O'REILLY"

Beautiful
Javascript

Leading Programmers Explain
How They Think

Anton Kovalyov

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

/theory/in/ practice

Beautiful JavaScript

JavaScript is arguably the most polarizing and misunderstood programming language in the
world. Many have attempted to replace it as the language of the Web, but JavaScript has survived,
evolved, and thrived. Why did a language created in such a hurry succeed where others failed?

This guide gives you a rare glimpse into JavaScript from people intimately familiar with it.
Chapters contributed by domain experts such as Jacob Thornton, Ariya Hidayat, and Sara Chipps
reveal what they love about their favorite language—whether it's turning the most feared features
into useful tools, or how JavaScript can be used for self-expression.

Contributors include:

Jonathan Barronville Daryl Koopersmith Jenn Schiffer

Sara Chipps Anton Kovalyov Jacob Thornton

Angus Croll Rebecca Murphey Ben Vinegar

Marijn Haverbeke Daniel Pupius Rick Waldron

Ariya Hidayat Graeme Roberts Nicholas Zakas

About the editor:

Anton Kovalyov is a software engineer at Medium, creator of JSHint, and coauthor of Third-Party
JavaScript (Manning).

“Reading this book s like sitting down with some of the masters of JavaScript
for lunch and hearing them talk about what's on their mind at the moment.
You'llleave with a new appreciation for the language, and with something you

can use to make your next project better.”
—Dave Camp, Director of Engineering, Firefox

US $39.99 CAN $45.99

ISBN: 978-1-449-37075-6 Twitter: @oreillymedia

i facebook.com/oreill
JIRTIOROC scebookcomjorely

7814491370756 oreilly.com

Programming/JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

Beautiful JavaScript

Edited by Anton Kovalyov

Beijing - Boston + Farnham - Sebastopol + Tokyo [KONAR{=|MN&

www.it-ebooks.info

http://www.it-ebooks.info/

Beautiful JavaScript
edited by Anton Kovalyov

Copyright © 2015 Anton Kovalyov. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,

contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Simon St. Laurent Indexer: WordCo Indexing Services, Inc.
Editor: Allyson MacDonald Interior Designer: David Futato
Production Editor: Matthew Hacker Cover Designer: Susan Thompson
Copyeditor: Rachel Head lllustrator: Rebecca Demarest

Proofreader: Rachel Monaghan
August 2015: First Edition

Revision History for the First Edition
2015-08-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370756 for release details.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. Beautiful JavaScript, the cover
image, and related trade dress are trademarks of O’'Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa-
tion and instructions contained in this work are accurate, the publisher and the authors dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and instruc-
tions contained in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellectual property rights
of others, it is your responsibility to ensure that your use thereof complies with such licenses

and/or rights.

978-1-449-37075-6

[LSI]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370756
http://www.it-ebooks.info/

TABLE OF CONTENTS

Preface.......coiiiiiiiiiii it iii e

Beautiful Mixins.ot

Classical Inheritance

Prototypes

Mixins
The Basics
The Use Case
Classic Mixins
The extend Function
Functional Mixins
Adding Options
Adding Caching
Advice

Wrapup

eval and Domain-Specific Languages

What About “eval Is Evil”?
History and Interface
Performance

Common Uses

A Template Compiler
Speed

Mixing Languages
Dependencies and Scopes
Debugging Generated Code
Binary Pattern Matches
Closing Thoughts

HowtoDrawaBunny....................

What Is a Rabbit?

www.it-ebooks.info

—

—_
— O 0 00 NNV R R W N~

— -,
w W

N N N N = e e pd pd
VI — = O 0 00 O O\ U A

27
27

http://www.it-ebooks.info/

iv

CONTENTS

What Is a Bunny?

What Does This Have to Do with JavaScript?
With So Much Variation, Which Way Is Correct?
How Does This Affect the Classroom?

Is This Art? And Why Does That Matter?

What Does This Look Like?

What Did I Just Read?

Too Much Rope, or JavaScript for Teams............

Know Your Audience
Stupid Good

Keep It Classy

Style Rules

Evolution of Code
Conclusion

Hacking JavaScript Constructors for Model Harmony.

Doppelgangers

Miniature Models of Factories
Constructor Identity Crisis
Making It Scale

Conclusion

One World,OnelLanguage............ccovvuvnrnnnn.

An Imperative, Dynamic Proposal
The Paradox of Choice
Globalcommunicationscript

Math Expression Parser and Evaluator..............

Lexical Analysis and Tokens

Syntax Parser and Syntax Tree

Tree Walker and Expression Evaluator
Final Words

Evolution. ..ot i i i s st

Backbone

www.it-ebooks.info

28
29
32
33
34
36
38

39
39
40
41
43
44
44

48
50
51
52
54

57
58
60
60

61
61
66
72
76

77
79

http://www.it-ebooks.info/

10

11

12

13

New Possibilities

ErrorHandling....................cooios.

Assume Your Code Will Fail
Throwing Errors
When to Throw Errors
Types of Errors
Custom Errors
Handling Errors
Global Error Handling in Browsers
Global Error Handling in Node.js
Summary

The Node.js EventLoop....................

Event-Driven Programming
Asynchronous, Nonblocking 1/0
Concurrency

Adding Tasks to the Event Loop

JavaScriptlIs............oooiii il

JavaScript Is Dynamic
JavaScript Can Be Static
JavaScript Is Functional
JavaScript Does Everything

Coding Beyond Logic................cuuut.

0. The Basement
1. Quine’s Paradox
2. The Conjecture
3. Peer Review

JavaScript Is Cutieful......................

All This Loose Beauty
The Absurdity of Dali
Dali’s JavaScript
Is This Beauty Just Ugly?
An Unfortunate Necessity
The Beauty Is in the Madness

www.it-ebooks.info

79

83
84
86
86
88
89
91
92
93

95
97
99
99

101
102
102
103

105
105
110
112

115
115
116
116
116
116

CONTENTS

http://www.it-ebooks.info/

vi

CONTENTS

14

15

Let’s Have a Wee Look at map 116

Hello, thisArg 117
Okay! So That’s a Bunch of Stuff I Already Knew About
[].map—Now What? 117
calling All Cars 117
Number 117
Now I Know Everything 118
wild 118
Functional JavaScript. ..o 119
Functional Programming 119
Functional JavaScript 121
Objects 126
Now What? 127
Progress.oviiiii i i i e e e e e e 129
T = 147

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

FUNCTIONS ARE FIRST-CLASS CITIZENS, SYNTAX RESEMBLES JAVA, INHERITANCE
is prototypal, and (+"") equals zero. This is JavaScript, arguably the most polarizing
and misunderstood programming language in the world. It was created in 10 days and
had a lot of warts and rough edges. Since then, there have been many attempts to
replace it as the language of the Web. And yet, the language and the ecosystem around
it are thriving. JavaScript is the most popular language in the world—and the only
true language of the web platform. What made JavaScript special? Why did a language
that was created in such a hurry succeed where others failed?

I believe the reasons why JavaScript (and the Web in general) survived lie in its omni-
presence—it’s practically impossible to find a personal computer that doesn’t have
some sort of JavaScript interpreter—and its ability to gain from disorder, to use its
stressors for self-improvement.

JavaScript, like no other language, brought all kinds of different people to the plat-
form. Anyone with a text editor and a web browser could get started with JavaScript,
and many did. Its expressiveness and limited standard library prompted those people
to experiment with the language and push it to its limits. People were not only making
websites and applications; they were writing libraries and creating programming lan-
guages that could be compiled back into JavaScript. Those libraries competed with
each other, and their approaches to solving problems often contradicted one another.
The JavaScript ecosystem was a mess, but it was bursting with life.

www.it-ebooks.info

vii

http://www.it-ebooks.info/

viii

Many of those libraries and languages are now forgotten. Their best ideas, however—
the ones that proved themselves and stood the test of time—were absorbed into the
language. They made their way into JavaScript’s standard library and its syntax. They
made the language better.

Then there were languages and technologies that were designed to replace JavaScript.
But instead of succeeding, they unwillingly became its necessary stressors. Every time
a new language or system to replace JavaScript emerged, browser vendors would find
a way to make it faster, more powerful, and more robust. Once again, good ideas were
absorbed into newer versions of the language, and the bad ones were discarded. These
competing technologies didn’t replace JavaScript; instead, they made it better.

Today, JavaScript is unbelievably popular. Will it last? I don’t know. I cannot predict
whether it will still be popular 5 or 10 years from now, but it doesn’t really matter. For
me, JavaScript will always be a great example of a language that survived not despite
its flaws but because of them, and a language that brought people of so many different
backgrounds into this wonderful world of computer programming.

About This Book

This book was written by people who are intimately familiar with the language. Each
and every person who contributed a chapter is an expert in his or her domain. The
authors highlight different sides of JavaScript, some of which you can discover only by
writing lots of code, experimenting and making mistakes. As you make your way
through this book, you'll get to see what JavaScript movers and shakers love about
their favorite language.

You'll also learn a lot. I did. But do not mistake this book for a JavaScript tutorial,
because it is much bigger than that. There are chapters that challenge the conventional
wisdom and show how even the most feared features can be used as helpful tools.
Some authors show that JavaScript can be a tool for self-expression and a form of art,
while others share the wisdom of using JavaScript in codebases with hundreds of con-
tributors. Some authors share personal stories, while others look into the future.

There’s no common pattern that goes from one chapter to another—there’s even a
purely satirical chapter. This is intentional. I tried to give the authors as much freedom
as possible to see what they would come up with, and they came up with something
incredible. They came up with a book that resembles JavaScript itself, where each
chapter is a reflection of its author.

PREFACE

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

TIP
This element signifies a tip or suggestion.

—— NOTE
This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/beautiful_javascript.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Beautiful JavaScript, edited by Anton Kova-
lyov (O'Reilly). Copyright 2015 Anton Kovalyov, 978-1-449-37075-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

PREFACE

www.it-ebooks.info

ix

https://github.com/oreillymedia/beautiful_javascript
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari® Books Online

Safari Books Online is an on-demand digital library that

4 Dlel delivers expert content in both book and video form
from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/beautiful_javascript.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http.//twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

PREFACE

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/beautiful_javascript
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER ONE

Beautiful Mixins

Angus Croll

Developers love to create overly complex solutions to things that aren’t really
problems.

—Thomas Fuchs

In the beginning there was code, and the code was verbose, so we invented functions
that the code might be reused. But after a while there were also too many functions,
so we looked for a way to reuse those too. Developers often go to great lengths to
apply “proper” reuse techniques to JavaScript. But sometimes when we try too hard to
do the right thing, we miss the beautiful thing right in front of our eyes.

Classical Inheritance

Many developers schooled in Java, C++, Objective-C, and Smalltalk arrive at Java-
Script with an almost religious belief in the necessity of the class hierarchy as an
organizational tool. Yet humans are not good at classification. Working backward from
an abstract superclass toward real types and behaviors is unnatural and restrictive—a
superclass must be created before it can be extended, yet classes closer to the root are
by nature more generic and abstract and are more easily defined after we have more
knowledge of their concrete subclasses. Moreover, the need to tightly couple types a
priori such that one type is always defined solely in terms of another tends to lead to
an overly rigid, brittle, and often ludicrous model (“Is a button a rectangle or is it a
control? Tell you what, let’s make Button inherit from Rectangle, and Rectangle can
inherit from Control...no, wait a minute...”). If we don’t get it right early on, our sys-
tem is forever burdened with a flawed set of relationships—and on those rare occa-
sions that, by chance or genius, we do get it right, anything but a minimal tree struc-
ture usually represents too complex a mental model for us to readily visualize.

www.it-ebooks.info

http://www.it-ebooks.info/

Classical inheritance is appropriate for modeling existing, well-understood
hierarchies—it’s okay to unequivocally declare that a FileStreanm is a type of Input
Stream. But if the primary motivation is function reuse (and it usually is), classical
hierarchies can quickly become gnarly labyrinths of meaningless subtypes, frustrating
redundancies, and unmanageable logic.

Prototypes

It’s questionable whether the majority of behaviors can ever be mapped to objectively
“right” classifications. And indeed, the classical inheritance lobby is countered by an
equally fervent band of JavaScript loyalists who proclaim that JavaScript is a prototy-
pal, not classical, language and is deeply unsuited to any approach that includes the
word class. But what does “prototypal” mean, and how do prototypes differ from
classes?

In generic programming terms, a prototype is an object that supplies base behavior to a
second object. The second object can then extend this base behavior to form its own
specialization. This process, also known as differential inheritance, differs from classical
inheritance in that it doesn’t require explicit typing (static or dynamic) or attempt to
formally define one type in terms of another. While classical inheritance is planned
reuse, true prototypal inheritance is opportunistic.

In general, when working with prototypes, one typically chooses not to cate-
gorize but to exploit alikeness.

—Antero Taivalsaari, Nokia Research Center

In JavaScript, every object references a prototype object from which it can inherit
properties. JavaScript prototypes are great instruments for reuse: a single prototype
instance can define properties for an infinite number of dependent instances. Proto-
types may also inherit from other prototypes, thus forming prototype chains.

So far, so good. But, with a view to emulating Java, JavaScript tied the prototype prop-
erty to the constructor. As a consequence, more often than not, multilevel object
inheritance is achieved by chaining constructor-prototype couplets. The standard
implementation of a JavaScript prototype chain is too grisly to appear in a book about
beautiful JavaScript, but suffice it to say, creating a new instance of a base prototype in
order to define the initial properties of its inheritor is neither graceful nor intuitive.
The alternative—manually copying properties between prototypes and then meddling
with the constructor property to fake real prototypal inheritance—is even less
becoming.

Syntactic awkwardness aside, constructor-prototype chaining requires upfront plan-
ning and results in structures that more closely resemble the traditional hierarchies of
classical languages than a true prototypal relationship: constructors represent types

CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

(classes), each type is defined as a subtype of one (and only one) supertype, and all
properties are inherited via this type chain. The ES6 class keyword merely formalizes
the existing semantics. Leaving aside the gnarly and distinctly unbeautiful syntax char-
acteristic in constructor-prototype chains, traditional JavaScript is clearly less prototy-
pal than some would claim.

In an attempt to support less rigid, more opportunistic prototypes, the ES5 specifica-
tion introduced Object.create. This method allows a prototype to be assigned to an
object directly and therefore liberates JavaScript prototypes from constructors (and
thus categorization) so that, in theory, an object can acquire behavior from any other
arbitrary object and be free from the constraints of typecasting:

var circle = Object.create({
area: function() {
return Math.PI * this.radius * this.radius;
}s
grow: function() {
this.radius++;
}J
shrink: function() {
this.radius--;
}
b

Object.create accepts an optional second argument representing the object to be
extended. Sadly, instead of accepting the object itself (in the form of a literal, variable,
or argument), the method expects a full-blown meta property definition:

var circle = Object.create({
/*see above*/

1A
radius: {
writable:true, configurable:true, value: 7
}
b

Assuming no one actually uses these unwieldy beasts in real code, all that remains is
to manually assign properties to the instance after it has been created. Even then, the
Object.create syntax still only enables an object to inherit the properties of a single
prototype. In real scenarios, we often want to acquire behavior from multiple proto-
type objects: for example, a person can be an employee and a manager.

Mixins
Fortunately, JavaScript offers viable alternatives to inheritance chaining. In contrast to

objects in more rigidly structured languages, JavaScript objects can invoke any func-
tion property regardless of lineage. In other words, JavaScript functions don’t need to

MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

be inheritable to be visible—and with that simple observation, the entire justification
for inheritance hierarchies collapses like a house of cards.

The most basic approach to function reuse is manual delegation—any public function
can be invoked directly via call or apply. It’s a powerful and easily overlooked feature.
However, aside from the verbosity of serial call or apply directives, such delegation is
so convenient that, paradoxically, it sometimes actually works against structural disci-
pline in your code—the invocation process is sufficiently ad hoc that in theory there is
no need for developers to organize their code at all.

Mixins are a good compromise: by encouraging the organization of functionality along
thematic lines they offer something of the descriptive prowess of the class hierarchy,
yet they are light and flexible enough to avoid the premature organization traps (and
head-spinning dizziness) associated with deeply chained, single-ancestry models. Bet-
ter still, mixins require minimal syntax and play very well with unchained JavaScript
prototypes.

The Basics

Traditionally, a mixin is a class that defines a set of functions that would otherwise be
defined by a concrete entity (a person, a circle, an observer). However, mixin classes
are considered abstract in that they will not themselves be instantiated—instead, their
functions are copied (or borrowed) by concrete classes as a means of inheriting behav-
ior without entering into a formal relationship with the behavior provider.

Okay, but this is JavaScript, and we have no classes per se. This is actually a good thing
because it means we can use objects (instances) instead, which offer clarity and flexi-
bility: our mixin can be a regular object, a prototype, a function, whatever, and the
mixin process becomes transparent and obvious.

The Use Case

I'm going to discuss a number of mixin techniques, but all the coding examples are
directed toward one use case: creating circular, oval, or rectangular buttons (some-
thing that would not be readily possible using conventional classical inheritance tech-
niques). Here’s a schematic representation: square boxes represent mixin objects, and
rounded boxes represent the actual buttons.

4 CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

Clickable

rectangular
button

rectangular
button

rectangular

button Oval

Circle

A 4

Rectangle

Classic Mixins

Scanning the first two pages returned from a Google search for “javascript mixin,” I
noticed the majority of authors define the mixin object as a full-blown constructor
type with its function set defined in the prototype. This could be seen as a natural pro-
gression—early mixins were classes, and this is the closest thing JavaScript has to a
class. Here’s a circle mixin modeled after that style:

var Circle = function() {};
Circle.prototype = {
area: function() {
return Math.PI * this.radius * this.radius;
}s
grow: function() {
this.radius++;
}J
shrink: function() {
this.radius--;
}
}

In practice, however, such a heavyweight mixin is unnecessary. A simple object literal
will suffice:

var circlefns = {
area: function() {
return Math.PI * this.radius * this.radius;
}s
grow: function() {
this.radius++;
1,
shrink: function() {
this.radius--;
}
b

MIXINS 5

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s another mixin defining button behavior (for the sake of demonstration, I've
substituted a simple log call for the working implementation of some function
properties):

var clickableFns = {
hover: function() {
console.log('hovering');

1,
press: function() {
console.log('button pressed');

}s
release: function() {
console.log('button released');

1,
fire: function() {
this.action.fire();
}
b

The extend Function

How does a mixin object get mixed into your object? By means of an extend function
(sometimes known as augmentation). Usually extend simply copies (not clones) the
mixin’s functions into the receiving object. A quick survey reveals some minor varia-
tions in this implementation. For example, the Prototype.js framework omits a hasOwn
Property check (suggesting the mixin is not expected to have enumerable properties in
its prototype chain), while other versions assume you want to copy only the mixin’s
prototype object. Here’s a version that is both safe and flexible:

function extend(destination, source) {
for (var key in source) {
if (source.hasOwnProperty(key)) {
destination[key] = source[key];
}
}

return destination;

}

Now let’s extend a base prototype with the two mixins we created earlier to make a
RoundButton.prototype:

var RoundButton = function(radius, label) {
this.radius = radius;
this.label = label;

b

extend(RoundButton.prototype, circleFns);
extend(RoundButton.prototype, clickableFns);

var roundButton = new RoundButton(3, 'send');

6 CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

roundButton.grow();
roundButton.fire();

Functional Mixins

If the functions defined by mixins are intended solely for the use of other objects, why
bother creating mixins as regular objects at all? Isn’t it more intuitive to think of mix-
ins as processes instead of objects? Here are the circle and button mixins rewritten as
functions. We use the context (this) to represent the mixin’s target object:

var withCircle = function() {
this.area = function() {
return Math.PI * this.radius * this.radius;
1
this.grow = function() {
this.radius++;
I
this.shrink = function() {
this.radius--;
1
b

var withClickable = function() {
this.hover = function() {
console.log('hovering');
1
this.press = function() {
console.log('button pressed');
I
this.release = function() {
console.log('button released');
1
this.fire = function() {
this.action.fire();
I
}

And here’s our RoundButton constructor. We’ll want to apply the mixins to
RoundButton.prototype:
var RoundButton = function(radius, label, action) {
this.radius = radius;

this.label = label;
this.action = action;

b
Now the target object can simply inject itself into the functional mixin by means of
Function.prototype.call, cutting out the middleman (the extend function) entirely:

MIXINS

www.it-ebooks.info

7

http://www.it-ebooks.info/

withCircle.call(RoundButton.prototype);
withClickable.call(RoundButton.prototype);

var buttonl = new RoundButton(4, 'yes!', function() {return 'you said yes!'});
buttonl.fire(); //'you said yes!'

This approach feels right. Mixins as verbs instead of nouns; lightweight one-stop func-
tion shops. There are other things to like here too. The programming style is natural
and concise: this always refers to the receiver of the function set instead of an abstract
object we don’t need and will never use; moreover, in contrast to the traditional
approach, we don’t have to protect against inadvertent copying of inherited properties,
and (for what it’s worth) functions are now cloned instead of copied.

