
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL ANGULARJS

INTRODUCTION. . xxv

CHAPTER 1	 Building a Simple AngularJS Application . . 1

CHAPTER 2	 Intelligent Workflow and Build Tools . . 57

CHAPTER 3	 Architecture. . 95

CHAPTER 4	 Data Binding. . 131

CHAPTER 5	 Directives. . 157

CHAPTER 6	 Templates, Location, and Routing. . 185

CHAPTER 7	 �Services, Factories, and Providers . . 217

CHAPTER 8	 Server Communication . . 243

CHAPTER 9	 Testing and Debugging AngularJS Applications 277

CHAPTER 10	 Moving On. . 315

APPENDIX	 Resources. . 345

INDEX. . 347

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROFESSIONAL

AngularJS

Valeri Karpov
Diego Netto

www.it-ebooks.info

http://www.it-ebooks.info/

Professional AngularJS

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83207-3

ISBN: 978-1-118-83209-7 (ebk)

ISBN: 978-1-118-83208-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951014

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

For my father, the elder Valeri Karpov,

who taught me to never settle for “good enough.”

—Valeri Karpov

For my mother, Liliana, who showed me how to find

happiness by living each day like it might be your last.

—Diego Netto

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHORS

VALERI KARPOV  is a NodeJS Engineer at MongoDB, where he focuses on maintaining the popular
Mongoose ODM and numerous other MongoDB-related NodeJS modules. In addition, he’s a
Hacker in Residence at BookaLokal, a blogger for StrongLoop, and the person who gave the MEAN
stack its name. He has been running production AngularJS apps since AngularJS v0.9.4 in 2010.
Most recently, he used AngularJS to build out BookaLokal’s mobile website and a web client for
MongoDB’s internal continuous integration framework.

DIEGO NETTO  is a software consultant and open source evangelist. He wears the many hats of a
full stack engineer and entrepreneur. Owner of a development shop operating out of Los Angeles
and Dallas, Diego creates web and mobile applications for both startups and enterprise companies.
Maintainer of the IonicFramework Yeoman generator, he has most recently used AngularJS and
the IonicFramework to build the Prop mobile app for www.aboatapp.com, and is using Famo.us/
Angular to build the mobile app for www.modelrevolt.com.

www.it-ebooks.info

http://www.aboatapp.com
http://www.modelrevolt.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE TECHNICAL EDITOR

STÉPHANE BÉGAUDEAU  graduated from the Faculty of Sciences and Technology of Nantes and
is currently working as a web technology specialist and Eclipse modeling consultant at Obeo
in France. He has contributed to several open source projects in the Eclipse Foundation, and he
is the leader of Acceleo. He also worked on Dart Designer, an open source tooling for the Dart
programming language.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROJECT EDITOR
Kelly Talbot

TECHNICAL EDITOR
Stéphane Bégaudeau

PRODUCTION EDITOR
Christine O’Connor

COPY EDITOR
Karen Gill

MANAGER OF CONTENT DEVELOPMENT
& ASSEMBLY
Mary Beth Wakefield

MARKETING DIRECTOR
David Mayhew

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Carrasco

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Wiley

COVER IMAGE
iStock.com/Manuel Faba Ortega

CREDITS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

SOCRATES WROTE THAT  “Education is the kindling of a flame, not the filling of a vessel.” In that
vein, I’m thankful that I have had teachers and mentors who made programming my lifelong passion
rather than just a career. In particular, I’d like to thank Professors Kernighan and Tarjan from
Princeton University; and Dr. Nevard, Dr. Sankaran, Mr. Scarpone, and Mr. Nodarse from the
Bergen County Academies. In addition, I’d like to thank Misko Hevery, my mentor when I interned
at Google and original author of AngularJS, who taught me more about software engineering in
12 weeks than I had learned in my life leading up to that summer.

—Valeri Karpov

TO QUOTE THE SUCCESSFUL ENTREPRENEUR FELIX DENNIS,  “Anyone not busy learning is
busy dying.” This is a prudent reminder, especially in the constantly evolving field of software
engineering, that in order to remain relevant and sustain success we must commit to a lifelong
pursuit of knowledge. I would like to thank Professors Tatar and Ribbens from Virginia Tech for
enlightening me to this realization. I also want to thank Addy Osmani for helping me discover the
importance of intelligent tooling and for inspiring me to contribute to the open source community.
Special thanks to my friend and co-author Valeri Karpov for getting me involved with AngularJS
during such an early stage.

—Diego Netto

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

INTRODUCTION	 xxv

Chapter 1: BUILDING A SIMPLE ANGULARJS APPLICATION 	 1

What You Are Building	 1
What You Will Learn	 3
Step 1: Scaffolding Your Project with Yeoman	 4

Installing Yeoman	 4
Scaffolding Your Project	 5
Exploring the Application	 6
Cleaning Up	 8

Step 2: Creating Watchlists	 9
The Application Module	 9

Installing Module Dependencies	 10
Bootstrapping the Application	 11

The Watchlist Service	 11
The Watchlist‐Panel Directive	 13

Basic Form Validation	 16
Using the Directive	 18

Step 3: Configuring Client‐Side Routing	 19
The Angular ngRoute Module	 19
Adding New Routes	 20
Using the Routes	 21
Template Views	 22

Step 4: Creating a Navigation Bar	 23
Updating the HTML	 23
Creating MainCtrl	 25

Step 5: Adding Stocks	 26
Creating the CompanyService	 27
Creating the AddStock Modal	 27
Updating the WatchlistService	 29
Implementing WatchlistCtrl	 30
Modifying the Watchlist View	 31

Step 6: Integrating with Yahoo Finance	 32
Creating the QuoteService	 33
Invoking Services from the Console	 35

www.it-ebooks.info

http://www.it-ebooks.info/

xviii

CONTENTS

Step 7: Creating the Stock Table	 36
Creating the StkStockTable Directive	 36
Creating the StkStockRow Directive	 37
Creating the Stock Table Template	 39
Updating the Watchlist View	 40

Step 8: Inline Form Editing	 40
Creating the Contenteditable Directive	 41
Updating the StkStockTable Template	 43

Step 9: Formatting Currency	 44
Creating the StkSignColor Directive	 44
Updating the StockTable Template	 44

Step 10: Animating Price Changes	 46
Creating the StkSignFade Directive	 46
Updating the StockTable Template	 48

Step 11: Creating the Dashboard	 49
Updating the Dashboard Controller	 49
Updating the Dashboard View	 52

Production Deployment	 53
Conclusion	 55

Chapter 2: INTELLIGENT WORKFLOW AND BUILD TOOLS 	 57

What Can Tooling Do for Me?	 57
What Is Bower?	 58

Getting Started with Bower	 58
Searching for Packages	 58
Installing Packages	 58
Versioning Dependencies	 59

What Is Grunt?	 60
Getting Started with Grunt	 60
Installing Plug-Ins	 62
Directory Structure	 62
The Gruntfile	 63
Configuring Tasks and Targets	 64

The Connect Task	 64
The Less Task	 65
The JSHint Task	 66
The Watch Task	 68
The Default Task	 69

Creating a Custom Task	 69

www.it-ebooks.info

http://www.it-ebooks.info/

xix

CONTENTS

What Is Gulp?	 73
Getting Started with Gulp	 73
Installing Plug-Ins	 73
The Gulpfile	 73
Creating Tasks	 74

The Connect Task	 74
The Less Task	 75
The JSHint Task	 77
The Watch Task	 77
The Default Task	 78

Arguments and Asynchronous Behavior	 79
Gulp, Grunt, and Make	 82

Automation Using Make	 82
When to Use Make	 84
When to Use Grunt	 84
When to Use Gulp	 84

What Is Yeoman?	 84
Getting Started with Yeoman	 85
Scaffolding a New Project	 85
Exploring Plug-Ins and Tasks	 85

load-grunt-tasks	 86
time-grunt	 86
grunt-newer	 86
grunt-contrib-watch	 86
grunt-contrib-connect	 87
grunt-contrib-jshint	 87
grunt-contrib-clean	 87
grunt-autoprefixer	 87
grunt-wiredep	 88
grunt-contrib-compass	 88
grunt-filerev	 88
grunt-usemin	 88
grunt-contrib-imagemin	 89
grunt-svgmin	 89
grunt-contrib-htmlmin	 89
grunt-ng-annotate	 90
grunt-google-cdn	 90
grunt-contrib-copy	 90
grunt-concurrent	 90
grunt-karma	 91

www.it-ebooks.info

http://www.it-ebooks.info/

xx

CONTENTS

Alias Tasks and Workflow	 91
serve	 91
test	 91
build	 92
default	 92

Modifications	 92
Subgenerators	 92
Popular Generators	 93

angular-fullstack	 93
jhipster	 93
ionic	 94

Conclusion	 94

Chapter 3: ARCHITECTURE	 95

Why Is Architecture Important?	 95
Controllers, Services, and Directives	 96

Controllers	 96
Scope Inheritance	 98
Event Transmission	 99
The ModelService Paradigm	 102

Services	 104
Services Depending on Other Services	 104
The event‐emitter Module	 105

Directives	 107
Exposing API Using Controllers	 108

Conclusion	 109
Organizing Your Code with Modules	 109
Directory Structure	 113

Small Projects	 114
Medium Projects	 115
Large Projects	 117

Module Loaders	 119
RequireJS	 119
Browserify	 122

Best Practices for Structuring User Authentication	 127
Services: Loading from and Storing Data to the Server	 127
Controllers: Exposing an API to HTML	 128
Directives: Interfacing with the DOM	 128

Conclusion	 129

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

CONTENTS

Chapter 4: DATA BINDING	 131

What Is Data Binding?	 131
What Data Binding Can Do for You	 134
Scoping Out AngularJS Scopes	 136

Scope Inheritance	 137
$watch	 140
$apply	 141
$digest	 141

Performance Considerations	 142
An ngRepeat Gone Wrong	 143

Filters and Data‐Binding Gotchas	 145
Use Case 1: Rules for Converting Objects to Strings	 146
Use Case 2: Wrappers for Global Functions	 150
Use Case 3: Manipulating Arrays	 152

Conclusion	 155

Chapter 5: DIRECTIVES	 157

What Is a Directive?	 157
Understanding Directives	 158
An 80/20 Understanding of Directives	 159

Writing Your Own Render‐Only Directive	 160
Writing Your Own Event Handler Directive	 162
Writing Your Own Two‐Way Directive	 165
Beyond the Simple Design Patterns	 167

A Deeper Understanding of Directives	 167
Directive Composition Using Templates	 167
Creating Separate Scopes for Directives	 169

The First Way of Using the scope Setting	 170
The Second Way of Using the scope Setting	 171

The restrict and replace Settings	 176
Moving On	 179

Changing Directive Templates at Runtime	 179
Transclusion	 179

Using the transclude: true Setting	 179
Using the transclude: ‘element’ Setting	 182

The compile Setting, or compile Versus link	 183
Conclusion	 184

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

CONTENTS

Chapter 6: TEMPLATES, LOCATION, AND ROUTING 	 185

Part I: Templates	 187
Templating with ngInclude	 188
ngInclude and Performance	 191
Including Templates with script Tags	 191
The $templateCache Service	 193
Next Steps: Templates and Data Binding	 194

Part II: The $location Service	 196
What’s in a URL?	 196
Introducing $location	 197
Tracking Page State with $location	 198
Next Steps: Routing and SPAs	 200

Part III: Routing	 200
Using the ngRoute Module	 202
The $routeProvider Provider	 203
The $routeParams Service	 205
Navigation in Your SPA	 205
Search Engines and SPAs	 207
Setting Up Prerender on the Server	 207
The Google AJAX Crawling Spec	 209
Configuring AngularJS for Search Engines	 210
Search Engine Integration in Action	 210
Introduction to Animations	 211
The ngAnimate Module in Action	 213

Conclusion	 215

Chapter 7: SERVICES, FACTORIES, AND PROVIDERS	 217

A Brief Overview of Dependency Injection	 218
The $injector Service	 219
Function Annotations	 220

Building Your Own Services	 221
The factory() Function	 222
The service() Function	 224
The provider() Function	 228

Common Use Cases for Services	 232
Building a $user Service	 233
Building the $stockPrices Service	 234

Utilizing Built‐In Providers	 236
Custom Interpolation Delimiters	 236
Whitelisting Links with $compileProvider	 237

www.it-ebooks.info

http://www.it-ebooks.info/

xxiii

CONTENTS

Global Expression Properties with $rootScopeProvider	 240
Conclusion	 241

Chapter 8: SERVER COMMUNICATION	 243

Why Will I Learn?	 243
Introduction to Promises	 244
Services for HTTP Requests	 246

$http	 247
Setting the HTTP Request Body	 248
JSONP and Cross Site Scripting (XSS)	 249
HTTP Configuration Objects	 249
Setting Default HTTP Headers	 250
Using HTTP Interceptors	 251

The $resource Service	 259
Consuming the Twitter REST API	 262
Scaffolding a REST API with StrongLoop LoopBack	 264

Building a Simple API Using LoopBack	 265
Creating a New Application	 265
Creating a LoopBack Model	 266
The API Explorer	 266
Generating Resources with Loopback AngularJS SDK	 267

Using Web Sockets with AngularJS	 270
Using Firebase with AngularJS	 273
Conclusion	 275

Chapter 9: �TESTING AND DEBUGGING
ANGULARJS APPLICATIONS	 277

AngularJS Testing Philosophy	 277
The Testing Pyramid	 279

Unit Testing in AngularJS	 281
The Mocha Testing Framework	 281
Unit Testing in the Browser with Karma	 285
Browser Testing in the Cloud with Sauce	 288
Evaluating the Unit Testing Options	 292

DOM Integration Tests	 292
A Guide to $httpBackend	 293
The Page You’ll Be Testing	 297
DOM Integration Tests with ng‐scenario	 298
DOM Integration Testing with Protractor	 304
Evaluating ng‐scenario and Protractor	 309

www.it-ebooks.info

http://www.it-ebooks.info/

xxiv

CONTENTS

Debugging AngularJS Apps	 309
The debug Module	 309
Debugging Using Chrome DevTools	 311

Launching Developer Tools	 312
Inspecting the State of the DOM	 312
Using the Console Tab	 312
Setting Breakpoints in the Sources Tab	 313
Debugging Network Performance	 314

Conclusion	 314

Chapter 10: MOVING ON	 315

Using Angular‐UI Bootstrap	 316
Modals	 316
Datepicker	 320
Timepicker	 321
Custom Templates	 321

Hybrid Mobile Apps with the Ionic Framework	 325
Setting Up Ionic, Cordova, and the Android SDK	 326
Using AngularJS in Your Ionic App	 327
Yeoman Workflow and Building for Production	 329

Icons, Splash Screens, and Cordova Hooks	 330
Integrating Open Source JavaScript with AngularJS	 331

Dates and Time Zones with Moment	 331
Schema Validation and Deep Objects with Mongoose	 335

AngularJS and ECMAScript 6	 341
Using yield for Asynchronous Calls	 342

Conclusion	 343

Appendix: RESOURCES	 345

INDEX	 347

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

IT’S AN EXCITING TIME  to be a JavaScript developer. Between the meteoric rise of server-side
JavaScript’s open source community (100,000 packages on the NodeJS package manager as of
October 2014—twice as many as in December 2013), the popularity of next-generation client-side
frameworks like AngularJS, and the growing number of companies that build web tools based on
full-stack JavaScript, JavaScript language skills are in high demand. Modern tools allow you to
build sophisticated browser-based clients, highly concurrent servers, and even hybrid native mobile
applications using a single language. AngularJS is quickly becoming the leading next-generation
client-side web framework, enabling individuals, small teams, and large corporations to build and
test phenomenally sophisticated browser-based applications.

WHAT IS ANGULARJS?

Within the rapidly growing JavaScript community, AngularJS burst onto the scene when it released
version 1.0 in June 2012. Although a relatively new framework, its powerful features and elegant tools
for structuring applications have made it the front-end framework of choice for many developers.
AngularJS was originally developed at Google by testing engineer Misko Hevery, who found that
existing tools, like jQuery, made it difficult to structure browser user interfaces (UIs) that needed
to display large amounts of sophisticated data. Google now has a dedicated team developing and
maintaining AngularJS and related tools. AngularJS also powers some active Google applications,
ranging from the DoubleClick Digital Marketing Platform to the YouTube app on the PlayStation 3.
AngularJS’s popularity is growing rapidly: As of October 2014, it powers 143 of the Quantcast Top
10k websites and is rapidly outpacing its closest rivals, KnockoutJS, ReactJS, and EmberJS.

What makes AngularJS so special? One particularly pithy expression borrowed from the
https://angularjs.org/ website describes AngularJS as enabling you to “write less code, go
have beer sooner.” The heart of AngularJS is a concept called two-way data binding, which enables
you to bind Hypertext Markup Language (HTML) and cascading style sheets (CSS) to the state of
a JavaScript variable. Whenever the variable changes, AngularJS updates all HTML and CSS that
references that JavaScript variable. For instance, in the following code:

<div ng-show="shouldShow">Hello</div>

If the shouldShow variable is changed to false, AngularJS automatically hides the div element for
you. There is nothing special about the shouldShow variable: AngularJS doesn’t require you to wrap
your variables in special types; the shouldShow variable can be a plain old JavaScript Boolean value.

Although two-way data binding is the basis for what makes AngularJS so useful, it’s only the tip
of the iceberg. AngularJS provides an elegant framework for organizing your client-side JavaScript
in a way to maximize reusability and testability. In addition, AngularJS has a rich set of testing
tools, such as Karma, protractor, and ngScenario (see Chapter 9), which are optimized for use
with AngularJS. AngularJS’s focus on testable structures and rich testing tools makes it a natural

www.it-ebooks.info

https://angularjs.org/
http://www.it-ebooks.info/

xxvi

INTRODUCTION

choice for mission-critical client-side JavaScript. Not only does it enable you to write sophisticated
applications fast, it supplies tools and structure that make testing your application easy. As a matter
of fact, Google’s DoubleClick team cited AngularJS’s “full testing story” as one of its six biggest
reasons for porting its digital marketing platform to AngularJS. Here is a brief overview of some of
the concepts that make AngularJS special.

Two-Way Data Binding
In many older client-side JavaScript libraries, like jQuery and Backbone, you are expected to
manipulate the Document Object Model (DOM) yourself. In other words, if you want to change the
HTML contents of a div element, you need to write imperative JavaScript. For example:

$('div').html('Hello, world!');

AngularJS inverts this paradigm and makes your HTML the definitive source for how your data is
displayed. The primary purpose of two-way data binding is to bind an HTML or CSS property (for
instance, the HTML contents or background color of a div element) to the value of a JavaScript
variable. When the value of the JavaScript variable changes, the HTML or CSS property is updated
to match. The opposite is also true: If the user types in an input field, the value of the bound
JavaScript variable is updated to match what the user typed. For instance, the following HTML
greets whoever’s name is typed in the input field. You can find this example in this chapter’s sample
code as data _ binding.html: Simply right-click on the file and open it in your browser—no web
server or other dependencies required!

<input type="text" ng-model="user" placeholder="Your Name">
<h3>Hello, {{user}}!</h3>

No JavaScript is necessary! The ngModel directive and the {{}} shorthand syntax do all the work.
There is limited benefit to using AngularJS in this simple example, but, as you’ll see when you build
a real application in Chapter 1, data binding greatly simplifies your JavaScript. It’s not uncommon
to see 800 lines of jQuery spaghetti code reduced to 40 lines of clean DOM-independent AngularJS
code thanks to data binding.

Scopes in the DOM
DOM scopes are another powerful feature of AngularJS. As you might have guessed, there is no free
lunch with data binding; code complexity has to go somewhere. However, AngularJS allows you
to create scopes in the DOM that behave similarly to scopes in JavaScript and other programming
languages. This permits you to break your HTML and JavaScript into independent and reusable
pieces. For instance, here’s the same greeting example from earlier, but with two separate scopes:
one for greeting in English, the other in Spanish:

 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Your Name">
 <h3>Hello, {{user}}!</h3>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

xxvii

INTRODUCTION

 <hr>
 <div ng-controller="HelloController">
 <input type="text" ng-model="user" placeholder="Su Nombre">
 <h3>Hola, {{user}}!</h3>
 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function HelloController($scope) {}
 </script>

The ngController directive is one way to create a new scope, enabling you to reuse the same code
for two different purposes. Chapter 4 includes a thorough overview of two-way data binding and a
discussion of internal implementation details.

Directives
Directives are a powerful tool for grouping HTML and JavaScript functionality into one easily
reusable bundle. AngularJS has numerous built-in directives, like the ngController and ngModel
directives you saw earlier, that enable you to access sophisticated JavaScript functionality from your
HTML. You can write your own custom directives as well. In particular, AngularJS allows you to
associate HTML with a directive, so you can use directives as a way of reusing HTML as well as a
way of tying certain behavior into two-way data binding. Writing custom directives is beyond the
scope of this introduction, but Chapter 5 includes a thorough discussion of the subject.

Templates
On top of two-way data binding, AngularJS lets you swap out entire portions of the page based on the
state of a JavaScript variable. The ngInclude directive enables you to conditionally include templates,
pieces of AngularJS-infused HTML, in the page based on the JavaScript state. The following example
demonstrates a page with a div that contains different HTML based on the value of the myTemplate
variable. You can find this example in templates.html in this chapter’s sample code:

 <div ng-controller="TemplateController">
 <div ng-include="myTemplate">
 </div>

 <a ng-click="myTemplate = 'template1';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template1' }">
 Display Template 1

 <a ng-click="myTemplate = 'template2';"
 style="cursor: pointer"
 ng-class="{'selected': myTemplate === 'template2' }">
 Display Template 2

www.it-ebooks.info

http://www.it-ebooks.info/

xxviii

INTRODUCTION

 </div>

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 function TemplateController($scope) {
 $scope.myTemplate = 'template1';
 }
 </script>
 <script type="text/ng-template" id="template1">
 <h1>This is Template 1</h1>
 </script>
 <script type="text/ng-template" id="template2">
 <h1>This is Template 2</h1>
 </script>

Chapter 6 includes a thorough discussion of AngularJS templates, including how to use them to
structure single-page applications.

Testing and Workflow
Providing a framework for writing unit-testable code has been a core AngularJS goal from its first
release. AngularJS includes an elegant and sophisticated dependency injector, and all AngularJS
components (controllers, directives, services, and filters) are constructed using the dependency
injector. This ensures that your code’s dependencies are easy to stub out as necessary for your
tests. Furthermore, the AngularJS team has developed numerous powerful testing tools, such as the
Karma test runner and the protractor and ngScenario integration testing frameworks. These bring
the sophisticated multibrowser testing infrastructure that was previously only feasible for large
companies into the hands of the individual developer.

In addition, AngularJS’s architecture and testing tools interface nicely with various open source
JavaScript build and workflow tools, such as Gulp and Grunt. With these tools, you can execute
your tests seamlessly, tie in tools like code coverage and linting into your test execution, and even
scaffold entirely new applications from scratch. Core AngularJS is just a library, but the testing
and workflow tools surrounding it make the AngularJS ecosystem as a whole an innovative new
paradigm for building browser-based clients. Chapter 9 includes a more detailed discussion of
the AngularJS testing ecosystem and the different types of testing strategies you can use for your
AngularJS applications.

WHEN NOT TO USE ANGULARJS

Like any library, AngularJS is a perfect fit for some applications and a not-so-good fit for others. In
the next section, you learn about several use cases in which AngularJS is a perfect fit. In this section,
you learn about a few use cases in which AngularJS is not such a good fit and learn about some of
AngularJS’s limitations.

www.it-ebooks.info

http://www.it-ebooks.info/

xxix

INTRODUCTION

Applications Requiring Support for Old Versions
of Internet Explorer

One limitation of AngularJS that may be significant for some users is that it doesn’t support old
versions of Internet Explorer. AngularJS 1.0.x supports Internet Explorer 6 and 7, but the version
that you’ll be learning about in this book, AngularJS 1.2.x, supports only Internet Explorer 8 and
greater. Furthermore, the current experimental versions of AngularJS, 1.3.x, drop support for
Internet Explorer 8 entirely. (They only support Internet Explorer 9 and greater.) If your application
needs to support Internet Explorer 7, using AngularJS is probably not the right choice.

Applications That Don’t Require JavaScript Server I/O
AngularJS is an extremely rich and powerful library, and avid users are often tempted to use it for
every application. However, there are many cases in which AngularJS is overkill and adds unnecessary
complexity. For instance, if you need to add a button to a page that shows or hides a div element
whenever a user clicks on it, using AngularJS cannot help you unless you need to persist the state of the
div in the page’s URL or to the server. Similarly, choosing to write your blog in AngularJS is usually
a poor decision. Blogs typically display simple data with limited interactivity, so AngularJS is often
unnecessary. Also, blogs require good integration with search engines. If you were to write a blog in
AngularJS, you would need to do some extra work (see Chapter 6) to make sure search engines could
effectively crawl your blog, because search engine crawlers don’t execute JavaScript.

WHEN TO USE ANGULARJS

Now that you’ve learned about a couple of AngularJS’s limitations, you’ll learn about a few use
cases in which AngularJS truly shines.

Internal Data-Intensive Applications
AngularJS is an extremely powerful tool for applications that need to display complex data in
a browser UI, such as continuous integration frameworks or product dashboards. Much of the
challenge in developing UIs for these applications lies in writing imperative JavaScript to render
data correctly every time it changes. Two-way data binding frees you from needing to write this glue
code, which results in much slimmer and easier-to-read JavaScript. As you’ll see when you write a
stock market dashboard in Chapter 1, two-way data binding and directives make it easy to elegantly
structure applications that need to display a lot of data.

Mobile Websites
AngularJS has extensive support for most common mobile browsers (Android, Chrome Mobile, iOS
Safari). Furthermore, as you’ll see in Chapter 6, AngularJS has powerful animation support, and single-
page apps enable you to leverage browser caching to minimize your bandwidth usage. This enables you
to build mobile web applications that are fast and effectively mimic native applications. In addition,

www.it-ebooks.info

http://www.it-ebooks.info/

xxx

INTRODUCTION

frameworks like Ionic (Chapter 10) enable you to build hybrid mobile applications, applications written
in JavaScript but distributed through the Android and iPhone app stores, using AngularJS.

Building a Prototype
One theme that appears numerous times in this book is the idea of two-way data binding creating
an effective separation between front-end JavaScript engineering and user interface/user experience
(UI/UX) design. Two-way data binding enables the front-end JavaScript engineer to expose an
application programming interface (API) that a UI/UX designer can then access in HTML, enabling
both the front-end engineer and the designer to work in their preferred environments without
stepping on each other’s toes. This is particularly useful for building out a prototype browser
UI quickly, because you can then effectively parallelize tasks and enable your team to run more
smoothly. In addition, AngularJS’s rich testing ecosystem enables you to ensure solid test coverage,
and thus make sure your prototype doesn’t have any obvious bugs when you present it.

HOW TO USE THIS BOOK

Now that you’ve seen why AngularJS is such a popular library, next up is a brief overview of the
contents of this book and how it can take you from writing beginner-level AngularJS to writing
professional-level AngularJS.

You can think of this book as a “choose your own adventure” for learning AngularJS. If you are an
AngularJS beginner, you will benefit a great deal from reading the book sequentially, as the chapters
provide a logical sequence for learning AngularJS from scratch. However, the chapters and their
examples are designed to be mostly independent of one another. If you are familiar with AngularJS
and are looking to expand your knowledge in one particular area, such as using testing frameworks
(Chapter 9), you can simply go to the appropriate chapter and skip the intermediate chapters. Some
example code is shared between chapters, but each chapter explains each piece of example code
under the assumption that you have never seen it before. Furthermore, some chapters reference
information in other chapters, but they always provide a brief overview of the necessary concept.
Whether you’re just getting started with AngularJS or you’re a more advanced user looking to learn
about a specific topic, this book allows you to skip right to the most useful information. (However,
if you are an AngularJS beginner, you should read Chapter 1 before skipping to other chapters.)
Here are some brief highlights of what you can learn in each chapter.

Chapter 1: Building a Simple AngularJS Application
This chapter is geared toward readers who are new to AngularJS. You use AngularJS to build out a
stock market dashboard application from scratch and get a high-level overview of the topics covered
in subsequent chapters.

Chapter 2: Intelligent Workflow and Build Tools
In this chapter, you learn about the myriad open source tools for scaffolding new AngularJS
applications, automating workflow, and including external dependencies. Special emphasis is placed

www.it-ebooks.info

http://www.it-ebooks.info/

xxxi

INTRODUCTION

on the popular scaffolding tool Yeoman, which enables you to quickly kick-start new AngularJS
applications and provide powerful tools for managing your workflow.

Chapter 3: Architecture
This chapter offers an overview of best practices for structuring AngularJS components, including
how to pass data between services, controllers, and directives. In addition, this chapter explores best
practices for directory structures in applications of various sizes. Finally, this chapter covers two
popular tools for managing file dependencies: RequireJS and Browserify.

Chapter 4: Data Binding
Although AngularJS data binding is elegant and intuitive, intermediate AngularJS developers often
benefit from a deeper understanding of how data binding is actually implemented. This chapter
explores how AngularJS scopes are structured and the implementation details of the $digest loop,
so you can avoid common data binding pitfalls. This chapter also includes an overview of filters,
including use cases and common mistakes.

Chapter 5: Directives
The first half of this chapter offers a basic working knowledge of how to write your own AngularJS
directives and explores various use cases for directives. The second half focuses on designing more
advanced directives using tools like transclusion.

Chapter 6: Templates, Location, and Routing
The primary purpose of this chapter is to supply an overview of how to write single-page
applications in AngularJS, applications that allow a user to transition between multiple “views”
without reloading the page. To build up to creating a single-page application, this chapter provides
a detailed overview of AngularJS templates, the template cache, and the $location service. This
chapter also provides an overview of using CSS3 animations with AngularJS and an example of how
to make single-page applications search-engine-friendly using Prerender.

Chapter 7: Services, Factories, and Providers
This chapter provides a thorough description of the different methods of creating a service in
AngularJS. You also learn how services work “under the hood” and how to take advantage of
services’ internal implementation.

Chapter 8: Server Communication
In this chapter, you use basic services and interceptors to create a login system. In addition, you
learn how to bootstrap a simple back end using StrongLoop’s Loopback API and integrate Facebook
login with your client-side AngularJS application and your Loopback API.

www.it-ebooks.info

http://www.it-ebooks.info/

xxxii

INTRODUCTION

Chapter 9: Testing and Debugging AngularJS Applications
This chapter includes a thorough overview of structuring unit tests and DOM integration tests (also
known as halfway tests) for your AngularJS applications using the popular open source test runner
Karma. This chapter also discusses the open source behavior-driven development (BDD) testing
frameworks Mocha and Jasmine and explains how to run your tests in SauceLabs’s browser cloud.

Chapter 10: Moving On
This chapter contains a brief overview of several popular open source modules that enable
AngularJS to do some unexpected things. In particular, you learn how to integrate Twitter
Bootstrap components using Angular-UI Bootstrap, how to build hybrid mobile applications with
AngularJS and the Ionic framework, and how to integrate two popular open source JavaScript
modules, Moment and Mongoose, with AngularJS. You also learn how to use ECMAScript 6
generators with AngularJS’s $http service.

HOW TO WORK WITH THIS BOOK’S SAMPLE CODE

Each chapter in this book has its own sample code, available in the Code Downloads section at
http://www.wrox.com/go/proangularjs. Each chapter starts with a reminder to visit this URL
to download the sample code, so don’t worry about bookmarking this exact page. Although each
chapter includes code in the text as appropriate, it’s best to download each chapter’s sample code
and try the examples for yourself.

This book’s sample code has been designed to have a minimum of outside dependencies. The
beginning of each chapter explains any special dependencies required for running its sample
code. For many of this book’s examples, you only require a modern browser. (The examples were
primarily developed with Google Chrome 37 and Mozilla Firefox 32, but Internet Explorer 9 and
Safari 6 should be sufficient.) These examples are in the form of .html files that you can open by
right-clicking on the file and choosing to open the file in your browser using the file:// protocol.
For instance, to view the data _ binding.html example from this chapter’s sample code, you may
navigate to file:///Users/user/Chapter%200/data _ binding.html if this chapter’s sample code is
in the /Users/user/Chapter 0 directory. You may safely assume that you can open any HTML file
from this book’s sample code in your browser without extra setup unless otherwise specified.

You don’t require a special integrated development environment (IDE) for this book’s sample code.
Text editors like vim and SublimeText should be sufficient for experimenting with the sample code.
You can use IDEs like WebStorm if you prefer, but there is limited benefit to using an IDE for this
book’s sample code.

Many of the concepts covered in this book require a web server to function properly. To make this
process as lightweight as possible, this book utilizes NodeJS and the NodeJS package manager
npm to start web servers. In addition, many of the tools you’ll learn about in this book, like Grunt,
Prerender, and Yeoman, are most easily installed through npm. To install NodeJS, you should go
to http://nodejs.org/download and follow the instructions for your platform. NodeJS is easy

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
file://protocol
file:///Users/user/Chapter%200/data
http://nodejs.org/download
http://www.it-ebooks.info/

xxxiii

INTRODUCTION

to install and supports virtually every common desktop operating system (including Windows);
furthermore, npm is automatically included with NodeJS. Most examples in this book that require
NodeJS, however, assume that you are using a bash shell. Linux and OSX users can use their default
terminals. On Windows, you should use git bash (http://msysgit.github.io), a bash terminal
for Windows, if you want to run the command-line instructions as is. (Keep in mind, NodeJS does
not officially support Cygwin, so using Cygwin is not recommended.) Each chapter explains how to
install additional dependencies and reminds you to install NodeJS if necessary.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, this book uses a number
of conventions.

NOTE  Notes, tips, hints, tricks, and asides to the current discussion are offset
like this.

As for styles in the text:

➤➤ URLs within the text are presented like so: https://angularjs.org/#!.

➤➤ Code shows up like this:

A monofont type is used for code examples.

Bold is used to emphasize code that is particularly important in the present
context or to show changes from a previous code snippet.

ERRATA

Every effort has been made to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of the Wrox books, like a spelling mistake
or faulty piece of code, please share your feedback. By sending in errata, you may save another reader
hours of frustration; at the same time, you are helping to provide even higher-quality information.

To find the errata page for this book, go to http://www.wrox.com/WileyCDA/ and locate the title using
the Search box or one of the title lists. Then, on the Book Search Results page, click the Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox editors.

NOTE  A complete book list including links to errata is also available at
http://www.wrox.com/WileyCDA/Section/id-105077.html.

www.it-ebooks.info

http://msysgit.github.io
http://www.wrox.com/WileyCDA/
https://angularjs.org/#
http://www.wrox.com/WileyCDA/Section/id-105077.html
http://www.it-ebooks.info/

xxxiv

INTRODUCTION

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send the error you have found. The information will be checked and, if appropriate, a message
will be posted to the book’s errata page and the problem corrected in subsequent editions of the
book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book, but as you develop your own applications. To join the forums, just follow these
steps:

	 1.	 Go to http://p2p.wrox.com and click the Register link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join as well as any optional information you want to
provide, and click Submit.

	 4.	 You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE  You can read messages in the forums without joining P2P but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the web. If you would like to have new messages from a particular
forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum
listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.it-ebooks.info

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.it-ebooks.info/

PROFESSIONAL

AngularJS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Simple AngularJS
Application

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ Creating a new AngularJS application from scratch

➤➤ Creating custom controllers, directives, and services

➤➤ Communicating with an external API server

➤➤ Storing data client-side using HTML5 LocalStorage

➤➤ Creating a simple animation with ngAnimate

➤➤ Packaging your application for distribution and deployment using
GitHub Pages

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab. For added clarity, the code downloads contain an
individual directory for each step of the application building guide. The README.md file located
in the root directory of the companion code contains additional information for properly
utilizing the code for each step of the guide. Those who prefer to use GitHub can find the
repository for this application, which includes Git tags for each step of the guide and detailed
documentation, by visiting http://github.com/diegonetto/stock-dog.

WHAT YOU ARE BUILDING

The best way to learn AngularJS is to jump directly into a real‐world, hands‐on application that
leverages nearly all key components of the framework. Over the course of this chapter, you will
build StockDog, a real‐time stock watchlist monitoring and management application. For the

1

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://github.com/diegonetto/stock-dog
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

2  ❘  CHAPTER 1   Building a Simple AngularJS Application

unfamiliar, a watchlist in this context is simply an arbitrary grouping of desired stocks that are to be
tracked for analytical purposes. The Yahoo Finance API (application programming interface) will be
utilized to fetch real‐time stock quote information from within the client. The application will not
include a dynamic back end, so all information will be fetched from the Yahoo Finance API directly
or, in the case of company ticker symbols, be contained within a static JSON (JavaScript Object
Notation) file. By the end of this chapter, users of your application will be able to do the following:

➤➤ Create custom‐named watchlists with descriptions

➤➤ Add stocks from the NYSE, NASDAQ, and AMEX exchanges

➤➤ Monitor stock price changes in real time

➤➤ Visualize portfolio performance of watchlists using charts

StockDog will consist of two main views that can be accessed via the application’s navigation bar.
The dashboard view will serve as the landing page for StockDog, allowing users to create new
watchlists and monitor portfolio performance in real time. The four key performance metrics
displayed in this view will be Total Market Value, Total Day Change, Market Value by Watchlist
(pie chart), and Day Change by Watchlist (bar graph). A sample dashboard view containing three
watchlists is shown in Figure 1-1.

FIGURE 1-1

www.it-ebooks.info

http://www.it-ebooks.info/

What You Will Learn  ❘  3

Each watchlist created in StockDog has its own watchlist view containing an interactive table
of stock price information as well as a few basic calculations that assist in monitoring an equity
position. Here, users of your application can add new stocks to the selected watchlist, monitor
stock price changes in real time (during market hours), and perform in‐line editing of the number of
shares owned. A sample watchlist view tracking seven stocks is shown in Figure 1-2.

FIGURE 1-2

The process of building this application will be described over a series of 12 steps. Each step will
focus on developing a key feature of StockDog, with AngularJS components introduced along the
way, because they are needed to fulfill requirements defined by the application. Before beginning
the construction of StockDog, it is important to establish a high‐level overview of what you will be
learning.

WHAT YOU WILL LEARN

The step‐by‐step guide included in this chapter will go beyond basic AngularJS usage. By
implementing practical, real‐world examples using the main building blocks of this framework, you
will be exposed to most of the components provided by AngularJS, which will then be expanded
upon in detail in subsequent chapters. It is important to keep this in mind because some of the
features required by StockDog will utilize advanced concepts of the framework. In these cases,
specific details on how the underlying AngularJS mechanism works will be omitted, but a high‐
level explanation will always be provided so that you can understand how the component is being

www.it-ebooks.info

http://www.it-ebooks.info/

4  ❘  CHAPTER 1   Building a Simple AngularJS Application

utilized in the context of implementing the feature at hand. By the end of this chapter, you will have
learned how to do the following:

➤➤ Structure a multiview single‐page application

➤➤ Create directives, controllers, and services

➤➤ Configure $routeProvider to handle routing between views

➤➤ Install additional front‐end modules

➤➤ Handle dynamic form validation

➤➤ Facilitate communication between AngularJS components

➤➤ Utilize HTML5 LocalStorage from within a service

➤➤ Communicate with external servers using $http

➤➤ Leverage the $animate service for cascading style sheet (CSS) animations

➤➤ Build application assets for production

➤➤ Deploy your built application to GitHub Pages

Now that the scope and high‐level overview for StockDog have been discussed, you should have enough
background and context to begin building the application. For those interested in viewing a working
demonstration of StockDog immediately, you can find the completed application at http://stockdog.io.

STEP 1: SCAFFOLDING YOUR PROJECT WITH YEOMAN

Starting a brand new web application from scratch can be a hassle because it usually involves
manually downloading and configuring several libraries and frameworks, creating an intelligent
directory structure, and wiring your initial application architecture by hand. However, with
major advancements in front‐end tooling utilities, this no longer needs to be such a tedious
process. Throughout this guide, you will utilize several tools to automate various aspects of
your development workflow, but detailed explanations of how these tools work will be saved
for discussion in Chapter 2, “Intelligent Workflow and Build Tools.” Before getting started with
scaffolding your project, you need to verify that you have the following prerequisites installed as
part of your development environment:

➤➤ Node.js—http://nodejs.org/

➤➤ Git—http://git-scm.com/downloads

All the tools used in this chapter were built using Node.js and can be installed from the Node
Packaged Modules (NPM) registry using the command‐line tool npm that is included as part of your
Node.js installation. Git is required for one of these tools, so please ensure that you have properly
configured both it and Node.js on your system before continuing.

Installing Yeoman
Yeoman is an open source tool with an ecosystem of plug‐ins called generators that can be used
to scaffold new projects with best practices. It is composed of a robust and opinionated client-side

www.it-ebooks.info

http://stockdog.io
http://nodejs.org/
http://git-scm.com/downloads
http://www.it-ebooks.info/

Step 1: Scaffolding Your Project with Yeoman  ❘  5

stack that promotes efficient workflows which, coupled with two additional utilities, can help you
stay productive and effective as a developer. Following are the tools Yeoman uses to accomplish this
task:

➤➤ Grunt—A JavaScript task runner that helps automate repetitive tasks for building and testing
your application

➤➤ Bower—A dependency management utility so you no longer have to manually download and
manage your front‐end scripts

You can find an in‐depth discussion of Yeoman, its recommended workflow, and associated tooling
in Chapter 2, “Intelligent Workflow and Build Tools.” For now, all you need to do to get started is
to install Grunt, Bower, and the AngularJS generator by running the following from your command
line:

npm install –g grunt-cli
npm install –g bower
npm install –g generator-angular@0.9.8

NOTE  Specifying the -g flag when invoking npm install ensures that the
desired package will be available globally on your machine. When you’re
installing generator-angular, the official AngularJS generator maintained
by the Yeoman team, version 0.9.8 is specified. This should allow you
to easily follow along with the rest of the guide, regardless of the current
version. For any subsequent projects, it’s highly recommended that you
update to the latest version. You can do this by simply running
npm install -g generator-angular once you have completed this chapter.

Scaffolding Your Project
With all the prerequisite tools installed on your machine, you are ready to get started scaffolding
your project. Thankfully, Yeoman makes this process quick and painless. Go ahead and create a
new directory named StockDog, and then navigate into it using your command‐line application of
choice. From within your newly created project directory, run the following from the command
line:

yo angular StockDog

This fires up the AngularJS Yeoman generator, which asks you a few questions regarding how
you want to set up your application. The first prompt asks if you want to use Sass with Compass.
Although these are both incredibly useful tools for managing your style sheets, their usage is outside
the scope of this chapter, so please answer no by typing n and then pressing Enter:

[?] Would you like to use Sass (with Compass)? (Y/n)

The next prompt asks if you want to include Bootstrap, the front‐end framework created by Twitter.
StockDog makes heavy use of the Hypertext Markup Language (HTML) and CSS assets that

www.it-ebooks.info

mailto:generator-angular@0.9.8
http://www.it-ebooks.info/

6  ❘  CHAPTER 1   Building a Simple AngularJS Application

Bootstrap provides, so you need to include this as part of your application. Because the default
response to this prompt is yes, as expressed by the capitalized Y, simply pressing the Enter key
allows you to continue with Bootstrap included:

[?] Would you like to include Bootstrap? (Y/n)

The final prompt asks which optional AngularJS modules you want to include in your application.
Although you won’t necessarily be utilizing all the ones listed in Figure 1-3 for this specific project,
it’s recommended that you go ahead and include them anyway. You can learn more by visiting
https://docs.angularjs.org/api and scrolling down to see what services and directives are
made available for each respective module. Simply press the Enter key to continue with all the
default modules and have Yeoman begin scaffolding your project, as shown in Figure 1-3.

FIGURE 1-3

After pressing Enter on the final prompt and waiting for Yeoman to finish running all the relevant
scaffolding tasks, which will take a few brief moments, the foundation for StockDog will be ready
for exploration. In the following section, you will take a closer look at the important parts of the
directory structure and workflow tasks that Yeoman configured as part of the scaffolding process.

Exploring the Application
Now that your project setup is complete, take a few minutes to explore what the AngularJS Yeoman
generator has provided for you. Your project’s directory should be structured as follows:

StockDog/
├── .bowerrc
├── .editorconfig
├── .gitattributes

www.it-ebooks.info

https://docs.angularjs.org/api
http://www.it-ebooks.info/

Step 1: Scaffolding Your Project with Yeoman  ❘  7

├── .jshintrc
├── .travis.yml
├── bower.json
├── package.json
├── Gruntfile.js
├── app/
│ ├── 404.html
│ ├── favicon.ico
│ ├── robots.txt
│ ├── index.html
│ ├── images/
│ ├── styles/
│ │ └── main.css
│ ├── views/
│ │ └── main.html
│ │ └── about.html
│ ├── scripts/
│ │ └── app.js
│ │ └── controllers/
│ │ │ └── main.js
│ │ │ └── about.js
├── node_modules/
├── bower_components/
├── test/

Upon first glance, this directory structure may seem overwhelming, but many of the generated files
created by Yeoman are meant to help enforce best practices and can be completely ignored for the
remainder of this chapter. The files and directories that you will be focusing on have been bolded for
emphasis, so for now you only need to pay attention to those.

NOTE  Depending on how you are viewing your project’s directory, your
operating system may automatically hide the files prefixed by a dot. These files
are meant for configuring various tools such as Git, Bower, and JSHint.

As you have probably guessed, the bulk of your application is contained inside the app/
directory. Here you can find the main index.html file, which serves as the entry point for your
entire application, as well as the styles/, views/, and scripts/ directories, which contain
CSS, HTML, and JavaScript files, respectively. Grunfile.js is also of particular interest
because it configures several Grunt tasks that support your workflow during the development of
StockDog. Go ahead and fire up your terminal application of choice and run the following from
the command line:

grunt serve

This launches the local development server configured by Yeoman during the scaffolding process
and opens the current skeleton application within a new tab inside your default browser. At
this point, your browser should be pointed at http://localhost:9000/#/ and displaying an
application page that looks identical to Figure 1-4.

www.it-ebooks.info

http://localhost:9000/#/
http://www.it-ebooks.info/

8  ❘  CHAPTER 1   Building a Simple AngularJS Application

Congratulations! You have successfully finished scaffolding your project and are almost ready to
begin building the first component of the StockDog application. Throughout your development
process, be sure to keep the terminal session where you ran the grunt serve command open
because it is responsible for serving all your application assets for use in your browser. Before
moving onto the next section, take a minute to modify the app/views/main.html file by removing
all its contents. Upon saving your modification, you should notice that your browser tab is refreshed
with your changes instantly, which in this case should consist of a mostly empty view. Yeoman
set up this automation magic when it configured your Gruntfile.js with tasks that watch for
modifications in your application’s files and refresh your browser accordingly. This functionality
alone will prove to be quite helpful as you begin building components of the StockDog application.

Cleaning Up
So far in this chapter, you have seen how to use Yeoman to scaffold a new project from scratch,
explored the generated project structure, and gotten a glimpse of how the provided workflow can
help you stay productive during development. The last thing you need to do before moving onto the
next step of this guide is to delete a few generated files that StockDog won’t need and clean up any
associated references. Please locate and delete the following files from your project:

app/views/main.html
app/views/about.html

FIGURE 1-4

www.it-ebooks.info

http://www.it-ebooks.info/

Step 2: Creating Watchlists  ❘  9

app/scripts/controllers/main.js
app/scripts/controllers/about.js

Next, remove the routes Yeoman created by opening the app/scripts/app.js file and deleting
the two .when() configurations of the $routeProvider. You can accomplish this by removing the
following lines of code:

.when('/', {
 templateUrl: 'views/main.html',
 controller: 'MainCtrl'
})
.when('/about', {
 templateUrl: 'views/about.html',
 controller: 'AboutCtrl'
})

Finally, remove the references to the previously deleted main.js and about.js controller scripts by
deleting the following lines from within the app/index.html file:

<script src="scripts/controllers/main.js"></script>
<script src="scripts/controllers/about.js"></script>

With these modifications of the generated skeleton application complete, you are now ready to begin
building the Watchlist component of StockDog. To access the completed code for this step of the
guide in its entirety, please refer to the step-1 directory inside the companion code for this chapter
or check out the corresponding tag of the GitHub repository.

STEP 2: CREATING WATCHLISTS

In this section, you will be implementing stock watchlists, the first major component of the
StockDog application. As previously mentioned, a watchlist is simply an arbitrary grouping of
desired stocks that are to be tracked for analytical purposes. Users of your application will create
new watchlists in StockDog by filling out a small form, presented inside a modal, which prompts
them for a name and brief description to identify the watchlist. All watchlists registered with the
application have their data saved client‐side in the browser using HTML5 LocalStorage. Finally,
watchlists will be presented by name within a small panel in the user interface. Armed with a high‐
level understanding of the component’s desired functionality, you will now learn how to implement
watchlists using AngularJS.

The Application Module
The main entry point for all AngularJS applications is the top‐level app module. So what exactly is
a module? As mentioned in the official documentation, you can think of a module as a container
for the different parts of your application. Although most applications have a main method that
instantiates and wires together various components, AngularJS modules declaratively specify how
your components should be bootstrapped. Some advantages to this approach are that modules can
be loaded asynchronously in any order, and code readability and reusability are enhanced. The
main application module is defined by invoking the .module() function, which accepts a name

www.it-ebooks.info

http://www.it-ebooks.info/

10  ❘  CHAPTER 1   Building a Simple AngularJS Application

and array of dependencies, located inside the app/scripts/app.js file. Make note of the module
name, which in this case should be stockDogApp, because you will be referencing it shortly. For
those who have used RequireJS in the past, this method of declaring module dependencies should
look familiar.

Installing Module Dependencies
Currently, the only modules your application depends on should be ngAnimate, ngCookies,
ngResource, ngRoute, ngSanitize, and ngTouch, all of which Yeoman installed based on your
response to the third prompt of the initial scaffolding process. Later in this section, you will
be using the $modal service exposed by AngularStrap, a third‐party module containing native
AngularJS bindings for various components provided by the Bootstrap framework. You can
learn more about AngularStrap by visiting its documentation site located at http://mgcrea
.github.io/angular-strap/. Because the workflow set up by Yeoman uses Bower for managing
front‐end scripts, installing AngularStrap is as simple as running the following from your
command line:

bower install angular-strap#v2.1.0 –save

This downloads the AngularStrap library and saves it as a dependency inside your bower.json file.
If you have left your application server running, which was launched using grunt serve, Grunt
will have seen the modification to bower.json and automatically updated your index.html file to
reference the CSS and JavaScript files that AngularStrap provides. Not bad for a simple one‐line
command! Now all that is left is to register the AngularStrap module, which is named mgcrea
.ngStrap, as a dependency for your stockDogApp module by adding it to the array of dependencies,
as shown in Listing 1‐1.

LISTING 1-1:  app/scripts/app.js

angular
 .module('stockDogApp', [
 'ngAnimate',
 'ngCookies',
 'ngResource',
 'ngRoute',
 'ngSanitize',
 'ngTouch',
 'mgcrea.ngStrap'
]);

NOTE  Another commonly used AngularJS companion library that exposes
directives for various Bootstrap components is UI Bootstrap, a project that
the AngularUI organization maintains. To learn more about UI Bootstrap,
please visit the documentation site located at http://angular-ui.github.io/
bootstrap/.

www.it-ebooks.info

http://mgcrea.github.io/angular-strap/
http://angular-ui.github.io/bootstrap/
http://mgcrea.github.io/angular-strap/
http://angular-ui.github.io/bootstrap/
http://www.it-ebooks.info/

Step 2: Creating Watchlists  ❘  11

Bootstrapping the Application
Now that you have seen how to define an application module and register dependencies, the next
and final step in bootstrapping StockDog is to reference the stockDogApp module from within your
HTML. Conveniently enough, Yeoman has already done this for you. Take a look inside your app/
index.html file; on line 19, you should see the following code:

<body ng-app="stockDogApp">

The ng-app attribute that has been attached to the page’s <body> tag is an AngularJS directive that
flags the HTML element, which should be considered the root of your application. Directives will be
defined shortly, but for now, the takeaway is that to bootstrap your AngularJS application module,
you must add the ng-app attribute to your application’s HTML. Also worth mentioning is that
because ng-app is an element attribute, you have the freedom to move it around and decide whether
the entire HTML page or only a portion of it should be treated as the Angular application. With the
bootstrapping of your application using the stockDogApp module out of the way, you will now be
exposed to AngularJS services, another crucial component of the framework.

The Watchlist Service
As defined in the AngularJS documentation, services are substitutable objects that are wired
together using dependency injection. Services provide a great way to organize and share
encapsulated code across your application. It is worth mentioning that AngularJS services are lazily
instantiated singletons, meaning that they are only instantiated when an application component
depends on it, with each dependent component receiving a single instance reference generated by
the service factory. For the purpose of building out the watchlists functionality for StockDog, you
will be creating a custom service that handles reading and writing the watchlists model to HTML5
LocalStorage. To get started, run the following from your command line:

yo angular:service Watchlist-Service

This uses the AngularJS Yeoman generator’s packaged subgenerator for scaffolding out a skeleton
service contained within the newly created watchlist-service.js file, which is located inside the app/
scripts/services directory. In addition, Yeoman adds a reference to this newly created script, which
can be seen by the addition of the following line of code at the bottom of your app/index.html file:

<script src="scripts/services/watchlist-service.js"></script>

Now that you have quickly wired up an entry point for your new service, you need to install
Lodash, a utility library that offers functional programming helpers for JavaScript, which will
be used throughout the remainder of this chapter. Use Bower to install Lodash by running the
following from your command line:

bower install lodash ––save

Lodash was initially a fork of the Underscore.js project but has since evolved to become a
highly configurable and performant library loaded with a plethora of additional helpers. The
WatchlistService implementation, which uses a couple of Lodash methods, is shown in Listing 1-2.

www.it-ebooks.info

http://www.it-ebooks.info/

12  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-2:  app/scripts/services/watchlist-service.js

'use strict';

angular.module('stockDogApp')
 .service('WatchlistService', function WatchlistService() {
 // [1] Helper: Load watchlists from localStorage
 var loadModel = function () {
 var model = {
 watchlists: localStorage['StockDog.watchlists'] ?
 JSON.parse(localStorage['StockDog.watchlists']) : [],
 nextId: localStorage['StockDog.nextId'] ?
 parseInt(localStorage['StockDog.nextId']) : 0
 };
 return model;
 };

 // [2] Helper: Save watchlists to localStorage
 var saveModel = function () {
 localStorage['StockDog.watchlists'] = JSON.stringify(Model.watchlists);
 localStorage['StockDog.nextId'] = Model.nextId;
 };

 // [3] Helper: Use lodash to find a watchlist with given ID
 var findById = function (listId) {
 return _.find(Model.watchlists, function (watchlist) {
 return watchlist.id === parseInt(listId);
 });
 };

 // [4] Return all watchlists or find by given ID
 this.query = function (listId) {
 if (listId) {
 return findById(listId);
 } else {
 return Model.watchlists;
 }
 };

 // [5] Save a new watchlist to watchlists model
 this.save = function (watchlist) {
 watchlist.id = Model.nextId++;
 Model.watchlists.push(watchlist);
 saveModel();
 };

 // [6] Remove given watchlist from watchlists model
 this.remove = function (watchlist) {
 _.remove(Model.watchlists, function (list) {
 return list.id === watchlist.id;
 });
 saveModel();
 };

 // [7] Initialize Model for this singleton service

www.it-ebooks.info

http://www.it-ebooks.info/

Step 2: Creating Watchlists  ❘  13

 var Model = loadModel();
 });

The first thing you should notice is the invocation of the .service() method on the stockDogApp
module, which registers this service with the top-level AngularJS application. This allows your
service to be referenced elsewhere by injecting WatchlistService into the desired component
implementation function. The loadModel() helper [1] requests the data stored in the browser’s
LocalStorage using keys that are namespaced under StockDog to avoid potential collisions. The
watchlists value retrieved from localStorage is an array, whereas nextId is simply an integer
used to uniquely identify each watchlist. The ternary operator guarantees that the initial value
of both these variables is properly set and correctly parsed. The saveModel() helper [2] simply
needs to stringify the watchlists array before persisting its contents to localStorage. Another
internal helper function, findById() [3], uses Lodash to find a watchlist by a given ID inside the
aforementioned array.

With these internal helpers out of the way, you should now notice that the remaining functions
are attached directly to the service instance by using the keyword this. Although using this can
be error prone and is not always the best approach, in this case it is quite alright because Angular
instantiates a singleton by calling new on the function supplied to .service(). The service .query()
function [4] returns all watchlists in the model unless a listId is specified. The .save() function
[5] increments nextId and pushes a new watchlist onto the watchlists array before delegating to the
saveModel() helper. Finally, .remove() uses a Lodash method to accomplish the exact opposite [6].
To complete this service, a local Model variable is initialized using the loadModel() helper. At this
point, your WatchlistService is ready to be wired up from within an AngularJS directive, which
you will be creating in the following section.

NOTE  If up until this point you have left your local development server running,
Grunt should be reporting warnings that ' _ ' is not defined. This is because
Lodash attaches itself to the global scope via an underscore, but the process in
charge of linting your JavaScript files (checking them for errors) is not aware of
this fact. Adding " _ ": false to the globals object located at the bottom of your
.jshintrc file makes these warnings go away.

The Watchlist‐Panel Directive
By now, you might have already heard about AngularJS directives and how versatile they can be if
used correctly. So what exactly is a directive? As defined in the official documentation, directives
are markers on a Document Object Model (DOM) element (such as an attribute, element name,
comment, or CSS class) that tell AngularJS’s HTML compiler ($compile) to attach a specified
behavior to, or even transform, the DOM element and its children. You will take a deeper look at
how directives work in Chapter 5, “Directives.” For now, all you need to know is that not only can
you create your own custom directives, but AngularJS also comes with a set of built‐in directives
ready for use, like ng-app, ng-view, and ng-repeat, which are all prefixed by ng. For the StockDog

www.it-ebooks.info

http://www.it-ebooks.info/

14  ❘  CHAPTER 1   Building a Simple AngularJS Application

application, all your custom directives are prefixed by stk so they are easily identifiable. You can
use Yeoman’s directive subgenerator to scaffold and wire up a skeleton directive by running the
following from your command line:

yo angular:directive stk-Watchlist-Panel

This creates the stk-watchlist-panel.js file inside the app/scripts/directives directory
and automatically adds a reference to the newly created script inside your index.html file. The
implementation of this directive is shown in Listing 1‐3.

LISTING 1‐3:  app/scripts/directives/stk‐watchlist‐panel.js

'use strict';

angular.module('stockDogApp')
 // [1] Register directive and inject dependencies
 .directive('stkWatchlistPanel', function ($location, $modal, WatchlistService) {
 return {
 templateUrl: 'views/templates/watchlist-panel.html',
 restrict: 'E',
 scope: {},
 link: function ($scope) {
 // [2] Initialize variables
 $scope.watchlist = {};
 var addListModal = $modal({
 scope: $scope,
 template: 'views/templates/addlist-modal.html',
 show: false
 });

 // [3] Bind model from service to this scope
 $scope.watchlists = WatchlistService.query();

 // [4] Display addlist modal
 $scope.showModal = function () {
 addListModal.$promise.then(addListModal.show);
 };

 // [5] Create a new list from fields in modal
 $scope.createList = function () {
 WatchlistService.save($scope.watchlist);
 addListModal.hide();
 $scope.watchlist = {};
 };

 // [6] Delete desired list and redirect to home
 $scope.deleteList = function (list) {
 WatchlistService.remove(list);
 $location.path('/');
 };
 }
 };
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Step 2: Creating Watchlists  ❘  15

The .directive() method handles registering the stkWatchlistPanel directive with the
stockDogApp module [1]. This example illustrates the use of Angular’s dependency injection
mechanism, which is as simple as specifying parameters to the directive’s implementation function.
Note that the previously created WatchlistService has been injected as a dependency, along
with the $location and $modal services, because it will be needed to complete the directive’s
implementation. The implementation function itself returns an object containing configuration
options and a link() function. Inside this function is where the directive’s scope variables
are initialized [2], which include creating a modal using AngularStrap’s $modal service. The
.query() method of the WatchlistService is invoked to bind the service’s model to the directive’s
scope [3]. Handler functions are then attached to the $scope and provide functionality for showing
the modal [4], creating a new watchlist from the modal’s fields [5], and deleting a watchlist [6]. The
implementations of these handler functions are straightforward and use the injected services.

The configuration options for the stkWatchlistPanel directive modify its behavior by restricting
it for use as an element via restrict: 'E' and isolating its scope so that anything attached to the
$scope variable is available only within the context of this directive. The templateUrl option can
reference a file that Angular loads and renders into the DOM. For this application, you will be
storing templates inside the app/views/templates directory, so go ahead and create that now. The
watchlist-panel.html template needed by this directive is shown in Listing 1‐4.

LISTING 1‐4:  app/views/templates/watchlist‐panel.html

<div class="panel panel-info">
 <div class="panel-heading">

 Watchlists
 <!––[1] Invoke showModal() handler on click ––>
 <button type="button"
 class="btn btn-success btn-xs pull-right"
 ng-click="showModal()">

 </button>
 </div>
 <div class="panel-body">
 <!–– [2] Show help text if no watchlists exist ––>
 <div ng-if="!watchlists.length" class="text-center">
 Use to create a list
 </div>
 <div class="list-group">
 <!–– [3] Repeat over each list in watchlists and create link ––>
 <a class="list-group-item"
 ng-repeat="list in watchlists track by $index">
 {{list.name}}
 <!–– [4] Delete this list by invoking deleteList() handler ––>
 <button type="button" class="close"
 ng-click="deleteList(list)"> ×
 </button>

 </div>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

16  ❘  CHAPTER 1   Building a Simple AngularJS Application

The watchlist-panel.html template makes heavy use of the classes and icons provided by the
Bootstrap framework to create a simple, yet polished, interface. The built‐in AngularJS ng-click
directive is used to invoke the showModal() handler when the plus button is clicked [1]. The ng-if
directive conditionally inserts or removes a DOM element based on the evaluation of an expression,
which in this case displays instruction text when the watchlists array is empty [2]. To iterate
over the watchlists array, ng-repeat is used with the track by $index syntax so that Angular
doesn’t complain if the array contains identical objects [3]. Worth mentioning is the fact that
because ng-repeat is attached to an HTML <a> tag, a unique link is created for each object in the
array. The double curly braces, {{ }}, used to reference the current list’s name, are called a binding,
while list.name itself is called an expression. The binding tells Angular that it should evaluate
the expression and insert the result into the DOM in place of the binding. A binding results in
efficient continuous updates whenever the result of the expression evaluation changes. Finally, the
deleteList() handler is wired into the interface via another button, connected once again using the
ng-click directive [4].

Basic Form Validation
The final step in completing the implementation of the stkWatchlistPanel directive is to build
the form that allows users to create new watchlists. If you remember, inside the directive’s link()
function, the addListModal variable was initialized using the $modal service exposed by the
AngularStrap module. The $modal service accepts a template option, which renders the desired
HTML inside a Bootstrap modal. Create a new file inside the app/views/templates/ directory
named addlist-modal.html. The implementation of this template is shown in Listing 1‐5.

LISTING 1‐5:  app/views/templates/addlist‐modal.html

<div class="modal" tabindex="-1" role="dialog">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <!–– [1] Invoke $modal.$hide() on click ––>
 <button type="button" class="close"
 ng-click="$hide()"> ×
 </button>
 <h4 class="modal-title">Create New Watchlist</h4>
 </div>

NOTE  Upon saving this HTML file, you may have noticed that your browser
did not automatically refresh with the changes. That is because the current
Grunt workflow is only watching for changes to HTML files in the top‐level
app/views directory. To force Grunt to recursively watch for modifications of
any HTML files inside of app/views, change the regular expression on line 59 of
your Gruntfile.js to the following:

'<%= yeoman.app %>/**/*.html',

www.it-ebooks.info

http://www.it-ebooks.info/

Step 2: Creating Watchlists  ❘  17

 <!–– [2] Name this form for validation purposes ––>
 <form role="form" id="add-list" name="listForm">
 <div class="modal-body">
 <div class="form-group">
 <label for="list-name">Name</label>
 <!–– [3] Bind input to watchlist.name ––>
 <input type="text"
 class="form-control"
 id="list-name"
 placeholder="Name this watchlist"
 ng-model="watchlist.name"
 required>
 </div>
 <div class="form-group">
 <label for="list-description">Brief Description</label>
 <!–– [4] Bind input to watchlist.description ––>
 <input type="text"
 class="form-control"
 id="list-description"
 maxlength="40"
 placeholder="Describe this watchlist"
 ng-model="watchlist.description"
 required>
 </div>
 </div>
 <div class="modal-footer">
 <!–– [5] Create list on click, but disable if form is invalid ––>
 <button type="submit"
 class="btn btn-success"
 ng-click="createList()"
 ng-disabled="!listForm.$valid">Create</button>
 <button type="button"
 class="btn btn-danger"
 ng-click="$hide()">Cancel</button>
 </div>
 </form>
 </div>
 </div>
</div>

The first thing you should notice with this template is that not only does it reference the handler
functions attached to the stkWatchlistPanel directive’s scope, it also leverages the $hide()
method exposed by the $modal service [1]. Because inputs are required to gather the information
necessary to create a new watchlist, an HTML <form> is used [2]. Pay particular attention to the
name="listForm" attribute because this is how you reference the form to check its validity. The
two <input> tags are augmented with the ng-model directive, which binds the respective input
values to the $scope.watchlist variable ([3] & [4]) initialized in the directive’s link() function.
The HTML required attribute is also used for both inputs because you want to ensure the user
specifies both a name and a description before creating a new watchlist. Finally, the directive’s
createList() handler is invoked when the Create button is clicked, but only when the form is valid.
The built‐in ng-disabled directive disables or enables the button based on the result of evaluating
the !listForm.$valid expression.

www.it-ebooks.info

http://www.it-ebooks.info/

18  ❘  CHAPTER 1   Building a Simple AngularJS Application

Using the Directive
Now that you have completed creating the stkWatchlistPanel directive and its associated
templates, you will see how easy it is to reference it inside your HTML. Open the app/index.html
file and insert the following code before the <div> tag marked with the footer class:

<stk-watchlist-panel></stk-watchlist-panel>

At this point, you may be wondering why this directive was used as an HTML element tag instead
of an attribute. If you remember, the stkWatchlistPanel directive was created with the restrict
configuration property set to E, which meant that the directive was to be used as an HTML element.
It may also initially seem strange that, although the directive was registered using camelCase, it
was referenced using spinal-case inside the HTML. This is because HTML is case insensitive, so
Angular normalizes your directive’s name using this convention. With the preceding modification to
your index.html file saved, Grunt automatically triggers a browser refresh; your application should
look identical to the screenshot shown in Figure 1-5.

FIGURE 1-5

Clicking the green plus button inside the watchlist panel should launch the Bootstrap modal
containing the watchlist creation form, as shown in Figure 1-6.

FIGURE 1-6

www.it-ebooks.info

http://www.it-ebooks.info/

Step 3: Configuring Client‐Side Routing  ❘  19

Congratulations! You have successfully finished implementing the watchlists feature of the
StockDog application. In doing so, you have seen how to create an AngularJS service that uses
HTML5 LocalStorage as well as a directive that manipulates the DOM and wires together several
services. Take a minute to enjoy your handiwork thus far by creating a few watchlists, refreshing
your browser to confirm that they were indeed persisted to LocalStorage, and then deleting them
from the watchlist panel to ensure that everything is working as expected. If you’ve gotten stuck at
any point during this step, take a moment to examine the completed code by referring to the step-2
directory inside the companion code for this chapter or checking out the corresponding tag of the
GitHub repository.

STEP 3: CONFIGURING CLIENT‐SIDE ROUTING

Client‐side routing is a critical component of any single‐page application. Thankfully, AngularJS
makes the task of mapping URLs to various front‐end views extraordinarily simple. In its current
state, StockDog does not contain additional HTML views other than the index.html file, which
contains an embedded watchlist panel using the stk-watchlist-panel directive. In this section, you
will see how the routing mechanism brings together AngularJS controllers and HTML templates to
power the two main views of the StockDog application.

The Angular ngRoute Module
During the initial process of scaffolding the StockDog application, Yeoman asked if you wanted to
install any supplemental AngularJS modules. One of these was angular-route, which exposes the
ngRoute module that can be listed as a dependency for your application. You can verify that this
module has been properly installed for StockDog by looking inside the app/scripts/app.js file
and locating the reference to ngRoute inside the array of dependencies for the main stockDogApp
module definition, as shown here:

angular
 .module('stockDogApp', [
 'ngAnimate',
 'ngCookies',
 'ngResource',
 'ngRoute', // Include angular-route as dependency
 'ngSanitize',
 'ngTouch',
 'mgcrea.ngStrap'
])

NOTE  Over the course of developing future AngularJS applications, you
will undoubtedly be exposed to, and utilize, several AngularJS modules. The
AngularJS team officially maintains some of these modules, like most of the ones
seen in the code in the “The Angular ngRoute Module” section, with several
others being created by the community. It is imperative that when you install a
new module, usually via Bower, you also look at its documentation and properly
include the corresponding module reference here as a dependency for your
application.

www.it-ebooks.info

http://www.it-ebooks.info/

20  ❘  CHAPTER 1   Building a Simple AngularJS Application

The ngRoute module exposes the $route service and can be configured using the associated
$routeProvider, which allows you to declare how your application’s routes map to view templates
and controllers. Providers are objects that create instances of services and expose configuration APIs
that can be used to control the runtime behavior of a service. You will learn more about providers in
a Chapter 7, “Services, Factories, and Providers,” but for now, the takeaway is that you can use the
$routeProvider to define your application routes and implement deep linking, which allows you to
utilize the browser’s history navigation and bookmark locations within your application.

Adding New Routes
The process of adding a new route to your application consists of four distinct steps:

	 1.	 Define a new controller.

	 2.	 Create an HTML view template.

	 3.	 Call the $routeProvider.when(path, route) method.

	 4.	 Include a <script> tag reference inside index.html if the new controller resides within its
own JavaScript file.

The fourth step is only required if your project’s architecture mirrors that of the StockDog
application, where each new AngularJS component resides within its own JavaScript file. Although
these four steps are simple enough on their own, when working on large applications with many
routes, views, and controllers, it can become a tedious process. Thankfully, the AngularJS Yeoman
generator contains a subgenerator that can be used to entirely automate this four‐step process.
Go ahead and run the following commands from your terminal to scaffold out the AngularJS
controllers, HTML templates, and $routeProvider configurations for the dashboard and watchlist
views of the StockDog application:

yo angular:route dashboard
yo angular:route watchlist ––uri=watchlist/:listId

With these two simple commands, you have instructed Yeoman to create the dashboard.js
and watchlist.js files inside the app/scripts/controllers/ directory. These files define the
DashboardCtrl and WatchlistCtrl, respectively, as well as the dashboard.html and watchlist
.html views inside the app/views/ directory. Because Yeoman created two new JavaScript files for
the desired route controllers, it also took the liberty of inserting the two required <script> tag
references at the bottom of your index.html file. You may have noticed that the second command
invoked the route subgenerator with a ––uri flag. This instructs Yeoman to use an explicitly defined
path when configuring the $routeProvider, which in this case was required because each watchlist
created within StockDog will have its own unique view, generated from the listId, which will
be passed as a route parameter. Looking inside app/scripts/app.js, you should see the following
$routeProvider.when() configurations that Yeoman set up:

.when('/dashboard', {
 templateUrl: 'views/dashboard.html',
 controller: 'DashboardCtrl'
})
.when('/watchlist/:listId', {

www.it-ebooks.info

http://www.it-ebooks.info/

Step 3: Configuring Client‐Side Routing  ❘  21

 templateUrl: 'views/watchlist.html',
 controller: 'WatchlistCtrl'
})

Before continuing onto the next section, take a moment to update the path used in the
$routeProvider.otherwise() function located at the bottom of this file. The redirectTo property
currently points to '/', but in this case you will want to modify it to point to '/dashboard' because
that is the main page of the StockDog application.

Using the Routes
With all the required steps accomplished for adding new client‐side routes and wiring together
the skeleton dashboard and watchlist views, you can now begin linking together the pages within
StockDog using the configured routes. Open the stkwatchlistpanel.js file containing the directive
that renders out the watchlist panel, and inject the AngularJS $routeParams service as a dependency
alongside the current $location, $modal, and WatchlistService dependencies. The call to
.directive() should now look something like this:

.directive('stkWatchlistPanel',
 function ($location, $modal, $routeParams, WatchlistService) {

Next, you will be adding a new $scope variable that will keep track of the current watchlist being
displayed, as well as a gotoList() function that will send users to the desired watchlist view. You
can accomplish this by adding the following code to the directive’s implementation:

$scope.currentList = $routeParams.listId;
$scope.gotoList = function (listId) {
 $location.path('watchlist/' + listId);
};

Once again, the $location service is used to route the user to the desired watchlist view, which
includes the listId. At this point, you might be asking yourself where this listId that is passed
into the gotoList() function is coming from. If you remember, when you first created the
watchlist-panel.html template view, you used the built‐in ng-repeat directive to iterate over all the
watchlists fetched from the WatchlistService. To wire this function into the directive’s template, you
need to add the ng-click directive to the <a> tag, which contains a call to the gotoList() function
that will be evaluated whenever the DOM element is clicked. Because the stkWatchlistPanel is used
on both the main dashboard and individual watchlist views, you should also go ahead and add an
ng-class directive to the same element, which can be used to add the active class from Bootstrap to
the <a> tag for the list that the user is currently viewing. The modifications to the watchlist-panel.html
file located inside the app/view/templates/ directory are shown here:

<a class="list-group-item"
 ng-class="{ active: currentList == list.id }"
 ng-repeat="list in watchlists track by $index"
 ng-click="gotoList(list.id)">

Notice that the newly defined currentList variable that was attached to the $scope is used
to evaluate whether the active class should be present on the element. In the next section, you

www.it-ebooks.info

http://www.it-ebooks.info/

22  ❘  CHAPTER 1   Building a Simple AngularJS Application

will be laying the foundation structure for the dashboard and watchlist views. Because the
<stk-watchlist-panel> element is used within the context of both views, take a moment to
delete its current reference from within the index.html file.

Template Views
At this point, you might be wondering how AngularJS knows to load the dashboard.html and
watchlist.html views specified in the $routeProvider’s template option for each configured
route. The key component behind this functionality is the ngView directive, which was included
in the index.html file when you initially scaffolded your project with Yeoman. This directive
requires the ngRoute module to be installed to function and handles inserting the view template
defined by the $route service into the layout template, which in this case is the index.html file. It
is important to note that the route’s template is inserted in the exact DOM location where the
<ng-view> element resides.

In its current state, the StockDog application is devoid of any useful functionality, so go ahead
and modify your generated dashboard.html and watchlist.html files to resemble those shown in
Listing 1‐6 and Listing 1‐7, respectively.

LISTING 1‐6:  app/views/dashboard.html

<div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 Portfolio Overview
 </div>
 <div class="panel-body">
 </div>
 </div>
 </div>
</div>

LISTING 1‐7:  app/views/watchlist.html

<div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>

www.it-ebooks.info

http://www.it-ebooks.info/

Step 4: Creating a Navigation Bar  ❘  23

 <div class="col-md-9">
 </div>
</div>

Both the dashboard.html and watchlist.html templates use Bootstrap’s grid system to create
two distinct columns, with the <stk-watchlist-panel> being included in the left column of
each view. Now that the modifications to both these files are complete, go ahead and navigate
to the Dashboard view in your browser by visiting http://localhost:9000/#/dashboard. For
testing purposes, take a moment to add a new watchlist to the panel and then click on the newly
created list item. The ngClick directive you added should evaluate the gotoList() function of
the stkWatchlistPanel directive, which will result in your application routing you to a uniquely
named view for that watchlist. You should now see something along the lines of http://
localhost:9000/#/watchlist/1 inside your browser’s URL bar. Pressing the Back button of your
browser should take you back to the main Dashboard view.

Congratulations! You have successfully implemented the client‐side routing for both views of
the StockDog application. In doing so, you have seen how the ngRoute module can be used to
implement deep linking inside an AngularJS application, as well as learning how the ngView
directive can be used to load route templates. If you’ve gotten stuck at any point during this
step, take a moment to examine the completed code by referring to the step-3 directory inside
the companion code for this chapter or checking out the corresponding tag of the GitHub
repository.

STEP 4: CREATING A NAVIGATION BAR

With client‐side routing out of the way, you can now take a few moments to spruce up the
navigation bar of the StockDog application by using native Bootstrap components. In its current
state, your application’s navigation bar has yet to be modified from what was initially scaffolded
for you by the Yeoman generator. In this section, you will replace this default navigation bar with
one that is more fluid and allows for appropriate navigation between the two main views of the
StockDog application.

Updating the HTML
First, you need to delete a few lines of code from your current app/index.html file. Go ahead and
open that file and start by deleting the line containing the opening <body ng-app="stockDogApp">
tag, located around line 19, and only stop right before the HTML comment containing
<!–– build:js(.) scripts/vendor.js ––>, located around line 61. If you have been following
along with the example code, you should have deleted around 42 lines from this file.

NOTE  It is critically important that you do not delete the HTML comment
containing <!–– build:js(.) scripts/vendor.js ––> because this inline
comment is used by the build system, discussed later in this chapter, to optimize
the final distributable version of your application.

www.it-ebooks.info

http://localhost:9000/#/dashboard
http://localhost:9000/#/watchlist/1
http://localhost:9000/#/watchlist/1
http://www.it-ebooks.info/

24  ❘  CHAPTER 1   Building a Simple AngularJS Application

Now that you have deleted the necessary lines from your application’s index.html file, go ahead
and insert the markup shown next in place of the lines that were just deleted:

 <!–– [1] Load MainCtrl ––>
 <body ng-app="stockDogApp" ng-controller="MainCtrl">
 <nav class="navbar navbar-inverse" role="navigation" ng-cloak>
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target="#main-nav">

 </button>
 Stock Dog
 </div>

 <!–– Collect the nav links and other content for toggling ––>
 <div class="collapse navbar-collapse" id="main-nav">
 <ul class="nav navbar-nav navbar-right">
 <!–– [2] Add active class to necessary item ––>
 <li ng-class="{active: activeView === 'dashboard'}">
 Dashboard

 <li ng-class="{active: activeView === 'watchlist'}"
 class="dropdown">

 Watchlists <b class="caret">

 <ul class="dropdown-menu">
 <li ng-if="!watchlists.length" class="dropdown-header">
 No lists found

 <!–– [3] Create a unique link for each watchlist ––>
 <li ng-repeat="list in watchlists track by $index">
 {{list.name}}

 </div><!–– /.navbar-collapse ––>
 </div><!–– /.container-fluid ––>
 </nav>

 <!–– Main container ––>
 <div class="container-fluid" id="main">
 <div ng-view=""></div>

 <div class="footer">
 <p>Built with </p>
 </div>
 </div>

The first difference you should notice in this block of HTML is the use of the ng-controller
directive on the body tag [1]. In the previous section, you discovered how the ngRoute module

www.it-ebooks.info

http://www.it-ebooks.info/

Step 4: Creating a Navigation Bar  ❘  25

could be used to load the desired controllers and views for a specific route. However, in this
case, you want to force AngularJS to load the MainCtrl controller because it will be used
for logic that should be applied to your application regardless of the current evaluated route.
This approach demonstrates a simple way to encapsulate application‐wide logic into a single
controller.

Another addition to this markup that is worth mentioning is the use of the ng-class directive
[2] to add the Bootstrap active class to the navigation menu links, depending on the value
of the activeView scope variable. The final AngularJS component used in this markup for the
navigation bar is the ng-repeat directive. It is used here [3] to create a unique for each
list in the watchlist scope variable. This example shows how nav links can be dynamically
generated based on data that an AngularJS controller provides. In its current state, your
application should be displaying an error in your browser’s console because the MainCtrl has
yet to be defined. This issue will be resolved in the next section when you create and implement
the MainCtrl.

Creating MainCtrl
You have seen how to use the Yeoman subgenerators to scaffold out new services, directives, and
routes. Now you will be following the same process to have Yeoman scaffold out a new AngularJS
controller. To accomplish this, go ahead and run the following from your command line:

yo angular:controller Main

This instructs Yeoman to create a new controller named MainCtrl inside the app/scripts/
controllers/main.js file and add the appropriate <script> tag reference to your app/index
.html file. Open this newly created file and replace its entire contents with the code shown in
Listing 1‐8.

LISTING 1‐8:  app/scripts/controllers/main.js

'use strict';

angular.module('stockDogApp')
 .controller('MainCtrl', function ($scope, $location, WatchlistService) {
 // [1] Populate watchlists for dynamic nav links
 $scope.watchlists = WatchlistService.query();

 // [2] Using the $location.path() function as a $watch expression
 $scope.$watch(function () {
 return $location.path();
 }, function (path) {
 if (_.contains(path, 'watchlist')) {
 $scope.activeView = 'watchlist';
 } else {
 $scope.activeView = 'dashboard';
 }
 });
 });

www.it-ebooks.info

http://www.it-ebooks.info/

26  ❘  CHAPTER 1   Building a Simple AngularJS Application

The MainCtrl uses both the $location service, provided by AngularJS, as well as the
WatchlistService, created earlier in this chapter. The WatchlistService is used to populate
the $scope.watchlist variable [1], which is used in the markup to dynamically create multiple
drop‐down links for the top‐level Watchlists navigation item. For this controller to figure out the
current application route, the $location service is used in conjunction with the $scope.watch()
function so that every time the value returned from the $location.path() function changes,
your callback function can appropriately update the $scope.activeView variable (using the
_ .contains() function from Lodash), which is used to add an active class to the navigation bar.
The $scope.$watch() function is covered in more detail later in this book. For now, all you need
to know is that it watches the value returned from the first function for changes and invokes the
callback specified as its second argument on each change.

Your application’s navigation bar should now be fully functional. See Figure 1-7. For testing
purposes, go ahead and create a new watchlist (if you haven’t already) and then navigate to it
by selecting the appropriate link from the Watchlists drop‐down in the nav bar. Then click the
Dashboard link to return to the initial view of the StockDog application. If you’ve gotten stuck at
any point during this step, take a moment to examine the completed code by referring to the step-4
directory inside the companion code for this chapter or checking out the corresponding tag of the
GitHub repository.

FIGURE 1-7

STEP 5: ADDING STOCKS

The next major piece of functionality that needs to be implemented for StockDog is the ability to
add stocks to a watchlist. In a similar fashion to the way users can add a new watchlist to their
portfolio, you will be creating a new modal that will be displayed after clicking a specific button
on the watchlist view. This modal will allow users to search for companies listed on the NYSE,
NASDAQ, and AMEX stock exchanges, and add them, along with a specified number of shares, to
part of a desired watchlist. In this section, you will learn how to leverage the various mechanisms
provided by AngularJS to accomplish this task.

www.it-ebooks.info

http://www.it-ebooks.info/

Step 5: Adding Stocks  ❘  27

Creating the CompanyService
The first order of business is to create a new AngularJS service that will be in charge of fetching
a list of companies and relevant data for each of the three major exchanges. Normally, this
would be accomplished by communicating with a back-end service of some kind, but for the
purposes of this application, a JSON file has been created for your perusal. You can find the
companies.json file inside the step-5/app/ directory of the associated companion code, as well
as inside the app/ directory of the GitHub repo https://github.com/diegonetto/stock-dog.
Once you’ve downloaded the file, go ahead and save it inside the app/ directory of your local
project. Next, run the following from your command line to scaffold out and wire up a new
AngularJS service:

yo angular:service CompanyService

This creates a company-service.js file inside your app/scripts/services directory. The
implementation for this service is shown in Listing 1‐9. Notice that the $resource service, which
creates a resource object that facilitates interaction with RESTful server‐side data sources and will
be covered in detail in a Chapter 8, “Server Communication,” is injected as a dependency. The
takeaway at this point is that the $resource service is taking care of fetching the companies.json
file from your local file system and returning an object that will allow you to query against the
provided list of publicly traded companies.

LISTING 1‐9:  app/scripts/services/company.js

'use strict';

angular.module('stockDogApp')
 .service('CompanyService', function CompanyService($resource) {
 return $resource('companies.json');
 });

You will be making use of this newly created CompanyService shortly, but before continuing onto
the next section, take a moment to open the Gruntfile.js located in your project’s root directory
and find the src property of the copy task, located around line 300. You will need to add json to
the src array so that the companies.json file will be copied into the built distributable when you
are preparing your application for production later in this chapter. The modification should leave
the first entry of the src array looking like this:

'*.{ico,png,txt,json}',

Creating the AddStock Modal
With the CompanyService complete, it is time to create a new view that will serve as the modal for
allowing your users to add new stocks to the currently selected watchlist. Go ahead and create a
new file named addstock-modal.html inside your app/views/templates/ directory. You can see
the implementation for this view in Listing 1‐10.

www.it-ebooks.info

https://github.com/diegonetto/stock-dog
http://www.it-ebooks.info/

28  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1‐10:  app/views/templates/addstock‐modal.html

<div class="modal" tabindex="-1" role="dialog">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" ng-click="$hide()">×</button>
 <h4 class="modal-title">Add New Stock</h4>
 </div>

 <form role="form" id="add-stock" name="stockForm">
 <div class="modal-body">
 <div class="form-group">
 <label for="stock-symbol">Symbol</label>
 // [1] Use ng-options with label syntax and bs-typeahead directive
 <input type="text"
 class="form-control"
 id="stock-symbol"
 placeholder="Stock Symbol"
 ng-model="newStock.company"
 ng-options="company as company.label for company in companies"
 bs-typeahead
 required>
 </div>
 // [2] Only accept numbers for shares owned
 <div class="form-group">
 <label for="stock-shares">Shares Owned</label>
 <input type="number"
 class="form-control"
 id="stock-shares"
 placeholder="# Shares Owned"
 ng-model="newStock.shares"
 required>
 </div>
 </div>
 <div class="modal-footer">
 <button type="submit"
 class="btn btn-success"
 ng-click="addStock()"
 ng-disabled="!stockForm.$valid">Add</button>
 <button type="button"
 class="btn btn-danger"
 ng-click="$hide()">Cancel</button>
 </div>
 </form>

 </div>
 </div>
</div>

This should look fairly similar to the previous modal for adding new watchlists to StockDog. The
first input [1] uses the bs-typeahead directive from the AngularStrap project, which utilizes the
native Angular ng-options directive for providing the data required for the typeahead mechanism to
function. The ng-options directive accepts multiple forms of syntax. In this case, you are forcing it to

www.it-ebooks.info

http://www.it-ebooks.info/

Step 5: Adding Stocks  ❘  29

use the label property of each company object in the companies scope variable, which will be created
inside the WatchlistCtrl shortly, as the data to be displayed in the typeahead recommendations. The
second input [2] simply allows users to specify the number of shares owned of a particular stock.

Updating the WatchlistService
Before continuing on to developing the WatchlistCtrl and associated watchlist view, you need to
make a few modifications to the existing WatchlistService. To abstract the various calculations
and interactions between watchlists and their associated stocks, you will be creating two separate
objects to be used as models for the required behaviors. Inside the top of the service implementation
function of your watchlist-service.js file, located inside the app/scripts/services/ directory,
add the following lines of code to create a StockModel object with a save() function:

 // Augment Stocks with additional helper functions
 var StockModel = {
 save: function () {
 var watchlist = findById(this.listId);
 watchlist.recalculate();
 saveModel();
 }
 };

Because watchlists are composed of many stocks, you will also need to create a WatchlistModel
with addStock(), removeStock(), and recalculate() functions, as shown here:

 // Augment watchlists with additional helper functions
 var WatchlistModel = {
 addStock: function (stock) {
 var existingStock = _.find(this.stocks, function (s) {
 return s.company.symbol === stock.company.symbol;
 });
 if (existingStock) {
 existingStock.shares += stock.shares;
 } else {
 _.extend(stock, StockModel);
 this.stocks.push(stock);
 }
 this.recalculate();
 saveModel();
 },
 removeStock: function (stock) {
 _.remove(this.stocks, function (s) {
 return s.company.symbol === stock.company.symbol;
 });
 this.recalculate();
 saveModel();
 },
 recalculate: function () {
 var calcs = _.reduce(this.stocks, function (calcs, stock) {
 calcs.shares += stock.shares;
 calcs.marketValue += stock.marketValue;
 calcs.dayChange += stock.dayChange;

www.it-ebooks.info

http://www.it-ebooks.info/

30  ❘  CHAPTER 1   Building a Simple AngularJS Application

 return calcs;
 }, { shares: 0, marketValue: 0, dayChange: 0 });

 this.shares = calcs.shares;
 this.marketValue = calcs.marketValue;
 this.dayChange = calcs.dayChange;
 }
 };

Finally, the method in which data is serialized and unserialized from LocalStorage needs to be
modified because you will be extending the two previously created models to create the proper data
structure in memory required to power the application. Modify the existing loadModel() and
this.save() functions to look like those shown here:

 // Helper: Load watchlists from localStorage
 var loadModel = function () {
 var model = {
 watchlists: localStorage['StockDog.watchlists'] ?
 JSON.parse(localStorage['StockDog.watchlists']) : [],
 nextId: localStorage['StockDog.nextId'] ?
 parseInt(localStorage['StockDog.nextId']) : 0
 };
 _.each(model.watchlists, function (watchlist) {
 _.extend(watchlist, WatchlistModel);
 _.each(watchlist.stocks, function (stock) {
 _.extend(stock, StockModel);
 });
 });
 return model;
 };

 // Save a new watchlist to watchlists model
 this.save = function (watchlist) {
 watchlist.id = Model.nextId++;
 watchlist.stocks = [];
 _.extend(watchlist, WatchlistModel);
 Model.watchlists.push(watchlist);
 saveModel();
 };

Implementing WatchlistCtrl
Next, you will be modifying the current WatchlistCtrl, which is still an empty skeleton that was
created by Yeoman during the scaffolding process. Open up the watchlist.js file, located inside the
app/scripts/controllers/ directory, and modify it to look like Listing 1‐11.

LISTING 1‐11:  app/scripts/controllers/watchlist.js

'use strict';

angular.module('stockDogApp')
 .controller('WatchlistCtrl', function ($scope, $routeParams, $modal,
 WatchlistService, CompanyService) {

www.it-ebooks.info

http://www.it-ebooks.info/

Step 5: Adding Stocks  ❘  31

 // [1] Initializations
 $scope.companies = CompanyService.query();
 $scope.watchlist = WatchlistService.query($routeParams.listId);
 $scope.stocks = $scope.watchlist.stocks;
 $scope.newStock = {};
 var addStockModal = $modal({
 scope: $scope,
 template: 'views/templates/addstock-modal.html',
 show: false
 });

 // [2] Expose showStockModal to view via $scope
 $scope.showStockModal = function () {
 addStockModal.$promise.then(addStockModal.show);
 };

 // [3] Call the WatchlistModel addStock() function and hide the modal
 $scope.addStock = function () {
 $scope.watchlist.addStock({
 listId: $routeParams.listId,
 company: $scope.newStock.company,
 shares: $scope.newStock.shares
 });
 addStockModal.hide();
 $scope.newStock = {};
 };
 });

You should notice that $routeParams, $modal, WatchlistService, and CompanyService
are all being injected as dependencies. The CompanyService’s query() function, provided by
the object returned from using the $resource service as previously mentioned, is invoked to
populate the companies scope variable, which will be utilized in the watchlist view momentarily.
The rest of the code is straightforward, with the WatchlistService being used to initialize the
watchlist scope variable, which is in turn used to retrieve the current watchlist variable using
the listId passed along in the route parameters [1]. Next, the modal itself is instantiated, and
definitions are made for the [2] showStockModal() and [3] addStock() functions.

