.

We’re not using the Action yet, but let’s try this Reducer just the same.

Q Running the examples in this section

You can find the code for this chapter in the folder code/redux. If the example is runnable
you will see the filename the code is from above each code box.

In this first section, these examples are run outside of the browser and run by node.js.
Because we're using TypeScript in these examples, you should run them using the
commandline tool ts-node, (instead of node directly).

You can install ts-node by running:
1 npm install -g ts-node

Or by doing an npm install in the code/redux/angular2-redux-chat directory and then
calling . /node_modules/.bin/ts-node --noProject

For instance, to run the example above you might type (not including the $):

$ cd code/redux/angular2-redux-chat/minimal/tutorial
2 $../../node_modules/.bin/ts-node --noProject @1-identity-reducer.ts

Use this same procedure for the rest of the code in this chapter until we instruct you to
switch to your browser.

Running Our First Reducer

Let’s put it all together and run this reducer:

8https://en.wikipedia.org/wiki/Identity_function

https://en.wikipedia.org/wiki/Identity_function
https://en.wikipedia.org/wiki/Identity_function

© 00 = O U b W N =

[Y
D W N », O

Introduction to Redux with TypeScript 347

code/redux/angular2-redux-chat/minimal/tutorial/01-identity-reducer.ts

interface Action {
type: string;
payload?: any;

interface Reducer<T> {
(state: T, action: Action): T;

let reducer: Reducer<number> = (state: number, action: Action) => {
return state;

};

console.log(reducer(©, null)); // -> 0

And run it:

$ cd code/redux/angular2-redux-chat/minimal/tutorial
$../../node_modules/.bin/ts-node --noProject ©@1-identity-reducer.ts
0

It seems almost silly to have that as a code example, but it teaches us our first principle of reducers:
By default, reducers return the original state.

In this case, we passed a state of the number @ and a null action. The result from this reducer is the
state Q.

But let’s do something more interesting and make our state change.

Adjusting the Counter With actions

Eventually our state is going to be much more sophisticated than a single number. We're going to
be holding the all of the data for our app in the state, so we’ll need better data structure for the
state eventually.

That said, using a single number for the state lets us focus on other issues for now. So let’s continue
with the idea that our state is simply a single number that is storing a counter.

Let’s say we want to be able to change the state number. Remember that in Redux we do not modify
the state. Instead, we create actions which instruct the reducer on how to generate a new state.

Let’s create an Action to change our counter. Remember that the only required property is a type.
We might define our first action like this:

10
1
12
13
14
15
16
17
18

20
21
22
23
24
25
26
27

Introduction to Redux with TypeScript 348
let incrementAction: Action = { type: 'INCREMENT' }
We should also create a second action that instructs our reducer to make the counter smaller with:
let decrementAction: Action = { type: 'DECREMENT' }

Now that we have these actions, let’s try using them in our reducer:

code/redux/angular2-redux-chat/minimal/tutorial/02-adjusting-reducer.ts

let reducer: Reducer<number> = (state: number, action: Action) => {

if (action.type === 'INCREMENT') ({
return state + 1;

}

if (action.type === 'DECREMENT') ({
return state - 1;

}

return state;

};

And now we can try out the whole reducer:

code/redux/angular2-redux-chat/minimal/tutorial/02-adjusting-reducer.ts

let incrementAction: Action = { type: 'INCREMENT' };

console.log(reducer(@, incrementAction)); // -> 1
console.log(reducer(1, incrementAction)); // -> 2

let decrementAction: Action = { type: 'DECREMENT' };

console.log(reducer (100, decrementAction)); // -> 99

Neat! Now the new value of the state is returned according to which action we pass into the reducer.

Reducer switch

Instead of having so many i f statements, the common practice is to convert the reducer body to a
switch statement:

Introduction to Redux with TypeScript 349

code/redux/angular2-redux-chat/minimal/tutorial/03-adjusting-reducer-switch.ts

10 let reducer: Reducer<number> = (state: number, action: Action) => {
11 switch (action.type) {
12 case 'INCREMENT':

13 return state + 1;

14 case 'DECREMENT':

15 return state - 1;

16 default:

17 return state; // <-- dont forget!
18 }

19}

20

21 let incrementAction: Action = { type: 'INCREMENT' };
22 console.log(reducer(0, incrementAction)); // -> 1

23 console.log(reducer(1, incrementAction)); // -> 2

24

25 let decrementAction: Action = { type: 'DECREMENT' };
26 console.log(reducer (100, decrementAction)); // -> 99
27

28 // any other action just returns the input state

29 let unknownAction: Action = { type: 'UNKNOWN' };

30 console.log(reducer (100, unknownAction)); // -> 100

Notice that the default case of the switch returns the original state. This ensures that if an
unknown action is passed in, there’s no error and we get the original state unchanged.

% Q: Wait, all of my application state is in one giant switch statement?
A: Yes and no.

If this is your first exposure to Redux reducers it might feel a little weird to have all of your
application state changes be the result of a giant switch. There are two things you should
know:

1. Having your state changes centralized in one place can help a ton in maintaining
your program, particularly because it’s easy to track down where the changes are
happening when they re all together. (Furthermore, you can easily locate what state
changes as the result of any action because you can search your code for the token
specified for that action’s type)

2. You can (and often do) break your reducers down into several sub-reducers which
each manage a different branch of the state tree. We’ll talk about this later.

10
11
12
13
14
15
16
17
18
19
20
21

23
24
25

Introduction to Redux with TypeScript 350

Action “Arguments”
In the last example our actions contained only a type which told our reducer either to increment or
decrement the state.

But often changes in our app can’t be described by a single value - instead we need parameters to
describe the change. This is why we have the payload field in our Action.

In this counter example, say we wanted to add 9 to the counter. One way to do this would be to send
9 INCREMENT actions, but that wouldn’t be very efficient, especially if we wanted to add, say, 9000.

Instead, let’s add a PLUS action that will use the payload parameter to send a number which specifies
how much we want to add to the counter. Defining this action is easy enough:

let plusSevenAction = { type: 'PLUS', payload: 7 };

Next, to support this action, we add a new case to our reducer that will handle a 'PLUS' action:

code/redux/angular2-redux-chat/minimal/tutorial/04-plus-action.ts

let reducer: Reducer<number> = (state: number, action: Action) => {
switch (action.type) {
case 'INCREMENT':
return state + 1;
case 'DECREMENT':
return state - 1;
case 'PLUS':
return state + action.payload;
default:
return state;
}
1

PLUS will add whatever number is in the action.payload to the state. We can try it out:

code/redux/angular2-redux-chat/minimal/tutorial/04-plus-action.ts

console.log(reducer(3, { type: 'PLUS', payload: 7})); // -> 10
console.log(reducer(3, { type: 'PLUS', payload: 9000})); // -> 9003
console.log(reducer(3, { type: 'PLUS', payload: -2})); // -> 1

In the first line we take the state 3 and PLUS a payload of 7, which results in 10. Neat! However,
notice that while we're passing in a state, it doesn’t really ever change. That is, we're not storing
the result of our reducer’s changes and reusing it for future actions.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Introduction to Redux with TypeScript 351

Storing Our State

Our reducers are pure functions, and do not change the world around them. The problem is, in our
app, things do change. Specifically, our state changes and we need to keep the new state somewhere.

In Redux, we keep our state in the store. The store has the responsibility of running the reducer
and then keeping the new state. Let’s take a look at a minimal store:

code/redux/angular2-redux-chat/minimal/tutorial/05-minimal-store.ts

class Store<T> {

private _state: T;

constructor(
private reducer: Reducer<T>,
initialState: T

) |
this._state = initialState;

getState(): T {
return this._state;

dispatch(action: Action): void {
this._state = this.reducer(this._state, action);

Notice that our Store is generically typed - we specify the type of the state with generic type T. We
store the state in the private variable _state.

We also give our Store a Reducer, which is also typed to operate on T, the state type this is because
each store is tied to a specific reducer. We store the Reducer in the private variable reducer.

O In Redux, we generally have 1 store and 1 top-level reducer per application.

Let’s take a closer look at each method of our State:

« In our constructor we set the _state to the initial state.
+ getState() simply returns the current _state

43
44
45
46
47
48
49
50
o1
52
53
o4

Introduction to Redux with TypeScript 352

« dispatch takes an action, sends it to the reducer and then updates the value of _state with
the return value

Notice that dispatch doesn’t return anything. It’s only updating the store’s state (once the result
returns). This is an important principle of Redux: dispatching actions is a “fire-and-forget” maneuver.
Dispatching actions is not a direct manipulation of the state, and it doesn’t return the new
state.

When we dispatch actions, we're sending off a notification of what happened. If we want to know
what the current state of the system is, we have to check the state of the store.

Using the Store

Let’s try using our store:

code/redux/angular2-redux-chat/minimal/tutorial/05-minimal-store.ts

// create a new store
let store = new Store<number>(reducer, 0);
console. log(store.getState()); // -> ©

store.dispatch({ type: 'INCREMENT' });
console.log(store.getState()); // -> 1

store.dispatch({ type: 'INCREMENT' });
console. log(store.getState()); // -> 2

store.dispatch({ type: 'DECREMENT' });
console.log(store.getState()); // -> 1

We start by creating a new Store and we save this in store, which we can use to get the current
state and dispatch actions.

The state is set to @ initially, and then we INCREMENT twice and DECREMENT once and our final state
is1.

Being Notified with subscribe

It’s great that our Store keeps track of what changed, but in the above example we have to ask for
the state changes with store.getState(). It would be nice for us to know immediately when a new
action was dispatched so that we could respond. To do this we can implement the Observer pattern
- that is, we’ll register a callback function that will subscribe to all changes.

Here’s how we want it to work:

10
11
12

14
15
16

18
19
20

Introduction to Redux with TypeScript 353

1. We will register a listener function using subscribe

2. When dispatch is called, we will iterate over all listeners and call them, which is the
notification that the state has changed.

Registering Listeners

Our listener callbacks are a going to be a function that takes no arguments. Let’s define an interface
that makes it easy to describe this:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

interface ListenerCallback {
(): void;

After we subscribe a listener, we might want to unsubscribe as well, so lets define the interface for
an unsubscribe function as well:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

interface UnsubscribeCallback {
(): void;

Not much going on here - it’s another function that takes no arguments and has no return value.
But by defining these types it makes our code clearer to read.

Our store is going to keep a list of ListenerCallbacks let’s add that to our Store:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

class Store<T> {
private _state: T;

4

private _listeners: ListenerCallback[] = [];

Now we want to be able to add to that list of _listeners with a subscribe function:

38
39
40
41
42
43

33
34
35
36

18
19
20
21
22
23
24
25
26

Introduction to Redux with TypeScript 354

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

subscribe(listener: ListenerCallback): UnsubscribeCallback {
this._listeners.push(listener);
return () => { // returns an "unsubscribe" function

this._listeners = this._listeners.filter(l => 1 !== listener);

};

subscribe accepts a ListenerCallback (i.e. a function with no arguments and no return value) and
returns an UnsubscribeCallback (the same signature). Adding the new listener is easy: we push it
on to the _listeners array.

The return value is a function which will update the list of _listeners to be the list of _listeners
without the 1istener we just added. That is, it returns the UnsubscribeCallback that we can use
to remove this listener from the list.

Notifying Our Listeners

Whenever our state changes, we want to call these listener functions. What this means is, whenever
we dispatch a new action, whenever the state changes, we want to call all of the listeners:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

dispatch(action: Action): void {
this._state = this.reducer(this._state, action);
this._listeners. forEach((listener: ListenerCallback) => listener());

The Complete Store
We'll try this out below, but before we do that, here’s the complete code listing for our new Store:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

class Store<T> {
private _state: T;
private _listeners: ListenerCallback[] = [];

constructor(
private reducer: Reducer<T>,
initialState: T

) A
this._state = initialState;

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

61
62
63
64
65
66
67
68
69
%
71
T2
73
T4
75
76

Introduction to Redux with TypeScript

}

getState(): T {
return this._state;

}

dispatch(action: Action): void {
this._state = this.reducer(this._state, action);
this._listeners. forEach((listener: ListenerCallback) => listener());

}

subscribe(listener: ListenerCallback): UnsubscribeCallback {
this._listeners.push(listener);
return () => { // returns an "unsubscribe" function

this._listeners = this._listeners.filter(l => 1 !== listener);

b

}

}

355

Trying Out subscribe
Now that we can subscribe to changes in our store, let’s try it out:

code/redux/angular2-redux-chat/minimal/tutorial/06-store-w-subscribe.ts

let store = new Store<number>(reducer, 0);
console.log(store.getState()); // -> 0

// subscribe
let unsubscribe = store.subscribe(() => {
console.log('subscribed: ', store.getState());

});

store.dispatch({ type: 'INCREMENT' }); // -> subscribed: 1
store.dispatch({ type: 'INCREMENT' }); // -> subscribed: 2

unsubscribe();
store.dispatch({ type: 'DECREMENT' }); // (nothing logged)

// decrement happened, even though we weren't listening for it
console.log(store.getState()); // -> 1

Above we subscribe to our store and in the callback function we’ll log subscribed:
current store state.

and then the

Introduction to Redux with TypeScript

i

Notice that the listener function is not given the current state as an argument. This might
seem like an odd choice, but because there are some nuances to deal with, it’s easier to think
of the notification of state changed as separate from the current state. Without digging too
much into the weeds, you can read more about this choice here®’, here’’, and here**.

356

We store the unsubscribe callback and then notice that after we call unsubscribe() our log message
isn’t called. We can still dispatch actions, we just won’t see the results until we ask the store for them.

i

If you're the type of person who likes RxJS and Observables, you might notice that
implementing our own subscription listeners could also be implemented using Rx]JS. You
could rewrite our Store to use Observables instead of our own subscriptions.

In fact, we’ve already done this for you and you can find the sample code in the file
code/redux/angular2-redux-chat/minimal /tutorial /@6b-rx-store.ts.

Using RxJS for the Store is an interesting and powerful pattern if you’re willing to us RxJS
for the backbone of our application data.

Here we’re not going to use Observables very heavily, particularly because we want to
discuss Redux itself and how to think about data architecture with a single state tree. Redux
itself is powerful enough to use in our applications without Observables.

Once you get the concepts of using “straight” Redux, adding in Observables isn’t difficult
(if you already understand RxJS, that is). For now, we’re going to use “straight” Redux and
we’ll give you some guidance on some Observable-based Redux-wrappers at the end.

The Core of Redux

The above store is the essential core of Redux. Our reducer takes the current state and action and
returns a new state, which is held by the store.

There are obviously many more things that we need to add to build a large, production web app.
However, all of the new ideas that we’ll cover are patterns that flow from building on this simple
idea of an immutable, central store of state. If you understand the ideas presented above, you would
be likely to invent many of the patterns (and libraries) you find in more advanced Redux apps.

There’s still a lot for us to cover about day-to-day use of redux though. For instance, we need to

know:

» How to carefully handle more complex data structures in our state

» How to be notified when our state changes without having to poll the state (with subscriptions)
« How to intercept our dispatch for debugging (a.k.a. middleware)

https://github.com/reactjs/redux/issues/1707

Thttps://github.com/reactjs/redux/issues/1513

https://github.com/reactjs/redux/issues/303

https://github.com/reactjs/redux/issues/1707
https://github.com/reactjs/redux/issues/1513
https://github.com/reactjs/redux/issues/303
https://github.com/reactjs/redux/issues/1707
https://github.com/reactjs/redux/issues/1513
https://github.com/reactjs/redux/issues/303

<N O O & W N =

Introduction to Redux with TypeScript 357

« How to compute derived values (with selectors)
« How to split up large reducers into more manageable, smaller ones (and recombine them)
« How to deal with asynchronous data

We’ll explain on each of these issues and describe common patterns over the rest of this chapter and
the next.

Let’s first deal with handling more complex data structures in our state. To do that, we’re going to
need an example that’s more interesting than a counter. Let’s start building a chat app where users
can send each other messages.

A Messaging App

In our messaging app, as in all Redux apps, there are three main parts to the data model:

1. The state
2. The actions
3. The reducer

Messaging App state

The state in our counter app was a single number. However in our messaging app, the state is
going to be an object.

This state object will have a single property, messages. messages will be an array of strings, with
each string representing an individual message in the application. For example:

// an example ‘state” value

{

messages: [
'here is message one',

'here is message two'

We can define the type for the app’s state like this:

B W N -

D W N~

Introduction to Redux with TypeScript 358

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

interface AppState {
messages: string[];

Messaging App actions

Our app will process two actions: ADD_MESSAGE and DELETE_MESSAGE.

The ADD_MESSAGE action object will always have the property message, the message to be added to
the state. The ADD_MESSAGE action object has this shape:

type: 'ADD_MESSAGE',
message: 'Whatever message we want here'

The DELETE_MESSAGE action object will delete a specified message from the state. A challenge here
is that we have to be able to specify which message we want to delete.

If our messages were objects, we could assign each message an id property when it is created.
However, to simplify this example, our messages are just simple strings, so we’ll have to get a handle
to the message another way. The easiest way for now is to just use the index of the message in the
array (as a proxy for the ID).

With that in mind, the DELETE_MESSAGE action object has this shape:

type: 'DELETE_MESSAGE',
index: 2 // <- or whatever index is appropriate

We can define the types for these actions by using the interface ... extends syntax in TypeScript:

11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27

Introduction to Redux with TypeScript 359

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

interface AddMessageAction extends Action {
message: string;

interface DeleteMessageAction extends Action {
index: number;

In this way our AddMessageAction is able to specify a message and the DeleteMessageAction will
specify an index.

Messaging App reducer

Remember that our reducer needs to handle two actions: ADD_MESSAGE and DELETE_MESSAGE. Let’s
talk about these individually.

Reducing ADD_MESSAGE

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

let reducer: Reducer<AppState> =
(state: AppState, action: Action): AppState => {
switch (action.type) {
case 'ADD_MESSAGE':
return {
messages: state.messages.concat(
(<AddMessageAction>action).message
),
¥

We start by switching on the action.type and handling the ADD_MESSAGE case.

B W N -

Introduction to Redux with TypeScript

i

TypeScript objects already have a type, so why are we adding a type field?

There are many different ways we might choose to handle this sort of “polymorphic
dispatch”. Keeping a string in a type field (where type means “action-type”) is a straight-
forward, portable way we can use to distinguish different types of actions and handle them
in one reducer. In part, it means that you don’t have to create a new inter face for every
action.

That said, it would be more satisfying to be able to use reflection to switch on the concrete
type. While this might become possible with more advanced type guards®, this isn’t
currently possible in today’s TypeScript.

Broadly speaking, types are a compile-time construct and this code is compiled down to
JavaScript and we can lose some of the typing metadata.

That said, if switching on a type field bothers you and you’d like to use language features
directly, you could use the decoration reflection metadata’. For now, a simple type field
will suffice.

Adding an Item Without Mutation

360

When we handle an ADD_MESSAGE action, we need to add the given message to the state. As will all
reducer handlers, we need to return a new state. Remember that our reducers must be pure and
not mutate the old state.

What would be the problem with the following code?

case 'ADD_MESSAGE':
state.messages.push(action.message);

return {

V7

messages: messages };

The problem is that this code mutates the state.messages array, which changes our old state!
Instead what we want to do is create a copy of the state.messages array and add our new message

to the copy.

“https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html

**http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4

https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html
http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4
https://basarat.gitbooks.io/typescript/content/docs/types/typeGuard.html
http://blog.wolksoftware.com/decorators-metadata-reflection-in-typescript-from-novice-to-expert-part-4

22
23
24
25
26
27

28
29
30
31
32
33
34

Introduction to Redux with TypeScript 361

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

case 'ADD_MESSAGE':
return {
messages: state.messages.concat(
(<AddMessageAction>action).message
),
};

Q The syntax <AddMessageAction>action will cast our action to the more specific type.
That is, notice that our reducer takes the more general type Action, which does not have
the message field. If we leave off the cast, then the compiler will complain that Action does

not have a field message.

Instead, we know that we have an ADD_MESSAGE action so we cast it to an
AddMessageAction. We use parenthesis to make sure the compiler knows that we want
to cast action and not action.message.

Remember that the reducer must return a new AppState. When we return an object from our
reducer it must match the format of the AppState that was input. In this case we only have to keep
the key messages, but in more complicated states we have more fields to worry about.

Deleting an Item Without Mutation

Remember that when we handle the DELETE_MESSAGE action we are passing the index of the item in
the array as the faux ID. (Another common way of handling the same idea would be to pass a real
item ID.) Again, because we do not want to mutate the old messages array, we need to handle this
case with care:

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

case 'DELETE_MESSAGE':
let idx = (<DeleteMessageAction>action).index;
return {
messages: [
...state.messages.slice(0, idx),
...state.messages.slice(idx + 1, state.messages.length)

Here we use the s1ice operator twice. First we take all of the items up until the item we are removing.
And we concatenate the items that come after.

42
43
44
45
46
47
48
49
50
51
52
93

Introduction to Redux with TypeScript 362
& There are four common non-mutating operations:

+ Adding an item to an array

« Removing an item from an array

+ Adding / changing a key in an object
« Removing a key from an object

The first two (array) operations we just covered. We’ll talk more about the object operations
further down, but for now know that a common way to do this is to use Object.assign.
As in:

Object.assign({}, oldObject, newObject)
2 YR S—— e

You can think of Object.assign as merging objects in from the right into the object on
the left. newOb ject is merged into 01dObject which is merged into {}. This way all of the
fields in oldobject will be kept, except for where the field exists in newObject. Neither
01dOb ject nor newOb ject will be mutated.

Of course, handling all of this on your own takes great care and it is easy to make a mistake.
This is one of the reasons many people use Immutable.js**, which is a set of data structures
that help enforce immutability.

Trying Out Our Actions

Now let’s try running our actions:

code/redux/angular2-redux-chat/minimal/tutorial/07-messages-reducer.ts

let store = new Store<AppState>(reducer, { messages: [] });
console.log(store.getState()); // -> { messages: [] }

store.dispatch({

type: 'ADD_MESSAGE',

message: 'Would you say the fringe was made of silk?'
} as AddMessageAction);

store.dispatch({

type: 'ADD_MESSAGE',

message: 'Wouldnt have no other kind but silk'
} as AddMessageAction);

https://facebook.github.io/immutable-js/

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/

54
55
56
o7
58
959
60
61
62
63
64
65

Introduction to Redux with TypeScript 363

store.dispatch({

type: 'ADD_MESSAGE',

message: 'Has it really got a team of snow white horses?’
} as AddMessageAction);

console.log(store.getState());

S/ =2

// { messages:

// ['Would you say the fringe was made of silk?’,
// "Wouldnt have no other kind but silk’,

V4 'Has it really got a team of snow white horses?' | }

Here we start with a new store and we call store.getState() and see that we have an empty
messages array.

Next we add three messages’® to our store. For each message we specify the type as ADD_MESSAGE
and we cast each object to an AddMessageAction.

Finally we log the new state and we can see that messages contains all three messages.

Our three dispatch statements are a bit ugly for two reasons:

1. we manually have to specify the type string each time. We could use a constant, but it would
be nice if we didn’t have to do this and

2. we’re manually casting to an AddMessageAction

Instead of creating these objects as an object directly we should create a function that will create
these objects. This idea of writing a function to create actions is so common in Redux that the pattern
has a name: Action Creators.

Action Creators

Instead of creating the ADD_MESSAGE actions directly as objects, let’s create a function to do this for
us:

https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top

https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top
https://en.wikipedia.org/wiki/The_Surrey_with_the_Fringe_on_Top

19
20
21
22
23
24
25
26
27
28
29
30
31
32

55
56
ST
58
99
60
61
62
63
64
65
66
67
68

Introduction to Redux with TypeScript

code/redux/angular2-redux-chat/minimal/tutorial/08-action-creators.ts

class MessageActions {
static addMessage(message: string): AddMessageAction {
return {
type: 'ADD_MESSAGE',
message: message
b
}
static deleteMessage(index: number): DeleteMessageAction {
return {
type: 'DELETE_MESSAGE',
index: index

};

Here we’ve created a class with two static methods addMessage and deleteMessage. They return an

AddMessageAction and a DeleteMessageAction respectively.

Q You definitely don’t have to use static methods for your action creators. You could use plain
functions, functions in a namespace, even instance methods on an object, etc. The key idea
is to keep them organized in a way that makes them easy to use.

Now let’s use our new action creators:

code/redux/angular2-redux-chat/minimal/tutorial/08-action-creators.ts

let store = new Store<AppState>(reducer, { messages: [] });
console.log(store.getState()); // -> { messages: [] }

store.dispatch(
MessageActions.addMessage('Would you say the fringe was made of silk?'));

store.dispatch(
MessageActions.addMessage('Wouldnt have no other kind but silk'));

store.dispatch(
MessageActions.addMessage('Has it really got a team of snow white horses?'));

console. log(store.getState());
/=2

69
70
71
T2

© © 00 I O O b W N =~

N

Introduction to Redux with TypeScript 365

// { messages:

// ['Would you say the fringe was made of silk?',

// '"Wouldnt have no other kind but silk’,

J// 'Has it really got a team of snow white horses?' | }

This feels much nicer!

An added benefit is that if we eventually decided to change the format of our messages, we could
do it without having to update all of our dispatch statements. For instance, say we wanted to add
the time each message was created. We could add a created_at field to addMessage and now all
AddMessageActions will be given a created_at field:

class MessageActions {
static addMessage(message: string): AddMessageAction {
return {
type: "ADD_MESSAGE',
message: message,
// something like this
created_at: new Date()
b
}
VI

Using Real Redux

Now that we’ve built our own mini-redux you might be asking, “What do I need to do to use the
real Redux?” Thankfully, not very much. Let’s update our code to use the real Redux now!

0 If you haven’t already, youll want to run npm install in the
code/redux/angular2-redux-chat/minimal/tutorial directory.

The first thing we need to do is import Action, Reducer, and Store from the redux package. We're
also going to import a helper method createStore while we’re at it:

O O B W N =~

35
36
37
38

958

58
59
60
61
62
63
64
65
66
67
68
69

Introduction to Redux with TypeScript 366

code/redux/angular2-redux-chat/minimal/tutorial/09-real-redux.ts

import {
Action,
Reducer,
Store,
createStore

} from 'redux';

Next, instead of specifying our initial state when we create the store instead we’re going to let the
reducer create the initial state. Here we’ll do this as the default argument to the reducer. This way if
there is no state passed in (e.g. the first time it is called at initialization) we will use the initial state:

code/redux/angular2-redux-chat/minimal/tutorial/09-real-redux.ts

let initialState: AppState = { messages: [] };

let reducer: Reducer<AppState> =
(state: AppState = initialState, action: Action) => {

What’s neat about this is that the rest of our reducer stays the same!

The last thing we need to do is create the store using the createStore helper method from Redux:

code/redux/angular2-redux-chat/minimal/tutorial/09-real-redux.ts

let store: Store<AppState> = createStore<AppState>(reducer);

After that, everything else just works!

code/redux/angular2-redux-chat/minimal/tutorial/09-real-redux.ts

let store: Store<AppState> = createStore<AppState>(reducer);
console.log(store.getState()); // -> { messages: [] }

store.dispatch(
MessageActions.addMessage('Would you say the fringe was made of silk?'));

store.dispatch(
MessageActions.addMessage('Wouldnt have no other kind but silk'));

store.dispatch(
MessageActions.addMessage('Has it really got a team of snow white horses?'));

70
71
72
73
T4
5

Introduction to Redux with TypeScript 367

console.log(store.getState());

/S =2

// { messages:

// ['Would you say the fringe was made of silk?’,
// "Wouldnt have no other kind but silk',

// 'Has it really got a team of snow white horses?’' | }

Now that we have a handle on using Redux in isolation, the next step is to hook it up to our web
app. Let’s do that now.

Using Redux in Angular

In the last section we walked through the core of Redux and showed how to create reducers and
use stores to manage our data in isolation. Now it’s time to level-up and integrate Redux with our
Angular components.

In this section we’re going to create a minimal Angular app that contains just a counter which we
can increment and decrement with a button.

Counter

Custom Store

The counter value is: 3

Counter App

By using such a small app we can focus on the integration points between Redux and Angular and
then we can move on to a larger app in the next section. But first, let’s see how to build this counter

app!

0 Here we are going to be integrating Redux directly with Angular without any helper
libraries in-between. There are several open-source libraries with the goal of making this
process easier, and you can find them in the references section below.

That said, it can be much easier to use those libraries once you understand what is going
on underneath the hood, which is what we work through here.

10
11
12
13
14
15
16
17
18
19
20

Introduction to Redux with TypeScript 368

Planning Our App
If you recall, the three steps to planning our Redux apps are to:

1. Define the structure of our central app state
2. Define actions that will change that state and
3. Define a reducer that takes the old state and an action and returns a new state.

For this app, we’re just going to increment and decrement a counter. We did this in the last section,
and so our actions, store, and reducer will all be very familiar.

The other thing we need to do when writing Angular apps is decide where we will create
components. In this app, we’ll have a top-level CounterApp which will have one component, the
CounterComponent which contains the view we see in the screenshot.

At a high level we’re going to do the following:

1. Create our Store and make it accessible to our whole app via dependency injection
2. Subscribe to changes to the Store and display them in our components
3. When something changes (a button is pressed) we will dispatch an action to the Store.

Enough planning, let’s look at how this works in practice!

Setting Up Redux

We start by importing a few things we’ll need along the way:

code/redux/angular2-redux-chat/minimal/app.ts

import
Component
} from '@angular/core’;
import { NgModule } from "@angular/core";
import { BrowserModule } from "@angular/platform-browser";
import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";
import
createStore,
Store,
StoreEnhancer
} from 'redux';

1

import { counterReducer } from './counter-reducer';

10
11

o 3 O

11
12
13
14
15
16
17
18
19
20
21

Introduction to Redux with TypeScript 369

We’re importing Store (the class) and createStore (the helper creation function), which we’ve used
before. We're also importing a new class called StoreEnhancer - more on that in a minute.

We import our reducer from counter-reducer.ts and our state interface AppState from app-
state.ts.

Defining the Application State

Let’s take a look at our AppState:

code/redux/angular2-redux-chat/minimal/app-state.ts

export interface AppState {
counter: number;

b

Here we are defining our core state structure as AppState - it is an object with one key, counter
which is a number. In the next example (the chat app) we’ll talk about how to have more sophisticated
states, but for now this will be fine.

Defining the Reducers

Next lets define the reducer which will handle incrementing and decrementing the counter in the
application state:

code/redux/angular2-redux-chat/minimal/counter-reducer.ts

import {
INCREMENT,
DECREMENT
} from './counter-action-creators';

let initialState: AppState = { counter: 0 };

// Create our reducer that will handle changes to the state
export const counterReducer: Reducer<AppState> =
(state: AppState = initialState, action: Action): AppState => {
switch (action.type) {
case INCREMENT:
return Object.assign({}, state, { counter: state.counter + 1 });
case DECREMENT:
return Object.assign({}, state, { counter: state.counter - 1 });
default:

22
23
24

o < O O B W N =~

N S U
B W N SO O

Introduction to Redux with TypeScript 370

return state;

}
b

We start by importing the constants INCREMENT and DECREMENT, which are exported by our action
creators. They’re just defined as the strings ' INCREMENT' and 'DECREMENT', but it’s nice to get the
extra help from the compiler in case we make a typo. We'll look at those action creators in a minute.

The initialState is an AppState which sets the counter to @.

The counterReducer handles two actions: INCREMENT, which adds 1 to the current counter and
DECREMENT, which subtracts 1. Both actions use Object.assign to ensure that we don’t mutate the
old state, but instead create a new object that gets returned as the new state.

Since we’re here, let’s look at the action creators

Defining Action Creators

Our action creators are functions which return objects that define the action to be taken. increment
and decrement below return an object that defines the appropriate type.

code/redux/angular2-redux-chat/minimal/counter-action-creators.ts

import
Action,
ActionCreator

} from 'redux';

export const INCREMENT: string = 'INCREMENT';
export const increment: ActionCreator<Action>
type: INCREMENT

});

0=«

export const DECREMENT: string = 'DECREMENT';
export const decrement: ActionCreator<Action>
type: DECREMENT

});

0=«

Notice that our action creator functions return the type ActionCreator<Action>. ActionCreator
is a generic class defined by Redux that we use to define functions that create actions. In this
case we're using the concrete class Action, but we could use a more specific Action class, such
as AddMessageAction that we defined in the last section.

Creating the Store

Now that we have our reducer and state, we could create our store like so:

25
26
27

Introduction to Redux with TypeScript 371
let store: Store<AppState> = createStore<AppState>(counterReducer);

However, one of the awesome things about Redux is that it has a robust set of developer tools.

Specifically, there is a Chrome extension® that will let us monitor the state of our application and
dispatch actions.

® ©® /[ng-book 2 - minimal pure - x (28l © Redux DevTools

& € | [localhost:8080/minimal.htm!

i
Counter \ eeTNIT

Custom Store INCREMENT

The counter value is: 2 L INCREMENT

—— INCREMENT
[ER)| Decrement

DECREMENT

Counter App With Redux Devtools

What’s really neat about the Redux Devtools is that it gives us clear insight to every action that
flows through the system and it’s affect on the state.

% Go ahead and install the Redux Devtools Chrome extension’® now!

In order to use the Devtools we have to do one thing: add it to our store.

code/redux/angular2-redux-chat/minimal/app.ts

let devtools: StoreEnhancer<AppState> =
window['devToolsExtension'] ?
window|['devToolsExtension']() : f => f;

Not everyone who uses our app will necessarily have the Redux Devtools installed. The code above
will check for window.devToolsExtension, which is defined by Redux Devtools, and if it exists,
we will use it. If it doesn’t exist, we’re just returning an identity function (f => f) that will return
whatever is passed to it.

*"https://chrome.google.com/webstore/detail/redux-devtools/lImhkpmbekcpmknklioeibfkpmmfibljd?hl=en
**https://chrome.google.com/webstore/detail /redux-devtools/Imhkpmbekcpmknklioeibfkpmmfibljd?hl=en

https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en
https://chrome.google.com/webstore/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?hl=en

29
30
31
32

34
35
36
37
38
39
40
41
42
43
44

Introduction to Redux with TypeScript 372

Q Middleware is a term for a function that enhances the functionality of another library. The
Redux Devtools is one of many possible middleware libraries for Redux. Redux supports
lots of interesting middleware and it’s easy to write our own.

You can read more about Redux middleware here®”

In order to use this devtools we pass it as middleware to our Redux store:

code/redux/angular2-redux-chat/minimal/app.ts

let store: Store<AppState> = createStore<AppState>(
counterReducer,
devtools

)

Now whenever we dispatch an action and change our state, we can inspect it in our browser!

CounterApp COmponent

Now that we have the Redux core setup, let’s turn our attention to our Angular components. Let’s
create our top-level app component, CounterApp. This will be the component we use to bootstrap
Angular:

code/redux/angular2-redux-chat/minimal/app.ts

@Component({
selector: 'minimal-redux-app',
template:
<div>
<counter-component>
</counter-component>
</div>

~

1))

class CounterApp {
}

All this component does is create an instance of the CounterComponent, which we’ll define in a
minute. But before we define CounterComponent, let’s bootstrap our app.

°http://redux.js.org/docs/advanced/Middleware.html

http://redux.js.org/docs/advanced/Middleware.html
http://redux.js.org/docs/advanced/Middleware.html

29
30
31
32

Introduction to Redux with TypeScript 373

Providing the Store

We’re going to use the CounterApp as the root component. Remember that since this is a Redux app,
we need to make our store instance accessible everywhere in our app. How should we do this? We’ll
use dependency injection (DI).

If you recall from the dependency injection chapter, when we want to make something available via
DI, then we use the providers configuration to add it to the list of providers in our NgModule.

When we provide something to the DI system, we specify two things:

1. the foken to use to refer this injectable dependency
2. the way to inject the dependency

Oftentimes if we want to provide a singleton service we might use the useClass option as in:
{ provide: SpotifyService, useClass: SpotifyService }

In the case above, we’re using the class Spoti fyService as the token in the DI system. The useClass
option tells Angular to create an instance of SpotifyService and reuse that instance whenever the
SpotifyService injection is requested (e.g. maintain a Singleton).

One problem with us using this method is that we don’t want Angular to create our store - we did
it ourselves above with createStore. We just want to use the store we’ve already created.

To do this we’ll use the useValue option of provide. We've done this before with configurable values
like APT_URL:

{ provide: API_URL, useValue: 'http://localhost/api' }

The one thing we have left to figure out is what token we want to use to inject. Our store is of type
Store<AppState>:

code/redux/angular2-redux-chat/minimal/app.ts

let store: Store<AppState> = createStore<AppState>(
counterReducer,
devtools

)

Store is an interface, not a class and, unfortunately, we can’t use interfaces as a dependency injection

key.

46
47
48
49
50
o1
92
53
54
55
o6
o7
58
959
60

Introduction to Redux with TypeScript 374

0 If you're interested in why we can’t use an interface as a DI key, it’s because TypeScript
interfaces are removed after compilation and not available at runtime.

If you’d like to read more, see here'®, here'?, and here'*.

This means we need to create our own token that we’ll use for injecting the store. Thankfully,
Angular makes this easy to do. Let’s create this token in it’s own file so that way we can import it
from anywhere in our application;

code/redux/angular2-redux-chat/minimal/app-store.ts

import { OpaqueToken } from '@angular/core';

export const AppStore = new OpaqueToken('App.store');

Here we have created a const AppStore which uses the OpaqueToken class from Angular. Opaque-
Token is a better choice than injecting a string directly because it helps us avoid collisions.

Now we can use this token AppStore with provide. Let’s do that now.

Bootstrapping the App

Back in app . ts, let’s create the NgModule we’ll use to bootstrap our app:

code/redux/angular2-redux-chat/minimal/app.ts

@NgModule({
declarations: |
CounterApp,

CounterComponent

]I

imports: [BrowserModule],
bootstrap: [CounterApp],
providers: |
{provide: AppStore, useValue: store }

9
class CounterAppAppModule {}

platformBrowserDynamic().bootstrapModule(CounterAppAppModule)

1%%http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
"Thttps://github.com/angular/angular/issues/135
19%http://victorsavkin.com/post/126514197956/dependency-injection-in-angular- 1-and-angular-2

http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
https://github.com/angular/angular/issues/135
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2
http://stackoverflow.com/questions/32254952/binding-a-class-to-an-interface
https://github.com/angular/angular/issues/135
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

10
11
12
13
14
15

Introduction to Redux with TypeScript 375

Now we are able to get a reference to our Redux store anywhere in our app by injecting AppStore.
The place we need it most now is our CounterComponent.

The counterComponent

With our setup out of the way, we can start creating our component that actually displays the counter
to the user and provides buttons for the user to change the state.

importS
Let’s start by looking at the imports:

code/redux/angular2-redux-chat/minimal/CounterComponent.ts

import
Component,
Inject
} from '@angular/core';
import { Store } from 'redux';
import { AppStore } from './app-store';
import { AppState } from './app-state';
import * as CounterActions from './counter-action-creators';

We import Store from Redux as well as our injector token AppStore, which will get us a reference
to the singleton instance of our store. We also import the AppState type, which helps us know the
structure of the central state.

Lastly, we import our action creators with * as CounterActions. This syntax will let us call
CounterActions.increment() to create an INCREMENT action.

The template

Let’s look at the template of our CounterComponent:

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Introduction to Redux with TypeScript

Counter

Custom Store

The counter value is: 3

Increment Decrement

Counter App Template

code/redux/angular2-redux-chat/minimal/CounterComponent.ts

376

@Component ({
selector: 'counter-component',
template:
<div class="row">
<div class="col-sm-6 col-md-4">
<div class="thumbnail">
<div class="caption">
<h3>Counter</h3>
<p>Custom Store</p>

<p>
The counter value is:
{{ counter }}
</p>

<p>
<button (click)="increment()"
class="btn btn-primary">
Increment
</button>
<button (click)="decrement()"
class="btn btn-default">
Decrement
</button>
</p>

41
42
43
44
45

48
49
50
51
52
953
54
55
56
o7
958
59
60
61
62
63
64
65
66
67
68

Introduction to Redux with TypeScript 377

</div>
</div>
</div>
</div>

The three things to note here are that we’re:

1. displaying the value of the counter in {{ counter }}
2. calling the increment() function in a button and
3. calling the decrement () function in a button.

The constructor

Remember that we need this component depends on the Store, so we need to inject it in the
constructor. This is how we use our custom AppStore token to inject a dependency:

code/redux/angular2-redux-chat/minimal/CounterComponent.ts

export default class CounterComponent {
counter: number;

constructor(@Inject(AppStore) private store: Store<AppState>) {
store.subscribe(() => this.readState());
this.readState();

readState() {
let state: AppState = this.store.getState() as AppState;
this.counter = state.counter;

increment() {
this.store.dispatch(CounterActions. increment());

decrement() {
this.store.dispatch(CounterActions.decrement());

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Introduction to Redux with TypeScript 378

We use the @Inject annotation to inject AppStore - notice that we define the type of the variable
store to Store<AppState>. Having a different injection token than the type of the dependency
injected is a little different than when we use the class as the injection token (and Angular infers
what to inject).

We set the store to an instance variable (with private store). Now that we have the store we
can listen for changes. Here we call store.subscribe and call this.readState(), which we define
below.

The store will call subscribe only when a new action is dispatched, so in this case we need to make
sure we manually call readState at least once to ensure that our component gets the initial data.

The method readState reads from our store and updates this.counter to the current value. Because
this.counter is a property on this class and bound in the view, Angular will detect when it changes
and re-render this component.

We define two helper methods: increment and decrement, each of which dispatch their respective
actions to the store.

Putting It All Together

Here’s the full listing of our CounterComponent

code/redux/angular2-redux-chat/minimal/CounterComponent.ts

import
Component,
Inject
} from '@angular/core';
import { Store } from 'redux';
import { AppStore } from './app-store';
import { AppState } from './app-state';
import * as CounterActions from './counter-action-creators’;

@Component ({
selector: 'counter-component',
template:
<div class="row">
<div class="col-sm-6 col-md-4">
<div class="thumbnail">
<div class="caption">
<h3>Counter</h3>
<p>Custom Store</p>

<p>

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
959
60
61
62
63
64
65
66
67
68

Introduction to Redux with TypeScript

The counter value is:
{{ counter }}
</p>

<p>
<button (click)="increment()"
class="btn btn-primary">
Increment
</button>
<button (click)="decrement()"
class="btn btn-default">
Decrement
</button>
</p>
</div>
</div>
</div>
</div>

1))

export default class CounterComponent {
counter: number;

constructor(@Inject(AppStore) private store: Store<AppState>) {
store.subscribe(() => this.readState());
this.readState();

readState() {
let state: AppState = this.store.getState() as AppState;
this.counter = state.counter;

increment() {
this.store.dispatch(CounterActions.increment());

decrement() {
this.store.dispatch(CounterActions.decrement());

379

D W N~

Introduction to Redux with TypeScript

Try it out!

cd code/redux/angular2-redux-chat

npm install

npm run go

open http://localhost:8080/minimal.html

L] L D ng-book 2 - minimal pure 1 *

380

<« C | [I localhost:8080/minimal.html

Counter
Custom Store

The counter value is: 13

Inspector

Jrrcer. ..
INCREMENT

INCREMENT

INCREMENT

Diff

Action

Autoselect instances
LommiT
T TE

Diff | State

Working Counter App

Congratulations! You’ve created your first Angular and Redux app!