Adding Options

This functional strategy also allows mixed in behaviors to be parameterized by means
of an options argument. The following example creates a withOval mixin with a cus-
tom grow and shrink factor:

var withOval = function(options) {
this.area = function() {
return Math.PI * this.longRadius * this.shortRadius;
I
this.ratio = function() {
return this.longRadius/this.shortRadius;
1
this.grow = function() {
this.shortRadius += (options.growBy/this.ratio());
this.longRadius += options.growBy;
1
this.shrink = function() {
this.shortRadius -= (options.shrinkBy/this.ratio());
this.longRadius -= options.shrinkBy;
1
}

var OvalButton = function(longRadius, shortRadius, label, action) {
this.longRadius = longRadius;
this.shortRadius = shortRadius;
this.label = label;
this.action = action;

b

withButton.call(OvalButton.prototype);
withOval.call(OvalButton.prototype, {growBy: 2, shrinkBy: 2});

var button2 = new OvalButton(3, 2, 'send', function() {return 'message sent'});
button2.area(); //18.84955592153876

button2.grow();

button2.area(); //52.35987755982988

button2.fire(); //'message sent'

8 CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Caching

You might be concerned that this approach creates additional performance overhead
because we're redefining the same functions on every call. Bear in mind, however,
that when we’re applying functional mixins to prototypes, the work only needs to be
done once: during the definition of the constructors. The work required for instance
creation is unaffected by the mixin process, since all the behavior is preassigned to the
shared prototype. This is how we support all function sharing on the twitter.com site,
and it produces no noticeable latency. Moreover, it’s worth noting that performing a
classical mixin requires property getting as well as setting, and in fact functional mix-
ins appear to benchmark quicker in the Chrome browser than traditional ones
(although this is obviously subject to considerable variance).

That said, it is possible to optimize functional mixins further. By forming a closure
around the mixins we can cache the results of the initial definition run, and the per-
formance improvement is impressive. Functional mixins now easily outperform classic
mixins in every browser.

Here’s a version of the withRectangle mixin with added caching:

var withRectangle = (function() {
function area() {
return this.length * this.width;
}
function grow() {
this.length++, this.width++;
}
function shrink() {
this.length--, this.width--;
}
return function() {
this.area = area;
this.grow = grow;
this.shrink = shrink;
return this;
1
bHO;

var RectangularButton = function(length, width, label, action) {
this.length = length;
this.width = width;
this.label = label;
this.action = action;

}

withClickable.call(RectangularButton.prototype);
withRectangle.call(RectangularButton.prototype);

var button3 =
new RectangularButton(4, 2, 'delete', function() {return 'deleted'});

MIXINS

www.it-ebooks.info

9

http://www.it-ebooks.info/

button3.area(); //8
button3.grow();
button3.area(); //15
button3.fire(); //'deleted’

Advice

One danger with any kind of mixin technique is that a mixin function will accidentally
overwrite a property of the target object that, coincidentally, has the same name. Twit-
ter’s Flight framework, which makes use of functional mixins, guards against clobber-
ing by temporarily locking existing properties (using the writable meta property) dur-
ing the mixin process.

Sometimes, however, instead of generating a collision error we might want the mixin
to augment the corresponding method on the target object. advice redefines a function
by adding custom code before, after, or around the original implementation. The
Underscore framework implements a basic function wrapper that enables advice:

button.press = function() {
mylib.appendClass('pressed');

b
//after pressing button, reduce shadow (using underscore)
button.pressWithShadow = _.wrap(button.press, function(fn) {
fn(O);
button.reduceShadow();
}

The Flight framework takes this a stage further: now the advice object is itself a func-
tional mixin that can be mixed into target objects to enable advice for subsequent
mixins.

Let’s use this advice mixin to augment our rectangular button actions with shadow
behavior. First we apply the advice mixin, followed by the two mixins we used earlier:

withAdvice.call(RectangularButton.prototype);
withClickable.call(RectangularButton.prototype);
withRectangle.call(RectangularButton.prototype);

And now the withShadow mixin that will take advantage of the advice mixin:

var withShadow = function() {
this.after('press', function() {
console.log('shadow reduced');
b
this.after('release', function() {
console.log('shadow reset');
IH
b

withShadow.call(RectangularButton.prototype);

10 CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://underscorejs.org/
http://bit.ly/advice_flight
http://bit.ly/advice_flight
http://www.it-ebooks.info/

var button4 = new RectangularButton(5, 4);
button4.press(); //'button pressed' 'shadow reduced'’
buttond.release(); //'button released' 'shadow reset'

The Flight framework sugarcoats this process. All flight components get withAdvice
mixed in for free, and there’s also a defineComponent method that accepts multiple mix-
ins at a time. So, if we were using Flight we could further simplify the process (in
Flight, constructor properties such as rectangle dimensions are defined as attr proper-
ties in the mixins):

var RectangularButton =

defineComponent(withClickable, withRectangle, withShadow);
var button5 = new RectangularButton(3, 2);

button5.press(); //'button pressed' 'shadow reduced'’
button5.release(); //'button released' 'shadow reset'

With advice we can define functions on mixins without having to guess whether
they’re also implemented on the target object, so the mixin can be defined in isolation
(perhaps by another vendor). Conversely, advice allows us to augment third-party
library functions without resorting to monkey patching.

Wrapup

When possible, cut with the grain. The grain tells you which direction the
wood wants to be cut. If you cut against the grain, you're just making more
work for yourself, and making it more likely you'll spoil the cut.

—Charles Miller!

As programmers, we're encouraged to believe that certain techniques are indispensa-
ble. Ever since the early 1990s, object-oriented programming has been hot, and classi-
cal inheritance has been its poster child. It’s not hard to see how a developer eager to
master a new language would feel under considerable pressure to fit classical inheri-
tance under the hood.

But peer pressure is not an agent of beautiful code, and neither is serpentine logic.
When you find yourself writing Circle.prototype.constructor = Circle, ask yourself if
the pattern is serving you, or you're serving the pattern. The best patterns tread lightly
on your process and don’t interfere with your ability to use the full power of the
language.

By repeatedly defining an object solely in terms of another, classical inheritance estab-
lishes a series of tight couplings that glue the hierarchy together in an orgy of mutual
dependency. Mixins, in contrast, are extremely agile and make very few organizational

1 See Charles Miller’s entire post at his blog, The Fishbowl.

WRAPUP

www.it-ebooks.info

11

http://bit.ly/cut_with_the_grain
http://www.it-ebooks.info/

12

demands on your codebase—mixins can be created at will, whenever a cluster of com-
mon, shareable behavior is identified, and all objects can access a mixin’s functionality
regardless of their role within the overall model. Mixin relationships are entirely ad
hoc: any combination of mixins can be applied to any object, and objects can have any
number of mixins applied to them. Here, at last, is the opportunistic reuse that proto-
typal inheritance promised us.

CHAPTER ONE: BEAUTIFUL MIXINS

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER TWO

eval and Domain-Specific
Languages

Marijn Haverbeke

eval is a language construct that takes a string and executes it as code.

This means that in a language with an eval construct, the code that is being executed
can come not just from input files, but also from the running code itself.

There are several reasons why this is interesting and useful. In this chapter, T will
explore the degree to which JavaScript’s eval can be used to create simple language-
based abstractions.

What About “eval Is Evil”?

I know that some of my readers, at the mention of the word eval, are feeling the adre-
naline shoot into their veins, and hearing the solemn voice of a certain bearded Java-
Script evangelist boom in the back of their heads. “eval is evil!” this voice proclaims.

I've never found absolute moral judgments very applicable in engineering. But if you
do, and don’t want to reevaluate your faith, feel free to skip this chapter.

Practically speaking, there are a number of problematic issues that come up when eval
is used. Its semantics are confusing and error-prone, and its impact on performance is
not always obvious. I'm going to approach it as a tool, and try to clarify and study
these issues, in order to help you use the tool effectively.

www.it-ebooks.info

13

http://www.it-ebooks.info/

14

History and Interface

An interpreter (in the broad sense of the word) for a language is a program that takes
text and executes it as code. When you have an interpreter available, exposing it as an
eval construct, which does pretty much the same thing, is easy and obvious.

The first language to do this was an early dialect of Lisp. More recent dynamic lan-
guages—Perl, Python, PHP, Ruby, and of course JavaScript—followed suit. Most of
these languages went through a similar process, where they initially introduced a
straightforward, naive evaluation construct, and later tried to refine, extend, or disable
it as a form of damage control.

The subtlety in designing an interface for code execution lies in the environment in
which the code is to be interpreted—the question of which variables it can see. In a
primitive interpreter, which often represents variables in a way that makes it easy to
inspect and manipulate them, it is no problem to give evaluated code full access to all
the variables that are visible at the point where the eval construct is used. The initial
design of a dynamic language is often intertwined with the first implementation of its
interpreter, and this makes it tempting to go with the model where the evaluated code
has access to the local environment.

There are two reasons why this is problematic. Firstly, there’s rarely a reason to want
to access local scope. You'll occasionally see some confused JavaScript programmers do
something like eval("obj." + propertyName) because they fail to realize that the lan-

guage allows dynamic property access, or eval("var result = " + code) because they
are ignorant of the fact that eval already returns the result of the evaluation, and the
var result = part could be lifted out. When the code string comes from an external
source, there’s also the risk of a variable in the string accidentally using a variable
name that is also defined locally, causing a conflict between the two uses. The one case
where access to a local scope is not completely wrongheaded is when evaluated code
needs to have access to utility functions defined in the module that evaluates it. We’ll

see a decent way to work around that later.

The second reason that evaluating in the local scope is not a good idea is that it makes
life quite a bit harder for the compiler. Knowing exactly what the code it’s compiling
looks like enables a compiler to make a lot of decisions at compile time (rather than
runtime), which makes the code it produces faster. Most importantly, if it knows a
variable x refers to a specific x variable defined either globally or in one of its enclosing
scopes, it can generate very simple code to access this x. An eval could introduce a
new variable x, forcing the compiler to represent its environment in a more complex
way and to output more expensive code for each variable access.

And this last point is the reason for the very odd way in which JavaScript eval
behaves—the distinction between local and global evaluation.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

eval is, historically, a regular global variable that holds a function. That means you can
do everything with it that you can do with other values—store it in another variable
or in a data structure, pass it to a function, and so on. But because the people trying to
optimize JavaScript execution did not want to represent all environments and variable
accesses in the expensive, dynamic way I described previously, they introduced a sub-
tle rule, probably initially as a hack, that was later standardized into ECMAScript.

This rule is: the eval is only done in the local scope if we can see, during compilation,
that a call to eval takes place—there has to be a function call to the actual global vari-
able named eval in the code (and this global must still have its original value). If you
call eval in any other, more indirect way, it will not have access to the local scope, and
thus will be a global evaluation.

For example, eval("foo") is local, while (0 || eval)("foo") is global, and so is

var lave = eval; lave("foo").

Though this was conceived purely as an efficiency kludge, not as an attempt to provide
a better interface, people have been intentionally making use of it, since global evalua-
tion is often more useful and less error-prone than local evaluation.

Another variant of global evaluation is the Function constructor. It takes strings for the
argument names and function body as arguments, and returns a function in the con-
text of the global scope (it does not close over variables in the scope where it was cre-
ated). Note that the argument names can be passed either as separate arguments (new
Function("a", "b", "return a + b")) or as a single comma-separated string (new Func
tion("a, b", "return a + b")). For most purposes, this is the preferred way to evalu-
ate code.

Performance

Evaluating code is expensive. Not only does the JavaScript compiler have to be
invoked to compile the code, but modern JavaScript engines also tend to perform
analysis on the loaded program in order to perform certain optimizations. Introducing
new code can invalidate the results of such analysis, and cause recompilation of other
parts of the program.

Evaluation in local scope is extra worrying, for the reasons discussed before. I ran a
number of benchmarks on modern JavaScript engines, and found that variable access
that goes through a scope that can be accessed by a local eval form is significantly
slower. This means that if you're using the closure module pattern (an anonymous
function as module scope), having a local evaluation anywhere in your module will
incur a cost for all code in the module. The scope just needs to kave such a call—it
doesn’t even have to execute it—to incur this cost.

PERFORMANCE

www.it-ebooks.info

15

http://www.it-ebooks.info/

16

On the other hand, the speed of a function created by new Function or a global eval is
not adversely affected by the fact that it was created dynamically.

So, a desirable pattern is one where the evaluation happens once (at program startup),
or outside of hot loops (we're talking about few-millisecond delays here, not interface-
freezing disasters). The functions generated by the evaluation can then be used as
intensively as needed.

Common Uses

The most obvious use of eval is dynamically running code from an external source: for
example, in a module-manager library that fetches code from somewhere and then
uses a global eval to inject it into the environment, or an interactive rep! (read-eval-
print loop) that executes code that the user types.

In the past, eval was the easiest way to parse strings of JSON data, whose representa-
tion is a subset of JavaScript’s own syntax. In modern implementations we have
JSON.parse for that, which has the significant advantage of not enabling code injection
attacks when parsing untrusted data.

Most JavaScript-based text templating systems use some form of eval to precompile
templates. They parse the template text once, produce a program that instantiates the
template, and use eval to have the JavaScript compiler compile that. In some cases this
is simply an optimization, but in others the templates may contain JavaScript code, so
some form of eval has to be involved. We’ll go over the compiler for a simple
JavaScript-based templating language in the next section.

A template is a kind of domain-specific language (DSL), a language designed to solve a
specific problem (in this case, building up strings) by being specialized to express the
elements of that problem more directly than plain JavaScript. Domain-specific lan-
guages are a more interesting application of eval. We’'ll cover another one, a compact
and efficient notation for matching and extracting binary data, later on in this chapter.

A Template Compiler

Before you look at the code that follows, I should warn you. You opened a book called
Beautiful JavaScript, and I'm about to confront you with some rather ugly code. That
may seem disingenuous.

Code that builds up strings of code tends to look bad. If we had string interpolation, a
code-oriented templating system, or even a data structure that represented code,
things might be slightly better. But as it is, we’ll be crudely concatenating lots of
strings, many of them containing the same keywords and syntactic patterns as the
code around them. This does not make for very elegant or readable code.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

The function shown here accepts a template string as an argument and returns a func-
tion that represents a compiled version of this template. It recognizes templating direc-
tives written between hash signs. Here’s an example of a trivial template that it parses:

#$in.title#

Items on today's list:
#for item in S$in.items#

* #item.name##if item.note# (Note: #item.note#) #end#
#end#

A directive starting with for opens a loop (over an array). An if directive opens a con-
ditional. Both are closed by an end directive. Anything else is interpreted as a value
that should simply be inserted as text into the output. The variable $in is used to refer
to the value passed into the template.

For brevity, the code does no input checking whatsoever. Here’s the implementation of
that function:

function compile(template) {
var code = "var _out = '";", uniq = 0;
var parts = template.split("#");
for (var 1 = 0; 1 < parts.length; ++i1) {
var part = parts[i], m;
if (1 % 2) { // 0dd elements are templating directives
if (m = part.match(/~for (\S+) in (.*)/)) {
var loopVar = m[1], arrayExpr = m[2];

var indexvar = "_i" + (++uniq), arrayVar = "_a" + uniq;

code += "for (var " + indexVar + " =0, " + arrayVar + " = " +
arrayExpr + ";" + indexVar + "<" + arrayVar + ".length; ++" +
indexvVar + ") {" + "var " + loopVar + " =" + arrayVar +

"[" + indexVar + 3"
} else if (m = part.match(/~if (.*)/)) {
code += "if (" + m[1] + ") {";
} else if (part == "end") {
code += "}";
} else {
code +=
}
} else if (part) { // Even elements are plain text
code += "_out += " + JSON.stringify(part) +
}
}

return new Function("$in", code + "return _out;");

_out += " + part + ";";

n [
s

}

To locate the directives, the function simply splits the template on hash characters, and
considers the even-numbered parts to be plain text and the odd-numbered elements
(the parts that appear between hash characters) as templating directives. Regular
expressions are used to recognize the if and for directives.

A TEMPLATE COMPILER

www.it-ebooks.info

17

http://www.it-ebooks.info/

18

The _out variable in the generated code is used to build up the output string. The
underscore is an attempt to avoid name clashes, since we’ll be mixing generated code
with code found in the template.

To build a loop for a for directive, we need to introduce two additional variables into
the generated code—one for the index and one to hold the array. We need a variable
that holds the array to ensure that whatever expression is used to produce it is not
evaluated repeatedly, since it might be expensive to compute or have side effects. In
order to make sure that these variable names do not clash, even for nested loops, a
counter (uniq) is added to the variable name (_i1, _12, etc.).

Finally, the Function constructor is used to create a function with our generated code
as the body and a single argument, $in.

If we feed the template compiler the example template, it will spit out a function like
this (whitespace added):

function($in) {

var _out = H
_out += Sin.title;
_out += "\n==============\n\nItems on today's list:\n";

for (var _i11 = 0, _al = $in.items; _11 < _al.length; ++_11) {
var item = _al[_i1];
_out += "\n * ";
_out += item.name;
if (item.note) {
_out += " (Note: ";
_out += item.note;
_out += ") "
}
}

return _out;

}

We could make that code cleaner by adding some intelligence to the compiler (for
example, it could combine subsequent += statements to simply use +), but you can see
how it expresses the steps needed to instantiate the template.

With a few extensions, such as the option to escape the inserted strings for your out-
put format of choice (HTML, for example), and some error checking, this code can be
built into a practical templating engine.

Speed

It is always possible to interpret a domain-specific language on demand. But just as
compilers tend to run programs faster than interpreters, precompiling a template leads
to faster instantiation than interpreting it from its source every time it is instantiated.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

If we forget for a second that the templating language contains JavaScript code, it
would be possible to do a form of compilation without new Function—we could parse
the template, and build up a data structure that allows us to instantiate it quickly with
little repeated work. But it'd take a lot of effort to come close to the speed of the pre-
ceding approach that way.

The JavaScript compiler is much more powerful (and has more direct access to the
machine) than our puny compiler, so by first translating to JavaScript and then hand-
ing off the rest of the work to its more advanced peer, we can get good results with
very little work.

This idea of building on top of a compiler for another language in order to run your
own language or notation is widely applicable. The various compile-to-JavaScript lan-
guages make use of it. But it also works well on a smaller scale, such as for writing a
tiny compiler for a simple language to solve a very specific problem.

Mixing Languages

Let’s look a bit more at the fact that the templates in the toy templating language con-
tain JavaScript code. They are, in a way, JavaScript programs with a syntactic exten-
sion that optimizes them for text expansion.

Whether this is a good idea is a question that can be answered in several ways. If you
don’t trust the source of your templates, or you want to expand the templates in an
environment that doesn’t run JavaScript, then it is definitely a bad idea. The authors
of the templates can inject arbitrary code into your program, and expanding these
templates in, for example, a Ruby program would be awkward.

But we do get the full expressive power of a real programming language in our tem-
plates. The alternative would be to define a simple expression language as part of the
templating language, parse that, and either interpret it during expansion or convert it
to the output language (JavaScript, in our case). This approach has its own problems,
though. It’s more work, obviously. But it is also hard to find a balance between offer-
ing enough features to allow people to do what they need to do without the language
becoming huge and complex.

We already know JavaScript, so if we wanted, in the example template, to render only
items whose category property contains the string important, we could simply type

#if /\bimportant\b/.test(item.category)#. If we had to express that in a sublanguage,
we’d either be out of luck if the language didn’t have string search, or need to first
spend 10 minutes digging through documentation to figure out how to express string
search in the language.

(Tangentially related is the argument that templating languages should be weak
because they should contain presentation logic only. My take on that is that, firstly,

MIXING LANGUAGES

www.it-ebooks.info

19

http://www.it-ebooks.info/

20

presentation logic can get quite complicated, and secondly, taking away my hammer to
ensure that I don’t use it on screws is a lousy way of enforcing good style.)

A tricky issue that comes up when you’re mixing languages is “hygiene.” The gener-
ated code and the code that appeared in the template both run in the same scope.
Thus, there is a danger that the two sources of code will disagree on what a certain
variable name refers to. The toy template compiler generates variables like _a3 to avoid
accidentally clashing with variables from the included code. This mostly works, but is
of course far from perfect (#for _al in [1, 2, 3]# causes a clash). You could use more
obscure variable names (_$$_o_0_a3) to further reduce the chance of clashes, but it’ll
never be elegant. Languages that use this kind of metaprogramming more intensively
have mechanisms to cope with these kinds of problems. JavaScript doesn’t, but

because its metaprogramming support is so minimal, that’s usually not a problem.

Dependencies and Scopes

Since the toy template compiler used new Function to evaluate its code, that code will
only be able to see the global scope.

What if the code that sits in the template needs access to, for example, a date format-
ting function? Or what if the generated part of the code needs an HTML escaping
function to escape the dynamic parts of the output? You could put them in the global
scope, but if you're using modern, disciplined scoping in the style of CommonJS
(Node.js) or RequireJS modules, that would be unfortunate.

The key to a workable solution to this problem is that, though we can’t control what
the generated function itself closes over, we can wrap our result function in an addi-
tional function, and thus inject stuff for it to close over.

Here’s a crude utility that does this:

function newFunctionWith(env, args, body) {
var code = "";
for (var prop in env)
code += "var " + prop + " = $Senv." + prop +
code += "return function(" + args + ") {" + body + "};";
return new Function("$Senv", code)(env);

" non,
Ea

}

console.log(newFunctionWith({x: 103}, "y", "return x + y;")(20));
// > 30

Given an object mapping variables to values, an argument list string, and a function
body string, this helper acts like new Function(args, body), except that it makes sure
that all the properties in the env object are visible as closed-over variables to the body
of the function.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

It does this by generating a wrapping function that unpacks its argument into local
variables, and then, immediately after evaluating this function, calling it. For simple
values like integers, it could also have inserted the string form of the value directly
into the wrapping function (var x = 10;). However, that doesn’t work for complex
values, so we need to pass the environment object to the evaluated code, allowing it to
extract the actual values from that object.