Modifying the Watchlist View
Because modifications were made to the way watchlists were saved and loaded, take a moment
to delete all current watchlists from your application before proceeding with the updates to the
watchlist view markup. Once that is complete, go ahead and modify the existing app/views/
watchlist.html file to include a Bootstrap panel where the list of stocks will be displayed. As it
stands, this file should only contain one row comprised of two columns, with the left column being
comprised of the stk-watchlist-panel directive. Modify the right column of this file to match the
HTML markup shown in Listing 1‐12.

LISTING 1‐12:  app/views/watchlist.html

<div class="row">
 <!–– Left Column ––>

continues

www.it-ebooks.info

http://www.it-ebooks.info/

32  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-12  (continued)

 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 {{watchlist.description}}
 <button type="button"
 class="btn btn-success btn-xs pull-right"
 ng-click="showStockModal()">

 </button>
 </div>
 <div class="panel-body table-responsive">
 <div ng-hide="stocks.length" class="jumbotron">
 <h1>Woof.</h1>
 <p>Looks like you haven't added any stocks to this watchlist yet!</p>
 <p>Do so now by clicking the
 located above.
 </p>
 </div>
 <!—[1] loop over all stocks and display company symbols ––>
 <p ng-repeat="stock in stocks">{{stock.company.symbol}}</p>
 </div>
 </div>
 </div>
</div>

By now, you should be comfortable using the ng-click, ng-hide, and ng-repeat directives, the
latter of which is currently being used for simply displaying the stock’s company ticker symbol. This
will be revisited in a later step when it comes time to build the stock table directives.

At this point, you should be able to add new stocks to a selected watchlist by clicking the green plus
button in the panel heading, selecting a stock by searching for its company name or ticker symbol,
and clicking the desired typeahead recommendation. See Figure 1-8. If your application is not
functioning properly, be sure to check your browser’s developer tools console for errors, and take a
moment to review the code included in this section. You can refer to the step-5 directory inside the
companion code for this chapter or check out the corresponding tag of the GitHub repository.

STEP 6: INTEGRATING WITH YAHOO FINANCE

Now that your StockDog application is able to manage manipulating watchlists and stocks, it is
time to begin fetching quote information from an external service provider—in this case Yahoo
Finance. In this section, you will create a new AngularJS service that will be responsible for making
asynchronous HTTP requests to the Yahoo Finance API and updating the in‐memory data structure
that powers the application.

www.it-ebooks.info

http://www.it-ebooks.info/

Step 6: Integrating with Yahoo Finance  ❘  33

FIGURE 1-8

Creating the QuoteService
To encapsulate the HTTP requests and response parsing into a reusable component, you will be
creating a new AngularJS service. Run the following command from your terminal to have Yeoman
scaffold your new QuoteService:

yo angular:service Quote-Service

As seen several times in this chapter, this creates a skeleton implementation of, in this case, an
AngularJS service named QuoteService inside of a newly created quote-service.js file located
within your app/scripts/services directory. You can see the entire implementation for the
QuoteService in Listing 1‐13.

LISTING 1‐13:  app/scripts/services/quote‐service.js

'use strict';

angular.module('stockDogApp')
 .service('QuoteService', function ($http, $interval) {
 var stocks = [];
 var BASE = 'http://query.yahooapis.com/v1/public/yql';

 // [1] Handles updating stock model with appropriate data from quote
 var update = function (quotes) {
 console.log(quotes);
 if (quotes.length === stocks.length) {
 _.each(quotes, function (quote, idx) {
 var stock = stocks[idx];
 stock.lastPrice = parseFloat(quote.LastTradePriceOnly);
 stock.change = quote.Change;
 stock.percentChange = quote.ChangeinPercent;

continues

www.it-ebooks.info

http://query.yahooapis.com/v1/public/yql
http://www.it-ebooks.info/

34  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-13  (continued)

 stock.marketValue = stock.shares * stock.lastPrice;
 stock.dayChange = stock.shares * parseFloat(stock.change);
 stock.save();
 });
 }
 };

 // [2] Helper functions for managing which stocks to pull quotes for
 this.register = function (stock) {
 stocks.push(stock);
 };
 this.deregister = function (stock) {
 _.remove(stocks, stock);
 };
 this.clear = function () {
 stocks = [];
 };

 // [3] Main processing function for communicating with Yahoo Finance API
 this.fetch = function () {
 var symbols = _.reduce(stocks, function (symbols, stock) {
 symbols.push(stock.company.symbol);
 return symbols;
 }, []);
 var query = encodeURIComponent('select * from yahoo.finance.quotes ' +
 'where symbol in (\'' + symbols.join(',') + '\')');
 var url = BASE + '?' + 'q=' + query + '&format=json&diagnostics=true' +
 '&env=http://datatables.org/alltables.env';
 $http.jsonp(url + '&callback=JSON_CALLBACK')
 .success(function (data) {
 if (data.query.count) {
 var quotes = data.query.count > 1 ?
 data.query.results.quote : [data.query.results.quote];
 update(quotes);
 }
 })
 .error(function (data) {
 console.log(data);
 });
 };

 // [4] Used to fetch new quote data every 5 seconds
 $interval(this.fetch, 5000);
 });

Because the QuoteService is in charge of communicating with the Yahoo Finance API, you’ll
notice that the $http service was injected as a dependency. The $interval service that was also
injected is Angular’s wrapper for window.setInterval. Internally this service keeps track of an
array of stocks for which quote data should be retrieved. The update() function [1] handles
parsing the response from Yahoo Finance into the required stock model properties. This code

www.it-ebooks.info

http://datatables.org/alltables.env
http://www.it-ebooks.info/

Step 6: Integrating with Yahoo Finance  ❘  35

also contains helper functions [2] for adding, removing, and clearing the internal array of
stocks being tracked. Finally, the fetch() function [3] generates the appropriate Yahoo Finance
query URL before invoking the $http service to make an asynchronous request to the desired
endpoint. The response from Yahoo is then passed into the update() function for processing as
previously described.

Invoking Services from the Console
Because your newly created QuoteService has not been injected and used anywhere in the
StockDog application at this time, the easiest way to quickly spot‐check this service is by typing a
few lines into the console of your browser developer tools. Go ahead and open that now and paste
the following lines directly into the browser console:

Quote = angular.element(document.body).injector().get('QuoteService')
Watchlist = angular.element(document.body).injector().get('WatchlistService')
Quote.register(Watchlist.query()[0].stocks[0])

This grabs a reference to the QuoteService and WatchlistService and then invokes the
QuoteService’s register() function with the first stock of the first watchlist available. (So make
sure you have created at least one watchlist and added at least one stock.) Within five seconds, you
should see an array containing a single object. Inspecting that object should show you all the data
provided by the Yahoo Finance API for that one particular stock, similar to Figure 1-9.

Now that you have finished creating the QuoteService and verified that it is successfully pulling
data from the Yahoo Finance API, you are ready to move onto the next section and display that data
in a table on the watchlist view. If your application is not functioning properly, please refer to the
step-6 directory inside the companion code for this chapter or check out the corresponding tag of
the GitHub repository.

FIGURE 1-9

www.it-ebooks.info

http://www.it-ebooks.info/

36  ❘  CHAPTER 1   Building a Simple AngularJS Application

STEP 7: CREATING THE STOCK TABLE

In this section, you will be exposed to a more sophisticated use of AngularJS directives. Specifically,
you will see how directives can communicate data between themselves as you build a table for
displaying information on a stock’s performance.

Creating the StkStockTable Directive
To get started, you will be creating a new directive for the stock table. As you’ve seen several times, you
can do this using the AngularJS Yeoman generator by running the following from your command line:

yo angular:directive stk-Stock-Table

This creates a stk-stock-table.js file inside of app/scripts/directives and links the new JavaScript
file inside of index.html. The implementation of the stkStockTable directive is shown in Listing 1‐14.

LISTING 1‐14:  app/scripts/directives/stk‐stock‐table.js

'use strict';

angular.module('stockDogApp')
 .directive('stkStockTable', function () {
 return {
 templateUrl: 'views/templates/stock-table.html',
 restrict: 'E',
 // [1] Isolate scope
 scope: {
 watchlist: '='
 },
 // [2] Create a controller, which serves as an API for this directive
 controller: function ($scope) {
 var rows = [];

 $scope.$watch('showPercent', function (showPercent) {
 if (showPercent) {
 _.each(rows, function (row) {
 row.showPercent = showPercent;
 });
 }
 });

 this.addRow = function (row) {
 rows.push(row);
 };

 this.removeRow = function (row) {
 _.remove(rows, row);
 };
 },

 // [3] Standard link function implementation

www.it-ebooks.info

http://www.it-ebooks.info/

Step 7: Creating the Stock Table  ❘  37

 link: function ($scope) {
 $scope.showPercent = false;
 $scope.removeStock = function (stock) {
 $scope.watchlist.removeStock(stock);
 };
 }
 };
 });

The first thing you should notice is that this directive contains an object for its scope property [1].
By isolating the scope of a directive in this way, you can bind an attribute of the directive’s DOM
element. You will explore this in more detail in Chapter 4, “Data Binding,” but for now, know that
when you use the stkStockTable directive, you must include an attribute named watchlist and
assign it an expression to be evaluated. Also of note in this example is that this directive contains
a controller property [2]. This, in a more general sense, is how you expose an API for other
directives to use for communication. Because inside the controller property’s implementation both
the addRow() and removeRow() function are attached to the this object, they will be available for
external use. The concept here is that the stkStockTable directive keeps track, internally, of all
the rows in the table. This allows it to modify the rows if needed, as is the case, in this example,
for toggling the showPercent property of each row’s scope. Finally, this directive also includes the
link property [3], which is typical for DOM manipulation, and in this case simply initializes the
showPercent scope variable and exposes a removeStock() function via the top‐level directive scope.

Creating the StkStockRow Directive
Now that the main stkStockTable directive has been created, it’s time to create the directive that
will be repeated for each table row. Run the following from the command line to create a new
stkStockRow directive:

yo angular:directive stk-Stock-Row

This creates the stk-stock-row.js file inside the app/scripts/directives directory with a skeleton
for the stkStockRow directive. The implementation for this directive is shown in Listing 1‐15.

LISTING 1‐15:  app/scripts/directives/stk‐stock‐row.js

'use strict';

angular.module('stockDogApp')
 .directive('stkStockRow', function ($timeout, QuoteService) {
 return {
 // [1] Use as element attribute and require stkStockTable controller
 restrict: 'A',
 require: '^stkStockTable',
 scope: {
 stock: '=',
 isLast: '='
 },
 // [2] The required controller will be made available at the end

continues

www.it-ebooks.info

http://www.it-ebooks.info/

38  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-15  (continued)

 link: function ($scope, $element, $attrs, stockTableCtrl) {
 // [3] Create tooltip for stock-row
 $element.tooltip({
 placement: 'left',
 title: $scope.stock.company.name
 });

 // [4] Add this row to the TableCtrl
 stockTableCtrl.addRow($scope);

 // [5] Register this stock with the QuoteService
 QuoteService.register($scope.stock);

 // [6] Deregister company with the QuoteService on $destroy
 $scope.$on('$destroy', function () {
 stockTableCtrl.removeRow($scope);
 QuoteService.deregister($scope.stock);
 });

 // [7] If this is the last 'stock-row', fetch quotes immediately
 if ($scope.isLast) {
 $timeout(QuoteService.fetch);
 }

 // [8] Watch for changes in shares and recalculate fields
 $scope.$watch('stock.shares', function () {
 $scope.stock.marketValue = $scope.stock.shares *
 $scope.stock.lastPrice;
 $scope.stock.dayChange = $scope.stock.shares *
 parseFloat($scope.stock.change);
 $scope.stock.save();
 });
 }
 };
 });

For this directive, only $timeout and QuoteService are injected as dependencies. Also, you
might have already noticed that the restrict property [1] has been set to A, which means that
stkStockRow is meant to be used as an attribute of a DOM element instead of as a DOM element
itself as was the case with the previously created directives. You should also make note of the use
of the require property. This is how you tell the directive that it needs a specific controller, which
in this case was defined inside the stkStockTable directive. The ^ prefix instructs this directive
to search for controllers on its parent scopes, which is exactly what you want it to do in this case.
The required controller is then available via the last parameter of the link function, as seen in
[2]. Because each row has its own tooltip markup, this directive is a great location to put the
tooltip initialization code [3]. The rest of the code takes care of registering the $scope for each
row using the stkStockTable directive’s addRow() function [4], registering the row’s stock with
the QuoteService on creation [5] and deregistering it when the row is destroyed [6], as well as
immediately triggering a QuoteService.fetch() call if the currently created row is the last one in
the table [7]. Finally, a $watch() is used to monitor changes to the stock’s number of shares so that
the appropriate calculations can be made [8].

www.it-ebooks.info

http://www.it-ebooks.info/

Step 7: Creating the Stock Table  ❘  39

Creating the Stock Table Template
With both the stkStockTable and stkStockRow directives now complete, the next order of business
is to create a new HTML template view for the stock table. Go ahead and create a new file named
stock-table.html inside your app/views/templates/ directory and make it look like the markup
shown in Listing 1‐16.

LISTING 1‐16:  app/views/templates/stock‐table.html

<table class="table">
 <thead>
 <tr>
 <td>Symbol</td>
 <td>Shares Owned</td>
 <td>Last Price</td>
 <td>Price Change
 (
 <!––[1] Toggle showPercent scope variable on click ––>

 <a ng-click="showPercent = !showPercent">$
 |

 <a ng-click="showPercent = !showPercent">%
)

 </td>
 <td>Market Value</td>
 <td>Day Change</td>
 </tr>
 </thead>
 <!–– [2] Only show footer if more than one stock exists ––>
 <tfoot ng-show="watchlist.stocks.length > 1">
 <tr>
 <td>Totals</td>
 <td>{{watchlist.shares}}</td>
 <td></td>
 <td></td>
 <td>{{watchlist.marketValue}}</td>
 <td>{{watchlist.dayChange}}</td>
 </tr>
 </tfoot>
 <tbody>
 <!–– [3] Use stk-stock-row to create row for each stock ––>
 <tr stk-stock-row
 ng-repeat="stock in watchlist.stocks track by $index"
 stock="stock"
 is-last="$last">
 <td>{{stock.company.symbol}}</td>
 <td>{{stock.shares}}</td>
 <td>{{stock.lastPrice}}</td>
 <td>
 {{stock.change}}
 {{stock.percentChange}}

continues

www.it-ebooks.info

http://www.it-ebooks.info/

40  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-16  (continued)

 </td>
 <td>{{stock.marketValue}}</td>
 <td>{{stock.dayChange}}
 <button type="button" class="close"
 ng-click="removeStock(stock)">×</button>
 </td>
 </tr>
 </tbody>
</table>

Although the markup for stock-table.html is not overly complicated, there are a few things worth
pointing out. First, inside the <thead>, you should notice that the Price Change header cell contains
two spans with ng-click directives that assign a value to the showPercent scope variable [1]. This
is the first example using this form of an expression and is a helpful way to accomplish simple tasks,
in this case toggling a Boolean without creating a scope function. You should also note the use of
ng-show to only display the table footer if there is more than one stock in the current watchlist [2]
because it contains calculated totals. Finally, although this view template is for the stkStockTable
directive, under the hood it uses an ng-repeat to create <tr> elements containing the stkStockRow
directive [3]. Using external directives inside another directive’s template is perfectly acceptable; just
take care in not overcomplicating your approach because you may run into situations in which you
have to manually compile child directive templates using the $compile service.

Updating the Watchlist View
The only remaining task in completing this step is to invoke the stkStockTable directive by
including it in StockDog’s watchlist view. Open your project’s app/views/watchlist.html file
and locate the <p> tag containing the ng-repeat directive. Instead of simply displaying the stock’s
company symbol, you want to render the entire interactive table. Replace that entire line with the
following code to accomplish this task:

<stk-stock-table ng-show="stocks.length" watchlist="watchlist">

Congratulations on successfully completing the first pass over the stock table! See Figure 1-10. You
might be thinking that it isn’t the most beautiful table you’ve ever created, but don’t fret. Over the
next three sections, you will be refining it into a more polished product. In the next section, you
will see how to make individual cells editable, adding even more interactivity to your table. If your
application is not functioning properly, please refer to the step-7 directory inside the companion
code for this chapter or check out the corresponding tag of the GitHub repository.

STEP 8: INLINE FORM EDITING

Now that StockDog has a functioning table that can display information on the various stocks
being tracked by a watchlist, the next step is to make the application more interactive by allowing
users to edit the number of shares owned for each stock. Because data is being displayed in a table,
a common paradigm for editing values is to modify them inline, much like a spreadsheet. In this

www.it-ebooks.info

http://www.it-ebooks.info/

Step 8: Inline Form Editing  ❘  41

section, you will see how to create a directive that can be used in conjunction with HTML5’s
contenteditable attribute to accomplish this functionality.

FIGURE 1-10

Creating the Contenteditable Directive
Because this new directive will be extending the contenteditable attribute’s functionality, it
must share the same name. Run the following command from your terminal to scaffold out a new
AngularJS directive using Yeoman:

yo angular:directive contenteditable

This creates a new file named contenteditable.js inside your app/scripts/directives/ directory.
The contenteditable directive is restricted to an attribute and performs sanitization and validation
of user‐inputted data. You can find the full implementation of this new directive in Listing 1‐17.

LISTING 1‐17:  app/scripts/directives/contenteditable.js

'use strict';

var NUMBER_REGEXP = /^\s*(\-|\+)?(\d+|(\d*(\.\d*)))\s*$/;

angular.module('stockDogApp')
 .directive('contenteditable', function ($sce) {
 return {
 restrict: 'A',
 require: 'ngModel', // [1] Get a hold of NgModelController

continues

www.it-ebooks.info

http://www.it-ebooks.info/

42  ❘  CHAPTER 1   Building a Simple AngularJS Application

 link: function($scope, $element, $attrs, ngModelCtrl) {
 if(!ngModelCtrl) { return; } // do nothing if no ng-model

 // [2] Specify how UI should be updated
 ngModelCtrl.$render = function() {
 $element.html($sce.getTrustedHtml(ngModelCtrl.$viewValue || ''));
 };

 // [3] Read HTML value, and then write data to the model or reset the view
 var read = function () {
 var value = $element.html();
 if ($attrs.type === 'number' && !NUMBER_REGEXP.test(value)) {
 ngModelCtrl.$render();
 } else {
 ngModelCtrl.$setViewValue(value);
 }
 };

 // [4] Add custom parser-based input type (only 'number' supported)
 // This will be applied to the $modelValue
 if ($attrs.type === 'number') {
 ngModelCtrl.$parsers.push(function (value) {
 return parseFloat(value);
 });
 }

 // [5] Listen for change events to enable binding
 $element.on('blur keyup change', function() {
 $scope.$apply(read);
 });
 }
 };
 });

As with the stkStockRow directive, the require property is once again used to grab a handle on an
external directive’s controller. In this case, ngModel is being required [1] because you want to take
advantage of Angular’s bidirectional data binding to trigger updates to the rest of the table based on
the user’s modification. Next, the ngModelCtrl.$render() function is implemented, which is required
to inform the ngModel directive how the view should be updated. Here, the Strict Contextual Escaping
service $sce is used, which was the only injected dependency, to sanitize user input before updating
the view’s HTML [2]. A read() function is then defined that inspects the element’s current HTML
value and, if its type property is set to number, tests to see if the value is a number using a regular
expression [3]. In this case, your contenteditable directive is only used for the Shares Owned cell,
so only a number type is supported, but you can easily extend this functionality to support other input
types and formats. If the current value is not a number, the ngModelCtrl.$render() function is called,
which updates the view with the previous value. However, if the user does in fact input a valid number,
the directive calls ngModelCtrl.$setViewValue(), which handles invoking $render() with the new
value and kicks off the ngModel $parsers pipeline. A custom parser is defined [4] to support number
input types. It parses the $viewValue into a number so that ngModel can update the $modelValue,

LISTING 1‐17:  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Step 8: Inline Form Editing  ❘  43

which can then be properly used to recalculate values for the stock table. Finally, the $element.on()
function is used to listen for the blur, keyup, and change events so that read() can be invoked after
each modification [5].

Updating the StkStockTable Template
All that is left to do is update the stock-table.html file located in the app/views/templates
directory to utilize this newly created contenteditable directive. Find the line containing
<td>{{stock.shares}}</td> and replace it entirely with the following:

<td contenteditable type="number" ng-model="stock.shares"></td>

Notice that the type attribute is set to number, and ng-model is used to bind to the shares value of
the row’s stock object. Because it might not be explicitly clear to your users that you can perform
inline edits on the Shares Owned cell, add the following line to the bottom of your stock-table
.html file:

<div class="small text-center">Click on Shares Owned cell to edit.</div>

With these two quick modifications complete, take a moment to test out the inline editing
functionality, an example of which is shown in Figure 1-11. Attempting to type any characters
other than a number into a row’s Shares Owned cell immediately resets the value. However, after
each successful modification that results in a valid number, the entire stock table is recalculated in
real time. If your application is not functioning properly, please refer to the step-8 directory inside
the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-11

www.it-ebooks.info

http://www.it-ebooks.info/

44  ❘  CHAPTER 1   Building a Simple AngularJS Application

STEP 9: FORMATTING CURRENCY

At this point, StockDog’s watchlist view is fully functional. Watchlists can be created, and stocks
can be added, deleted, and edited using the stock table, but the way the data is being displayed
isn’t ideal. In this section you will be formatting the displayed numbers using Angular’s built‐in
currency filter, in addition to creating a new directive that changes the number’s color based on
whether it is reflecting a positive or negative change.

Creating the StkSignColor Directive
The first order of business is to create a new stkSignColor directive that you can apply to existing
elements to modify their displayed color to be either red or green. Go ahead and run the following
command from your terminal to scaffold out this directive:

yo angular:directive stk-Sign-Color

This creates a new file named stk-sign-color.js inside your app/scripts/directives/ directory. You
can see the full implementation of the stkSignColor directive in Listing 1‐18. The first thing you may
notice is that instead of a $scope.$watch(), an $attrs.$observe() was used to listen to changes in the
expression assigned to stkSignColor [1]. Because $observe() is a function of the $attrs object, it can
only be used to observe/watch the value change of a DOM attribute, which in this case is exactly what
you want. The rest of this directive is incredibly simple because all it has to do is update the $element’s
style.color property depending on whether the expression’s new value is positive or negative [2].

LISTING 1‐18:  app/scripts/directives/stk‐sign‐color.js

'use strict';

angular.module('stockDogApp')
 .directive('stkSignColor', function () {
 return {
 restrict: 'A',
 link: function ($scope, $element, $attrs) {
 // [1] Use $observe to watch expression for changes
 $attrs.$observe('stkSignColor', function (newVal) {
 var newSign = parseFloat(newVal);
 // [2] Set element's style.color value depending on sign
 if (newSign > 0) {
 $element[0].style.color = 'Green';
 } else {
 $element[0].style.color = 'Red';
 }
 });
 }
 };
 });

Updating the StockTable Template
In addition to adding the stkSignColor directive to your stock-table.html template, you need to
use Angular’s built‐in currency filter. Although an in‐depth discussion of Angular filters is outside

www.it-ebooks.info

http://www.it-ebooks.info/

Step 9: Formatting Currency  ❘  45

the scope of this chapter, all you need to know to move forward is that a filter formats the value
of an expression for display to the user. A filter can be used in view templates, controllers, and
services, and it is fairly straightforward to create your own custom filter. You can apply a filter to
an expression in a view template using this syntax: {{ expression | filter }}. To learn more
about what filters are available out of the box, visit the official documentation located at https://
docs.angularjs.org/api/ng/filter. For this section, you will be using the currency filter, with
default parameters. The full syntax for the currency filter is as follows:

{{ currency_expression | currency : symbol : fractionSize}}

Because the symbol defaults to $ and the fractionSize to the current locale’s max fraction size,
using the currency filter is almost trivial. Go ahead and add | currency to the watchlist
.marketValue, watchlist.dayChange, stock.lastPrice, stock.marketValue, and stock
.dayChange expression bindings. Then you’ll want to add the stk-sign-color attribute, with a
binding to a value that should be watched for changes, to each <td> element that you want to color.
In this case, you’ll want to color the watchlist.dayChange cell in the footer, as well as the Price
Change and Day Change columns in the table. Here is an example of applying the stk-sign-color
directive to the watchlist.dayChange row in the footer:

<td stk-sign-color="{{watchlist.dayChange}}">
 {{watchlist.dayChange | currency}}
</td>

The application of the stk-sign-color directive to the remaining two cells is left as an exercise for
you, the reader. Once the currency filters and stk-sign-color directives are properly in place, your
application should look something like Figure 1-12. If you find yourself struggling with applying the
directive and currency filters in the correct location of the markup, please refer to the step-9 directory
inside the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-12

www.it-ebooks.info

https://docs.angularjs.org/api/ng/filter
https://docs.angularjs.org/api/ng/filter
http://www.it-ebooks.info/

46  ❘  CHAPTER 1   Building a Simple AngularJS Application

STEP 10: ANIMATING PRICE CHANGES

In this section, you will learn the basics of how to use Angular’s ngAnimate module to perform an
animation on StockDog’s watchlist view. To visually show your users the price action of a given
stock—that is, whether there has been a positive or a negative change in value—a red or green
crossfade on the entire cell is performed. Although a complete discussion on creating JavaScript and
CSS3 animations with Angular is outside the scope of this chapter, you can find more information
by visiting the official documentation at https://docs.angularjs.org/api/ngAnimate.

Creating the StkSignFade Directive
Because the desired result is to crossfade an entire table cell, you need to create another directive
that will be used as an attribute so that it can be dropped onto existing elements. To get started, run
the following command from your terminal:

yo angular:directive stk-Sign-Fade

This creates a new stk-sign-fade.js file inside your app/scripts/directives/ directory. Just as with
the stkSignColor directive you created in the previous section, this directive will be fairly short and
straightforward. You can find the complete implementation of the stkSignFade directive in Listing 1‐19.

LISTING 1‐19:  app/scripts/directives/stk‐sign‐fade.js

'use strict';

angular.module('stockDogApp')
 .directive('stkSignFade', function ($animate) {
 return {
 restrict: 'A',
 link: function ($scope, $element, $attrs) {
 var oldVal = null;
 // [1] Use $observe to be notified on value changes
 $attrs.$observe('stkSignFade', function (newVal) {
 if (oldVal && oldVal == newVal) { return; }

 var oldPrice = parseFloat(oldVal);
 var newPrice = parseFloat(newVal);
 oldVal = newVal;

 // [2] Add the appropriate direction class, and then remove it
 if (oldPrice && newPrice) {
 var direction = newPrice - oldPrice >= 0 ? 'up' : 'down';
 $animate.addClass($element, 'change-' + direction, function() {
 $animate.removeClass($element, 'change-' + direction);
 });
 }
 });
 }
 };
 });

www.it-ebooks.info

https://docs.angularjs.org/api/ngAnimate
http://www.it-ebooks.info/

Step 10: Animating Price Changes  ❘  47

The only dependency that was injected into this directive was the $animate service, which is provided
by the ngAnimate module. As you saw with the stkSignColor directive, $attrs.$observe() is once
gain used to watch for changes to the expression assigned to stkSignFade [1]. A local reference is
kept to the oldVal so that on subsequent changes, it can be compared against the newVal and the
appropriate direction class can be computed [2]. For this example, the $animate service is used
to add, and then quickly remove, the change-up or change-down CSS classes from the directive’s
element. The $animate service takes an element, class name, and callback function as a parameter,
which is used to remove the class after the animation for adding it has been performed. Before
attempting to use this directive in the stock-table.html file, you must create a handful of CSS
classes using the syntax that Angular requires. Add the following lines of code to the top of your
app/styles/main.css file. A few other styles that polish up the stock table’s display are also
included here:

/* Stock Table Styles */
.table {
 text-align: center;
 margin-bottom: 5px;
}
tfoot {
 font-weight: bold;
}
a {
 cursor: pointer;
}
span[disabled="disabled"] a {
 text-decoration: none;
 color: black;
}
span[disabled="disabled"] {
 pointer-events: none;
}

/* Styles for ngAnimate animations */
.change-up-add {
 transition: background-color linear 1.5s;
 background-color: green;
}
.change-up-add.change-up-add-active {
 background-color: white;
}
.change-down-add {
 transition: background-color linear 1.5s;
 background-color: red;
}
.change-down-add.change-down-add-active {
 background-color: white;
}

Angular expects you to define *-add and *-add-active classes for each of your desired
animation classes. In the preceding example, change-up-add is applied immediately, which sets
the background to green. Then the change-up-add-active class is applied for the duration of
the animation. In this case, that sets the background color to white with a 1.5s CSS transition,

www.it-ebooks.info

http://www.it-ebooks.info/

48  ❘  CHAPTER 1   Building a Simple AngularJS Application

ultimately creating a crossfade effect from green to white. The same approach is used for
change-down-add, which shows a negative price action in red.

Updating the StockTable Template
Now that you have completed the stkSignFade directive and created the appropriate CSS
classes expected by the ngAnimate module, it is time to modify your stock-table.html view
template. Locate the two lines with <td> elements that are displaying the watchlist.marketValue
and stock.lastPrice, and add the stk-sign-fade="{{watchlist.marketValue}}" and
stk-sign-fade="{{stock.lastPrice}}" directive to them, respectively.

NOTE  Because the QuoteService is updating the stock.lastPrice as it
fetches data from Yahoo Finance, you may run into a situation in which the
market is closed and the price isn’t changing, making it difficult to see your new
stkSignFade directive in action. In this case, modify the update() function
inside your quote-service.js file to randomize the stock.lastPrice. You can
accomplish this with Lodash by adding + _.random(-0.5, 0.5) to the line that
parses the quote.LastTradePriceOnly. Just don’t forget to remove it when
you’ve finished testing!

Congratulations! You have completely finished StockDog’s watchlist view! See Figure 1-13. If you find
yourself struggling with getting your animations to properly run, please refer to the step-10 directory
inside the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-13

www.it-ebooks.info

http://www.it-ebooks.info/

Step 11: Creating the Dashboard  ❘  49

STEP 11: CREATING THE DASHBOARD

The final outstanding feature that remains to be implemented for the StockDog application is the
dashboard view. This view aggregates performance metrics across all created watchlists and reports
the analytics in four unique panels. These performance metrics are Total Market Value, Total
Day Change, Market Value by Watchlist, and Day Change by Watchlist. Because no dashboard is
complete without interactive graphs, you will be taking advantage of the Google Charts library to
render two distinct charts.

Updating the Dashboard Controller
To use the Google Charts library from within your AngularJS application, you need to wrap and
expose its functionality via directives. For the sake of simplicity, you will be using a preexisting
library that has done just that, whose documentation can be found here: https://github.com/
bouil/angular-google-chart. To get started with the angular-google-chart library, run the
following command from your terminal to install it using Bower:

bower install angular-google-chart –save

This downloads and installs the library. It also lists it as a project dependency inside your bower.json
file. Once that is complete, you must register this library’s module with your AngularJS application
by updating your stockDogApp module dependencies. You can do this by adding googlechart to the
end of the dependencies array found in your app/scripts/app.js file, in the same manner in which
the AngularStrap library was registered back in Listing 1-1 of Step 2 earlier in this chapter. Once that
is complete, open the dashboard.js file located in your app/scripts/controllers/ directory and
replace its contents with the final implementation shown in Listing 1-20.

LISTING 1-20:  app/scripts/controllers/dashboard.js

'use strict';

angular.module('stockDogApp')
 .controller('DashboardCtrl', function ($scope, WatchlistService, QuoteService) {
 // [1] Initializations
 var unregisterHandlers = [];
 $scope.watchlists = WatchlistService.query();
 $scope.cssStyle = 'height:300px;';
 var formatters = {
 number: [
 {
 columnNum: 1,
 prefix: '$'
 }
]
 };

 // [2] Helper: Update chart objects
 var updateCharts = function () {
 // Donut chart

continues

www.it-ebooks.info

https://github.com/bouil/angular-google-chart
https://github.com/bouil/angular-google-chart
http://www.it-ebooks.info/

50  ❘  CHAPTER 1   Building a Simple AngularJS Application

LISTING 1-20  (continued)

 var donutChart = {
 type: 'PieChart',
 displayed: true,
 data: [['Watchlist', 'Market Value']],
 options: {
 title: 'Market Value by Watchlist',
 legend: 'none',
 pieHole: 0.4
 },
 formatters: formatters
 };
 // Column chart
 var columnChart = {
 type: 'ColumnChart',
 displayed: true,
 data: [['Watchlist', 'Change', { role: 'style' }]],
 options: {
 title: 'Day Change by Watchlist',
 legend: 'none',
 animation: {
 duration: 1500,
 easing: 'linear'
 }
 },
 formatters: formatters
 };

 // [3] Push data onto both chart objects
 _.each($scope.watchlists, function (watchlist) {
 donutChart.data.push([watchlist.name, watchlist.marketValue]);
 columnChart.data.push([watchlist.name, watchlist.dayChange,
 watchlist.dayChange < 0 ? 'Red' : 'Green']);
 });
 $scope.donutChart = donutChart;
 $scope.columnChart = columnChart;
 };

 // [4] Helper function for resetting controller state
 var reset = function () {
 // [5] Clear QuoteService before registering new stocks
 QuoteService.clear();
 _.each($scope.watchlists, function (watchlist) {
 _.each(watchlist.stocks, function (stock) {
 QuoteService.register(stock);
 });
 });

 // [6] Unregister existing $watch listeners before creating new ones
 _.each(unregisterHandlers, function(unregister) {
 unregister();
 });
 _.each($scope.watchlists, function (watchlist) {

www.it-ebooks.info

http://www.it-ebooks.info/

Step 11: Creating the Dashboard  ❘  51

 var unregister = $scope.$watch(function () {
 return watchlist.marketValue;
 }, function () {
 recalculate();
 });
 unregisterHandlers.push(unregister);
 });
 };

 // [7] Compute the new total MarketValue and DayChange
 var recalculate = function () {
 $scope.marketValue = 0;
 $scope.dayChange = 0;
 _.each($scope.watchlists, function (watchlist) {
 $scope.marketValue += watchlist.marketValue ?
 watchlist.marketValue : 0;
 $scope.dayChange += watchlist.dayChange ?
 watchlist.dayChange : 0;
 });
 updateCharts();
 };

 // [8] Watch for changes to watchlists.
 $scope.$watch('watchlists.length', function () {
 reset();
 });
 });

For the implementation of this DashboardCtrl, both WatchlistService and QuoteService
are injected as dependencies. Next, some initializations are made to populate the $scope
.watchlists variable using the WatchlistService, with chart style and formatting options
also being defined [1]. An updateCharts() function is then created [2] that sets up both a
donutChart and a columnChart. The required properties and available configuration options for
these objects are defined by the Google Chart library documentation, which can be found here
https://developers.google.com/chart/. This function also handles looping over each watchlist
being tracked by StockDog and adding the appropriate data onto the respective chart object [3]
before attaching both chart structures to the controller’s $scope. A reset() function [4] is then
defined that is used to clear the controller’s state. This function clears all tracked stocks from the
QuoteService before registering each stock for each existing watchlist [5]. It then unregisters all
existing $watch listeners, whose references are stored in a local array, before creating new $watch
targets on each watchlist’s marketValue [6]. This is used to invoke the recalculate() function
[7], which handles computing new aggregate market value and day change metrics each time a
watchlist’s computed value changes.

Each time recalculate is invoked, a call to updateCharts() is made so that the existing charts
can be redrawn by the Google Chart library with the newest data. Finally, a $watch target is set
on the watchlists.length property so that when a watchlist is created or deleted, the reset()
function can be triggered to appropriately rebuild the entire controller’s state [8]. It’s worth
mentioning that the watchlists.length expression is used instead of the entire watchlists
object because deep-watching large data structures can seriously degrade your application’s
performance.

www.it-ebooks.info

https://developers.google.com/chart/
http://www.it-ebooks.info/

52  ❘  CHAPTER 1   Building a Simple AngularJS Application

Updating the Dashboard View
Now that the DashboardCtrl implementation is complete, the next order of business is to update
StockDog’s dashboard view to render the new data and chart objects that have been created. As it
stands, the app/views/dashboard.html file only contains a reference to the stkWatchlistPanel
directive and an empty Portfolio Overview panel. You can find the missing markup for this panel in
the completed dashboard view, shown in Listing 1-21.

LISTING 1-21:  app/views/dashboard.html

<div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 Portfolio Overview
 </div>
 <div class="panel-body">
 <!–– [1] Display some helpful text to guide new users ––>
 <div ng-hide="watchlists.length && watchlists[0].stocks.length"
 class="jumbotron">
 <h1>Unleash the hounds!</h1>
 <p>
 StockDog, your personal investment watchdog, is ready
 to be set loose on the financial markets!
 </p>
 <p>Create a watchlist and add some stocks to begin monitoring.</p>
 </div>

 <div ng-show="watchlists.length && watchlists[0].stocks.length">
 <!–– Top Row ––>
 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-6">
 <!–– [2] Use sign-fade directive on wrapper element ––>
 <div stk-sign-fade="{{marketValue}}" class="well">
 <h2>{{marketValue | currency}}</h2>
 <h5>Total Market Value</h5>
 </div>
 </div>

 <!–– Right Column ––>
 <div class="col-md-6">
 <!–– [3] Use sign-color directive on wrapper element ––>
 <div class="well" stk-sign-color="{{dayChange}}">
 <h2>{{dayChange | currency}}</h2>
 <h5>Total Day Change</h5>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Production Deployment  ❘  53

 </div>
 </div>
 <!–– [4] Use google-chart directive and reference chart objects ––>
 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-6">
 <div google-chart chart="donutChart" style="{{cssStyle}}"></div>
 </div>

 <!–– Right Column ––>
 <div class="col-md-6">
 <div google-chart chart="columnChart" style="{{cssStyle}}"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

The new markup inside the panel-body starts by including some helpful text to guide new users
when they first open StockDog and have yet to create any watchlists [1]. You should also notice that
both columns of the top row contain references to the stkSignFade [2] and stkSignColor [3]
directives, but the directives have been applied to a wrapper element—in this case, Bootstrap wells.
Finally, the googleChart directive, exposed by the previously installed angular-google-chart
library, is used in both columns of the bottom row, with the chart objects created in the
DashboardCtrl being used as the value for each respective element’s chart attribute [4]. To polish
up the completed dashboard view, the only remaining modification you’ll need to make is to add the
following CSS to the top of your app/styles/main.css file:

/* Dashboard View Styles */
.well {
 background-color: white;
 text-align: center;
}

Congratulations! If you have successfully made it through the entirety of this section, you have
finally finished building the entire StockDog application! See Figure 1-14. Take a moment to
appreciate your hard work and play around with the application by creating several new watchlists,
adding new stocks, and monitoring your portfolio’s performance from the dashboard view. For the
completed application source code, please refer to the step-11 directory inside the companion code
for this chapter or check out the corresponding tag of the GitHub repository.

PRODUCTION DEPLOYMENT

Now that you have finished building StockDog, the time has come to unleash the hounds and
package the distributable application before deploying it to the Internet so that your users around
the world can better manage their stock portfolios. Although an in-depth discussion of production
deployment and all the associated intricacies is outside the scope of this section, there are a few
simple tasks that can be accomplished to get your application ready for the masses.

www.it-ebooks.info

http://www.it-ebooks.info/

54  ❘  CHAPTER 1   Building a Simple AngularJS Application

FIGURE 1-14

Because your application was developed using the AngularJS Yeoman generator, your project
already includes a sophisticated build system. You will learn more about how this system works in
the Chapter 3, “Architecture,” but for now, just run the following command from your terminal to
run the build system:

grunt build

This concatenates, obfuscates, and minifies all of StockDog’s source files and creates a new
dist/ directory in your project’s root folder with the optimized assets. The dist/ directory
contains everything needed for users to run your application, so deployment is as simple
as uploading this folder to your hosting service of choice. However, for the purpose of
this section, you will be deploying StockDog to GitHub Pages, a hosting service provided
free of charge for GitHub-based projects. If you haven’t already uploaded your project to
GitHub, take a few minutes to do so, consulting https://help.github.com/articles/
adding-an-existing-project-to-github-using-the-command-line/ if you need any
further assistance.

Once your project has been uploaded to GitHub, open your .gitignore file and remove the line
containing dist. Out of the box, Yeoman has set up your project to follow best practices by
ignoring files generated by the automated build task. However, because you will be hosting your
dist/ directory on GitHub, it must be committed as part of your project. Go ahead and add the

www.it-ebooks.info

https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
http://www.it-ebooks.info/

Conclusion  ❘  55

dist/ directory to your repository, commit, and then push it upstream. Now you are ready to
deploy your application to GitHub using the git subtree command. Run the following command
from your terminal to create a new gh-pages branch for your project consisting of all the files
residing inside your dist/ directory:

git subtree push ––prefix dist origin gh-pages

Once that is complete, your application will be publicly available at http(s)://<username>
.github.io/<projectname>. For example, you can find the StockDog application running at
http://diegonetto.github.io/stock-dog. One caveat to this approach is that your Dashboard
and Watchlist links must be prefixed with your <projectname> because of the nature of the GitHub
Pages URL. Another approach is to set up a custom URL for your project by uploading a new
CNAME file to your dist/ directory that contains your custom domain. This is how http://
www.stockdog.io/ has been set up to point to http://diegonetto.github.io/stock-dog.
After uploading your CNAME file and redeploying your site using the git subtree command
shown earlier, all that is left is to modify the www CNAME record (assuming you want to use the
www subdomain) of your DNS provider to point to username.github.io. If you have successfully
followed these steps, congratulations! Your application should be live and ready to share with the
rest of the world.

NOTE  GitHub recommends using a subdomain and not an apex domain when
configuring custom URLs for hosted project pages. If you wish to use your
apex domain (http://stockdog.io in the above example) for your deployed
application, the best way to accomplish this is to use the www subdomain
CNAME DNS entry with your provider as described and then enable domain
forwarding from your apex domain to your www URL. In this case, http://
stockdog.io has been set up to forward to http://www.stockdog.io.

CONCLUSION

The journey through this chapter has exposed you to a real-world application of AngularJS by
building StockDog, an application that leverages nearly all-key components of the framework. From
scaffolding a starter project using the Yeoman AngularJS generator to deploying your application
using GitHub Pages, this step-by-step guide should have given you the confidence and instant
gratification to inspire a deeper dive into this elegant framework. Along the way, you learned how
to structure a multiview single-page application; created several controllers, directives, and services;
installed additional front-end modules; handled dynamic form validation; communicated with
an external API; and brought your application to life with a simple animation. In the following
chapters of this book, you will explore in detail how the various components of the AngularJS
framework function and be exposed to various tools, services, and technologies that can be used to
create robust, reliable, and maintainable projects for professional consumption.

www.it-ebooks.info

http://diegonetto.github.io/stock-dog
http://www.stockdog.io/
http://www.stockdog.io/
http://diegonetto.github.io/stock-dog
http://stockdog.iointheaboveexample
http://stockdog.io
http://stockdog.io
http://www.stockdog.io
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Intelligent Workflow
and Build Tools

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ Managing front‐end dependencies using Bower

➤➤ Automating development tasks using Grunt/Gulp

➤➤ Scaffolding a new project using Yeoman

➤➤ Using workflow best practices to enhance productivity

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

WHAT CAN TOOLING DO FOR ME?

Two words: optimization and automation. Because time is a key factor in productivity,
automating repetitive tasks can help you stay effective as a developer. In this chapter, you
learn about a few open source tools that can increase the speed at which you develop,
debug, test, and distribute your application. By expanding the don’t repeat yourself (DRY)
philosophy to apply to your workflow process, you can focus more of your energy on
doing what you love: building elegant, air‐tight code. After discovering how to intelligently
apply modern techniques to augment your workflow, you will have established a strong
foundation to support building a sample application that allows a deeper exploration of
AngularJS.

2

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

58  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

WHAT IS BOWER?

Created by Twitter, Bower is a “package manager for the web” that provides an elegant,
unopinionated solution to the problem of front‐end package management. Distributed as a Node.js
command‐line tool, Bower helps you manage your front‐end JavaScript dependencies by providing
package‐agnostic mechanisms for searching, installing, and updating your third‐party assets.

Getting Started with Bower
Bower’s management facilities operate over Git, with SVN support starting from version 1.3.X,
for fetching and installing packages, so make sure you have it installed on your system. Mac users
should already have Git available on their machines. For Windows users, it’s recommended that you
download Git Bash (http://git‐scm.com/downloads).

To begin using Bower, install it globally using the Node Package Manager (npm) utility that is
shipped with Node.js. Fire up your terminal application of choice and run this:

npm install –g bower

This makes the bower utility available for use via the command line. Go ahead and run bower help
to see a list of supported commands before you take a closer look at how you can use a few of these
commands to manage your front‐end dependencies.

Searching for Packages
Bower maintains a registry containing a plethora of JavaScript libraries that can be easily searched
via the bower search [<package>] command or by visiting http://bower.io/search/. From the
command line, run the following:

bower search angular

This lists all the AngularJS libraries that are available via Bower. Because anyone is able to create
and publish new packages to the registry, chances are that you can manage most, if not all, of your
third‐party dependencies using Bower.

Installing Packages
Installing packages with Bower is as easy as running bower install <package>. Because Bower
aims at being package agnostic, <package> can be a name that maps to a registered Bower package,
a public or private Git or Subversion repository, a local directory, or even a uniform resource locator
(URL) to a file. For a full list of supported <package> variants, visit http://bower.io/. Now you’ll

NOTE  All the tools you will be exploring in this chapter require Node.js to be
installed on your machine. For more information, visit http://www.nodejs.org
and follow the installation instructions for your platform.

www.it-ebooks.info

http://www.nodejs.org
http://git%E2%80%90scm.com/downloads%00%00
http://bower.io/search/
http://bower.io/
http://www.it-ebooks.info/

What Is Bower?  ❘  59

get started with an example by creating a new directory and then installing the latest stable version
of AngularJS by running the following:

bower install angular

Notice that Bower created a local directory called bower _ components where it downloaded and
installed the AngularJS library. Before continuing with this simple application, you’ll look at how to
lock down your dependencies by keeping track of their versions.

NOTE  Bower can install a specified version using the <package>#<version>
syntax. For a listing of all available versions for a given package, run
bower info <package>. If you would like to see more package installation
options, use the command bower help install.

NOTE  If you would like to change the location where Bower installs your
packages, create a .bowerrc file and set the directory property as shown here:

{
 "directory": "app/bower_components"
}

For a full listing of all possible configuration properties supported by Bower,
visit http://bower.io/#configuration.

Versioning Dependencies
To keep better track of your third‐party dependencies, you can create a bower.json file that
contains the name and versions of your required libraries. This works much the same way as
Node’s package.json file and Ruby’s Gemfile. Since Bower uses the Node.js semantic versioning
system (http://semver.org), you can create complex ranges when specifying project dependencies
as described by the documentation site located at https://github.com/npm/node‐semver. Bower
comes with an interactive command that includes prompts for generating a default file. Simply run
the following command in your project’s root directory:

bower init

Now that you have a basic bower.json file, you can add AngularJS as a dependency and update your
file (--save, ‐S) with the latest version (--force‐latest, ‐F) using a single command:

bower install -SF angular

www.it-ebooks.info

http://bower.io/#configuration
http://semver.org
https://github.com/npm/node%E2%80%90semver
http://www.it-ebooks.info/

60  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

If checking in third‐party libraries is undesirable, your version control system can track this file,
and all the listed dependencies can be subsequently installed by simply running bower install.
Although it’s a matter of preference, it’s suggested that you follow the best practice advice listed
on the Bower homepage: “If you aren’t authoring a package that is intended to be consumed by
others (e.g., you’re building a web app), you should always check installed packages into source
control.”

WHAT IS GRUNT?

Grunt is a task runner that helps automate repetitive jobs such as linting, compiling, minification,
testing, documentation, and deployment. It is the JavaScript alternative to Rake, Cake, Make, and
Ant. Packaged as a Node.js command‐line tool and supported by a vibrant ecosystem of plug‐ins,
Grunt can enhance your workflow by automating most of that mundane work, allowing you to
focus on building your application.

Getting Started with Grunt
The first thing you need to start automating your workflow with Grunt is to install the command‐
line tools globally on your machine. To make the grunt utility available for use, run the following
from your command line:

npm install –g grunt-cli

Next, you need a few sample files to experiment with. Using your favorite editor, create the index
.html shown in Listing 2‐1. To keep your application assets organized in a centralized location, go
ahead and put them inside a new directory called app/.

LISTING 2‐1:  app/index.html

<!DOCTYPE html>
<html ng-app="Workflow">
 <head>
 <link rel="stylesheet" href="main.css">
 </head>

 <body ng-controller="ToolsCtrl">
 <h1>Workflow tools from this chapter:</h1>

 <li ng-repeat="tool in tools">{{tool}}

 <script src="bower_components/angular/angular.js"></script>
 <script src="app.js"></script>
 </body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Grunt?  ❘  61

To keep your example interesting, create the Less stylesheet shown below in Listing 2‐2,
although you could just as easily have chosen to use Sass, another cascading style sheet (CSS)
preprocessor.

LISTING 2‐2:  app/main.less

html,
body {
 h1 {
 color: SteelBlue;
 }
}

Finally, you need to create a basic AngularJS application like the one shown below in Listing 2‐3,
with a single controller so you can display the list of tools covered in this chapter on the index.html
page.

LISTING 2‐3:  app/app.js

'use strict';

angular.module('Workflow', [])

.controller('ToolsCtrl', function($scope) {
 $scope.tools = [
 'Bower',
 'Grunt',
 'Yeoman'
];
});

NOTE  In an earlier aside, it was mentioned that you could use a .bowerrc
file to set the directory where Bower installs module files. For the purpose
of your Grunt workflow example, go ahead and create a .bowerrc file and
set the directory property to install Bower modules inside your new app/
directory:

{
 "directory": "app/bower_components"
}

The bower _ components/ directory inside your project root can now be deleted.
Rerun bower install so that a new bower _ components/ directory is created
inside of app/.

www.it-ebooks.info

http://www.it-ebooks.info/

62  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

The last thing you need to do for your project is create a package.json file that can hold a list of
your development dependencies. You can do this interactively from the command line by running
the following command inside your project’s root directory:

npm init

Simply follow the prompts, and you’ll be set up with a basic package file. Now that you have a few
basic assets, you’re ready to install some plug‐ins and begin constructing your first Gruntfile.js to
enhance your development workflow.

Installing Plug‐Ins
With your current setup, you would have to manually compile your Less file into main.css and
reopen index.html in your browser anytime a file was modified. That doesn’t seem like such a
terrible task for a simple application like this one, but as it becomes more complex, this manual
work would quickly become tedious. To automate this entire process, you need to use a few
plug‐ins. Run the following from your command line to install the plug‐ins as development
dependencies for your project:

npm install --save-dev grunt
npm install --save-dev load-grunt-tasks
npm install --save-dev grunt-contrib-connect
npm install --save-dev grunt-contrib-jshint
npm install --save-dev grunt-contrib-less
npm install --save-dev grunt-contrib-watch

If you look inside your package.json file, it should now contain all your installed Grunt plug‐ins
inside the devDependencies property.

Directory Structure
Before creating your first Gruntfile, take a minute to look at your current directory structure and
ensure that you’re not missing any application files, Grunt plug‐ins, and Bower dependencies. If
you’ve been following along, your file system should be structured as follows:

root‐folder/
├── package.json
├── bower.json
├── .bowerrc
├── app/
│ ├── index.html
│ ├── main.less

NOTE  The Grunt core developers officially maintain plug‐ins containing
contrib in their name.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Grunt?  ❘  63

│ ├── app.js
│ ├── bower_components/
│ │ └── angular/
├── node_modules/
│ ├── grunt/
│ ├── grunt‐contrib‐connect/
│ ├── grunt‐contrib‐jshint/
│ ├── grunt‐contrib‐less/
│ ├── grunt‐contrib‐watch/
│ ├── load‐grunt‐tasks/

The Grunt plug‐ins you just installed are located inside your node _ modules/ folder. You used
the .bowerrc file to configure Bower so it would install the Angular.js module assets inside your
app/ directory. If your directory structure doesn’t quite match, take a second to review this
“Getting Started with Grunt” section. You will be using the directory structure just detailed when
configuring your first Gruntfile.

The Gruntfile
The Gruntfile.js file belongs in the root directory of your project as a sibling of the package
.json file and should be committed with the rest of your source code. Take a look at the various
components of a Gruntfile by creating one from scratch starting from a simple skeleton in
Listing 2‐4.

LISTING 2‐4:  Skeleton Gruntfile.js

// [1] Wrapper function
module.exports = function(grunt) {

 // [2] Project and task configuration
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json')
 });

 // [3] Load all plug-in tasks automatically
 require('load-grunt-tasks')(grunt);

 // [4] Default task
 grunt.registerTask('default', []);

};

The four main parts of a Gruntfile are annotated with comments inside of Listing 2‐4. All of your
Grunt code must reside inside of [1], the wrapper function. Both the project and task configuration
properties are passed into [2], the grunt.initConfig() method. To configure the tasks provided by
your installed plug‐ins, you must explicitly ask Grunt to load each one [3]. Finally, you can register
custom tasks [4] that can run a combination of predefined tasks. The default task is executed
when you run grunt from the command line.

www.it-ebooks.info

http://www.it-ebooks.info/

64  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

Configuring Tasks and Targets
Now that you have a skeleton Gruntfile and understand its basic structure, you can begin
configuring Grunt tasks and targets. Whenever a task is run, Grunt looks for its configuration
under a property of the same name. Tasks can have multiple targets, each with its own
configuration options. In this section, you configure the tasks made available to you by each of
the four specific plug‐ins you installed earlier, examining how they come together to automate a
simple workflow.

The Connect Task
The grunt‐contrib‐connect plug‐in you installed as a development dependency exposes
the connect task that can be configured inside your Gruntfile. This plug‐in allows you
to spin up a lightweight Node.js server as part of your workflow to handle serving your
application’s assets. Modify your Gruntfile by adding the following inside the grunt
.initConfig method:

// Configuring the 'connect' task from 'grunt-contrib-connect'
connect: {
 //[1] Task options, overrides built-in defaults
 options: {
 port: 9000,
 open: true,
 livereload: 35729,
 hostname: 'localhost'
 },
 //[2] Arbitrarily named target
 development: {
 // Target options, overrides task options
 options: {
 middleware: function(connect) {
 return [
 connect.static('app')
];
 }
 }
 }
}

NOTE  The load‐grunt‐tasks plug‐in you installed takes care of loading all the
tasks for each Grunt plug‐in defined in your package.json file. Without it, you
would have to load plug‐ins manually, as follows:

grunt.loadNpmTasks('grunt-contrib-connect');

Using this plug‐in saves you a few lines of code, especially as the number of plug‐
ins your Gruntfile depends on increases.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Grunt?  ❘  65

Configuring a Grunt plug‐in is as easy as adding a new property matching the name of your plug‐in
to the JavaScript object passed into grunt.initConfig(). Inside each task configuration, you can
specify an options object [1] that can be used to override built‐in defaults used by the plug‐in. In
this case, you set the server to run on http://localhost:9000/, inject the livereload script tag into
your page while running a separate connect‐livereload server on port 35729, and request that a
new tab be opened in your default browser during runtime.

NOTE  Connect is a middleware framework for Node.js created by Sencha
Labs that has a rich selection of both bundled and third‐party plug‐ins (http://
www.senchalabs.org/connect/).

In addition to leveraging the Connect framework to serve your files, the
grunt‐contrib‐connect plug‐in you installed uses a middleware plug‐in called
connect‐livereload to inject a <script> tag onto your page during the server
response. This is the first step in setting up livereload, which enables your
web page to update in real time, without manual intervention, as you make
modifications to your application’s assets. The next step will be discussed in a
later section when configuration of the grunt‐contrib‐watch plug‐in is covered.

The next thing you do is configure a new arbitrarily named target for the connect task [2]. Because
your application files reside inside the app/ directory, you need to tell your development target to
serve static assets from that location. You accomplish this by setting the middleware property of
the target’s options object to return a call to connect.static('app'), wrapped in an array as seen
earlier. Although not shown in this example, it is important to take note that target‐level options
override task‐level options.

Now that you have finished configuring your connect task and development target with a few
appropriate options, you can launch your local development server and open your application in a
new browser tab by running the following from the command line:

grunt connect:development:keepalive

The syntax for executing Grunt tasks from the command line follows the
taskName:targetName:args pattern you see here. You can specify multiple arguments, but
you must separate them with a colon. To keep your connect server running indefinitely, you
pass in the keepalive argument to the connect task. For a full list of supported configuration
options and arguments, visit the documentation site located at https://github.com/gruntjs/
grunt‐contrib‐connect.

The Less Task
Now that you have a lightweight web server for your static assets, take a look at what it takes to set
up a compilation task for your Less files. If you have been following along, you should have noticed
that the only styles you have are defined in main.less. However, because index.html references
main.css, which does not yet exist, no styles are being applied to your application. Normally, you

www.it-ebooks.info

http://localhost:9000/
http://www.senchalabs.org/connect/
http://www.senchalabs.org/connect/
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90connect
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90connect
http://www.it-ebooks.info/

66  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

would need the Less command‐line compiler to be installed and invoke it each time you make a
modification, as shown here:

npm install -g less
lessc app/main.less > app/main.css

However, the grunt‐contrib‐less plug‐in you installed earlier exposes a less task that allows you
to configure and automate the compilation process. Modify your Gruntfile by adding the following
lines after the connect task configuration:

// Configuring the 'less' task from 'grunt-contrib-less'
less: {
 development: {
 files: {
 'app/main.css': 'app/main.less'
 }
 }
}

Here you specify the transformation of main.less into main.css inside the files property of the
development target for the less task. To trigger this task, follow the pattern described earlier and
run the following from the command line:

grunt less

This should have created the main.css file inside your app/ directory. Although you now have a
properly configured Less compilation task, you still need to run grunt less each time you make
a modification to the main.less file. In an upcoming section, you will learn how to automate this
task using the grunt‐contrib‐watch plug‐in. For a complete list of the available configuration
options for the less task, visit the plug‐in documentation page at https://github.com/gruntjs/
grunt‐contrib‐less.

The JSHint Task
JSHint is an open source static code analysis tool that detects errors and potential problems in
your JavaScript code and helps enforce coding conventions. This process of static analysis is often
referred to as linting and should be considered an integral part of any workflow and build system.
The grunt‐contrib‐jshint plug‐in you installed exposes a configurable jshint task that can be
automated as part of your Grunt workflow system. Take a look at how you can lint your JavaScript
files by adding the following code after the less task in your Gruntfile:

// Configuring the 'jshint' task from 'grunt-contrib-jshint'
jshint: {
 options: {
 jshintrc: '.jshintrc'
 },
 all: [
 'Gruntfile.js',
 'app/*.js'
]
}

www.it-ebooks.info

https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90less
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90less
http://www.it-ebooks.info/

What Is Grunt?  ❘  67

Here you configure the jshint task with a task‐level option to look for a .jshintrc, which allows
you to customize JSHint, and one target called all in which you specify the JavaScript files you
want to lint. In addition to explicitly referencing each file, regular expressions are supported.
Listing 2‐5 shows a sample .jshintrc file with commonly used preferences that should serve as
a helpful starting point. For a detailed list of all supported configuration options and associated
documentation, visit http://www.jshint.com/docs/options/.

LISTING 2‐5:  .jshintrc

{
 "node": true,
 "browser": true,
 "esnext": true,
 "bitwise": true,
 "camelcase": true,
 "curly": true,
 "eqeqeq": true,
 "immed": true,
 "indent": 2,
 "latedef": true,
 "newcap": true,
 "noarg": true,
 "quotmark": "single",
 "undef": true,
 "unused": true,
 "strict": true,
 "trailing": true,
 "smarttabs": true
}

Now that you have configured your project’s linting settings using a .jshintrc file, go ahead and
trigger the Grunt jshint task and look at the output:

$ grunt jshint
Running "jshint:all" (jshint) task

 Gruntfile.js
 5 | grunt.initConfig({
 ^ Missing "use strict" statement.
 app/app.js
 3 |angular.module('Workflow', [])
 ^ 'angular' is not defined.

>> 2 errors in 2 files
Warning: Task "jshint:all" failed. Use --force to continue.

Aborted due to warnings.

Here you see JSHint reporting two errors in both of your JavaScript files. The first can be easily
fixed by adding ‘use strict’; to the top of your Gruntfile. To fix the second error, update your
.jshintrc file to include the configuration option "predef": ["angular"] so that JSHint recognizes

www.it-ebooks.info

http://www.jshint.com/docs/options/
http://www.it-ebooks.info/

68  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

The Watch Task
The grunt‐contrib‐watch plug‐in exposes a watch task that can be easily configured to run
predefined tasks whenever watched file patterns are added, changed, or deleted. This allows you
to automate execution of your other tasks and provides the final step in setting up livereload
integration as part of your workflow, initially discussed during configuration of the connect task.
Bring all the tasks you’ve created up to this point together by adding the following code to your
Gruntfile after the jshint task:

// Configuring the 'watch' task from 'grunt-contrib-watch'
watch: {
 options: {
 livereload: '<%= connect.options.livereload %>',
 },
 js: {
 files: ['app/*.js'],
 tasks: ['jshint']
 },
 styles: {
 files: ['app/*.less'],
 tasks: ['less']
 },
 html: {
 files: ['app/*.html']
 }
}

Notice that here you use the task‐level option property so that all subsequently configured targets
have livereload enabled. You then proceed to create a new target for each set of files you want to
watch for modifications. Inside the js and styles targets, you specify two options: an array of
file pattern, and an array of tasks to be executed when the watched files are modified. The html
target doesn’t specify any task to be run because you’re not, for the time being, doing anything
with Hypertext Markup Language (HTML) files as part of your workflow other than serving
them. Running grunt watch from the command line and then modifying a JavaScript or Less file

angular as a globally defined variable. Rerun the jshint task from the command line to verify that
both of your JavaScript files are lint free. For a complete list of the available configuration options
for the jshint task, visit the plug‐in documentation page at https://github.com/gruntjs/
grunt‐contrib‐jshint.

NOTE  Strict Mode is a feature in ECMAScript 5 that allows you to place a
program or function in a strict operating context that prevents certain actions
from being taken and throws more exceptions. Check http://caniuse.
com/#feat=use‐strict for a detailed list of current browser support for
Strict Mode. More information about Strict Mode can be found on page 235
of the ES5 specification located here: http://www.ecma‐international.org/
publications/files/ECMA‐ST/Ecma‐262.pdf.

www.it-ebooks.info

https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90jshint
http://caniuse.com/#feat=use%E2%80%90strict
http://www.ecma%E2%80%90international.org/publications/files/ECMA%E2%80%90ST/Ecma%E2%80%90262.pdf
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90jshint
http://caniuse.com/#feat=use%E2%80%90strict
http://www.ecma%E2%80%90international.org/publications/files/ECMA%E2%80%90ST/Ecma%E2%80%90262.pdf
http://www.it-ebooks.info/

What Is Grunt?  ❘  69

should now automatically trigger the jshint and less tasks, respectively. For a complete list of the
available configuration options for the watch task, visit the plug‐in documentation page at https://
github.com/gruntjs/grunt‐contrib‐watch.

The Default Task
Although running the watch task on its own is helpful, to finish setting up your simple workflow,
you need to have the connect server running so that livereload can work correctly. To do this, you
have to register a new alias task with Grunt by invoking the grunt.registerTask() function. This
method takes a taskName and taskList as arguments, where taskList must be an array of tasks to
run in the order specified. Modify the default task registered at the bottom of your Gruntfile to look
like this:

// Default Task
grunt.registerTask('default', ['connect:development', 'watch']);

 After you have ended your previously running watch task using Ctrl+C, launch the default task by
running the following on the command line:

grunt

This should start the connect server and open an instance of your application inside a new browser
tab. Go ahead and modify the index.html file by adding <p>Hello Grunt</p> after the opening
<body> tag. Grunt should see this change after the file is saved and notify the livereload server to
send a message asking the client for this file to be reloaded. Presto! No need to click the Refresh
button in your browser after every modification. Try changing the color of <h1> elements inside
your main.less file from SteelBlue to Red. Watch Grunt compile it into a main.css file and have
livereload automatically update your DOM. Finally, add ‘Gulp’ to the $scope.tools array inside
app.js and watch Grunt lint it using JSHint and update your browser tab with this quick addition.

Creating a Custom Task
You’ve seen how to use the simple configuration options provided by a handful of plug‐ins that can
easily be used to automate several common workflow tasks. However, if you want to create a custom
task that does not rely on a preexisting plug‐in, you are free to do so because Grunt runs using
Node.js. You can easily plug any JavaScript code you want to write into your current workflow, as
shown in the next snippet that showcases a few helpful mechanisms provided by Grunt to assist in
creating custom tasks:

// Custom task
grunt.registerTask('myTask', 'My custom task', function(one, two) {
 // Force task to run in async mode and save handle for completion callback
 var done = this.async();

 setTimeout(function() {
 // [1] Access task name and arguments
 grunt.log.writeln(this.name, one, two);

 // [2] Fail if properties don't exist

www.it-ebooks.info

https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90watch
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90watch
http://www.it-ebooks.info/

70  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

 grunt.config.requires('connect.options.livereload');

 // [3] Access configuration properties
 grunt.log.writeln('The livereload port is '
 + grunt.config('connect.options.livereload'));

 // Succeed asynchronously
 done();

 // [4] Run other tasks
 grunt.task.run('default');
 }.bind(this), 1000);
});

This example registers a task named myTask with Grunt that accepts two arguments and includes
a custom description. To demonstrate a task that runs in asynchronous mode, this.async() is
invoked, and the rest of the code is executed inside a call to setTimeout(), with done() being called
to succeed asynchronously. Here, helper functions are used to access the task name and arguments
[1], fail if a specific configuration property is not present [2], and access Grunt configuration
options that have been previously defined [3]. Instructing custom tasks to run other workflow tasks
is also possible, as shown in [4]. You can invoke this custom task with colon‐separated arguments,
as mentioned earlier in this chapter. The invocation and output of this task are shown here:

$ grunt myTask:Hello:World
Running "myTask:Hello:World" (myTask) task
myTask Hello World
The livereload port is 35729

Running "connect:development" (connect) task
Started connect web server on http://localhost:9000

Running "watch" task
Waiting...

NOTE  Notice how the grunt.log.writeln() helper function was used to print
out multiple variables. Grunt provides several helper functions, one of which
is grunt.log.error(), which if invoked with a message halts the execution of
any subsequent tasks. The only way to force Grunt to execute remaining tasks
after an error occurs is to specify the --force flag when running grunt from the
command line.

Now that you have seen how to register custom tasks and leverage a few of the built‐in helper
functions, the only limitation to what you can accomplish with Grunt will be based on what can
be coded in JavaScript, so the sky is the limit! Listing 2‐6 shows the completed Gruntfile that
automates all the workflow tasks that have been configured in this section, as well as the custom
task described earlier. In the next section, you create a similar workflow using Gulp.js, another
popular open source JavaScript build system designed with different philosophical principals.

www.it-ebooks.info

http://localhost:9000
http://www.it-ebooks.info/

What Is Grunt?  ❘  71

LISTING 2‐6:  Completed Gruntfile.js

'use strict';

// Wrapper function
module.exports = function(grunt) {

 // Project and task configuration
 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),

 // Configuring the 'connect' task from 'grunt-contrib-connect'
 connect: {
 // Task options, overrides built-in defaults
 options: {
 port: 9000,
 open: true,
 livereload: 35729,
 hostname: 'localhost'
 },
 // Arbitrarily named target
 development: {
 // Target options, overrides task options
 options: {
 middleware: function(connect) {
 return [
 connect.static('app')
];
 }
 }
 }
 },

 // Configuring the 'less' task from 'grunt-contrib-less'
 less: {
 development: {
 files: {
 'app/main.css': 'app/main.less'
 }
 }
 },

 // Configuring the 'jshint' task from 'grunt-contrib-jshint'
 jshint: {
 options: {
 jshintrc: '.jshintrc'
 },
 all: [
 'Gruntfile.js',
 'app/*.js'
]

continues

www.it-ebooks.info

http://www.it-ebooks.info/

72  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

 },

 // Configuring the 'watch' task from 'grunt-contrib-watch'
 watch: {
 options: {
 livereload: '<%= connect.options.livereload %>',
 },
 js: {
 files: ['app/*.js'],
 tasks: ['jshint']
 },
 styles: {
 files: ['app/*.less'],
 tasks: ['less']
 },
 html: {
 files: ['app/*.html']
 }
 }
 });

 // Load your desired plug-ins, which provide specific tasks
 require('load-grunt-tasks')(grunt);

 // Default task
 grunt.registerTask('default', ['connect:development', 'watch']);

 // Custom task
 grunt.registerTask('myTask', 'My custom task', function(one, two) {
 // Force task to run in async mode and save handle for completion callback
 var done = this.async();

 setTimeout(function() {
 // Access task name and arguments
 grunt.log.writeln(this.name, one, two);

 // Fail if properties don't exist
 grunt.config.requires('connect.options.livereload');

 // Access configuration properties
 grunt.log.writeln('The livereload port is '
 + grunt.config('connect.options.livereload'));

 // Succeed asynchronously
 done();

 // Run other tasks
 grunt.task.run('default');
 }.bind(this), 1000);
 });

};

LISTING 2‐6  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Gulp?  ❘  73

WHAT IS GULP?

Gulp is another popular workflow automation tool that offers a streaming build system using Node
.js streams and favors code‐over‐configuration. This approach simplifies management of complex
tasks by eliminating the need for large configuration files. Similar to Grunt, Gulp provides a
command‐line tool that is invoked to run tasks created by a growing community of plug‐ins, as well
as custom tasks developed using JavaScript.

Getting Started with Gulp
The first thing you need to do to start experimenting with Gulp and its elegantly simple application
programming interface (API) is install the command‐line tool globally on your machine. To be able
to access the gulp utility, run the following from the command line:

npm install –g gulp

Installing Plug‐Ins
In this section, you create the same workflow built earlier in this chapter using Grunt, but using
Gulp’s ecosystem of plug‐ins. Now that you have Gulp installed globally, go ahead and install the
necessary plug‐ins and modules needed to accomplish this task by running the following from your
command line:

npm install --save-dev gulp
npm install --save-dev gulp-load-plugins
npm install --save-dev gulp-livereload
npm install --save-dev gulp-less
npm install --save-dev gulp-jshint
npm install --save-dev jshint-stylish
npm install --save-dev opn
npm install --save-dev connect
npm install --save-dev connect-livereload

Verify that the plug‐ins listed in the preceding code have been added as development
dependencies by opening your package.json file and checking the devDependencies
property. With all the required plug‐ins successfully installed, the next step is to create your
first Gulpfile.

The Gulpfile
The Gulpfile.js file, analogous to the Gruntfile.js that you created earlier in this chapter, belongs
in the root directory of your project as a sibling of the package.json file. It should be committed
with the rest of your source code. Listing 2‐7 contains a skeleton Gulpfile.js that you will build
upon by configuring various tasks in the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

74  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

LISTING 2‐7:  Skeleton Gulpfile.js

// [1] Require gulp
var gulp = require('gulp');

// [2] Load plug-ins
var $ = require('gulp-load-plugins')();

// [3] Default task - run with 'gulp'
gulp.task('default', [], function () {
});

As shown in the listing, the skeleton Gulpfile consists of [1] requiring the Gulp library, [2] loading
all plug‐ins listed in your package.json file, and [3] registering a specific task. As with Grunt,
the default Gulp task will be executed when you run gulp from the command line. Because
Gulp extols the principle of convention over configuration, you should notice that there is no Gulp
equivalent of Grunt’s initConfig(). Now that you have seen the three main parts of a Gulpfile, you
can jump right into programming your first Gulp task.

NOTE  The gulp‐load‐plugins module you installed takes care of loading
the Gulp plug‐ins listed in your package.json file by requiring each one and
namespacing them, after stripping the gulp‐ prefix, under the assigned variable.
Without this useful module, you have to require each plug‐in manually, as
follows:

var jshint = require('gulp-jshint');

Notice that this is different in function from the Grunt load‐grunt‐tasks
counterpart because in this case you are requiring a handle to the plug‐in module
directly instead of loading configurable tasks.

Creating Tasks
The anatomy of a Gulp task follows the form gulp.task(name[, deps], fn) which consists of
a name, a list of optional dependencies in array form, and a callback function that performs the
desired operations. The name is used to invoke the task directly from the command line, and the
optional dependencies array can contain a list of task names that should be executed and completed
before your task function will run. In this section, you will leverage each of the installed Gulp
plug‐ins and Node.js modules to create an automated workflow for serving your application’s assets,
compiling Less stylesheets, and linting JavaScript files.

The Connect Task
You might have noticed that not all the modules installed were Gulp‐specific plug‐ins. Because Gulp
takes a more programmatic approach to automating developer workflow, it is often simple enough

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Gulp?  ❘  75

to directly use a Node.js module to perform the operations of your task. The connect task you are
about to implement does just that. Modify your Gulpfile by adding the following code somewhere
after loading the Gulp plug‐ins:

// 'connect' task for starting web server
gulp.task('connect', function () {
 var connect = require('connect');
 var app = connect()
 .use(require('connect-livereload')({ port: 35729 }))
 .use(connect.static('app'))
 .use(connect.directory('app'));

 require('http').createServer(app)
 .listen(9000)
 .on('listening', function () {
 console.log('Started connect web server on http://localhost:9000');
 });
});

When you configured this task using Grunt, the grunt‐contrib‐connect plug‐in used the connect
and connect‐livereload Node.js modules under the hood and exposed configuration options
accordingly. Following Gulp’s philosophy of convention over configuration, the preceding code
interacts directly with these two modules to implement the desired task functionality. A new
Connect server is instantiated with three middleware plug‐ins via the .use() function. These
handles inject the livereload snippet into outgoing requests, serve static assets from within the app
directory, and make the directory itself explorable. Finally, Node’s built‐in http module is used
to create a new server set to listen on port 9000 using the Connect application instance. With the
implementation of the connect task finalized, go ahead and run the following from the command
line:

gulp connect

Opening your browser to http://localhost:9000/ should bring up the simple application created
earlier in this chapter. Although this simple Connect application instance should be enough to
satisfy most of your workflow automation needs, you can find a full list of all bundled Connect
middleware plug‐ins by visiting the documentation site at http://www.senchalabs.org/connect/.

The Less Task
Next up is creating the less task that allows Gulp to compile your Less files into CSS. Because you
should have already installed the gulp‐less plug‐in, the actual implementation of the less task
will be straightforward. Add the following code to your Gulpfile after the implementation of the
connect task:

// 'less' task for compiling styles
gulp.task('less', function () {
 return gulp.src('app/*.less')
 .pipe($.less({ paths: 'app' }))
 .pipe(gulp.dest('app'));
});

www.it-ebooks.info

http://localhost:9000
http://localhost:9000/
http://www.senchalabs.org/connect/
http://www.it-ebooks.info/

76  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

The first thing this task does is invoke gulp.src(), which accepts a glob and returns a file structure
stream that can be piped to other plug‐ins. Globbing is a concept that allows matching files using
shell patterns and regular expressions. The Node.js Stream.pipe() function is then called to direct
the file stream to the gulp‐less plug‐in, which was namespaced under the $ variable, with the
desired app/ directory specified as a path. At this point, the output stream contains the compiled
CSS, and gulp.dest(), which accepts a path, is invoked to write the stream to a file. When you’re
using gulp.dest(), folders that do not exist are created automatically. Because the gulp‐less plug‐
in maintains folder structure and handles renaming the output file, the path specified is used as a
directory. Invoke the completed less task by running the following from the command line:

gulp less

This compiles any Less files inside your app/ directory into their respective CSS. Worth mentioning
is the fact that because Less is a Node.js module as well as a command‐line tool, it exposes an API
for programmatic usage within code. This means that your Gulp less task could technically have
been implemented directly using the module, but the gulp‐less plug‐in does most of the work
for you, making it simpler to get started. You can find a complete list of the available usages for
gulp‐less by visiting the plug‐in documentation page at https://github.com/plus3network/
gulp‐less.

NOTE  You may have noticed that the less task created in this section contains
a return statement. By definition, a Gulp task can be made asynchronous if
its implementation function accepts a callback, returns a stream, or returns
a promise. As the functionality of your build system expands, it becomes
increasingly important to leverage Node’s asynchronous capabilities. Because
both ulp.src() and Stream.pipe() return chainable streams, the less task’s
implementation function fits one of the three criteria required to instruct Gulp to
run this task in asynchronous mode. Accepting a callback can be implemented
like this:

gulp.task('taskName', function(done) {
 // Do some work and fail asynchronously
 done(err);
});

You can return a promise using the popular q library, as shown here:

var Q = require('q');

gulp.task('taskName', function() {
 var deferred = Q.defer();
 // Do async work
 setTimeout(function() {
 deferred.resolve();
 }, 1);
 return deferred.promise;
});

www.it-ebooks.info

https://github.com/plus3network/gulp%E2%80%90less
https://github.com/plus3network/gulp%E2%80%90less
http://www.it-ebooks.info/

What Is Gulp?  ❘  77

The JSHint Task
Because linting JavaScript files is an important part of any serious front‐end build system, you will
be using the gulp‐jshint plug‐in that should have been installed earlier to add this functionality to
your Gulp workflow. Go ahead and implement the jshint task by adding the following code after
the less task in your Gulpfile:

// 'jshint' task for linting JS files
gulp.task('jshint', function () {
 return gulp.src('app/*.js')
 .pipe($.jshint())
 .pipe($.jshint.reporter(require('jshint-stylish')));
});

Here, the app/*.js glob pattern is passed to gulp.src() so that all JavaScript files inside your app/
directory are read and represented as a stream that can piped to the gulp‐jshint plug‐in, which is
accessed via $.jshint(). Notice that there is no need to write the output to disk, so in this case using
gulp.dest() is unnecessary. It is also worth mentioning that, because this task implementation
function returns a Node.js stream, Gulp lints your JavaScript files asynchronously. Run the
following from your command line to invoke the completed jshint task:

gulp jshint

At this point, the output from the linting process should display no errors. To demonstrate a linting
error, remove the 'use strict'; line from your app/app.js file and rerun the jshint task. You
should notice that the output is formatted differently than when grunt jshint is invoked. This
is because JSHint was set up to use the jshint‐stylish reporter, installed earlier in this section,
instead of the built‐in default. Replace the line where the reporter is registered with the following:

.pipe($.jshint.reporter('default'));

Rerunning the Gulp jshint task should now produce different results. As you can see, JSHint
reporters manipulate the way errors are formatted. In this case, the jshint‐stylish reporter
breaks the error message into multiple lines and colorizes parts of it for easier readability. You can
find information on creating custom reporters to suit your individual needs at http://jshint
.com/docs/reporters/. Before continuing onto the implementation of the watch task, be sure to
revert your changes to the app/app.js file and jshint task accordingly. For a detailed list of all
supported invocations of the gulp‐jshint plug‐in, visit https://github.com/spenceralger/
gulp‐jshint.

The Watch Task
Whereas with Grunt you had to install and configure the grunt‐contrib‐watch plug‐in, Gulp has
file‐watching capabilities directly built into its API via the gulp.watch() function. To automate the
previously defined tasks using watch functionality, you need to add the following lines of code to
your Gulpfile after the jshint task:

// 'watch' task for responding to file modifications
gulp.task('watch', function () {
 // Start a livereload server on default port 35729

www.it-ebooks.info

http://jshint.com/docs/reporters/
https://github.com/spenceralger/gulp%E2%80%90jshint
http://jshint.com/docs/reporters/
https://github.com/spenceralger/gulp%E2%80%90jshint
http://www.it-ebooks.info/

78  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

 $.livereload.listen();

 // Watch for changes and notify LR server
 gulp.watch([
 'app/*.html',
 'app/*.css',
 'app/*.js'
]).on('change', function (file) {
 $.livereload.changed(file.path);
 });

 // Run gulp tasks on specified file changes
 gulp.watch('app/*.js', ['jshint']);
 gulp.watch('app/*.less', ['less']);
});

The first thing the watch task does is fire up a livereload server on the default port using the
previously installed gulp‐livereload plug‐in. After that, a call to gulp.watch() is made with
an array of file glob patterns that should be monitored for modifications. Because gulp.watch()
returns a Node.js EventEmitter that emits change events, the EventEmitter.on() function is called
in chain so that the livereload server can be notified of subsequent file modifications. This is done
by invoking the plug‐in’s changed() function with the path to the modified file. At this point,
the watch task has been set up to monitor HTML, CSS, and JavaScript files for changes and is
able to communicate with the livereload server so that updates can automatically be propagated
to all connected browsers. However, to leverage the previously defined jshint and less tasks,
two additional calls to gulp.watch() need to be made that instruct Gulp to run these tasks when
your JavaScript and Less files are changed. Running gulp watch from the command line and then
modifying a JavaScript or Less file should now automatically trigger the jshint and less tasks,
respectively. For a complete list of the available Gulp API functions, visit the documentation page at
https://github.com/gulpjs/gulp/blob/master/docs/API.md.

The Default Task
As was the case with the Grunt workflow you set up previously in this chapter, you need to
configure the default Gulp task to run both the connect and the watch tasks to achieve a more
automated solution. To accomplish this, modify the default task located at the bottom of your
Gulpfile to match the code shown here:

// Default task - run with 'gulp'
gulp.task('default', ['connect', 'watch'], function () {
 require('opn')('http://localhost:9000');
});

Notice that this invocation of gulp.task() uses the optional array of task dependencies that are
executed and completed before the task implementation function is run. After the connect and
watch tasks are executed, the previously installed opn library is used to open this example application
in your default browser. In the case of Grunt, this functionality was handled by a configurable option
of the grunt‐contrib‐connect plug‐in. If you previously ran gulp watch, ensure that it has been
terminated before launching the default task by running the following on the command line:

gulp

www.it-ebooks.info

https://github.com/gulpjs/gulp/blob/master/docs/API.md
http://localhost:9000
http://www.it-ebooks.info/

What Is Gulp?  ❘  79

As with Grunt, this should launch the connect server, initiate file‐watching functionality, and open
an instance of your application inside a new browser tab. To verify that your Gulp workflow is
working as intended, go ahead and make a few modifications to the index.html, app.js, and main
.less files inside your app/ directory. Gulp should now be linting your JavaScript files, compiling
your Less files into CSS, and serving all your application assets with livereload capability. Revert
your changes to these files before proceeding onto the next section.

Arguments and Asynchronous Behavior
The last example in the Grunt section covered creating a custom task that accepted arguments and
utilized a few built‐in helper functions. Because, in the case of Gulp, the entire Gulpfile consists
of custom tasks, in this section you will re‐create myTask using two libraries that assist in parsing
command‐line options and facilitate asynchronous programming. Install the required modules by
running the following on the command line:

npm install --save-dev nopt
npm install --save-dev q

The nopt module is a well‐maintained argument‐parsing library, whereas the q module is
a tool for making and composing asynchronous promises in JavaScript. Two other popular
option‐parsing libraries are minimist and yargs. The async module is also worth mentioning,
because it is one of the most depended upon Node modules on the NPM registry and provides
straightforward, powerful utility functions for working with asynchronous JavaScript. To see how
to use these libraries within the context of a Gulp task, add var nopt = require('nopt'); to the
top of your Gulpfile below the other require statements, and then add the following code to the
bottom of the file:

// [1] Set up parsing of CLI arguments
var knownOpts = {
 'one': String,
 'two': String
};
var shorthands = {
 'o': ['--one', 'Hello'],
 't': ['--two', 'World']
};
var options = nopt(knownOpts, shorthands);

// Custom task
gulp.task('myTask', function () {
 var deferred = Q.defer();

 setTimeout(function() {
 // [2] Fail if CLI arguments don't exist
 if (!options.one || !options.two) {
 deferred.reject('Error: Please specify the --one and --two flags.');
 } else {
 // [3] Access CLI arguments
 console.log(options.one + ' ' + options.two);

 // [4] Succeed asynchronously

www.it-ebooks.info

http://www.it-ebooks.info/

80  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

Before the implementation of myTask, the nopt module is configured to explicitly parse two
command‐line options and their associated shorthand flags [1]. Shorthand definitions can specify
default values for each option flag, which is the case in this example. Inside the task implementation
function, a new deferred object is created, and its .reject() function is called with an error message
if the desired command‐line flags are not present [2]. Running gulp mytask results in an error
and causes Gulp to display this failure message in the terminal. The command‐line options are
made available as object properties after being parsed by nopt and can be accessed as shown in [3].
Finally, myTask succeeds asynchronously if the deferred object’s .resolve() function is invoked [4].
Running any of the following from the command line results in valid executions of this task:

gulp myTask --one Hello --two World
gulp myTask –o --two Gulp
gulp myTask -ot

Because Gulp tasks do not accept command‐line arguments as function parameters directly, you
should now be comfortable using a parsing library to augment your tasks as necessary. At this point,
you have finished using Gulp to re‐create the automated workflow that was initially introduced
using Grunt. Listing 2‐8 shows the completed Gulpfile that provides identical functionality to the
Gruntfile created earlier in this chapter. In the next section, you will find a brief discussion on
utilizing the Make command‐line tool to automate common JavaScript build‐related tasks.

LISTING 2‐8:  Completed Gulpfile.js

'use strict';

var gulp = require('gulp');
var nopt = require('nopt');

 deferred.resolve();
 }
 }, 1000);

 return deferred.promise;
});

NOTE  Promises are an asynchronous programming abstraction that
uninvert the “inversion of control” pattern associated with passing callback
functions around as arguments. Instead of accepting a callback, the myTask
implementation function returns a promise, which Gulp is designed to handle to
support asynchronous behavior. Although more detailed discussion of promises
is outside the scope of this chapter, it is worth mentioning that the q module is
Promises/A+ compliant. For a detailed explanation of the Promises/A+ open
standard, visit the specification page at http://promises‐aplus.github.io/
promises‐spec/.

www.it-ebooks.info

http://promises%E2%80%90aplus.github.io/promises%E2%80%90spec/
http://promises%E2%80%90aplus.github.io/promises%E2%80%90spec/
http://www.it-ebooks.info/

What Is Gulp?  ❘  81

var Q = require('q');

// Load plug-ins
var $ = require('gulp-load-plugins')();

// Set up parsing of CLI arguments
var knownOpts = {
 'one': String,
 'two': String
};
var shorthands = {
 'o': ['--one', 'Hello'],
 't': ['--two', 'World']
};
var options = nopt(knownOpts, shorthands);

// 'connect' task for starting web server
gulp.task('connect', function () {
 var connect = require('connect');
 var app = connect()
 .use(require('connect-livereload')({ port: 35729 }))
 .use(connect.static('app'))
 .use(connect.directory('app'));

 require('http').createServer(app)
 .listen(9000)
 .on('listening', function () {
 console.log('Started connect web server on http://localhost:9000');
 });
});

// 'less' task for compiling styles
gulp.task('less', function () {
 return gulp.src('app/*.less')
 .pipe($.less({ paths: 'app' }))
 .pipe(gulp.dest('app'));
});

// 'jshint' task for linting JS files
gulp.task('jshint', function () {
 return gulp.src('app/*.js')
 .pipe($.jshint())
 .pipe($.jshint.reporter(require('jshint-stylish')));
});

// 'watch' task for responding to file modifications
gulp.task('watch', function () {
 // Start a livereload server on default port 35729
 $.livereload.listen();

 // Watch for changes and notify LR server
 gulp.watch([
 'app/*.html',
 'app/*.css',

continues

www.it-ebooks.info

http://localhost:9000
http://www.it-ebooks.info/

82  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

 'app/*.js'
]).on('change', function (file) {
 $.livereload.changed(file.path);
 });

 // Run gulp tasks on specified file changes
 gulp.watch('app/*.js', ['jshint']);
 gulp.watch('app/*.less', ['less']);
});

// Default task - run with 'gulp'
gulp.task('default', ['connect', 'watch'], function () {
 require('opn')('http://localhost:9000');
});

// Custom task
gulp.task('myTask', function () {
 var deferred = Q.defer();

 setTimeout(function() {
 // Fail if CLI arguments don't exist
 if (!options.one || !options.two) {
 deferred.reject('Error: Please specify the --one and --two flags.');
 } else {
 // Access CLI arguments
 console.log(options.one + ' ' + options.two);

 // Succeed asynchronously
 deferred.resolve();
 }
 }, 1000);

 return deferred.promise;
});

Gulp, Grunt, and Make
As you have seen, Grunt and Gulp are exceedingly sophisticated and powerful workflow automation
tools. Although both are exceedingly popular in the JavaScript open source community, somewhat
surprisingly, a number of popular modules use an automation tool from the 1970s: Make. If you
have experience programming in C, you likely have used Make for automating your compilation
process. This section explores how to use Make to automate common workflow tasks while
developing projects using JavaScript. It also discusses when it might be appropriate to utilize one
tool versus another.

Automation Using Make
Make has a number of sophisticated features for compiling and linking C code, but in the JavaScript
community, Make is primarily used to create aliases for commonly used shell scripts. In addition,

LISTING 2‐8  (continued)

www.it-ebooks.info

http://localhost:9000
http://www.it-ebooks.info/

What Is Gulp?  ❘  83

Make allows you to define variables for paths to commonly used programs, enabling you to create
more readable commands. Make usually comes preinstalled on Linux‐like systems, including Mac
OSX. Before proceeding, verify that you have Make installed by running the make command from
your terminal. You should get output that looks like this:

make: *** No targets specified and no makefile found. Stop.

As with Grunt and Gulp, the rules you define for Make should be contained in a file named
Makefile, which should exist in your project’s root directory. When you run the make command, it
tries to parse the Makefile in your current working directory. Listing 2‐9 contains a simple Makefile
that handles compiling your Less assets.

LISTING 2‐9:  Makefile

LESSC = node_modules/less/bin/lessc

less:
$(LESSC) app/main.less > app/main.css

For this example to work, you need to have the Less compiler available as part of your project,
which can be accomplished by running npm install less. Now you can compile your Less assets
by running the following from your command line:

make less

This Makefile defines a new rule, less, so that the make command knows to run the corresponding
shell script when you run make less. Furthermore, Make can expand macros; for example,
the $(LESSC) shown earlier is a macro that is expanded into node _ modules/less/bin/lessc
before Make executes the shell script. This removes the need to install NPM modules globally
via npm install less –g, which might be advantageous in certain development environment
configurations.

The most apt comparison of Make versus Grunt and Gulp is that Make is roughly equivalent
to Gulp, but rules are written in your shell scripting language instead of creating tasks using
JavaScript. Although shell scripts can be simple and elegant, they are not as platform independent
as Node.js scripts, and there is no decent way to define which external programs your Makefile
requires.