What's Next

Now that we’ve built a basic app using Redux and Angular, we should try building a more
complicated app. When we build bigger apps we encounter new challenges like:

« How do we combine reducers?

Introduction to Redux with TypeScript 381

« How do we extract data from different branches of the state?
« How should we organize our Redux code?

In the next chapter, we’ll build a chat app which will tackle all of these questions!

References

If you want to learn more about Redux, here are some good resources:

Official Redux Website'*?

This Video Tutorial by Redux’s Creator'®
+ Real World Redux'® (presentation slides)
+ The power of higher-order reducers'*

To learn more about Redux and Angular checkout:
+ angular2-redux'®’
+ ng2-redux'®®

+ ngrx/store'”

Onward!

1%http://redux.js.org/
1%https://egghead.io/courses/getting-started-with-redux
1%3https://speakerdeck.com/chrisui/real-world-redux
1%http://slides.com/omnidan/hor
9https://github.com/Infomedialtd/angular2-redux
198https://github.com/angular-redux/ng2-redux
1%https://github.com/ngrx/store

http://redux.js.org/
https://egghead.io/courses/getting-started-with-redux
https://speakerdeck.com/chrisui/real-world-redux
http://slides.com/omnidan/hor
https://github.com/InfomediaLtd/angular2-redux
https://github.com/angular-redux/ng2-redux
https://github.com/ngrx/store
http://redux.js.org/
https://egghead.io/courses/getting-started-with-redux
https://speakerdeck.com/chrisui/real-world-redux
http://slides.com/omnidan/hor
https://github.com/InfomediaLtd/angular2-redux
https://github.com/angular-redux/ng2-redux
https://github.com/ngrx/store

Intermediate Redux in Angular

In the last chapter we learned about Redux, the popular and elegant data architecture. In that chapter,
we built an extremely basic app that tied our Angular components and the Redux store together.

In this chapter we’re going to take on those ideas and build on them to create a more sophisticated
chat app.

Here’s a screenshot of the app we’re going to build:

e L [Angular 2 - Chat with RxJS

- C' [localhost:8080 72 »| =

Echo Bot »

I'll echo whatever you send me

Waiting Bot
I'll wait however many seconds you send to me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

Reverse Bot
- I'll reverse whatever you send me

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Completed Chat Application

Context For This Chapter

Earlier in this book we built a chat app using RxJS. We're going to be building that same app again
only this time with Redux. The point is for you to be able to compare and contrast how the same
app works with different data architecture strategies.

Intermediate Redux in Angular 383

You are not required to have read the RxJS chapter in order to work through this one. This chapter
stands on its own with regard to the RxJS chapters. If you have read that chapter, you’ll be able to
skim through some of the sections here where the code is largely the same (for instance, the data
models themselves don’t change much).

We do expect that you’ve read through the previous Redux chapter or at least have some familiarity
with Redux.

Chat App Overview
In this application we’ve provided a few bots you can chat with. Open up the code and try it out:

cd code/redux/angular2-redux-chat
npm install
npm run go

Now open your browser to http://localhost:8080.

Q If the above URL doesn’t work, try this URL: http: //localhost : 8080/webpack -dev-server/index.html

9 Some Windows users may have trouble doing an npm install on this repo. If this causes
problems for you, make sure you’re running these commands inside Cygwin'*’.

Notice a few things about this application:

+ You can click on the threads to chat with another person

+ The bots will send you messages back, depending on their personality

+ The unread message count in the top corner stays in sync with the number of unread messages
Let’s look at an overview of how this app is constructed. We have

+ 3 top-level Angular Components

+ 3 models

« and 2 reducers, with their respective action creators

Let’s look at them one at a time.

Ohttps://www.cygwin.com/

https://www.cygwin.com/
https://www.cygwin.com/

Intermediate Redux in Angular 384

Components

The page is broken down into three top-level components:

® O @ /[angular 2 - Chat with RxJS %\ Blank

| localhost:8080

ChatNavBar

B ChatThread
| & [eaNu—. atThreads
Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send 1o me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

ChatWindow

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

Redux Chat Top-Level Components

« ChatNavBar - contains the unread messages count

« ChatThreads - shows a clickable list of threads, along with the most recent message and the
conversation avatar

 ChatWindow - shows the messages in the current thread with an input box to send new
messages

Models

This application also has three models:

Intermediate Redux in Angular 385

Message
Thread id S
id messages(] ~,. sentAt -
name "'"' isRead
tarsrc text author ——=[name
ava
messages[] " T thread — | author avatarSrc
thread
Redux Chat Models

« User - stores information about a chat participant
+ Message - stores an individual message
« Thread - stores a collection of Messages as well as some data about the conversation

Reducers

In this app, we have two reducers:

« UsersReducer - handles information about the current user
« ThreadsReducer - handles threads and their messages

Ssummary

At a high level our data architecture looks like this:

« Allinformation about the users and threads (which hold messages) are contained in our central
store

« Components subscribe to changes in that store and display the appropriate data (unread count,
list of threads, the messages themselves

« When the user sends a message, our components dispatch an action to the store

In the rest of this chapter, we’re going to go in-depth on how we implement this using Angular
and Redux. We'll start by implementing our models, then look at how we create our app state and
reducers, and then finally we’ll implement the Components.

12
13
14
15
16
17

Intermediate Redux in Angular 386

Implementing the Models

Let’s start with the easy stuff and take a look at the models.

We’re going to be specifying each of our model definitions as inter faces. This isn’t a requirement
and you’re free to use more elaborate objects if you wish. That said, objects with methods that
mutate their internal state can break the functional model that we’re striving for.

That is, all mutations to our app state should only be made by the reducers - the objects in the state
should be immutable themselves.

So by defining an inter face for our models,

1. we're able to ensure that the objects we’re working with conform to an expected format at
compile time and

2. we don’t run the risk of someone accidentally adding a method to the model object that would
work in an unexpected way.

User

Our User interface has an id, name, and avatarSrc.

code/redux/angular2-redux-chat/app/ts/models/User.ts

export interface User ({
id: string;
name: string;
avatarSrc: string;
isClient?: boolean;

We also have a boolean isClient (the question mark indicates that this field is optional). We will
set this value to true for the User that represents the client, the person using the app.

Thread

Similarly, Thread is also a TypeScript interface:

14
15
16
17
18
19

15
16
17
18
19
20
21
22

Intermediate Redux in Angular 387

code/redux/angular2-redux-chat/app/ts/models/Thread.ts

export interface Thread {
id: string;
name: string;
avatarSrc: string;
messages: Messagel];

We store the id of the Thread, the name, and the current avatarSrc. We also expect an array of
Messages in the messages field.

Message

Message is our third and final model inter face:

code/redux/angular2-redux-chat/app/ts/models/Message.ts

export interface Message {
id?: string;
sentAt?: Date;
isRead?: boolean;
thread?: Thread;
author: User;
text: string;

Each message has:

+ id - the id of the message

+ sentAt - when the message was sent

+ isRead - a boolean indicating that the message was read
« author - the User who wrote this message

« text - the text of the message

« thread - a reference to the containing Thread

App State

Now that we have our models, let’s talk about the shape of our central state. In the previous chapter,
our central state was a single object with the key counter which had the value of a number. This
app, however, is more complicated.

Here’s the first part of our app state:

26
27
28
29

Intermediate Redux in Angular 388

code/redux/angular2-redux-chat/app/ts/reducers/index.ts

export interface AppState {
users: UsersState;
threads: ThreadsState;

Our AppState is also an interface and it has two top level keys: users and threads - these are
defined by two more interfaces UsersState and ThreadsState, which are defined in their respective
reducers.

A Word on Code Layout

This is a common pattern we use in Redux apps: the top level state has a top-level key for each
reducer. In our app we're going to keep this top-level reducer in reducers/index. ts.

Each reducer will have it’s own file. In that file we’ll store:

« The interface that describes that branch of the state tree
The value of the initial state, for that branch of the state tree
« The reducer itself

Any selectors that query that branch of the state tree - we haven’t talked about selectors yet,
but we will soon.

The reason we keep all of these different things together is because they all deal with the structure
of this branch of the state tree. By putting these things in the same file it’s very easy to refactor
everything at the same time.

You’re free to have multiple layers of nesting, if you so desire. It’s a nice way to break up large
modules in your app.

The Root Reducer

Since we’re talking about how to split up reducers, let’s look at our root reducer now:

26
27
28
29
30
31
32
33
34

18
19
20
21
22
23
24

Intermediate Redux in Angular 389

code/redux/angular2-redux-chat/app/ts/reducers/index.ts

export interface AppState {
users: UsersState;
threads: ThreadsState;

const rootReducer: Reducer<AppState> = combineReducers<AppState> ({
users: UsersReducer,
threads: ThreadsReducer

});

Notice the symmetry here - our UsersReducer will operate on the users key, which is of
type UsersState and our ThreadsReducer will operate on the threads key, which is of type
ThreadsState.

This is made possible by the combineReducers function which takes a map of keys and reducers and
returns a new reducer that operates appropriately on those keys.

Of course we haven’t finished looking at the structure of our AppState yet, so let’s do that now.

The usersState

Our UsersState holds a reference to the currentUser.

code/redux/angular2-redux-chat/app/ts/reducers/UsersReducer.ts

export interface UsersState {
currentUser: User;

};

const initialState: UsersState = {
currentUser: null

};

You could imagine that this branch of the state tree could hold information about all of the users,
when they were last seen, their idle time, etc. But for now this will suffice.

We'll use initialState in our reducer when we define it below, but for now we’re just going to set
the current user to null.

The ThreadsState

Let’s look at the ThreadsState:

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Intermediate Redux in Angular

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

390

export interface ThreadsEntities {
[id: string]: Thread;

export interface ThreadsState {

ids: string[];
entities: ThreadsEntities;
currentThreadId?: string;

1

const initialState: ThreadsState = {

ids: [],
currentThreadId: null,
entities: {}

¥

We start by defining an interface called ThreadsEntities which is a map of thread ids to Threads.

The idea is that we’ll be able to look up any thread by id in this map.

In the ThreadsState we’re also storing an array of the ids. This will store the list of possible ids

that we might find inentities.

Q This strategy is used by the commonly-used library normalizr
standardize how we store entities in our Redux state, we’re able to build helper libraries
and it’s clearer to work with. Instead of wondering what the format is for each tree of the

state, when we use normalizr a lot of the choices have been made for us and we’re able to

work more quickly.

I’ve opted not to teach normalizr in this chapter because we’re learning so many other
things. That said, I would be very likely to use normalizr in my production applications.

That said, normalizr is totally optional - nothing major changes in our app by not using

it.

If you’d like to learn how to use normalizr, checkout the official docs'*?, this blog post**?,
and the thread referenced by Redux creator Dan Abramov here'**

. The idea is that when we

We store the currently viewed thread in currentThreadId - the idea here is that we want to know

which thread the user is currently looking at.

We set our initialState to “empty” values.

"https://github.com/paularmstrong/normalizr
2https://github.com/paularmstrong/normalizr

" https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.18ur7ipué

"4https://twitter.com/dan_abramov/status/663032263702106112

https://github.com/paularmstrong/normalizr
https://github.com/paularmstrong/normalizr
https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.l8ur7ipu6
https://twitter.com/dan_abramov/status/663032263702106112
https://github.com/paularmstrong/normalizr
https://github.com/paularmstrong/normalizr
https://medium.com/@mcowpercoles/using-normalizr-js-in-a-redux-store-96ab33991369#.l8ur7ipu6
https://twitter.com/dan_abramov/status/663032263702106112

Intermediate Redux in Angular 391

Visualizing Our Appstate

Redux Devtools provides us with a “Chart” view that lets us inspect the state of our app. Here’s what
mine looks like after being booted with all of the demo data:

@& Redux DevTools

Autoselect instances

curren

currentT]

tll'll. a -i. T .

= Dispatcher

Redux Chat State Chart

What’s neat is that we can hover over an individual node and see the attributes of that piece of data:

Intermediate Redux in Angular 392

) Redux DevTools

Autoselect instances

i
"name": "currentThreadId",
"value": "tlLadycap”

1

thait @

= Dispatcher

Inspecting the current thread

Building the Reducers (and Action Creators)

Now that we have our central state, we can start changing it using our reducers!

Since reducers handle actions, we need to know the format of our actions in our reducer. So let’s
build our action creators at the same time we build our reducers

Set Current User Action Creators

The UsersState stores the current user. This means we need an action to set the current user. We’re
going to keep our actions in the actions folder and name the actions to match their corresponding
reducer, in this case UserActions.

20
21
22
23
24
25
26
27
28

26
27
28
29
30
31
32
33
34
35
36
37

Intermediate Redux in Angular 393

code/redux/angular2-redux-chat/app/ts/actions/UserActions.ts

export const SET_CURRENT_USER = '[User] Set Current';
export interface SetCurrentUserAction extends Action {
user: User;
}
export const setCurrentUser: ActionCreator<SetCurrentUserAction> =
(user) = ({
type: SET_CURRENT_USER,

user . user

});

Here we define the const SET_CURRENT_USER, which we’ll use to switch on in our reducer.

We also define a new subinterface SetCurrentUserAction which extends Action to add a user
property. We’ll use the user property to indicate which user we want to make the current user.

The function setCurrentUser is our proper action creator function. It takes user as an argument,
and returns a SetCurrentUserAction which we can give to our reducer.

UsersReducer - Set Current User

Now we turn our attention to our UsersReducer:

code/redux/angular2-redux-chat/app/ts/reducers/UsersReducer.ts

export const UsersReducer =
function(state: UsersState = initialState, action: Action): UsersState {
switch (action.type) {
case UserActions.SET_CURRENT_USER:
const user: User = (<UserActions.SetCurrentUserAction>action).user;
return {
currentUser: user
b
default:
return state;
}
b

Our UsersReducer takes a UsersState as the first argument. Notice that this isn’t the AppState! Our
“child reducer” only works with it’s branch of the state tree.

Our UsersReducer, like all reducers, returns a new state, in this case it is of type UsersState.

24
25
26
27
28
29
30
31
32

Intermediate Redux in Angular 394

Next we switch on the action.type and we handle the UserActions.SET_CURRENT_USER.

In order to set the current user, we need to get the user from the incoming action. To do this, we
first cast the action to UserActions.SetCurrentUserAction and then we read the .user field.

0 It might seem a little weird that we originally created a SetCurrentUserAction but then
now we switch on a type string instead of using the type directly.

Indeed, we are fighting TypeScript a little here. We lose interface metadata when the
TypeScript is compiled to JavaScript. We could instead try some sort of reflection (through
decorator metadata, or looking at a constructor etc.).

While down-casting our SetCurrentUserAction to an Action on dispatch and then re-
casting is a bit ugly, it’s a straightforward and portable way to handle this “polymorphic
dispatch” for this app.

We need to return a new UsersState. Since UsersState only has one key, we return an object with
the currentUser set to the incoming action’s user.

Thread and Messages Overview

The core of our application is messages in threads. There are three actions we need to support:

1. Adding a new thread to the state
2. Adding messages to a thread
3. Selecting a thread

Let’s start by creating a new thread

Adding a New Thread Action Creators

Here’s the action creator for adding a new Thread to our state:

code/redux/angular2-redux-chat/app/ts/actions/ThreadActions.ts

export const ADD_THREAD = '[Thread] Add';
export interface AddThreadAction extends Action {
thread: Thread;
}
export const addThread: ActionCreator <AddThreadAction> =
(thread) => ({
type: ADD_THREAD,
thread: thread

});

53
o4
55
56
S7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4

Intermediate Redux in Angular 395

Notice that this is structurally very similar to our previous action creator. We define a const ADD_-
THREAD that we can switch on, a custom Action, and an action creator addThread which generates
the Action

Notice that we don’t initialize the Thread itself here - the Thread is accepted as an argument.

Adding a New Thread Reducer

Now let’s start our ThreadsReducer by handling ADD_THREAD:

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const ThreadsReducer =
function(state: ThreadsState = initialState, action: Action): ThreadsState {

switch (action.type) {

// Adds a new Thread to the list of entities
case ThreadActions.ADD_THREAD: {
const thread = (<ThreadActions.AddThreadAction>action).thread;

if (state.ids.includes(thread.id)) {
return state;

return {
ids: [...state.ids, thread.id],
currentThreadId: state.currentThreadld,
entities: Object.assign({}, state.entities, {
[thread.id]: thread
b

// Adds a new Message to a particular Thread

Our ThreadsReducer handles the ThreadsState. When we handle the ADD_THREAD action, we cast
the action object back into a ThreadActions.AddThreadAction and then pull the Thread out.

Next we check to see if this new thread.id already appears in the list of state. ids. If it does, then
we don’t make any changes, but instead return the current state.

However if this thread is new, then we need to add it to our current state.

Remember when we create a new ThreadsState we need to take care to now mutate our old state.
This looks more complicated than any state we’ve done so far, but it’s not very different in principle.

34
35
36
37
38

Intermediate Redux in Angular 396

We start by adding our thread. id to the ids array. Here we’re using the ES6 spread operator (. . .)
to indicate that we want to put all of the existing state. ids into this new array and then append
thread. id to the end.

currentThreadId does not change when we add a new thread, so we return the old state . currentThreadld

for this field.

For entities, remember that it is an object where the key is the string id of each thread and the
value is the thread itself. We're using Object.assign here to create a new object that merges the
old state.entities with our newly added thread into a new object.

Q You might be kind of tired of meticulously copying these objects when we need to make
changes. That’s a common response! In fact, it’s easy to make mutations here by accident.

This is why Immutable.js'** was written. Immutable.js is often used with Redux for this
purpose. When we use Immutable, these careful updates are handled for us.

I’d encourage you to take a look at Immutable.js and see if it is a good fit for your reducers.

Now we can add new threads to our central state!

Adding New Messages Action Creators

Now that we have threads we can start adding messages to them.

Let’s define a new action for adding messages:

code/redux/angular2-redux-chat/app/ts/actions/ThreadActions.ts

export const ADD_MESSAGE = '[Thread] Add Message';
export interface AddMessageAction extends Action {
thread: Thread;
message: Message;

The AddMessageAction adds a Message to a Thread.

Here’s the action creator for adding a message:

3https://facebook.github.io/immutable-js/

https://facebook.github.io/immutable-js/
https://facebook.github.io/immutable-js/

39
40
41
42
43
44
45
46
47
48
49
50
o1
92
53
o4

Intermediate Redux in Angular 397

code/redux/angular2-redux-chat/app/ts/actions/ThreadActions.ts

export const addMessage: ActionCreator <AddMessageAction> =
(thread: Thread, messageArgs: Message): AddMessageAction => {
const defaults = {
id: wuid(),
sentAt: new Date(),
isRead: false,
thread: thread
¥

const message: Message = Object.assign({}, defaults, messageArgs);

return {
type: ADD_MESSAGE,
thread: thread,
message: message
¥
¥

The addMessage action creator accepts a thread and an object we use for crafting the message.
Notice here that we keep a list of defaults. The idea here is that we want to encapsulate creating
an id, setting the timestamp, and setting the isRead status. Someone who wants to send a message
shouldn’t have to worry about how the UUIDs are formed, for instance.

That said, maybe the client using this library crafted the message beforehand and if they send a
message with an existing id, we want to keep it. To enable this default behavior we merge the
messageArgs into the defaults and copy those values to a new object.

Lastly we return the ADD_MESSAGE action with the this thread and new message.

Adding A New Message Reducer
Now we will add our ADD_MESSAGE handler to our ThreadsReducer. When a new message is added,
we need to take the thread and add the message to it.

There is one tricky thing we need to handle that may not be obvious at this point: if the thread is
the “current thread” we need to mark this message as read.

The user will always have one thread that is the “current thread” that they’re looking at. We’re going
to say that if a new message is added to the current thread, then it’s automatically marked as read.

)
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o
98
99
100
101
102

Intermediate Redux in Angular 398

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

case ThreadActions.ADD_MESSAGE: {
const thread = (<ThreadActions.AddMessageAction>action).thread;
const message = (<ThreadActions.AddMessageAction>action).message;

// special case: if the message being added is in the current thread, then
// mark it as read
const isRead = message.thread.id === state.currentThreadId ?
true : message.isRead;
const newMessage = Object.assign({}, message, { isRead: isRead });

// grab the old thraed from entities
const oldThread = state.entities[thread.id];

// create a new thread which has our newMessage
const newThread = Object.assign({}, oldThread, {
messages: [...oldThread.messages, newMessage]

});

return {
ids: state.ids, // unchanged
currentThreadId: state.currentThreadld, // unchanged
entities: Object.assign({}, state.entities, ({
[thread.id]: newThread
D)
¥

// Select a particular thread in the UI

The code is a bit long because we’re being careful not to mutate the original thread, but it is not
much different than what we’ve done so far in principle.

We start by extracting the thread and message.

Next we mark the message as read, if its part of the “current thread” (we’ll look at how to set the
current thread next).

Then we grab the oldThread and create a newThread which has the newMessage appended on to the
old messages.

Finally we return the new ThreadsState. The current list of thread ids and the currentThreadId
are unchanged by adding a message, so we pass the old values here. The only thing we change is
that we update entities with our newThread.

56
o7
58
59
60
61
62
63
64

Intermediate Redux in Angular 399

Now let’s implement the last part of our data backbone: selecting a thread.

Selecting A Thread Action Creators

Our user can have multiple chat sessions in progress at the same time. However, we only have one
chat window (where the user can read and send messages). When the user clicks on a thread, we
want to show that thread’s messages in the chat window.

Echo Bot

I'll echo whatever you send me

Reverse Bot =

n I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send to me before responding. Try sending ‘3

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

Selecting A Thread

We need to keep track of which thread is the currently selected thread. To do that, we’ll use the
currentThreadld property in the ThreadsState.

Let’s create the actions for this:

code/redux/angular2-redux-chat/app/ts/actions/ThreadActions.ts

export const SELECT_THREAD = '[Thread] Select';
export interface SelectThreadAction extends Action {
thread: Thread;
}
export const selectThread: ActionCreator<SelectThreadAction> =
(thread) => ({
type: SELECT_THREAD,
thread: thread

});

There’s nothing conceptually new in this action: we've got a new type of SELECT_THREAD and we
pass the Thread that we’re selecting as an argument.

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Intermediate Redux in Angular 400

Selecting A Thread Reducer

To select a thread we need to do two things:

1. set currentThreadlId to the selected thread’s id
2. mark all messages in that thread as read

Here’s the code for that reducer:

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

case ThreadActions.SELECT_THREAD: ({
const thread = (<ThreadActions.SelectThreadAction>action).thread;
const oldThread = state.entities[thread.id];

// mark the messages as read
const newMessages = oldThread.messages.map(
(message) => Object.assign({}, message, { isRead: true }));

// give them to this new thread
const newThread = Object.assign({}, oldThread, {
messages: newMessages

});

return {
ids: state.ids,
currentThreadId: thread.id,
entities: Object.assign({}, state.entities, {
[thread.id]: newThread
P
¥

default:
return state;

}
};

We start by getting the thread-to-select and then using that thread.id to get the current Thread
that exists in state to get the values.

This maneuver is a bit defensive. Why not just use the thread that is passed in? That might
be the right design decision for some apps. In this case we protect against some external
mutation of thread by reading the last known values of that thread in state.entities.

Intermediate Redux in Angular 401

Next we create a copy of all of the old messages and set them as isRead: true. Then we assign
those new read messages to newThread.

Finally we return our new ThreadsState.

Reducers Summary

We did it! Above is everything we need for the backbone of our data architecture.

To recap, we have a UsersReducer which maintains the current user. We have a ThreadsReducer
which manages:

+ The list of threads
+ The messages in those threads

+ The currently selected thread

We can derive everything else that we need (e.g. the unread count) from these pieces of data.

Now we need to hook them up to our components!

Building the Angular Chat App

As we mentioned earlier in the chapter, the page is broken down into three top-level components:

Intermediate Redux in Angular

ece /[Angular 2 - Chat with RxJS %

[localhost:8080

ChatNavBar

Redux Chat Top-Level Components

« ChatNavBar - contains the unread messages count

Echo Bot » h h d
n I'll echo whatever you send me C atT rea S
Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'
Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

402

+ ChatThreads - shows a clickable list of threads, along with the most recent message and the

conversation avatar

+ ChatWindow - shows the messages in the current thread with an input box to send new

messages

We’re going to bootstrap our app much like we did in the last chapter. We’re going to initialize our
Redux store at the top of the app and provide it via Angular’s dependency injection system (take a

look at the previous chapter if this looks unfamiliar):

58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85

Intermediate Redux in Angular 403

code/redux/angular2-redux-chat/app/ts/app.ts

let store: Store<AppState> = createStore<AppState>(
reducer,
compose(devtools)

)

@NgModule({

declarations: |
ChatApp,
ChatPage,
ChatThreads,
ChatNavBar,
ChatWindow,
ChatThread,
ChatMessage,
FromNowPipe

1,

imports: [
BrowserModule,
FormsModule

1,

bootstrap: [ChatApp],

providers: |

{ provide: AppStore, useFactory: () => store }

]

)
class ChatAppModule {}

platformBrowserDynamic().bootstrapModule(ChatAppModule)

The top-level chatApp

Our ChatApp component is the top-level component. It doesn’t do much other than render the
ChatPage.

40
41
42
43
44
45
46
47
48
49
50
o1
92

Intermediate Redux in Angular 404

code/redux/angular2-redux-chat/app/ts/app.ts

@Component ({
selector: 'chat-app',
template: °

<div>
<chat-page></chat-page>

</div>

b
class ChatApp {

constructor(@Inject(AppStore) private store: Store<AppState>) {
ChatExampleData(store);

Q For this app the bots operate on data on the client and are not connected to a server. The

function ChatExampleData() sets up the initial data for the app. We won’t be covering this

code in detail in the book, so feel free to look at the code on disk if you want to learn more
about how it works.

We’re not using a router in this app, but if we were, we would put it here at the top level of the app.
For now, we're going to create a ChatPage which will render the bulk of our app.

We don’t have any other pages in this app, but it’s a good idea to give each page it’s own component
in case we add some in the future.

The chatPage

Our chat page renders our three main components:
e ChatNavBar
 ChatThreads and

e ChatWindow

Here it is in code:

18
19
20
21
22
23
24
25
26
27
28
29
30
31

Intermediate Redux in Angular 405

code/redux/angular2-redux-chat/app/ts/pages/ChatPage.ts

@Component ({
selector: 'chat-page',
template: °
<div>
<chat-nav-bar></chat-nav-bar>
<div class="container">
<chat-threads></chat-threads>
<chat-window></chat-window>
</div>
</div>

P
export default class ChatPage {

}

For this app we are using a design pattern called container components and these three components
are all container components. Let’s talk about what that means.

Container vs. Presentational Components

It is hard to reason about our apps if there is data spread throughout all of our components. However,
our apps are dynamic - they need to be populated with runtime data and they need to be responsive
to user interaction.

One of the patterns that has emerged in managing this tension is the idea of presentational vs.
container components. The idea is this:

1. You want to minimize the number of components which interact with outside data sources.
(e.g. APIs, the Redux Store, Cookies etc.)

2. Therefore deliberately put data access into “container” components and

3. Require purely ‘functional’ presentation components to have all of their properties (inputs and
outputs) managed by container components.

The great thing about this design is that presentational components are predictable. They’re
reusable because they don’t make assumptions about your overall data-architecture, they only give
requirements for their own use.

But even beyond reuse, they’re predictable Given the same inputs, they always return the same
outputs (e.g. render the same way).

Intermediate Redux in Angular 406

Q If you squint, you can see that the philosophy that requires reducers to be pure functions
is the same that requires presentational components be ‘pure components’

It would be great if our entire app could be all presentational components, but of course, the real
world has messy, changing data. So we try to put this complexity of adapting our real-world data
into our container components.

o If you're an advanced programmer you may see that there is a loose analogy between MVC

and container/presentation components. That is, the presentational component is sort of a

“view” of data that is passed in. A container component is sort of a “controller” in that it

takes the “model” (the data from the rest of the app) and adapts it for the presentational
components.

That said, if you haven’t been programming very long, take this analogy with a grain of
salt as Angular components are already a view and a controller themselves.

In our app the container components are going to be the components which interact with the store.

This means our container components will be anything that:

1. Reads data from the store
2. Subscribes to the store for changes
3. Dispatches actions to the store

Our three main components are container components and anything below them will be presenta-
tional (i.e. functional / pure / not interact with the store).

Let’s build our first container component, the nav bar.

Building the chatNavBar

In the nav bar we’ll show an unread messages count to the user.

IS Echo Bot «

The Unread Count in the ChatNavBar Component

Q The best way to try out the unread messages count is to use the “Waiting Bot”. If you
haven’t already, try sending the message ‘3’ to the Waiting Bot and then switch to another
window. The Waiting Bot will then wait 3 seconds before sending you a message and you

will see the unread messages counter increment.

Let’s look at the component code first:

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5

Intermediate Redux in Angular

code/redux/angular2-redux-chat/app/ts/containers/ChatNavBar.ts

407

@Component({
selector: 'chat-nav-bar',
template:
<nav class="navbar navbar-default">
<div class="container-fluid">
<div class="navbar-header">

ng-book 2

</div>
<p class="navbar-text navbar-right">
<button class="btn btn-primary" type="button">
Messages {{ unreadMessagesCount }}
</button>
</p>
</div>
</nav>
b
export default class ChatNavBar ({

unreadMessagesCount: number;

constructor(@Inject(AppStore) private store: Store<AppState>) {
store.subscribe(() => this.updateState());
this.updateState();

}

updateState() {
this.unreadMessagesCount = getUnreadMessagesCount(this.store.getState());

}

}

Our template gives us the DOM structure and CSS necessary for rending a nav bar (these CSS-classes

come from the CSS framework Bootstrap).

The only variable we’re showing in this template us unreadMessagesCount.

Our ChatNavBar has unreadMessagesCount as an instance variable. This number will be set to the

sum of unread messages in all threads.

Notice in our constructor we do three things:

0 N O O B~ W N -

NN NN NDNDNRS B B sl s
O O b WO N O © 01O O b WO NN O O

Intermediate Redux in Angular 408

1. Inject our store
2. Subscribe to any changes in the store
3. Call this.updateState()

We call this.updateState() after subscribe because we want to make sure this component is
initialized with the most recent data. subscribe will only be called if something changes after this
component is initialized.

updateState() is the most interesting function - we set unreadMessagesCount to the value of the
function getUnreadMessagesCount. What is getUnreadMessagesCount and where did it come from?

getUnreadMessagesCount is a new concept called selectors.

Redux Selectors

Thinking about our AppState, how might we go about getting the unread messages count? How
about something like this:

// get the state
let state = this.store.getState();

// get the threads state
let threadsState = state.threads;

// get the entities from the threads
let threadsEntities = threadsState.entities;

// get all of the threads from state
let allThreads = Object.keys(threadsEntities)
.map((threadld) => entities[threadld]);

// iterate over all threads and ...
let unreadCount = allThreads.reduce(
(unreadCount: number, thread: Thread) => {
// foreach message in that thread
thread.messages. forEach((message: Message) => {
if (!message.isRead) {
// 1f it's unread, increment unread count
++unreadCount ;
}
1)

return unreadCount;

}I
2);

130

W N -

Intermediate Redux in Angular 409
Should we put this logic in the ChatNavBar component? There’s two problems with that approach:

1. This chunk of code reaches deep into our AppState. A better approach would be to co-locate
this logic next to where the state itself is written.

2. What if we need the unread count somewhere else in the app? How could we share this logic?

Solving these problems is the idea behind selectors.
Selectors are functions that take a part of the state and return a value.

Let’s take a look at how to make a few selectors.

Threads Selectors

Let’s start with an easy one. Say we have our AppState and we want to get the ThreadsState:

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const getThreadsState = (state): ThreadsState => state.threads;

Pretty easy, right? Here we’re saying, given the top-level AppState, we can find the ThreadsState
at state.threads.

Let’s say that we want to get the current thread. We could do it like this:

const getCurrentThread = (state: AppState): Thread => {
let currentThreadld = state.threads.currentThreadlId;
return state.threads.entities|[currentThreadId];

For this small example, this selector works fine. But it’s worth thinking about how we can make
our selectors maintainable as the app grows. It would be nice if we could use selectors to query
other selectors. It also would be nice to be able to specify a selector that has multiple selectors as a
dependency.

This is what the reselect''® library provides. With reselect we can create small, focused selectors
and then combine them together into bigger functionality.

Let’s look at how we will get the current thread using createSelector from reselect.

8https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc

https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc
https://github.com/reactjs/reselect#createselectorinputselectors--inputselectors-resultfunc

132
133
134

155
156
157
158
159

Intermediate Redux in Angular 410

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const getThreadsEntities = createSelector(
getThreadsState,
(state: ThreadsState) => state.entities);

We start by writing getThreadsEntities. getThreadsEntities uses createSelector and passes
two arguments:

1. getThreadsState, the selector we defined above and

2. A callback function which will receive the value of the selector in #1 and return the value we
want to select.

This might seem like a lot of overhead to call state.entities, but it sets us up for a much more
maintainable selectors down the line. Let’s look at getCurrentThread using createSelector:

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const getCurrentThread = createSelector(
getThreadsEntities,
getThreadsState,
(entities: ThreadsEntities, state: ThreadsState) =>
entities[state.currentThreadId]);

Notice here that we’re citing two selectors as dependencies: getThreadsEntities and getThreadsState
- when these selectors resolve they become the arguments to the callback function. We can then
combine them together to return the selected thread.

Unread Messages Count Selector

Now that we understand how selectors work, let’s create a selector that will get the number of
unread messages. If you look at our first attempt at unread messages above, we can see that each
variable could instead become it’s own selector (getThreadsState, getThreadsEntities, etc.)

Here’s a selector that will get all Threads:

136
137
138
139

141
142
143
144
145
146
147
148
149
150
151
152

Intermediate Redux in Angular 411

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const getAllThreads = createSelector(
getThreadsEntities,
(entities: ThreadsEntities) => Object.keys(entities)
.map((threadld) => entities[threadld]));

And then given all of the threads, we can get the sum of the unread messages over all threads:

code/redux/angular2-redux-chat/app/ts/reducers/ThreadsReducer.ts

export const getUnreadMessagesCount = createSelector(
getAllThreads,
(threads: Thread[]) => threads.reduce(
(unreadCount: number, thread: Thread) => {
thread.messages. forEach((message: Message) => {
if (!message.isRead) {
++unreadCount;
}
1)
return unreadCount;
1
9));

Now that we have this selector, we can use it to get the number of unread messages in our ChatNavBar
(and anywhere else in our app where we might need it).

Building the chatThreads Component

Next let’s build our thread list in the ChatThreads component.

48
49
50
51
52
53
54
55
56
o
o8
959
60
61
62
63
64
65
66
67
68

Intermediate Redux in Angular

Echo Bot »
I'll echo whatever you send me

Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’

Lady Capulet

So shall you feel the loss, but not the
friend which you weep for.

Reverse Bot
- I'll reverse whatever you send me

Time Ordered List of Threads

ChatThreads Controller

Let’s take a look at our component controller ChatThreads before we look at the template:

code/redux/angular2-redux-chat/app/ts/containers/ChatThreads.ts

412

export default class ChatThreads ({
threads: Thread[];
currentThreadId: string;

constructor(@Inject(AppStore) private store: Store<AppState>) {
store.subscribe(() => this.updateState());
this.updateState();

updateState() {

let state = this.store.getState();

// Store the threads list
this.threads = getAllThreads(state);

// We want to mark the current thread as selected,

// so we store the currentThreadld as a value
this.currentThreadld = getCurrentThread(state).id;

handleThreadClicked(thread: Thread) {

69
70
71

30
31
32
33
34
35
36
37
38
39
40

Intermediate Redux in Angular 413

this.store.dispatch(ThreadActions.selectThread(thread));

We’re storing two instance variables on this component:

+ threads - the list of Threads
« currentThreadld - the current thread (conversation) that the user is participating in

In our constructor we keep a reference to the Redux store and subscribe to updates. When the store
changes, we call updateState().

updateState() keeps our instance variables in sync with the Redux store. Notice that we’re using
two selectors:

« getAllThreads and
¢ getCurrentThread

which keep their respective instance variables up to date.

The one new idea we've added is an event handler: handleThreadClicked. handleThreadClicked
will dispatch the selectThread action. The idea here is that when a thread is clicked on, we’ll tell
our store to set this new thread as the selected thread and the rest of the application should update
in turn.

ChatThreads template

Let’s look at the ChatThreads template and its configuration:

code/redux/angular2-redux-chat/app/ts/containers/ChatThreads.ts

*/
@Component ({
selector: 'chat-threads',
template:
<!-- conversations -->

<div class="row">
<div class="conversation-wrap">
<chat-thread
*ngFor="1et thread of threads"
[thread]="thread"
[selected]="thread.id === currentThreadId"

41
42
43
44
45

Intermediate Redux in Angular 414

(onThreadSelected)="handleThreadClicked($event)">
</chat-thread>
</div>
</div>

<

In our template we’re using ngFor to iterate over our threads. We're using a new directive to render
the individual threads called ChatThread.

ChatThread is a presentational component. We won’t be able to access the store in ChatThread,
neither for fetching data nor dispatching actions. Instead, we’re going to pass everything we need
to this component through inputs and handle any interaction through outputs.

We'll look at the implementation of ChatThread next, but look at the inputs and outputs we have in
this template first.

« We're sending the input [thread] with the individual thread

+ On the input [selected] we're passing a boolean which indicates if this thread (thread.id)
is the “current” thread (currentThreadId)

» Ifthe thread is clicked, we will emit the output event (onThreadSelected) - when this happens
we’ll call handleThreadClicked() (which dispatches a thread selected event to the store).

Let’s dig in to the ChatThread component.

The Single chatThread Component

The ChatThread component will be used to display a single thread in the list of threads. Remember
that ChatThread is a presentational component - it doesn’t manipulate any data that isn’t given to
it directly.

Because it is a presentational component, we’re going to store it in the app/ts/components directory.

Here’s the component controller code:

43
44
45
46
47
48
49
S50
o1
52
53

95
56

21
22
23
24
25
26
27
28
29
30
31

Intermediate Redux in Angular 415

code/redux/angular2-redux-chat/app/ts/components/ChatThread.ts

export default class ChatThread {
thread: Thread;
selected: boolean;
onThreadSelected: EventEmitter<Thread>;

constructor() {
this.onThreadSelected = new EventEmitter<Thread>();

clicked(event: any): void {
this.onThreadSelected.emit(this.thread);
event.preventDefault();

The main thing to look at here is the onThreadSelected EventEmitter. If you haven’t used
EventEmitters much, the idea is that it’s an implementation of the observer pattern. We use it as the
“output channel” for this component - when we want to send data we call onThreadSelected.emit
and pass whatever data we want along with it.

In this case, we want to emit the current thread as the argument to the EventEmitter. When
this element is clicked, we will call onThreadSelected.emit(this.thread) which will trigger the
callback in our parent (ChatThreads) component.

ChatThread @Component and template

Here’s the code for our @Component annotation and template:

code/redux/angular2-redux-chat/app/ts/components/ChatThread.ts

@Component({
inputs: ['thread', 'selected'],
selector: 'chat-thread',
outputs: ['onThreadSelected'],
template:
<div class="media conversation">
<div class="pull-left">
<img class="media-object avatar"
src="{{thread.avatarSrc}}">
</div>

<div class="media-body">

32
33
34
35
36
37
38
39
40
41

Intermediate Redux in Angular 416

<h5 class="media-heading contact-name">{{thread.name}}
•
</h5>
<small class="message-preview">
{{thread.messages[thread.messages.length - 1].text}}
</small>
</div>
<a (click)="clicked($event)" class="div-link">Select
</div>

<

Here is where we specify our inputs of thread and selected, as well as the output of onThreads-
elected.

Notice that in our view we've got some straight-forward bindings like {{thread.avatarSrc}},
{{thread.name}}. In the message-preview tag we've got the following:

{{ thread.messages|[thread.messages.length - 1].text }}

This gets the last message in the thread and displays the text of that message. The idea is we are
showing a preview of the most recent message in that thread.

We’ve got an *ngIf which will show the & ul1; symbol only if this is the selected thread.

Lastly, we’re binding to the (click) event to call our clicked() handler. Notice that when we call
clicked we're passing the argument $event. This is a special variable provided by Angular that
describes the event. We use that in our clicked handler by calling event . preventDefault() ;. This
makes sure that we don’t navigate to a different page.

Building the chatwindow Component

The ChatWindow is the most complicated component in our app. Let’s take it one section at a time:

81
82
83
84

Intermediate Redux in Angular 417

¥ Chat - Reverse Bot
I'll reverse whatever you send me n

0 okay

[y

Write your message here... m

The Chat Window

Our ChatWindow class has three properties: currentThread (which holds messages), draftMessage,

and currentUser:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

export default class ChatWindow {
currentThread: Thread;
draftMessage: { text: string };
currentUser: User;

Here’s a diagram of where each one is used:

86
87
88
89
90
91

Intermediate Redux in Angular 418

currentThread

M Chat - Reverse Bot

I'll reverse whatever you send me | meS Sages

m okay currentUser

yako

draftMessage

Chat Window Properties

In our constructor we're going to inject two things:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

constructor(@Inject(AppStore) private store: Store<AppState>,
private el: ElementRef) {
store.subscribe(() => this.updateState());
this.updateState();
this.draftMessage = { text: '' };

}

The first is our Redux Store. The second, el is an ElementRef which we can use to get access to the
host DOM element. We’ll use that when we scroll to the bottom of the chat window when we create
and receive new messages.

In our constructor we subscribe to our store, as we have in our other container components.

The next thing we do is to set a default draftMessage with an empty string for the text. We’ll use
the draftMessage to keep track of the input box as the user is typing their message.

ChatWindow updateState()

When the store changes we will update the instance variables for this component:

93
94
95
96
o7
98

100
101
102
103
104
105
106

Intermediate Redux in Angular 419

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

updateState() {
let state = this.store.getState();
this.currentThread = getCurrentThread(state);
this.currentUser = getCurrentUser(state);
this.scrollToBottom();

Here we store the current thread and the current user. If a new message comes in, we also want to
scroll to the bottom of the window. It’s a bit coarse to call scrol1ToBottom here, but it’s a simple
way to make sure that the user doesn’t have to scroll manually each time there is a new message (or
they switch to a new thread).