Using this utility, the templating system could do something like allowing templates to
declare their dependencies and require-ing those in, making the code close over them.

Debugging Generated Code

Debugging generated code is rarely a pleasant experience. When you write a compiler
like the one we just looked at, and try it out, you will most likely be greeted by some
kind of syntax error. Details differ between JavaScript engines, but if this error has ori-
gin information at all, it'll often point to the line that did the evaluation, not to the
generated code.

So what now? Unfortunately, there’s no good answer that I know of. One approach is

to make your compiler function log the code before it evaluates it, autoformat it, put it
in a file, and try to load it. Then, the error will at least point to the actual place where

the code is broken.

If it’s not a syntax error but a logic error, this might not be necessary—you might just
be able to insert console.log or debugger statements into your generated code.

Where it gets really bad is when, as in the templating system I discussed, code from
the input is mixed into the generated code. Debugging a compiler once is one thing.
Getting strange, contextless exceptions whenever you make a typo in your template
can ruin your whole day. For production-strength systems, you probably want serious
syntax checking of your templates. There are a variety of good JavaScript parsers
(written in JavaScript) available nowadays, and they can be used to properly parse the
expressions or statements you expect in your template, at compile time. This also helps
to determine their extent in a reliable way (a directive like #if $in.type == "#" #
would not parse in the code shown earlier, because it doesn’t understand that the sec-
ond hash sign is quoted), and would make it possible to emit a meaningful error
(including the template name and line offset) when nonsense is encountered.

Binary Pattern Matches

The second example I want to show you largely follows the same pattern as the first:
we compile a domain-specific language down to JavaScript, in order to gain both
speed and expressivity.

DEBUGGING GENERATED CODE

www.it-ebooks.info

21

http://www.it-ebooks.info/

22

There is a feature in the Erlang programming language that allows you to pattern-
match against binary data by specifying a sequence of fields and, for each field, a vari-
able name or constant. Variables will be bound to the content of the field, and con-
stants will be compared to the content of the field in order to determine whether the
pattern matches. This provides a very convenient way of checking and extracting data
from binary blobs.

Let’s say we want something like this in JavaScript. Ideally, it'd look like this:

function gifSize(bytes) {
binswitch (bytes) {
case <<"GIF89a" width:uint16 height:uint16>>:
return {width: width, height: height};
default:
throw new Error("not a GIF file");

}
}

where binswitch is like switch, except that it matches a series of fields in the given
chunk of binary data (a typed array, presumably). This pattern would mean “first the
bytes corresponding to the string "GIF89a", then a two-byte unsigned integer, which is
bound to width, and finally another unsigned integer bound to height.” Patterns that
bind variables like that are found in many modern programming languages, and are a
very pleasant feature.

If you're willing to do heavyweight full-file preprocessing, you could write your own
JavaScript dialect in which this code is valid. But in this chapter, we're looking for
lightweight tricks, not alternative languages. We need to find some kind of operator
that gets us close enough to this goal, but can be expressed in the existing syntax of
the language.

Here’s what I came up with:

var pngHead = binMatch("'\x89PNG\\r\\n\x1a\\n':str8 _:uint4 'IHDR':str4 " +
"width:uint4 height:uint4 depth:uint1");

function pngSize(bytes) {
var match;
if (match = pngHead(bytes, 0))
return {width: match.width, height: match.height};
else
throw new Error("Not a PNG file.");

}

Patterns are precompiled from strings to functions, much like in the template example.
The pattern string contains any number of binding:type pairs, where type is a word
like str or uint followed by a byte size, and binding can be _ (an underscore) to ignore
a field, a literal (in which case the pattern matches only when the value is equal to the
literal), or a field name in which to store the value.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

The very ugly string at the start of the pattern contains the first eight bytes of the PNG
header. The double backslashes are needed because the content of the string is inter-
preted as a string literal (again) in the generated code, so it may not contain raw new-
lines. After the file-identitying string, a four-byte field is found, which we ignore.
Next, the string 'IHDR' announces the start of the image header, which starts with
width, height, and color depth fields.

A function produced by binMatch takes a Uint8Array and an offset integer, and returns
null for failed matches and an object containing the matched values when the match
succeeds. The return object will have an additional field, end, which indicates the byte
offset of the end of the match.

Here is the core of the match compiler. It is pleasantly small:

function binMatch(spec) {
var totalSize = 0, code = "", match;
while (match = /~([*:]+):(\w+)(\d+)\s*/.exec(spec)) {
spec = spec.slice(match[0].length);
var pattern = match[1], type = match[2], size = Number(match[3]);
totalSize += size;

if (pattern == "_") {
code += "pos += " + size + ";";
} else if (/7[\wS]+5/.test(pattern)) {
code += "out."
} else {
code += "if (" + binMatch.read[type](size) +
pattern + ") return null;";

+ pattern + " = " + binMatch.read[type](size) +

non,
ERl

+

}
}

code = "if (input.length - pos < " + totalSize + ") return null;" +
"var out = {end: pos + " + totalSize + "};" + code + "return out;";
return new Function("input, pos", code);

}

It does a (crude, non-error-checking) parse of the input string using a regular expres-
sion that matches a single pattern:type element. For wildcard (_) patterns, it simply
generates code to move the offset (pos) forward. For other patterns, it uses a helper
from binMatch.read (which we’ll look at momentarily) to generate an expression that
builds up a JavaScript value from the bytes at the current position. For literals, it gen-
erates an if that returns null when the value found doesn’t match the literal.

Finally, an extra conditional is generated at the start of the function, which verifies
that there are enough bytes in the array to match the pattern, and code that initializes
and returns the output object is added.

These are the type-parsing functions needed for the example:

BINARY PATTERN MATCHES

www.it-ebooks.info

23

http://www.it-ebooks.info/

binMatch.read = {
uint: function(size) {
for (var exprs =[], 1 = 1; 1 <= size; ++1)
exprs.push("input[pos++] * " + Math.pow(256, size - 1));
return exprs.join(" + ");
}s
str: function(size) {
for (var exprs = [], 1 = 0; 1 < size; ++1)
exprs.push("input[pos++]");
return "String.fromCharCode(" + exprs.join(", ") + ")";
}
b

Given a size, they return a string that contains the expression that will advance the pos
variable and produce a value of the specified type. Note that uint is big-endian (net-
work byte order). Obvious extensions would be to write a little-endian type (uintL),
which we’d need when parsing our earlier GIF example, and of course signed types
(int, intL).

Further optimizations are possible. For example, we could pick literal strings and inte-
gers apart into bytes at compile time, and compare those bytes one by one instead of
building up the composite value and comparing that. Or, we could first check all liter-
als in a pattern and only then extract the output fields, so that the match does as little
work as possible if it fails. This is a nice property of static metaprogramming—the static
part of the input (in this case, the pattern string) gives us a rather high-level view of
the desired dynamic behavior, and we can pick a compilation strategy based on that
information. If you were to interpret such a pattern at runtime, there would be less
room for such decisions.

If you want to test this code out, here’s a tiny HTML page that, using the code shown
previously, allows you to pick a PNG file and will console. log its size:

<!doctype html>
<script src="binMatch.js"></script>
<input type="file" id="file">
<script>
var pngHead = binMatch("'\x89PNG\\r\\n\x1a\\n':str8 _:uint4 " +
"'IHDR':str4 width:uint4 height:uint4 depth:uintl");
document.getElementById("file").addEventListener("change", function(e) {
var reader = new FileReader();
reader.addEventListener("loadend", function() {
var match = pngHead(new Uint8Array(reader.result), 0);
if (match)
console.log("Your image is ", match.width, "x", match.height, "pixels.");
else
console.log("That is not a PNG image.");
b
reader.readAsArrayBuffer(e.target.files[0]);
s

</script>

24 CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

The binary pattern compiler, by putting pieces of code (literals) from the input string
directly in the generated code (without sanity-checking them), could, in slightly con-
trived situations such as building up the pattern string from user input, be used to
inject code into a system. Always take a moment to consider this angle when you use
eval-like constructs. For some tools, like the template compiler, giving the sublanguage
the ability to run arbitrary code is part of the design. For others, like this one, it isn't,
and it is a good idea to make sure they can’t be used for that purpose. We could fix
this by checking whether the syntax of the literals actually conforms to JavaScript lit-
erals, or by defining and parsing our own string and number syntax (which could also
get rid of the double backslash problem) and not inserting any raw, unparsed code
from the template at all.

Closing Thoughts

There is a major convenience gap between my fantasy syntax for pattern matching
and the reality of what I came up with. Instead of elegantly expressing our pattern
inline, we have to build it up beforehand, in order to ensure that it is built only once—
reparsing and recompiling it every time it gets run would, in a situation where the
matching happens multiple times, be embarrassingly wasteful. Instead of simply bind-
ing the variables in the pattern to local variables, we have to store them in an object.

In this case, I think that if you are doing actual binary parsing, the abstraction is help-
ful enough to live with the not-quite-ideal interface. But the case is representative of a
wall that you hit when trying to push eval-based abstractions beyond a certain point.

There’s a pattern that works well—compiling a domain-specific language down to a
piece of code. Some languages can be expressed as JSON-like composite data, rather
than plain strings (for example, a decision tree modeled as nested objects).

The awkward part lies in the interaction between the domain-specific language and
the code around it. They can’t be mixed, due to the requirement that the compilation
happens only once, whereas the code that makes use of the domain-specific function-
ality will typically run many times.

Small snippets of code with little external dependencies can be made part of the
domain language. In some cases, you might even decide to include closures in your
source data structure, in order to be able to access the local environment—yet even
those won't be able to close over the incoming data for a specific invocation of the func-
tionality, but only over data that has the same lifetime as the compiled artifact.

For this reason, many domain-specific languages are better expressed using interpreta-
tion rather than compilation. jQuery is a good example of a successtul interpreted
domain language in JavaScript—it hacks method chaining in a way that allows for

CLOSING THOUGHTS

www.it-ebooks.info

25

http://www.it-ebooks.info/

26

succinct DOM operations. This abstraction would be completely unpractical (though
probably faster) when executed as a compiled language.

The pattern where you should consider reaching for a compiled domain-specific lan-

guage is:

e You're writing chunks of repetitive, low-density code.
e Performance is important.
e The code chunks can conveniently be isolated in functions.

e You can think of a shorter, more elegant notation.

CHAPTER TWO: EVAL AND DOMAIN-SPECIFIC LANGUAGES

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER THREE

How to Draw a Bunny
Jacob Thornton

This chapter is not about rendering rabbits with JavaScript.

This chapter is about language and the difference between what it means to draw a
“rabbit” and what it means to draw a “bunny.”

This chapter is not a tutorial. It’s an exegesis. This chapter is at play.

What Is a Rabbit?

So she was considering, in her own mind (as well as she could, for the hot
day made her feel very sleepy and stupid), whether the pleasure of making a
daisy-chain would be worth the trouble of getting up and picking the daisies,
when suddenly a White Rabbit with pink eyes ran close by her.

—Lewis Carroll, Down the Rabbit Hole

A “rabbit” is an animal you might find in a field, forest, or pet shop. It is a gregarious
plant-eater with a short tail and floppy ears. It is an actual rabbit existing in reality. A
“rabbit” cannot talk to itself. A “rabbit” does not run late. From this point forward,
when we speak of rabbits, we speak of these ordinary, everyday rabbits.

For the purposes of this chapter, to “draw a rabbit” is to apply various drawing techni-
ques in such a way as to render an image of a rabbit indistinguishable from the actual
rabbit itself. It is to approach a level of realism on par with that of a photograph. A
rabbit drawing is strictly referential. It strives to be a copy.

Drawing a rabbit is mechanical and spec-based. There is a correct way to draw a rabbit
and an incorrect way to draw a rabbit.

www.it-ebooks.info

27

http://www.it-ebooks.info/

28

When you draw a rabbit, you are always drawing a very particular rabbit. Deviations
from the rabbit model should be regarded as errors. The more your rabbit rendering
stays on model, the better.

What Is a Bunny?

After a time she heard a little pattering of feet in the distance, and she hastily
dried her eyes to see what was coming. It was the White Rabbit returning,
splendidly dressed, with a pair of white kid gloves in one hand and a large fan
in the other: he came trotting along in a great hurry, muttering to himself as
he came, “Oh! the Duchess, the Duchess! Oh! won't she be savage if I've kept
her waiting!”

—Lewis Carroll, Down the Rabbit Hole

A “bunny” is not just a young, cute rabbit.

A bunny is a splendidly dressed abstraction. A playful resemblance that prioritizes an
identity other than the rabbit. It is a symbol.

OoggoOOWO o

NOTHING NOTHING NOTHING

There are several examples from pop culture of bunnies: Bugs Bunny, the Energizer
Bunny, etc. These icons are always characters first and rabbits second (or third). Here,
the rabbit identity is hijacked and subjugated to serve a new ruling identity.

To “draw a bunny” is to play within the loose constraints of an already existing iden-
tity (the rabbit) to create something entirely new. The connotation of the word
“bunny” itself invokes a lack of seriousness which serves to disarm and undermine the
rigid structure of the rabbit, promoting both creative exploration and expression.

CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://www.it-ebooks.info/

Consider the bunny heads of Ray Johnson (pictured above), a correspondence artist
from New York.

In January 1964, Ray Johnson signed a letter to his friend William (Bill) S.
Wilson with a small picture of a bunny head next to his name. This image
rapidly proliferated, primarily becoming Johnson’s signature and “self por-
trait” as personifications of how he felt on a given day. Johnson also used the
bunny head to represent other “characters” who populate his works, as well
as the subject of one of his “How to draw” series.

—Frances EL. Beatty, Ph.D. The Ray Johnson Estate

When you draw bunnies, their proximity to a real image of a rabbit isn’t called into
question. For Johnson, the bunnies ceased to be rabbits, instead becoming a vehicle for
alternative expression; a means to creativity; and an exercise in play, imagination,
inventiveness, and originality.

What Does This Have to Do with JavaScript?

JavaScript is an expressive language.

Expressions are what lie beyond the literal compiled logic of a program. They are what
we as humans read and interpret. The expressiveness of JavaScript is a vehicle through
which software developers speak. It is a way for developers to infuse their code with
semantic value: different styles, dialects, and character. And this potential for linguistic
play inherent in JavaScript is precisely where we begin to see “bunnies.”

To draw a rabbit in JavaScript is to copy patterns out of books and slides, to mimic
specific styles from blogs, and more generally to reproduce already established forms
and expressions. Alternatively, to draw a bunny here is to undertake an exercise in
experimentation. It is to unearth alternative forms from within the language and then
combine these forms in functional yet inventive ways.

In drawing JavaScript bunnies, you're playing. It’s fun. It challenges and evolves both
your individual and the community’s understanding of the language. It opens up new
potential solutions to old problems, and exposes flaws in old assumptions. It estab-
lishes a personal relationship between you and the code you produce. It makes writing
JavaScript a craft. An art. It makes reading software personal and purposeful. It estab-
lishes an audience for your program other than just the compiler. Intent becomes
clearer. Code becomes more consistent. And you grow as a developer.

With this in mind, consider the following conditional statement, which checks to see if
a property exists; if the property doesn’t exist, it calls a method to set it. Traditionally,
this logic might have looked something like this:

WHAT DOES THIS HAVE TO DO WITH JAVASCRIPT? 29

www.it-ebooks.info

http://www.it-ebooks.info/

30

if (!this.username) {
this.setUsername();

}

As an expression, this logic reads: if not a username, then set a username. However,
using the logical OR operator you could express this same statement in a more mini-
malist way:

this.username || this.setUsername()

The eXpression: a username exists, or set a username.

These two code blocks are functionally equivalent, yet their expressions are different.
They read differently. Where the former has a sort of exactness and formality, the lat-
ter is pithy and short. Exploring these variations in expression is precisely what draw-
ing bunnies is all about. And what’s more, by using expressions in conjunction with
other like expressions a developer can begin to architect an overarching voice or tone
in a program.

Let’s consider a second reduced example. Imagine looking inside an array for a user-
name. If the username is not present, you want to add the username to the array. The
logic for this might be expressed as follows:

if (users.indexOf(this.username) === -1) {
users.push(this.username)

}
This code reads: if the username has an index in the users array that is equal to -1,
then push the username into the users array.

An alternative way to express this statement might be to make use of the bitwise NOT
operator. The bitwise NOT operator inverts the bits of its operand, turning a -1 into a @
(or falsy). The preceding logic might then be rewritten simply as:

~users.indexOf(this.username) || users.push(this.username)

The expression: the username is in the array, or add it.

As you begin to build up these expressions into programs, a certain rhythm and time
signature emerges. And as you improve as an engineer, you can begin to orchestrate
different phrasings and melodies into your software as well. This establishes a consis-
tent rhythm at the project level, which will make it much easier to flow from one piece
of a program to another.

The following is a simple function that, given x, y, w, h, and placement arguments,
returns an offset object with a top and left value. It is written in a decidedly slow man-
ner, with a very deliberate, heavy rhythm (switch > case... case... case... case...
return):

CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://www.it-ebooks.info/

function getOffset (x, y, w, h, placement) {

var offset
switch (placement) {
case 'bottom':
offset = {
top: y + h,
left: x + w/2

}
break

case 'top':
offset = {
top: vy,

left: x + w/2

}

break
case 'left':

offset = {

top: y + h/2,

left: x
}
break
case 'right':
offset = {

top: y + h/2,

left: x +w

}
break

}

return offset

}

Notice the difference between this function and the following function, not in terms of
computing performance (where the difference is inconsequential), but rather in pure

cognitive pacing. The next function returns the same result, but with a quicker, more
succinct rhythm (return > this/that, this/that, this/that):

function getOffset
return placement
placement
placement

}

(X, y, w, h, placement) {

"bottom' ? { top:

"top' ? { top:
"left' ? { top:
{ top:

y + h,
v,

left:
left:
y + h/2, left:
y + h/2, left:

+w/2 }
+w/2 }

+w }

A third function might even exaggerate the pacing further, focusing in on the return
object itself—clearly calling out expected properties “top” and “left”—but with a more
complex rhythm, forking the conditions at the object’s properties:

function getOffset (x, y, w, h, placement) {

return {
top : placement == 'bottom' ? y +
placement == 'top' 7y
left : placement == 'right' ? x +

h
:y+h/2,
W

WHAT DOES THIS HAVE TO DO WITH JAVASCRIPT?

www.it-ebooks.info

31

http://www.it-ebooks.info/

placement == 'left' 7 X DX+ w/2
}
}

As you’ve begun to see, expressions guide our reading of software. In JavaScript, the
potential for this sort of variation both enables and is enabled by experimentation and
play—which therefore should be championed and not discouraged.

With So Much Variation, Which Way Is Correct?

Imagine sitting several adults down in a room and providing them with an actual
image of a rabbit and adequate drawing supplies. Imagine asking them each to draw a
rabbit.

Depending on the group’s exposure to various drawing techniques, you'd likely
receive a variety of renderings, ranging from rather crude to rather capable.

Variety here becomes a metric for the lack of experience in drawing amongst the
group. Which is to say, if everyone were perfect at illustration they would each have
rendered a photorealistic image, indistinguishable from the image of the rabbit; there
wouldn’t have been any variety at all.

This is because to draw a rabbit is to exercise one’s ability to duplicate. It is an exercise
in experience and mimicry. There is a right answer, and thus, there isn’t room for
creativity.

But what if you had asked the same group to draw a bunny?

Arguably the request is at once less threatening, less rigid, and less scientific. To draw a
bunny is to draw a rabbit-like thing. It is exceedingly difficult to be critical of a bunny
drawing because at most it’s only ever a resemblance.

Following this, you could expect the variety in the group’s images to be even more
exaggerated. To draw a bunny is to celebrate and to lean on variety. Here, however, vari-
ety no longer takes a negative form. Instead, it is symptomatic of the potential for creative
expression implicit in the act of drawing without bounds. It is a positive metric for
inventiveness and imagination.

To draw a bunny is to engage with variety. It serves to challenge the image of the rab-
bit by introducing new means of achieving likeness.

Consider immediately invoked function expressions (IIFEs). By convention, an IIFE
takes one of the two following forms:

(function (){})O
(function (){}())

32 CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://www.it-ebooks.info/

But drawing bunnies is not about convention. Rather, it’s an exercise in upsetting con-
vention. And yet at the same time it’s about positive variation—one manifestation of
an expression not being absolutely superior to another. With this in mind, here are a
few other ways you may write an IIFE:

1function (){3()
~function (){}()
+Ffunction (){}()
-function (){}()

new function (){}
1,function (){}()
1&&function (){}()
var i=function (){}()

Each manifestation has its own unique qualities and advantages—some with fewer
bytes, some safer for concatenation, each valid and each executable.

How Does This Affect the Classroom?

Because school is limited by grades, it spends much of its time propagandizing the
drawing of rabbits.

HOW DOES THIS AFFECT THE CLASSROOM? 33

www.it-ebooks.info

http://www.it-ebooks.info/

34

If you've taken a drawing class, you’ve almost certainly drawn a block of wood.
You've spent hours shading a piece of fruit. You've studied proportions. You've been
lectured on perspective. You've been given tools to break things down to a grid. And,
after a few months of intense studying, your apple does begin to look a bit more like
the apple sitting in front of you.

To be sure, this isn’t a bad thing. In fact, quite the opposite. These practices give you
foundational knowledge on top of which you can build more complex structures. Fur-
thermore, you can turn the tools in on themselves and exploit them in very interesting
ways. And perhaps best of all, they introduce conventions and a new language
through which you can engage with your peers.