To illustrate this point, consider the exercise of introducing functionality similar to the
gulp watch task you defined earlier in this chapter: Run the make less command every time the
main.less file changes. Because the lessc program currently doesn’t allow you to watch a file,
your Makefile is responsible for handling that. Unfortunately, watching a file for modifications is
a classic example of something that does not map well to standard shell commands. One approach
may be using the watch command; however, this command is not available by default on OSX.
You can also implement this using a while loop, but that’s generally a bad idea. Maintaining and
testing shell scripts is notoriously difficult, and writing logic into bash scripts can quickly spiral out
of control. That being said, some utilities can watch files built in. For example, the JavaScript unit‐
testing framework Mocha has a ‐w command‐line flag that instructs the utility to watch files for

www.it-ebooks.info

http://www.it-ebooks.info/

84  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

modifications. In this case, writing a watch rule is simple; all you need to do is run Mocha with the
‐w command‐line flag.

When to Use Make
So when should you use Make over Gulp or Grunt? The general rule of thumb is to keep things as
simple as possible for you and your team. If the only requirement is the ability to run your test suite or
minify a JavaScript file with an easy‐to‐type command, Make is sufficient and can provide a simpler
alternative than using Gulp or Grunt. Make is an excellent choice depending on how comfortable and
familiar you are with shell scripting, if your build process relies on many existing shell scripts, and
depending on your development environment. However, once you need more sophisticated capabilities,
such as watching files or conditional logic, Gulp or Grunt would likely serve you better.

When to Use Grunt
Because Grunt is highly configurable, chances are high that the community has already created
a plug‐in for most tasks you might want to accomplish as far as workflow automation and build
systems are concerned. This means that a sophisticated Gruntfile can be created with little to no
coding simply by configuring the task and targets for each installed plug‐in. This lends itself to
teams that include designers who want Less/Sass compilation and livereload functionality to be
part of their workflow but don’t necessarily specialize in JavaScript programming. Designers and
developers who prefer configuration to programming using Node.js streams and don’t wish to mess
with shell scripting should choose to use Grunt for their workflow needs.

When to Use Gulp
By adopting the convention over configuration philosophy, Gulp lends itself well to more seasoned
developers and programmers who are comfortable enough using asynchronous Node.js streams.
Although the open source community has been constantly expanding the selection of plug‐ins,
Gulp makes it just as easy to write tasks that utilize the underlying plug‐in libraries directly, thereby
reducing the number of dependencies for your workflow and build system. This, coupled with Gulp’s
use of Node.js streams, can help keep your build system fast, lightweight, and easy to manage.
Developers who require a sophisticated workflow automation tool and have adopted the convention
over configuration philosophy should opt to use Gulp over Grunt and Make.

So far in this chapter you have learned how to automate identical workflows using Grunt and Gulp
and discovered how to use Make in the context of JavaScript for shell‐heavy projects or those with
simpler automation requirements. What is left is a discussion on explicit build system automation. In
the next section, you build on your knowledge of Grunt and Gulp by exploring a new tool that can
scaffold out complex build pipeline tasks that support concatenation, minification, obfuscation, and
test harness execution.

WHAT IS YEOMAN?

Yeoman is an open source scaffolding tool that helps you kick‐start new projects with sensible
defaults, enforcing best practices and utilizing tools that help you stay productive while developing
modern web applications. Yeoman accomplishes this by supporting an ecosystem of generators,

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Yeoman?  ❘  85

which are plug‐ins that can be run with the yo command to scaffold complete projects or useful
parts. For those familiar with Ruby on Rails development, this process is analogous to the
rails generate command. Projects generated with the Yeoman command‐line tool are supported
by a robust and opinionated client‐side stack, composed of tools and frameworks that can help you
quickly build beautiful web applications.

The promoted “Yeoman workflow” builds on the success and lessons learned from several open‐
source communities, so you can rest assured that your development stack is as intelligent as possible.
The Yeoman workflow is composed of a scaffolding tool (yo), the build tools (grunt and gulp),
and the package managers (bower and npm). Yeoman leverages these tools to remove the hassle
associated with manually setting up a new project, improving your development productivity and
satisfaction by allowing you to focus on building your application right out of the box.

Getting Started with Yeoman
For you to begin scaffolding projects with Yeoman, a generator must be installed first. For the
purpose of this chapter, you will be exploring the official AngularJS generator that is maintained by
the Yeoman team, but a full list of both official and community‐maintained generators is located at
http://yeoman.io/generators/. To get started with this generator, simply run the following from
the command line:

npm install –g generator-angular@0.9.8

Scaffolding a New Project
The project scaffolding process is simple for all Yeoman generators. Simply create a new directory,
navigate into it using your command line, and then run the appropriate yo command for the desired
generator. Typically, this is the name of the generator following the generator‐ prefix. Because for
this chapter you have installed the AngularJS generator, the following command kicks off the new
project scaffolding process:

yo angular

At this point, most generators display a few prompts that allow you to configure how Yeoman
scaffolds your new project. As is the case with generator‐angular, the first few prompts ask if you
would like to include Sass, Twitter’s Bootstrap framework, and a few commonly used AngularJS
modules. For the purpose of this section, go ahead and press Enter during each prompt so that
Yeoman can finish generating the necessary files and installing the required dependencies to support
the promoted workflow. Because the AngularJS generator uses Grunt for automating all workflow
and build system tasks, the following section briefly discusses each plug‐in and associated task as it
appears in your newly generated Gruntfile.js.

Exploring Plug‐Ins and Tasks
As previously mentioned, Yeoman promotes best practices by setting you up with an opinionated
workflow that can improve developer productivity and satisfaction. The promoted workflow is
made possible by meticulously configuring one of the build system tools (Grunt or Gulp) with a set

www.it-ebooks.info

http://yeoman.io/generators/
mailto:generator-angular@0.9.8
http://www.it-ebooks.info/

86  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

load‐grunt‐tasks
As previously mentioned in the section on Grunt earlier in this chapter, this plug‐in takes care of
loading all the Grunt tasks exposed by the various plug‐ins required for this workflow, which are
located inside the devDependencies object of your package.json file. The reference occurs on Line
13, and you can view the documentation for this plug‐in at https://github.com/sindresorhus/
load‐grunt‐tasks.

time‐grunt
The time‐grunt plug‐in does not expose a task but instead displays the elapsed execution time for
all Grunt tasks on the command line using a cleanly formatted layout. This is especially helpful
when debugging poorly configured tasks or attempting to optimize areas of your build system. You
can find the documentation for this plug‐in at https://github.com/sindresorhus/time‐grunt.

grunt‐newer
This plug‐in is used in conjunction with tasks that perform file manipulations requiring src and
dest configuration properties. It exposes the newer task, which doesn’t require special configuration
but can be prefixed onto the invocation of other tasks to reduce the number of file manipulation
operations performed by your build system. For example, you can use this plug‐in with the JSHint
linter like so: newer:jshint:all. All source files are linted when this task is first run, but after that
only files that have been modified are run through the linter. You can find the full documentation
for this plug‐in at https://github.com/tschaub/grunt‐newer.

grunt‐contrib‐watch
This plug‐in exposes the watch task, which monitors specified files for modifications before running
the desired tasks. Its configuration has been discussed already, with the only difference this time
around being a few new targets: bower, jsTest, compass, and gruntfile. These new targets handle

of tasks that handle automating local development, testing, and production packaging. Over time,
the opinions behind the generated workflow tasks might change. However, the goal of this section
is to help you become familiar with the various opinions made by the Yeoman team so that you can
decide for yourself what best fits your future needs for any given project. Let the plug‐ins described
next serve as examples for the types of tasks that can be accomplished by leveraging an intelligent
workflow for building modern web applications.

NOTE  Due to the length of the generated Gruntfile.js that is discussed
in this section, the configuration code for each task has been intentionally
omitted. However, if you want to follow along without explicitly generating a
new project, the yeoman/ directory located inside the companion code for this
chapter contains the full project as scaffolded by the AngularJS generator. Be
sure to first run npm install && bower install from the command line within
that directory before attempting to execute workflow tasks.

www.it-ebooks.info

https://github.com/sindresorhus/load%E2%80%90grunt%E2%80%90tasks
https://github.com/sindresorhus/time%E2%80%90grunt
https://github.com/tschaub/grunt%E2%80%90newer
https://github.com/sindresorhus/load%E2%80%90grunt%E2%80%90tasks
http://www.it-ebooks.info/

What Is Yeoman?  ❘  87

rewiring front‐end dependencies, rerunning unit tests, compiling Sass into CSS, and restarting the
build system, respectively. For more information, please visit https://github.com/gruntjs/
grunt‐contrib‐watch.

grunt‐contrib‐connect
Also discussed in a previous section, this plug‐in exposes the connect task, which spins up a
Hypertext Transfer Protocol (HTTP) server used to serve local assets. The task configuration
for this Gruntfile.js contains additional targets for serving unit tests (test) and previewing
production‐built assets (dist). The full documentation for this plug‐in, which is maintained by the
Grunt core team, is located at https://github.com/gruntjs/grunt‐contrib‐connect.

grunt‐contrib‐jshint
As configured earlier in this chapter, this plug‐in exposes the jshint task that runs JavaScript
files through the JSHint linting utility. This time around, the task configuration contains an
additional target specifically for linting the associated JavaScript unit test files. For further
documentation on the grunt‐contrib‐jshint plug‐in, please visit https://github.com/gruntjs/
grunt‐contrib‐jshint.

grunt‐contrib‐clean
This plug‐in exposes a clean task that is useful for removing undesired files and directories. If you
look at the configuration for this task, you’ll notice that it has been set up to remove the .tmp/ and
dist/ directories. Yeoman uses the .tmp/ directory for storing files that need to be processed by
multiple tasks (such as for uglification and concatenation) and builds out your packaged application
to the dist/ directory. Because both of these directories are auto‐generated, best practices dictate
having a way to clean out both of them between builds. For more information, visit https://
github.com/gruntjs/grunt‐contrib‐clean.

NOTE  You may by now have noticed the presence of <%= yeoman.app %> and
<%= yeoman.dist %> inside the task configuration blocks for the Gruntfile.js
created by generator‐angular. These templates are used by Yeoman to allow
you to configure your project’s directory structure as you see fit. Located at the
top of the Gruntfile.js, you will find an appConfig object that contains the
values Yeoman will use to render against the templates referenced throughout
the various task configurations.

grunt‐autoprefixer
Autoprefixer is a standalone tool that parses CSS and adds vendor‐prefixed CSS properties using the
Can I Use (http://caniuse.com/) database. This plug‐in exposes the autoprefixer Grunt task,
which allows you to configure the way autoprefixer works for your project. By default, Yeoman sets
the browsers property of the task‐level options object to last 1 version. If your project needs
to support older browsers, be sure to modify this setting. A detailed explanation of all available

www.it-ebooks.info

https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90watch
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90connect
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90jshint
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90clean
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90clean
http://caniuse.com/
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90watch
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90jshint
http://www.it-ebooks.info/

88  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

options for the grunt‐autoprefixer plug‐in is documented at https://github.com/nDmitry/
grunt‐autoprefixer.

grunt‐wiredep
Wiredep is a standalone tool that wires dependencies into your source code. This plug‐in exposes the
wiredep Grunt task, which allows you to inject Bower packages directly into your source code as part
of your Grunt workflow. Yeoman has configured this task to look at your main index.html file, which
wiredep parses for comments that tell it where to inject dependencies. Thankfully, Yeoman has already
added the necessary comments as well. For JavaScript dependencies, bower:js is used, whereas CSS
dependencies can be injected using bower:css. Both of these comment blocks must be closed with an
endbower comment, and nothing should be inserted between these comment blocks, because wiredep
overwrites those sections with dependencies as defined in your bower.json file. For a complete list of
supported options, please visit https://github.com/stephenplusplus/grunt‐wiredep.

grunt‐contrib‐compass
This plug‐in exposes the compass Grunt task, which configures the way the standalone tool
Compass is integrated into your workflow. Compass is an open source authoring framework
that compiles your Sass files into CSS. This plug‐in requires that you have Ruby, Sass, and
Compass installed on your machine to function. Yeoman has set up the compass task to look
for Sass files in the styles/ directory of your designated application root. If you want to change
this behavior, simply modify the appropriate configuration options for this task. For in-depth
documentation, please visit the plug‐in’s repository located at https://github.com/gruntjs/
grunt‐contrib‐compass.

grunt‐filerev
This plug‐in exposes the filerev task, which provides configuration options that support
integrating static asset revisioning through file content hashing as part of your workflow. This is a
good practice to follow when deploying your application into a production environment because
you have better control over how your assets are cached. When new builds are generated, your
optimized application files are postfixed with a different hash, allowing your cachebusting strategy
to take effect. By default, Yeoman has configured this task to revision all your scripts, styles, images,
and fonts. For more information, please visit https://github.com/yeoman/grunt‐filerev.

grunt‐usemin
This plug‐in replaces references from nonoptimized scripts, style sheets, and other assets to their
optimized version within a set of HTML files (or any templates/views). To accomplish this, the
useminPrepare and usemin tasks are exposed for configuration inside your Gruntfile.js.
Remember how the filerev task creates revisioned copies of your assets? Well, the grunt‐usemin
plug‐in allows you to add configuration blocks (similar to those used by wiredep) so that you
can specify how the revisioned and optimized versions of your assets should be replaced in your
source code. If you look inside your index.html file, you should notice that the bower:js block
that wiredep uses is wrapped with a comment containing build:js(.) scripts/vendor.js. This
instructs usemin to create a single vendor.js file from any of the JavaScript files contained within

www.it-ebooks.info

https://github.com/nDmitry/grunt%E2%80%90autoprefixer
https://github.com/stephenplusplus/grunt%E2%80%90wiredep
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90compass
https://github.com/yeoman/grunt%E2%80%90filerev
https://github.com/nDmitry/grunt%E2%80%90autoprefixer
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90compass
http://www.it-ebooks.info/

What Is Yeoman?  ❘  89

this comment block (in this case your Bower dependencies), which is closed by an endbuild
comment. You can see a similar usemin comment block at the bottom of your index.html file; it is
used to compile a single scripts.js for all your application’s custom JavaScript files.

The useminPrepare task updates the Grunt configuration to apply a transformation flow to the
files wrapped in the appropriate comment build blocks. By default, usemin configures the concat
and uglify tasks, exposed by the grunt‐contrib‐concat and grunt‐contrib‐uglify plug‐ins,
respectively. These two tasks take care of combining all your JavaScript files, as defined by the
usemin build blocks, and obfuscating the result by running it through UglifyJS. Yeoman has gone
ahead and added the cssmin task from the grunt‐contrib‐cssmin plug‐in as part flow as well,
which handles compressing your CSS files.

The usemin task replaces all the blocks with a single "summary" line, pointing to a file created by
the transformation flow. It then looks for references to assets and replaces them with their revved
versions, which were created by the filerev task. The result of using the grunt‐usemin plug‐in is
that your workflow is now enhanced with the ability to concatenate, obfuscate, minify, and revision
your source files. It is worth mentioning that, if so desired, you can manually configure the concat,
uglify, and cssmin tasks. This plug‐in simply makes it easier to manage your transformation flow
by configuring those tasks for you based on the comment build blocks inside the index.html file.
For more information, including examples of additional transformation flows, visit the plug‐in
documentation at https://github.com/yeoman/grunt‐usemin.

grunt‐contrib‐imagemin
This plug‐in exposes the imagemin task, which allows you to compress your application’s images
using the gifsicle (for GIFs), jpegtran (for JPEGs), optipng (for PNGs), and svgo (for SVGs) image
optimizers. The optimizers are bundled with the plug‐in, so you don’t have to worry about installing
them on your machine. Yeoman configures the imagemin task to look for images in the images/
directory of your application root, but you can modify this as desired. For a complete list of the
compression options available for this plug‐in, visit the documentation at https://github.com/
gruntjs/grunt‐contrib‐imagemin.

grunt‐svgmin
Although you can technically use the grunt‐contrib‐imagemin plug‐in for compressing SVGs,
Yeoman also includes the grunt‐svgmin plug‐in by default, which offers finer control in the scalable
vector graphics (SVG) compression process through the exposed svgmin Grunt task. This plug‐in also
uses the svgo optimizer and can be helpful when handling more complex SVG images. You can find a
list of all available compression options at https://github.com/sindresorhus/grunt‐svgmin.

grunt‐contrib‐htmlmin
This plug‐in uses the html‐minifier open source tool, a highly configurable, well‐tested, JavaScript
based minifier, to compress your HTML files. The minifier can be configured via Grunt using
the exposed htmlmin task, which Yeoman has set up for you with a few default options enabled
(collapseWhitespace, removeOptionalTags, and so on). To learn more about how to pass
configuration options to the bundled html‐minifier via Grunt, look at the documentation located
at https://github.com/gruntjs/grunt‐contrib‐htmlmin.

www.it-ebooks.info

https://github.com/yeoman/grunt%E2%80%90usemin
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90imagemin
https://github.com/sindresorhus/grunt%E2%80%90svgmin
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90htmlmin
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90imagemin
http://www.it-ebooks.info/

90  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

grunt‐ng‐annotate
This plug‐in is based on the ng‐annotate command‐line tool, which can add, remove, and rebuild
AngularJS dependency injection annotations. By default, the ngAnnotate task tries to make your
AngularJS code safe for minification by automatically using the “long form” for dependency
injection. If this is your first time coming across AngularJS annotations, here is an example of what
your code usually looks like without annotations:

angular.module("MyApp").controller("MyCtrl", function($scope, $timeout) {
});

Due to the nature of how AngularJS handles dependency injection, the preceding code cannot be
safely minified without breaking your application. Instead, the following “long form” must be used
so that your application properly holds up after undergoing the minification process:

angular.module("MyApp").controller("MyCtrl", ["$scope", "$timeout",
function($scope, $timeout) {
}]);

Although you can surely use this long form manually, it does become tedious and error prone to
enforce as your codebase grows. Yeoman saves you this hassle by automatically using the
grunt‐ng‐annotate plug‐in to convert your code to this form before running it through the
uglify task (configured by usemin), thereby ensuring that your application does not break when
compressed for production. You can find more information and usage examples for the ngAnnotate
task at https://github.com/mzgol/grunt‐ng‐annotate.

grunt‐google‐cdn
This plug‐in exposes the cdnify task, which allows you to replace local JavaScript references to
resources hosted on the Google Content Delivery Network (CDN). Depending on your production
environment, it may be advantageous to lower the bandwidth required by your server to deliver the
application by allowing Google’s servers to deliver some of your vendor JavaScript files (such as the
AngularJS library itself). If this doesn’t sound like something you need for your production setup,
you can easily remove this task, as described in the “Modifications” section located later in this
chapter. For more information, please visit the plug‐in documentation located at https://github
.com/btford/grunt‐google‐cdn.

grunt‐contrib‐copy
This plug‐in exposes the configurable copy task, which allows for easily copying files and folders
defined from within your Grunt workflow. In this case, Yeoman has configured the task to copy
assets needed for production to the dist/ directory and styles to be autoprefixed into the .tmp/
directory. You can find more information about the copy task at https://github.com/gruntjs/
grunt‐contrib‐copy.

grunt‐concurrent
This plug‐in exposes the concurrent task, which is mainly used for build optimization purposes.
Running slow tasks like Coffee and Sass concurrently can improve your build time significantly.

www.it-ebooks.info

https://github.com/mzgol/grunt%E2%80%90ng%E2%80%90annotate
https://github.com/btford/grunt%E2%80%90google%E2%80%90cdn
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90copy
https://github.com/btford/grunt%E2%80%90google%E2%80%90cdn
https://github.com/gruntjs/grunt%E2%80%90contrib%E2%80%90copy
http://www.it-ebooks.info/

What Is Yeoman?  ❘  91

Yeoman uses this task for precisely that, with the addition of running the image optimization tasks
concurrently when building your application for production. The concurrent task is also useful if
you need to run multiple blocking tasks like nodemon and watch at once. For more information, visit
https://github.com/sindresorhus/grunt‐concurrent.

grunt‐karma
The AngularJS Yeoman generator uses the generator‐karma generator to scaffold out a skeleton
karma.conf.js file inside your test/ directory. For the unfamiliar, Karma is an open source
JavaScript test runner created by the AngularJS team. Out of the box, this generator allows you to
run your Karma tests traditionally using the binary located inside the node _ modules/karma/bin/
directory, but if you want to invoke your test harness via Grunt, you must also install the
grunt‐karma plug‐in by running the following from your command line:

npm install --save-dev grunt-karma

This allows you to properly invoke the alias task for testing your application, described in the
following section. For more information on the grunt‐karma plug‐in, please visit the official
documentation located at https://github.com/karma‐runner/grunt‐karma.

Alias Tasks and Workflow
Although you are able to run each of the exposed plug‐in tasks mentioned earlier directly from your
command line, where the promoted Yeoman workflow really stands out is with the alias tasks that
bring everything together. The four main workflow tasks are located at the bottom of the generated
Gruntfile.js and are described next.

serve
The grunt serve task functions similarly to the one you created earlier in this chapter. Running
this task cleans any temporary files, wires your Bower dependencies, runs the Sass compiler,
autoprefixes your CSS, launches the livereload server, and finally watches your application files for
modifications. A key difference from the version you created earlier, however, is that Yeoman set up
this task to accept an additional argument. If you run grunt serve:dist, Grunt first builds your
application for production before launching a connect server that is pointed at the dist/ directory
so you can preview your compressed application.

test
The grunt test command is an alias that spins up a connect server pointed at your unit test
files before invoking the karma task that runs your test harness in singleRun mode. Because the
package.json file created by Yeoman sets the test property of the scripts object to run
grunt test, you can also invoke your entire test harness by simply running npm test from the
command line. It is worth mentioning that the generated test/karma.conf.js file is initially
configured to run your test harness using PhantomJS, a headless WebKit browser. For help configuring
Karma, visit the documentation page at http://karma‐runner.github.io/0.8/config/
configuration‐file.html.

www.it-ebooks.info

https://github.com/sindresorhus/grunt-concurrent
https://github.com/karma-runner/grunt-karma
http://karma-runner.github.io/0.8/config/configuration-file.html
http://karma-runner.github.io/0.8/config/configuration-file.html
http://www.it-ebooks.info/

92  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

build
The grunt build alias task that Yeoman configures handles compressing your AngularJS
application and preparing it for a production environment. The task starts by cleaning temporary
files and then wires your Bower dependencies, prepares usemin, concurrently runs Sass and the
image optimizers, autoprefixes your CSS, concatenates your JavaScript, copies application assets
to dist/, replaces script references with CDN versions, minifies your CSS, minifies your scripts,
revisions your assets, and finally minifies your HTML. Although there are many tasks being
invoked as part of the process, the ultimate output of the grunt build task is a standalone dist/
directory that can be deployed to your server of choice and is ready for production.

default
As mentioned earlier in this chapter, the default alias task is triggered when grunt is run from the
command line with no specified task arguments. In this case, Yeoman has set up the default task to
lint your JavaScript files, before testing and building your application production. You can easily
modify this command to fit your particular needs, but do take care when modifying the build task,
because the order in which tasks are invoked matters.

Modifications
The workflow generated by Yeoman is designed to be both modular and scalable. Although the
generators are opinionated, the decision on which tasks to include or exclude is left entirely to you.
If you want to remove a task from the workflow, simply delete it from the configured Gruntfile.js
(or Gulpfile.js) and uninstall the associated plug‐in from your project. For example, if you want
to remove the cdnify task exposed by the grunt‐google‐cdn plug‐in, run the following from the
command line to uninstall it from your project:

npm uninstall grunt-google-cdn --save-dev

This removes the plug‐in from the node _ modules/ folder and updates your package.json so that
the plug‐in no longer appears as a development dependency. When removing tasks from your
workflow, pay particular attention to task dependencies. If the deleted task is referenced inside the
configuration block of other tasks, your task runner throws an error during execution. To avoid
workflow errors, be sure to remove all references to tasks you decide to delete after the initial
scaffolding process.

Subgenerators
Some Yeoman generators also come packaged with one or more subgenerators, which you can use to
scaffold helpful parts of a project after creation. For example, the AngularJS generator you installed
comes packaged with additional subgenerators that can be invoked as follows:

➤➤ controller—yo angular:controller user

➤➤ directive—yo angular:directive myDirective

➤➤ filter—yo angular:filter myFilter

➤➤ route—yo angular:route myroute

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Yeoman?  ❘  93

➤➤ service—yo angular:service myService

➤➤ decorator—yo angular:decorator serviceName

➤➤ view—yo angular:view user

These subgenerators scaffold new AngularJS components for your application by creating new
files (or updating existing ones), creating accompanying unit test skeletons (when appropriate),
and wiring up the generated files into index.html. This means that invoking one of the preceding
commands while your workflow system is running triggers the appropriate watch targets as
expected, allowing you to seamlessly add new components to your application without slowing
down your workflow. For more information on the official AngularJS generator and its packaged
subgenerators, please visit the official documentation page located at https://github.com/
yeoman/generator‐angular.

Popular Generators
The purpose of this section was to explore the workflow and automated build system promoted
by Yeoman in the context of developing AngularJS applications. It therefore made sense to focus
on the official Yeoman generator, but other popular AngularJS generators are worth briefly
mentioning.

angular‐fullstack
This Yeoman generator is a fork of the official AngularJS generator, and as such contains all the
same functionality. However, it modifies the directory structure of your scaffolded application to
also include an Express server. For those interested in experimenting with the MongoDB, Express,
Angular, and Node (MEAN) stack, this generator is a fantastic place to start. Install it by running
the following from your command line:

npm install -g generator-angular-fullstack

Create a new project directory, navigate into it, and run yo angular‐fullstack to
create a new application. For more information, visit https://github.com/DaftMonk/
generator‐angular‐fullstack.

jhipster
For the full‐stack developers who prefer to write their back‐end services using Java yet desire to
utilize many of the open source utilities targeted at creating beautiful front‐end applications, this
Yeoman generator is worth looking into. It can be used to quickly create a Spring Boot (http://
projects.spring.io/spring‐boot/) project that incorporates an AngularJS single-page
application along with the promoted Yeoman workflow. Install it by running the following from the
command line:

npm install -g generator-jhipster

Create a new project directory, navigate into it, and run yo jhipster to create a new application.
For more information, visit http://jhipster.github.io/.

www.it-ebooks.info

https://github.com/yeoman/generator-angular
https://github.com/DaftMonk/generator%E2%80%90angular%E2%80%90fullstack
http://projects.spring.io/spring%E2%80%90boot/
http://projects.spring.io/spring%E2%80%90boot/
http://jhipster.github.io/
https://github.com/yeoman/generator-angular
https://github.com/DaftMonk/generator%E2%80%90angular%E2%80%90fullstack
http://www.it-ebooks.info/

94  ❘  CHAPTER 2   Intelligent Workflow and Build Tools

ionic
This Yeoman generator helps front‐end developers get started with building hybrid mobile
applications using the IonicFramework, a beautiful, open source framework for developing mobile
applications with HTML5. In addition to incorporating the promoted Yeoman workflow discussed
in this chapter, it prescribes best practices for managing Cordova‐based projects through the
intelligent use of Cordova hooks. Install it by running the following from the command line:

npm install -g generator-ionic

Create a new project directory, navigate into it, and run yo ionic to create a new application. For
more information, visit https://github.com/diegonetto/generator‐ionic.

CONCLUSION

Over the course of this chapter, you have learned how to manage front‐end dependencies using
Bower, how to automate development tasks using Grunt and Gulp, how to scaffold new projects
using Yeoman, and how to enhance your productivity and satisfaction during development by
subscribing to a few workflow best practices. Regardless of whether you choose to use these tools
and practices going forward in your future AngularJS projects or not, you have been exposed to the
current state of modern front‐end application development tooling. Picking the right tool for the
job can be a tough decision to make when starting a new project, but through the examples of this
chapter, it should be clear that the optimization and automation of mundane, repetitive tasks can
help you stay effective in the constantly shifting world of front‐end web application development.

www.it-ebooks.info

https://github.com/diegonetto/generator%E2%80%90ionic
http://www.it-ebooks.info/

Architecture
WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ Communication between AngularJS components

➤➤ Structuring infinite scrolling with AngularJS

➤➤ Running A/B tests with AngularJS modules

➤➤ Structuring application files based on project size

➤➤ Organizing your application with a module loader

➤➤ Best practices for structuring user authentication

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

WHY IS ARCHITECTURE IMPORTANT?

Readability and maintainability are two fundamental requirements when working on any
project. Attempting to contribute to a poorly organized and architected application can be
extremely frustrating and severely affect developer productivity. Spending a bit of time upfront
thinking about how an application’s files and JavaScript modules will be organized can save
time and money later down the line, especially on larger projects with many contributing
developers. In this chapter, you learn various techniques for organizing the many components
provided by AngularJS, using best practices and conventions reinforced by the community.
You are exposed to various techniques for communicating data between AngularJS
components effectively, so you can make intelligent decisions when designing the architecture
for your next application.

3

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

96  ❘  CHAPTER 3   Architecture

This chapter is broken up into five sections. In the first section, you get a high‐level overview of the
primary components of AngularJS code: controllers, services, and directives. The second section
discusses AngularJS modules and the reason for the mysterious angular.module() calls you may
have seen in previous chapters. In the third section, you learn about several different paradigms for
arranging AngularJS files. The fourth section covers two popular open source tools for aggregating
and loading your various AngularJS components: RequireJS and Browserify. The fifth and final
section ties all these components together and discusses the concepts from the previous four sections
in the context of creating a general user authentication mechanism.

CONTROLLERS, SERVICES, AND DIRECTIVES

The majority of AngularJS code you will write is contained in one of three components: controllers,
services, or directives. Each of these components has its own unique properties. Effective AngularJS
code takes advantage of the differences between these components. In this section, you get a high‐
level overview of the differences between these components and how they fit together. In addition,
you learn how to share data between different components.

At a high level, the three components are related as follows. Services are responsible for fetching
and storing data from remote servers. Controllers build on top of services to provide data and
functionality to AngularJS’s scope hierarchy. Directives build on top of controllers and services to
interface with Document Object Model (DOM) elements directly.

NOTE  This section offers a cursory overview of controllers, services, and
directives, focusing on the trade‐offs of using each of the three components in the
context of writing AngularJS applications. If you are interested in learning about
directives and services in more detail, Chapter 5, “Directives,” features a more
detailed guide to writing custom directives, and Chapter 7, “Services, Factories,
and Providers,” discusses design patterns for services.

Controllers
Controllers are the AngularJS component responsible for exposing JavaScript data and functions
to your Hypertext Markup Language (HTML). Typically, controllers are instantiated from your
HTML using the ng‐controller directive:

<div ng-controller="MyController"></div>

NOTE  One key recurring theme in this book is the idea that controllers are
responsible for exposing an application programming interface (API) to your
HTML. Directives like ngClick and ngBind then interact with this API to create
your page’s user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  97

Controllers are instantiated using AngularJS’s dependency injector, a tool that inspects the
controller’s parameters and constructs them as necessary. Because services are registered with
the dependency injector, a controller can utilize any number of services. However, controllers
are not registered with the dependency injector, so controllers and services cannot list controllers
as dependencies. For instance, you can create a service called myService and then list it as a
dependency of the MyController controller:

var m = angular.module('myModule');

m.factory('myService', function() {
 return { answer: 42 };
});

m.controller('MyController', function(myService) {
 // Utilize myService
});

However, you cannot create another controller or service that lists MyController as a dependency:

var m = angular.module('myModule');

m.controller('MyController', function() {
});

m.factory('myService2', function(MyController) {
 // Error: MyController not registered with
 // dependency injector
});

m.controller('MyOtherController', function(MyController) {
 // Error: MyController not registered with
 // dependency injector
});

There are two other unique properties of controllers relative to services that are worth mentioning.
First, each instance of the ng-controller directive creates a new instance of the controller (that is,
calls the controller function). This is in stark contrast to services; a service is instantiated at most
once, and the instance is shared between all controllers, services, and directives that depend on that
service.

Second, in addition to the services registered through the AngularJS dependency injector,
controllers can list objects called locals as dependencies. A local is a context‐specific object
registered with the dependency injector for that specific instance of the controller. The most
common example of a local is the $scope object, which virtually every controller utilizes to
fulfill its core purpose of exposing JavaScript functions and data to HTML. As far as the
controller is concerned, listing a local as a dependency is no different from listing a service as
a dependency:

m.controller('MyController', function($scope) {
 $scope.data = { answer: 42 };
});

www.it-ebooks.info

http://www.it-ebooks.info/

98  ❘  CHAPTER 3   Architecture

However, a service cannot list a local as a dependency. The following code will cause an error:

m.factory('myService', function($scope) {
 // Error: $scope not registered with
 // dependency injector
});

This is why controllers are AngularJS’s primary tool for exposing JavaScript data and functions to
HTML: Controllers have access to $scope, whereas services do not. However, there is nothing to
stop a controller from listing a service as a dependency and adding that service to its scope:

m.factory('myService', function() {
 return { answer: 42 };
});

m.controller('MyController', function($scope, myService) {
 // Enable accessing myService from the scope
 $scope.myService = myService;
});

Now that you understand the basic purpose and unique properties of controllers, you will learn how
to share data between controllers. This task is a common source of confusion among AngularJS
beginners and a common discussion topic on question and answer forums like Stack Overflow.
AngularJS provides numerous methods for inter‐controller communication. This section covers
three such methods: scope inheritance, broadcasting events through $scope, and services.

Scope Inheritance
The first inter‐controller communication method you learn about takes advantage of AngularJS’s
ability to nest scopes. Chapter 4, “Data Binding,” covers scopes and scope inheritance in more
detail. However, for the purposes of this section, it suffices to know that each instance of the
ng‐controller directive creates a new scope, and nested instances of the ng‐controller directive
create nested scopes:

<div ng-controller="MyController"
 ng-init="answer = 42;">
 <h1>This is the parent scope</h1>
 <div ng-controller="MyController">
 <h2>This scope inherits from the parent scope</h2>
 This prints '42': {{ answer }}
 </div>
</div>

This means that child scopes have access to variables and functions declared in each of their
ancestor scopes. This is true both in the HTML, as shown earlier, and in controllers. For instance,
with the following HTML:

<div ng-controller="Controller1">
 <div ng-controller="Controller2">
 This prints '42': {{ answer }}
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  99

you can actually access the $scope.answer variable in the Controller2 controller:

m.controller('Controller1', function($scope) {
 $scope.answer = 42;
});

m.controller('Controller2', function($scope) {
 // Prints '42' if $scope is a descendant of
 // a scope that Controller1 operated on
 console.log($scope.answer);
});

This may seem trivial, but you have successfully shared data between two completely
separate controllers. This approach, however, suffers from a limitation: now Controller2 has an
implicit dependency on Controller1. Specifically, now Controller2 needs to be extra careful that
it behaves properly with or without Controller1, or you need to be extra careful that you never use
Controller2 without Controller1. Furthermore, you can imagine more complex examples in
which Controller1 loads the answer variable from a remote server: How do you communicate
any errors that may occur to Controller2? This practice can easily lead to buggy and brittle code.
Although the scope inheritance approach is reasonable for simple use cases, it is typically the wrong
choice for sharing data that’s loaded from the server. Thankfully, subsequent approaches enable you
to communicate errors as well as data in a clean way.

Event Transmission
AngularJS scopes contain an implementation of the pervasive event emitter design pattern. This
design pattern allows objects to $emit() named events that then trigger listener functions registered
using the $on() function. For instance:

$scope.$on('error', function(error) {
 console.log('An error occurred: ' + error);
});

$scope.$emit('error', 'Could not connect to server');

In the preceding example, the code emits an error event, which then triggers the handler registered
with the .$on('error') function call. The power of the event emitter paradigm lies in the fact
that there can be any number of listeners for a given event, and these listeners can be registered in
any function that has access to the $scope variable. In other words, the $emit() call is completely
decoupled from the listeners. There may be zero, one, or many listeners registered to the error
event, but that does not affect the syntax of the $emit() call.

AngularJS scopes have two added layers of indirection on top of the conventional event emitter
design pattern. First, the $emit() call bubbles up the scope hierarchy, so listeners registered with
$on() on ancestor scopes will be triggered. For instance, with the following HTML:

<div ng-controller="Controller1">
 <div ng-controller="Controller2">
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

100  ❘  CHAPTER 3   Architecture

Controller2 is able to $emit() events that trigger listeners registered on Controller1’s scope:

<div ng-controller="Controller1">
 <div ng-controller="Controller2">
 </div>
</div>

m.controller('Controller1', function($scope) {
 // This will catch the 'ping' event emitted by
 // Controller2's scope when Controller2's scope
 // is a child of $scope
 $scope.$on('ping', function() {
 console.log('pong');
 });
});

m.controller('Controller2', function($scope) {
 $scope.$emit('ping');
});

Furthermore, scopes have a $broadcast() function, which behaves a lot like the $emit()
function, except that the event propagates to descendant scopes instead of ancestor scopes. In
other words, using the $broadcast() function, Controller1 can trigger listeners registered on
Controller2’s scope, whereas the $emit() function propagates events in the opposite direction.
For instance:

m.controller('Controller1', function($scope) {
 $scope.$broadcast('ping');
});

m.controller('Controller2', function($scope) {
 // This will catch the 'ping' event broadcasted by
 // Controller1's scope when Controller1's scope
 // is an ancestor of $scope
 $scope.$on('ping', function() {
 console.log('pong');
 });
});

The technical details of event emitters are relatively straightforward, but using them effectively is
a more subtle challenge. Event emitters are a powerful tool because they add a layer of indirection
on top of function calls; the code that emits the event isn’t aware of what functions are registered as
listeners. However, this also makes code that relies heavily on event emitters difficult to understand,
so event emitters are best used sparingly. In the case of transmitting data between controllers,
however, they are an excellent tool.

One example that demonstrates scope event emitters being the right tool for the job is handling
infinite scrolling, a user experience (UX) design pattern in which scrolling to the bottom of the page
causes more data to load. There are numerous directives in the open source community to handle
infinite scrolling, but using directives for infinite scrolling is a case of trying to fit a square peg into
a round hole. Infinite scrolling is triggered by events that are global to the page (user scrolling to the

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  101

bottom of the page or user resizing the page). Thus, a directive that enables infinite scroll doesn’t
interact directly with the DOM element that it is attached to. Infinite scrolling is better implemented
as an event on the page’s root scope, represented by the $rootScope service, and propagated down
to the descendant scopes via the $broadcast() function. Here is an example of how you might
implement infinite scrolling using scope event emitters:

 app.run(function($rootScope) {
 var lastCheck = 0;
 var INTERVAL_TO_CHECK = 500; // Only check every half second

 var check = function() {
 if (Date.now() ‐ lastCheck < INTERVAL_TO_CHECK) {
 return;
 }

 lastCheck = Date.now();

 if ($(window).scrollTop() >=
 $(document).height() ‐ $(window).height() ‐ 50) {
 $rootScope.$broadcast('SCROLL_TO_BOTTOM');
 }
 }

 setTimeout(function() {
 check();
 }, 0);
 $(window).on('scroll', check);
 $(window).on('resize', check);
 });

The preceding module broadcasts an event called SCROLL _ TO _ BOTTOM whenever the user reaches
near the bottom of the page. The event emitter approach is such a good fit here because there
are multiple possible causes for a SCROLL _ TO _ BOTTOM event, and multiple controllers may want
to do something when this event is emitted. This sort of many‐to‐many relationship between
events and event handlers is precisely where the event emitter paradigm shines. In addition, this
approach decouples the logic for triggering the event and the event handlers, so you can abstract the
complexity for detecting the conditions for the SCROLL _ TO _ BOTTOM event behind a $on() call. This
is convenient for testing because your test code can trigger the SCROLL _ TO _ BOTTOM event without
having to run in an actual browser.

NOTE  You may have noticed that the previous code uses jQuery, where the
$ function in the $(window) lines is defined. It uses jQuery for its reliable
abstraction layer for window and document scroll offsets that work across a
variety of browsers. AngularJS does not provide this functionality, so AngularJS
developers often utilize jQuery for its convenience wrappers around browser‐
level events. In fact, jQuery and AngularJS are arguably more complementary
libraries than competing libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

102  ❘  CHAPTER 3   Architecture

You can find an example of utilizing this infinite scroll code in the infinite _ scroll _ emitter
.html file in this chapter’s sample code. What follows is a controller that utilizes the infinite scroll
event:

 app.controller('InfiniteScrollController', function($scope) {
 $scope.images = [];
 var CYCLE_IMAGES = [
 // ...
];

 $scope.$on('SCROLL_TO_BOTTOM', function() {
 for (var i = 0; i < 3; ++i) {
 $scope.images.push({
 url: CYCLE_IMAGES[$scope.images.length % CYCLE_IMAGES.length]
 });
 }
 $scope.$apply();
 });
 });

This controller adds several images to $scope.images whenever it receives the SCROLL _ TO _ BOTTOM
event. You can now utilize this infinite scrolling code in the infinite _ scroll _ emitter.html file
using the following HTML:

 <div ng-controller="InfiniteScrollController">
 <div ng-repeat="image in images">

 </div>
 </div>

As you can see, the SCROLL _ TO _ BOTTOM event abstracts out all the complexity of computing
whether the user has scrolled to the bottom of the page. This enables your AngularJS controllers
to define infinite scrolling behavior with a layer of abstraction between the controllers and the
infinite scrolling trigger. The scope event emitter paradigm thus allows you to transmit data
between controllers or between run blocks and controllers. However, although the event emitter
paradigm works well for infinite scrolling, it doesn’t work well for all cases in which you want to
transmit data between controllers. The primary difficulty is determining which controller should
be responsible for generating an event. For some common use cases, such as loading data from a
server, it isn’t necessarily clear which controller should be responsible for querying the server and
generating an event. In use cases involving loading data from a server, typically the next paradigm
that you learn about is the best choice.

The ModelService Paradigm
The event emitter paradigm works well for transmitting results of user interaction between
controllers. However, controllers also often need to share data loaded from the server. For instance,
multiple controllers on a page often need to have access to the currently logged‐in user, which is
data that needs to be loaded from the server. Services are a perfect tool for exposing data loaded
from the server because services are singletons, in the sense that a service is instantiated at most

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  103

once, and that instance is shared between all controllers and services that rely on the service. Note
that the notion of singleton here is marginally different from the commonly used singleton design
pattern. Services are still accessed through the AngularJS dependency injector, rather than through
global state. You learn more about services and the notion of services as singletons in Chapter 7. For
the purposes of this section, however, it is sufficient to understand that all controllers share the same
instance of a service.

The following example demonstrates using userService to wrap an asynchronous loading of the
currently logged‐in user. To avoid having to set up a server, you use a $timeout call instead of a real
$http call to simulate an actual Hypertext Transfer Protocol (HTTP) request. If you were to use
the $http service instead of $timeout, the service implementation would change slightly, but the
controller code or HTML would not change at all. What follows is the sample code, which you can
find in the user _ service.html file in this chapter’s sample code:

 <div ng-controller="FirstController">
 <h1>{{user.name}}</h1>
 </div>
 <div ng-controller="SecondController">
 <input type="text" ng-model="user.name">
 </div>

 <script type="text/javascript" src="angular.js">
 </script>
 <script type="text/javascript">
 var app = angular.module('app', []);

 app.factory('userService', function($timeout) {
 var user = {};
 $timeout(function() {
 user.name = 'Username';
 }, 500);

 return user;
 });

 app.controller('FirstController', function($scope, userService) {
 $scope.user = userService;
 });

 app.controller('SecondController', function($scope, userService) {
 $scope.user = userService;
 });
 </script>

There are two key concepts in the preceding example. First is that, once again, there is one
instance of userService shared between both FirstController and SecondController. Thus,
when the text field is modified in the scope of SecondController, the header in the scope of
FirstController is reflected to update the changes, despite the fact that these two scopes are
completely independent. Second, the asynchronous code in userService triggers changes in the
scopes of FirstController and SecondController. Under the hood, the $timeout service (and the

www.it-ebooks.info

http://www.it-ebooks.info/

104  ❘  CHAPTER 3   Architecture

$http service as well) calls $apply() on the page’s root scope, which is why userService doesn’t
need to emit an event when it loads the user data. This enables you to simply write controllers that
utilize userService as if userService pulled data synchronously. Combined, these two concepts
make services an ideal tool for abstracting out the results of asynchronous HTTP calls. In the next
section, you learn some more sophisticated techniques to transmit data between different services as
well as between services and controllers.

Services
Services are objects that are wired together by AngularJS’s dependency injector outside the scope
hierarchy. Controllers typically list multiple services as dependencies, but services cannot list
controllers as dependencies. As mentioned in the previous section, services are singletons in the
sense that each service is instantiated only once. This makes services ideal for storing data that is
loaded from or persisted to the server.

In the previous section, you learned about several approaches to communicate between different
controllers. The last approach relied on the fact that services are singletons. Communication between
services is fundamentally different from communication between controllers because services don’t
have access to a scope, and your HTML can’t instantiate a service without help from a controller.
However, there are several handy approaches to enable services to communicate with each other.

Services Depending on Other Services
The most basic tool for communicating between services is that one service can list other services
as dependencies. This approach is admittedly fairly trivial, but it does illustrate one key point
about services and scopes. To demonstrate this key point, suppose you had a service called
profileService that depended on userService. Suppose the primary purpose of profileService
is to provide an API for enabling controllers to modify the data provided by userService and save
the changes to the server. Following are the contents of the profile _ service.html file in this
chapter’s sample code:

 <div ng-controller="ProfileController">
 <input type="text" ng-model="profile.user.name">
 <h2 ng-show="!profile.isValid()">
 Username required
 </h2>
 </div>

 <script type="text/javascript" src="angular.js">
 </script>
 <script type="text/javascript">
 var app = angular.module('app', []);

 app.factory('userService', function($timeout) {
 var user = {};
 $timeout(function() {
 user.name = 'Username';
 }, 500);

 return user;

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  105

 });

 app.factory('profileService', function(userService) {
 var ret = {
 user: userService,
 isValid: function() {
 return ret.user && ret.user.name;
 }
 };

 return ret;
 });

 app.controller('ProfileController', function($scope, profileService) {
 $scope.profile = profileService;
 });
 </script>

This code correctly updates the visibility of the Username required error message based on the
value of the isValid() function, despite the fact that the profileService function has no code to
handle changes to the data in the underlying userService. Despite the fact that services are outside
the scope hierarchy, they can still trigger scope updates using services like $timeout and $http that
trigger an update on the page’s root scope, as represented by the $rootScope service. Thus, you can
build services on top of other services without having to have these services interact at all because the
AngularJS scope hierarchy can tie all this together in the controllers. Chapter 4 covers more about the
particulars of AngularJS scopes. However, for the purposes of high‐level code organization, it suffices
to understand that updates to the root scope propagate down to all scopes on the page.

In the next section, you learn how to use event emitters with services. Although the AngularJS scope
hierarchy can handle the case in which a change in a service needs to propagate up to a controller, it
isn’t necessarily the right choice for propagating a change in a service to another service. As shown
in the profileService example, you can often get away with not propagating changes between
services and rely on the scope hierarchy to tie it all together. However, as you see next, sometimes it’s
helpful to have services transmit events to enable true inter‐service communication.

The event‐emitter Module
The scope event emitter paradigm you learned about in the section on inter‐controller
communication is not limited to AngularJS scopes. Event emitters are pervasive in the JavaScript
community, precisely because they are an elegant and lightweight way of propagating data from one
object to another. In particular, NodeJS’s core includes a robust event emitter framework, which
the NodeJS community ported into a standalone event‐emitter module. There are numerous other
JavaScript modules that provide event emitter functionality, but the event‐emitter module includes
only a robust event emitter and nothing else. The event‐emitter module is thus useful both for
minimizing code bloat and for instructional purposes.

The event‐emitter module works similarly to the scope event emitters you worked with in the
previous section. There are three key differences. First, the event‐emitter module is scope‐
independent, so it is ideal for use in services that don’t have access to scopes. Second, the functions
you interact with are named .on() and .emit(). These correspond to .$on() and .$emit() on

www.it-ebooks.info

http://www.it-ebooks.info/

106  ❘  CHAPTER 3   Architecture

AngularJS scopes. Third, there is no function corresponding to $broadcast() because the event‐
emitter module does not include support for event propagation between emitters. Although the
lack of event propagation may seem limiting, this module actually turns out to be an excellent fit for
services due to the singleton nature of services.

A good example of a service that would benefit from event emitters is the userService example you
saw previously. When userService is instantiated, it needs to do an asynchronous HTTP request to
load data about the currently logged‐in user from the server. Furthermore, if your page is expected
to be long‐lived (for instance, a single page app or a real‐time dashboard), you may want to rerequest
data from the server every hour in case the user’s session has timed out. To complicate things even
more, numerous services and controllers rely on userService, and the underlying HTTP request can
fail. How will userService propagate new data (as well as any errors) asynchronously to the services
that rely on it? Event emitters provide an elegant solution to this design challenge.

You can find the following example in the user _ service _ emitter.html file in this chapter’s
sample code. For your convenience, the event‐emitter module has been packaged with this
chapter’s sample code as event‐emitter.js and included in user _ service _ emitter.html:

 <script type="text/javascript" src="angular.js">
 </script>
 <script type="text/javascript" src="event‐emitter.js">
 </script>
 <script type="text/javascript">
 var app = angular.module('app', []);

 app.factory('userService', function($timeout, $window) {
 var emitter = $window.emitter();

 var user = {};
 $timeout(function() {
 // Simulate an HTTP error
 user.emit('error', 'Could not connect to server');
 }, 2000);

 ['on', 'once', 'emit'].forEach(function(fn) {
 user[fn] = function() {
 emitter[fn].apply(emitter, arguments);
 };
 });

 return user;
 });

 app.factory('profileService', function(userService) {
 var ret = {
 user: userService,
 isValid: function() {
 return ret.user && ret.user.name;
 }
 };

 userService.on('error', function(error) {
 ret.error = 'This is a sample error message ' +

www.it-ebooks.info

http://www.it-ebooks.info/

Controllers, Services, and Directives  ❘  107

 'that would tell the user that you can\'t ' +
 'connect to the server';
 });

 return ret;
 });

 app.controller('ProfileController', function($scope, profileService) {
 $scope.profile = profileService;
 });
 </script>

In the preceding code, userService emits an error event that profileService listens for and uses
to display a message. Once again, this event doesn’t necessarily need to be propagated up to the
controller because $timeout notifies the scope hierarchy that something has changed. However,
the event emitter enables profileService to be notified of errors in userService and handle them
appropriately. Thus, if you need to communicate between two services, event emitters are usually
the best choice.

NOTE  You may have noticed that this chapter’s sample code includes an
event‐emitter‐index.js file in addition to event‐emitter.js. This is because,
under the hood, the event‐emitter module is a NodeJS module compiled for the
browser using Browserify. The purpose of the event‐emitter‐index.js file is to
expose the event emitter functionality to the global window object. You will learn
more about Browserify in the section ”Module Loaders.”

Directives
A directive is a rule for how the DOM should interact with JavaScript variables. In other words,
directives are AngularJS’s abstraction around DOM interactions. For instance, the ngClick directive
defines a rule that says, “When this element is clicked, evaluate this code snippet.” You will learn a
lot more about directives in Chapter 5, but for the purposes of this section, just think of directives
as rules for DOM interaction. Directives may have an associated controller, but controllers and
services cannot list directives as dependencies.

NOTE  Directives should be the only place where your code interacts with
DOM elements (with the possible exception of the global window element). A
surefire sign of bad AngularJS code is calling document.getElementById() in a
controller.

Because directives are tied into scoping, inter‐directive communication behaves quite similarly
to inter‐controller communication. As a matter of fact, custom directives often have their own
controllers, so you can use the familiar design patterns from the earlier “Controllers” section on

www.it-ebooks.info

http://www.it-ebooks.info/

108  ❘  CHAPTER 3   Architecture

inter‐controller communication. However, directives have an additional feature for inter‐directive
communication that you’ll learn about next.

Exposing API Using Controllers
Earlier in this section, you learned that, because of scope inheritance, a controller can access
variables defined in its ancestor scopes. This enables a controller to access the internal state of
other controllers so long as the other controller is tied to an ancestor scope of the first controller.
Unfortunately, the scope inheritance approach was limited because there was no good way to
enforce that one controller could only be defined in a descendant scope of another controller.
Directives, on the other hand, have a mechanism to ensure that a directive’s scope must always be a
descendant of another directive’s scope.

The StockDog application that you saw in Chapter 1, “Building a Simple AngularJS Application,”
includes an example of this functionality. The StockDog application has two directives—
stockTable and stockRow—that are meant to be used together. Specifically, a stockTable contains
numerous instances of the stockRow directive. Following is the definition of the stockRow directive:

angular.module('stockDogApp')
 .directive('stockTable', function () {
 return {
 templateUrl: 'views/templates/stock-table.html',
 restrict: 'E',
 scope: {
 watchlist: '='
 },
 controller: function ($scope) {
 // ...
 }
 }
 });

The stockTable directive’s controller exposes some functionality in its controller. To ensure
the stockRow directive is only declared within a stockTable directive, you can use the require
directive option as shown here:

angular.module('stockDogApp')
 .directive('stockRow', function ($timeout, QuoteService) {
 return {
 restrict: 'A',
 require: '^stockTable',
 scope: {
 stock: '=',
 isLast: '='
 },
 link: function ($scope, $element, $attrs, stockTableCtrl) {
 // ...
 }
 };
 });

The require directive option mandates that the stockRow directive’s scope must be a descendant of
a stockTable directive’s scope. Furthermore, you can access the instantiated stockTable directive’s

www.it-ebooks.info

http://www.it-ebooks.info/

Organizing Your Code with Modules  ❘  109

controller as the fourth parameter to the link function. (Chapter 5 covers the link function in more
detail.) If you have two directives that need to be used together, the require directive option is the
right tool for the job.

Conclusion
In this section, you learned about the conceptual differences between directives, services, and
controllers and how you can share state between different components. Each component has
properties that make it uniquely suited for certain tasks: services for loading data from and
persisting data to the server, controllers for exposing an API to directives, and directives for
managing DOM interactions. In the next section, you will learn about modules, AngularJS’s high‐
level organizational tool for bundling related components into a single reusable group.

ORGANIZING YOUR CODE WITH MODULES

You may have noticed that all the sample code in this book includes a call to the angular.module()
function. Modules are AngularJS’s highest level organizational unit. A module is effectively a map
from a string to a set of controllers, services, filters, and directives. Because modules provide such
a high level of abstraction, small AngularJS codebases typically use only one module. However, as
your codebase grows and matures, you may find yourself needing to break your code into separate
modules to optimize readability and reusability.

The most powerful feature of modules is that they can list other modules as dependencies, which
enables you to include components from another module in your module. For instance:

// 'MyModule' depends on 'OtherModule' and thus includes
// all services, directives, controllers, and other
// components defined in 'OtherModule'.
var myModule = angular.module('MyModule', ['OtherModule']);

A word of warning: you may expect AngularJS to handle loading the contents of OtherModule for
you. That is not the case. The preceding code does not work unless you include JavaScript code that
creates OtherModule with a call to the angular.module() function.

The ability to list modules as dependencies of other modules allows you to easily swap out large
chunks of your AngularJS code without having to remove files from your codebase. This is useful
for testing, experimenting with new features, and UX testing (for instance, A/B tests). To provide
a more concrete example of how you can utilize modules, you must develop a simple A/B test for a
page’s registration flow using AngularJS modules.

NOTE  An A/B test (or “split test”) is an experiment in which a visitor randomly
sees one of two slightly different variants of your website. A basic example is
randomly showing visitors one of two different promotional images on your
homepage and tracking to see which one gets more users to sign up. A/B testing
is popular because it offers an evidence‐based approach to incrementally
improving your website’s user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

110  ❘  CHAPTER 3   Architecture

There are numerous popular A/B testing frameworks, such as Optimizely, but they are primarily
designed to work with static websites as opposed to rich AJAX‐based content. Furthermore, these
A/B testing frameworks fail to take advantage of AngularJS modules, which allow you to easily
replace large sections of functionality. In this example, you will be using a developer‐friendly
analytics framework called KeenIO, which provides a REST API for sending arbitrary JSON objects
and then querying the results. KeenIO requires signing up for an account on keen.io to get an
API key. KeenIO is free for up to 50,000 requests per month, which should be more than sufficient
for the purposes of this sample chapter. Furthermore, you can replace KeenIO with your analytics
framework of choice in this example if you believe another tool fits your needs better. This section
primarily focuses on the concepts necessary to run A/B tests with modules. The integration with
KeenIO is minimal. Most other analytics frameworks should be able to provide similar functionality,
but KeenIO is used in this example because of its generous free tier and straightforward data model.

Integrating KeenIO with AngularJS is simple. KeenIO has a software development kit (SDK) for
browser‐side JavaScript that you can include with a script tag as shown here.

 <script src="https://d26b395fwzu5fz.cloudfront.net/3.1.0/keen.min.js"
 type="text/javascript">
 </script>

Once you have included KeenIO’s JavaScript SDK, you should create a KeenIO client in your page’s
global scope:

 var keenClient = new Keen({
 projectId: '<Your KeenIO project ID>',
 writeKey: '<Your KeenIO write key>'
 });

Don’t forget to set the projectId and writeKey fields to your project’s KeenIO project ID and write
key, respectively. Once you have set up the keenClient variable, you’re ready to start building out
the AngularJS code for your A/B test.

A/B tests are so easy with AngularJS modules because you can easily replace one module with
another, so long as they provide compatible controllers, directives, and services. In this A/B testing
example (the complete source code for this example is available in this chapter’s sample code in the
a _ b _ test _ example.html file), you create four modules. Two of these modules are slightly different
implementations of a simple registration flow, and one of these modules is selected at random when
the page loads.

The first module you write is simple. It defines a single value that represents the KeenIO collection
name the results are stored in. A KeenIO collection is simply a logical storage unit for related events.
In other words, if you were to run other A/B tests, you would want to put those results into a
separate collection so you could easily distinguish data from different tests. Following is the source
code for the module that defines the KeenIO collection name you use:

var abTest = angular.module('abTestRegistration', []);
abTest.value('abTestCollection', 'registration_AB_test_20141112');

In the preceding code, you defined a service called abTestCollection that’s simply a string
representing the collection name. The reason for this module is so the two registration variants that

www.it-ebooks.info

https://d26b395fwzu5fz.cloudfront.net/3.1.0/keen.min.js
http://www.it-ebooks.info/

Organizing Your Code with Modules  ❘  111

you test can utilize the same collection. What follows are the two registration variants that are the
subjects of your A/B test: registrationA and registrationB:

 var registrationModuleA = angular.module('registrationA',
 ['abTestRegistration']);

 registrationModuleA.controller('RegistrationController',
 function($scope, $window, $timeout, abTestCollection) {
 keenClient.addEvent(abTestCollection, {
 type: 'view',
 variant: 'A'
 });

 $scope.useTemplate = '/registration/a';

 $scope.submit = function() {
 $timeout(function() {
 $scope.registered = true;
 keenClient.addEvent(abTestCollection, {
 type: 'registered',
 variant: 'A'
 });
 }, 1000);
 };
 });

 var registrationModuleB = angular.module('registrationB',
 ['abTestRegistration']);

 registrationModuleB.controller('RegistrationController',
 function($scope, $window, $timeout, abTestCollection) {
 keenClient.addEvent(abTestCollection, {
 type: 'view',
 variant: 'B'
 });
 $scope.useTemplate = '/registration/b';

 $scope.submit = function() {
 $scope.inProgress = true;
 $timeout(function() {
 $scope.inProgress = false;
 $scope.registered = true;
 keenClient.addEvent(abTestCollection, {
 type: 'registered',
 variant: 'B'
 });
 }, 1000);
 };
 });

The registrationA and registrationB modules both define a single controller:
RegistrationController. Each module’s controller tracks two different events: a view event when
the controller is loaded, and a registered event when a user successfully registers. However, each
module has a slightly different version of RegistrationController. There are three key differences.

www.it-ebooks.info

http://www.it-ebooks.info/

112  ❘  CHAPTER 3   Architecture

First, when registrationA sends an event to KeenIO, it sets the variant field to 'A', whereas
the registrationB module sets it to 'B'. This enables you to categorize which events occurred on
which variant when you analyze the results of your experiment. Second, the registrationB module
sets an inProgress variable to true. This represents one of the UX changes whose effectiveness
the A/B test measures. Specifically, the registrationB module shows a loading message to
communicate to the user that the page successfully processed the user’s registration request. The
UX experiment aims to determine whether this site can increase its registration rate by reducing the
number of users who exit the page while the registration process is happening because they think
the page is broken.

Finally, the registrationA module sets a useTemplate variable to '/registration/a', whereas the
registrationB module sets it to '/registration/b'. The reason for this may not be immediately
clear without looking at the corresponding HTML for the page, shown here:

 <body>
 <div ng‐controller="RegistrationController" ng‐include="useTemplate">
 </div>
 </body>

The ngInclude directive, which you learn about in much greater detail in Chapter 6, “Templates,
Location, and Routing,” includes the HTML from the template named '/registration/a' or '/
registration/b' (depending on which variant is showing) in the div element shown previously.
As you can see, AngularJS’s template functionality is another handy tool for A/B testing: You
can conditionally display different pieces of HTML depending on which variant you’re showing,
without changing any code. Following are the two templates representing the two variants in the
A/B test:

 <script type="text/ng‐template" id="/registration/a">
 <h1>Registration Variant A</h1>
 <h3>Please Enter Your Email:</h3>
 <input type="text" ng-model="email">

 <input type="button" ng-click="submit()" value="Submit">
 <h4 ng-show="registered">
 Thanks for Registering!
 </h4>
 </script>

 <script type="text/ng‐template" id="/registration/b">
 <h1>Registration Variant B</h1>
 <input type="text" ng-model="email" placeholder="Email">

 <input type="button" ng-click="submit()" value="Register">
 <h4 ng‐show="inProgress">
 Registering...
 </h4>
 <h4 ng-show="registered">
 Thanks for Registering!
 </h4>
 </script>

www.it-ebooks.info

http://www.it-ebooks.info/

Directory Structure  ❘  113

Once you have the preceding templates, all you need to do is tie everything together with a fourth
module that selects either the registrationA or registrationB module at random. The next code
chooses one of these variants based on the output of the Math.random() function:

var myModule = angular.module('myApp',
 [(Math.random() >= 0.5 ? 'registrationB' : 'registrationA')]);

Now when you open the a _ b _ test _ example.html file, you should see either variant A or variant
B. You can then try registering a few times and querying back the results of your A/B test using
KeenIO’s REST API. For instance, to ask KeenIO how many users have registered using variant A,
you can visit the following uniform resource locator (URL) in your browser:

https://api.keen.io/3.0/projects/<project_id>/queries/
count?event_collection=registration_AB_test_20141112&api_key=
<your_api_key>&filters=<your_filters>

You need to include your project ID, API key, and uniform resource identifier (URI)‐encoded
JSON filters of choice in the preceding URL. Specifically, to get the number of users who registered
through variant A, your filters should be a URI‐encoded version of the following JSON:

[
 {
 "property_name":"type",
 "operator":"eq",
 "property_value":"registered"
 },
 {
 "property_name":"variant",
 "operator":"eq",
 "property_value":"a"
 }
]

Congratulations! You have just run a basic A/B test using AngularJS modules. Modules may
seem like an unnecessary feature at first, but as your codebase grows, they become indispensible.
In particular, the ability to seamlessly replace broad swaths of your codebase during module
configuration makes A/B testing simple.

DIRECTORY STRUCTURE

The simplest way to improve your application’s architecture is to break your code down into files
and arrange these files in a sensible manner. Sample applications often keep all controllers, services,
and directives in a single file to make the content easier to absorb; however, production applications
typically have too many components to reasonably keep them in a single file.

The AngularJS team at Google has its own set of recommendations for structuring AngularJS
applications. In this section, you investigate various directory‐structuring paradigms for different
app sizes, all of which borrow heavily from the AngularJS team’s recommendations.

www.it-ebooks.info

https://api.keen.io/3.0/projects/
http://www.it-ebooks.info/

114  ❘  CHAPTER 3   Architecture

Before you dive in to directory structure, it is important to consider AngularJS file‐naming
conventions. Google’s “Best Practice Recommendations for Angular App Structure” document
recommends naming files on a per‐component basis using hyphen‐delimited names. For
instance, FooController would be defined in a file named foo‐controller.js, and unit tests
for FooController would be in a file named foo‐controller _ test.js. The reason for these
conventions is Google’s internal inter‐language file‐naming specification.

In general, it is not necessary (or recommended) to follow these naming practices outside
of Google. In practice, AngularJS controllers usually have Pascal case names (for instance,
FooBarController), and services usually have camel case names (for instance, fooBarService).
Directives must have camel case names (for instance, fooBarDirective) because AngularJS
converts camel case directive names to hyphen case (for instance, foo‐bar‐directive) for
use in HTML. Thus, using hyphen‐delimited file names simply adds an additional level of
indirection between what a variable is named and the file it’s defined in. You may choose
to follow the hyphen‐delimited filename convention because it is a well‐accepted language‐
independent practice. However, you may also choose to make the filename match the component
name as closely as possible. For instance, if FooController has its own file, the file should
be named FooController.js. Similarly, unit tests for FooController should be in a file
named FooController.test.js. Either convention is reasonable. Both approaches are used in
this section. What is most important, though, is to pick an approach and use it consistently
throughout your application.

However, as you will see in this section, you don’t necessarily need a separate file for each
component. Larger applications typically find it necessary to have a separate file for each
component; having several controllers that are hundreds of lines long in a single file is poor
organization. But if you’re developing a prototype and your controllers are 5–10 lines of
code, defining separate files can slow you down. As a general rule of thumb, components that
you think are nontrivial should have their own files. For instance, controllers will typically
have their own files, but even large applications often keep a single file for common one‐line
filters. In this section, you learn about directory structuring guidelines for various project
sizes (small, medium, and large) and thus gain a framework for allowing your codebase to
grow gracefully.

Small Projects
One possible directory structuring approach for small applications, prototypes, and
starter projects is having one file for controllers, one for services, and one for directives. A
good example is the Ionic framework “tabs” starter project (Ionic is a tool for developing
hybrid mobile applications that you’ll learn about in Chapter 10, “Moving On”) available
at https://github.com/driftyco/ionic‐starter‐tabs. This project stores its
AngularJS files in a js directory, with a single app.js file that contains a module definition and
application‐level configuration logic, including any single‐page app routing. The controller file,
controllers.js, and the services file, services.js, contain their own module definitions,
which the app.js file assembles into a single module for use in the HTML. The AngularJS files
are isolated in this js directory, leaving the top‐level directory for HTML and directories for
images.

www.it-ebooks.info

https://github.com/driftyco/ionic%E2%80%90starter%E2%80%90tabs
http://www.it-ebooks.info/

Directory Structure  ❘  115

For your convenience, this chapter’s sample code has a small _ project directory that contains a
project structured according to these guidelines. The project is trivial from a code perspective but
serves as a concrete example of how such a project would be structured. This project contains a js
directory, which contains app.js, services.js, controllers.js, and directives.js. The app.js
file is responsible for bootstrapping the application:

angular.
 module('foo', ['foo.controllers', 'foo.services', 'foo.directives']).
 config(function($rootScopeProvider) {
 // Configuration logic goes here
 });

Each of the services.js, controllers.js, and directives.js files contains a separate module:
foo.services, foo.controllers, and foo.directives, respectively. Each file is responsible for
defining every component of its class; for instance, controllers.js defines all the controllers for
this app:

angular.
 module('foo.controllers', []).
 controller('FooController', function($scope) {
 // Use $scope
 });

This project structure is good for small projects, like the Ionic framework starter project, which
is meant to be a starting point to build more sophisticated apps. Because AngularJS does so much
work under the hood, you can build prototypes and even production applications that easily
fit within this project structure without breaking the rule of thumb you learned about earlier.
However, production projects typically outgrow this project structure fairly quickly because
controllers and services rapidly grow in complexity. Controllers and services that start out as trivial
usually start to encompass additional business logic. As your project begins to hit the stage where
your components are too large to fit into a single file without taking a readability hit, you will want
to consider breaking your code into a paradigm closer to the “Medium Projects” guidelines you will
learn about next.

Medium Projects
Medium‐sized projects can be structured by having a separate directory for controllers, directives, and
services. Each controller, directive, and service can then have its own file, or several small components
can share a file. A good example of such a project is the Stock Dog application that you saw in
Chapter 1, available at github.com/diegonetto/stock‐dog. In addition, this chapter’s sample code
includes a medium _ project directory that has a skeleton project structured using this paradigm.
Once again, this app is bootstrapped in the js/app.js file:

angular.
 module('foo', ['foo.controllers', 'foo.services', 'foo.directives']).
 config(function($rootScopeProvider) {
 // Configuration logic goes here
 });

www.it-ebooks.info

http://www.it-ebooks.info/

116  ❘  CHAPTER 3   Architecture

This application now includes separate directories for the foo.controllers and foo.directives
modules, but the foo.services module is still defined in a single file. That is, services.js is the
same as in the previous example:

angular.
 module('foo.services', []).
 factory('fooService', function() {
 // Empty service
 return {};
 });

However, directives and controllers now have their own directories. The controllers/module.js
file is responsible for declaring the foo.controllers module:

angular.module('foo.controllers', []);

The controllers directory also contains a file that defines FooController, controllers/
FooController.js:

angular.
 module('foo.controllers').
 controller('FooController', function($scope) {
 // Use $scope
 });

Finally, the foo module declared in js/app.js is used in the index.html file to bootstrap the web page:

<html ng‐app="foo">
 <head>
 <title></title>
 </head>

 <body>
 <div ng-controller="FooController">
 </div>

 <script type="text/javascript" src="../angular.js"></script>
 <script type="text/javascript" src="js/controllers/module.js"></script>
 <script type="text/javascript" src="js/controllers/FooController.js">
 </script>
 <script type="text/javascript" src="js/services.js"></script>
 <script type="text/javascript" src="js/directives/module.js"></script>
 <script type="text/javascript" src="js/directives/fooDirective.js">
 </script>
 <script type="text/javascript" src="js/app.js"></script>
 </body>
</html>

This paradigm is a natural extension of the small project directory structure. This application has a
single file for services, but it has directories for controllers and directives to illustrate the key point
that when your small app begins to grow too large for the small project paradigm, you can easily
start separating components into separate files under a new directory. For instance, if you have two

www.it-ebooks.info

http://www.it-ebooks.info/

Directory Structure  ❘  117

controllers that have become nontrivial, you can create a controllers directory with a separate file
for each controller without changing the rest of the directory structure.

The medium project paradigm is sufficient for many apps. However, mature applications sometimes
outgrow this paradigm as well: You may have too many controllers to reasonably keep in one folder
and thus want to further separate your project to keep the various components of your project
manageable. If your project hits this stage, you should consider breaking up your code in a paradigm
similar to the “Large Projects” guidelines you learn about next.

Large Projects
Large projects benefit from grouping their AngularJS components by functionality. For instance,
if you have a large AngularJS app, you may want to have a separate directory (or functionality
group) called registration that contains controllers, services, and directives directories that
contain components unique to the app’s registration flow. Each of these separate directories should be
independent of each other; a controller in the registration directory should not depend on a service
in the dashboard directory, for instance. Components that are common between multiple functionality
groups can reside in a shared directory. Each of the functionality groups can contain either a single file
or a directory for its controllers, directives, and services depending on your needs. In other words, each
functionality group is organized as if it were its own separate project, except for potential dependencies
on the shared module. To provide a more concrete example, this chapter’s sample code includes a
directory called large _ project that demonstrates this directory‐structuring paradigm.

In the large _ project directory, there are two functional groups: js/dashboard and js/
registration. In addition, there’s a js/shared directory that contains common filters and services.
The dashboard group contains a module definition and a single file that defines all its controllers:

angular.module('foo.dashboard',
 ['foo.dashboard.controllers', 'foo.shared']);

The registration group is a bit more sophisticated and contains a directory of controllers as well
as a file for all its directives. Here is the module definition for foo.registration:

angular.module(
 'foo.registration',
 [
 'foo.registration.directives',
 'foo.registration.controllers',
 'foo.shared'
]);

Like the “Medium Project” guidelines, this directory‐structuring paradigm grows organically from
the directory structuring guidelines for smaller projects. To start transitioning a “Medium Project”
into a “Large Project,” you can create a directory for a functional group and move all the controllers,
directives, and services for that functional group into this directory. In addition, you may have to
create the shared directory as well so you can store any services of the functional group as well as
the code that’s still arranged according to the “Medium Project” guidelines. This is so the functional
group doesn’t have to depend on modules that are still arranged according to the “Medium Project”
guidelines, which would break the rule that functional groups should be independent of each other.

www.it-ebooks.info

http://www.it-ebooks.info/

118  ❘  CHAPTER 3   Architecture

Now that you have learned about some of the different methods for organizing your AngularJS code
into files, you learn about two open source tools for addressing the problem of loading modules. In
the “Large Projects” paradigm, for instance, the index.html file is complex because it needs to load
all the project’s JavaScript files using a carefully ordered list of script tags:

<html ng-app="foo">
 <head>
 <title></title>
 </head>

 <body>
 <div ng-controller="FooController">
 </div>

 <script type="text/javascript" src="../angular.js">
 </script>
 <script type="text/javascript" src="js/shared/filters.js">
 </script>
 <script type="text/javascript" src="js/shared/services.js">
 </script>
 <script type="text/javascript" src="js/shared/module.js">
 </script>
 <script type="text/javascript" src="js/registration/controllers/module.js">
 </script>
 <script type="text/javascript"
 src="js/registration/controllers/FooController.js">
 </script>
 <script type="text/javascript" src="js/registration/directives.js">
 </script>
 <script type="text/javascript" src="js/registration/module.js">
 </script>
 <script type="text/javascript" src="js/dashboard/controllers.js">
 </script>
 <script type="text/javascript" src="js/dashboard/module.js">
 </script>
 <script type="text/javascript" src="js/app.js">
 </script>
 </body>
</html>

As the number of files in your application grows, so does the number of script tags you need to
include in your HTML. This wasn’t much of a problem for small projects, but by the time you
started using the “Large Project” directory structure, the fact that your JavaScript files needed to be
included using script tags in a particular order made your HTML pretty cumbersome. In larger
applications, it’s easy to introduce difficult‐to‐trace bugs by forgetting the order that your script
tags are in or forgetting to include a particular file. In programming languages like C or Python,
each code file is responsible for declaring its dependencies and the compiler (in the case of C) or the
language runtime (in the case of Python) is responsible for providing these dependencies to the file.
Several open source tools allow you to take advantage of this paradigm in JavaScript so you don’t
have to explicitly list your files using script tags. Although it is certainly possible to build large
AngularJS applications by explicitly listing every file using script tags (AngularJS engineer Brian
Ford once famously wrote that he “[hasn’t] seen any instance where RequireJS was beneficial in

www.it-ebooks.info

http://www.it-ebooks.info/

Module Loaders  ❘  119

practice”), you may find it more convenient to use module loaders, tools that resolve dependencies
declared in your JavaScript so you don’t have to rely on script tags. In the next section, you
learn about how to use RequireJS and Browserify, two different module loading tools that make
JavaScript dependencies less error‐prone with AngularJS.

MODULE LOADERS

One difficulty that you may encounter as your application grows is finding the right solution for
including all JavaScript dependencies in a page. The fundamental difficulty with browser‐side
JavaScript dependencies is that you need to load your JavaScript in HTML by listing all your
JavaScript script tags in a particular order. For small applications, the fact that dependencies are
included in one file and used in another file is unwieldy. For large applications, managing JavaScript
via script tags is exceptionally tedious and error‐prone: As your codebase grows larger and larger,
you are going to have to rearrange script tags on numerous pages just to make sure your code
doesn’t break! As you might have guessed, there are several open source tools that address the
issue of browser‐side JavaScript dependencies. RequireJS is a popular tool for this task that you
learn about in this section. In addition, you learn about the common NodeJS‐to‐browser compiler
Browserify, which offers a novel approach to browser‐side JavaScript dependencies.

RequireJS
RequireJS is a framework for asynchronously loading JavaScript files. Instead of explicitly listing all
your files with script tags in your HTML, each JavaScript file lists the JavaScript files it depends
on. RequireJS then resolves these dependencies by loading all the file’s dependencies and then
loading the actual file. In addition, JavaScript files are loaded asynchronously—that is, the browser
will start rendering the page while waiting for the JavaScript files that RequireJS loads. This is ideal
for performance because asynchronous loading allows the browser to do useful work while waiting
for the JavaScript rather than blocking.

In the following example, you use RequireJS to structure the small _ project directory from the
previous section, “Directory Structure.” This example demonstrates the high‐level principles of
using RequireJS with AngularJS. You can find this example in the small _ project _ require
directory in this chapter’s sample code. The small _ project _ require directory is almost identical
to the small _ project you worked with previously, but with three significant changes. First, the
js directory now includes a file called require.js, which, unsurprisingly, is the file that defines
the RequireJS API. Second, to illustrate how you can work with nested dependencies in RequireJS,
the foo.controllers module now depends on the foo.services module, and FooController
now depends on fooService. The new code for the foo.controllers module, which is in the
small _ project _ require/js/controllers.js file, is next:

require(
 ['js/services.js'],
 function() {
 angular.
 module('foo.controllers', ['foo.services']).
 controller('FooController', function(fooService) {

www.it-ebooks.info

http://www.it-ebooks.info/

120  ❘  CHAPTER 3   Architecture

 // Use fooService
 });
 });

RequireJS’s syntax is straightforward. The require() function takes two parameters: a list of
files and a function. RequireJS loads and executes the files listed exactly once before executing the
function; therefore, in the preceding code foo.controllers can depend on foo.services without
having to worry about the order of script tags in HTML.

Configuring RequireJS is similarly straightforward. To initialize RequireJS, you simply need to give
it a map of module names to URL so that RequireJS knows where to look for files. In the case of the
small _ project _ require project, this map is a trivial identity map. For instance, 'js/services
.js' maps to 'js/services.js'. In applications in which you are loading JavaScript from a
remote server, you may want to create a nontrivial mapping, but the identity map is sufficient for this
example. What follows is the new app.js file, which is now responsible for bootstrapping RequireJS
as well as the main AngularJS module:

var paths = [
 'js/controllers.js',
 'js/services.js',
 'js/directives.js'
];

var requireConfigPaths = {};
for (var i = 0; i < paths.length; ++i) {
 requireConfigPaths[paths[i]] = paths[i];
}

require.config({
 paths: requireConfigPaths
});

require(
 paths,
 function() {
 angular.
 module(
 'foo',
 [
 'foo.controllers',
 'foo.services',
 'foo.directives'
]).
 config(function($rootScopeProvider) {
 // Configuration logic goes here
 });

 angular.bootstrap(document, ['foo']);
 });

As in the preceding example, bootstrapping RequireJS requires calling the require.config()
function, passing in a configuration object that includes the map of paths. Then you can call
require() to load all the files necessary to declare the AngularJS module foo.

www.it-ebooks.info

http://www.it-ebooks.info/

Module Loaders  ❘  121

You may be wondering about the reason for the angular.bootstrap() call in the preceding
code. There is one significant difficulty in integrating AngularJS and RequireJS: Because
the JavaScript files are loaded asynchronously, you can’t use the familiar ng‐app syntax
to initialize your application. When AngularJS attempts to load the module specified in
the ng‐app directive, RequireJS may not have loaded the module yet. Thankfully, the ng‐app
directive is a thin wrapper around the angular.bootstrap() function, so you can simply call
the angular.bootstrap() function to initialize your application when RequireJS is finished
loading files.

Now that you have integrated RequireJS into your AngularJS code, the small _ project _ require/
index.html file can be concise. Once again, note that the html tag that follows does not have
an ng‐app directive because you need to manually initialize your application using the angular
.bootstrap() function when RequireJS is finished loading files:

<html>
 <head>
 <title></title>
 </head>

 <body>
 <div ng-controller="FooController">
 </div>

 <script type="text/javascript" src="../angular.js">
 </script>
 <script data‐main="js/app.js" src="js/require.js">
 </script>
 </body>
</html>

Note that, in the preceding code, you use only two script tags. You can further reduce it to one
script tag by using RequireJS to load AngularJS. As your project grows to utilize the “Medium
Project” directory structuring guidelines or even the “Large Project” directory structuring
guidelines, you will still only need two script tags. Instead, you will have a call to require() in
each file that explicitly lists the files this file depends on.

As you can see, RequireJS is an excellent tool for loading JavaScript dependencies in a more robust
manner than listing script tags. In addition, asynchronous loading can be good for performance.
However, asynchronous loading is not a popular paradigm outside of RequireJS precisely for
performance reasons: No matter how small your JavaScript file is, you incur a significant minimum
performance overhead loading any individual JavaScript file. Outside of RequireJS, many
JavaScript projects concatenate their JavaScript—that is, they combine all their JavaScript files
into a single file and then serve that file to the browser. This minimizes the number of JavaScript
files you need to load, which is a better choice for some applications than asynchronous loading.
RequireJS is useful for applications that have large JavaScript resources that don’t need to be
present when the page loads. However, in many AngularJS applications, the size of AngularJS
dwarfs the size of the application code. The next tool you’ll learn about, Browserify, supplies an
alternative approach to module loading that’s more conducive to the concatenation approach than
RequireJS.

www.it-ebooks.info

http://www.it-ebooks.info/

122  ❘  CHAPTER 3   Architecture

Browserify
If you are familiar with server‐side JavaScript, you may be surprised to see Browserify in a list of
module loaders. Browserify is not designed to be a module loader in the same sense as RequireJS, but it
provides an effective solution to browser‐side module loading as a by‐product of its primary purpose:
compiling NodeJS‐style JavaScript into a browser‐friendly form. NodeJS is a popular server‐side
JavaScript runtime that has numerous elegant features, including file‐level scoping and a global function
called require() for importing external dependencies. In this section, you learn the fundamentals of
the NodeJS require() function and how you can utilize Browserify to take advantage of NodeJS’s
more structured approach to dependency management in your AngularJS applications.

Note that, for the purposes of this section, you need to have NodeJS installed. If you have not done
so, please navigate to http://www.nodejs.org/downloads and follow the instructions for your
platform of choice.

Although NodeJS does implement the JavaScript language standard, NodeJS’s runtime is
fundamentally different from a browser’s runtime. In particular, the global objects document and
window that you may have seen in browser‐side JavaScript do not exist in the NodeJS runtime.
Furthermore, NodeJS enforces file‐level scoping: By default, a variable declared with var in the top‐
level scope of a file is not visible in other files. For instance, if you had two JavaScript files, foo.js
and bar.js, and foo.js contained the following code:

var x = 1;

if bar.js were to include foo.js via the require() function, bar.js would not be able to access the
value of the x variable:

require('./foo.js');

console.log(x); // undefined

To export functions and objects from a NodeJS file, you need to explicitly attach them to the module
.exports (or exports as a shorthand) object. For instance, if foo.js contained the following code:

exports.x = 1;

then bar.js could access the value of the x variable like this:

var foo = require('./foo.js');

console.log(foo.x); // 1

There are two important details to note about the require() function in the preceding examples. First,
the return value of require() is the module.exports object from the required file. Second, the path
passed to the require() function must be relative to the file that calls the require() function (only if the
path isn’t in the node _ modules directory that you’ll learn about shortly). In other words, if a third file in
a separate directory calls require() on bar.js, bar.js can still call require('./foo.js') successfully.

NodeJS also allows you to include external dependencies in a node _ modules directory and
require() them without a relative path. Specifically, if you call require('foo') in a file and there

www.it-ebooks.info

http://www.nodejs.org/downloads
http://www.it-ebooks.info/

Module Loaders  ❘  123

is no file or directory named foo or foo.js in that file’s directory, NodeJS walks up your directory
tree looking for a directory named node _ modules. If NodeJS finds a node _ modules directory, it
looks for a file or directory named foo in the node _ modules directory. This approach may seem
unwieldy if you are used to programming languages in which a file includes the need to be relative
to the project’s root directory. NodeJS’s approach has its merits, however. For instance, NodeJS
code’s directory structure is often considerably easier to refactor because individual directories
don’t necessarily have to be aware of their place in their directory structure.

Now that you understand the high‐level concepts of the require() function, you’re going to write
some NodeJS‐style AngularJS code and use Browserify to compile this code into a browser‐friendly
format. You can install Browserify by navigating to the root directory of this chapter’s sample
code and running the npm install command. Note that, to do this, you need to have NodeJS
and npm installed. If you have not done so yet, please install NodeJS from http://nodejs.org/
download. Running the npm install command downloads Browserify into the node _ modules/
browserify directory under the root directory of this chapter’s sample code. You can utilize
Browserify in NodeJS itself, but the easiest way to get started with Browserify is to use it as a
command‐line utility. For instance, consider these two simple NodeJS files that you can find in this
chapter’s sample code, browserify _ module.js and browserify _ controller.js. First, here is
browserify _ controller.js:

module.exports = function($scope) {
 $scope.answer = 42;
};

Here is browserify _ module.js:

if (typeof window !== 'undefined' && window.angular) {
 var myModule = angular.module('MyModule', []);
 myModule.controller('BrowserifyController',
 require('./browserify_controller.js'));
}

Naturally, since this code uses require() and module.exports, it doesn’t work in the browser. This
is where the Browserify command‐line utility comes in. To generate a browser‐friendly file called
browserify _ output.js from the preceding files, you can run the following command:

./node_modules/browserify/bin/cmd.js \
 -o ./browserify_output.js ./browserify_module.js

For your convenience, the Makefile in this chapter’s sample code provides a convenient shorthand
for the preceding command: make browserify. Once you run this command, you should have a file
called browserify _ output.js in this chapter’s sample code directory that looks something like
this:

(function e(t,n,r){/*...*/({1:[function(require,module,exports){
module.exports = function($scope) {
 $scope.answer = 42;
};

},{}],2:[function(require,module,exports){

www.it-ebooks.info

http://nodejs.org/download
http://nodejs.org/download
http://www.it-ebooks.info/

124  ❘  CHAPTER 3   Architecture

if (typeof window !== 'undefined' && window.angular) {
 var myModule = angular.module('MyModule', []);
 myModule.controller('BrowserifyController',
 require('./browserify_controller.js'));
}

},{"./browserify_controller.js":1}]},{},[2]);

The browserify _ output.js file looks a little difficult to read, but it’s valid JavaScript that can
run in the browser. For example, consider the browserify _ example.html file in this chapter’s
sample code:

 <body>
 <div ng‐controller="BrowserifyController">
 <h1>The answer is {{answer}}</h1>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="browserify_output.js"></script>
 </body>

In the preceding code, you can utilize the BrowserifyController that you declared in browserify _
controller.js and included in MyModule in browserify _ module.js. Once you have compiled the
browserify _ output.js file, you can use the components and modules you declared using NodeJS’s
require() function in the same way as you would if you had written conventional browser‐side
JavaScript.

The key advantage of writing your browser‐side JavaScript in NodeJS‐style is that NodeJS’s
require() function can serve a similar purpose as RequireJS. Specifically, the require() function
allows you to include external JavaScript files from your JavaScript, rather than relying on
script tags.

However, Browserify has one key difference from RequireJS: Browserify outputs a single file, which
you’re expected to include in your page using a script tag. Browserify has no client‐side mechanism
for loading external JavaScript; it’s a purely compile‐time tool that concatenates all your JavaScript into
one browser‐friendly file. Conversely, RequireJS operates in the browser and loads extra JavaScript as
necessary using HTTP. Thus, Browserify isn’t as good as RequireJS for ensuring that you only load the
JavaScript that you need because you have to use Browserify to compile a separate JavaScript file for
each page.

This disadvantage, however, can be a big advantage in certain cases. Often, AngularJS apps
compiled with Browserify simply compile all their browser‐side JavaScript into a single file,
minify it, and ask the browser to cache the file. Once the file is cached, subsequent page loads
are much faster because there’s no need to load additional JavaScript. The trade‐off is that the
initial page load is slower. In fact, many AngularJS applications prefer to concatenate all their
JavaScript into a single file because even requesting a small JavaScript file incurs overhead
due to network latency. As a side effect of compiling NodeJS JavaScript, Browserify provides
concatenation as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Module Loaders  ❘  125

The other primary advantage to using Browserify is the ability to use the NodeJS package
manager, npm. If your server‐side code is also written in NodeJS, you can use only one package
manager throughout your codebase. Even if your server‐side code is not written in NodeJS,
npm is typically more elegant and easy to use than client‐side JavaScript package managers like
Bower. In addition, the npm central repository offers you access to more than 100,000 packages
as of 2014, making it the largest package ecosystem in the world. With Browserify, you can take
advantage of these packages in your browser‐side JavaScript. For instance, earlier in this chapter
you used a module called event‐emitter to broadcast events between services. Actually, this
module was originally written for NodeJS and distributed via npm. The event‐emitter.js file
you used in this chapter was compiled with Browserify so you could access it in your browser‐
side JavaScript.

NOTE  Browserify works by parsing your code and doing some rudimentary
static analysis to resolve calls to the require() function. In particular, if you
call require('./foo.js'), Browserify includes the ./foo.js file in the output.
However, because Browserify only does static analysis, it cannot resolve
require() calls that pass a variable as a parameter. For instance, var x = './
foo.js' && require(x) works normally in NodeJS, but Browserify does not
attempt to resolve the value of x. Thus, if you choose to use Browserify, you
should only pass hard‐coded strings to require() calls.

NOTE  You don’t have to use Browserify to compile the entirety of your
client‐side JavaScript. As with the event‐emitter.js file you used earlier, you
can use Browserify to compile certain npm modules for use in the browser
and include the files using script tags. Browserify, along with similar
tools like OneJS and Webmake, is often used to compile NodeJS JavaScript
modules into files that can be included into browser JavaScript using script
tags. For instance, Mongoose, a NodeJS schema validation tool that you’ll
learn about in Chapter 10, has a browser component that’s compiled with
Browserify.

Now that you understand Browserify’s role in compiling NodeJS modules for the browser, you’ll see
how to use the event‐emitter module in your Browserify‐compiled AngularJS app. In this chapter’s
sample code, you’ll see that the event‐emitter module is listed as a dependency in the package
.json file:

 "dependencies": {
 "browserify": "6.3.2",
 "event‐emitter": "0.3.1"
 }

www.it-ebooks.info

http://www.it-ebooks.info/

126  ❘  CHAPTER 3   Architecture

The package.json file is where npm looks for dependencies to install when you run npm install.
When you run npm install, you’ll find that npm created an event‐emitter directory in the
node _ modules directory. You can then use require() to include the event‐emitter module in
your AngularJS app:

var emitter = require('event‐emitter');

if (typeof window !== 'undefined' && window.angular) {
 var myModule = angular.module('MyModule', []);
 myModule.controller('BrowserifyController',
 function($scope) {
 $scope.emitter = emitter();

 $scope.numPings = 0;
 $scope.emitter.on('ping', function() {
 ++$scope.numPings;
 });
 });
}

You can then compile this file into a single browser‐friendly file called browserify _ emitter _
output.js using the Browserify command‐line tool:

./node_modules/browserify/bin/cmd.js -o ./browserify_emitter_output.js \
 ./browserify_emitter_module.js

Once you’ve compiled the browserify _ emitter _ output.js file, you can include it using a script
tag and utilize the event emitter you attached to the BrowserifyController scope:

 <body>
 <div ng-controller="BrowserifyController">
 <h1 ng‐click="emitter.emit('ping')">
 You've Clicked This {{numPings}} Times
 </h1>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="browserify_emitter_output.js">
 </script>
 </body>

As you can see, Browserify allows you to leverage the power of NodeJS’s require() function and
the rich npm ecosystem in your AngularJS applications. Browserify is a very different solution to
the module loading problem than RequireJS. Browserify is a purely compile‐time tool, so it may
load unnecessary modules, but it does load all your dependencies into one file. Depending on
your use case, this may be an advantage. One further difficulty of using Browserify is that your
AngularJS application will not run in the browser unless it’s compiled through Browserify, which
makes debugging more difficult. Whether these difficulties are offset by Browserify’s significant
benefits depends on your development team’s skill sets and whether your server code is written in
NodeJS.

www.it-ebooks.info

http://www.it-ebooks.info/

Best Practices for Structuring User Authentication  ❘  127

BEST PRACTICES FOR STRUCTURING USER AUTHENTICATION

This section ties together the concepts you learned in this chapter and distills them into some
best practices for structuring AngularJS login/logout functionality. Every application is different,
but virtually every application has some notion of user authentication. This section uses user
authentication as a case study on how to organize your code using modules, services, controllers,
and directives.