ChatWindow scrollToBottom()

To scroll to the bottom of the chat window, we’re going to use the ElementRef el that we saved in
the constructor. To make this element scroll, we’re going to set the scrol1Top property of our host
element:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

scrollToBottom(): void {
let scrollPane: any = this.el
.nativeElement.querySelector('.msg-container-base');
if (scrollPane) {
setTimeout(() => scrollPane.scrollTop = scrollPane.scrollHeight);

9 Why do we have the setTimeout?

If we call scrol1ToBottom immediately when we get a new message then what happens is
we scroll to the bottom before the new message is rendered. By using a setTimeout we're
telling Javascript that we want to run this function when it is finished with the current
execution queue. This happens after the component is rendered, so it does what we want.

ChatWindow sendMessage

When we want to send a new message, we'll do it by taking:

108
109
110
111
112
113
114
115
116
117
118

Intermediate Redux in Angular 420

« The current thread
« The current user
« The draft message text

And then dispatching a new addMessage action on the store. Here’s what it looks like in code:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

sendMessage(): void {
this.store.dispatch(ThreadActions.addMessage(
this.currentThread,
{
author: this.currentUser,
isRead: true,
text: this.draftMessage.text

}

));
this.draftMessage = { text: '' };

The sendMessage function above takes the draftMessage, sets the author and thread using our
component properties. Every message we send has “been read” already (we wrote it) so we mark it
as read.

After we dispatch the message, we create a new Message™ and set that new Message to this.draftMessage.
This will clear the search box, and by creating a new object we ensure we don’t mutate the message
that was sent to the store.

ChatWindow onEnter

In our view, we want to send the message in two scenarios

1. the user hits the “Send” button or
2. the user hits the Enter (or Return) key.

Let’s define a function that will handle both events:

120
121
122
123

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

Intermediate Redux in Angular 421

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

onEnter(event: any): void {
this.sendMessage();
event.preventDefault();

Q We create this onEnter event handler as a separate function from sendMessage because
onEnter will accept an event as an argument and then call event . preventDefault(). This
way we could call sendMessage in scenarios other than in response to a browser event. In
this case, we’re not really calling sendMessage in any other situation, but I find that it’s

nice to separate the event handler from the function that ‘does the work’.

That is, a sendMessage function that also 1. requires an event to be passed to it and 2.
handles that event is feels like a function that may be handling too many concerns.

Now that we’ve handled the controller code, let’s look at the template

ChatWindow template
We start our template by opening the panel tags: and showing the chat name in the header:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

@Component({
selector: 'chat-window',
template: °
<div class="chat-window-container">
<div class="chat-window">
<div class="panel-container">

<div class="panel panel-default">

<div class="panel-heading top-bar">
<div class="panel-title-container">
<h3 class="panel-title">

Chat - {{currentThread.name}}
</h3>
</div>
<div class="panel-buttons-container" >
<I-- you could put minimize or close buttons here -->
</div>
</div>

52
53

54
o5
56
o7
o8
59
60

61
62
63
64
65
66
o7
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81

Intermediate Redux in Angular 422

<div class="panel-body msg-container-base">

Next we show the list of messages. Here we use ngFor to iterate over our list of messages. We'll
describe the individual chat-message component in a minute.

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

<chat-message
*ngFor="1et message of currentThread.messages"
[message]="message">
</chat-message>
</div>

<div class="panel-footer">

Lastly we have the message input box and closing tags:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

<div class="input-group">
<input type="text"
class="chat-input"
placeholder="Write your message here..."
(keydown.enter)="onEnter($event)"
[(ngModel)]="draftMessage.text" />

<button class="btn-chat"
(click)="onEnter($event)"
>Send</button>

</div>
</div>

</div>
</div>
</div>
</div>

b
export default class ChatWindow {

The message input box is the most interesting part of this view, so let’s talk about two interesting
properties: 1. (keydown.enter) and 2. [(ngModel)].

63
64
65
66
67

69
70
7

Intermediate Redux in Angular 423

Handling keystrokes

Angular provides a straightforward way to handle keyboard actions: we bind to the event on an
element. In this case, we're binding to keydown.enter which says if “Enter” is pressed, call the
function in the expression, which in this case is onEnter($event).

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

class="chat-input"
placeholder="Write your message here..."
(keydown.enter)="onEnter($event)"
[(ngModel)]="draftMessage.text" />

<{span class="input-group-btn">

Using ngModel

As we've talked about before, we don’t generally use two-way data binding as the crux of our data
architecture (like we might have in Angular 1). This is particularly true when we’re using Redux
which is strictly a one-way data flow.

However it can be very useful to have a two-way binding between a component and its view. As
long as the side-effects are kept local to the component, it can be a very convenient way to keep a
component property in sync with the view.

In this case, we're establishing a two-way bind between the value of the input tag and draftMes-
sage.text. That is, if we type into the input tag, draftMessage.text will automatically be set to
the value of that input. Likewise, if we were to update draftMessage.text in our code, the value
in the input tag would change in the view.

Clicking “Send”
On our “Send” button we bind the (click) property to the onEnter function of our component:

code/redux/angular2-redux-chat/app/ts/containers/ChatWindow.ts

(click)="onEnter($event)"
>Send</button>

We're using the same onEnter function to handle the events which should send the draft message
for both the button and hitting the enter button.

Intermediate Redux in Angular 424

The chatMessage Component

Instead of putting the rendering code for each individual message in this component, instead we’re
going to create another presentational component ChatMessage.

Q Tip: If you're using ngFor that’s a good indication you should create a new component.

Each Message is rendered by the ChatMessage component.

M Chat - Reverse Bot

I'll reverse whatever you send me n Ch atM eS Sage

ckay

ChatMessage

(v

= n ChatMessage
[Write your message here... m

The ChatMessage Component

This component is relatively straightforward. The main logic here is rendering a slightly different
view depending on if the message was authored by the current user. If the Message was not written
by the current user, then we consider the message incoming.

Setting incoming

Remember that each ChatMessage belongs to one Message. So in ngOnInit we will subscribe to the
currentUser stream and set incoming depending on if this Message was written by the current user:

45
46
47
48
49
50
o1
o2

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Intermediate Redux in Angular

code/redux/angular2-redux-chat/app/ts/components/ChatMessage.ts

425

export default class ChatMessage implements OnlInit {
message: Message;
incoming: boolean;

ngOnInit(): void {
this.incoming = !this.message.author.isClient;

The chatMessage template

In our template we have two interesting ideas:

1. the FromNowPipe
2. [ngClass]

First, here’s the code:

code/redux/angular2-redux-chat/app/ts/components/ChatMessage.ts

x/

@Component ({
inputs: ['message'],
selector: 'chat-message',
template:

<div class="msg-container"

[ngClass]="{'base-sent': l!incoming, 'base-receive':

<div class="avatar"
*nglf="!incoming">

</div>

<div class="messages"

incoming}">

[ngClass]="{'msg-sent': l!incoming, 'msg-receive': incoming}">

<p>{{message.text}}</p>

<p class="time">{{message.sender}} e {{message.sentAt | fromNow}}</p>

</div>

<div class="avatar"

39
40
41
42
43

Intermediate Redux in Angular 426

*nglf="incoming">

</div>
</div>

N

The FromNowPipe is a pipe that casts our Messages sent-at time to a human-readable “x seconds ago”
message. You can see that we use it by: { {message.sentAt | fromNow}}

o FromNowPipe uses the excellent moment. js'" library. You can read the source of the
FromNowPipe in code/redux/angular2-redux-chat/app/ts/util/FromNowPipe.ts

We also make extensive use of ngClass in this view. The idea is, when we say:
[ngClass]="{"'msg-sent': l!incoming, 'msg-receive': incoming}"
We're asking Angular to apply the msg-receive class if incoming is truthy (and apply msg-sent if

incoming is falsey).

By using the incoming property, we’re able to display incoming and outgoing messages differently.

Summary

There we go, if we put them all together we’ve got a fully functional chat app!

"hitp://momentjs.com/

http://momentjs.com/
http://momentjs.com/

Intermediate Redux in Angular 427

Blank

H

® O ® [angular 2 - Ghat with RxJS %

Y
m

€ - C [} localhost:8080

Echo Bot +
I'll echo whatever you send me

Reverse Bot
- I'll reverse whatever you send me

Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

Completed Chat Application

If you checkout code/redux/angular2-redux-chat/app/ts/ChatExampleData.ts you’ll see we've
written a handful of bots for you that you can chat with. Checkout the code and try writing a few

bots of your own!

© 00 N O U

10
11
12
13

Advanced Components

Throughout this book, we’ve learned how to use Angular’s built-in directives and how to create
components of our own. In this chapter we’ll take a deep dive into advanced features we can use to
make components.

In this chapter we’ll learn the following concepts:

Styling components (with encapsulation)
Modifying host DOM elements
Modifying templates with content projection

Accessing neighbor directives

Using lifecycle hooks

Detecting changes

Styling

Angular provides a mechanism for specifying component-specific styles. CSS stands for cascading
style sheet, but sometimes we don’t want the cascade. Instead we want to provide styles for a
component that won’t leak out into the rest of our page.

Angular provides two attributes that allow us to define CSS classes for our component.

To define the style for our component, we use the View attribute styles to define in-line styles, or
styleUrls, to use external CSS files. We can also declare those attributes directly on the Component
annotation.

Let’s write a component that uses inline styles:

code/advanced_components/app/ts/styling/styling.ts

@Component({

selector: 'inline-style',

styles: [°

.highlight {
border: 2px solid red;
background-color: yellow;
text-align: center;
margin-bottom: 20px;

14
15
16
17
18
19
20
21
22
23
24
25
26
27

O = W N -

Advanced Components 429

"1,

template:

<h4 class="ui horizontal divider header">
Inline style example

</h4>

<div class="highlight">
This uses component <code>styles</code>
property

</div>

~

)
class InlineStyle {

}

In this example we defined the styles we want to use by declaring the .highlight class as an item
on the array on the styles parameter.

Further on in the template we reference that class on the div using <div class="highlight">.

And the result is exactly what we expect - a div with a red border and yellow background:

Inline style example

This uses component styles property

Example of component using styles

Another way to declare CSS classes is to use the styleUrls property. This allows us to declare our
CSS on an external file and just reference them from the component.

Let’s write another component that uses this, but first let’s create a file called external .css with
the following class:

code/advanced_components/app/ts/styling/external.css

.highlight {
border: 2px dotted red;
text-align: center;
margin-bottom: 20px;

Then we can write the code that references it:

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Advanced Components 430

code/advanced_components/app/ts/styling/styling.ts

@Component ({
selector: 'external-style',
styleUrls: [externalCSSUrl],
template: °

<h4 class="ui horizontal divider header">
External style example

</h4>

<div class="highlight">
This uses component <code>styleUrls</code>
property

</div>

b
class ExternalStyle {

}

And when we load the page, we see our div with a dotted border:

External style example

Example of component using styleUrls

View (Style) Encapsulation

One interesting thing about this example is that both components define a class called highlight
with different properties, but the attributes of one didn’t leak into the other.

This happens because Angular styles are encapsulated by the component context by default. If
we inspect the page and expand the <head>, we’ll notice that Angular injected a <style> tag with
our style:

Advanced Components 431

[NON Ry @ Angular 2 - ngStyledemo % | Felipe

N

C' | localhost:8080 o

nebook2 Angular 2 component styling demo

Inline style example

| This uses component styles property

External style example

This uses component styleUrls property

&= O Elements Console Sources Network Timeline Profiles Resources Security Audits ¢ X
» #shadow-root (open)
v <head> Styles Computed »
<title>Angular 2 - ngStyle demo</title> .
<link rel="icon" type"image/png" href="resources/images/favicon-32x32.png" sizes= || € + ¥ @
"'32x32"> element.style {
<link rel="icon" href="resources/images/favicon.ico"> }
<!-- Libraries -—>
<script src="node_modules/es6-shim/es6-shim.js"></script> *, iafter, semantic.min.css:11
<script src="node_modules/angular2/bundles/angular2-polyfills.js"></script> tbefore {))
<script src="node_modules/systemjs/dist/system.src.js"></script> box-sizing: inherit;
<script src="node_modules/rxjs/bundles/Rx.js"></script>
<script src="node_modules/angular2/bundles/angular2.dev.js"></script> style { user agent stylesheet
<!-- Stylesheet ——> display: none;

<link rel="stylesheet" type="text/css" href="resources/vendor/semantic.min.css">
<link rel="stylesheet" type="text/css" href="styles.css">

Inherited from html

v <style> . .
.highlight[_ngcontent-hve-2] { html { semantic.min.css:11
border: 2px solid red; font-size: 14px;
background-color: yellow;
text-align: center; html { semantic.min.css:11

margin-bottom: 20px; .
9 P box-sizing: border-box;
</style> font-family: sans-serif;

» <style>..</style>

_ html head Eii webkit—taxt—ci diusts ’

Injected style

You’ll also notice that the CSS class has been scoped with _ngcontent-hve-2:

.highlight[_ngcontent-hve-2] {
border: 2px solid red;
background-color: yellow;
text-align: center;
margin-bottom: 20px;

And if we check how our <div> is rendered, you’ll find that _ng-content-hve-2 was added:

Advanced Components

432

© /B angular 2 - ngstyle demo x| ‘FelipeJ
4 € [locahost:8080 | =
A o
. nebook2 Angular 2 component styling demo
Inline style example
| This uses component styles property
External style example
This uses component styleUrls property
&= O Elements Console Sources Network Timeline Profiles Resources Security Audits i X
~iTT TIeTIUTUoDarT T~
» <div class="ui menu">.</div> Styles Computed >
v <div class="ui main text container's>
v <style-sample-app> Filter +, .‘. &»

v <inline-style _nghost-hve-2>
v <h4 class="ui horizontal divider header" _ngcontent-hve-2>
:ibefore

Inline style example
iiafter
</h4>

v <div class="highlight

_ngcontent—hve-2

This uses component "
<code _ngcontent-hve-2>styles</code>
"

property

</div>
</inline-style>
» <external-style _nghost-hve-3>..</external-style>
</style-sample-app>
<!—— Our app loads here ——>
</div>

The

inline-style RGHATlIT]4l]

style-sample-app

body div.ui.main.text.container

html

Injected style

same thing happens for our external style:

element.style {
}

<style>..</style>
.highlight[_ngcontent-hve-2] {
border:»2px solid Mred;
background-color:
[“lyellow;
text-align: center;
margin-bottom: 20@px;

}
div { styles.css:5
padding: » 3px;
margin:» 2px;
%, tafter, semantic.min.css:11
:before {
box-sizing: inherit;
div {

user agent stylesheet

Advanced Components

<!-— Configure System.js, our module loader -—>
» <script>..</script>

<!—— Menu Bar -—>
» <div class="ui menu'>..</div>
v <div class="ui main text container'>

v <style-sample-app>

v <inline-style _nghost-hve-2>
v <h4 class="ui horizontal divider header" _ngcontent-hve-2>
::before

LI I ROL. ISR I

html head

External style

and:

/B Angular 2 - ngStyle demo x || KFelipeJ
& = € [localhost:8080 | =
A o
. nebook2 Angular 2 component styling demo
Inline style example
| This uses component styles property
External style example
This uses component styleUrls property
&= O Elements Console Sources Network Timeline Profiles Resources Security Audits i X
<script src=-node_modules/angularZ/bundles/angularZ.dev.]s ></script>
<!-- Stylesheet ——> Styles Computed >
<link rel="stylesheet" type='"text/css" href="resources/vendor/semantic.min.css"> i
<link rel="stylesheet" type="text/css" href="styles.css"> Filter + &
> <style>..</style> element.style {
}
.highlight[_ngcontent-hve-3] {
border: 2px dotted red; *, :after, semantic.min.css:11
text-align: center; :before {
margin-bottom: 20px; box-sizing: inherit;
</style> style { user agent stylesheet
</head> display: none;
v <body> DESVL i

Inherited from html

html { semantic.min.css:11
font-size: 14px;

html { semantic.min.css:11
box-sizing: border-box;
font-family: sans-serif;

433

Advanced Components

® © ® / @ angular 2 - ngstyle demo x Felipe
C' [localhost:8080 w =
g nebook2 Angular 2 component styling demo
Inline style example
| This uses component styles property
External style example
This uses component styleUrls property
&= O Elements Console Sources Network Timeline Profiles Resources Security Audits ¢ X
ﬁcode _ngcontent-hve-2>styles</code> Styles Computed »
ropert
, property +, X &
</div> element.style {

</inline-style>
v <external-style _nghost-hve-3>

» <h4 class="ui horizontal divider header" _ngcontent-hve-3>..</h4>
i _ngcontent—hve-3>

v <div class="hig
This uses component "
<code _ngcontent-hve-3>styleUrls</code>

property
</div>

</external-style>
</style-sample-app>

<!—— Qur app loads here ——>
</div>
<!—— Code injected by live-server ——>
» <script type='"text/javascript'>..</script>
</body>
</html>

html body div.ui.main.text.container style-sample-app external-style [e[\VAe]ilI[s]3]d

External style

}
<style>.</style>
.highlight [_ngcontent-hve-3] {
border:»2px dotted Mred;
text-align: center;
margin-bottom: 20@px;

div {
padding: » 3px;
margin:» 2px;

}

%, :after, semantic.min.css:11

:before {
box-sizing: inherit;

styles.css:5

div { user agent stylesheet
display: block;

Angular allows us to change this behavior, by using the encapsulation property.

This property can have the following values, defined by the ViewEncapsulation enum:

« Emulated - this is the default option and it will encapsulate the styles using the technique we

just explained above

« Native - with this option, Angular will use the Shadow DOM (more on this below)

+ None - with this option set, Angular won’t encapsulate the styles at all, allowing them to leak

to other elements on the page

Shadow DOM Encapsulation

You might be wondering: what is the point of using the Shadow DOM? By using the Shadow DOM
the component we use a unique DOM tree that is hidden from the other elements on the page.
This allows styles defined within that element to be invisible to the rest of the page.

46
47
48
49
50
51
52
53
54
55
56
o7
58
959
60
61
62
63
64
65
66
67

Advanced Components 435

Q For a deep dive into Shadow DOM, please check this guide by Eric Bidelman'*®.

Let’s create another component that uses the Native encapsulation (Shadow DOM) to understand
how this works:

code/advanced_components/app/ts/styling/styling.ts

@Component ({
selector: “native-encapsulation”,
styles: [°
.highlight {
text-align: center;
border: 2px solid black;
border-radius: 3px;
margin-botton: 20px;
T
template: °
<h4 class="ui horizontal divider header">
Native encapsulation example
</h4>

<div class="highlight">
This component uses <code>ViewEncapsulation.Native</code>
</div>

I

encapsulation: ViewEncapsulation.Native

1))

class NativeEncapsulation {

}

In this case, if we inspect the source code, we’ll see:

http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/

http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/

Advanced Components

436

}
</style>
<h4 class="ui horizontal divider header">
Native encapsulation example
</h4>
v<div class="highlight">

This component uses "
<code>ViewEncapsulation.Native</code>
</div>
» <style>..</style>
» <style>..</style>
</native-encapsulation>

PPN DUIPPRIE DU

body div.ui.main.text.container native-encapsulation

style-sample-app

html

Native encapsulation

o0 e /B Angular 2 - ngStyle demo x| ‘Felipe"
~ ~ €] localhost:8080 % =
g ngbook2 Angular 2 component styling demo
Inline style example
| This uses component styles property
External style example
This uses component styleUrls property
Native encapsulation example
I This component uses ViewEncapsulation.Native I
= 0 Elements Console Sources Network Timeline Profiles Resources Security Audits ¢ X
><extgrnal—sty1e _nghost—]ev—3>m</external—sty1e> Styles Computed
Vv <native-encapsulation
v #shadow-root (open) Filter + X &
v <style> 4
.highlight { element.style {
text-align: center; ¥
border: 2px solid black; . . .
border—radius: 3px; *, tafter, semantic.min.css:11
' :before {

box-sizing: inherit;

Inherited from div.ui.main.te...

semantic.min.css:11
.ui.text.container {
font-family:

Lato, 'Helvetica
Neue',Arial,Helvetica,..
serif;

max-width:
700px!important;

line-height: 1.5;

font-size: 1.14285714rem;

Everything inside the #shadow-root element has been encapsulated and isolated from the rest of the

page.

No Encapsulation

Finally, if we create a component that specifies ViewEncapsulation.None, no style encapsulation

will be added:

69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90

Advanced Components

code/advanced_components/app/ts/styling/styling.ts

437

@Component ({

selector: "no-encapsulation”,

styles: [°

.highlight {
border: 2px dashed red;
text-align: center;
margin-bottom: 20px;

}

"1,

template:

<h4 class="ui horizontal divider header">
No encapsulation example

</h4>

<div class="highlight">
This component uses <code>ViewEncapsulation.None</code>
</div>

I

encapsulation: ViewEncapsulation.None

1))

class NoEncapsulation {

}

When we inspect the element:

O b W N =

Advanced Components

438

[] ., @ Angular 2 - ngStyle demo % Felipe
C L localhost:8080 w| =
— T

Inline style example
This uses component styles property
External style example
This uses component styleUrls property
Native encapsulation example
oo This component uses ViewBncapsulation.Native :
No encapsulation example
' This component uses ViewEncapsulation.None H

= 0 Elements Console Sources Network Timeline Profiles Resources Security Audits X
» <INCIne-style _nghost-rky-Z>.</1nline-style>
» <external-style _nghost-rky-3>..</external-style> Styles Computed >
» <native-encapsulation>..</native-encapsulation>)

v <no-encapsulation Filter +, X @
v <h4 class="ui horizontal divider header"> element.style {
::before
" ¥
No encapsulation example *, tafter, semantic.min.css:11
" :before {
i:after box-sizing: inherit;
</h4>
v <div class="highlight"> Inherited from div.ui.main.te...
This component uses " semantic.min.css:11
<code>ViewEncapsulation.None</code> -ui.text.container {
</div> font-family:
, .
</no-encapsulation> La'to, _Helvetlca .
Neue',Arial,Helvetica,..
</style-sample-app> serif;
[— _ Sl
<! Our app loads here ——> max-width:
</div> o) 700px ! important;
<!——lC0de injected l?y llvefserver - line-height: 1.5;
e rrint -i'-\:n'u—"-}-.nv+l1nuaer.r-uwl-“\ elerrint~ - font—size: 1-14285714Fem;
html body div.ui.main.text.container style-sample-app BLEEIEHNERG]]

No encapsulation

We can see that nothing was injected on the HTML. Also on the header we can find that the <style>
tag was also injected exactly like we defined on the styles parameter:

.highlight {
border: 2px dashed red;
text-align: center;
margin-bottom: 20px;

One side-effect of using ViewEncapsulation.None is that, since we don’t have any encapsulation,
this style “leaks” into other components. If we check the picture above, the ViewEncapsula-
tion.Native component style was affected by this new component’s style. But sometimes this can

be exactly what you want.

You can comment out the <no-encapsulation></no-encapsulation> code on the StyleSampleApp

template to see the difference.

Advanced Components 439

Creating a Popup - Referencing and Modifying Host
Elements

The host element is the element to which the directive or component is bound. Sometimes we have
a component that needs to attach markup or behavior to its host element.

In this example, we’re going to create a Popup directive that will attach behavior to its host element
which will display a message when clicked.

N Components vs. Directives - What's the difference?
Components and directives are closely related, but they are slightly different.

You may have heard that “components are directives with a view”. This isn’t exactly true.
Components come with functionality that makes it easy to add views, but directives can
have views too. In fact, components are implemented with directives.

One great example of a directive that renders a conditional view is NgI f.
But we can attach behaviors to an element without a template by using a directive.

Think of it this way: Components are Directives and Components always have a view.
Directives may or may not have a view.

If you choose to render a view (a template) in your Directive, you can have more control
over how that template is rendered. We’ll talk more about how to use that control later in
this chapter.

Popup Structure

Now let’s write our first directive. We want this directive to show an alert when we click a DOM
element that includes the attribute popup. The message displayed will be identified by the element’s
message attribute.

Here’s what we want it to look like:
<element popup message="Some message"></element>
In order to make this directive work, there are a couple of things we need to do:

« receive the message attribute from the host
« be notified when the host element is clicked

Let’s start coding our directive:

, O © 0 N O O

RGN

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Advanced Components 440

code/advanced_components/app/ts/host/steps/host_01.ts

@Directive({
selector: '[popup]"’
)
class Popup {
constructor() {
console.log('Directive bound');

We use the Directive annotation and set the selector1 parameter to [popup]‘. This will make
this directive bind to any elements that define the popup attribute.

Now let’s create an app that has an element that has the popup attribute:

code/advanced_components/app/ts/host/steps/host_01.ts

@Component ({
selector: 'host-sample-app',
template:
<div class="ui message" popup>
<div class="header">
Learning Directives
</div>

<p>
This should use our Popup diretive
</p>
</div>
P
export class HostSampleAppl {

}

When we run this application, we expect the message Directive bound to be logged on the console,
indicating we have successfully bound to the first <div> in our template:

Advanced Components 441

® ® / lAnguIarZ-Hostelement X \ | Felipe |
C' [localhost:8080 w =
E ngbook2 Angular 2 component styling demo
Learning Directives
This should use our Popup diretive
x O Elements Console Sources Network Timeline Profiles Resources A2 ¢ X
© ¥ <topframe> v [JPreserve log
Live reload enabled. (index):79
» XHR finished loading: GET "http://localhost:8080/app.js". system.src.js:1049
Directive bound app.ts:9
Angular 2 is running in the development mode. Call enableProdMode() to angular2.dev.js:354
enable the production mode.

e
Binding to host element

Using ElementRef

If we want to learn more about the host element a directive is bound to, we can use the built-in
ElementRef class.

This class holds the information about a given Angular element, including the native DOM element
using the nativeElement property.

In order to see the elements our directive is binding to, we can change our directive constructor to
receive the ElementRef and log it to the console:

, O © 0 N O O

RGN

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Advanced Components 442

code/advanced_components/app/ts/host/steps/host_02.ts

@Directive({
selector: ' [popup]'’
})
class Popup {
constructor(_elementRef: ElementRef) {
console.log(_elementRef);

We can also add a second element to the page that uses our directive, so we can see two different
ElementRefs logged to the console:

code/advanced_components/app/ts/host/steps/host_02.ts

@Component ({
selector: 'host-sample-app',
template:
<div class="ui message" popup>
<div class="header">
Learning Directives
</div>

<p>
This should use our Popup diretive

</p>

</div>

<i class="alarm icon" popup></i>

<

D)
export class HostSampleApp2 {

}

When we run our app now, we can see two different ElementRefs: one with div.ui.message and
the other with i .alarm.icon. This means that the directive was successfully bound to two different
host elements:

Advanced Components

@ ® ! Angular 2 - Host element X

443

Felipe

C' | localhost:8080

/‘
S
1]

g ngbook2 Angular 2 component styling demo

Learning Directives

This should use our Popup diretive

4
& O Elements Console Sources Network Timeline Profiles
© W <top frame> v Preserve log

¥ ElementRef_
> _appElement: AppElement
internalElement: (...)

P> nativeElement: div.ui.message *——

> proto__: ElementRef_
¥ ElementRef_
> _appElement: AppElement
internalElement: (...)

» nativeElement: i.alarm.icon *———-

> proto_ : ElementRef_

Resources

Angular 2 is running in the development mode. Call enableProdMode() to

ElementRefs

Binding to the host

» 2 ¢ X

app.ts:9

angular2.dev.js:354

Moving on, our next goal is to do something when the host element is clicked.

We learned before that the way we bind events in elements in Angular is using the (event) syntax.

In order to bind events of the host element, we must do something very similar, but using the host
attribute of the directive. The host attribute allows a directive to change the attributes and

behaviors of its host element.

We also want the host element to define what message will pop up when the element is clicked,

using the message attribute.

First, let’s add an inputs attribute to the directive. We’ll do this by importing Input and using the

@Input annotation with the property we will use for this input:

O O B W N~

© 00 N O O b

10
11
12
13
14
15
16
17
18
19
20

Advanced Components 444

import { Component, Input } from '@angular/core';

class Popup {
@Input() message: String;

We’re saying that we're having a property with the name message and expect to receive an input
with the same name.

Then, let’s bind to the host. We’ll do this by adding host to the @Component annotation:

code/advanced_components/app/ts/host/steps/host_03.ts

@Directive({
selector: '[popup]',
host: {
"(click)': 'displayMessage()'
}
b

Then when the host element is clicked we’ll call the directive’s displayMessage method, which will
display the message the host element defines.

This is how the code now looks:

code/advanced_components/app/ts/host/steps/host_03.ts

class Popup {
@Input() message: String;

constructor(_elementRef: ElementRef) {
console.log(_elementRef);

}

displayMessage(): void {
alert(this.message);

}

And finally, we need to change our app template a bit to add the message we want displayed for
each element:

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Advanced Components 445

code/advanced_components/app/ts/host/steps/host_03.ts

@Component ({
selector: 'host-sample-app',
template: °
<div class="ui message" popup
message="Clicked the message">
<div class="header">
Learning Directives
</div>
<p>
This should use our Popup diretive
</p>
</div>
<i class="alarm icon" popup
message="Clicked the alarm icon"></i>
P
export class HostSampleApp3 {
}

Notice that we use the popup directive twice, and we pass a different message each time we use it.
This means when we run the app, we’re able to click either on the message or on the alarm icon,
and we’ll see different messages:

Advanced Components 446

localhost:8080 says:
. | Clicked the alarm icon
OK
Popup 1
localhost:8080 says:
. | Clicked the message
OK

Popup 2

Adding a Button using exportAs

Now let’s say we have a new requirement: we want to trigger the alert manually by clicking a button.
How could we trigger the popup message from outside the host element?

In order to achieve this, we need to make the directive available from elsewhere in the template.

0 N O O s

11
12
13
14
15
16
17
18
19
20
21

25
26
27
28
29
30
31
32
33
34
35

Advanced Components 447

As we discussed in previous chapters, the way to reference a component is by using template
variables. We can reference directives the same way.

In order to give the templates a reference to a directive we use the exportAt attribute. This will
allow the host element (or a child of the host element) to define a template variable that references
the directive using the #var="exportName" syntax.

Let’s add the exportAs attribute to our directive:

code/advanced_components/app/ts/host/steps/host_04.ts

@Directive({
selector: '[popup]',
exportAs: 'popup',
host: {
"(click)': 'displayMessage()'
}

P
class Popup {
@Input() message: String;

constructor(_elementRef: ElementRef) {

console.log(_elementRef);

displayMessage(): void {
alert(this.message);

And now we need to change the two elements to export the template variable:

code/advanced_components/app/ts/host/steps/host_04.ts

template:
<div class="ui message" popup #¥popupl="popup"
message="Clicked the message">
<div class="header">
Learning Directives
</div>

<p>
This should use our Popup diretive

</p>

</div>

36
37
38

39
40
41
42
43
44
45
46
47

Advanced Components 448

<i class="alarm icon" popup #p2="popup"
message="Clicked the alarm icon"></i>

See that we used the template var #p1 for the div.message and #p2 for the icon.

Now let’s add two buttons, one to trigger each popup:

code/advanced_components/app/ts/host/steps/host_04.ts

<div style="margin-top: 20px;">
<button (click)="popupl.displayMessage()" class="ui button">
Display popup for message element
</button>

<button (click)="p2.displayMessage()" eclass="ui button">
Display popup for alarm icon
</button>
</div>

Now reload the page and click each of the buttons and each message will appear as expected.

Creating a Message Pane with Content Projection

Sometimes when we are creating components we want to pass inner markup as an argument to the
component. This technique is called content projection. The idea is that it lets us specify a bit of
markup that will be expanded into a bigger template.

0 Angular 1 digged deep in the dictionary and called this transclusion.

Let’s create a new directive that will render a nicely styled message like this:

Learning Directives

This should use our Popup diretive

Popup 1

Our goal is to write markup like this:

© 00 39 O O b W N =~

Advanced Components 449

<div message header="My Message">
This is the content of the message
</div>

Which will render into the more complicated HTML like:

<div class="ui message">
<div class="header"»
My Message
</div>

<p>

This is the content of the message
</p>
</div>

We have two challenges here: we need to change the host element <div> to add the ui and message
CSS classes, and we need to add the div’s contents to a specific place in our markup.

Changing the nhost CSS
To add attributes to the host element, we use the same attribute we used to add events to the host

element: the host attribute. But now, instead of using the (event) notation, we define attribute
names and attribute values. In our case using:

host: { 'class': 'ui message' }

Modified the host element, adding those to classes to the class attribute.

Using ng-content

Our next challenge is to include the original host element children in a specific part of a view. To do
that, we use the ng-content directive.

Since this directive needs a template, let’s use a component instead and write the following code:

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Advanced Components

code/advanced_components/app/ts/content-projection/content-projection.ts

@Component ({
selector: '[message]',
host: {
'class': 'ui message'
3
template:

<div class="header">
{{ header }}
</div>
<p>
<{ng-content></ng-content>
</p>

1))

export class Message {
@Input() header: string;

ngOnInit(): void {

console.log('header', this.header);

A few highlights:

« We use the @Input annotation to indicate we want to receive a header attribute, set on the

host element

« We set the host element’s class attribute to ui message using the host attribute of our

component

« We use <ng-content></ng-content> to project the host element’s children into a specific

location of our template

When we open the app in the browser and inspect the message div, we see it worked exactly like we

planned:

Advanced Components 451

L] LJ / g Angular 2 - Host element X

C' | localhost:8080 <ol =

g ngbook2 Angular 2 Advanced Components

My Message

This is the content of the message

& O Elements Console Sources Network Timeline Profiles Resources » 2 ¢ X
——
v <div class="ui message' header="My Message' message>
v <div>
<div class="header'">
My Message
</div>
» <p>
This is the content of the message
</p>
</div>
</div>

</host-sample-app>
<!—— Qur app loads here ——>
</div>
html body div.ui.main.text.container host—sample—app

Styles | Event Listeners DOM Breakpoints Properties

\
.+‘ '! ¢ ion -
element.style { -;;;-i-r; i
' border -
-ui.message: last-child { semantic.min.css:11 | fo
margin-bottom: 0; padding

projected content

Querying Neighbor Directives - Writing Tabs

It’s great when you can create a component that fully encapsulates its own behavior.

However, as a component grows in features, it might make sense to split it up into several smaller
components that work together.

A great example of components that work together is a tab pane that has multiple tabs. The tab
panel or fab set, as it’s usually called, is composed of multiple tabs. In this scenario we have a parent
component (the tabset) and multiple child components (the tabs). The tabset and the tabs don’t make
sense separately, but putting all of the logic in one component is cumbersome. So in this example,
we’re going to cover how to make separate components that work together.

Let’s start writing those components in a way that we’ll be able to use the following markup:

O = W N =

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Advanced Components 452

<tabset>
<tab title="Tab 1">Tab 1</tab>
<tab title="Tab 2">Tab 2</tab>

</tabset>
We're going to use Semantic UI Tab component'*” to render the tabs.

Tab COmponent

Let’s start by writing the Tab component:

code/advanced_components/app/ts/tabs/tabs.ts

@Component({
selector: 'tab’,
template:
<div class="ui bottom attached tab segment”
[class.active]="active">

<ng-content></ng-content>

</div>

~

)
class Tab {

@Input() title: string;
active: boolean = false;
name: string;

There are not many new concepts here. We're declaring a component that will use the tab selector,
and it will allow a title input to be set.

Then we’re rendering a <div> and using the content projection concept we learned on the previous
section to inline the contents of the <tab> directive inside the div.

Next we declare 3 properties on our components: title, active and name. One thing to notice is
the @Input('title') annotation we added to the title property. This annotation is a way to ask
Angular to automatically bind the value of the input title into the property title.

Tabset COmMponent

Now let’s move on to the Tabset component that will be used to wrap the tabs:

"°http://semantic-ui.com/modules/tab.html#/examples

http://semantic-ui.com/modules/tab.html#/examples
http://semantic-ui.com/modules/tab.html#/examples

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
99
56
o7
o8

Advanced Components 453

code/advanced_components/app/ts/tabs/tabs.ts

@Component ({

selector: 'tabset',

template:

<div class="ui top attached tabular menu">

<a *ngFor="let tab of tabs"

class="item"
[class.active]="tab.active"
(click)="setActive(tab)">

{{ tab.title }}

</div>

<ng-content></ng-content>

~

1))

class Tabset implements AfterContentInit {
@ContentChildren(Tab) tabs: QuerylList<Tab>;

constructor() {

}

ngAfterContentInit() ({
this.tabs.toArray()[0].active = true;

setActive(tab: Tab) {
this.tabs.toArray().forEach((t) => t.active = false);
tab.active = true;

Let’s break down the implementation so we can learn about the new concepts it introduces.
Tabset @Component Annotation

The @Component section doesn’t have many new ideas. We're using the <tabset> tab as our selector.

The template itself uses ngFor to iterate through the tabs and if the tab has the active flag set to true,
it will add the active CSS class to the <a> element that renders the tab.

We also specify that we are rendering the tabs themselves after the initial div, right where ng-
content is.

Advanced Components 454

Tabset class

Now let’s turn our attention to the Tabset class. The first new idea we see here is that the Tabset
class is implementing AfterContentInit. This lifecycle hook will tell Angular to call a method of
our class (hgAfterContentInit) once the contents of the child directives has been initialized.

Tabset ContentChildren and QueryList

Next thing we do is declare the tabs property that will hold every Tab component we declare inside
the tabset. Notice that instead of declaring this list as an array of Tabs, we use the class QueryList,
passing a generic of Tab. Why is this?

QuerylList is a class provided by Angular and when we use QuerylList with a ContentChildren
Angular populates this with the components that match the query and then keeps the items up
to date if the state of the application changes.

However, QueryL ist requires a ContentChildren to populate it, so let’s take a look at that now.

On the tabs instance variable, we add the @ContentChildren(Tab) annotation. This annotation will
tell Angular to inject all the direct child directives (of the Tab type) into the tabs parameter. We then
assign it to the tabs property of our component. With this we now have access to all the child Tab
components.

Initializing the Tabset

When this component is initialized, we want to make the first tab active. To do this we use the
ngAfterContentInit function (that is described by the AfterContentInit hook). Notice that we
use this.tabs.toArray() to cast the Angular’s QueryList into a native TypeScript array.

Tabset setActive

Finally we define a setActive method. This method is used when we click a tab on our template
e.g. using (click)="setActive(tab)". This function will iterate through all the tabs, setting their
active properties to false. Then we set the tab we clicked active.

Using the Tabset

Now the next step is to code the application component that makes use of both of the components
we created. Here’s how we do it:

60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86

Advanced Components 455

code/advanced_components/app/ts/tabs/tabs.ts

@Component ({
selector: 'tabs-sample-app',
template: °
<tabset>
<tab title="First tab">
Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Quibusdam magni quia ut harum facilis, ullam deleniti porro
dignissimos quasi at molestiae sapiente natus, neque voluptatum
ad consequuntur cupiditate nemo sunt.
</tab>
<tab *ngFor="let tab of tabs" [title]="tab.title">
{{ tab.content }}
</tab>
</tabset>
D)
export class TabsSampleApp {
tabs: any;
constructor() {
this.tabs = [
{ title: 'About', content: 'This is the About tab' },
{ title: 'Blog', content: 'This is our blog' },
{ title: 'Contact us', content: 'Contact us here' },
1;
}
}

We're declaring that we’re using tabs-sample-app as our component’s selector and using the Tabset
and Tab components.

On the template we then create a tabset and we add first a static tab (First tab) and we add a few
more tabs from the tabs property of the component controller class, to illustrate how we can render
tabs dynamically.

Advanced Components 456

® ® . Angular 2 - Parentand Ch = | Felipe |

s

C | [Y localhost:8080

5

E nebook2 Angular 2 Advanced Components

First tab About Blog Contactus

Lorem ipsum delor sit amet, consectetur adipisicing elit. Quibusdam magni quia ut harum facilis,
ullam deleniti porro dignissimos quasi at molestiae sapiente natus, neque voluptatum ad
consequuntur cupiditate nemo sunt.

Tabset application

Lifecycle Hooks

Lifecycle hooks are the way Angular allows you to add code that runs before or after each step of
the directive or component lifecycle.

The list of hooks Angular offers are:

e Onlnit

¢ OnDestroy

¢ DoCheck

¢ OnChanges

e AfterContentlInit

¢ AfterContentChecked
e AfterViewlnit

¢ AfterViewChecked

Using these hooks each follow a similar pattern:

In order to be notified about those events you

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Advanced Components 457

1. declare that your directive or component class implements the interface and then
2. declare the ng method of the hook (e.g. ngOnInit)

Every method name is ng plus the name of the hook. For example, for OnInit we declare the method
ngOnInit, for AfterContentInit we declare ngAfterContentInit and so on.

When Angular knows that a component implements these functions, it will invoke them at the
appropriate time.

Let’s take a look at each hook individually and when we would use each of them.
0 It is actually not mandatory for the class to implement the interface, one could just create

the method of the hook. But it is considered good practice’* and has benefits from strong
typing and editor tooling.

onInit and OnDestroy
The onInit hook is called when your directive properties have been initialized, and before any of
the child directive properties are initialized.

Similarly, the OnDestroy hook is called when the directive instance is destroyed. This is typically
used if we need to do some cleanup every time our directive is destroyed.

In order to illustrate let’s write a component that implements both OnInit and OnDestroy:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_01.ts

@Component ({
selector: 'on-init',
template:
<div class="ui label">
<i class="cubes icon"></i> Init/Destroy
</div>

~

b
class OnInitCmp implements OnInit, OnDestroy {

ngOnInit(): void {
console.log('On init');

ngOnDestroy(): void {
console.log('On destroy');

2%https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html
https://angular.io/docs/ts/latest/guide/lifecycle-hooks.html

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Advanced Components 458

For this component, we’re just logging On init and On destroy to the console when the hooks are
called.

Now in order to test those hooks let’s use our component in our app component using ngFor to
conditionally display it based on a boolean property. Let’s also add a button that allows us to toggle
that flag. This way, when the flag is false, our component will be removed from the page, causing
the OnDestroy hook to be called. Similarly when the flag is toggled to true, the OnInit hook will be
called.

Here’s how our app component will look:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_01.ts

@Component({
selector: 'lifecycle-sample-app',
template:
<h4 class="ui horizontal divider header">
OnInit and OnDestroy
</h4>

<button class="ui primary button" (click)="toggle()">
Toggle

</button>

<on-init *nglf="display"></on-init>

D)
export class LifecycleSampleAppl {

display: boolean;

constructor() {
this.display = true;

—~

toggle(): void

this.display = !this.display;

When we first run the application, we can see that the OnInit hook was called when the component
was first instantiated:

Advanced Components 459

e0e / B Angular 2 - Lifecycle hooks %
L

& = C [J localhost:62935

ngbook2 Angular 2 Lifecycle Hooks

Onlnit and OnDestroy

Toggle & Init/Destroy

4 0 Elements Consale Sources Network Timeline Profiles Resources Security Audits A2 HE 4
©® W <topframe> ¥ [Preserve log
Live reload enabled. (index):79
» XHR finished loading: GET "http://localhost:62935/app.js". system.src.js:1049
On init app.ts:26
Angular 2 is running in the development mode. Call enableProdMode() to enable the production angular2.dev.js:354
mode.
[, DEPRECATION WARNING: 'degueueTask' is no longer supported and will be removed in next angular2-polyfills.js:1152

major release. Use removeTask/removeRepeatingTask/removeMicroTask

Initial state of our component

When I click the Toggle button for the first time, the component is destroyed and the hook is called
as expected:

Advanced Components

e0e / B Angular 2 - Lifecycle hooks x |\
L __!