The problem emerges when students think of these tools in absolute ways. This is the
right way to do X; this is the only way to do Y. As you might imagine, this absolutism
breeds arrogance, narcissism, and an environment rooted in peer opposition.

Is This Art? And Why Does That Matter?

It’s true to say that when you paint anything, you are also painting not only
the subject, but you are painting yourself as well as the object that you are
trying to record. Because painting is a dual performance. Because, for
instance, if you look at a Rembrandt painting, I feel like I know very much
more about Rembrandt than I do about the sitter.

—Francis Bacon, interview with David Sylvester

Briefly consider two libraries I've contributed to this past year: Ratchet and Bootstrap.
Functionally, the content of both libraries is as it should be. What’s interesting are the
undertones—or rather, the potential for the same sort of undertones you would expect
to find in painting, music, or creative writing. Which is to say, the differences in style

between these two projects aren’t just arbitrary preferences. They're very definite,
derived expressions, representative of a certain mood over time.

CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://bit.ly/sliders_ratchet
http://bit.ly/carousel_bootstrap
http://www.it-ebooks.info/

Bootstrap reads very fun, not serious—nearly every line is a joke. It’s trying to provoke
you. Taking shortcuts. Demanding that you reread it. Reread it again. It's very pop.
Very optimistic. Forward. Playful.

The code for Ratchet is very different. It’s very conservative. It’s not meant to draw
attention to itself. It’s very explicit. Assertive, necessary. It’s easy to approach. It’s a
vanilla milkshake.

Insofar as art has been characterized in terms of mimesis, expression, communication
of emotion, and other such values, it follows that software, when written expressively,
is also an artistic gesture. What’s more, this realization reinforces our insistence on the
importance of drawing bunnies inasmuch as the exercise stretches one’s creative and
expressive capacities, enabling the formation of opinions and development of style,
while also helping to strengthen communication, exploration, and imaginative facul-
ties in the programmer.

Along these lines, my good friend Angus Croll has been exploring further creative
manifestations of code with his great articles on literary figures writing JavaScript. In
his articles, he writes several functions to return a Fibonacci series of a given length,
each program in the style of a different literary figure: Hemingway, Breton, Shake-
speare, Poe. The results are comedic, but the point is consistent:

The joy of JavaScript is rooted in its lack of rigidity and the infinite possibili-
ties that this allows for. Natural languages hold the same promise. The best
authors and the best JavaScript developers are those who obsess about lan-
guage, who explore and experiment with language every day and in doing so
develop their own style, their own idioms, and their own expression.

—Angus Croll, If Hemingway wrote JavaScript

Beautiful JavaScript is an art. Reading through it should feel uniform; it should allow
you to flow from expression to expression. It’s not just about executing logic; it’s about
establishing pace and reflecting a little bit of yourself. It’s about taking pride in what
you create.

IS THIS ART? AND WHY DOES THAT MATTER?

www.it-ebooks.info

35

http://bit.ly/hemingway_js
http://www.it-ebooks.info/

36

What Does This Look Like?

In 1945, Picasso released a suite of 11 lithographs entitled “Bull.” In this series he
deconstructs the image of the bull, from realist rendering to hyperreduced line draw-
ing, progressively subtracting from and reimagining its form with each plate.

What's of particular interest here is the progression. Beginning with the realistic brush
drawing, Picasso bulks the form up, increasing its expression of power before dissect-
ing it with lines of force, following the contours of its muscles and skeleton, ultimately
reducing and simplifying the image into a line. This study is considered the ultimate
master class in abstraction, and what’s more, it’s a classic example of Picasso drawing
bunnies.

This same exercise in abstraction can be applied to JavaScript.

I had the privilege of working with Alex Maccaw during my time at Twitter. There, we
had a number of conversations about interview philosophies and code challenges.

During one of our discussions he mentioned that he had always asked the same intro-
ductory interview question during phone screens—and since then, I have adopted it as
my first question as well.

CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://www.it-ebooks.info/

The question goes, given the following condition, define explode:

if ('alex'.explode() === 'a 1L e x') interview.nextQuestion()
else interview.terminate()

There are a number of ways to answer this question. Let’s begin with the most
verbose:

String.prototype.explode = function () {
var i
var result = "'
for (1 = 0; 1 < this.length; i++) {
result = result + this[i]
if (1 < result.length - 1) {
result = result + ' '
}
}

return result

}

This block is swollen and distended, yet deliberate. There’s nothing clever. It’s by the
book. And it’s easily the most common response to the question.

Simply put, we declare variables 1 and result, iterating over the string’s value, pushing
its characters to result and conditionally adding a space between each character until
eventually we return.

Fine. But now let’s try something a bit cleverer:

String.prototype.explode = function (f,a,t) {

for (f =a="", t = this.length; a++ < t;) {
f += this[a-1]
a<ta& (F+="'")

}

return f //ollow @fat

}

If you write code like this, people will hate you. Without question. It’s playful. It looks to
trick you. To trick the language. It assaults the reader. It’s concerned with everything,
except its own logic. It’s vain. But it’s beautiful (to me).

In this block, we’re scoping the variables to the function by including them as pseu-
doarguments (which spell my Twitter handle). The for loop saves some characters by
setting both f and a to new string, and the a is then coerced in the next expression to 1
by the ++ increment operator_, just in time to be used in the equality comparison. On
the next line the program subtracts 1 from a before indexing the string to make up for
starting the loop at 1 (rather than 0). It then conditionally adds a space to the end,
before completing the loop and returning the result.

WHAT DOES THIS LOOK LIKE? 37

www.it-ebooks.info

http://www.it-ebooks.info/

38

The next iteration of the solution is by far the simplest, leaning heavily on the langua-
ge’s tool belt. Perhaps surprisingly, this response is actually very uncommon to receive
in real interviews:

String.prototype.explode = function () {
return this.split('').join(" ")
}

This solution is about getting to the next question. It’s clever, but not overly so. It’s
blunt. It’s mature. If the previous solution was crass, this one is urbane.

And finally, the absolute simplest:

String.prototype.explode = function (/*smart ass*/) {
return 'a 1l e x'

}

Which I've never gotten.

What Did | Just Read?

If drawing rabbits in JavaScript means copying patterns out of books or mimicking
specific styles from blogs, drawing bunnies is about experimentation and creative
expression.

To draw a bunny is to pervert the conventions of the language. To draw your breath or
to get it all out as fast as possible. It’s an exercise in discovering and pushing the
bounds of your understanding of the language. It’s about reinforcing and challenging
JavaScript as a craft.

In drawing JavaScript bunnies, you're always at play. And you're getting better.

CHAPTER THREE: HOW TO DRAW A BUNNY

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FOUR

Too Much Rope, or
JavaScript for Teams

Daniel Pupius

Beauty is power and elegance, right action, form fitting function, intelligence,
and reasonability.

—Kim Stanley Robinson, Red Mars

JavaScript is a flexible language. In fact, this entire book is a testament to its expres-
siveness and dynamism. Within these pages you’ll hear stories of how to bend the lan-
guage to your will, descriptions of how to use it to experiment and play, and sugges-
tions for seemingly contradictory ways to write it.

My job is to tell a more cautionary tale.

I'm here to ask the question: what does it mean to write JavaScript in a team? How do
you maintain sanity with 5, 10, 100 people committing to the same codebase? How do
you make sure new team members can orient themselves quickly? How do you keep
things DRY without forcing broken abstractions?

Know Your Audience

In 2005 I joined the Gmail team in sunny Mountain View, California. The team was
building what many considered at the time to be the pinnacle of web applications.
They were awesomely smart and talented, but across Google, JavaScript wasn’t consid-
ered a “real programming language”—you engineered backends, you didn’t engineer
web Uls—and this mentality affected how they thought about the code.

Furthermore, even though the language was 10 years old, JavaScript engines were still
limited: they were designed for basic form validation, not building applications. Gmail
was starting to hit performance bottlenecks. To get around these limitations much of

www.it-ebooks.info

39

http://www.it-ebooks.info/

the application was implemented as global functions, anything requiring a dot lookup
was avoided, sparse arrays were used in place of templates, and string concatenation
was a no-no.

The team was writing first and foremost for the JavaScript engine, not for themselves
or others. This led to a codebase that was hard to follow, inconsistent, and sprawling.

Instead of optimizing by hand, we transitioned to a world where code was written for
humans and the machine did the optimizations. This wasn’t a new language, mind
you—it was important that the raw code be valid JavaScript, for ease of understand-
ing, testing, and interoperability. Using the precursor to the Closure Compiler, we
developed optimization passes that would collapse namespaces, optimize strings, inline
functions, and remove dead code. This is work much better suited to a machine, and it
allowed the raw code to be more readable and more maintainable.

TIP

Lesson 1: Code for one another, and use tools to perform mechanical
optimizations.

Stupid Good

As the old adage goes, debugging is harder than writing code, so if you write the clev-
erest code you can, you'll never be clever enough to debug it.

It can be fun to come up with obscure and arcane ways of solving problems, especially
since JavaScript gives you so much flexibility. But save it for personal projects and
JavaScript puzzlers.

When working in a team you need to write code that everyone is going to understand.
Some parts of the codebase may go unseen for months, until a day comes when you
need to debug a production issue. Or perhaps you have a new hire with little Java-
Script experience. In these types of situation, keeping code simple and easy to under-
stand will be better for everyone. You don’t want to spend time decoding some
bizarro, magical incantation at two in the morning while debugging production issues.

Consider the following:

var el = document.querySelector('.profile');
el.classList[['add', 'remove'][+el.classList.contains('on')]]('on");

And an alternative way of expressing the same behavior:

var el = document.querySelector('.profile');
if (el.classList.contains('on')) el.classList.remove('on');
else el.classList.add('on");

40 CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS

www.it-ebooks.info

http://www.it-ebooks.info/

Saying that the second snippet is better than the first may seem in conflict with the
concept that “succinctness = power.” But I believe there is a disconnect that stems
from the common synonyms for succinct: compact, brief.

I prefer ferse as a synonym:

using few words, devoid of superfluity, smoothly elegant

The first snippet is more compact than the second snippet, but it is denser and actually
includes more symbols. When reading the first snippet you have to know how coer-
cion rules apply when using a numeric operator on a Boolean, you have to know that
methods can be invoked using subscript notation, and you have to notice that square
brackets are used for both defining an array literal and method lookup.

The second snippet, while longer, actually has less syntax for the reader to process.
Furthermore, it reads like English: “If the element’s class list contains ‘on’, then
remove ‘on’ from the class list; otherwise, add ‘on’ to the class list.”

All that said, an even better solution would be to abstract this functionality and have
the very simple, readable, and succinct:

toggleCssClass(document.querySelector('.profile'), 'on');

TIP
Lesson 2: Keep it simple; compactness != succinctness.

Keep It Classy

When I'm talking with “proper programmers,” they often complain about how terrible
JavaScript is. I usually respond that JavaScript is misunderstood, and that one of the
main issues is that it gives you too much rope—so inevitably you end up hanging
yourself.

There were certainly questionable design decisions in the language, and it is true that
the early engines were quite terrible, but many of the problems that occur as Java-
Script codebases scale can be solved with pretty standard computer science best practi-
ces. A lot of it comes down to code organization and encapsulation.

Unfortunately, until we finally get ES6 we have no standard module system, no stan-
dard packaging mechanisms, and a prototypal inheritance model that confuses a lot of
people and begets a million different class libraries.

While JavaScript’s prototypal inheritance allows instance-based inheritance, I gener-
ally suggest when working in a team that you simulate classical inheritance as much as
possible, while still utilizing the prototype chain. Let’s consider an example:

KEEP IT CLASSY

www.it-ebooks.info

a4

http://www.it-ebooks.info/

var log = console.log.bind(console);
var bob = {
money: 100,
toString: function() { return '$' + this.money }
b
var billy = Object.create(bob);

log('bob:" + bob, 'billy:' + billy); // bob:S100 billy:S$100

bob.money = 150;

log('bob:" + bob, 'billy:' + billy); // bob:S150 billy:S$150

billy.money = 50;

log('bob:" + bob, 'billy:' + billy); // bob:S150 billy:S$50

delete billy.money;

log('bob:" + bob, 'billy:' + billy); // bob:S150 billy:$150
In this example, billy inherits from bob. What that means in practice is that billy.pro
totype = bob, and nonmatching property lookups on billy will delegate to bob. In
other words, to begin with billy’s $100 is bob’s $100; billy isn’t a copy of bob. Then,
when billy gets his own money, it essentially overrides the property that was being
inherited from bob. Deleting billy’s money doesn’t set it to undefined; instead, bob’s
money becomes billy’s again.

This can be rather confusing to newcomers. In fact, developers can go a long time
without ever knowing precisely how prototypes work. So, if you use a model that sim-
ulates classical inheritance, it increases the chances that people on your team will get
on board quickly and allows them to be productive without necessarily needing to
understand the details of the language.

Both the Closure library’s goog.inherits and Node.js’s util.inherits make it easy to
write class-like structures while still relying on the prototype for wiring:

function Bank(initialMoney) {
EventEmitter.call(this);
this.money = money;

}

util.inherits(Bank, EventEmitter);

Bank.prototype.withdraw = function (amount) {
if (amount <= this.money) {
this.money -= amount;
this.emit('balance_changed', this.money); // inherited
return true;
} else {
return false;
}
}

This looks very similar to inheritance in other languages. Bank inherits from EventEmit
ter; the superclass’s constructor is called in the context of the new instance; util.inher

42 CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS

www.it-ebooks.info

http://www.it-ebooks.info/

its wires up the prototype chain just like we saw with bob and billy earlier; and then
the property lookup for emit falls to the EventEmitter “class.”

A suggested exercise for the reader is to create instances of a class without using the
new keyword.

TIP
Lesson 3: Just because you can doesn’t mean you should.

TIP
Lesson 4: Utilize familiar paradigms and patterns.

Style Rules

The need for consistent style as codebases and teams grow is nothing unique to Java-
Script. However, where many languages are opinionated about coding style, JavaScript
is lenient and forgiving. This means it’s all the more important to define a set of rules
the team should stick to.

Good style is subjective and can be difficult to define, but there are many cases where
certain style choices are quantifiably better than others. In the cases where there isn’t
a quantifiable difference, there is still value in making an arbitrary choice one way or
the other.

TIP

Style guides provide a common vocabulary so people can concentrate on what
you're saying instead of how you're saying it.

A good style guide should set out rules for code layout, indentation, whitespace, capi-
talization, naming, and comments. It is also good to create usage guides that explain
best practices and provide guidance on how to use common APIs. Importantly, these
guides should explain why a rule exists; over time you will want to reevaluate the
rules and should avoid them becoming cargo cults.

Style guides should be enforced by a linter and if possible coupled with a formatter to
remove the mechanical steps of adhering to the guide. You don’t want to waste cycles
correcting style nits in code reviews.

The ultimate goal is to have all code look like it was written by the same person.

TIP
Lesson 5: Consistency is king.

STYLE RULES

www.it-ebooks.info

43

http://www.it-ebooks.info/

44

Evolution of Code

When I was first working on Google Closure there was no simple utility for making
XMLHttpRequests; everything was rolled up in large, application-specific request
utilities.

So, in my naiveté XhrLite was born.

XhrLite became popular—no one wants to use a “heavy” implementation—but its
users kept finding features that were missing. Over time small patches were submitted,
and XhrLite accumulated support for form encoded data, JSON decoding, XSSI han-
dling, headers, and more—even fixes for obscure bugs in FF3.5 web workers.

Needless to say, the irony of “XhrLite” becoming a distinctly heavy behemoth was not
lost, and eventually it was renamed “Xhrlo.” The API, however, remained bloated and
cumbersome.

TIP

Small changes—reasonable in isolation—evolve into a system that no one would
ever design if given a blank canvas.

Evolutionary complexity is almost a force of nature in software development, but it
has always seemed more pronounced with JavaScript. One of the strengths that hel-
ped spur JavaScript’s popularity is that you can get up and running quickly. Whether
you're creating a simple web app or a Node.js server, a minimal dev environment and
a few lines of code yields something functional. This is great when you're learning, or
prototyping, but can lead to fragile foundations for a growing team.

You start out with some simple HTML and CSS. Perhaps you add some event handlers
using jQuery. You add some XHRs, maybe you even start to use pushState. Before long
you have an actual single-page application, something you never intended at first. Per-
formance starts to suffer, there are weird race conditions, your code is littered with
setTimeouts, there are hard-to-track-down memory leaks...you start wondering if a
traditional web page would be better. You have the duck-billed platypus of
applications.

TIP
Lesson 6: Lay good foundations. Be mindful of evolutionary complexity.

Conclusion

JavaScript’s beauty is in its pervasiveness, its flexibility, and its accessibility. But beauty
is also contextual. What started as a “scripting language” is now used by hundred-
plus-person teams and forms the building blocks of billion-dollar products. In such sit-

CHAPTER FOUR: TOO MUCH ROPE, OR JAVASCRIPT FOR TEAMS

www.it-ebooks.info

http://www.it-ebooks.info/

uations you can’t write code in the same way you would hacking up a one-person
website. So...

1. Code for one another, and use tools to perform mechanical optimizations.
Keep it simple; compactness != succinctness.

Just because you can doesn’t mean you should.

Utilize familiar paradigms and patterns.

Consistency is king.

o ok W N

Lay good foundations. Be mindful of evolutionary complexity.

CONCLUSION 45

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FIVE

Hacking JavaScript
Constructors for
Model Harmony

Ben Vinegar

JavaScript MVC—or MVW (Model, View, “Whatever”)—frameworks come in many
flavors, shapes, and sizes. But by virtue of their namesake, they all provide developers
with a fundamental component: models, which “model” the data associated with the
application. In client-side web apps, they typically represent a database-backed object.

Last year at Disqus, we rewrote our embedded client-side application in Backbone, a
minimal MVC framework. Backbone is often criticized for having an unsophisticated
“view” layer, but one thing it does particularly well is managing models.

Defining a new model in Backbone looks like this:

var User = Backbone.Model.extend({
defaults: {
username: '',

firstName: ,
lastName: ''

3

idAttribute: 'username',

fullName: function () {
return this.get('firstName') + this.get('lastName');
}
b;
Here’s some sample code that initializes a new model, and demonstrates how that
model instance might be used in an application:

www.it-ebooks.info

a7

http://backbonejs.org/
http://www.it-ebooks.info/

48

var user = new User({
username: 'john_doe',
firstName: 'John',
lastName: 'Doe'

s
user.fullName(); // John Doe
user.set('firstName', 'Bill');

user.save(); // PUTs changes to server endpoint

These are simple examples, but client-side models can be very powerful, and they are
typically—ahem—the backbone of any nontrivial MVC app.

Additionally, Backbone provides what are called “collection” classes, which help devel-
opers easily manipulate common sets of model instances. You can think of them as
superpowered arrays, loaded with helpful utility functions:
var UserCollection = Backbone.Collection.extend({
model: User,
url: '/users'

s
var users = new UserCollection();
users.fetch(); // Fetches user records via HTTP

var johndoe = users.get('john_doe'); // Find by primary idAttribute

Not all MVC frameworks implement a Collection class exactly like Backbone does. For
example, Ember.js defines a CollectionView class, which similarly maintains a set of
common models, but tied to a DOM representation. API differences aside, it’s clear that
developers commonly manipulate and render sets of objects, and frameworks provide
ditferent facilities for doing so.

Doppelgangers

When you're working with large or even medium-sized client applications, it’s com-
mon to have multiple model instances representing the same database-backed object.
This usually happens when you have multiple views of some data, such that a model
appears in two or more views.

Consider this example, which introduces two new collections of users: Followers, for
users that are following a given user (say, on a social network), and Following, for
users whom a given user happens to be following. A user who is both a follower and
being followed will appear in both collections, in which case we will have duplicate
instances of the same database-backed model:

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY

www.it-ebooks.info

http://www.it-ebooks.info/

var FollowingCollection = UserCollection.extend({
url: '/following'
b

var FollowersCollection = UserCollection.extend({
url: '/followers'

s

var following = new FollowingCollection();
var followers = new FollowersCollection();

following.fetch();
followers.fetch();

var userl = following.get('johndoe');
var user2 = followers.get('johndoe');

userl === user2; // false

Having multiple instances of the same model has two major downsides.

First, you are using additional memory to represent the same object. Depending on the
complexity of the model and the sizes of the attributes it holds, it’s not unreasonable
for a single instance to consume kilobytes of memory. If instances are duplicated doz-
ens or hundreds of times—a very possible scenario for long-lived single-page applica-
tions—they can quickly become a memory sink.

Secondly, if you or the user modifies the state of one of these models on the client,
other instances of that model will fall out of sync. This can happen through a number
of means, like if the user changes the state of the object via the UI, or an update cre-
ated by another user is sent to the client via a real-time service:

userl.set('firstName', 'Johnny');

user2.get('firstName'); // still John

In this simple example, where the same user appears in only two different collections,
it might seem trivial to update both instances manually with the new property. But it’s
easy to imagine how in a complex application the same user object might exist across
dozens of different collections—not just follower/following lists, but also notifications,
feed items, logs, and so on.

It would be terrific if, instead of having to track down every instance of a given model,
we could have each instance update itself intelligently. Or better yet, if we never had
duplicated instances to begin with.

