
www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Web Design
with AngularJS

Leverage the core functionalities of AngularJS, to build
responsive single page applications

Sandeep Kumar Patel

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Web Design with AngularJS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1131214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-842-2

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Sandeep Kumar Patel

Reviewers
Anthony Chu

Shaunak De

Jude Osborn

Commissioning Editor
Julian Ursell

Acquisition Editor
Subho Gupta

Content Development Editor
Arwa Manasawala

Technical Editor
Utkarsha S. Kadam

Copy Editor
Merilyn Pereira

Project Coordinator
Purav Motiwalla

Proofreaders
Simran Bhogal

Ameesha Green

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Sandeep Kumar Patel is a senior web developer and founder of
www.tutorialsavvy.com, a widely read programming blog created in 2012. He
has more than 5 years of experience in object-oriented JavaScript and JSON-based
web applications development. He is GATE-2005 Information Technology (IT)
qualified and has a Master's degree from VIT University, Vellore. At present, he
works as a web developer at SAP Labs India. You can learn more about him from his
LinkedIn profile at http://www.linkedin.com/in/techblogger. He has received
the Dzone Most Valuable Blogger (MVB) award for technical publications related
to web technologies. His articles can be viewed at http://www.dzone.com/users/
sandeepgiet. He has also received the Java Code Geek (JCG) badge for a technical
article published in JCG. His article can be viewed at http://www.javacodegeeks.
com/author/sandeep-kumar-patel/.

He has also worked on: Instant GSON and Developing Responsive Web Applications with
AJAX and jQuery, both by Packt Publishing.

I would like to thank the three most important people in my life, my
parents, Dilip Kumar Patel and Sanjukta Patel, for their love and my
wife, Surabhi Patel, for her support and the joy that she has brought
to my life.
A special thanks to the team at Packt Publishing without whom this
book wouldn't have been possible.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Anthony Chu has been developing web applications for over 15 years. As a lead
developer and architect, he works with a team of talented developers building
AngularJS applications on Microsoft's ASP.NET and the Azure stack. Anthony lives
in Vancouver, Canada with his wife and two children. He blogs at anthonychu.com
and his Twitter handle is @nthonyChu.

Shaunak De has been working with imaging, Web-technologies, cluster and cloud
computing for over 8 years. He has keen interest in the developments of backends
and scientific computing for the Web. A valedictorian of the University of Mumbai,
he is currently pursuing his PhD at the Indian Institute of Technology in the domain
of Deep Learning.

Shaunak can be found on Twitter @shaunakde and on his journal at
http://shaunak.ws.

Jude Osborn is a creative developer for Google's Creative Lab in Sydney, on behalf
of development agency, Potato. Originally from the US, he has travelled a lot. Jude's
experience spans 20 years of software development, including the desktop, Web, and
mobile. He loves to learn and play with sweet new technologies, and is currently
thoroughly enjoying WebGL, AngularJS, and Chromecast.

Every day Jude walks across Sydney's Pyrmont Bridge, soaking up the sunshine
and looking forward to his next technological challenge.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Introduction to Responsive Single Page Application
and AngularJS	 7

Why responsive design?	 7
What is single page web application?	 8

Template	 8
Partial	 9
Router	 9
Controller	 9
Real-time communication	 9
Local storage	 9

Understanding responsive single page application	 10
What is an AngularJS framework?	 10
Exploring the features of AngularJS	 10

The AngularJS module	 11
The controller scope	 11
The AngularJS routing module	 12
The AngularJS provider	 13
Data binding	 14
AngularJS expressions	 15
Built-in directive	 15
Custom directive	 16

Role of AngularJS	 18
Using the browser sniffing approach	 19
CSS3 media queries approach	 20

Media type	 21
Media feature	 22

What are we building?	 24
Summary	 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: The AngularJS Dynamic Routing-based Approach	 25
Setting up an AngularJS project	 25

Building a project's structure	 26
The SASS configuration	 30

Profile application demo	 31
Building data services	 31
Device-based routing 	 32
AngularJS routing	 33

Setting up an AngularJS application	 33
Configuring a routing module	 34

Configuring a profile controller	 36
Developing a device type provider	 37
Developing a desktop view	 38

Name and profile image row	 38
Category selection row	 39
Category content	 40
Social buttons row	 41

Developing a mobile view	 44
Developing a tablet view	 47
Verifying responsiveness	 51
Limitations of dynamic routing	 54
Summary	 54

Chapter 3: The AngularJS Directive-based Approach	 55
Modifying the project structure	 55

Changes in the directory structure	 56
Changes in the routing module	 56
Changes in the profile template	 57

Directives	 57
The $window service	 58
The $watch method	 59
The event binding function	 60
The $log service	 61

Built-in directives	 62
Custom directives	 62
Responsive directives	 62

Responsive images	 63
Responsive text	 66
Responsive item lists	 72

Summary	 77

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: The AngularJS-based Breakpoints
for Layout Manipulation	 79

Page layout	 79
Layout type	 80

Breakpoints	 80
Responsive and common breakpoints	 80

AngularJS publisher and subscriber	 81
Publishing a message using $emit	 81
Publishing a message using $broadcast	 81
Subscribing to a message using $on	 82
The difference between $emit and $broadcast	 84
An example of the publish and subscribe mechanism	 85

Custom attributes	 87
Developing a custom attribute	 88
Implementing a custom attribute	 90

Summary	 95
Chapter 5: Debugging and Testing Responsive Applications	 97

Batarang	 97
Installing and configuring Batarang	 97
Using Batarang	 98

AngularJS scope inspector 0.1.2	 100
Online and offline tools	 101

Online tools	 101
The responsive design checker tool	 102
The responsive test online tool	 102

Offline tools	 103
Chrome developer emulation	 103
Opera mobile emulator	 104
FireBreak add-ons	 106

Summary	 107
Index	 109

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to Responsive Web Design with AngularJS. If you want to learn and understand
responsive web application development using AngularJS, then this book is for you.
It covers a systematic approach to build a responsive web application.

All the key features of AngularJS that can help in building a responsive application
are explained with the detailed code. This book also explains how to debug and test
an AngularJS-based web application during development.

What this book covers
Chapter 1, Introduction to Responsive Single Page Application and AngularJS, introduces
you to responsive design, single page application, and the AngularJS library. This
chapter also gives a kick start of the single page responsive application that we are
going to build to demonstrate the AngularJS role in application development.

Chapter 2, The AngularJS Dynamic Routing-based Approach, explores the power of
AngularJS-based routing of templates. It also explores the use of AngularJS routing
for responsive web application development.

Chapter 3, The AngularJS Directive-based Approach, introduces the custom directive
development in Angular JS. It also demonstrates the building of custom directives
to address responsive web application development.

Chapter 4, The AngularJS-based Breakpoints for Layout Manipulation, introduces
the CSS3 breakpoint concept for responsive layout development. It also provides
coded examples in AngularJS to present the breakpoint concept in the context of
web design.

Chapter 5, Debugging and Testing Responsive Applications, provides a list of debugging
tools for AngularJS-based applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What you need for this book
The tools and libraries required for this book are as follows:

•	 WebStorm or Sublime Text
•	 The WAMP server or WebStorm default server
•	 AngularJS 1.3
•	 SASS
•	 COMPASS
•	 Ruby 64-bit

Who this book is for
If you are an AngularJS developer who wants to create responsive web
applications, this is the book for you. It is also helpful for those who want to
learn different approaches provided by AngularJS to develop a responsive
single page web application. Finally, the book is for anyone who wants to
understand AngularJS-based responsive web application development.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The $window object has many useful properties that can be used for application
development."

A block of code is set as follows:

<div class="row">
 <div class="pic">
 <h1 class="name">Sandeep Kumar Patel</h1>
 <img class="profile-image"
 src="http://www.gravatar.com/avatar/4205261332ff1
 31e971b48db31dcb528.png"
 alt="profile image"/>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

angular.module('profileApp.profileServices', [])
.service('ProfileServices',["$resource", function($resource){
 return{
/*Method for getting personal detail JSON file*/
 getPersonalDetail : function(){
 return $resource("data/personalDetail.json")
 },
/*Method for getting professional detail JSON file*/
 getProfessionalDetail : function(){
 return $resource("data/professionalDetail.json")
 }`
 }
}]);

Any command-line input or output is written as follows:

require 'compass/import-once/activate'
#root of your project when deployed:
http_path = "/"
css_dir = "css"
sass_dir = "sass"

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "To use Batarang
you need to select the Enabled checkbox to debug the AngularJS application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt Publishing book, we have a number
of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt Publishing, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on the
Internet, please provide us with the location address or website name immediately
so that we can pursue a remedy.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive
Single Page Application and

AngularJS
In this chapter, you will learn about the need for responsive web design, explore
the building blocks of a single page application. At the end, we will discuss some
features of the AngularJS library with a quick look at their syntax and understand
their role in responsive web application development.

Why responsive design?
In the current age of digital revolution, there are many devices with different screen
sizes. This increases an additional layer of complexity for web development. A web
application now has to present a similar experience across different devices. To solve
this problem, it needs a design solution .This solution is termed as responsive design.
There are also some key areas in the responsive design approach. They are as follows:

•	 Increase in the use of handheld devices (mobile, tablet): One example is
data analytics provider, Flurry Inc. It released data about mobile application
usage. The published report shows the mobile application usage is
increasing. You can view this report at http://www.flurry.com.

•	 A single codebase is easier to manage: From a developer's point of view,
it is easier to manage a single code repository base for different devices.
The developer has to make a change in one place for a change request in
the functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[8]

•	 Better Engaging content: Based on the device, the view will be
optimized through responsive web development, which increases
the user's interest. Hence, the engagement of the user will remain the
same as the original application.

•	 Conversion rate and lead generation: Through responsive web
development, an optimized view will be presented to the user which
will increase engagement and thus the probability of a higher conversion
rate and lead generation.

•	 Better user experience: Using responsive design, we can show better content
to the user that includes appropriate images and widgets. This increases the
user experience for the application.

•	 Page load speed: Using responsive design, only required content can be
downloaded to the targeted device; hence, the page speed will increase.

What is single page web application?
In a single page application (SPA) architecture, the presentation logic is moved to
the client side. SPA can redraw a part of the UI on a page without a complete round
trip or reload of a window.

The following diagram shows the building blocks of a single page web application:

Real-time

communication

SPA components

Template Partial Router Controller
Local

storage

Template
Templates can be thought of as placeholders for styling and structure that will be
modified by the application's code. This way the content to be displayed can be
generated dynamically by the app, while the presentation remains static. In web
application development, domain templating is a very well known concept and has
been used by developers. In a more specific sentence, we can define a template as
any document or file with a presentation format that can be created initially and does
not have to be recreated for subsequent use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

To know more about the latest developments in templating,
visit http://www.html5rocks.com/en/tutorials/
webcomponents/template.

Partial
The partial components is similar to a template that can be created once and reused
many times. The only difference between partial and template is that partial is the
smallest unit of a reusable chunk of code.

Router
The router components is used for correctly navigation to a view based on the
request. In single page application, the routing logic is present in the client side.

Controller
The controller components is the owner of a part of a page. It provides a scope to be
used by the specific part of the page. In single page application, controller is used to
share objects or create common behavior in terms of event callback functions.

Real-time communication
Real-time communication introduces the two-way request-response mechanism.
Technologies like WebSocket, Server-Sent Event (SSE), and WebRTC made this
possible. In single page application, real-time communication is used to share the
load between the server and client. Instead of polling from the client side, now push
updates from the server side can now be used to sync the application.

Local storage
Local storage provides a client-based storage system to cache the data in the browser.
This really helps by reducing the number of HTTP requests to the server. In single
page application, the client first checks the data required by a request in the local
storage and if it is not present in local, then it makes a call to the server.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[10]

Understanding responsive single
page application
In the previous section, we explored responsive and single page applications, two
modern features of a web application. In this book, we will develop an SPA with
responsive design using AngularJS, which is a perfect fit for SPA development as all
the characteristics of SPA are present within the library. In the next section, we will
quickly go through these features.

What is an AngularJS framework?
AngularJS is a complete client-side solution for web application development and is
maintained by Google Inc. The AngularJS framework is one of the best frameworks
to create single page application. AngularJS follows declarative programming similar
to an HTML element declaration. This makes AngularJS simple.

The AngularJS library is a perfect fit for SPA development. AngularJS is more
like a Model View Whatever (MV*/MVW) design pattern instead of Model view
Controller (MVC).This means that an AngularJS application can be developed with
the model and view features.

To know more about MVW, visit https://plus.google.
com/+AngularJS/posts/aZNVhj355G2.

Exploring the features of AngularJS
In this section, we will quickly go through some of the important features provided
by the AngularJS library. The goal of this section is to understand each feature with
its appropriate syntax.

Some of the features that we are interested in to build responsive web applications
are listed as follows:

•	 The AngularJS module
•	 The controller scope
•	 The AngularJS routing module
•	 The provider
•	 Data binding
•	 Angular expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

•	 Built-in directive
•	 Custom directive

The AngularJS module
Using the AngularJS module feature, an independent code section can be created.
A module can be easily detachable. This module helps with better code management
and it helps to work in large teams. Loose coupling allows developers to create their
parts of the project independently. The angular.module() method is used to create
a module. The syntax to create an AngularJS module is as follows:

var aModule = angular.module("<moduleName>",
["<injectedModule1>","<injectedModule2>"]);

In the above code, the angular.module() function takes two parameters: the first
is the module name and second is the array of dependent module. The parameters
used to create a module are as follows:

•	 moduleName: This represents the name of the module registered
to AngularJS

•	 injectedModule: In the above syntax, injectedModule1 and
injectedModule2 are modules that are injected as input to the
targeted module

To learn more about the AngularJS module, visit https://docs.
angularjs.org/guide/module.

The controller scope
AngularJS provides the controller scope to create a new controller to manipulate
HTML DOM indirectly under its scope by modifying properties present inside its
scope. AngularJS uses the controller feature to perform the following operations:

•	 Setting up the scope object inside the controller
•	 Modifying the value of the scope object inside the controller

The controller() method is used to create a controller section. The syntax to create
a controller is as follows:

var aModule = angular.module("<moduleName>",
 ["<injectedModule1>","<injectedModule2>"]);
aModule.controller('<controllerName>',
 ['<injector1>','<injector2>',

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[12]

 function(injector1,injector2) {
 //Definition of the controller
}]);

Some parameters used in the preceding syntax to create a controller section are
as follows:

•	 controllerName: This represents the name of the controller created using
the AngularJS library

•	 injector: In the above syntax, injector1 and injector2 are individual modules
that are injected to be used by the controller scope

A controller scope can be defined inside HTML DOM using the ng-controller
directive. The following code shows the use of the controller directive in the
HTML file:

<div ng-controller="<controllerName>">
 <! -- HTML element inside the controller scope -->
</div>

To learn more about the AngularJS controller, visit:
https://docs.angularjs.org/guide/controller.