Services: Loading from and Storing Data to the Server
Because a service is instantiated at most once, services are ideal for loading information about the
currently logged‐in user. This means the service can query the server for data when it’s instantiated,
and any controller or service can use that data without having to query the server again. To take
advantage of this, you will implement a service called userService that will be responsible for
periodically asking the server about the user’s information. To avoid the overhead of creating a REST
API, you’ll use $timeout to simulate an asynchronous HTTP call. What follows is an implementation
of userService that uses $timeout. You can find this code in authentication _ example.html:

 app.factory('userService', function($timeout) {
 var user = {
 loggedIn: false
 };

 user.loadFromServer = function() {
 $timeout(function() {
 user.loggedIn = true;
 user.name = 'Username';
 }, 500);
 };

 user.login = function(username, password) {
 $timeout(function() {
 user.loggedIn = true;
 user.name = username;
 }, 500);
 };

 user.logout = function() {
 user.loggedIn = false;
 user.name = undefined;
 };

 user.loadFromServer();
 return user;
 });

The preceding implementation of userService implements the core functionality around
user authentication: logging in, logging out, and loading data about the current user. Because
userService is instantiated exactly once, loadFromServer() is called once when the service is
instantiated, and logout() clears the user data for all controllers, services, and directives.

www.it-ebooks.info

http://www.it-ebooks.info/

128  ❘  CHAPTER 3   Architecture

Controllers: Exposing an API to HTML
Typically, you want to create a top‐level controller attached to either the page’s body tag or an
all‐encompassing div tag that exposes the data userService loads from the server, as well as the
logout() and login() functions. This enables your HTML to access this functionality without
having to make every controller rely on userService. This implementation of userService is an
excellent candidate to be exposed in a top‐level AppController because it is typically accessed in
HTML more than in controllers. In other words, other controllers typically don’t call the logout()
function directly. Instead, the logout() function is likely called through directives like ngClick.
Here is the implementation of the top‐level AppController:

 app.controller('AppController', function($scope, userService) {
 $scope.user = userService;
 });

This controller exposes the userService functionality throughout the page’s HTML. Once again,
recall that the core purpose of controllers is to expose JavaScript data and functions to directives so
that directives can bind DOM interactions to this API and create a user experience. What follows is
a basic example of utilizing the API that AppController provides using built‐in directives:

 <body ng-controller="AppController">
 <div ng-show="user.loggedIn">
 <h1>{{user.name}}</h1>
 <input type="button"
 ng-click="user.logout()"
 value="Log Out">
 </div>
 <div ng-show="!user.loggedIn">
 <input type="button"
 ng-click="user.login('Username')"
 value="Log In">
 </div>
 </body>

Directives: Interfacing with the DOM
You will learn about writing custom directives in more detail in Chapter 5. For the purposes of
architecting an authentication system, however, you will primarily focus on using directives to
create reusable HTML components. Reusable HTML components are just a small subset of the
more general purpose of directives: tying DOM interactions to the API that controllers provide.
Next, you’ll use directives to build up a reusable login directive that you can utilize throughout
your application:

 app.directive('login', function() {
 return {
 restrict: 'E',
 scope: true,
 template: 'Username: <input type="text" ng-model="username">' +
 '
' +
 'Password: <input type="password" ng-model="password">' +

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion  ❘  129

 '
' +
 '<input type="button" ng-click="login()" value="Log In">',
 controller: function($scope, userService) {
 $scope.login = function() {
 userService.login($scope.username, $scope.password);
 };
 }
 }
 });

You can then utilize the login directive in your HTML as shown here:

 <div ng-show="user.loggedIn">
 <h1>{{user.name}}</h1>
 <input type="button"
 ng-click="user.logout()"
 value="Log Out">
 </div>
 <div ng-show="!user.loggedIn">
 <login></login>
 </div>

Building reusable components using directives is an important best practice and one of the most
common use cases for directives.

CONCLUSION

In this chapter, you learned about best practices for organizing AngularJS code and structuring
your applications. In particular, you discovered the differences between services, controllers,
and directives and the use cases that each component is uniquely suited for. You read about
using modules to organize components into related groups and how to use modules to set up A/B
tests. You learned directory‐structuring paradigms for projects of various sizes. Finally, you read
about two module loaders, which some AngularJS applications use to make including JavaScript
dependencies a less error‐prone process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Binding
WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ How to create and use data bindings

➤➤ Best practices for performance with data bindings

➤➤ How to tie filters into data binding

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

WHAT IS DATA BINDING?

Data binding is the feature that’s at the heart of all AngularJS functionality. In Chapter 2,
“Intelligent Workflow and Build Systems,” you saw some basic data binding using the {{ }}
symbol.

At a high level, data binding is the ability to tie two JavaScript values together. When the first
variable changes, the second is updated to reflect the changes to the first. The most common
use case of data binding is to tie your user interface (UI), which is often called a view, to a set
of UI‐independent values, which are often referred to as your model. Your model will consist
of simple strings, numbers, and other primitive JavaScript types. Using data binding, your
view defines how to render the model.

4

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

132  ❘  CHAPTER 4   Data Binding

Data binding allows you to tie your view to your model directly from your Hypertext Markup
Language (HTML) using directives, which you will learn more about in Chapter 5. To better
understand the power of data binding, you’ll take a look at a simple case: a page that says “Hello”
to the user based on the name the user enters into a text box. Here’s an example of how this works
in jQuery, a popular lightweight JavaScript library:

 <input type="text" id="username">
 <div>
 Hello,

 </div>

 <script type="application/javascript">
 $(document).ready(function() {
 $('#username').on('keyup', function() {
 $('#display_username').html($('#username').val());
 });
 });
 </script>

This may look familiar to you if you have experience with UI development. Assigning an event
handler for a specific event on a specific UI element is a standard paradigm in most common UI
toolkits, whether Android, iOS, Swing, or jQuery. However, AngularJS data binding inverts this
paradigm and enables you to instead define these handlers within the HTML in a declarative fashion:

 <div ng-controller="HelloController">
 <input type="text" id="username" ng-model="username">
 <div>
 Hello,

 {{ username }}

 </div>
 </div>

 <script type="text/javascript">
 function HelloController($scope) {
 $scope.username = "";
 }
 </script>

NOTE  You may have heard the terms model and view before in the context
of the well‐known pattern known as Model‐View‐Controller (MVC). You
can think of data binding as being a general replacement for the C in MVC.
AngularJS has been referred to as a client‐side Model‐View‐ViewManager
(MVVM) or Model‐View‐Whatever (MVW) framework for this exact reason.
Yes, Model‐View‐Whatever is actually a technical term.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Data Binding?  ❘  133

The {{ }} symbol around the preceding username variable is an example of one‐way data binding.
This symbol is convenient shorthand for the following:

The attribute ngBind is a directive telling AngularJS that this span has a one‐way binding to the
username variable. In other words, ngBind tells AngularJS that every time the value of username
changes, the contents of the span should update to reflect the new value of username. AngularJS’s
data binding takes care of this bookkeeping for you; all you have to worry about is making sure that
username has the correct value.

The attribute ngModel is a directive that creates a two‐way data binding between the input field
and the variable username. In other words, when the value of the input field changes because the
user typed something, the value of username changes to reflect the new value of the input field. In
addition, when the value of the username variable changes, the value of the input field changes to
reflect the new value of username. You can try this out for yourself in the following example, in
which you’ll add a button to the previous example to clear the username variable:

 <div ng-controller="HelloController">
 <input type="text" id="username" ng-model="username">
 <button ng-click="clear()">
 Clear Username
 </button>
 <div>
 Hello,

 {{ username }}

 </div>
 </div>

 <script type="text/javascript">
 function HelloController($scope) {
 $scope.username = "";

 $scope.clear = function() {
 $scope.username = "";
 };
 }
 </script>

If you’re paying attention, you’ll notice that a new type of directive was used in the preceding code:
ngClick. You can embed JavaScript click handlers in your HTML using the onClick attribute, so
why do you need a special directive? The full answer to this question requires a deeper dive into the
internals of directives, which you’ll explore in detail in Chapter 5, “Directives.” However, at a high
level, you should use ngClick to attach a click handler instead of onClick because ngClick ties into
two powerful and integral pieces of AngularJS: scopes and the $digest loop. Both of these concepts
are explored in much detail over the next couple of sections.

In the two previous examples, you saw that ngClick interacts with data binding in a very different
way from ngBind. In general, directives fall into three classes in terms of their interaction with data

www.it-ebooks.info

http://www.it-ebooks.info/

134  ❘  CHAPTER 4   Data Binding

binding: 1) directives that only handle displaying data via a one‐way binding such as ngBind, 2)
directives that wrap event handlers like ngClick, and 3) directives that do two‐way data binding
such as ngModel. At a high level, these types of directives differ in terms of how they interact with
the JavaScript data in your scopes. The first class of directive is called a render‐only directive.
Directives of this type specify rules for how data is displayed but do not modify data. The second
class of directive is an event handler wrapper. Directives of this type do not render data, but they
may modify it. The third and final class of directives, two‐way directives, both render and modify
data. Note that these definitions aren’t actually part of the AngularJS codebase. They are presented
here simply as a tool to help classify directives into more easily comprehensible chunks.

DIRECTIVE CLASS

DOES IT RENDER

DATA?

DOES IT MODIFY

DATA?

EXAMPLES OF BUILT‐IN DIRECTIVES

IN THIS CLASS

Render‐only Yes No ngBind, ngBindHtml, ngRepeat,
ngShow, ngHide

Event handler
wrapper

No Maybe ngClick, ngMouseenter,
ngDblclick

Two‐way Yes Yes ngModel

Hopefully, now you have a better idea of why data binding is magical. Before you really dig into
the nitty‐gritty of how data binding works and how to use it effectively, you’ll take a step back and
learn what the advantages of data binding are.

WHAT DATA BINDING CAN DO FOR YOU

There are three primary advantages to data binding over using event handlers directly. First, your
model and your controller logic are completely independent of your UI. In the previous code, you
can add another UI element that is tied to the variable username, or you can create another element
that shows if username is defined, all without changing the controller code. Your controller code
can load data and provide an application programming interface (API) to the HTML for data
manipulation and handle loading and saving the data, while all decisions for the way the data is
presented in the UI can be in your HTML and cascading style sheets (CSS).

The clean separation between view and controller provided by AngularJS is valuable in a
single‐person project, but just wait until you see what it can do for you in an interdisciplinary
team setting. On a product team, you probably have at least one person who is focused on
the user interface/user experience (UI/UX). In other words, you probably have a developer or
developers who are responsible for getting the data (also known as the model) from the server
to the browser, and a designer or designers who are responsible for how this data is presented
to a user.

Without AngularJS, the glue between the model and the view is a gray area. In practice, this ends up
being where developers and designers step on each other’s toes. A classic nightmare scenario occurs
when the designer goes through and tweaks all the CSS classes, but then the glue code often needs

www.it-ebooks.info

http://www.it-ebooks.info/

What Data Binding Can Do for You  ❘  135

to be updated to make sure it is creating elements with the proper CSS classes. Even with a strong
MVC framework like BackboneJS, separating code and design is near impossible. At some point you
have to have a designer tweaking JavaScript or a developer deciding how data is rendered.

With data binding, your design guru doesn’t have to code JavaScript, and your developer doesn’t
have to tweak HTML. Instead, in an ideal world, these two interact through a well‐defined API,
with the developer writing JavaScript functions and exposing variables in the controller, and the
designer tying into these using directives like ngClick from their HTML.

Also, data binding allows you to write more code in a declarative language like HTML, and less
code in a more imperative language like JavaScript. Generally speaking, imperative programming
involves providing a computer with exact instructions for how to execute a task. In contrast,
declarative programming allows you to specify what you would like to happen, while allowing the
computer to optimize the details of how it should be done. Or, in other words, in an imperative
language you deal with verbs, whereas in a declarative language, like HTML, you write only nouns.
The precise technical definitions of imperative and declarative programming are more complicated
and subject to debate, but suffice it to say that declarative programming syntax makes high‐level
concepts, like visual rendering of data, much simpler.

Declarative languages tend to be terser and more conducive to UI/UX development because,
fundamentally, a UI is built of objects that have potential actions associated with them. This
means that rather than writing code to explicitly construct UI objects, you simply define how you
want the objects to be structured and let the browser handle the rendering specifics. Just imagine
the mess if you had to build up your entire page’s structure using jQuery! Developers who have
used the Java Swing package will recall the frustration of having to build up a full structure
of frames and buttons from within Java code—no wonder Swing UIs are infamous for looking
terrible!

With AngularJS data binding, your HTML not only defines the UI structure, but your UX structure
as well. Because the UX (the decisions about the concrete actions your user can take) is defined in
your HTML, there is no need for messy event handler-binding code, which is overly verbose and
pollutes the global scope.

Lastly, AngularJS scoping provides a neat framework for organizing your code. The ng-controller
directive creates a new instance of HelloController each time, so your UI can reuse the controller
in different places without making changes to the JavaScript. For example, perhaps you want
HelloController to greet different users in different languages:

 <div ng-controller="HelloController">
 English:
 <input type="text" ng-model="username">
 <div ng-click="clear()">
 Clear Username
 </div>

 <div>
 Hello,

 {{ username }}

www.it-ebooks.info

http://www.it-ebooks.info/

136  ❘  CHAPTER 4   Data Binding

 </div>
 </div>

 <div ng-controller="HelloController">
 Spanish:
 <input type="text" ng-model="username">
 <div ng-click="clear()">
 Clear Username
 </div>

 <div>
 Hola,

 {{ username }}

 </div>
 </div>

 <script type="text/javascript">
 function HelloController($scope) {
 $scope.username = "";

 $scope.clear = function() {
 $scope.username = "";
 };
 }
 </script>

When you run the preceding code, you notice that the two username variables are independent of
one another. You can type Jack in the first one and Juan in the other, and the corresponding div
elements will say Hello, Jack and Hola, Juan. This is a result of AngularJS creating a new scope
every time you use the ng-controller directive. Each of the div elements with HelloController
attached has its own instance of HelloController and thus its own username variable. Scopes are
an extraordinarily powerful tool in AngularJS, and they play an integral role in how data binding is
used. Because of this, it’s worth looking closer at what scopes are and what they do.

SCOPING OUT ANGULARJS SCOPES

One extremely powerful AngularJS feature is the introduction of scopes into the Document Object
Model (DOM). A scope is an execution context for AngularJS expressions. An expression is a string
containing JavaScript code that’s meant to be evaluated by AngularJS. For example, the values of the
ngClick and ngModel attributes, as well as the contents of the {{ }} symbol, are expressions. Under
the hood, AngularJS parses these expressions and evaluates them against the associated scope. A
key point to remember is that expressions are very different from the code that’s in your controllers:
AngularJS handles parsing and evaluating expressions in its own way, whereas controller code runs
directly against your browser. Code that works in an expression may not work in a controller and
vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  137

In the previous section, you saw that the ng-controller directive creates a new scope that
expressions attached to directives can access. Much like in JavaScript, scopes play an invaluable role
in making code more modular and more easily reusable. For example, you saw that, with the power
of scopes, you had two independent HelloController instances on the same page. In addition, the
ngClick, ngModel, and ngBind expressions nested under the ng-controller directive each had
access to the correct instance.

Most other JavaScript libraries provide only a thin wrapper around built‐in HTML event handlers
like onClick. These have a fatal flaw: A function, called in an in‐HTML event handler, must be
visible from the global scope of the page, commonly referred to as the window. A dependence on
global state makes your code more difficult to manage. For example, maybe you had written the
HelloController example using onClick and global state. If you wanted to add another language,
say French, you would have to add a separate instance of HelloController to the window. You
would have to make sure that this new instance didn’t overwrite any global state that other elements
depend on. In addition, you’d have to have the DOM know which instance of HelloController to
access, which is way too much work for a simple task.

With scopes in the DOM, however, using in‐HTML event handlers becomes much more
viable. You may have noticed that the first parameter passed into a controller is $scope, which
corresponds to the scope created by the ng-controller directive. You can then augment this
scope with variables and functions from the controller. Note that these functions are accessible
only from $scope and children of $scope. AngularJS creates a root scope for every page, and
all scopes created, whether by ng-controller or other directives, are children of the root
scope. There aren’t many cases for dealing with the root scope directly, but just in case you
need to, know that you can access the root scope via dependency injection in your controllers as
$rootScope.

Scope Inheritance
DOM scopes in AngularJS behave much like scopes in the JavaScript language itself. In JavaScript,
keyword‐like functions like for and if create child scopes, which allow you to define variables local
to that scope using the var keyword.

Unsurprisingly, the AngularJS equivalents, ngRepeat and ngIf, create scopes in the DOM. Scopes
inherit from their parents using prototype‐based inheritance and keep a pointer to their parent scope
in their $parent field, so scopes can access variables from their parent scope. In the DOM, you can
access the full scope chain:

 <div ng-controller="LanguagesController">
 <div ng-repeat="language in languages" ng-controller="HelloController">
 {{ language.name }}:
 <input type="text" id="username" ng-model="username">
 <div>
 {{ greet(language, username) }}
 </div>
 </div>
 </div>

 <script type="text/javascript">

www.it-ebooks.info

http://www.it-ebooks.info/

138  ❘  CHAPTER 4   Data Binding

 function LanguagesController($scope) {
 $scope.languages = [
 { name : "English", greeting : "Hello, " },
 { name : "Spanish", greeting : "Hola, "}
];

 $scope.greet = function(language, name) {
 return language.greeting + " " + name;
 };
 }

 function HelloController($scope) {
 $scope.username = "";
 }
 </script>

Scopes are powerful tools, and, if you learned anything from Spiderman, it’s that with great
power comes great responsibility. One of the most common ways to shoot yourself in the foot with
AngularJS is by forgetting that, although you can read variables from parent scopes, AngularJS
won’t let you assign a value to a parent scope. This mistake is most easily illustrated with what
seems like a perfectly innocuous example. Perhaps you wanted to bind both the English and the
Spanish username inputs from the previous example to a single variable. You might try moving the
username variable into LanguagesController like this:

 <div ng-controller="LanguagesController">
 <div ng-repeat="language in languages" ng-controller="HelloController">
 {{ language.name }}:
 <input type="text" id="username" ng-model="username">
 <div>
 {{ greet(language, username) }}
 </div>
 </div>
 </div>

 <script type="text/javascript">
 function LanguagesController($scope) {
 $scope.languages = [
 { name : "English", greeting : "Hello, " },
 { name : "Spanish", greeting : "Hola, "}
];

 $scope.greet = function(language, name) {
 return language.greeting + " " + name;
 };

 $scope.username = "Juan";
 }

 function HelloController($scope) {
 }
 </script>

However, when you try to run this code, you see that when you enter John into the English input,
the Spanish input won’t change. What will really blow your mind is that both inputs will say Juan

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  139

initially. What’s wrong here? Well, even though ngModel can read from the value of username from
its parent scope, it can only assign to its current scope. Thus, when you change the English input,
the ngModel directive creates a new username variable within the scope defined by its copy of
HelloController!

To get around this issue, you can use the ngChange directive and the fact that you can call
functions from the parent scope. The ngChange directive evaluates the attached expression
every time the value of the corresponding input changes, so you can use it to call a function on
LanguagesController every time the username changes:

 <div ng-controller="LanguagesController">
 <div ng-repeat="language in languages" ng-controller="HelloController">
 {{ language.name }}:
 <input type="text"
 ng-model="username"
 ng-change="updateUsername(username)">
 <div>
 {{ greet(language, username) }}
 </div>
 </div>
 </div>

 <script type="text/javascript">
 function LanguagesController($scope) {
 $scope.languages = [
 { name : "English", greeting : "Hello, " },
 { name : "Spanish", greeting : "Hola, "}
];

 $scope.greet = function(language, name) {
 return language.greeting + " " + name;
 };

 $scope.username = "Juan";

 $scope.updateUsername = function(username) {
 $scope.username = username;
 }
 }

 function HelloController($scope) {
 }
 </script>

AngularJS also allows you to disable scope inheritance. A scope can be marked as an isolate, which
means that it does not inherit from its parent. You’ll learn more about isolate scopes when you dive
into directives in Chapter 5.

Another common way of shooting yourself in the foot with scopes is failing to remember that
functions on the global window object cannot be accessed from within AngularJS expressions.
For example, the encodeURIComponent function escapes string values for use in URLs. Virtually
every JavaScript program that communicates with a server uses encodeURIComponent. This
function is attached to window and can be accessed as window.encodeURIComponent. To

www.it-ebooks.info

http://www.it-ebooks.info/

140  ❘  CHAPTER 4   Data Binding

illustrate this, here’s a common mistake that virtually everyone makes when starting out with
AngularJS:

{{ encodeURIComponent(username) }}

When you try this, you’ll notice that your AngularJS error handler is triggered and that the span in
the UI is empty. This is because expressions are strictly limited to variables in the current scope and
its ancestors: No global state or functions are allowed. As a matter of fact, AngularJS describes itself
as “lethally allergic to global state” in its online documentation. Whether this is a bug or a feature is
for you to decide for yourself. Either way, the lack of window access from expressions has been with
AngularJS since the first public release and is unlikely to change in the near future.

However, the encodeURIComponent function is accessible from within a controller. If you recall
the difference between code in expressions and code in controllers (that the latter is parsed and
evaluated by AngularJS, whereas the browser’s interpreter directly evaluates the former), this
shouldn’t be a surprise. Because their code runs directly against the browser, controllers can access
the window object. One way to get the encodeURIComponent function into your expressions is to
attach the function to the scope in a controller:

$scope.encodeURIComponent = window.encodeURIComponent;

However, this approach is frustrating if you find yourself having to attach encodeURIComponent
to the scope in every controller you write. Don’t worry; there is a good AngularJS way to make
encodeURIComponent accessible from within expressions. You’ll explore this solution in the final
section of this chapter, “Filters and Data‐Binding Gotchas.”

In addition to storing data, scopes have three important functions that are fundamental to the way
data binding works. Make a note; you will see these functions mentioned time and time again in
this book. These functions are called $watch, $apply, and $digest.

$watch
$watch makes up one side of two‐way data binding: it enables you to set a callback function to be
called whenever the value of a given expression changes. The callback function is often referred to as
a watcher. A simple usage of $watch is to update a firstName and lastName variable every time the
user changes his name:

$scope.$watch('name', function(value) {
 var firstSpace = (value || "").indexOf(' ');
 if (firstSpace == -1) {
 $scope.firstName = value;
 $scope.lastName = "";
 } else {
 $scope.firstName = value.substr(0, firstSpace);
 $scope.lastName = value.substr(firstSpace + 1);
 }
});

Internally, $watch is a trivial function. Each scope maintains a list of watchers, called
$scope.$$watchers. $watch simply adds a new watcher, which includes some internal bookkeeping
to keep track of the last computed value of the expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  141

$apply
$apply makes up the other half of two‐way data binding: It informs AngularJS that something has
changed and the values of $watch expressions should be recomputed. You usually won’t have to
call $apply yourself, because AngularJS’s built‐in directives (such as ngClick) and services (such as
$timeout) call $apply for you.

You’re most likely to run into $apply in the context of custom event handlers. When an event
occurs, such as a user clicking a button, or an outstanding HTTP request has completed, AngularJS
needs to be informed that the model may have changed. Directives like ngClick and ngDblclick
call $apply internally for this reason.

Another example is if you were to implement your own simple replacement to AngularJS’s $http
service. You would use $apply after you’d made whatever changes to the scope you needed, to make
sure AngularJS was aware that the model may have changed. For instance, perhaps you wanted to
use jQuery’s $.get function instead of AngularJS’ $http service to ask the OpenWeatherMap API
for the current weather in New York City:

 <div ng-controller="HttpController">
 <input type="submit" value="Stuck? Click Here!" ng-click="">

 {{ weather }}
 </div>
 <script type="text/javascript">
 function HttpController($scope) {
 var weatherUrl =
 "http://api.openweathermap.org/data/2.5/weather" +
 "?q=NewYork,NY";
 $scope.weather = "Loading...";

 $scope.getNYCWeather = function() {
 $.get(weatherUrl, function(data) {
 $scope.weather = data;
 $scope.$apply();
 });
 }

 setTimeout(function() {
 $scope.getNYCWeather();
 }, 0);
 }
 </script>

Try an experiment: commenting out the preceding $apply call. You will see that the view will not be
updated when the HTTP request returns. However, it will be updated if you click the “Stuck? Click
Here!” button because the ng-click directive calls $apply, even though the expression is empty.

$digest
$digest is the magic glue function that ties together $watch and $apply. You would be hard‐
pressed to find an example where you need to interface with $digest directly rather than through
$watch and $apply. However, due to this function’s unique place at the core of data binding, its
internals merit a more detailed discussion.

www.it-ebooks.info

http://api.openweathermap.org/data/2.5/weather
http://www.it-ebooks.info/

142  ❘  CHAPTER 4   Data Binding

At a high level, $digest evaluates all the $watch expressions in a scope, as well as the scope’s
children, and fires the watcher callback on any that have changed. This process may seem simple,
but there’s a subtle difficulty: A watcher can change the scope, which in turn means that there may
be other watchers that need to be informed of changes. Thus, $digest actually occurs in a loop that
conceptually looks like the following pseudocode:

var dirty = true;
var iterations = 0;
while (dirty && iterations++ < TIMES_TO_LOOP) {
 dirty = false;
 for (var i = 0; i < scope.watchers.length(); ++i) {
 var currentValue = scope.watchers[i].get();
 if (currentValue != scope.watchers[i].oldValue) {
 dirty = true;
 scope.watchers[i].callback(currentValue, scope.watchers[i].oldValue);
 scope.watchers[i].oldValue = currentValue;
 }
 }
}

One important note: the TIMES _ TO _ LOOP constraint exists to prevent AngularJS from getting
stuck in an infinite loop in $digest. If your code causes the dirty flag to be set to true after every
iteration, this loop could run forever and completely freeze the browser. Right now, AngularJS sets
TIMES _ TO _ LOOP (which AngularJS calls TTL for short) to 10. If the loop executes more than TTL times,
AngularJS throws a 10 $digest iterations reached. Aborting! error. This may seem like a small
limit, but in practice seeing more than 3 or 4 $digest iterations is rare unless you have an infinite loop.

If you find yourself needing to change the TTL value for some reason, AngularJS allows you to change
this value on a per‐module basis using the $rootScope service and the digestTtl function. To set the
TTL to 15, for example, you can use the following code when declaring your top‐level app module:

var app = angular.module('MyApp', [], function($rootScopeProvider) {
 $rootScopeProvider.digestTtl(15);
});

Performance Considerations
You may think that AngularJS’s dirty checking approach using $digest is ridiculously inefficient
compared to attaching event handlers to the DOM. In reality, dirty checking is usually efficient
enough, and the advantages in terms of correctness and predictability outweigh the performance
impact most of the time. In this section, you learn how to minimize this performance impact and
make sure your application looks snappy to your user.

First and foremost, before you dive into the performance internals of dirty checking, remember
the wise words of legendary Stanford computer science professor Donald Knuth: “Premature
optimization is the root of all evil (“Structured Programming with Go To Statements”, ACM
journal, 1974).” You should first make sure your application works as advertised before you start to
optimize its performance.

When you do start considering performance, you shouldn’t be asking how to make your app fast;
you should be asking how to make your app fast enough for what it needs to do. In the end, if you

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  143

never ship a functioning version of your app to users, it doesn’t matter how efficient the half‐finished
prototype was. AngularJS was built precisely to address the problem of being able to put together
a sophisticated and easily testable browser‐based client quickly and easily. Many developers find
benchmark comparisons between AngularJS and vanilla jQuery code to be moot, because they
simply wouldn’t be able to replicate their existing AngularJS functionality in jQuery within a
reasonable amount of time.

Next, there are two important guidelines to remember when thinking about AngularJS
performance. First, the AngularJS team informally recommends that you have less than 2,000
watchers on a single page. Consider the 2,000 watcher guideline when designing your app, and
remember that essentially every directive in your UI creates at least one watcher. Remember that the
$digest loop checks every watcher, and if you’re watching many complex variables, this loop can
become a bottleneck.

The second important guideline to remember is that AngularJS performance issues almost always
come down to not using ngRepeat wisely. You might have guessed that creating 2,000 directives in
a page without some sort of looping construct would be nearly impossible. The ngRepeat directive
is the looping construct that opens up the possibility to create directives in a loop. The ngRepeat
directive can thus create additional watchers: If you have an expression within an ngRepeat, you’ve
created an extra watcher for each element within your array! Furthermore, ngRepeat usually
watches an array, which is an expensive comparison for very large arrays.

An ngRepeat Gone Wrong
You’ll create a simple benchmark to demonstrate what happens when you stress ngRepeat. The
following code creates 10,000 div elements in your browser, displaying the numbers 0–9999. The
jQuery code looks like this:

 <script src="https://code.jquery.com/jquery-1.10.2.min.js">
 </script>
 <script type="application/javascript">
 $(document).ready(function() {

 var arrayPusher = {};

 arrayPusher.value = [];
 arrayPusher.get = function() {
 return arrayPusher.value;
 };
 arrayPusher.set = function(v) {
 var start = Date.now();
 arrayPusher.value = [];
 $('#container').empty();
 for (var i = 0; i < v.length; ++i) {
 arrayPusher.value.push(v[i]);
 $('#container').append('<div>' + v[i] + '</div>');
 }

 console.log("Time in MS: " + (Date.now() - start));
 };

 var arr = [];

www.it-ebooks.info

https://code.jquery.com/jquery-1.10.2.min.js
http://www.it-ebooks.info/

144  ❘  CHAPTER 4   Data Binding

 for (var i = 0; i < 10000; ++i) {
 arr.push(i);
 }

 arrayPusher.set(arr);
 });
 </script>

The AngularJS code for doing this is considerably simpler. The reason for the setTimeout call is
to make sure that you’re not calling $digest within another $digest loop. AngularJS executes a
$digest after the controller initialization is done. The setTimeout call makes sure that the only
dirty watchers are those on the array itself when the $digest call happens:

 <script type="application/javascript">
 function ArrayPushController($scope) {
 $scope.arr = [];

 $scope.push = function(v) {
 setTimeout(function() {
 var start = Date.now();
 $scope.arr = v;
 $scope.$digest();
 console.log("Time in MS: " + (Date.now() - start));
 }, 500);
 };

 $scope.newArr = [];
 for (var i = 0; i < 10000; ++i) {
 $scope.newArr.push(i);
 }
 }
 </script>
 <div ng-controller="ArrayPushController" ng-init="push(newArr)">
 <div ng-repeat="x in arr">
 {{ x }}
 </div>
 </div>

When you run the preceding code, your console tells you that the AngularJS code is considerably slower.
In Google Chrome, you’ll likely see that the AngularJS code takes somewhere in the neighborhood
of 1,500 milliseconds, whereas the jQuery code takes about 500 milliseconds. Keep in mind, these
numbers come from an N=1 experiment and are only here to illustrate relative performance.

First, think about how many scopes and how many watchers you have in the AngularJS example.
You might think that the only watcher is created by ngRepeat on the value of arr. However, there
are actually 10,000 other watchers on the page. The ngRepeat directive creates a new scope for
every element in the array, so the scope defined by the preceding ngController directive has one
watcher and 10,000 child scopes, each with its own single watcher.

How does this execute within AngularJS? The $digest loop executes twice. The first iteration is
the most expensive, because that’s where AngularJS creates the 10,000 scopes and then attaches
watchers on the value of x to each of them. The second iteration happens because the last iteration

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  145

changed the value of x within each of the child scopes. If you break down these two, the first loop
takes roughly 1,300 milliseconds of the 1,500, and the second takes 200 milliseconds.

How can you improve this performance? A common pattern for speeding up AngularJS on large lists
is to get rid of the 10,000 watchers on the child scopes. At a high level, ngBind works by assigning a
watcher to the contents of {{ }} and telling the browser to change the contents of the DOM element
each time the watcher fires. Thus, each time the contents of arr change, AngularJS needs two
$digest iterations. It also needs to create and destroy these one‐watcher scopes.

How much overhead can you save by avoiding the creation of these watchers? A more thorough
answer to this question requires a deep dive into how directives work; you will explore the answer
in Chapter 5. In the meantime, you can do a simple experiment by replacing the {{ x }} expression
in the preceding code with a static value, such as:

 <div ng-controller="ArrayPushController" ng-init="push(newArr)">
 <div ng-repeat="x in arr">
 1
 </div>
 </div>

The results are pretty significant. AngularJS executes the preceding code in about 800 milliseconds
and executes only one $digest loop!

The one‐time binding approach may seem like a significant handicap to the two‐way data binding
functionality. However, this approach works well in practice. If your application is doing an
ngRepeat over a very long list, this portion of your application most likely gives users a list of items
and the ability to click on one to view more details. This pattern is often referred to as the master‐
detail design pattern, a master list of items in which clicking on one brings up a detail view.

The master‐detail pattern usually displays static information in the master list. Suppose your
application is a list of upcoming events: You don’t want people browsing events to be able to change
the title of any given event! In cases like this, setting a watcher on the event title is a waste because
the user should not be able to modify the title anyway.

Filters and Data‐Binding Gotchas
Filters are an underrated AngularJS feature, and one that ties in closely with data binding and
expressions. Filters are chainable functions that are accessible from any AngularJS expression. They
are usually used for last‐second data post‐processing before the data is rendered. Filters tie in to data
binding in a one‐way manner, so you can use filters with directives like ngBind and ngClick, but
not directives like ngModel. You’ll recall from the introduction to this chapter that directives fall
into three classes; only the first two classes of directives can be used with a filter. An important note
to remember is that a filter does not change the underlying value of the JavaScript variable.

Filters are invoked using the | symbol, and additional parameters are delimited by : symbols after
the filter name. A simple example of a filter is the built‐in limitTo filter, which takes a string and
returns a string that is limited to a certain number of characters:

{{ ‘123456789’ | limitTo:9 }} => “123456789”
{{ ‘123456789’ | limitTo:4 }} => “1234”

www.it-ebooks.info

http://www.it-ebooks.info/

146  ❘  CHAPTER 4   Data Binding

There are three common use cases for filters. You’ll learn about each of them by example next.
Each example also illustrates a common mistake that people make with both data binding
in general and filters in particular, so hopefully after this section you’ll really be a data
binding pro.

Use Case 1: Rules for Converting Objects to Strings
When you’re building a UI, inevitably you’ll find yourself converting objects to strings. For example,
perhaps you have a user object with a first name and a last name. You may find yourself writing the
user’s name like this:

{{ user.name.first }} {{ user.name.last }}

As a one‐off, this approach works well. However, when this pattern starts popping up in
multiple places, you start violating a key programming tenant: don’t repeat yourself, commonly
abbreviated DRY. What happens when your code is littered with these statements, but, later,
you decide that you would really only prefer to have the last letter of the last name. Or, what
if you decide that you have to limit the total length of the name to 40 characters? Find‐and‐
replace approaches can work, but they’re the wrong approach because they’re messy and
error‐prone.

As an aside, you could attach a function to the user.name object called user.name.toString() that
handles converting the object to a string. Those of you who come from an object‐oriented language
like Java or C++ might think this is the right approach in JavaScript. Although this approach is
certainly possible in JavaScript, it usually doesn’t make sense in the context of web development
using AngularJS. Because JavaScript is not strongly typed, the type‐checking benefits of a strict
object‐oriented approach aren’t realized in JavaScript. Furthermore, because JSON APIs are often
deeply nested, attempts to do strict object‐oriented programming (or OOP for short) with JavaScript
end up with a lot of repetitive code that looks like this:

var group = new Group(jsonData.group);
for (var i = 0; i < group.members.length; ++i) {
 group.members[i] = new User(group.members[i]);
}

Code like this fails to take advantage of the terse expressiveness that comes from JavaScript’s
functional features. Although this type of approach certainly works, it’s not optimal given the
language’s feature set.

Filters provide a way to expose this string conversion functionality to AngularJS expressions in a
way that retains the unit‐test‐friendly structure that AngularJS is known for. Here’s a simple filter
that handles your username use case:

angular.
 module('filters').
 filter('displayName', function() {
 return function(name) {
 return name.first + " " + name.last;
 }
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  147

Not surprisingly, filters are attached to an AngularJS module with a given name, which you
can then use to access the filter from an expression. For example, to utilize this filter, you would
do this:

{{ user.name | displayName }}

Now the watcher for this expression knows to pass the value of user.name through the preceding
function when evaluating the expression. Note that the filter is defined using the common
function‐that‐returns‐a‐function pattern that you often see in AngularJS. The returned function
is the function that actually does the work. The returned function receives the piped value as its
first parameter and any parameters delimited by : as subsequent parameters. The outer function
is a factory and can tie in to AngularJS dependency injection. Although filters should usually be
lightweight functions that have no dependencies, a filter can ask for any service in the associated
module. For example, your filter can get the $http service, as in the example that follows. However,
using the $http service in a filter is generally a bad idea because the code sends an HTTP request
every time the expression is executed:

angular.
 module('filters').
 filter('displayName', function($http) {
 return function(name) {
 $http.post('/api/log', name).success(function() {});
 return name.first + " " + name.last;
 }
 });

Another slick feature of filters is that they can be piped together. Those of you familiar with the
bash shell will recognize the | symbol as a tool for piping input from one program to another.
AngularJS uses the | symbol for filters because filters can be piped together in a similar way. For
example, maybe you want to limit usernames to 40 characters in a certain part of your UI because
of design considerations. You can achieve this quite elegantly by piping the output from the
preceding displayName filter into AngularJS’s built‐in limitTo filter like so:

{{ user.name | displayName | limitTo:40 }}

But imagine that you want to limit all displayName outputs to be at most 40 characters. You can
do this fairly simply by making the displayName filter return a substring if the string is too long,
but there’s an alternative approach that demonstrates another common use case of filters. The filters
associated with the current module are accessible via dependency injection as the $filter service.
By pulling this service into the displayName filter, you can reuse the limitTo filter and win a prize
for keeping your code more DRY than the Sahara Desert:

angular.
 module('filters').
 filter('displayName', function($filter) {
 return function(name) {
 return $filter('limitTo')(name.first + " " + name.last, 40);
 }
 });

www.it-ebooks.info

http://www.it-ebooks.info/

148  ❘  CHAPTER 4   Data Binding

A good example of a built‐in AngularJS filter that fits this use case is the date filter. The date filter
provides some sophisticated functionality for converting a date or date‐like object into a string. Another
advantage of using a filter rather than creating a new object is that the date filter can be passed a date
object, an appropriately formatted string, or a numeric timestamp, and AngularJS handles it correctly.

The second argument to the date filter specifies the format used for outputting the date.
Conceptually, the date filter is similar to the strptime function in C and C++, but it uses a
completely different syntax. The following table illustrates the most commonly used formatting
elements for the date filter.

ELEMENT OUTPUT EXAMPLE

yyyy 4‐digit year {{"2009–02–03" | date:"yyyy"}} => "2009"

yy Last two digits of year,
padded

{{"2009–02–03" | date:"yy"}} => "09"

MMMM Full month name,
January–December

{{"2009–02–03" | date:"MMMM yy"}} =>

"February 09"

MMM Short month name,
Jan–Dec

{{"2009–02–03" | date:"MMM yyyy"}} =>

"Feb 2009"

MM Padded numeric month,
01–12

{{"2009–02–03" | date:"MM/yyyy"}} =>

"02/2009"

M Unpadded numeric month,
1–12

{{"2009–02–03" | date:"M/yyyy"}} =>

"2/2009"

dd Padded day of month,
01–31

{{"2009–02–03" | date:"MMM dd"}} =>

"Feb 03"

d Unpadded day of month,
1–31

{{"2009–02–03" | date:"MMM d"}} =>

"Feb 3"

EEEE Day of week,
Sunday–Saturday

{{"2009–02–03" | date:"EEEE, MMM d"}} =>

"Tuesday, Feb 3"

EEE Short day of week, Sun–Sat {{"2009–02–03" | date:"EEE, MMM d"}} =>

"Tue, Feb 3"

HH Hour of day, padded,
00–23

{{"2009–02–03T08:00:00" | date:"HH"}} =>

"08"

H Hour of day, unpadded,
0–23

{{"2009–02–03T08:00:00" | date:"H"}} =>

"8"

hh Hour of day, a.m./p.m.,
padded, 01–12

{{"2009–02–03T14:00:00" | date:"hh"}} =>

"02"

h Hour of day, a.m./p.m.,
unpadded, 1–12

{{"2009–02–03T14:00:00" | date:"h"}} =>

"2"

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  149

mm Minutes, padded, 00–59 {{"2009–02–03T14:00:00" | date:"h:mm"}} =>

"2:00"

m Minutes, unpadded, 0–59 {{"2009–02–03T14:00:00" | date:"h:m"}} =>

"2:0"

ss Seconds, padded, 00–59 {{"2009–02–03T14:00:59" |

date:"h:mm:ss"}} => "2:00:59"

s Seconds, unpadded, 0–59 {{"2009–02–03T14:00:09" | date:"m:s"}} =>

"0:9"

a a.m./p.m. {{"2009–02–03T14:00:00" |

date:"h:mm a"}} => "2:00 pm"

In addition to providing you with a host of options for custom date formatting, the date filter
provides a few handy shortcuts for common date formats. A few of the most commonly used ones are
listed here.

SHORTCUT FORMAT EQUIVALENT EXAMPLE

medium MMM d, y h:mm:ss a {{"2009–02–03T14:00:09" |

date:"medium"}} => "Feb 3, 2009 2:00:09 pm"

short M/d/yy h:mm a {{"2009–02–03T14:00:09" | date:"short"}}

=> "2/3/09 2:00 pm"

fullDate EEEE, MMMM d, y {{"2009–02–03T14:00:09" | date:"fullDate"}}

=> "Tuesday, February 3, 2009"

mediumTime h:mm:ss a {{"2009–02–03T14:00:09" |

date:"mediumTime"}} => "2:00:09 pm"

Pitfall
AngularJS’s ngBind directive, which underlies the common {{ }} shorthand, escapes HTML in
the expression’s output. This is a basic defense against cross‐site scripting attacks. What does this
mean for you? Well, one application of using filters to format strings is the process of linkifying your
text, such as converting all instances of http://www.angularjs.com in your text to links using the
HTML a tag. When you run the following code, you see that you don’t get the links you want, but
you do get text with escaped HTML tags:

 <div>
 <h1>Using ngBind</h1>

 </div>

 <script type="text/javascript">
 module.filter('linkify', function() {
 return function(str) {

www.it-ebooks.info

http://www.angularjs.com
http://www.google.com
http://www.it-ebooks.info/

150  ❘  CHAPTER 4   Data Binding

 return str.replace(/(http:\/\/\S+)/ig, function(match) {
 return "" + match + "";
 });
 };
 });
 </script>

The way to get around this is fairly simple. There is a separate directive called ngBindHtml that
behaves almost identically to ngBind, except that it doesn’t escape reasonably safe HTML tags. In
other words, ngBindHtml doesn’t escape tags such as a or div, but it escapes potentially dangerous
tags like script and style. Older, stable versions of AngularJS before version 1.2.0 did not have
ngBindHtml. However, those versions did have an ngBindHtmlUnsafe directive, which does not do
any escaping. You should not use ngBindHtmlUnsafe unless you are sure there’s no way a malicious
user could inject script tags into the ngBindHtmlUnsafe expression.

Use Case 2: Wrappers for Global Functions
Remember the difficulty caused by the fact that functions that are attached to the global window
object (like encodeURIComponent) are not accessible from AngularJS expressions by default? Filters
are the preferred solution for making such functions accessible from your expressions. For example,
here’s a filter that wraps the encodeURIComponent function:

filter('encodeUri', function() {
 return function(x) {
 return encodeURIComponent(x);
 };
});

Congratulations! You can now use encodeURIComponent expressions within your module! The key
difference is that, like controllers, the filter function code runs directly against the browser instead
of being evaluated internally against the scope. This new filter is pretty useful with the ngHref
directive. Maybe you want to do an ngRepeat over the products in your catalog and include a link
to each product. That code would look like this:

<div ng-repeat="product in products">
 <a ng-href="/product/{{product.name | encodeUri}}">
 {{ product.name }}

</div>

There are a few other window functions that you may want to attach to filters, such as isNaN and
decodeURIComponent. Thankfully, there probably aren’t that many global functions that you want
to use in expressions, so you’ll only have to create a few filters with this use case.

Pitfall
Another pitfall that AngularJS rookies often run into is trying to use the ternary operator in
expressions. Unfortunately, expressions like these aren’t going to work, because the expressions
parser doesn’t understand the ternary operator:

{{ request.done ? "Done" : "In Progress" }}

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  151

There are several alternatives to this tragically flawed approach. You can use the ngIf directive
as an approximation. However, note that there’s no corresponding ngElse directive, so this
approach isn’t as terse as the ternary operator. If you’re using an old version of AngularJS, keep
in mind that ngIf was introduced in version 1.1.5. In this case, the following approach will work
about as well if you use ngShow in place of ngIf, and ngShow has been in AngularJS since the
beginning:

<div ng-if="request.done">
 Done
</div>
<div ng-if="!request.done">
 In Progress
</div>

However, you can achieve this more tersely using filters. Once again, recall that filter function code
is executed against the browser rather than evaluated by AngularJS. If you find yourself needing to
use functionality that’s available in JavaScript but not in expressions, generally a filter is the right
approach. As you might have guessed, you can write a filter that wraps the ternary operator like the
filter you wrote to wrap the encodeURIComponent function:

 <div ng-controller="RequestsController">
 <div ng-repeat="request in requests">
 {{ request.done | conditional:'Done':'In Progress' }}
 </div>
 </div>

 <script type="text/javascript">
 function RequestsController($scope) {
 $scope.requests = [];
 for (var i = 0; i < 50; ++i) {
 $scope.requests.push({ done : (i % 3 == 0) });
 }
 }

 module.filter('conditional', function() {
 return function(b, t, f) {
 return b ? t : f;
 };
 });
 </script>

When you run the preceding code, the browser displays Done every third line and In Progress
otherwise, as expected. In addition, you can use this conditional filter in expressions passed to
directives. The conditional filter is particularly useful in combination with the ngHref directive.
For example, you can modify the preceding HTML to have a conditional link:

<div ng-controller="RequestsController">
 <div ng-repeat="request in requests">
 <a ng-href="{{request.done | conditional:'/history':'/request'}}">
 {{ request.done | conditional:'Done':'In Progress' }}

 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

152  ❘  CHAPTER 4   Data Binding

</div>

<script type="text/javascript">
 function RequestsController($scope) {
 $scope.requests = [];
 for (var i = 0; i < 50; ++i) {
 $scope.requests.push({ done : (i % 3 == 0) });
 }
 }

 module.filter('conditional', function() {
 return function(b, t, f) {
 return b ? t : f;
 };
 });
</script>

The preceding code now has a link to /history on every third line and /request otherwise. Of
course, these URLs link to nonexistent pages, but the usefulness of the conditional filter for
generating dynamic URLs should be clear regardless.

Use Case 3: Manipulating Arrays
As you might have guessed from their name, filters are useful for filtering, sorting, and manipulating
arrays. AngularJS has two filters that operate exclusively on arrays: the confusingly named filter
filter, which searches arrays, and the orderBy filter, which sorts them. The limitTo filter, which
works on arrays as well as strings, manipulates an array to fit a maximum length. Filters are
chainable and can be used within the ngRepeat directive, so you may see all three of these filters
used in concert.

Perhaps you have a list of requests, and each request has three fields: a done flag, a name, and the
amount of time the request has been outstanding. If you want to display the 10 longest outstanding
requests that haven’t been done yet, you could use a combination of the filter, orderBy, and
limitTo filters with the ngRepeat directive like this:

<div ng-controller="RequestsController">
 <div ng-repeat="request in requests |
 filter:{'done':false} | orderBy:'-time' |
 limitTo:10">
 {{ request.name }}
 </div>
 </div>

 <script type="text/javascript">
 function RequestsController($scope) {
 $scope.requests = [];
 for (var i = 0; i < 50; ++i) {
 $scope.requests.push({
 done : (i % 3 == 0),
 name : "" + i,
 time : (i - 25) * (i - 25)
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Out AngularJS Scopes  ❘  153

 }
 }
 </script>

In the preceding code, the second argument to the filter filter specifies that filter should only
return requests that are not done. The second argument to orderBy, –time, specifies that the
requests should be sorted by the time field in descending order—that is, the largest value of time
first. Finally, the argument to limitTo tells AngularJS to display at most 10 results.

Another interesting array‐related problem that you can solve with a filter is partially hard‐coding the
order of an array. Perhaps you’re writing the checkout portion of your shopping cart application. The
checkout page has a drop‐down for your user to select which country she wants her purchase shipped
to. Because most of your customers are in the United States, you want to list United States first in your
drop‐down, but you want the rest of the list to be in alphabetical order. You’ll write a filter that places
USA first in the list. This is not a particularly difficult task normally, but filters provide a framework
for writing this code in an elegant and easily reusable way so that you don’t drown in small hacks:

 <div ng-controller="CountriesController">
 <select ng-model="country"
 ng-options="country.name for country in countries |
 orderBy:'name' | hardcodeFirst:'name':'USA'">
 </select>

 {{ country.name }}
 </div>

 <script type="text/javascript">
 function CountriesController($scope) {
 $scope.countries = [
 { name : "Germany" },
 { name : "Australia" },
 { name : "Norway" },
 { name : "USA" },
 { name : "Sweden" },
 { name : "Austria" }
];
 }

 module.filter('hardcodeFirst', function() {
 return function(arr, field, val) {
 var first = null;
 for (var i = 0; i < arr.length; ++i) {
 if (arr[i][field] == val) {
 first = i;
 break;
 }
 }

 if (!first) {
 return arr;
 }

 var firstEl = arr[first];

www.it-ebooks.info

http://www.it-ebooks.info/

154  ❘  CHAPTER 4   Data Binding

 arr.splice(first, 0);
 arr.unshift(firstEl);

 return arr;
 };
 });
 </script>

The hardcodeFirst filter is a bit complex, but its result is simple enough: It finds the first element in
the array where the value of field is equal to val, removes that value from the array, and inserts it
at the beginning of the array. You can see that this filter is reasonably general, and the framework of
filters provides an elegant way to reuse this code wherever you need to.

Pitfall
Recall that the $digest loop continues so long as an expression continues to evaluate to something
different, as defined by the angular.equals function. Writing a simple expression that triggers an
infinite $digest loop is not trivial. However, filters make shooting yourself in the foot considerably
easier with the ngRepeat directive. For example, perhaps you had the list of countries in the
previous example as an array of plain strings. To convert this array of strings into an array of
objects with a name attribute, you might think that you can use a filter:

 <div ng-controller="CountriesController">
 <div ng-repeat="country in countries | lift:'name'">
 {{ country.name }}
 </div>
 </div>

 <script type="text/javascript">
 function CountriesController($scope) {
 $scope.countries = [
 "Germany",
 "Australia",
 "Norway",
 "USA",
 "Sweden",
 "Austria"
];
 }

 module.filter('lift', function() {
 return function(arr, field) {
 var ret = [];
 for (var i = 0; i < arr.length; ++i) {
 var newEl = {};
 newEl[field] = arr[i];
 ret.push(newEl);
 }

 return ret;
 }
 });
 </script>

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion  ❘  155

But if you run this, you get an infinite $digest loop in the console output! What gives? Well, the
dirty (pun intended) secret is that AngularJS doesn’t always use angular.equals to check for
equality. There is an alternative $watchCollection function on scopes that only does a shallow
equality check. That is, the $watchCollection function determines that two arrays are different
if they have different lengths or if one of the elements of the array is not equal to another using
the === operator. Note that, in JavaScript, the === operator only returns true if the two objects
being compared have the same memory address. The $watchCollection function is rarely used in
practice, and you’re unlikely to see it outside of the AngularJS internals.

However, in a somewhat questionable decision to improve performance, ngRepeat uses the
$watchCollection function to watch the value on the right side of in. Because the lift filter is
creating an array of new objects every time, $watchCollection thinks that it’s getting a different
array every time! Try replacing the ngRepeat block with a simple string rendering of the filter result,
such as {{ countries | lift:'name' }}. You’ll see that you no longer get an infinite $digest loop,
because the dirty check for expressions uses angular.equals except for ngRepeat.

The difference between $watchCollection and $watch is a pretty subtle pitfall. The best way
to avoid running into it is to avoid creating new objects in your filters, especially if you intend to
use that filter to operate on an array that you will ngRepeat over. If you find yourself needing to
perform an operation similar to what the lift filter does, you should not rely on a filter. You should
perform this operation in your controller code or in a separate service.

CONCLUSION

In this chapter, you learned the “how” and the “why” of data binding. You explored the internals of
data binding and the implementation details of AngularJS’s $digest loop, including best practices
for how to optimize this loop. In learning about the internals of the $digest loop, you saw several
common pitfalls and how to avoid them. Now, if you run into a 10 $digest iterations reached
.Aborting! error message, you’ll have a better idea of what’s going wrong. In addition, you learned
how AngularJS data binding can allow you to achieve a cleaner separation between frontend
JavaScript and UI/UX decisions, enabling more effective teamwork.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Directives
WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ What directives are and why they are so powerful

➤➤ The three classes of basic directives

➤➤ Directive objects and directive composition

➤➤ Scope manipulation with directives

➤➤ How to use transclude and compile

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

WHAT IS A DIRECTIVE?

You may have noticed that the word directive has been used to describe AngularJS‐specific
HTML attributes, such as ngClick and ngBind. Directives are integral to how data binding
works in practice: Scopes allow you to watch variables for changes using $watch and trigger
a digest loop with $apply, but how can you use these functions to update your user interface
(UI)? Directives provide an abstraction for precisely this purpose.

The built‐in directives you’ve already seen, like ngClick, are just the tip of the iceberg. In this
chapter, you’ll not only dive in to the internals of how built‐in directives work, you’ll also
learn to write your own sophisticated directives.

5

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

158  ❘  CHAPTER 5   Directives

Understanding Directives
Fundamentally, a directive is a rule for defining how your UI interacts with data binding. In other words,
a directive defines how the associated element interacts with its corresponding scope. You’ll experiment
with this by writing a simple directive: your own implementation of the built‐in ngClick directive.
Fundamentally, the ngClick directive needs to execute the JavaScript code provided in the Document
Object Model (DOM) attribute against the associated element’s scope whenever the element is clicked.
Although this may seem tricky, AngularJS tracks which scope an element belongs to for you, and executing
code against a scope is easy. All you have to do is provide the glue between the element and the scope.

The key idea behind the interaction of data binding and directives is that your Hypertext Markup
Language (HTML) should define your user interface/user experience (UI/UX) decisions, and your
JavaScript should provide an application programming interface (API) for your HTML. In other
words, your controllers should provide an API by attaching functions and variables to a scope, and
your HTML defines how the API should be used to create your page’s user experience. This idea is a
significant paradigm shift from how JavaScript is written in many other frameworks, where HTML
provides a basic structure that JavaScript is responsible for modifying. Another characterization of
this distinction is that, in AngularJS, your HTML is a client of your JavaScript, whereas in jQuery,
your JavaScript is a client of your HTML.

In addition to the filter, controller, and service functions you’ve already seen, an AngularJS
module also has a directive function that allows you to attach a directive to a module. You can
use this function in several different ways, but the simplest way is to pass the name of the directive
in camel case and a factory function that returns the link function. The factory function, the
function that returns the link function, is tied in to dependency injection and enables you to use
services like $filter in your directives. The link function is invoked on each element you attach the
directive to. This function takes the DOM element, its associated scope, and a map of the element’s
attributes. Here’s the actual code that creates the myNgClick directive:

 var module = angular.
 module('MyApp', []);

 module.directive('myNgClick', function() {
 return function(scope, element, attributes) {
 element.click(function() {
 scope.$eval(attributes.myNgClick);
 scope.$apply();
 });
 };
 });

Note that, in HTML, you access this directive using the hyphenated version of the directive name,
which is my‐ng‐click in this case. For example:

 <div my-ng-click="counter = counter + 1">
 Increment Counter
 </div>

AngularJS internally converts my‐ng‐click (hyphenated) into myNgClick (camel case) for use in
your JavaScript code for readability. Generally, camel case is accepted as the correct convention for
naming variables in JavaScript. However, generally cascading style sheets (CSS) and HTML are

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Directive?  ❘  159

written with hyphen‐delimited names; AngularJS makes this conversion for you so you can use the
appropriate naming convention in the appropriate context.

Congratulations! You’ve essentially implemented ngClick as it exists in AngularJS 1.0.8! Seriously,
this is the exact code in the AngularJS codebase:

forEach(
 'click dblclick mousedown mouseup mouseover mouseout mousemove mouseenter
mouseleave submit'.split(' '),
 function(name) {
 var directiveName = directiveNormalize('ng-' + name);
 ngEventDirectives[directiveName] = ['$parse', function($parse) {
 return function(scope, element, attr) {
 var fn = $parse(attr[directiveName]);
 element.bind(lowercase(name), function(event) {
 scope.$apply(function() {
 fn(scope, {$event:event});
 });
 });
 };
 }];
 }
);

Now you’ve taken your first step to being a directives pro. In the next section, you’ll take the next
steps to directives mastery.

An 80/20 Understanding of Directives
Directives have a really rich feature set, and it’s easy to fall down a rabbit hole when learning about
them. However, I’ve found that directives follow the Pareto distribution: The vast majority of the
directives that you will write with AngularJS use only a small percentage of the features and design
patterns available. The three classes of directives defined in Chapter 4 each correspond to a simple
design pattern. Mastery of these design patterns will provide you with a solid basis for writing the
majority of directives you’ll need to write.

These three classes of directives are:

➤➤ Render‐only directives—These directives render data from the scope but do not modify data.

➤➤ Event handler wrappers—These directives wrap event handlers to interface with data
binding, such as ngClick. These directives do not render data.

➤➤ Two‐way directives—These directives both render and modify data.

NOTE  An attribute is a string name/value pair associated with a DOM element
in HTML. For instance, in the following HTML code

<div style="width:100px" my-ng-click="counter = counter + 1"></div>

the div element has two attributes, named style and my‐ng‐click, with values
"width:100px" and "counter = counter + 1", respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

160  ❘  CHAPTER 5   Directives

Note that these classes of directives are not actually part of the AngularJS codebase, and these are
not classes in the object‐oriented programming sense. You do not declare a new object of render‐only
directive type. These classes are only a helpful means of breaking the subject of directives into more
manageable chunks.

Now that you know the three classes of simple directive, you’ll learn the design pattern for writing
directives of each class. These classes may seem limited, but they cover a wide array of different use cases.
To illustrate this, you’ll build an image carousel composed of custom directives from each of the different
classes. A carousel is a common UI element that cycles through a collection of images in a slideshow.

Writing Your Own Render‐Only Directive
The first type of directive that you’ll write is a render‐only directive. These directives follow a
simple design pattern: They watch a variable and update a DOM element to reflect the change in the
variable. This design pattern is flexible, and numerous built‐in directives, like ngBind and ngClass,
use this pattern.

The render‐only directive you’ll write in this section is going to be the basis for your carousel: a
myBackgroundImage directive that binds the background image of an HTML div element to a
variable in a scope. This directive watches the provided expression and updates the associated
HTML div element’s background‐image CSS property. Without further ado, here’s what your
myBackgroundImage directive will look like:

 var module = angular.
 module('MyApp', []);

 module.directive('myBackgroundImage', function() {
 return function(scope, element, attributes) {
 scope.$watch(attributes.myBackgroundImage, function(newVal, oldVal) {
 element.css('background-image', 'url(' + newVal + ')');
 });
 };
 });

This simple seven‐line directive may not look like much at first, but because of data binding, it is
very powerful. With data binding, this directive allows you to bind a JavaScript variable to any
element’s background image. This will be important for building a carousel, because the carousel
has to cycle through a collection of images. The most basic usage of this directive is to display a
static image—in this case, the Google logo:

<body ng-init="image = 'http://upload.wikimedia.org/wikipedia/commons/a/aa/
 Logo_Google_2013_Official.svg';">
 <div style="height: 180px; width: 840px; border: 1px solid red" my-background-
image="image">
 </div>
</body>

Furthermore, the watch and update pattern, assigning the scope to watch a variable and update a
CSS property when the value changes, is something you will see frequently when writing directives.
Render‐only directives are essentially defined by this pattern. A classic example of a render‐only
directive is ngBind, better known as the directive underlying the { { } } shorthand. Following is

www.it-ebooks.info

http://upload.wikimedia.org/wikipedia/commons/a/aa/
http://www.it-ebooks.info/

What Is a Directive?  ❘  161

AngularJS 1.0.8’s definition of ngBind. You’ll notice that this directive relies on the same watch and
update pattern that you used to write the myBackgroundImage directive.

var ngBindDirective = ngDirective(function(scope, element, attr) {
 element.addClass('ng-binding').data('$binding', attr.ngBind);
 scope.$watch(attr.ngBind, function ngBindWatchAction(value) {
 element.text(value == undefined ? '' : value);
 });
});

In addition to built‐in directives like ngClass and ngBind, you can write an incredible variety of
powerful directives using this simple design pattern. Common use cases range from the mundane,
such as implementing a directive that renders input field placeholders in old versions of Internet
Explorer, to the flashy, such as a directive that displays a list of items on a Google Map.

AngularJS does a lot of magic under the hood with data binding and directives. To demystify how
directives work, take a look at how the myBackgroundImage directive would be implemented using
jQuery, a popular lightweight JavaScript library that doesn’t have anything analogous to AngularJS’s
data binding. Although the following example doesn’t support data binding, it does provide a high‐
level overview of how AngularJS processes directives. Similar to the following code, AngularJS runs
the link function on every element that has the hyphenated version of the directive name:

<!DOCTYPE html>
<html>
<head>
 <title>jQuery directive</title>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js">
 </script>
 <script type="application/javascript">
 var image = 'http://upload.wikimedia.org/wikipedia/commons/c/ca/' +
 'AngularJS_logo.svg';

 $(document).ready(function() {
 $('div[my‐background‐image]').each(function(i, el) {
 $(el).css({
 'background-image': 'url(' + eval($(el).attr('my-background-image'))
+')',
 });
 });
 });
 </script>
</head>

<body>
 <div my-background-image="image" style="width: 700px; height: 180px"></div>
</body>

</html>

AngularJS directives have two key advantages over the preceding jQuery faux directive pattern.
First, the myBackgroundImage directive ties in to data binding. Once you have defined the link
function, your JavaScript code no longer has to directly modify the element CSS; all you need to

www.it-ebooks.info

https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js
http://upload.wikimedia.org/wikipedia/commons/c/ca/
http://www.it-ebooks.info/

162  ❘  CHAPTER 5   Directives

do is assign a new image URL to the variable, and all elements that are watching that variable have
their background image updated automatically.

Second, the faux directive is inherently tied to the global scope. In other words, for the faux directive
to work properly, the variable specified in the my‐background‐image attribute must be visible from
the JavaScript scope that contains the eval function call. In other words, unless you change the
faux directive code, the image variable must be in the global scope. Polluting the global scope is a
shortsighted decision that prevents effective code reuse and should be avoided. Thankfully, AngularJS
creates an HTML scoping structure independent of JavaScript scopes, so it is unnecessary to have the
variable referenced in the directive’s my‐background‐image attribute in the global scope.

Congratulations! You’ve written your first render‐only directive and gotten a taste of how directives
make writing sophisticated UI code easier. Next, you’ll dive in to writing an event handler directive
and explore the idea of AngularJS scopes as APIs in greater detail.

Writing Your Own Event Handler Directive
At a high level, event handler directives enable DOM events to tie in to data binding by calling
the $apply function. This should sound familiar, because this is exactly how you wrote your first
directive in this section: the myNgClick directive. Recall the definition of the myNgClick directive:

 module.directive('myNgClick', function() {
 return function(scope, element, attributes) {
 element.click(function() {
 scope.$eval(attributes.myNgClick);
 scope.$apply();
 });
 };
 });

The myNgClick directive is a standard event handler directive, the second simple directive design
pattern you’ll learn about. Event handler directives typically register a conventional non‐AngularJS
event handler that performs some action on the scope, followed by an $apply call.

Don’t underestimate the importance of calling $apply! Forgetting to call $apply in an event handler
is an easy mistake to make when you’re getting started with directives, because all the built‐in event
handler directives, such as ngClick, make the call for you. However, because the event handler callback
(the function passed to element.click() earlier) is called asynchronously, data binding doesn’t know
when to trigger the $digest loop unless you explicitly call $apply. To drive this point home, try
removing the $apply call in the myNgClick directive and pulling up the page in your browser:

 module.directive('myNgClick', function() {
 return function(scope, element, attributes) {
 element.click(function() {
 scope.$eval(attributes.myNgClick);
 console.log('Counter is ' + scope.counter);
 });
 };
 });

In your console, you’ll see that the counter variable is being incremented, but the div that’s
supposed to display the counter will stay at 0 forever!

www.it-ebooks.info

http://www.it-ebooks.info/

What Is a Directive?  ❘  163

Now that you understand the fundamentals of writing an event handler directive, you’ll write a
much more interesting set of event handler directives. Specifically, you’ll write two directives that
are indispensible for mobile development with AngularJS: ngSwipeLeft and ngSwipeRight. These
directives, along with myBackgroundImage, allow you to create a rudimentary swipe‐enabled
carousel.

For computing what constitutes a swipe, you will use a popular multi‐touch event library for
JavaScript called HammerJS. In practice, you will most often see event handler directives tie existing
event‐generating libraries into data binding. Similarly, in this example, you’ll write directives to tie
HammerJS’ swipe event generators into data binding. Here are the three directives that you’ll tie
together to make a carousel, utilizing the render‐only and event handler design patterns:

 module.directive('myBackgroundImage', function() {
 return function(scope, element, attributes) {
 scope.$watch(attributes.myBackgroundImage, function(newVal, oldVal) {
 element.css('background-image', 'url(' + newVal + ')');
 });
 };
 });

 module.directive('ngSwipeLeft', function() {
 return function(scope, element, attributes) {
 Hammer(element).on('swipeleft', function() {
 scope.$eval(attributes.ngSwipeLeft);
 scope.$apply();
 });
 };
 });

 module.directive('ngSwipeRight', function() {
 return function(scope, element, attributes) {
 Hammer(element).on('swiperight', function() {
 scope.$eval(attributes.ngSwipeRight);
 scope.$apply();
 });
 };
 });

The new ngSwipeLeft and ngSwipeRight directives are textbook event handler directives. The
particular syntax for a HammerJS event handler notwithstanding, these directives are essentially
identical to the myNgClick directive. The event handler design pattern is flexible, and there are
countless directives that you can write that require only minor additions to the design pattern. Some
other directives that you may write using this design pattern include a submit button directive with
custom validation, a directive wrapper around the Google Places autocomplete, and a directive that
gives an input field an orange border when the user is nearing a character limit.

To tie these directives together and provide data, you need to create a controller that defines the list
of images in the carousel and helper functions that will be sent to ngSwipeLeft and ngSwipeRight.
The controller looks like this:

 function CarouselController($scope) {
 $scope.images = [
 "http://upload.wikimedia.org/wikipedia/commons/c/ca/AngularJS_logo.svg",

www.it-ebooks.info

http://upload.wikimedia.org/wikipedia/commons/c/ca/AngularJS_logo.svg
http://www.it-ebooks.info/

164  ❘  CHAPTER 5   Directives

 "http://upload.wikimedia.org/wikipedia/commons/a/aa/" +
 "Logo_Google_2013_Official.svg",
 "http://upload.wikimedia.org/wikipedia/en/9/9e/JQuery_logo.svg"
];

 $scope.currentIndex = 0;

 $scope.next = function() {
 $scope.currentIndex =
 ($scope.currentIndex + 1) % $scope.images.length;
 };

 $scope.previous = function() {
 $scope.currentIndex = $scope.currentIndex == 0 ?
 $scope.images.length - 1 :
 $scope.currentIndex - 1;
 };
 }

The next and previous functions are convenience functions that are called by ngSwipeLeft and
ngSwipeRight, respectively. Now that you’ve created CarouselController, the HTML to create
a swipe‐enabled carousel that cycles through the AngularJS logo, Google logo, and jQuery logo is
simple. Note that you can trigger swipe left and swipe right events on a desktop browser by clicking
and quickly dragging left or right, respectively:

<body ng-controller="CarouselController">
 <div my-background-image="images[currentIndex]"
 ng-swipe-left="next()"
 ng-swipe-right="previous()"
 style="height: 120px; width: 600px; border: 1px solid red">
 </div>
 <h1>Image index: {{currentIndex}}</h1>
</body>

Recall the idea of scopes and controllers as an API for your HTML. The three directives use the
variables and functions that CarouselController attaches to its corresponding scope to define the
concrete user experience. If your design guru were to decide that users should only be allowed to
swipe left, the changes would be limited to the HTML. A more realistic example would be adding
buttons to cycle left and right. This requires no changes to the controller’s API—only a minor
addition to the UI/UX decisions defined in your HTML:

<body ng-controller="CarouselController">
 <div my-background-image="images[currentIndex]"
 ng-swipe-left="next()"
 ng-swipe-right="previous()"
 style="height: 120px; width: 600px; border: 1px solid red">
 </div>
 <h2 ng-click="previous()">Previous</h2>
 <h2 ng-click="next()">Next</h2>
 <h1>Image index: {{currentIndex}}</h1>
</body>

This paradigm creates a powerful decoupling effect that is indispensible in a team environment. A
common point of friction in web development is multiple developers working on the same code in

www.it-ebooks.info

http://upload.wikimedia.org/wikipedia/commons/a/aa/
http://upload.wikimedia.org/wikipedia/en/9/9e/JQuery_logo.svg
http://www.it-ebooks.info/

What Is a Directive?  ❘  165

different contexts. For example, while you’re refactoring your interactions with your server’s REST
API, your designer is trying to add functionality to a new button. In the old JavaScript paradigm,
this code would most likely be in the same JavaScript file, which means you would have two
developers modifying the same code. AngularJS data binding and the idea of scopes as an API for
your HTML help eliminate this point of friction by creating a clean and well‐defined separation of
concerns between developers and designers.

Now that you’ve explored the particulars and applications of basic event handler directives,
you’re going to take a look at the last basic directive design pattern. The final design pattern is a
combination of the previous two that assists in managing the state of a given variable.

Writing Your Own Two‐Way Directive
The third and final design pattern that you’ll learn about in this section is a two‐way directive.
This design pattern utilizes both the render‐only design pattern and the event handler design
pattern to create a directive that controls the state of a variable. Specifically, you’ll implement a
toggle button directive that will be used to enable and disable automatic cycling of the image every
2 seconds.

This toggle button directive should both accurately reflect the state of the underlying JavaScript
variable and be able to toggle the state of the JavaScript variable when the button is clicked. The
former calls for a render‐only directive, the latter for an event handler directive. Without further
ado, here’s the code with the two directive design patterns combined, along with the modified
CarouselController:

 module.directive('toggleButton', function() {
 return function(scope, element, attributes) {
 // watch and update
 scope.$watch(attributes.toggleButton, function(v) {
 element.val(!v ? 'Disable' : 'Enable');
 });

 // event handler
 element.click(function() {
 scope[attributes.toggleButton] =
 !scope[attributes.toggleButton];
 scope.$apply();
 });
 };
 });

 function CarouselController($scope) {
 $scope.images = [
 "http://upload.wikimedia.org/wikipedia/commons/c/ca/AngularJS_logo.svg",
 "http://upload.wikimedia.org/wikipedia/commons/a/aa/" +
 "Logo_Google_2013_Official.svg",
 "http://upload.wikimedia.org/wikipedia/en/9/9e/JQuery_logo.svg"
];

 $scope.currentIndex = 0;

 $scope.next = function() {
 $scope.currentIndex =

www.it-ebooks.info

http://upload.wikimedia.org/wikipedia/commons/c/ca/AngularJS_logo.svg
http://upload.wikimedia.org/wikipedia/commons/a/aa/
http://upload.wikimedia.org/wikipedia/en/9/9e/JQuery_logo.svg
http://www.it-ebooks.info/

166  ❘  CHAPTER 5   Directives

 ($scope.currentIndex + 1) % $scope.images.length;
 };

 $scope.previous = function() {
 $scope.currentIndex = $scope.currentIndex == 0 ?
 $scope.images.length - 1 :
 $scope.currentIndex - 1;
 };

 $scope.disabled = false;

 setInterval(function() {
 if ($scope.disabled) {
 return;
 }
 $scope.next();
 $scope.$apply();
 }, 2000);
 }

You can then access the toggleButton directive from HTML like this:

 <input type="button" toggle-button="disabled">

There are several other useful directives that you can build using the simple combination of a
render‐only directive and an event handler directive. For example, you can build a YouTube‐style
rating directive that allows a user to click on the third star to give something a three‐star rating.
Many AngularJS projects choose to implement their own date picker directive, which is another
textbook application of this design pattern.

You may have guessed that breaking up the toggleButton directive into two separate directives is
pretty straightforward. Indeed, you can achieve the same functionality using the built‐in directives
ngBind and ngClick:

 <input type="button"
 ng-click="disabled = !disabled;"
 value="{{ { true : 'Enable', false : 'Disable' }[disabled] }}">

So which way is correct? Either method works, but the correct choice depends on your use case.
AngularJS makes it easy to build directives on top of other directives in myriad ways, which you’ll
explore in greater detail in the next section. However, as is often the case in software development,
there is a trade‐off between reusability and customizability.

In the two different implementations of toggleButton, the latter implementation, using the
built‐in directives ngBind and ngClick, makes it easy to make changes to how that one individual
toggleButton behaves, but reusing it requires copying/pasting some nontrivial code. The former
implementation—using one integrated toggleButton directive, is easy to reuse but makes it difficult
to change the behavior of a single toggleButton. Generally speaking, the integrated directive is
usually the right choice when the toggleButton functionality is going to be used in multiple parts of
your codebase. The separate directives approach, however, is usually more advantageous when you
need a greater degree of customization. As you’ll see in the subsequent sections, directives provide
you with a significant degree of control as to how much you want to bundle directives together.

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  167

Beyond the Simple Design Patterns
Now that you’ve gone through the three most basic directive design patterns, you know the
proverbial 20 percent of the features that you need to get 80 percent of the benefit of directives. Of
course, these numbers are not exact, but the design patterns you’ve learned so far will allow you
to write some sophisticated directives and have a basic grasp of how many directives in the open
source community are implemented. However, what you’ve seen so far is just the beginning. In the
next section, you learn about the sophisticated features AngularJS provides for reusing code and
constructing directives from a combination of other directives.

A DEEPER UNDERSTANDING OF DIRECTIVES

If you’ve seen directives before, you may have seen them implemented using a different syntax
that does return a link function. Indeed, the factory function, which up until now you used only
to return a single function, can return a rich configuration object that enables you to tweak more
under‐the‐hood parameters. The link function that you used in the previous section can be set using
the link setting in the configuration object. For example, here is the myBackgroundImage directive
using the configuration object syntax:

module.directive('myBackgroundImage', function() {
 return {
 link: function(scope, element, attributes) {
 scope.$watch(attributes.myBackgroundImage, function(newVal) {
 element.css('background-image', 'url(' + newVal + ')');
 });
 }
 };
});

What other options can you tweak in the configuration object? You’ll get to see several more
configuration object settings in practice in the next few sections. In particular, in the next section
you’ll explore three common directive settings—template, templateURL, and controller—in the
context of combining the carousel you constructed in the previous section into a single directive.

Directive Composition Using Templates
Directives have a couple of powerful composition features: the ability to associate a controller and
an HTML template, which may contain other directives, with a directive. By default, AngularJS
inserts the contents of the HTML template as a child of the DOM element associated with the
directive. It also attaches a controller. The general idea is to enable combining a sophisticated
directive structure into one directive in a way that doesn’t rely on the implementation details of the
underlying directives. In this section, you explore this idea by composing the myBackgroundImage,
ngSwipeLeft, ngSwipeRight, and toggleButton directives into a single imageCarousel directive.
Here’s the implementation of the imageCarousel directive:

 module.directive('imageCarousel', function() {
 return {
 template:

www.it-ebooks.info

http://www.it-ebooks.info/

168  ❘  CHAPTER 5   Directives

 '<div my‐background‐image="images[currentIndex]"' +
 ' ng‐swipe‐left="next()"' +
 ' ng‐swipe‐right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle‐button="disabled">' +
 '<h1>Image index: {{currentIndex}}</h1>',
 controller : CarouselController,
 link : function(scope, element, attributes) {
 scope.$watch(attributes.imageCarousel, function(v) {
 scope.images = v;
 });
 }
 }
 });

In addition to running the link function on every element that has the directive attribute, this
directive inserts the HTML specified in the template setting as a child of every element with the
directive attribute. In addition, this directive runs CarouselController on the scope that the
template HTML will be in. In the next section, you learn that directives can create their own scope,
so the template HTML may be in a child scope. However, in this case, CarouselController runs
on the same scope that the directive is in.

Note that the link function for the imageCarousel directive uses the watch and update render‐
only directive design pattern. However, underlying the simple link function, the template has an
ecosystem of directives interacting with the images variable in different ways. Through the magic
of scopes, these directives can access the images variable, which is in turn bound to the value of the
imageCarousel attribute of the element associated with the directive. For example, you can use this
directive by writing a simple controller that defines the images that will be in the carousel:

 function BodyController($scope) {
 $scope.defaultImages = [
 ANGULARJS_LOGO_URL,
 GOOGLE_LOGO_URL,
 JQUERY_LOGO_URL
];
 }

With this controller in place, you can set up the imageCarousel directive using the following simple
HTML:

<body ng-controller="BodyController">
 <div image-carousel="defaultImages"></div>
</body>

As an alternative to the template setting, you can also use templateURL. The templateURL setting
tells AngularJS to make an HTTP GET request to the specified templateURL and use the contents of
the server response as the directive’s template. In practice, using templateURL is generally preferred
because of cleaner separation of concerns and easier template reuse; however, there is a performance
cost. The performance overhead from templateURL is limited by the fact that AngularJS only sends
one request to templateURL, even if multiple directives use the same templateURL. However,
because template doesn’t make any HTTP requests, it incurs less performance overhead.

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  169

Now you’ve bundled the imageCarousel directive into one isolated directive. This powerful code
reuse pattern makes directives popular among designers because it provides a sophisticated way
to organize complex UI structures. Much like the way developers write functions to abstract away
implementation details, designers can use directives to build high‐level components that are easier
to reuse and reason about. For example, as a developer you would prefer having a single function
called readFile instead of writing code to manipulate the hard drive directly. A designer can derive
similar benefits from being able to say, “This div should have the standard carousel capabilities”
instead of building the structure every time out of div elements and event handlers.

There are two weaknesses to the imageCarousel directive as implemented. The first one is an
unfortunate limitation to AngularJS: There is no way to change the directive’s template without
modifying the directive’s code. This limitation is not significant if your directive is internal to your
project; however, if you’re maintaining an open source AngularJS carousel like the AngularUI
team, this is a significant problem. In the AngularUI case, the inability to customize templates
would prevent clients of the AngularUI module from tweaking the AngularUI carousel’s look and
feel without changing its code. This is why, as of version 0.10, AngularUI distributes two different
files: one with a template specified for every directive, and one with no templates specified for any
directives.

The second weakness becomes clearer when you try to use two directives with two different sets of
images:

<body ng-controller="BodyController">
 <div image-carousel="defaultImages"></div>
 <div image-carousel="otherImages"></div>
</body>

Both carousels only show the Google logo. What gives? The problem is that the imageCarousel
directive doesn’t have its own scope, so the second imageCarousel directive clobbers the first’s
images variable. Luckily, AngularJS provides some deep functionality around directive scopes,
which you explore in the next section.

Creating Separate Scopes for Directives
As you saw in the previous section, directives can manage their own internal state. But, to do
so effectively, such a directive needs its own scope to provide encapsulation for its internal state.
Luckily, AngularJS provides several powerful settings in the directive object for creating a new scope
for your directive.

Your directive object can specify a scope setting that can be used in one of three ways:

➤➤ { scope: true } creates a new scope for each instance of the directive.

➤➤ { scope: {} } creates a new isolate scope for each instance of the directive.

➤➤ { scope: false } is the default. With this setting, no scope is created for the directive.

The third way is exactly how you have used directives up to this point. However, as you saw when
multiple carousels in the same scope clobbered each other’s internal state, sophisticated directives
typically need to have their own scope. The first two ways provide two different mechanisms to
give your directive its own scope. The first and second ways are often a source of confusion. The

www.it-ebooks.info

http://www.it-ebooks.info/

170  ❘  CHAPTER 5   Directives

difference is that the second option creates an isolate scope for each instance of the directive. Recall
that an isolate scope doesn’t inherit from its parent scope, so the directive template in an isolate
scope can’t access any variables outside the directive’s scope. Although the second way sounds
limiting, it has numerous powerful features that require careful discussion. But first, you can use the
second way to enable proper encapsulation for the imageCarousel directive’s internal state.

The First Way of Using the scope Setting
The code for the first way of using the scope setting looks something like this:

 module.directive('imageCarousel', function() {
 return {
 template:
 '<div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">' +
 '<h1>Image index: {{currentIndex}}</h1>',
 controller : CarouselController,
 scope : true,
 link : function(scope, element, attributes) {
 scope.$parent.$watch(attributes.imageCarousel, function(v) {
 scope.images = v;
 });
 }
 }
 });

There are two key differences between this imageCarousel directive’s implementation and the
original implementation. The most obvious difference is that you used the scope setting to create a
new scope for each instance of the directive. The second difference is that this new implementation
calls $watch on the parent scope—that is, scope.$parent.$watch() instead of scope.$watch().
The reason for this change is subtle, and you might not notice it because the code will still work
with scope.$watch().

The problem is that the $watch() function watches a given value in the given scope by name.
Therefore, if attributes.imageCarousel happens to specify a variable name that exists in the
directive’s scope, the directive does not watch the right variable. For example, if attributes

NOTE  To avoid confusion, for the rest of this chapter, the scope that a directive’s
declaration is in will be referred to as the isolate scope’s parent scope. Although
an isolate scope doesn’t have a parent in the same sense that a non‐isolate scope
does, there are numerous benefits of thinking of an isolate scope in the context
of a scope hierarchy. In particular, the fact that an isolate scope is still part of the
scope hierarchy is key to understanding transclusion—the last subject covered in
this chapter. Please remember that, even though an isolated scope doesn’t inherit
from its parent, it still has a parent.

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  171

.imageCarousel had the value images, scope.$watch() would watch the directive scope’s images
variable. Using scope.$parent.$watch() ameliorates this particular problem by making sure your
directive doesn’t occlude the client code’s variables.

Typically, directive authors choose to use the scope setting in the second way. As you’ll see, one of
the primary advantages of isolate scopes is that they eliminate the possibility of variable occlusion.

The Second Way of Using the scope Setting
Recall that the second way of using the scope setting, specifying a JavaScript object (possibly empty,
that is, { }), creates a new scope for the directive that does not have a parent scope. Thus, the
scope.$parent.$watch() pattern from the previous section does not work, because the directive’s
scope is outside the page’s scope hierarchy. If you’re worried that this means your directives will not
have a way to access variables in the page’s scope, don’t worry—AngularJS provides a slick way to
pull outside variables into the isolate scope. Here’s an example of how this works:

 module.directive('imageCarousel', function() {
 return {
 template:
 '<div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">' +
 '<h1>Image index: {{currentIndex}}</h1>',
 controller : CarouselController,
 scope : {
 images : '=imageCarousel'
 }
 }
 });

The =imageCarousel syntax in the scope setting is a handy shortcut for the scope.$parent.$watch()
call you did in the previous section. In the scope setting, = tells AngularJS that the images variable
should be bound to the variable specified in the imageCarousel attribute, with the understanding
that the imageCarousel attribute should be evaluated in the directive’s parent scope. You will see
this shortcut used extensively in AngularJS directive code, so make sure you remember its semantics.
In particular, make sure you remember that, in the scope setting, the object keys are the variables
in the scope, and the object values refer to the HTML attribute that the scope variable should be
bound to.

But doesn’t this shortcut defeat the point of having an isolate scope? Actually, if you want a
strict isolate scope, where there is no data binding between the isolate scope and the page’s scope
structure, you can use an empty object { } for the scope setting. However, the use cases for strict
isolate scopes are somewhat limited, because such a directive must be entirely self‐contained. Such
directives are often called components and will be discussed later in this chapter.

The = shortcut for isolate scopes serves two primary functions. First, writing =imageCarousel is
far more concise than writing out the full scope.$parent.$watch() call. Second, the fact that the
scope is marked as isolate ensures that the directive’s template doesn’t access any variables outside

www.it-ebooks.info

http://www.it-ebooks.info/

172  ❘  CHAPTER 5   Directives

the directive except for as explicitly specified in the scope setting. This makes your directives easier
to understand and use, because your client is guaranteed that your directive only interacts with
the outside world through the scope setting. The isolate scope also serves as a preventive measure
against silly mistakes. For example, try to spot the bug in the following code:

 module.directive('imageCarousel', function() {
 return {
 template:
 '<div my-background-image="defaultImages[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">' +
 '<h1>Image index: {{currentIndex}}</h1>',
 controller : CarouselController,
 scope : true,
 link : function(scope, element, attributes) {
 scope.$parent.$watch(attributes.imageCarousel, function(v) {
 scope.images = v;
 });
 }
 }
 });

The myBackgroundImage directive in the template uses the defaultImages variable, which is
defined in the parent scope. This approach may work in some cases, but relying on the existence
of a variable in a parent scope is bad practice for writing directives. Recall that directives are
meant to serve as an in‐HTML API to your JavaScript, and separate controllers define separate
APIs. A directive that relies on a variable in a parent scope effectively makes the directive’s API
dependent on a separate API in such a way that the client is responsible for the separate API. In
other words, directives are excellent because they allow you to define abstractions around HTML
to prevent you from rewriting the same 15 lines every time you want a carousel. Don’t make
clients of your directives have to read that HTML when they want to figure out how to use your
directive.

Your dive into directives with isolated scopes wouldn’t be complete without a discussion of
the other shortcuts AngularJS provides for the scope setting: @ and &. The distinction between
these three shortcuts is often a source of confusion when you’re just getting started with
AngularJS. First, note that = is a shortcut for two‐way data binding. In the =imageCarousel
implementation, if you were to modify the images variable in the directive’s scope, this change
would also affect whatever variable in the parent scope the images variable is bound to, such as
defaultImages.

In addition, the = shortcut binds the value of the images variable to another variable. This
behavior, although slick, doesn’t allow you to bind the images variable to the value of an AngularJS
expression. A simple yet common use case for expressions in directive attributes would be a title
for your imageCarousel directive. Suppose you want to enable users of your directive to specify a
custom title for their carousel. This simple task becomes a lot more complex when you decide you

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  173

want users to be able to use expressions in their title. For example, you want to display the value of
the following expression as the title of your carousel:

There are {{defaultImages.length}} images

The @ shortcut exists to provide a one‐way render‐only binding to an expression provided in an
element’s attribute. In other words, the @ shortcut enables users of your imageCarousel directive
to bind the carousel’s title to the above expression by adding a carouselTitle attribute in their
HTML. Here’s how the code for the title‐enabled imageCarousel directive looks:

 module.directive('imageCarousel', function() {
 return {
 template:
 '<h1>Title: {{carouselTitle}}</h1>' +
 '<div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">',
 controller : CarouselController,
 scope : {
 images : '=imageCarousel',
 carouselTitle : '@'
 }
 }
 });

NOTE  The carouselTitle: '@' setting is equivalent to
carouselTitle: '@carouselTitle'. AngularJS assumes that the attribute name is
the same as the scope variable name if no attribute name is specified. For example,
images: '=' binds the images variable to the variable specified in the images attribute.

Using this directive, users of your directive can bind the carousel’s title to an expression of their
choosing. For example:

 <div image-carousel="defaultImages"
 carousel-title="There are {{defaultImages.length}} images">
 </div>
 <div image-carousel="otherImages"
 carousel-title="I have {{otherImages.length}} images">
 </div>

Note that, because carouselTitle is a variable in the directive’s scope, there is nothing stopping
you from assigning to it and overwriting the user’s expression. However, because the @ shortcut only
provides a one‐way binding, any changes you make to carouselTitle in the directive’s scope do not
affect variables outside the directive’s scope.

www.it-ebooks.info

http://www.it-ebooks.info/

174  ❘  CHAPTER 5   Directives

The final shortcut, &, is essentially the inverse of the @ shortcut. At a high level, the &
shortcut attaches a function variable to the scope that performs an $eval on the value of the
corresponding attribute in the directive’s parent scope. If you were not using an isolate scope, the
equivalent of the & shortcut would be implemented with the following code in the directive’s link
function:

scope.onChange = function() {
 scope.$parent.$eval(attributes.onChange);
 scope.$parent.$apply();
};

The & shortcut is typically used to provide an interface for passing custom events out of the
isolate scope. You can use the & shortcut to enable clients of your imageCarousel directive to
specify a custom event handler for changes in the rendered image. Specifically, you can allow your
imageCarousel directive to evaluate the contents of the onChange attribute every time next() and
previous() are called in the directive’s controller. In this case, the onChange attribute increments a
counter that tracks the total number of times a carousel has changed its image. Here’s how the new
imageCarousel code will look:

 module.directive('imageCarousel', function() {
 return {
 template:
 '<h1>Title: {{carouselTitle}}</h1>' +
 '<div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">',
 controller : CarouselController,
 scope : {
 images : '=imageCarousel',
 carouselTitle : '@',
 onChange : '&'
 }
 }
 });

Now the scope has an onChange function that serves as a wrapper for an $eval on the onChange
attribute. Note that, just like in the carouselTitle setting, the isolated '&' value is equivalent to
'&onChange'. The CarouselController can now call this function in its next() and previous()
functions. Here’s how the new CarouselController implementation looks:

 function CarouselController($scope) {
 $scope.currentIndex = 0;

 $scope.next = function() {
 var old = $scope.currentIndex;
 $scope.currentIndex =
 ($scope.currentIndex + 1) % $scope.images.length;
 if ($scope.currentIndex != old) {

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  175

 $scope.onChange();
 }
 };

 $scope.previous = function() {
 var old = $scope.currentIndex;
 $scope.currentIndex = $scope.currentIndex == 0 ?
 $scope.images.length - 1 :
 $scope.currentIndex - 1;
 if ($scope.currentIndex != old) {
 $scope.onChange();
 }
 };

 $scope.disabled = false;

 setInterval(function() {
 if ($scope.disabled) {
 return;
 }
 $scope.next();
 $scope.$apply();
 }, 2000);
 }

Setting the expression that onChange evaluates in your HTML is easy. Remember that the
expression in onChange is evaluated against the directive’s parent scope. To illustrate this, take a
look at the HTML for the imageCarousel with onChange integration:

<body ng-controller="BodyController" ng-init="count = 0;">
 <h1>Image has changed {{count}} times</h1>
 <div image-carousel="defaultImages"
 carousel-title="There are {{defaultImages.length}} images"
 on-change="count = count + 1">
 </div>
 <div image-carousel="otherImages"
 carousel-title="I have {{otherImages.length}} images"
 on-change="count = count + 1">
 </div>
</body>

Note that the count variable is in the page’s root scope, but it’s being modified from within an
isolate scope. This new functionality allows you to define a myriad of complex in‐HTML hooks
for your directives. Now, finally, you’ll see how the scope setting ties in to the central theme of
directives as a declarative UI/UX API.