DOPPELGANGERS

www.it-ebooks.info

49

http://www.it-ebooks.info/

Miniature Models of Factories

A common solution for handling duplicate instances is to use a factory function when
you create a new model instance. If the factory detects that a model instance already
exists, it will just return the existing instance instead:

var userCache = {};

function UserFactory(attrs, options) {
var username = attrs.username;

return userCache[username] ?
userCache[username] :
new User(attrs, options);

}

var userl = UserFactory({ username: 'johndoe' });
var user2 = UserFactory({ username: 'johndoe '});

userl === user2; // true

In order to use this pattern effectively, you must always use this factory function when
creating new instances. This is a simple enough chore when managing your own code.
But difficulty arises when you try to enforce this pattern in codebases you aren’t
responsible for, like third-party libraries and plugins.

Consider, for example, the Collection.prototype._prepareModel function from Back-
bone’s source code. Backbone uses this function to “prepare” and ultimately create a
new model instance to add to a collection. It is invoked by a variety of means, such as
when you're populating a collection with models returned from an HTTP resource:

// Prepare a hash of attributes (or other model) to be added to this
// collection.
Backbone.Collection.prototype._prepareModel = function(attrs, options) {
if (attrs instanceof Model) {
if (!attrs.collection) attrs.collection = this;
return attrs;
}
options || (options = {});
options.collection = this;
var model = new this.model(attrs, options);
if (!model._validate(attrs, options)) {
this.trigger('invalid', this, attrs, options);
return false;
}
return model;

3
Of particular importance is this line:

var model = new this.model(attrs, options);

50 CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY

www.it-ebooks.info

http://www.it-ebooks.info/

This is what actually creates a new instance of the model associated with this
collection.

this.model is a reference to the constructor of the model class the collection wraps. It’s
specified when you define a new collection class, like we did earlier:

var UserCollection = Backbone.Collection.extend({
model: User,
url: '/users'

s

What'’s pretty cool is that instead of passing the User class to the collection definition,
we can pass the UserFactory class (our factory function that returns unique model
instances):

var UserCollection = Backbone.Collection.extend({
model: UserFactory,
url: '/users'

s

UserFactory will then be assigned to this.model, and will be invoked by the new opera-
tor when the collection creates a new instance:

var model = new this.model(attrs, options); // this.model is UserFactory

But wait a minute. Now we're invoking UserFactory via the new operator. We weren't
doing that earlier; we were calling the function directly. Does this even work?

It turns out it does.

Constructor Identity Crisis

What exactly happens when you use the new operator on a function? A few things:

1. It creates a new object.

2. It sets that object’s prototype property to be the prototype property of the con-
structor function.

3. It invokes the constructor function, with this assigned to the newly created
object.

4. Tt returns the object, unless the constructor function returns a nonprimitive value.
In that case, the nonprimitive value is returned instead.

That last one is the neat part. If your constructor function returns a nonprimitive
value, that becomes the result of the new operation.

Since UserFactory returns a nonprimitive, that means that these two operations return
the same value:

CONSTRUCTOR IDENTITY CRISIS

www.it-ebooks.info

51

http://www.it-ebooks.info/

var userl = UserFactory({ username: 'johndoe' });
var user2 = new UserFactory({ username: 'johndoe '});

userl === user2; // true

This property of the new operator is pretty handy. It means that you can essentially dis-
card the object created by new, and return what you want—in our case, a unique user
model instance.

Making It Scale

In the examples so far, UserFactory has been a single-purpose factory function; it only
guarantees uniqueness of User instances. While that’s super handy, there are probably
other models for which we’ll want to guarantee uniqueness. So, it would be nice to
have a general-purpose wrapper that can work for any model class.

In a moment we'll look at a function called UniqueFactory. It’s actually a constructor
function that is invoked with the new operator, and takes as input a normal Backbone
model class. It returns a wrapped constructor function that generates unique instances
of that class.

For example, it can actually generate a UserFactory class:

var UserFactory = new UniqueFactory(User);

var userl = UserFactory({ username: 'johndoe' });
var user2 = new UserFactory({ username: 'johndoe '});

userl === user2; // true
The UniqueFactory implementation is shown here:

/**
* UniqueFactory takes a class as input, and returns a wrapped version of

* that class that guarantees uniqueness of any generated model instances.
*

* Example:
* var UniqueUser = new UniqueFactory(User);
*/

function UniqueFactory (Model) {
var self = this;

// The underlying Backbone Model class
this.Model = Model;

// Tracked instances of this model class
this.instances = {};

// Constructor to return that will be used for creating new instances
var WrappedConstructor = function (attrs, options) {

52 CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY

www.it-ebooks.info

http://www.it-ebooks.info/

return self.getInstance(attrs, options);

3

// For compatibility with Backbone collections, our wrapped
// model prototype should point to the *actual* Model prototype
WrappedConstructor.prototype = this.Model.prototype;

return WrappedConstructor;

}

UniqueFactory.prototype.getInstance = function (attrs, options) {
options = options || {};

var id = attrs && attrs[this.Model.prototype.idAttribute];

// If there's no ID, this model isn't being tracked, and
// cannot be tracked; return a new instance
if (!1d)

return new this.Model(attrs, options);

// Attempt to restore a cached instance

var instance = this.instances[id];

if (!instance) {
// If we haven't seen this instance before, start caching it
instance = this.createInstance(id, attrs, options);

} else {
// Otherwise update the attributes of the cached instance
instance.set(attrs);

}

return instance;

};

UniqueFactory.prototype.createInstance = function (id, attrs, options) {
var instance = new this.Model(attrs, options);
this.instances[id] = instance;

return instance;
};
Let’s take a closer look at the UniqueFactory constructor, because it’s doing some tricky
stuff.

First recall that UniqueFactory is intended to be invoked with the new operator, which
creates a new object and assigns it to this (which is immediately aliased to self). The
constructor creates a new function, WrappedConstructor, whose signature matches that
of a Backbone.Model constructor function. But instead of invoking the actual construc-
tor, it calls the getInstance prototype method of the UniqueFactory instance we just
created:

var WrappedConstructor = function (attrs, options) {
return self.getInstance(attrs, options);

b

MAKING IT SCALE 53

www.it-ebooks.info

http://www.it-ebooks.info/

54

Then, on the last line of this function, UniqueFactory returns WrappedConstructor. Once
again, we’ve decided to ignore the object created by the new operator, and instead
return an entirely different object—a function, even.

This means that when we invoke UniqueFactory, the return value is actually our wrap-
ped constructor:

var UserFactory = new UniqueFactory(User); // WrappedConstructor

However, this time we actually used the object created by the new operator. We just
didn’t return it. And it still exists: in the closure created by the WrappedConstructor
function (self).

Phew. Did you catch all that?

This is kind of a funny implementation. It’s not necessarily ideal, but I presented it to
you to demonstrate how the new operator can be abused in an interesting—if some-
what confusing—way. Namely, a constructor function can both make use of the object
created by new and return an entirely new value, at the same time.

Beware of Memory Leaks

In the example factory implementations here, I've glossed over an important detail: they
maintain an ever-growing global cache of model instances. Since instances are never
removed from the cache even when they're no longer needed, they continue occupying
memory forever (or at least, until the page refreshes).

For example, suppose a unique model instance is destroyed via Model.proto
type.destroy:

(function () {
var user = UserFactory({ username: 'johndoe' });

user.destroy(); // sends HTTP DELETE to API server
HOs;

Despite the user variable not existing outside the functional scope in which it is
declared, and despite the johndoe record being destroyed on the server, the instance
lives on inside our UserFactory instance cache.

This is particularly bad in long-lived single-page applications. A proper implementation
would “track” instance creation and dismissal, and remove the instance from the cache
when it is no longer required to be there.

Conclusion

In this chapter, we’ve identified the “uniqueness” problem that affects applications
where the same database-backed object appears in multiple collections. We explored a

CHAPTER FIVE: HACKING JAVASCRIPT CONSTRUCTORS FOR MODEL HARMONY

www.it-ebooks.info

http://www.it-ebooks.info/

powerful solution for this problem: functions that wrap a class constructor, and guar-
antee the uniqueness of any returned objects. Lastly, we introduced a utility, UniqueFac
tory, that generates model classes that similarly guarantee uniqueness.

What we’ve covered isn’t necessarily unique to JavaScript. Factory methods that
return unique instances are tried-and-true patterns that can be—and certainly have
been—implemented in any number of languages.

But one clever trick that JavaScript has up its sleeve is the new operator. Specifically,
the function on which new is called can ignore the newly created object (this) and
return what it pleases. This little quirk is deceptively powerful, because it allows you to
emulate object creation when object creation is expected—for instance, when you're
working with external libraries like Backbone.

In my experience, JavaScript has never been accused of being a particularly flexible
language. It still bears the marks of being designed in 10 days. But for all its warts,
occasionally I discover new things about it that particularly please me. This small prop-
erty of the new operator is one of them. Hopefully, having read this chapter, you'll feel
similarly.

CONCLUSION

www.it-ebooks.info

55

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER SIX

One World, One Language
Jenn Schiffer

There sure are a lot of languages.
—Jenn Schitfer

It was September 2003 when I began my undergraduate studies in computer science.
Having chosen a liberal arts school, T was required to select a number of general edu-
cation course requirements that lived outside the realm of my major. One of those
requirements was two foreign language courses. When I inquired about using Java to
fulfill that sequence, my request was immediately shut down. “You have to pick a real
foreign language, like Spanish or French,” my undergraduate advisor told me.

Perhaps I should have asked about JavaScript.

To be multilingual, or a polyglot, has always been presented as superior to being able
to speak one’s native language only. I have never understood why people believe this.
Living under one roof, having one job for an extended amount of time, and being in a
long-term monogamous relationship: these are seen as qualities of a stable life. Being
an expert in a single subject, as opposed to knowing a little bit about a lot, is champ-
ioned. So should be the case with programming.

JavaScript is a single, stable language that is powerful enough to build the World Wide
Web, make robots move, and convince publishers to print entire books about it. If we
were required to pick a single “best” programming language, JavaScript seems like a
no-brainer.

It is understandably controversial to say that a specific language is better than the rest
and that it should, therefore, become the official language of programming. Who am I
to decide which language every other programmer should learn and build with? In my
favor, one of the greatest aspects of web development in the 21st century is the
expression of opinions so strong they are worthy of becoming web standards.

www.it-ebooks.info

57

http://www.it-ebooks.info/

58

An Imperative, Dynamic Proposal

Imagine you are an academic advisor at a liberal arts college and are tasked with defin-
ing the choices given to students for their foreign language requirements. A language
called “JavaScript” comes up in a proposal, and you need to study it and determine if
it is a viable option. Naturally, you just so happen to be a fluent JavaScript expert, yet
you are not sure it would be more useful than, say, Java.

Java is notoriously simple to learn at the college freshman level, regardless of the stu-
dent’s experience:

/**

* Hello World in Java

*/

class Example {
public static void main(String[] args) {
System.out.println("Hello World.");
}
}
To run Java, though, the client must also be running the Java virtual machine
(J.V.M.). It would be silly to ask students to carry multiple machines around to all of
their classes, so a language that does not require a JVM would be a better option. You
might be thinking, “Maybe this is a weird joke I just don’t get?” Perhaps the author,
yours truly, is trying to make a joke, and you feel like there are much better ones she
could make. But this is no joke: JavaScript does not require a Java virtual machine.

Neither does Haskell:

-- Hello World in Haskell
main = putStrLn "Hello World."

The problem with Haskell is that, unlike JavaScript, it requires installation of a com-
piler. It is also a functional programming language that, like Latin, is considered “dead”
and referenced only in historical texts. Yes, it is useful to learn Haskell in order to
understand the context of programming today, but not for making useful products. It
would be irresponsible to require students to learn something that would not help
them build client-side web applications.

Ruby happens to be quite useful in building web applications:

Hello World in Ruby
puts "Hello World."

One of the features of Ruby is flexibility in the form of having dozens of different ver-
sions, the most popular of which is called Rails. Rails itself has many versions—dia-
lects, if you will—which causes communication breakdowns between apps. Multiple
versions works for operating system releases, but not for web development. JavaScript

CHAPTER SIX: ONE WORLD, ONE LANGUAGE

www.it-ebooks.info

http://www.it-ebooks.info/

versions do not matter to the user or developer because it is not server-side, and
removing that headache makes it a better option for teaching.

Cascading Style Sheets (C.S.S.) is also not server-side and does not require a compiler
or virtual machine:

/* Hello World in C.S5.S. */
#example { content:'Hello World.'}

But much like hardware does not work without software, C.S.S. does not work
without other languages. In the previous example, the browser looks for an element
on the page with the ID “example.” If the developer did not use another language to
create that element, the C.S.S. cannot do anything. The professor teaching the foreign
language course would have to teach another language in addition to C.S.S., and that
is asking a lot of the staff. JavaScript does not need other languages to work. It just
works.

How about HyperText Markup Language (H.T.M.L.)? It works on its own and does not
need a compiler installed:

<!-- Hello World in H.T.M.L. -->
<!DOCTYPE html>
<html ng-app>
<head>
<script src="angular.js"></script>
</head>
<body ng-controller="ExampleController"s

<script type="text/javascript"s
function ExampleController($scope) {
Sscope.printText = "Hello World";
}

</script>
<h1></h1>

</body>
</html>

Actually, H.T.M.L. does need another language to work, and it is JavaScript. Sure, in
the past, H.T.M.L. used to be all you needed to create a web page. In the current state
of the Semantic Web, though, the use of frontend JavaScript frameworks like Ember.js
is required to bind text to a document.

JavaScript does not need a JavaScript framework to run, because it is JavaScript
already:

// Hello World in JavaScript
alert('Hello World');

AN IMPERATIVE, DYNAMIC PROPOSAL

www.it-ebooks.info

59

http://www.it-ebooks.info/

And there you have it. Simple, pure, vanilla, untouched, beautiful JavaScript. Short,
effective, and simple to teach. You can rightfully count JavaScript among the options
for teaching foreign languages to your college’s student body.

The Paradox of Choice

As hard as it is to choose the options of foreign language courses a student can take, it
is even harder for the student to decide among those options. One of the hardest prob-
lems in computer science is choosing the right tool to use, and the same certainly goes
for communication. It is an impossible question to ask: “German or JavaScript?” Why

can a student not learn both?

This may seem like an NP-complete problem. You cannot teach JavaScript in German,
because JavaScript syntax is in American English:

Benachrichtigung('Hello World');

Although semantically, factually, and tactfully correct, the preceding code is syntacti-
cally incorrect:

>> ReferenceError: Benachrichtigung is not defined
It turns out, though, that you can teach German in JavaScript:
alert('Hallo Welt');

If one can learn a language within JavaScript, then it is clear that JavaScript can be the
only foreign language course offered that will not prevent students from learning how
to communicate in foreign countries.

Globalcommunicationscript

College is the basis of learning for all web developers, as is evident with the current
education revolution within the software industry. As more programming jobs are cre-
ated, educators grow more responsible for fostering the growth of new developers. To
make this job easy, it only makes perfect sense to choose a language that everyone can
communicate and learn with. As we discovered in our foreign language course narra-
tive, that language is JavaScript.

Simple, pure, vanilla, untouched, beautiful JavaScript.

60 CHAPTER SIX: ONE WORLD, ONE LANGUAGE

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER SEVEN

Math Expression Parser
and Evaluator

Ariya Hidayat

Domain-specific languages (DSLs) are encountered in many aspects of a software engi-
neer’s life: configuration file formats, data transfer protocols, model schemas, applica-
tion extensions, interface definition languages, and many others. Because of the
nature of such languages, the language expression needs to be straightforward and
easy to understand.

In this chapter, we will explore the use of JavaScript to implement a simple language
that can be used to evaluate a mathematical expression. In a way, it is very similar to a
classic handheld programming calculator. Besides the typical math syntax, our Java-
Script code should handle operator precedence and understand predefined functions.

Given a math expression as a string, this is the series of processing applied to that
string:

e The string is split into a stream of tokens.
e The tokens are used to construct the syntax tree.

e The syntax tree is traversed to evaluate the expression.

Each step will be described in the following sections.

Lexical Analysis and Tokens

The first important thing to do to a string representing a math expression is lexical
analysis—that is, splitting the string into a stream of tokens. Quite expectedly, a

www.it-ebooks.info

61

http://www.it-ebooks.info/

function that does this is often called a fokenizer. Alternatively, it is also known as a
lexer or a scanner.

We first need to define the types of the tokens. Since we’ll be dealing with simple
math expressions, all we really need are number, identifier, and operator. Before we
can identify a portion of a string as one of these tokens, we need some helper func-
tions (they are self-explained):

function isWhiteSpace(ch) {
return (ch === 'u0009"') || (ch === " ") || (ch === 'uBBAQ®"');
}

function isLetter(ch) {
return (ch >= 'a' & ch <= "z"'") || (ch >= 'A" & ch < = "7");
}

function isDecimalDigit(ch) {
return (ch >= '0"') && (ch < = '9");
}

Another very useful auxiliary function is the following createToken, used mostly to
avoid repetitive code in the later stages. It basically creates an object for the given
token type and value:

function createToken(type, value) {
return {
type: type,
value: value
b
}

As we iterate through the characters in the math expression, we will need a way to
advance to the next character and another method to have a peek at the next charac-
ter without advancing our position:

function getNextChar() {
var ch = 'x00"',
idx = index;
if (idx < length) {
ch = expression.charAt(idx);
index += 1;
}

return ch;

}

function peekNextChar() {
var idx = index;
return ((idx < length) ? expression.charAt(idx) : 'x00');

62 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

In our expression language, spaces do not matter: 40 + 2 is treated the same as 40+2.
Thus, we need a function that ignores whitespace and continues to move forward
until there is no whitespace anymore:

function skipSpaces() {
var ch;

while (index < length) {
ch = peekNextChar();
if (!isWhiteSpace(ch)) {
break;

}
getNextChar();

}

Suppose we want to support standard arithmetic operations, brackets, and simple
assignment. The operators we need to support are +, -, *, /, =, (, and). A method to
scan such an operator can be constructed as follows. Note that rather than checking
the character against all possible choices, we just use a simple trick utilizing the
String.index0f method. By convention, if this scanOperator function is called but no
operator is detected, it returns undefined:

function scanOperator() {
var ch = peekNextChar();
if ('+-*/()=".1index0f(ch) >= 0) {
return createToken('Operator', getNextChar());

}

return undefined;
}
Deciding whether a series of characters is an identifier or not is slightly more complex.
Let us assume we allow the first character to be a letter or an underscore. The second,
third, and subsequent characters can each be another letter or a decimal digit. We dis-
allow a decimal digit to start an identifier to avoid confusion with a number. Let’s
begin with two simple helper functions that do these checks:

function isIdentifierStart(ch) {
return (ch === '_') || isLetter(ch);

}

function isIdentifierPart(ch) {
return isIdentifierStart(ch) || isDecimalDigit(ch);

}

The identifier check can now be written as a simple loop like this:

function scanIdentifier() {
var ch, 1id;

ch = peekNextChar();

LEXICAL ANALYSIS AND TOKENS

www.it-ebooks.info

63

http://www.it-ebooks.info/

if (!isIdentifierStart(ch)) {
return undefined;

}

id = getNextChar();
while (true) {
ch = peekNextChar();
if (!isIdentifierPart(ch)) {
break;
}
id += getNextChar();
}

return createToken('Identifier', id);

}

Since we want to process math expressions, it would be absurd not to be able to recog-

nize numbers. We want to support simple integers such as 42, floating points like

3.14159, and also numbers written in scientific notation like 6.62606957¢-34. A skele-

ton for such a function is:

function scanNumber() {
// return a token representing a number
// or undefined if no number is recognized

}

And here is the breakdown of the function implementation.

First and foremost, we need to detect the presence of a number. It’s rather easy—we

just check whether the next character is a decimal digit or a decimal point (because .1

is a valid number):

ch = peekNextChar();
if (!isDecimalDigit(ch) && (ch !== '.")) {
return undefined;

}

And if that is the case, we need to process each following character as long as it is a
decimal digit:

number = '';
if (ch !'== ".") {
number = getNextChar();
while (true) {
ch = peekNextChar();
if (!isDecimalDigit(ch)) {
break;

}
number += getNextChar();

64 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

Since we want to support floating-point numbers, potentially we will see a decimal
point coming (for example, for 3.14159, up to now only we're processing the 3). If
that is the case, we need to loop again and process all the digits after the decimal point:

if (ch === "'.") {
number += getNextChar();
while (true) {
ch = peekNextChar();
if (!isDecimalDigit(ch)) {
break;

}
number += getNextChar();

}

Supporting scientific notation with exponents means we may see an “e” after those
digits. For example, if we are supposed to scan 6.62606957e-34, the previous code will
get us only up to 6.62606957. We need to process the “e,” and more digits after the
exponent sign. Note that there can be a plus or a minus sign as well:

if (ch === 'e' || ch === "E') {
number += getNextChar();
ch = peekNextChar();
if (ch === "+' || ch === "'-' || isDecimalDigit(ch)) {
number += getNextChar();
while (true) {
ch = peekNextChar();
if (!isDecimalDigit(ch)) {
break;

}
number += getNextChar();

}
} else {
throw new SyntaxError('Unexpected character after exponent sign');

}
}
The exception is needed because we want to tackle invalid numbers such as 4e.2
(there cannot be a decimal point after the exponent sign) or even just 4e (there must
be some digits after the exponent sign).