The AngularJS routing module
AngularJS provides a router module to determine which HTML template or partial
will load based on the request. AngularJS provides the ngRoute module with
$routeProvider to route the request to the appropriate view. The following code
shows the syntax to create the route to the request:

var myApplication = angular.module("<applicationName>",
 ["ngRoute"]);
myApplication.config(function($routeProvider) {
 $routeProvider.when('/viewName1', {
 templateUrl:'/partial1.html'
 });
 $routeProvider.when('/viewName2', {
 templateUrl:'/partial2.html'
 });
 $routeProvider.otherwise({redirectTo:'/viewName1'});
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

The details of the preceding code are as follows:

•	 applicationName: This represents the module name of the application.
•	 config(): This function configures the routing module for the

incoming request.
•	 viewName: This represent structure of the incoming request pattern.

In the previous code, the incoming requests that are handled are
viewName1 and viewName2.

•	 when and otherwise: These are the associated clauses to redirect the
request to the targeted HTML view.

•	 templateUrl and redirectTo: templateUrl contains the address of the
URL for the targeted response and redirectTo points to default route for
a request.

To learn more about the AngularJS router provider,
visit https://docs.angularjs.org/api/
ngRoute/provider/$routeProvider.

The AngularJS provider
AngularJS provider is the core feature through which you can serve an API throughout
an application. Angular JS-based value, factory, services, and constants are syntactic
sugar on top of core provider implementation. Let's take a look at each implementation
on the core provider in the following section. A provider can be created using the
provider() method and an object with a $get function that returns an instance. The
angularJS provider creates only one instance of itself to be used. The syntax to create a
AngularJS provider is as follows:

var myApplication = angular.module("<applicationName>",[]);
myApplication.provider("<theProviderName>", {
 //Code for the provider implementation
 $get: function() {
 return //object that will be used by the caller;
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[14]

A provider method can be injected and called inside a configuration block or
module. The following code shows the use of a declared provider inside the
configuration block:

var myApplication = angular.module("<applicationName>",[]);
myApplication.config(function (theProviderNameProvider) {
//code to access theProviderNameProvider
})

Data binding
AngularJS provides scope-based data binding from HTML, DOM, and JSON data.
Data binding happens in two different steps: compiling and linking. In the compile
phase, the HTML file is converted into a JavaScript function. In the linking phase,
the real data is linked to the HTML element. Angular provides two-way binding
between the view and model features by synchronizing JavaScript objects and
HTML elements.

The following diagram shows the process of data binding, where template is
compiled once and view is generated by linking to model. This shows the tight
coupling between the model and view features where any change in either of them
is in sync.

Template

Compile

View

Update

Model

Update

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

AngularJS expressions
Expressions in AngularJS are like JavaScript statements that can be evaluated at
runtime. These expressions are represented by double curly braces. They involve the
JavaScript value object whose exact value arrives while linking the time of model
objects. The following code shows the syntax of using AngularJS expression:

{{expression}}

An example of AngularJS expressions are as follows:.

<div>
 Addition of 2 and 3 are {{2+3}}
</div>

AngularJS also provides a one-time binding of an expression. The one-time binding
expression value, once set, will not change. In simple words, if a variable is being
updated on every click, normal binding would cause the display to change each
time the variable changes. However, in a one-time bind expression, the display will
remain set to the first valid value. A one-time expression can be defined using double
colon (::).The following code shows the use of one-time expression binding:

<div>
 Name of the student is {{::studentName }}
</div>

One-time binding of the scope variable value was
introduced in AngularJS version 1.3.

Built-in directive
AngularJS provides many built-in directives to help with web application
development. These core directives are prefixed with ng-*.It should be noted
that all core directives are prefixed with the ng keyword and should not be used
while creating a custom directive. Some of the built-in directives present inside the
AngularJS library are as follows:

•	 ngApp: This represents the root element of the application.
•	 ngRepeat: This directive is used to iterate an array or properties inside

the object.
•	 ngIf: This directive is used to evaluate conditional expression and adds

or removes the element from the DOM based on its result.
•	 ngClick: This directive is used to attach a custom callback for a click event.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[16]

•	 ngInclude: This directive is used to fetch and compile the external HTML
fragment and include it to the current document.

•	 ngClass: This directive is used to manipulate CSS classes that are used
for an element.

•	 ngBind: This directive is used to replace the text content with the specified
HTML. The ngBindHTML replaces an element's inner HTML with the
specified HTML.

•	 ngSubmit: This directive is used to attach a custom callback method to an
onSubmit event of a form.

•	 ngModel: This directive is used to attach a form element to a scope.

To learn more about built-in directives and for the list of all core
directives inside the AngularJS library, visit https://docs.
angularjs.org/api/ng#directive.

Custom directive
AngularJS follows the directive-based approach for reusable component
development. A custom directive is similar to an HTML element with its
own definition and method to manipulate the DOM. AngularJS provides the
directive() method to create a custom directive. The following code shows the
syntax to create a custom directive:

var myApplication = angular.module("<applicationName>",[]);
myApplication.directive("<directiveName>", function() {
 return {
 restrict: "<represent the usage of directive>",
 require:"<Dependent module>"
 scope: {
 //Scope variable declaration
 },
 template:"<HTML template string>",
 templateUrl:"<URL of the HTML template>",
 replace: "<Boolean value>",
 priority:"<Number value>",
 terminal:"<Boolean value>",
 transclude: "<Boolean value>",
 controller: function ($scope, $element, $attrs){
 //Code for scope object and behavior
 },
 link: function (scope, element, attrs) {
 //Code for link phase

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

 }
 }
});

The details of the properties shown in the preceding code are as follows:

•	 restrict: This property controls the use of the custom directive. A directive
in AngularJS can be used as Attribute (A), Element (E), Class (C), and
Comment (M). It can have the value of any combination of A, E, C, and M.
An example of this attribute is as follows:
restrict : "AC"

The preceding code designates the custom directive and can only be used
as an attribute or a class. The default value of the restrict property is A if
nothing is supplied to it.

•	 require: This property is to inject other required directives or set of
directives. It takes a string or array of strings of the directive name as
an input.

•	 scope: This property is very vital as it determines the current scope of
the directive. It takes two types of values, either true or an unanimous
JavaScript object {} with some attribute and values. Some uses of these
properties are as follows:

°° true: This creates a new scope with access to the current parent
scope(normal scope).

°° {}: This creates a new scope and separates it to the current scope
without access to the parent directive scope (isolated scope). This
object has the following attributes to configure: @, &, and =.

•	 template: This property takes its value as an HTML markup string. This
mark-up will be replaced/appended to the current element. An example of
this attribute are as follows:
 template:"<h2>Hello</h2>"

The preceding code designates a template string that will replace/append
the current element.

•	 templateUrl: This property is an alternative option for a template.
This property accepts a URL value.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[18]

•	 replace: This property takes a Boolean (true or false) value as an input. If it
is true, it replaces the current element with the given template. If it is false,
it appends the template to the current element, for example, replacing true
designates that the current element will be removed and the template will be
placed in that position.

•	 priority: This property takes a number as a value. This property determines
the execution order of directives. A higher value of priority implies that it
will run first. The default value of priority for a directive is 0.

•	 terminal: This property takes a Boolean (true or false) as the value. When
this property is set to true, the directive will execute.

•	 transclude: This property takes true or element as the value. Based on the
input value, it compiles the current directive or elements and enables it to
present a directive.

•	 controller: This property is used as an initializer and can be used to pass
values among directives. It has the following property access: $scope,
$element, and $attr.

•	 link: This property is used to write code to manipulate the DOM element
inside the scope, for example, a click event listener callback can be written
inside it.

To find out more about creating custom directives, visit
https://docs.angularjs.org/guide/directive.

Role of AngularJS
In this section, we will explore the role of AngularJS for responsive web
development. Before going into AngularJS, you will learn about responsive
web development in general. Responsive web development can be performed
in two ways:

•	 Using the browser sniffing approach
•	 Using the CSS3 media queries approach

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Using the browser sniffing approach
When we view web pages through our browser, the browser sends a user agent
string to the server. This string provides information like browser and device details.
Reading these details, the browser can be redirected to the appropriate view. This
method of reading client details is known as browser sniffing.

The browser string has a lot of different information about the source from where the
request is generated. The following diagram shows the information shared by the
user string:

Browser

version

name

platform

Device

processor

os

Details of the parameters present in the user agent string are as follows:

•	 Browser name: This represents the actual name of the browser from where
the request has originated, for example, Mozilla or Opera

•	 Browser version: This represents the browser release version from the
vendor, for example, Firefox has the latest version 31

•	 Browser platform: This represents the underlying engine on which the
browser is running, for example, Trident or WebKit

•	 Device OS: This represents the operating system running on the device from
where the request has originated, for example, Linux or Windows

•	 Device processor: This represents the processor type on which the operating
system is running, for example, 32 or 64 bit

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[20]

A different browser string is generated based on the combination of the device
and type of browser used while accessing a web page. The following table shows
examples of browser strings:

Browser Device User agent string

Firefox Windows desktop Mozilla/5.0 (Windows NT 5.1; rv:31.0)
Gecko/20100101 Firefox/31.0

Chrome OS X 10
desktop

Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/29.0.1547.66 Safari/537.36

Opera Windows desktop Opera/9.80 (Windows NT 6.0) Presto/2.12.388
Version/12.14

Safari OS X 10
desktop

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8)
AppleWebKit/537.13+ (KHTML, like Gecko)
Version/5.1.7 Safari/534.57.2

Internet
Explorer

Windows desktop Mozilla/5.0 (compatible; MSIE 10.6; Windows NT
6.1; Trident/5.0; InfoPath.2; SLCC1; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR
2.0.50727) 3gpp-gba UNTRUSTED/1.0

AngularJS has features like providers or services which can be most useful for this
browser user-agent sniffing and a redirection approach. An AngularJS provider can
be created that can be used in the configuration in the routing module. This provider
can have reusable properties and reusable methods that can be used to identify the
device and route the specific request to the appropriate template view.

To discover more about user agent strings on various browser and
device combinations, visit http://www.useragentstring.com/
pages/Browserlist/.

CSS3 media queries approach
CSS3 brings a new horizon to web application development. One of the key features
is media queries to develop a responsive web application. Media queries uses media
types and features as deciding parameters to apply the style to the current web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Media type
CSS3 media queries provide rules for media types to have different styles applied to
a web page. In the media queries specification, media types that should be supported
by the implemented browser are listed. These media types are as follows:

•	 all: This is used for all media type devices
•	 aural: This is used for speech and sound synthesizers
•	 braille: This is used for braille tactile feedback devices
•	 embossed: This is used for paged braille printers
•	 handheld: This is used for small or handheld devices, for example, mobile
•	 print: This is used for printers, for example, an A4 size paper document
•	 projection: This is used for projection-based devices, such as a projector

screen with a slide
•	 screen: This is used for computer screens, for example, desktop and

laptop screens
•	 tty: This is used for media using a fixed-pitch character grid, such as

teletypes and terminals
•	 tv: This is used for television-type devices, for example, webOS

or Android-based television

A media rule can be declared using the @media keyword with the specific type for the
targeted media. The following code shows an example of the media rule usage, where
the background body color is black and text is white for the screen type media, and
background body color is white and text is black for the printer media type:

@media screen {
 body {
 background:black;
 color:white;
 }
}

@media print{
 body {
 background:white;
 color:black;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[22]

An external style sheet can be downloaded and applied to the current page based
on the media type with the HTML link tag. The following code uses the link type in
conjunction with media type:

<link rel='stylesheet' media='screen' href='<fileName.css>' />

To learn more about different media types,visit https://developer.
mozilla.org/en-US/docs/Web/CSS/@media#Media_types.

Media feature
Conditional styles can be applied to a page based on different features of a device.
The features that are supported by CSS3 media queries to apply styles are as follows:

•	 color: Based on the number of bits used for a color component by the
device-specific style sheet, this can be applied to a page.

•	 color-index: Based on the color look up, table styles can be applied
to a page.

•	 aspect-ratio: Based on the aspect ratio, display area style sheets can be
applied to a page.

•	 device-aspect-ratio: Based on the device aspect ratio, styles can be
applied to a page.

•	 device-height: Based on device height, styles can be applied to a page.
This includes the entire screen.

•	 device-width: Based on device width, styles can be applied to a page.
This includes the entire screen.

•	 grid: Based on the device type, bitmap or grid, styles can be applied
to a page.

•	 height: Based on the device rendering area height, styles can be used
to a page.

•	 monochrome: Based on the monochrome type, styles can be applied.
This represents the number of bits used by the device in the grey scale.

•	 orientation: Based on the viewport mode, landscape or portrait, styles can be
applied to a page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

•	 resolution: Based on the pixel density, styles can be applied to a page.
•	 scan: Based on the scanning type used by the device for rendering, styles can

be applied to a page.
•	 width: Based on the device screen width, specific styles can be applied.

The following code shows some examples of CSS3 media queries using different
device features for conditional styles used:

//for screen devices with a minimum aspect ratio 0.5
@media screen and (min-aspect-ratio: 1/2)
{
 img
 {
 height: 70px;
 width: 70px;
 }
}
//for all device in portrait viewport
@media all and (orientation: portrait)
{
 img
 {
 height: 100px;
 width: 200px;
 }
}
//For printer devices with a minimum resolution of 300dpi pixel
density
@media print and (min-resolution: 300dpi)
{
 img
 {
 height: 600px;
 width: 400px;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction to Responsive Single Page Application and AngularJS

[24]

In this section, we will explore more about the screen width. We will explore
how AngularJS can help you use CSS3 media queries for a responsive application
development. There are huge number of devices with different screen sizes present
on the market, so we will focus on the most commonly used devices. The following
diagram shows the different screen sizes of most commonly used devices such as
mobile, desktop, and tablet:

+

-

Devices with different

screen sizes

To learn more about different media features, visit
https://developer.mozilla.org/en-US/docs/
Web/CSS/@media#Media_features.

What are we building?
In the following chapters, we will build a small responsive SPA to understand the
helpful features of AngularJS. The plan of action to develop this application is
as follows:

•	 We are going to build a My Portfolio web application
•	 This application is going to have different sections such as personal details,

academics, skills, and experiences
•	 We will maintain all the data in different JSON files and serve them with

appropriate templates when the user clicks on these sections
•	 We will explore how AngularJS makes this application responsive using

browser sniffing-redirection, media queries, and a directive-based approach

Summary
In this chapter, you learned about responsive design and the SPA architecture.
You now understand the role of the AngularJS library when developing a responsive
application. We quickly went through all the important features of AngularJS with
the coded syntax. In the next chapter, you will set up your AngularJS application and
learn to create dynamic routing-based on the devices.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic
Routing-based Approach

In this chapter, you will learn about dynamic routing using user agent detection
controlled by AngularJS. The key concepts of AngularJS that we will cover in
this chapter are ngRoute and provider module. To learn these features you will
configure a new project. This chapter deals with setting up a code base to explore
these features.

Setting up an AngularJS project
In this section, we will set up a new project and configure the development
environment to develop a dynamic routing module using the AngularJS library.
The following tools are required to build a development environment:

•	 Code editor: This editor is used to develop applications in WebStorm IDE
from JetBrains for development purposes. However, you can use your own
preferred editors such as Sublime Text, Notepad ++, and so on.