& = € [localhost:62935 'i:?]’

nebook2 Angular 2 Lifecycle Hooks

Onlnit and OnDestroy

= 0 Elements Consale Sources Network Timeline Profiles Resources Security Audits a2 HE 4
©® W <topframe> ¥ [Preserve log
» XHR finished loading: GET "http://localhost:62935/app.js". system.src.js:1049
On init app.ts:26
Angular 2 is running in the development mode. Call enableProdMode() to enable the production angular2.dev.js:354
mode.
[, DEPRECATION WARNING: 'degueueTask' is no longer supported and will be removed in next angular2-polyfills.js:1152
major release. Use removeTask/removeRepeatingTask/removeMicroTask
On destroy app.ts:30
>

OnDestroy hook

And if we click it another time:

460

Advanced Components

e0e® B Angular 2 - Lifecycle hooks
S

C [1 localhost:62935

i
m E

E wwoz Angular 2 Lifecycle Hooks

Onlnit and OnDestroy

mode.

On destroy
On init

OnChanges

[, DEPRECATION WARNING:
major release. Use removeTask/removeRepeatingTask/removeMicroTask

Angular 2 is running in the development mode. Call enableProdMode() to enable the production

'dequeueTask' is no longer supported and will be removed in next

Toggle & Init/Destroy
= 0 Elements Consale Sources Network Timeline Profiles Resources Security Audits 2 S 4
O W <topframe> v [Preserve log
On init app.ts:26

angular2.dev.js:354

angular2-polyfills.js:1152

OnDestroy hook

app.ts:38
app.ts:26

461

The OnChanges hook is called after one or more of our component properties have been changed.
The ngOnChanges method receives a parameter which tells which properties have changed.

To understand this better, let’s write a comment block component that has two inputs: name and

comment:

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95

92
53
54

Advanced Components 462

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_02.ts

@Component({
selector: 'on-change',
template:
<div class="ui comments">
<div class="comment">

<div class="content">
{{name}}
<div class="text">
{{comment}}
</div>
</div>
</div>
</div>

<

D)

class OnChangeCmp implements OnChanges {
@Input('name') name: string;
@Input('comment') comment: string;

ngOnChanges(changes: {[propName: string]: SimpleChange}): void {
console.log('Changes', changes);

The important thing about this component is that it implements the OnChanges interface, and it
declares the ngonChanges method with this signature:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_02.ts

ngOnChanges(changes: {[propName: string]: SimpleChange}): void {
console.log('Changes', changes);

This method will be triggered whenever the values of either the name or comment properties change.
When that happens, we receive an object that maps changed fields to SimpleChange objects.

Each SimpleChange instance has two fields: currentValue and previousValue. If both name and
comment properties change for our component, we expect the value of changes in our method to
be something like:

© © 0 N O O b W N~

[N

o7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83

Advanced Components 463

{
name: {
currentValue: 'new name value',
previousValue: 'old name value'
}
comment: {
currentValue: 'new comment value',
previousValue: 'old comment value'
}
}

Now, let’s change the app component to use our component and also add a little form where we can
play with the name and comment properties of our component:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_02.ts

@Component ({
selector: 'lifecycle-sample-app',
template:
<h4 class="ui horizontal divider header">
OnInit and OnDestroy
</h4>

<button class="ui primary button" (click)="toggle()">
Toggle

</button>

<on-init *nglf="display"></on-init>

<h4 class="ui horizontal divider header">
OnChange
</h4>

<div class="ui form">
<div class="field">
<label>Name</label>
<input type="text" #namefld value="{{name}}"
(keyup)="setValues(namefld, commentfld)">
</div>

<div class="field">
<label>Comment</label>
<textarea (keyup)="setValues(namefld, commentfld)"
rows="2" #commentfld>{{comment}}</textarea>

84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106
107
108
109

73
T4
75
76
T
78
79
80
81
82
83

Advanced Components 464

</div>
</div>
<on-change [nhame]="name" [comment]="comment"></on-change>
P
export class LifecycleSampleApp2 {

display: boolean;

name: string;

comment: string;

constructor() {
this.display = true;
this.name = 'Felipe Coury';
this.comment = 'I am learning so much!"';

}

setValues(namefld, commentfld): void {
this.name = namefld.value;
this.comment = commentfld.value;

}

toggle(): void {
this.display = !this.display;

}

}

The important pieces that we added here where the template areas where we declare a new form
with name and comment fields:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_02.ts

<div class="ui form">
<div class="field">
<label>Name</label>
<input type="text" #namefld value="{{name}}"
(keyup)="setValues(namefld, commentfld)">
</div>

<div class="field">
<label>Comment</label>
<textarea (keyup)="setValues(namefld, commentfld)"
rows="2" #commentfld>{{comment}}</textarea>

84
85

101
102
103
104

Advanced Components 465

</div>
</div>

Here, when the keyup event is fired for either the name or comment fields, we are calling setValues
with the template vars namefld and commentfld that represent the input and textarea.

This method just takes the value from those fields and updates the name and comment properties
accordingly:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_02.ts

setValues(namefld, commentfld): void {
this.name = namefld.value;
this.comment = commentfld.value;

So now, the first time we open the app, we can see that our OnChanges hook is called:

Advanced Components 466

e0e® B Angular 2 - Lifecycle hooks
S

i
m E

€« - C [J localhost:8080

B ngbook2 Angular 2 Lifecycle Hooks

Onlnit and OnDestroy

Toggle & Init/Destroy

OnChange
Name
Felipe Coury
Comment
| am learning so much!
il
- Felipe Coury
-— | am learning se much!
=] Elements Console Sources Network Timeline Profiles Resources Security Audits a2 X
® W <topframe> ¥ [Preserve log
Changes ¥ Object {name: SimpleChange, comment: SimpleChange} app.ts:60

¥ comment: SimpleChange
currentValue: "I am learning so much!"
» previousvalue: Object
»__proto__: SimpleChange
¥ name: SimpleChange
currentValue: "Felipe Coury"
» previousvalue: Object
»__proto__: SimpleChange
» _ proto_ : Object

OnChanges

This happens when the initial values are set, on the constructor of the LifecycleSampleApp
component.

Now if we play with the name, we can see that the hook is called repeatedly. In the case below,

we pasted the name Nate Murray on top of the previous name, and the values for the changes are
displayed as expected:

Advanced Components 467

ece B Angular 2 - Lifeeycle hooks | Felipe |

€« C [localhost:8080 wl =

! nebook2 Angular 2 Lifecycle Hooks

Onlnit and OnDestroy

Toggle & Init/Destroy

OnChange
Name
MNate Murray
Comment
| am learning so much!
il
Nate Murray
-— | am learning se much!
= O Elements Console Sources Network Timeline Profiles Resources Security Audits X
® W <topframe> v Preserve log
Changes ¥ gbject {name: SimpleChange} app.ts:60

¥ name: SimpleChange
currentValue: “Nate Murray"
previousValue: "Felipe Coury"

: SimpleChange

: Object

OnChanges

DoCheck

The default notification system implemented by OnChanges is triggered every time the Angular
change detection mechanism notices there was a change on any of the directive properties.

However, there may be times when the overhead added by this change notification may be too
much, specially if performance is a concern.

There may be times when we just want to do something in case an item was removed or added, or
if only a particular property changed, for instance.

If we run into one of these scenarios, we can use the DoCheck hook.

ﬁ It’s important to note that the OnChanges hook gets overriden by DoCheck so if we
implement both, OnChanges will be ignored.

Advanced Components 468

Checking for changes

In order to evaluate what changed, Angular provides differs. Differs will evaluate a given property
of your directive to determine what changed.

There are two types of built-in differs: iterable differs and key-value differs.
Iterable differs

Iterable differs should be used when we have a list-like structure and we’re only interested on
knowing things that were added or removed from that list.

Key-value differs

Key-value differs should be used for dictionary-like structures, and work at the key level. This differ
will identify changes when a new key is added, when a key removed and when the value of a key
changed.

Rendering a comment with do-check-item

To illustrate these concepts, let’s build a component that renders a stream of comments, like below:

g Justen posted a comment
Thanks!
@ Remove A Clear W 12Likes
=
- Jenny posted a comment

Owrs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.

B Remowve A Clear W 4Likes

(<>

Justen posted a comment

Really cool!

@ Remove A Clear W 7 Likes

First, let’s write a component that will render one individual comment:

DoCheck example

61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7

Advanced Components 469

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

@Component ({
selector: 'do-check-item',
outputs: ['onRemove'],
template:
<div class="ui feed">
<div class="event">
<div class="label" *nglf="comment.author">

</div>
<div class="content">
<div class="summary">

{{comment .author}}
 posted a comment
<div class="date">
1 Hour Ago
</div>
</div>
<div class="extra text">
{{comment .comment}}
</div>
<div class="meta">

<i class="trash icon"></i> Remove
<Ja>

<i class="eraser icon"></i> Clear

<i class="like icon"></i> {{comment.likes}} Likes

</div>
</div>
</div>
</div>

<

1))

Here we are declaring the component metadata. Our component will receive the comment that
should be rendered and it will emit an event with the remove button icon clicked.

Moving on to the component implementation:

98
99
100
101

103
104
105
106

108
109
110
111
112
113
114
115
116

Advanced Components 470

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

class DoCheckItem implements DoCheck {
@Input() comment: any;
onRemove: EventEmitter<any>;
differ: any;

On the class declaration we indicate we’'re implementing the DoCheck interface. We then declare the
input property comment, and the output event onRemove. We also declare a differ property.

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

constructor(differs: KeyValueDiffers) {
this.differ = differs.find([]).create(null);
this.onRemove = new EventEmitter();

On the constructor we’re receiving a KeyValueDiffers instance on the differs variable. We
then use this variable to create an instance of the key value differ using this syntax dif-
fers.find([]).create(null). We're also initializing our event emitter onRemove.

Next, let’s implement the ngDoCheck method, required by the interface:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

ngDoCheck(): void {
var changes = this.differ.diff(this.comment);

if (changes) {
changes. forEachAddedItem(r => this.logChange('added', r));
changes. forEachRemovedItem(r => this.logChange('removed', r));
changes. forEachChangedItem(r => this.logChange('changed', r));

This is how you check for changes, if you’re using a key-value differ. You call the di ff method,
providing the property you want to check. In our case, we want to know if there were changes to
the comment property.

When no changes are detected, the returned value will be null. Now, if there are changes, we can
call three different iterable methods on the differ:

« forEachAddedItenm, for keys that were added

Advanced Components 471

« forEachRemovedItem, for keys that were removed
« forEachChangedItem, for keys that were changed

Each method will call the provided callback with a record. For the key-value differ, this record will
be an instance of the KVChangeRecord class.

Y KVChangeRecord {key: "likes", previousValue: null, currentValue: 18, _nextPrevious: null, _next: null..}
_next: null
_nextAdded: null
_nextChanged: null
_nextPrevious: null
_nextRemoved: null
_prevRemoved: null
currentValue: 10
key: "likes"
previousValue: 1@

Example of a KVChangeRecord instance

The important fields for understanding what changed are key, previousValue and currentValue.

Next, let’s write a method that will log to the console a nice sentence about what changed:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

118 logChange(action, r) {

119 if (action === 'changed') {

120 console.log(r.key, action, 'from', r.previousValue, 'to', r.currentValue);
121 }

122 if (action === 'added') {

123 console.log(action, r.key, 'with', r.currentValue);

124 }

125 if (action === 'removed') {

126 console.log(action, r.key, '(was ' + r.previousValue + ')');

127 }

128 }

Finally, let’s write the methods that will help us change things on our component, to trigger our
DoCheck hook:

130
131
132
133
134
135
136
137
138
139
140

143
144
145
146
147
148
149
150
151
152
153
154

Advanced Components 472

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

remove(): void {
this.onRemove.emit(this.comment);

clear(): void {
delete this.comment.comment;

like(): void {
this.comment.likes += 1;

7

The remove() method will emit the event indicating that the user asked for this comment to be
removed, the clear() method will remove the comment text from the comment object, and the
like() method will increase to the like counter for the comment.

Rendering a list of comments with do-check

Now that we have written a component for one individual comment, let’s write a second component
that will be responsible for rendering the list of comments:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

@Component ({
selector: 'do-check',
template:
<do-check-item [comment]="comment"
*ngFor="1et comment of comments" (onRemove)="removeComment($event)">
</do-check-item>

<button class="ui primary button" (click)="addComment()">
Add
</button>

N

1))

The component metadata is pretty straightforward: we’re using the component we created above,
and then using ngFor to iterate through a list of comments, renderding them. We also have a button
that will allow the user to add more comments to the list.

Now let’s implement our comment list class DoCheckCmp:

155
156
157
158
159
160

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

Advanced Components 473

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

class DoCheckCmp implements DoCheck {
comments: any[];
iterable: boolean;
authors: string[];
texts: string[];
differ: any;

Here we declare the variables we’ll use: comments, iterable, authors, and texts.

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

constructor(differs: IterableDiffers) {
this.differ = differs.find([]).create(null);
this.comments = [];
this.authors = ['Elliot', 'Helen', 'Jenny', 'Joe'
this.texts =
"Ours is a life of constant reruns. We're always circling back to where we\

, 'Justen', 'Matt'];

'd we started, then starting all over again. Even if we don't run extra laps tha\
t day, we surely will come back for more of the same another day soon.",
'Really cool!"’,
'Thanks!"'
1;

this.addComment();

For this component, we’ll be using an iterable differ. We can see that the class we’re using to create
the differ is now IterableDiffers. However, the way we create a differ remains the same.

On the constructor we also initialize a list of authors and a list of comment texts to be used when
adding new comments.

Finally, we call the addComment() method so we don’t initialize the app with an empty list of
comments.

The next three methods are used to add a new comment:

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

193
194
195
196

Advanced Components 474

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

getRandomInt(max: number): number {
return Math.floor(Math.random() * (max + 1));

getRandomItem(array: string[]): string {
let pos: number = this.getRandomInt(array.length - 1);
return array[pos];

addComment(): void {
this.comments.push({
author: this.getRandomItem(this.authors),
comment: this.getRandomItem(this.texts),
likes: this.getRandomInt(20)

});

removeComment (comment) {
let pos = this.comments.indexOf(comment);
this.comments.splice(pos, 1);

We are declaring two methods that will return a random integer and a random item from an array,
respectively.

Finally, the addComment() method will push a new comment to the list, with a random author,
random text and a random number of likes.

Next, we have the removeComment () method, that will be used to remove one comment from the
list:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

removeComment (comment) {
let pos = this.comments.indexOf(comment);
this.comments.splice(pos, 1);

And finally we declare our change detection method ngDoCheck ():

Advanced Components 475

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_03.ts

1908 ngDoCheck(): void {

199 var changes = this.differ.diff(this.comments);

200

201 if (changes) {

202 changes. forEachAddedItem(r => console.log('Added', r.item));

203 changes. forEachRemovedItem(r => console.log('Removed', r.item));
204 }

205 }

The iterable differ behaves the same way as the key-value differ but it only provides methods for
items that were added or removed.

When we run the app now, we get the list of comments with one comment:

eoce /B Angular 2 - Litecycle hooks * |\ Felipe
~ = @ | [Y localhost:8080 i —

Comment

| am learning so much!

? Felipe Coury
A | am learning so much!

DoCheck

4

Matt posted a comment 1 FHour Ao

Qurs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.

@ Remove & Clear W 14likes

& 0O Elements Console Sources Network Timeline Profiles Resources Security Audits 2 S 4
® W <topframe> ¥ [Preserve log
Changes » Object app.ts:63
Added »Object app.ts:218
On init app.ts:31
added author with Matt app.ts:130

added comment with Ours is a life of constant reruns. We're always circling back to where we'd we started, then app.ts:138
starting all over again. Even if we don't run extra laps that day, we surely will come back for more of the same another
day soon.

added likes with 14 app.ts:130

Initial state

We can also see that a few things were logged to the console, like:

Advanced Components

added author with Matt

added likes with 14

Let’s see what happens when we add a new comment to the list by clicking the Add button:

eoce / B Angular 2 - Lifecycle hooks | | Felipe |
~ = € | [Y localhost:8080 T =
Felipe Coury
. | am learning so much!
DoCheck
z Matt posted acomment 1 Hour Ao
Qurs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.
@ Remove & Clear WP 14Llikes
ﬁ Helen posted acomment ©lourAzo
Thanks!
W Remove A Clear W 17 Likes
& 0 Elements Console Sources Network Timeline Profiles Resources Security Audits x
® W <topframe> ¥ [Preserve log
Added Object {author: "Helen", comment: “Thanks!", likes: 17} app.ts:21@
added author with Helen app.ts:13@
added comment with Thanks! app.ts:13@
added likes with 17 app.ts:13@

Comment added

476

We can see that the iterable differs identified that we added a new object to the list {author:
"Hellen", comment: "Thanks!", likes: 17}.

We also got individual changes to the comment object logged, as detected by the key-value differ:

added author with Helen
added comment with Thanks!

added likes with 17

Now we can click the like button for this new comment:

Advanced Components

® 0 ® @ angular 2 - Litecycle hooks * |
L

&~ = @ |[J localhost:8080

5 4

e

Felipe Coury

| am learning so much!

DoCheck

Matt posted acomment 1/ lour Ao

Qurs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extralaps that day, we
surely will come back for more of the same another day soon.

@ Remove & Clear W 14Llikes

Helen posted acomment Hour feo

Thanks!
@ Remove # Clear W 18Likes

® ¥ <top frame>

l-'\ D Elements Console

Sources Network Timeline Profiles Resources Security Audits

¥ [Preserve log

likes changed from 17 to 18

Number of likes changed

And now only the like change was detected.

If we click the Clear icon, it will remove the comment key from the comment object:

app.ts:127

477

Advanced Components

o0ce ,". . Angular 2 - Lifecycle hooks "\ ly

&~ = € |[j localhost:8080

5 4

8

Felipe Coury

| am learning so much!

DoCheck

Matt posted acomment 1/ lour Ao

Qurs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extralaps that day, we
surely will come back for more of the same another day soon.

@ Remove & Clear W 14likes

Helen posted acomment Hour fzo

@ Remowve 4 Clear W 18Likes

® ¥ <top frame>

l-'\ D Elements Console

Sources Network Timeline Profiles Resources Security Audits

¥ [Preserve log

removed comment (was Thanks!)

Comment text cleared

And the log confirms that we removed that key.

Finally, let’s remove the last comment, by clicking the Remove icon:

app.ts:133

478

Advanced Components 479

® 0 ® @ angular 2 - Litecycle hooks * Felipe

@ [localhost:8080 by

Comment

| am learning so much!

ﬂ Felipe Coury
P | am learning so much!

DoCheck

(5]

Matt posted a comment

Qurs is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.

@ Remove & Clear W 14Likes
& O Elements Console Sources Network Timeline Profiles Resources Security Audits i X
© W <topframe> v Preserve log
Removed Object {author: "Helen", likes: 18} app.ts:211

>

Comment removed

And as expected, we get a removed object log.

AfterContentinit, AfterViewlnit, AfterContentChecked and
AfterViewChecked

The AfterContentInit hook is called after OnInit, right after the initialization of the content of the
component or directive has finished.

The AfterContentChecked works similarly, but it’s called after the directive check has finished. The
check, in this context, is the change detection system check.

The other two hooks: AfterViewInit and AfterViewChecked are triggered right after the content
ones above, right after the view has been fully initialized. Those two hooks are only applicable to
components, and not to directives.

Also, the AfterXXXInit hooks are only called once during the directive lifecycle, while the
AfterXXXChecked hooks are called after every change detection cycle.

To better understand this, let’s write another component that logs to the console during each lifecycle
hook. It will also have a counter that we can increment by clicking a button:

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

Advanced Components

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_04.ts

480

@Component ({

1))

cl

selector: 'afters',
template:
<div class="ui label">
<i class="list icon"></i> Counter: {{ counter }}
</div>

<button class="ui primary button" (click)="inc()">
Increment
</button>

~

ass AftersCmp implements OnInit, OnDestroy, DoCheck,
OnChanges, AfterContentlnit,
AfterContentChecked, AfterViewlnit,
AfterViewChecked {

counter: number;

constructor() {

console.log('AfterCmp --------- [constructor]');
this.counter = 1;

}

inc() {
console.log('AfterCmp --------- [counter]');

this.counter += 1;
}
ngOnInit() {
console.log('AfterCmp - OnInit');
}
ngOnDestroy() {
console.log('AfterCmp - OnDestroy');
}
ngDoCheck () {
console.log('AfterCmp - DoCheck');
}
ngOnChanges() {
console.log('AfterCmp - OnChanges');
}
ngAfterContentInit() ({
console.log('AfterCmp - AfterContentInit');

253
254
255
256
257
258
259
260
261
262

306
307
308
309

264
265
266
267
268
269
270
217
272
273
274
275
276
277
278
279
280
281

Advanced Components 481

ngAfterContentChecked() {
console.log('AfterCmp - AfterContentChecked');

}
ngAfterViewInit() {

console.log('AfterCmp - AfterViewInit');

}
ngAfterViewChecked() {

console.log('AfterCmp - AfterViewChecked');

Now let’s add it to the app component, along with a Toggle button, like the one we used for the
OnDestroy hook:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_04.ts

<afters *nglf="displayAfters"></afters>

<button class="ui primary button" (click)="toggleAfters()">
Toggle

</button>

The final implementation for the app component now should look like this:

code/advanced_components/app/ts/lifecycle-hooks/lifecycle_04.ts

@Component ({
selector: 'lifecycle-sample-app',
template:
<h4 class="ui horizontal divider header">
OnInit and OnDestroy
</h4>

<button class="ui primary button" (click)="toggle()">
Toggle

</button>

<on-init *nglf="display"></on-init>

<h4 class="ui horizontal divider header">
OnChange
</h4>

<div class="ui form">

<div class="field">

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Advanced Components

<label>Name</label>
<input type="text" #namefld value="{{name}}"
(keyup)="setValues(namefld, commentfld)">
</div>

<div class="field">
<label>Comment</label>
<textarea (keyup)="setValues(namefld, commentfld)"
rows="2" #commentfld>{{comment}}</textarea>
</div>
</div>

<on-change [name]="name" [comment]="comment"></on-change>

<h4 class="ui horizontal divider header">
DoCheck
</h4>

<do-check>»</do-check>

<h4 class="ui horizontal divider header">
AfterContentInit, AfterViewlnit, AfterContentChecked and AfterViewChecked
</h4>

<afters *nglf="displayAfters"></afters>

<button class="ui primary button" (click)="toggleAfters()">
Toggle

</button>

~

P
export class LifecycleSampleApp4 {

display: boolean;
displayAfters: boolean;
name: string;

comment: string;

constructor() {
// OnInit and OnDestroy
this.display = true;

// OnChange
this.name = 'Felipe Coury';

482

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

Advanced Components

this.comment = 'I am learning so much!';

// AfterXXX
this.displayAfters = true;

setValues(namefld, commentfld) {
this.name = namefld.value;
this.comment = commentfld.value;

—~

toggle(): void
this.display = !this.display;

toggleAfters(): void {
this.displayAfters = !this.displayAfters;

483

When the application starts, we can see each hook is logged:

Advanced Components 484

o0ce ,". . Angular 2 - Lifecycle hooks "\

« >0 !D localhost:8080 '}f‘gw

DoCheck

e Jenny posted a comment 1 our Azo

Ours is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.

W Remove & Clear W 7Likes

AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked

= Counter:1 m Toggle

3 u] Elements Console Sources Network Timeline Profiles Resources Security Audits A2 PX

[“ 4 <top frame> ¥ [Preserve log
ULIIET ugy SUUNG § LINE3. 1f
AfterCmd ——————— [constructor] app.ts:236
On init app.ts:31
AfterCmd - OnInit app.ts:244
AfterCmp - DoCheck app.ts:25@
AfterCmp - AfterContentInit app.ts:256
AfterCmp - AfterContentChecked app.ts:259
AfterCmp - AfterViewInit app.ts:262
AfterCmp - AfterViewChecked app.ts:265
added author with Jenny app.ts:130
added comment with Ours is_a life of constant reruns. We're always circling back tn‘where we'd we started, app.ts:130

App started

Now let’s clear the console and click the Increment button:

Advanced Components

[NoN] .AngularZ-Lilecyc\e hooks » |
I)

After counter increment

&~ = € |[j localhost:8080 we =
DoCheck
° Jenny posted acomment 1| lour Azo
Qurs is a life of constant reruns, We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.
W Remove & Clear W 7Likes
AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked
= Counter:2 m Toggle
3 u] Elements Console Sources Network Timeline Profiles Resources Security Audits PX
[“ 4 <top frame> ¥ [Preserve log
AfterCmd ——————— [counter] app.ts:240
AfterCmp - DoCheck app.ts:250
AfterCmp - AfterContentChecked app.ts:259
AfterCmp - AfterViewChecked app.ts:265

485

You can see that now only the DoCheck, AfterContentCheck and AfterViewCheck hooks were

triggered.

Sure enough, if we click the Toggle button:

486

Advanced Components

o0ce ,’f . Angular 2 - Lifecycle hooks .\‘_\ Y
“ = @ [} localhost:8080 ¥ =
DoCheck
° Jenny posted acomment 1| lour Azo
Ours is a life of constant reruns. We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extra laps that day, we
surely will come back for more of the same another day soon.
W Remove & Clear W 7Likes
AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked
Toggle
3 0 Elements Console Sources Network Timeline Profiles Resources Security Audits PX
[“ 4 <top frame> ¥ [Preserve log
AfterCmp - OnDestroy app.ts:247
>

App started

And click it again:

O B W N =

Advanced Components 487

eoce g B Angular 2 - Lifecycle hooks | Felipe
= = C' | [3 localhost:8080 w 2
DoCheck

@ Jenny posted a comment 1 lour Ao

Qurs is a life of constant reruns, We're always circling back to where we'd we
started, then starting all over again. Even if we don't run extralaps that day, we
surely will come back for more of the same another day soon.

W Remove & Clear W 7likes

AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked

& 0 Elements Console Sources Network Timeline Profiles Resources Security Audits X
®© W <topframe> ¥ [Preserve log
AfterCmp - OnDestroy app.ts:247
AfterCmd —————— [constructor] app.ts:236
AfterCmd - OnInit app.ts:244
AfterCmp - DoCheck app.ts:25@
AfterCmp - AfterContentInit app.ts:256
AfterCmp - AfterContentChecked app.ts:259
AfterCmp - AfterViewInit app.ts:262
AfterCmp - AfterViewChecked app.ts:265
>
App started

All the hooks are triggered.

Advanced Templates

Template elements are special elements used to create views that can be dynamically manipulated.

In order to make working with templates simpler, Angular provides some syntatic sugar to create
templates, so we often don’t create them by hand.

For instance, when we write:

<do-check-item
*ngFor="1let comment of comments"”
[comment]="comment"
(onRemove)="removeComment ($event)">
</do-check-item>

This gets converted into:

O = W N =

S © 00 9 O O b W N =~

Y

Advanced Components 488

<do-check-item
template="ngFor let comment of comments; #i=index"

—n

[comment]="comment"
(onRemove)="removeComment ($event)">

</do-check-item>
Which then gets converted into:

<template
ngFor
[ngForOf]="comments"
let-comment="$implicit"
let-index="1">
<do-check-item
[comment]="comment"
(onRemove)="removeComment ($event)">
</do-check-item>
</template>

It’s important that we understand this underlying concept so we can build our own directives.
Rewriting ngIf - ngBookIf
Let’s create a directive that does exactly what ngI f does. Let’s call it ngBookI f.

ngBookIf @Directive

We start by declaring the @Directive annotation for our class:

@Directive({
selector: '[ngBookIf]'
1)

We’re using [ngBookI f] as the selector because, as we learned above, when we use *ngBookIf="condition",
it will be converted to:

<template ngBookIf [ngBookIf]="condition">

13
14
15

17
18
19
20
21
22
23
24

Advanced Components 489

Since ngBookI £ is also an attribute we need to indicate that we’re expecting to receive it as an input.

The job of this directive should be to add the directive template contents when the condition is true
and remove it when it’s false.

So when the condition is true, we will use a view container. The view container is used to attach
one or more views to the directive.

We will use the view container to either:

« create a new view with our directive template embedded or
« clear the view container contents.

Before we do that, we need to inject the ViewContainerRef and the TemplateRef. They will be
injected with the directive’s view container and template.

Here’s the code we’ll need:

code/advanced_components/app/ts/templates/if.ts

class NgBookIf {
constructor(private viewContainer: ViewContainerRef,
private template: TemplateRef<any>) {}

Now that we have references to both the view container and the template, we will use a TypeScript
property setter construct and also specify that this is an input using the Input() annotation:

code/advanced_components/app/ts/templates/if.ts

@Input() set ngBookIf(condition) {
if (condition) {
this.viewContainer.createEmbeddedView(this.template);
}
else {
this.viewContainer.clear();

This method will be called every time we set a value on the ngBookIf property of our class. That is,
this method will be called anytime the condition in ngBookIf="condition" changes.

Now we use the view container’s createEmbeddedView method to attach the directive’s template if
the condition is true, or the clear method to remove everything from the view container.

Using ngBookI f

In order to use our directive, we can write the following component:

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Advanced Components 490

code/advanced_components/app/ts/templates/if.ts

@Component ({
selector: 'template-sample-app’,
template:
<button class="ui primary button" (click)="toggle()">
Toggle
</button>

<div *ngBookIf="display">
The message is displayed
</div>

b
export class IfTemplateSampleApp {

display: boolean;
constructor() {

this.display = true;

toggle() {
this.display = !this.display;

When we run the application, we can see that the directive works as expected: when we click the
Toggle button the message This message is displayed is toggled on and off the page.

Rewriting ngFor - ngBookRepeat

Now let’s write a simplified version of the ngFor directive that Angular provides to handle repetition
of templates for a given collection.

ngBookRepeat template deconstruction

This directive will be used with the *ngBookRepeat="1et var of collection" notation.

Like we did for the previous directive, we need to declare the selector as being [ngBookRepeat].
However the input parameter in this case won’t be ngBookRepeat only.

If we look back at how Angular converts the *something="1let var in collection" notation, we
can see that the final form of the element is the equivalent of:

16
17
18

19
20
21
22
23
24
25
26
27
28

Advanced Components 491

<template something [somethingOf]="collection" let-var="$implicit">
<l-e .. -

</template>

As we can see, the attribute that’s being passed isn’t something but somethingOf instead. That’s
where our directive receives the collection we’re iterating on.

In template that is generated, we're going to have a local view variable #var, that will receive the
value from the $implicit local variable. That’s the name of the local variable that Angular uses
when “de-sugaring” the syntax into a template.

ngBookRepeat @Directive
Time to write the directive. First we have to write the directive annotation:

code/advanced_components/app/ts/templates/for.ts

@Directive({
selector: '[ngBookRepeat]'

1))

ngBookRepeat class
Then we start writing the component class:

code/advanced_components/app/ts/templates/for.ts

class NgBookRepeat implements DoCheck {
private items: any;
private differ: IterableDiffer;
private views: Map<any, ViewRef> = new Map<any, ViewRef>();

constructor(private viewContainer: ViewContainerRef,
private template: TemplateRef<any>,
private changeDetector: ChangeDetectorRef,
private differs: IterableDiffers) {}

We are declaring some properties for our class:

« items holds the collection we’re iterating on
« differ is an IterableDiffer (which we learned about in the Lifecycle Hooks section above)
that will be used for change detection purposes

30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46
47
48
49
S50

Advanced Components 492
« views is a Map that will link a given item on the collection with the view that contains it

The constructor will receive the viewContainer, the template and an IterableDi ffers instance (we
discussed each of these things earlier in this chapter above).

Now, the next thing that’s being injected is a change detector. We will have a deep dive in change
detection in the next section. For now, let’s say that this is the class that Angular creates to trigger
the detection when properties of our directive change.

The next step is to write code that will trigger when we set the ngBookRepeatOf input:

code/advanced_components/app/ts/templates/for.ts

@Input() set ngBookRepeatOf(items) ({
this.items = items;
if (this.items && !this.differ) {
this.differ = this.differs.find(items).create(this.changeDetector);

When we set this attribute, we’re keeping the collection on the directive’s item property and if the
collection is valid and we don’t have a differ yet, we create one.

To do that, we're creating an instance of IterableDi ffer that reuses the directive’s change detector
(the one we injected in the constructor).

Now it’s time to write the code that will react to a change on the collection. For this, we're going to
use the DoCheck lifecycle hook by implementing the ngDoCheck method as follows:

code/advanced_components/app/ts/templates/for.ts

ngDoCheck(): void {
if (this.differ) {
let changes = this.differ.diff(this.items);
if (changes) {

changes. forEachAddedItem((change) => {
let view = this.viewContainer.createEmbeddedView(this.template,
{"$implicit': change.item});
this.views.set(change.item, view);
1)
changes. forEachRemovedItem((change) => {
let view = this.views.get(change.item);
let idx = this.viewContainer.indexOf(view);
this.viewContainer.remove(idx);

51
52
93
o4
55

Advanced Components 493

this.views.delete(change.item);

});

Let’s break this down a bit. First thing we do in this method is make sure we already instantiated
the differ. If not, we do nothing.

Next, we ask the differ what changed. If there are changes, we first iterate through the itmes that
were added using changes . forEachAddedItem. This method will receive a CollectionChangeRecord
object for every element that was added.

Then for each element, we create a new embedded view using the view container’s createEmbed-
dedView method.

let view = this.viewContainer.createEmbeddedView(this.template, {'$implicit': ch\
ange.item});

The second argument to createEmbeddedView is the view context. In this case, we're setting the
$implicit local variable to change. item. This will allow us to reference the variable we declared
back on the *ngBookRepeat="1et var of collection" as var on that view. That is, the var in let
var is the $implicit variable. We use $implicit because we don’t know what name the user will
assign to it when we’re writing this component.

The final thing we need to do is to connect the item with the collection to its view. The reason behind
this is that, if an item gets removed from the collection, we need to get rid of the correct view, as we
do next.

Now for each item that was removed from the collection, we use the item-to-view map we keep
to find the view. Then we ask the view container for the index of that view. We need that because
the view container’s remove method needs an index. Finally, we also remove the view from the
item-to-view map.

Trying out our directive

To test our new directive, let’s write the following component:

58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
6
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
o7
98

Advanced Components

code/advanced_components/app/ts/templates/for.ts

494

@Component ({

selector: 'template-sample-app',
template:

<li *ngBookRepeat="1let p of people">
{{ p.name }} is {{ p.age }}
<a href (click)="remove(p)">Remove
</1i>

<div class="ui form">
<div class="fields">
<div class="field">
<label>Name</label>

<input type="text" #name placeholder="Name">

</div>
<div class="field">
<label>Age</label>
<input type="text" #age placeholder="Age">
</div>
</div>
</div>

<div class="ui submit button"
(click)="add(name, age)">
Add
</div>

N

export class ForTemplateSampleApp {

people: any[];

constructor() {
this.people = [
{name: 'Joe', age: 10},
{name: 'Patrick', age: 21},
{name: 'Melissa', age: 12},
{name: 'Kate', age: 19}
1;

remove(p) {

Advanced Components 495

99 let idx: number = this.people.index0f(p);
100 this.people.splice(idx, 1);

101 return false;

102 }

103

104 add(name, age) {

105 this.people.push({name: name.value, age: age.value});
106 name.value = '';

107 age.value = '';

108 }

109 }

We’re using our directive to iterate through a list of people:

code/advanced_components/app/ts/templates/for.ts

61

62 <li *ngBookRepeat="let p of people">

63 {{ p.name }} is {{ p.age }}

64 <a href (click)="remove(p)">Remove
65 </1i>

66

When we click Remove we remove the item from the collection, triggering the change detection.

We also provide a form that allows adding items to the collection:

code/advanced_components/app/ts/templates/for.ts

68 <div class="ui form">

69 <div class="fields">

70 <div class="field">

71 <label>Name</label>

T2 <input type="text" #name placeholder="Name">
73 </div>

T4 <div class="field">

5 <label>Age</label>

76 <input type="text" #age placeholder="Age">
7T </div>

78 </div>

79 </div>

80 <div class="ui submit button"

81 (click)="add(name, age)">

82 Add

83 </div>

© 00 N O U b W N =

SN =Y
G0 O W N,

O© 00 9 O O b W N =

Advanced Components 496

Change Detection

As a user interacts with our app, data (state) changes and our app needs to respond accordingly.

One of the big problems any modern JavaScript framework needs to solve is how to figure out when
changes have happened and re-render components accordingly.

In order to make the view react to changes to components state, Angular uses change detection.

What are the things that can trigger changes in a component’s state? The most obvious thing is user
interaction. For instance, if we have a component:

@Component ({
selector: 'my-component',
template:
Name: {{name}}
<button (click)="changeName()">Change! </button>

N

1))

class MyComponent {
name: string;
constructor() {

this.name = 'Felipe’;
}
changeName() {
this.name = 'Nate';
}

We can see that when the user clicks on the Change! button, the component’s name property will
change.

Another source of change could be, for instance, a HTTP request:

@Component({
selector: 'my-component',
template:
Name: {{name}}

N

P

class MyComponent {
name: string;
constructor(private http: Http) {

10
11
12
13
14

© 00 N O U b W N =

(AN
N~ O

Advanced Components

this.http.get('/names/1")
.map(res => res. json())
.subscribe(data => this.name = data.name);

And finally, we could have a timer that would trigger the change:

@Component ({
selector: 'my-component',
template:
Name: {{name}}

N

1))

class MyComponent {
name: string;
constructor() {
setTimeout(() => this.name = 'Felipe', 2000);

}

But how does Angular become aware of these changes?

497

The first thing to know is that each component gets a change detector.

Like we’ve seen before, a typical application will have a number of components that will interact
with each other, creating a dependency tree like below:

Advanced Components 498

—~
e
o
-

Component tree

For each component on our tree, a change detector is created and so we end up with a tree of change
detectors:

Advanced Components 499

Change
Detector

Change Change
Detector Detector

Change Change Change
Detector Detector Detector

Change Change
Detector Detector

Change Change
Detector Detector

Change detector tree

When one of the the components change, no matter where it is in the tree, a change detection
pass is triggered for the whole tree. This happens because Angular scans for changes from the top
component node, all the way to the bottom leaves of the tree.

Advanced Components 500

Checked Checked

WOLLOH OL d0OL

CHANGED

Checked Checked

Default change detection

In our diagram above, the component in blue changed, but as we can see, it triggered checks for
the whole component tree. Objects that were checked are indicated in red (note that the component
itself was also checked).

It is natural to think that this check may be a very expensive operation. However, due to a number
of optimizations (that make Angular code eligible for further optimization by the JavaScript engine),
it’s actually surprisingly fast.

Customizing Change Detection

There are times that the built-in or default change detection mechanism may be overkill. One
example is if you’re using immutable objects or if your application architecture relies on observables.
In these cases, Angular provides mechanisms for configuring the change detection system so that
you get very fast performance.

0 = O O b W N =~

B) s
O O b W DN~ OO O

o < O O P W N =~

Advanced Components 501

The first way to change the change detector behavior is by telling a component that it should only
be checked if one of its input values change.

To recap, an input value is an attribute your component receives from the outside world. For instance,
in this code:

class Person {
constructor(public name: string, public age: string) {}

@Component ({
selector: 'mycomp',
template: °

<div>
{person.name}
is {person.age} years old.

</div>

b
class MyComp {
@Input() person: Person;

We have person as an input attribute. Now, if we want to make this component change only when
its input attribute changes, we just need to change the change detection strategy, by setting its
changeDetection attribute to ChangeDetectionStrategy.OnPush

o By the way, if you're curious, the default value for changeDetection is
ChangeDetectionStrategy.Default.

Let’s write a small experiment with two components. The first one will use the default change
detection behavior and the other will use the OnPush strategy:

code/advanced_components/app/ts/change-detection/onpush.ts

import
Component,
Input,
ChangeDetectionStrategy,
} from '@angular/core';

class Profile {

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Advanced Components 502

constructor(private first: string, private last: string) {}

lastChanged() {
return new Date();

So we start with some imports and we declare a Person class that will be used as the input in both of
our components. Notice that we also created a method called 1astChange() on the Profile class. It
will help us determine when the change detection is triggered. When a given component is marked
as needing to be checked, this method will be called, since it’s present on the template. So this method
will reliably indicate the last time the component was checked for changes.

Next, we declare the DefaultCmp that will use the default change detection strategy:

code/advanced_components/app/ts/change-detection/onpush.ts

@Component ({
selector: 'default',
template:
<h4 class="ui horizontal divider header">
Default Strategy
</h4>

<form class="ui form">
<div class="field">
<label>First Name</label>
<input
type="text"
[(ngModel)]="profile. first"
name="first"
placeholder="First Name">
</div>
<div class="field">
<label>Last Name</label>
<input
type="text"
[(ngModel)]="profile.last"
name="last"
placeholder="Last Name">
</div>
</form>
<div>

42
43
44
45
46
47
48

50
51
52
53
54
55
56
57
o8
959
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
5
76
T
78
79
80

Advanced Components

1))

{{profile.lastChanged() | date:'medium'}}

</div>

export class DefaultCmp {

@Input() profile: Profile;

503

And a second component using OnPush strategy:

code/advanced_components/app/ts/change-detection/onpush.ts

@Component ({

1))

selector: 'on-push',

changeDetection: ChangeDetectionStrategy.OnPush,

~

template:

<h4 class="ui horizontal divider
OnPush Strategy

</h4>

<form class="ui form">
<div class="field">
<label>First Name</label>
<input
type="text"

header">

[(ngModel)]="profile. first"

name="first"
placeholder="First Name">
</div>
<div class="field">
<label>Last Name</label>
<input
type="text"
[(ngModel)]="profile.last"
name="last"
placeholder="Last Name">
</div>
</form>
<div>
{{profile.lastChanged() | date
</div>

~

:'medium' }}

Advanced Components 504

81 export class OnPushCmp {
82 @Input() profile: Profile;
83)

As we can see, both components use the same template. The only thing that is different is the header.