If we want to consume a math expression and produce a list of tokens represented by
the expression, we need a function that recognizes and gets the next token. This is
easy, since we have three individual functions that can handle a number, an operator,
or an identifier:

function next() {
var token;

skipSpaces();
if (index >= length) {

LEXICAL ANALYSIS AND TOKENS

www.it-ebooks.info

65

http://www.it-ebooks.info/

return undefined;

}

token = scanNumber();
if (typeof token !== 'undefined') {
return token;

}

token = scanOperator();
if (typeof token !== 'undefined') {
return token;

}

token = scanIdentifier();
if (typeof token !== 'undefined') {
return token;

}

throw new SyntaxError('Unknown token from character ' + peekNextChar());

Syntax Parser and Syntax Tree

The stream of tokens produced by the lexer does not give us enough information to
compute the math expression. Before we can evaluate the expression, an abstract syn-
tax tree (AST) corresponding to the expression needs to be constructed. This proce-
dure is commonly known as syntactic analysis, and it is usually carried out by a syntax
parser.

Consider the following expression:
X =-6*7

The associated syntax tree for this expression is depicted in the following diagram.

Assignment

A popular technique to construct the syntax tree is recursive-descent parsing. In such a
parsing strategy, we go top down and match the possible parse tree from the highest

66 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

level. For this particular problem, the simplified grammar of the math expression we
want to handle is written as the following (in Backus-Naur Form):

Expression ::= Assignment

Assignment ::= Identifier '=' Assignment | Additive

Additive ::= Multiplicative | Additive '+' Multiplicative |
Additive '-' Multiplicative

Multiplicative ::= Unary | Multiplicative '*' Unary | Multiplicative '/' Unary

Unary ::= Primary | '-' Unary

Primary ::= Identifier | Number | '(' Assignment ')' | FunctionCall

FunctionCall ::= Identifier '(' ')' | Identifier '(' ArgumentList ')'

1

ArgumentlList := Expression | Expression ',' ArgumentList

The following code walkthrough illustrates the process of matching the expression
from the topmost level (Expression). The lexer itself comes from the implementation
of the lexical analyzer shown earlier. The main entry point for the parsing looks like
this:

function parse(expression) {
var expr;

lexer.reset(expression);
expr = parseExpression();

return {
'"Expression': expr
I ¥
}

From this, we go to the main parseExpression function, which is surprisingly simple.
This is because our syntax implies only a variable assignment as an expression. For
other languages with more elaborate control flow (branching, loops, etc.) or some
form of DSL, assignment may not be the only form of expression:

function parseExpression() {
return parseAssignment();

}

For the subsequent parseFoo variants, we need a function that can match an operator.
If the incoming operator is the same as the expected one, then it returns true:

function matchOp(token, op) {
return (typeof token !== 'undefined') &&
token.type === T.Operator &&

SYNTAX PARSER AND SYNTAX TREE

www.it-ebooks.info

67

http://bit.ly/backus-naur
http://www.it-ebooks.info/

token.value === op;

}

An example form of assignment is x = 42. However, we also want to tackle cases
where the expression is as plain as 42, or a nested assignment such as x = y = 42. See
if you can understand how the following implementation of parseAssignment handles
all the three cases (hint: recursion is a possibility):

function parseAssignment() {
var token, expr;

expr = parseAdditive();

if (typeof expr !== 'undefined' && expr.Identifier) {
token = lexer.peek();
if (matchOp(token, '=')) {
lexer.next();
return {
'"Assignment': {
name: expr,
value: parseAssignment()

};
}

return expr;

}

return expr;

}

The function parseAdditive processes both addition and subtraction—that is, it creates
a binary operator node. There will be two child nodes, the left and right ones. They
represent the two subexpressions, further handled by parseMultiplicative, to be
added or subtracted:

function parseAdditive() {
var expr, token;

expr = parseMultiplicative();

token = lexer.peek();

while (matchOp(token, '+') || matchOp(token, '-')) {
token = lexer.next();

expr = {
'"Binary': {
operator: token.value,
left: expr,

right: parseMultiplicative()
}
}

token = lexer.peek();

b

68 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

return expr;

}

The same logic follows for parseMultiplicative. It handles both multiplication and
division:
function parseMultiplicative() {
var expr, token;

expr = parseUnary();

token = lexer.peek();

while (matchOp(token, '*') || matchOp(token, '/')) {
token = lexer.next();

expr = {
'Binary': {
operator: token.value,
left: expr,

right: parseUnary()
}
b
token = lexer.peek();

}

return expr;

}

Before we check the details of parseUnary, you may wonder why parseAdditive is
called first, and then parseMultiplicative. This is done in order to satisfy the operator
precedence requirement. Consider the expression 2 + 4 * 10, which actually evaluates
to 42 (multiply 4 by 10, then add 2) rather than 60 (add 2 to 4, then multiply by 10).
This is possible only if the topmost node in the syntax tree is the binary operator +,
which has two child nodes: the left one is just the number 2, and the right one is
actually another binary operator, *. The latter holds two numbers as the corresponding
child nodes, 4 and 10.

To handle a negation, like -42, we use the concept of unary operation. In the syntax
tree, this is represented by a unary operator node and it has only one child node
(hence the name). While negation is one form of unary operation, we also need to
take into account the unary positive operator, as in +42. Thanks to the function’s recur-
sive nature, expressions like ----42 or even -+-+42 can be handled without any prob-
lem as well. The code to handle the unary operation is as simple as the following:

function parseUnary() {
var token, expr;

token = lexer.peek();
if (matchOp(token, '-') || matchOp(token, '+')) {
token = lexer.next();
expr = parseUnary();
return {
'"Unary': {

SYNTAX PARSER AND SYNTAX TREE

www.it-ebooks.info

69

http://www.it-ebooks.info/

operator: token.value,
expression: expr

1
}

return parsePrimary();

}

Now here comes one of the most important functions of all: parsePrimary. First of all,
let’s consider the four possible forms of primary node:

e An identifier (basically referring to a variable in this context)--for example, x
¢ A number—for example, 3.14159
¢ A function call—for example, sin(0)

¢ Another expression enclosed in brackets—for example, (4 + 5)

Fortunately, deciding whether the incoming tokens will form one of these possibilities
is rather easy, as we just need to examine the token type. There is only ambiguity
between an identifier and a function call, which can be solved if we peek at the next
token (i.e., whether it is an open bracket or not). Without further ado, here is the
code:

function parsePrimary() {
var token, expr;

token = lexer.peek();

if (token.type === T.Identifier) {
token = lexer.next();
if (matchOp(lexer.peek(), '(')) {
return parseFunctionCall(token.value);

} else {
return {
'Identifier': token.value
IH
}

}

if (token.type === T.Number) {
token = lexer.next();
return {
"Number': token.value
IH
}

if (matchOp(token, '(')) {
lexer.next();
expr = parseAssignment();

70 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

token = lexer.next();
if (!matchOp(token, ')")) {
throw new SyntaxError('Expecting)');

}
return {

"Expression': expr
b

}

throw new SyntaxError('Parse error, can not process token ' + token.value);

}

Now the remaining part is parseFunctionCall. If we see an example of a function call
like sin(0), it basically consists of a function name, open bracket, function argument,
and close bracket. It is important to realize that there can be more than one argument
(foo(1, 2, 3)) or no argument at all (random()), depending on the function itself. For
simplicity, we split out the handling of the function argument to parseArgumentList.
Here are both functions for your pleasure:

function parseArgumentList() {
var token, expr, args = [];

while (true) {

expr = parseExpression();

if (typeof expr === 'undefined') {
break;

}

args.push(expr);

token = lexer.peek();

if (!matchOp(token, ',")) {
break;

}

lexer.next();

}

return args;

}

function parseFunctionCall(name) {
var token, args = [];

token = lexer.next();
if (!matchOp(token, '(")) {
throw new SyntaxError('Expecting (in a function call "' + name + '"');

}

token = lexer.peek();
if (!matchOp(token, ')')) {
args = parseArgumentList();

}

token = lexer.next();

SYNTAX PARSER AND SYNTAX TREE 71

www.it-ebooks.info

http://www.it-ebooks.info/

if (!matchOp(token, ')")) {

throw new SyntaxError('Expecting) in a function call "' + name + '"');
}
return {
'"FunctionCall' : {
'name': name,
'args': args
}
b

}

Voila! That'’s all our parser code. When combined properly into a functional object, it is
just about 200 lines of code, supporting various math operations with proper prece-
dences, brackets, variables, and function calls.

Tree Walker and Expression Evaluator

Once a syntax tree is obtained, evaluating the expression associated with it is surpris-
ingly easy. It is simply a matter of walking the tree, from the topmost syntax node
through all children, and executing a specific instruction related to the type of each
syntax node. For example, a binary operator node means that we need to add (or sub-
tract, or multiply, or divide) the two values obtained from each child node. Looking at
the previous example:

X = -6%*7
the generated syntax tree as a JavaScript object is:

{
"Expression": {
"Assignment": {

"name": {
"Identifier": "x"
:})
"value": {
"Binary": {
"operator": "*",
"left": {
"Unary": {
"operator": "-"
"expression": {
"Number": "6"
}
}
1,
"right": {
"Number": "7"
}
}
}

72 CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

}

The code to interpret this JSON-formatted tree is quite straightforward. Let’s start from
the leaf, such as a number (we assume from here on that node points to the current
node we need to evaluate):

if (node.hasOwnProperty('Number')) {
return parseFloat(node.Number);

}

For a unary operation node, we need to evaluate the child node first and then apply
the unary operation, either + or -:

if (node.hasOwnProperty('Unary')) {
node = node.Unary;
expr = exec(node.expression);
switch (node.operator) {
case '

+':
return expr;
case '-':
return -expr;
default:

throw new SyntaxError('Unknown operator ' + node.operator);

}

A binary node is handled similarly—we just need to process both child nodes for the
left and right side of the operator:

if (node.hasOwnProperty('Binary')) {
node = node.Binary;
left = exec(node.left);
right = exec(node.right);
switch (node.operator) {

case '+':

return left + right;
case '-':

return left - right;
case '*':

return left * right;
case '/':

return left / right;
default:

throw new SyntaxError('Unknown operator ' + node.operator);

}

Before we continue to tackle variable assignment, let’s take a step back and consider
the concept of evaluation context. For this purpose, we define the context as an object
that holds the variables, constants, and function definitions. When we evaluate an

TREE WALKER AND EXPRESSION EVALUATOR

www.it-ebooks.info

73

http://www.it-ebooks.info/

74

expression, we also need to pass a context so that the evaluator knows where to fetch
the value of a variable, store a value to a variable, and invoke a certain function.
Keeping the context as a different object promotes the separation of logic: the inter-
preter knows nothing about the context, and the context does not really care how the
interpreter works.

In our evaluator, the simplest possible context is:

context = {
Constants: {},
Functions: {},
Variables: {}
}

A slightly more useful context (that can be used as a default) is:

context = {

Constants: {
pil: 3.1415926535897932384,
phi: 1.6180339887498948482
1,

Functions: {
abs: Math.abs,
acos: Math.acos,
asin: Math.asin,
atan: Math.atan,
ceil: Math.ceil,
cos: Math.cos,
exp: Math.exp,
floor: Math.floor,
1n: Math.ln,
random: Math.random,
sin: Math.sin,
sqrt: Math.sqrt,
tan: Math.tan

1

Variables: {}
}

We still do not have any variables (because the context is freshly created), but there
are two common constants ready to use. The difference between a constant and a vari-
able in this example is very simple and obvious: you cannot change a constant or cre-
ate a new one, but you can do both with a variable.

With the context and its variables and constants ready, now we can handle identifier
lookup (e.g., in an expression like x + 2):

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

if (node.hasOwnProperty('Identifier')) {
if (context.Constants.hasOwnProperty(node.Identifier)) {
return context.Constants[node.Identifier];

}
if (context.Variables.hasOwnProperty(node.Identifier)) {
return context.Variables[node.Identifier];

}

throw new SyntaxError('Unknown identifier');

}

Assignment (like x = 3) works the other way around, though we have to ensure that
we process only variable assignment and not constant override:

if (node.hasOwnProperty('Assignment')) {
right = exec(node.Assignment.value);
context.Variables[node.Assignment.name.Identifier] = right;
return right;

}

Finally, the remaining function node is handled as follows. Basically, the function
arguments (if any) are prepared in an array and then passed to the actual function.
Note that in our default context, we simply wire a bunch of functions to the methods
of the built-in Math object:

if (node.hasOwnProperty('FunctionCall')) {
expr = node.FunctionCall;
if (context.Functions.hasOwnProperty(expr.name)) {
args = [I;
for (1 = 0; 1 < expr.args.length; 1 += 1) {
args.push(exec(expr.args[i]));
}

return context.Functions[expr.name].apply(null, args);

}

throw new SyntaxError('Unknown function

+ expr.name);
}
What if we want to have a custom function, maybe because it is not supported by the
Math object? It can’t be easier: all we have to do is define the function for the context.
As an example, let’s implement sum, which adds all the numbers passed in the argu-
ment. Since we're dealing with a function that may have a variable number of argu-
ments, we use a special arguments object instead of named parameters:
context.Functions.sum = function () {
var i, total = 0;
for (1 = 0; 1 < arguments.length; 1 += 1) {

total += arguments[i];

}

return total;

TREE WALKER AND EXPRESSION EVALUATOR

www.it-ebooks.info

75

http://www.it-ebooks.info/

76

Final Words

The simple example presented here can be easily extended or modified for a wide
range of domain-specific languages. For a simpler language, the lexer can be imple-
mented as a collection of regular expressions. Alternatively, a simple state machine is
often suitable in many cases. On the other hand, a language with a complex grammar
may require a deeper recursive-descent parsing. In some cases, it is more convenient
to handle some of the recursive aspect by using a stack-based shift and reduce.

Some languages are known to have peculiar cases that complicate both the lexer and
the parser. For example, doing lexical analysis on JavaScript code is notoriously diffi-
cult because the symbol / is ambiguous: it can signify either a division operator or the
beginning of a regular expression. In addition to that, the famous automatic semicolon
insertion feature requires various parts of the parser to take that into account wher-
ever it is mandated by the language specification. It is instructive to learn how various
parsers handle these types of edge cases.

Happy parsing!

CHAPTER SEVEN: MATH EXPRESSION PARSER AND EVALUATOR

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER EIGHT

Evolution

Rebecca Murphey

In March 2009, Paul Irish published a blog post, “Markup-based Unobtrusive Compre-
hensive DOM-ready Execution,” describing a solution to a pesky problem familiar to
every newcomer to the world of client-side JavaScript at the time: executing only the
code that was required for a given page.

Back in 2009, it was common for client-side JavaScript developers to just put all of
their code—for all of their pages—inside one giant $(document).ready() callback; some
were a bit cleverer, and tested for the presence of an element with a certain ID in
order to determine the page they were on. A newcomer to such code struggled might-
ily to mentally parse hundreds of lines where function declarations, anonymous func-
tions, and long chains of jQuery methods intermingled.

The method proposed in this blog post was simple: put a class on the <body> element,
and then use a simple helper function to look up a corresponding initialization method
in an application object:

UTIL = {

loadEvents : function () {
var bodyId = document.body.id;

$.each(document.body.className.split(/\s+/), function (i, className) {
UTIL.fire(className);
UTIL.fire(className,bodyId);
H;
}J

fire : function (func, funcname, args) {
var namespace = APP; // indicate your obj literal namespace here

funcname = (funcname === undefined) ? 'init' : funcname;

www.it-ebooks.info

77

http://bit.ly/dom-based_routing
http://bit.ly/dom-based_routing
http://www.it-ebooks.info/

78

if (
func !'== "' &&
namespace[func] &&
typeof namespace[func][funcname] == 'function'

) {

namespace[func][funcname](args);
}
}
b

$(document).ready(UTIL.loadEvents);

The code, written by a self-taught and largely unknown frontend developer with a
degree in technical communications, was mediocre. The idea, though, was transforma-
tive, especially for a community with lots of similarly self-taught developers: if we
could organize our code somehow, maybe writing ever-bigger JavaScript applications
didn’t have to be such a messy affair.

A few months after Paul wrote his post, I published “Using Objects to Organize Your
Code” and gave a talk on the same topic at the 2009 jQuery Conference. My post sug-
gested having one object per “feature” (a piece of functionality on a page), and encap-
sulating all of the functionality of that feature in methods on that object. For example,
a list of email messages might be one feature; a list of mailboxes might be another.

I know for a fact that I had only the most cursory understanding of .call()

and .apply() at the time, and though $.proxy didn’t exist yet, I'm not sure I'd have
fully understood it if it did. John Resig had posted his micro-templating snippet a year
before, and I'd read JavaScript: The Good Parts, yet the post contained no consideration
of client-side templating or being able to create instances of these feature objects.

“If I tried to think of the simplest JavaScript thing I could write a post about,” my
friend Alex Sexton said to me recently (in the nicest way possible, because he is Alex),
“T'd still never come up with something as simple as that.”

And vyet this too seemed to have a transformative effect in the still largely self-taught
JavaScript community of the time. Not only could we break our code down per page;
we could also break it down per component, and those components could be clearly rep-
resented by distinct pieces of code.

We could even...not to get crazy here, but...we could put those pieces of code in sepa-
rate files, using a global object as a namespace, right? Granted, loading all of those sep-
arate files as <script> tags on our page during development would be a pain, and
every time we added a new file we’d have to update our list of <script> tags, but our
server-side code could probably help us out there. Really, though, it sure would be
nice if JavaScript had a module system for asynchronously loading these features,
wouldn’t it? Especially because we’d need to concatenate all of these files for
production.

CHAPTER EIGHT: EVOLUTION

www.it-ebooks.info

http://bit.ly/using_objects
http://bit.ly/using_objects
http://bit.ly/micro-templating
http://shop.oreilly.com/product/9780596517748.do
http://www.it-ebooks.info/

Backbone

Dojo changed everything for me; Backbone changed everything for everyone else.
While there are plenty of criticisms to be made of Backbone, to be sure, the 619 unmi-
nified lines that made up version 0.1.0 once again transformed the way that we
thought about JavaScript application development. It gave us easy-to-understand
building blocks without trying to provide answers to every problem under the sun—
perhaps Dojo’s major failing.

Backbone’s tiny file size ensured there would be few accusations of bloat; its utter sim-
plicity and the way it embraced jQuery paradigms made it an easy leap for moderately
skilled jQuery developers. Its unopinionated approach meant it was as easy to sprinkle
some Backbone onto an existing app as it was to start a new Backbone app from
scratch (and equally easy to get yourself into trouble if your own opinions turned out
to be bad). Its inclusion of a router,! a mainstay of server-side frameworks like Rails
and Django—well, let’s just say it took Paul’s “Markup-based Unobtrusive Comprehen-
sive DOM-ready Execution” to a whole new level. It also, interestingly, provided a
gateway for traditionally server-side developers who had long been turned off by the
tangled mess of “get some elements and do something with them.”

Perhaps the happiest thing of all for me, though, was that Backbone made it normal
and easy to new up an instance of a View, largely throwing the misguided jQuery plug-
in paradigm out the window. Sure, you had to bring your own templating (and ren-
dering) solution to the Backbone.View party, but Underscore was there to help by
default; composition wasn’t as straightforward as in Dojo, but it wasn’t hard either.

Adding things like attach points and lifecycle methods and memory-safe teardown was
straightforward enough, too. For those ready to make the leap, Backbone became
something of a framework-building library. Indeed, on my current project, Backbone
serves as the scaffolding upon which we’ve built a much more elaborate client-side
application development framework, without having to labor over the basics.?

New Possibilities

Love it or otherwise—and my opinions are definitely mixed—the arrival of Backbone
left no doubt about two things: one, JavaScript’s days as a toy language were firmly

1 Sammy.js included a router years before Backbone, but its more opinionated approach meant that
it never gained widespread adoption.

2 Is it good that lots of projects are building their own frameworks on top of a 6.4 KB library? For
now I think yes; we are still learning what we need from frameworks, and we’re a long way from
a one-size-fits-all answer (or even a three-sizes-fit-most answer). I'm hopeful that this will change
over the next 12-18 months, especially considering everything that has transpired in the few years
covered by this chapter.

BACKBONE

www.it-ebooks.info

79

https://dojotoolkit.org/
http://backbonejs.org/
http://underscorejs.org/
http://www.it-ebooks.info/

behind it; and two, it was time for JavaScript developers at all levels to understand and
embrace the client-side JavaScript app.

That impossible situation of arbitrary components interacting in arbitrary ways? That’s
actually been a core requirement of the two major projects I've worked on in the last
couple of years.

At Toura, we were creating configuration-driven, offline-capable PhoneGap apps. Cus-
tomers would use a content management system to design their application, and the
content management system would spit out a JSON config spelling out what was on
each page. A page might include a photo gallery, a caption area, a text area, the ability
to favorite things, or any number of other features. Every application ran the same
JavaScript code; that code would, at runtime, read the config file to figure out how to
set itself up, and what to show users as they moved through the application.

Our solution there was what I dubbed a “capability”; a page could have any number of
capabilities, and each capability dictated how a set of components would interact with
one another. The controller for a page was essentially generated dynamically based on
the capabilities that the config said the page should have; the code within a capability
handled passing messages from one component to another.