•	 Web server: A simple HTTP server such as WAMP stack can be used to host
the project.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[26]

Building a project's structure
We need to create multiple directories to have related styles, fonts, markup and
script files in the group. The following screenshot shows the directory structure of
the project:

In the previous screenshot each directory has a specific type of files to be used by the
application. The details of these directories are as follows:

•	 assets: This directory contains sass, css, font, lib, and script
subdirectories and Ruby configuration files for SASS-based COMPASS
watcher. The details of these directories are as follows:

°° sass: This subdirectory contains all the SASS-based SCSS files to
generate styling in CSS files. These SCSS files are desktop.scss,
mobile.scss, tablet.scss, and icon-font.scss files containing
CSS for desktop, mobile, and tablet-specific styles. The _icon-font.
scss file contains Mono Social Icons Font for various social media
web pages.

°° css: This subdirectory is the target for all the CSS files generated by
the SCSS file compilation. It contains the desktop.css, mobile.css,
and tablet.css files generated from their respective SASS files.

°° font: This subdirectory contains the MonoSocialIconsFont-1.10.
ttf file for social media icons.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

You can find more details of these icons at http://drinchev.
github.io/monosocialiconsfont.

•	 lib: This subdirectory contains all the library-related AngularJS frameworks.
These files are angular.min.js, angular-resource.min.js, and angular-
route.min.js containing code for AngularJS core, resource, and routing
modules. This book has used AngularJS 1.3 version to demonstrate the coded
examples. The AngularJS library file can be downloaded from https://
angularjs.org.

We can also use the AngularJS library from Google's CDN. For more
information about Google's CDN refer to the following link: http://
angularjs.blogspot.in/2012/07/angularjs-now-hosted-
on-google-cdn.html.

°° script: This subdirectory contains user defined script files related to
the application. One of the important script files inside this directory
is app.js, which contains the entry point to the AngularJS-based
application. We will explore this file in the coming sections.

°° config.rb: This file contains the COMPASS watcher configuration
for the SCSS file compilation.

•	 data: This directory contains all the related JSON data that we will use
in our application development. It contains personalDetail.json and
professionalDetail.json files containing profile-related data. Content
of these files are as follows:

°° personalDetail.json: This JSON file contains personal details in
key-value pairs. The following code shows the content of this file:

{
 "name":"Sandeep Kumar Patel",
 "spouse":"Surabhi Patel",
 "father":"Dilip Kumar Patel",
 "mother":"Sanjukta Patel",
 "bloodGroup":"O+ve",
 "height":"5.7 feet",
 "weight":"68 kg",
 "chest":"40 inch",
 "address":"House no 8 Marathalli bangalore 69"
}

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[28]

°° professionalDetail.json: This JSON file contains professional
details in key-value pair. The following code shows the content of
this file:

{
 "aboutme":"I, Sandeep Kumar Patel, am a web developer
and blogger living in Bangalore India. I have many years
of experience in creating web applications both using
custom and popular JavaScript libraries and frameworks
such as AngularJS and YUI.",
 "years":4,
 "roles":[
 "Web Developer",
 "JavaScript Developer",
 "Front End Lead"
],
 "languages":[
 "JavaScript",
 "Java"
],
 "webdevelopment":[
 "HTML5",
 "CSS3",
 "AngularJS",
 "Jquery",
 "BootStrap",
 "YUI"
],
 "tools":[
 "SASS",
 "COMPASS",
 "GRUNT",
 "GIT"
],
 "ides":[
 "WebStorm",
 "Intelij Idea",
 "Eclipse"
],
 "social":{
 "linkedin":"http://www.linkedin.com/in/
techblogger",
 "facebook":"http://www.facebook.com/
SandeepTechTutorials",
 "twitter":"http://twitter.com/MySmallTutorial",
 "googleplus":"https://plus.google.com/
u/0/+SandeepKumarPatel/"
 },
 "contact":{
 "email":"sandeeppateltech@gmail.com",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

 "mobile":"+91-8105469950",
 "address":"Whitefield Bangalore 560087"
 }
}

•	 view: This directory is the parent of three different subdirectories containing
all the HTML templates. The details of these subdirectories are as follows:

°° desktop: This subdirectory contains the profileTemplate.html file
that has all the HTML code for desktop type devices

°° tablet: This subdirectory contains the profileTemplate.html file
that has all the HTML code for tablet type devices

°° mobile: This subdirectory contains the profileTemplate.html file
that has all the HTML code for desktop type devices

The following screenshot shows the full project structure including subdirectories
and code files:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[30]

The SASS configuration
SASS (Syntactically Awesome Style Sheets) is a CSS authoring language. It provides
more control over writing CSS. SASS provides many features such as variables, mixins,
and others, which help in the organization of large code style sheets.

To know more about SASS framework refer to http://sass-
lang.com/documentation/file.SASS_REFERENCE.html.

To author CSS style sheets we have used a SASS-based COMPASS file watcher to
convert SCSS files to CSS files. To install COMPASS, we need to have Ruby installed
in our system. A configuration file named config.rb needs to be added inside
the assets folder before starting the COMPASS watcher. This configuration file
provides the source and target of the SASS files from where COMPASS watcher will
read the SCSS code and convert them into CSS files. The content of the config.rb
file is as follows:

require 'compass/import-once/activate'
#root of your project when deployed:
http_path = "/"
css_dir = "css"
sass_dir = "sass"

To know more about the installation of COMPASS refer to
http://compass-style.org/install.

After a successful installation, COMPASS watcher can be used to monitor the assets
directory. The watcher looks for any changes in SCSS files and moves the changes
to their respective files inside the CSS directory. The following screenshot shows the
command issued to start the COMPASS watcher:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Profile application demo
We are going to build a profile page application. This application will show two
different sections of personal and professional data. The following diagram shows
the architectural structure of this application:

The previous diagram shows the SPA architecture for our demo profile application.
Router is the main module that chooses the device type using deviceTypeProvider.
Once the device type is identified, Router chooses the HTML template file and gives
control to ProfileController, which loads the JSON data. ProfileController
links these JSON data with the HTML template and renders it in the browser.

Building data services
To build our profile application, we have maintained two different JSON files,
personalDetail.json and professionalDetail.json, in the data directory.
An AngularJS-based service is created using the ngResource module. The name
of the data service is ProfileServices and is maintained in the profileService.
js script file. This service is packaged inside the profileApp.profileServices
namespace and injected into the application module. The content of
ProfileServices is as follows:

angular.module('profileApp.profileServices', [])
.service('ProfileServices',["$resource", function($resource){
 return{
/*Method for getting personal detail JSON file*/
 getPersonalDetail : function(){
 return $resource("data/personalDetail.json")
 },
/*Method for getting professional detail JSON file*/
 getProfessionalDetail : function(){

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[32]

 return $resource("data/professionalDetail.json")
 }`
 }
}]);

In the previous code, ProfileServices has two methods to access the profile data.
The details of these methods are as follows:

•	 getPersonalDetail(): This method returns personal details in the JSON
format. It uses the $resource function with the data URL pointing to the
personalDetail.json file.

•	 getProfessionalDetail(): This method returns professional details in the
JSON format.

While the application is loading, these two services get called by the controller.
The following screenshot shows the firebug console loading these resources
through an AJAX call:

Device-based routing
In the device-based routing approach, the requesting devices are identified by
the application and client is redirected to the appropriate HTML template. In
this approach, different HTML templates are maintained by the application and
served to the client. To identify a device the user agent string can be used to detect
deviceType. In this chapter, we have used the approach present at http://
detectmobilebrowsers.com. It maintains a set of user agent strings for various
mobile devices and checks the incoming request against these strings through
JavaScript's regular expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

AngularJS routing
AngularJS provides a routing module to cater to an incoming request for an
appropriate template and controller pair. The AngularJS routing module code can
be found in the angular-routr.min.js file and named as ngRoute package. Like
an SPA, the routing logic is present entirely in the browser's side. To create dynamic
routing, an AngularJS application module needs to perform the following steps:

1.	 Set up an AngularJS application.
2.	 Configure a routing module.

Setting up an AngularJS application
An AngularJS application module can be initialized using the ng-app built-in
directive in the HTML markup. In our demo application, we have used this attribute
in the index page. The following code shows the content of index.html file:

<!DOCTYPE html>
<html lang="en" ng-app="profileApp">
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-
scale=1, maximum-scale=1, user-scalable=YES">
 <title>
 Responsive Profile Web Application
 </title>
 <link href='http://fonts.googleapis.com/css?family=Robo
to:400,100,300,500,700' rel='stylesheet' type='text/css'>
 <link ng-if="styleType.length > 0"
 ng-href='assets/css/{{styleType}}.css'
 rel='stylesheet' type='text/css' >
 </head>
 <body>
 <!--AngularJS view -->
 <div ng-view="">
 </div>
 <!--external scripts start -->
 <script src="assets/lib/angular.min.js"></script>
 <script src="assets/lib/angular-route.min.js"></script>
 <script src="assets/lib/angular-resource.min.js"></script>
 <script src="assets/script/deviceTypeProvider.js"></script>
 <script src="assets/script/profileController.js"></script>
 <script src="assets/script/profileService.js"></script>
 <script src="assets/script/app.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[34]

 <!--external scripts end -->
 </body>
</html>

In the previous code, the AngularJS application is initialized with the module
name profileApp using the ng-app directive. This directive is the root element
of the AngularJS application and is normally used in the body or HTML root element.
A few key points about the ng-app directive are as follows:

•	 This directive is used to autobootstrap the AngularJS application.
•	 This directive runs with priority 0, which means it runs with the

lowest priority.
•	 Multiple ng-app directives with autobootstrap is not possible. To use

multiple bootstrapping, the angular.bootstrp() method can be used.
•	 Nested ng-app directive declaration is not permissible.

To know more about AngularJS application bootstrapping refer to
https://docs.angularjs.org/api/ng/directive/ngApp.

Configuring a routing module
After the application is set up, a routing module can be configured using
$routeProvider present inside the ngRoute module. This ngRoute module can
be used by including the angular-route.min.js file. The following code shows
the content of routing logic for the profile application:

'use strict';
angular.module('profileApp',[
 'ngRoute',
 'ngResource',
 'profileApp.profileController',
 'profileApp.profileServices',
 'profileApp.deviceTypeProvider'
])
.config(['$routeProvider','deviceTypeProvider',
 function($routeProvider,deviceTypeProvider) {
 var deviceTypeProvider = deviceTypeProvider.$get(),
 deviceType = deviceTypeProvider.getDeviceType();
 /*Route to Desktop view*/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

 $routeProvider.when('/',{
 templateUrl: 'view/'+deviceType+'/profileTemplate.html',
 controller: 'ProfileController',
 styleType:deviceType
 });
 }]);

In the previous code, the routing module is injected with a device type provider.
The routing module calls the getDeviceType() method to retrieve the type of device
in string format. We will have a look at the detailed implementation of this provider
in the following section. The $routeProvider module uses the when clause to route
the request to the appropriate template view. Different values of device type and
template path are listed in the following table:

Device type Template path Detail
Desktop desktop/profileTemplate.html When deviceType is

detected as desktop, the
profile template present
inside the desktop directory is
served to the client

Mobile mobile/profileTemplate.html When deviceType is
detected as mobile, the profile
template present inside the
mobile directory is served to
the client

Tablet tablet/profileTemplate.html When deviceType is
detected as tablet, the profile
template present inside the
tablet directory is served to
the client

The controller inside the routing module then sets a global scope variable named
styleType with the device type string. This styleType controller is shared in
the root scope of the application and is used in the index.html file to load the
appropriate style sheet in the CSS format. Different possible style sheets desktop.
css, mobile.css, and tablet.css can be loaded based on the device type string.
The following code shows the external style sheet pointing to different CSS files:

<link ng-if="styleType.length > 0"
ng-href='assets/css/{{styleType}}.css'
 rel='stylesheet' type='text/css'>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[36]

Configuring a profile controller
Each template is under the scope of ProfileContoller. This controller is injected with
ProfileServices. Using these services, it loads the personal and professional data to
its scope variables $scope.personal and $scope.professional. This controller calls
the get() method on the resource instance of personal and professional data service.
The code for this controller is as follows:

'use strict';
angular.module("profileApp.profileController", [])
.controller('ProfileController',
function ($scope, $rootScope, $route, ProfileServices,$log) {
var professionalDetail = ProfileServices.getProfessionalDetail(),
 personalDetail = ProfileServices.getPersonalDetail();
 $rootScope.styleType = $route.current.styleType;
 $scope.professional = {};
 $scope.personal = {};
 //Default menu button selected to true
 $scope.selected = true;
 /*Calls the Angular service to load professional JSON data*/
 professionalDetail.get(function(jsonData){
 $scope.professional = jsonData;
 });
 /*Calls the Angular service to load personal JSON data*/
 personalDetail.get(function(jsonData){
 $scope.personal = jsonData;
 });
 /*Method to change the user selection*/
 $scope.getDetail=function(event){
 $scope.selected = !$scope.selected;
 };
})

To hide and show the personal and professional data the $scope.selected variable
is used. The $scope.getDetail() method is used to change the value of this
variable by altering its true value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Developing a device type provider
A device type detector is developed as a provider to inject to the routing
configuration. The getDeviceType() method is used to return the type of
device. This methods reads and uses the window object provided by AngularJS
$windowProvider.

This provider reads the user agent string and runs a JavaScript pattern to match
it with the list of smart device names. For our profile application, we have created
a small list of smart device types such as iPhone, iPad, Android, and so on. You
can add more device names to this list. Also, we have considered desktop, mobile,
and tablet device types. The default device is taken as desktop. The code for the
deviceType provider is as follows:

'use strict';
angular.module("profileApp.deviceTypeProvider",[])
.provider('deviceType', ['$windowProvider', function($windowProvider)
{
 var $window = $windowProvider.$get();
 this.$get = function() {
 return{
 /*Returns the device type desktop, mobile and tablet,
default device type is desktop*/
 getDeviceType:function(){
//Let, default device type
var deviceType='desktop',
userAgentString = $window['navigator']['userAgent']
||$window['navigator']['vendor'] ||$window['opera'],
	
width = $window['outerWidth'],isSmart = (/iPhone|iPod|iPad|Silk|Androi
d|BlackBerry|Opera Mini|IEMobile/).test(userAgentString);
 if(isSmart&& width >= 768){
 deviceType = "tablet";
 }else if(isSmart&& width <= 767){
 deviceType = "mobile";
 }
 return deviceType;
 }
 }
 };
}])

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[38]

The method of detecting deviceType is not a foolproof solution. For demonstration
purposes, we have categorized the devices by considering the following points:

•	 Smart device: If the specified user agent string passes the JavaScript pattern
match against the list of device names, then it is considered as a smart device.
The pattern match is performed using the test() method provided by the
JavaScript regular expression object. This method returns a Boolean value.
For a successful match, it returns the isSmart variable as true. Again, the
smart device can be either a tablet or a mobile. The following list shows the
categorization among the smart devices:

°° Tablet: A device is identified as a tablet if it is smart and its width
is more than 768 px. The screen width can be calculated using the
outerWidth property of the $window object. In the previous code,
$window['outerWidth'] determines the screen width.