Finally, let’s add the component that will render both components side by side:

code/advanced_components/app/ts/change-detection/onpush.ts

85 @Component({

86 selector: 'change-detection-sample-app',

87 template:

88 <div class="ui page grid">

89 <div class="two column row">

90 <div class="column area">

o1 <default [profile]="profilel"></default>
92 </div>

93 <div class="column area">

94 <on-push [profile]="profile2"></on-push>
95 </div>

96 </div>

o7 </div>

98)

2 1)

100 export class OnPushChangeDetectionSampleApp {

101 profilel: Profile = new Profile('Felipe', 'Coury');
102 profile2: Profile = new Profile('Nate', 'Murray');
103 '}

When we run this application, we should see both components rendered like below:

Advanced Components

505

l Angular 2 - Change detect =

Felipe
C' [localhost:56908

P
]|

Eng-bookz Angular 2 Advanced Components

Default Strategy

OnPush Strategy
First Name First Name
Felipe Mate
Last Name Last Name
Coury Murray

Mar 20,2016, 6:19.51 PM Mar 20, 2016, 6:19.51 PM

Default vs. OnPush strategies

When we change something on the component on the left, with the default strategy, we notice that
the timestamp for the component on the right doesn’t change:

Advanced Components

506

o0 'Anguler— Change detect %

C | [Y localhost:56909

=
n

ng—bcukz Angular 2 Advanced Components

Default Strategy

OnPush Strategy
First Name First Name
Felipe Alr
Last Name Last Name
Coury Lerner
Mar 20, 2016, 6:25:27 PM

Mar 20,2016, 6:25:27 PM I

Changed this
compgonent

Both values changed

OnPush changed, default got checked

To understand why this happened, let’s check this new tree of components:

ChangeDetectionsampleApp

DefaultCmp OnPushCmp

Tree of components

Angular checks for changes from the top to the bottom, so it queried first ChangeDetectionSam-
pleApp, then De faultCmp and finally OnPushCmp. When it inferred that OnPushCmp changed, it updates

Advanced Components 507

all the components of the tree, from top to bottom, making the DefaultCmp to be rendered again.

Now when we change the value of the component on the right:

® ® ! Angular 2 - Change detect x Felipe

C | [} localhost:56909

%
n

Eng-bcom Angular 2 Advanced Components

Detault Strategy OnPush Strategy
First Name First Name
Carlog| Ari
Last Name Last Name
Taborda Lerner
I IMar20, 2016, 6:37:19 PM | Mar 20,2016, 6:37:11 PMI

Changed this component \

This component was checked

But this wasn't

Default changed, OnPush didn’t get checked

So now the change detection engine kicked in, the DefaultCmp component was checked but
OnPushCmp wasn’t. This happened because when we set the OnPush strategy for this component, it
made the change detection kick in for this component only when one of its input attributes change.
Changing other components of the tree doesn’t trigger this component’s change detector.

Zones

Under the hood, Angular uses a library called Zones to automatically detect changes and trigger the
change detection mechanism. Zones will automatically tell Angular that something changed under
the most common scenarios:

« when a DOM Event occurs (like click, change, etc.)
« when an HTTP request is resolved
« when a Timer is trigger (setTimeout or setInterval)

However, there are scenarios where Zones won’t be able to automatically identify that something
changed. That’s another scenario where the OnPush strategy can be very useful.

© 00 O U b W N =

N F S L sy s
© ©W 0 1 O O b W N~ 0O

Advanced Components 508
A few examples of things that is out of the Zones control, would be:

« using a third party library that runs asynchronously
 immutable data
+ Observables

these are perfect candidates for using OnPush along with a technique to manually hint Angular
that something changed.

Observables and OnPush
Let’s write a component that receives an Observable as a parameter. Every time we receive a value
from this observable, we will increment a counter that is a property of the component.

If we were using the regular change detection strategy, any time we incremented the counter, we
would get change detection triggered by Angular. However, we will have this component use the
OnPush strategy and, instead of letting the change detector kick in for each increment, we’ll only
kick it when the number is a multiple of 5 or when the observable completes.

In order to do that, let’s write our component:

code/advanced_components/app/ts/change-detection/observables.ts

import
Component,
Input,
ChangeDetectorRef,
ChangeDetectionStrategy
} from '@angular/core';

import { Observable } from 'rxjs/Rx';

@Component ({
selector: 'observable',
changeDetection: ChangeDetectionStrategy.OnPush,
template:
<div>
<div>Total items: {{counter}}</div>
</div>

P

export class ObservableCmp {
@Input() items: Observable<number>;

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

10
11
12
13
14
15
16
17
18

Advanced Components 509

counter = 0;

constructor(private changeDetector: ChangeDetectorRef) ({

}

ngOnInit() {

this.items.subscribe((v) => {
console.log('got value', v);
this.counter++;
if (this.counter % 5 == 0) {

this.changeDetector .markForCheck();

}

b

null,

()=
this.changeDetector .markForCheck();

});

Let’s break down the code a bit so we can make sure we understand. First, we're declaring the
component to take items as the input attribute and to use the OnPush detection strategy:

code/advanced_components/app/ts/change-detection/observables.ts

@Component ({
selector: 'observable',
changeDetection: ChangeDetectionStrategy.OnPush,
template:
<div>
<div>Total items: {{counter}}</div>
</div>

P

Next, we're storing our input attribute on the items property of the component class, and setting
another property, called counter, to 0.

19
20
21

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38

Advanced Components 510

code/advanced_components/app/ts/change-detection/observables.ts

export class ObservableCmp {
@Input() items: Observable<number>;
counter = 0;

Then we use the constructor to get hold of the component’s change detector:

code/advanced_components/app/ts/change-detection/observables.ts

constructor(private changeDetector: ChangeDetectorRef) ({

}

Then, during the component initialization, on the ngOnInit hook:

code/advanced_components/app/ts/change-detection/observables.ts

ngOnInit() {

this.items.subscribe((v) => {
console.log('got value', v);
this.counter++;
if (this.counter % 5 == 0) {

this.changeDetector .markForCheck();

}

}

null,

0= {
this.changeDetector.markForCheck();

1

We’re subscribing to the Observable. The subscribe method takes three callbacks: onNext, onError
and onCompleted.

Our onNext callback will print out the value we got, then increment the counter. Finally, if the
current counter value is a multiple of 5, we call the change detector’s markForCheck method. That’s
the method we use whenever we want to tell Angular that a change has been made, so the change
detector should kick in.

Then for the onError callback, we’re using null, indicating we don’t want to handle this scenario.

Finally, for the onComplete callback, we’re also triggering the change detector, so the final counter
can be displayed.

Now, on to the application component code, that will create the subscriber:

41
42
43
44
45
46
47
48
49
50
51
52
93

Advanced Components 511

code/advanced_components/app/ts/change-detection/observables.ts

@Component ({
selector: 'change-detection-sample-app',

template:
<observable [items]="itemObservable"></observable>

N

1))

export class ObservableChangeDetectionSampleApp {
itemObservable: Observable<number>;

constructor() {
this.itemObservable = Observable.timer (100, 100).take(101);

The important line here is the following:
this.itemObservable = Observable.timer (100, 100).take(101);

This line creates the Observable we’re passing to the component on the items input attribute.
We’re passing two parameters to the timer method: the first is the number of milliseconds to wait
before producing the first value and the second is the milliseconds to wait between values. So this
observable will generate sequential values every 100 values forever.

Since we don’t want the observable to run forever, we use the take method, to take only the first
101 values.

When we run this code, we’ll see that the counter will only be updated for each 5 values obtained
from the observer and also when the observable completes, generating a final value of 101:

Advanced Components 512

e ® ! Angular 2 - Change detect % | Felipe |

- C | [1 localhost:8080 oo

gng-bcckz Angular 2 Advanced Components

Total items: 101

(= ﬂ Elements Console Sources MNetwork Timeline Profiles Resources Security » 01402 : X
® ¥ top v Preserve log
got wvalue 97 app.ts:28
got value 98 app.ts:28
got value 99 app.ts:28
got value 109 app.ts:28

> |
e

Manually triggering change detection

Summary

Angular 2 provides us with many tools we can use for writing advanced components. Using the
techniques in this chapter you will be able to write nearly any component functionality you wish.

However, there’s one important concept that you’ll use in many advanced components that we
haven’t talked about yet: Dependency Injection.

With dependency injection we can hook our components into many other parts of the system. In
the next chapter we’ll talk about what DI is, how you can use it in your apps, and common patterns
for injecting services.

Testing

After spending hours, days, months on a web app you’re finally ready to release it to the world.
Plenty of hard work and time has been poured into it and now it’s time for it to pay off... and then
boom: a blocking bug shows up that prevents anyone from signing up.

Test driven?

Testing can help reveal bugs before they appear, instill confidence in your web application, and
makes it easy to onboard new developers into the application. There is little doubt about the power
of testing amongst the world of software development. However, there is debate about how to go
about it.

Is it better to write the tests first and then write the implementation to make those tests pass or
would it be better to validate that code that we’ve already written is correct? It’s pretty odd to think
that this is a source of contention across the development community, but there is a debate that can
get pretty heated as to which is the right way to handle testing.

In our experience, particularly when coming from a prototype-heavy background, we focus on
building test-able code. Although your experience may differ, we have found that while we are
prototyping applications, testing individual pieces of code that are likely to change can double or
triple the amount of work it takes to keep them up. In contrast, we focus on building our applications
in small components, keeping large amounts of functionality broken into several methods which
allows us to test the functionality of a part of the larger picture. This is what we mean when we say
testable code.

An alternative methodology to prototyping (and then testing after) is called “Red-Green-
Refactor”. The idea is that you write your tests first and they fail (red) because you
haven’t written any code yet. Only after you have failing tests do you go on to write your
implementation code until it all passes (green).

Of course, the decision of what to test is up to you and your team, however we’ll focus on how to
test your applications in this chapter.

End-to-end vs. Unit Testing

There are two major ways to test you applications: end-to-end testing or unit testing.

O O b W N~

Testing 514

If you take a top-down approach on testing you write tests that see the application as a “black box”
and you interact with the application like a user would and evaluate if the app seems to work from
the “outside”. This top-down technique of testing is called End to End testing.

O In the Angular world, the tool that is mostly used is called Protractor'®'. Protractor is a
tool that opens a browser and interacts with the application, collecting results, to check
whether the testing expectations were met.

The second testing approach commonly used is to isolate each part of the application and test it in
isolation. This form of testing is called Unit Testing.

In Unit Testing we write tests that provide a given input to a given aspect of that unit and evaluate
the output to make sure it matches our expectations.

In this chapter we're going to be covering how to unit test your Angular apps.

Testing Tools

In order to test our apps, we’ll use two tools: Jasmine and Karma.

Jasmine

Jasmine'* is a behavior-driven development framework for testing JavaScript code.
Using Jasmine, you can set expectations about what your code should do when invoked.

For instance, let’s assume we have a sum function on a Calculator object. We want to make sure that
adding 1 and 1 results in 2. We could express that test (also called a _spec), by writing the following
code:

describe('Calculator', () => {
it('sums 1 and 1 to 2', () => {
var calc = new Calculator();
expect(calc.sum(1, 1)).toEqual(2);

1)

1)

One of the nice things about Jasmine is how readable the tests are. You can see here that we expect
the calc.sub operation to equal 2.

We organize our tests with describe blocks and it blocks.

"Thttps://angular.github.io/protractor/#/
*http://jasmine.github.io/2.4/introduction.html

https://angular.github.io/protractor/#/
http://jasmine.github.io/2.4/introduction.html
https://angular.github.io/protractor/#/
http://jasmine.github.io/2.4/introduction.html

Testing 515

Normally we use describe for each logical unit we’re testing and inside that each we use one it for
each expectation you want to assert. However, this isn’t a hard and fast rule. You’ll often see an it
block contain several expectations.

On the Calculator example above we have a very simple object. For that reason, we used one
describe block for the whole class and one it block for each method.

This is not the case most of the times. For example, methods that produce different outcomes
depending on the input will probably have more than one it block associated. On those cases,
it’s perfectly fine to have nested describes: one for the object and one for each method, and then
different assertions inside individual it blocks.

We’ll be looking at a lot of describe and it blocks throughout this chapter, so don’t worry if it isn’t
clear when to use one vs. the other. We’ll be showing lots of examples.

For more information about Jasmine and all its syntax, check out the Jasmine documentation page'*.

Karma
With Jasmine we can describe our tests and their expectations. Now, in order to actually run the
tests we need to have a browser environment.

That’s where Karma comes in. Karma allows us to run JavaScript code within a browser like
Chrome or Firefox, or on a headless browser (or a browser that doesn’t expose a user interface)
like Phantom]S.

Writing Unit Tests

Our main focus on this section will be to understand how we write unit tests against different parts
of our Angular apps.

We’'re going to learn to test Services, Components, HTTP requests and more. Along the way we’re
also going to see a couple of different techniques to make our code more testable.

Angular Unit testing framework

Angular provides its own set of classes that build upon the Jasmine framework to help writing unit
testing for the framework.

The main testing framework can be found on the @angular/core/testing package. (Although, for
testing components we’ll use the @angular/compiler/testing package and @angular/platform-
browser/testing for some other helpers. But more on that later.)

*http://jasmine.github.io/2.4/introduction.html

http://jasmine.github.io/2.4/introduction.html
http://jasmine.github.io/2.4/introduction.html

W N O O & W N =

B) S s s
<N O O WO N =~ O ©

Testing 516

9 If this is your first time testing Angular I want to prepare you for something: When you
write tests for Angular, there is a bit of setup.

For instance, when we have dependencies to inject, we often manually configure them.
When we want to test a component, we have to use testing-helpers to initialize them. And
when we want to test routing, there are quite a few dependencies we need to structure.

If it feels like there is a lot of setup, don’t worry: you’ll get the hang of it and find that the
setup doesn’t change that much from project to project. Besides, we’ll walk you through
each step in this chapter.

As always, you can find all of the sample code for this chapter in the code download.
Looking over the code directly in your favorite editor can provide a good overview of the
details we cover in this chapter. We’d encourage you to keep the code open as you go
through this chapter.

Setting Up Testing

Earlier in the Routing Chapter we created an application for searching for music. In this chapter,
let’s write tests for that application.

Karma requires a configuration in order to run. So the first thing we need to do to setup Karma is
to create a karma.conf. js file.

Let’s karma.conft. js file on the root path of our project, like so:

code/routes/music/karma.conf.js

// Karma configuration
var path = require('path');
var cwd = process.cwd();

module.exports = function(config) {
config.set({
// base path that will be used to resolve all patterns (eg. files, exclude)
basePath: '',
// frameworks to use
// available frameworks: https://npmjs.org/browse/keyword/karma-adapter
frameworks: ['jasmine'],

// list of files / patterns to load in the browser
files: [

{ pattern: 'test.bundle.js', watched: false }
1,

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
o8
59

Testing 517

SOor

// list of files to exclude
exclude: |

] ’

// preprocess matching files before serving them to the browser
// available preprocessors: https://npmjs.org/browse/keyword/karma-preproces\

preprocessors: {
'test.bundle.js': ['webpack', 'sourcemap']

}I

webpack: {
devtool: 'inline-source-map',
resolve: {
root: [path.resolve(cwd)],

modulesDirectories: ['node_modules', 'app', 'app/ts', 'test', '.'],
extensions: ['', '.ts', '.js', '.css'],
alias: {
‘app': 'app'
}
1
module: {

loaders: |
{ test: /\.ts$/, loader: 'ts-loader', exclude: [/node_modules/]}
]

},
stats: {

colors: true,
reasons: true
1,
watch: true,
debug: true
1,

webpackServer:
nolnfo: true

}I

// test results reporter to use
// possible values: 'dots', 'progress'

60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Testing 518

// available reporters: https://npmjs.org/browse/keyword/karma-reporter
reporters: ['spec'],

// web server port
port: 9876,

// enable / disable colors in the output (reporters and logs)
colors: true,

// level of logging
// possible values: config.LOG_DISABLE || config.LOG_ERROR || config.LOG_WAR\

N || config.LOG_INFO || config.LOG_DEBUG

ges

her

loglLevel: config.LOG_INFO,

// enable / disable watching file and executing tests whenever any file chan\

autoWatch: true,

// start these browsers

// available browser launchers: https://npmjs.org/browse/keyword/karma-Ilaunc\

browsers: ['Chrome'],

// Continuous Integration mode

// 1f true, Karma captures browsers, runs the tests and exits
singleRun: false

1))

Don’t worry too much about this file’s contents right now, just keep in mind a few things about it:

« sets Phantom]S as the target testing browser;

« uses Jasmine karma framework for testing;

« uses a WebPack bundle called test.bundle. js that basically wraps all our testing and app
code;

The next step is to create a new test folder to hold our test files.

O O b W N =

10
11
12
13
14

Testing 519

mkdir test

Testing Services and HTTP

Services in Angular start out their life as plain classes. In one sense, this makes our services easy to
test because we can sometimes test them directly without using Angular.

With Karma configuration done, let’s start testing the SpotifyService class. If we remember, this
service works by interacting with the Spotify API to retrieve album, track and artist information.

Inside the test folder, let’s create a service subfolder where all our service tests will go. Finally,
let’s create our first test file inside it, called SpotifyService.spec.ts.

Now we can start putting this test file together. The first thing we need to do is import the test
helpers from the @angular/core/testing package

code/routes/music/test/services/SpotifyService.spec.ts

import
inject,
fakeAsync,
tick,
TestBed
} from '@angular/core/testing';

Next, we’ll import a couple more classes:

code/routes/music/test/services/SpotifyService.spec.ts

import {MockBackend} from '@angular/http/testing’;
import

Http,

ConnectionBackend,

BaseRequestOptions,

Response,

ResponseOptions
} from '@angular/http’;

Since our service uses HTTP requests, we’ll import the MockBackend class from @angular/http/test-
ing package. This class will help us set expectations and verify HTTP requests.

The last thing we need to import is the class we’re testing:

16

Testing 520

code/routes/music/test/services/SpotifyService.spec.ts

[

import {SpotifyService} from '../../app/ts/services/SpotifyService';

HTTP Considerations

We could start writing our tests right now, but during each test execution we would be calling out
and hitting the Spotify server. This is far from ideal for two reasons:

1. HTTP requests are relatively slow and as our test suite grows, we’d notice it takes longer and
longer to run all of the tests.

2. Spotify’s API has a quota, and if our whole team is running the tests, we might use up our
API call resources needlessly

3. If we are offline or if Spotify is down or inaccessible our tests would start breaking, even
though our code might technically be correct

This is a good hint when writing unit tests: isolate everything that you don’t control before testing.

In our case, this piece is the Spotify service. The solution is that we will replace the HTTP request
with something that would behave like it, but will not hit the real Spotify server.

Doing this in the testing world is called mocking a dependency. They are sometimes also called
stubbing a dependency.

Q You can read more about the difference between Mocks and Stubs in this article Mocks are
not Stubs***

Let’s pretend we’re writing code that depends on a given Car class.

This class has a bunch of methods: you can start a car instance, stop it, park it and getSpeed of
that car.

Let’s see how we could use stubs and mocks to write tests that depend on this class.

Stubs

Stubs are objects we create on the fly, with a subset of the behaviors our dependency has.
Let’s write a test that just interacts with the start method of the class.

You could create a stub of that Car class on-the-fly and inject that into the class you’re testing:

?*http://martinfowler.com/articles/mocksArentStubs.html

http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html

© 00 9 O O b W N =

=N O O & W N =

O N O O & W N~

Testing 521

describe('Speedtrap', function() {
it('tickets a car at more than 6@mph', function() {
var stubCar = { getSpeed: function() { return 61; } };
var speedTrap = new SpeedTrap(stubCar);
speedTrap.ticketCount = 0;
speedTrap.checkSpeed();
expect(speedTrap.ticketCount).toEqual(1);
1)
1)

This would be a typical case for using a stub and we’d probably only use it locally to that test.

Mocks

Mocks in our case will be a more complete representation of objects, that overrides parts or all of
the behavior of the dependency. Mocks can, and most of the time will be reused by more than one
test across our suite.

They will also be used sometimes to assert that given methods were called the way they were
supposed to be called.

One example of a mock version of our Car class would be:

class MockCar ({
startCallCount: number = 0;

start() {
this.startCallCount++;

}

And it would be used to write another test like this:

describe('CarRemote', function() {
it('starts the car when the start key is held', function() ({
var car = new MockCar();
var remote = new CarRemote();
remote.holdButton('start');
expect(car.startCallCount).toEqual(1);

1)

1)

The biggest difference between a mock and a stub is that:

« a stub provides a subset of functionality with “manual” behavior overrides whereas
» a mock generally sets expectations and verifies that certain methods were called

18
19
20
21
22
23
24
25

Testing 522

Http MockBackend

Now that we have this background in mind, let’s go back to writing our service test code.

Interacting with the live Spotify service every time we run our tests is a poor idea but thankfully
Angular provides us with a way to create fake HTTP calls with MockBackend.

This class can be injected into a Http instance and gives us control of how we want the HTTP
interaction to act. We can interfere and assert in a variety of different ways: we can manually set
a response, simulate an HTTP error, and add expectations, like asserting the URL being requested
matches what we want, if the provided request parameters are correct and a lot more.

So the idea here is that we’re going to provide our code with a “fake” Http library. This “fake”
library will appear to our code to be the real Http library: all of the methods will match, it will
return responses and so on. However, we’re not actually going to make the requests.

In fact, beyond not making the requests, our MockBackend will actually allow us to setup expectations
and watch for behaviors we expect.

TestBed.configureTestingModule and Providers

When we test our Angular apps we need to make sure we configure the top-level NgModule that we
will use for this test. When we do this, we can configure providers, declare components, and import
other modules: just like you would when using NgModules generally.

Sometimes when testing Angular code, we manually setup injections. This is good because it gives
us more control over what we’re actually testing.

So in the case of testing Http requests, we don’t want to inject the “real” Http class, but instead
we want to inject something that looks like Http, but really intercepts the requests and returns the
responses we configure.

To do that, we create a version of the Http class that uses MockBackend internally.

To do this, we use the TestBed.configureTestingModule in the be foreEach hook. This hook takes a
callback function that will be called before each test is run, giving us a great opportunity to configure
alternative class implementations.

code/routes/music/test/services/SpotifyService.spec.ts

describe('SpotifyService', () => {
beforeEach(() => {
TestBed.configureTestingModule({
providers: [

BaseRequestOptions,
MockBackend,
SpotifyService,
{ provide: Http,

26
27
28
29
30
31
32

25
26
27
28
29
30

Testing 523

useFactory: (backend: ConnectionBackend,
defaultOptions: BaseRequestOptions) => {
return new Http(backend, defaultOptions);
}, deps: [MockBackend, BaseRequestOptions] 1},
]
1
1)

Notice that TestBed.configureTestingModule accepts an array of providers in the providers key
to be used by the test injector.

BaseRequestOptions and SpotifyService are just the default implementation of those classes. But
the last provider is a little more complicated :

code/routes/music/test/services/SpotifyService.spec.ts

{ provide: Http,
useFactory: (backend: ConnectionBackend,
defaultOptions: BaseRequestOptions) => {
return new Http(backend, defaultOptions);
}, deps: [MockBackend, BaseRequestOptions] },

This code uses provide with useFactory to create a version of the Http class, using a factory (that’s
what useFactory does).

That factory has a signature that expects ConnectionBackend and a BaseRequestOption instances.
The second key on that object is deps: [MockBackend, BaseRequestOptions]. That indicates that
we’ll be using MockBackend as the first parameter of the factory and BaseRequestOptions (the default
implementation) as the second.

Finally, we return our customized Http class with the MockBackend as a result of that function.

What benefit do we get from this? Well now every time (in our test) that our code requests Http as
an injection, it will instead receive our customized Http instance.

This is a powerful idea that we’ll use a lot in testing: use dependency injection to customize
dependencies and isolate the functionality you’re trying to test.

Testing getTrack
Now, when writing tests for the service, we want to verify that we’re calling the correct URL.

Q If you haven’t looked at the Routing chapter music example in a while, you can find the
code for this example here

Let’s write a test for the getTrack method:

39
40
41

19
20
21
22
23
24
25
26

0 N O O & W N =~

B R s
O > 0w N =~ O O

16
17
18

Testing 524

code/routes/music/app/ts/services/SpotifyService.ts

getTrack(id: string): Observable<any[]> {
return this.query(/tracks/${id}");

If you remember how that method works, it uses the query method, that builds the URL based on
the parameters it receives:

code/routes/music/app/ts/services/SpotifyService.ts

query(URL: string, params?: Array<string>): Observable<any[]> {
let queryURL: string = “${SpotifyService.BASE_URL}${URL}";
if (params) {
queryURL = “${queryURL}?${params. join('&")}";

return this.http.request(queryURL).map((res: any) => res.json());

Since we're passing /tracks/${id} we assume that when calling getTrack('TRACK_ID") the
expected URL will be https://api.spotify.com/v1/tracks/TRACK_ID.

Here is how we write the test for this:

describe('getTrack', () => {
it('retrieves using the track ID',
inject([SpotifyService, MockBackend], fakeAsync((spotifyService, mockBackend\
) = {
var res;
mockBackend.connections.subscribe(c => {
expect(c.request.url).toBe('https://api.spotify.com/v1/tracks/TRACK_ID');

let response = new ResponseOptions({body: "name": "felipe"}'});
c.mockRespond(new Response(response));
});
spotifyService.getTrack('TRACK_ID').subscribe((_res) => {
res = _res;
1
tick();
expect(res.name).toBe('felipe');
)
)i
1)

B W N -

Testing 525

This seems like a lot to grasp at first, so let’s break it down a bit:

Every time we write tests with dependencies, we need to ask Angular injector to provide us with
the instances of those classes. To do that we use:

inject([Class1, ..., ClassN], (instancei, ..., instanceN) => {
. testing code ...

1))

When you are testing code that returns either a Promise or an RxJS Observable, you can use
fakeAsync helper to test that code as if it were synchronous. This way every Promises are fulfilled
and Observables are notified immediately after you call tick().

So in this code:

inject([SpotifyService, MockBackend], fakeAsync((spotifyService, mockBackend) =>\
{

1)

We’re getting two variables: spoti fyService and mockBackend. The first one has a concrete instance
of the Spoti fyService and the second is an instance MockBackend class. Notice that the arguments
to the inner function (spotifyService, mockBackend) are injections of the classes specified in the
first argument array of the inject function (SpotifyService and MockBackend).

We’re also running inside fakeAsync which means that async code will be run synchronously when
tick() is called.

Now that we’ve setup the injections and context for our test, we can start writing our “actual”
test. We start by declaring a res variable that will eventually get the HTTP call response. Next we
subscribe to mockBackend.connections:

var res;
mockBackend.connections.subscribe(c => { ... });

Here we’re saying that whenever a new connection comes in to mockBackend we want to be notified
(e.g. call this function).

We want to verify that the SpotifyService is calling out to the correct URL given the track id
TRACK_ID. So what we do is specify an expectation that the URL is as we would expect. We can get
the URL from the connection ¢ via c.request.url. So we setup an expectation that c.request.url
should be the string 'https://api.spotify.com/v1/tracks/TRACK_ID":

Testing 526

expect(c.request.url).toBe('https://api.spotify.com/v1/tracks/TRACK_ID");

When our test is run, if the request URL doesn’t match, then the test will fail.

Now that we’ve received our request and verified that it is correct, we need to craft a response. We
do this by creating a new ResponseOptions instance. Here we specify that it will return the JSON
string: {"name": "felipe"} as the body of the response.

let response = new ResponseOptions({body: "name": "felipe"}'});

Finally, we tell the connection to replace the response with a Response object that wraps the
ResponseOptions instance we created:

c.mockRespond(new Response(response));

Q An interesting thing to note here is that your callback function in subscribe can be as
sophisticated as you wish it to be. You could have conditional logic based on the URL,
query parameters, or anything you can read from the request object etc.

This allows us to write tests for nearly every possible scenario our code might encounter.

We have now everything setup to call the getTrack method with TRACK_ID as a parameter and
tracking the response in our res variable:

spotifyService.getTrack('TRACK_ID'").subscribe((_res) => {

res = _res;
1);
If we ended our test here, we would be waiting for the HTTP call to be made and the response
to be fulfilled before the callback function would be triggered. It would also happen on a different
execution path and we’d have to orchestrate our code to sync things up. Thankfully using fakeAsync

takes that problem away. All we need to do is call tick() and, like magic, our async code will be
executed:

tick();
We now perform one final check just to make sure our response we setup is the one we received:
expect(res.name).toBe('felipe');

If you think about it, the code for all the methods of this service are very similar. So let’s extract the
snippet we use to setup the URL expectation into a function called expectURL:

35
36
37
38
39
40
41

o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

Testing 527

code/routes/music/test/services/SpotifyService.spec.ts

function expectURL(backend: MockBackend, url: string) {
backend.connections.subscribe(c => {
expect(c.request.url).toBe(url);

1

let response = new ResponseOptions({body: "name": "felipe"}'});
c.mockRespond(new Response(response));

});

Following the same lines, it should be very simple to create similar tests for getArtist and getAlbum
methods:

code/routes/music/test/services/SpotifyService.spec.ts

describe('getArtist', () => {
it('retrieves using the artist ID',

inject([SpotifyService, MockBackend], fakeAsync((svc, backend) => {
var res;
expectURL (backend, 'https://api.spotify.com/v1/artists/ARTIST_ID');
svc.getArtist('ARTIST_ID').subscribe((_res) => {

res = _res;
1)
tick();
expect(res.name).toBe('felipe');
)
)i
1)

describe('getAlbum', () => {
it('retrieves using the album ID',
inject([SpotifyService, MockBackend], fakeAsync((svc, backend) => {
var res;
expectURL (backend, 'https://api.spotify.com/v1/albums/ALBUM_ID");
svc.getAlbum('ALBUM_ID").subscribe((_res) => {

res = _res;
1)
tick();
expect(res.name).toBe('felipe');
1))
)
});

Now searchTrack is slightly different: instead of calling query, this method uses the search method:

35
36
37

28
29
30
31
32
33

85
86
87
88
89
90
91
92
93
94
95
96
o7
98

Testing 528

code/routes/music/app/ts/services/SpotifyService.ts

searchTrack(query: string): Observable<any[]> {
return this.search(query, 'track');

And then search calls query with /search as the first argument and an Array containing g=<query>
and type=track as the second argument:

code/routes/music/app/ts/services/SpotifyService.ts

search(query: string, type: string): Observable<any[]> {
return this.query(/search™, [
“g=${query} ",
“type=${type}"
D

Finally, query will transform the parameters into a URL path with a QueryString. So now, the URL
we expect to call ends with /search?q=<query>&type=track.

Let’s now write the test for searchTrack that takes into consideration what we learned above:

code/routes/music/test/services/SpotifyService.spec.ts

describe('searchTrack', () => {
it('searches type and term',
inject([SpotifyService, MockBackend], fakeAsync((svc, backend) => {
var res;
expectURL (backend, 'https://api.spotify.com/vl/search?q=TERM&type=track'\

)i
svc.searchTrack("TERM") .subscribe((_res) => {
res = _res;
1)
tick();
expect(res.name).toBe('felipe');
1))
)
1

The test ended up also being very similar to the ones we wrote so far. Let’s review what this test
does:

Testing 529

it hooks into the HTTP lifecycle, by adding a callback when a new HTTP connection is

initiated

« it sets an expectation for the URL we expect the connection to use including the query type
and the search term

« it calls the method we’re testing, searchTrack

« it then tells Angular to complete all the pending async calls

« it finally asserts that we have the expected response

In essence, when testing services our goals should be:

1. Isolate all the dependencies by using stubs or mocks

2. In case of async calls, use fakeAsync and tick to make sure they are fulfilled
3. Call the service method you’re testing

4. Assert that the returning value from the method matches what we expect

Now let’s move on to the classes that usually consume the services: components.

Testing Routing to Components
When testing components, we can either:

1. write tests that will interact with the component from the outside, passing attributes in and
checking how the markup is affected or
2. test individual component methods and their output.

Those test strategies are known as black box and white box testing, respectively. During this section,
we’ll see a mix of both.

We’ll begin by writing tests for the ArtistComponent class, which is one of the simpler components
we have. This initial set of tests will test the component’s internals, so it falls into the white box
category of testing.

Before we jump into it, let’s remember what ArtistComponent does:

The first thing we do on the class constructor is retrieve the id from the routeParams collection:

31
32
33
34

16
17
18
19

66
67
68
69
70
71
T2
73
T4
5

Testing 530

code/routes/music/app/ts/components/ArtistComponent.ts

constructor(private route: ActivatedRoute, private spotify: SpotifyService,
private location: Location) {
route.params.subscribe(params => { this.id = params['id']; });

And with that we have our first obstacle. How can we retrieve the ID of a route without an available
running router?

Creating a Router for Testing

Remember that when we write tests in Angular we manually configure many of the classes that are
injected. Routing (and testing components) has a daunting number of dependencies that we need to
inject. That said, once it’s configured, it isn’t something we change very much and it’s very easy to
use.

When we test write tests it’s often convenient to use be foreEach with TestBed.configureTestingModule

to set the dependencies that can be injected. In the case of testing our ArtistComponent we’re going
to create a custom function that will create and configure our router for testing:

code/routes/music/test/components/ArtistComponent.spec.ts

describe('ArtistComponent', () => {
beforekach(() => {
configureMusicTests();

});

We define configureMusicTests in the helper file MusicTestHelpers.ts. Let’s look at that now.

Here’s the implementation of configureMusicTests. Don’t worry, we’ll explain each part:

code/routes/music/test/MusicTestHelpers.ts

export function configureMusicTests() {
const mockSpotifyService: MockSpotifyService = new MockSpotifyService();

TestBed.configureTestingModule({
imports: [
{ // TODO RouterTestingModule.withRoutes coming soon
ngModule: RouterTestingModule,
providers: [provideRoutes(routerConfig)]

}
TestModule

76
T
78
79
80
81
82
83
84
85

Testing 531

] !

providers: |
mockSpotifyService.getProviders(),

{

provide: ActivatedRoute,
useFactory: (r: Router) => r.routerState.root, deps: [Router]

});

We start by creating an instance of MockSpotifyService that we will use to mock the real
implementation of SpotifyService.

Next we use a class called TestBed and call configureTestingModule. TestBed is a helper library
that ships with Angular to help make testing easier.

In this case, TestBed.configureTestingModule is used to configure the NgModule used for testing.
You can see that we provide an NgModule configuration as the argument which has:

 imports and

e providers
In our imports we’re importing

+ The RouterTestingModule and configuring it with our routerConfig - this configures the
routes for testing

+ The TestModule - which is the NgModule which declares all of the components we will test
(see MusicTestHelpers.ts for the full details)

In providers

« We provide the MockSpoti fyService (via mockSpotifyService.getProviders())
« and the ActivatedRoute

Let’s take a closer look at these starting with the Router.

Router

One thing we haven’t talked about yet is what routes we want to use when testing. There are many
different ways of doing this. First we’ll look at what we’re doing here:

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Testing 532

code/routes/music/test/MusicTestHelpers.ts

@Component ({
selector: 'blank-cmp',
template: °°

b

export class BlankCmp {

}

@Component ({
selector: 'root-cmp',
template: “<router-outlet></router-outlet>"

1))

export class RootCmp {

}

export const routerConfig: Routes = |
{ path: '', component: BlankCmp },
path: 'search', component: SearchComponent 1},

{
{ path: 'artists/:id', component: ArtistComponent },
{ path: 'tracks/:id', component: TrackComponent },

{

path: 'albums/:id', component: AlbumComponent }

1;

Here instead of redirecting (like we do in the real router config) for the empty URL, we’re just using
BlankCmp.

Of course, if you want to use the same RouterConfig as in your top-level app then all you need to
do is export it somewhere and import it here.

If you have a more complex scenario where you need to test lots of different route configurations,
you could even accept a parameter to the musicTestProviders function where you use a new router
configuration each time.

There are many possibilities here and you’ll need to pick whichever fits best for your team. This
configuration works for cases where your routes are relatively static and one configuration works
for all of the tests.

Now that we have all of the dependencies, we create thenew Router andcallr.initialNavigation()
on it.

ActivatedRoute

The ActivatedRoute service keeps track of the “current route”. It requires the Router itself as a
dependency so we put it in deps and inject it.

© 00 N O U b W N =

Y
(]

Testing 533

MockSpotifyService

Earlier we tested our Spoti fyService by mocking out the HTTP library that backed it. Instead here,
we’re going to mock out the whole service itself. Let’s look at how we can mock out this, or any,
service.

Mocking dependencies

If you look inside music/test you’ll find a mocks/spotify.ts file. Let’s take a look:

code/routes/music/test/mocks/spotify.ts

import {SpyObject} from './helper';
import {SpotifyService} from '../../app/ts/services/SpotifyService';

export class MockSpotifyService extends SpyObject {
getAlbumSpy;
getArtistSpy;
getTrackSpy;
searchTrackSpy;
mockObservable;
fakeResponse;

Here we're declaring the MockSpotifyService class, which will be a mocked version of the real
SpotifyService. These instance variables will act as spies.

Spies

A spy is a specific type of mock object that gives us two benefits:

1. we can simulate return values and
2. count how many times the method was called and with which parameters.

In order to use spies with Angular, we’re using the internal SpyOb ject class (it’s used by Angular to
test itself).

You can either declare a class by creating a new SpyOb ject on the fly or you can make your mock
class inherit from SpyOb ject, like we’re doing in our code.

The great thing inheriting or using this class gives us is the spy method. The spy method lets us
override a method and force a return value (as well as watch and ensure the method was called).
We use spy on our class constructor:

12
13
14
15
16
17
18
19
20

36
37
38
39
40

Testing 534

code/routes/music/test/mocks/spotify.ts

constructor() {
super(SpotifyService);

this. fakeResponse = null;

this.getAlbumSpy = this.spy('getAlbum').andReturn(this);
this.getArtistSpy = this.spy('getArtist').andReturn(this);
this.getTrackSpy = this.spy('getTrack').andReturn(this);
this.searchTrackSpy = this.spy('searchTrack').andReturn(this);

The first line of the constructor call’s the SpyObject constructor, passing the concrete class we’re
mocking. Calling super (. . .) is optional, but when you do the mock class will inherit all the concrete
class methods, so you can override just the pieces you're testing.

0 If you're curious about how SpyObject is implemented you can check it on the

angular/angular repository, on the file /modules/angular2/src/testing/testing._-

internal .ts'®®

After calling super, we're intializing the fakeResponse field, that we’ll use later to null.

Next we declare spies that will replace the concrete class methods. Having a reference to them will
be helpful to set expectations and simulate responses while writing our tests.

When we use the Spoti fyService within the ArtistComponent, the real getArtist method returns
an Observable and the method we’re calling from our components is the subscribe method:

code/routes/music/app/ts/components/ArtistComponent.ts

ngOnInit(): void {
this.spotify
.getArtist(this.id)
.subscribe((res: any) => this.renderArtist(res));

However, in our mock service, we're going to do something tricky: instead of returning an observable
from getArtist, we're returning this, the MockSpotifyService itself. That means the return value
of this.spotify.getArtist(this.id) above will be the MockSpoti fyService.

There’s one problem with doing this though: our ArtistComponent was expecting to call subscribe
on an Observable. To account for this, we're going to define subscribe on our MockSpoti fyService:

23https://github.com/angular/angular/blob/bocebdbacb65c1e9e7ebsbf801ea42dc7c4a7f25/modules/angular2/sre/testing/testing_internal ts#1.205

https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205
https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205
https://github.com/angular/angular/blob/b0cebdba6b65c1e9e7eb5bf801ea42dc7c4a7f25/modules/angular2/src/testing/testing_internal.ts#L205

22
23
24

26
27
28

30
31
32

O© 00 9 O O b W N =

Testing 535

code/routes/music/test/mocks/spotify.ts

subscribe(callback) {
callback(this. fakeResponse);

Now when subscribe is called on our mock, we're immediately calling the callback, making the
async call happen synchronously.

The other thing you’ll notice is that we're calling the callback function with this. fakeResponse.
This leads us to the next method:

code/routes/music/test/mocks/spotify.ts

setResponse(json: any): void {
this. fakeResponse = json;

This method doesn’t replace anything on the concrete service, but is instead a helper method to
allow the test code to set a given response (that would come from the service on the concrete class)
and with that simulate different responses.

code/routes/music/test/mocks/spotify.ts

getProviders(): Array<any> {
return [{ provide: SpotifyService, useValue: this }];

This last method is a helper method to be used in TestBed. configureTestingModule providers like
we’ll see later when we get back to writing component tests.

Here’s what our MockSpoti fyService looks like altogether:

code/routes/music/test/mocks/spotify.ts

import {SpyObject} from './helper';
import {SpotifyService} from '../../app/ts/services/SpotifyService';

export class MockSpotifyService extends SpyObject {
getAlbumSpy;
getArtistSpy;
getTrackSpy;
searchTrackSpy;
mockObservable;

Testing 536

10 fakeResponse;

11

12 constructor() ({

13 super(SpotifyService);

14

15 this. fakeResponse = null;

16 this.getAlbumSpy = this.spy('getAlbum').andReturn(this);
17 this.getArtistSpy = this.spy('getArtist').andReturn(this);
18 this.getTrackSpy = this.spy('getTrack').andReturn(this);
19 this.searchTrackSpy = this.spy('searchTrack').andReturn(this);
20 }

21

22 subscribe(callback) {

23 callback(this. fakeResponse);

24 }

25

26 setResponse(json: any): void {

27 this. fakeResponse = json;

28 }

29

30 getProviders(): Array<any> {

31 return [{ provide: SpotifyService, useValue: this }];

32 }

33}

Back to Testing Code

Now that we have all our dependencies under control, it is easier to write our tests. Let’s write our
test for our ArtistComponent.

As usual, we start with imports:

code/routes/music/test/components/ArtistComponent.spec.ts

import ({
inject,
fakeAsync,
} from '@angular/core/testing';
import { Router } from '@angular/router’;
import { Location } from '@angular/common';

import { MockSpotifyService } from '../mocks/spotify’;

1

import { SpotifyService } from '../../app/ts/services/SpotifyService';

© 00 39 O Ol b W N =~

import

10
11
12
13
14

16
17
18
19

27
28
29
30
31
32
33
34
35
36
37
38
39
40

Testing 537

advance,
createRoot,
RootCmp,
configureMusicTests

} from '../MusicTestHelpers';

Next, before we can start to describe our tests configureMusicTests to ensure we can access our
musicTestProviders in each test:

code/routes/music/test/components/ArtistComponent.spec.ts

describe('ArtistComponent', () => {
beforeEach(() => {
configureMusicTests();

});

Next, we'll write a test for everything that happens during the initialization of the component. First,
let’s take a refresh look at what happens on initialization of our ArtistComponent:

code/routes/music/app/ts/components/ArtistComponent.ts

export class ArtistComponent implements OnInit
id: string;
artist: Object;

constructor(private route: ActivatedRoute, private spotify: SpotifyService,
private location: Location) {
route.params.subscribe(params => { this.id = params['id']; });

ngOnInit(): void {
this.spotify
.getArtist(this.id)
.subscribe((res: any) => this.renderArtist(res));

Remember that during the creation of the component, we use route.params to retrieve the current
route id param and store it on the id attribute of the class.