At Bazaarvoice, the situation is similar: our customers use a configuration tool to
decide how they want their application to behave and which features should be
enabled, and that configuration tool generates a JSON config. We use that config to
figure out exactly what to put in the built JavaScript for that customer—a big
improvement over the approach we took at Toura—and we also use that config to
wire up the relationship between components at runtime, using what we call “out-
lets.” A component’s configuration might look something like this:

"reviewSummary" : {
"features" : {
// an object describing the features that are enabled for the component
1,
"outlets" : {
"showreviews" : [{
"component" : "reviewContentList",
"event" : "scrolltocontent"
1,
"showguestions" : [{
"component" : "questionContentList",
"event" : "scrolltocontent"
11,
"filtercontent" : [{
"component" : "reviewContentList",
"event" : "filtercontent"
1]
}
}

80 CHAPTER EIGHT: EVOLUTION

www.it-ebooks.info

http://www.it-ebooks.info/

At runtime, we read the configuration for the component and wire up its relationship
with the other components; for this example, we initialize an Outlet so that when the
reviewSummary component triggers its showReviews method, we ensure the scrolltocon
tent method is triggered on the reviewContentList:

var Outlet = function (options) {
this.targetComponent = options.targetComponent;
this.originatingComponent = options.originatingComponent;
this.target = options.target;
this.key = options.key;

var event = this.event = 'outlet:' + this.key;

if (this.target.event) {
this.originatingComponent.on(event, this._eventHandler());

}
b

Outlet.prototype._eventHandler = function () {
var targetComponent = this.targetComponent;

if (!targetComponent) {
return;

}

return function () {
var args = [targetComponent.scopeEvent(target.event)].concat(
[].slice.call(arguments)

);
targetComponent.trigger.apply(targetComponent, args);

return;
¥
1
This could be considered a variation on the dreaded direct communication between
components, but realistically, it’s more of a mini-controller that’s created on the fly at
runtime, brokering communication between components without either component
requiring direct knowledge of the other.

I'm not just mentioning this because it’s what I've been working on of late; I think it’s
the next thing we’ll hash out as a JavaScript community, once we get done with or
bored of fighting about which framework is The Best.

NEW POSSIBILITIES

www.it-ebooks.info

81

http://www.it-ebooks.info/

82

Imagine a page where you use a calendar component written by Jenn, and an invita-
tion list component written by Adam, and a DSL with which you can dictate that
when an item in the invitation list triggers its accept event, the calendar’s schedule
method gets called with data about the invitation—and neither component needs
direct knowledge of the other. Web components, inspired directly by Dojo’s templated
widgets of yore, are a baby step in that direction. I hope we take more steps, and big-
ger ones, and soon.

CHAPTER EIGHT: EVOLUTION

www.it-ebooks.info

http://bit.ly/dwc-w3c-webcomp
http://www.it-ebooks.info/

CHAPTER NINE

Error Handling

Nicholas Zakas

If you're like me, you probably don’t think much about how you’ll handle errors until
they start popping up on a regular basis. Programmers tend to write code as if there
will never be any errors, and then spend the rest of their time tracking down errors
they’ve caused. This inclination is totally natural. No one starts out on a project think-
ing about all the ways they will do something wrong. You start out believing you
know the right way to do it and then are unpleasantly surprised as errors start to pop

up.

But what if you changed the thought process? Instead of assuming that errors won't
happen, assume that they will. How would that change your approach to writing
code? That'’s precisely what this chapter is about: thinking about and planning for the
errors that will inevitably occur in your JavaScript.

Assume Your Code Will Fail

If an error is possible, someone will make it. The designer must assume that
all possible errors will occur and design so as to minimize the chance of the
error in the first place, or its effects once it gets made.

—Donald A. Norman, The Design of Everyday Things

The first step to good error handling is to accept that your code will fail at some point.
That may be because of improper use, or proper use that you didn’t plan for. Regard-
less, your code will fail at some point in time. Given that, what can you do to make
your code more robust? What are the things you can do, right now, to make your code
easier to deal with when it fails?

www.it-ebooks.info

83

http://www.it-ebooks.info/

84

Throwing Errors

When I was younger, the most befuddling part of programming languages was the
ability to create errors. My first reaction to the throw operator in Java was, “Well, that’s
stupid, why would you ever want to cause an error?” Errors were the enemy to me,
something I sought to avoid, so the ability to cause an error seemed like a useless and
dangerous aspect of the language. I thought it was dumb to include the same operator
in JavaScript, a language that people just didn’t understand in the first place. Now,
with a great deal of experience under my belt, I'm a big fan of throwing my own
errors. When done properly, this can lead to easier debugging and code maintenance.

In programming, an error occurs when something unexpected happens. Maybe the
incorrect value was passed into a function, or a mathematical operation had an invalid
operand. Programming languages define a base set of rules that, when deviated from,
result in errors so that you can fix the code. Debugging would be nearly impossible if
errors weren’t thrown and reported back to you. If everything failed silently, it would
take you a long time to notice that there was an issue in the first place, let alone to
isolate and fix it. Errors are a developer’s friends, not enemies.

The problem with errors is that they tend to pop up in unexpected places and at unex-
pected times. To make matters worse, the default error messages are usually too terse
to really explain what’s gone wrong. JavaScript error messages are notoriously unin-
formative and cryptic (especially in old versions of Internet Explorer), which only
compounds the problem. Imagine if an error popped up with a message that said,
“This function failed because this happened.” Instantly, your debugging task would
become easier. This is the advantage of throwing your own errors.

It helps to think of errors as built-in failure cases. It’s always easier to plan for a failure
at a particular point in code than it is to anticipate failure everywhere. This is a very
common practice in product design, not just in code. Cars are built with crumple
zones, areas of the frame that are designed to collapse in a predictable way when
impacted. Knowing how the frame will react in a crash—which parts will fail—allows
the manufacturers to ensure passenger safety. Your code can be constructed in the
same way.

You can throw an error by using the throw operator and providing an object to throw.
Any type of object can be thrown, but an Error object is the most typical to use:

throw new Error("Something bad happened.")

When you throw an error in this way, and the error isn’t caught via a try-catch state-
ment, the browser will display the error text in its typical way. For Internet Explorer,
this means a little icon appears in the lower-left corner of the browser window, and a
dialog with the error text is displayed when that icon is double-clicked; Firefox will
show the error in the Web Console; Safari, Chrome, and Opera output the error into

CHAPTER NINE: ERROR HANDLING

www.it-ebooks.info

http://www.it-ebooks.info/

the Web Inspector. In other words, it’s treated the same way as an error that you
didn’t throw.

The difference is that you get to provide the exact text to be displayed by the browser.
Instead of just line and column numbers, you can include any information that you'll
need to successfully debug the issue. I recommend that you always include the func-
tion name in the error message, as well as the reason why the function failed. Con-
sider the following function:

function addClass(element, className){
element.className += " " + className;

}
This function’s purpose is to add a new CSS class to the given element (a very com-
mon method in JavaScript libraries). But what happens if element is null? You’'ll get a
cryptic error message such as “object expected.” Then, you’ll need to look at the exe-
cution stack (if your browser supports it) to actually locate the source of the problem.
Debugging becomes much easier if you throw your own error:

function addClass(element, className){
if (element !== null && typeof element.className === "string"){
element.className += " " + className;
} else {
throw new Error("addClass(): First argument must be a DOM element.");
}
}
Discussions about accurately detecting whether an object is a DOM element aside, this
method now provides better messaging when it fails due to an invalid element argu-
ment. Seeing such a verbose message in your error console immediately leads you to
the source of the problem. I like to think of throwing errors as leaving Post-it notes for
myself as to why something has failed.

As a bonus, JavaScript engines add a stack property to any Error object that is thrown.
The stack property is a string containing a formatted stack trace leading up to the error
being thrown. Here’s an example value for stack:
Error

at foo (test.js:2:24)

at test.js:2:7
While each JavaScript engine has a slightly different representation of stack informa-
tion in the stack property, the information available inside is roughly the same: the
type of error, the filename in which the error originated, line and column numbers,
and function names. This information is very useful should you decide to log your
JavaScript errors for later investigation.

ASSUME YOUR CODE WILL FAIL

www.it-ebooks.info

85

http://www.it-ebooks.info/

When to Throw Errors

Understanding how to throw errors is just one part of the equation; understanding
when to throw errors is the other. Since JavaScript doesn’t have type or argument
checking, a lot of developers incorrectly assume that they should implement that for
every function. Doing so is impractical and can adversely affect the overall script’s per-
formance. The key is to identify parts of the code that are likely to fail in a particular
way and throw errors only there. In short, throw errors only where errors will already
occur.

If a function is only ever going to be called by known entities, error checking is proba-
bly not necessary (this is the case with private functions); if you cannot identify all the
places where a function will be called ahead of time, then you’ll likely need some
error checking and will be more likely to benefit from throwing your own errors. The
best place for throwing errors is in utility functions: those functions that are a general
part of the scripting environment and may be used in any number of places. This is
precisely the case with JavaScript libraries.

All JavaScript libraries should throw errors from their public interfaces for known
error conditions. YUI/jQuery/Dojo/etc. can’t possibly anticipate when and where
you'll be calling their functions. It’s their job to tell you when you're doing stupid
things. Why? Because you shouldn’t have to debug into their code to figure out what
went wrong. The call stack for an error should terminate in the library’s interface, no
deeper. There’s nothing worse than seeing an error that’s 12 functions deep into a
library; library developers have a responsibility to prevent this from happening.

This also goes for private JavaScript libraries. Many web applications have their own
proprietary JavaScript libraries, built either with or in lieu of the well-known public
options. The goal of libraries is to make developers’ lives easier, and they do so by pro-
viding an abstraction away from the dirty implementation details. Throwing errors
helps to keep those dirty implementation details hidden safely away from developers.

Types of Errors

ECMA-262 specifies seven error object types. These are used by the JavaScript engine
when various error conditions occur and can also be manually created:

Error
Base type for all errors. Never actually thrown by the engine.

EvalError
Thrown when an error occurs during execution of code via eval().

86 CHAPTER NINE: ERROR HANDLING

www.it-ebooks.info

http://www.it-ebooks.info/

RangeError
Thrown when a number is outside the bounds of its range—for example, trying to
create an array with —20 items (new Array(-20)). These occur rarely during normal
execution.

ReferenceError
Thrown when an object is expected but not available—for instance, trying to call a
method on a null reference.

SyntaxError
Thrown when the code passed into eval() has a syntax error.

TypeError
Thrown when a variable is of an unexpected type—for example, new 10 or "prop"

in true.

URIError
Thrown when an incorrectly formatted URI string is passed into encodeURI, enco
deURIComponent, decodeURI, or decodeURIComponent.

You can create and throw each of these error types at any time in JavaScript by invok-
ing the constructor of the same name, such as:

throw new TypeError("Unexpected type.");
throw new ReferenceError("Bad reference.");

throw new RangeError("That's out of range.");

The error types thrown most frequently by developers are Error, RangeError, Referen
ceError, and TypeError. The other error types are very specific to use cases inside of the
JavaScript engine, so it doesn’t make sense to use them in your code (even though
there’s nothing stopping you).

All error types inherit from Error, so checking the type with instanceof Error doesn’t
give you any useful information. By checking for the more specific error types, you get
more robust error handling:

var error = new TypeError("Not my type.");

console.log(error instanceof Error); // true
console.log(error instanceof TypeError); // true

Of course, if you only ever throw errors using the built-in JavaScript error types, it
becomes difficult to distinguish between errors thrown by the engine and errors you
threw intentionally. That’s where custom errors come in.

ASSUME YOUR CODE WILL FAIL

www.it-ebooks.info

87

http://www.it-ebooks.info/

Custom Errors

In large applications, it’s useful to create your own error type. Using a custom error
type allows you to easily tell the ditference between an error that was thrown inten-
tionally and an unexpected error that the browser throws. You can create a custom
error type easily by inheriting from Error and following a simple pattern:

function MyError(message){
this.message = message;

}

MyError.prototype = Object.create(Error.prototype);

There are two important parts of this code: 1) the message property, which is necessary
for browsers to know the actual error string, and 2) setting the prototype to an
instance of Error, which identifies the object as an error to the JavaScript engine. Now,
you can throw an instance of CustomError and have the browser respond as if it were a
native error:

throw new MyError("Something really bad happened!");

If you want to throw a lot of different types of error but still want to distinguish
between the errors you throw and the native errors, then you can use your custom
error as a base for other custom error types, such as:

function MyError(message)
this.message = message;

}

MyError.prototype = Object.create(Error.prototype);

function MissingArgumentError(message) {
this.message = message;

}

MissingArgumentError.prototype = Object.create(MyError.prototype);

function NotFunnyError(message) {
this.message = message;

}

NotFunnyError.prototype = Object.create(MyError.prototype);

In this example, MissingArgumentError and NotFunnyError both inherit from MyError
(which, in turn, inherits from Error). Due to this inheritance, you can easily separate
out error handling using an if statement:

if (error instanceof MyError) {
// handle MissingArgumentError and NotFunnyError
} else {

88 CHAPTER NINE: ERROR HANDLING

www.it-ebooks.info

http://www.it-ebooks.info/

// handle native error types

}

Distinguishing between the errors you threw and the errors thrown by the JavaScript
engine is important, because you frequently want to treat them differently. As dis-
cussed earlier, throwing your own error indicates that this condition is a known possi-
bility (unlike native errors, which are frequently unexpected).

Handling Errors

Errors should be easy to detect, they should have minimal consequences, and,
if possible, their effects should be reversible.

—Donald A. Norman, The Design of Everyday Things

ECMA-262 defines a try-catch-finally construct similar to those found in other lan-
guages. The basic idea is to place code that might throw an error in the try clause and
code to handle that error in the catch clause. The optional finally clause runs in
either case. The basic syntax is:

try {
// some code that might throw an error
} catch(error) {
// handle an error that was thrown
} finally {
// optionally run code regardless of error

}

When an error occurs inside of the try clause, execution stops and is resumed inside of
the catch clause. The thrown error is passed into the catch clause as an additional vari-
able. This happens regardless of the error type, and it’s up to you to look at the error
object to determine what type of error occurred and how to respond appropriately. For
example:

try {
functionThatMightThrowError();
} catch(error) {
if (error instanceof MyError) {
// handle custom error
} else {
// handle native error
}
}

It’s also possible to omit the catch clause completely and just use a finally clause, such
as:

try {
functionThatMightThrowError();
} finally {

HANDLING ERRORS

www.it-ebooks.info

89

http://www.it-ebooks.info/

920

// do whatever you want

}

In this case, an error will cause execution to stop inside of the try clause and go imme-
diately into the finally clause. If an error doesn’t occur, then all of the statements
inside of the try clause are executed, and then the statements in the finally clause are
executed. In either case, you are saying that there is no special functionality when an
error occurs.

Realistically, you typically want a catch clause along with try, but you may also want
finally. The finally clause runs no matter what, and that is true even if the try or
catch clauses contain a return statement. Consider the following two functions:

function doSomething() {
try {
functionThatMightThrowError();
return "success";
} catch(error) {
return "failure";
} finally {
return "finally";
}
}

function doSomethingElse() {

try {
functionThatMightThrowError();
return "success";

} catch(error) {
return "failure";

}

return "finally";

}

var resultl = doSomething();

var result2 = doSomethingElse();
The functions doSomething and doSomethingElse contain the same code, except that the
former uses a finally clause and the latter does not. The difference in the behavior of
the two functions is striking. The value of result1 is always "finally", regardless of
whether an error occurs. That’s because the return statement is skipped over in the try
and catch clauses in favor of the one in the finally clause. The value of result2, on
the other hand, will never be "finally". That’s because in the case of no error, the
return statement in the try clause is used, while the return statement in the catch
clause is used when an error happens. Those are the only two options in the function,
and so the last return statement outside of the try-catch is not reachable. The value of
result2 will be "success" if there is no error and "failure" if there is an error.

CHAPTER NINE: ERROR HANDLING

www.it-ebooks.info

http://www.it-ebooks.info/

There are some downsides to using try-catch-finally. First, you must know ahead of
time whether or not some piece of code could potentially throw an error. While this
may be easy to determine in some cases, it may not be so easy in other cases. Using
try-catch-finally effectively, therefore, requires some upfront planning. Second,
there is a performance hit for wrapping code in a try-catch-finally even when an
error doesn’t occur. As with many performance tips in JavaScript, however, this
becomes important only if you find code that is running millions of times in a row—
for code that is run a nominal number of times, the difference in execution time will
not be apparent.

Global Error Handling in Browsers

In a web browser, all uncaught errors bubble up to a top-level event handler called
window.onerror. This event handler receives four arguments: the error message, the
URL that raised the error, a line number, and a column number. As an added feature,
returning true from window.onerror tells the browser that the error was handled and
there’s no need to show it to the user. For example:

window.onerror = function(message, url, line, col) {
logError(message, url, line, col);
return true;
b
In this example, the error message is being logged and true is returned to indicate that
the error has been handled properly.

In late 2013, the HTMLS5 specification was changed to specify a fifth argument to win
dow.onerror, which is the actual error object. Prior to that point, there was no access to
the error object inside of window.onerror. At the time of writing only Chrome and Fire-
fox have implemented this change, but it should be making its way into other brows-
ers. With the error object being passed in, you are now free to look at the additional
information attached to it:

window.onerror = function(message, url, line, col, error) {

logError(message, url, line, col, error.stack);
return true;

};
This example also extracts the stack information from the error that was thrown.

The window.onerror event handler should be used in web applications to ensure that
you always know when any JavaScript error occurs. Since it’s unlikely that you’ll be
aware of all possible combinations that could cause a JavaScript error in your applica-
tion, using this event handler gives you a safe way to monitor errors without being
overly intrusive to developers.

HANDLING ERRORS

www.it-ebooks.info

91

http://www.it-ebooks.info/

Global Error Handling in Node.js

Node.js has a similar mechanism for catching errors globally. The process object fires
an event called uncaughtException whenever a JavaScript error occurs that is not han-
dled in some other way. You can listen for the event and receive the JavaScript error
object using code such as:

process.on("uncaughtException", function(err) {
log(err);

b
If an error is handled by this event handler, then the Node.js process will not automat-
ically exit (any uncaught exceptions will cause such an exit). Some suggest that you
should always call process.exit inside of this event handler; however, whether or not
you choose to do so depends largely on your application and how easy it is to recover
from such an error without affecting the overall state of the application. You should
use your best judgment in determining the correct course of action when an uncaught
error occurs, whether that be to log the error, exit the process, restart the process, or
something completely different.

Node.js also has a feature called domains that allows you to set up an error handler for
uncaught exceptions that occur during the execution of specific code. To do so, use
code such as:

var d = require("domain").create();

d.on("error", function(err){
log(err);

H;

d.run(function(){
/* some code that might throw an error */
bs
The basic idea of this example is that you can place some code that might cause an
error within the call to run on a domain. Then, any errors that occur within that code
will cause the error event to fire on that domain. You can listen for the error event
and respond appropriately to the error.

Domains are a fairly new concept in Node.js and so may change considerably in the
future. Best practices around domain usage are still being developed and discussed, so
make sure you take the time to explore whether domains fit your error handling strat-
egy before committing to their use.

92 CHAPTER NINE: ERROR HANDLING

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Errors and error handling aren’t topics that developers love to talk about, but ulti-
mately the job comes down to finding and eliminating sources of error. The first step
in the process is always to assume that your code will fail and plan to deal with that
failure. Figure out how you will know when a particular type of error has occurred
and what you should do to resolve it (if anything).

Throwing your own errors can be a powerful tool in this regard. When you throw an
error, you can specify the exact information that you need to track down its source.
Creating a custom error type as a base allows you to easily tell the difference between
a JavaScript error thrown by the engine and one thrown by you (or your teammates).
You can then use constructs like try-catch-finally to monitor for errors.

In larger applications, you should also listen for uncaught exceptions. Both browsers
and Node.js allow you to listen for these exceptions in one location, allowing you to
log or otherwise handle the errors as they occur.

Remember, most errors are not appropriate to be shown to your users, so be sure to
have user-friendly error messages (or no error messages at all, if you can recover
easily).

SUMMARY

www.it-ebooks.info

93

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER TEN

The Node.js Event Loop

Jonathan Barronville

If you're using Node.js, chances are that you started tinkering with it after getting tired
of hearing everyone rave about this platform for building fast servers using JavaScript.

You went on the Node.js website and read this: “Node.js uses an event-driven, non-
blocking I/0 model that makes it lightweight and efficient, perfect for data-intensive
real-time applications that run across distributed devices.”

Now, if you have experience building event-driven servers, this will already make
enough sense to you. (And this chapter is probably not for you!) However, if you're
like me, when you read this you probably decided to quit programming, because
here’s a platform for developers and I'm a developer, but I'm too stupid to understand
why I should care!

Okay, maybe that was a little bit of an exaggeration. You didn’t quit programming, and
you're not stupid for not understanding why you should care about Node.js.

My goal is that, by the end of this chapter, you will be proud to tell the world you
understand how the Node.js event loop works and start receiving your much-deserved
LinkedIn endorsements for “Node.js event loop.”

Event-Driven Programming

At a high level, event-driven programming is when a system expresses its interest in a
particular set of events, provides a way to be alerted when said events happen, and
responds to them using callbacks.

What do these terms mean, though? An event is some change in a system’s state. The
term callback can mean different things depending on the type of system, but in the

www.it-ebooks.info

95

http://www.it-ebooks.info/

96

case of JavaScript, it simply means a closure whose function will be invoked once a
particular event happens.

Under the hood, Node.js uses a native library called /ibuv for listening to events and
invoking the necessary callbacks. To do this, libraries and frameworks like libuv have
an event loop, which is essentially a loop for handling events that usually runs forever.