°° Mobile: A device is identified as mobile if it is smart and its width
is less than 767 px.

•	 Desktop: If the device is not smart, that is, the Smart flag is false, then it is a
desktop device.

Developing a desktop view
To implement the redirection approach, we need to create three different HTML
files for desktop, mobile, and tablet. In all three HTML templates, the elements are
all similar except for their placement and width, which will be different for desktop,
mobile, and tablet devices. The HTML template for desktop type devices are divided
into four rows:

•	 Name and profile image row
•	 Category selection row
•	 Category content
•	 Social buttons row

Name and profile image row
This portion of the HTML markup contains the name and image of the candidate
wrapped by the .row class. The h1 element is used to represent the name and an img
element points to the Gravatar profile image URL. The following code shows the
HTML markup for this section:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

<div class="row">
 <div class="pic">
 <h1 class="name">Sandeep Kumar Patel</h1>
 <img class="profile-image"
 src="http://www.gravatar.com/avatar/4205261332ff1
 31e971b48db31dcb528.png"
 alt="profile image"/>
 </div>
</div>

Category selection row
This section of the HTML markup contains two buttons for category selection. For
our profile application, we have personal and professional categories. Each of these
buttons are attached to angular attribute directives; details of these are as follows:

•	 ng-click: This attribute is attached with a callback function and is triggered
on click event.

•	 ng-class: This attribute is used for styling the selected button. A selected
class is attached when the selected scope property is set to true.

•	 ng-disabled: This attribute is for the disabling and enabling button. This
attribute also takes the Boolean value from the selected scope property.

The following code shows these buttons for category selection with the attribute
directive attached to it:

<div class="row">
 <div class="about">
 <button class="btn" ng-model="professional"
 ng-click="getDetail($event)"
 ng-class="{'selected':selected}"
 ng-disabled="selected">
 Professional
 </button>
 <button class="btn" ng-model="personal"
 ng-click="getDetail($event)"
 ng-disabled="!selected"
 ng-class="{'selected':!selected}">
 Personal
 </button>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[40]

Category content
This section contains the HTML markup for the personal and professional categories.
The category content is wrapped around the display class element. The following
code shows the HTML content for the professional category:

<div class="detailProfessional" ng-show="selected">
 <p class="aboutme">
 {{professional.aboutme}}
 </p>
 <div class="section">
 <div class="divider">
 <h4>No of Year Experience</h4>
 {{professional.years}}
 <h4>Job Roles</h4>

 <li ng-repeat="role in
 professional.roles">{{role}}

 <h4>Languages Known</h4>

 <li ng-repeat="language in
 professional.languages">{{language}}

 <h4> Tools</h4>

 <li ng-repeat="tool in
 professional.tools">{{tool}}

 </div>
 <div class="divider">
 <h4>Web Technologies</h4>

 <li ng-repeat="webdev in
 professional.webdevelopment">{{webdev}}

 </div>
 </div>
</div>

The HTML content of the personal category is rendered in the browser when the
personal category button is selected by the user. The following code shows the
HTML content of the personal category:

<div class="detailPersonal" ng-show="!selected">
 <div class="section">
 <div class="divider">
 <h4>Full Name </h4> {{personal.name}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

 <h4>Spouse Name </h4> {{personal.spouse}}
 <h4>Father Name </h4> {{personal.father}}
 <h4>Mother Name </h4> {{personal.mother}}
 <h4>Blood Group </h4> {{personal.bloodGroup}}
 <h4>Height </h4> {{personal.height}}
 </div>
 <div class="divider">
 <h4>Weight </h4> {{personal.weight}}
 <h4>Chest </h4> {{personal.chest}}
 <h4>Address </h4> {{personal.address}}
 </div>
 </div>
</div>

Social buttons row
This section has the HTML markup to show social links. When the user selects these
links, the application navigates to the targeted social page of the mentioned link.
The following code has the HTML markup for these social links:

<div class="footer">
 <a ng-href='{{professional.social.twitter}}' class='symbol'
title=''>
 <a ng-href='{{professional.social.facebook}}' class='symbol'
title=''>
 <a ng-href='{{professional.social.linkedin}}' class='symbol'
title=''>
 <a ng-href='{{professional.social.googleplus}}' class='symbol'
title=''>
</div>

The complete HTML code is present inside the profileTemplate.html file and can
be downloaded from the Packt Publishing support website.

We have created different SCSS files for each device. For social media icons, we have
used the icon-font.scss file that is used by all three types of devices. The code for
this icon-font.scss file is as follows:

@font-face {
 font-family: 'Mono Social Icons Font';
 src: url('../font/MonoSocialIconsFont-1.10.ttf') format('truetype');
 font-weight: normal;
 font-style: normal;
}
.symbol, a.symbol:before {
 font-family: 'Mono Social Icons Font';
 -webkit-text-rendering: optimizeLegibility;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[42]

 -moz-text-rendering: optimizeLegibility;
 -ms-text-rendering: optimizeLegibility;
 -o-text-rendering: optimizeLegibility;
 text-rendering: optimizeLegibility;
 -webkit-font-smoothing: antialiased;
 -moz-font-smoothing: antialiased;
 -ms-font-smoothing: antialiased;
 -o-font-smoothing: antialiased;
 font-smoothing: antialiased;
}
a.symbol:before {
 content: attr(title);
 margin-right: 0.3em;
 font-size: 130%;
}
.symbol, a.symbol:before {
 font-family: 'Mono Social Icons Font';
 -webkit-text-rendering: optimizeLegibility;
 -moz-text-rendering: optimizeLegibility;
 -ms-text-rendering: optimizeLegibility;
 -o-text-rendering: optimizeLegibility;
 text-rendering: optimizeLegibility;
 -webkit-font-smoothing: antialiased;
 -moz-font-smoothing: antialiased;
 -ms-font-smoothing: antialiased;
 -o-font-smoothing: antialiased;
 font-smoothing: antialiased;
}
a.symbol:before {
 content: attr(title);
 margin-right: 0.3em;
 font-size: 130%;
}

The preceding social media font file is imported using the @import statement inside
the SCSS file. The SCSS file for the desktop device is created inside the desktop.scss
file. The following code shows the desktop.scss file for desktop type devices:

@import "icon-font";
body {
 background: #eee;
 font-family: 'Roboto', sans-serif;
 font-size: 20px;
 font-weight: 300;
 .my-profile-container {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

 background: white;
 width: 1024px;
 margin: auto;
 box-shadow: 2px 2px 2px 2px lightgrey;
 .row {
 .pic {
 height: 300px;
 text-align: center;
 .name {
 font-weight: 100;
 text-align: center;
 background: #eee;
 color: green;
 }
 .profile-image {
 border-radius: 100%;
 margin: 70px 0px 50px;
 }
 }
 .about {
 display: flex;
 .btn {
 border: 0 none;
 color: green;
 height: 60px;
 width: 50%;
 margin: 5px 0px;
 font-weight: 100;
 font-size: 16px;
 cursor: pointer;
 &:hover {
 background: green;
 color: #eee;
 }
 &.selected {
 background: green;
 color: #eee;
 cursor: text;
 }
 }
 }
 .display {
 height: 100%;
 padding: 0px 30px;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[44]

 .detailProfessional, .detailPersonal {
 .section {
 display: flex;
 .divider {
 width: 500px;
 h4 {
 font-weight: 300;
 color: green;
 }
 }
 }
 position: relative;
 .aboutme {
 &:first-letter {
 font-size: 25px;
 color: green;
 }
 }
 }
 }
 .footer {
 background: #eee;
 text-align: center;
 a {
 color: green;
 text-decoration: none;
 font-weight: 300%;
 }
 }
 }
 }
}

Developing a mobile view
For mobile type devices, we have created a different version of the
profileTemplate.html file. The HTML template code for mobile view is almost the
same; the only difference is the order of these sections. The HTML template code has
four rows similar to the desktop view with a given order. The order of these sections
is as follows:

•	 Name and profile image row
•	 Social buttons row

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

•	 Category content
•	 Category selection row

You can download the complete code for the mobile view from the Packt Publishing
support website.

For mobile devices the SCSS file is created under the mobile.scss file. The following
code shows the content of the mobile.scss file:

@import "icon-font";
body {
 background: #eee;
 font-family: 'Roboto', sans-serif;
 font-size: 15px;
 font-weight: 400;
 overflow:hidden;
 .my-profile-container {
 background: white;
 width: 300px;
 box-shadow: 2px 2px 2px 2px lightgrey;
 margin: auto;
 .row {
 height: 100%;
 .pic {
 height: 120px;
 text-align: center;
 .name {
 font-weight: 300;
 text-align: center;
 background: #eee;
 color: green;
 }
 .profile-image {
 border-radius: 100%;
 }
 }
 .about {
 display: flex;
 .btn {
 border: 0 none;
 color: green;
 height: 60px;
 width: 50%;
 font-weight: 100;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[46]

 font-size: 16px;
 cursor: pointer;
 &:hover {
 background: green;
 color: #eee;
 }
 &.selected {
 background: green;
 color: #eee;
 cursor: text;
 }
 }
 }
 .display {
 height: 100%;
 padding: 0px 15px;
 .detailProfessional, .detailPersonal {
 .section {
 display: flex;
 .divider {
 width: 50%;
 .text{
 font-size: 15px;
 }
 h4 {
 font-weight: 300;
 color: green;
 margin: 10px 10px 2px 0;
 }
 }
 }
 position: relative;
 .aboutme {
 &:first-letter {
 font-size: 25px;
 color: green;
 }
 }
 }
 }
 .footer {
 background: #eee;
 text-align: center;
 a {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

 color: green;
 text-decoration: none;
 font-weight: 200%;
 }
 }
 }
 }
}

Developing a tablet view
For tablet type devices, a different version of the HTML template, which is a
profileTemplate.html file, is created inside the tablet directory. The HTML
markup for the desktop template is as follows:

<div class="my-profile-container">
 <div class="row">
 <div class="pic">
 <h3 class="name">Sandeep Kumar Patel</h3>
 <div class="row">
 <div class="about">
 <button class="btn" ng-model="professional"
 ng-click="getDetail($event)"
 ng-class="{'selected':selected}"
 ng-disabled="selected">
 Professional
 </button>
 <button class="btn" ng-model="personal"
 ng-click="getDetail($event)"
 ng-disabled="!selected"
 ng-class="{'selected':!selected}">
 Personal
 </button>
 </div>
 </div>
 <img class="profile-image"
 src="http://www.gravatar.com/avatar/4205261332ff131e9
71b48db31dcb528.png" alt="profile image"/>
 </div>
 </div>
 <div class="row">
 <div class="footer">
 <a ng-href='{{professional.social.twitter}}'
class='symbol' title=''>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[48]

 <a ng-href='{{professional.social.facebook}}'
class='symbol' title=''>
 <a ng-href='{{professional.social.linkedin}}'
class='symbol' title=''>
 <a ng-href='{{professional.social.googleplus}}'
class='symbol' title=''>
 </div>
 </div>
 <div class="row">
 <div class="display">
 <div class="detailProfessional" ng-show="selected">
 <p class="aboutme text">
 {{professional.aboutme}}
 </p>
 <div class="section">
 <div class="divider">
 <h4>Years of Experience</h4>
 {{professional.years}}</
span>
 <h4>Job Roles</h4>
 <span class="text" ng-repeat="role in
professional.roles">
 <em ng-if="!first"> {{role}}

 <h4>Languages Known</h4>
 <span class="text" ng-repeat="language in
professional.languages">
 <em ng-if="!first"> {{language}}

 </div>
 <div class="divider">
 <h4>Web Technologies</h4>
 <span class="text" ng-repeat="webdev in
professional.webdevelopment">
 <em ng-if="!first"> {{webdev}}

 <h4> Tools</h4>
 <span class="text" ng-repeat="tool in
professional.tools">
 <em ng-if="!first"> {{tool}}

 </div>
 </div>
 </div>
 <div class="detailPersonal" ng-show="!selected">
 <div class="section">
 <div class="divider">
 <h4>Full Name </h4>
 {{personal.name}}
 <h4>Spouse Name </h4>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

 {{personal.spouse}}
 <h4>Father Name </h4>
 {{personal.father}}
 <h4>Mother Name </h4>
 {{personal.mother}}
 <h4>Blood Group </h4>
 {{personal.bloodGroup}}</
span>
 <h4>Height </h4>
 {{personal.height}}
 </div>
 <div class="divider">
 <h4>Weight </h4>
 {{personal.weight}}
 <h4>Chest </h4>
 {{personal.chest}}
 <h4>Address </h4>
 {{personal.address}}
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

For tablet type devices, the tablet.scss file is created. The following code shows
the content of the tablet.scss file:

@import "icon-font";
body {
 background: #eee;
 font-family: 'Roboto', sans-serif;
 font-size: 15px;
 font-weight: 400;
 overflow:hidden;
 .my-profile-container {
 background: white;
 width: 768px;
 box-shadow: 2px 2px 2px 2px lightgrey;
 margin: auto;
 .row {
 height: 100%;
 .pic {
 text-align: center;
 .name {
 font-weight: 300;
 text-align: center;
 background: #eee;
 color: green;
 margin-bottom: 0px;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[50]

 }
 .profile-image {
 border-radius: 100%;
 }
 }
 .about {
 display: flex;
 .btn {
 border: 0 none;
 color: green;
 height: 60px;
 width: 50%;
 font-weight: 100;
 font-size: 16px;
 cursor: pointer;
 &:hover {
 background: green;
 color: #eee;
 }
 &.selected {
 background: green;
 color: #eee;
 cursor: text;
 }

 }
 }
 .display {
 height: 100%;
 padding: 0px 15px;
 .detailProfessional, .detailPersonal {
 .section {
 display: flex;
 .divider {
 width: 50%;
 .text{
 font-size: 15px;
 }
 h4 {
 font-weight: 300;
 color: green;
 margin: 10px 10px 2px 0;
 }
 }
 }

 position: relative;
 .aboutme {
 &:first-letter {
 font-size: 25px;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

 color: green;
 }
 }
 }
 }
 .footer {
 background: #eee;
 text-align: center;
 a {
 color: green;
 text-decoration: none;
 font-weight: 200%;
 }
 }
 }
 }
}

Verifying responsiveness
In this section, we have used the Chrome browser and the developer console to
simulate different device user agent strings for desktop, mobile, and tablet devices.
The following screenshot shows the Chrome console emulator for different devices:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[52]

You can change the model dropdown to different devices that have been emulated
such as Samsung Galaxy, Apple iPhone, and so on. The following screenshot shows
the desktop view of the profile page for general notebooks:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

The following screenshot shows the mobile view of the application, where the model
name is chosen as Apple iPhone 5:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Dynamic Routing-based Approach

[54]

The following screenshot shows the tablet view of the profile; the model name is
iPad mini device:

Limitations of dynamic routing
Using a dynamically based routing approach is a straightforward solution for
responsive application development. However, this approach leads to various
limitations and challenges for application maintenance. These limitations are
as follows:

•	 Maintaining the user agent string list
•	 Maintaining the device type list
•	 Maintaining the template list

Summary
In this chapter, you learned how to set up an AngularJS project, a routing module,
and a device detection provider followed by building three different HTML
template versions for desktop, tablet, and mobile devices. Towards the end of the
chapter, you learned the limitations of the dynamic routing approach. In the next
chapter, you will learn about the directive-based approach for responsive web
application development.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS
Directive-based Approach

In this chapter, you will learn about AngularJS directive concepts such as built-in
and custom directives and how to develop them. We will explore how to use the
power of these directives to leverage responsiveness in our application.