When the component is initialized ngOnInit is triggered by Angular (because we declared that
this component implements OnInit. We then use the SpotifyService to retrieve the artist for the
received id, and we subscribe to the returned observable. When the artist is finally retrieved, we
call renderArtist, passing the artist data.

21
22
23
24
25
26
27
28
29
30
31
32
33

Testing 538

An important idea here is that we used dependency injection to get the SpotifyService, but
remember, we created a MockSpotifyService!

So in order to test this behavior, let’s:

1. Use our router to navigate to the ArtistComponent, which will initialize the component

2. Check our MockSpotifyService and ensure that the ArtistComponent did, indeed, try to get
the artist with the appropriate id.

Here’s the code for our test:

code/routes/music/test/components/ArtistComponent.spec.ts

describe('initialization', () => {
it('retrieves the artist', fakeAsync(
inject([Router, SpotifyService],
(router: Router,
mockSpotifyService: MockSpotifyService) => {
const fixture = createRoot(router, RootCmp);

router.navigateByUrl('/artists/2');
advance(fixture);

expect(mockSpotifyService.getArtistSpy).toHaveBeenCalledWith('2");

D))
});

Let’s take it step by step.

fakeAsync and advance

We start by wrapping the test in fakeAsync. Without getting too bogged down in the details, by
using fakeAsync we’re able to have more control over when change detection and asynchronous
operations occur. A consequence of this is that we need to explicitly tell our components that they
need to detect changes after we make changes in our tests.

Normally you don’t need to worry about this when writing your apps, as zones tend to do the right
thing, but during tests we manipulate the change detection process more carefully.

If you skip a few lines down you’ll notice that we’re using a function called advance that comes
from our MusicTestHelpers. Let’s take a look at that function:

92
93
54
55

Testing 539

code/routes/music/test/MusicTestHelpers.ts

export function advance(fixture: ComponentFixture<any>): void {
tick();
fixture.detectChanges();

So we see here that advance does two things:

1. It tells the component to detect changes and
2. Callstick()

When we use fakeAsync, timers are actually synchronous and we use tick() to simulate the
asynchronous passage of time.

Practically speaking, in our tests we’ll call advance whenever we want Angular to “work it’s magic”.
So for instance, whenever we navigate to a new route, update a form element, make an HTTP request
etc. we'll call advance to give Angular a chance to do it’s thing.

inject

In our test we need some dependencies. We use inject to get them. The inject function takes two
arguments:

1. An array of tokens to inject
2. A function into which to provide the injections

And what classes will inject use? The providers we defined in TestBed.configureTestingModule
providers.

Notice that we’re injecting:

1. Router
2. SpotifyService

The Router that will be injected is the Router we configured in musicTestProviders above.

For SpotifyService, notice that we’re requesting injection of the token SpotifyService, but we’re
receiving a MockSpotifyService. A little tricky, but hopefully it makes sense given what we’ve
talked about so far.

Testing ArtistComponent’s Initialization

Let’s review the contents of our actual test:

26
27
28
29
30
31

ST
58
59
60
61
62
63
64

Testing

code/routes/music/test/components/ArtistComponent.spec.ts

540

const fixture = createRoot(router, RootCmp);

router.navigateByUrl('/artists/2');

advance(fixture);

expect(mockSpotifyService.getArtistSpy).toHaveBeenCalledWith('2");

We start by creating an instance of our RootCmp by using createRoot. Let’s look at the createRoot
helper function:

code/routes/music/test/MusicTestHelpers.ts

export function createRoot(router: Router,

const f =

componentType: any): ComponentFixture<any> {
TestBed. createComponent (componentType);

advance(f);

(<any>router).initialNavigation();

advance(f);

return f;

Notice here that when we call createRoot we

A

Create an instance of the root component
advance it

Tell the router to setup it’s initialNavigation
advance again

return the new root component.

This is something we’ll do a lot when we want to test a component that depends on routing, so it’s
handy to have this helper function around.

Notice that we’re using the TestBed library again to call TestBed.createComponent. This function
creates a component of the appropriate type.

Q,

RootCmp is an empty component that we created in MusicTestHelpers. You definitely don’t
need to create an empty component for your root component, but I like to do it this way
because it lets us test our child component (ArtistComponent) more-or-less in isolation.
That is, we don’t have to worry about the effects of the parent app component.

That said, maybe you want to make sure that the child component operates correctly in
context. In that case instead of using RootCmp you’d probably want to use your app’s normal
parent component.

42
43
44

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52

Testing 541

Next we use router to navigate to the url /artists/2 and advance. When we navigate to that
URL, ArtistComponent should be initialized, so we assert that the getArtist method of the
SpotifyService was called with the proper value.

Testing ArtistComponent Methods

Recall that the ArtistComponent has an href which calls the back () function.

code/routes/music/app/ts/components/ArtistComponent.ts

back(): void {
this.location.back();

Let’s test that when the back method is called, the router will redirect the user back to the previous
location.

The current location state is controlled by the Location service. When we need to send the user
back to the previous location, we use the Location’s back method.

Here is how we test the back method:

code/routes/music/test/components/ArtistComponent.spec.ts

describe('back', () => {
it('returns to the previous location', fakeAsync(
inject([Router, Location],
(router: Router, location: Location) => {
const fixture = createRoot(router, RootCmp);
expect(location.path()).toEqual('/"');

router.navigateByUrl('/artists/2");
advance(fixture);
expect(location.path()).toEqual('/artists/2");

const artist = fixture.debugElement.children[1].componentInstance;
artist.back();
advance(fixture);

expect(location.path()).toEqual('/"');
));
});

15
16
17
18
19
20
21
22
23
24
25

Testing 542

The initial structure is similar: we inject our dependencies and create a new component.

We have a new expectation - we assert that the location.path() is equal to what we expect it to
be.

We also have another new idea: we're accessing the methods on the ArtistComponent itself. We get
a reference to our ArtistComponent instance through the line

fixture.debugElement.children[1].componentInstance.

Now that we have the instance of the component, we’re able to call methods on it directly, like
back().

After we call back () we advance and then verify that the location.path() is what we expected it
to be.

Testing ArtistComponent DOM Template Values

The last thing we need to test on ArtistComponent is the template that renders the artist.

code/routes/music/app/ts/components/ArtistComponent.ts

template:
<div *nglf="artist">
<h1>{{ artist.name }}</h1>

<p>

</p>

<p><a href (click)="back()">Back</p>
</div>

N

Remember that the instance variable artist is set by the result of the Spoti fyService getArtist
call. Since we’re mocking the Spoti fyService with MockSpotifyService, the data we should have
in our template should be whatever the mockSpotifyService returns. Let’s look at how we do this:

54
95
56
o7
o8
59
60
61
62
63
64
65
66
o7
68
69
70
71
T2

Testing 543

code/routes/music/test/components/ArtistComponent.spec.ts

describe('renderArtist', () => {
it('renders album info', fakeAsync(
inject([Router, SpotifyService],
(router: Router,
mockSpotifyService: MockSpotifyService) => {
const fixture = createRoot(router, RootCmp);

let artist = {name: 'ARTIST NAME', images: [{url: 'IMAGE_1'}]};
mockSpotifyService.setResponse(artist);

router.navigateByUrl('/artists/2");
advance(fixture);

const compiled = fixture.debugElement.nativeElement;

expect(compiled.querySelector('h1').innerHTML).toContain('ARTIST NAME');
expect(compiled.querySelector('img').src).toContain('IMAGE_1');
1))
1)

The first thing that’s new here is that we’re manually setting the response of the mockSpoti fySer-
vice with setResponse.

The artist variable is a fixture that represents what we get from the Spotify API when we call the
artists endpoint at GET https://api.spotify.com/v1/artists/{id}.

Here’s what the real JSON looks like:

Testing 544

[NoN
Search Builder Felipew S W
History Collections hetpsy/apispotityco.. Noenvironment + 0
= 1A~
GET~ | hitps://apispotify.com/vl/artists/00dUWI0sBjDraHygGUXeCF (N send v | [S] ~
[Spotity API >
14 Janat 252 pm « Orequests ‘
Authorization Headers (0) Pre-request script Tests <12 5
Add requests to this collection and
create folders to organize them No Auth o
Body Cookies Headers(15) Tests{0/0) Status 2000K Time 661ms
Raw Preview JsoNw || 3 Q

"external _urls": {
"spotify": "https://open.spotify.com/artist/@0dUWI@sBjDroHygGUXeCF"

"href": null,

1

2

3

4 1

5+ "follewers": {
£ .

7 "total": 421613
8

i
9~ "genres": [

18 "indie folk",

11 "indie pop"

12 B

13 "href": "https://api.spotify.com/vl/artists/80dUWIa@sBjbrgHygGUXeCF",

14 "id": "80dUWIBsBjDrgHygGUXeCF",

15~ "images": [

16~ {

17 "height": 816,

18 "url": "https://i.scdn.co/image/eb266625dabB75341e8c4378a177a27370£91983",
19 "width": leeg

20 3

21~

22 "height": 522,

23 "url": "https://i.scdn.co/image/2I91c3cace3c5a6a48i3d0e21d21364d4911b332",
24 "width": 648

25 3

26 - {

27 "height": 163,

28 "url": “"https://i.scdn.co/image/2efc93d7ee88435116@93274980L04ebcebTb527",
29 "width": 2@@

39 3

31~ {

32 "height": 52,

33 "url": "https://i.scdn.co/image/4£25297758d1a4851155¢36809a5849L6b841a23",
34 "width": 64

35 3

36 B

37 "name": "Band of Horses",

38 "popularity": &7,

39 "type": "artist",

40 "uri": "spotify:artist:80dUwI@sBjDrgHygGUXeCF"

41)

“ Scroll toresponse

Postman - Spotify Get Artist Endpoint

However, for this test we need only the name and images properties.

When we call the setResponse method, that response will be used for the next call we make to any
of the service methods. In this case, we want the method getArtist to return this response.

Next we navigate with the router and advance. Now that the view is rendered, we can use the DOM
representation of the component’s view to check if the artist was properly rendered.

We do that by getting the nativeElement property of the DebugElement with the line fix-
ture.debugElement.nativeElement.

In our assertions, we expect to see H1 tag containing the artist’s name, in our case the string ARTIST
NAME (because of our artist fixture above).

To check those conditions, we use the NativeElement’s querySelector method. This method will

0 N O O & W N =~

NN N N B P s s
W N O © 0030 O b WO O O

Testing 545

return the first element that matches the provided CSS selector.

For the H1 we check that the text is indeed ARTIST NAME and for the image, we check its src property
is IMAGE 1.

With this, we are done testing the ArtistComponent class.

Testing Forms

To write form tests, let’s use the DemoFormNgModel component we created back in the Forms chapter.
This example is a good candidate because it uses a few features of Angular’s forms:

e it uses a FormBuilder
« has validations
« handles events

Here’s the full code for that class:

code/forms/app/forms/demo_form_with_events.ts

import { Component } from '@angular/core’;
import

FormBuilder,

FormGroup,

Validators,

AbstractControl
} from '@angular/forms';

@Component ({
selector: 'demo-form-with-events',
template: °
<div class="ui raised segment">
<h2 class="ui header">Demo Form: with events</h2>
<form [formGroup]="myForm"
(ngSubmit)="onSubmit(myForm.value)"

class="ui form">

<div class="field"
[class.error]="!sku.valid && sku.touched">
<label for="skulnput">SKU</label>
<input type="text"
class="form-control"
id="skuInput"

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
959
60
61
62
63
64
65

Testing
placeholder="SKU"
[formControl]="sku">
<div *ngIf="Isku.valid"
class="ui error message">SKU is invalid</div>
<div *nglf="sku.hasError('required')"
class="ui error message">SKU is required</div>
</div>
<div *ngIlf="!myForm.valid"
class="ui error message">Form is invalid</div>
<button type="submit" class="ui button">Submit</button>
</form>
</div>
1))

export class DemoFormWithEvents {
myForm: FormGroup;
sku: AbstractControl;

constructor(fb: FormBuilder) {
this.myForm = fb.group({

});

sku ['", Validators.required]

this.sku = this.myForm.controls|['sku'];

this.sku.valueChanges.subscribe(
(value: string) => {
console.log('sku changed to:', value);
}
);

this.myForm.valueChanges.subscribe(

(form: any) => {
console.log('form changed to:', form);

onSubmit(form: any): void {

546

66
67
68

14
15
16
17
18
19
20
21
22

Testing 547

console.log('you submitted value:', form.sku);

}
}

Just to recap, this code will have the following behavior:

« when no value is present for the SKU field, two validation error will be displayed: SKU is
invalid and SKU is required

« when the value of the SKU field changes, we are logging a message to the console

« when the form changes, we are also logging to the console

« when the form is submitted, we log yet another final message to the console

It seems that one obvious external dependency we have is the console. As we learned before, we
need to somehow mock all external dependencies.

Creating a ConsoleSpy

This time, instead of using a SpyOb ject to create a mock, let’s do something simpler, since all we’re
using from the console is the 1og method.
We will replace the original console instance, that is held on the window. console object and replace

by an object we control: a ConsoleSpy.

code/forms/test/util.ts

export class ConsoleSpy {

public logs: string[] = [];

log(...args) {
this.logs.push(args. join(' '));

}

warn(...args) ({
this.log(...args);

}

The ConsoleSpy is an object that will take whatever is logged, naively convert it to a string, and
store it in an internal list of things that were logged.

19
20
21

Testing 548

0 To accept a variable number of arguments on our version of the console.log method, we
are using ES6 and TypeScript’s Rest parameters**°.

This operator, represented by an ellipsis, like . . .theArgs as our function argument. In a
nutshell using it indicates that we’re going to capture all the remaining arguments from
that point on. If we had something like (a, b, ...theArgs) and called func(1, 2, 3, 4,
5), a would be 1, b would be 2 and theArgs would have [3, 4, 5].

You can play with it yourself if you have a recent version of Node.js'*’ installed:

$ node --harmony

> var test = (a, b, ...theArgs) => console.log('a=',a, 'b=",b, 'theArgs=',theArgs);
undefined

> test(1,2,3,4,5);

a= 1 b= 2 theArgs= [3, 4, 5 |

g s W N -

So instead of writing it to the console itself, we’ll be storing them on an array. If the code under test
calls console. log three times:

console.log('First message', 'is', 123);
console. log('Second message');
console.log('Third message');

We expect the _logs field to have an array of ['First message is 123', 'Second message',
'Third message'].

Installing the consolespy

To use our spy in our test we start by declaring two variables: originalConsole will keep a reference
to the original console instance, and fakeConsole that will hold the mocked version of the console.
We also declare a few variables that will be helpful in testing our input and form elements.

code/forms/test/forms/demo_form_with_events.spec.ts

describe('DemoFormwWithEvents', () => {
let originalConsole, fakeConsole;
let el, input, form;

And then we can install the fake console and specify our providers:

2%https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
2Thttps://modejs.org/en/

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://nodejs.org/en/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://nodejs.org/en/

23
24
25
26
27
28
29
30
31
32
33

35
36

Testing 549

code/forms/test/forms/demo_form_with_events.spec.ts

beforeEach(() => {
// replace the real window.console with our spy
fakeConsole = new ConsoleSpy();
originalConsole = window.console;
(<any>window) .console = fakeConsole;

TestBed.configureTestingModule({
imports: [FormsModule, ReactiveFormsModule],
declarations: [DemoFormWithEvents |

1

1)

Back to the testing code, the next thing we need to do is replace the real console instance with ours,
saving the original instance.

Finally, on the afterAll method, we restore the original console instance to make sure it doesn’t
leak into other tests.

code/forms/test/forms/demo_form_with_events.spec.ts

// restores the real console
afterAl1(() => (<any>window).console = originalConsole);

Configuring the Testing Module
Notice that in the beforeEach we call TestBed.configureTestingModule - remember that config-
ureTestingModule sets up the root NgModule for our tests.

In this case we're importing the two forms modules and declaring the DemoFormWithEvents
component.

Now that we have control of the console, let’s begin testing our form.

Testing The Form

Now we need to test the validation errors and the events of the form.

The first thing we need to do is to get the references to the SKU input field and to the form elements:

38
39
40
41
42
43
44

46
47
48
49

92
93
54

Testing 550

code/forms/test/forms/demo_form_with_events_bad.spec.ts

it('validates and triggers events', fakeAsync((tcb) => {
let fixture = TestBed.createComponent(DemoFormWithEvents);

let el = fixture.debugElement.nativeElement;

let input = fixture.debugElement.query(By.css('input')).nativeElement;
let form = fixture.debugElement.query(By.css('form')).nativeElement;
fixture.detectChanges();

The last line tells Angular to commit all the pending changes, similar to what we did in the routing
section above. Next, we will set the SKU input value to the empty string:

code/forms/test/forms/demo_form_with_events_bad.spec.ts

input.value = ;
dispatchEvent(input, 'input');
fixture.detectChanges();
tick();

Here we use dispatchEvent to notify Angular that the input element changed, and then we trigger
the change detection a second time. Finally we use tick() to make sure all asynchronous code
triggered up to this point gets executed.

The reason we are using fakeAsync and tick on this test, is to assure the form events are triggered.
If we used async and inject instead, we would finish the code before the events were triggered.

Now that we have changed the input value, let’s make sure the validation is working. We ask the
component element (using the el variable) for all child elements that are error messages and then
making sure we have both error messages displayed:

code/forms/test/forms/demo_form_with_events_bad.spec.ts

let msgs = el.querySelectorAll('.ui.error.message');
expect(msgs[0Q] .innerHTML) .toContain('SKU is invalid');
expect(msgs([1].innerHTML).toContain('SKU is required');

Next, we will do something similar, but this time we set a value to the SKU field:

ST
58
959
60

62
63

65
66
67

69
70

Testing 551

code/forms/test/forms/demo_form_with_events_bad.spec.ts

input.value = 'XYZ';
dispatchEvent(input, 'input');
fixture.detectChanges();
tick();

And make sure all the error messages are gone:

code/forms/test/forms/demo_form_with_events_bad.spec.ts

msgs = el.querySelectorAll('.ui.error.message');
expect(msgs.length).toEqual(Q);

Finally, we will trigger the submit event of the form:

code/forms/test/forms/demo_form_with_events_bad.spec.ts

fixture.detectChanges();
dispatchEvent(form, 'submit');
tick();

And finally we make sure the event was kicked by checking that the message we log to the console
when the form is submitted is there:

code/forms/test/forms/demo_form_with_events_bad.spec.ts

// checks for the form submitted message
expect(fakeConsole.logs).toContain('you submitted value: XYZ');

We could continue and add new verifications for the other two events our form triggers: the SKU
change and the form change events. However, our test is growing quite long.

When we run our tests, we see it passes:

DemoFormWithEvents

v/ validates and trigger events

DemoFormWithEvents test output

This test works, but stylistically we have some code smells:

« areally long it condition (more than 5-10 lines)
« more than one or two expects per it condition
+ the word and on the test description

38
39
40
41
42
43
44
45
46

48
49
S50
o1
52
53
o4
95
56
o7
58

Testing 552

Refactoring Our Form Test

Let’s fix that by first extracting the code that creates the component and gets the component element
and also the elements for the input and for the form:

code/forms/test/forms/demo_form_with_events.spec.ts

function createComponent(): ComponentFixture<any> {
let fixture = TestBed.createComponent(DemoFormWithEvents);
el = fixture.debugElement.nativeElement;
input = fixture.debugElement.query(By.css('input')).nativeElement;
form = fixture.debugElement.query(By.css('form')).nativeElement;
fixture.detectChanges();

return fixture;

The createComponent code is pretty straightforward: Creates the component with
TestBed.createComponent, retrieves all the elements we need and calls detectChanges.

Now the first thing we want to test is that given an empty SKU field, we should see two error
messages:

code/forms/test/forms/demo_form_with_events.spec.ts

it('displays errors with no sku', fakeAsync(() => {
let fixture = createComponent();
input.value = '';
dispatchEvent(input, 'input');

fixture.detectChanges();

// no value on sku field, all error messages are displayed

let msgs = el.querySelectorAll('.ui.error.message');

expect(msgs[0Q].innerHTML) .toContain('SKU is invalid');

expect(msgs([1].innerHTML).toContain('SKU is required');
1);

See how much cleaner this is? Our test is focused and tests only one thing. Great job!

This new structure makes adding the second test easy. This time we want to test that, once we add
a value to the SKU field, the error messages are gone:

60
61
62
63
64
65
66
67
68

70
71
T2
73
T4
75
76
T

79
80
81
82
83
84
85
86

Testing 553

code/forms/test/forms/demo_form_with_events.spec.ts

it('displays no errors when sku has a value', fakeAsync(() => {
let fixture = createComponent();
input.value = "XYZ';
dispatchEvent(input, 'input');
fixture.detectChanges();

let msgs = el.querySelectorAll('.ui.error.message');
expect(msgs.length).toEqual(Q);
1)

One thing you may have noticed is that so far, our tests are not using fakeAsync, but async plus
inject instead.

That’s another bonus of this refactoring: we will only use fakeAsync and tick() when we want to
check if something was added to the console, because that’s all our form’s event handlers do.

The next test will do exactly that - when the SKU value changes, we should have a message logged
to the console:

code/forms/test/forms/demo_form_with_events.spec.ts

it('handles sku value changes', fakeAsync(() => {
let fixture = createComponent();
input.value = 'XYZ';
dispatchEvent(input, 'input');
tick();

expect(fakeConsole.logs).toContain('sku changed to: XYZ');
1);

We can write similar code for both the form change...

code/forms/test/forms/demo_form_with_events.spec.ts

it('handles form changes', fakeAsync(() => {
let fixture = createComponent();
input.value = 'XYZ';
dispatchEvent(input, 'input');
tick();

expect(fakeConsole.logs).toContain(' form changed to: [object Object]');
1);

... and the form submission events:

88
89
90
91
92
93
94
95
96
o7
98
99

Testing 554

code/forms/test/forms/demo_form_with_events.spec.ts

it('handles form submission', fakeAsync((tcb) => {
let fixture = createComponent();
input.value = "ABC';
dispatchEvent(input, 'input');
tick();

fixture.detectChanges();
dispatchEvent(form, 'submit');
tick();

expect(fakeConsole.logs).toContain('you submitted value: ABC');

1);

When we run the tests now, we get a much nicer output:

DemoFormWithEvents
v displays errors with no sku
v displays no errors when sku has a value

v handles sku value changes
v handles form changes
v handles form submission

DemoFormWithEvents test output after refactoring

Another great benefit from this refactor can be seen when something goes wrong. Let’s go back to
the component code and change the message when the form gets submitted, in order to force one of
our tests to fail:

onSubmit(form: any): void {
console.log('you have submitted the value:', form.sku);

}

If we ran the previous version of the test, here’s what would happen:

Testing 555

DemoFormWithEvents
X validates and trigger events
Expected ['sku changed to: ', 'form changed to: [object Object]', 'sku changed to: XYZ', 'form cha
nged to: [object Object]', 'you have submitted the value: XYZ'] to contain 'you submitted value: XYZ'.

at /Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle.js:41894

at run (/Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle. js:5942)

at zoneBoundFn (/Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle.js:5915)

at lib$es6$promise$$internalstryCatch (/Users/fcoury/code/ng-book2/manuscript/code/forms/test.

DemoFormWithEvents error output before refactoring

It’s not immediately obvious what failed. We have to read the error code to realize it was the
submission message that failed. We also can’t be sure if that was the only thing that broke on the
component code, since we may have other test conditions after the one that failed that never had a
chance to be executed.

Now, compare that to the error we get from our refactored code:

DemoFormWithEvents
#/ displays errors with no sku
v/ displays no errors when sku has a value
v/ handles sku value changes
v handles form changes
X handles form submission

Expected ['sku changed to: ABC', 'form changed to: [object Object]', 'you have submitted the
alue: ABC'] to contain 'you submitted value: ABC'.
at /Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle.js:41673
at run (/Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle.js:5942)
at zoneBoundFn (/Users/fcoury/code/ng-book2/manuscript/code/forms/test.bundle.js:5915)
at lib$es6$promise$$internalstryCatch (/Users/fcoury/code/ng-book2/manuscript/code/forms/

DemoFormWithEvents error output after refactoring

This version makes it pretty obvious that the only thing that failed was the form submission event.

Testing HTTP requests

We could test the HTTP interaction in our apps using the same strategy as we used so far: write a
mock version of the Http class, since it is an external dependency.

But since the vast majority of single page apps written using frameworks like Angular use HTTP
interaction to talk to APIs, the Angular testing library already provides a built in alternative:
MockBackend.

We have used this class before in this chapter when we were testing the SpotifyService class.

Let’s dive a little deeper now and see some more testing scenarios and also some good practices. In
order to do this, let’s write tests for the examples from the HTTP chapter.

First, let’s see how we test different HTTP methods, like POST or DELETE and how to test the
correct HTTP headers are being sent.

Back on the HTTP chapter, we created this example that covered how to do those things using Http.

30
31
32
33
34
35
36
37
38
39
40
41
42
43

37
38
39
40
41
42
43
44
45
46
47
48
49

Testing

Testing a pPosT

The first test we’ll write is to make sure we’re doing a proper POST request on the makePost method:

code/http/app/ts/components/MoreHTTPRequests.ts

makePost(): void {
this.loading = true;
this.http.post(
"http://jsonplaceholder.typicode.com/posts’,
JSON.stringify({

body: 'bar',
title: 'foo',
userld: 1

1))

.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

1),

When writing our test for this method, our goal is to test two things:

1. the request method (POST) is correct and that
2. the URL we’re hitting is also correct.

Here’s how we turn that into a test:

code/http/test/MoreHTTPRequests.spec.ts

it('performs a POST',
async(inject([MockBackend], (backend) => {
let fixture = TestBed.createComponent(MoreHTTPRequests)
let comp = fixture.debugElement.componentIinstance;

backend.connections.subscribe(c => {
expect(c.request.url)
.toBe('http://jsonplaceholder.typicode.com/posts');
expect(c.request.method) .toBe(RequestMethod.Post);
c.mockRespond(new Response(<any>{body: '{"response":

});

comp . makePost();

4

"K'} 1))

50
o1
92

O© 00 9 O O b W N =

Testing 557

expect(comp.data).toEqual({'response': 'OK'});

)
)

Notice how we have a subscribe call to backend. connections. This will trigger our code whenever
a new HTTP connection is established, giving us an opportunity to peek into the request and also
provide the response we want.

This place is where you can:

« add request assertions, like checking the correct URL or HTTP method was requested

« set a mocked response, to force your code to deal with different responses, given different test
scenarios

Angular uses an enum called RequestMethod to identify HTTP methods. Here are the supported
methods:

export enum RequestMethod {

Get,

Post,

Put,

Delete,

Options,

Head,

Patch

Finally, after the call makePost() we’re doing another check to make sure that the mock response
we set was the one that was assigned to our component.

Now that we understand how this work, adding a second test for a DELETE method is easy.

Testing DELETE

Here’s how the makeDelete method is implemented:

45
46
47
48
49
50
o1
o2

54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69

Testing 558

code/http/app/ts/components/MoreHTTPRequests.ts

makeDelete(): void {
this.loading = true;
this.http.delete('http://jsonplaceholder.typicode.com/posts/1")
.subscribe((res: Response) => {
this.data = res. json();
this.loading = false;

});

And this is the code we use to test it:

code/http/test/MoreHTTPRequests.spec.ts

it('performs a DELETE',
async(inject([MockBackend], (backend) => {
let fixture = TestBed.createComponent(MoreHTTPRequests);
let comp = fixture.debugElement.componentlnstance;

backend.connections.subscribe(c => {
expect(c.request.url)
.toBe('http://jsonplaceholder.typicode.com/posts/1');
expect(c.request.method) .toBe(RequestMethod.Delete);
c.mockRespond(new Response(<any>{body: '{"response": "OK"}'}));

1);

comp .makeDelete();
expect(comp.data).toEqual ({ 'response': 'OK'});
)
)i

Everything here is the same, except for the URL that changes a bit and the HTTP method, which is
now RequestMethod.Delete.

Testing HTTP Headers

The last method we have to test on this class is makeHeaders:

54
55
56
o7
o8
59
60
61
62
63
64
65

71
72
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87

Testing 559

code/http/app/ts/components/MoreHTTPRequests.ts

makeHeaders(): void {
let headers: Headers = new Headers();
headers.append('X-API-TOKEN', 'ng-book');

let opts: RequestOptions = new RequestOptions();
opts.headers = headers;

this.http.get('http://jsonplaceholder.typicode.com/posts/1', opts)
.subscribe((res: Response) => {
this.data = res. json();

});

In this case, what our test should focus on is making sure the header X-API-TOKEN is being properly
set to ng-book:

code/http/test/MoreHTTPRequests.spec.ts

it('sends correct headers',
async(inject([MockBackend], (backend) => {
let fixture = TestBed.createComponent(MoreHTTPRequests);
let comp = fixture.debugElement.componentInstance;

backend.connections.subscribe(c => {
expect(c.request.url)
.toBe('http://jsonplaceholder.typicode.com/posts/1');
expect(c.request.headers.has('X-API-TOKEN')).toBeTruthy();
expect(c.request.headers.get('X-API-TOKEN")).toEqual('ng-book');
c.mockRespond(new Response(<any>{body: '{"response": "OK"}'}));

});

comp . makeHeaders();

expect(comp.data).toEqual ({'response': 'OK'});
1))
)i

The connection’s request . headers attribute returns a Headers class instance and we’re using two
methods to perform two different assertions:

« the has method to check whether a given header was set, ignoring it’s value

47
48
49
50
o1
52
53
54
99
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

Testing 560
« the get method, that returns the value that was set

If having the header set is sufficient, use has. Otherwise, if you need to inspect the set value, use
get.

And with that we finish the tests of different methods and headers on Angular. Time to move to
a more complex example, that will be closer to what you will encounter when coding real world
applications.

Testing YouTubeService

The other example we built back on the HTTP chapter was a YouTube video search. The HTTP
interaction for that example takes place on a service called YouTubeService:

code/http/app/ts/components/YouTubeSearchComponent.ts

Vets
* YouTubeService connects to the YouTube API
* See: * https://developers.google.com/youtube/v3/docs/search/1ist
*/
@Injectable()
export class YouTubeService {
constructor(private http: Http,
@Inject(YOUTUBE_API_KEY) private apiKey: string,
@Inject(YOUTUBE_API_URL) private apiUrl: string) {

search(query: string): Observable<SearchResult[]> {
let params: string = [
“g=${query} ",
“key=${this.apiKey} ",
“part=snippet’,
“type=video”,
“maxResults=10"
].join('&");
let queryUrl: string = “${this.apiUrl}?${params}";
return this.http.get(queryUrl)
.map((response: Response) => {
return (<any>response.json()).items.map(item => {
// console.log("raw item", item); // uncomment if you want to debug
return new SearchResult({
id: item.id.videold,
title: item.snippet.title,

T4
75
76
T
78
79
80

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Testing
description:
thumbnaillrl:
1)
1)
1)
}
}

item.snippet.description,

561

item.snippet.thumbnails.high.url

It uses the YouTube API to search for videos and parse the results into a SearchResult instance:

code/http/app/ts/components/YouTubeSearchComponent.ts

class SearchResult {
id: string;
title: string;
description: string;
thumbnailUrl: string;
videoUrl: string;

constructor(obj?: any)
this. id
this.title
this.description
this.thumbnailUrl
this.videolUrl

obj
obj

= obj

obj
obj

&&
&&
&&
&&
&&

obj
obj
obj
obj
obj

.id

.title
.description
.thumbnaillrl
.videoUrl

null;
null;
null;
null;

“https://www.youtube.com/watch?v=${this.id}";

The important aspects of this service we need to test are that:

« given a JSON response, the service is able to parse the video id, title, description and thumbnail

« the URL we are requesting uses the provided search term
« the URL starts with what is set on the YOUTUBE_API_URL constant
« the API key used matches the YOUTUBE_API_KEY constant

With that in mind, let’s start writing our test:

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
o1
92
53

Testing 562

code/http/test/YouTubeSearchComponentBefore.spec.ts

describe('MoreHTTPRequests (before)', () => {
beforeEach(() => {
TestBed.configureTestingModule({
providers: [
YouTubeService,
BaseRequestOptions,
MockBackend,
{ provide: YOUTUBE_API_KEY, useValue: 'YOUTUBE_API_KEY' },
{ provide: YOUTUBE_API_URL, useValue: 'YOUTUBE_API_URL' },
{ provide: Http,
useFactory: (backend: ConnectionBackend,
defaultOptions: BaseRequestOptions) => {
return new Http(backend, defaultOptions);
}, deps: [MockBackend, BaseRequestOptions] }

});

});

As we did for every test we wrote on this chapter, we start by declaring how we want to setup our
dependencies: we’re using the real YouTubeService instance, but setting fake values for YOUTUBE _-
API_KEY and YOUTUBE_API_URL constants. We also setting up the Http class to use a MockBackend.

Now, let’s begin to write our first test case:

code/http/test/YouTubeSearchComponentBefore.spec.ts

describe('search', () => {
it('parses YouTube response’,
inject([YouTubeService, MockBackend], fakeAsync((service, backend) => {
let res;

backend.connections.subscribe(c => {
c.mockRespond(new Response(<any> {
body: °
{
"items": |
{
"id": { "videoId": "VIDEO_ID" },
"snippet": {
"title": "TITLE",

54
55
56
o7
58
959
60
61
62
63
64
65
66
67
68
69
70
71
72
73

61
62
63
64

Testing 563

"description": "DESCRIPTION",
"thumbnails": ({
"high": { "url": "THUMBNAIL_URL" }

PP
1)
1)
service.search('hey').subscribe(_res => {
res = _res;
1)
tick();

let video = res[Q];
expect(video.id).toEqual('VIDEO_ID');
expect(video.title).toEqual ('TITLE");
expect(video.description).toEqual('DESCRIPTION");
expect(video.thumbnailUrl).toEqual (' THUMBNAIL_URL');
1))
)
1)

Here we are telling Http to return a fake response that will match the relevant fields what we expect
the YouTube API to respond when we call the real URL. We do that by using the mockRespond
method of the connection.

code/http/test/YouTubeSearchComponentBefore.spec.ts

service.search('hey').subscribe(_res => {
res = _res;

1)

tick();

Next, we're calling the method we’re testing: search. We’re calling it with the term hey and capturing
the response on the res variable.

If you noticed before, we’re using fakeAsync that requires us to manually sync asynchronous code
by calling tick(). When we do that here, we expect that the search finished executing and our res
variable to have a value.

Now is the time to evaluate that value:

66
67
68
69
70

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4

Testing 564

code/http/test/YouTubeSearchComponentBefore.spec.ts

let video = res[Q];
expect(video.id).toEqual('VIDEO_ID');
expect(video.title).toEqual ('TITLE");
expect(video.description).toEqual('DESCRIPTION");
expect(video.thumbnailUrl).toEqual (' THUMBNAIL _URL'");

We are getting the first element from the list of responses. We know it’s a SearchResult, so we're
now checking that each attribute was set correctly, based on our provided response: the id, title,
description and thumbnail URL should all match.

With this, we completed our first goal when writing this test. However, didn’t we just say that having
a huge it method and having too many expects are testing code smells?

We did, so before we continue let’s refactor this code to make isolated assertions easier.

Add the following helper fuction inside our describe('search', ...):

code/http/test/YouTubeSearchComponentAfter.spec.ts

function search(term: string, response: any, callback) {
return inject([YouTubeService, MockBackend],
fakeAsync((service, backend) => {
var req;

var res;

backend.connections.subscribe(c => {
req = c.request;
c.mockRespond(new Response(<any>{body: response}));

1)

service.search(term).subscribe(_res => {
res = _res;

1)

tick();

callback(req, res);

1))

Let’s see what this function does: it uses inject and fakeAsync to perform the same thing we were
doing before, but in a configurable way. We take a search term, a response and a callback function.

76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
o7
98
99
100
101
102
103
104

Testing 565

We use those parameters to call the search method with the search term, set the fake response and
call the callback function after the request is finished, providing the request and the response objects.

This way, all our test need to do is call the function and check one of the objects.

Let’s break the test we had before into four tests, each testing one specific aspect of the response:

code/http/test/YouTubeSearchComponentAfter.spec.ts

it('parses YouTube video id', search('hey', response, (req, res) => {
let video = res[0];
expect(video.id).toEqual('VIDEO_ID");

)i

it('parses YouTube video title', search('hey', response, (req, res) => {
let video = res[Q];
expect(video.title).toEqual ('TITLE");

)i

it('parses YouTube video description', search('hey', response, (req, res) =>\

let video = res[0];
expect(video.description).toEqual('DESCRIPTION");
1)),

it('parses YouTube video thumbnail', search('hey', response, (req, res) => {
let video = res[0];
expect(video.description).toEqual('DESCRIPTION');

1))

Doesn'’t it look good? Small, focused tests that test only one thing. Great!

Now it should be really easy to add tests for the remaining goals we had:

code/http/test/YouTubeSearchComponentAfter.spec.ts

it('sends the query', search('term', response, (req, res) => {
expect(req.url).toContain('g=term');

1);

it('sends the API key', search('term', response, (req, res) => {
expect(req.url).toContain('key=YOUTUBE_API_KEY');

1)

it('uses the provided YouTube URL', search('term', response, (req, res) => {

105
106

Testing 566

expect(req.url).toMatch(/"YOUTUBE_API_URL\?/);
1)

Feel free to add more tests as you see fit. For example, you could add a test for when you have more
than one item on the response, with different attributes. See if you can find other aspects of the code
you’d like to test.

Conclusion

The Angular team has done a great job building testing right into Angular. It’s easy to test all of the
aspects of our application: from controllers, to services, forms and HTTP. Even testing asynchronous
code that was a difficult to test is now a breeze.

Converting an Angular 1 App to
Angular 2

If you've been using Angular for a while, then you probably already have production Angular 1 apps.
Angular 2 is great, but there’s no way we can drop everything and rewrite our entire production
apps in Angular 2. What we need is a way to incrementally upgrade our Angular 1 app. Thankfully,
Angular 2 has a fantastic way to do that.

The interoperability of Angular 1 (ng1) and Angular 2 (ng2) works really well. In this chapter, we’re
going to talk about how to upgrade your ng1 app to ng2 by writing a hybrid app. A hybrid app is
running ngl and ng2 simultaneously (and we can exchange data between them).

Peripheral Concepts

When we talk about interoperability between Angular 1 and Angular 2, there’s a lot of peripheral
concepts. For instance:

Mapping Angular 1 Concepts to Angular 2: At a high level, ng2 Components are ng1 directives.
We also use Services in both. However, this chapter is about using both ng1 and ng2, so we’re going
to assume you have basic knowledge of both. If you haven’t used ng2 much, checkout the chapter
on How Angular Works before reading this chapter.

Preparing ng1 apps for ng2: Angular 1.5 provides a new . component method to make “component-
directives”. . component is a great way to start preparing your ng1 app for ng2. Furthermore, creating
thin controllers (or banning them altogether'*®) is a great way to refactor your ng1 app such that it’s
easier to integrate with ng2.

Another way to prepare your ngl app is to reduce or eliminate your use of two-way data-binding
in favor of a one-way data flow. In-part, you’d do this by reducing $scope changes that pass data
between directives and instead use services to pass your data around.

These ideas are important and warrant further exploration. However, we’re not going to extensively
cover best-practices for pre-upgrade refactoring in this chapter.

Instead, here’s what we are going to talk about:

Writing hybrid ng1/ng2 apps: ng2 provides a way to bootstrap your ngl app and then write ng2
components and services. You can write ng2 components that will mix with ng1 components and it
“just works”. Furthermore, the dependency injection system supports passing between ng1 and ng2
(both directions), so you can write services which will run in either ng1 or ng2.

?8http://teropa.info/blog/2014/10/24/how-ive-improved- my-angular-apps-by-banning-ng-controller.html

http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html
http://teropa.info/blog/2014/10/24/how-ive-improved-my-angular-apps-by-banning-ng-controller.html

Converting an Angular 1 App to Angular 2 568

The best part? Change detection runs within Zones, so you don’t need to call $scope . apply or worry
much about change-detection at all.

What We're Building

In this chapter, we’re going to be converting an app called “Interest” - it’s a Pinterest-like clone. The
idea is that you can save a “Pin” which is a link with an image. The Pins will be shown in a list and

you can “fav” (or unfav) a pin.

e0ce /[ng-book 2: Interest x A

€& - C' |[} localhost:8080/#/

Interest what you're interested in

Home Add

OLIVER OWL .

Matorialy
P e for b e
Scrwps of white and Nght brwen folt
2 bk bt o Bt s e 1 es
Matching cotions
s Puscy s | [QLo ey T 0 ogunyesr |
sock puppets from: The FunCraft Book of Puppet play. My wife's handmade. easy to make puppets - oliver owl (detail) from
Puppets 1976 ISBN: 0-580-11936-2 easy to make puppets by joyce luckin (1875)

. tofutti break ‘ MIKI Yoshihito (" *w=) s gilliflower

Our completed Pinterest-like app

% You can find the completed code for both the ng1 version and the completed hybrid version
in the sample code download under code/conversion/ngl and code/conversion/hybrid

Before we dive in, let’s set the stage for interoperability between ng1 and ng2

Converting an Angular 1 App to Angular 2 569

Mapping Angular 1 to Angular 2
From a high level, the five main parts of Angular 1 are:

Directives

Controllers

+ Scopes
» Services

Dependency Injection

Angular 2 changes this list significantly. You might have heard that at ngEurope 2014 Igor and Tobias
from the Angular core team announced that they were killing off several “core” ideas in Angular 1
(video here'®). Specifically, they announced that Angular 2 was killing off:

+ $scope (& two-way binding by default)
« Directive Definition Objects
« Controllers

e angular.module

2%https://www.youtube.com/watch?v=gNmWybAyBHI

https://www.youtube.com/watch?v=gNmWybAyBHI
https://www.youtube.com/watch?v=gNmWybAyBHI

Converting an Angular 1 App to Angular 2 570

Igor and Tobias killing off many APIs from 1.x. at ngEurope 2014. Photo Credit: Michael Bromley (used with
permission)

As someone who’s built Angular 1 apps and is used to thinking in ng1, we might ask: if we take
those things away, what is left? How can you build Angular apps without Controllers and $scope?

Well, as much as people like to dramatize how different Angular 2 is, it turns out, a lot of the same
ideas are still with us and, in fact, Angular 2 provides just as much functionality but with a much
simpler model.

At a high-level Angular 2 core is made up of:

« Components (think “directives”) and
« Services

Of course there’s tons of infrastructure required to make those things work. For instance, you need
Dependency Injection to manage your Services. And you need a strong change detection library to
efficiently propagate data changes to your app. And you need an efficient rendering layer to handle
rendering the DOM at the right time.

Converting an Angular 1 App to Angular 2 571

Requirements for Interoperability

So given these two different systems, what features do we need for easy interoperability?

+ Use Angular 2 Components in Angular 1: The first thing that comes to mind is that we need
to be able to write new ng2 components, but use them within our ng1 app.

+ Use Angular 1 Components in Angular 2: It’s likely that we won’t replace a whole branch
of our component-tree with all ng2 components. We want to be able to re-use any ngl
components we have within a ng2 component.