Once again, recall the idea of directives as a JavaScript API for determining high‐level UI/UX
decisions from HTML. The =, @, and & shortcuts allow you to expand this JavaScript API by
allowing you to declaratively add additional parameters. Much like how a web developer would
look at a REST API and find the parameters necessary to achieve their desired functionality, a
designer can easily inspect the list of scope variables and get a sense of what parameters they can
tweak on the directive without diving in to the underlying code. In addition, because your HTML is

www.it-ebooks.info

http://www.it-ebooks.info/

176  ❘  CHAPTER 5   Directives

the one true source of all your UI/UX decisions in AngularJS, these options are tweaked in HTML
rather than a JavaScript configuration object.

The restrict and replace Settings
You will see the restrict and replace settings used heavily in many directive libraries. These
settings primarily function as syntactic sugar, making HTML that uses directives more intuitively
pleasing. Although these settings don’t add much in the way of what you can do with directives, you
should never underestimate the benefit of some particularly elegant syntactic sugar.

Many directives, like the imageCarousel directive, feel like they should just be DOM elements. There’s
nothing wrong with creating a div with an imageCarousel attribute, but wouldn’t it be awesome if you
could skip the div and create an imageCarousel tag in your HTML? Turns out, custom HTML tags
are just one of the cool functionalities that the restrict and replace settings enable you to access.

Up to this point, directives were defined purely by HTML attributes. In fact, AngularJS supports
four ways of using a directive in HTML:

➤➤ By attribute—<div image-carousel='images'></div>

➤➤ By CSS class—<div class="image-carousel: images;"></div>

➤➤ By comment—<!–– directive: image-carousel images ––>

➤➤ By element—<image-carousel></image-carousel>

You can specify which of these usages your directive supports using the restrict setting. The
restrict setting takes a string that lists which of the four usages the directive allows. Each of
the four usages is represented by a single character: A usage is allowed if and only if the usage’s
character is in the restrict string. The corresponding characters follow:

➤➤ By attribute—'A'

➤➤ By CSS class—'C'

➤➤ By comment—'M'

➤➤ By element—'E'

For example, here is the imageCarousel directive using the restrict: ‘E’ setting:

 module.directive('imageCarousel', function() {
 return {
 restrict: 'E',
 template:
 '<h1>Title: {{carouselTitle}}</h1>' +
 '<div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; border: 1px solid red">' +
 '</div>' +
 '<input type="button" toggle-button="disabled">',
 controller : CarouselController,
 scope : {

www.it-ebooks.info

http://www.it-ebooks.info/

A Deeper Understanding of Directives  ❘  177

 images : '=',
 carouselTitle : '@',
 onChange : '&'
 }
 }
 });

Note that the scope’s images variable is now bound to the element’s images attribute instead of
the imageCarousel attribute as before. More often than not, directives do not support both E
and A values for restrict. This is because, in the case of A, the directive itself is an attribute with
an associated value. In the case of E, there is no string associated with the directive itself because
the directive is an HTML tag rather than an attribute. Reconciling this difference is usually more
trouble than it’s worth, so you will likely use either one or the other.

Here’s how your associated HTML will look with the HTML‐tag‐enabled imageCarousel directive:

<body ng-controller="BodyController" ng-init="count = 0;">
 <h1>Image has changed {{count}} times</h1>
 <image-carousel images="defaultImages"
 carousel-title="There are {{defaultImages.length}} images"
 on-change="count = count + 1">
 </image-carousel>
 <image-carousel images="otherImages"
 carousel-title="I have {{otherImages.length}} images"
 on-change="count = count + 1">
 </image-carousel>
</body>

Although there is no additional functionality, this new imageCarousel directive is more elegant
syntactically. One limitation worth noting: E style directives won’t work as is in Internet Explorer
8 and older. There is an MIT‐licensed JavaScript library called “HTML5 Shiv,” which you need to
include (a copy is packaged with the sample code for this chapter) to use E‐style directives in older
versions of Internet Explorer.

If you look at the state of the DOM after the page is loaded, you’ll see that the imageCarousel tag
stays in the DOM as the parent of the HTML in the template. Here’s what the DOM state looks like
in the case of the imageCarousel:

<image‐carousel images="defaultImages"
 carousel‐title="There are 3 images"
 on‐change="count = count + 1"
 class="ng‐isolate‐scope ng‐scope">
 <h1 class="ng-binding">
 Title: There are 3 images
 </h1>
 <div my-background-image="images[currentIndex]"
 ng-swipe-left="next()"
 ng-swipe-right="previous()"
 style="height: 120px; width: 600px; border: 1px solid red;
 background-image: url(.  .  .);">
 </div>
 <input type="button" toggle-button="disabled" value="Disable">
</image‐carousel>

www.it-ebooks.info

http://www.it-ebooks.info/

178  ❘  CHAPTER 5   Directives

For most directives, this behavior is sufficient. However, if you have a strong preference against the
imageCarousel tag being in the DOM, the replace setting is for you. The replace setting is a
Boolean value (false by default) that determines whether the template is inserted as a child of the
DOM element or replaces the DOM element entirely. Here’s how to use the replace setting with the
imageCarousel directive:

 module.directive('imageCarousel', function() {
 return {
 restrict: 'E',
 replace: true,
 template:
 '<div>' +
 ' <h1>Title: {{carouselTitle}}</h1>' +
 ' <div my-background-image="images[currentIndex]"' +
 ' ng-swipe-left="next()"' +
 ' ng-swipe-right="previous()"' +
 ' style="height: 120px; width: 600px; '+
 ' border: 1px solid red">' +
 ' </div>' +
 ' <input type="button" toggle-button="disabled">' +
 '</div>',
 controller : CarouselController,
 scope : {
 images : '=',
 carouselTitle : '@',
 onChange : '&'
 }
 }
 });

There are two key differences in the replace: true implementation as opposed to the previous
implementation. The first is the obvious replace: true setting. The second is that the HTML
template now includes a div tag that wraps the h1, div, and input tags. The reason for the new div
tag becomes clear when you look at the DOM state with this new directive:

<div images="defaultImages"
 carousel‐title="There are 3 images"
 on‐change="count = count + 1">
 <h1 class="ng-binding">
 Title: There are 3 images
 </h1>
 <div my-background-image="images[currentIndex]"
 ng-swipe-left="next()"
 ng-swipe-right="previous()"
 style="height: 120px; width: 600px; border: 1px solid red;
 background-image: url(.  .  .);">
 </div>
 <input type="button" toggle-button="disabled" value="Disable">
</div>

The replace: true setting replaces the image‐carousel tag with the root element in the directive’s
HTML template—in this case, the top div tag. Note that there must be exactly one root element in

www.it-ebooks.info

http://www.it-ebooks.info/

Changing Directive Templates at Runtime  ❘  179

the HTML template; otherwise, AngularJS throws an error: Template must have exactly one
root element.

Moving On
Now that you’ve learned about how to utilize the basic settings of a directive object, you have
enough knowledge to understand most open source directives you’ll see. In addition, you’ve built
a fairly flexible image carousel. In the last section of this chapter, you’ll dive into the two most
complex settings in a directive object: compile and transclude. You won’t see these settings used
often, but there are certain use cases where they are indispensable. In the next section, you’ll dive
into how these settings work by exploring the internals of the ngRepeat directive and making a key
addition to your imageCarousel directive.

CHANGING DIRECTIVE TEMPLATES AT RUNTIME

One limitation you may have noticed with the directives in the previous chapter is that the HTML
template is static. This means that the current imageCarousel directive is doomed to always
have a title. However, using the advanced compile and transclude settings, you can enable your
imageCarousel directive’s clients to modify the template in sophisticated ways. As you’ll see when
you explore a simplified implementation of ngRepeat, these settings also tie in closely to how the
ngRepeat directive works.

Transclusion
According to Wikipedia, transclusion is the inclusion of a document into another document by
reference. The term was coined by Ted Nelson, better known as the inventor of the term hypertext,
the “HT” in HTTP and HTML. In line with this definition, AngularJS directives’ transclude
setting and its corresponding ngTransclude directive exist to reference external HTML code from
within your directive’s HTML template. In other words, transclusion allows you to parameterize
your directive’s template, enabling you to modify some HTML in the template based on your needs.

Similar to the scope setting, the transclude setting can take one of three different values. The
transclude setting is false by default, but you can set it to either true or the string 'element'.
If transclusion seems a bit mind warping, don’t worry; it’s actually fairly simple once you get your
hands on a straightforward example.

Using the transclude: true Setting
Here’s a basic example of how transclude: true works in action. First, here’s a simple directive
that introduces a person with a specified name:

 module.directive('ngGreeting', function() {
 return {
 restrict: 'E',
 transclude: true,
 template:
 'Hi, my name is ' +

www.it-ebooks.info

http://www.it-ebooks.info/

180  ❘  CHAPTER 5   Directives

 '',
 };
 });

Note that the template HTML has an element with an ng‐transclude attribute. The ng‐transclude
attribute means that the contents of the span will be replaced with the contents of the original
HTML element. Here’s how the ngGreeting directive can be used in HTML:

 <ng‐greeting>
 Val
 </ng‐greeting>

 <ng‐greeting>
 Val
 </ng-greeting>

The real magic happens when you take a look at the state of the DOM after AngularJS is done:

 <ng-greeting>
 Hi, my name is

 Val

 </ng-greeting>

 <ng-greeting>
 Hi, my name is

 <b class="ng‐scope">
 Val

 </ng-greeting>

Congratulations! You now have a directive with a parameterized template! AngularJS pulls any
HTML you put into the directive element into the directive’s template.

However, how does this work with isolate scopes? If ngGreeting had an isolate scope, would
that mean any HTML you transclude into the ngGreeting directive would only be able to access
variables in the isolate scope? Here’s the ngGreeting directive with an isolate scope:

 module.directive('ngGreeting', function() {
 return {
 restrict: 'E',
 transclude: true,
 scope: {},
 template:
 'Hi, my name is ' +
 '',
 };
 });

www.it-ebooks.info

http://www.it-ebooks.info/

Changing Directive Templates at Runtime  ❘  181

Now try using the directive with transcluded HTML that includes a binding to a variable outside
the isolate scope:

<body ng-init="myName = 'Val';">
 <ng-greeting>
 {{ myName }}
 </ng-greeting>
</body>

How does this look in the DOM once the browser is finished rendering? Turns out, AngularJS does
the right thing: It allows the transcluded HTML to access the myName variable in spite of the fact
that the HTML is transcluded into an isolate scope!

<body ng‐init="myName = 'Val';">
 <ng-greeting class="ng-isolate-scope ng-scope">
 Hi, my name is

 Val

 </ng-greeting>
</body>

This may seem like a strange decision given the nature of isolate scopes. In fact, the transcluded
HTML is not actually evaluated in the isolate scope; it’s evaluated in the isolate scope’s parent! To
illustrate this, try adding a variable to the isolate scope:

 module.directive('ngGreeting', function() {
 return {
 restrict: 'E',
 transclude: true,
 scope: {},
 template:
 'Hi, my name is ' +
 '',
 link: function(scope) {
 scope.lastName = 'Karpov';
 }
 };
 });

And now, try to access this scope variable from the transcluded HTML:

<body ng-init="myName = 'Val';">
 <ng-greeting>
 {{ myName }} {{ lastName }}
 </ng-greeting>
</body>

The lastName variable will be undefined in the transcluded HTML, so the output will still be, “Hi,
my name is Val.” That’s because the transcluded HTML is evaluated as if the directive didn’t have
any scope at all. This decision makes working with directives easier, because you can write your

www.it-ebooks.info

http://www.it-ebooks.info/

182  ❘  CHAPTER 5   Directives

transcluded HTML without worrying about whether the directive has an isolate scope, or any scope
for that matter.

Using the transclude: ‘element’ Setting
The transclude: 'element' setting works almost identically to transclude: true, but with two
minor caveats. First, with the transclude: 'element' setting, you’re responsible for modifying
the DOM in the compile setting (which you’ll explore in the next section), unless you specify
replace: true. This is a common gotcha when you first start working with the transclude:
'element' setting: if you don’t set either compile or replace, your directive won’t appear at all!

Also, the transclude: 'element' setting modifies the DOM in a way akin to replace: true.
Here’s the ngGreeting directive using the transclude: 'element' setting:

 module.directive('ngGreeting', function() {
 return {
 restrict: 'E',
 transclude: 'element',
 replace: true,
 scope: {},
 template:
 '<div><h1 ng-transclude></h1></div>',
 link: function(scope) {
 scope.lastName = 'Karpov';
 }
 };
 });

Using the following HTML:

<ng-greeting>
 Hi, my name is {{ myName }}
</ng-greeting>

The resulting DOM state after the browser is done rendering looks like this:

<body ng-init="myName = 'Val';">
 <div>
 <h1 ng-transclude="">
 <ng‐greeting class="ng‐isolate‐scope ng‐scope ng‐binding">
 Hi, my name is Val
 </ng‐greeting>
 </h1>
 </div>
</body>

If you had set transclude: true instead, the ng‐greeting tag would not be there. Instead,
AngularJS would insert a span tag. This behavior is helpful when you want to pull the entire
directive‐declaring element into the template and avoid wrapping the contents into a span tag. This
gives users of your directive more fine‐grained control of the HTML within the template.

Now that you’ve learned how transclusion works, it’s time to finish your directives education by
learning about the compile setting.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing Directive Templates at Runtime  ❘  183

The compile Setting, or compile Versus link
The compile function and its relationship with the link function is a common source of confusion
for AngularJS beginners. For the majority of directives you will write, compile is superfluous. There
are two major reasons to use the compile function. The first is for performance in directives that
do heavy DOM manipulation—the most obvious example being ngRepeat and similar directives
that create multiple DOM elements. The second reason is that the compile function can modify the
directive’s template. The second reason is somewhat limited, however, because the compile function
is run before the directive’s scope is created. Therefore, the compile function does not have access to
the directive’s scope, so it can’t evaluate attributes.

So what is the compile function actually useful for? In this section, you explore the benefits and
limitations of the compile function by building your own simplified version of the built‐in ngRepeat
directive.

Your simplified ngRepeat directive, ngRepeatOnce, implements a common AngularJS performance
optimization: reducing the number of heavy watchers on the page. Recall that, in Chapter 4,
“Data Binding,” you saw that the ngRepeat directive over a large array can make your page
sluggish because each $apply call must iterate over the entire array. Your ngRepeatOnce directive
ameliorates this problem by not calling $watch on the underlying array. This directive does not
update when users add or remove elements from the underlying array, but it does allow you to
handle larger arrays than ngRepeat. Although the inability to update when elements are added or
removed is limiting, in many cases this functionality is unnecessary.

One key point to remember: You should not rely on setting both the compile and link functions in
a directive object. The compile function is expected to return the link function. If you overwrite the
default compile setting, the link setting is ignored unless you explicitly return the function in the
link setting. As you’ll see in the ngRepeatOnce directive, you don’t necessarily have to set the link
function; you can just have the compile function return an anonymous link function. Here’s how
your ngRepeatOnce directive will look:

 module.directive('ngRepeatOnce', function() {
 return {
 restrict: 'A',
 transclude: 'element',
 compile: function(originalEl, attributes, transcludeFn) {
 return function(scope, element, attributes) {
 var loop = attributes.ngRepeatOnce.split(' in ');

 var elementScopeName = loop[0];
 var arr = scope.$eval(loop[1]);

 for (var i = 0; i < arr.length; ++i) {
 var childScope = scope.$new();
 childScope['$index'] = i;
 childScope[elementScopeName] = arr[i];

 transcludeFn(childScope, function(clone) {
 originalEl.parent().append(clone);
 });
 }

www.it-ebooks.info

http://www.it-ebooks.info/

184  ❘  CHAPTER 5   Directives

 }
 }
 }
 });

This code may seem a bit intimidating at first, but it’s quite simple once you look at it step by
step. First, to duplicate the nice in looping syntax of ngRepeat, you just split the input string by
the string ' in '. The left side is the name that you should assign each array element to in the
corresponding child scope, and the right side is the array to loop over. Next, you loop over the
array, create a new scope for each element, and call the magic transcludeFn function on each new
scope. This transcludeFn function creates a new DOM element with the scope you provided, and
transcludes in the HTML specified by the transclude setting. The transcludeFn function then
fires a callback with the newly created DOM element, which you’re responsible for inserting into the
DOM in the proper place.

Congratulations! You’ve implemented a simplified yet useful version of ngRepeat! The compile
function is indispensable for this directive, because the transcludeFn function, which the compile
function provides, allows you to create new DOM elements with correctly transcluded scopes.
In fact, without the compile function, directives like ngRepeat would be incredibly difficult to
write. Thanks to compile and transclude, however, your directives can manipulate the DOM in
powerful yet intuitive ways. For instance, the ngRepeat directive’s implementation is fairly complex
and requires an understanding of some of AngularJS’s deepest features, yet using the ngRepeat
directive is incredibly simple and intuitive.

CONCLUSION

If you’ve made it through this entire chapter, congratulations! You learned all the tools you’ll need
to write highly sophisticated directives that can make the browser do anything short of singing and
dancing. You learned about the three classes of directives you can write using just a link function:
render‐only directives, like myBackgroundImage; event handler directives, like swipeLeft and
swipeRight; and two‐way directives, like toggleButton. You then learned how to use the directive
object and its settings to compose directives together using templates. Finally, you explored the
depths of directive sorcery and learned how to parameterize and compose directive templates using
transclude and compile.

All these concepts are tied together by the idea of directives as rules for manipulating the DOM tied
in to the UI/UX API specified by your controllers. Fancy tools like templates and transclusion exist
to allow you to easily wrap highly customizable bundles of HTML and JavaScript into a bundle that
you can access from your HTML and tie in to your controllers and data binding. Directives provide
a clean abstraction to reason about an HTML view in a high‐level way, so you can reason about
carousels and other UI controls rather than low‐level divs. In addition, tools like the scope setting
allow you to tie data binding in to your directives, so your directives can integrate with your data
binding API in a clean and powerful way.

www.it-ebooks.info

http://www.it-ebooks.info/

Templates, Location, and
Routing

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ Templating using the ngInclude directive

➤➤ Performance implications of templating

➤➤ Using $location to save page state

➤➤ Routing between different views with ngView

➤➤ Single‐page apps with ngView

➤➤ Search engine integration for single‐page apps

➤➤ Animating transitions between views

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

In this chapter, you learn how to use AngularJS’s templating system, the $location
service, and AngularJS’s client‐side routing system. Using these building blocks, you create
a single‐page application (or SPA for short). The SPA paradigm is about building a fully
functional web application that never reloads the page. SPAs offer you incredibly fine‐grained
control over your site’s user experience (UX) by eliminating the ever‐painful page reload in
favor of loading Hypertext Markup Language (HTML) from the server via JavaScript.

To fully understand how SPAs in AngularJS work, you need to understand how templating,
location, and routing work. This chapter is broken into three parts—one for each of these
three building blocks. The templating and location sections are mostly independent of each
other, so if you want to learn about templating but not the $location service or vice versa,

6

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

186  ❘  CHAPTER 6   Templates, Location, and Routing

feel free to skip to your desired section. However, the third section, about using AngularJS’s routing
framework to build an SPA, requires you to be familiar with the information from the first two
sections.

Over the course of this chapter, you’ll build a sample SPA, a catalog of books. The app uses the
master‐detail design pattern, which means there will be two views: a view that displays the master
list of books, and a view that displays detailed information on a single book. In AngularJS, the
terms template and view are mostly interchangeable, although the term view typically describes a
template tied to the ngView directive that you’ll learn about in Part III.

This chapter uses a NodeJS Hypertext Transfer Protocol (HTTP) server to serve up HTML
content. An HTTP server is necessary because AngularJS loads templates using JavaScript HTTP
requests, which don’t work right if you just open the HTML file in the browser using file:///.
If you have not installed NodeJS yet, please go to http://www.nodejs.org and follow the
instructions for your platform of choice. After you have installed NodeJS and run npm install
from the root directory of this chapter’s sample code, you should be able to start an HTTP server
on port 8080 by running node server.js. This server simply serves static files over HTTP,
so you should be able to view the file angular.js in your browser by navigating to http://
localhost:8080/angular.js.

However, the book catalog app will not load data from a server. You will be using a hard‐coded list
of books included in the $books service (see books.js in the sample code). Here’s what your $books
service will look like. It will primarily serve as a stub for a server, enabling you to load a list of
books and load a specific book:

var booksService = function() {
 var books = [
 {
 _id: 1,
 title: "Les Miserables",
 author: "Victor Hugo",
 image: "//upload.wikimedia.org/wikipedia/commons/6/6c/Jean_Valjean.JPG",
 preview: "In 1815, M. Charles-Francois-Bienvenu Myriel was Bishop..."
 },
 {
 _id: 2,
 title: "The Book of Five Rings",
 author: "Musashi Miyamoto",
 image: "//upload.wikimedia.org/wikipedia/commons/2/20/Musashi_ts_pic.jpg",
 preview: "I have been many years training in the Way of strategy..."
 },
 {
 _id: 3,
 title: "Moby Dick",
 author: "Herman Melville",
 image: "//upload.wikimedia.org/wikipedia/commons/3/36/" +
 "Moby-Dick_FE_title_page.jpg",
 preview: "Call me Ishmael. Some years ago—never mind how long precisely..."
 },
 {
 _id: 4,
 title: "The Hour of the Dragon",

www.it-ebooks.info

http://www.nodejs.org
http://localhost:8080/angular.js
http://localhost:8080/angular.js
http://www.it-ebooks.info/

Part I: Templates  ❘  187

 author: "Robert E. Howard",
 image: "//upload.wikimedia.org/wikipedia/en/6/60/Conan_the_Conqueror.jpg",
 preview: "The long tapers flickered, sending the black shadows..."
 },
 {
 _id: 5,
 title: "The Brothers Karamazov",
 author: "Fyodor Dostoyevsky",
 image: "//upload.wikimedia.org/wikipedia/commons/2/2d/" +
 "Dostoevsky-Brothers_Karamazov.jpg",
 preview: "Alexey Fyodorovitch Karamazov was the third son..."
 }
];

 return {
 getAll: function() {
 return books;
 },
 getById: function(id) {
 for (var i = 0; i < books.length; ++i) {
 if (books[i]._id === id) {
 return books[i];
 }
 }
 return null;
 }
 };
};

For the purposes of this chapter, you’ll be using the simple two‐function interface shown earlier:
getAll() to load all five books, and getById(id) to get a specific book by its identifier _ id. Each
book contains four properties in addition to its identifier: the title, the author, an image, and
a preview featuring the first couple of paragraphs of the book. Now it’s time to write your first
templates using this new service.

PART I: TEMPLATES

A common difficulty in web development is reusing HTML. You may have certain HTML
components that appear in multiple pages. In the past, web developers used server‐side templating
tools to include pieces of HTML in a page before sending it to the client. AngularJS templates bring
the notion of including external HTML into your page to the client side. Although AngularJS’s
templates are functionally similar to server‐side templating tools like Jade and eRuby, AngularJS
templates provide additional features and performance benefits.

The most important advantage of client‐side HTML templating over server‐side templating is
the ability to swap out large portions of the current page’s HTML without reloading the page.
This gives you more fine‐grained control over your UX and thus the opportunity to make your
UX smoother. For instance, when your user clicks on a link, you can show a nifty loading screen
instead of making your user wait on an uninformative blank screen while his requested page is
loading.

www.it-ebooks.info

http://www.it-ebooks.info/

188  ❘  CHAPTER 6   Templates, Location, and Routing

Using client‐side templating, you’ll implement the master view, the view that lists all the books, for
your book catalog SPA. Although you can implement the master view without using templates, as
you’ll see, templates offer a wider range of control over how data is rendered.

NOTE  You may be wondering what the difference between a template and
a directive is. Directives also provide the ability to include blocks of HTML
using the template and templateURL options. In fact, these template and
templateURL options utilize the same templating framework that you explore
in this chapter. The difference is that directives are typically implemented with
associated JavaScript code to define user interactions, whereas templates are
effectively just HTML strings. However, a directive may have an associated
template, and a template’s HTML can utilize directives. In this chapter, you’ll
learn by example where you should use a directive rather than a plain template
and vice versa.

Templating with ngInclude
The ngInclude directive is the simplest way to utilize client‐side templating. This directive enables
you to replace the associated Document Object Model (DOM) element’s inner HTML with a given
template’s HTML. As you’ll see later in this section, one of the biggest advantages of ngInclude is
that the template being rendered is tied to two‐way data binding, so you can easily render different
templates for different pieces of data. Here’s a simple example of using the ngInclude directive with
ngRepeat to render a list of books, alternating between two different templates. You can find this
page in the part _ i _ ng _ include.html file in the sample code:

 <div ng-controller="BooksController">
 <div ng‐repeat="book in books"
 ng‐include="book.templateUrl">
 </div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">
 var booksModule = angular.module('booksModule', []);
 booksModule.factory('$books', booksService);

 function BooksController($scope, $books) {
 $scope.books = $books.getAll();

 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = (i % 2 === 0 ?
 'master_img_left.template.html' :
 'master_img_right.template.html');
 }
 }
 </script>

www.it-ebooks.info

http://www.it-ebooks.info/

Part I: Templates  ❘  189

As in the preceding example, the ngInclude directive takes as a parameter an expression that
AngularJS evaluates to get the template’s uniform resource locator (URL). In that example, each
book is given a templateUrl property, which the ngInclude directive then evaluates to determine
which template to load. Templates are loaded lazily—that is, the ngInclude directive does not load
a template until it is asked to. Furthermore, the ngInclude directive caches templates by their URL,
so a given template is only loaded from the server once.

To use the ngInclude directive properly, there are a couple of important details to keep in mind.
First of all, because the ngInclude directive’s template cache is just a plain old JavaScript object
(POJO), this cache is destroyed when the page is reloaded. In the case of SPAs, this cache can persist
for a long time, so you may need to manually refresh the cache. (You’ll learn how to clear the
template cache later in the section “The $templateCache Service.”) If you are using templates on a
standard page, the templates have to be reloaded every time the page is refreshed. However, because
templates are loaded by HTTP requests, you can leverage the browser to cache the HTTP responses.

Second, the template cache is global across all instances of the ngInclude directive. In other words, if two
completely separate instances of the ngInclude directive are told to render foo.template.html, there is
only one request to the server, and both instances of the ngInclude directive receive the same data.

Now the question is, what do these .template.html files look like? A template file contains
standard AngularJS‐infused HTML, and the template is included as‐is in any element that uses the
ngInclude directive to include it. Here’s what the first template, master _ img _ left.template
.html, looks like:

<div class="book-preview">
 <div class="book-preview-image">

 </div>
 <div class="book-preview-text">
 <h3>
 {{ book.title }}
 </h3>
 <h4>
 By {{ book.author }}
 </h4>

 {{ book.preview | limitTo:140 }}

 </div>
 <div style="clear: both">
 </div>
</div>

NOTE  In this chapter, template files end with .template.html to distinguish
them from full HTML files. Naming template files in a manner that distinguishes
them from full HTML files is good practice and ensures that there is no
confusion. In many applications, template files are stored in a separate directory
from full HTML files for this same reason.

www.it-ebooks.info

http://www.it-ebooks.info/

190  ❘  CHAPTER 6   Templates, Location, and Routing

As you can see, the master _ img _ left.template.html file contains fairly standard AngularJS‐
infused HTML. You may be wondering what the book variable in the preceding expressions
refers to. The book variable in this template is the book variable defined in the ngRepeat
in the part _ i _ ng _ include.html file. Although the ability to include templates that use
external variables is powerful, be careful! There is nothing to prevent you from including the
master _ img _ left.template.html template in a scope that doesn’t have a book variable, or
a scope that contains a book variable without an image. Make sure your templates use as few
outside variables as possible to maximize their reusability and minimize the barrier to entry to
understanding them.

There’s one more template used in the part _ i _ ng _ include.html file: the master _ img _ right
.template.html template. Here’s the content of that template:

<div class="book-preview">
 <div class="book-preview-text">
 <h3>
 {{ book.title }}
 </h3>
 <h4>
 By {{ book.author }}
 </h4>

 {{ book.preview | limitTo:140 }}

 </div>
 <div class="book‐preview‐image">

 </div>
 <div style="clear: both">
 </div>
</div>

The difference between this template and the master _ img _ left.template.html template is that
the book image is on the right side of the title, rather than on the left. There are numerous other
ways of achieving this effect in AngularJS; however, those typically involve conditional logic in your
HTML. AngularJS novices often find the concept of being able to include logic in their HTML so
exciting that they go overboard and turn their HTML into spaghetti code. Templates are a tool
to prune your AngularJS‐infused HTML when its complexity grows out of control: If you have a
div with ten children that have both an ngClass and an ngIf, you probably should abstract that
complexity out behind two or more templates.

NOTE  Because the ngInclude directive loads templates using an HTTP request,
you can write your templates in server‐side templating languages like Jade and
eRuby. The only requirement is that the HTTP response contains HTML, so
you can write your templates in Jade as long as your server can parse Jade into
HTML before responding to the client.

www.it-ebooks.info

http://www.it-ebooks.info/

Part I: Templates  ❘  191

ngInclude and Performance
AngularJS’s client‐side templating offers two performance benefits over conventional server‐side
templating. First, the HTML template only needs to be loaded once. Thus, if you have a page with
a lot of duplicated HTML, you can conserve your scarce bandwidth by using a template to load
repeated blocks of HTML. The second benefit is more subtle. Because templates are lazy‐loaded,
or not loaded until the ngInclude directive needs it, your template HTML loading is deferred until
the main page is done loading. This lazy‐loading of HTML is particularly useful for templates that
display content loaded by an $http call, because there will be no data to display until the $http call
has returned anyway.

Of course, lazy‐loading is a double‐edged sword when it comes to performance. In some cases,
lazy‐loading gives you a great benefit. However, a classic case that illustrates where lazy‐loading
performs suboptimally would be a Facebook‐style notifications window. On Facebook, whenever
users visit their homepages, they can click a button to view their most recent notifications. One
way you might implement such a component in AngularJS would be to have a separate template
for each type of notification. (You probably want to render a photo notification differently from
someone commenting on your wall, for instance.) In addition, you probably want to load the
notifications from the server with an HTTP request when the user clicks the Show Notifications
button. That means, in the worst case, you would have to do six HTTP requests to load five
notifications: one to load the notification data, and five to load five different templates. In other
words, using this naïve approach, the notifications would show up more slowly than we would
like. Thankfully, you don’t have to throw ngInclude out the window if you have a similar
situation. You’ll learn about an alternative approach to loading templates that ameliorates this
difficulty in the next section.

To illustrate how lazy‐loading works, take a look at the Network tab in Chrome Developer Tools
when loading http://localhost:8080/part _ i _ ng _ include.html. The timeline shows that the
templates are loaded after the page HTML is done loading, and then the images included in the
templates are loaded.

Including Templates with script Tags
The ngInclude directive’s ability to lazy‐load templates is powerful, but it’s not right for all
applications. When lazy‐loading isn’t the right choice, AngularJS allows you to embed templates into
a standard HTML script tag. This enables you to avoid having to do an individual HTTP request
to load a particular template, but it requires you to embed the template code in the page itself.
Here’s how loading templates with the script tag works in practice:

 <div ng-controller="BooksController">
 <div ng-repeat="book in books"
 ng-include="book.templateUrl">
 </div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">
 var booksModule = angular.module('booksModule', []);

www.it-ebooks.info

http://localhost:8080/part_i_ng_include.html
http://www.it-ebooks.info/

192  ❘  CHAPTER 6   Templates, Location, and Routing

 booksModule.factory('$books', booksService);

 function BooksController($scope, $books) {
 $scope.books = $books.getAll();

 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = (i % 2 === 0 ?
 'master_img_left.template.html' :
 'master_img_right.template.html');
 }
 }
 </script>

 <script type="text/ng‐template" id="master_img_left.template.html">
 <div class="book‐preview">
 <div class="book‐preview‐image">

 </div>
 <div class="book‐preview‐text">
 <h3>
 {{ book.title }}
 </h3>
 <h4>
 By {{ book.author }}
 </h4>

 {{ book.preview | limitTo:140 }}

 </div>
 <div style="clear: both">
 </div>
 </div>
 </script>
 <script type="text/ng‐template" id="master_img_right.template.html">
 <div class="book‐preview">
 <div class="book‐preview‐text">
 <h3>
 {{ book.title }}
 </h3>
 <h4>
 By {{ book.author }}
 </h4>

 {{ book.preview | limitTo:140 }}

 </div>
 <div class="book‐preview‐image">

 </div>
 <div style="clear: both">
 </div>
 </div>
 </script>

www.it-ebooks.info

http://www.it-ebooks.info/

Part I: Templates  ❘  193

In the preceding example, both the master _ img _ left.template.html and master _ img _ right
.template.html files are loaded as part of the page’s HTML. If you take a look at the Chrome
Developer Tools Network tab, you’ll notice that the ngInclude directive doesn’t make an HTTP
request to load either of these template files. That’s because the $templateCache service, which
you’ll learn about in the next section, finds every script tag with type=text/ng‐template and
stores the contents. Each template is then associated with its id attribute (which serves the same role
the template URL did when you were lazy‐loading templates), which ngInclude can then reference.

You’ll notice that the actual HTML structure wasn’t changed. One of the big advantages of
templates is a cleaner separation of concerns. Neither the structure of the page nor the templates
themselves have to change based on how you load templates. This is convenient because, as you’re
going to see in this next section, there are a lot of other ways for you to load templates into the
template cache.

The $templateCache Service
Over the course of this section on ngInclude, you’ve heard a fair amount about AngularJS’s
template cache. In practice, you rarely have to interact with the template cache beyond being
aware of its existence, but you may find yourself needing to clear the cache or add a template to it
manually. For this reason, AngularJS provides an interface to the template cache in the form of the
$templateCache service. The $templateCache service is available through the standard dependency
injector, so you can utilize it in any directive, controller, or service.

Probably the most common use case for the $templateCache service is loading templates via
HTTP request after the page has finished loading. Recall that the two methods you’ve used to
load templates so far were lazy‐loading the template via HTTP request the first time it is used,
and including the template in your HTML in a script tag. With the $templateCache service,
you’re not limited to these two approaches; in fact, you can have fine‐grained control over what
templates are loaded when. Here’s a simple example that loads the master _ img _ left.template
.html and master _ img _ right.template.html templates on controller initialization using the
$http and $templateCache services. This approach can give you the best of both worlds in terms
of performance: You can defer the template loading until after the main page has done rendering,
but the templates will likely be done loading by the time the user is able to switch the view. This
code is available in this chapter’s sample code as part _ i _ template _ cache.html:

<div ng-controller="BooksController">
 <div ng-repeat="book in books"
 ng-include="book.templateUrl">
 </div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">
 var booksModule = angular.module('booksModule', []);
 booksModule.factory('$books', booksService);

 function BooksController($scope, $books, $templateCache, $http) {
 var templates = [
 'master_img_left.template.html',

www.it-ebooks.info

http://www.it-ebooks.info/

194  ❘  CHAPTER 6   Templates, Location, and Routing

 'master_img_right.template.html'
];

 $scope.loadBooks = function() {
 $scope.books = $books.getAll();

 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = templates[i % 2];
 }
 };

 var done = 0;
 angular.forEach(templates, function(templateUrl) {
 $http.get(templateUrl).success(function(data) {
 $templateCache.put(templateUrl, data);
 if (++done === templates.length) {
 $scope.loadBooks();
 }
 });
 });
 }
 </script>

The $templateCache.put function used in the preceding code allows you to insert a template into the
template cache. The $templateCache service also exposes the $templateCache.get function, which
allows you to get the template associated with the given ID, and the $templateCache.removeAll
function, which removes all templates from the cache. The $templateCache.removeAll function is
the standard way to make sure the ngInclude directive reloads your templates from the server. The
$templateCache service doesn’t have a function to explicitly remove a single template from the cache,
but $templateCache.put(id, undefined) works for removing the template with a given ID.

One last important detail to remember about ngInclude and the template cache: If the ngInclude
directive is asked to render a template that isn’t in the cache, it attempts to load the template via
HTTP request and put it back in the cache. However, the ngInclude directive is tied to AngularJS’s
$digest loop, so it doesn’t check the template cache or do any HTTP requests unless the value of
the expression it’s watching changes. In the case of the master view for your book catalog, to force
the ngInclude directive to reload the master _ img _ left.template.html and master _ img _ right
.template.html templates, you have to call the $templateCache.removeAll function, as well as
change each value of book.templateUrl to trigger the ngInclude directive’s watcher.

Next Steps: Templates and Data Binding
You may have noticed that the ngInclude directive evaluates an expression to determine which
template to render. In fact, the ngInclude directive is tied to two‐way data binding. In the
master list of books, if a single book’s templateUrl member changes, that particular book’s div
element is rerendered with a different template. You can find an example of how this works in the
part _ i _ template _ data _ binding.html in this chapter’s sample code:

<div ng-controller="BooksController">
 <select ng‐model="currentOption"
 ng‐options="key for (key, value) in options"
 ng‐change="currentOption()">

www.it-ebooks.info

http://www.it-ebooks.info/

Part I: Templates  ❘  195

 </select>
 <div ng-repeat="book in books"
 ng-include="book.templateUrl">
 </div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">
 var booksModule = angular.module('booksModule', []);
 booksModule.factory('$books', booksService);

 function BooksController($scope, $books) {
 $scope.books = $books.getAll();

 $scope.setAlternatingTemplates = function() {
 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = (i % 2 === 0 ?
 'master_img_left.template.html' :
 'master_img_right.template.html');
 }
 };

 $scope.setAllLeft = function() {
 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = 'master_img_left.template.html';
 }
 };

 $scope.setAllRight = function() {
 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = 'master_img_right.template.html';
 }
 };

 $scope.options = {
 'Alternating': $scope.setAlternatingTemplates,
 'All Left': $scope.setAllLeft,
 'All Right': $scope.setAllRight
 };
 $scope.currentOption = $scope.options['Alternating'];
 $scope.setAlternatingTemplates();
 }
 </script>

This page has a drop‐down that allows you to set whether to render books using only the
master _ img _ left.template.html template, using only the master _ img _ right.template.html template,
or alternating between the two. Because of AngularJS’s data binding, you don’t need to do any extra work
beyond setting each book’s templateUrl property; the ngInclude directive takes care of the rest.

The most common application of dynamically changing templates based on user behavior is an SPA,
where the entire content of the page is a single template that can be swapped out. Conveniently,
that’s precisely what you’re going to learn about in Part III of this chapter. However, before you dive
into learning about routing and SPAs, you need to learn how to track what view the user is on in
the URL. Part of what makes URLs so convenient is that you can copy/paste (or bookmark) a given
URL and return to it later. Unfortunately, when you keep the users on the same page and just swap

www.it-ebooks.info

http://www.it-ebooks.info/

196  ❘  CHAPTER 6   Templates, Location, and Routing

out AngularJS templates, the URL stays the same, and the users can’t just paste a URL to return to
where they were! In the next section, you’ll learn to ameliorate this difficulty using the $location
service, which the AngularJS routing code that you use in Part III leverages. The $location service
provides a clean way of tracking JavaScript state in the page’s URL without triggering a page reload.

PART II: THE $LOCATION SERVICE

Much like how AngularJS’s templating framework allows you to easily transform large blocks
of HTML, the $location service provides a convenient interface for reading and modifying the
current URL without reloading the page. The most common reason to modify the current URL in
JavaScript is for deep linking: encoding page state, such as the state of a check box or the window’s
current scroll position, in the URL. As you might have guessed, deep linking is extremely important
for SPAs. However, because there are strict rules around what portions of a URL can change
without page reload, the $location service has several gotchas that you need to be aware of.

NOTE  A common source of confusion related to the $location service is that
there is no way to use $location to force a page reload. You cannot use the
$location service to redirect your user to an entirely new page.

What’s in a URL?
A URL is a string that you can enter into your browser to load a given file. A common example is
http://www.google.com, which resolves to the HTML for Google’s homepage. URLs can be far
more complex than just this simple example, though, and for the purposes of this section, you need
to be familiar with the different components of a URL.

A slightly more interesting URL than the preceding trivial example would look more like this:
http://www.google.com/foo?bar=baz#qux. The three portions of a URL that you need to be
familiar with are the path, /foo; the query string, #?bar=baz#; and the hash, #qux. The path and
query string communicate to the server the precise resource you’re looking for. Changing the path
or the query string triggers a page reload in modern browsers. However, the browser does not send
the hash portion to the server; thus, you can modify the hash component without triggering a page
reload. The hash portion is typically used for deep linking functionality.

Browsers typically consider the first instance of ? as the start of the query string and the first
instance of # as the start of the hash portion. This means that the hash portion can contain anything
your application desires. In particular, as you’ll see later in this section, AngularJS’s $location
service provides an interface for you to construct URLs that look like this: http://www.google
.com/#/foo?bar=baz. Notice that /foo?bar=baz is in the hash portion!

NOTE  The IETF RFC‐3986 specification, the definitive specification for the
format of a URL, doesn’t explicitly specify the format of the query string. The
established convention is that the query string should be a list of key/value pairs
delimited by an &, but this isn’t mandatory. Technically, the query string can be
whatever you want.

www.it-ebooks.info

http://www.google.com
http://www.google.com/foo?bar=baz#qux
http://www.google.com/#/foo?bar=baz
http://www.google.com/#/foo?bar=baz
http://www.it-ebooks.info/

Part II: The $location Service  ❘  197

Introducing $location
The $location service is AngularJS’s preferred method of manipulating the hash portion of a URL.
In particular, the $location service exposes four important functions: url(), path(), search(), and
hash(). As you’ll see, these functions are somewhat confusingly named given the established URL
nomenclature. For example, the path() function doesn’t modify the actual URL path portion.

The $location service is designed with routing for SPAs in mind, so these functions are designed
to operate on the hash portion of the URL. For example, $location.path('foo') navigates the user
to /#/foo (note that the # signifies the start of the hash portion) instead of /foo and does not cause
a page reload. In other words, the $location service interacts with a pseudo‐URL defined in the
URL’s hash portion.

For example, assume that your user is on the URL http://google.com/foo?bar=baz#qux. If you
were to execute the following functions when your user is at this URL, here is what the browser’s
address bar would show:

// Before: http://google.com/foo?bar=baz#qux
$location.url('/path/to?query=1');
// After: http://google.com/foo?bar=baz#/path/to?query=1

// Before: http://google.com/foo?bar=baz#qux
$location.path('/path/to');
// After: http://google.com/foo?bar=baz#/path/to

// Before: http://google.com/foo?bar=baz#qux
$location.search('query', '1');
// After: http://google.com/foo?bar=baz#/qux?query=1

// Before: http://google.com/foo?bar=baz#qux
$location.hash('fi');
// After: http://google.com/foo?bar=baz#/qux#fi

As you can see, the $location service takes full advantage of the fact that the hash portion of the
URL can be any string and provides an easy‐to‐manipulate pseudo‐URL in the hash portion. For the
purposes of this chapter, to avoid confusion with the actual URL in the browser’s address bar, the
hash portion URL will be referred to as the hash pseudo‐URL. The individual portions of the hash
pseudo‐URL will be referred to by their function name. For instance, the hash pseudo‐URL’s search
portion will be referred to as $location.search, to avoid confusion between the address bar URL’s
search portion and the hash pseudo‐URL’s search portion.

One important detail about these four functions associated with the $location service: They are
both getters and setters. Invoking the url(), path(), or hash() functions with no parameters will
return the current value of the hash pseudo‐URL, the pseudo‐path, or the pseudo‐hash, respectively.
Similarly, calling the search() function with no parameters will return a JavaScript object
representation of the pseudo‐URL’s search portion. For example:

// URL: http://google.com/foo?bar=baz#qux
$location.url(); // => '/qux'

// URL: http://google.com/foo?bar=baz#qux

www.it-ebooks.info

http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#/path/to?query=1
http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#/path/to
http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#/qux?query=1
http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#/qux#fi
http://google.com/foo?bar=baz#qux
http://google.com/foo?bar=baz#qux
http://www.it-ebooks.info/

198  ❘  CHAPTER 6   Templates, Location, and Routing

$location.path(); // => '/'

// URL: http://google.com/#/foo/bar?baz=qux
$location.search(); // => '{ "baz": "qux" }'

// URL: http://google.com/#/foo/bar#baz
$location.hash(); // => 'baz'

Tracking Page State with $location
The most common use case for modifying the hash portion of the URL is to enable the user to save
some intra‐page state, such as a JavaScript variable or the user’s scroll position. The $location
service allows you to do much more with the hash portion of the URL. In this section, you use the
$location service to enable users to highlight bits of text from the book preview and track what
they’ve highlighted in the page’s URL. This enables your users to bookmark favorite passages or
share powerful quotes on social media.

In this section, you write the detail view for the book’s catalog SPA—that is, the view that shows
detailed information about a single book. In the interest of simplicity and to avoid having to use
client‐side routing, this page hard‐codes the book that’s displayed, which in this case is Victor
Hugo’s novel Les Miserables. More interestingly, the page enables users to click to highlight
certain pieces of text in the book’s preview and store the highlight position in the page’s URL. For
instance, perhaps while reading the preview, your user is particularly touched by Hugo’s adage
“That which is said of men often occupies as important a place in their lives, and above all in their
destinies, as that which they do.” The code that follows highlights the given text and changes the
page’s URL to part _ ii _ highlight.html#?highlight=that%2520which%2520is%2520
said... when the user selects the text. This code can be found in this chapter’s sample code as
part _ ii _ highlight.html:

 <div ng-controller="BookDetailController">
 <div style="float:left; width: 300px; margin: 25px">

 </div>
 <div style="float: left; width: 600px;">
 <h1>
 {{ book.title }}
 </h1>
 <h3>
 By: {{ book.author }}
 </h3>
 <p ng‐click="getSelection()"
 ng‐bind‐html‐unsafe="book.preview | highlight:selectedText">
 </p>
 </div>
 <div style="clear: both"></div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">

www.it-ebooks.info

http://google.com/#/foo/bar?baz=qux
http://google.com/#/foo/bar#baz
http://www.it-ebooks.info/

Part II: The $location Service  ❘  199

 var booksModule = angular.module('booksModule', []);
 booksModule.factory('$books', booksService);

 function BookDetailController($scope, $books, $location) {
 $scope.book = $books.getById(1); // Les Miserables
 $scope.selectedText = $location.search()['highlight'] ?
 decodeURIComponent($location.search()['highlight']) :
 null;

 $scope.getSelection = function() {
 var selected = window.getSelection().toString();
 $location.search('highlight', encodeURIComponent(selected));
 $scope.selectedText = selected;
 };
 }

 booksModule.filter('highlight', function() {
 return function(input, highlight) {
 if (!highlight) {
 return input;
 }
 return input.replace(highlight,
 '' + highlight + '');
 }
 });

 booksModule.directive('ngBindHtmlUnsafe', function() {
 return function(scope, element, attrs) {
 scope.$watch(attrs.ngBindHtmlUnsafe, function(v) {
 element.html(v);
 });
 }
 });
 </script>

 <style rel="stylesheet">
 .highlight {
 background-color: yellow;
 }
 </style>

NOTE  You may have noticed that, in this example, the code only searches
for a given string when determining what to highlight, rather than actually
storing how many characters into the text the quote is. This approach is fairly
limited and has numerous bad behaviors. (Try highlighting the word which is
in the BookDetailController in the preceding example.) Implementing a real
highlighting system in this manner would be a poor decision. However, the
details of implementing such a system would add unnecessary complexity to this
example and thus detract from its effectiveness as a tool for learning about the
$location service.

www.it-ebooks.info

http://www.it-ebooks.info/

200  ❘  CHAPTER 6   Templates, Location, and Routing

The preceding code illustrates the fundamental design pattern for interfacing with the
$location service. Typically, when using the $location service to track JavaScript state in
the URL, you will first load the data from the URL immediately after the page loads (that is,
when controllers initialize). In this example, the $scope.selectedText = $location
.search()['highlight'] line represents this step. The second part of this design
pattern is updating the URL whenever the variable changes, so the URL stays in
sync with the JavaScript state. In this example, this step is represented by the $location
.search('highlight', encodeURIComponent(selected)); line.

Typically, for storing JavaScript data, the $location.search function is the correct approach,
because it gives you the ability to modify named attributes. For example, in the previous code, you
stored only a highlight attribute. Adding other attributes to store other JavaScript state would
be fairly straightforward. However, $location.url, $location.hash, and $location.path only
allow you to directly modify a single string, so if you store the selectedText variable in one of
those portions, you will be stuck with a tricky engineering problem if you need to add additional
JavaScript state to the URL.

Once again, it is worth noting that the $location.search function doesn’t change the actual query
portion of the URL (the search portion is another term often used to mean the query portion of the
URL); it modifies the query portion of the hash pseudo‐URL. Because of this, changes made to the
URL with the $location.search function do not interfere with server interaction; however, any
non‐AngularJS functions that parse the query string do not see the changes.

Next Steps: Routing and SPAs
Over the course of Part II, you’ve primarily used the $location service in a minimal capacity to
track page state using the $location.search function. You haven’t really used the url(), path(), or
hash() functions. There is a good reason for this: the $location.search function is uniquely suited
for storing general JavaScript state because it provides the ability to manipulate key‐value pairs. The
url(), path(), or hash() functions instead manipulate whole portions of the hash pseudo‐URL.
These functions are designed with a different purpose in mind: providing a URL‐like interface for
SPAs. If you’re not interested in SPAs, you’re unlikely to ever need the url(), path(), or hash()
functions. Nevertheless, understanding these functions is key to understanding how client‐side
routing and SPAs work, so keep this in mind for Part III.

PART III: ROUTING

Now that you’ve learned the basics of how templates work and how to use the $location service to
manipulate the hash pseudo‐URL, you’re going to learn how to combine these two concepts to do
client‐side routing for your book catalog SPA.

At a high level, the term routing in web development means mapping the path portion of a URL to a
handler for that particular route. In the context of AngularJS, a route is defined by the path portion
of the hash pseudo‐URL. AngularJS has a provider called $routeProvider that enables you to
declaratively define a mapping from hash pseudo‐paths to handlers. In AngularJS, a route handler is
typically an object that defines the template URL that should be rendered and the controller for the
template.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  201

AngularJS’s routing framework is not included in the core angular.js file; it’s instead packaged
as a separate file called angular‐routes.js. You can download the angular‐routes.js file for
your preferred version of AngularJS on http://code.angularjs.org. For your convenience, the
version of the angular‐routes.js file corresponding to AngularJS 1.2.16 has been packaged with
the sample code for this chapter. This file contains a module called ngRoute that contains all the
services and directives you need to build your SPA.

Under the hood, the ngRoute module manages the interaction between the $location service and the
rendered view—that is, when $location.path() has a certain value, the ngRoute module renders the
template you specified for that particular value. This functionality forms the core of your basic SPA.
The general idea behind an SPA in AngularJS is that your links modify the hash portion of the URL
rather than linking to a new page. The ngRoute module then handles interacting with the $location
service and making sure the correct view is rendered based on the value of $location.path().

The SPA paradigm offers numerous advantages. In addition to giving you more fine‐grained control
over UX, SPAs provide a clean separation between client and server, as well as between data and
display. The server behind an SPA doesn’t need to handle templating and routing; it only needs
to provide a REST API and static HTML files representing the AngularJS templates. The client
JavaScript and HTML can thus be entirely responsible for how data is displayed, and the server can
focus on providing an API for manipulating the data. In addition, because AngularJS templates are
static HTML, they can be cached by the browser, leading to reduced bandwidth usage and better
performance. You can explore these advantages in more detail when building out your SPA.

The most significant limitation of SPAs is search engine optimization. Search engines like Google
use programs called crawlers to explore your site and report information about your pages to the
search engine. These crawlers, however, are designed to analyze static HTML only; they don’t
actually execute JavaScript. This means that your SPA won’t be crawl‐able by Google! Thankfully,
there are tools for dealing with this limitation that you’ll learn about toward the end of this chapter.

NOTE  Typically, in server‐side routing frameworks, a route is defined by the
combination of a path and an HTTP verb (GET, POST, PUT, or DELETE).
However, because AngularJS handles routing on the client side and thus doesn’t
receive HTTP requests, the HTTP verb component doesn’t necessarily make
sense. That is why AngularJS routing only uses the (hash pseudo‐URL) path.
If you’re used to server‐side routing with frameworks like Ruby on Rails or
Express, be cognizant of this distinction.

NOTE  In AngularJS 1.2, the ngRoute module is not packaged with AngularJS
by default. It is included in a file called angular‐route.js; you can download
the version corresponding to your preferred version of AngularJS on
code.angularjs.org. For your convenience, the ngRoute module for AngularJS
1.2.16 has been packaged with the sample code for this section. If you are using
AngularJS 1.0.x, you don’t need this extra file, because ngRoute is packaged
with AngularJS.

www.it-ebooks.info

http://code.angularjs.org
http://www.it-ebooks.info/

202  ❘  CHAPTER 6   Templates, Location, and Routing

Using the ngRoute Module
The ngRoute module’s fundamentals are most easily learned by example. Using the ngRoute
module, you’re going to build a book catalog SPA with two views: a master view and a detail view.
Conveniently, these two views are identical to the master view that you wrote in Part I and the detail
view that you wrote in Part II. The following code represents the full JavaScript for the SPA and can
be found in this chapter’s sample code as part _ iii.html. Most of this code should look familiar
from Part I and Part II, but take careful note of how these three new AngularJS components are
used: the ngView directive, the $routeProvider provider, and the $routeParams service.

 <div ng‐view="true">
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="angular‐route.js"></script>
 <script type="text/javascript" src="books.js"></script>
 <script type="text/javascript">
 var booksModule = angular.module('booksModule', ['ngRoute']);
 booksModule.factory('$books', booksService);

 booksModule.config(function($routeProvider) {
 $routeProvider.
 when('/', {
 templateUrl: 'part_iii_master.template.html',
 controller: BooksController
 }).
 when('/book/:id', {
 templateUrl: 'part_iii_detail.template.html',
 controller: BookDetailController,
 reloadOnSearch: false
 });
 });

 function BooksController($scope, $books) {
 $scope.books = $books.getAll();

 for (var i = 0; i < $scope.books.length; ++i) {
 $scope.books[i].templateUrl = (i % 2 === 0 ?
 'master_img_left.template.html' :
 'master_img_right.template.html');
 }
 }

 function BookDetailController($scope, $books, $location,
 $routeParams) {
 $scope.book = $books.getById(parseInt($routeParams.id, 10));
 $scope.selectedText = $location.search()['highlight'] ?
 decodeURIComponent($location.search()['highlight']) :
 null;
 $scope.getSelection = function() {
 var selected = window.getSelection().toString();
 if (selected) {
 $location.search('highlight', encodeURIComponent(selected));

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  203

 }
 $scope.selectedText = selected;
 };
 }
 </script>

There isn’t a lot of new code here, but the small amount of new code does a significant amount of
work. The first component—the ngView directive—performs the relatively straightforward task
of informing ngRoute which div should contain the template for the current route. The ngView
directive itself isn’t particularly complex. In AngularJS, you’ll typically create a div with the
ngView directive attached and never touch it again. You’ll briefly touch on the ngView directive
again when you learn about animations in the last section of Part III. However, now you’re going
to take a deep dive into the particulars of the two other new components in the preceding code: the
$routeProvider provider and the $routeParams service.

The $routeProvider Provider
The previous section introduced a new provider, $routeProvider, that’s worth exploring in
more detail. This component is the canonical tool for configuring client‐side routing, so you
see it in virtually every AngularJS SPA. The $routeProvider provider must be configured in
a configuration block—that is, in a function passed to a module’s config() function. You can
configure the $routeProvider provider using the chainable when() function, which creates
mappings between routes and handler objects. Recall the use of the $routeProvider provider in
part _ iii.html:

 booksModule.config(function($routeProvider) {
 $routeProvider.
 when('/', {
 templateUrl: 'part_iii_master.template.html',
 controller: BooksController
 }).
 when('/book/:id', {
 templateUrl: 'part_iii_detail.template.html',
 controller: BookDetailController,
 reloadOnSearch: false
 });
 });

Handler objects have several configurable parameters, but the ones that you’ll see most often
are template, templateUrl, and controller. If you worked through Chapter 5, “Directives,”
these parameters will look familiar because they behave identically to the corresponding directive
object settings. The template parameter enables you to write the template HTML inline. The
templateUrl parameter allows you to specify which template the ngRoute module renders by its
template cache ID, much like how the ngInclude directive that you used in Part I did.

The controller parameter tells the ngRoute module to wrap the given template with a particular
controller. One important detail about the controller parameter that isn’t highlighted in the
previous example is that the controller parameter can take a string as well as a function.
In part _ iii.html, the controller parameter is always set to a function variable—namely,
BookController or BookDetailController. However, if you declare controllers using the

www.it-ebooks.info

http://www.it-ebooks.info/

204  ❘  CHAPTER 6   Templates, Location, and Routing

module.controller() syntax, you can reference the controller by its name in the controller
parameter. For instance, if you declared BookDetailController like this:

 booksModule.controller('DetailController', function($scope, $books,
 $location, $routeParams) {
 $scope.book = $books.getById(parseInt($routeParams.id, 10));
 $scope.selectedText = $location.search()['highlight'] ?
 decodeURIComponent($location.search()['highlight']) :
 null;

 $scope.getSelection = function() {
 var selected = window.getSelection().toString();
 if (selected) {
 $location.search('highlight', encodeURIComponent(selected));
 }
 $scope.selectedText = selected;
 };
 });

you could then declare your route configuration like this:

 booksModule.config(function($routeProvider) {
 $routeProvider.
 when('/', {
 templateUrl: 'part_iii_master.template.html',
 controller: BooksController
 }).
 when('/book/:id', {
 templateUrl: 'part_iii_detail.template.html',
 controller: 'DetailController',
 reloadOnSearch: false
 });
 });

In the preceding example, the string passed to the controller parameter must match the
controller’s name—that is, the first parameter you passed in to module.controller().

NOTE  You may have noticed that the previous example sets a reloadOnSearch
option in the handler for the /book/:id route. This highlights a minor detail
related to the interaction between $location and ngRoute. By default, the
ngRoute module emulates conventional server‐side routing; thus, it “reloads” the
view every time $location.path or $location.search changes by default. When
AngularJS reloads a view, it destroys the old $scope, creates a new one, and
executes the controller function again. Thus, if you modify $location.search in
controller initialization and you’ve included the ngRoute module without setting
the reloadOnSearch option to false, AngularJS gets stuck in an infinite loop of
creating and destroying scopes. There are three ways you can avoid this problem.
You can either set the reloadOnSearch option to false for that route, store your
JavaScript state in $location.hash (changes to $location.hash never cause
ngRoute to change the view), or avoid using the ngRoute module.

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  205

Another important concept in the use of $routeProvider in part _ iii.html is the notion of route
parameters. The ngRoute module allows route strings to contain parameterizable components
denoted by a : sign. A typical usage is the /book/:id route: if the user navigates to #/book/3, #/
book/42, or #/book/foo, the handler for the /book/:id route is used. However, the handler has
access to the (string) value of whatever value was in the part of the URL denoted by the :id. In
the previous examples, the handler would have access to an id parameter (typically using the
$routeParams service that you’ll learn about in the next section) that would be equal to '3', '42',
or 'foo', respectively. If you are familiar with routing in MVC frameworks like Ruby on Rails or
Express, route parameters in AngularJS are essentially identical.

NOTE  Recall that a provider is a function that acts as a recipe for creating
AngularJS services. The $routeProvider provider is atypical in that the service
it provides, $route, is less useful than the provider itself. The $route service
exposes data about the current route (including the route parameters), but to use
it, you need to use the $routeProvider provider to define the routing structure
for this app. As you can see in part _ iii.html, you can fairly easily write an
SPA without using the $route service.

The $routeParams Service
The $routeParams service provides a POJO that contains the current route’s route parameters and
$location.search values. In case of a collision, for instance, if a user were to navigate to #/book/
foo?id=bar on part _ iii.html, the route parameter would take precedence over the $location
.search value. That is, in the #/book/foo?id=bar example, $routeParams.id would equal 'foo'
rather than 'bar'.

NOTE  In most cases, the properties of $routeParams stay constant throughout
the life cycle of your controllers, because the controller and scope are destroyed
when the view changes. However, if you set the previously mentioned
reloadOnSearch option to false in your route handler, the keys and values of
$routeParams may change without your controller being reinstantiated.

Navigation in Your SPA
You may have noticed that you haven’t seen the source code yet for the master template
part _ iii _ master.html and the detail template part _ iii _ detail.html. That’s because they are
virtually identical to the HTML code from Part I’s code (part _ i _ ng _ include.html) and Part II’s
code (part _ ii _ highlight.html). For the sake of completeness, here is part _ iii _ master.html:

<div ng-repeat="book in books"
 ng-include="book.templateUrl">
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

206  ❘  CHAPTER 6   Templates, Location, and Routing

The templates that are included using ngInclude are essentially identical to the
master _ img _ template.left.html and master _ img _ template.right.html templates you saw in
Part I. Here is the slightly modified master _ img _ template.left.html template:

<div class="book-preview">
 <div class="book-preview-image">

 </div>
 <div class="book-preview-text">
 <h3>
 <a ng‐href="#/book/{{book._id}}">
 {{ book.title }}

 </h3>
 <h4>
 By {{ book.author }}
 </h4>

 {{ book.preview | limitTo:140 }}

 </div>
 <div style="clear: both">
 </div>
</div>

And part _ iii _ detail.html:

<h3 style="cursor: pointer">
 <a ng‐href="#/">
 Back to Master List

</h3>
<div style="float:left; width: 300px; margin: 25px">

</div>
<div style="float: left; width: 600px;">
 <h1>
 {{ book.title }}
 </h1>
 <h3>
 By: {{ book.author }}
 </h3>
 <p ng-click="getSelection()"
 ng-bind-html-unsafe="book.preview | highlight:selectedText">
 </p>
</div>
<div style="clear: both"></div>

As you can see, the master _ img _ template.left.html template and the part _ iii _ detail.html
template have been modified to include some links for easier browsing. These links, however, use
the ngHref directive and only modify the hash portion of the URL. For instance, notice that, in the
part _ iii _ detail.html template, the link to return to the master view navigates the user to #/

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  207

rather than /. To integrate properly with the ngRoute module, the URLs that you link to with the a
tag must start with #/.

As you may already know, AngularJS can properly evaluate expressions in an a tag’s href attribute.
The ngHref directive is not strictly necessary to get AngularJS to evaluate expressions, but it does
have two advantages over the a tag. First, the ngHref directive doesn’t change the href attribute if
your expression is broken, so your user isn’t redirected to a garbage URL if you have a bug in your
expression. The second reason is to prevent search engine crawlers from crawling AngularJS links.
Typical search engine crawlers don’t evaluate JavaScript. They instead just parse the page’s HTML
and find where all the href attributes link to, which, in the context of AngularJS, may be a URL
that contains a lot of variable names wrapped in {{}}. Thankfully, there are tools out there to enable
search engines to crawl your AngularJS website. You’ll learn about one such tool in the next few
sections.

Search Engines and SPAs
Search engine crawlers don’t actually run your page’s JavaScript, so if you’re building an SPA, you
have a potential problem: Google can’t crawl your site. Of course, this may be an advantage. For
instance, if your application is internal to your company or requires you to be logged in before
showing any meaningful functionality, you might not want search engines to crawl your site
anyway. However, if you want to write a forward‐facing SPA and it is crucial to your business plan
that you show up at the top of Google search results, don’t worry; you will learn a strategy in this
section for making sure your SPA is search engine friendly.

First, a word of warning: In this section, you’ll be doing some server‐side work. There is simply no
way to properly interface with a typical search engine crawler without a functioning web server,
so you’ll have to write about six lines of server‐side JavaScript in NodeJS. If you are looking to
integrate AngularJS with a different server framework, don’t worry; you can adapt the approach
you’ll learn in this section to work with Ruby on Rails, PHP’s Zend framework, Nginx, and most
other web server tools out there.

Furthermore, this section requires you to write very little code (a few lines of server‐side JavaScript,
one line of HTML, and two lines of AngularJS JavaScript), but this code will be fairly dense and
perform a lot of sophisticated operations under the hood. Specifically, in every other section of this
book, you’ve written only client‐side JavaScript, whereas in this section the meat of the work will
consist of setting up two servers on your machine. However, don’t be intimidated; so long as you’re
reasonably familiar with a Linux‐style terminal, you should be able to set up a crawler‐friendly SPA.

Setting Up Prerender on the Server
The approach you’ll be learning about in this section relies on a service called Prerender (http://
www.prerender.io). At a high level, Prerender crawls your website using PhantomJS, an open‐
source headless browser with a JavaScript API. Because PhantomJS is a full‐fledged browser, it
actually runs your AngularJS app in virtually the same way Google Chrome would. When a crawler
identifies a page as an SPA, it asks the server for a crawler‐friendly prerendered version of the page—
essentially a plain HTML version of the SPA. Prerender has plug‐ins and guides for many server

www.it-ebooks.info

http://www.prerender.io
http://www.prerender.io
http://www.it-ebooks.info/

208  ❘  CHAPTER 6   Templates, Location, and Routing

frameworks (you can find these guides on Prerender’s website at http://www.prerender.io), but in
this chapter, you’ll be using its NodeJS plug‐in.

NOTE  Prerender has a paid option, but for the purposes of this chapter, you
don’t have to sign up for an account with Prerender. Prerender’s code is open
source, and in this section you’ll be creating your own locally‐hosted version
of Prerender’s crawling service. Although using Prerender’s paid platform is
probably a better choice in a production environment for performance and
reliability reasons, setting up your own is better for evaluation and instruction.

NOTE  Prerender’s paid service essentially consists of a managed cloud version
of the PhantomJS server described earlier. Because you can run the open source
version locally, there is no reason to sign up for its paid service while you’re
evaluating it. The second component, described next, can be configured to make
requests to any Prerender PhantomJS server, whether it be one you run locally or
Prerender’s managed server.

A Prerender setup consists of two components. The first component is a standalone NodeJS server
that acts as a thin wrapper for PhantomJS: Essentially, you can send this PhantomJS server an
HTTP request with a URL in the path portion of the URL, and the server returns a static HTML
version of the rendered page. This server is available on the NodeJS package manager, npm, as a
package named prerender. To see this server in action, navigate to the directory containing this
chapter’s sample code, and run npm install. Then start the PhantomJS server by running node
./node _ modules/prerender/server.js. Finally, open your browser and navigate to http://
localhost:3000/http://www.google.com. You should see the familiar Google homepage. In the
terminal, you should see approximately the following output:

2014-08-21T18:53:52.265Z getting google.com
2014-08-21T18:53:52.339Z got 200 in 74ms for google.com

There is one key difference between the prerendered Google homepage and the actual Google
homepage you’ll see in your browser: The prerendered version has no JavaScript and no script
tags. It’s simply a snapshot of the page’s HTML state after the page is done loading (including all
JavaScript).

The second component is middleware for your web server of choice (in the case of this chapter, a
NodeJS‐based web server) that intercepts search engine crawlers’ requests and sends these requests
to the PhantomJS server. This component is specific to your web server, but Prerender has guides
to integrating this component into common web server tools like Nginx, Apache, and Ruby on
Rails on http://www.prerender.io. The Prerender middleware for NodeJS is available on npm
as prerender‐node. You can install this package by running npm install from the directory
containing this chapter’s sample code. Unfortunately, the prerender‐node middleware is currently
only compatible with the Express web framework, which is currently the most popular web server

www.it-ebooks.info

http://www.prerender.io
http://localhost:3000/
http://localhost:3000/
http://www.google.com
http://www.prerender.io
http://www.it-ebooks.info/

Part III: Routing  ❘  209

framework in the NodeJS community. Express 4.8.5 is included as a dependency in the package
.json for this chapter’s sample code, so if you haven’t run npm install yet, do so to install the
two Prerender components and Express. Here’s the web server that you will use to serve the HTML
pages in this section:

var express = require('express');
var prerender = require('prerender-node');

var app = express();
app.use(prerender);
app.use(express.static('./'));

app.listen(8080);

console.log('Listening on port 8080');

If you’re unfamiliar with Express, don’t worry; all you really need to understand is that the
preceding code creates a web server on port 8080 with two middleware functions: the Prerender
middleware, and then the static middleware that returns static files from the current directory
(that is, responds to http://localhost:8080/foo.html with the contents of ./foo.html). Try
starting this server with node server _ prerender.js and navigating to http://localhost:8080/
part _ iii _ seo.html. This page is the search‐engine‐friendly version of part _ iii.html, and, as
such, it has a couple of small additions. To understand what makes part _ iii _ seo.html special,
you need to understand how Google’s crawler handles AJAX‐heavy pages.

The Google AJAX Crawling Spec
The Google AJAX crawling spec defines how search engine crawlers should handle JavaScript‐heavy
pages like AngularJS SPAs. You can read the full spec for enrichment at http://developers
.google.com/webmasters/ajax‐crawling/docs/specification, but for the purposes of
AngularJS SPAs, the following brief summary should be sufficient.

The AJAX crawling spec exists to help crawlers identify JavaScript‐heavy pages and account for
the fact that, in SPAs, there are no page reloads. Essentially, when a crawler finds an a tag whose
href starts with #! (the spec calls this a pretty URL), it assumes this link will cause JavaScript to
transform the page. Note that a pretty URL must start with #!, to enable the crawler to distinguish
between a link that indicates client‐side routing and a link that simply saves the user’s scroll position.
The crawler then converts the pretty URL into a so‐called ugly URL, which replaces the #! with
? _ escaped _ fragment _ =. For example, in the case of your book catalog SPA, the crawler will see a
pretty URL similar to part _ iii _ seo.html#!/book/5 and try to crawl the corresponding ugly URL
part _ iii _ seo.html? _ escaped _ fragment _ =/book/5. Because this transformation puts the hash
portion of the URL into the query portion, your web server will actually receive the client‐side route.

You may be wondering, now that your web server receives the client‐side route in
the  _ escaped _ fragment _  query parameter, how your server should handle it. The answer
is, you’ve already done all the necessary work! The Prerender middleware handles this case by
intercepting any requests that have the  _ escaped _ fragment _  query parameter and sending them
along to the PhantomJS server. The PhantomJS server returns your SPA view as static HTML, your
web server sends this static HTML to the crawler, and the crawler happily indexes your HTML.

www.it-ebooks.info

http://localhost:8080/foo.html
http://localhost:8080/part_iii_seo.html
http://developers.google.com/webmasters/ajax-crawling/docs/specification
http://localhost:8080/part_iii_seo.html
http://developers.google.com/webmasters/ajax-crawling/docs/specification
http://www.it-ebooks.info/

210  ❘  CHAPTER 6   Templates, Location, and Routing

Configuring AngularJS for Search Engines
Now that you’ve created your server setup for SPA search engine integration, you need to make a
couple of minor tweaks to your AngularJS SPA. First of all, you need to add one line of code to your
HTML head tag:

 <head>
 <title>Part III: Basic SPA with SEO</title>

 <meta name="fragment" content="!">
 </head>

This line of code enables Google to identify this page as an SPA right off the bat. Remember, search
engine crawlers are good at following conventional HTML links and not much else. If the crawler
couldn’t identify this page as an SPA, it wouldn’t know to add the  _ escaped _ fragment _  query
parameter; thus, the crawler would just see an empty page. With this meta tag, crawlers know to
rerequest the page with an  _ escaped _ fragment _  query parameter to get the prerendered page.

Also, you need to make a minor change to your AngularJS app configuration. Recall that AngularJS
by default uses # instead of #! for client‐side routing. Thankfully, AngularJS makes this easy to
configure:

 booksModule.config(function($routeProvider, $locationProvider) {
 $routeProvider.
 when('/', {
 templateUrl: 'part_iii_master.template.html',
 controller: BooksController
 }).
 when('/book/:id', {
 templateUrl: 'part_iii_detail.template.html',
 controller: BookDetailController,
 reloadOnSearch: false
 });

 $locationProvider.html5Mode(false);
 $locationProvider.hashPrefix('!');
 });

The hashPrefix() function allows you to set any string to be placed between # and / in your
client‐side routes. This really only has one use case: inserting the ! necessary for search engine
integration. The html5Mode() function enforces that AngularJS use its legacy URL configuration,
which is necessary to get client‐side routing to work in non‐HTML5 browsers.

Search Engine Integration in Action
Congratulations! You’ve done all the work necessary to make sure your SPA is properly crawlable.
The last step is putting it all together and seeing your SPA the way a crawler would see it. Open two
terminals and navigate to this chapter’s sample code. The Makefile contains two simple commands:
make phantomjs‐server starts the Prerender PhantomJS server, and make seo‐web‐server starts
the Prerender‐enabled web server. Run make phantomjs‐server in the first terminal window and

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  211

make seo‐web‐server in the second. Now you should be able to open http://localhost:8080/
part _ iii _ seo.html? _ escaped _ fragment _ =/ in your browser and see the static HTML version
of your book catalog!

Try clicking on the title of Les Miserables. The path in the browser address bar should change to
/part _ iii _ seo.html? _ escaped _ fragment _ =/#!/book/1. A properly configured crawler would
replace this with /part _ iii _ seo.html? _ escaped _ fragment _ =/book/1. Try navigating to that
URL, and you should see your prerendered detail view for Les Miserables!

NOTE  For a production application, you would preferably run your
PhantomJS server on a different machine and leverage the Prerender
PhantomJS server’s caching ability. The setup you worked with in this section
is ideal for instructional purposes, but there would be significant performance
overhead in having your single production machine evaluating client‐side
JavaScript every time a crawler tries to crawl your page. If this performance
impact would be unacceptable, you can either set up the PhantomJS server
on a separate machine with a local Redis or MongoDB cache, or simply use
Prerender’s paid service.

NOTE  AngularJS animations require a browser that supports CSS3
animations. Recent versions of Chrome, Firefox, and Safari all support CSS3
animations. However, you need Internet Explorer 10 or greater for CSS3
animation support.

Introduction to Animations
AngularJS 1.1.5 introduced an exciting feature: the ability to use CSS3 animations to animate
transitions between views! Transitions can make your UI much more intuitive by demonstrating
navigation between pages through motion. For example, often mobile apps that utilize the master
detail design pattern slide detail views in from the right and then slide them out to the right. This
integrates particularly well with the common mobile browser convention that swiping left on a
page functions effectively triggers the “back” button. AngularJS animations make it easy for you to
integrate this functionality into your SPAs.

Similar to the ngRoute module, AngularJS animation support is in a separate ngAnimate module.
To use this module, you should download the version of angular‐animate.js corresponding
to your preferred version of the AngularJS core from http://code.angularjs.org. For your
convenience, the version of angular‐animate.js corresponding to AngularJS 1.2.16 is packaged
with this chapter’s sample code. Once you’ve included angular‐animate.js using a script tag, you
also need to add a dependency on the ngAnimate module:

 var booksModule = angular.module('booksModule',
 ['ngRoute', 'ngAnimate']);

www.it-ebooks.info

http://localhost:8080/part_iii_seo.html?_escaped_fragment_=/
http://code.angularjs.org
http://localhost:8080/part_iii_seo.html?_escaped_fragment_=/
http://www.it-ebooks.info/

212  ❘  CHAPTER 6   Templates, Location, and Routing

To effectively use the ngAnimate module, you need to understand the basics of the CSS3
@keyframes rule. The @keyframes rule is the primary building block for CSS3 animations: It allows
you to define a transition from one set of CSS values to another. For instance, here is an example
usage of the @keyframes rule that you’ll use in this section to cause a view to gradually move on to
the screen from the right:

@keyframes slideInRight {
 from { transform:translateX(100%); }
 to { transform: translateX(0); }
}

The most basic usage of the @keyframes rule uses the from and to keywords to indicate the
starting and ending state for the animation, respectively. At the start of the animation, the browser
applies the CSS styles corresponding to the from keyword and makes a linear transition to the
styles corresponding to the to keyword. In the preceding case, when the animation starts, the
associated element is translated off the far right of the screen, and at the end it is at its normal
position. However, the @keyframes rule only defines an animation at a high level. To add concrete
animations to your SPA, you need to use the CSS3 animation rule.

NOTE  For more sophisticated animations, the @keyframes rule allows you
to specify points in the animation by percentages. That is, you can tell the
@keyframes rule that your animation should have a certain set of CSS properties
22 percent through the animation and another at 48 percent. The from keyword
corresponds to 0 percent and the to keyword to 100 percent. However, this
functionality is typically only useful for creating compound animation: for
example, creating a bounce animation where an element slides to the left and
then slides back to the right. In the context of transitions between views in
AngularJS, however, this functionality is usually unnecessary, because an entry
animation like a fade or a slide‐in doesn’t require multiple components.

The CSS3 animation rule allows you to attach actual animations (that is, animations defined by the
@keyframes rule) to CSS selectors. Here’s an example of an ng‐enter CSS class you’ll be using in
this section that enables you to use the slideInRight @keyframes rule:

.ng-enter {
 animation:slideInRight 0.25s both linear;
}

Any element that has this ng‐enter CSS class is animated whenever it’s created (or whenever it’s
marked with the ng‐enter CSS class by JavaScript). Earlier, you specified four properties for the
animation. The first argument, the animation‐name property, is set to slideInRight, the name
of the @keyframes rule to use. The second argument, the animation‐duration property, is set to
0.25s, meaning that the animation should take place over 0.25 seconds. The third argument, the
animation‐fill‐mode property, is set to both, meaning that the from CSS styles of the keyframe
should be applied before the animation starts and the to CSS styles of the keyframe should persist

www.it-ebooks.info

http://www.it-ebooks.info/

Part III: Routing  ❘  213

after the animation finishes. Finally, the fourth argument, the animation‐timing‐function
property, is set to linear, meaning that the element should slide in at a constant speed.

Note that there’s nothing special about the name ng‐enter just yet. You can name this class
whatever you want and see the same effect, but the significance of the name ng‐enter will become
clear once you start using the ngAnimate module.

The ngAnimate Module in Action
Now that you have a basic grasp of how the CSS3 @keyframes and animation rules work, you’re
ready to add some basic animations to your book catalog SPA. You’re going to create a couple of
basic transitions between the master view and the detail view. Specifically, when a user clicks on a
book on the master view, the master view slides out to the left and the detail view slides in from the
right. Conversely, when the user clicks on the back link on the detail view, the detail view slides out
to the right and the master view slides in from the left. The overall effect is that the detail view is
“to the right of” the master view. You can see this example in action in this chapter’s sample code
under part _ iii _ animations.html.

To achieve this effect, you’re going to need four distinct animations. The master view needs to be
able to slide in from the left and slide out to the left, and the detail view needs to be able to slide in
from the right and slide out to the right. Thus, you’re going to need four @keyframes rules:

 @keyframes slideOutRight {
 to { transform: translateX(100%); }
 }
 @-moz-keyframes slideOutRight {
 to { -moz-transform: translateX(100%); }
 }
 @-webkit-keyframes slideOutRight {
 to { -webkit-transform: translateX(100%); }
 }

 @keyframes slideOutLeft {
 to { transform: translateX(-100%); }
 }
 @-moz-keyframes slideOutLeft {
 to { -moz-transform: translateX(-100%); }
 }
 @-webkit-keyframes slideOutLeft {
 to { -webkit-transform: translateX(-100%); }
 }

 @keyframes slideInRight {
 from { transform:translateX(100%); }
 to { transform: translateX(0); }
 }
 @-moz-keyframes slideInRight {
 from { -moz-transform:translateX(100%); }
 to { -moz-transform: translateX(0); }
 }
 @-webkit-keyframes slideInRight {
 from { -webkit-transform:translateX(100%); }

www.it-ebooks.info

http://www.it-ebooks.info/

214  ❘  CHAPTER 6   Templates, Location, and Routing

 to { -webkit-transform: translateX(0); }
 }

 @keyframes slideInLeft {
 from { transform:translateX(-100%); }
 to { transform: translateX(0); }
 }
 @-moz-keyframes slideInLeft {
 from { -moz-transform:translateX(-100%); }
 to { -moz-transform: translateX(0); }
 }
 @-webkit-keyframes slideInLeft {
 from { -webkit-transform:translateX(-100%); }
 to { -webkit-transform: translateX(0); }
 }

The ‐moz‐keyframes and ‐webkit‐keyframes rules are unfortunately necessary because, in current
versions of Chrome and older versions of Firefox, plain old @keyframes is not supported. Similarly,
you need to add ‐webkit‐animation and ‐moz‐animation to the actual CSS classes:

 .master-view.ng-enter {
 z-index: 1;
 -webkit-animation:slideInLeft 0.25s both linear;
 -moz-animation:slideInLeft 0.25s both linear;
 animation:slideInLeft 0.25s both linear;
 }
 .master-view.ng-leave {
 -webkit-animation:slideOutLeft 0.25s both linear;
 -moz-animation:slideOutLeft 0.25s both linear;
 animation:slideOutLeft 0.25s both linear;
 }

 .detail-view.ng-enter {
 z-index: 1;
 -webkit-animation:slideInRight 0.25s both linear;
 -moz-animation:slideInRight 0.25s both linear;
 animation:slideInRight 0.25s both linear;
 }
 .detail-view.ng-leave {
 -webkit-animation:slideOutRight 0.25s both linear;
 -moz-animation:slideOutRight 0.25s both linear;
 animation:slideOutRight 0.25s both linear;
 }

Note that the preceding CSS rules target multiple classes. That is, the .detail‐view.ng‐leave rule
is only applied to elements that have both the detail‐view class and the ng‐leave class. The reason
for targeting the detail‐view class is so you can specify a different animation for the detail view
than the master view. You can attach a CSS class to your views like so:

 <div ng-view="true"
 class="{{pageClass}}"
 style="position: absolute"
 autoscroll="true">
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion  ❘  215

You can then assign a value to the pageClass variable in each of your view’s controllers. For
instance, here’s what you can do in the master view’s controller:

 function BooksController($scope, $books) {
 $scope.pageClass = 'master‐view';
 // ... rest of code
 }

Now, the trickier question is, why the ng‐enter and ng‐leave classes? The ngAnimate module adds
these classes to elements that are being created or destroyed, respectively. In the particular case of
views in SPAs, when a view is about to be switched out, the ngAnimate module adds the ng‐leave
class and waits for the animations to finish before destroying the element. When a view is about to
be switched in, the ngAnimate module adds the ng‐enter class, waits for animations to finish, and
removes the ng‐enter class.

NOTE  You may have noticed that, in this section, the ngView element is set
to use position: absolute. One particularly tricky detail to get right with
animations is making sure that, although both the entering and leaving ngView
elements are visible, both elements are on the same level vertically. Typically,
when you have two div elements with the same parent, the second appears
below the first unless you reposition them with CSS. Using absolute positioning
is typically the easiest way to make sure one view doesn’t affect another’s
position during the animation process.

And that’s all the work you need to do to animate your SPA! Once you’ve included the ngAnimate
module, most of the work comes down to creating CSS classes. When you have the CSS classes
down, as long as your animations are well designed, you can make your app’s UI considerably more
intuitive.

CONCLUSION

Congratulations! You’ve just built your first AngularJS SPA, complete with search engine
compatibility and animations. SPAs are a powerful paradigm that gives the developer more fine‐
grained control over the page’s UX, as well as potentially better performance through a cleaner
separation of templates and data. However, SPAs aren’t the right choice for every application. For
simple search‐engine‐dependent sites like blogs, an SPA may be overkill if a simple static HTML
site is sufficient. In learning about SPAs, however, you also learned about AngularJS templates and
the $location service, which can infuse powerful functionality into conventional multiple‐page
applications. Thus, even if you decide an SPA isn’t the right choice for your application, you can still
derive benefits from templates and the $location service.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Services, Factories, and
Providers

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ The basics and benefits of dependency injection

➤➤ Inferred, annotated, and inline function annotation

➤➤ Tying your services into the dependency injector

➤➤ The three ways to create a service

➤➤ Common use cases for services

➤➤ Using providers to configure AngularJS

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

AngularJS is roughly equal parts library and framework. In addition to providing you with
sophisticated tools, it provides a structure for organizing your code. In particular, AngularJS’s
dependency injection supplies a framework for writing code that is highly reusable, highly
modular, and easy to unit test. If you’ve written an AngularJS controller before, you’ve used
dependency injection. For instance, in the next example, $scope and $http are services that
the dependency injector passes to the MyController function:

function MyController($scope, $http) {
 // Code here
}

You may have taken it for granted that AngularJS does some magic to pass the right
parameters to MyController so that you can access the correct $scope and make HTTP

7

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

218  ❘  CHAPTER 7   Services, Factories, and Providers

requests with $http. This particular magic is known as dependency injection, and $scope and
$http are services. A service is some JavaScript variable uniquely identified by its name that the
dependency injector knows about. Factories and providers are two ways to construct services that
you’ll learn about in this chapter.

A BRIEF OVERVIEW OF DEPENDENCY INJECTION

Dependency injection is a design pattern first coined by Martin Fowler in 2004 to manage
complexity in Java. Despite its beginnings in the Java community, dependency injection has spread
to scripting languages like JavaScript. In particular, Google’s emphasis on dependency injection
internally made it a core AngularJS feature from the beginning.

The general idea of Google‐flavored dependency injection is that business logic and dependency
construction should never happen in the same block of code. Or, to put it in more concrete terms, the if
keyword and the new keyword should never occur in the same function, with the exception of creating
data‐only objects. Although this principle is controversial, it is an integral part of how AngularJS
works. To take full advantage of AngularJS, you should understand the reasoning behind this principle.

Typically, large JavaScript codebases break up their code into small manageable functions and
objects. However, managing the interaction between these functions and objects becomes quite
tricky as your codebase grows. For instance, in AngularJS 1.2.16, the commonly used $http
service depends on six other services, and most AngularJS developers haven’t used them directly.
To make matters more confusing, some of these services have their own dependencies. The primary
purpose of dependency injection is to wrap the process of constructing the $http service and its
dependencies in a convenient way. This way, the end user doesn’t have to worry about the internals
of how the $http service is constructed, and someone working on the implementation of the $http
service doesn’t have to worry about how the underlying dependencies are constructed.

Of course, there is an alternative approach to using dependency injection: the singleton design
pattern. Instead of explicitly declaring dependencies in function parameters, you can rely on the
global state and create one instance of the $http service attached to the global window object. This
may seem like an appealing approach, because constructing a single global $http object seems like
it addresses the issue of abstracting away the $http object’s dependencies. However, AngularJS’s use
of the admittedly more complex dependency injection pattern isn’t born of a pedantic masochism:
There are tremendous benefits to using dependency injection.

Like all approaches that rely on the global state, the singleton pattern is difficult to unit test and is
inherently limited in its ability to adapt based on context. The reason the singleton pattern is tricky
to unit test is fairly straightforward: To stub out the $http object for one test, you have to modify
the global state and thus modify it for all tests. This puts extra onus on developers to clean up after
themselves and can introduce difficult‐to‐diagnose failures into your tests. The singleton pattern’s
inability to adapt to different contexts becomes clearer when you consider the most common
AngularJS service: the $scope service. Although it’s often sufficient to consider the $http service
as a singleton, the $scope service provides a different scope object for every controller. That’s
because the AngularJS dependency injector can inspect AngularJS’s internal state and your app’s
configuration to provide the correct scope object based on context, whereas a singleton requires a
separate indirection layer to make sure you got the correct scope.

www.it-ebooks.info

http://www.it-ebooks.info/

A Brief Overview of Dependency Injection  ❘  219

The $injector Service
Interestingly enough, the dependency injector itself is available as a service. The $injector service
provides access to the dependency injector object that AngularJS itself uses to create controllers,
services, and directives. The $injector service is not used frequently in production code (although
you will see a use case later in this chapter), but it is a convenient learning tool for exploring some of
the more subtle features of dependency injection.

You may have noticed that, to tell the dependency injector that you wanted the $http services, you
put it as a function parameter:

function MyController($http) {
 // Code here
}

Under the hood, AngularJS’s $controller service creates this controller using the $injector
service’s invoke() function. The invoke() function handles figuring out what parameters need to
be passed to the MyController function and executes the function. For instance, you can run the
MyController function using this:

$injector.invoke(MyController);

Or you can simply inline the function that the $injector service should execute:

$injector.invoke(function($http) {
 // Use $http here
});

In the previous code snippet, $http is a service registered with the dependency injector. However,
you’ll notice that, in the code, the omnipresent $scope parameter is absent. That’s because $scope
isn’t a service; it’s a local. For reasons that you’ll learn about when you start writing your own
services, the way AngularJS uses $scope is incompatible with services. To make this work, the
invoke() function actually takes three parameters. The second is a context (which you can ignore),
and the third is a map of locals. To properly inject a $scope variable, you would do something
like what follows. Once again, recall that this is an academic exercise to explain where the $scope
variable comes from. You will probably never use this code in a real application:

$injector.invoke(
 function($scope, $http) {
 // Use $scope, $http here
 },
 null,
 { $scope: {} });

NOTE  If you are a devotee to the singleton design pattern, try not to use it too
much in the context of AngularJS. Although the singleton design pattern has its
merits, using it means you’re fighting against one of AngularJS’s core tenants and
thus making your life more difficult by dividing your house against itself.

www.it-ebooks.info

http://www.it-ebooks.info/

220  ❘  CHAPTER 7   Services, Factories, and Providers

The $injector service is fairly simple, but there’s one important point that these examples have
glossed over: How does AngularJS know what parameters should be passed to the MyController
function? In the previous examples, you’ve simply assumed that AngularJS can figure out which
services and locals to pass in based on parameter names. Turns out, there are several ways to tell the
dependency injector which services to pass to your controller or service.

Function Annotations
In the context of AngularJS, a function annotation is how you tell the dependency injector which
services to inject into the function. The previous approach is called inferred function annotation,
because the dependency injector infers the services from the function parameters. AngularJS does
this by calling the toString() function: In JavaScript, calling toString() on a function returns
a string containing the full function definition, including parameter names. Inferred function
annotation is more intuitive and more commonly used than the other function annotation strategies.

Where the inferred function annotation strategy comes short, however, is when dealing with
JavaScript minifiers. Because browser‐side JavaScript is typically transferred over the Internet,
developers are often tasked with keeping JavaScript file size small for improved page load times. A
minifier performs operations like removing unnecessary whitespace to convert readable JavaScript
into a form optimized for file size. Aggressive minifiers take advantage of a technique called
mangling, which shortens commonly used variable names. For instance, if your code uses a variable
called $$ __ superInternalCache very often, a minifier with mangling may replace that variable
name with something shorter, like a.