Modifying the project structure
In the previous chapter, we looked at different HTML markup for different devices.
However, in this chapter, we are going to explore the directive approach for which
we have to change the structure of the project. The changes are as follows:

•	 Changes in the directory structure
•	 Changes in the routing module
•	 Changes in the profile template

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[56]

Changes in the directory structure
Most of the directory structure is the same as the previous chapter except that we
don't have a different directory for HTML markup or SCSS files. We have removed
the desktop, tablet, and mobile subdirectories from the project structure. The
following screenshot shows the modified directory structure for this chapter:

Changes in the routing module
In this chapter, we will have a single routing destination for all devices. There are
no more device-wise routing destinations. The following code shows the modified
app.js file and the changed routing code:

'use strict';
angular.module('profileApp',[
 'ngRoute',
 'ngResource',
 'profileApp.profileController',
 'profileApp.profileServices'
])
.config(['$routeProvider',
 function($routeProvider) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

 $routeProvider.when('/',{
 templateUrl: 'view/profileTemplate.html',
 controller: 'ProfileController'
 });
 }]);

Changes in the profile template
In the previous chapter, we maintained different profileTemplate.html files for
different devices. In this chapter, we are going to use a single HTML template file
profileTemplate.html and SCSS file app.scss, which produces the app.css file.

Directives allow us to cut down on the complexity of multiple
files and use a single template. This results in less code and
better code maintenance.

Directives
Directives are the building blocks of AngularJS framework. They work as a marker
and are used by web developers in different places of application code. When the
AngularJS framework loads, it reads these directives and takes appropriate actions.
A directive can be used as an Attribute (A), an Element (E), a Class(C), and a
Comment (M) inside DOM. The following diagram shows the element and
types of directives:

Directive

Built-in

Custom

Attribute

Element

Comment

Class

Before going into the implementation of directives for responsive web application,
let's discuss a few helpful concepts and features of AngularJS. These new concepts
are really useful in responsive application development, as follows:

•	 The $window service
•	 The $watch method
•	 The event binding function
•	 The $log service

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[58]

The $window service
AngularJS provides the $window service inside the ng module. As you know,
JavaScript also provides the $window object, which contains information about the
browser. In the AngularJS framework, the same window object is served with a
$window wrapper. This extra layer of wrapper by AngularJS helps to control
the $window object inside a scope by suppressing its global nature. This helps
when overloading and mocking the window object.

The $window object has many useful properties that can be used for application
development. It is worth discussing the properties as follows:

•	 outerWidth: This property returns the width of the window, including
all the interface elements such as the toolbar and scrollbar. When this
property is used in conjunction with a DOM element, it returns the width,
including the padding, border, and optionally, the margin. This property is
read-only and does not have any default value. This property can be accessed
by using the following code:

$window.outerWidth

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

To find out more about the outerWidth property, check out
https://developer.mozilla.org/en-US/docs/Web/API/
Window.outerWidth.

•	 innerWidth: This property returns the width of the
window excluding interface elements such as the toolbar
and scrollbar. When this property is used in conjunction
with any other DOM element, it returns the width
including the padding and excluding the border. This
property can be accessed by using the following code:
$window.innerWidth

To learn more about the innerWidth property, go to https://
developer.mozilla.org/en-US/docs/Web/API/Window.
innerWidth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

The following screenshot shows the log in the Firefox developer console for the inner
and outer width value of the current window object:

In the previous screenshot, the outer and inner widths are 1382 and 1366 respectively
for the window. This clearly shows that the inner width is less than the outer as it
excludes the scrollbar interface element.

The $watch method
AngularJS follows a life cycle to maintain the two-way data binding between model
and view features. In two-way data binding, whenever a change occurs to model, view
also gets updated; similarly, a change in View modifies the value of model too. This
whole process of model-view duplex communication is maintained through the digest
life cycle. The following diagram shows the building blocks of a digest cycle:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[60]

AngularJS uses the digest life cycle by performing dirty bit checking. In a nut shell,
AngularJS compares a value with its previous value, and if it has changed then a
change event is fired for dirty bit checking. AngularJS uses two CSS classes to mark
a DOM element as modified or not. These two CSS classes are as follows:

•	 ng-dirty: This class is used as a flag that the DOM is modified by some means
•	 ng-pristine: This class is used as a flag that the DOM element is clean

AngularJS also provides two corresponding methods to manipulate dirty bits
involved in AngularJS. These two methods are as follows:

•	 $setDirty(): This method sets the state of the element to dirty
•	 $setPristine(): This method sets the state of the element to pristine

There is no specified time for the digest cycle run in AngularJS. However, the
digest cycle has to run at least twice to sync the Model and View features using
two-way binding.

To learn more about the digest cycle, check out https://docs.
angularjs.org/api/ng/type/$rootScope.Scope#$digest.

The event binding function
AngularJS provides the $event object that can propagate through the DOM element,
or a callback method can be attached to read this object. AngularJS provides the
bind() method to bind a callback method to an element. The syntax for the bind()
method is provided as follows:

angular.element(<DOM element>).bind('<event name>',
function(<event object>){
 //code of event callback
});

The previous code shows an anonymous callback function attached to a DOM
element, <DOM element>, for a given event, <event name>. A DOM element can be
referred to using the angular.element() method. The angular.element() method
wraps a DOM element as a jQuery element. AngularJS uses a lighter version of
jQuery called jqLite.

To find out more about the angular.element() method,
you can go to https://docs.angularjs.org/api/ng/
function/angular.element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

Let's bind a callback to a window resize event. This means when the browser window
is resized, the callback method is called and the code inside the method is executed.
The following code shows the resize event binding for the window element:

angular.element($window).bind('resize',
function(event) {
 //Code for resize event callback

 console.log("event ", event);
});

To learn more about the angular.bind() method, go to
https://docs.angularjs.org/api/ng/function/
angular.bind.

The $log service
AngularJS provides logging services to debug the code. This is really helpful for
production issues and is similar to the console logging mechanism. The benefit
of using the $log service in the code is get to an independent logging mechanism
that suffice a browser that does not have console debugging; however, if we use
the console log mechanism and the browser does not have the logging mechanism,
the code will break at runtime. AngularJS provides the $logProvider service to
configure the logging default in an application.

The $log service provides many utility methods to debug the application based
on the severity level of errors. These methods are as follows:

•	 log(): This method writes a log message if the console object is available
in the browser

•	 info(): This method writes an information message if the console object
is available in the browser

•	 warn(): This method writes a warning message if the console object is
available in the browser

•	 error(): This method writes an error message if the console object is
available in the browser

•	 debug(): This method write a debugging message if the console object
is available in the browser

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[62]

Built-in directives
The AngularJS architecture is based on the directive concept. There are many useful
built-in directives through which AngularJS controls DOM elements. We can use
some of them for responsive web application development. Let's explore some of the
built-in directives and discuss their use in responsive web application development.

The ng-if directive is a conditional directive present inside the ng module. This
directive will be really useful to manipulate DOM in runtime. For smaller devices,
we can only show important sections of the application. To implement this behavior,
the ng-if directive is very useful. The following pseudocode demonstrates the use
of the ng-if directive:

<div ng-if="isMobile">
<!—Inner HTML DOM content-->
</div>

Similarly, there are many built-in directives that we can use for condition-based
display, for example, ng-switch, ng-style, ng-show, and ng-hide.

Custom directives
AngularJS supports the development of custom directives. If an application
needs a custom widget to be displayed on the page, then developers can go for the
AngularJS custom directive approach. AngularJS provides a lot of control to the
developer over the DOM element, by which page rendering can be manipulated
based on the device during runtime. In the following section, we will create some
responsive custom directives for our profile page.

Responsive directives
In this section, we will develop some custom responsive directives that can be
useful for our profile page. Let's first identify the parts of a profile page that need
to be responsive. Yes, there are many parts we can identify that need a responsive
design, but let's consider some that really make an impact to a responsive design.
The following list shows the important sections that we are going to focus on:

•	 Responsive images
•	 Responsive text
•	 Responsive item lists

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Responsive images
In our profile application, we have used the profile image from Gravatar. A Gravatar
image follows the user from site-to-site beside the username. Gravatar is a great
online tool to manage your profile image universally. You can use your profile image
uploaded to Gravatar using a URL. Also, Gravatar supports access to different sizes
of the profile image using the URL request parameter. We are going to use the
Gravatar image to demonstrate the responsive image.

To learn more about Gravatar images, go to https://
en.gravatar.com/site/implement/images.

In our profile application, we are going to use three different sizes of profile images
from Gravatar. These profile images are 250 x 250, 150 x 150, and 80 x 80 for screen
widths more than 767 px, a width between 400 px and 767 px, and a width less than
400 px, respectively.

We will create a custom image directive that will take the Gravatar profile base
URL and alternative text input as an attribute to it. This profile URL will be
appended with the size query parameter to load different sizes of images to the
browser screen. The code for the responsiveImage custom directive is as follows:

.directive("responsiveImage",
 ["$log", "$window",
 function ($log, $window) {
 return {
 restrict:'E',
 replace:true,
 scope: {
 'respalt': '@imagealt',
 'respsrc': '@imagesrc'
 },
 template: '<img class="profile-image"' +
 'ng-src="{{modifiedsrc}}" alt="{{respalt}}"/>',
 link: function(scope, element, attribute){
 scope.width = $window.outerWidth;
 scope.$watch("width", function(newWidth, oldWidth){
 $log.log("New width of window : ",newWidth);
 if(newWidth <= 400){
 scope.modifiedsrc = scope.respsrc +"?s=80";
 }else if(newWidth >400 && newWidth <=767){
 scope.modifiedsrc = scope.respsrc +"?s=150";
 }else{

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[64]

 scope.modifiedsrc = scope.respsrc +"?s=250";
 }
 });
 angular.element($window).bind('resize',function(){
 //Asking AngularJS to run digest cycle
 scope.$apply(function(){
 scope.width = $window.outerWidth;
 })
 });
 }};
}]);

In the previous code, we find the scope.$apply() method used inside the callback
function of the window's resize event. The event callback method updates the width
property of the scope object outside the AngularJS context that changes the state of the
width property to dirty. To change the state of the width property to pristine, a digest
cycle needs to be called. The $apply() method calls the digest cycle. For this reason,
the $apply() method is used inside the callback function of the resize event.

This custom directive can be called like a normal HTML element. The following code
shows the process of calling responsive image directives in our profile application:

<responsive-image imagealt="profile" imagesrc="http://www.
gravatar.com/avatar/4205261332ff131e971b48db31dcb528.png">
</responsive-image>

For desktop type devices where the screen is pretty large, the query parameter for
profile image size will be s = 250. A COMPASS watcher is attached to the width
property to detect the change in the windows width. The following screenshot shows
the developer console with the box model for a screen size greater than 767 px:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

In the previous screenshot, you can see that the responsiveImage directive has
replaced itself with the given HTML template. Also, the watcher has detected the
screen size and modified the profile image URL to the size query parameter of
250 px.

For medium sized devices such as a tablet, the Gravatar URL for the profile image
is called with the size query parameter s = 150. The following screenshot shows
the developer console for a medium device screen size:

For small sized devices such as mobiles, the Gravatar URL for the profile image will
have the size query parameter s = 80. The following screenshot shows the console
for medium sized devices with the Box Model:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[66]

Responsive text
In the profile application, we have many sections with text content. We will categorize
them as header and paragraph types. The top of the profile application page contains
the name whose size should be responsive based on the device size. We will develop a
custom directive that will take this header text as one of its attributes, and based on the
screen size it will apply different CSS classes to change it to the responsive size of the
header text. The following code shows three CSS classes based on the screen size:

.largeDevice{
 color: green;
 font-size: 4rem;
 background: #eee;
 font-weight: 100;
}
.mediumDevice{
 color: green;
 font-size: 2rem;
 background: #eee;
 font-weight: 100;
}
.smallDevice{
 color: green;
 font-size: 1rem;
 background: #eee;
 font-weight: 300;
}

These CSS classes are going to be used by our new custom directives to resize
the header text present at the top of the profile page. Details of these CSS classes
are as follows:

•	 largeDevice: This CSS class will be used by large devices and has the font
size as 4rem and weight as 100. Other properties like background and color
of the font are the same for all the devices.

•	 mediumDevice: This CSS class will be used by medium devices and has the
font size as 2rem and weight as 100. The background and font color are the
same as other types of devices.

•	 smallDevice: This CSS class will be used by small devices and has the font
size as 1rem and weight as 300. The background and font color are the same
as other types of devices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

The code for the responsiveHeader custom directive is as follows, with the
targetText attribute as an input to it:

.directive("responsiveHeader",
 ["$log","$window",
 function ($log, $window) {
 return {
 restrict:'E',
 replace:true,
 scope:{
 'respText':'@targettext'
 },
 template: "<p class='{{deviceSize}}'> {{respText}} </p>",
 link : function(scope, element, attribute){
 scope.deviceSize = "largeDevice";
 scope.width = $window.outerWidth;
 scope.$watch("width",function(newWidth,oldWidth){
 if(newWidth <= 400){
 scope.deviceSize = "smallDevice"
 }else if(newWidth >400 && newWidth <=767){
 scope.deviceSize = "mediumDevice";
 }else{
 scope.deviceSize = "largeDevice";
 }
 });
 angular.element($window).bind('resize',function(){
 scope.$apply(function(){
 scope.width = $window.outerWidth;
 });
 });
 }};
 }]);

To use the previous custom directive, it should be called like a normal DOM
element with the attribute that contains the targeted text to be displayed in the
browser. The following code shows the call of this responsiveHeader directive
inside the DOM element:

<responsive-header targetText="Sandeep Kumar Patel">
</responsive-header>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[68]

The following screenshot shows the profile header name in large devices.
This screenshot also shows the DOM element of the header text of the paragraph
element with the CSS class as largeDevice.