« Service Sharing: If we have, say, a UserService we want to share that service between both
ngl and ng2. Services are normally plain Javascript objects so, more generally, what we need
is an interoperable dependency injection system.

« Change Detection: If we make changes in one side, we want those changes to propagate to
the other.

Angular 2 provides solutions for all of these situations and we’ll cover them in this chapter.

In this chapter we’re going to do the following:

« Describe the ng1 app we’ll be converting
« Explain how to setup your hybrid app by using ng2’s UpgradeAdapter

« Explain step-by-step how to share components (directives) and services between ng1 and ng2
by converting the ng1 app to a hybrid app

The Angular 1 App

To set the stage, let’s go over the Angular 1 version of our app.

9 This chapter assumes some knowledge of Angular 1 and ui-router’. If you’re not
comfortable with Angular 1 yet, check out ng-book 1™**.

We won’t be diving too deeply into explaining each Angular 1 concept. Instead, we’re going
to review the structure of the app to prepare for our upgrade to a ng2/hybrid app.

To run the ng1 app, cd into conversion/ng1 in the code samples, install the dependencies, and run
the app.

3% ttps://github.com/angular-ui/ui-router
*'http://ng-book.com

https://github.com/angular-ui/ui-router
http://ng-book.com/
https://github.com/angular-ui/ui-router
http://ng-book.com/

Converting an Angular 1 App to Angular 2 572

cd code/conversion/ngl # change directories
npm install # Iinstall dependencies
npm run go # run the app

0132

If your browser doesn’t open automatically, open the url: http://localhost:808

In this app, you can see that our user is collecting puppets. We can hover over an item and click the
heart to “fav” a pin.

Monkey Puppet - My wife's handmade. for
daughter.

. MIKI Yoshihito (" =w*)

Red heart indicates a faved pin

We can also go to the /add page and add a new pin. Try submitting the default form.

Handling image uploads is more complex than we want to handle in this demo. For now,
just paste the full URL to an image if you want to try a different image.

32http://localhost:8080

http://localhost:8080/
http://localhost:8080/

0 N O O & W N -

[EEY
= o O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Converting an Angular 1 App to Angular 2 573

The ng1-app HTML

The index.html in our ngl app uses a common structure:

code/conversion/ngl/index.html

<IDOCTYPE html>
<html ng-app="interestApp'>
<head>
<meta charset="utf-8">
<title>Interest</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="stylesheet" href="css/sf.css">
<link rel="stylesheet" href="css/interest.css">
</head>
<body class="container-fullwidth">

<div class="page-header">
<div class="container">
<h1>Interest <small>what you're interested in</small></hi1>

<div class="navLinks">
<a ui-sref="home' id="navLinkHome">Home
<a ui-sref='add' id="navLinkAdd">Add
</div>
</div>
</div>

<div id="content">
<div ui-view='"'></div>
</div>

<script src="js/vendor/lodash. js"></script>
<script src="js/vendor/angular. js"></script>
<script src="js/vendor/angular-ui-router. js"></script>
<script src="js/app.js"></script>
</body>
</html>

« Notice that we’re using ng-app in the html tag to specify that this app uses the module
interestApp.

» We load our javascript with script tags at the bottom of the body.
« The template contains a page-header which stores our navigation

0 N O O B W N =

(RN
N »~ O ©

13
14
15
16
17
18

Converting an Angular 1 App to Angular 2 574

« We're using ui-router which means we:
— Use ui-sref for our links (Home and Add) and
— We use ui-view where we want the router to populate our content.

Code Overview

We’ll look at each section in code, but first, let’s briefly describe the moving parts.

In our app, we have two routes:

o / uses the HomeController
« /add uses the AddController

We use a PinsService to hold an array of all of the current pins. HomeController renders the list of
pins and AddController adds a new element to that list.

Our root-level route uses our HomeController to render pins. We have a pin directive that renders
each pin.

The PinsService stores the data in our app, so let’s look at the PinsService first.

Ng1:PinsService

code/conversion/ngl/js/app.js

angular.module('interestApp', ['ui.router'])
.service('PinsService', function($http, $q) {
this._pins = null;

this.pins = function() {
var self = this;
if(self._pins == null) {
// initialize with sample data
return $http.get("/js/data/sample-data. json").then(
function(response) {
self._pins = response.data;
return self._pins;
})
} else {
return $q.when(self._pins);

Converting an Angular 1 App to Angular 2 575

19 this.addPin = function(newPin) {

20 // adding would normally be an API request so lets mock async
21 return $q.when(

22 this._pins.unshift(newPin)

23)

24 }

25 1)

The PinsService is a .service that stores an array of pins in the property _.pins.

The method .pins returns a promise that resolves to the list of pins. If _.pins isnull (i.e. the first
time), then we will load sample data from /js/data/sample-data. json.

code/conversion/ng1/js/data/sample-data.json

11

2 {

3 "title": "sock puppets",

4 "description": "from:\nThe FunCraft Book of Puppets\n1976\nISBN: ©-590-11936\
5 -2,

6 "user_name": "tofutti break",

7 "avatar_src": "images/avatars/42826303@N00Q. jpg",

8 "src": "images/pins/106033588_167d811702_o. jpg",

9 "url": "https://www.flickr.com/photos/tofuttibreak/106033588/",
10 "faved": false,
11 "id": "106033588"
12 1,
13 {
14 "title": "Puppet play.",
15 "description": "My wife's handmade.",
16 "user_name": "MIKI Yoshihito (“Owd)",
17 "avatar_src": "images/avatars/T7940758@NQT. jpg",
18 "src": "images/pins/4422575066_T7d5c4c41eT_o. jpg",
19 "url": "https://www.flickr.com/photos/mujitra/4422575066/",
20 "faved": false,
21 "id": "4422575066"
22 1
23 {
24 "title": "easy to make puppets - oliver owl (detail)",
25 "description": "from easy to make puppets by joyce luckin (1975)",
26 "user_name": "gilliflower",
27 "avatar_src": "images/avatars/26265986@N00. jpg",
28 "src": "images/pins/6819859061_25d05ef2el_o. jpg",

29
30
31
32

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Converting an Angular 1 App to Angular 2 576

"url": "https://www.flickr.com/photos/gilliflower/6819859061/",
"faved": false,
"id": "6819859061"

3

Snippet from Sample Data

The method .addPin simply adds the new pin to the array of pins. We use $q.when here to return a
promise, which is likely what would happen if we were doing a real async call to a server.

ng1: Configuring Routes
We’re going to configure our routes with ui-router.

Q If you're unfamiliar with ui-router you can read the docs here'*.

As we mentioned, we’re going to have two routes:

code/conversion/ng1/js/app.js

.config(function($stateProvider, $urlRouterProvider) {
$stateProvider
.state('home", {

templateUrl: '/templates/home.html',

controller: 'HomeController as ctrl',

url: '/",

resolve: ({

'pins': function(PinsService) {
return PinsService.pins();

}

)
.state('add"', {

templateUrl: '/templates/add.html',
controller: 'AddController as ctrl',
url: '/add',
resolve: ({
'pins': function(PinsService) {
return PinsService.pins();

}

33https://github.com/angular-ui/ui-router/wiki

https://github.com/angular-ui/ui-router/wiki
https://github.com/angular-ui/ui-router/wiki

46
47
48
49
50

60
61
62

O O b W N =~

Converting an Angular 1 App to Angular 2 577

}
1))

$urlRouterProvider.when('', '/') ;

D)

The first route / maps to the HomeController. It has a template, which we’ll look at in a minute.
Notice that we also are using the resolve functionality of ui-router. This says that before we load
this route for the user, we want to call PinsService.pins() and inject the result (the list of pins)
into the controller (HomeController).

The /add route as similarly, except that it has a different template and a different controller.

Let’s first look at our HomeController.

ng1 - HomeController

Our HomeControl ler is straightforward. We save pins, which is injected because of our resolve, to
$scope.pins.

code/conversion/ng1/js/app.js

.controller('HomeController', function(pins) {
this.pins = pins;

1))

ng1: / HomeController template

Our home template is small: we use an ng-repeat to repeat over the pins in $scope.pins. Then we
render each pin with the pin directive.

code/conversion/ngl/templates/home.html

<div class="container">»
<div class="row">
<pin item="pin" ng-repeat="pin in ctrl.pins">
</pin>
</div>
</div>

Let’s dive deeper and look at this pin directive.

92
93
94
95
96
o7
98
99
100
101
102
103
104
105
106

Converting an Angular 1 App to Angular 2 578

ng1: pin Directive

The pin directive is restricted to matching an element (E) and has a template.

We can input our pin via the item attribute, as we did in the home .html template.

Our link function, defines a function on the scope called toggleFav which toggles the pin’s faved
property.

code/conversion/ng1/js/app.js

1))

.directive('pin', function() {

return {
restrict: 'E',
templateUrl: '/templates/pin.html',
scope: {
'pin': "=item"
1
link: function(scope, elem, attrs) {
scope.toggleFav = function() {

scope.pin.faved = !scope.pin.faved;

Q This directive shouldn’t be taken as an example of directive best-practices in 2016. For
instance, if I was writing this component anew (in ng1) I would probably use the new
.component directive in Angular 1.5. At the very least, I'd probably use controllerAs

instead of 1ink here.

But this section is less about how to write ng1 code, as much as how to work with the ng1
code you already have.

ng1: pin Directive template

The template templates/pin.html renders an individual pin on our page.

© 00 3 O O b W N

N N DNMNDNMNNMNND-SE PSP PR,
O b O NP O O 01 O O b W N~

Converting an Angular 1 App to Angular 2 579

code/conversion/ngl/templates/pin.html

<div class="col-sm-6 col-md-4">
<div class="thumbnail">
<div class="content">

<div class="caption">
<h3>{{pin.title}}</h3>
<p>{{pin.description | truncate:100}}</p>
</div>
<div class="attribution">

<h4> {{pin.user_name}}</h4>
</div>
</div>
<div class="overlay">
<div class="controls">
<div class="heart">
<a ng-click="toggleFav()"»>

</div>
</div>
</div>
</div>
</div>

The directives we use here are ng1 built-ins:

« We use ng-src to render the img.
« Next we show the pin.title and pin.description.
+ We use ng-if to show either the red or empty heart

The most interesting thing here is the ng-click that will call toggleFav. toggleFav changes the
pin. faved property and thus the red or empty heart will be shown accordingly.

o

AR M (A

Red vs. Black Heart

63
64
65

67
68
69
70
71
72
73
T4
75
76
T
78
79
80

Converting an Angular 1 App to Angular 2 580

Now let’s turn our attention to the AddController.

Ng1: AddController

Our AddController has a bit more code than the HomeController. We open by defining the
controller and specifying the services it will inject:

code/conversion/ng1/js/app.js

.controller('AddController', function($state, PinsService, $timeout) {
var ctrl = this;

ctrl.saving = false;

We’re using controllerAs syntax in our router and template, which means we set properties on
this instead of on $scope. Scoping this in ES5 Javascript can be tricky, so we assign var ctrl =
this; which helps disambiguate when we’re referencing the controller in nested functions.

code/conversion/ng1/js/app.js

var makeNewPin = function() {

return {
"title": "Steampunk Cat",
"description": "A cat wearing goggles",
"user_name": "me",
"avatar_src": "images/avatars/me. jpg",

n "o,

src "/images/pins/cat. jpg",

"url": "http://cats.com",

"faved": false,

"id": Math.floor(Math.random() * 10000).toString()

ctrl.newPin = makeNewPin();

We create a function makeNewPin that contains the default structure and data for a pin.
We also initialize this controller by setting ctrl.newPin to the value of calling this function.

The last thing we need to do is define the function to submit a new pin:

82
83
84
85
86
87
88
89
90
91
92

63
64
65
66
67
68
69
70
71

Converting an Angular 1 App to Angular 2 581

code/conversion/ngl/js/app.js

ctrl.submitPin = function() {
ctrl.saving = true;
$timeout(function() {
PinsService.addPin(ctrl.newPin).then(function() {
ctrl.newPin = makeNewPin();
ctrl.saving = false;
$state.go(' home');
1)
}, 2000);
}
P

Essentially, this article is calling out to PinService.addPin and creating a new pin. But there’s a
few other things going on here.

In a real application, this would almost certainly call back to a server. We’re mimicking that effect
by using $timeout. (That is, you could remove the $timeout function and this would still work. It’s
just here to deliberately slow down the app to give us a chance to see the “Saving” indicator.)

We want to give some indication to the user that their pin is saving, so we set the ctrl.saving =
true.

We call PinsService.addPin giving it our ctrl.newPin.addPin returns a promise, so in our promise
function we

1. revert ctrl.newPin to the original value
2. we set ctrl.saving to false, because we’re done saving the pin
3. we use the $state service to redirect the user to the homepage where we can see our new pin

Here’s the whole code of the AddController:

code/conversion/ng1/js/app.js

.controller('AddController', function($state, PinsService, $timeout) {
var ctrl = this;
ctrl.saving = false;

var makeNewPin = function() {

return {
"title": "Steampunk Cat",
"description": "A cat wearing goggles",

" "

!

"user_name": "me

T2
73
T4
)
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Converting an Angular 1 App to Angular 2

"avatar_src": "images/avatars/me. jpg",
"src": "/images/pins/cat. jpg",

"url": "http://cats.com",

"faved": false,

"id": Math.floor(Math.random() * 10000).toString()

ctrl.newPin = makeNewPin();

ctrl.submitPin = function() {
ctrl.saving = true;
$timeout(function() {
PinsService.addPin(ctrl.newPin).then(function() {
ctrl.newPin = makeNewPin();
ctrl.saving = false;
$state.go('home');
1)
}, 2000);
}
b

582

ng1: AddController template

Our /add route renders the add.html template.

0 N O O & W N =~

Converting an Angular 1 App to Angular 2

® O ® | [ng-book 2: Interest x

€& - C | [} localhost:8080/#/add

Home Add

Title

Description

Link URL

Image URL

Interest what you're interested in

Steampunk Cat

A cat wearing goggles

http://cats.com

fimages/pins/cat.jpg

Submit

Adding a New Pin Form

583

The template uses ng-model to bind the input tags to the properties of the newPin on the controller.

The interesting things here are that:

« We use ng-click on the submit button to call ctrl.submitPin and
« We show a “Saving..” message if ctrl.saving is truthy

code/conversion/ngl/templates/add.html

<div class="container">

<div class="row">

<form class="form-horizontal">

<div class="form-group">
<label for="title"

class="col-sm-2 control-label">Title</label>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Converting an Angular 1 App to Angular 2 584

<div class="col-sm-10">
<input type="text"

class="form-control"
id="title"
placeholder="Title"
ng-model="ctrl.newPin.title">

</div>

</div>

<div class="form-group">
<label for="description"
class="col-sm-2 control-label">Description</label>
<div class="col-sm-10">
<input type="text"
class="form-control"
id="description"
placeholder="Description"
ng-model="ctrl.newPin.description">
</div>
</div>

<div class="form-group">
<label for="url"
class="col-sm-2 control-label">Link URL</label>
<div class="col-sm-10">
<input type="text"
class="form-control"
id="url"
placeholder="Link URL"
ng-model="ctrl.newPin.url">
</div>
</div>

<div class="form-group">
<label for="url"
class="col-sm-2 control-label">Image URL</label>
<div class="col-sm-10">
<input type="text"

class="form-control"
id="url"
placeholder="Image URL"
ng-model="ctrl.newPin.src">

51
52
53
o4
55
56
ST
58
959
60
61
62
63
64
65
66
67

Converting an Angular 1 App to Angular 2 585

</div>
</div>

<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit"
class="btn btn-default"”
ng-click="ctrl.submitPin()">Submit</button>
</div>
</div>
<div ng-if="ctrl.saving">
Saving. ..
</div>
</form>

</div>
</div>

ng1: Summary

There we have it. This app has just the right amount of complexity that we can start porting it to
Angular 2.

Building A Hybrid

Now we’re ready to start putting some Angular 2 in our Angular 1 app.

Before we start using Angular 2 in our browser, we’re going to need to make some modifications to
our project structure.

Q You can find the code for this example in code/conversion/hybrid.

Hybrid Project Structure
The first step to creating a hybrid app is to make sure you have both ngl and ng2 loaded as
dependencies. Everyone’s situation is going to be slightly different.

In this example we’ve vendored the Angular 1 libraries (in js/vendor) and we’re loading the
Angular 2 libraries from npm.

0 N O O &~ W N -

W W W NDNDNDNDNDDNDNDNNMNNDMNNDNAS AP s s
N », © O 0 9 O O P+ W NP, O 00 N0 0 b WOWN~-~O O

Converting an Angular 1 App to Angular 2

586

In your project, you might want to vendor them both, use bower™**, etc. However, using npm is very
convenient for Angular 2, and so we suggest using npm to install Angular 2.

Dependencies with package. json

You install dependencies with npm using the package. json file. Here’s our package. json for the

hybrid example:

code/conversion/hybrid/package.json

{
"name": "ng-hybrid-pinterest",
"version": "0.0.1",

"description": "toy pinterest clone in ngl/ng2 hybrid",

"contributors": [
"Nate Murray <nate@fullstack.io>",
"Felipe Coury <felipe@ng-book.com>"
1,
"main": "index. js",
"private": true,
"scripts": {

"clean": "rm -f ts/*.js ts/*.js.map ts/components/*.js ts/components/*.js.ma\
p ts/services/*.js ts/services. js.map",

"tsc": "./node_modules/.bin/tsc",

"tsc:w": "./node_modules/.bin/tsc -w",

"serve": "./node_modules/.bin/live-server --host=localhost --port=8080 .",

"go": "concurrent \"npm run tsc:w\" \"npm run serve\" "

3

"dependencies": {
"@angular/common": "2.3.0-rc.Q",
"@angular/compiler": "2.3.0-rc.0Q",
"@angular/core": "2.3.0-rc.0",
"@angular/forms": "2.3.0-rc.Q",
"@angular/http": "2.3.0-rc.0",

"@angular/platform-browser": "2.3.0-

"@angular/platform-browser-dynamic":
"@angular/router": "3.3.0-rc.0",
"@angular/upgrade": "2.0.0-rc.6",
"core-js": "2.4.1",

"esb-shim": "0.35.0",
"reflect-metadata": "0.1.8",

"rxjs": "5.0.0-rc.4",

*http://bower.io/

rc.0",
"2.3.0-rc.0",

http://bower.io/
http://bower.io/

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Converting an Angular 1 App to Angular 2 587

"systemjs": "0.19.6",

"ts-helpers": "1.1.1",

"tslint": "3.7.0-dev.2",
"typescript": "1.9.0-dev.20160409",
"typings": "0.8.1",

"zone.js": "@.7.2"

3,

"devDependencies": {
"concurrently": "1.0.0",
"karma": "0.12.22",
"karma-chrome-launcher": "0.1.4",
"karma- jasmine": "0.1.5",
"live-server": "0.9.0",

"typescript": "1.7.3"

Q If you’re unfamiliar with what one of these packages does, it’s a good idea to find out. rx js,
for example, is the library that provides our observables. systemjs provides the module
loader that we’re going to use in this chapter.

Once you’ve added the Angular 2 dependencies, run the command npm install to install them.

Compiling our code

You’ll notice that in the package. json "scripts" key we have another key that specifies "tsc".
This means we can run the comment npm run tsc and it will call out to the TypeScript compiler
and compile our code.

We’re going to be using TypeScript in this example alongside our Javascript Angular 1 code.

To do this, we’re going to put all of our TypeScript code in the folder ts/ and our Javascript code in
the folder js/.

We configure the TypeScript compiler by using the tsconfig. json file. The important thing to know
right now about that file is that in the filesGlob key we’re specifying a glob of: . /ts/**/* ts"
which means “when we run the TypeScript compiler, we want to compile all files ending in .ts in
the ts/ directory”.

In this project our browser will only load Javascript. We’re going to use the TypeScript compiler
(tsc) to compile our code to Javascript and then we will load our ngl and ng2 JavaScript in our
browser.

Converting an Angular 1 App to Angular 2

Loading index.html dependencies

Now that we have our dependencies and our compiler setup, we need to load these Javascript files

into our browser. We do that by adding script tags:

code/conversion/ng1/hybrid/index.html

23 <div id="content">

24 <div ui-view="'"'></div>

25 </div>

26

27 <!-- Libraries -->

28 <script src="node_modules/core-js/client/shim.min. js"></script>
29 <script src="node_modules/zone. js/dist/zone. js"></script>

30 <script src="node_modules/reflect-metadata/Reflect. js"></script>
31 <script src="node_modules/systemjs/dist/system.src. js"></script>
32

33 <seript src="js/vendor/angular. js"></script>

34 <script src="js/vendor/angular-ui-router. js"></script>

The files we loaded from node_modules/ are Angular 2 and its dependencies. Similarly, the files we

loaded from js/vendor/ are Angular 1 and its dependencies.

But you’ll notice here we didn’t load any of our code in these tags. To load our code we’re going to

use System.js.

Configuring System.js

We’re going to use System.js as the module loader for this example.

0 We could use Webpack (as we do in other examples in this book) or a variety of other loaders

(requirejs etc.). However System.js is a wonderful and flexible loader that is often used with

Angular 2. This chapter will provide a nice example of how you can use Angular 2 with
System.js

To configure System.js we do the following in a <script> tag in our index.html:

1 <script src="resources/systemjs.config. js"></script>
2 System.import('ts/app.js"')
.then(null, console.error.bind(console));

Converting an Angular 1 App to Angular 2 589

System. import('ts/app.js') says that the entry point of our app will be the file ts/app. js. When
we write hybrid ng2 apps the Angular 2 code becomes the entry point. This makes sense because
it’s Angular 2 that’s providing the backwards compatibility with Angular 1. We'll talk more about
how to bootstrap the app in a minute.

Another thing to notice here is that we're loading a . js file from the ts/ directory. Why? Because
our TypeScript compiler will have compiled this file down to Javascript by the time this page loads.

We have configured System.js in resources/systemjs.config. js. That file contains a mostly-
standard configuration, but since we have to be able to load our ngl app in our ng2 code we've
added a special key interestAppNg1 that points to our ng1 app. This option lets us do the following
in our TypeScript code:

import 'interestAppNgl'; // "bare import" for side-effects

The module loader will see the string ' interestAppNg1 ' and load our Angular 1 app at . /js/app. js.

The packages key specifies that files in the ts “packages” will have the extension . js and use the
System.js register module format.

Q There are a bunch of module formats your TypeScript compiler can output. The Sys-

tem.js format needs to match the module format you’re compiling to. So in this

case,t he register module format will work with our TypeScript because we specified
compilerOptions.module as "system" in our tsconfig. json

ﬁ Configuring System.js is fairly advanced and there are a lot of potential options here.

This isn’t a book on module loaders and, in-fact, it would probably take a whole book to
explore in-depth how to configure System.js and other Javascript module loaders.

For now, we’re not going to talk much more about module loading, but you can read up
more on System.js here*

0 Would you like to read a book on Javascript module loaders? We’re considering writing one.
If you’d like to be notified when it’s ready, put in your email here**

33https://github.com/systemjs/systemjs/blob/master/docs/config-api.md
Shttp://eepurl.com/bMOaEX

https://github.com/systemjs/systemjs/blob/master/docs/config-api.md
http://eepurl.com/bMOaEX
https://github.com/systemjs/systemjs/blob/master/docs/config-api.md
http://eepurl.com/bMOaEX

0 = O O b W N =~

NN NN NDNDNDNDDN A B 1 s s sy s
0O N1 O O b WO N~ O 00 0O O b W N~ ©

Converting an Angular 1 App to Angular 2 590

Bootstrapping our Hybrid App

Now that we have our project structure in place, let’s bootstrap the app.

If you recall, with Angular 1 you can bootstrap the app in 1 of two ways:

1. You can use the ng-app directive, such as ng-app="interestApp', in your HTML or
2. You can use angular .bootstrap in Javascript

In hybrid apps we use a new bootstrap method that comes from an UpgradeAdapter.

Since we’ll be bootstrapping the app in code, make sure you remove the ng-app from your
index.html.

Here’s what a minimal bootstrapping of our code would look like:

// code/conversion/hybrid/ts/app.ts
import
NgModule,
forwardRef
} from '@angular/core';
import { CommonModule } from '@angular/common';
import { BrowserModule } from '@angular/platform-browser';

import { UpgradeAdapter } from '@angular/upgrade';
declare var angular: any;
import 'interestAppNgl'; // "bare import" for side-effects

J*
* Create our upgradeAdapter
*/
const upgradeAdapter: UpgradeAdapter = new UpgradeAdapter(
forwardRef(() => MyAppModule)); // <-- notice forward reference

/AR

// upgrade and downgrade components in here

7

J*
* Create our app's entry NgModule
*/
@NgModule({
declarations: [MyNg2Component, ...],
imports: [

29
30
31
32
33
34
35
36
37
38
39

Converting an Angular 1 App to Angular 2 591

CommonModule,
BrowserModule

1,

providers: [MyNg2Services, ...]

b
class MyAppModule { }

/%
* Bootstrap the App
*/

upgradeAdapter .bootstrap(document.body, ['interestApp']);

We start by importing the UpgradeAdapter and then we create an instance of it: upgradeAdapter.

However, the constructor of UpgradeAdapter requires an NgModule that we’ll be using for our
Angular 2 up - but we haven’t defined it yet! To get around this we use the forwardRef function
which allows us to take a ‘forward reference’ to our NgModule which we declare below.

When we define our NgModule MyAppModule (or specifically in this app it will be InterestAppMod-
ule), we define it like we would any other Angular 2 NgModule: we put in our declarations, imports,
providers, etc.

Lastly, we tell the upgradeAdapter to bootstrap our app on the element document.body and we
specify the module name of our angular 1 app.

This will bootstrap our Angular 1 app within our Angular 2 app! Now we can start replacing pieces
with Angular 2.

What We'll Upgrade

Let’s discuss what we’re going to port to ng2 in this example and what will stay in ng1.

Converting an Angular 1 App to Angular 2

The Homepage

ece 3 ng-book 2: Interest

€& — C'J [localhost:8080/#/

Home Add

Interest what you're interested in

[Thoughtéul Funny Nose | ("Gl Lady Fusny S Dammree
sock puppets from: The FunCraft Book of
Puppets 1976 ISBN: 0-590-11936-2

. tofutti break

Puppet play. My wife's handmade.

‘ MIKI Yoshihite (" +w=)

OLIVER OWL
Matarials

s i for Bl oy
Serap of e s light b folt

easy to make puppets - oliver owl (detail) from
easy to make puppets by joyce luckin (1875)

a glilitiower

Homepage ngl and ng2 Components

592

The first thing to notice is that we’re going to continue to manage routing with ng1. Of course,
Angular 2 has its own routing, which you can read about in our routing chapter. But if you're
building a hybrid app, you probably have lots of routes configured with Angular 1 and so in this

example we’ll continue to use ui-router for the routing.

On the homepage, we’re going to nest a ng2 component within an ng1 directive. In this case, we’re
going to convert the “pin controls” to a ng2 component. That is, our ngl pin directive, will call out
to the ng2 pin-controls component and pin-controls will render the fav heart.

It’s a small example that shows a powerful idea: how to seamlessly exchange data between ng

versions.

Converting an Angular 1 App to Angular 2

The About Page

® LJ D ng-book 2: Interest *

- C'}| [Iocalhost:8080/#/add

ng-book

Interest what youre interested in

Home dd

Title

Description

Link URL

Image URL

localhost:8080/add

Steampunk Cat

A cat wearing goggles

http://cats.com

fimages/pins/cat.jpg

Submit

About Page ng1 and ng2 Components

593

We’re going to use ng1 for the router and header on the about page as well. However on the about
page, we're going to replace the whole form with a ng2 component: AddPinComponent.

If you recall, the form will add a new pin to the PinsService, and so in this example we’re going to
need to somehow make the (ng1) PinsService accessible to the (ng2) AddPinComponent.

Also, remember that when a new pin is added, the app should be redirected to the homepage. How-
ever, to change routes we need to use the ui-router $state service (ng1) in the AddPinComponent

(ng2). So we also need to make sure the $state service can be used in AddPinComponent as well.

Services

So far we’ve talked about two ng1 services that will be upgraded to ng2:

e PinsService and

e $state

67
68
69
70
71
T2
73
T4
5
76
7
78
79
80

Converting an Angular 1 App to Angular 2 594

We also want to explore “downgrading” a ng2 service to be used by ngl. For this, later on in the
chapter, we’ll create an AnalyticsService in TypeScript/ng2 that we share with ng1.

Taking Inventory

So to recap we’re going to “cross-expose” the following:

« Downgrade the ng2 PinControlsComponent to ng1 (for the fav buttons)
« Downgrade the ng2 AddPinComponent to ngl (for the add pin page)

« Downgrade the ng2 AnalyticsService to ngl (for recording events)
Upgrade the ngl PinsService to ng2 (for adding new pins)

Upgrade the ngl $state service to ng2 (for controlling routes)

A Minor Detour: Typing Files

One of the great things about TypeScript is the compile-time typing. However, if you’re building
a hybrid app, I suspect that you’ve got a lot of untyped Javascript code that you’re going to be
integrating into this project.

When you try to use your Javascript code from TypeScript you may get compiler errors because the
compiler doesn’t know the structure of your Javascript objects. You could try casting everything to
<any> but that is ugly and error prone.

The better solution is to, instead, provide your TypeScript compiler with custom type annotations.
Then the compiler will be able to enforce the types of your Javascript code.

For instance, remember how in our ng1 app we created a pin object in makeNewPin?

code/conversion/ng1/js/app.js

var makeNewPin = function() {

return {
"title": "Steampunk Cat",
"description": "A cat wearing goggles",
"user_name": "me",
"avatar_src": "images/avatars/me. jpg",
"src": "/images/pins/cat. jpg",

"url": "http://cats.com",
"faved": false,
"id": Math.floor(Math.random() * 10000).toString()

ctrl.newPin = makeNewPin();

O© 00 9 O O B W

10
11
12

Converting an Angular 1 App to Angular 2 595

It would be nice if we could tell the compiler about the structure of these objects and not resort to
using any everywhere.

Furthermore, we’re going to be using the ui-router $state service in Angular 2 / TypeScript, and
we need to tell the compiler what functions are available there, too.

So while providing TypeScript custom type definitions is a TypeScript (and not an Angular-specific)
chore, it’s a chore we need to do nonetheless. And it’s something that many people haven’t done
yet because TypeScript is, at time of publishing, relatively new.

So in this section I want to walk through how you deal with custom typings in TypeScript.

Q If you’re already familiar with how to create and use TypeScript type definition files, you
can safely skim this section.

Typing Files
In TypeScript we can describe the structure of our code by writing typing definition files. Typing
definition files generally end in the extension .d.ts.

Generally, when you write TypeScript code, you don’t need to write a . d. ts because your TypeScript
code itself contains types. We write .d.ts files when we have some external Javascript code that
we want to add typing to after the fact.

For instance, in describing our pin object, we could write an inter face for it like so:

code/conversion/hybrid/js/app.d.ts

export interface Pin {
title: string;
description: string;
user_hame: string;
avatar_src: string;
src: string;
url: string;
faved: boolean;
id: string;

Notice that we're not declaring a class, and we’re not creating an instance. Instead, we’re defining
the shape (types) of an interface.

In order to use.d.ts files, you need to tell the TypeScript compiler where they are. The easiest way

to do this is by modifying the tsconfig. json file. For instance, if we had a file js/app.d.ts we
could add it like this:

N O O & W N =

Converting an Angular 1 App to Angular 2 596

// tsconfig. json
"compilerOptions": { ... },
"files": [
"ts/app.ts",
"js/app.d.ts"
1,

// more. ..

Look closely at the paths of the files in this case. We’re loading our TypeScript ts/app.ts. And we're
loading app.d.ts from js/. This is because the js/app.d.ts is the typing file for js/app. js (the
ng1l Javascript file, not the ng2 TypeScript).

We'll write app.d.ts in a little bit. First, let’s explore a tool that exists to help us with third-party
TypeScript definition files: typings.

Third-party libraries with typings
typings is a tool for managing TypeScript type definition files for libraries that may not have them
otherwise.

We’re going to use angular -ui-router with our app, so let’s install the typings typings forangular-
ui-router. Here’s how to get it setup.

You need to have typings installed, which you can do with npm install -g typings.

Next we configure a typings. json file, which you can create with typings init (or use the one
provided).

Then we install the package we need by running: typings install angular-ui-router --save.

Notice that typings created a typings directory that contains a filebrowser .d. ts. Thisbrowser.d. ts
is the entry point for the rest of the typings that are managed by typings. That is, if you write your

own typings files, they’re not going to be here, but any of the typings files you install via typings

will be loaded via the reference tag in that file.

9 Don’t modify the typings/browser.d.ts file directly! typings manages this file for you
and if you change it your changes may be overwritten.

Now that we have the typings file typings/browser.d.ts, how do we use it? We have to tell our
compiler about it, and we do that via the tsconfig. json file.

O N O O & W N~

Converting an Angular 1 App to Angular 2 597

// tsconfig. json

"compilerOptions": { ... },

"files": [
"typings/browser.d.ts",
"ts/app.ts",
"js/app.d.ts"

1,

// more. ..

Notice that we added typings/browser.d.ts to the files array. This tells our compiler that we
want to include our typings typings at compile time.

0 What if we were loading a different library, such as underscore and we needed to load it
from System.js as well?

The idea is that you have to 1. make the typings available to the compiler at compile time
and 2. make the code available at runtime

One way is like this:

1. typings install underscore - installs the typings file

2. npm install underscore - installs the javascript file in node_modules

3. In your index.html where you call System.config, add a new entry to the paths
key like: underscore: './node_modules/underscore/underscore. js'

4. Then you can import underscore in your TypeScript using: import * as _ from
'underscore’;

5. Use underscore like so: let foo = _.map([1,2,3], (x) => x + 1);

0 = O O b W N =~

_ R
W N~ OO O

14
15

Converting an Angular 1 App to Angular 2 598

ﬁ We’ve already done a typings install for you for this application so you don’t need to
install the dependencies yourself.

In fact, if you do run typings install you may find that you get the error:

node_modules/angular2/typings/angular-protractor/angular-protractor.d.ts(1679,13\
): error TS2403: Subsequent variable declarations must have the same type. Vari\
3 able '$' must be of type 'JQueryStatic', but here has type 'cssSelectorHelper'.

This is due to a bug between the jquery and the angular typings both trying to assign
a type to the dollar sign $. At time of publishing, the hacky workaround is to open
typings/jquery/jquery.d.ts and comment out this line:

1 // declare var $: JQueryStatic; // - ng-book told me to comment this

Of course, this will cause problems if you're trying to use jQuery-specific typings via $ in
TypeScript (but we aren’t for this example).

Custom Typing Files

Being able to use third-party typing files is great, but there are going to be situations where typing
files don’t already exist: especially in the case of our own code.

Generally, when we write custom typing files we co-locate the file alongside its respective Javascript
code. So let’s create the file js/app.d.ts:

code/conversion/hybrid/js/app.d.ts

declare module interestAppNgl {

export interface Pin {
title: string;
description: string;
user_nhame: string;
avatar_src: string;
src: string;
url: string;
faved: boolean;
id: string;

export interface PinsService {
pins(): Promise<Pin[]>;

16
17
18
19
20
21
22
23

Converting an Angular 1 App to Angular 2 599

addPin(pin: Pin): Promise<any>;

declare module 'interestAppNgl' ({
export = interestAppNg?l;

When we use the declare keyword, that is called making an “ambient declaration” and the idea is
that we're defining a variable that didn’t originate from a TypeScript file. In this case, we’re defining
two interfaces:

1. Pin

2. PinsService

The Pin interface describes the keys and value-types of a pin object.

The PinsService interface describes the types of our two methods on our PinsService.

+ pins() returns a Promise of an array of Pins
e addPin() takes aPin as an argument and returns a Promise

Q Learn More about Writing Type Definition Files

If you’d like to learn more about writing .d. ts files, checkout these helpful links:

« TypeScript Handbook: Working with other Javascript Libraries™’
« TypeScript Handbook: Writing definition files**®
+ Quick tip: Typescript declare keyword**’

You might have noticed that we don’t declare the token interestAppNg1 anywhere in our ngl
Javascript code. interestAppNg1 is just an identifier we use on the TypeScript side to specify this
javascript code.

Now that we have this file setup, we can import these types like so:

7http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
P3¥https://github.com/Microsoft/ TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
*%http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/

http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
https://github.com/Microsoft/TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/
http://www.typescriptlang.org/Handbook#modules-working-with-other-javascript-libraries
https://github.com/Microsoft/TypeScript-Handbook/blob/master/pages/Writing%20Definition%20Files.md
http://blogs.microsoft.co.il/gilf/2013/07/22/quick-tip-typescript-declare-keyword/

O O 0 N O O b W N =~

[EGEY

13
14
15
16
17
18
19
20
21
22
23
24
25

Converting an Angular 1 App to Angular 2 600

import { Pin, PinsService } from 'interestAppNgl';

Writing ng2 PinControlsComponent

Now that we have the typings figured out, let’s turn our attention back to the hybrid app.

The first thing we’re going to do is write the ng2 PinControlsComponent. This will be an ng2
component nested within an ng1 directive. The PinControlsComponent displays the fav hearts and
toggles fav’ing a pin.

Let’s start by importing our Pin type, along with a few other constants that we’ll need:

code/conversion/hybrid/ts/components/PinControlsComponent.ts

J*

* PinControls: a component that holds the controls for a particular pin

*/
import

Component,

Input,

Output,

EventEmitter
} from '@angular/core';
import { NgIf } from '@angular/common';
import { Pin } from 'interestAppNgl';

Next, let’s write the @Component annotation:

code/conversion/hybrid/ts/components/PinControlsComponent.ts

@Component ({
selector: 'pin-controls',
template:
<div class="controls">
<div class="heart">
<a (click)="toggleFav()">

</div>
</div>

~

1))

26
27
28
29
30
31
32
33

W N O O & W N =

Converting an Angular 1 App to Angular 2 601

Notice here that we’ll match the element pin-controls.

Our template looks very similar to the ngl version except we’re using the ng2 template syntax for
(click) and *ngIf.

Now the component definition class:

code/conversion/hybrid/ts/components/PinControlsComponent.ts

export class PinControlsComponent {
@Input() pin: Pin;
@utput() faved: EventEmitter<Pin> = new EventEmitter<Pin>();

toggleFav(): void {
this. faved.next(this.pin);

Notice that instead of specifying inputs and outputs in the @Component annotation, in this case
we’re annotating the properties on the class directly with the @Input and @output annotations. This
is a convenient way to us to provide typings to these properties.

This component will take an input of pin, which is the Pin object we’re controlling.

This component specifies an output of faved. This is a little bit different than how we did it in the
ng1 app. If you look at toggleFav all we're doing is emitting (on the EventEmitter) the current pin.

The idea here is that we’ve already implemented how to change the faved state in ng1 and we may
not want to re-implement that functionality ng2 (you may want to, it just depends on your team
conventions).

Using Nng2 PinControlsComponent

Now that we have an ng2 pin-controls component, we can use it in a template. Here’s what our
pin.html template looks like now:

code/conversion/hybrid/templates/pin.html

<div class="col-sm-6 col-md-4">
<div class="thumbnail">
<div class="content">

<div class="caption">
<h3>{{pin.title}}</h3>
<p>{{pin.description | truncate:100}}</p>
</div>

10
11
12
13
14
15
16
17
18
19

Converting an Angular 1 App to Angular 2 602

<div class="attribution">

<h4>{{pin.user_name}}</h4>
</div>
</div>
<div class="overlay">
<pin-controls [pin]="pin"
(faved)="toggleFav($event)"></pin-controls>
</div>
</div>
</div>

This template is for an ng1 directive, and we can use ng1 directives such as ng-src. However, notice
the line where we use our ng2 pin-controls component:

<pin-controls [pin]="pin"
(faved)="toggleFav($event)"></pin-controls>

What’s interesting here is that we’re using the ng2 input bracket syntax [pin] and the ng2 output
parenthesis syntax (faved).

In a hybrid app when you use ng2 directives in ngl, you still use the ng2 syntax.
With our input [pin] we’re passing the pin which comes from the scope of the ng1 directive.

With our output (faved) we're calling the toggleFav function on the scope of the ngl directive.
Notice what we did here: we didn’t modify the pin. faved state within the ng2 directive (although,
we could have). Instead, we asked the ng2 PinControlsComponent to simply emit the pin when
toggleFav is called there. (If this is confusing, take a second look at toggleFav of PinControlsCom-
ponent.)

Again, the reason we do this is because we’re showing how you can keep your existing functionality
(scope.toggleFav) in ngl, but start porting over components to ng2. In this case, the ngl pin
directive listens for the faved event on the ng2 PinControlsComponent.

If you refresh your page now, you’ll notice that it doesn’t work. That’s because there’s one more
thing we need to do: downgrade PinControlsComponent to ngl.

Downgrading ng2 PinControlsComponent to ng1

The final step to using our components across ng2/ngl borders is to use our UpgradeAdapter to
downgrade our components (or upgrade, as we’ll see in a bit).

We perform this downgrade in our app. ts file (where we called upgradeAdapter . bootstrap).

First we need to import the necessary angular libraries:

10
11
12
13
14
15
16
17
18
19
20

34
35
36

Converting an Angular 1 App to Angular 2 603

code/conversion/hybrid/ts/app.ts

import {
NgModule,
forwardRef
} from '@angular/core’;
import { CommonModule } from '@angular/common';
import {
FormsModule,
} from '@angular/forms';
import { BrowserModule } from "@angular/platform-browser";
import { UpgradeAdapter } from '@angular/upgrade’;
declare var angular: any;
import 'interestAppNgl'; // "bare import" for side-effects

Then we create a .directive in (almost) the normal ng1 way:

code/conversion/hybrid/ts/app.ts

angular.module('interestApp")
.directive('pinControls",
upgradeAdapter . downgradeNg2Component (PinControlsComponent))

Above, remember that when we import 'interestAppNg1' thiswill load up our ng1 app, which calls
angular.module('interestApp', []).Thatis, our ngl app has already registered the interestApp
module with angular.

Now we want to look up that module by calling angular.module('interestApp') and then add
directives to it, just like we do in ng1 normally.

O angular.module getter and setter syntax

If you recall, when we pass an array as the second argument to angular.module, we
are creating a module. That is, angular.module(' foo', []) will create the module foo.
Informally, we call this the “setter” syntax.

Similarly, if we omit the array we are getting a module (that is assumed to already exist).
That is, angular .module(' foo') will get the module foo. We call this the “getter” syntax.

ﬁ In this example, if you forget this distinction and call angular .module('interestApp',
[1) inapp.ts (ng2) then you will accidentally overwrite your existing i nterestApp module
and your app won’t work. Careful!