Minifiers that mangle variable names can trip you up if you’re using inferred function annotation,
because your minifier may rename your $scope parameter to something else, say b. The dependency
injector will then look for a service named b as opposed to $scope. Most AngularJS developers use
inline function annotation to make sure the dependency injector knows which services to use even
after mangling variable names:

myModule.controller('MyController',
 ['$scope', '$http', function($scope, $http) {
 // Code
 }]);

The preceding approach works because minifiers never mangle the contents of strings—imagine a
minifier that mangled the text of error messages! The particulars of inline function annotation are
clearer when illustrated using the $injector service—that is, the dependency injector service:

$injector.invoke(['$scope', '$http', function(s, h) {
 // Code
}]);

Inline function annotation is represented by passing an array to the $injector.invoke() function.
When the $injector.invoke() function gets an array, it assumes that the last element in the array is
the function to execute, and every element before that represents a parameter that should be passed
into the function. Unlike inferred function annotation, inline function annotation doesn’t rely on
the function’s parameter names (or even the number of parameters) at all, which is why the previous
function can use s and h instead of $scope and $http.

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Services  ❘  221

NOTE  Some of the AngularJS documentation uses inline function annotation
without explaining the reasoning, so many AngularJS developers use inline
function annotation by default. This is not necessarily a good idea, because
inline function annotation is more difficult to read. Inline function annotation
also opens the door to the questionable practice of using different names for
AngularJS services, like scope instead of $scope, which further decreases
readability.

The third and oldest function annotation strategy is called $inject annotation. AngularJS veterans
may recall that this was the only function annotation strategy in AngularJS 0.9.x. Similar to the
inferred annotation strategy, you pass a function to $injector.invoke (or module.controller or
module.service) but give it an $inject property like this:

function MyController(s, h) {}
MyController.$inject = ['$scope', '$http'];

$injector.invoke(MyController);
myModule.controller('MyController', MyController);

When you pass a function to $injector.invoke, AngularJS first checks for an $inject property. If
it does not exist, the dependency injector falls back to inferred function annotation. This $inject
annotation strategy is not typically used, because it requires an extra line to declare the $inject
property and is thus more verbose. However, like inline function annotation, it does offer support
for minifiers that mangle variable names.

That’s all on function annotations. To recap, there are three strategies: inferred, inline, and $inject.
Inferred is the simplest and most commonly used, but it doesn’t behave well with minifiers that
mangle variable names. Inline and $inject enable you to use dependency injection with minifiers
that mangle variable names. They are essentially interchangeable, but inline function annotation is
considerably more popular in the AngularJS community.

BUILDING YOUR OWN SERVICES

Now that you have a basic understanding of how AngularJS dependency injection works, it’s time to
write some real services. Over the course of this section, you’ll use services to build a simple stock
market dashboard using the Yahoo Finance application programming interface (API). You may
notice that this code is similar to the Stock‐Dog application that’s used in other chapters. However,
this section expands on the Stock‐Dog code to demonstrate different ways of creating services, so
if you’ve dug into the Stock‐Dog code already, you’ll have a small head start. The code presented in
this section is available in this chapter’s sample code. (It’s independent of the Stock‐Dog codebase.)
You can run the sample code by simply opening the individual files in the browser using file:///.
A server is not required to view the Hypertext Markup Language (HTML) pages in this chapter.
However, one example utilizes a simple NodeJS web server (see provider _ backend.js in this
chapter’s sample code), so if you have not installed NodeJS yet, you should go to nodejs.org and
follow the installation instructions for your platform of choice.

www.it-ebooks.info

http://www.it-ebooks.info/

222  ❘  CHAPTER 7   Services, Factories, and Providers

AngularJS module objects have five functions that declare services to the dependency injector. The
three most common ways are the service(), factory(), and provider() functions alluded to in
this chapter’s title. In this section, you’ll first learn about the service() and factory() functions,
which are the most commonly used approaches to define custom services. Then you’ll learn about
the provider() function, which allows you to configure your services in sophisticated ways. Finally,
you’ll learn a little about the constant() and value() functions, which are not used often but can
be quite useful in certain situations.

The factory() Function
The first function you’ll learn about is the factory() function. This is the simplest and most
common way to create a service in AngularJS, and you will see it in virtually every AngularJS
codebase. Fundamentally, a factory is a function that the dependency injector uses to create an
instance of the service. Syntactically, a factory looks like this:

myModule.factory('$myService', function() {
 var myService = {};
 // Construct myService

 return myService;
});

The factory() function thus enables you to tell the dependency injector to use the given function to
construct your arbitrary $myService service. The return value of the given function is injected into
any function that lists $myService as a dependency. For example:

myModule.factory('$myService', function() {
 var myService = {
 foo: "bar"
 };

 return myService;
});

myModule.controller('MyController', function($myService) {
 console.log(myService.foo); // Prints "bar"
});

A factory can take parameters through dependency injection, so you can reuse services like $http
(or even your own custom services) in your services. Many AngularJS codebases like to use services
as wrappers around specific $http calls, so they don’t need to reuse the same logic in different
controllers. As a matter of fact, the factory you’ll be writing for your stock market dashboard does
precisely that. Just be careful not to introduce cycles in your dependency graph: If service A requests
service B from the dependency injector, and service B then requests service A from the dependency
injector, AngularJS throws an error.

Here’s an example of constructing a service that actually does something useful. The task of
building a stock market dashboard may seem daunting, but a good programmer always remembers
the Chinese proverb that “a journey of a thousand miles begins with a single step.” In that vein,
your first service is the simplest unit of work for building such a dashboard: Your service loads the

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Services  ❘  223

current Google stock price (Google’s stock ticker is GOOG). You can find this code in this chapter’s
sample code as factory.html. Once again, there is no server component to this chapter, so you can
just open this file directly in the browser or use your web server of choice:

<div ng-controller="MyController">
 <h1>Google Stock Price: {{price.quotes[0].Ask}}</h1>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var chapter7Module = angular.module('chapter7Module', []);

 chapter7Module.factory('$googleStock', function($http) {
 var BASE = 'http://query.yahooapis.com/v1/public/yql'

 �var query = encodeURIComponent (

 'select * from yahoo.finance.quotes where symbol in (\'GOOG\')');
 �var url = BASE + '?' + 'q=' + query +

 '&format=json&diagnostics=true&env=http://datatables.org/alltables.env';

 var service = {};
 service.get = function() {
 $http.jsonp(url + '&callback=JSON_CALLBACK').
 success(function(data) {
 if (data.query.count) {
 �var quotes = data.query.count > 1 ? data.query.results.quote :

[data.query.results.quote];
 service.quotes = quotes;
 }
 }).
 error(function(data) {
 console.log(data);
 });
 };

 service.get();
 return service;
 });

 function MyController($scope, $googleStock) {
 $scope.price = $googleStock;
 }
 </script>

The preceding $googleStock service is a prototypical example of how factories are typically used:
The factory creates a plain object, decorates it with some properties and functions, and returns the
object. (In JavaScript parlance, decorating an object means adding properties and methods to make
the object match a certain interface.) In addition, you will often see custom services as wrappers
around an $http call or several closely related $http calls.

There is one subtle yet crucial fact about services that makes them indispensible for wrapping $http
calls: Services are always singletons (although this term does not mean they use the global‐state‐
dependent singleton design pattern!) in the sense that there is one instance of the service that’s

www.it-ebooks.info

http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

224  ❘  CHAPTER 7   Services, Factories, and Providers

shared between all controllers and services that use it. In other words, if another controller on
the same page depended on the $googleStock service, the service would only execute the initial
$http call to the Yahoo Finance API once. This is extremely important for your app’s performance,
because typically the biggest bottleneck in AngularJS apps is $http calls, so you don’t want to incur
unnecessary round trips to the server. However, this is also why $scope isn’t a service: $scope needs
to be different in each controller, so having a $scope service wouldn’t make sense.

One common pattern for services that wrap $http calls you’ll see is demonstrated by the preceding
$googleStock service and its get() function. In this case, there is only one $http call, whose
sole responsibility is to load all the data from the API at once. That data can be hidden behind
a function or, as in the preceding case, exposed as a simple property of the service. In this case,
the $googleStock service loads a list of quotes from the Yahoo Finance API and exposes it as the
quotes property. AngularJS’s data binding (see Chapter 4) is sophisticated enough to know when
the $http call has returned and the quotes property has been updated.

This design pattern has an inherent trade‐off: Should the service itself handle reloading data, or
should it delegate that task to the controller? Typically, a service that uses this design pattern has
an initial call to load the data. Some services use the $interval service to periodically refresh the
data or even use web sockets to update the data in real time. However, other services may choose
to allow the controller to handle refreshing the data, perhaps whenever the user clicks a button.
Both of these approaches are common, and either can be right depending on the situation. Handling
refreshing in the service provides a convenient layer of abstraction and eliminates the possibility for
accidental redundant requests from different controllers. However, you may need different refresh
rules for different controllers, or you may need to tie the data refresh call into the user interface
(UI), in which case, delegating responsibility to the controller may be the right choice.

The service() Function
The redundantly named service() function is another convenient way of creating a service.
As you’ll see, the service() function offers essentially the same functionality as the factory()
function, with a few academic differences. Like the $inject function annotation strategy, the
service() function is a vestigial remnant from AngularJS’s experimental 0.9 versions. The
factory() function provides essentially equivalent functionality in a more elegant and modern
interface, but you will still see the service() function in use.

The difference between the service() function and the factory() function is that, whereas the
factory() function requires you to construct an object in your code and return it, the function you
pass to the service() function is executed using JavaScript’s new operator. In other words, when using
the service() function, you don’t have to explicitly construct and return a new object; you simply
need to attach properties to this. Here’s how using the service() function looks in real JavaScript:

myModule.service('$myService', function() {
 this.foo = "bar";
});

myModule.controller('MyController', function($myService) {
 console.log(myService.foo); // Prints "bar"
});

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Services  ❘  225

As you can see, the service() function is roughly equivalent to the factory() function. As a
matter of fact, you can pass the functions you used with factory() in the previous section into
the service() function and get the same result. The service() function is often more succinct.
However, the this keyword is confusing and difficult to use properly in JavaScript, and many
developers avoid using it out of principle. If you are going to use the service() function, be careful
when using the this keyword in nested functions. In this section’s sample code, you’ll see one of the
several approaches to minimizing your risk with using the this keyword.

NOTE  Depending on your definition of an object‐oriented programming
language, JavaScript may or may not be object oriented. What is for certain is
that common object‐oriented paradigms like inheritance, constructors, and the
this keyword exist in JavaScript, but they work in ways that will be completely
alien to developers who are used to languages like C++ or Java. Thankfully,
AngularJS doesn’t force you into attempting to approximate object‐oriented
programming in JavaScript.

In this section, you utilize the service() function to create a slightly more complex version of your
stock market dashboard using another common service design pattern. The problem this service
addresses is handling the case in which the user has a long list of stocks he wants prices for. In
fact, you assume the list is so long that loading the prices all at once from the Yahoo Finance API
is too slow. For the sake of convenience, assume that the following list of 11 technology stocks is
sufficiently long:

 var stocks = [
 'GOOG', // Google
 'AAPL', // Apple
 'MSFT', // Microsoft
 'YHOO', // Yahoo
 'FB', // Facebook
 'AMZN', // Amazon
 'EBAY', // Ebay
 'ADBE', // Adobe
 'CSCO', // Cisco
 'QCOM', // Qualcomm
 'INTC' // Intel
];

Instead of exposing a function to load the whole list and storing the last result like you did in the
previous section, you expose a function to load more stock prices and store all the prices loaded so
far. The user then has a convenient Load More button to request more data from the server. You can
find this code in this chapter’s sample code as service.html:

 <div ng-controller="MyController">
 <h1 ng-repeat="quote in stocks.quotes">
 {{quote.Symbol}}: {{quote.Ask}}
 </h1>

www.it-ebooks.info

http://www.it-ebooks.info/

226  ❘  CHAPTER 7   Services, Factories, and Providers

 Load More
 </div>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var chapter7Module = angular.module('chapter7Module', []);

 chapter7Module.service('$stocks', function($http) {
 var BASE = 'http://query.yahooapis.com/v1/public/yql'
 var _this = this;

 var stocks = [...];

 var load = function(stocks) {
 �var query = encodeURIComponent (

 'select * from yahoo.finance.quotes where symbol in (\'' + stocks.
join(',') + '\')');

 �var url = BASE + '?' + 'q=' + query +
 '&format=json&diagnostics=true&env=http://datatables.org/alltables.env';

 $http.jsonp(url + '&callback=JSON_CALLBACK').
 success(function(data) {
 if (data.query.count) {
 �var quotes = data.query.count > 1 ?

data.query.results.quote :
[data.query.results.quote];

 _this.quotes = _this.quotes.concat(quotes);
 }
 }).
 error(function(data) {
 console.log(data);
 });
 };

 this.quotes = [];
 this.getMore = function() {
 load(stocks.slice(this.quotes.length, this.quotes.length + 5));
 };

 this.getMore();
 });

 function MyController($scope, $stocks) {
 $scope.stocks = $stocks;
 }
 </script>

The preceding getMore() function is tied to the Load More button that allows the user to request
the stock price of the next five technology stocks from the Yahoo Finance API. This design pattern
may not seem terribly different from the one in the previous section, where you simply load all the
data at once, but it is sufficiently common and sufficiently different to warrant its own discussion.
The often‐used master‐detail design (in which you have a master view that lists items and a detail
view for detailed information for a specific item) often benefits from using this pattern to load

www.it-ebooks.info

http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

Building Your Own Services  ❘  227

elements in batches, particularly if the master list is long. This way, you don’t incur the massive
overhead of loading all the stocks at once.

Another important detail worth noticing is the _ this variable, which is set to be equal to this.
If you’re an experienced JavaScript developer, you may very well have seen something like this
before, but the reasoning for this may not be clear to the uninitiated. The short answer is that,
in JavaScript, this is a special variable that doesn’t necessarily respect the scope hierarchy that
JavaScript variables otherwise fall into. Note that the earlier load() helper function is declared
using the var keyword. Because of the way this function is declared, in the load() helper function
body, this refers to the global window object instead of to the service object. To make things more
confusing, this behavior is environment dependent; if you’re running tests in NodeJS, in the load()
helper function body, this refers to the NodeJS global object. However, if you were to attach the
load() helper function to the service—that is, this.load = function() {}—this would refer
to the service in the function body. In other words, the JavaScript this keyword is surprisingly
complex, and even seasoned JavaScript developers make mistakes with it.

One of the most common ways to sidestep the peculiarities of JavaScript’s function context is
to alias this as _ this so you can use it as a conventional JavaScript object with normal lexical
scoping. However, this (pun intended) is one of the primary reasons factory() is typically preferred
to service(). In JavaScript, constructing an empty object and decorating it with various functions
and properties is typically easier to write and understand than finagling with the this keyword.

NOTE  JavaScript functions have a lexical scope, which behaves much like a
scope in any programming language, and a context, which determines what this
refers to. The context is completely independent of the function’s lexical scope,
and the built‐in JavaScript functions call(), apply(), and bind() allow you to
modify and call JavaScript functions with arbitrary contexts. In other words,
this can refer to any object of any type depending on the function’s context,
and the object referred to by this doesn’t have to be in the function’s lexical
scope hierarchy. This is why, although JavaScript technically can be called an
object‐oriented programming language, writing JavaScript as if you were writing
Java or C++ is at best wasteful and at worst produces unmaintainable spaghetti
code. Use the this keyword judiciously: If your code is confusing to you, odds
are its also confusing to the next person who will work on it. In other words,
remember legendary computer programmer Brian Kernighan’s classic adage,
“Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.”

There is one more important detail about the relationship between the factory() and service()
functions that’s worth noting. Any service that you’ve registered using the factory() function can
be registered using the service() function with no change. However, the opposite is absolutely not
true: A service registered with the service() function probably won’t work right when registered
using the factory() function. This is due to one of JavaScript’s myriad peculiar quirks: A JavaScript
constructor can return a value, and, if that value is an object or an array, the resulting object of the

www.it-ebooks.info

http://www.it-ebooks.info/

228  ❘  CHAPTER 7   Services, Factories, and Providers

new operator will be the return value. Here’s a summary of JavaScript’s quirky behavior with return
values from constructors:

var Constructor1 = function() {
 this.value = "From Constructor";
 return { value: "From Return Value" };
};
console.log((new Constructor1()).value); // "From Return Value"

var Constructor2 = function() {
 this.value = "From Constructor";
 return;
};
console.log((new Constructor2()).value); // "From Constructor"

var Constructor3 = function() {
 this.value = "From Constructor";
 return 42;
};
console.log((new Constructor3()).value); // "From Constructor"

var Constructor4 = function() {
 this.value = "From Constructor";
 return [];
};
console.log((new Constructor4()).value); // undefined

Now that you’ve learned how to construct basic services using the mostly interchangeable
factory() and service() functions, you’re going to learn how to construct configurable services
using providers. The factory() and service() functions create services the same way every time,
but providers effectively enable you to switch which factory function the dependency injector uses to
construct a given function. In this next section, you learn about how providers work and why they
are useful.

The provider() Function
The provider() function is the most expressive way to create services, and, correspondingly, the
most complex. At a high level, the provider() function lets you determine which service to register
based on application‐wide configuration. As a matter of fact, under the hood, the factory() and
service() functions you just learned about are implemented as syntactic sugar on top of the
provider() function. For most cases, the provider() function is overkill, and you often build out
an entire AngularJS app without creating a single provider. However, as you’ll see in this section,
providers are extremely useful for testing and debugging. Furthermore, even if you don’t need to
write your own providers, many built‐in services expose configuration options through providers. In
this section, you’ll create your own provider for your stock market dashboard. After you’ve written
your own provider, you’ll use the built‐in $httpProvider and $interpolateProvider providers to
tweak some core AngularJS features.

So far, you’ve learned that providers allow you to construct different services based on application‐
wide configuration. But where does the application‐wide configuration come from? To answer this

www.it-ebooks.info

http://www.it-ebooks.info/

Building Your Own Services  ❘  229

question, you need to learn about AngularJS modules’ config() function. You may have used this
function before to configure your single-page app routing (see Chapter 9, “Testing and Debugging
AngularJS Applications”) or set the maximum number of times a $digest loop should execute
(see Chapter 4, “Data Binding”). These are just two examples of what the config() function can
do. The primary purpose of the config() function is to configure the application’s providers so
the application uses the correct services. The contents of a config() function are typically called
a configuration block. AngularJS runs your configuration blocks in order before any controllers,
services, or directives are instantiated. Syntactically, a configuration block looks like this:

var app = angular.module('myApp', []);

app.config(function($httpProvider) {
 // Use $httpProvider here
});

Note that configuration blocks are the only place where you can access providers through
dependency injection rather than the services themselves. For instance, you can’t access
$httpProvider in a controller:

app.controller('MyController', function($httpProvider) {
 // Error! $httpProvider can't be injected into a controller. Angular will
 // say it can't find $httpProviderProvider
});

In addition, you can only access providers in a configuration block, not concrete services. For
instance, you can’t access $http in a configuration block:

app.config(function($http) {
 // Error! AngularJS will say it can't find a provider
 // named $http
});

The preceding code represents roughly the extent of what you need to know about configuration
blocks to develop your own providers. Although they may seem intimidating, configuration blocks
are actually just a simple tool for interfacing with providers. Now that you understand how
configuration blocks work, you’re going to learn about providers by writing one.

A common application of providers is the ability to switch parameters like the server uniform
resource locator (URL) without having to tweak your business logic. This is particularly
useful for development and test environments. In particular, providers enable you to have
your production JavaScript communicate with your production server and your test JavaScript
communicate with your test server, without having to modify your business logic. As an example
of this particular application, you’re going to make the API endpoint that the $googleStock
service uses. To see this in action, here is the code from provider.html, which will be your
“production” application:

 <body>
 <div ng-controller="MyController">
 <h1>Google Stock Price: {{price.quotes[0].Ask}}</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

230  ❘  CHAPTER 7   Services, Factories, and Providers

 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="provider.js"></script>
 </body>

And your “development” application, provider _ dev.html, will be just slightly different. Note
that to get provider _ dev.html to work properly, you need to start the stubbed‐out Yahoo
Finance back end available in this chapter’s sample code as provider _ backend.js by running
node provider _ backend.js. This back end server mimics the Yahoo Finance API’s output format
but returns 42 for the stock price every time:

<html ng-app="chapter7Module">
 <head>
 <title></title>
 </head>

 <body>
 <div ng-controller="MyController">
 <h1>Google Stock Price: {{price.quotes[0].Ask}}</h1>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="provider.js"></script>
 <script type="text/javascript">
 chapter7Module.config(function($googleStockProvider) {
 $googleStockProvider.setEndpoint('http://localhost:8080/?');
 });
 </script>
 </body>
</html>

As a matter of fact, the development environment is identical, except for one configuration
block where you’re telling the provider to use the fake back end running on port 8080 on your
local machine. This setup is helpful for doing development work in a place where you have an
unreliable internet connection, or if you want to write tests that are independent of the Yahoo
Finance API.

Now that you’ve seen what the interface you want to provide looks like, it’s time to look at how
to actually implement this simple provider. This code is available in this chapter’s sample code as
provider.js:

var chapter7Module = angular.module('chapter7Module', []);

chapter7Module.provider('$googleStock', function() {
 var endpoint = 'http://query.yahooapis.com/v1/public/yql';
 �var query = encodeURIComponent (
 'select * from yahoo.finance.quotes where symbol in (\'GOOG\')');

 �var url = endpoint + '?' + 'q=' + query +
 '&format=json&diagnostics=true&env=http://datatables.org/alltables.env';

 this.setEndpoint = function(u) {
 url = u;

www.it-ebooks.info

http://localhost:8080/?
http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

Building Your Own Services  ❘  231

 };

 this.$get = function($http) {
 var service = {};
 service.get = function() {
 $http.jsonp(url + '&callback=JSON_CALLBACK').
 success(function(data) {
 if (data.query.count) {
 var quotes = data.query.count > 1 ?
 data.query.results.quote :
 [data.query.results.quote];
 service.quotes = quotes;
 }
 }).
 error(function(data) {
 console.log(data);
 });
 };

 service.get();
 return service;
 };
});

function MyController($scope, $googleStock) {
 $scope.price = $googleStock;
}

As you can see, the provider() function works somewhat like a wrapper around the service()
function. The actual function you pass to the provider() function is called using the new keyword,
so you can attach properties using the this keyword. Every provider must define a $get function,
which is what AngularJS uses to construct the actual service.

When constructing the service, the $get function is executed using the new operator, so you can
use either service() function or factory() function semantics (decorating this versus creating an
object, decorating it, and returning it). You’ll notice that the $get function is virtually identical to the
function you used to define the $googleStock factory. The only difference is the fact that the url and
corresponding variables have moved up into the provider scope; the rest of the function is identical.
Moving the url variable into the provider’s scope enables you to create the setEndpoint() function.
This function allows your configuration block to change the URL your server uses to load the stock
price. You can think of a provider as enabling you to expose an API for configuring your service.

One particularly interesting application of providers is that, because JavaScript allows you to
overwrite object properties, you can overwrite the provider’s entire $get function in a configuration
block. This lets you completely replace any service, whether your own custom service or a built‐in
service, in a configuration block. For instance, suppose you didn’t want to have a version of this
stock dashboard that didn’t rely on network input/output (I/O) at all and instead displayed a fixed
price. You can write a configuration block that overwrites the $googleStock service’s $get function:

 <body>
 <div ng-controller="MyController">
 <h1>Google Stock Price: {{price.quotes[0].Ask}}</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

232  ❘  CHAPTER 7   Services, Factories, and Providers

 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript" src="provider.js"></script>
 <script type="text/javascript">
 chapter7Module.config(function($googleStockProvider) {
 $googleStockProvider.$get = function() {
 return { quotes: [{ Ask: 100 }] };
 };
 });
 </script>
 </body>

Here, at configuration time, you’ve overwritten the entire $googleStock service to simply return
a hard‐coded object. You could just as easily replace the $http service or the $compile service,
although doing so is not recommended because AngularJS uses these built‐in services internally, too.

So far, you’ve learned the basics of working with providers. Providers are a layer on top of services
that enable you to define an API for configuring your services in configuration blocks. Although the
technical details are fairly straightforward, there are myriad use cases for services and providers.
In the next section, you explore a pair of use cases for services and providers and learn about their
corresponding design patterns.

COMMON USE CASES FOR SERVICES

In this chapter so far, you have learned the technical details of how to create services and providers,
but you’ve only scratched the surface of the benefits that services provide in the context of real
application development. In this section, you build out more of your stock market dashboard, and,
in the process, learn how to use services properly.

A common question AngularJS novices ask is, how do you share data between two controllers
on the same page? Once your applications become sufficiently complex that you have multiple
unrelated controllers in the same view, you still want to share certain pieces of information, like
“what user is currently logged in?” between the controllers. Some developers ameliorate this
difficulty by putting a top‐level controller on every page that’s responsible for loading common
data and attaching it to the page’s root scope. This may seem convenient, but this approach puts
dependency management into your HTML templates (because all your controllers depend on
the top‐level controller). This is awful for readability and fails to take advantage of AngularJS’s
dependency injector. It’s why, in general, services are the preferred approach for sharing state
between controllers.

The most important reason services are so excellent for sharing state between controllers is that,
as you saw earlier in this chapter, services are singletons. In the context of AngularJS, the term
singleton means that there is at most one instance of a service at any time during your application’s
life cycle. (Once again, don’t confuse this term with the common global‐state‐dependent singleton
design pattern.) For instance, say one of your controllers used the $http service and set a property
on the $http object, perhaps $http.foo = 5. After you do this, every other controller and service
that uses the $http service can see that $http.foo is equal to 5, because $http is the same object in
every controller and service.

www.it-ebooks.info

http://www.it-ebooks.info/

Common Use Cases for Services  ❘  233

The advantages of this may not seem clear when considering the $http service; however, think about
the alternative example of a $user service that tracks the currently logged‐in user. Suppose the purpose
of this service is to load the currently logged‐in user from an API endpoint and then enable the user to
change her profile picture. Further, suppose you have two completely independent controllers—one
that helps display your page’s navigation bar and one that enables the user to change her profile picture.
Both controllers depend on the $user service. Because the $user service is a singleton, there will be
only one $http request to load the data about the logged‐in user, and when one controller modifies the
user’s profile picture, the other controller’s $user service reflects the change. In this next section, you
apply this idea to build a minimal $user service for your stock market dashboard. You can find all the
code for this section in the stock _ dashboard.html file from this chapter’s sample code.

Building a $user Service
In this chapter so far, you’ve only displayed the prices for a hard‐coded list of stocks—either just
the Google stock price or an array of 11 technology company stocks. In this section, you expand
this functionality to allow an individual user to specify a list of stocks he’s interested in tracking.
Specifically, your $user service exposes an array of stock symbols, which your $stockPrices service
uses to know which stocks’ prices it should ask the Yahoo Finance API for. In this section, you don’t
create a server component to store and load the currently logged‐in user, because setting up a server
and a database adds a significant amount of complexity to this example and thus detracts from its
usefulness as a learning exercise. Thus, the save() and load() functions on the $user service are stubs,
but the design pattern is the same as if you had a real server. Here is what your $user service looks like:

 chapter7Module.factory('$user', function() {
 var user = {
 data: {
 stocks: ['GOOG', 'YHOO']
 }
 };

 user.load = function() {
 // Stub for server call
 };

 user.save = function(callback) {
 // Stub for server call;
 };

 user.load();
 return user;
 });

This service uses the factory() function, and, by default, the user is watching Google and Yahoo’s
stock prices. Furthermore, when the $user service is created, it automatically loads the currently
logged‐in user from the server. In this case, this operation is a stub, but converting it to a server call
is straightforward. There is only one controller that interfaces with this service directly: a controller
that enables the user to add new stocks to his watchlist:

 function ModifyStockListController($scope, $user, $stockPrices) {
 $scope.addToStockList = function(stock) {

www.it-ebooks.info

http://www.it-ebooks.info/

234  ❘  CHAPTER 7   Services, Factories, and Providers

 $user.data.stocks.push(stock);
 $user.save();
 $stockPrices.load();
 }
 }

This controller provides an interface for your HTML templates to be able to add a new stock to the
user’s watchlist, save the user’s information, and reload all the stock prices so the user has an up‐
to‐date snapshot. Here’s how an HTML template that utilizes ModifyStockListController might
look:

 <div ng-controller="ModifyStockListController">
 <h1>Add new stock:</h1>
 <input type="text" ng‐model="newStock">
 <input type="submit"
 ng‐click="addToStockList(newStock); newStock = '';">
 </div>

This particular example has a simple input field and a submit button that calls the addToStockList
function and empties the input field. These three code examples make up half of the services—
controllers that are in your stock market dashboard. The other half, primarily based on the
$stockPrices service, is responsible for actually loading and displaying the stock prices. This code
is the subject of the next section.

Building the $stockPrices Service
The $stockPrices service loads and displays the prices for the stocks in the $user service’s
watchlist. Once again, services are singletons, so the $stockPrices service has the same $user
object as the controllers. The $stockPrices service looks similar to the $googleStock service
from previous sections, but it gets its list of symbols from the $user service’s watchlist. Here’s the
$stockPrices service from stock _ dashboard.html:

 chapter7Module.factory('$stockPrices', function($http, $user, $interval) {
 var service = {
 quotes: []
 };
 var BASE = 'http://query.yahooapis.com/v1/public/yql';

 service.loading = false;
 service.load = function() {
 service.loading = true;
 �var query = encodeURIComponent('select * from yahoo.finance.quotes where '+'

 symbol in (\'' + $user.data.stocks.join(',') + '\')');
 var url = BASE + '?' + 'q=' + query +
 '&format=json&diagnostics=true&env=http://datatables.org/alltables.env';

 $http.jsonp(url + '&callback=JSON_CALLBACK').
 success(function(data) {
 service.loading = false;
 if (data.query.count) {
 var quotes = data.query.count > 1 ?

www.it-ebooks.info

http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

Common Use Cases for Services  ❘  235

 data.query.results.quote :
 [data.query.results.quote];
 service.quotes = quotes;
 }
 }).
 error(function(data) {
 console.log(data);
 });
 };

 service.load();
 $interval(service.load, 5000);
 return service;
 });

This service has a load() function that loads the full list of stock prices from the Yahoo Finance API.
Like many services that do asynchronous I/O, the load() function sets a loading flag to true when it’s
waiting for an HTTP request to return, so the UI can show a loading indicator to the user. In addition,
this service uses the $interval service, which you may have never seen before. The $interval service
is a convenience wrapper around JavaScript’s setInterval() function, which schedules a function to
execute repeatedly at a certain interval. The $interval service ties the setInterval() function into
data binding, so you don’t have to worry about calling $scope.$apply() in the function you pass to
the $interval service. In the $stockPrices service, you called the $interval service to schedule the
service.load function to execute every 5000 milliseconds (5 seconds).

Now that you have the $stockPrices service to load the prices for the stocks in the user’s watchlist,
it’s time to tie this service into the UI. To do this, you need a simple controller:

 function DisplayPricesController($scope, $stockPrices) {
 $scope.stockPrices = $stockPrices;
 }

The HTML that utilizes this controller should look pretty familiar from previous sections. The only
difference is that this HTML utilizes a simple loading indicator to inform the user when there’s an
outstanding HTTP request:

 <div ng-controller="DisplayPricesController">
 <h1>My Stock Prices</h1>
 <em ng‐show="stockPrices.loading">
 Loading...

 <div ng-repeat="quote in stockPrices.quotes">
 {{quote.Symbol}}: {{quote.Ask}}
 </div>
 </div>

Note that neither DisplayPricesController nor the HTML template have a dependency on the
$user service. Good services build layers of abstraction on top of other services. One symptom
of poorly designed AngularJS code is controllers and services with long dependency lists, because
each dependency makes your controller or service more complex. Ideally, your controllers
and services should have no more than five dependencies, and if you have a controller with

www.it-ebooks.info

http://www.it-ebooks.info/

236  ❘  CHAPTER 7   Services, Factories, and Providers

more than 10 dependencies, you should strongly consider breaking up the controller into more
manageable chunks. Services provide a nice framework for doing this: because they’re tied in to
dependency injection, you can create services that isolate complex pieces of functionality from
controllers. In the stock market dashboard example, you can easily combine the functionality
from DisplayPricesController and ModifyStockListController into a single controller.
However, having them separate makes them simpler and more manageable. If your controllers are
experiencing too much code bloat, you should split them into multiple controllers and services.

Now that you’ve learned of some use cases for services in the context of building real applications,
you have all the information you need to write your own basic services. For the rest of this chapter,
you switch gears and discover how you can use AngularJS’s built‐in providers to configure your
application. These built‐in providers allow you to tweak core AngularJS services in numerous,
surprising ways.

UTILIZING BUILT‐IN PROVIDERS

In the section on providers, you learned that providers enable you to configure services for use
in different applications and different environments. AngularJS’s built‐in providers offer some
limited yet exceedingly useful configuration options that enable you to tweak how AngularJS’s
core functionality works. In this section, you learn about three neat tricks you can do with built‐in
providers and configuration blocks. First you learn how to change the interpolation delimiters (that
is, the {{ }} symbols that you’ve used to tie in to data binding). Second, you learn about a tool to
protect your users from malicious links. Third and finally, you learn another way to extend the
AngularJS expression language with custom functions and values.

Custom Interpolation Delimiters
In certain cases, the default {{ }} interpolation delimiters can be limiting. For instance, the Go
programming language’s server‐side HTML templating package also uses {{ }} to delimit template
code, and this option is not configurable. Fortunately, you can easily modify AngularJS’s delimiters
in a configuration block using the $interpolationProvider provider. Here’s how you can use
square braces (that is, [[]]) as interpolation delimiters:

var myModule = angular.module('myModule', []);

myModule.config(function($interpolateProvider) {
 // Use [[]] to delimit AngularJS bindings, because using
 // {{ }} confuses Go
 $interpolateProvider.startSymbol('[[');
 $interpolateProvider.endSymbol(']]');
});

Now you can write your HTML templates using square braces as interpolation delimiters. For
example, here’s the custom _ delimiters.html example file from this chapter’s sample code:

 <div ng-controller="MyController">
 <h1>
 This app uses

www.it-ebooks.info

http://www.it-ebooks.info/

Utilizing Built‐In Providers  ❘  237

 [[delimiter]]
 as interpolation delimiters
 </h1>
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var myModule = angular.module('myModule', []);

 myModule.config(function($interpolateProvider) {
 $interpolateProvider.startSymbol('[[');
 $interpolateProvider.endSymbol(']]');
 });

 function MyController($scope) {
 $scope.delimiter = 'square braces';
 }
 </script>

The startSymbol and endSymbol functions allow you to set whatever custom delimiters you want.
For example, the AngularJS documentation uses // as the start and end delimiter in its sample code.
However, there’s a couple of good reasons why most applications don’t set custom delimiters. First,
most AngularJS developers are used to using {{ }}. Even if this is a minor tweak, it’s a minor tweak
across all your HTML templates, which adds an extra hurdle to working effectively with your
codebase. Second, curly braces have one big advantage over square braces or slashes: Curly braces
are explicitly not allowed in URLs (at least according to RFC 3986, the technical specification on
URLs). In other words, google.com/[[]].html is technically a valid URL, but google.com/{{}}.html
is not. Therefore, when using curly braces, you don’t have to worry about static URLs accidentally
confusing AngularJS’s interpolator.

In short, be careful with setting custom interpolation delimiters. The default delimiters are the right
choice for most applications. However, for cases like using AngularJS with the Go programming
language’s server‐side templating library, custom delimiters are indispensible.

Whitelisting Links with $compileProvider
AngularJS data binding is powerful, but its expressive nature has security implications. AngularJS
is designed to avoid common vulnerabilities by default, but it is easy to override the default settings
and unintentionally expose your users to malicious JavaScript if you aren’t careful. For example,
consider the following seemingly innocuous HTML:

<a ng-href="{{goodLink}}">This is a link!

To the untrained eye, this may seem safe, but warning sirens should be going off in your head when
you see code like this. The goodLink variable can redirect an unsuspecting user to any URL. If a
malicious user could set the value of the goodLink variable, they could make your page execute
arbitrary JavaScript by setting the goodLink variable to something like this:

hackerLink = 'javascript:window.alert(\'You just got hacked!\')';

www.it-ebooks.info

http://www.it-ebooks.info/

238  ❘  CHAPTER 7   Services, Factories, and Providers

This is a classic example of what web developers call a cross‐site scripting vulnerability, or an XSS
vulnerability for short. By default, AngularJS protects you from this by not allowing URLs to start
with javascript:. Specifically, the $compileProvider has a regular expression that it uses to
whitelist absolute URLs: Any URL that matches the whitelist regular expression is considered okay;
any URL that doesn’t is prefixed with unsafe? so clicking on it won’t redirect the user or execute
any JavaScript. Keep in mind that AngularJS converts URLs to absolute URLs (that is, /path to
protocol://domain/path) before checking if the URL matches the whitelist regular expression, so
your whitelist regular expression should assume an absolute URL.

You can get or set the whitelist regular expression using the $compileProvider provider’s
aHrefSanitizationWhitelist() function. The following code, from the xss _ vulnerable.html
file in this chapter’s sample code, demonstrates what happens when you set the whitelist regular
expression to accept any string:

 <div ng-controller="MyController">
 <a ng-href="{{goodLink}}">Google!
 <hr>
 <a ng-href="{{okLink}}">Not Google
 <hr>
 <a ng‐href="{{hackerLink}}">XSS Link
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var myModule = angular.module('myModule', []);

 myModule.config(function($compileProvider) {
 $compileProvider.aHrefSanitizationWhitelist(/.*/);
 });

 function MyController($scope, $http) {
 $scope.goodLink = 'http://www.google.com';
 $scope.okLink = 'http://www.notgoogle.com';
 $scope.hackerLink = 'javascript:window.alert(\'You just got hacked!\')';
 }
 </script>

Try clicking on the XSS link, and you’ll see an alert pop up. Naturally, you don’t want malicious
users running arbitrary JavaScript in your users’ browsers. By default, AngularJS 1.2.16 uses the
following regular expression to whitelist URLs:

/^\s*(https?|ftp|mailto|tel|file):/

This regular expression does a reasonable job of preventing exploits like the XSS example from
earlier. In particular, AngularJS blacklists any URLs that start with javascript:, which is the
most common source of XSS vulnerabilities. When you open the xss _ default.html file from this
chapter’s sample code in your browser, you see the first two links are whitelisted, and the third link,
the XSS link, is prefixed with unsafe:.

 <body>
 <div ng-controller="MyController">
 <a ng-href="{{goodLink}}">Google!

www.it-ebooks.info

http://www.google.com
http://www.notgoogle.com
http://www.it-ebooks.info/

Utilizing Built‐In Providers  ❘  239

 <hr>
 <a ng-href="{{okLink}}">Not Google
 <hr>
 <a ng-href="{{hackerLink}}">XSS Link
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var myModule = angular.module('myModule', []);

 myModule.config(function($compileProvider) {
 // Use default a[href] whitelist
 });

 function MyController($scope, $http) {
 $scope.goodLink = 'http://www.google.com';
 $scope.okLink = 'http://www.notgoogle.com';
 $scope.hackerLink = 'javascript:window.alert(\'You just got hacked!\')';
 }
 </script>
 </body>

This default is sufficient for most applications, but you may want to be strict and ensure users can’t
link to another website. In this case, the whitelist regular expression is helpful. In fact, you can
make it so that only links to, say, the google.com domain are allowed, and malicious users can’t
post links to Bing. Open the xss _ extra _ strict.html file from this chapter’s sample code in your
browser, and you’ll see that both the XSS link and the “Not Google” link are marked as unsafe:

 <body>
 <div ng-controller="MyController">
 <a ng-href="{{goodLink}}">Google!
 <hr>
 <a ng-href="{{okLink}}">Not Google
 <hr>
 <a ng-href="{{hackerLink}}">XSS Link
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var myModule = angular.module('myModule', []);

 myModule.config(function($compileProvider) {
 console.log($compileProvider.aHrefSanitizationWhitelist());
 $compileProvider.aHrefSanitizationWhitelist(
 /^https?:\/\/(www\.)?google\.com(\/.*)?/i);
 });

 function MyController($scope, $http) {
 $scope.goodLink = 'http://www.google.com';
 $scope.okLink = 'http://www.notgoogle.com';
 $scope.hackerLink = 'javascript:window.alert(\'You just got hacked!\')';
 }
 </script>
 </body>

www.it-ebooks.info

http://www.google.com
http://www.notgoogle.com
http://www.google.com
http://www.notgoogle.com
http://www.it-ebooks.info/

240  ❘  CHAPTER 7   Services, Factories, and Providers

And now you’ve successfully made it impossible for links in your application to link to anywhere
but Google. As you can see, providers let you do some useful high‐level configuration. The defaults
are sufficient for most applications, but you may find yourself needing to set custom delimiters or
disallow certain URLs. Configuration blocks and providers enable you to make these configuration
changes on a per‐application basis.

Global Expression Properties with $rootScopeProvider
One of the most common sources of confusion with AngularJS is the fact that expressions don’t
have access to functions and properties that are in the global scope, such as encodeURIComponent.
In Chapter 4, “Data Binding,” and Chapter 5, “Directives,” you learned that expressions are
the JavaScript code that you put into your templates via directives like ngClick. You may have
noticed that using the following code in your template won’t work because AngularJS thinks
encodeURIComponent is undefined:

{{ encodeURIComponent('A, B, & C') }}

In Chapter 4, you learned that you can ameliorate this issue by writing a filter to wrap the
encodeURIComponent function. However, there is also a neat way to enable you to expose
encodeURIComponent and any other value or function you may want to all your templates using
providers and configuration blocks.

AngularJS has a service called $rootScope. As you might have guessed, this service gives you access
to the root scope in your page’s scope tree—that is, the scope that’s an ancestor of every other
scope. In particular, properties attached to $rootScope are available in every scope on your page.
And, conveniently, AngularJS has a corresponding $rootScopeProvider that you can access in a
configuration block.

However, this is where you run into a small difficulty: $rootScopeProvider exposes no
configuration API in AngularJS 1.2.16. In other words, there’s no officially documented way to
configure $rootScopeProvider. Fortunately, as you learned earlier in this chapter, you can always
overwrite the $get function on $rootScopeProvider and thus return your own service. Although
this approach may seem hacky and impossible to maintain, the AngularJS dependency injector and
the fact that functions in JavaScript are first‐class members makes it possible to do this without
needing to duplicate the actual implementation of $rootScopeProvider.$get:

 <body>
 <div ng-controller="MyController">
 {{ encodeURIComponent(stringToEncode) }}
 </div>

 <script type="text/javascript" src="angular.js"></script>
 <script type="text/javascript">
 var chapter7Module = angular.module('chapter7Module', []);
 chapter7Module.config(function($rootScopeProvider) {
 var oldGet = $rootScopeProvider.$get;
 $rootScopeProvider.$get = function($injector) {
 var rootScope = $injector.invoke(oldGet);

 rootScope.encodeURIComponent = encodeURIComponent;

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion  ❘  241

 rootScope.stringToEncode = 'A, B, & C';

 return rootScope;
 };
 });

 function MyController($scope) {
 }
 </script>
 </body>

The fundamental idea in the preceding code is that the oldGet variable is a pointer to the
original $rootScopeProvider.$get function. Once you have this pointer, you can overwrite
the $rootScopeProvider.$get property to use the dependency injector to call the original $get
function and attach some additional properties to the service. This enables you to extend AngularJS
expressions in whatever way you choose in a configuration block.

NOTE  The previous example demonstrates the most common application of
the $injector service in real AngularJS applications. When the $injector
service is used, often it’s to achieve an “inheritance” effect like you see in the
previous code, such as attaching properties to a provider by overwriting its
$get function. Another application is simplified controller inheritance: running
$injector.invoke on a controller function to attach that controller’s functions
and properties to the current controller’s $scope.

CONCLUSION

In this chapter, you learned about the AngularJS dependency injector, the three ways to register
a service with the dependency injector, and some convenient tricks to configure AngularJS using
providers. Services provide a convenient framework for breaking up complex code into smaller,
more manageable chunks. In particular, because the dependency injector makes sure there is at most
one instance of any service, services are extremely useful as wrappers around data loaded from a
remote server via an HTTP request.

Providers are a layer on top of services that supply an API for configuring services using the
config() function. They are useful for exposing options such as which server the service should
load data from. In addition, built‐in providers let you configure core AngularJS services.

Now that you have read the basics of how services are created and what they’re useful for, you are
ready to explore the internal structure of just about any AngularJS application. Services are used
extensively in virtually any AngularJS application. If you find an app that doesn’t use services, odds
are it can be greatly simplified by adding a few well‐designed services.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Server Communication
WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ What promises are and why they’re useful

➤➤ How to make AJAX calls using $http

➤➤ Error handling using HTTP interceptors

➤➤ How to consume APIs using $resource

➤➤ RESTful API best practices using StrongLoop LoopBack

➤➤ Integrating AngularJS with web sockets

➤➤ Real‐time chat example using Firebase

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

WHY WILL I LEARN?

Most modern web applications need to communicate with a server. Whether you’re loading
data from a public REST application programming interface (API) or sending data to your
server for storage, server communication is the way your application acquires and persists
data. In this chapter, you discover the mechanisms that AngularJS provides for loading data
from APIs. You are exposed to basic best practices of RESTful APIs and generate a simple
NodeJS back‐end API server using StrongLoop’s LoopBack framework. You also learn about
AngularJS Hypertext Transfer Protocol (HTTP) interceptors, a powerful abstraction for
handling errors. Finally, you will discover two mechanisms for using AngularJS to build real‐
time applications: web sockets and Google’s Firebase framework.

8

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

244  ❘  CHAPTER 8   Server Communication

This chapter’s sample code uses NodeJS to serve as a back end for your HTTP requests and web
sockets. If you have not installed NodeJS yet, please navigate to nodejs.org/download and follow
the installation instructions for your operating system of choice. You will write a minimal amount
of server‐side JavaScript when you use LoopBack to generate a REST API. However, in the other
sections, you will not need to write server‐side JavaScript.

INTRODUCTION TO PROMISES

A promise is an object representing a value to be computed at some point in the future.
In other words, a promise is an object‐oriented construct for dealing with asynchronous
operations. JavaScript HTTP requests are asynchronous, meaning that code that makes
an HTTP request continues executing without waiting for the server to return a response.
Promises provide a convenient alternative to callbacks or event emitters for handling
asynchronous functions.

NOTE  You may have heard of the term REST, in phrases like REST API or
RESTful API. REST, which stands for Representational State Transfer, is a
paradigm for designing APIs that are accessed via HTTP. The most fundamental
principle of REST is to use HTTP methods to describe specific actions on
resources. Using the POST method tells the server to create a resource, GET to read
an existing resource, PUT to update an existing resource, and DELETE to delete an
existing resource. The operations create, read, update, and delete are commonly
abbreviated as CRUD operations.

NOTE  At the time of this writing, the two most common promise specifications
are Promises/A+ and ECMAScript 6. The ECMAScript 6 specification is
effectively a superset of Promises/A+. The two specifications are interoperable,
except that the ECMAScript 6 specification specifies several extra functions,
including catch() and all(). The promises returned by AngularJS’ $http
service support most of the features of the ECMAScript 6 standard, plus a few
convenient helpers. Promises are currently a fragmented concept, so you should
not write your code under the assumption that all ECMAScript 6 promises
features are available.

The core feature of promises is the then() function. This function is universal across the most
popular JavaScript promises libraries. It takes two function parameters: onFulfilled and
onRejected. Both parameters are optional: if onFulfilled or onRejected is not a JavaScript
function, it is ignored. These two functions are handlers for the only state transitions allowed
for a promise. Promises can be in one of three states: pending, fulfilled, or rejected. A promise
starts out in the pending state and then can transition to the fulfilled or rejected state. Once a

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Promises  ❘  245

promise is fulfilled or rejected, it can’t change state. Following is an example of the basic syntax
of promises:

var promise = new Promise();

promise.then(function(v) {
 console.log(v); // Prints "Hello, world"
});

promise.fulfill('Hello, world');

NOTE  One key feature of promises is that, if an onFulfilled function is
attached after the promise is already fulfilled, that onFulfilled function must
be called. In other words, if you surrounded the then() call in the preceding
example in a setTimeout() function, the preceding code would still print
“Hello, world,” after a small delay. Contrast this behavior with the event
emitter paradigm that is used heavily in Chapter 3, “Architecture.” Any listener
registered after you emit an event does not see that event. This contrast makes
promises a better choice for wrapping single asynchronous calls.

The then() function returns a new promise that wraps both the promise and the onFulfilled
function you passed to then(). In particular, your onFulfilled function can return a promise that
enables you to chain asynchronous calls. For instance, the following code prints out “hello, world”
(all lowercase) after 1 second:

var promise = new Promise();

promise.
 then(function(v) {
 var newPromise = new Promise();

 setTimeout(function() {
 newPromise.fulfill(v.toLowerCase());
 }, 1000);

 return newPromise;
 }).
 then(function(v) {
 console.log(v);
 });

promise.fulfill('Hello, world');

Note that the first then() call returns a promise. Promises are smart enough to know that if then()
returns a promise, the library should wait for the returned promise to be fulfilled before passing the
value down the then() chain.

Promises are an integral tool for interacting with HTTP requests in AngularJS. Now that you have
seen the basic concepts of promises, you will learn how HTTP requests work in AngularJS.

www.it-ebooks.info

http://www.it-ebooks.info/

246  ❘  CHAPTER 8   Server Communication

SERVICES FOR HTTP REQUESTS

As has already been stated, HTTP stands for Hypertext Transfer Protocol. You probably recognize
this acronym from web addresses, such as http://google.com. HTTP is the most common
mechanism for a web browser, like Google Chrome, to communicate with a server. For instance,
every time you visit http://google.com, your browser makes an HTTP request to Google’s servers
and receives a response containing the HTML for Google’s landing page. An HTTP response can
contain virtually any type of content: HTML, images, or even JavaScript Object Notation (JSON).

The contents of an HTTP request are governed by an intricate standard. But for the purposes of this
chapter, you are primarily concerned with four pieces of data associated with HTTP requests. The
first piece of data is the resource, which is typically the part of the uniform resource locator (URL)
after the domain name. For instance, when you navigate your browser to http://google.com/
maps, the HTTP request to Google specifies the resource as /maps. The second piece of data is the
method (sometimes referred to as the verb), which must be one of GET, HEAD, POST, PUT, DELETE,
TRACE, OPTIONS, CONNECT, or PATCH. The method distinguishes between different actions you may
want to take on a given resource. For instance, the POST method often means you want to create the
resource you’re requesting.

The third piece of information is the headers. The HTTP request headers are a set of key/value pairs
that help the server interpret the request. The particulars of which HTTP headers you need depend
on the server you are talking to. Finally, HTTP requests contain a body, which can hold additional
data for the request. For instance, when using the POST method, the message body typically
describes the resource you want to create. The HTTP requests you’ll create in this chapter will send
JSON in the message body.

The server responds to an HTTP request with an HTTP response. The response contains two
pieces of information that will be important for this chapter. The first is the status code, which
describes how the server handled the request. The particular semantics of individual status codes
is a deep subject that isn’t pivotal to understanding server communication in AngularJS. For the
purposes of this chapter, it suffices to know that HTTP status codes consist of three numbers,
and the first number indicates the high‐level semantics of the response. Status codes that start
with 2 (such as 200) indicate success. Status codes that start with 3 (such as 307) indicate that the
requested resource moved. Status codes that start with 4 (such as 404) indicate that the request was
invalid. Status codes that start with 5 (such as 500) indicate that the server experienced an error.
Because status codes must be three digits, these status code classes are commonly abbreviated with
the starting number followed by “xx.” For instance, status codes that start with 2 are commonly
abbreviated as “2xx status codes.”

The second important piece of information is the response body, which, like the request body,
contains additional data. In this chapter, the response bodies only contain JSON.

Browsers allow JavaScript to create and execute new HTTP requests (with some limitations
that you’ll learn about in this section). AngularJS has two services that wrap the native browser
XMLHttpRequest class: $http and $resource. The $http service is comparatively low level and
exposes a request and response abstraction around HTTP calls. The $resource service is more
high level and provides an object‐level abstraction—that is, loading and saving an object from the
server as opposed to making requests directly. Both interact with the server via HTTP. In these next

www.it-ebooks.info

http://google.com
http://google.com
http://google.com/
http://www.it-ebooks.info/

Services for HTTP Requests  ❘  247

two sections, you learn the differences between $http and $resource and how to use them both
effectively.

Note that the examples in this section utilize a NodeJS HTTP server to provide responses to
your browser’s HTTP requests. To run an example from this section’s sample code, first run npm
install from the root directory of this chapter’s sample code. Then run node server.js to start an
HTTP server on port 8080. Once you’ve started the HTTP server, you should be able to access the
interceptor _ example _ 1.html example by navigating to http://localhost:8080/interceptor_
example_1.html.

$http
The $http service is AngularJS’s low‐level wrapper around native browser HTTP requests. In this
section, you explore how to utilize the $http service to create HTTP requests, as well as how to
configure the $http service using HTTP interceptors.

The semantics of the $http service are straightforward: The $http service exposes several functions
to send an HTTP request to a server. These functions return a promise wrapper around the HTTP
response from the server, which you use to capture the data that the server returns. Promises are the
preferred mechanism of interacting with the $http service, which is why promises are important
enough to have their own section.

Like many concepts in this book, the easiest way to learn about $http promises is by looking at a
few basic examples. Typically, you will interact with the $http service by calling one of its HTTP
method shortcuts. The $http service has methods corresponding to the GET, HEAD, POST, PUT,
DELETE, or PATCH HTTP methods that create a new request with the given method. (There is also a
helper function for JSONP, which you will learn about later.) For instance, to create a new HTTP
request for the resource /maps with the GET method, you would use the following code:

$http.get('/maps');

The get() function returns an AngularJS HTTP promise that allows you to capture the eventual
response from the server, as well as any error that might have occurred. You can attach handlers to
the HTTP promise as shown here:

$http.get('maps').
 success(function(data, status, headers, config) {
 // data: parsed response body data
 // status: the response status code
 // headers: the HTTP response headers as a JavaScript map
 // config: the AngularJS http request configuration object
 }).
 error(function(data, status, headers, config) {
 // parameters have same semantics as earlier
 });

As you might have guessed, AngularJS executes the function passed to success() earlier when
the HTTP request succeeded (that is, the server responded with a 2xx status code, such as 200).
When the HTTP response indicates a failure (that is, the status code starts with 4 or 5, such as 404)
AngularJS executes the function passed to error(). Browsers typically follow redirect responses

www.it-ebooks.info

http://localhost:8080/interceptor_example_1.html
http://localhost:8080/interceptor_example_1.html
http://www.it-ebooks.info/

248  ❘  CHAPTER 8   Server Communication

(responses with 3xx status codes, such as 307), so your AngularJS HTTP handlers should never see
an HTTP 3xx status code.

Both the success and the error handler receive the same parameters. Typically, you will be most
concerned with the data parameter, which contains the parsed response body. For the purposes
of this chapter, the response body will always be JSON, and the $http service will automatically
parse the JSON into a JavaScript object for you. The status parameter contains the HTTP response
status code, which may be useful in interpreting the response. The headers parameter contains the
HTTP response headers, which, like HTTP request headers, contain key/value pairs that may aid in
interpreting the response. Finally, the config parameter contains the configuration of the original
HTTP request, including the method, resource, and any custom headers you may have added.

Because JavaScript is flexible with the number of parameters a function should take, you can omit
the last few parameters in your success and error handlers. For instance, success and error handlers
that only take a data parameter are common:

$http.get('maps').
 success(function(data) {
 // Use data
 }).
 error(function(data) {
 // Use data
 });

This may seem heretical to developers who aren’t familiar with JavaScript, but you can call any
JavaScript function with any number of parameters. Even though AngularJS passes all four
arguments to your handlers, your handlers can be functions that take a single parameter.

NOTE  Note that, in the context of AngularJS’s $http service, the term promise is
used somewhat loosely. The $http service promises are typically used with different
syntax than the promises you learned about in the “Introduction to Promises”
section. However, $http service promises are technically compatible with both
the Promises/A+ spec and ECMAScript 6 spec. For instance, given a function
fn = function(data) {}, the usual $http.get('/test').success(fn) syntax is
equivalent to $http.get('/test').then(function(res) { fn(res.data); }).

Setting the HTTP Request Body
Typically, HTTP GET requests don’t set a request body. However, in the RESTful paradigm, POST
requests are used to create new resources. The preferred mechanism to describe the resource
that a POST request wants to create is with JSON in the request body. The $http service makes
setting the request body simple. Suppose you wanted to make a POST request with the JSON data
{ name: 'AngularJS' } to the server. You could make the request as shown here:

var body = { name: 'AngularJS' };

$http.post('/test', body).

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  249

 success(function(data) {
 // Handle response in the same way as get
 });

Note that you must pass a JavaScript object as the second parameter to the $http.post() function,
not a JSON string. The $http service takes care of converting the object to a string for you.

JSONP and Cross Site Scripting (XSS)
One important limitation on browser HTTP requests that often surprises new web developers
is that you cannot make HTTP requests to different domains. For instance, if your JavaScript is
executed on a page on the foo.com domain, you can only make HTTP requests to URLs on the
foo.com domain. For instance, you can use the $http service to request foo.com/resource1 or
subdomain1.foo.com/resource2. This is a security restriction built into modern browsers.

However, there is a limited way to do cross‐domain requests in JavaScript. JSONP, or “JSON with
padding,” utilizes the fact that you can load data from remote domains using HTML script tags.
Fundamentally, JSONP inserts a script tag into the page, and the server responds with JavaScript
code that contains the response data. AngularJS’s $http.jsonp() function abstracts out the client‐
side code for implementing JSONP. As long as the remote server supports JSONP, you can use
$http.jsonp() to make an HTTP request to the remote server in the same way you use other $http
helpers. For instance, sample code in Chapter 7, “Services, Factories, and Providers,” uses JSONP to
load data from the Yahoo! Finance API, which runs on a remote domain:

$http.jsonp('http://query.yahooapis.com/v1/public/yql').
 success(function(data) {
 }).
 error(function(data) {
 });

Note that the remote server must be configured to support JSONP. Not all REST APIs support JSONP;
the preceding example works only because the Yahoo! Finance API is configured to support JSONP.

HTTP Configuration Objects
So far in this chapter, you have used the $http service’s helper functions, like get() and post().
However, the $http service exposes a much more general set of configurable parameters. In
particular, you can use these configuration objects to set parameters like HTTP headers, the request
body, and whether to use AngularJS’s request cache. As a matter of fact, the $http service itself is
a function that takes a single parameter: the request configuration object. For instance, the two
HTTP calls in the following code are equivalent:

// Using the .get() helper...
$http.get('/test').
 success(function(data) {});

// is the same as passing a configuration option
// with 'method: 'GET'' to the $http() function.
$http({ method: 'GET', url: '/test' }).
 success(function(data) {});

www.it-ebooks.info

http://query.yahooapis.com/v1/public/yql
http://www.it-ebooks.info/

250  ❘  CHAPTER 8   Server Communication

The $http service supports numerous configuration options. The most commonly used ones are
listed next:

➤➤ method—The HTTP method as a string, whether GET, POST, PUT, DELETE, HEAD, or JSONP.

➤➤ url—The absolute URL or the resource as a string. For instance, '/test'.

➤➤ params—A JavaScript object or string representing query parameters to be appended to
the end of the URL in uniform resource identifier (URI)‐encoded form. For instance,
{ a: 1, b: 2 } is appended to the end of the URL as "?a=1&b=2".

➤➤ data—The request body as a JavaScript object.

➤➤ headers—A JavaScript object that represents a map of HTTP headers. For instance, passing
{ a: 1, b: 2 } creates an HTTP request with two headers, a and b, with values 1 and 2,
respectively. AngularJS ignores properties whose value is null or undefined.

➤➤ timeout—The number of milliseconds to wait for a response before triggering the error
handler. Rather than specifying the number of milliseconds, you can set this property to a
promise. The request times out when the promise is fulfilled unless it has already received a
response.

In addition to passing the configuration to the $http() function directly, you can set configuration
options in the $http service’s helper functions. The $http.get() function takes a second parameter:
the configuration object. For instance, you can set the GET request’s query parameters and header
information as shown next:

// GET /test?q=AngularJS, with "user" header set
// to "mobile"
$http.get('/test',
 {
 params: { q: 'AngularJS' },
 headers: { user: 'mobile' }
 });

The $http.post() and $http.put() functions take the configuration object as their third parameter,
after the request body:

// POST /test?q=AngularJS, with "user" header set
// to "mobile", and "{ 'data': 'sample'}" as the body
$http.post('/test',
 {
 data: 'sample'
 },
 {
 params: { q: 'AngularJS' },
 headers: { user: 'mobile' }
 });

Setting Default HTTP Headers
Although you won’t be relying on custom HTTP headers in this chapter’s examples, many projects
rely on headers for use cases like authentication. If your project requires sending custom headers,
you should know that AngularJS gives you several mechanisms for automatically attaching headers

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  251

to HTTP requests. Specifically, there are four ways that you can add headers to an HTTP request in
AngularJS.

First, you can set headers on an individual HTTP request using the $http service. This is the most
fine‐grained way to set HTTP request headers:

$http.get('/maps',
 { headers: { myHeaderKey: 'myHeaderValue' } });

The $http service also has a defaults.headers object that defines headers that are added to all
HTTP requests. Typically, you interact with this object in a run() block. For instance:

var myModule = angular.module('myModule');
myModule.run(function($http) {
 $http.defaults.headers.common.myCustomHeader =
 'myCustomHeaderValue';
});

This second method sets the myCustomHeader header for all HTTP requests, regardless of method. The
defaults.headers object has several other properties, however. For instance, you can manipulate the
defaults.headers.get object to set default headers for only those HTTP requests whose method is GET:

var myModule = angular.module('myModule');
myModule.run(function($http) {
 $http.defaults.headers.get.myCustomHeader =
 'myCustomHeaderValue';
});

The third mechanism you can use to set default HTTP headers is using the $httpProvider provider.
If you want to learn more about the difference between services and providers, Chapter 7 includes a
thorough discussion of the subject. For the purposes of this section, however, it suffices to know that
you can only access the $httpProvider provider in a config() function. Otherwise, the semantics
are identical to setting the defaults.headers object on the $http service. For instance, to set the
myCustomHeader header for all HTTP requests with method POST with $httpProvider, you would
use the following code:

var myModule = angular.module('myModule');
myModule.config(function($httpProvider) {
 $httpProvider.defaults.headers.post.myCustomHeader =
 'myCustomHeaderValue';
});

The fourth way to attach headers to an HTTP request involves AngularJS’s ability to run functions
on HTTP requests and responses before executing them. This functionality is exposed through
HTTP interceptors, which enable you to define application‐specific transformations at configuration
time. Interceptors are the subject of the next section.

Using HTTP Interceptors
Interceptors are AngularJS’s most flexible method for defining application‐level rules for handling
HTTP requests. This definition may sound vague, so consider the following task: Suppose you
wanted to attach the HTTP response status to the body of every HTTP response so you could more

www.it-ebooks.info

http://www.it-ebooks.info/

252  ❘  CHAPTER 8   Server Communication

easily tie the response status into your HTML. You could easily attach the status in every HTTP
handler, as in the code that follows:

$http.get('/sample.json').
 success(function(data, status) {
 data.status = status;
 // Use data
 }).
 error(function(data, status) {
 data.status = status;
 // Use data
 });

However, you would have to remember to put the data.status = status; line in every HTTP
handler, which is repetitive and error prone. Interceptors enable you to define a general rule for
your application that attaches the HTTP status for you. You can find the following code in the
interceptor _ example _ 1.html file in this chapter’s sample code. Don’t forget that you need to start
an HTTP server by running node server.js before opening this file in your browser as http://
localhost:8080/interceptor_example_1.html:

 <script type="text/javascript">
 var m = angular.module('myApp', []);

 m.config(function($httpProvider) {
 $httpProvider.interceptors.push(function() {
 return {
 response: function(response) {
 response.data.status = response.status;
 return response;
 }
 }
 });
 });

 m.controller('httpController', function($scope, $http) {
 $http.get('/sample.json').success(function(data) {
 console.log(JSON.stringify(data));
 });
 });
 </script>

As in the preceding code, HTTP interceptors are defined as an array on the $httpProvider
provider. Because providers can only be accessed in config() functions, interceptors must be
defined in a config() function. An interceptor itself is a JavaScript object with an (optional)
function response that defines how this interceptor transforms responses. This function takes a
single parameter: a response object that contains all the information associated with the response,
including the body, status, and headers. Following is the response object generated by the HTTP
request in the interceptor _ example _ 1.html example:

{
 "data": {
 "success": true

www.it-ebooks.info

http://localhost:8080/interceptor_example_1.html:
http://localhost:8080/interceptor_example_1.html:
http://www.it-ebooks.info/

Services for HTTP Requests  ❘  253

 },
 "status": 200,
 "config": {
 "method": "GET",
 "transformRequest": [
 null
],
 "transformResponse": [
 null
],
 "url": "/sample.json",
 "headers": {
 "Accept": "application/json, text/plain, */*"
 }
 },
 "statusText": "OK"
}

The preceding highlighted snippets show where the body, status, and headers are defined.
The body is accessed as response.data, the status as response.status, and the headers as
response.config.headers.

NOTE  The response object’s statusText property contains the canonical
(according to IETF RFC 2616 section 6.1.1) text equivalent to the numeric
HTTP status. For instance, a response status of 200 means that statusText will
always be OK and vice versa. Every other response status has a corresponding
statusText; for instance, 404 corresponds to Not Found.

Note that the response function must return the modified response; it provides an additional
level of flexibility for interceptors. In other words, the response function can return an
entirely new HTTP response. In fact, AngularJS supports the response function returning a
promise, which means your interceptor can even make additional HTTP requests and utilize
those responses. Be careful not to go overboard with making HTTP calls in interceptors, though:
You can easily get stuck in an infinite loop because interceptors are executed on all HTTP
requests.

Request Interceptors
Interceptors can transform HTTP requests as well as responses. Your interceptor can define a
request function that takes the HTTP request configuration as a parameter. Like the response
function, the request function must return the modified HTTP request.

A common use case for request interceptors is setting an HTTP authorization header for each
request. In other words, you can use interceptors to attach credentials to each request (although
whether you actually need to do so depends on your server). This use case highlights another
important feature of interceptors: They are tied in to dependency injection, so your interceptors can
access your services. This is particularly elegant because, as explained in Chapter 3, tracking the

www.it-ebooks.info

http://www.it-ebooks.info/

254  ❘  CHAPTER 8   Server Communication

currently logged‐in user is best done with a service. The following example code, which you can find
in interceptor _ example _ 2.html, defines a stubbed‐out userService that your request interceptor
uses to get credentials:

 var m = angular.module('myApp', []);

 m.factory('userService', function() {
 return {
 getAuthorization: function() {
 return 'This is a fake authorization';
 }
 }
 });

 m.config(function($httpProvider) {
 $httpProvider.interceptors.push(function(userService) {
 return {
 request: function(request) {
 request.headers.authorization =
 userService.getAuthorization();
 return request;
 },
 response: function(response) {
 response.data.status = response.status;
 return response;
 }
 }
 });
 });

The interceptor you defined earlier receives userService from the dependency injector and uses it to
generate credentials. The interceptor then attaches these credentials to the request’s authorization
header. Thanks to the elegance of dependency injection, the httpController code from the
interceptor _ example _ 1.html example remains unchanged, even though the HTTP request now
interacts with userService:

 m.controller('httpController', function($scope, $http) {
 $http.get('/sample.json').success(function(data) {
 console.log(JSON.stringify(data));
 $scope.data = data;
 });
 });

Adding HTTP request headers is the most common use case for HTTP request interceptors.
However, your interceptors can modify the request’s method, body, or even its resource. Following
is the request parameter that’s passed to the request function in the interceptor _ example _ 2.html
example:

{
 "method": "GET",
 "transformRequest": [

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  255

 null
],
 "transformResponse": [
 null
],
 "url": "/sample.json",
 "headers": {
 "Accept": "application/json, text/plain, */*"
 }
}

The method, url, and headers properties shown earlier correspond to the request’s method,
resource, and headers. The request’s body, if any, is contained in a data property that you can
access with request.data. However, GET requests (as well as HEAD requests) typically don’t have a
body, so the data property is undefined in the preceding example.

NOTE  In other tutorials, you may see the authorization header called the
Authorization header. RFC 2616 section 4.2 specifies that HTTP header
names are case insensitive, so these two are equivalent. Whether you prefer the
capitalized version or not is a matter of personal preference. This chapter uses
lowercase (that is, authorization) to be consistent with the book’s JavaScript
variable naming style.

Error Interceptors
You can also use interceptors to capture HTTP errors. Your interceptor can specify requestError
and responseError functions that are called upon to handle request errors and response errors,
respectively. The requestError and responseError functions interact with promises rather than
with requests and responses directly. However, these functions utilize AngularJS’s $q service, which
is a port of the popular NodeJS promises library Q. The $q service’s syntax is more in line with the
Promises/A+ spec, so don’t be surprised that the syntax differs from the promises that the $http
service generates.

NOTE  The $q service is AngularJS’s preferred mechanism of generating
promises. Although interceptors are (in theory) compatible with other Promises/
A+ conformant promises libraries, such as Q and Bluebird, the $q service is the
safest choice for use with AngularJS.

The primary mechanism you will be using to interact with the $q service in this
chapter is the $q.defer() function. The $q.defer() function returns a promise
object that your asynchronous operations can then call promise.resolve(value)
or promise.resolve(error) on.

www.it-ebooks.info

http://www.it-ebooks.info/

256  ❘  CHAPTER 8   Server Communication

Because the requestError and responseError functions can return promises, you can attempt to
recover from the error with additional asynchronous calls. For instance, the example used in this
chapter is recovering from a session timeout. Suppose your user left a browser tab open for several
days and his session expired. The next time the user attempts to save his data, your server says that
the user is not logged in. Many JavaScript apps either fail silently or fall back to redirecting the user.
However, with the power of interceptors, your app can handle this more gracefully.

To use error interceptors to handle session timeouts gracefully, your userService needs to define
an asynchronous function that prompts the user to log in. Promises don’t necessarily need to wrap
asynchronous HTTP calls. You can use promises to wrap any asynchronous behavior—even waiting for
the user to enter a password. In this example, you tie your userService into a simple password prompt.
You can find this example in the interceptor _ example _ 3.html file in this chapter’s sample code:

 var m = angular.module('myApp', []);

 m.factory('userService', function($q, $rootScope) {
 var password = '';

 var service = {
 getAuthorization: function() {
 return password;
 },
 authenticate: function() {
 var promise = $q.defer();

 $rootScope.promptForPassword = true;
 $rootScope.submitPassword = function(pwd) {
 $rootScope.promptForPassword = false;
 password = pwd;
 promise.resolve(pwd);
 };

 return promise.promise;
 }
 };

 return service;
 });

The preceding code defines a simple asynchronous password prompt. Once any AngularJS code
calls userService.authenticate(), the prompt is displayed. The authenticate() function returns
a promise that is resolved when the HTML calls the submitPassword() function. Following is the
HTML corresponding to the authenticate() function:

 <div ng-if="promptForPassword">
 <hr>
 <h2>Please Enter the Password</h2>
 <form ng-submit="submitPassword(password)">
 <input type="text" ng-model="password">
 <input type="submit" value="Submit">
 </form>
 </div>

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  257

To illustrate an HTTP error status, the server.js file you are using as an HTTP server defines
a POST /save route. This route returns an HTTP 401 status (Unauthorized) if the HTTP
authorization header is not equal to the string "Taco". Following is the httpController code
modified to make an HTTP POST request to the /save resource:

 m.controller('httpController', function($scope, $http) {
 $http.post('/save').success(function(data) {
 console.log(JSON.stringify(data));
 $scope.data = data;
 });
 });

Of course, you need to define an interceptor to set the authorization header. Thankfully, the
request interceptor you defined in the “Request Interceptors” subsection is general enough that the
changes to userService are sufficient. What ties all this code together and prompts the user for the
password on an HTTP 401 is a responseError interceptor as shown here:

 m.config(function($httpProvider) {
 $httpProvider.interceptors.push(function($q, $injector, userService) {
 return {
 request: function(request) {
 request.headers.authorization =
 userService.getAuthorization();
 return request;
 },
 response: function(response) {
 response.data.status = response.status;
 return response;
 },
 responseError: function(rejection) {
 if (rejection.status === 401) { // Unauthorized
 console.log('Rejected because unauthorized with password ' +
 userService.getAuthorization());

 return userService.authenticate().then(function() {
 return $injector.get('$http')(rejection.config);
 });
 }

 return $q.reject(rejection);
 }
 }
 });
 });

As you can see, the interceptor utilizes the $q service to interact with the rejection object
and return the correct promise. If the server returns an error that isn't an HTTP 401, the error
interceptor ignores the error. Note that you still need to execute the return $q.reject(rejection);
code to tell AngularJS that a given error interceptor does nothing.

When the server returns an HTTP 401, it is more interesting. In this case, the interceptor activates
the password prompt and waits for the user to enter in a password. The interceptor returns an
entirely new promise: the one returned by userService.authenticate().

www.it-ebooks.info

http://www.it-ebooks.info/

258  ❘  CHAPTER 8   Server Communication

Note that you would normally use a modal (a JavaScript pop‐up) to prompt a user to log in. The
Angular‐UI Bootstrap modals you will learn about in more detail in Chapter 10, “Moving On,” are
an excellent choice for integrating with the interceptor API. To integrate the Angular‐UI Bootstrap
$modal service with your interceptor, you only need to know two of its numerous features. First,
the $modal service has an .open() function that takes a configuration object in which you can
specify a template and a controller. Second, the return value from $modal.open() has a result
property that is a promise wrapper around the user closing the modal. The following sample code
demonstrates how you can utilize the $modal service’s promise return value to integrate with HTTP
interceptors. You can find the following example in the interceptor _ example _ modal.html file in
this chapter’s sample code:

 m.factory('userService', function($q, $injector) {
 var password = '';

 var service = {
 getAuthorization: function() {
 return password;
 },
 authenticate: function() {
 var $modal = $injector.get('$modal');

 var modal = $modal.open({
 template: '<div style="padding: 15px">' +
 ' <input type="password" ng-model="pwd">' +
 ' <button ng-click="submit(pwd)">' +
 ' Submit' +
 ' </button>' +
 '</div>',
 controller: function($scope, $modalInstance) {
 $scope.submit = function(pwd) {
 $modalInstance.close(pwd);
 };
 }
 });

 return modal.result.then(function(pwd) {
 password = pwd;
 });
 }
 };

 return service;
 });

The error interceptor returns a promise that performs two actions. First, it calls userService
.authenticate() and waits for the user to type in the password. Then, once the user has entered a
password, the interceptor uses the rejection.config object to “retry” the original HTTP request.
As long as the user keeps entering incorrect passwords, the server continues to return HTTP 401
errors, and the request interceptor continues to save the original HTTP request until your user
enters the correct password. This means that your user doesn’t have to leave the page to re‐enter
his password and thus doesn’t have to lose his data if his session timed out. It’s certainly a big
improvement over redirecting the user to a login page and wiping out his form data!

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  259

The $resource Service
The $resource service is a high‐level abstraction around $http that allows you to operate at the
abstraction of objects loaded from the server rather than at the level of individual HTTP requests
and responses. The $resource service allows you to create a convenient wrapper around a REST
API enabling you to perform CRUD operations without directly creating HTTP requests. In other
words, rather than creating a JSON object and then creating an HTTP request with method POST
to persist the object to the server, you use the $resource service to create an object with a save()
function that creates the correct HTTP POST request for you.

NOTE  The $resource service is not part of the AngularJS core. To use it,
you must include the angular-resource.js file and add a dependency on
the ngResource module. For your convenience, version 1.2.16 of the
angular-resource.js file has been included with this chapter’s sample code.

The $resource service itself is a function that creates these REST API wrapper objects. The
$resource service uses strict REST conventions by default, but you can extend it to fit virtually
any RESTful API. Many APIs use RESTful conventions without defining a full REST API. For
instance, the Twitter API v1.1 (which you will use in this section) does not have a route to enable
you to update a tweet. Furthermore, deleting a tweet requires a POST request rather than a DELETE
request. In addition to scaffolding REST APIs, the $resource service enables you to create a layer of
abstraction on top of quirky APIs like Twitter’s.

The $resource function has the following signature. Note that square brackets mean the parameter
is optional and may be omitted:

$resource(url, [paramDefaults], [actions], options);

This function returns a resource object that has a set of functions called actions. Each action
corresponds to a different class of HTTP requests. In other words, you define an action by
specifying an HTTP configuration (the argument to the $http() function). The key feature that
makes actions so powerful is that their HTTP configurations are parameterizable. For instance, the
following tweetService exposes a function called load() that loads a given tweet from the server.
The following code is available in the resource _ basic.html file in this chapter’s sample code:

var m = angular.module('myApp', ['ngResource']);

 m.service('tweetService', function($resource) {
 return $resource('/tweets/:id',
 {},
 {
 load: { method: 'GET' }
 });
 });

 m.controller('tweetController', function(tweetService) {

www.it-ebooks.info

http://www.it-ebooks.info/

260  ❘  CHAPTER 8   Server Communication

 // This performs an HTTP request: GET /tweets/123
 var tweet = tweetService.load({ id: '123' }, function() {
 console.log(JSON.stringify(tweet));
 });
 });

The preceding tweetService.load() function actually creates a GET request to /tweets/123. The
$resource service enables you to specify route parameters in the URL. (The :id in /tweets/:id is
a route parameter.) If you have used server‐side frameworks like Ruby on Rails and Express, or you
have read Chapter 6, “Templates, Location, and Routing,” the $resource service’s notion of route
parameters should seem familiar. The $resource service searches URLs for route parameters and
then pulls the corresponding values from the object you pass to the action function.

NOTE  In the previous example, you set the tweet variable to the return value of
the load() function. You then used the tweet variable in the load() function’s
callback. This is a design pattern that is common in AngularJS code. The action
function returns an empty object and tracks a reference to that object. When the
HTTP request returns, the $resource copies the properties from the server’s
response to the empty object.

Beyond the route parameters in the URL, there are two additional ways you can parameterize your
requests. The $resource service enables you to define rules for how query parameters and route
parameter defaults are created.

NOTE  Route parameter defaults, the second argument to the $resource()
function, are used when you do not specify all the route parameters when you
call the action function. For instance, in the following example, because the
controller’s send() call doesn’t specify route parameters, the $resource service
instead takes the default value for id. If the default value is a function, the
$resource service executes it and uses the return value.

You can define functions that the $resource service calls to set query parameters and URL
parameter defaults:

 m.service('tweetService', function($resource) {
 var count = 0;
 return $resource('/tweets/:id',
 {
 id: function() {
 return ++count;
 }
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Services for HTTP Requests  ❘  261

 {
 send: {
 method: 'POST',
 url: '/tweets/:id/send',
 params: {
 counter: function() {
 return count;
 }
 }
 }
 });
 });

 m.controller('tweetController', function(tweetService) {
 // This performs an HTTP request: POST /tweets/1/send?counter=1
 var tweet = tweetService.send(function() {
 console.log(JSON.stringify(tweet));
 });
 });

To minimize boilerplate, the $resource service defines five default actions. Every resource you
define gets the following actions free. These actions correspond to CRUD operations in a strict
REST API:

{ 'get': {method:'GET'},
 'save': {method:'POST'},
 'query': {method:'GET', isArray:true},
 'remove': {method:'DELETE'},
 'delete': {method:'DELETE'} };

There are two subtleties with the $resource service that the default actions illustrate. First, the
query action’s configuration has a mysterious isArray option. This option means you expect the
server’s response will be an array, so the object the query() function returns will be an empty array.
When it receives an HTTP response from the server, the $resource service then copies that array
into the array it returned. You typically don’t have to use the isArray option because many APIs
return objects that contain arrays as opposed to full arrays.

Second, $resource service returns objects that are more than just a set of static actions. Resources
are semantically similar to classes in programming languages like Java: They have static methods,
represented by the action functions you have used this far, but they can also be instantiated.
Furthermore, instantiated resources have instance functions that serve as helpers for some of
the action functions. In particular, the save(), remove(), and delete() functions (as well as any
other actions whose method is not GET) are exposed as helper methods on resource instances.
For instance, in the following example, the tweet resource instance has a $send() function that
automatically performs a POST request with the tweet object as JSON in the request body. You can
find the following code in the resource _ instance.html file in this chapter’s sample code:

 var m = angular.module('myApp', ['ngResource']);

 m.service('tweetService', function($resource) {
 return $resource('/tweets/:id',

www.it-ebooks.info

http://www.it-ebooks.info/

262  ❘  CHAPTER 8   Server Communication

 {},
 {
 load: { method: 'GET' },
 send: {
 method: 'POST',
 url: '/tweets/:id/send'
 }
 });
 });

 m.controller('tweetController', function(tweetService) {
 // This performs an HTTP request: GET /tweets/123
 var tweet = tweetService.load({ id: '123' }, function() {
 console.log(JSON.stringify(tweet));
 // This performs an HTTP request: POST /tweets/123/send
 tweet.$send({ id: tweet.id });
 });
 });

Now that you have seen the basic features of the $resource service, you will apply this knowledge
to write your own resource. Specifically, you will write a resource that consumes a portion of v1.1 of
the public Twitter REST API.

CONSUMING THE TWITTER REST API

In this section, you write a resource wrapper around part of Twitter’s REST API. Specifically, you
write a wrapper around five common Twitter API endpoints that correspond roughly to CRUD
operations for a single tweet. These endpoints follow:

➤➤ GET statuses/retweets/:id

➤➤ GET statuses/show/:id

➤➤ POST statuses/destroy/:id

➤➤ POST statuses/update/:id

➤➤ POST statuses/retweet/:id

Building this resource wrapper gives you a deeper understanding of the $resource service. For
the sake of simplicity (as well as the fact that the Twitter REST API doesn’t support JSONP), the
NodeJS server for this chapter’s sample code includes a simple server‐side implementation for these
endpoints.

To build a resource that consumes this API, first you need to understand what each of these API
endpoints does. These endpoints don’t conform to strict REST (for instance, to delete a tweet you
actually have to perform a POST request). Because of this, you need to do a little extra work to make
the $resource service interface with this API:

➤➤ The GET statuses/retweets/:id endpoint returns an array of retweets.

➤➤ The GET statuses/show/:id endpoint loads a single tweet.

www.it-ebooks.info

http://www.it-ebooks.info/

Consuming the Twitter REST API  ❘  263

➤➤ The POST statuses/destroy/:id endpoint deletes a single tweet.

➤➤ The POST statuses/update/:id endpoint updates a single tweet.

➤➤ The POST statuses/retweet/:id endpoint creates a new retweet.

The resource wrapper for these five methods is shown next. You can find this code in the
resource _ twitter.html file in this chapter’s sample code:

 m.service('tweetService', function($resource) {
 return $resource('/statuses/',
 {},
 {
 retweets: {
 method: 'GET',
 url: '/statuses/retweets/:id',
 isArray: true
 },
 show: {
 method: 'GET',
 url: '/statuses/show/:id'
 },
 destroy: {
 method: 'POST',
 url: '/statuses/destroy/:id',
 params: {
 id: '@id'
 }
 },
 update: {
 method: 'POST',
 url: '/statuses/update/:id',
 params: {
 id: '@id'
 }
 },
 retweet: {
 method: 'POST',
 url: '/statuses/retweet/:id',
 params: {
 id: '@id'
 }
 }
 });
 });

The preceding code has one new feature: the @id syntax. This syntax instructs the $resource
service to set the id route parameter to the value of the id property in the request body. For
instance, tweetService.retweet({ id: '123' }) would make a POST request to /statuses/
retweet/123 with { id: '123' } in the body. You can now create a controller that loads a tweet
and its retweets:

 m.controller('tweetController', function($scope, tweetService) {

www.it-ebooks.info

http://www.it-ebooks.info/

264  ❘  CHAPTER 8   Server Communication

 $scope.load = function() {
 $scope.tweet = tweetService.show({ id: '123456' }, function() {
 });
 };

 $scope.loadRetweets = function() {
 $scope.retweets = tweetService.retweets({ id: '123456' },
 function() {});
 };
 });

You may have noticed that the preceding controller doesn’t expose wrappers for the destroy(),
update(), and retweet() functions. Although you can use these functions directly, the $resource
service exposes instance helper functions that you read about briefly in the “The $resource
Service” section. Once you have a tweet instance, such as one returned from tweetService
.show(), you can use the instance’s $destroy(), $update(), and $retweet() helpers. Calling
the tweet.$destroy() helper is equivalent to calling tweetService.destroy(tweet). For
instance, you can use the API exposed by tweetController to implement a “Retweet” button
as shown here:

 <button ng-click="tweet.$retweet()">
 Retweet
 </button>

The tweet.$retweet() call translates to a POST request to /statuses/retweet/123456 with the
tweet instance’s JSON representation in the body.

Congratulations! You’ve successfully implemented a resource wrapper around part of a real API!
Now that you’ve seen how the $resource service makes it easy to consume APIs, you will take a
brief look at a scaffolding tool that integrates with the $resource service: StrongLoop’s LoopBack.
LoopBack is a high‐level tool for generating REST APIs. It automatically generates a NodeJS server
for you and provides a question‐and‐answer interface for generating REST API endpoints. As you
will see in the next section, LoopBack can even generate AngularJS resources that can consume the
REST API endpoints it creates.

SCAFFOLDING A REST API WITH STRONGLOOP LOOPBACK

So far in this chapter, you have learned the basic concepts of HTTP requests in AngularJS.
However, your code so far has interacted with trivial server back ends. That’s because creating your
own REST API is a more involved task, and focusing on building a REST API would detract from
the AngularJS HTTP fundamentals. However, to really see these fundamentals in action, you’re
going to use StrongLoop’s LoopBack framework to quickly scaffold a NodeJS‐backed REST API.
If you have not installed NodeJS yet, please navigate to www.nodejs.org/download and follow the
instructions for your operating system of choice.

LoopBack is a NodeJS tool that automatically generates REST APIs for you. In other words,
LoopBack generates NodeJS code, which utilizes the popular NodeJS web framework Express
and provides a simple command‐line interface to add models to your REST API. A model

www.it-ebooks.info

http://www.nodejs.org/download
http://www.it-ebooks.info/

Scaffolding a REST API with StrongLoop LoopBack  ❘  265

is an object representing a data schema. For instance, a user model would be an object that
specifies what data will be stored about users, such as specifying that a user should have a string
that represents his e-mail address. LoopBack creates API endpoints, general classes of HTTP
resources that you can use to perform CRUD operations on model instances. Models are the
server‐side equivalent to the resources you built with the $resource service in the previous
section.

Models are closely related to the concept of a table or a collection in a database. As a matter of
fact, one key advantage of the LoopBack framework is that you can choose to persist instances
of your models in one of four different databases: MongoDB, Oracle, MySQL, or Microsoft
SQL Server. You can choose between databases on a per‐model basis, so you can store users in
MongoDB but financial transactions in MySQL, for instance. You can also choose to only store
instances of your models in memory. For the purposes of this chapter, you will only use the in‐
memory storage option because installing and setting up a database is unnecessary overhead for
this example. However, if you already have a MongoDB instance on your machine, you will be
able to wire your REST API to persist data to your MongoDB instance. In practice, you typically
want to store model instances in a database, but the in‐memory storage option is sufficient for
educational purposes.

Building a Simple API Using LoopBack
In this section, you use LoopBack to scaffold a real REST API for storing coffee shops. You create a
server‐side model using LoopBack and then build out the corresponding AngularJS $resource using
LoopBack’s AngularJS SDK. Finally, you create a simple HTML page that takes advantage of the
$resource that the LoopBack AngularJS SDK generated for you.

To install StrongLoop LoopBack, you should run npm install in the loopback-coffee directory
of this chapter’s sample code. This installs the various LoopBack command‐line tools under the
node _ modules/strongloop/bin directory. In this section, you focus on LoopBack as a means to
an end, so you will only learn about LoopBack at a high level. You can learn about LoopBack in
more detail at http://loopback.io. In this chapter, you utilize version 2.10.2 of the LoopBack
framework.

Creating a New Application
The primary command‐line tool you’ll use to generate REST APIs with LoopBack is the slc
command. To start the process of creating a REST API, run the ./node _ modules/strongloop/
bin/slc loopback command from the root directory of this chapter’s sample code. You should see
the following prompt, which will enable you to scaffold a web server by answering a few simple
questions. Name your application loopback-coffee:

[?] What's the name of your application? loopback-coffee
[?] Enter name of the directory to contain the project: loopback-coffee

With that one command, you have just created a trivial REST API. Your REST API has no models
yet, but if you run the ./node _ modules/strongloop/bin/slc run command and navigate your

www.it-ebooks.info

http://loopback.io
http://www.it-ebooks.info/

266  ❘  CHAPTER 8   Server Communication

browser to http://localhost:3000, you should see JSON data showing how long the server has
been running, like the following output:

{"started":"2015-01-02T22:56:29.454Z","uptime":4.47}

Creating a LoopBack Model
You can run the ./node _ modules/strongloop/bin/slc loopback:model command to create a
new model. LoopBack asks you several questions to build your model. Call your model CoffeeShop
(plural CoffeeShops). For the purposes of this section, your model will contain two properties—
name and address—both strings:

? Enter the model name: CoffeeShop
? Select the data-source to attach CoffeeShop to: db (memory)
? Select model's base class: PersistedModel
? Expose CoffeeShop via the REST API? Yes
? Custom plural form (used to build REST URL): CoffeeShops
Let's add some CoffeeShop properties now.

Enter an empty property name when done.
? Property name: name
 invoke loopback:property
? Property type: string
? Required? Yes

Let's add another CoffeeShop property.
Enter an empty property name when done.
? Property name: address
 invoke loopback:property
? Property type: string
? Required? Yes

Let's add another CoffeeShop property.
Enter an empty property name when done.
? Property name:

That’s all the work you need to do to create the CoffeeShop model and its corresponding REST
API. Run the ./node _ modules/strongloop/bin/slc run command to start your server and
navigate your browser to http://localhost:3000/api/CoffeeShops. Because you haven’t added
any coffee shops, you should see an empty JSON array.

The API Explorer
LoopBack exposes a powerful documentation and configuration tool called the API Explorer by
default. Navigate your browser to http://localhost:3000/explorer, and you should see a list
of models defined in your server. You should see two: the Users model that LoopBack generates by
default, and the CoffeeShops model you created in the previous section. When you click on the
CoffeeShops model, you should see a list of all the operations your new REST API supports. For
instance, you can do a POST request to /api/CoffeeShops to create a new CoffeeShop instance or
do a GET request to /api/CoffeeShops to get a list of all coffee shops.

www.it-ebooks.info

http://localhost:3000
http://localhost:3000/api/CoffeeShops
http://localhost:3000/explorer
http://www.it-ebooks.info/

Scaffolding a REST API with StrongLoop LoopBack  ❘  267

Generating Resources with Loopback AngularJS SDK
Now that you’ve created a REST API for coffee shops, you’re probably wondering when AngularJS
is going to make an appearance. One of the advantages of building REST APIs with LoopBack is the
lb-ng executable, which generates AngularJS services for your models. In other words, the lb-ng
executable automatically does for your API what you did for the Twitter API in the previous section.