The following screenshot shows the profile header name in medium type devices.
This screenshot has the DOM element using the mediumDevice CSS class to change
the style of the header text. We can simulate this event by resizing the browser
window by dragging one of its corners.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

In mobile devices, the header will take the smallDevice classes where the text
size will be decreased to 1rem with an increase in font weight to bold or 300.
The following screenshot shows the header text for smallDevice:

Similarly, we can make a paragraph responsive. In our profile application, we have
an aboutme section that is a paragraph. This aboutme section must be responsive to
the device size. The following code shows the SCSS style classes that can be used in
the aboutme section for different screen sizes. These style classes are similar to the
header section except that the first letter has different style and more text:

.aboutme {
 &:first-letter {
 color:green;
 }
 &.smallPara{
 font-size: 0.8rem;
 &:first-letter {
 font-size: 1.6rem;
 }
 }
 &.mediumPara{
 font-size: 1.5rem;
 &:first-letter {
 font-size: 1.2rem;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[70]

 &.largePara{
 font-size: 2rem;
 &:first-letter {
 font-size: 4rem;
 }
 }
}

The previous style code can be used by our responsive custom directive
responsiveParagraph to style the aboutme paragraph in the profile page.
The code for the custom directive responsiveParagraph is as follows:

.directive("responsiveParagraph",
 ["$log","$window",
 function ($log, $window) {
 return {
 restrict:'E',
 replace:true,
 scope:{
 'respPara':'@targetpara'
 },
 template: "<p class='aboutme {{paragraphSize}}'> {{respPara}} </
p>",
 link : function(scope, element, attribute){
 scope.paragraphSize = "largePara";
 scope.width = $window.outerWidth;
 scope.$watch("width",
function(newWidth, oldWidth){
 if(newWidth <= 400){
 scope.paragraphSize = "smallPara"
 }else if(newWidth >400 && newWidth <=767){
 scope.paragraphSize = "mediumPara";
 }else{
 scope.paragraphSize = "largePara";
 }
 });
 angular.element($window).bind('resize',function(){
 scope.$apply(function(){
 scope.width = $window.outerWidth;
 });
 });
 }};
 }]);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

The previous code shows the definition of the responsiveParagraph custom
directive. This directive can be used inside the markup like an HTML element.
The following code shows the use of this directive in our profile page for the
aboutme paragraph:

<responsive-paragraph targetPara="{{professional.aboutme}}">
</responsive-paragraph>

For small size devices, the aboutme paragraph takes the smallPara style class
and looks like this:

For medium size devices, the aboutme paragraph takes the mediumPara style class
and looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[72]

For larger devices, the aboutme paragraph takes the largePara style class and looks
like this:

Responsive item lists
In our profile application, we have some sections, such as job roles, languages known,
tools, web technologies, and so on, as a list of items displayed vertically. Devices with
less height have a problem with space. In this section, we will create a custom directive
that takes a list of items to be displayed, and based on the device height, the custom
directive shows the number of items in the browser and more actionable text. On
clicking this actionable text, the list expands and shows all the items.

For a demonstration of the responsive list, we have changed some static profile data
to add few more items to the list. The following code shows a part of the modified
JSON data:

{

"roles":["Web Developer", "JavaScript Developer", "Front End
Lead","Java Developer"],
 "languages": ["JavaScript", "Java","Python", "C#", "Ruby"],
 "webdevelopment": ["HTML5", "CSS3", "AngularJS", "Jquery",
"BootStrap", "YUI", "Polymer"],
 "tools": ["SASS", "COMPASS", "GRUNT", "GIT", "GULP", "BOWER",
"YEOMAN"],
 "ides": ["WebStorm", "Intelij Idea", "Eclipse", "Sublime Text"],
 ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

This custom directive is going to use some style classes to control the displayed
behavior list. The following code shows the part of style classes that is required
for the demonstration of this responsive list:

.item-list-container{
 ol{
 margin-bottom: 2px;
 font-size:1rem;
 .smallText{
 font-size:0.8rem;
 }
 }
 .show-more{
 background: none;
 border: none;
 cursor: pointer;
 color:blue;
 margin-left:10px;
 }
 }

In our profile application, we have taken the list item limit as 2 for small height
devices and 3 for medium height devices. You can change this limit based on your
list length. The name of this custom directive is responsiveList and the code for
this directive is as follows:

.directive("responsiveList", ["$log", "$window",
 function($log, $window) {
 return {
 restrict: 'E',
 replace: true,
 scope: {
 'itemList': '=targetlist'
 },
 template: '<div class="item-list-container">' +
 '' +
 '<li ng-class="{smallText:isMorePresent}" ng-repeat="item in
itemDisplayList">{{item}}' +
 '' +
 '<button class="show-more" ng-show="isMorePresent" ' +
 'ng-click="showMore(itemDisplayList)">More...</
button>' +
 '</div>',
 link: function(scope, element, attribute) {
 scope.isMorePresent = false;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[74]

 scope.$watch("itemList", function(newItemList, oldItemList) {
 scope.itemList = newItemList;
 scope.height = $window.outerHeight;
 scope.itemDisplayList = scope.itemList;
 }, true);
 scope.$watch("height", function(newHeight, oldHeight) {
 var listLength = angular.isDefined(scope.itemList) ?
 scope.itemList.length : 0;
 if (newHeight < 400 && listLength > 2) {
 scope.isMorePresent = true;
 scope.itemDisplayList = scope.itemList.slice(0, 2);
 } else if (newHeight >= 400 && newHeight < 700 && listLength
> 3) {
 scope.isMorePresent = true;
 scope.itemDisplayList = scope.itemList.slice(0, 3);
 } else {
 scope.isMorePresent = false;
 scope.itemDisplayList = scope.itemList;
 }
 });
 angular.element($window).bind('resize', function() {
 scope.$apply(function() {
 scope.height = $window.outerHeight;
 });
 });
 scope.showMore = function(initalList) {
 scope.itemDisplayList = scope.itemList;
 scope.isMorePresent = false;
 }
 }
 };
}]);

The details of the previous custom directive code are listed as follows:

•	 scope.height: This represents the height scope variable with a
watcher attached by the scope.$watch() method.

•	 $window.outerHeight(): This method returns the outer height of
the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

•	 scope.isMorePresent: This scope variable is a Boolean variable. This flag
variable has true or false value based on the following condition:

°° true: This condition is used if the device has medium device
height, that is, between 400 and 700 and list item length is greater
than 3. It is also used if the device height is less than 400 and item
list length is greater than 2. You can change this condition based
on your requirements and the item list size that you will be using
for your profile.

°° false: This condition is used if the device is of greater height.

•	 scope.showMore(): This method is attached to the click handler to show
the full list.

•	 smallText: This is a style class used with the li element with the ng-class
directive and gets activated if scope.isMorePresent is true. The purpose
of this style class is to change the font size of the list item to a smaller one.

The following HTML code shows the use of this responsiveList custom directive
in our profile application. Do note: this is just a part of the full code and snippet,
and the full code can be found on the Packt Publishing code support website:

<div class="section">
 <div class="divider">
 <h4>No of Year Experience</h4>
 {{professional.years}}
 <h4>Job Roles</h4>
 <responsive-list targetlist="professional.roles">
 </responsive-list>
 <h4>Languages Known</h4>
 <responsive-list targetlist="professional.languages">
 </responsive-list>
 </div>
 <div class="divider">
 <h4>Web Technologies</h4>
 <responsive-list targetlist="professional.webdevelopment">
 </responsive-list>
 <h4> Tools</h4>
 <responsive-list targetlist="professional.tools">
 </responsive-list>
 </div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS Directive-based Approach

[76]

For lower height devices, the More… text will appear at the bottom of the list if it has
more than two items. The following screenshot shows a small height device showing
two items and a more text label at the bottom:

For a medium sized devices, the list displays three items and a more text label at the
bottom of the list. The following screenshot shows the modified list for a medium
sized device:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

For taller devices, we will not restrict the item list being shown. The following
screenshot shows the profile page for taller devices:

Summary
In this chapter, you learned about creating custom directives using AngularJS.
Also, we explored how a custom directive can be responsive to different screen
sizes. In the next chapter, you will learn about implementing breakpoints in the
layout using the AngularJS framework.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based
Breakpoints for Layout

Manipulation
In this chapter, you will understand the concept of breakpoints and its role in
responsive web application development followed by a section on the publisher-
subscriber mechanism implementation in AngularJS application. You will also learn
how to use AngularJS framework to implement breakpoints in a web application.

Page layout
The main purpose of a web application is to display meaningful and relevant
information to the end users in web pages. From the developer's perspective, this
information is nothing but page content. These page contents are arranged in a
specific format and order. The order in which this content is presented to the end
user is nothing but page layout. In other words, a layout means the way the page is
divided into columns and rows.

Page layout has a strong impact on user experience. Hence, the layout design phase
needs more focus before proceeding to development. While designing for page
layout we must consider the following points:

•	 Devices: Users can browse on different kinds of devices such as mobile,
tablet, and desktop. All these devices may have a different operating
system installed.

•	 Browsers: Users can browse the application on different browsers such
as Chrome, Firefox, and Internet Explorer. Also, the browsers have some
additional sections such as a toolbar and status bar.

•	 Screen resolution: Users can use different resolution displays such as
VGA and HD.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[80]

All the previous points impact the page layout design, as content presentation has
a direct relationship with it.

Layout type
There are four different types of web page layout design. These layout designs are
as follows:

•	 Fixed: Web pages have a fixed width and do not change irrespective of
device, browser, or screen type.

•	 Fluid: Web pages have a percentage-based width. This means each section
expands and shrinks relatively.

•	 Adaptive: Web pages are developed based on CSS3 media queries with a
fixed width component.

•	 Responsive: Web pages build on fluid grids and scale up and down using
media queries.

Breakpoints
Breakpoints are sets of points, where we tweak our page content with a modified
arrangement. In the early days, these break points were considered only for media
types. Both, adaptive and responsive layout uses the breakpoints and rearranges the
content inside it. However, there is a difference in their approach. In adaptive design,
the page content has a fixed width for each breakpoint. In the responsive layout
approach, the content is fluid in nature and rearranges the contents relatively.

Responsive and common breakpoints
Developers have web application development support for multiple targeted devices.
However, a web application must be responsive enough, should not depend on the
devices, and can arrange its content in the best possible way without losing user
engagement. Based on the approach of responsive web application development, these
breakpoints can be of two types: common and responsive breakpoints. Based on the
application type, a developer can choose either of these approaches.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

AngularJS publisher and subscriber
AngularJS supports the publish and subscribe mechanism to communicate among
modules. It uses $emit, $broadcast, and $on to implement, publish and subscribe
design pattern. Using $emit and $broadcast, a message can be published inside
the AngularJS application. Using the $on method, a published message can
be subscribed.

Publishing a message using $emit
When a message is published using $emit, it starts propagating from the current
scope to the upper level scope and continues up to the application scope, which is
$rootScope. The following code shows the syntax of the $emit method to publish
a message:

$scope.$emit("<message>",<argument>);
$rootScope.$emit("<message>",<argument>);

In the previous code, you can see that the emit message takes two parameters; their
details are as follows:

•	 message: This field represents the name of the message that will be published
inside the AngularJS application

•	 argument: This field represents the argument parameter object that is
attached and propagated with the published message

Also, we discussed that the $emit message propagates up to the application root.
So, why is the second line $rootScope.$emit() as shown in the previous code?
It seems vague, right? But it works, and the message is published and available
to the subscribers present in the root scope application.

Publishing a message using $broadcast
When a message is published using $broadcast, it starts propagating from the
current scope to the next inner child scope and continues up to the last child scope.
The following code shows the syntax of the $broadcast method:

$scope.$broadcast("<message>",<argument>);
$rootScope.$broadcast("<message>",<argument>);

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[82]

In the previous code, the broadcast message takes two parameters similar to the emit
message, where the first parameter is the name of the message itself and the second
parameter is the additional argument that passes as object to the subscribers.

Subscribing to a message using $on
A published message through any approach, $emit or $broadcast, can be
subscribed using the $on method inside AngularJS application. The following code
shows the syntax of $on while subscribing a message:

$scope.$on("<message>", "<callback>");

In the previous code, the $on method takes two parameters to subscribe to a
published message and the details are as follows:

•	 message: This field represents the name of the message that is subscribed to
by the module.

•	 callback: This field represents the listener function that can be executed
once the message is received. The syntax for the callback function is as
follows:

function(event, arguments) {
 //Code for listener...
}

The callback method takes two parameters and their details are as follows:
°° arguments: This field represents the arguments that passed with the

message while publishing the message
°° event: This field represents the event object created from the source

while publishing the message

The callback method returns the event object, which has useful information stored as
properties. The following diagram shows some of the important properties contained
inside this event object:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[83]

In the previous diagram, we can identify most of the event properties resembling the
jQuery event object. This is due to the AngularJS internally using a lighter version of
jQuery called jqLite. However, we will quickly go through these properties. Details
of these properties are as follows:

•	 targetScope: This property represents the scope of the source module from
where the message has been published

•	 currentScope: This property represents the scope of current module from
where the message is currently subscribed

•	 name: This property represents the name of the event
•	 stopPropagation: This property can be called to stop the propagation of the

published message by the $emit method
•	 preventDefault: This property can be called to stop the default behavior by

setting the defaultPrevented flag
•	 defaultPrevented: This property is the Boolean flag and is set to true when

the method is preventDefault

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[84]

AngularJS provides an exceptional handling mechanism using the
$exceptionHandler service. Any exception occurred while subscribing
to a message is passed to the AngularJS $exceptionHandler service module.

To learn more about the exceptional handling mechanism in
AngularJS, visit https://docs.angularjs.org/api/ng/
service/$exceptionHandler.

The difference between $emit and $broadcast
However, there is some difference between $emit and $broadcast in the way the
published message propagates inside the AngularJS application. The following
diagram shows the graphical representation of the published message using $emit
and $broadcast:

The previous diagram clearly shows the direction of propagation of a published
message. The message published using the $emit method can be canceled by any
subscriber; however, a message published using $broadcast is not cancelable.

To learn more about the publish and subscribe mechanism
visit https://docs.angularjs.org/api/ng/
type/$rootScope.Scope.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

An example of the publish and subscribe
mechanism
In this section, we will quickly go through the publish and subscribe mechanism,
with a quick, small example. This example uses the emit method to publish a
message. However, you can use the broadcast method too; it is just a matter of choice
for this quick example. In this example, we have created a button with a click event
listener attached to it. On clicking this button, a message will be published on the
subscriber's side, which is displayed in the browser screen. The HTML code for this
example is present in the pubSubExample.html file and is as follows:

<!DOCTYPE html>
<html ng-app="myApp">
<head>
 …
 …
 <title>AngularJS Pub-Sub Example</title>
</head>
<body>
 <div ng-controller="PubController">
 <button name="publishButton" ng-
 click="publishMessage()">Publish</button>
 </div>
 <div ng-controller="SubController">
 <h2>{{receivedMessage}}</h2>
 </div>
</body>
</html>

In the previous HTML code, we created an AngularJS application module named
myApp and have added two controllers, a button, and an AngularJS expression.
The details of these items are as follows:

•	 PubController: This is an AngularJS controller through which we will
publish the message

•	 publishButton: This is an HTML button element and is attached to the
AngularJS click event, which calls the publishMessage() method

•	 SubController: This is an AngularJS controller through which we will
subscribe to the message

•	 recievedMessage: This is an AngularJS expression that will display the
received message

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[86]

Now, let's check out the definition of each controller and member properties and
methods in their scope. The code for these controllers is as follows:

<script>
 var myApp = angular.module('myApp', []);
 myApp.controller("PubController",
 function($scope) {
 $scope.publishMessage = function() {
 $scope.$emit("helloMessage", {
 "data": "Hello, message is published using emit."
 });
 }
 });
 myApp.controller("SubController",
 function($scope, $rootScope) {
 $rootScope.$on("helloMessage", function(event, arguments) {
 $scope.recievedMessage = arguments.data;
 });
 });
</script>

In the previous code, we saw that the publishMessage() method contains the
code for publishing a message name, helloMessage, with a message object with
data as the key and a string message as the value. In SubController, a subscriber
is attached to the helloMessage event and on arrival of the message it extracts the
data property from the argument object and assigns it to the recievedMessage scope
variable, which ultimately binds to an expression in the HTML code. The output of
the previous program, when the publish button is clicked on, can be seen here:

Let's debug the event object that is caught by the subscriber present inside
SubController. To debug the event object we have added a line, $log.log(event),
inside the callback method. The following screenshot shows the Firebug console of the
event object with all five properties discussed in the previous section of the chapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

Custom attributes
A custom directive in AngularJS can be used as an element, attribute, and a
comment. In the previous chapter, we learned about the custom directive that is used
as an element inside an application. In this chapter, we will explore how the custom
directive can be used as an attribute and help in responsive application development.