Converting an Angular 1 App to Angular 2 604

We're calling .directive and creating a directive called 'pinControls'. This is standard ngl
practice. For the second argument, the directive definition object (DDO), we don’t create the DDO
manually. Instead, we call upgradeAdapter . downgradeNg2Component.

downgradeNg2Component will convert our PinControlsComponent into an ngl-compatible directive.
Pretty neat.

Now if you try refreshing, you’ll notice that our faving works just like before, only now we’re using
ng2 embedded in ng1!

Faving works like a charm

Adding Pins with ng2

The next thing we want to do is upgrade the add pins page with an ng2 component.

Converting an Angular 1 App to Angular 2

® L D ng-book 2: Interest *

- C' | [Iocalhost:8080/#/add

ng-book

Interest what youre interested in

Home dd

Title

Description

Link URL

Image URL

Steampunk Cat

A cat wearing goggles

http://cats.com

fimages/pins/cat.jpg

Submit

Adding a New Pin Form

If you recall, this page does three things:

1. Present a form to the user for describing the pin
2. Use the PinsService to add the new pin to the list of pins

3. Redirect the user to the homepage

Let’s think through how we’re going to do these things from ng2.

605

Angular 2 provides a robust forms library. So there’s no complication here. We’re going to write a

straight ng2 form.

However the PinsService comes from ngl. Often we have many existing services in ngl and we
don’t have time to upgrade them all. So for this example, we’re going to keep PinsService as an
ngl object, and inject it into ng2.

Similarly, we’re using ui-router in ngl for our routing. To change pages in ui-router we have to

use the $state service, which is an ng1 service.

So what we’re going to do is upgrade the PinsService and the $state service from ng1 to ng2. And
this couldn’t be any easier.

44
45
46
47
48

© 00 N O U b W N =

Converting an Angular 1 App to Angular 2 606

Upgrading ng1 PinsService and $state to ng2

To upgrade ng1 services we call upgradeAdapter .upgradeNg1Provider:

code/conversion/hybrid/ts/app.ts

%
* Expose our ngl content to ng2
*/
upgradeAdapter .upgradeNg1Provider('PinsService');
upgradeAdapter .upgradeNg1Provider('$state');

And that’s it. Now we can @Inject our ngl services into ng2 components like so:

class AddPinComponent {
constructor(@Inject('PinsService') public pinsService: PinsService,
@Inject('$state') public uiState: IStateService) {
}
S/

// now you can use this.pinsService
// or this.uiState
Ve

In this constructor, there’s a few things to look at:

The @Inject annotation, says that we want the next variable to be assigned the value of what the
injection will resolve to. In the first case, that would be our ng1 PinsService.

In TypeScript, in a constructor when you use the public keyword, it is a shorthand for assigning
that variable to this. That is, here when we say public pinsService what we're saying is, 1.
declare a property pinsService on instances of this class and 2. assign the constructor argument
pinsService to this.pinsService.

The result is that we can access this.pinsService throughout our class.
Lastly we define the type of both services we’re injecting: PinsService and IStateService.

PinsService comes from the app.d.ts we defined previously:

14
15
16
17

©O© 00 N O O & W N

Converting an Angular 1 App to Angular 2 607

code/conversion/hybrid/js/app.d.ts

export interface PinsService {
pins(): Promise<Pin[]>;
addPin(pin: Pin): Promise<any>;

And IStateService comes from the typings for ui-router, which we installed with typings.
By telling TypeScript the types of these services we can enjoy type-checking as we write our code.

Let’s write the rest of our AddPinComponent.

Writing ng2 AddPinComponent

We start by importing the types we need:

code/conversion/hybrid/ts/components/AddPinComponent.ts

J*
* AddPinComponent: a component that controls the "add pin" page
*/

import {

Component,
Inject

} from '@angular/core';

import { Pin, PinsService } from 'interestAppNg1';

import { IStateService } from 'angular-ui-router';

Again, notice that we’re importing our custom typesPin and PinsService. And we’re also importing
IStateService from angular-ui-router.

AddPinComponent @Component

Our @Component annotation is straightforward:

11
12
13
14

0 N O O & W N =

B) S s s
<N O O WO N =~ OO O

Converting an Angular 1 App to Angular 2 608

code/conversion/hybrid/ts/components/AddPinComponent.ts

@Component({

selector: 'add-pin',

templateUrl: '/templates/add-ng2.html'
D)

AddPinComponent template

We’re loading our template using a templateUrl. In that template, we setup our form much like the
ngl form, only we’re using ng2 form directives.

We’re not going to describe ngModel / ngSubmit deeply here. If you’d like to know more
about how Angular 2 forms work, checkout the forms chapter, where we describe forms

in depth.

code/conversion/hybrid/templates/add-ng2.html

<div class="container"»>

<div class="row">

<form (ngSubmit)="onSubmit()"

class="form-horizontal">

<div class="form-group">
<label for="title"
class="col-sm-2 control-label">Title</label>
<div class="col-sm-10">
<input type="text"
class="form-control"
id="title"
name="title"
placeholder="Title"
[(ngModel)]="newPin.title">
</div>

We’re using two directives here: ngSubmit and ngModel.

We use (ngSubmit) on the form to call the onSubmit function when the form is submitted. (We’ll
define onSubmit on the AddPinComponent controller below.)

We use [(ngModel)] to bind the value of the title input tag to the value of newPin.title on the
controller.

Here’s the full listing of the template:

0 N O O B W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDNDNDNDNDNNNDNNNASEASPA,PS PSP s
O O 0 9 O O i WO NP O O 00N O O i+ WNPHO O 0WWNO O ik WOWN SO O

Converting an Angular 1 App to Angular 2

code/conversion/hybrid/templates/add-ng2.html

609

<div class="container">

<div class="row">

<form (ngSubmit)="onSubmit()"
class="form-horizontal">

<div class="form-group">
<label for="title"

class="col-sm-2 control-label">Title</label>

<div class="col-sm-10">
<input type="text"
class="form-control"
id="title"
name="title"
placeholder="Title"

[(ngModel)]="newPin.title">

</div>
</div>

<div class="form-group">
<label for="description"

class="col-sm-2 control-label">Description</label>

<div class="col-sm-10">
<input type="text"
class="form-control"
id="description"

name="description"

placeholder="Description"
[(ngModel)]="newPin.description">

</div>
</div>

<div class="form-group">
<label for="url"

class="col-sm-2 control-label">Link

<div class="col-sm-10">
<input type="text"
class="form-control"
id="url"
name="url"
placeholder="Link URL"

URL</label>

42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
58
59
60
61
62
63
64
65
66
67
68
69

15
16
17

Converting an Angular 1 App to Angular 2

[(ngModel)]="newPin.url">
</div>
</div>

<div class="form-group">
<label for="url"
class="col-sm-2 control-label">Image
<div class="col-sm-10">
<input type="text"
class="form-control"
id="url"
name="url"
placeholder="Image URL"
[(ngModel)]="newPin.src">
</div>
</div>

<div class="form-group">
<div class="col-sm-offset-2 col-sm-10">
<button type="submit"
class="btn btn-default"
>Submit</button>
</div>
</div>
<div *nglf="saving">
Saving. ..
</div>
</form>

URL</label>

610

AddPinComponent Controller

Now we can define AddPinComponent. We start by setting up two instance variables:

code/conversion/hybrid/ts/components/AddPinComponent.ts

export class AddPinComponent {
saving: boolean = false;
newPin: Pin;

We use saving to indicate to the user that the save is in progress and we use newPin to store the Pin

we’re working with.

19
20
21
22

24
25
26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43
44
45
46
47

Converting an Angular 1 App to Angular 2 611

code/conversion/hybrid/ts/components/AddPinComponent.ts

constructor(@Inject('PinsService') private pinsService: PinsService,
@Inject('$state') private uiState: IStateService) {
this.newPin = this.makeNewPin();

In our constructor we Inject the services, as we discussed above. We also set this.newPin to the
value of makeNewPin, which we’ll define now:

code/conversion/hybrid/ts/components/AddPinComponent.ts
makeNewPin(): Pin {
return {
title: 'Steampunk Cat',
description: 'A cat wearing goggles',

1 [

user_name: 'me’,
avatar_src: 'images/avatars/me. jpg',

src: '/images/pins/cat. jpg’,

url: 'http://cats.com',

faved: false,

id: Math.floor(Math.random() * 10000).toString()

This looks a lot like how we defined it in ng1, only now we have the benefit of it being typed.
When the form is submitted, we call onSubmit. Let’s define that:
code/conversion/hybrid/ts/components/AddPinComponent.ts

onSubmit(): void {
this.saving = true;

console.log('submitted', this.newPin);
setTimeout(() => {
this.pinsService.addPin(this.newPin).then(() => {
this.newPin = this.makeNewPin();
this.saving = false;
this.uiState.go('home');

});
}, 2000);

Again, we're using a timeout to simulate the effect of what would happen if we had to call out to a
server to save this pin. Here, we’re using setTimeout. Compare that to how we defined this function
in ngl:

82
83
84
85
86
87
88
89
90
91

14
15
16
17

Converting an Angular 1 App to Angular 2 612

code/conversion/ngl/js/app.js

ctrl.submitPin = function() {
ctrl.saving = true;
$timeout(function() {
PinsService.addPin(ctrl.newPin).then(function() {
ctrl.newPin = makeNewPin();
ctrl.saving = false;
$state.go('home');
1)
}, 2000);

Notice that in ng1 we had to use the $timeout service. Why is that? Because ng1 is based around the
digest loop. If you use setTimeout in ngl, then when the callback function is called, it’s “outside” of
angular and so your changes aren’t propagated unless something kicks off a digest loop (e.g. using
$scope.apply).

However in ng2, we can use setTimeout directly because change detection in ng2 uses Zones and
is therefore, more or less automatic. We don’t need to worry about the digest loop in the same way,
which is really nice.

In onSubmit we’re calling out to the PinsService by:

this.pinsService.addPin(this.newPin).then(() => {
/S

Again, the PinsService is accessible via this.pinsService because of how we defined the
constructor. The compiler doesn’t complain because we said that addPin takes a Pin as the first
argument in our app.d.ts:

code/conversion/hybrid/js/app.d.ts

export interface PinsService {
pins(): Promise<Pin[]>;
addPin(pin: Pin): Promise<any>;

And we defined this.newPin to be a Pin.
After addPin resolves, we reset the pin using makeNewPin and set this.saving = false.

To go back to the homepage, we use the ui-router $state service, which we stored asthis.uiState.
So we can change states by calling this.uiState.go('home").

34
35
36
37
38

39
40
41
42
43
44
45
46
47

Converting an Angular 1 App to Angular 2 613

Using AddPinComponent

Now let’s use the AddPinComponent.
Downgrade ng2 AddPinComponent

To use AddPinComponent we need to downgrade it:

code/conversion/hybrid/ts/app.ts

angular.module('interestApp')
.directive('pinControls",
upgradeAdapter . downgradeNg2Component (PinControlsComponent))
.directive('addPin',
upgradeAdapter . downgradeNg2Component (AddPinComponent)) ;

This will create the addPin directive in ng1, which will match the tag <add-pin>.
Routing to add-pin

In order to use our new AddPinComponent page, we need to place it somewhere within our ng1 app.
What we’re going to do is take the add state in our router and just set the <add-pin> directive to be
the template:

code/conversion/hybrid/js/app.js
.state('add', {
template: "<add-pin></add-pin>",
url: '/add',
resolve: {

'pins': function(PinsService) {
return PinsService.pins();

}
1))

Exposing an ng2 service to ng1

So far we've downgraded ng2 components to be used in ng2, and upgraded ng1 services to be used
in ng2. But as our application start converting over to ng2, we’ll probably start writing services in
Typescript/ng2 that we’ll want to expose to our ng1 code.

Let’s create a simple service in ng2: an “analytics” service that will record events.

The idea is that we have an AnalyticsService in our app that we use to recordEvents. In reality,
we’re just going to console. log the event and store it in an array. But it gives us a chance to focus
on what’s important: describing how we share a ng2 service with ng1.

0 I O O & W N =~

U U N
0 30 O b WON~-~~ O O

Converting an Angular 1 App to Angular 2 614

Writing the AnalyticsService

Let’s take a look at the AnalyticsService implementation:

code/conversion/hybrid/ts/services/AnalyticsService.ts

import { Injectable } from '@angular/core’;

/**
* Analytics Service records metrics about what the user is doing
*/

@Injectable()

export class AnalyticsService {
events: string[] = [];

public recordEvent(event: string): void ({
console.log(Event: ${event});
this.events.push(event);

export var analyticsServicelnjectables: Array<any> = [
{ provide: AnalyticsService, useClass: AnalyticsService }

1;

There are two things to note here: 1. recordeEvent and 2. being Injectable

recordEvent is straightforward: we take an event: string, log it, and store it in events. In your
application you would probably send the event to an external service like Google Analytics or
Mixpanel.

To make this service injectable, we do two things: 1. Annotate the class with @Injectable and 2.
bind the token AnalyticsService to this class.

Now Angular will manage a singleton of this service and we will be able to inject it where we need
it.

Downgrade ng2 AnalyticsService to ng1

Before we can use the AnalyticsService in ngl, we need to downgrade it.

The process of downgrading an ng2 service to ngl is similar to the process of downgrading a
directive, but there is one extra step: we need to make sure AnayticsService is in the list of
providers for our NgModule:

Converting an Angular 1 App to Angular 2 615

code/conversion/hybrid/ts/app.ts

50 @NgModule({

51 declarations: |

52 PinControlsComponent,
53 AddPinComponent
o4 1,

55 imports: [

56 CommonModule,

o7 BrowserModule,

o8 FormsModule

59 1,

60 providers: [

61 AnalyticsService,
62]

63 1)

64 class InterestAppModule { }

Then we can use downgradeNg2Provider:

code/conversion/hybrid/ts/app.ts

40 angular.module('interestApp"')
41 . factory('AnalyticsService',
42 upgradeAdapter . downgradeNg2Provider (AnalyticsService));

We call angular .module('interestApp') to get our ngl module and then call . factory like we
would in ng1. To downgrade the service, we call

upgradeAdapter.downgradeNgZProvider(AnalyticsService),“ﬂﬁch\NrapsourAnalyticsService
in a function that adapts it to an ng1 factory.

Using AnalyticsService in ng1

Now we can inject our ng2 AnalyticsService into ngl. Let’s say we want to record whenever the
HomeController is visited. We could record this event like so:

60
61
62
63

64
65
66
67
68
69
%
71
T2
73
T4
)
76
T
78

Converting an Angular 1 App to Angular 2 616

code/conversion/hybrid/js/app.js

.controller('HomeController', function(pins, AnalyticsService) {
AnalyticsService.recordEvent('HomeControllerVisited');
this.pins = pins;

1))

Here we inject AnalyticsService as if it was a normal ng1 service we call recordEvent. Fantastic!

We can use this service anywhere we would use injection in ngl. For instance, we can also inject
the AnalyticsService into our ngl pin directive:

code/conversion/hybrid/js/app.js

.directive('pin', function(AnalyticsService) {
return {
restrict: 'E',
templateUrl: '/templates/pin.html',
scope: {
'pin': "=item"
}
link: function(scope, elem, attrs) {
scope.toggleFav = function() {
AnalyticsService.recordEvent('PinFaved');

scope.pin.faved = !scope.pin. faved;

}
1))

Ssummary

Now you have all the tools you need to start upgrading your ng1 app to a hybrid ng1/ng2 app. The
interoperability between ngl and ng2 works very well and we owe a lot to the Angular team for
making this so easy.

Being able to exchange directives and services between ngl and ng2 make it super easy to start
upgrading your apps. We can’t always upgrade our apps to ng2 overnight, but the UpgradeAdapter
lets us start using ng2 - without having to throw our old code away.

Converting an Angular 1 App to Angular 2 617

References

If you’re looking to learn more about hybrid Angular apps, here are a few resources:

+ The Official Angular Upgrade Guide'*’
+ The Angular2 Upgrade Spec Test'*!
+ The Angular2 Source for DowngradeNg2ComponentAdapter '**

M%https://angular.io/docs/ts/latest/guide/upgrade.html
"“'https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
"“?https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts

https://angular.io/docs/ts/latest/guide/upgrade.html
https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts
https://angular.io/docs/ts/latest/guide/upgrade.html
https://github.com/angular/angular/blob/master/modules/angular2/test/upgrade/upgrade_spec.ts
https://github.com/angular/angular/blob/master/modules/angular2/src/upgrade/downgrade_ng2_adapter.ts

Changelog

Revision 45 - 2016-12-05

Book up to date with angular-2.3.0-rc.0

Revision 44 - 2016-11-17

Fixed typos in chapters: - “Writing your First Angular 2 Web Application”, reported by Mike B., Steve
A., Terry W., Alessandro C., Andrew Blair - “TypeScript”, reported by Kevin D. - “How Angular
Works”, reported by Kevin D. and Jason T. - “Forms”, reported by Kevin D. - “HTTP”, reported by
Kevin D. - “Routing”, reported by Kevin D. - “Advanced Components”, reported by Kevin D. - “Built-
in Directives”, reported by Jason T. and Farooq A. - “Dependency Injection”, reported by Kevin D.
- “Testing”, reported by Kevin D. - “Converting an Angular 1 App to Angular 2”, reported by Kevin
D.

Revision 43 - 2016-11-08

Book up to date with angular-2.2.0-rc.0

Revision 42 - 2016-10-14

Entire book up to date with angular-2.1.0 Bonus video content and sample app completed
(premium package users)

« Chapter “Built-in Components” renamed to “Built-in Directives”
« Service dependencies made private, reported by Jamie B.

Fixed typos and clarified in chapters: - “How Angular Works”, reported by kbiesbrock - “Converting
to ng2”, reported by Dilip S. - “Built-in Directives”, reported by Pieris C. - “Dependency Injection”,
reported by Tim P. - “Routing”, reported by Kashyap M - “Advanced Components”, reported by
Kashyap M., by Justin B. and many by Németh T.

Revision 41 - 2016-09-28
Rewrote the first chapter to use ng-cli and the new styleguide.

« “First App” Chapter:

— Split files into style-guide friendly templates and components

— Fixed a bunch of typos reported by David S., and Luis H., Jan L., Aaron Spilman
« “HTTP” Chapter - fixed typos - Thanks Jim H.!

Changelog

Revision 40 - 2016-09-20

Entire book up to date with angular-2.0.0 final!

Revision 39 - 2016-09-03

Entire book up to date with angular-2.0.0-rc.6

Revision 38 - 2016-08-29

Entire book up to date with angular-2.0.0-rc.5
« Entire book changes:

— Upgraded every example to use NgModules
— Upgraded tests to use TestBuilder

Revision 37 - 2016-08-02

New chapter: Intermediate Redux in Angular 2!

Bugfixes:
e ts-cli ->ts-node - Thanks Tim. P
Revision 36 - 2016-07-20
New chapter: Redux in TypeScript and Angular 2!
+ Re-ordered chapters
Revision 35 - 2016-06-30
Book and code up to date with angular-2.0.0-rc.4

+ Routing upgraded to new router
+ Forms upgraded to new forms library
« Testing chapter updated to match new routing and forms

Revision 34 - 2016-06-15

Book and code up to date with angular-2.0.0-rc.2

Note: still using router-deprecated at this time.

619

Changelog 620

Revision 33 - 2016-05-11

New chapter: Dependency Injection!

Revision 32 - 2016-05-06

Entire book up to date with angular-2.0.0-rc.1!

« Entire book changes:
Renamed all imports to match the new packages (see below)
Upgrade to typings (removes all tsd references)
Directive local variables now use let instead of #. E.g. *ngFor="#item in items"
becomes *ngFor="1let item in items"
In projects that use System.js, create an external file for configuration (instead of writing
it in the index.html <script> tags
« “Testing” Chapter:
— injectAsync has been removed. Instead you use async and inject together, both come

from @angular/core/testing
+ “Advanced Components” Chapter:
— In ngBookRepeat, when creating a child view manually with createEmbeddedView, the
context is passed as the second argument (instead of calling setLocal).

Details:

Renamed libraries:

angular2/core -> @angular/core

e angular2/compiler -> @angular/compiler

e angular2/common -> @angular/common

e angular2/platform/common -> @angular/common

e angular2/common_dom -> @angular/common

¢ angular2/platform/browser -> @angular/platform-browser-dynamic
e angular2/platform/server -> @angular/platform-server
e angular2/testing -> @angular/core/testing

e angular2/upgrade -> @angular/upgrade

e angular2/http -> @angular/http

e angular2/router -> @angular/router

angular2/platform/testing/browser -> @angular/platform-browser-dynamic/testing

Revision 31 - 2016-04-28

All chapters up to date with angular-2.0.0-beta.16

Changelog 621

Revision 30 - 2016-04-20

All chapters up to date with angular-2.0.0-beta.15

Revision 29 - 2016-04-08

All chapters up to date with angular-2.0.0-beta.14

Revision 28 - 2016-04-01

All chapters up to date with angular-2.0.0-beta.13 - (no joke!)

Revision 27 - 2016-03-25

All chapters up to date with angular-2.0.0-beta.12

Revision 26 - 2016-03-24

Advanced Components chapter added!

Revision 25 - 2016-03-21

All chapters up to date with angular-2.0.0-beta.11

Note: angular-2.0.0-beta.10 skipped because the release had a couple of bugs.

Revision 24 - 2016-03-10

All chapters up to date with angular-2.0.0-beta.9

Revision 23 - 2016-03-04

All chapters up to date with angular-2.0.0-beta.8

« “Routing” Chapter

— Fixed a few typos - Németh T.

— Fixed path to nested routes description - Dante D.
« “First App” Chapter

— Fixed typos - Luca F.

— Removed unnecessary import of NgFor - Neufeld M.
+ “Forms” Chapter

Changelog 622

- Typos - Miha Z., Németh T.
« “How Angular Works” Chapter
— Typos - Koen R, Jeremy T., Németh T.
« “Typescript” Chapter
— Typos - Németh T.
« “Data Architecture with RxJS” Chapter
— Typos - Németh T.
« “HTTP” Chapter
— Typos - Németh T.
« “Testing” Chapter
— Typos - Németh T.

Revision 22 - 2016-02-24

« 120 & beta.6 introduced some bugs regarding the typescript compiler and new typing files
that were required to be included. This revision fixes those bugs

+ Added a note about how to deal with the error: error TS2307: Cannot find module 'an-
gular2/platform/browser’

« “First App” Chapter - added a tiny note about the typings references

« Updated all non-webpack examples to have a clean npm command as well as change the
tsconfig. json to include the app.ts when appropriate

Revision 21 - 2016-02-20

All chapters up to date with angular-2.0.0-beta.7

Revision 20 - 2016-02-11

All chapters up to date with angular-2.0.0-beta.6 (see note below)

« “How Angular Works” Chapter
- Fixed Typo. Thanks @AndreaMiotto
— Added missing brackets in attributes on MyComponent - Thanks Németh T.
« “Forms” Chapter
— Grammar fix - Németh T.
— Added missing line of code in “Field coloring” - Németh T.
« “RxJs” Chapters
— Grammar fix - Németh T.
+ Note: beta.4 and beta.5 were replaced with beta.6. See the angular 2 CHANGELOG'**

“3https://github.com/angular/angular/blob/master/ CHANGELOG.md#200-beta5-2016-02- 10

https://github.com/angular/angular/blob/master/CHANGELOG.md#200-beta5-2016-02-10
https://github.com/angular/angular/blob/master/CHANGELOG.md#200-beta5-2016-02-10

Changelog 623

Revision 19 - 2016-02-04

All chapters up to date with angular-2.0.0-beta.3

Revision 18 - 2016-01-29

All chapters up to date with angular-2.0.0-beta.2

Revision 17 - 2016-01-28

+ Added Testing Chapter

Revision 16 - 2016-01-14

« Added “How to Convert ngl App to ng2” Chapter
« All chapters now up to date with angular-2.0.0-beta.1
« All package . json files pinned to specific versions
« “HTTP” Chapter
- Fixed typo - Thanks Ole S!
+ “Built-in Components” Chapter
— Fixed ngIf typo

Revision 15 - 2016-01-07

All chapters now up to date with angular-2.0.0-beta.o!

« “RxJS” Chapters
— Updated to angular-2.0.0-beta.@
« “HTTP” Chapter
— Updated to angular-2.0.0-beta.@
« Fixed line numbers for code that loads from files to match the line numbers on file
« “How Angular Works” Chapter - Fixed swapped LHS / RHS language. - Thanks, Miroslav J.

Revision 14 - 2015-12-23

« “First App” Chapter

— Fixed typo on hello-world @omponent - Thanks Matt D.

— Fixed typescript dependency in hello_world package. json
« “Forms Chapter”

— Updated to angular-2.0.0-beta.@

Changelog 624

+ “How Angular Works Chapter”
— Significant rewrite to make it clearer
- Updated to angular-2.0.0-beta.@

« “Routing Chapter”
— Significant rewrite to make it clearer
— Updated to angular-2.0.0-beta.@

Revision 13 - 2015-12-17

Angular 2 beta.0 is out!

« “First App” Chapter
— Updated reddit app to angular-2.0.0-beta.0
— Updated hello_world app to angular-2.0.0-beta.0
— Added Semantic UI'** styles
« “Built-in Components” Chapter
— Updated built-in directives sample apps to angular-2.0.0-beta.@
- Added Semantic Ul

Revision 12 - 2015-11-16

« “Routing” Chapter
— Fixed ROUTER_DIRECTIVES typo - Wayne R.
« “First App” Chapter
— Updated example to angular-2.0.0-alpha-46
— Fixed some bolding around NgFor to clarify the code example - Henrique M.
— FixedDuplicate identifier 'Promise'. errorsduetoabadtsconfig.jsoninangular2-
reddit-base/ - Todd F.
— Fixed language typos caught by Steffen G.
- “Forms” Chapter
* Updated example to angular-2.0.0-alpha-46
- Fixes the method of subscribing to Observables in the “Form with Events”
section
* Fixed a few typos and language issues - Christopher C., Travis P.
- “TypeScript” Chapter
* Fixed some unclear language about enum - Frede H.
— “Built-in Components” Chapter
* Fixed a typo where [class] needed to be [ng-class] - Neal B.
- “How Angular Works” Chapter

* Fixed language typos - Henrique M.

““http://semantic-ui.com

http://semantic-ui.com/
http://semantic-ui.com/

Changelog 625

Revision 11 - 2015-11-09

« Fixed explanation of TypeScript benefits - Thanks Don H!
« Fixed tons of typos found by Wayne R - Thanks Wayne!
« “How Angular Works” Chapter
— Fixed typos - Jegor U.
— Converted a component to use inputs/outputs - Jegor U.
— Fixed number to myNumber typo - Wayne R.
+ “Built-in Components” Chapter
— Fixed language typos - Wayne R, Jek C., Jegor U.
— Added a tip-box explaining object keys with dashes - Wayne R.
— Use controller view value for ng-style color instead of the form field value - Wayne R.
+ “Forms” Chapter
— Fixed language typos - Wayne R., Jegor U.
 “Data Architecture in Angular 2”
— Was accidentally part of “Forms” and is now promoted to an introductory mini-chapter
- Wayne R.
« “RxJS Pt 1 Chapter
— Fixed language typos - Wayne R.
« “RxJS Pt 2” Chapter
— Fixed Unicode problem - Birk S.
— Clarified language around combineLatest return value - Birk S.
« “Typescript” Chapter
- Fixed language typo - Travis P., Don H.
« “Routing” Chapter
- Fixed language typos - Jegor U., Birk S.
« “First App” Chapter
— Fixed link to ng_for - Mickey V.
« “HTTP” Chapter
- Fixed language typos - Birk S.
— Clarified ElementRef role in YouTubeSearchComponent
— Fixed link to RequestOptions - Birk S.

Revision 10 - 2015-10-30

« Upgraded Writing your First Angular2 Web Application chapter to angular-2.0.0-alpha.44
» Upgraded Routing chapter to angular-2.0.0-alpha.44
« Fixed ‘pages#about’ on the rails route example. - Thanks Rob Y!

Revision 9 - 2015-10-15

+ Added Routing Chapter

Changelog 626

Revision 8 - 2015-10-08

« Upgraded chapters 1-5 to angular-2.0.0-alpha.39

« properties and events renamed to inputs and outputs

« Fixed an issue in the First App chapter that said #newtitle bound to the value of the input (it’s
really binding to the Control object) - Danny L

e CSSClass renamed to NgClass

+ ng-non-bindable is now built-in so you don’t need to inject it as a directive

« Updated the forms chapter as there were several changes to the forms API

« Fixed NgFor source url in First App chapter - Frede H.

Revision 7 - 2015-09-23

« Added HTTP Chapter
« Fixed For -> NgFor typo - Sanjay S.

Revision 6 - 2015-08-28

+ Added RxJS Chapter Data Architecture with Observables - Part 1 : Services
« Added RxJS Chapter Data Architecture with Observables - Part 2 : View Components

Revision 5

« Finished built-in components chapter

Revision 4

+ Added built-in components chapter draft
+ Added a warning about linewrapping of long URLSs - Thanks Kevin B!

« Explained how annotations are bound to components on the First App chapter - thanks
Richard M. and others

« Copy typo fixes - thanks Richard M.!

« Fixed TypeScript using integer instead of number - Richard M. and Roel V.

« Fixed “var nate =" listings require a comma to be a valid JS object - thanks Roel V.
« Renamed a few “For” directive mentions to “NgFor” - thanks Richard M.

« Fixed type on “RedditArticle” - thanks Richard M.

« Explained how annotations are bound to components on the First App chapter (thanks Richard
M. and others)

« Typos and grammar improvements on First App chapter (thanks Kevin B)
+ Typos and code improvements on How Angular Works (thanks Roel V.)

Changelog 627

Revision 3

+ Added forms chapter

Revision 2

« Updated For directive to NgFor accross all chapters and examples (templates changed from
*for= to *ng- for= as well)

+ Changed the suggested static web server from http-server to live-server so the execution
command is valid both in OSX/Linux and Windows

« Changed the @Component’s properties property to match the latest Angular]S 2 format

« Updated angular2.dev. js bundle to latest version for all examples

« Updated typings folder with latest version for all examples

Revision 1

Initial version of the book

	Table of Contents
	Book Revision
	Bug Reports
	Chat With The Community!
	Be notified of updates via Twitter
	We'd love to hear from you!
	Writing your First Angular 2 Web Application
	Simple Reddit Clone
	Getting started
	TypeScript
	angular-cli
	Example Project
	Writing Application Code

	Running the application
	Making a Component
	Importing Dependencies
	Component Annotations
	Adding a template with templateUrl
	Adding a template
	Adding CSS Styles with styleUrls
	Loading Our Component

	Adding Data to the Component
	Working With Arrays
	Using the User Item Component
	Rendering the UserItemComponent
	Accepting Inputs
	Passing an Input value

	Bootstrapping Crash Course
	Expanding our Application
	Adding CSS
	The Application Component
	Adding Interaction
	Adding the Article Component

	Rendering Multiple Rows
	Creating an Article class
	Storing Multiple Articles
	Configuring the ArticleComponent with inputs
	Rendering a List of Articles

	Adding New Articles
	Finishing Touches
	Displaying the Article Domain
	Re-sorting Based on Score

	Full Code Listing
	Wrapping Up
	Getting Help

	TypeScript
	Angular 2 is built in TypeScript
	What do we get with TypeScript?
	Types
	Trying it out with a REPL

	Built-in types
	Classes
	Properties
	Methods
	Constructors
	Inheritance

	Utilities
	Fat Arrow Functions
	Template Strings

	Wrapping up

	How Angular Works
	Application
	The Navigation Component
	The Breadcrumbs Component
	The Product List Component

	Product Model
	Components
	Component Annotation
	Component selector
	Component template
	Adding A Product
	Viewing the Product with Template Binding
	Adding More Products
	Selecting a Product
	Listing products using <products-list>

	The ProductsList Component
	Configuring the ProductsList @Component Options
	Component inputs
	Component outputs
	Emitting Custom Events
	Writing the ProductsList Controller Class
	Writing the ProductsList View Template
	The Full ProductsList Component

	The ProductRow Component
	ProductRow Component Configuration
	ProductRow Component Definition Class
	ProductRow template
	ProductRow Full Listing

	The ProductImage Component
	The PriceDisplay Component
	The ProductDepartment Component
	NgModule and Booting the App
	Booting the app

	The Completed Project
	A Word on Data Architecture

	Built-in Directives
	Introduction
	NgIf
	NgSwitch
	NgStyle
	NgClass
	NgFor
	Getting an index

	NgNonBindable
	Conclusion

	Forms in Angular 2
	Forms are Crucial, Forms are Complex
	FormControls and FormGroups
	FormControl
	FormGroup

	Our First Form
	Loading the FormsModule
	Simple SKU Form: @Component Annotation
	Simple SKU Form: template
	Simple SKU Form: Component Definition Class
	Try it out!

	Using FormBuilder
	Reactive Forms with FormBuilder
	Using FormBuilder
	Using myForm in the view
	Try it out!

	Adding Validations
	Explicitly setting the sku FormControl as an instance variable
	Custom Validations

	Watching For Changes
	ngModel
	Wrapping Up

	HTTP
	Introduction
	Using @angular/http
	import from @angular/http

	A Basic Request
	Building the SimpleHTTPComponent @Component
	Building the SimpleHTTPComponent template
	Building the SimpleHTTPComponent Controller
	Full SimpleHTTPComponent

	Writing a YouTubeSearchComponent
	Writing a SearchResult
	Writing the YouTubeService
	Writing the SearchBox
	Writing SearchResultComponent
	Writing YouTubeSearchComponent

	@angular/http API
	Making a POST request
	PUT / PATCH / DELETE / HEAD
	RequestOptions
	Summary

	Routing
	Why Do We Need Routing?
	How client-side routing works
	The beginning: using anchor tags
	The evolution: HTML5 client-side routing

	Writing our first routes
	Components of Angular 2 routing
	Imports
	Routes
	Installing our Routes
	RouterOutlet using <router-outlet>
	RouterLink using [routerLink]

	Putting it all together
	Creating the Components
	HomeComponent
	AboutComponent
	ContactComponent
	Application Component
	Configuring the Routes

	Routing Strategies
	Path location strategy
	Running the application
	Route Parameters
	ActivatedRoute

	Music Search App
	First Steps
	The SpotifyService
	The SearchComponent
	Trying the search
	TrackComponent
	Wrapping up music search

	Router Hooks
	AuthService
	LoginComponent
	ProtectedComponent and Route Guards

	Nested Routes
	Configuring Routes
	ProductsComponent

	Summary

	Dependency Injection
	Injections Example: PriceService
	``Don't Call Us…''
	Dependency Injection Parts
	Playing with an Injector
	Providing Dependencies with NgModule
	Providers
	Using a Class
	Using a Factory
	Using a Value
	Using an alias

	Dependency Injection in Apps
	Working with Injectors
	Substituting values
	NgModule
	NgModule vs. JavaScript Modules
	The Compiler and Components
	Dependency Injection and Providers
	Component Visibility
	Specifying Providers

	Conclusion

	Data Architecture in Angular 2
	An Overview of Data Architecture
	Data Architecture in Angular 2

	Data Architecture with Observables - Part 1: Services
	Observables and RxJS
	Note: Some RxJS Knowledge Required
	Learning Reactive Programming and RxJS

	Chat App Overview
	Components
	Models
	Services
	Summary

	Implementing the Models
	User
	Thread
	Message

	Implementing UserService
	currentUser stream
	Setting a new user
	UserService.ts

	The MessagesService
	the newMessages stream
	the messages stream
	The Operation Stream Pattern
	Sharing the Stream
	Adding Messages to the messages Stream
	Our completed MessagesService
	Trying out MessagesService

	The ThreadsService
	A map of the current set of Threads (in threads)
	A chronological list of Threads, newest-first (in orderedthreads)
	The currently selected Thread (in currentThread)
	The list of Messages for the currently selected Thread (in currentThreadMessages)
	Our Completed ThreadsService

	Data Model Summary

	Data Architecture with Observables - Part 2: View Components
	Building Our Views: The ChatApp Top-Level Component
	The ChatThreads Component
	ChatThreads Controller
	ChatThreads template

	The Single ChatThread Component
	ChatThread Controller and ngOnInit
	ChatThread template
	ChatThread Complete Code

	The ChatWindow Component
	The ChatMessage Component
	Setting incoming
	The ChatMessage template
	The Complete ChatMessage Code Listing

	The ChatNavBar Component
	The ChatNavBar @Component
	The ChatNavBar Controller
	The ChatNavBar template
	The Completed ChatNavBar

	Summary
	Next Steps

	Introduction to Redux with TypeScript
	Redux
	Redux: Key Ideas

	Core Redux Ideas
	What's a reducer?
	Defining Action and Reducer Interfaces
	Creating Our First Reducer
	Running Our First Reducer
	Adjusting the Counter With actions
	Reducer switch
	Action ``Arguments''

	Storing Our State
	Using the Store
	Being Notified with subscribe
	The Core of Redux

	A Messaging App
	Messaging App state
	Messaging App actions
	Messaging App reducer
	Trying Out Our Actions
	Action Creators
	Using Real Redux

	Using Redux in Angular
	Planning Our App
	Setting Up Redux
	Defining the Application State
	Defining the Reducers
	Defining Action Creators
	Creating the Store

	CounterApp Component
	Providing the Store
	Bootstrapping the App
	The CounterComponent
	imports
	The template
	The constructor
	Putting It All Together

	What's Next
	References

	Intermediate Redux in Angular
	Context For This Chapter
	Chat App Overview
	Components
	Models
	Reducers
	Summary

	Implementing the Models
	User
	Thread
	Message

	App State
	A Word on Code Layout
	The Root Reducer
	The UsersState
	The ThreadsState
	Visualizing Our AppState

	Building the Reducers (and Action Creators)
	Set Current User Action Creators
	UsersReducer - Set Current User
	Thread and Messages Overview
	Adding a New Thread Action Creators
	Adding a New Thread Reducer
	Adding New Messages Action Creators
	Adding A New Message Reducer
	Selecting A Thread Action Creators
	Selecting A Thread Reducer
	Reducers Summary

	Building the Angular Chat App
	The top-level ChatApp
	The ChatPage
	Container vs. Presentational Components

	Building the ChatNavBar
	Redux Selectors
	Threads Selectors
	Unread Messages Count Selector

	Building the ChatThreads Component
	ChatThreads Controller
	ChatThreads template

	The Single ChatThread Component
	ChatThread @Component and template

	Building the ChatWindow Component
	The ChatMessage Component
	Setting incoming
	The ChatMessage template

	Summary

	Advanced Components
	Styling
	View (Style) Encapsulation
	Shadow DOM Encapsulation
	No Encapsulation

	Creating a Popup - Referencing and Modifying Host Elements
	Popup Structure
	Using ElementRef
	Binding to the host
	Adding a Button using exportAs

	Creating a Message Pane with Content Projection
	Changing the host CSS
	Using ng-content

	Querying Neighbor Directives - Writing Tabs
	Tab Component
	Tabset Component
	Using the Tabset

	Lifecycle Hooks
	OnInit and OnDestroy
	OnChanges
	DoCheck
	AfterContentInit, AfterViewInit, AfterContentChecked and AfterViewChecked

	Advanced Templates
	Rewriting ngIf - ngBookIf
	Rewriting ngFor - ngBookRepeat

	Change Detection
	Customizing Change Detection
	Zones
	Observables and OnPush

	Summary

	Testing
	Test driven?
	End-to-end vs. Unit Testing
	Testing Tools
	Jasmine
	Karma

	Writing Unit Tests
	Angular Unit testing framework
	Setting Up Testing
	Testing Services and HTTP
	HTTP Considerations
	Stubs
	Mocks
	Http MockBackend
	TestBed.configureTestingModule and Providers
	Testing getTrack

	Testing Routing to Components
	Creating a Router for Testing
	Mocking dependencies
	Spies

	Back to Testing Code
	fakeAsync and advance
	inject
	Testing ArtistComponent's Initialization
	Testing ArtistComponent Methods
	Testing ArtistComponent DOM Template Values

	Testing Forms
	Creating a ConsoleSpy
	Installing the ConsoleSpy
	Configuring the Testing Module
	Testing The Form
	Refactoring Our Form Test

	Testing HTTP requests
	Testing a POST
	Testing DELETE
	Testing HTTP Headers
	Testing YouTubeService

	Conclusion

	Converting an Angular 1 App to Angular 2
	Peripheral Concepts
	What We're Building
	Mapping Angular 1 to Angular 2
	Requirements for Interoperability
	The Angular 1 App
	The ng1-app HTML
	Code Overview
	ng1: PinsService
	ng1: Configuring Routes
	ng1: HomeController
	ng1: / HomeController template
	ng1: pin Directive
	ng1: pin Directive template
	ng1: AddController
	ng1: AddController template
	ng1: Summary

	Building A Hybrid
	Hybrid Project Structure
	Bootstrapping our Hybrid App
	What We'll Upgrade
	A Minor Detour: Typing Files
	Writing ng2 PinControlsComponent
	Using ng2 PinControlsComponent
	Downgrading ng2 PinControlsComponent to ng1
	Adding Pins with ng2
	Upgrading ng1 PinsService and $state to ng2
	Writing ng2 AddPinComponent
	Using AddPinComponent
	Exposing an ng2 service to ng1
	Writing the AnalyticsService
	Downgrade ng2 AnalyticsService to ng1
	Using AnalyticsService in ng1

	Summary
	References

	Changelog
	Revision 45 - 2016-12-05
	Revision 44 - 2016-11-17
	Revision 43 - 2016-11-08
	Revision 42 - 2016-10-14
	Revision 41 - 2016-09-28
	Revision 40 - 2016-09-20
	Revision 39 - 2016-09-03
	Revision 38 - 2016-08-29
	Revision 37 - 2016-08-02
	Revision 36 - 2016-07-20
	Revision 35 - 2016-06-30
	Revision 34 - 2016-06-15
	Revision 33 - 2016-05-11
	Revision 32 - 2016-05-06
	Revision 31 - 2016-04-28
	Revision 30 - 2016-04-20
	Revision 29 - 2016-04-08
	Revision 28 - 2016-04-01
	Revision 27 - 2016-03-25
	Revision 26 - 2016-03-24
	Revision 25 - 2016-03-21
	Revision 24 - 2016-03-10
	Revision 23 - 2016-03-04
	Revision 22 - 2016-02-24
	Revision 21 - 2016-02-20
	Revision 20 - 2016-02-11
	Revision 19 - 2016-02-04
	Revision 18 - 2016-01-29
	Revision 17 - 2016-01-28
	Revision 16 - 2016-01-14
	Revision 15 - 2016-01-07
	Revision 14 - 2015-12-23
	Revision 13 - 2015-12-17
	Revision 12 - 2015-11-16
	Revision 11 - 2015-11-09
	Revision 10 - 2015-10-30
	Revision 9 - 2015-10-15
	Revision 8 - 2015-10-08
	Revision 7 - 2015-09-23
	Revision 6 - 2015-08-28
	Revision 5
	Revision 4
	Revision 3
	Revision 2
	Revision 1