To run the lb-ng executable, first create a js directory in the client directory. Then run the
following command:

./node_modules/strongloop/node_modules/loopback-sdk-angular-cli/bin/lb-ng \
 ./server/server.js client/js/services.js

That’s it! Open the client/js/services.js file and search for “CoffeeShop.” You will see that
LoopBack built a well‐documented CoffeeShop service based on the $resource service for you.
Don’t worry about the fact that the services.js file has more than 1,600 lines of code; LoopBack
produces an extraordinary number of comments. The CoffeeShop service looks like a lot of code,
but the code is about 90 percent comments. Following is the CoffeeShop service without comments
and formatted for readability:

module.factory(
 "CoffeeShop",
 ['LoopBackResource', 'LoopBackAuth', '$injector',
 function(Resource, LoopBackAuth, $injector) {
 var R = Resource(
 urlBase + "/CoffeeShops/:id",
 { 'id': '@id' },
 {
 "create": {
 url: urlBase + "/CoffeeShops",
 method: "POST"
 },
 "upsert": {
 url: urlBase + "/CoffeeShops",
 method: "PUT"
 },
 "exists": {
 url: urlBase + "/CoffeeShops/:id/exists",
 method: "GET"
 },
 "findById": {
 url: urlBase + "/CoffeeShops/:id",
 method: "GET"
 },
 "find": {
 isArray: true,
 url: urlBase + "/CoffeeShops",
 method: "GET"
 },
 "findOne": {
 url: urlBase + "/CoffeeShops/findOne",
 method: "GET"
 },
 "updateAll": {

www.it-ebooks.info

http://www.it-ebooks.info/

268  ❘  CHAPTER 8   Server Communication

 url: urlBase + "/CoffeeShops/update",
 method: "POST"
 },
 "deleteById": {
 url: urlBase + "/CoffeeShops/:id",
 method: "DELETE"
 },
 "count": {
 url: urlBase + "/CoffeeShops/count",
 method: "GET"
 },
 "prototype$updateAttributes": {
 url: urlBase + "/CoffeeShops/:id",
 method: "PUT"
 },
 }
);

 R["updateOrCreate"] = R["upsert"];
 R["update"] = R["updateAll"];
 R["destroyById"] = R["deleteById"];
 R["removeById"] = R["deleteById"];

 R.modelName = "CoffeeShop";

 return R;
 }]);

The preceding Resource service is a LoopBack‐specific wrapper around the $resource service. The
syntax is identical. Now that you’ve run the lb-ng command, you can use this services.js file to
consume your homemade REST API.

To use the services.js file, you need to copy four files into your loopback-coffee app. First,
the root directory of this chapter’s sample code contains a middleware.json file. From your
loopback-coffee directory, run the following command to copy this file into the right place:

cp ../middleware.json server/middleware.json

LoopBack’s middleware configurations are a complex subject. For the purposes of this section, it
suffices to know that this chapter’s middleware.json file configures your LoopBack server to serve
static files from the client directory. In other words, navigating to http://localhost:3000/js/
services.js produces the contents of the client/js/services.js file, which happens to contain
your CoffeeShop resource.

Once you’ve copied the middleware.json file, you also need to copy the angular.js,
angular-resource.js, and loopback _ coffee.html files into your loopback-coffee app. The
angular.js and angular-resource.js files contain the AngularJS core and the ngResource
module, respectively. The loopback _ coffee.html file contains the actual HTML for your page.
Run the following commands from your loopback-coffee directory to copy these files:

cp ../angular* client/js/
cp ../loopback_coffee.html client/

www.it-ebooks.info

http://localhost:3000/js/services.js
http://localhost:3000/js/services.js
http://www.it-ebooks.info/

Scaffolding a REST API with StrongLoop LoopBack  ❘  269

Now you’re ready to see the CoffeeShop resource in action. Start your LoopBack server with the
./node _ modules/strongloop/bin/slc run command, and navigate your browser to http://
localhost:3000/loopback_coffee.html. You should see a prompt to create a new coffee shop
and a list of all coffee shops you’ve already saved. The loopback _ coffee.html file contains one
controller, TestController, that uses the CoffeeShop resource:

 angular.module('myApp', ['lbServices']);

 function TestController($scope, CoffeeShop) {
 $scope.newShop = new CoffeeShop();
 $scope.allShops = CoffeeShop.find();
 $scope.CoffeeShop = CoffeeShop;

 $scope.reset = function() {
 $scope.newShop = new CoffeeShop();
 };
 }

Using the API exposed by TestController, you can create an HTML page that lists all coffee shops and
lets you save a new coffee shop. Following is the HTML from the loopback _ coffee.html file:

 <div ng-controller="TestController">
 <h1>Create New Shop</h1>
 <input type="text" ng-model="newShop.name" placeholder="name">

 <input type="text"
 ng-model="newShop.address"
 placeholder="address">

 <button ng-click="allShops.push(newShop); newShop.$create(); reset();">
 Save
 </button>
 <hr>
 <h1>Existing Shops</h1>
 <button ng-click="allShops = CoffeeShop.find()">
 Reload
 </button>

 <li ng-repeat="shop in allShops">
 {{shop.name}} ({{shop.address}})

 </div>

The preceding example uses two actions from the CoffeeShop resource. First, the find() function
returns a list of all coffee shops by making a GET request to the /api/CoffeeShops route. Following
is the find() action’s definition from the services.js file:

"find": {
 isArray: true,
 url: urlBase + "/CoffeeShops",
 method: "GET"
}

www.it-ebooks.info

http://localhost:3000/loopback_coffee.html
http://localhost:3000/loopback_coffee.html
http://www.it-ebooks.info/

270  ❘  CHAPTER 8   Server Communication

The second action is represented by the $create() function. This function is an instance helper
around the create action. The create action makes a POST request to /api/CoffeeShops to create
a new CoffeeShop instance. Following is the create action’s definition from the services.js file:

"create": {
 url: urlBase + "/CoffeeShops",
 method: "POST"
}

With these two basic actions, you have created an HTML wrapper around your REST API. Thanks
to StrongLoop’s LoopBack, you only had to run a couple of commands and produce a 51‐line
HTML file to create a simple REST API and its corresponding client code.

Congratulations! So far, you have learned how to use the $http and $resource services and used
the latter to build two REST API clients. But you’ve only used HTTP to communicate with the
server. Although HTTP is currently the most common mechanism for server communication, it is
inherently limited. HTTP limits the server to responding to requests: It is not designed to allow the
server to “push” updates to a client. This is why, for applications like browser‐based real‐time chat,
web sockets are becoming popular. The next section introduces you to web sockets and shows how
to use them with AngularJS.

USING WEB SOCKETS WITH ANGULARJS

In this chapter so far, you’ve become familiar with HTTP. However, HTTP is not the right fit for
all use cases. The WebSocket standard is more flexible than the rigid request and response HTTP
model, allowing the server to send updates to the client without waiting for a request. This is
particularly useful for “real‐time” applications. The term real time is often ill-defined, so consider
this example. Suppose you had two browser windows open to the loopback-coffee app you built
in the previous section, “Building a Simple API Using LoopBack.” If you were to add a coffee shop
in one window, it would not appear in the other window unless you clicked the Reload button to
trigger another HTTP request. In a true real‐time web application, the server would push an update
to the client, and the other browser window would be updated immediately.

NOTE  In computer science, a network socket is a low‐level abstraction for
communication between two programs (which may or may not be running on
two separate machines). Sockets are an intricate topic, but for this chapter, you
can consider a socket as a piece of code that provides a connection between two
programs, enabling the programs to send messages to each other. Each program
can read messages from the socket and write messages to the socket.

Currently, the most common library for using web sockets in JavaScript is SocketIO. SocketIO is
actually a layer on top of web sockets that enables you to send and receive events over web sockets.
SocketIO utilizes the ubiquitous event emitter design pattern that pervades many JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Using Web Sockets with AngularJS  ❘  271

projects. In the event emitter design pattern, you can register a callback to an event, and you can
emit an event. Suppose you emit an event named connected. The event emitter then calls any
callbacks that are registered to listen for events named connected. When you emit an event, you
can also attach data to that event. A common application of the event emitter design pattern is error
handling, as demonstrated in the following pseudocode:

var emitter = new eventEmitter();

// Register a callback to listen for events named 'error'
emitter.on('error', function(message) {
 console.log(message); // Prints out 'woops!'
});

// Emit an event named 'error' with data 'woops!'
emitter.emit('error', 'woops!');

Event emitters typically only work within a program. SocketIO, however, provides an event emitter
interface over web sockets, so the server can emit() events to the browser.

NOTE  SocketIO is conceptually similar to Firebase, another real‐time web
development tool that you'll learn about in the next section. Both provide an
event emitter interface over web sockets to allow you to update your clients in
real time. The primary difference is that SocketIO has a server‐side API that
allows you to write your own SocketIO‐enabled server. Firebase requires you
to connect to Firebase’s servers, which may be an advantage or a disadvantage
depending on your skill set. In this chapter, you will not see much difference
because this chapter's sample code has a SocketIO‐enabled server.

In this section, you will build out a simple real‐time chat application with AngularJS and SocketIO.
To run the example code in this section, all you need is the server.js script that all the examples
from this chapter so far have used. When you run node server.js, you actually start a SocketIO
server on port 8081, in addition to a static web server on port 8080. In this chapter, you will use
version 1.3.3 of SocketIO.

In addition to the server component, you need the SocketIO client JavaScript file. For your
convenience, version 1.3.3 of the SocketIO client has been included in this chapter’s sample code in
the socket.io.js file.

NOTE  WebSockets are not supported in Internet Explorer 9 or earlier. SocketIO
does support Internet Explorer 9, but through inelegant fallbacks. For best
results, use a recent version of Google Chrome (version 16 or greater) or Mozilla
Firefox (version 11 or greater).

www.it-ebooks.info

http://www.it-ebooks.info/

272  ❘  CHAPTER 8   Server Communication

Using the SocketIO client is syntactically identical to your standard event emitter design
pattern. The SocketIO client attaches a function called io() to the global window object.
The io() function takes a single parameter, the URL to connect to, and returns an
event emitter. This event emitter has several built‐in events. The most important built‐in
events are connect and disconnect, which are emitted when the socket connects and
disconnects, respectively. In addition, a client can emit arbitrary events to the server with the
emit() function.

If the preceding description isn’t clear, don’t worry; SocketIO is easy to learn by example.
Following is the JavaScript code from the socketio _ chat.html file from this chapter’s
sample code. This is all the JavaScript necessary to create a real‐time chat application with
SocketIO:

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript"
 src="socket.io.js">
 </script>
 <script type="text/javascript">
 angular.module('myApp', []);

 function TestController($scope, $window) {
 $scope.messages = [];
 $scope.name = 'TestConnection';
 $scope.message = 'Test message';

 var socket = $window.io('http://localhost:8081');
 $scope.connected = false;
 socket.on('connect', function() {
 $scope.connected = true;
 $scope.$apply();
 });
 socket.on('disconnect', function() {
 $scope.connected = false;
 $scope.$apply();
 });

 socket.on('message', function(message) {
 $scope.messages.push(message);
 $scope.$apply();
 });

 $scope.sendMessage = function() {
 socket.emit('message', {
 name: $scope.name,
 message: $scope.message
 });

 $scope.message = '';
 };
 }
 </script>

www.it-ebooks.info

http://localhost:8081
http://www.it-ebooks.info/

Using Firebase with AngularJS  ❘  273

The most important parts of the preceding code are the on('message') event handler and the
sendMessage() function. The on('message') handler is called whenever the SocketIO client receives
an event named message from the server. The handler is responsible for aggregating all messages
received from the server. Because SocketIO events are not part of AngularJS, you need to call
$scope.$apply() to inform AngularJS that the scope’s data has changed. (For more information on
why this is necessary, see Chapter 4, “Data Binding.”)

The other important part of the preceding example is the sendMessage() function. This function
emits a “message” event to the server. This chapter’s SocketIO server is configured to re‐emit all
“message” events on all connected sockets. Thus, when you call the sendMessage() function,
SocketIO pushes the “message” events to every client that’s connected.

To see this real‐time chat example in action, open your browser and navigate to http://
localhost:8080/socketio_chat.html. Open a second browser window and navigate to the same
URL. You’ll notice that when you click “Send Message” in one browser window, the other browser
window updates automatically!

Now that you’ve seen SocketIO in action, you will create a similar chat application using Firebase,
another real‐time web development tool. Firebase makes developing real‐time apps even more
concise than SocketIO.

USING FIREBASE WITH ANGULARJS

Firebase is a hosted solution for developing real‐time web applications. Firebase also has tight
integration with AngularJS using the AngularFire connector. Because of these features, Firebase
allows you to build AngularJS apps with minimum effort: no need to set up a server, and no need to
worry about calling $scope.$apply(). You do need to sign up for an account, but as of this writing,
Firebase offers a generous free tier that should be sufficient for this chapter’s example. Sign up for
an account, create a new app, and take note of your Firebase data URL. Your Firebase data URL
should be of the form <name>.firebaseio.com.

To use Firebase, you need both the Firebase client and the AngularFire connector, which provides
AngularJS bindings to the Firebase client. For your convenience, this chapter’s sample code includes
version 2.0.4 of the Firebase client (the firebase.js file) and version 0.9.2 of AngularFire (the
angularfire.js file). As you’ll see, once you’ve included these files, persisting your data to the
server is trivial.

First, include AngularJS and the two Firebase files using script tags:

 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript"
 src="firebase.js">
 </script>
 <script type="text/javascript"
 src="angularfire.js">
 </script>

www.it-ebooks.info

http://localhost:8080/socketio_chat.html
http://localhost:8080/socketio_chat.html
http://www.it-ebooks.info/

274  ❘  CHAPTER 8   Server Communication

Next, create a controller called FirebaseController that provides an identical API to the controller
from the SocketIO section. AngularFire removes the need to listen for events, handles calling
$scope.$apply() for you, and even persists data to the server for you. Following is the JavaScript
from the firebase _ chat.html file, which contains all the necessary code to create a real‐time chat
application with AngularFire:

 angular.module('myApp', ['firebase']);

 function FirebaseController($scope, $window, $firebase) {
 $scope.messages = [];
 $scope.name = 'TestConnection';
 $scope.message = 'Test message';

 var firebase = new $window.Firebase(
 'https://<name>.firebaseio.com/'); // Firebase Data URL here
 var sync = $firebase(firebase);

 $scope.messages = sync.$asArray();

 $scope.sendMessage = function() {
 $scope.messages.$add({
 name: $scope.name,
 message: $scope.message
 });

 $scope.message = '';
 };
 }

The preceding example is shockingly concise. Other than the Firebase data URL, there is no code
that resembles an HTTP call or socket connection. Nevertheless, try repeating the multiple browser
window exercise from the previous section, “Using Web Sockets with AngularJS.” Open http://
localhost:8080/firebase_chat.html in two separate browser windows and start sending
messages. You should see the messages you’ve sent in one browser window in the other, and vice versa.

The code that makes this real‐time updating work in the preceding example is wrapped up in the
$asArray() function and the $add() function. The $asArray() function returns an array‐like
object that has AngularFire‐specific functionality. When you call the $asArray() function, the
Firebase client handles loading all your messages from the server and maintains a web socket
that continuously receives updates. On top of the Firebase client, AngularFire handles running
$scope.$apply() for you, so you don’t have to worry about the AngularJS digest loop.

The $add() function is Firebase’s replacement of JavaScript arrays’ push() function. The $add()
function handles persisting data to Firebase. Note that you must use the $add() function; if you just
use the push() function, your data will not be persisted to the Firebase server.

That’s all for Firebase! Now you see how easy server communication can be. If maintaining a server
and creating HTTP requests manually with the $http service seems too cumbersome for you,
Firebase is an excellent alternative that lets you bypass all that work and get straight to building
a great UI. Now you understand why AngularFire markets itself as “three‐way data‐binding.”
AngularFire abstracts out server communication in much the same way AngularJS’s two‐way

www.it-ebooks.info

http://localhost:8080/firebase_chat.html
http://localhost:8080/firebase_chat.html
http://www.it-ebooks.info/

Conclusion  ❘  275

data‐binding abstracts out DOM manipulation. With two‐way data binding, entering text in an
input field automatically updates the state of a JavaScript variable. With AngularFire’s three‐way
data binding, entering text in an input field updates the state of a JavaScript variable, which is, in
turn, immediately persisted to the server.

CONCLUSION

In this chapter, you learned about the variety of tools the AngularJS community has for
communicating with a server. These tools range from the relatively low‐level $http service, which
provides powerful features for managing individual HTTP requests, to AngularFire, which abstracts
away server communication behind a “three‐way data‐binding” layer. You even used StrongLoop’s
LoopBack to generate your own REST API, as well as the corresponding REST API client.

You also learned about the difference between HTTP and web sockets. Although HTTP is still
the dominant server communication protocol for browser JavaScript, web sockets are becoming
increasingly popular because of the ability to push updates to the client. In particular, tools like
SocketIO enable you to build powerful real‐time apps on top of web sockets. Web sockets are likely
the future of server communication in browser JavaScript, but HTTP will remain relevant for a
long time.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Testing and Debugging
AngularJS Applications

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ The testing pyramid as applied to AngularJS apps

➤➤ Unit testing with Mocha, Karma, and NodeJS

➤➤ Provisioning cloud browsers with Sauce

➤➤ Integration testing with ng‐scenario and protractor

➤➤ Effectively utilizing the debug module

➤➤ The basics of the Chrome developer console

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

ANGULARJS TESTING PHILOSOPHY

A little‐known fact about AngularJS is that the original author, Misko Hevery, was a test
engineer at Google when he first wrote <angular/>, as it was then called. His role as a test
engineer involved educating Google engineers on utilizing practices like dependency injection
to write modular code that was easy to unit test. Unsurprisingly, AngularJS was designed
to make writing unit‐testable code easy from day one. This is why AngularJS is known as
a framework rather than simply a library: Controllers, services, and directives provide an
opinionated structure for how code should be written. Libraries like jQuery simply provide
helper functions for writing code any way you please.

9

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

278  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

The first step toward understanding AngularJS’s testing philosophy is to understand what a unit test
is. The term unit test is often tragically misused by software engineers; if you are already familiar
with an alternative definition, please remember that the term has a different meaning when it comes
to AngularJS. A unit test tests that a single block of code executes correctly independent of all other
blocks of code. In particular, unit tests should not make any network requests or read any files,
because input/output (I/O) is slow, adds setup overhead, and adds an additional implicit assumption
that the I/O succeeds. Although I/O is unlikely to fail, it is several orders of magnitude more likely
to cause a test failure than an in‐memory operation.

An ideal unit test fails if and only if an assumption about how the module under test works is no
longer valid. Thus, an extensive set of unit tests makes working with a module easier by making it
simple to identify when a change is backward‐breaking. In addition, focusing on unit tests in your
day‐to‐day development practice encourages developing robust modular code, because writing unit
tests requires thinking critically about assumptions inherent to a particular module, class, or function.
As Misko Hevery has often said, if your code is difficult to unit test, it is not as good as it should be.
Finally, unit tests should not require network or file I/O, so they should run extremely quickly—on
the order of magnitude of thousands of tests per second—and provide a quick means of verifying
basic functionality.

Here’s an example of AngularJS code that’s difficult to properly unit test:

function MyController($scope) {
 var xhr = new XMLHttpRequest();
 xhr.open('GET', '/api/v1/me');
 xhr.send();
 xhr.onreadystatechange = function() {
 if (xhr.readyState === 4) { // 4 means response received
 $scope.data = xhr.responseText;
 }
 };

 $scope.computeResultsFromData = function() {
 // Some manipulation of $scope.data here
 };
}

The preceding code is simple enough, but, upon careful inspection, it carries a lot of assumption
baggage that makes it difficult to test. Note that to test the computeResultsFromData function, you
first need to execute the XMLHttpRequest code, which makes a request to the server. In other words,
this code requires a server with an /api/v1/me route, which can be quite difficult to set up. In
addition, this introduces network latency (and the risk of network failure) to your test, which makes
your test slow and unreliable. Of course, the preceding code is not representative of how HTTP
requests are used in AngularJS. It would typically be implemented in AngularJS like this:

function MyController($scope, $http) {
 $http.get('/api/v1/me').success(function(data) {
 $scope.data = data;
 });

 $scope.computeResultsFromData = function() {

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS Testing Philosophy  ❘  279

 // Some manipulation of $scope.data here
 };
}

In addition to being more concise, this implementation has a key advantage: $http is passed as
a parameter to MyController, whereas in the first example, MyController had a hard‐coded
dependency on the XMLHttpRequest class. In the second implementation, $http can be mocked
out easily—that is, replaced with a suitable object with the same interface for testing purposes.
Depending on your testing needs, you can easily replace $http.get() with a function that
returns a hard‐coded result, a function that asserts its parameters are correct, or even a function
that does a cross‐site HTTP request to a staging server without modifying your code. In the
context of unit tests, your $http.get() function should be replaced with something that’s
lightweight and runs in memory, so your tests execute quickly and without risk of failure due to
network I/O issues.

NOTE  You may be familiar with the notion of a spy. To effectively unit test
code with nonmockable function calls, like the XMLHttpRequest example
earlier, you may overwrite the window.XMLHttpRequest function with a spy.
There are several modules, such as SinonJS, that provide sophisticated spy
functionality. However, this approach suffers from the same problem as all
global state: You can’t run tests with global spies in parallel, and you need to
be careful to clean up your global state so you don’t pollute subsequent tests.
AngularJS’s code structure makes it easy to make mockable function calls,
so, as a general rule of thumb, you should never have to use spies on global
variables.

The Testing Pyramid
Although unit tests are an indispensable tool for ensuring code quality and providing a fast test of
code correctness, they are not the whole story when it comes to testing. Your individual modules
may operate as expected, but the interaction between modules may still be incorrect. In code with
high unit test coverage, bugs will usually happen in the interaction between modules rather than
in the modules themselves. The general idea of the testing pyramid is to create a spectrum of tests,
ranging from the most lightweight and simple unit tests to end‐to‐end tests, which interact with your
application via the same code paths as your end users. The space between end‐to‐end tests and unit
tests is called integration tests. See Figure 9-1. Because unit tests are blazing fast but cover small
bits of functionality, you should have far more unit tests than end‐to‐end tests and thus form the
base of the pyramid. End‐to‐end tests are typically bulky and slow, but each test covers large swaths
of your codebase. You should have far fewer end‐to‐end tests than unit tests. The end‐to‐end tests
form the top of the pyramid. To liken the testing pyramid to the USDA food pyramid, unit tests are
like broccoli: You may not like writing them, but you should write them anyway if you want your
codebase to grow up big and strong.

www.it-ebooks.info

http://www.it-ebooks.info/

280  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

By mocking out appropriate modules, you
can write higher or lower level integration
tests as necessary. In this chapter, the
integration tests you will be writing will
look like end‐to‐end tests but will stub
out the $http service with a mock HTTP
back end. That is, these integration tests
interact with your AngularJS code by
interacting with HTML elements, but the
server‐side code is mocked out with an
in‐memory stub. This enables you to focus
on testing AngularJS applications without
having to worry about testing a server as
well. Proper end‐to‐end tests look similar
to these integration tests but don’t stub out
the server.

In particular, Figure 9-2 shows how unit
tests, Document Object Model (DOM)
integration tests, and end‐to end tests relate
to the architecture of an AngularJS app.

few, slow, test full
user interaction

test module interaction (including DOM)

numerous, fast, test individual modules

E2E
Tests

Intergration
Tests

Unit Tests

FIGURE 9-1 

DOM Integration

Directives +
DOM

Controllers +
Services

Server

Unit Tests

E2E tests

FIGURE 9-2 

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  281

UNIT TESTING IN ANGULARJS

Up until fairly recently, unit testing JavaScript was difficult. With the advent of NodeJS, however,
there has been an explosion of JavaScript testing tools. In addition, as a JavaScript interpreter
available from the command line, NodeJS itself is an invaluable tool for JavaScript unit testing.
NodeJS relies on the V8 JavaScript engine, so it is a reasonable approximation of how your
JavaScript will run in the Google Chrome browser. For the first part of this section, you’ll be
writing tests in NodeJS exclusively, before exploring how to run these tests in actual browsers.
If you have not yet installed NodeJS, please go to http://www.nodejs.org and follow the
installation instructions for your platform of choice (OSX, Windows, or Linux). In this section,
you also learn how to use tools available through the Node package manager, npm, to easily
instrument live browsers for testing.

The Mocha Testing Framework
Mocha is a popular testing framework in both the NodeJS and AngularJS communities, written by the
prolific NodeJS community contributor TJ Holowaychuk (who also wrote the debug module you’ll use
later in this section). Mocha is flexible and enjoys support from a wide array of testing tools. Jasmine is
another testing framework that is quite popular in the AngularJS community, but Mocha has become
the standard in the NodeJS community in addition to its AngularJS popularity. Furthermore, Mocha and
Jasmine have virtually indistinguishable syntax; the differences between the two are mostly pedantic.
The most significant difference is that Jasmine provides its own built‐in assertion framework, whereas
Mocha does not.

To get started with using Mocha, install it using npm:

npm install mocha -g

NOTE  The ‐g flag specified tells npm to install Mocha globally, so the
mocha command is accessible from your command line. Global installation
is primarily useful for instruction and is not recommended for an actual
project. The preferred method is to track Mocha as a dependency in your
package.json file, the file that the npm install command uses to determine
what it needs to install. You would also use a tool like Grunt, Gulp, or Makefile
(see Chapter 2, “Intelligent Workflow and Build Systems”) to run your tests.
This ensures that you can install the correct version of Mocha with a single
npm install command. Furthermore, a local installation of Mocha prevents
version conflicts between different projects. You will use this approach later in
this section.

Mocha is heavily inspired by behavior‐driven development (BDD) practices, so tests in Mocha
have a slightly different structure than the usual testCase with setUp() and tearDown()
structure you may be familiar with from JUnit, PyUnit, or similar frameworks. Mocha’s test

www.it-ebooks.info

http://www.nodejs.org
http://www.it-ebooks.info/

282  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

structure is more functional in nature; tests are structured using the describe() and it()
functions. The it() function effectively describes a single test case. The describe() function
wraps a suite of tests. Within the describe() function, you can define beforeEach() and
afterEach() functions, which execute before each test in the suite and after each test in the
suite, respectively.

If this is unclear, don’t worry. Mocha’s testing structure is easy to understand once you see an
example. Suppose you have a simple controller that has functions to validate and save a form that
asks the user for their name and e‐mail address:

function MyFormController($scope, $http) {
 $scope.userData = {};
 $scope.errorMessages = [];

 $scope.saveForm = function() {
 $scope.saving = true;
 $http.
 put('/api/submit', $scope.userData).
 success(function(data) {
 $scope.saving = false;
 $scope.success = true;
 }).
 error(function(err) {
 $scope.saving = false;
 $scope.error = err;
 });
 };

 $scope.validateForm = function() {
 var validationFunctions = [
 {
 fn: function() {
 return !!$scope.userData.name
 },
 message: 'Name required'
 },
 {
 fn: function() {
 return !!$scope.userData.email
 },
 message: 'Email required'
 }
];

 $scope.errorMessages = [];
 for (var i = 0; i < validationFunctions.length; ++i) {
 if (!validationFunctions[i].fn()) {
 $scope.errorMessages.push(validationFunctions[i].message);
 }
 }
 return $scope.errorMessages;
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  283

}

if (typeof module !== 'undefined') {
 module.exports = MyFormController;
}

The check on typeof module in MyFormController is to enable MyFormController to be
visible outside the my _ form _ controller.js file in NodeJS. NodeJS’s JavaScript runtime
has file‐level scoping and requires variables to be attached to the file’s module object to
be visible outside the file. If you choose to test your AngularJS controllers in NodeJS, you
should either build your code with a module like Browserify or use the typeof module check
shown earlier.

Without further ado, here is an example of two corresponding unit tests for the validateForm()
function:

var MyFormController = require('./my_form_controller.js');
var assert = require('assert');

describe('MyFormController', function() {
 describe('validateForm', function() {
 var $scope;
 beforeEach(function() {
 $scope = {};
 MyFormController($scope, null);
 });

 it('should succeed if user entered name and email', function() {
 $scope.userData.name = 'Victor Hugo';
 $scope.userData.email = 'les@miserabl.es';

 $scope.validateForm();
 assert.equal(0, $scope.errorMessages.length);
 });

 it('should fail with no email', function() {
 $scope.userData.name = 'Victor Hugo';
 $scope.userData.email = '';

 $scope.validateForm();
 assert.equal(1, $scope.errorMessages.length);
 assert.equal('Email required', $scope.errorMessages[0]);
 });
 });
});

When you run the preceding test from your command line with mocha my _ form _ controller
.test.js, you should get the results in Mocha’s default reporting format, dots:

 ..

 2 passing (4ms)

www.it-ebooks.info

mailto:les@miserabl.es
http://www.it-ebooks.info/

284  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

Note that the MyFormController code technically does not rely on AngularJS at all. These are strict
unit tests; the code in my _ form _ controller.test.js doesn’t have nonmocked dependencies and
doesn’t require access to a DOM.

The my _ form _ controller.test.js code demonstrates the flexibility of the describe/it
syntax. You can nest calls to describe() to provide fine‐grained separation between test suites
while reusing variables from higher‐level describe() calls. Even if a describe() call has only
describe() calls within it, you can still use beforeEach() to run setup common to each nested
test suite. You can also mix calls to describe() and it() at the same level. The describe()
and it() calls execute in order, but all the it() calls execute before the describe() calls at the
same level.

To quiz yourself on the order of execution in Mocha, figure out what the output will be if you run
the following code in Mocha:

describe('', function() {
 console.log('Top level describe');

 beforeEach(function() {
 console.log('Top level beforeEach');
 });

 afterEach(function() {
 console.log('Top level afterEach');
 });

 describe('', function() {
 // The first describe has two it() calls
 beforeEach(function() {
 console.log('2nd level beforeEach from first describe');
 });

 afterEach(function() {
 console.log('2nd level afterEach from first describe');
 });

 it('', function() {
 console.log('test1');
 });

 it('', function() {
 console.log('test2');
 });
 });

 describe('', function() {
 // The second describe has one it call
 beforeEach(function() {
 console.log('2nd level beforeEach from second describe');
 });

 afterEach(function() {
 console.log('2nd level afterEach from second describe');

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  285

 });

 it('', function() {
 console.log('test3');
 });
 });

 it('', function() {
 console.log('test4');
 });
});

Because it() calls execute before same‐level describe() calls, the output is as follows:

Top level beforeEach
Test4
Top level afterEach
Top level beforeEach
2nd level beforeEach from first describe
test1
2nd level afterEach from first describe
Top level afterEach
Top level beforeEach
2nd level beforeEach from first describe
test2
2nd level afterEach from first describe
Top level afterEach
Top level beforeEach
2nd level beforeEach from second describe
test3
2nd level afterEach from second describe
Top level afterEach

This concludes your dive into the basics of the Mocha testing framework. Executing tests in NodeJS
is a quick way to validate individual module correctness from your command line. The next step is
executing your unit tests against an actual browser.

Unit Testing in the Browser with Karma
Executing your Mocha unit tests on the command line with NodeJS is simple but has some
significant limitations. Running your tests in NodeJS is likely sufficient if your users are only
browsing using Google Chrome. However, there are an inordinate number of subtle differences
between how different browsers execute JavaScript, so there is a clear advantage to running unit
tests in live browsers. Luckily, there is a powerful tool called Karma that enables you to launch
browsers, utilize them for tests, and see the results on your command line. In this section, you use
Karma to enable yourself to run your tests in Google Chrome directly from your command line.

Karma is most easily installed and configured using npm. Karma is organized as a lightweight
core surrounded by a massive confederation of plug‐ins, so don’t be surprised if you see a
package.json file with an army of dependencies that start with karma‐. You can install Karma
globally using npm install karma ‐g as usual. However, this is poor practice in actual projects

www.it-ebooks.info

http://www.it-ebooks.info/

286  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

because it fails to take advantage of the ability to simply run npm install and install all the
project’s dependencies. Once again, the ideal JavaScript project requires only a single command to
install all its dependencies. To make this a reality with your simple Karma tests, put your Karma
dependencies in a package.json file:

{
 "name": "chapter-9",
 "version": "0.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "make test"
 },
 "dependencies": {
 "mocha": "1.20.1",
 "karma": "0.12.16",
 "karma‐chai": "0.1.0",
 "karma‐mocha": "0.1.4",
 "karma‐chrome‐launcher": "0.1.4"
 },
 "author": "Valeri Karpov",
 "license": "ISC"
}

Notice that, even in this simple case of one simple test file and one browser, you had to install three
Karma plug‐ins. The karma package represents the lightweight core of Karma. The karma‐mocha
package enables Karma to integrate with Mocha, and karma‐chai provides an assertion framework
for your Mocha tests. Finally, karma‐chrome‐launcher enables Karma to launch and instrument
a live Google Chrome browser. After you’ve run npm install, run ./node _ modules/karma/bin/
karma ––version to verify that the correct version of Karma is installed.

NOTE  The node package manager, npm, is somewhat unconventional. Unless
you use the ‐g flag, npm installs your dependencies into a node _ modules
directory in your current directory. Furthermore, each dependency within the
node _ modules directory is a directory that contains its own node _ modules
directory. The decision to represent dependencies in NodeJS as a tree is often
contested for being wasteful of space and bandwidth, but it offers two key
advantages. First, you don’t have to worry about maintaining a PATH variable.
Second, because each module has its own copy of its dependencies, you never
have a conflict between two modules depending on two incompatible versions
of the same module. As a consequence of this second fact, there is little benefit
to not specifying exact version numbers for your dependencies—that is, 0.1.4
instead of ~0.1.

The way to tell Karma how to run your tests is via a configuration file. Karma looks for a
karma.conf.js file in your current directory by default. Although you can create a Karma
configuration file manually, you will usually use Karma’s convenient init helper to set up

www.it-ebooks.info

http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  287

the basics of your configuration file. Run the following command in your shell to initialize a
configuration file:

./node_modules/karma/bin/karma init

Karma then asks you a few questions. In your case, select Mocha as your testing framework and
Chrome as the only browser you want to launch. Once you’re done, your current directory should
contain a karma.conf.js file that looks something like this:

module.exports = function(config) {
 config.set({

 // base path that will be used to resolve all patterns (eg. files, exclude)
 basePath: '',

 // frameworks to use
 // available frameworks: https://npmjs.org/browse/keyword/karma‐adapter
 frameworks: ['mocha', 'chai'],

 // list of files / patterns to load in the browser
 files: [
 './my_form_controller.js',
 './my_form_controller.test.js'
],

 // list of files to exclude
 exclude: [

],

 preprocessors: {},

 reporters: ['progress'],

 // web server port
 port: 9876,

 // enable / disable colors in the output (reporters and logs)
 colors: true,

 logLevel: config.LOG_INFO,

 // enable / disable watching file and executing tests whenever any file changes
 autoWatch: true,

 // start these browsers
 // available browser launchers: https://npmjs.org/browse/keyword/karma‐launcher

www.it-ebooks.info

https://npmjs.org/browse/keyword/karma%E2%80%90adapter
https://npmjs.org/browse/keyword/karma%E2%80%90launcher
http://www.it-ebooks.info/

288  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 browsers: ['Chrome'],

 // Continuous Integration mode
 // if true, Karma captures browsers, runs the tests and exits
 singleRun: false
 });
};

This configuration is almost enough to be able to properly run your my _ form _ controller.test.js
tests in Chrome. There is one further change you need to make to the my _ form _ controller.test.js
file itself. Karma loads the specified files as‐is in the browser, so your my _ form _ controller.test.js
file needs to make sure that it doesn’t call require() when running in the browser. The require()
function is specific to NodeJS and will not exist when Karma tries to run your tests in Chrome.

NOTE  Tools like Browserify (see Chapter 3) enable you to compile NodeJS‐style
JavaScript into browser‐friendly JavaScript, but the particulars of these tools
are tangential to the subject of testing AngularJS applications. In the interest of
minimizing complexity, you won’t be using Browserify in this chapter.

Here’s the modified header code for the my _ form _ controller.test.js file:

if (typeof require !== 'undefined') {
 MyFormController = require('./my_form_controller.js');
 assert = require('assert');
}

Now, you should be able to start Karma by running ./node _ modules/karma/bin/karma start.
Karma starts your local version of Google Chrome, executes your tests, and provides results on your
command line.

If you intend to use Karma in your projects, you should use an automation tool similar to Grunt,
Gulp, or Make (see Chapter 2) to simplify your testing workflow, in addition to saving you from
having to type ./node _ modules/karma/bin/karma every time. For example, here’s a simple rule you
can add to your Makefile to enable you to start Karma with the more concise make karma command:

karma:
 ./node_modules/karma/bin/karma start

Browser Testing in the Cloud with Sauce
The Karma testing setup described in the previous section is rarely used in practice. Although it
seems simple, your current Karma setup is limited by the fact that you need to install all browsers
you want to test on each development machine. In all likelihood, you want to be able to test your
application on multiple versions of Microsoft Internet Explorer and the myriad mobile browsers.
Setting up an environment with these browsers on a development machine is tedious. Thankfully,
there is a cloud solution to this problem: Sauce, https://saucelabs.com, provides the ability to
provision live browsers to execute tests. In addition, Sauce provides good support for Karma. You

www.it-ebooks.info

https://saucelabs.com
http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  289

don’t need to use Karma for Sauce, but for the purposes of this section, you define a new Karma
configuration that provisions browsers in Sauce.

First, go to https://saucelabs.com and sign up for an account. Sauce provides a paid service,
but there is a free tier that provides a limited amount of test time. The free tier should be sufficient
for the purposes of this chapter. Once you have signed up, remember your username and find your
Sauce application programming interface (API) key. You need both of these. First, here are the
contents of karma‐sauce.conf.js, the configuration file for Karma and Sauce:

module.exports = function(config) {
 var customLaunchers = {
 sl_firefox: {
 base: 'SauceLabs',
 browserName: 'firefox',
 version: '27'
 },
 sl_safari: {
 base: 'SauceLabs',
 browserName: 'safari',
 platform: 'OS X 10.6',
 version: '5'
 },
 sl_ie_9: {
 base: 'SauceLabs',
 browserName: 'internet explorer',
 platform: 'Windows 7',
 version: '9'
 }
 };

 config.set({

 // base path that will be used to resolve all patterns (eg. files, exclude)
 basePath: '',

 // frameworks to use
 // available frameworks: https://npmjs.org/browse/keyword/karma-adapter
 frameworks: ['mocha', 'chai'],

 // list of files / patterns to load in the browser
 files: [
 './my_form_controller.js',
 './my_form_controller.test.js'
],

 exclude: [],

 preprocessors: {},

 reporters: ['dots', 'saucelabs'],

 // web server port

www.it-ebooks.info

https://saucelabs.com
https://npmjs.org/browse/keyword/karma-adapter
http://www.it-ebooks.info/

290  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 port: 9876,

 // enable / disable colors in the output (reporters and logs)
 colors: true,

 logLevel: config.LOG_INFO,

 // enable / disable watching file and executing tests whenever any file changes
 autoWatch: true,

 // use these custom launchers for starting browsers on Sauce
 customLaunchers: customLaunchers,

 // start these browsers
 // available browser launchers: https://npmjs.org/browse/keyword/karma‐launcher
 browsers: Object.keys(customLaunchers),

 // Continuous Integration mode
 // if true, Karma captures browsers, runs the tests and exits
 singleRun: true,

 sauceLabs: {
 testName: 'Web App Unit Tests'
 },
 });
};

The changes highlighted in the previous code enable Karma to connect to Sauce and provision
the desired browsers. The customLaunchers object defines a list of operating system (OS) and
browser configurations you want Sauce to provision. In this case, you start Firefox 27 on Linux,
Safari 6 on Mac OSX 10.6 Snow Leopard, and Internet Explorer 9 on Microsoft Windows 7.
Because Karma runs forever watching for changes to files by default, the singleRun option is
necessary for tests to terminate properly. Finally, the sauceLabs.testName field allows you to
specify a human‐readable identifier for your tests to allow you to find logs from your test runs
in Sauce’s resources dashboard.

You need two more minor changes to run Karma with the Sauce configuration. First, you
need to modify your Makefile to run this new Karma configuration. The Karma executable
treats the second command‐line argument as the configuration file it should use, so running
karma start karma‐sauce.conf.js tells Karma to use this new configuration file. You should
create a new rule in your Makefile to run Karma with the new config:

karma-sauce:
 ./node_modules/karma/bin/karma start karma-sauce.conf.js

In addition to the new make karma‐sauce rule, you need to provide your Sauce username and
API key. By default, karma‐sauce looks for environment variables named SAUCE _ USERNAME and
SAUCE _ ACCESS _ KEY to know which credentials it should use. If you don’t have experience using
environment variables, don’t worry; there are two very easy ways to set these variables.

www.it-ebooks.info

https://npmjs.org/browse/keyword/karma%E2%80%90launcher
http://www.it-ebooks.info/

Unit Testing in AngularJS  ❘  291

The first way to set an environment variable is using the env command. The env command
creates a transient environment variable that only exists for the lifetime of the current shell
command. For instance, running env SAUCE _ USERNAME=vkarpov15 make karma‐sauce properly
exposes the SAUCE _ USERNAME variable to the make karma‐sauce command. However, if you run
make karma‐sauce again, the SAUCE _ USERNAME variable isn’t set unless you preface your command
with env SAUCE _ USERNAME=vkarpov15 again.

Using the env command every time can get repetitive, so you may choose to use the export
command. Running export SAUCE _ USERNAME=vkarpov15 sets the SAUCE _ USERNAME environment
variable until you close your terminal window. You can then run make karma‐sauce without an
extra configuration.

To highlight the effectiveness of Sauce, you run tests that are specifically designed to fail in different
ways on Safari 5 and Internet Explorer 9:

describe('Tests that fail on different browsers', function() {
 describe('Safari 5 disallows non-UTC designators for ISO dates', function() {
 assert.ok(new Date('2007-04-05T14:30:00').toString() != 'Invalid Date');
 });

 describe('IE9 outputs weird date string format', function() {
 // IE9 outputs a date that looks like 'Thu Apr 5 14:30:00 UTC 2007'
 var d = new Date('2007-04-05T14:30:00').toString();
 assert.ok(d.indexOf('Thu Apr 05 2007') != -1);
 });
});

Now, when you run make karma‐sauce, you should see something similar to the next output. The
tests should succeed on Firefox 27 and fail on Safari 5 and Internet Explorer 9:

INFO [launcher.sauce]: firefox 27 session at https://saucelabs.com/tests/...
INFO [Firefox 27.0.0 (Linux)]: Connected on socket iDn0_bZOOKuYNovd-DoC...
..
Firefox 27.0.0 (Linux): Executed 2 of 2 SUCCESS (0.251 secs / 0.001 secs)
INFO [launcher.sauce]: safari 5 (OS X 10.6) session at ...
INFO [launcher.sauce]: internet explorer 9 (Windows 7) session at ...
INFO [Safari 5.1.9 (Mac OS X 10.6.8)]: Connected on socket UfV5ZJ01UhK38mA1-DoD...
Safari 5.1.9 (Mac OS X 10.6.8) ERROR
 AssertionError: expected false to be truthy
 at /Users/vkarpov/Desktop/Wiley/Sample/Chapter 9/node_modules/chai/chai.js:925

NOTE  An environment variable is a named variable that is global to your
command‐line session. The most well‐known example of an environment
variable is PATH, the variable that tells your shell which directories it should look
for executables in. Some web developers use environment variables to configure
servers and command‐line tools. Debates between web developers over whether
configuration files or environment variables are the appropriate way to handle
server configuration are frequent.

www.it-ebooks.info

https://saucelabs.com/tests/
http://www.it-ebooks.info/

292  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

Safari 5.1.9 (Mac OS X 10.6.8) ERROR
 AssertionError: expected false to be truthy
 at /Users/vkarpov/Desktop/Wiley/Sample/Chapter 9/node_modules/chai/chai.js:925
Safari 5.1.9 (Mac OS X 10.6.8): Executed 0 of 0 ERROR (0.686 secs / 0 secs)
INFO [IE 9.0.0 (Windows 7)]: Connected on socket dxAxFkCbwzDSkIjx-DoE ...
IE 9.0.0 (Windows 7) ERROR
 AssertionError: expected false to be truthy
 at /Users/vkarpov/Desktop/Wiley/Sample/Chapter 9/node_modules/chai/chai.js:921
IE 9.0.0 (Windows 7) ERROR
 AssertionError: expected false to be truthy
 at /Users/vkarpov/Desktop/Wiley/Sample/Chapter 9/node_modules/chai/chai.js:921
IE 9.0.0 (Windows 7): Executed 0 of 0 ERROR (1.678 secs / 0 secs)
INFO [launcher.sauce]: Shutting down Sauce Connect
make: *** [karma-sauce] Error 1

At a high level, Karma provisions the desired browsers in Sauce and directs Sauce to point them
to a lightweight web server that Karma starts on your local machine. When Sauce loads the page,
Karma captures the browser, enabling Karma to run tests on that browser. An unfortunate side
effect of this is that Karma may time out while trying to capture a browser, particularly if your local
machine is on a slow Internet connection. Thus, your tests may fail simply because your Internet
connection is too slow.

Evaluating the Unit Testing Options
The three unit testing approaches in this section—NodeJS, Karma, and Karma with Sauce—come
with their own set of trade‐offs. Running your tests with NodeJS on Mocha is easy to set up,
reliable, and fast, but it doesn’t account for different JavaScript execution engines. Running your
tests in Karma against local browsers is fast, reliable, and does enable you to test multiple JavaScript
engines, but it requires installing every browser you want to test on your local machine. Running
your tests in the Sauce cloud with Karma is slow and unreliable but enables you to test multiple
JavaScript engines without having to install additional browsers locally.

Which one of these approaches works best for you depends on your particular application’s
requirements. However, browser‐specific bugs are becoming less and less frequent in the realm
of pure unit tests. Browser‐specific bugs usually occur when testing against an actual DOM. At
the unit test level, most browser‐specific bugs occur with the JavaScript Date object, but these
difficulties are mitigated with libraries like moment. More often than not, NodeJS is sufficient for
strict unit testing. However, as you’ll see in the next section, Karma and Sauce are also incredibly
useful for running DOM integration tests.

DOM INTEGRATION TESTS

Unit tests are quite powerful and an excellent tool for catching bugs before they break your
production environment. However, unit tests don’t capture everything that can go wrong. Even if
your code has excellent unit test coverage, the integration between your modules or between your
modules and the DOM may be broken. Thankfully, AngularJS provides two distinct powerful
toolsets for running tests that integrate with the DOM: ng‐scenario and protractor.

www.it-ebooks.info

http://www.it-ebooks.info/

DOM Integration Tests  ❘  293

The first tool, ng‐scenario, runs tests by taking over an iframe element. It is considered deprecated
by the AngularJS team in favor of the second tool, protractor, due to the limitations inherent in
the iframe approach. Specifically, as a security measure, JavaScript code in virtually every modern
browser is not allowed to access the internals of an iframe element if its current URL is on a
different domain. This means that your test code must be run on the same domain as the code
under test, which is a significant limitation when you want to automate testing of a staging server.
However, ng‐scenario also offers advantages: It is easier to set up and is less tedious to work with.

Protractor, on the other hand, is based on Google’s Selenium browser automation tool. Selenium
is a powerful tool for starting and controlling various browsers, and protractor provides an
AngularJS‐friendly layer on top of Selenium. Although protractor does not suffer from the iframe
limitations of an angular‐scenario, it does suffer from the limitations and non‐testing‐oriented
design decisions inherent in Selenium. One bug (or feature, depending on your perspective) that
first‐time Selenium users often find extremely
frustrating is that Selenium throws an exception
when you call click() on an element that Selenium
doesn’t think is visible. Although this behavior is
considered correct from Selenium’s point of view,
in practice it puts a great deal of pressure on user
interface/user experience (UI/UX) specialists to
work within the confines of Selenium’s quirks.

In the next couple of sections, you’ll learn to write
DOM‐integrated tests with these two tools. The
tests you will be writing will be integration tests
that test the DOM interaction but not the server
interaction. The server will still be stubbed out,
using AngularJS’s handy $httpBackend service.
From an architectural perspective, these tests will
look like Figure 9-3.

A Guide to $httpBackend
In the unit testing section, you created mocked‐out stubs for AngularJS scopes. Scopes are simple
objects, but mocking out the complex $http service can be tricky. Thankfully, AngularJS provides a
convenience $httpBackend object that allows you to stub out $http for testing. The $httpBackend
object provides numerous helpers that make stubbing out your server interactions much less verbose,
which is key for integration tests that may do multiple server requests over the course of their execution.

The $httpBackend service is defined in the ngMock module. The AngularJS documentation
specifies two different $httpBackend objects: one for unit testing in the ngMock module and
one for integration testing in the ngMockE2E module; however, both are packaged in one file:
angular‐mocks.js. Therefore, you should download just the angular‐mocks.js file, either using
bower install angular‐mocks or code.angularjs.org. For your convenience, angular‐mocks.js for
AngularJS v1.2.16 has been included with the sample code for this chapter. In this section’s example,
you will be using the one defined in the ngMock module; however, in your integration tests, you
will be using the one in the ngMockE2E module. The difference between these two $httpBackend

FIGURE 9-3 

DOM Integration Tests

Directives +
DOM

Controllers +
Services

Server

www.it-ebooks.info

http://www.it-ebooks.info/

294  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

services is fairly trivial: The service in the ngMockE2E module has a passthrough function that
enables you to specify certain routes that pass through the mock $http service and talk to a real
server, whereas the service in the ngMock module lacks this function. Because you will not be using
the passthrough function in this section, these two modules will be essentially interchangeable.

NOTE  The ngMock module has a significant limitation: It is dependent on
AngularJS being present in the global window object, and, in particular, can’t be
run in NodeJS without significant finagling. If you choose to run your unit tests
in NodeJS, please make sure you write your own stub for $http rather than using
$httpBackend.

Learning to use $httpBackend is fairly straightforward from an example. Recall the MyFormController
function from the unit testing section, which validates that a user entered in a username and e-mail:

function MyFormController($scope, $http) {
 $scope.userData = {};
 $scope.errorMessages = [];

 $scope.saveForm = function() {
 $scope.saving = true;
 $http.
 put('/api/submit', $scope.userData).
 success(function(data) {
 $scope.saving = false;
 $scope.success = true;
 }).
 error(function(err) {
 $scope.saving = false;
 $scope.error = err;
 });
 };

 $scope.validateForm = function() {
 var validationFunctions = [
 {
 fn: function() {
 return !!$scope.userData.name
 },
 message: 'Name required'
 },
 {
 fn: function() {
 return !!$scope.userData.email
 },
 message: 'Email required'
 }
];

 $scope.errorMessages = [];
 for (var i = 0; i < validationFunctions.length; ++i) {
 if (!validationFunctions[i].fn()) {

www.it-ebooks.info

http://www.it-ebooks.info/

DOM Integration Tests  ❘  295

 $scope.errorMessages.push(validationFunctions[i].message);
 }
 }
 return $scope.errorMessages;
 };
}

Note that to make $httpBackend available in your tests, you need to make a small modification to
your Karma configuration file to include both AngularJS and the ngMock module. This is because the
ngMock module is dependent on AngularJS being present on the global window object.

 // list of files / patterns to load in the browser
 files: [
 './angular.js',
 './angular‐mocks.js',
 './my_form_controller.js',
 './my_form_controller.test.js',
 './my_form_controller.http_backend.test.js'
],

The newly added my _ form _ controller.http _ backend.test.js file contains a simple unit test for
testing the saveForm function using $httpBackend:

describe('MyFormController', function() {
 describe('saveForm', function() {
 var $httpBackend, $rootScope, createController;

 beforeEach(inject(function($injector) {
 // set up the mock http service responses
 $httpBackend = $injector.get('$httpBackend');

 // get hold of a scope (i.e., the root scope)
 $rootScope = $injector.get('$rootScope');
 // the $controller service is used to create instances of controllers
 var $controller = $injector.get('$controller');

 createController = function() {
 return $controller('MyFormController', {
 '$scope' : $rootScope
 });
 };
 }));

 it('should handle a successful server request', function() {
 createController();

 $httpBackend.when('PUT', '/api/submit').respond(200, {});

 $rootScope.saveForm();

 assert.ok($rootScope.saving);

 $httpBackend.flush();

 assert.ok(!$rootScope.saving);

www.it-ebooks.info

http://www.it-ebooks.info/

296  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 assert.ok($rootScope.success);
 });

 it('should handle server-side error', function() {
 createController();

 $httpBackend.when('PUT', '/api/submit').respond(
 500,
 { error: 'Oops' });

 $rootScope.saveForm();

 assert.ok($rootScope.saving);

 $httpBackend.flush();

 assert.ok(!$rootScope.saving);
 assert.ok(!$rootScope.success);
 assert.equal('Oops', $rootScope.error.error);
 });
 });
});

In the preceding code, $httpBackend provides a means of configuring a stubbed‐out $http object,
which is passed in to the controller via AngularJS’s inject function. You may have never seen the
inject function before, because it is rarely used outside of test code and the AngularJS core. The
inject function executes AngularJS’s name‐based dependency injection manually. In this case,
it executes the MyFormController function with $scope set to the $rootScope variable and a
stubbed‐out $http configured by $httpBackend. Note that you don’t have to modify $http itself;
modifying $httpBackend is sufficient.

The when function on $httpBackend enables you to specify the result of a server call with $http.
The when function uses a fluent syntax designed for readability, such as the following call:

$httpBackend.when('PUT', '/api/submit').respond(200, {});

This tells $httpBackend that, when the code under test does an HTTP PUT request to the /api/
submit route, the result will have HTTP status 200 (meaning that the request succeeded) and
an empty body. If the code under test makes an HTTP request that $httpBackend hasn’t been
configured to handle using the when function, $httpBackend throws an error and your tests fail.

There is one more detail that is important about $httpBackend: It operates asynchronously, so you
need to call the flush function to send responses to your code’s HTTP requests. This is handy for
testing intermediate state, for instance, testing that the saving variable is true after validateForm
was called but before the HTTP response returns. This asynchronous behavior is also useful for
testing long‐running requests, such as if you want to test a time‐out on an HTTP request. However,
note that the flush function doesn’t take parameters, so it is impossible to flush a specific request.
The flush function causes all outstanding HTTP requests to receive their results.

Now that you understand how $httpBackend works, you’re ready to use $httpBackend to write
some sophisticated DOM integration tests with protractor and ng‐scenario. Once again, recall how

www.it-ebooks.info

http://www.it-ebooks.info/

DOM Integration Tests  ❘  297

DOM integration tests look in the context of AngularJS architecture. The DOM integration tests
will interact with DOM elements on a page with a stubbed‐out server, or, essentially, function as
end‐to‐end tests with a fake back end.

The Page You’ll Be Testing
In the next two sections, you’re going to write a suite of DOM integration tests for an HTML page
that uses the MyFormController code. First, take a look at the HTML page, my _ form.html, that
will be tested. This page may not be the most sophisticated AngularJS page out there, but writing
tests for this page demonstrates the basic principles necessary to test sophisticated apps:

 <body ng-controller="MyFormController">
 <h1>This is a Form</h1>
 <hr>
 <h2>Name</h2>
 <input type="text"
 ng-model="userData.name">
 <h2>Email</h2>
 <input type="text"
 ng-model="userData.email">
 <hr>
 <input type="submit"
 value="Save"
 ng-click="validateForm().length === 0 && saveForm()">
 <h2 ng-show="saving">Saving...</h2>
 <h2 ng-show="success">Saved!</h2>
 <div ng-show="errorMessages.length > 0">
 <h3>Errors occurred:</h3>
 <div ng-repeat="message in errorMessages">
 {{ message }}
 </div>
 </div>
 </body>

In addition, running tests with ng‐scenario and protractor requires a web server. There are myriad
ways to set up a web server to serve static content using NodeJS, but for the purposes of this
chapter, you use the node‐static module and a simple server.js script:

var static = require('node-static');

var fileServer = new static.Server('./');

require('http').createServer(function (request, response) {
 request.addListener('end', function () {
 fileServer.serve(request, response);
 }).resume();
}).listen(8080);

Now, running node server.js launches a web server on port 8080 that serves the contents of
this chapter’s source directory. Once you’ve started the server, navigate your browser to http://
localhost:8080/my _ form.html to see the simple form page in action.

www.it-ebooks.info

http://localhost:8080/my_form.html
http://localhost:8080/my_form.html
http://www.it-ebooks.info/

298  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

DOM Integration Tests with ng‐scenario
The ng‐scenario framework is a simple E2E and integration testing tool. It operates by taking control
of an iframe element and provides an API so you can manipulate the iframe element. The AngularJS
team currently considers ng‐scenario deprecated in favor of protractor; however, depending on your
use case, it may be a better tool for you than protractor. Over the next two sections, you explore the
trade‐offs between these two frameworks, starting with ng‐scenario.

Although you don’t necessarily have to use Karma with ng‐scenario, Karma makes using
ng‐scenario easier by handling launching browsers and providing output on the command
line. Much like Mocha and Chai, ng‐scenario is available as a Karma framework through
npm. You can include karma‐ng‐scenario as a dependency in your package.json and run
npm install:

"dependencies": {
 "mocha": "1.20.1",
 "karma": "0.12.16",
 "karma-chai": "0.1.0",
 "karma-mocha": "0.1.4",
 "karma‐ng‐scenario": "0.1.0",
 "karma-chrome-launcher": "0.1.4",
 "karma-sauce-launcher": "0.2.8"
 },

Now that you’ve installed ng‐scenario, you’re going to create another Karma configuration file
and another Makefile rule. Following is karma‐ng‐scenario.conf.js. This Karma configuration
only needs to load one file, my _ form _ controller.ng‐scenario.test.js, the suite of tests that
the browser should run. It also needs to include the ng‐scenario framework and establish a proxy.
The proxy tells Karma where the local web server is, so when you tell ng‐scenario to navigate to
my _ form.html, Karma knows that means (http://localhost:8080/my _ form.html). Furthermore,
ng‐scenario comes with its own assertion framework that is much easier to use with ng‐scenario
than Chai, so you won’t include the Chai framework:

module.exports = function(config) {
 config.set({
 basePath: '',

 // frameworks to use
 // available frameworks: https://npmjs.org/browse/keyword/karma‐adapter
 frameworks: ['ng‐scenario', 'mocha'],

 // list of files / patterns to load in the browser
 files: [
 './my_form_controller.ng‐scenario.test.js',
],

 reporters: ['progress'],

 proxies : {
 '/': 'http://localhost:8080'

www.it-ebooks.info

http://localhost:8080/myform.html
https://npmjs.org/browse/keyword/karma%E2%80%90adapter
http://localhost:8080
http://www.it-ebooks.info/

DOM Integration Tests  ❘  299

 },

 // web server port
 port: 8080,

 runnerPort: 9100,

 // enable / disable colors in the output (reporters and logs)
 colors: true,

 logLevel: config.LOG_DEBUG,

 // enable / disable watching file and executing tests whenever any file changes
 autoWatch: false,

 // start these browsers
 // available browser launchers: https://npmjs.org/browse/keyword/karma‐launcher
 browsers: ['Chrome'],

 // Continuous Integration mode
 // if true, Karma captures browsers, runs the tests, and exits
 singleRun: true
 });
};

You run these integration tests only on Chrome and enable single‐run mode, so Karma exits after
tests run. The reason for using single‐run mode is that integration tests are typically much slower
than unit tests, so, in practice, you often don’t want to run them after every save. In addition to this
configuration file, add another rule to your Makefile:

karma-ng-scenario:
 ./node_modules/karma/bin/karma start karma-ng-scenario.conf.js

Unfortunately, $httpBackend has two significant limitations. First, for the purposes of testing,
$httpBackend must be defined in the code that’s under test, not in the test code. Second,
$httpBackend stores when conditions in a private array, so once you set a when condition, there is
no way to change it. These are significant limitations, but, as you’ll see, there are a few reasonable
workarounds to make $httpBackend behave.

Here’s the header code for my _ form.html, with included $httpBackend. Note the fact that the code
attaches $httpBackend to the global window object. The reason for this decision will become clear
when you actually write the test code.

 <script type="text/javascript" src="/angular.js"></script>
 <script type="text/javascript" src="/angular-mocks.js"></script>
 <script type="text/javascript">
 var app = angular.module('domTest', ['ngMockE2E']);

 app.config(function($provide) {
 $provide.decorator('$httpBackend',

www.it-ebooks.info

https://npmjs.org/browse/keyword/karma%E2%80%90launcher
http://www.it-ebooks.info/

300  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 angular.mock.e2e.$httpBackendDecorator);
 });

 // define the fake back end
 app.run(function($httpBackend, $window) {
 $window.$httpBackend = $httpBackend;
 });
 </script>
 <script type="text/javascript" src="/my_form_controller.js"></script>

Now you need to write my _ form _ controller.ng‐scenario.test.js. There are three scenarios
you are going to test. First, you test that if the user enters their information correctly, they see a
confirmation. Second, you test that the user sees error messages when they don’t enter information.
Third, you test that the appropriate error message shows up when there is an error on the server.
Here are these three tests in ng‐scenario:

describe('MyForm', function() {
 it('should submit successfully', function() {
 browser().navigateTo('/my_form.html');

 httpBackend(200, {});

 input('userData.name').enter('Victor Hugo');
 input('userData.email').enter('les@miserabl.es');
 element('input[type=submit]').click();

 expect(element('#saved').css('display')).not().toBe('none');
 expect(element('#saving').css('display')).toBe('none');
 expect(element('#errors').css('display')).toBe('none');
 });

 it('should show errors properly', function() {
 browser().navigateTo('/my_form.html');

 httpBackend(200, {});

 element('input[type=submit]').click();

 expect(element('#saved').css('display')).toBe('none');
 expect(element('#saving').css('display')).toBe('none');
 expect(element('#errors').css('display')).not().toBe('none');

 expect(repeater('.error-message').count()).toBe(2);
 expect(element('.error-message:nth-of-type(1)').html())
 .toContain('Name required');
 expect(element('.error-message:nth-of-type(2)').html())
 .toContain('Email required');
 });

 it('should handle server errors', function() {
 browser().navigateTo('/my_form.html');

 httpBackend(500, { error: 'Internal Server Error' });

 input('userData.name').enter('Victor Hugo');

www.it-ebooks.info

mailto:les@miserabl.es
http://www.it-ebooks.info/

DOM Integration Tests  ❘  301

 input('userData.email').enter('les@miserabl.es');
 element('input[type=submit]').click();

 expect(element('#saved').css('display')).toBe('none');
 expect(element('#server-error').css('display')).not().toBe('none');
 expect(element('#server-error').html())
 .toContain('Server Error: Internal Server Error');
 });
});

angular.scenario.dsl('httpBackend', function() {
 return function(code, response) {
 return this.addFutureAction('tweaking $httpBackend',
 function(window, document, done) {
 window.$httpBackend.when('PUT', '/api/submit').respond(code, response);
 done();
 });
 };
});

Pay special attention to the preceding DSL code. DSL stands for domain‐specific language. In the
case of ng‐scenario, a DSL allows you to define functions that operate on the window and document
of the page under test. Because my _ form.html exposes $httpBackend as a property of the window
object, the DSL enables the test code to set the appropriate behavior for $httpBackend.

You may be wondering why these tests use the expect function to do assertions instead
of assert.equal. It’s because calls to ng‐scenario’s element.css function, such as
element('#saved').css('display'), return a future rather than an actual string value. In other
words, the return value of element.css is an object wrapper around an asynchronous operation,
and the actual assertion should only be done when the asynchronous operation completes. The
expect function wraps all the confusing asynchronous behavior and lets you write your test code
as if it were synchronous.

NOTE  The future design pattern is used for dealing with values that are
computed asynchronously. It is closely related to the more well‐known promise
design pattern. A future is an object that serves as a placeholder for a value to
be computed at some point in the future. For the purposes of ng‐scenario, you
don’t need to know anything about futures beyond this one‐sentence definition,
because the expect function allows you to interact with futures as if they were
simple numbers and strings.

The browser, input, and element functions are all provided by ng‐scenario. In fact,
ng‐scenario provides a rich set of tools for browser interaction. You can see a full list at code
.angularjs.org/1.2.16/docs/guide/e2e‐testing. However, the browser, input, and element
functions are the most commonly used.

The browser function is primarily useful for the navigateTo function, which you used in the
previous code to tell the browser to load my _ form.html at the start of each test. The input function

www.it-ebooks.info

mailto:les@miserabl.es
http://www.it-ebooks.info/

302  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

exposes a function called enter, which sets the value of a string input and calls scope.$apply in the
page under test. The element function lets you use a subset of the jQuery API to query and modify
elements in the page under test. For example, the element('#saved').css('display') function call
returns a future representing the value of the cascading style sheets (CSS) display property on the
DOM element with ID saved.

Now that you’ve looked at the test code, it’s time to actually run the tests. Start the web server with
node server.js, and, in a separate terminal window, run make karma‐ng‐scenario. You should
see nice output that looks like this:

Chrome 35.0.1916 (Mac OS X 10.9.2): Executed 0 of 3 SUCCESS (0 secs / 0 secs)
DEBUG [proxy]: proxying request - /my_form.html to localhost:8080
DEBUG [proxy]: proxying request - /angular.js to localhost:8080
DEBUG [proxy]: proxying request - /angular-mocks.js to localhost:8080
Chrome 35.0.1916 (Mac OS X 10.9.2): Executed 2 of 3 SUCCESS (0 secs / 0.434 secs
Chrome 35.0.1916 (Mac OS X 10.9.2): Executed 3 of 3 SUCCESS (0 secs / 0.564 secs
Chrome 35.0.1916 (Mac OS X 10.9.2): Executed 3 of 3 SUCCESS (0.596 secs /
0.564 secs)
DEBUG [karma]: Run complete, exitting.
DEBUG [launcher]: Disconnecting all browsers
DEBUG [launcher]: Process Chrome exited with code 0
DEBUG [temp-dir]: Cleaning temp dir /var/folders/7h/...

The powerful part of using Karma for ng‐scenario integration testing is easy integration with Sauce.
Recall that you’ve already used Sauce to provision browsers in the cloud for running unit tests.
You can do the same thing with ng‐scenario tests! Karma even handles setting up a tunnel so the
Sauce browsers can communicate with your local server. You don’t need to make changes to the
integration tests defined in my _ form _ controller.ng‐scenario.test.js. You just need to create a
new Karma configuration file: karma‐ng‐scenario‐sauce.conf.js:

module.exports = function(config) {
 var customLaunchers = {
 sl_firefox: {
 base: 'SauceLabs',
 browserName: 'firefox',
 version: '27'
 },
 sl_safari: {
 base: 'SauceLabs',
 browserName: 'safari',
 platform: 'OS X 10.6',
 version: '5'
 },
 sl_ie_9: {
 base: 'SauceLabs',
 browserName: 'internet explorer',
 platform: 'Windows 7',
 version: '9'
 }
 };

 config.set({

www.it-ebooks.info

http://www.it-ebooks.info/

DOM Integration Tests  ❘  303

 basePath: '',

 frameworks: ['ng-scenario', 'mocha'],

 // list of files / patterns to load in the browser
 files: [
 './my_form_controller.ng-scenario.test.js',
],

 reporters: ['dots', 'saucelabs'],

 proxies : {
 '/': 'http://localhost:8080'
 },

 // web server port
 port: 8080,

 runnerPort: 9100,

 // enable / disable colors in the output (reporters and logs)
 colors: true,

 logLevel: config.LOG_DEBUG,

 autoWatch: false,

 customLaunchers: customLaunchers,

 browsers: Object.keys(customLaunchers),

 singleRun: true,

 sauceLabs: {
 testName: 'Web App Integration Tests ‐ ' + (new Date()).toString()
 },
 });
};

Congratulations! You’ve successfully used Karma and ng‐scenario to run DOM integration tests
on Internet Explorer 9, Safari 5, and Firefox. As you’ve seen, ng‐scenario is powerful, simple, and
requires minimal setup. In addition, with Karma’s tunneling capabilities, it’s possible to run tests on
external browsers, such as in Sauce.

However, ng‐scenario’s approach of using an iframe comes with two significant limitations. First,
users will not be running your page in an iframe, so your tests won’t mirror the user’s environment
exactly. Second, you need to run your tests in ng‐scenario from the same machine as your server
is running on. This is not a significant limitation for development work, but what about testing
a remote staging server deployed via Heroku, testing a server that you don’t have SSH access to,
or testing a server that you can’t launch browsers on? It is quite possible to have a comprehensive
testing strategy with ng‐scenario and Sauce, but these limitations may be deal breakers in certain
organizations. As you’ll see in the next section, protractor lacks these limitations.

www.it-ebooks.info

http://localhost:8080
http://www.it-ebooks.info/

304  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

DOM Integration Testing with Protractor
Protractor provides an alternative to ng‐scenario for DOM integration and E2E testing. Unlike ng‐
scenario, protractor has its own configuration method and should not be used with Karma. Protractor
enables you to separate your tests from your server, so you can test a staging server or possibly even
your production server from a script on your local machine. Protractor also uses the Jasmine testing
framework exclusively, but Jasmine and Mocha are almost interchangeable, so you shouldn’t be able
to tell the difference.

Much like the other modules in this chapter, protractor is available via npm. You should add
protractor as a dependency in your package.json and run npm install. In addition, it’s
necessary to run a web server to run tests with protractor, so you also need the node‐static
module that was introduced in the section “DOM Integration Tests with ng‐scenario,” earlier in
this chapter.

"dependencies": {
 "mocha": "1.20.1",
 "karma": "0.12.16",
 "karma-chai": "0.1.0",
 "karma-mocha": "0.1.4",
 "karma-ng-scenario": "0.1.0",
 "karma-chrome-launcher": "0.1.4",
 "karma-sauce-launcher": "0.2.8",
 "node-static": "0.7.3",
 "protractor": "0.24.2"
 },

Protractor is dependent on the open source Selenium project’s WebDriverJS tool. WebDriverJS is
not available via npm, but protractor comes with a tool to install and manage WebDriverJS. First, to
install WebDriverJS, run the following:

./node_modules/protractor/bin/webdriver-manager update

Once that’s done, start WebDriverJS:

./node_modules/protractor/bin/webdriver-manager start

Because protractor is Selenium‐based and decoupled from the page under test, it lacks the
DSL functionality that you saw in the “DOM Integration Tests with ng‐scenario” section. As a
consequence, you need to provide your own means of configuring your stubbed‐out $httpBackend in
the page under test. The simplest way to do this is to create a separate page, my_form
.protractor.html, which configures the page’s $httpBackend based on the query parameters
provided. Here’s what the $httpBackend setup JavaScript looks like on this new page:

var parseQueryString = function(queryString) {
 var params = {};
 pairs = queryString.split("&");

 for (var i = 0; i < pairs.length; ++i) {
 var pair = pairs[i].split('=');
 params[pair[0]] = decodeURIComponent(pair[1]);

www.it-ebooks.info

http://www.it-ebooks.info/

DOM Integration Tests  ❘  305

 }

 return params;
};

var app = angular.module('domTest', ['ngMockE2E']);

app.config(function($provide) {
 $provide.decorator('$httpBackend',
 angular.mock.e2e.$httpBackendDecorator);
});

// define the fake back end
app.run(function($httpBackend, $window) {
 if ($window.location.href.indexOf('?') != ‐1) {
 var index = $window.location.href.indexOf('?');
 var queryParams =
 parseQueryString($window.location.href.substr(index + 1));
 var code = parseInt(queryParams.code ││ '200', 10);
 var result = JSON.parse(queryParams.response ││ '{}');
 $httpBackend.when('PUT', '/api/submit').respond(code, result);
 return;
 }
 $httpBackend.when('PUT', '/api/submit').respond(200, {});
});

This extra code enables you to configure your stubbed‐out back end using a uniform resource
locator (URL). For instance, by navigating the browser to my _ form.protractor.html?code=500,
$httpBackend returns an HTTP 500 with an empty response for PUT requests to /api/submit.
Armed with this new code, you can write your first protractor tests.

The following tests the same three cases that the ng‐scenario tests did. If you recall that section, these
tests should look familiar. The first case is that, if the user enters valid information and the server
responds with an HTTP 200, the user sees a confirmation message. The second case is that, if the user
enters invalid information, they see an error message. The third case is that, if the user enters valid
information but there is a server error, the user sees a message informing them of the server error.
Here is how these tests look in protractor:

describe('MyForm', function() {
 var ptor;

 beforeEach(function() {
 browser.get('http://localhost:8081/my_form.protractor.html');
 ptor = protractor.getInstance();
 });

 it('should submit successfully', function() {
 element(by.model('userData.name')).sendKeys('Victor Hugo');
 element(by.model('userData.email')).sendKeys('les@miserabl.es');

 element(by.css('input[type=submit]')).click();

 expect(element(by.css('#saved')).

www.it-ebooks.info

http://localhost:8081/my_form.protractor.html
mailto:les@miserabl.es
http://www.it-ebooks.info/

306  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 getCssValue('display')).
 toBe('block');
 expect(element(by.css('#saving')).
 getCssValue('display')).
 toBe('none');
 expect(element(by.css('#errors')).
 getCssValue('display')).
 toBe('none');
 });

 it('should show errors properly', function() {
 element(by.css('input[type=submit]')).click();

 expect(element(by.css('#saved')).
 getCssValue('display')).
 toBe('none');
 expect(element(by.css('#saving')).
 getCssValue('display')).
 toBe('none');
 expect(element(by.css('#errors')).
 getCssValue('display')).
 toBe('block');

 expect(element.all(by.css('.error‐message')).
 count()).toBe(2);
 expect(element(by.css('.error‐message:nth‐of‐type(1)')).
 getText()).
 toContain('Name required');
 expect(element(by.css('.error-message:nth-of-type(2)')).
 getText()).
 toContain('Email required');
 });

 it('should handle server errors', function() {
 var response =
 '%7B%20"error"%3A%20\"Internal%20Server%20Error"%20%7D';
 var url = 'http://localhost:8081/my_form.protractor.html?' +
 'code=500&' +
 'response=' + response;
 browser.get(url);

 element(by.model('userData.name')).sendKeys('Victor Hugo');
 element(by.model('userData.email')).sendKeys('les@miserabl.es');

 element(by.css('input[type=submit]')).click();

 expect(element(by.css('#saved')).
 getCssValue('display')).
 toBe('none');
 expect(element(by.css('#server-error')).
 getCssValue('display')).
 toBe('block');
 expect(element(by.css('#server-error')).
 getText()).

www.it-ebooks.info

http://localhost:8081/my_form.protractor.html?
mailto:les@miserabl.es
http://www.it-ebooks.info/

DOM Integration Tests  ❘  307

 toContain('Server Error: Internal Server Error');
 });
});

Much like ng‐scenario, protractor’s syntax is designed to be very readable. Unfortunately,
protractor’s syntax is much more clunky and verbose. The preceding highlighted code shows several
common patterns that appear in virtually every protractor test. Furthermore, most of the protractor
tests primarily use combinations of these simple patterns. Here are these patterns explained in more
detail:

// set the value of an input field with ngModel='userData.name'
// to 'Victor Hugo'
element(by.model('userData.name')).sendKeys('Victor Hugo');

// assert that the element matching the CSS selector '#saved'
// has its display CSS property set to 'block'
expect(element(by.css('#saved')).
 getCssValue('display')).
 toBe('block');

// click on an element matching the CSS selector
// 'input[type=submit]'
element(by.css('input[type=submit]')).click();

// assert that there are two elements on the page matching
// the CSS selector '.error-message'
expect(element.all(by.css('.error-message')).
 count()).toBe(2);

// assert that the text of the first div element with class
// 'error-message' contains 'Name required'
expect(element(by.css('.error-message:nth-of-type(1)')).
 getText()).
 toContain('Name required');

Because protractor doesn’t use Karma, you need to use protractor’s own configuration format. Here
is the code for protractor _ conf.js:

exports.config = {
 seleniumAddress: 'http://localhost:4444/wd/hub',

 // capabilities to be passed to the webdriver instance
 capabilities: {
 'browserName': 'chrome'
 },

 // spec patterns are relative to the current working directly when
 // protractor is called
 specs: ['my_form_controller.protractor.test.js'],

 // options to be passed to Jasmine-node
 jasmineNodeOpts: {

www.it-ebooks.info

http://localhost:4444/wd/hub
http://www.it-ebooks.info/

308  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

 showColors: true,
 defaultTimeoutInterval: 30000
 }
};

As you can see, protractor’s configuration is usually fairly straightforward. One detail worth noting
is the seleniumAddress variable, which is the uniform resource identifier (URI) for your Selenium
server. The webdriver‐manager start command you ran started a Selenium server on the default
port, 4444. Protractor needs to be able to connect to this Selenium server to be able to run.

Another detail worth noting is that a protractor configuration file can launch only one browser at a
time, specified in the capabilities.browserName field. You need separate protractor configurations
for every browser you want to test.

Speaking of multiple browsers, you can also integrate protractor with Sauce. However, running tests
against your local server with Sauce and protractor requires either setting up your own tunneling
functionality or configuring a domain name for your local server. Unlike Karma, protractor doesn’t
automatically do tunneling for you. However, protractor’s strength lies in being able to test remote
servers rather than simply your local development server. To that aim, here is a standard protractor
example, available in angularjs.org _ protractor.js, that tests the angularjs.org homepage:

describe('angularjs homepage', function() {
 it('should greet the named user', function() {
 browser.get('http://www.angularjs.org');

 element(by.model('yourName')).sendKeys('Professional AngularJS');
 var greeting = element(by.binding('yourName'));

 expect(greeting.getText()).toEqual('Hello Professional AngularJS!');
 });
});

You can modify your protractor configuration a little bit to look like the angularjs.org _
protractor.conf.js file:

// an example configuration file
exports.config = {
 //seleniumAddress: 'http://localhost:4444/wd/hub',

 // capabilities to be passed to the webdriver instance
 capabilities: {
 'browserName': 'chrome'
 },

 sauceUser: 'SAUCE USERNAME HERE',
 sauceKey: 'SAUCE API KEY HERE',

 // spec patterns are relative to the current working directly when
 // protractor is called
 specs: ['angularjs.org_protractor.js'],

 // options to be passed to Jasmine-node

www.it-ebooks.info

http://www.angularjs.org
http://localhost:4444/wd/hub
http://www.it-ebooks.info/

Debugging AngularJS Apps  ❘  309

 jasmineNodeOpts: {
 showColors: true,
 defaultTimeoutInterval: 30000
 }
};

Note that you removed the seleniumAddress field and instead specified sauceUser and sauceKey.
Protractor comes with built‐in support for Sauce and knows to connect to Sauce when sauceUser
and sauceKey are specified but not seleniumAddress.

Evaluating ng‐scenario and Protractor
Now that you’ve written basic tests for both ng‐scenario and protractor, you should be aware of
the trade‐offs inherent in both systems. Protractor is a powerful utility for testing remote servers,
particularly for end‐to‐end testing, but it doesn’t make running DOM integration tests against your
local server particularly easy. On the other hand, ng‐scenario enables you to run tests against your
local server easily, allows you to manipulate the page using DSL functions, offers a more elegant and
concise syntax, and plugs in to the rich Karma plug‐in community.

While the ng scenario is likely a better fit for most applications, protractor has certain significant
advantages, particularly when you want to test and benchmark real servers. However, these
advantages come at the cost of being more difficult to work with and less elegant. On the other
hand, ng‐scenario fills a different niche: testing on your local machine without having to worry about
deploying to a real server. In general, ng‐scenario itself and its surrounding tools are more mature
and offer more diverse functionality than protractor. In the current paradigm of moving testing
responsibility more toward the individual developer, ng‐scenario continues to have a big role in
testing AngularJS applications. Protractor is likely the future of AngularJS testing, but ng‐scenario is
the present, and a good AngularJS developer should be familiar with both.

DEBUGGING ANGULARJS APPS

AngularJS is built around a philosophy that automated testing should catch bugs before your users
have a chance to run into them. However, end users are exceptionally good at finding bugs in your
code, either by accident or with intent. Inevitably, every project has its bugs. Thankfully, there is
an incredibly wide variety of debugging tools for JavaScript. In this section, you explore using the
debug module and Chrome developer tools to debug applications.

The debug Module
Although there is no shortage of JavaScript debuggers, JavaScript also has a debug logging
module that is so powerful and elegant that it warrants its own section. Debugging via print
statements is controversial. Some developers think it is bad practice, and others haven’t used
a debugging tool beyond a print statement in years. This section stays neutral on the subject
and presents tools for both approaches. After all, as the legendary computer scientist Brian
Kernighan once said, “The most effective debugging tool is still careful thought, coupled with
judiciously placed print statements.” (UNIX for Beginners, Brian Kernighan, Bell Laboratories, 1978)

www.it-ebooks.info

http://www.it-ebooks.info/

310  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

This approach is particularly relevant when you’re debugging issues in older browsers that may
not allow you to insert breakpoints or use other common debugger tools.

The debug module is available via npm. Although the module itself is built for NodeJS, the debug
module also contains a file in dist/debug.js that is browser friendly. Unfortunately, this file doesn’t
come packaged with the npm module, so you have to download it from the GitHub repository at
github.com/visionmedia/debug directly. For your convenience, the sample code for this chapter
contains v1.0.2 of debug.js, which can be included in a browser via the script tag.

The debug module exposes a function, available globally in the browser as debug(), that generates
a debug logger for a provided namespace. A namespace is a unique identifier string for that debug
logger. Typically, your namespace is the name of the AngularJS controller, service, or directive you
want to debug. Here’s an example of how you can use the debug module for MyFormController.
You can find this code in the sample code as my_form_controller.debug.js:

function MyFormController($scope, $http, $window) {
 if ($window.query && $window.query.debug) {
 debug.enable('MyFormController');
 } else {
 debug.disable('MyFormController');
 }
 var d = debug('MyFormController');
 d('loaded');
 $scope.userData = {};
 $scope.errorMessages = [];

 $scope.saveForm = function() {
 $scope.saving = true;
 d('saving form...');
 $http.
 put('/api/submit', $scope.userData).
 success(function(data) {
 d('save form success');
 $scope.saving = false;
 $scope.success = true;
 }).
 error(function(err) {
 d('save form failed: ' + err);
 $scope.saving = false;
 $scope.error = err;
 });
 };
};

If you run the preceding code with query.debug set—that is, by navigating to /my _ form.debug
.html?debug=true—you see something like the following output in your console:

MyFormController loaded +0ms
MyFormController saving form... +4s
MyFormController save form success +22ms

Each output line has the namespace first, then the log message, and then the time elapsed because
the previous log message across all namespaces. The last part is particularly useful for finding slow

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging AngularJS Apps  ❘  311

HTTP requests. In addition, the time elapsed output can help you identify which $apply calls are
slow, which is the first step to debugging AngularJS performance issues.

Recall that the $http service conveniently wraps your success and failure handlers in a call
to the scope.$apply function. This function executes a potentially slow loop, evaluating any
registered expressions to see if they have changed. A common question to ask is how long a given
$apply call takes. Because an $apply call executes in a blocking manner after your $http success
handler, you can wrap a debug call in a setTimeout function so it executes immediately after
$apply is finished:

 $scope.saveForm = function() {
 $scope.saving = true;
 d('saving form...');
 $http.
 put('/api/submit', $scope.userData).
 success(function(data) {
 d('save form success');
 $scope.saving = false;
 $scope.success = true;
 setTimeout(function() {
 d('save form $scope.$apply() done');
 }, 0);
 }).
 error(function(err) {
 d('save form failed: ' + err);
 $scope.saving = false;
 $scope.error = err;
 });
 };

The output in your console should look like this:

MyFormController saving form... +5s
MyFormController save form success +29ms
MyFormController save form $scope.$apply() done +2ms

Another important detail worth noting about debug is that you can enable or disable an individual
debug logger. The debug.disable(namespace) function binds an empty operation to the debug
logger. Keep in mind that you need to do this before instantiating the debug logger, because whether
or not the debug logger actually outputs anything is determined when it’s instantiated.

Overall, the debug module offers a simple and elegant set of functionality that provides insight into
what your app is doing. Although it is not as powerful as a full debugger, it enables you to debug in
older browsers that lack sophisticated developer tools. But, in browsers like Google Chrome, you
can access some incredibly powerful developer tools that enable you to do debug more easily.

Debugging Using Chrome DevTools
Google Chrome’s developer tools provide a rich toolset for debugging and analyzing what your code
is doing. In addition to the ability to inspect the state of the DOM and read console output, Chrome
allows you to perform more sophisticated debugging operations, such as breakpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

312  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

Launching Developer Tools
If you do not already have Google Chrome installed, you can install it from https://google.com/
chrome. Even if you prefer an alternative browser for your day‐to‐day browsing, Chrome’s built‐in
developer tools are indispensable for developing AngularJS applications. Once you have launched
Chrome, you can access the developer tools, or DevTools for short, in one of four ways:

	 1.	 Open the Chrome menu, represented by the [   ] icon at the top right of the browser, and
click on Tools ➪ Developer Tools.

	 2.	 Right‐click anywhere on the page and click on Inspect Element. This opens the Elements tab
in DevTools, which enables you to inspect the current state of the DOM.

	 3.	 The Ctrl+Shift+I keyboard shortcut (Cmd+Opt+I on Mac) opens the DevTools Elements tab.

	 4.	 The Ctrl+Shift+J keyboard shortcut (Cmd+Opt+J on Mac) opens the DevTools Console tab,
which displays console log output.

Once you have launched DevTools, you see a pane at the bottom of your screen that has nine tabs:
Elements, Resources, Network, Sources, Timeline, Profiles, Storage, Audits, and Console. Each tab
has a different set of functionality useful for a different set of tasks.

Inspecting the State of the DOM
The most common task in DevTools is inspecting what the current state of the DOM is, such
as what classes a div element has. For example, navigate to the /my _ form.debug.html page in
Chrome, right‐click on the h1 element at the top of the page, and click on Inspect Element. You
should see a window that looks like Figure 9-4.

The Styles pane on the right side enables you to view and edit the styles associated with the selected
element. Try clicking on the element.style text in the Styles pane and type in color:red. The h1
element should turn red. Furthermore, you should see a check box next to color:red when you
hover over the text. If you uncheck the check box, the h1 element turns black again.

Using the Console Tab
The Console tab shows output from functions like console.log and console.profile. However,
in addition to this simple task, the Console tab exposes a read‐evaluate‐print loop, commonly
abbreviated REPL, that allows you to execute arbitrary JavaScript code against the page. For
example, open the Console tab, click on the > there, and type alert(window.location.href). You
should see an alert window displaying the current URL.

FIGURE 9-4 

www.it-ebooks.info

https://google.com/chrome
https://google.com/chrome
http://www.it-ebooks.info/

Debugging AngularJS Apps  ❘  313

Keep in mind, the Console tab’s REPL evaluates JavaScript code against the global scope rather than
any AngularJS scope. If you want to execute functions defined on an AngularJS controller, you need
to expose them by attaching them to the $window object. For example, if you open the my_form
.html page in this chapter’s sample code, you see that this page attaches $httpBackend to the global
window object. You can type the following code into the Console tab REPL to manually configure the
page’s $httpBackend:

$httpBackend.when('PUT', '/api/submit').respond(200, {});

Setting Breakpoints in the Sources Tab
Open the my _ form.html page and navigate to the Sources tab in DevTools. Use the Ctrl+O (Cmd+O
in Mac) shortcut to open a file in the Sources tab, and open the my _ form _ controller.js file. You
should now see the source code for my _ form _ controller.js in the Sources tab. Right‐click on line
number 6 immediately to the left of the $scope.saving = true; line. Click on the Set Breakpoint
option in the drop‐down menu.

Now enter a name and an e‐mail address, and click the Save button. You should see a Paused in
Debugger overlay pop up over the screen and a new pane to the right of the source code, as shown in
Figure 9-5.

The pane on the right contains the current state of the JavaScript variables in the current scope. In
particular, under the Scope Variables ➪ Closure heading, you can see the current state of the $scope
variable, including the userData values. See Figure 9-6.

FIGURE 9-5 

FIGURE 9-6 

www.it-ebooks.info

http://www.it-ebooks.info/

314  ❘  CHAPTER 9   Testing and Debugging AngularJS Applications

Debugging Network Performance
The Network tab provides a simple timeline visualization of server interaction: what requests are
being made to the server and how long they took. Open the Network tab on the my _ form.html
page, and you should see something that looks like Figure 9-7.

The Network tab shows that there were four server requests: one for my _ form.html, and three for
JavaScript files. All the requests took about 10 milliseconds, but the JavaScript files were requested
in parallel about 80 milliseconds after the file my _ form.html itself. The red and blue lines on the
right side indicate when two important events happened: The red line indicates when the load event
fired—that is, when all the page’s resources were fully loaded. The blue line indicates when the
DOMContentLoaded event fired—that is, when the HTML document was fully loaded and parsed.

The Network tab can also show you the contents of the HTTP response from the server. This is useful
for bisecting bugs: Typically, the first step in debugging an AngularJS issue is determining whether the
server is sending the correct response, so you can determine whether the issue is on the client or the
server. Try clicking on the my _ form _ controller.js string in the Name column. The Network tab now
shows a detailed breakdown of the HTTP request and HTTP response. See Figure 9-8.

This panel shows that AngularJS sent an HTTP GET request for localhost:8080/
my _ form _ controller.js, and received an HTTP 304 (Not Modified) in response. The Response
tab shows the actual content of the response.

CONCLUSION

In this chapter, you learned how to set up sophisticated browser testing tools and debug client‐side
JavaScript. AngularJS is designed to make testing easy and provides a wide array of tools to help you
ensure your application behaves correctly before bugs hit your production environment. Although
AngularJS is built with an emphasis on basic unit tests, tools like Karma, ng‐scenario, and protractor
enable you to test your application end‐to‐end in live browsers, either locally or against Sauce’s browser
provisioning service. If you need to debug an issue, there are elegant open source JavaScript tools as well
as Chrome’s sophisticated DevTools to help you gain insight into why your code is misbehaving.

FIGURE 9-7 

FIGURE 9-8 

www.it-ebooks.info

http://www.it-ebooks.info/

Moving On
WHAT YOU WILL LEARN IN THIS CHAPTER:

➤➤ Extending AngularJS with popular frameworks

➤➤ Using the Angular‐UI Bootstrap module

➤➤ Building hybrid mobile apps with Ionic

➤➤ Manipulating dates using MomentJS

➤➤ Initializing and validating data with MongooseJS

➤➤ Using AngularJS and ECMAScript 6 (Harmony)

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

You can find the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab.

If you’ve made it all the way through this book, congratulations! The previous chapters
contain all the information you need to use the AngularJS core to build and test sophisticated
applications. However, because AngularJS is open source, there are myriad extensions, plug‐ins,
and frameworks that enable you to add powerful functionality to AngularJS. Furthermore,
JavaScript itself has an extremely active open source community, and there are numerous
modules that make writing applications in AngularJS easier. In this chapter, you’ll expand
beyond core AngularJS and learn how to use two popular AngularJS extensions (Angular‐UI’s
Bootstrap project and the Ionic framework) and how to integrate two popular JavaScript
modules (Moment and Mongoose) with AngularJS.

In addition, JavaScript itself is a rapidly evolving language. ECMAScript is the language
standard underlying JavaScript, and its most recent iteration, ECMAScript 5 (ES5), added
some exciting features. In addition, several browsers have already added support for some of
the features in the proposed ECMAScript 6 (ES6) standard. Later in this chapter, you’ll learn

10

www.it-ebooks.info

http://www.wrox.com/go/proangularjs
http://www.wrox.com/go/proangularjs
http://www.it-ebooks.info/

316  ❘  CHAPTER 10   Moving On

about how ES5 accessors integrate with AngularJS, as well as how to use ES6’s yield keyword with
the $http service.