We will create a custom attribute named breakpoint, which can be used in the
HTML element or with the body tag of the document. This custom attribute takes a
serialized JSON object as the string that contains <key, value> pairs. A sample of this
string is as follows:

{
 "400":"small-screen",
 "700":"medium-screen",
 "1000":"large-screen"
}

The details of the previous JSON string are as follows

•	 key: In the previous example, the keys are 400,700, and 1000. These keys
represent the size of the window, where the content needs to be rearranged.
In other words, these are the breakpoints.

•	 value: In the previous example, the values are the small-string, medium-
screen, and large-screen strings. These are CSS classes that can be used
by the subscriber directive when the breakpoint changes.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[88]

Developing a custom attribute
A custom attribute directive can be created using the AngularJS directive module
and using the restrict property with the attribute (A) value. The code for the
custom attribute directive is as follows:

.directive("breakpoint",
["$log", "$window", "$rootScope", "$timeout",
 function($log, $window, $rootScope, $timeout) {
 return {
 restrict: 'A',
 link: function(scope, element, attributes) {
 var breakpointString = attributes.breakpoint,
 customBreakpoints = angular.fromJson(breakpointString);
 scope.breakpoint = {
 windowSize: $window.outerWidth,
 styleClass: ''
 };
 //Method for broadcast breakpointClassChange event
 scope.broadcastBreakEvent = function() {
 $log.log("Broadcasting breakpointClassChange...", scope.
breakpoint);
 $rootScope.$broadcast('breakpointClassChange', scope.
breakpoint);
 }
 //Scope watcher for styleClass property to broadcast
breakpointClassChange event
 scope.$watch('breakpoint.styleClass', function(newStyleClass,
oldStyleClass) {
 if (newStyleClass.length > 0 && newStyleClass !=
oldStyleClass) {
 $timeout(function () {
 scope.broadcastBreakEvent();
 });
 }
 });
 //Scope watcher for windowSize property to update the new
style class
 scope.$watch('breakpoint.windowSize', function(newSize,
oldSize) {
 var className = 'small-screen';
 for (var customPointKey in customBreakpoints) {
 var breakSize = parseInt(customPointKey, 10);
 if (breakSize < newSize) {
 className = customBreakpoints[breakSize];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

 }
 }
 scope.breakpoint.styleClass = className;
 });
 //Window resize event updates the windowSize property
 angular.element($window).bind('resize', function() {
 scope.$apply(function() {
 scope.breakpoint.windowSize = $window.outerWidth;
 });
 });
 //For first time page load
 angular.element(document).ready(function() {
 $timeout(function() {
 scope.broadcastBreakEvent();
 }, 100);
 });
 }
 };
 }
])

The previous code represents the definition of the custom directive attribute,
breakpoint. The details of this code are as follows:

•	 breakpoint: This is a scope object of the breakpoint custom directive.
This breakpoint object has two properties: windowSize and styleClass.
The windowSize property has the $window.outerWidth value form.

•	 resize: This event is attached with the $window object. Whenever the
window is resized, the callback function gets executed. The callback
function calculates outerWidth of the window and updates the value
of the windowSize properties present inside the breakpoint scope object.

•	 customBreakpoints: This variable store saves all the user-supplied
breakpoint JSON objects. This supplies the JSON string parsed message
using the angular.fromJSON() method.

•	 windowSize watcher: A watcher is created using the $watch() function to
list the windowSize property changes. In the code, the resize event callback
calculates the outer width and updates the windowSize property, which in
turn triggers this watcher. This watcher checks the value of the new width
and compares it to the user-supplied customBreakpoints ranges. Based on
the comparison, the styleClass property value gets updated.

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[90]

•	 styleClass watcher: A watcher is created using the $watch function.
This watcher lists any changes in the styleClass property. The styleClass
value is changed by the windowSize watcher by comparing the user-supplied
breakpoint string to the current size.

•	 broadcast: When the styleClass property value is changed, the
breakpointClassChange event is broadcasted inside the AngularJS
application. It also attaches the breakpoint scope object in the argument.

Implementing a custom attribute
The previous custom directive can be used in any top level element or in the body
HTML element with the user-supplied breakpoint in the JSON string format. This
custom directive broadcasts the breakpointClassChange event message with
the breakpoint argument attached. The other member directives of the AngularJS
application can listen to this message and apply the changed class. To demonstrate
the previous attribute, we will use the responsiveParagraph and responsiveImage
custom directives that we developed in the previous chapter. The breakpoint
attribute is used in our responsive application in the body HTML element and its
code is as follows:

<!DOCTYPE html>
<html lang="en" ng-app="profileApp">
<head>
...
...
</head>

<body breakpoint='{"400":"small-screen", "700":"medium-
screen","1000":"large-screen"}'>
 <!--AngularJS view -->
 <div ng-view="">
 </div>
...
...
</body>
</html>

The responsiveParagraph custom directive listens to the broadcast of
breakpointClassChange and updates with the changed class. The modified
responsiveParagraph custom directive code is as follows:

.directive("responsiveParagraph", ["$log", "$window", "$rootScope",
 function($log, $window, $rootScope) {
 return {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

 restrict: 'E',
 replace: true,
 scope: {
 'respPara': '@targetpara'
 },
 template: "<p class='paragraph {{paragraphSize}}'> {{respPara}}
</p>",
 link: function(scope, element, attribute) {
 scope.$on("breakpointClassChange", function(event, argument) {
 $log.log("responsiveParagraph receiving
breakpointClassChange ", argument);
 scope.$apply(function() {
 scope.paragraphSize = argument.styleClass;
 })
 });
 }
 };
 }
])

The details of the modified responsiveParagraph code are as follows:

•	 Message subscription: The responsiveParagraph custom directive
listens to the published message using the $on() method. The first argument,
breakpointClassChange, is the message name that is subscribed to and the
second argument is the callback function. The first parameter of the callback
function is the event object and the other remaining parameters are the
objects that are associated to the source's side. In our application, we have
attached the breakpoint object containing the changed styleClass name and
the current windowSize.

•	 Updating css class: The callback function retrieves the attached argument
by the source and retrieves the value of the styleClass name and updates
its DOM.

In the previous code, you saw a small change in the template string and the
paragraph element has the class property binded with the AngularJS expression,
paragraphSize . This scope variable, paragraphSize, gets its value by listening to
the breakpointClassChange event. So, we need to change the style classes in our
SASS file. The changes in the style are as follows:

p.paragraph { &:first-letter {
 color: green;
 } &.small-screen {
 font-size: 0.8 rem; &: first-letter {
 font-size: 1.6 rem;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[92]

 }
 } &.medium-screen {
 font-size: 1.2 rem; &: first-letter {
 Font-size: 3 rem;
 }
 } &.large-screen {
 font-size: 2 rem; &: first-letter {
 font-size: 4 rem;
 }
 }
}

The next custom directive that we will change is responsiveImage. This directive
will listen to the breakpointClassChange event and based on the incoming
message, it will change the profile image URL. The modified code for the
responsiveImage directive is as follows:

.directive("responsiveImage", ["$log", "$window",
 function($log, $window) {
 return {
 restrict: 'E',
 replace: true,
 scope: {
 'respalt': '@imagealt',
 'respsrc': '@imagesrc'
 },
 template: '<img class="profile-image"' +
 'ng-src="{{modifiedsrc}}" alt="{{respalt}}"/>',
 link: function(scope, element, attribute) {
 scope.$on("breakpointClassChange", function(event, argument) {
 $log.log("responsiveImage receiving breakpointClassChange ",
argument);
 scope.$apply(function() {
 if (angular.equals(argument.styleClass, "large-screen")) {
 scope.modifiedsrc = scope.respsrc + "?s=250";
 } else if (angular.equals(argument.styleClass, "medium-
screen")) {
 scope.modifiedsrc = scope.respsrc + "?s=150";
 } else if (angular.equals(argument.styleClass, "small-
screen")) {
 scope.modifiedsrc = scope.respsrc + "?s=80";
 }
 })
 });
 }
 };
 }
])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

In the previous code, the directive listened to the broadcast event. After receiving the
message, it extracts the style class and compares it to the device type string using the
angular.equals() method. Based on the comparison, it updates the modifiedsrc
scope variable with the appropriate profile image URL. Similarly, we can develop
any number of custom directives listening to the breakpointClassChange event and
manipulate the CSS classes for an optimized responsive page. You can find some
new additional directives for the text and list items in the code package of this book.
These directives have similar implementation such as the responsiveParagraph
and responsiveImage directive.

In the profile application, we have some text values such as weight is 68kg, chest is
49 inch. To make these strings responsive a new custom directive, responsiveText,
needs to be developed. This directive will be similar to other developed directives.
The code for the responsiveText directive is as follows:

.directive("responsiveText", ["$log", "$window",
 function($log, $window) {
 return {
 restrict: 'E',
 replace: true,
 scope: {
 'respText': '@targettext'
 },
 template: "<p class='text {{deviceSize}}'> {{respText}} </p>",
 link: function(scope, element, attribute) {
 scope.$on("breakpointClassChange", function(event, argument) {
 $log.log("responsiveText receiving breakpointClassChange ",
argument);
 scope.$apply(function() {
 scope.deviceSize = argument.styleClass;
 })
 });
 }
 };
 }
])

The responsiveText custom directive needs CSS style classes for different service
sizes, which it receives from the breakpointClassChange event. The style classes for
this directive in SASS format are as follows:

p.text {&.small-screen {
 font-size: 0.8 rem;
 } &.medium-screen {
 font-size: 1.2 rem;

www.it-ebooks.info

http://www.it-ebooks.info/

The AngularJS-based Breakpoints for Layout Manipulation

[94]

 } &.large-screen {
 font-size: 2 rem;
 }
}

After all these changes, we can test the responsiveness of the profile application.
To test this on mobile devices we can use the Chrome developer console emulation
tab. The following screenshot shows the profile application with the Chrome
emulation set to Apple iPhone 5:

During the page load, the breakpointClassChange event is published by the
breakpoint directive, is subscribed by all other directives, and CSS classes get applied
to the content. All these directives are attached to the $log module to get debug
information about these directives. The following screenshot shows the Chrome
developer console log for the previous iPhone 5 that simulates the screen in the
Chrome developer simulation option:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

The complete code for the profile application can be found and downloaded from
the Packt Publishing website. This code package contains all the previous directive
implementations that we have discussed in this book.

Summary
In this chapter, you learned about breakpoints and the publish and subscribe
mechanism in AngularJS. Also, you learned how the publish and subscribe
mechanism can be used to implement breakpoints in the responsive web application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing
Responsive Applications

In this chapter, we will explore some of the available online and offline tools to
debug and test responsive web applications. The scope inside a module is the
backbone of an AngularJS-based application. It's really important for an AngularJS
developer to know about debugging and its scope. You will learn some of the scope
debugger tools to track scope variables.

Batarang
Batarang is the Chrome extension to debug the AngularJS application. This
extension is developed by the AngularJS team. Using Batarang, we can debug
models, bindings, dependencies, scopes, and applications. Batarang also exposes
some methods as APIs to be accessed by the developer console.

Installing and configuring Batarang
Batarang is a Chrome extension and is available in Chrome Web store. You can
search for Batarang in Chrome Web store and install it.

The direct link to this extension is https://chrome.google.com/
webstore/detail/ighdmehidhipcmcojjgiloacoafjmpfk.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing Responsive Applications

[98]

You can open this link in the Chrome browser and install it. After installing
of Batarang, it needs to be enabled. To enable this extension go to chrome://
extensions in the Chrome browser. The following screenshot shows the Chrome
Extensions tab with Batarang installed:

To enable this extension, we need to select the Enabled checkbox. Now, Batarang
is enabled and can be found in the Chrome developer console. By default, Batarang
is available as a tab in the developer window. The following screenshot shows the
Chrome developer console with Batarang:

Using Batarang
To use Batarang you need to select the Enabled checkbox to debug the AngularJS
application. You can find this checkbox in the previous screenshot on the right side
of the window.

The Batarang extension is enabled in the browser, but debugging
still needs to be enabled.

Once the checkbox is selected, Batarang collects all the data relevant to debugging
in a different tab. The details of these tabs for the profile application are as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[99]

•	 Model: This section contains a hierarchical representation of all the models
and their corresponding values in a tree structure, for example, the following
screenshot shows model values for the corresponding element:

•	 Performance: This section contains details of all the performance-related
information, such as the time taken to retrieve the value of a watch
expression. The following screenshot shows the smallText and item scope
variables' performance statistics:

•	 Dependencies: This tab shows a graphical representation of relationships
among different AngularJS modules, including custom directives.

•	 Options: This tab has additional configurable options for the Batarang tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing Responsive Applications

[100]

AngularJS scope inspector 0.1.2
If you are using the Firefox browser for application development, then this extension
is for debugging. The scope inspector is a Firebug extension to debug scope values
in an AngularJS application. To install this extension, we need to open the Firefox
add-ons section. To open the Firebug add-ons section, issue the about:add-ons
command in the Firefox browser's address box. Then, search for the AngScope
extension and install it. There is also another way to install this debugger directly
by downloading the .xpi file.

We can find the AngScope's .xpi file and a build directory at
https://github.com/kosprov/AngScope.

The build directory contains the AngScope's .xpi file. To install this file, we need to
use the Open with Firefox option by clicking the right mouse button.

After successful installation of AngScope, you can find the extension listed as
Inspect Angular Scope under the drop-down menu items that you can navigate to
by clicking the right mouse button. The following screenshot shows the AngScope
listed in the menu:

On clicking on this Inspect Angular Scope menu item, all the scope variables
will be listed in the Firefox developer console. The following screenshot shows
the scope variable listing for the profile application that we developed in Chapter 3,
The AngularJS Directive-based Approach:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

In the previous screenshot, you can see that all the scope variables are listed. This
really helps a debugger to track each of them while fixing an application-related issue.