USING ANGULAR‐UI BOOTSTRAP

Bootstrap (http://www.getbootstrap.com) is a popular open source cascading style sheet
(CSS) framework developed by Twitter with an attached JavaScript library. It offers a variety
of features, including a flexible 12‐column grid layout that adapts gracefully to small screens
(that is, mobile devices). Its JavaScript component includes modals, drop‐downs, and tooltips,
but Bootstrap’s JavaScript is intended to work with jQuery‐style JavaScript. Although AngularJS
can execute jQuery code, this doesn’t take full advantage of features like data binding and
directives. Thankfully, the Angular‐UI team has created its own module, Angular‐UI Bootstrap,
which contains directives and services for integrating Bootstrap components into AngularJS
data binding.

For your convenience, this chapter’s sample code contains the four files necessary to use Angular‐UI
Bootstrap, in addition to AngularJS 1.2.16. The bootstrap.css and bootstrap.js files contain the
unminified version 3.2.0 of Twitter Bootstrap. Bootstrap’s JavaScript depends on jQuery, so
jQuery 1.11.2 is included. In addition, the ui‐bootstrap‐tpls‐0.11.2.js file contains version 0.11.2
of Angular‐UI Bootstrap.

NOTE  Angular‐UI Bootstrap technically doesn’t require the Bootstrap
JavaScript file, bootstrap.js. Angular‐UI Bootstrap implements its own
components on top of Bootstrap’s CSS. However, in practice, it is often
helpful to have both. This is because, in some use cases in which data binding
is not necessary, using AngularJS is wasteful and less convenient than vanilla
Bootstrap JavaScript. For instance, if you need a simple drop‐down whose state
isn’t tied to a JavaScript variable, using Angular‐UI Bootstrap simply adds extra
complexity and overhead to your $digest loops.

Modals
One of the most common use cases for Angular‐UI Bootstrap is creating AngularJS‐enabled
modals. Typically, the built‐in JavaScript alert() and confirm() dialogs are jarring and
look unprofessional. Bootstrap’s modals are more elegant and customizable. In this section,
you learn how to use the Angular‐UI Bootstrap $modal service to create richly customizable
modals for two use cases: a simple dialog asking the user to confirm an action, and a dialog
that asks the user for input. This section’s sample code is contained in the bootstrap _ modal
.html file.

The $modal service has one function, open(options), which opens a modal based on the
configuration specified in the options object. The options object has numerous options to

www.it-ebooks.info

http://www.getbootstrap.com
http://www.it-ebooks.info/

Using Angular‐UI Bootstrap  ❘  317

tweak; however, three are necessary for almost all use cases. Unsurprisingly, the $modal
service allows you to specify either a template or a templateURL option, which tells
Angular‐UI Bootstrap which template to render in the modal. (Recall that templates are
strings that contain AngularJS‐infused HTML.) In addition, the $modal service allows you
to specify a scope option, which defines the parent scope for the $modal template’s scope.
Note that the $modal service always creates a new scope for its template. By default, that
scope’s parent is the page’s root scope, represented by the $rootScope service. However,
more often than not, you want to have the $modal service create a scope whose parent is the
current controller’s scope. This enables your modal to interface seamlessly with methods
defined in your controller.

Now that you understand the basic options you can use to configure the $modal service, here’s the
implementation for a simple modal that asks the user to confirm an action:

 // Need to add a dependency on the 'ui.bootstrap' module to use
 // Angular‐UI Bootstrap
 var app = angular.module('myApp', ['ui.bootstrap']);

 var confirmationTemplate =
 "<h3>" +
 " Are you sure you want to learn about" +
 " Angular-UI Bootstrap modals?" +
 "</h3>" +
 "<hr>" +
 "<button class='btn' type='submit' ng‐click='confirm(true)'>" +
 " Yes" +
 "</button>" +
 "<button class='btn' type='submit' ng‐click='confirm(false)'>" +
 " No" +
 "</button>";

 app.controller('MyController', function($scope, $modal) {
 $scope.confirmed;
 $scope.modal;
 $scope.confirm = function(confirmed) {
 $scope.confirmed = confirmed;
 $scope.modal.close();
 };

 $scope.showConfirmation = function() {
 $scope.modal = $modal.
 open({
 scope: $scope,
 template: confirmationTemplate
 });
 };
 });

The preceding controller exposes two functions through the controller’s $scope: the
showConfirmation() function, which uses the $modal service to open a modal whose template is
the confirmationTemplate string, and the confirm() function, which the confirmationTemplate
template calls to return a result and close the modal. Once again, the confirmationTemplate

www.it-ebooks.info

http://www.it-ebooks.info/

318  ❘  CHAPTER 10   Moving On

template executes in a scope whose parent is the controller’s $scope. Here’s the HTML
corresponding to this controller:

 <div ng-controller="MyController">
 <button type="submit"
 class="btn"
 ng‐click="showConfirmation()">
 Show Confirmation Modal
 </button>
 <h2 ng‐if="confirmed === true">
 Confirmed
 </h2>
 <h2 ng‐if="confirmed === false">
 Denied
 </h2>
 </div>

You typically explicitly set the modal’s scope option instead of using the default $rootScope to
give the modal’s template access to functions defined in the controller’s $scope. The preceding
code depends on the fact that the modal’s template can call the confirm() function, which is
attached to the controller’s $scope, to communicate the user’s choice back to the controller. In
addition, because the $modal service creates its own scope, you can modify variables and functions
in the modal’s template without polluting the controller’s $scope. Furthermore, you can attach a
controller to the modal using the controller option for $modal.open(). The controller option
enables you to write sophisticated modules that have their own internal state. For instance,
here is the implementation for a modal that asks the user to select their favorite chapter from a
drop‐down:

 $scope.favoriteChapter;
 $scope.showSelectModal = function() {
 $scope.modal = $modal.
 open({
 scope: $scope,
 template: selectModalTemplate,
 controller: 'SelectModalController'
 });
 };

 $scope.setFavoriteChapter = function(chapter) {
 $scope.favoriteChapter = chapter;
 };

Note that this modal uses the controller option you just learned about. Here’s the implementation
of the SelectModalController controller mentioned earlier:

 app.controller('SelectModalController',
 function($scope, $modalInstance) {
 $scope.options = [];
 $scope.selectedOption;
 for (var i = 1; i <= 10; ++i) {
 $scope.options.push('Chapter ' + i);

www.it-ebooks.info

http://www.it-ebooks.info/

Using Angular‐UI Bootstrap  ❘  319

 }

 $scope.select = function() {
 $scope.setFavoriteChapter($scope.selectedOption);
 $modalInstance.close();
 };
 });

Note that the SelectModalController controller uses a new local passed in through dependency
injection: the $modalInstance object. Recall that a local is an extra object registered to the
dependency injector in a given context. (The most common example of a local is $scope.) Much
like $scope, it’s not possible to register a service that depends on $modalInstance. Furthermore,
if you try to use a controller that depends on $modalInstance in an ngController directive or
outside of calls to $modal, AngularJS throws an error. For instance, the following HTML causes an
Unknown provider error:

<div ng-controller="SelectModalController"></div>

The $modalInstance local exposes a convenient application programming interface (API) for
manipulating the modal. In SelectModalController, you used its close() function to close the
modal after the user selected their favorite chapter. There is also a dismiss() function, which
behaves almost identically to the close() function. The only difference is that, semantically, a
call to dismiss() is interpreted to mean that the modal was closed without the user performing
the necessary actions. In particular, the $modalInstance object also has a result property, which
is a promise that is fulfilled when the modal is closed and rejected when the modal is dismissed.
(Recall that a promise is an object that provides syntactic sugar on top of an asynchronous request.)
However, in this example you won’t use promises, so the close() function and dismiss() function
are interchangeable for the purposes of SelectModalController.

There is one more detail in SelectModalController that’s worth noticing: the fact that
SelectModalController can call the setFavoriteChapter() function, which is actually defined
on its parent scope. You may recall from Chapter 4, “Data Binding,” that scopes inherit from their
parents; thus, you can call the setFavoriteChapter() function from any scope that is a descendant
of the MyController scope. This inter‐scope communication is precisely why you usually specify
the scope option when calling $modal.open(). If you don’t, the modal’s template and controller
are unable to access any properties defined on the MyController scope, so the modal can’t
communicate effectively with the controller.

Now that you’ve investigated the particulars of the modal’s controller, you will use this controller’s
functions in the modal’s template. The template for this modal, selectModalTemplate, looks like this:

 var selectModalTemplate =
 "<h2>What's your favorite chapter?</h2>" +
 "<select ng‐model='selectedOption'" +
 " ng‐options='x for x in options'>" +
 "</select>" +
 "<hr>" +
 "<button class='btn' ng‐click='select()'>" +
 " Submit" +
 "</button>";

www.it-ebooks.info

http://www.it-ebooks.info/

320  ❘  CHAPTER 10   Moving On

The selectModalTemplate template only interfaces directly with properties defined in
SelectModalController—namely, options, selectedOption, and the select() function.
Typically, to maximize reusability, you want to minimize your modal’s dependencies on its parent
scope. In practice, you usually only use a given modal in a single controller, but you may want to
have multiple controllers use a modal with the same template, same controller, or both. However,
you’re more likely to want to reuse the template than the controller, and AngularJS has no notion of
template inheritance. Thus, in the interest of reusability, making sure your modal template doesn’t
interact with its parent scope is usually a good idea.

Datepicker
One common use case that the AngularJS core lacks coverage for is asking the user to select a date.
AngularJS does interface well with the HTML5 “date” input field (which is similar to the familiar
“text” input field), but that HTML5 element has poor cross‐browser support. As a matter of fact, as
of 2014, no version of Internet Explorer, Firefox, or Safari supports the HTML5 “date” input field.
Thankfully, Angular‐UI Bootstrap has a clean and simple datepicker directive that you can plug
in to your application. For this section, the sample code is in the bootstrap _ datepicker.html file.
Suppose you have the following controller:

 app.controller('MyController', function($scope) {
 $scope.date = new Date();
 });

Plugging in the Angular‐UI Bootstrap datepicker directive to allow your user to select a date is a
one‐liner:

<datepicker ng-model="date"></datepicker>

However, the datepicker directive, by default, shows a large calendar that doesn’t do a good job
of conveying to the user what the currently selected date is. (It highlights the currently selected date,
but only if you’re on the right month.) If you want to mimic the HTML5 <input type="date">
element—that is, display the currently selected date in a text input and only show the calendar when
the user clicks the input field—you can use the related datepicker‐popup directive. This directive
enables you to show a calendar equivalent to the datepicker directive in a pop‐over when the user
clicks on an input field:

 <input type="text"
 class="form-control"
 datepicker‐popup="yyyy/MM/dd"
 ng-disabled="isOpen"
 ng-model="date"
 is-open="isOpen"
 ng-click="isOpen = true" />

The datepicker‐popup directive attribute takes a format string. This string represents the
format to be passed to AngularJS’s date filter to determine how the date is rendered in the
input field. In this example, for June 1, 2011, the date is rendered as “2011/06/01” in the
input field.

www.it-ebooks.info

http://www.it-ebooks.info/

Using Angular‐UI Bootstrap  ❘  321

Note that the open/closed status of the datepicker pop‐over is controlled by the isOpen variable.
Whenever the user clicks on the input field, the isOpen variable is set to true. The datepicker
pop‐over has some reasonable default rules for when it should be closed, such as whenever the user
clicks on somewhere that isn’t the pop‐over, or whenever the user actually selects a date. In the
preceding example, the input field is configured to turn “disabled” whenever the datepicker
pop‐over is open. This is a user experience (UX) decision to make sure the end user can’t actually
type in the input field. By default, when the pop‐over is open, the user is actually allowed to type in
the input field, which can lead to unpredictable behavior.

Timepicker
The datepicker directive allows you to modify only the date. The natural complement to the
datepicker directive is a directive that enables the user to modify the time, so you can ask the user when
a certain event is going to happen. Thankfully, Angular‐UI Bootstrap has a corresponding timepicker
directive that operates similarly to the datepicker directive. You can use both of these directives together:

 <div ng-controller="MyDateController">
 <h2>Date</h2>
 <div style="width: 300px">
 <input type="text"
 class="form-control"
 datepicker-popup="yyyy/MM/dd"
 ng-disabled="isOpen"
 ng-model="date"
 is-open="isOpen"
 ng-click="isOpen = true" />
 </div>
 <h2>Time</h2>
 <timepicker ng‐model="date">
 </timepicker>
 <hr>
 <h2>
 Currently Selected Date: {{date | date:'medium'}}
 </h2>
 </div>

The timepicker directive ties in seamlessly to two‐way data binding, so you can simply specify
an ngModel and let the directive handle all the user interaction. The timepicker directive also
has some sophisticated user‐input mechanisms. For instance, the user can use a mouse wheel to
increment or decrement the current hours and minutes. Although the mouse wheel integration is
typically the right choice, you can disable it using the mousewheel attribute. The code to disable
mouse wheel integration looks like this:

 <timepicker ng-model="date" mousewheel="false">
 </timepicker>

Custom Templates
When using the datepicker and timepicker directives, you may have noticed that there is no
way to modify the directive’s user interface (UI) using the provided configuration options. That is,

www.it-ebooks.info

http://www.it-ebooks.info/

322  ❘  CHAPTER 10   Moving On

you weren’t able to substitute your own template for the default timepicker directive template.
Unfortunately, this is a limitation of how AngularJS templates work: Once AngularJS gets the
directive’s template, there is no way to change it. (That is, AngularJS only calls a directive function
once.) Thankfully, Angular‐UI Bootstrap lets you overwrite the template used for a given directive.
(It overwrites the template used for all instances of that directive.) In this section, you build your
own template for the timepicker directive you learned about in the previous section.

NOTE  You may have been wondering why the Angular‐UI Bootstrap JavaScript
file is named bootstrap‐tpls‐0.11.2.js. The tpls means that this file
contains templates for all the directives. Angular‐UI Bootstrap also distributes
bootstrap‐0.11.2.js, which contains no templates, and thus requires you to
specify your own templates for any directive you want to use. Typically, if you’re
just starting a new project, you will want to use the templates‐included build
of Angular‐UI Bootstrap (that is, the bootstrap‐tpls‐0.11.2.js file) because,
as you’ll see in this section, you can easily overwrite existing templates. You
may want to use the no‐templates version (the bootstrap‐0.11.2.js file) if your
project doesn’t use any of the built‐in templates, and you want to reduce file size
for the sake of performance.

The easiest way to overwrite a built‐in Angular‐UI Bootstrap directive template is to use AngularJS’s
script directive. (AngularJS inspects your page’s script tags to look for templates.) To replace
the timepicker directive template with a simple template that just displays some text, use the
following code:

 <script id="template/timepicker/timepicker.html"
 type="text/ng‐template">
 <h2>
 ==> I am a timepicker!
 </h2>
 </script>

The preceding code tells AngularJS’s template cache that it should not make an HTTP request
for the template/timepicker/timepicker.html template; instead, it should use the contents
of the script tag. If you’re interested in learning more about AngularJS’s template cache, Chapter 6,
“Templates, Location, and Routing,” contains more in‐depth information. For the purposes of
this section, however, it suffices to know that the template cache stores templates by ID (usually
a uniform resource locator, or URL), and you can use <script type="text/ng‐template">
to overwrite an entry in the template cache. The timepicker directive uses the template/
timepicker/timepicker.html template, so you can overwrite that with a script tag.

So far, all you’ve done is replace the timepicker directive with a “Hello, world” template. To make
your custom template useful, you need to inspect and understand how the default timepicker
directive template works. This is why, more often than not, you should just use the default Angular‐UI
Bootstrap template. To write a custom directive template, you need a more sophisticated understanding
of how the timepicker directive works. That is, you need to know what functions to call and what

www.it-ebooks.info

http://www.it-ebooks.info/

Using Angular‐UI Bootstrap  ❘  323

scope variables to bind input fields to so you can make a functioning time picker. In many cases, this
is simply unnecessary work. However, the timepicker directive is a common candidate; the default
timepicker directive UI is a poor choice for many applications.

What follows is the default timepicker directive template from the ui‐bootstrap‐tpls‐0.11.2.js
file, reformatted for readability:

<table>
 <tbody>
 <tr class="text-center">
 <td>
 <a ng‐click="incrementHours()"
 class="btn btn-link">

 </td>
 <td> </td>
 <td>
 <a ng‐click="incrementMinutes()"
 class="btn btn-link">

 </td>
 <td ng-show="showMeridian"></td>
 </tr>
 <tr>
 <td style="width:50px;"
 class="form-group"
 ng-class="{'has-error': invalidHours}">
 <input type="text"
 ng‐model="hours"
 ng‐change="updateHours()"
 class="form-control text-center"
 ng‐mousewheel="incrementHours()"
 ng-readonly="readonlyInput"
 maxlength="2">
 </td>
 <td>:</td>
 <td style="width:50px;"
 class="form-group"
 ng-class="{'has-error': invalidMinutes}">
 <input type="text"
 ng‐model="minutes"
 ng‐change="updateMinutes()"
 class="form-control text-center"
 ng-readonly="readonlyInput"
 maxlength="2">
 </td>
 <td ng-show="showMeridian">
 <button type="button"
 class="btn btn-default text-center"
 ng-click="toggleMeridian()">

www.it-ebooks.info

http://www.it-ebooks.info/

324  ❘  CHAPTER 10   Moving On

 {{meridian}}
 </button>
 </td>
 </tr>
 <tr class="text-center">
 <td>
 <a ng‐click="decrementHours()"
 class="btn btn-link">

 </td>
 <td> </td>
 <td>
 <a ng‐click="decrementMinutes()"
 class="btn btn-link">

 </td>
 <td ng-show="showMeridian">
 </td>
 </tr>
 </tbody>
</table>

In the preceding timepicker directive template code, the highlighted portions show examples of
how to use the timepicker directive controller’s “API” to manipulate the current time. Specifically,
the timepicker directive controller exposes an hours variable and a minutes variable that are
responsible for maintaining the timepicker directive’s internal state. To make sure that changes to
these variables are handled properly, there are corresponding updateHours() and updateMinutes()
functions that you need to call after changing these variables. In addition, there are the helper
functions incrementHours(), incrementMinutes(), decrementHours(), and decrementMinutes(),
which call the corresponding update function for you. With this knowledge of the internal
timepicker directive controller API in hand, it is simple to create a drop‐down‐based template for
the timepicker directive. Here’s a template that replaces the default timepicker directive template
with a single drop‐down:

 <script id="template/timepicker/timepicker.html"
 type="text/ng-template">
 <div ng‐init="showMeridian = false;">
 <select ng-model="myTime"
 ng‐change="hours = myTime.hours; updateHours();
 minutes = myTime.minutes; updateMinutes()"
 ng‐options="t.value as t.display for t in 0 |
 timepickerOptions">
 </select>
 </div>
 </script>

The preceding code is succinct, but there are three subtle details in the code that merit further
investigation. First, the ngInit code ensures that the timepicker directive is in 24‐hour mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Hybrid Mobile Apps with the Ionic Framework  ❘  325

Otherwise, you would have to manipulate both the hours and the AM/PM setting, which, in this
case, would make the directive more complicated than necessary. Second, because of a quirk in the
internals of the timepicker directive’s controller, the order of operations in ngChange is important:
You need to change the hours variable and call updateHours() before you change the minutes
variable; otherwise, the time doesn’t update correctly. This is something you have to find out by
carefully inspecting Angular‐UI Bootstrap’s code or by trial and error.

Finally, you might have noticed the timepickerOptions filter in the ngOptions directive. Because
the timepicker directive is in an isolate scope, filters are the best way to bypass the scope hierarchy
and insert data into the timepicker directive’s scope. The filter implementation looks like this:

 app.filter('timepickerOptions', function() {
 var timepickerOptions = [];
 for (var h = 0; h < 24; ++h) {
 timepickerOptions.push({
 display: h + ':' + '00',
 value: {
 hours: h,
 minutes: 0
 }
 });
 timepickerOptions.push({
 display: h + ':' + '30',
 value: {
 hours: h,
 minutes: 30
 }
 });
 }

 return function() {
 return timepickerOptions;
 }
 });

As you can see, this filter returns a static array, regardless of the arguments passed in. This practice
is for the sole purpose of getting around the timepicker directive’s isolate scope; not even adding
a variable to the root scope makes it accessible in an isolate scope. Thankfully, filters offer a way to
bypass the scope hierarchy without directly modifying the directive controller’s code.

Now that you’ve learned the basics of how to use custom Bootstrap‐inspired components with
Angular‐UI Bootstrap, it’s time to investigate another exciting AngularJS extension.

HYBRID MOBILE APPS WITH THE IONIC FRAMEWORK

You may have heard of Cordova and PhoneGap, which are tools for building “hybrid” mobile
apps—that is, apps that are written as JavaScript running in a browser but are still distributed
through the Android and iPhone app stores. These tools are extremely useful in that you can write
one app in one language and distribute it to multiple app stores, rather than having to maintain a
separate Android app written in Java and an iPhone app written in Objective‐C. However, they

www.it-ebooks.info

http://www.it-ebooks.info/

326  ❘  CHAPTER 10   Moving On

are relatively bare compared to the sophisticated integrated development environments (IDEs) and
built‐in UI components that mobile developers typically use (Eclipse for Android and Xcode for
iPhone). The Ionic framework, built on top of Cordova, includes a sophisticated command‐line
interface (CLI) to manage your app development, beautiful Bootstrap‐like UI components, and,
most importantly, integration with AngularJS. Using the Ionic framework, you can use concepts you
learned about in this book to build mobile apps that you can then distribute through the app store
of your choice. In this section, you’ll write a simple Ionic framework application and get a high‐level
overview of how the Ionic framework works.

Setting Up Ionic, Cordova, and the Android SDK
Cordova and Ionic are most easily installed through the NodeJS package manager, npm. If you have
not already installed NodeJS, please go to http://nodejs.org and follow the instructions to install
NodeJS on your platform of choice. Once you have installed npm, you can install both Cordova and
Ionic using npm install cordova ionic ‐g. Note that Cordova needs to be installed globally;
Ionic requires Cordova to be on the system PATH.

For the purposes of this section, you’ll set up the Ionic framework to build an Android application.
Because the Ionic framework depends on the Android and iOS emulators to run, you need to
install either the Android SDK or the iOS SDK. However, installing the iOS SDK is a troublesome
process that requires signing up for an account and jumping through myriad legal hoops. Also, it
is limited to OSX only. Getting started with the Android SDK is a simpler process and can be done
on Windows, Linux, or OSX. If you have a choice of which operating system to use, it is probably
easiest to set up the Android SDK on Ubuntu‐flavored Linux. Please go to http://developer
.android.com/sdk/index.html and follow the instructions for your platform. You also need to
install the Java JDK (http://www.oracle.com/technetwork/java/javase/downloads/index
.html) and the Ant build system (http://ant.apache.org). Be aware: The Android SDK is a
bloated piece of software, and the download can take a long time.

Once you have installed Java, Ant, and the Android SDK, run the android command from your
command line to start the Android SDK Manager. From there, check the box to install Android
4.4.2 (API Level 19) and click Install Packages to get yourself a reasonable version of Android.
Next, you need to create an Android Virtual Device, or AVD. To create an AVD with your
newly installed Android 4.4.2, run android create avd ‐n android4 ‐t 1 –abi default/
armeabi‐v7a.

Now that you’ve set up Android, you can create your first Ionic app and run it in the Android
emulator:

ionic start myApp tabs
cd myApp
ionic platform add android
ionic build android
ionic emulate android

This creates a new Ionic app in the myApp directory, configures it to run on the Android emulator,
and launches an Android emulator so you can see the app live. The app is created from Ionic’s
“tabs” starter application.

www.it-ebooks.info

http://nodejs.org
http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org
http://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

Hybrid Mobile Apps with the Ionic Framework  ❘  327

Using AngularJS in Your Ionic App
Ionic is so interesting because it allows you to write mobile apps using the same AngularJS
principles you’ve learned about in this book. If you look closely at the code in the myApp directory
you created in the previous section, you’ll find some basic AngularJS controllers and services. The
myApp/www/index.html file has the base Hypertext Markup Language (HTML) for the Android
application that you saw in the previous section. Specifically, the following JavaScript files are
included in the page:

 <!–– ionic/angularjs js ––>
 <script src="lib/ionic/js/ionic.bundle.js"></script>

 <!–– cordova script (this will be a 404 during development) ––>
 <script src="cordova.js"></script>

 <!–– your app's js ––>
 <script src="js/app.js"></script>
 <script src="js/controllers.js"></script>
 <script src="js/services.js"></script>

The ionic.bundle.js file includes the core angular.js file, along with various modules like
angular‐animate.js. The js/app.js file contains the module definition and client‐side routing
setup. The js/controllers.js file and js/services.js file contain the controllers and services that
correspond to the client‐side routes. Because this is a sample app, the controllers and services are
stubbed out and not terribly sophisticated. The most complex part of this app is in the js/app.js
file.

You may have noticed that the js/app.js file uses the Angular‐UI Router module for client‐side
routing instead of the ngRoute module. Specifically, here is the code that defines the routes:

config(function($stateProvider, $urlRouterProvider) {

 // Ionic uses the AngularUI Router, which uses the concept of states
 // Learn more here: https://github.com/angular-ui/ui-router
 // Set up the various states that the app can be in
 // Each state's controller can be found in controllers.js
 $stateProvider

 // Set up an abstract state for the tabs directive
 .state('tab', {
 url: "/tab",
 abstract: true,
 templateUrl: "templates/tabs.html"
 })

 // Each tab has its own nav history stack:

 .state('tab.dash', {
 url: '/dash',
 views: {
 'tab‐dash': {
 templateUrl: 'templates/tab‐dash.html',

www.it-ebooks.info

https://github.com/angular-ui/ui-router
http://www.it-ebooks.info/

328  ❘  CHAPTER 10   Moving On

 controller: 'DashCtrl'
 }
 }
 })

The Angular‐UI Router module is essentially a more sophisticated version of the ngRoute
module. Instead of having “routes,” however, Angular‐UI Router uses “states,” which are
similar to routes but allow you to handle more sophisticated navigation. For instance, in
the myApp tabbed application, what would happen if you were on a “friends” detail view,
switched to the dash tab, and then switched back to the friends tab? With the ngRoute module,
all state is destroyed when you change routes, so when you navigate back to the friends
tab, you see the master list of friends rather than the specific friend you were looking at. In
mobile, this is not necessarily a good UX decision. Angular‐UI Router provides a framework
that enables you to either show the master list of friends or retain the particular friend the
user was viewing, depending on your app’s needs. (The myApp tabbed application, by default,
takes you to the specific friend you were looking at.) However, the overall structure of
Angular‐UI Router is reasonably similar to the ngRoute module: You map a URL to a
template and controller pair.

Another important detail to remember about the Ionic framework is that all your $http requests
are cross‐origin, because Ionic framework apps operate by launching a browser and navigating it to
your HTML content using file://. For instance, if you were to log $window.location.href on the
dashboard tab in the myApp application, you would see file:///android _ asset/www/index.html.
Thus, you need to make sure that any $http requests you make in your AngularJS code have a fully
qualified URL, including domain name. You also need to ensure that any server you are making
requests to is configured to accept cross‐origin resource sharing (CORS) requests. CORS requests
are HTTP requests from different domains.

Now that you understand some of the key differences between writing AngularJS for the
Ionic framework and writing AngularJS for a standard desktop browser environment, it’s
time to make the myApp application do something useful. Specifically, you’re going to adapt
the Google stock price quoting service from Chapter 7 and plug it into the dashboard view
so your app can show the current Google stock price. Here is the implementation of the
$googleStock service:

factory('$googleStock', function($http) {
 var BASE = 'http://query.yahooapis.com/v1/public/yql'

 var query = encodeURIComponent('select * from yahoo.finance.quotes ' +
 'where symbol in (\'GOOG\')');
 var url = BASE + '?' + 'q=' + query + '&format=json&diagnostics=true&' +
 'env=http://datatables.org/alltables.env';

 var service = {};
 service.get = function() {
 $http.jsonp(url + '&callback=JSON_CALLBACK').
 success(function(data) {
 if (data.query.count) {
 var quotes = data.query.count > 1 ?
 data.query.results.quote :

www.it-ebooks.info

file:///android
http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

Hybrid Mobile Apps with the Ionic Framework  ❘  329

 [data.query.results.quote];
 service.quotes = quotes;
 }
 }).
 error(function(data) {
 console.log(data);
 });
 };

 service.get();
 return service;
});

You can add this service to the myApp/www/js/services.js file. To finish plugging this service into
the myApp application, you should add this service to DashCtrl in the myApp/www/js/controllers
.js file:

.controller('DashCtrl', function($scope, $googleStock) {
 $scope.googleStock = $googleStock;
})

You should also add it to the actual dashboard template, in the myApp/www/templates/tab‐dash
.html file:

<ion-view title="Dashboard">
 <ion-content class="padding">
 <h1>Dash</h1>
 <h3>Current Google Stock Price: {{googleStock.quotes[0].Ask}}</h3>
 </ion-content>
</ion-view>

Now when you run the ionic emulate android command, you should see the current Google
stock price on the dashboard.

Yeoman Workflow and Building for Production
Also worth mentioning is that, because Ionic framework applications are built using front‐end
technologies, their development process can benefit from the same workflow automation tooling
described early on in this book. Specifically, the workflow promoted by Yeoman is also made
available for assisting in the development and production compression of Ionic apps through the use
of the generator‐ionic Yeoman plug‐in. To get started with the Ionic Yeoman Generator, run the
following from the command line:

npm install -g generator-ionic
mkdir myApp && cd myApp
yo ionic

After running the yo ionic command in a newly created directory, you are presented with a
similar set of prompts, as seen before when initially scaffolding the StockDog application from
Chapter 1, “Building a Simple AngularJS Application.” However, this time around you have the
option of selecting from a list of popular Cordova plug‐ins to install as well as selecting a starter

www.it-ebooks.info

http://www.it-ebooks.info/

330  ❘  CHAPTER 10   Moving On

template directly from the command line to help you scaffold an intelligent foundation for your
application. Grunt supports the workflow created by this Yeoman generator, so you can achieve any
modifications by changing the associated Gruntfile.js. The following are a few of the commands
available out of the box:

➤➤ grunt serve[:compress]

➤➤ grunt platform:add:<platform>

➤➤ grunt plugin:add:<plugin>

➤➤ grunt [emulate|run]:<target>

➤➤ grunt compress

➤➤ grunt build:<platform>

Some of these commands use the official ionic‐cli under the hood, so projects created using
generator‐ionic play nicely with the ionic tool. Running grunt serve launches your application
in the browser for local development, whereas grunt emulate:android ––livereload launches
your application in the simulator with built‐in livereload support. This is especially helpful because
the only way to test integration with Cordova plug‐ins is to run your app on a device, but constantly
rebuilding and emulating for simple front‐end changes can be extremely frustrating. It is important
to realize that whereas the dist/ directory was used for building compressed assets for StockDog,
this generator compiles your application, using the grunt compress command, into the www/
directory. This is because Cordova reads from that location to package your AngularJS application
as a native app. You can find more information about the Ionic Yeoman Generator at https://
github.com/diegonetto/generator‐ionic.

Icons, Splash Screens, and Cordova Hooks
A common issue when working with Cordova and the Ionic framework is setting up your
application’s icons and splash screens. Properly configuring your app icons and splash screens
to work with Cordova can be a pain to set up, so the generator has gone ahead and included
an after _ prepare Cordova hook that manages copying the appropriate resource files to
the correct location within your current platform targets. To get started, you must first add
a platform via grunt platform:add:android. Once you have a platform, the packaged
icons _ and _ splashscreens.js hook copies over all placeholder icons and splash screens
generated by Cordova into a newly created top‐level resources/ directory inside your project.
Simply replace these files with your own resources (but maintain filenames and directory
structure) and let the hook’s magic automatically manage copying them to the appropriate
location for each Cordova platform, all without interrupting your existing workflow. To learn
more about hooks, check out the README.md file inside of the hooks/ directory of your Ionic
framework project.

That’s it for the Ionic framework. The Ionic framework is a phenomenally deep subject, and this
section provided only a brief high‐level overview of how the Ionic framework works. The official
Ionic framework website, http://ionicframework.com, contains more sophisticated tutorials and
documentation.

www.it-ebooks.info

https://github.com/diegonetto/generator%E2%80%90ionic
https://github.com/diegonetto/generator%E2%80%90ionic
http://ionicframework.com
http://www.it-ebooks.info/

Integrating Open Source JavaScript with AngularJS  ❘  331

INTEGRATING OPEN SOURCE JAVASCRIPT WITH ANGULARJS

One of JavaScript’s most powerful features is its vibrant open source community. The NodeJS
package manager, npm, is currently the largest package ecosystem in the world, with about
100,000 packages as of October 2014. And that’s just one of JavaScript’s package managers. There
are numerous other package managers, such as NuGet and Bower, and some JavaScript packages are
simply available as plain JavaScript files. If you are finding something difficult to do in JavaScript,
usually there’s an open source module that can solve your problem for you. In this section, you’ll
learn about integrating AngularJS with two common packages—Moment and Mongoose—that
address two of JavaScript’s weak points: date handling and schema validation.

Dates and Time Zones with Moment
You may have noticed that JavaScript’s native Date objects are somewhat cumbersome and
lacking in functionality compared to languages like Python. Indeed, native JavaScript dates have
some significant limitations: They suffer from poor browser compatibility, their date arithmetic
is limited, and there is no time zone support. Native JavaScript dates, by default, are specified
in the browser’s local time, but they have some convenience methods for modifying the date in
Universal Coordinated Time (UTC). Although this is sufficient for many use cases, you may find
yourself needing to manipulate dates in a more sophisticated way, including displaying dates in
different time zones. Moment (www.momentjs.com) is the most popular open source date helper
module for JavaScript. Moment and its extension, moment‐timezone, have some extremely
sophisticated date manipulation functionality that is indispensible for writing time‐zone‐aware
AngularJS apps.

For your convenience, the moment.js and moment‐timezone.js files have been included in this
chapter’s sample code. Moment exposes a single function, moment(), that you use to instantiate
a Moment object, commonly referred to as a moment. The file moment _ examples.html in this
chapter’s sample code contains a few common examples for manipulating dates with Moment
outside of AngularJS:

 <script type="text/javascript" src="moment.js">
 </script>
 <script type="text/javascript" src="moment‐timezone.js">
 </script>
 <script type="text/javascript">
 // Moment representing current date
 moment();

 // Moment can also take a JavaScript date as a parameter
 moment(new Date());

 // Or a UNIX timestamp
 moment((new Date()).getTime());

 // Midnight GMT on June 1, 2011, in browser's timezone
 moment('2011-06-01T00:00:00.000Z');

 // Midnight GMT on June 1, 2011, in UTC

www.it-ebooks.info

http://www.momentjs.com
http://www.it-ebooks.info/

332  ❘  CHAPTER 10   Moving On

 moment('2011-06-01T00:00:00.000Z').utc();

 // Format: String representing June 1, 2011 12:00am GMT in browser's
 // timezone. For example, will print 'May 31, 2011 8:00pm'
 // if you run this in New York.
 moment('2011-06-01T:00:00:00.000Z').
 format('MMMM D, YYYY h:ma');

 // Format: Print out 'June 1, 2011 12:00am', because UTC
 moment('2011-06-01T00:00:00.000Z').
 utc().
 format('MMMM D, YYYY h:mma');

 // Add 42 days to 2011-06-01 (2011-07-13)
 moment('2011-06-01T00:00:00.000Z').
 utc().
 add(42, 'days').
 format('MMMM D, YYYY h:mma');

 // June 1, 2011 12:00am GMT in Los Angeles time (May 31, 2011 5:00pm)
 moment('2011-06-01T00:00:00.000Z').
 tz('America/Los_Angeles').
 format('MMMM D, YYYY h:mma');

 // Plain old JavaScript date object representing a moment
 moment('2011-06-01T00:00:00.000Z').toDate();

 // Current UNIX timestamp (milliseconds since Jan 1, 1970
 // 12:00am UTC)
 moment().unix();
 </script>

In addition to providing date arithmetic, formatting, and sophisticated time zone support (which
requires the moment‐timezone.js file), Moment supports a fluid chaining syntax that allows you
to write sophisticated date manipulations in a terse manner. Essentially, Moment does everything
that JavaScript dates do poorly. However, Moment is not terribly compatible with vanilla JavaScript
dates, and, in particular, the AngularJS date filter.

To learn how to integrate AngularJS and Moment, you use Moment’s time zone functionality
to display a list of international events. For instance, suppose your application displays a list of
concerts in Europe. If you naively used native JavaScript dates, a date that appears as 8:00 p.m.
in Paris would appear as 5:00 a.m. in Tokyo and 3:00 p.m. in New York. Someone browsing your
app in a distant time zone would have trouble figuring out the actual time of the concert. In this
case, the most sensible approach would be to display the concert’s time in the time zone the event is
taking place in, so your user will see “8:00 p.m. in Paris” whether they are in Paris, Tokyo, or New
York.

The primary problem with integrating Moment and AngularJS is that you can’t access the moment()
function by default in AngularJS expressions (for example, the right side of an ngBind attribute).
This means you either need to call the moment() function on every date in your JavaScript data
from your controller or service, or you need to make the moment() function accessible in AngularJS
expressions. The former case is simple, because then you can simply use Moment’s chaining

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Open Source JavaScript with AngularJS  ❘  333

syntax in your expressions. However, doing so is often impractical, because you have to change
your controllers as well as your HTML whenever the API you’re loading data from changes. Also,
because the moment() function can properly parse myriad inputs, including UNIX timestamps,
JavaScript dates, and International Organization for Standardization (ISO) date strings, it’s often
convenient to simply convert server data to moments in expressions.

One common approach to integrating the moment() function into AngularJS expressions is using a
filter:

 app.filter('formatTz', function() {
 return function(input, timezone, format) {
 return moment(input).tz(timezone).format(format);
 };
 });

Using the formatTz filter, you can employ standard AngularJS filter syntax and Moment’s
formatting library to format dates for the appropriate time zone. For instance, take the following
sample list of concerts:

 app.controller('ConcertsController', function($scope) {
 $scope.concerts = [
 {
 // GMT +1 => 9pm
 when: '2014-06-01T20:00:00.000Z',
 where: 'Europe/London'
 },
 {
 // GMT +2 => 6pm
 when: '2014-06-04T16:00:00.000Z',
 where: 'Europe/Oslo'
 },
 {
 // GMT +4 => 11pm
 when: '2014-06-22T19:00:00.000Z',
 where: 'Europe/Moscow'
 }
];
 });

In HTML, you can render this list using the formatTz filter:

 <div ng-controller="ConcertsController">
 <div ng-repeat="concert in concerts">
 Concert #{{$index + 1}}:
 {{concert.when | formatTz:concert.where:'MMMM D, YYYY h:mma'}}
 </div>
 </div>

which gives you the desired output:

Concert #1: June 1, 2014 9:00pm
Concert #2: June 4, 2014 6:00pm
Concert #3: June 22, 2014 11:00pm

www.it-ebooks.info

http://www.it-ebooks.info/

334  ❘  CHAPTER 10   Moving On

An alternative approach to this that enables you to use Moment’s chaining syntax is using the
overwriting $rootScopeProvider.$get trick that was introduced in Chapter 7. This puts the
moment() function in the page’s root scope and thus makes it accessible from any (non‐isolate) scope
on the page. Here’s the JavaScript implementation of adding the moment() function to the page’s
root scope at configuration time. You can find this snippet in the moment _ provider.html file in this
chapter’s sample code:

 app.config(function($rootScopeProvider) {
 var oldGet = $rootScopeProvider.$get;
 $rootScopeProvider.$get = function($injector) {
 var rootScope = $injector.invoke(oldGet);

 rootScope.moment = window.moment;

 return rootScope;
 };
 });

This JavaScript makes sure that the page’s root scope always contains the moment() function. If
you’re interested in learning more about providers and the details of why the preceding code works,
Chapter 7 includes a more detailed discussion of providers. With the previous configuration block in
place, you can now use the moment() function in your AngularJS expressions:

 <div ng-controller="ConcertsController">
 <div ng-repeat="concert in concerts">
 Concert #{{$index + 1}}:
 {{moment(concert.when).
 tz(concert.where).
 format('MMMM D, YYYY h:mma')}}
 </div>
 </div>

These two approaches—using a filter and attaching the moment() function to the root scope—have
some significant trade‐offs. If you attached the moment() function to the root scope, you can’t access
the moment() function in isolate scopes, which limits your ability to utilize directives. Conversely,
the filter syntax is limited: If you want to do date arithmetic, you have to write a separate
filter. Another approach that ameliorates both of these difficulties (but is somewhat inelegant
syntactically) is to use a filter that simply returns a moment:

 app.filter('moment', function() {
 return function(input) {
 return moment(input);
 };
 });

You can then utilize this filter to construct a moment, even in isolate scopes:

 <div ng-controller="ConcertsController">
 <div ng-repeat="concert in concerts">
 Concert #{{$index + 1}}:
 {{(concert.when | moment).

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Open Source JavaScript with AngularJS  ❘  335

 tz(concert.where).
 format('MMMM D, YYYY h:mma')}}
 </div>
 </div>

This approach also removes the limitation inherent in the formatTz filter: You can use a moment’s
chaining syntax to take advantage of features like date arithmetic, rather than simply formatting
a date. The downside of this approach, however, is that it adds complexity to your templates.
Although you can use parentheses to chain extra operations on the result of a filter, it makes your
code less readable and less easy to understand. However, all three approaches give the same output,
so the decision of which of these is right for your development practice is up to you.

Schema Validation and Deep Objects with Mongoose
Mongoose is a popular object‐document mapper (ODM) for NodeJS and MongoDB. Although it is
primarily a server‐side JavaScript module, its currently experimental 3.9 version includes the ability
to run Mongoose’s schema validation and safe navigation utilities in the browser. AngularJS’s form
validation code is powerful, but it is limited because the validation rules are specified in HTML.
This means you have to maintain two separate sets of validation rules in two separate languages:
one on your server and one on your client. If your server uses NodeJS and MongoDB, Mongoose
allows you to utilize the same schema for server‐side validation as well as client‐side form validation.
Even if you don’t utilize NodeJS or MongoDB on the server side, Mongoose’ schema validation tools
and other object utilities are powerful and extensible.

For your convenience, this chapter’s sample code includes the Mongoose client‐side module
(version 3.9.3) in the mongoose.js file. Mongoose is distributed through the NodeJS package
manager, npm. If you install mongoose via npm, you can find the mongoose.js file in
node _ modules/mongoose/bin/mongoose.js. In addition, if you compile your client‐side JavaScript
using Browserify, you can include Mongoose’s client‐side module using require('mongoose').

Mongoose’s client‐side module includes two data types that you’ll primarily be interacting with:
schemas and documents. A document is a possibly nested object that contains data. A schema is a set
of rules for what fields a document should have, what types the fields should contain, and custom
validation rules for each field. A document has exactly one schema that it uses for validation. Here
are several examples of using schema validation and safe navigation with Mongoose in the browser.
You can find these examples in this chapter’s sample code in the mongoose _ examples.html file:

 <script type="text/javascript" src="mongoose.js">
 </script>
 <script type="text/javascript">
 // Create a new Mongoose schema
 var schema = new mongoose.Schema({
 name: {
 first: String,
 last: String
 },
 email: {
 type: String,
 // E-mail needs to match given RegExp

www.it-ebooks.info

http://www.it-ebooks.info/

336  ❘  CHAPTER 10   Moving On

 match: /.+@.+\..+/,
 // E-mail must be specified
 required: true
 },
 favoriteColor: {
 type: String,
 // Favorite color needs to be one of the enumerated
 // values
 enum: ['Red', 'Green', 'Blue']
 },
 age: {
 type: Number,
 // Age must be at least 21
 min: 21
 }
 });

 // Create a new empty document with schema
 var doc1 = new mongoose.Document({}, schema);

 doc1.validate(function(err) {
 // 'ValidatorError: Path 'email is required''
 console.log(err.errors['email']);
 });

 doc1.name = {
 first: 'James',
 last: 'Madison'
 };

 // 'James Madison'
 console.log(doc1.fullName);

 doc1.fullName = 'Thomas Jefferson';
 // 'Thomas'
 console.log(doc1.name.first);

 var doc2 = new mongoose.Document({}, schema);
 doc2.email = 'a@b.c';
 doc2.age = 20;
 doc2.validate(function(err) {
 // 'ValidatorError: Path 'age' (20) is less than minimum
 // allowed value (21)'
 console.log(err.errors['age']);
 });

 // Safe navigation
 console.log(doc2.name.first); // Undefined
 </script>

The last example shows Mongoose’s safe navigation in action. In reality, doc2.name is undefined, so
trying to access doc2.name.first would normally trigger the dreaded TypeError: cannot read
property 'name' of undefined JavaScript error. However, Mongoose does some work under the
hood to make sure that you get back undefined if one of the parent objects is null or undefined.

www.it-ebooks.info

mailto:a@b.c
http://www.it-ebooks.info/

Integrating Open Source JavaScript with AngularJS  ❘  337

In addition, a schema can define virtuals, which are pseudo‐properties that are computed from other
properties. You can access them using the dot syntax, and you can even set rules for modifying
virtuals. For instance, you can store separate variables for first name and last name and have a
virtual for the user’s full name. When you set the user’s full name, you can configure the virtual to
set the user’s first name and last name for you. Here are some examples of Mongoose virtuals in
action, which you can find in the mongoose _ examples _ virtuals.html file in this chapter’s sample
code:

 <script type="text/javascript">
 // Create a new Mongoose schema
 var schema = new mongoose.Schema({
 name: {
 first: String,
 last: String
 },
 email: {
 type: String,
 // E-mail needs to match given RegExp
 match: /.+@.+\..+/,
 // E-mail must be specified
 required: true
 },
 favoriteColor: {
 type: String,
 // Favorite color needs to be one of the enumerated
 // values
 enum: ['Red', 'Green', 'Blue']
 },
 age: {
 type: Number,
 // Age must be at least 21
 min: 21
 }
 });

 // 'fullName' is a virtual: a pseudo‐property composed of
 // other properties. When you assign a value to 'fullName',
 // it will split it up and set name.first and name.last
 schema.
 virtual('fullName').
 get(function() {
 return this.name.first + ' ' + this.name.last;
 }).
 set(function(v) {
 var s = v.split(' ');
 this.set('name.first', s[0]);
 this.set('name.last', s[1]);
 });

 // Create a new empty document with schema
 var doc1 = new mongoose.Document({}, schema);

 doc1.name = {

www.it-ebooks.info

http://www.it-ebooks.info/

338  ❘  CHAPTER 10   Moving On

 first: 'James',
 last: 'Madison'
 };

 // 'James Madison'
 console.log(doc1.fullName);

 doc1.fullName = 'Thomas Jefferson';
 // 'Thomas'
 console.log(doc1.name.first);
 </script>

As you can see, when you set the fullName property, Mongoose applies the virtual’s setter
function and updates the name.first and name.last properties accordingly. Of course, you don’t
have to define a .set() function at all, which makes the fullName property read‐only. In practice,
you’ll see read‐only virtuals more often than read/write virtuals, because the ability to read a
computed property that’s kept up to date with the underlying data is quite useful.

Mongoose relies on the defineProperty() function that’s native to ECMAScript 5, the most
recent accepted JavaScript language standard, to do safe navigation and create virtuals.
Specifically, the defineProperty() function lets you define configurable properties on objects.
Normally, JavaScript does not allow you to set properties as read‐only, make them invisible to the
Object.keys() function, or define custom getters and setters for them. The defineProperty()
function allows you to tweak all these parameters for a given property, which makes syntactic sugar
like safe navigation and virtuals possible. However, the downside is that Mongoose only works on
browsers that support ECMAScript 5. This means that, in particular, Mongoose does not support
Internet Explorer 8 or Safari 4.

Now that you understand how Mongoose’s browser component is used, you’ll learn how to integrate
Mongoose with AngularJS. AngularJS interfaces seamlessly with properties created using the
defineProperty() function, so you should be able to read and manipulate Mongoose document
properties from within AngularJS directives (at least in browsers that support ES5). With that in
mind, you can use the Mongoose browser component to implement the sophisticated validation
functionality that has made it an indispensible part of so many NodeJS servers. You can find the
following example in the mongoose _ validation.html file in this chapter’s sample code. First, you
need to include angular.js and mongoose.js in script tags and define your schema. The schema
used in this code is similar to the schema used in the previous examples but lends itself better to an
actual HTML form. It contains four fields: the name.first and name.last fields, a quest string
that must include the words Holy Grail, and a favoriteColor string that must be “Red,” “Green,”
or “Blue.”

 <script type="text/javascript" src="mongoose.js">
 </script>
 <script type="text/javascript"
 src="angular.js">
 </script>
 <script type="text/javascript">
 var schema = new mongoose.Schema({
 name: {
 first: { type: String, default: '' },

www.it-ebooks.info

http://www.it-ebooks.info/

Integrating Open Source JavaScript with AngularJS  ❘  339

 last: { type: String, default: '' }
 },
 quest: {
 type: String,
 match: /Holy Grail/i,
 required: true
 },
 favoriteColor: {
 type: String,
 enum: ['Red', 'Green', 'Blue'],
 required: true
 }
 });

 schema.
 virtual('fullName').
 get(function() {
 return this.name.first +
 (this.name.last ? ' ' + this.name.last : '');
 }).
 set(function(v) {
 var sp = v.indexOf(' ');
 if (sp === ‐1) {
 this.name.first = v;
 this.name.last = '';
 } else {
 this.name.first = v.substring(0, sp);
 this.name.last = v.substring(sp + 1);
 }
 });

 var app = angular.module('myApp', []);

 app.controller('MyController', function($scope) {
 $scope.doc = new mongoose.Document({}, schema);
 $scope.validating = false;
 $scope.err;
 $scope.validate = function() {
 $scope.validating = true;
 $scope.doc.validate(function(err) {
 $scope.validating = false;
 $scope.err = err;
 $scope.$apply();
 });
 };
 });
 </script>

Note that the implementation of the fullName virtual changed. The simple implementation you saw
in previous examples is a standard Mongoose demo but doesn’t behave particularly well when it is
plugged into the ngModel directive. Specifically, when you want to plug a Mongoose virtual into the
ngModel directive, you usually need smooth handling of edge cases, such as when the input field is
empty or when the user has only entered their first name. This is because AngularJS calls the setter

www.it-ebooks.info

http://www.it-ebooks.info/

340  ❘  CHAPTER 10   Moving On

to update the value while the user is typing, and then call the getter to get written value. You need to
be careful that your virtual returns the same value the user typed for common edge cases; otherwise,
the value of the input may change while the user is typing.

Also, note that Mongoose’s browser component only includes an asynchronous validate() function
in version 3.9.3. This is advantageous if you want to use HTTP calls or other asynchronous
operations in your validation logic, but it adds the additional caveat that you must call
$scope.$apply() in the validate() function’s callback. Otherwise, AngularJS doesn’t know that
something in the scope changed.

Now that you have looked at the JavaScript for the mongoose _ validation.html file, here is the
HTML template:

 <body ng-controller="MyController">
 <h1>My Form</h1>
 <form ng‐submit="validate()">
 <h3>What is your name?</h3>
 <input type="text" ng‐model="doc.fullName" placeholder="Full Name">
 <div>
 First: {{doc.name.first}}
 </div>
 <div>
 Last: {{doc.name.last}}
 </div>
 <h3>What is your quest?</h3>
 <input type="text" ng‐model="doc.quest">
 <h3>What is your favorite color?</h3>
 <input type="text" ng‐model="doc.favoriteColor">
 <hr>
 <input type="submit" value="Validate">

 <div ng‐show="!validating && !!err">
 <div ng‐repeat="(key, err) in err.errors">
 Error validating path {{key}}:
 {{err.message}}
 </div>
 </div>
 <div ng‐show="!validation && !err">
 <h2>No Errors</h2>
 </div>
 </form>
 </body>

There are a few important details worth noting about the preceding code. First, you can plug
Mongoose values, and even virtuals, into the ngModel directive. Once again, when putting read/
write virtuals into the ngModel directive, you want to make sure your virtual’s getter always returns
whatever the last setter call set the value to. There is no general guarantee of this behavior in
virtuals, so the onus is on you to make sure the value doesn’t change unexpectedly while the user
is typing.

Another important detail to notice is that the validate() function is called only when the form
is submitted. The core AngularJS validation directives, like ngRequired, run validation every

www.it-ebooks.info

http://www.it-ebooks.info/

AngularJS and ECMAScript 6  ❘  341

time the input’s model changes, which is not the right choice for every application. Mongoose’s
validate() function provides more fine‐grained control over what fields are validated when. For
example, you can add ngChange validation to the favoriteColor path. This code is demonstrated
in the mongoose _ validation _ fine.html file in this chapter’s sample code. First, you need to use
the doValidate() function on schema paths to do potentially asynchronous validation on a single
path:

 $scope.validatePath = function(path) {
 $scope.validating = true;
 var schemaPath = $scope.doc.schema.path(path);
 schemaPath.doValidate($scope.doc.get(path), function(err) {
 $scope.validating = false;
 if (err) {
 if (!$scope.err) {
 $scope.err = { errors: {} };
 }
 $scope.err.errors[path] = err;
 } else {
 if ($scope.err && $scope.err.errors[path]) {
 delete $scope.err.errors[path];
 }
 }
 });
 };

With this function in place, you can transparently tell Mongoose to validate only the
favoriteColor path when the input field changes:

 <h3>What is your favorite color?</h3>
 <input type="text"
 ng-model="doc.favoriteColor"
 ng‐change="validatePath('favoriteColor')">

Finally, notice that there is no usage of AngularJS’s validation directives, like ngRequired, in either
of these examples. Mongoose is intended to be a replacement for AngularJS’s form validation
directives, rather than a supplement for them. AngularJS’s form validation directives are embedded
in the Document Object Model (DOM), so they are trickier to test and can be more difficult to
maintain depending on your codebase. However, the one you use is a matter of personal preference
and the requirements for your application. For simple forms and prototyping, AngularJS’s form
validation can be quite useful. However, Mongoose’s form validation has some significant
advantages: It offers incredibly sophisticated features that AngularJS form validation lacks, is
independent of the DOM (and thus easier to test and reuse), and can be reused in your server if
you’re using NodeJS and MongoDB.

ANGULARJS AND ECMASCRIPT 6

At the time of this writing, the next version of the JavaScript language standard, ECMAScript 6,
is still a work in progress. However, more and more developers are starting to utilize the powerful
language features that ECMAScript 6 defines. Although ECMAScript 6 is not finalized yet,

www.it-ebooks.info

http://www.it-ebooks.info/

342  ❘  CHAPTER 10   Moving On

Chrome and Firefox offer support for some ES6 features, so you can utilize them in AngularJS for
experimental development and research purposes. However, using ES6 in a production AngularJS
application is not a good idea because, as of this writing, no officially released version of Internet
Explorer or Safari supports any of the topics you’ll learn about in this section. As such, for the
purposes of this section, you have to use either Google Chrome (version 37 or greater) or Mozilla
Firefox (Version 31 or greater) to view the sample code. You also need to enable ES6 support in
Chrome. (Firefox should have it enabled by default.) To do this on Google Chrome 38, navigate
your browser to chrome://flags/, find and enable the Enable Experimental JavaScript flag, and
restart Chrome.

Using yield for Asynchronous Calls
One exciting feature of ES6 that is taking the NodeJS community by storm is generator functions
and the yield keyword. JavaScript’s generators are fairly similar to Python’s, so if you have
experience with Python, ES6 generators should look familiar. In JavaScript, however, the yield
keyword has some exceptionally elegant functionality when it comes to managing asynchronous
function calls.

Experienced JavaScript engineers have likely heard of the term callback hell to describe code that
has callbacks within callbacks within other callbacks. You may have experienced this pain in
AngularJS when you realized that you had one HTTP call that had to use the result of another
HTTP call. Organizing this through callbacks can lead to convoluted code. Generators provide an
alternative to this approach that you’ll learn about in this section.

You can find this section’s sample code in the http _ yield.html file. This file includes an open
source module called co that provides a convenience wrapper for running generator functions.

How would you use the yield keyword to load the Google stock price from the Yahoo Finance
API? Here’s the implementation:

 function convertToAPlusPromise($q, promise) {
 var deferred = $q.defer();
 promise.
 success(function(data) {
 deferred.resolve(data);
 }).
 error(function(err) {
 deferred.reject(err);
 });

 return deferred.promise;
 }

 function MyController($scope, $http, $q) {
 var BASE = 'http://query.yahooapis.com/v1/public/yql';
 var query = 'select * from yahoo.finance.quotes ' +
 'where symbol in (\'GOOG\')';
 var url = BASE + '?' +
 'q=' + encodeURIComponent(query) +
 '&format=json&diagnostics=true' +
 '&env=http://datatables.org/alltables.env' +

www.it-ebooks.info

chrome://flags/
http://query.yahooapis.com/v1/public/yql
http://datatables.org/alltables.env
http://www.it-ebooks.info/

Conclusion  ❘  343

 '&callback=JSON_CALLBACK';

 co(function*() { // The * is not a typo, marks this as a generator
 var result;
 try {
 result = yield convertToAPlusPromise($q, $http.jsonp(url));
 $scope.result = result;
 } catch(e) {
 console.log('Error occurred: ' + e);
 }
 })();

There are two important details to note about the preceding code. First, the yield keyword
operates on a promise. A promise is an object that provides syntactic sugar around an asynchronous
operation. In particular, the yield keyword expects a promise that conforms to the Promises/
A+ standard, which unfortunately is entirely incompatible with the promises returned by
the $http service. Thankfully, the AngularJS core contains a lightweight fork of the popular
promises library “Q” as the $q service, which does conform to the Promises/A+ standard. The
convertToAPlusPromise() function shown earlier converts a promise returned by the $http service
to a promise returned by the $q service—that is, one that can be used with the yield keyword.

Second, there are no callbacks in the previous code. The yield keyword is smart enough to write the
value returned in the promise.resolve() call above into the result variable when the asynchronous
call is done. With the co library, you can execute JavaScript’s fundamentally asynchronous HTTP
calls in a manner that looks synchronous.

But what happens when there is an error, such as if the Yahoo Finance API is down? That’s what
the try/catch block is for! The yield keyword throws an error when its corresponding promise is
rejected (the Promises/A+ standard’s term for a promise raising an error). This means you can use
the concise try/catch syntax to catch HTTP errors rather than having to specify an error handler
function.

CONCLUSION

In this chapter, you explored several projects outside of the AngularJS core that enabled you to use
AngularJS in new ways. In particular, you learned that you can build native mobile applications
with AngularJS using the Ionic framework, utilize MomentJS for sophisticated date functionality,
and integrate MongooseJS for schema‐driven form validation. There are myriad other JavaScript
modules that you can use to extend AngularJS: You can find more by searching for “AngularJS” on
www.npmjs.org or www.bower.io/search.

www.it-ebooks.info

http://www.npmjs.org
http://www.bower.io/search
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Resources

Many websites can help you learn more about AngularJS and connect with the AngularJS
community. AngularJS’s popularity has inspired a wide range of online content, ranging from
simple blog posts to sophisticated screencasts, which can provide insight on most AngularJS
questions and issues. Furthermore, several JavaScript module repositories enable you to find
and install extensions for AngularJS:

➤➤ AngularJS (http://www.angularjs.org)—The official AngularJS site offers
downloads, tutorials, forums, a Developer Guide, an application programming
interface (API) reference, and much more. This is an ideal place to get basic
information about AngularJS and to connect with the larger community.

➤➤ Egghead.io (http://egghead.io)—Egghead.io is currently the go‐to source for
AngularJS screencast tutorials. These tutorials are short (typically around 5 minutes)
videos that demonstrate AngularJS concepts by showing a developer writing code in an
integrated development environment (IDE). Egghead.io tutorials are ideal for quickly
addressing a specific question that you have about AngularJS features.

➤➤ Bower (http://bower.io)—Bower is a package manager built for client‐side
JavaScript and cascading style sheets (CSS). Bower hosts numerous AngularJS
packages, and the bower.io website has a convenient search engine so you can find
specific AngularJS extensions.

➤➤ npm (http://www.npmjs.org)—npm originally started as a package manager for
NodeJS, but thanks to modules like Browserify (see Chapter 3, “Architecture,” for
more information about Browserify) npm is now also a popular repository for client‐
side modules. The official npm website includes a convenient search engine to help you
find useful AngularJS modules.

➤➤ Thinkster (http://www.thinkster.io)—Similar to Egghead.io, Thinkster provides
screencast tutorials. However, Thinkster tutorials are typically organized as full
courses rather than short standalone videos and focus more on full‐stack development

APPENDIX

www.it-ebooks.info

http://www.angularjs.org
http://egghead.io
http://bower.io
http://www.npmjs.org
http://www.thinkster.io
http://www.it-ebooks.info/

346  ❘  APPENDIX ﻿   Resources

than AngularJS in isolation. If you are interested in learning about using AngularJS with
Django, Ruby on Rails, Ionic, or as part of the MEAN stack, Thinkster is an excellent
resource.

➤➤ AngularJS‐Learning (http://github.com/jmcunningham/AngularJS‐Learning)—The
most popular community‐curated list of AngularJS content includes links to numerous high‐
quality AngularJS articles, sample apps, and learning resources.

➤➤ angular/angular.js (http://github.com/angular/angular.js)—The official AngularJS
code repository includes a mechanism to report issues and enables you to contribute to the
AngularJS core through GitHub’s Pull Requests feature.

➤➤ AngularJS Code (http://code.angularjs.org)—This page includes download links to
all versions of AngularJS, including noncore modules like angular‐sanitize. If you are
comfortable digging into core AngularJS code or just want to download a specific module,
this is the ideal location to find the file you’re looking for.

www.it-ebooks.info

http://github.com/jmcunningham/AngularJS%E2%80%90Learning
http://github.com/angular/angular.js
http://code.angularjs.org
http://www.it-ebooks.info/

347

INDEX

Symbols

{{ }} (curly brackets)
data binding, 133
scopes, 171

& shortcut, 175
= shortcut, 175
@ shortcut, 173, 175

A

actions, 259
afterEach() function, 282
aHrefSanitizationWhitelist() function,

238
all() function, 244
Android SDK, setup, 326
animation
ngAnimate module, 211–212
StockDog application, 46–48

animation rule, 212
APIs (application programming

interfaces)
controllers and, 96
exposure to HTML, 128
exposure using controllers, 108–109

application module, 9–10
bootstrapping and, 11
dependencies, 10

applications
building, 1–3
deployment, 53–55

directories, 6–7
scaffolding, Yeoman, 4–6
SPAs (single-page applications), 185

$apply function, 141, 162
architecture, importance, 95–96
arrays, data binding and, 152–155
asynchronous calls, 342–343
authenticate() function, 256
authentication, services, 127
automation, Make and, 82–84

B

beforeEach() function, 282
bindings, 16
Bootstrap
datepicker directive,

320–321
modals, 316–320
templates, 321–325
timepicker directive, 321

bootstrapping, 11
Bower, 5, 58
bower_components directory, 59
dependencies, 59–60
installation, 58
packages, 58

$broadcast() function, 100
browser

Selenium, 293
testing, 285–288

Sauce, 288–292

www.it-ebooks.info

http://www.it-ebooks.info/

348

callback hell – describe() function

C

callback hell, 342
CarouselController, 163–165
next() function, 174–175
previous() function, 174–175

catch() function, 244
child scopes, 137
client-side routing
ngRoute module, 19–20
routes

adding, 20–21
using, 21–22

template views, 22–23
cloud computing, browser testing,

288–292
code, organization, modules and,

109–113
command-line

Grunt, 60–62
Gulp, 73

commands, make, 83–84
compile function, 183–184
config() function, 252–253
confirm() function, 318
contenteditable directive,

41–43
$controller service, 219
controllers

API exposure to HTML, 128
DashboardCtrl, 49–51
instantiation, 97
locals and, 97–98
MainCtrl, 25–26
ng-controller directive, 96
services and, 104

Cordova, 325, 329–330
setup, 326

crawlers, search engines, 201
Google AJAX crawling

spec, 209

cross-site scripting, 238
CSS (cascading style sheets), 211–212
animation rule, 212
@keyframes rule, 212

D

dashboard, StockDog application,
49–53

DashboardCtrl controller, 49–51
data binding, 131–132

{{ }} (curly brackets), 133
benefits, 134–136
filters and, 145–146

converting objects to strings,
146–150

global function wrappers,
150–152

manipulating arrays, 152–155
ngInclude directive, 194–196
performance considerations,

142–145
datepicker directive, 320–321
date/time, Moment, 331–335
debug module, 309–311
debugging
debug module, 309–311
DevTools (Chrome), 311–314

declarative programming, 135
decorating objects, 223
deep linking, 196
dependencies

Bower, 59–60
services as, 104

dependency injection, 97,
218–219

$injector service, 219–220
versus singleton design pattern, 218

deployment, 53–55
describe() function, 282, 284

www.it-ebooks.info

http://www.it-ebooks.info/

349

design patterns – event handler wrappers

design patterns, master-detail,
145, 186

DevTools (Chrome), 311–314
$digest function, 141–142
.directive() method, 15
directive function, 158
directives, 107–108

components, 171
contenteditable, 41–43
controllers and, API exposure,

108–109
datepicker, 320–321
DOM interface, 128–129
event handler wrappers, 159

writing, 162–165
HTML and, 158
imageCarousel, 167–169
myBackgroundImage, 160, 171–172
myNgClick, 162–165
ng-controller, 96
ngInclude, 112–113, 187–190

data binding, 194–196
performance and, 191
$templateCache service,

193–194
templates with script tags,

191–193
ngSwipeLeft, 163–164
ngSwipeRight, 163–164
overview, 157–159
render-only, 134, 159

writing, 160–162
replace setting, 176–179
restrict setting, 176–179
scopes, separate, 169–176
stkSignColor, 44–45
stkSignFade, 46–47
stkStockRow, 37–38
stkStockTable, 36–37
stk-Watchlist-Panel, 13–19
templates and, 167–169

changing at runtime, 179–184
compile function, 183–184
link function, 183–184
transclusion, 179–182

timepicker, 321
two-way, 134, 159

writing, 165–166
watch and update pattern,

160–161
directories
bower_components, 59
projects, 6–7
structure, 113–114

large projects, 117–119
medium projects, 115–117
small projects, 114–115

dirty checking, 142
DOM (Document Object Model)

directives, 13
integration tests, 292–293

HTML page, 297
$httpBackend, 293–297
ng-scenario, 298–303
Protractor, 304–309

interface, 128–129
DRY (don’t repeat yourself), 57

E

ECMAScript, 315–316, 341–342
editing, forms, inline, 40–43
$emit() function, 99
encodeURIComponent function,

139–140
endSymbol function, 237
end-to-end tests, 279
error interceptors, 255–258
event emitter design pattern, 270–271
event handler wrappers, 134, 159

writing, 162–165

www.it-ebooks.info

http://www.it-ebooks.info/

350

event-emitter module, 105–107
events
event-emitter module, 105–107
SCROLL_TO_BOTTOM, 101–102
transmission, 99–102

expressions, 16, 136–137

F

factories, 218, 222–224
factory() function, 222–224
factory function, 158
$filter, 158
filters, data binding and, 145–146

converting objects to strings,
146–150

global function wrappers, 150–152
manipulating arrays, 152–155

Firebase framework, 243,
273–275

forms
inline editing, 40–43
validation, 16–17

frameworks
Firebase, 243, 273–275
Ionic, 326–330
versus libraries, 277
LoopBack, 243, 264–270
Mocha, unit testing, 281–285

from keyword, 212
function annotations, 220–221
functions
afterEach(), 282
aHrefSanitizationWhitelist(), 238
all(), 244
$apply, 141
authenticate(), 256
beforeEach(), 282
$broadcast(), 100
catch(), 244

compile, 183–184
config(), 252–253
confirm(), 318
describe(), 282, 284
$digest, 141–142
directive, 158
$emit(), 99
encodeURIComponent, 139–140
endSymbol, 237
factory, 158
factory(), 222–224
getAll(), 187
global, wrappers, 150–152
gotoList(), 21
hash(), 197
invoke(), 219, 220–221
isValid, 105
it(), 282, 284
link, 158
link, 183–184
MyController, 217
$on(), 99
onChange, 174
path(), 197
provider(), 228–232
requestError, 255–258
response, 253
responseError, 255–258
search(), 197
sendMessage, 273
service(), 224–228
showConfirmation(), 317–318
startSymbol, 237
submitPassword(), 256
$templateCache.put, 194
$templateCache.removeAll, 194
then(), 244–245
$timeout(), 103
url(), 197
validateForm(), 283
$watch, 140, 170–171

event-emitter module – functions

www.it-ebooks.info

http://www.it-ebooks.info/

351

getAll() function – Gulp

G

getAll() function, 187
getMore() function, 226–227
global functions, wrappers, 150–152
Google AJAX crawling spec, 209
gotoList() function, 21
Grunt, 5

command-line tools, 60–62
directory structure, 62–63
Gruntfile.js, 63–64
plug-ins
grunt-autoprefixer, 87–88
grunt-concurrent, 90–91
grunt-contrib-clean, 87
grunt-contrib-compass, 88
grunt-contrib-connect, 87
grunt-contrib-copy, 90
grunt-contrib-htmlmin, 89
grunt-contrib-imagemin, 89
grunt-contrib-jshint, 87
grunt-contrib-watch, 86–87
grunt-filerev, 88
grunt-google-cdn, 90
grunt-karma, 91
grunt-newer, 86
grunt-ng-annotate, 90
grunt-svgmin, 89
grunt-usemin, 88–89
grunt-wiredep, 88
load-grunt-tasks, 86
time-grunt, 86

tasks
build, 92
connect task, 64–65
custom tasks, 69–72
default, 92
default task, 69
jshint task, 66–68
less task, 65–66
plug-ins, 62

serve, 91
test, 91
watch task, 68–69

when to use, 84
grunt-autoprefixer plug-in,

87–88
grunt-concurrent plug-in,

90–91
grunt-contrib-clean plug-in, 87
grunt-contrib-compass plug-in, 88
grunt-contrib-connect plug-in, 87
grunt-contrib-copy plug-in, 90
grunt-contrib-htmlmin plug-in, 89
grunt-contrib-imagemin

plug-in, 89
grunt-contrib-jshint plug-in, 87
grunt-contrib-watch plug-in,

86–87
grunt-filerev plug-in, 88
grunt-google-cdn plug-in, 90
grunt-karma plug-in, 91
grunt-newer plug-in, 86
grunt-ng-annotate plug-in, 90
grunt-svgmin plug-in, 89
grunt-usemin plug-in, 88–89
grunt-wiredep plug-in, 88
Gulp

arguments, 79–82
asynchronous behavior,

79–82
command-line tool, 73
Gulpfile, 73–74
nopt module, 79–80
plug-ins, 73
tasks
connect task, 74–75
default task, 78–79
jshint task, 77
less task, 75–76
watch task, 77–78

when to use, 84

www.it-ebooks.info

http://www.it-ebooks.info/

352

hash() function – @keyframes rule

H

hash() function, 197
hash pseudo-URL, 197
HTML (Hypertext Markup Language)

directives and, 158
integration testing, 297
navigation bar creation, 23–25

HTML5 Shiv, 177
HTTP (Hypertext Transfer Protocol), 246

interceptors, 243
parameterization, 259–260

HTTP requests
body, 246

setting, 248–249
configuration objects, 249–250
headers, 246

default, 250–251
interceptors, 251–258
JSON, 249
methods, 246
$resource service, 259–262
resources, 246
services for, 246–247
$http, 247–258
$resource, 259–262

status code, 246
XSS (cross site scripting), 249

$http service, 219, 248
$httpBackend, 293–297

I

IDEs (integrated development
environments), 326

imageCarousel directive,
167–169

imperative programming, 135
inheritance, scopes, 98–99,

137–142
$injector service, 219–220

inline editing, forms,
40–43

installation
Bower, 58
packages, 58–59
Yeoman, 4–5

integration tests, 279
DOM, 292–293

HTML page, 297
$httpBackend, 293–297
ng-scenario, 298–303
Protractor, 304–309

interceptors, 251–253
error interceptors, 255–258
request interceptors, 253–255

interpolation delimiters,
236–237

$interpolationProvider
provider, 236

invoke() function, 219,
220–221

Ionic framework, setup, 326
isolate scopes, 169–170
isValid function, 105
it() function, 282, 284

J

JavaScript
Moment, 331–335
Mongoose, 335–341

JSON, HTTP requests and, 249

K

Karma, 285–288
Sauce and, 288–292

karma-mocha package, 286
KeenIO, 110–111
@keyframes rule, 212

www.it-ebooks.info

http://www.it-ebooks.info/

353

keywords – ngInclude directive

keywords
from, 212
to, 212
this, 227
yield, 342–343

L

lexical scope, 227
libraries, versus frameworks, 277
link function, 158
link function, 183–184
links, whitelisting, 237–240
linting, 66–68
load-grunt-tasks plug-in, 86
loading modules

Browserify, 122–126
RequireJS, 119–121

locals, 97–98
$location service, 196
hash() function, 197
overview, 197–198
page state, 198–200
path() function, 197
url() function, 197

LoopBack framework, 243
scaffolding REST APIs,

264–270

M

MainCtrl controller, 25–26
Make, 82–84

when to use, 84
make command, 83–84
makefile, 83
mangling, 220
master-detail design pattern, 145, 186

views, 226

minifiers, 220
Mocha framework, unit testing,

281–285
$modal service, 316–320
$modalInstance, 319
models, 131

viewing, data binding and, 132
ModelService paradigm,

102–103
modules

code organization, 109–113
loaders

Browserify, 122–126
RequireJS, 119–121

ngRoute, 19–20
Moment, 331–335
Mongoose, 335–341
MVC (Model-View-Controller), 131
MVVM (Model-View-ViewManager), 132
MVW (Model-View-Whatever), 132
myBackgroundImage directive, 160,

171–172
MyController function, 217
myNgClick directive, 162–165

N

navigation bar
HTML, 23–25
MainCtrl controller, 25–26

ngAnimate module, 211–215
ngBind attribute, 133, 157,

160–161
ngClick attribute, 133–134, 157

implementation, 158–159
ng-controller directive, 96

instances, 97
ngInclude directive, 112–113

performance and, 191
$templateCache service, 193–194

www.it-ebooks.info

http://www.it-ebooks.info/

354

ngInclude directive – restrict setting

ngInclude directive (continued)
templates, 187–190

data binding, 194–196
script tags, 191–193

ngRepeat, 143–145
ngRoute module, 200–203

client-side routing, 19–20
ng-scenario, 292–293

DOM integration tests, 298–303
ngSwipeLeft directive, 163–164
ngSwipeRight directive, 163–164
NodeJS, 186
Node.js, 4
nopt module, 79–80
NPM (Node Packaged Modules), 4

O

objects
converting to strings, 146–150
decorating, 223

ODM (object-document mapper),
335–341

$on() function, 99
onChange function, 174
OtherModule, 109–110

P

packages
Bower and, 58
installation, 58–59
karma-mocha, 286

parameterization, 259–260
path() function, 197
patterns, master-detail design

pattern, 186
performance

data binding and, 142–145
ngInclude directive, 191

plug-ins
Grunt, 62
Gulp, 73

Prerender, 207–209
programming

declarative, 135
imperative, 135

projects, sca, 4–5
promises, 244–245
all() function, 244
catch() function, 244
then() function, 244–245

Protractor, 304–309
provider() function,

228–232
providers, 218

built-in, interpolation delimiters,
236–237

R

real time, 270
regular expressions, whitelisting

and, 238–239
render-only directives, 134, 159

writing, 160–162
replace setting, 176–179
request interceptors, 253–255
requestError function, 255–258
resource objects, 259–260
$resource service, 259–262
response function, 253
responseError function, 255–258
REST (Representational State Transfer),

243–244
REST API

scaffolding, LoopBack framework,
264–270

Twitter, 262–264
RESTful APIs, 243
restrict setting, 176–179

www.it-ebooks.info

http://www.it-ebooks.info/

355

$rootScope service – stkStockTable directive

$rootScope service, 101
$rootScope service, 240
$rootScopeProvider, 240
route parameters, 260
$routeParams service, 205
$routeProvider, 202–205
routing

client-side, 19–20
adding routes, 20–21
template views, 22–23
using routes, 21–22

SPAs and, 200–201

S

Sauce, 288–292
scaffolding

projects, Yeoman and, 4–6
REST APIs, LoopBack framework,

264–270
$scope service, 218
scope setting, 170–176
scopes, 136–137

{{ }} (curly brackets), 171
$apply function, 141
child scopes, 137
$digest function, 141–142
directives, separate scopes,

169–176
inheritance, 98–99, 137–142
isolate, 169–170
lexical scope, 227
$watch function, 140

SCROLL_TO_BOTTOM event, 101–102
search() function, 197
search engines, 201

Google AJAX crawling spec, 209
SPAs and, 207, 210–211

SelectModalController controller,
318–319

Selenium, 293
sendMessage function, 273
service() function, 224–228
services, 218
$controller, 219
controllers and, 104
dependence on other services, 104–105
event-emitter module, 105–107
factory() function, 222–224
$http, 219, 248
$injector, 219–220
loading, 127
$modal, 316–320
provider() function, 228–232
$resource, 259–262
$rootScope, 240
$scope, 218
service() function, 224–228
singletons, 223–224
$stockPrices, 234–236
storing, 127
use cases, 232–233
$user, 233–234

showConfirmation() function,
317–318

singleton design pattern, versus dependency
injection, 218

singletons, 223–224, 232
SPAs (single-page applications), 185

crawlers and, 201
Google AJAX crawling spec, 209
master-detail design pattern, 186
navigation, 205–207
Prerender, 207–209
routing and, 200–201
search engines and, 207, 210–211

startSymbol function, 237
stkSignColor directive, 44–45
stkSignFade directive, 46–47
stkStockRow directive, 37–38
stkStockTable directive, 36–37

www.it-ebooks.info

http://www.it-ebooks.info/

356

StockDog application, 8
addstock-modal.html, 27–29
animation, 46–48
application module, 9–10
bootstrapping, 11
client-side routing

adding routes, 20–21
ngRoute module, 19–20
route use, 21–22
template views, 22–23

CompanyService, 27
contenteditable directive,

41–43
currency format, 44–45
dashboard, 49–53
deployment, 53–55
forms, inline editing, 40–43
navigation bar

HTML, 23–25
MainCtrl controller, 25–26

QuoteService, 33–35
services, invoking, 35
stkSignColor directive, 44–45
stkStockRow directive, 37–38
stkStockTable directive, 36–37
stk-Watchlist-Panel

directive, 13–19
Stock Table, 36–40

template, 39–40
stocks, adding, 26–32
Watchlist view, updating, 40
watchlist view, 31–32
WatchlistCtrl, 30–31
watchlists, 9–19
WatchlistService, 11–13

updating, 29–30
Yahoo Finance integration, 32–35

$stockPrices service, 234–236
strings, converting from objects, 146–150
submitPassword() function, 256
swipe-enabled carousel, 163

T

tasks
Grunt
build, 92
connect, 64–65
default, 69, 92
jshint, 66–68
less, 65–66
serve, 91
test, 91
watch, 68–69

Gulp
connect, 74–75
default, 78–79
jshint, 77
less, 75–76
watch, 77–78

$templateCache service,
193–194

$templateCache.put
function, 194

$templateCache.removeAll
function, 194

templates, 16–17, 186,
187–188

Boostrap, 321–325
directives and, 167–169
compile function, 183–184
link function, 183–184
transclusion, 179–182

lazy loading, 189
loading via HTTP request,

193–194
ngInclude directive, 187–190

data binding, 194–196
script tags, 191–193
template views, 22–23

testing
browser, 285–288

Sauce, 288–292

StockDog application – testing

www.it-ebooks.info

http://www.it-ebooks.info/

357

then() function – Yeoman

end-to-end, 279
integration tests, 279
philosophy, 277–279
pyramid, 279–280
unit testing, 278–279

Mocha framework,
281–285

then() function, 244–245
this keyword, 227
time-grunt plug-in, 86
$timeout() function, 103
timepicker directive, 321
to keyword, 212
transclusion, directives,

179–182
transmission, events, 99–102
two-way directives, 134, 159

writing, 165–166

U

UI (user interface). See also views
data binding and, 131
event handlers, 132

unit testing, 278–279
Mocha framework,

281–285
url() function, 197
URLs (uniform resource

locators), 196
$user service, 233–234
UX (user experience), 185

design pattern, 100–101

V

validateForm() function, 283
validation, forms, 16–17
views, 186

data binding, 131

W

watch and update pattern of directives,
160–161

$watch function, 140, 170–171
WatchlistService, 11–13
web sockets, 243, 270–273
whitelisting links, 237–240
wrappers, global functions,

150–152
writing

directives, render-only, 160–162
event handler wrappers, 162–165
two-way directives, 165–166

X-Y

XSS (cross site scripting), HTTP requests
and, 249

Yeoman
Bower, 5
clean up, 8–9
files, generated, 6–7
generators
angular-fullstack, 93
ionic, 93
jhipster, 93
subgenerators, 92–93

Grunt, 5
Grunt plug-ins
grunt-autoprefixer, 87–88
grunt-concurrent, 90–91
grunt-contrib-clean, 87
grunt-contrib-compass, 88
grunt-contrib-connect, 87
grunt-contrib-copy, 90
grunt-contrib-htmlmin, 89
grunt-contrib-imagemin, 89
grunt-contrib-jshint, 87
grunt-contrib-watch, 86–87

www.it-ebooks.info

http://www.it-ebooks.info/

358

Yeoman – yield keyword

Yeoman (continued)
grunt-filerev, 88
grunt-google-cdn, 90
grunt-karma, 91
grunt-newer, 86
grunt-ng-annotate, 90
grunt-svgmin, 89
grunt-usemin, 88–89
grunt-wiredep, 88
load-grunt-tasks, 86
time-grunt, 86

Grunt tasks
build, 92
default, 92
serve, 91
test, 91

installation, 4–5
Ionic framework and, 329–330
overview, 84–85
plug-ins, 85–92
scaffolding projects, 85

yield keyword, 342–343

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

www.it-ebooks.info

http://www.wiley.com/go/eula
http://www.it-ebooks.info/

	PROFESSIONAL: AngularJS
	ABOUT THE AUTHORS
	ABOUT THE TECHNICAL EDITOR
	CREDITS
	ACKNOWLEDGMENTS
	CONTENTS
	INTRODUCTION
	CHAPTER 1: BUILDING A SIMPLE ANGULARJS APPLICATION
	What You Are Building
	What You Will Learn
	Step 1: Scaffolding Your Project with Yeoman
	Installing Yeoman
	Scaffolding Your Project
	Exploring the Application
	Cleaning Up

	Step 2: Creating Watchlists
	The Application Module
	Installing Module Dependencies
	Bootstrapping the Application

	The Watchlist Service
	The Watchlist-Panel Directive
	Basic Form Validation
	Using the Directive

	Step 3: Configuring Client-Side Routing
	The Angular ngRoute Module
	Adding New Routes
	Using the Routes
	Template Views

	Step 4: Creating a Navigation Bar
	Updating the HTML
	Creating MainCtrl

	Step 5: Adding Stocks
	Creating the CompanyService
	Creating the AddStock Modal
	Updating the WatchlistService
	Implementing WatchlistCtrl
	Modifying the Watchlist View

	Step 6: Integrating with Yahoo Finance
	Creating the QuoteService
	Invoking Services from the Console

	Step 7: Creating the Stock Table
	Creating the StkStockTable Directive
	Creating the StkStockRow Directive
	Creating the Stock Table Template
	Updating the Watchlist View

	Step 8: Inline Form Editing
	Creating the Contenteditable Directive
	Updating the StkStockTable Template

	Step 9: Formatting Currency
	Creating the StkSignColor Directive
	Updating the StockTable Template

	Step 10: Animating Price Changes
	Creating the StkSignFade Directive
	Updating the StockTable Template

	Step 11: Creating the Dashboard
	Updating the Dashboard Controller
	Updating the Dashboard View

	Production Deployment
	Conclusion

	CHAPTER 2: INTELLIGENT WORKFLOW AND BUILD TOOLS
	What Can Tooling Do for Me?
	What Is Bower?
	Getting Started with Bower
	Searching for Packages
	Installing Packages
	Versioning Dependencies

	What Is Grunt?
	Getting Started with Grunt
	Installing Plug-Ins
	Directory Structure
	The Gruntfile
	Configuring Tasks and Targets
	The Connect Task
	The Less Task
	The JSHint Task
	The Watch Task
	The Default Task

	Creating a Custom Task

	What Is Gulp?
	Getting Started with Gulp
	Installing Plug-Ins
	The Gulpfile
	Creating Tasks
	The Connect Task
	The Less Task
	The JSHint Task
	The Watch Task
	The Default Task

	Arguments and Asynchronous Behavior
	Gulp, Grunt, and Make
	Automation Using Make
	When to Use Make
	When to Use Grunt
	When to Use Gulp

	What Is Yeoman?
	Getting Started with Yeoman
	Scaffolding a New Project
	Exploring Plug-Ins and Tasks
	load-grunt-tasks
	time-grunt
	grunt-newer
	grunt-contrib-watch
	grunt-contrib-connect
	grunt-contrib-jshint
	grunt-contrib-clean
	grunt-autoprefixer
	grunt-wiredep
	grunt-contrib-compass
	grunt-filerev
	grunt-usemin
	grunt-contrib-imagemin
	grunt-svgmin
	grunt-contrib-htmlmin
	grunt-ng-annotate
	grunt-google-cdn
	grunt-contrib-copy
	grunt-concurrent
	grunt-karma

	Alias Tasks and Workflow
	serve
	test
	build
	default

	Modifications
	Subgenerators
	Popular Generators
	angular-fullstack
	jhipster
	ionic

	Conclusion

	CHAPTER 3: ARCHITECTURE
	Why Is Architecture Important?
	Controllers, Services, and Directives
	Controllers
	Scope Inheritance
	Event Transmission
	The ModelService Paradigm

	Services
	Services Depending on Other Services
	The event-emitter Module

	Directives
	Exposing API Using Controllers

	Conclusion

	Organizing Your Code with Modules
	Directory Structure
	Small Projects
	Medium Projects
	Large Projects

	Module Loaders
	RequireJS
	Browserify

	Best Practices for Structuring User Authentication
	Services: Loading from and Storing Data to the Server
	Controllers: Exposing an API to HTML
	Directives: Interfacing with the DOM

	Conclusion

	CHAPTER 4: DATA BINDING
	What Is Data Binding?
	What Data Binding Can Do for You
	Scoping Out AngularJS Scopes
	Scope Inheritance
	$watch
	$apply
	$digest

	Performance Considerations
	An ngRepeat Gone Wrong

	Filters and Data-Binding Gotchas
	Use Case 1: Rules for Converting Objects to Strings
	Use Case 2: Wrappers for Global Functions
	Use Case 3: Manipulating Arrays

	Conclusion

	CHAPTER 5: DIRECTIVES
	What Is a Directive?
	Understanding Directives
	An 80/20 Understanding of Directives
	Writing Your Own Render-Only Directive
	Writing Your Own Event Handler Directive
	Writing Your Own Two-Way Directive
	Beyond the Simple Design Patterns

	A Deeper Understanding of Directives
	Directive Composition Using Templates
	Creating Separate Scopes for Directives
	The First Way of Using the scope Setting
	The Second Way of Using the scope Setting

	The restrict and replace Settings
	Moving On

	Changing Directive Templates at Runtime
	Transclusion
	Using the transclude: true Setting
	Using the transclude: ‘element’ Setting

	The compile Setting, or compile Versus link

	Conclusion

	CHAPTER 6: TEMPLATES, LOCATION, AND ROUTING
	Part I: Templates
	Templating with ngInclude
	ngInclude and Performance
	Including Templates with script Tags
	The $templateCache Service
	Next Steps: Templates and Data Binding

	Part II: The $location Service
	What's in a URL?
	Introducing $location
	Tracking Page State with $location
	Next Steps: Routing and SPAs

	Part III: Routing
	Using the ngRoute Module
	The $routeProvider Provider
	The $routeParams Service
	Navigation in Your SPA
	Search Engines and SPAs
	Setting Up Prerender on the Server
	The Google AJAX Crawling Spec
	Confi guring AngularJS for Search Engines
	Search Engine Integration in Action
	Introduction to Animations
	The ngAnimate Module in Action

	Conclusion

	CHAPTER 7: SERVICES, FACTORIES, AND PROVIDERS
	A Brief Overview of Dependency Injection
	The $injector Service
	Function Annotations

	Building Your Own Services
	The factory() Function
	The service() Function
	The provider() Function

	Common Use Cases for Services
	Building a $user Service
	Building the $stockPrices Service

	Utilizing Built-In Providers
	Custom Interpolation Delimiters
	Whitelisting Links with $compileProvider
	Global Expression Properties with $rootScopeProvider

	Conclusion

	CHAPTER 8: SERVER COMMUNICATION
	Why Will I Learn?
	Introduction to Promises
	Services for HTTP Requests
	$http
	Setting the HTTP Request Body
	JSONP and Cross Site Scripting (XSS)
	HTTP Confi guration Objects
	Setting Default HTTP Headers
	Using HTTP Interceptors

	The $resource Service

	Consuming the Twitter REST API
	Scaffolding a REST API with StrongLoop LoopBack
	Building a Simple API Using LoopBack
	Creating a New Application
	Creating a LoopBack Model
	The API Explorer
	Generating Resources with Loopback AngularJS SDK

	Using Web Sockets with AngularJS
	Using Firebase with AngularJS
	Conclusion

	CHAPTER 9: TESTING AND DEBUGGING ANGULARJS APPLICATIONS
	AngularJS Testing Philosophy
	The Testing Pyramid

	Unit Testing in AngularJS
	The Mocha Testing Framework
	Unit Testing in the Browser with Karma
	Browser Testing in the Cloud with Sauce
	Evaluating the Unit Testing Options

	DOM Integration Tests
	A Guide to $httpBackend
	The Page You’ll Be Testing
	DOM Integration Tests with ng-scenario
	DOM Integration Testing with Protractor
	Evaluating ng-scenario and Protractor

	Debugging AngularJS Apps
	The debug Module
	Debugging Using Chrome DevTools
	Launching Developer Tools
	Inspecting the State of the DOM
	Using the Console Tab
	Setting Breakpoints in the Sources Tab
	Debugging Network Performance

	Conclusion

	CHAPTER 10: MOVING ON
	Using Angular-UI Bootstrap
	Modals
	Datepicker
	Timepicker
	Custom Templates

	Hybrid Mobile Apps with the Ionic Framework
	Setting Up Ionic, Cordova, and the Android SDK
	Using AngularJS in Your Ionic App
	Yeoman Workflow and Building for Production
	Icons, Splash Screens, and Cordova Hooks

	Integrating Open Source JavaScript with AngularJS
	Dates and Time Zones with Moment
	Schema Validation and Deep Objects with Mongoose

	AngularJS and ECMAScript 6
	Using yield for Asynchronous Calls

	Conclusion

	APPENDIX: RESOURCES
	INDEX
	Advert
	EULA