Online and offline tools
In previous sections of this chapter, you learned about the debugging scope and
other related parameters in an AngularJS application. In this section, we will list
some of the online and offline tools to test a responsive application. These tools
provide a simulated environment for different devices to help developers to test
their application without spending a lot on real devices.

Online tools
There are many online tools available for different browsers to debug responsive
applications; however, we will explore only a few of them. As we have not deployed
our profile applications, we cannot test them on online tools as these tools require a
real server URL; however, we will get introduced to some of them. The lists of online
tools that we are going to explore are as follows:

•	 The responsive design checker tool
•	 The responsive test online tool

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing Responsive Applications

[102]

The responsive design checker tool
The responsive design checker tool is an online tool to test responsive designs.
The sizes are present in inches. This online tool provides multiple online
simulators for mobile, tablet, and desktop devices. This can be found at
http://responsivedesignchecker.com. The following screenshot shows
the home page of this tool:

The responsive test online tool
The responsive test tool is an online tool to test responsive applications. This tool
provides many online device simulators to test the application. In the desktop
category, you can find large, medium, and thunderbolt display sizes. It is available
at http://responsivetest.com. The following screenshot shows the home page of
this tool:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

Offline tools
In the previous section, we explored some of the online tools. Let's explore some
of the offline tools now. The offline tools that we will discuss are as follows:

•	 Chrome developer emulation
•	 Opera mobile emulator
•	 FireBreak add-ons

Chrome developer emulation
This tool is available as a part of the Chrome developer console and is developed by
the Chrome team. The Chrome developer console can be opened using the F12 key
or by selecting the Developer tools option from the tools menu item. The following
screenshot shows the Chrome emulation tab:

In the previous screenshot, you can identify that the Chrome emulation section
provides many configurable sections, such as Model, Resolution, and Device pixel
ratio with some additional options.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing Responsive Applications

[104]

The following screenshot shows our profile application from Chapter 3, The AngularJS
Directive-based Approach in the Chrome mobile emulator with the configuration
model value for Nexus 5:

Opera mobile emulator
The mobile emulator is an offline tool developed by Opera Software. The tool can
be found at http://www.opera.com/developer/mobile-emulator. It is a desktop
application that supports many responsive parameters that are to be configured to
simulate different device environments. It includes the device name, the resolution,
and many other parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

The following screenshot shows the initial windows when Opera Mobile Emulator
starts. This window provides all the configuration parameters that can be customized
to produce simulated devices:

The settings parameters include Profile, Resolution, Pixel Density, User Interface,
User Agent String, Window Scale, and Arguments. The details of these settings
parameters are as follows:

•	 Profile: This option holds a list of device names to be picked for emulation,
for example, Amazon Kindle Fire and HTC desire

•	 Resolution: This option contains all the supported display resolution types
in a drop-down list, for example QVGA and VGA

•	 Pixel Density: This option is used to configure pixel density for the emulator
display area.

•	 User Agent String: This option is used for configure user agent strings in a
drop-down list. It includes MeeGo, Desktop, Android, and default devices.

•	 Window Scale: This option has the value for window scale sizes in
drop-down lists.

•	 Arguments: This option is used to pass additional parameters to the
emulator before startup.

www.it-ebooks.info

http://www.it-ebooks.info/

Debugging and Testing Responsive Applications

[106]

The following screenshot shows our profile application from Chapter 3,
The AngularJS Directive-based Approach in the Opera mobile emulator with the
profile value as LG Optimus One, resolution as HVGA, pixel density as 160 and
user agent string as Android:

FireBreak add-ons
FireBreak add-ons are for the Firefox browser to debug a responsive application.
You can install it from the Firefox add-ons list. You can also find it at http://www.
filipjohansson.se/firebreak. After the installation of this add-on, you can see
a small section at the top-right corner of the browser showing the current pixel size
of the window. On resizing the window, the pixel value changes instantaneously
showing the current size of the screen. The current version of FireBreak is 1.4 as of
today. The following screenshot shows the profile application in the Firefox browser
with FireBreak 1.4. You can see the FireBreak value of the screen is 678 px.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

Summary
In this chapter, you learned how to debug AngularJS applications and about their
scope properties. We explored some of the online and offline tools to test responsive
applications. This was the last chapter of this book, and we covered all the choices
that a developer has to build an AngularJS-based responsive application. Now you
can start building your own responsive application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
$broadcast method

differentiating, with $emit method 84
used, for publishing message 81, 82

$emit method
differentiating, with $broadcast method 84
used, for publishing message 81

$log service
about 61
debug() method 61
error() method 61
info() method 61
log() method 61
warn() method 61

$on method
used, for publishing message 82-84

$scope.getDetail() method 36
$watch method

about 60
Model feature 59
View feature 59

$window service
about 58
innerWidth property 58
outerWidth property 58

A
angular.bind() method

URL 61
angular.element() method

URL 60

AngularJS
$setDirty() method 60
$setPristine() method 60
browser sniffing approach 19
CSS3 media queries approach 20
expressions 15
features 10
publish mechanism 81
role 18
routing module 33
scope inspector 100, 101
subscribe mechanism 81

AngularJS application
bootstrapping, URL 34
setting up 33

AngularJS controller
URL 12

AngularJS framework 10
AngularJS library file

URL 27
AngularJS module

about 11
injectedModule parameter 11
moduleName parameter 11
URL 11

AngularJS project
code editor 25
SASS configuration 30
setting up 25
structure, building 26-29
web server 25

AngularJS provider 13
AngularJS router provider

URL 13

www.it-ebooks.info

http://www.it-ebooks.info/

[110]

B
Batarang

about 97
configuring 97, 98
Dependencies tab 99
installing 97, 98
Model tab 99
Options tab 99
Performance tab 99
URL 97
using 98

breakpoints
about 80
common 80
responsive 80

browser sniffing approach
about 19
browser name 19
browser platform 19
browser strings 20
browser version 19
Device OS 19
device processor 19

built-in directives, AngularJS
about 15, 62
ngApp 15
ngBind 16
ngClass 16
ngClick 15
ngIf 15
ngInclude 16
ngModel 16
ngRepeat 15
ngSubmit 16

C
category selection row

ng-class attribute 39
ng-click attribute 39
ng-disabled attribute 39

Chrome developer emulation tool 103
common breakpoints 80
COMPASS installation

URL 30

considerations, page layout
browsers 79
devices 79
screen resolution 79

controller 9
controller scope, AngularJS

about 11
controllerName parameter 12
injector parameter 12

CSS3 media queries approach
about 20
media feature 22-24
media type 21, 22

CSS classes, $watch method
ng-dirty 60
ng-pristine 60

CSS classes, responsive text
largeDevice 66
mediumDevice 66
smallDevice 66

custom attributes
about 87
developing 88-90
implementing 90-95

custom directive
about 16, 62
controller property 18
link property 18
priority property 18
replace property 18
require property 17
restrict property 17
scope property 17
template property 17
templateUrl property 17
terminal property 18
transclude property 18
URL 18

D
data binding 14
data services

building 31, 32

www.it-ebooks.info

http://www.it-ebooks.info/

[111]

desktop, device type 35
desktop view

category content 40
category selection row 39
developing 38
name row 38
profile image row 38
social buttons row 41, 42

device-based routing approach
about 32
URL 32

device type provider
developing 37, 38

directives
$log service 61
$watch method 59
$window service 58
about 57
Attribute (A) 57
Class(C) 57
Comment (M) 57
Element (E) 57
event binding function 60
using 57

directory structure
changes 56

dynamic routing
limitations 54

E
event binding function 60, 61
event properties

currentScope property 83
defaultPrevented property 83
name property 83
preventDefault property 83
stopPropagation property 83
targetScope property 83

F
features, AngularJS

angular module 11
built-in directive 15
controller scope 11
custom directive 16
data binding 14

expressions 15
provider 13
routing module 12

features, CSS3 media queries
about 22-24
aspect-ratio 22
color 22
color-index 22
device-aspect-ratio 22
device-height 22
device-width 22
grid 22
height 22
monochrome 22
orientation 22
resolution 23
scan 23
URL 24
width 23

FireBreak add-ons
about 106
URL 106

G
getPersonalDetail() method 32
getProfessionalDetail() method 32
Gravatar images

about 63
URL 63

I
innerWidth property, $window service

about 58
URL 58

Inspect Angular Scope 100

J
jqLite 83

M
media queries, CSS3 20
media types, CSS3 media queries

about 21
all 21

www.it-ebooks.info

http://www.it-ebooks.info/

[112]

aural 21
braille 21
embossed 21
handheld 21
print 21
projection 21
screen 21
tty 21
tv 21
URL 22

message
publishing, with $broadcast method 81
publishing, with $emit method 81
subscribing, with $on method 82-84

mobile, device type 35
mobile view

developing 44
Model View Controller (MVC) 10
Model View Whatever (MV*/MVW)

about 10
URL 10

O
offline tools

about 103
Chrome developer emulation 103
FireBreak add-ons 106
Opera mobile emulator 104, 105

online tools
about 101
responsive design checker 102
responsive test online 102

Opera mobile emulator tool
about 104-106
Arguments option 105
Pixel Density option 105
Profile option 105
Resolution option 105
URL 104
User Agent String option 105
Window Scale option 105

outerWidth property, $window service
about 58
URL 58

P
page layout

about 79
types 80

partial component 9
profile controller

configuring 36
profile page application

building 31
profile template

changes 57
project structure

directory structure changes 56
modifying 55
routing module changes 56

publish mechanism, AngularJS
$broadcast method, using 81, 82
$emit method, using 81
about 81
example 85, 86
URL 84

R
real-time communication 9
responsive application development

$log service 61
$watch method 59
$window service 58
event binding function 60

responsive breakpoints 80
responsive design

key areas 7, 8
need for 7

responsive design checker tool
about 102
URL 102

responsive directives
about 62
images 63
item lists 72

responsive images
about 63-65
text 66

www.it-ebooks.info

http://www.it-ebooks.info/

[113]

responsive item lists 72-76
responsiveness

verifying 51-54
responsive SPA

about 10
building 24

responsive test online tool
about 102
URL 102

responsive text
about 66-72
CSS classes 66

router 9, 31
routing module, AngularJS

about 12, 33
application, setting up 33, 34
changes 56
configuring 34, 35

S
SASS

configuration 30
single page web application. See SPA
smart device

about 38
mobile 38
tablet 38

SPA
about 8
controller 9
local storage 9

partial 9
real-time communication 9
router 9
template 8

structure, AngularJS project
assets directory 26
building 26-29
data directory 27
lib directory 27
view directory 29

subscribe mechanism, AngularJS
$on method, using 82-84
about 81
example 85, 86
URL 84

Syntactically Awesome Style
Sheets. See SASS

T
tablet, device type 35
tablet view

developing 47-49
template

about 8, 14
URL 9

W
web page layout design, types

adaptive 80
fixed 80
fluid 80

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Responsive Web Design with AngularJS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Web Design From
Concept to Complete Site [Video]
ISBN: 978-1-78216-570-5 Duration: 02:04 hours

Easily design responsive websites that can adapt to
any device regardless of screen size using HTML 5
and CSS3

1.	 Learn how to create fluid styles that flow to fill
a browser of any size.

2.	 Discover the best design and coding practices
in HTML5 and CSS3 for flexible layouts.

3.	 Contains everything you need to know to create
simple-to-complex responsive sites starting
from a design mockup to implementing it
as a finished product.

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3
to adapt websites to any browser or screen size

1.	 Everything needed to code websites in HTML5
and CSS3 that are responsive to every device
or screen size.

2.	 Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions, and transformations.

3.	 Real-world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

HTML5 and CSS3 Responsive
Web Design Cookbook
ISBN: 978-1-84969-544-2 Paperback: 204 pages

Learn the secrets of developing responsive
websites capable of interfacing with today's
mobile Internet devices

1.	 Learn the fundamental elements of writing
responsive website code for all stages of the
development life cycle.

2.	 Create the ultimate code writer's resource using
logical workflow layers.

3.	 Full of usable code for immediate use in your
website projects.

Responsive Web Design by
Example Beginner's Guide
ISBN: 978-1-84969-542-8 Paperback: 338 pages

Discover how you can easily create engaging,
responsive websites with minimum hassle!

1.	 Rapidly develop and prototype responsive
websites by utilizing powerful open source
frameworks.

2.	 Focus less on theory and more on results, with
clear step-by-step instructions, previews, and
examples to help you along the way.

3.	 Learn how you can utilize three of the
most powerful responsive frameworks
available today: Bootstrap, Skeleton,
and Zurb Foundation.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Responsive Single Page Application and AngularJS
	Why responsive design?
	What is single page web application?
	Template
	Partial
	Router
	Controller
	Real-time communication
	Local storage

	Understanding responsive single page application (SPA)
	What is an AngularJS framework?
	Exploring the features of AngularJS
	The AngularJS module
	The controller scope
	The AngularJS routing module
	The AngularJS provider
	Data binding
	Angular expressions
	Built-in directive
	Custom directive

	Role of AngularJS
	Using the browser sniffing approach
	CSS3 media queries approach
	Media type
	Media feature

	What are we building?
	Summary

	Chapter 2: The AngularJS Dynamic Routing-based Approach
	Setting up an AngularJS project
	Building a project's structure
	The SASS configuration

	Profile application demo
	Building data services
	Device-based routing
	AngularJS routing
	Set up an AngularJS application
	Configuring a routing module

	Configuring a profile controller
	Developing a device type provider
	Developing a desktop view
	Name and profile image row
	Category selection row
	Category content
	Social buttons row

	Developing a mobile view
	Developing a tablet view
	Verifying responsiveness
	Limitations of dynamic routing
	Summary

	Chapter 3: The AngularJS
Directive-based Approach
	Modifying the project structure
	Changes in the directory structure
	Changes in the routing module
	Changes in the profile template

	Directives
	The $window service
	The $watch method
	The event binding function
	The $log service

	Built-in directives
	Custom directives
	Responsive directives
	Responsive images
	Responsive text
	Responsive item lists

	Summary

	Chapter 4: The AngularJS-based Breakpoints for Layout Manipulation
	Page layout
	Layout type

	Breakpoints
	Responsive and common breakpoints

	AngularJS publisher and subscriber
	Publishing a message using $emit
	Publishing a message using $broadcast
	Subscribing to a message using $on
	The difference between $emit and $broadcast
	An example of the publish and subscribe mechanism

	Custom attributes
	Developing a custom attribute
	Implementing a custom attribute

	Summary

	Chapter 5: Debugging and Testing Responsive Applications
	Batarang
	Installing and configuring Batarang
	Using Batarang

	AngularJS scope inspector 0.1.2
	Online and offline tools
	Online tools
	The responsive design checker tool
	The responsive test online tool

	Offline tools
	Chrome developer emulation
	Opera mobile emulator
	FireBreak add-ons

	Summary

	Index