To make some of this a little bit more concrete, here’s a snippet of the underlying C++
code (lines 3761-3773 in /src/node.cc) that handles starting and managing Node.js’s
event loop (as of commit 0df5e1c049 of Node.js):

bool more;
do {
more = uv_run(env->event_loop(), UV_RUN_ONCE);
if (more == false) {
EmitBeforeExit(env);

// Emit ‘beforeExit' if the loop became alive either after emitting
// event, or after running some callbacks.
more = uv_loop_alive(env->event_loop());
if (uv_run(env->event_loop(), UV_RUN_NOWAIT) != 0)
more = true;

}
} while (more == true);
Let’s quickly break down the two parts of this code you should care about right now.
First:

do {...} while(...);

This says to execute everything in the do block and continue to do so until the condi-
tion in while(...) evaluates to false. And second:

more = uv_run(env->event_loop(), UV_RUN_ONCE);

uv_run(...) can be considered to be the most important function in libuv, because it’s
actually what starts and runs the event loop. Without going too deep into the technical
aspects of libuv from a C++ standpoint, all you need to know for now is that this invo-
cation of uv_run returns @ (which is a “falsy” value in C++) when there are no more
things to do, which would make more be false. If it returns a “truthy” value, more will
be true.

Whoa, a couple of paragraphs into the chapter and I've already thrown C++ code at
you! Well, as it turns out, when we talk about Node.js’s event loop, what we're really
talking about is a libuv loop, so I think it helps to show a little bit of the low-level
implementation. The rest of this chapter will be more high-level, I promise!

CHAPTER TEN: THE NODE.JS EVENT LOOP

www.it-ebooks.info

http://www.it-ebooks.info/

Asynchronous, Nonblocking 170

All modern operating systems have event notification systems built in. These event
notification systems tend to work differently across platforms. This is one of the main
issues libuv solves. It provides cross-platform high-level abstractions to handle events,
while handling all of the crazy not-so-fun platform differences under the hood.

Often, you’ll hear the words asynchronous and nonblocking being used in discussions
about Node.js and its scalability—but what do they mean, exactly?

Let’s say you're writing a TCP server. You create a simple loop that accepts and pro-
cesses new connections on every iteration. You then realize you have a problem: every
time your server is handling a connection, it blocks until data is available to be read
from the connection. This is bad, because you can’t process any other connections!
One way to fix this problem is to instead use an operating system hook to request that
the operating system let you know when data is available. This is asynchronous because
when data is available, you'll be notified by the event notification system, and it’s non-
blocking because your loop will never be blocked from processing other connections.

Although we won’t touch on this, keep in mind that another common model for
building servers is using operating system threads, which usually means creating a thread
for every client/connection. Using operating system threads is not only difficult to
scale, but actually pretty hard to understand and do right.

One of the things I find really cool about asynchronous, nonblocking I/0 is how the
model is easy to explain when compared to many real-life examples. The best example
of this, in my opinion, is ordering food at a restaurant. You go to your favorite fast
food restaurant and you get in line. Once it’s your turn, your server takes your order.
Your order goes through and your server gives you a number, so that they can call you
back when your burger is ready. This is an extremely efficient model because the
server can quickly process many orders, whereas the other option would’ve been for
the server to take your order, wait for it to be prepared while other customers wait in
line, and finally move to the next person in line once your burger is ready.

Node.js programs work similarly to the restaurant ordering example. Let’s look at an
example:

'use strict'

var http = require('http')

function serverRequestHandler (serverRequest, serverResponse) {
serverResponse.writeHead(200, {'content-type': 'text/plain'})

endServerResponse(serverResponse)

}

function endServerResponse(serverResponse) {

ASYNCHRONOUS, NONBLOCKING I/0

www.it-ebooks.info

97

http://www.it-ebooks.info/

98

serverResponse.end('Hello, world!\n')

}
var httpServer = http.createServer(serverRequestHandler)
httpServer.listen(3620, '127.0.0.1")

console.log('Server running at http://127.0.0.1:3620.")
Let’s break this example down. First, we import the http model:
var http = require('http')
Next up are the serverRequestHandler and endServerResponse functions:

function serverRequestHandler (serverRequest, serverResponse) {
serverResponse.writeHead(200, {'content-type': 'text/plain'})
endServerResponse(serverResponse)

}

function endServerResponse(serverResponse) {
serverResponse.end('Hello, world!\n")

}
serverRequestHandler is the callback for handling requests to our server. When called,
it will be passed a “request” object and a “response” object. The request object contains
all the necessary data about the current request and provides facilities for accessing
that data. The response object provides facilities for constructing and sending respon-
ses. One interesting thing to note here is that serverRequestHandler calls endServerRes
ponse. This is interesting because when serverRequestHandler is called, it won’t be run-
ning in the same environment it was defined in. endServerResponse shouldn’t be avail-
able, but because of closures in JavaScript, all of the state available to serverRequestHan
dler where it was defined will continue to be available to it no matter where it is
called.

Next, we create a new server and pass in the handler to use for requests. When we
express handler will be cached, and every time a request is sent to our server it will be
pushed onto the queue of callbacks to call:

var httpServer = http.createServer(serverRequestHandler)

Finally, we express our interest to begin accepting connections on the port 3620 and
hostname 127.0.0.1:

httpServer.listen(3620, '127.0.0.1')

This is the most important piece of the code. By expressing this interest, the system
will start watching for requests, triggering the appropriate events when necessary and
invoking the necessary callbacks.

CHAPTER TEN: THE NODE.JS EVENT LOOP

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrency

Node.js is single-threaded. Before I talk about what that means, let’s talk about con-
currency. It seems a lot of folks get the wrong idea about concurrency, assuming that
it’s exactly the same thing as parallelism. The terms are actually related, but they’re
not the same.

Concurrency is when a set of tasks can start, run, and complete in overlapping time
periods. The tasks may never run at the same time, but they could. Parallelism, on the
other hand, is when a set of tasks are running at the same time.

When I say that Node.js is single-threaded, what I mean is that the Node.js event loop is
managing at most one thread at any point in time, which of course means a single call
stack. By that same logic, an important thing to note is that the event loop can only
ever do one thing at once.

So while you’re able to write highly concurrent servers with Node.js, your servers can
process only one request at a time. This is a difficult but important distinction to
understand when thinking about Node.js concurrency.

Let’s use the earlier HTTP server example to understand what I mean by concurrency
here. When a request comes to our server, the “request” event is triggered with the
request data, which causes our request handler to be pushed onto the task queue.
Once the call stack is free and the event loop is free of things to process, our request
handler will be invoked. The server is able to handle many requests concurrently,
because every request is processed quickly and independently without blocking.

Adding Tasks to the Event Loop

So let’s say you want to give the event loop a little bit of work to do. Is there a way to
do that efficiently? Yes!

process.nextTick to the rescue! process.nextTick enables you to provide the Node.js
event loop a callback to invoke immediately in the next iteration, or tick, of the event
loop:

function runCPUIntensiveTask(data) {
if (data === null) {
return
}
// Do some CPU-intensive work ...
process.nextTick(function () {
runCPUIntensiveTask(newData)

b

CONCURRENCY

www.it-ebooks.info

929

http://www.it-ebooks.info/

In this example, runCPUIntensiveTask is a function that does something CPU-intensive
recursively. However, rather than simply calling the function recursively, which would
essentially block the event loop, the recursion is handled in the event loop instead.
This allows the event loop to do whatever it has to do, invoke runCPUIntensiveTask, do
anything else it has to do, and repeat the process, without ever being blocked.

Those are the basics. Understanding the Node.js event loop is key to being effective
with Node.js, so I hope I was able to clarity the confusing parts for you!

100 CHAPTER TEN: THE NODE.JS EVENT LOOP

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER ELEVEN

JavaScript Is...
Sara Chipps

Science is what we understand well enough to explain to a computer. Art is
everything else we do.

—Donald Knuth

I understand there are people in this world who do not like JavaScript. I've gotten into
enough late-night battles about CoffeeScript to have heard all the vitriol. I've been
generally unmovable about this. I think curly braces are elegant, I think semicolons
are enchanting, and I think duck typing is adorable. I thought writing this chapter
would be a good opportunity to share my favorite things about JavaScript.

JavaScript Is Dynamic

JavaScript takes advantage of virtual machines for just-in-time (JIT) compilation (see
V8, Node.js, and Spider Monkey for some examples). JavaScript makes excellent use
of closures by having variables that exist both on the global level and the functional
level.

Consider this function:

function CheckForPrefix(name){
var prefix = "Dr.";

if (name.indexOf(prefix) == -1)
return function AddPrefix(){
return prefix + name;

}

www.it-ebooks.info

101

http://www.it-ebooks.info/

102

JavaScript’s closures give us the ability to reference variables defined in the containing
function. In this instance it enables us to keep the separation of concerns while not
repeating ourselves at the same time.

JavaScript has an eval function that allows us to concatenate values and evaluate
them at runtime. eval makes things slower, as it adds a compilation step, so it’s to be
used sparingly; however, it does allow us to create macros, which are another dynamic
language feature.

JavaScript Can Be Static

I feel like JavaScript gives us great luxury with dynamic types, but let’s not get ahead
of ourselves. Recently T have been pushing a lot of C++ because of a project, and just
today I was complaining about types. The person I was talking to said, “I love statically
typed languages because you don’t have to write tests.” Joking about tests aside, static
languages offer a lot of safety around compile time. Many people have written static
wrappers around JavaScript. Type checking with JavaScript is an abstraction—if you
were to write it into your program, it would look something like this:
switch(typeof input) {
case('number'):
if(Math.Floor(foo) == foo)
console.log("This variable is an integer");
else
console.log("This variable is a floating point");
break;
case('string'):
console.log("This variable is a string");
break;
case('object'):
if(foo instanceof Array)
console.log("This variable is an array");

}
There is a page that lives on the CoffeeScript Wiki that has a list of languages and
libraries that compile to JavaScript. At the time I'm writing there are 16 languages and
libraries listed in the statically typed section, including Dart, as Google continues a
static language => JavaScript path. Libraries like asm.js use a compiler that runs before
the JIT to make sure that the library doesn’t interfere with web performance.

JavaScript Is Functional

When I meet developers who say they specialize in Scala, or Haskell, or even F#, my
reaction is always “Wow, that is legit.” Functional languages have a reputation for
attracting brilliant developers who solve difficult problems, like managing millions of
stock market trades and making sure all the tweets get to the other side.

CHAPTER ELEVEN: JAVASCRIPT IS...

www.it-ebooks.info

http://bit.ly/coffeescript_wiki
http://www.it-ebooks.info/

JavaScript is just as legit, though, since it incorporates first-class functions, and that
makes it functional. I love them because they're like, “Surprise, function!”—you think
they’re variables, but they’re not.

I personally like this new take on a switch function as a cool implementation of a first-
class function (monetary conversions are from the time of writing):

function getlLocalTotal(country, price) {
var currency = {
'dollar': function(price) {
return price;

1,
'pound': function(price) {

return price * 0.61 // Else
1

'peso': function(price) {
return price * 13.27

1,

'kroner': function(price) {
return price * 5.48 }

1

if (currency[country.currancy])

return currency[country.currency](price);
else

return currency.dollar(price);

JavaScript Does Everything

When I was first introduced to JavaScript, it was a functional language that animated
your website. There were no libraries like jQuery; there was no in-browser debugging;
there were no web servers or desktop applications. When I asked people to share the
coolest thing they had seen powered by JavaScript, my mind was blown. The answers
were everything from a box that analyzes liquid you put in it to a WebGL version of
the game Quake, quadcopters that double as web servers, a library that lets you query
your genome, and, last but not least, the inclusive, innovative and ever-expanding
Node.js community. JavaScript helped me find hardware, which is my latest passion
since JavaScript. I look forward to seeing where it takes us next.

JAVASCRIPT DOES EVERYTHING

www.it-ebooks.info

103

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER TWELVE

Coding Beyond Logic

Daryl Koopersmith

0. The Basement

“Check it out!” I sat in a beat-up beige armchair in the basement of a college apart-
ment building, staring at a jumble of charts, icons, and code. Two physicists-in-training
beamed down at me. One of them said, “It’s pretty simple. You know what it does,
don’t you?”

I paused, eyebrows raised, scanning the lines back and forth. The code read like a
chalkboard full of high school algebra.

“No,” I shrugged. “You wrote a few loops and built a graph, but I have absolutely no
idea what this code actually does.”

As they explained the graph, I couldn’t stop thinking. Where were the well-named
variables? Where were the comments? Who taught them to code?

1. Quine’s Paradox

William Van Orman Quine was a logician who explored the limits of self-reference
(along with many other philosophical and logical concepts) throughout the 20th cen-
tury. In his essay “The Ways of Paradox,” he explores how indirect self-reference can
be applied to the liar’s paradox (“The following statement is false. The preceding state-
ment is true.”). Aside from reading like a convoluted interview question, Quine’s para-
dox unintentionally laid the foundation for a programming puzzle that has persisted
for decades:

“Yields a falsehood when appended to its own quotation” yields a falsehood
when appended to its own quotation.

www.it-ebooks.info

105

http://www.it-ebooks.info/

This sentence specifies a string of nine words and says of this string that if you
put it down twice, with quotation marks around the first of the two occur-
rences, the result is false. But that result is the very sentence that is doing the
telling. The sentence is true if and only if it is false.

The paradox, in turn, was the subject of a conversation between the Tortoise and
Achilles in Gddel, Escher, Bach: an Eternal Golden Braid, written by Douglas Hofstadter in
1979. Within the conversation, the Tortoise coins the verb quine:

Tortoise: It’s very earnest stuff, in my opinion. In fact this operation of preced-
ing some phrase by its quotation is so overwhelmingly important that I think
I'll give it a name.

Achilles: You will? What name will you dignity that silly operation by?
Tortoise: I believe I'll call it “to quine a phrase”, to quine a phrase.

Hofstader went on to win a Pulitzer, and sometime in the decade between 1988 and
1998 the conversation inspired the definition of quine (the noun), which was added to
the Jargon File, a comprehensive guide to programmer’s slang:

quine: /kwi:n/, n. A program that generates a copy of its own source text as
its complete output. Devising the shortest possible quine in some given pro-
gramming language is a common hackish amusement.

In time, programmer Gary P. Thompson II stumbled upon this definition and The
Quine Page was born: a website boasting a collection of quines in over 50 languages
(and beveled badges that touted “Lynx enhanced” and “vi powered” to boot). Thomp-
son credits the entry in the Jargon File as his inspiration, and in a delightfully circular
turn, the entry in the Jargon File now links to The Quine Page as “amusing.”

A quine is the ouroboros of programs: its stated purpose is to replicate itself as output.
But as a form, quines are an artistic puzzle, an outlet for unabashed creative expres-
sion. A quine is focused purely on the code itself. It lives to be dissected.

Here is a quine inspired by Geoffrey A. Swift’s entry from The Quine Page. It initially
reads as a bit of a jumble, so we’ll step through it together:

var a = []; a[0] = 'var a = []; ';
a[1] = 'a[';

a[2] ="'1="

a[3] = "\'"";

af4] = "\\';

a[5] = ;'

a[e] = '"';

a[7] = 'for(var 1 = 0; i1 < a.length; i1++) console.log((i == 0 ? a[0] : a[6])\
+a[1] + 1 + a[2] + a[3] + ((L ==3 || 1 ==4) ? a[4] : a[6]) + a[i] + a[3] \
+a[5] + (L ==7 7?7 a[7] : a[6]))'; for(var 1 = 0; 1 < a.length; i++) \
console.log((i == 0 ? a[0] : a[6]) + a[1] + 1 + a[2] + a[3] + \

106 CHAPTER TWELVE: CODING BEYOND LOGIC

www.it-ebooks.info

http://bit.ly/quine_page
http://bit.ly/quine_page
http://www.it-ebooks.info/

((1L==3|] 1==4) 7 a[4] : a[6]) + a[i1] + a[3] + a[5] + (L ==7 72 a[7] : \
al6e1))

This is a pure quine: a JavaScript program that rebuilds itself using simple constructs.
First, we declare an array whose indices are mapped to the strings necessary to output
the program. Then, we iterate over a loop to actually produce the output.

Consider the body of the loop when 1 equals 1:

console.log((i == 0 ? a[0] : a[6]) + a[1] + 1 + a[2] + a[3] +
((L==3 || 1==4)7a[4] : a[6]) + a[i] + a[3] + a[5] +
(i ==7 7 a[7] : a[6]))

Note that the failure case of each ternary conditional is a[6], which maps to the empty
string. Since the ternaries evaluate to the empty string when 1 equals 1, we can
remove them:

console.log(a[1] + 1 + a[2] + a[3] + a[i] + a[3] + a[5])
Substituting in strings yields:

console.log('a[' + 1+ '] ="+ "\"" + a[t] + "\"" + ;")
which evaluates to the second line:

a[1] = 'a[';

The three conditionals inside the loop allow us to print the initial array declaration,
escape slashed values, and print the for loop, respectively.

All JavaScript quines aren’t that complicated, though. JavaScript lets us cheat a little.
Consider this quine by James Halliday:

(function f() { console.log('("' + f.toString() + ')()') 1O

Much simpler. The crux of the line lies in f.toString. Calling toString on a function
returns the source of that function as a string (and maintains identical spacing). To
produce a function that outputs its source when called, we would write:

function f() { console.log(f.toString()) }

However, running this as a program would produce no output because the function
still needs to be invoked. We wrap the function in parentheses to indicate to the inter-
preter that the function should be treated as an expression, and invoke it with the fol-
lowing set of parentheses:

(function f() { console.log(f.toString()) })()

However, this still outputs the source of the function without the added parentheses.
To make this program a quine, we have to account for the parentheses when printing
the output as well:

(function f() { console.log('(' + f.toString() + "YOO") 1O

1. QUINE'S PARADOX

www.it-ebooks.info

107

http://www.it-ebooks.info/

108

This example also reveals self-reference as a form of recursion. We can transform the
quine into an infinite loop with the slightest change. Transform console. log into eval,
and suddenly it runs forever:

(function f() { eval('(' + f.toString() + ")OO") HO

Not all implementations of the quine are so accessible. This dense quine by Ben Alman
originally fit into a tweet (followed by “#quine,” of course):

!function $(){console.log('!"'+$+"'()")}()

Ben’s quine is conceptually identical to the quine we just analyzed, but compacted and
obscured as much as possible. The parentheses wrapping the function are traded for a
leading ! operator—both ensure the function is interpreted as an expression. We then
rename the function to $ simply to throw a little spice into the mix—something that
feels like it should be an operator, but really isn’t. Inside the console.log statement, we
reuse the ! operator (this is a quine, after all) and concatenate it with the $ method
and trailing invocation parentheses. The toString method is nowhere to be found:
concatenating a string with a function implicitly calls the function’s toString method.

While the techniques behind the previous two quines were identical, each program'’s
tone is considerably different. The first quine is utilitarian and accessible. The second is
sparse and coy. But when it comes to the art of the quine, these programs are just the
tip of the iceberg when compared to the work of Yusuke Endoh.

Yusuke Endoh is a self-described “Quine programmer,” and a contributor to the Ruby
programming language. His best-known quine is the Quine Relay, a Ruby program
that circles through 50 programming languages before arriving back at its Ruby ori-
gins. Another program is a quine with a twist—the Radiation Hardened Quine will
regenerate the original program even when a single character is removed from the
source at random. He has written a quine with an embedded rotating globe (the
“Qlobe”) and another in Piet, a language in which programs take on the appearance of
abstract art.

Endoh’s work pushes the boundaries of the quine as a form, subverting it into a vessel
for creative expression. His quines are maximalist, each one a mysteriously self-
supporting house of cards. The rigidity of the form aids the reading, because the intent
and structure of a quine are limited and nonnegotiable. The program is designed to
replicate itself. Code goes in, code comes out. As in a scientific experiment, establish-
ing these constant controls facilitates a deeper, more focused analysis of the variables
that remain. In the case of quines, this allows us to focus on the author’s intent, and
how the quine fulfills its purpose.

While quines themselves aren’t particularly useful in everyday programming (unless,
of course, you're Yusuke Endoh), they are an elegant illustration of programming
within constraints. Despite the quine’s simple requirements, satisfying the demands of

CHAPTER TWELVE: CODING BEYOND LOGIC

www.it-ebooks.info

http://www.it-ebooks.info/

the form often forces the programmer to shirk best practices, contorting the code until
it can spit itself out again.

Sometimes, optimizing for constraints will violate some tenet of conventional wisdom.
You might balk at first (and you certainly might feel dirty writing the code), but it
might be the most effective way to solve the problem at hand. Every program makes
trade-offs.

A classic example is unrolling a loop:

for (var 1 = 0; 1 < 100; 1++) {
doSomething(1i)
}
In an ideal environment, the cost of each iteration of the loop (increasing 1 and
inspecting whether 1 is less than 100) would be negligible compared to the cost of exe-
cuting the doSomething. This should be optimal. But if, for some reason, iterating over a
loop is expensive, then you need to come up with alternatives:
for (var 1 = 0; 1 < 100; 1 += 4) {
doSomething(i)
doSomething(i + 1)
doSomething(i + 2)
doSomething(i + 3)
}
This is not nearly as graceful as the previous loop: we’ve squashed four iterations of
the previous loop together to form a single unrolled iteration. But if this loop were
considerably more performant than the former (in our hypothetical scenario), we
would opt for the unrolled code.

Thankfully, this type of problem can often be transparently solved without your
knowledge: if unrolled loops are more efficient, when a compiler or interpreter
encounters the first loop, it will be unrolled behind the scenes.

In JavaScript, a more practical example is looping over an array:

function loop(items) {
for (var 1 = 0; 1 < items.length; i++) {
doSomething(i)
}
}

For a time, the Web was filled with articles with titles like “You’ll Never Believe How
This Web Developer Loops Over Arrays” that advocated for storing the array length in
a variable first:

function loop(items) {
for (var 1 = 0, len = items.length; 1 < len; i++) {
doSomething(i)

1. QUINE'S PARADOX

www.it-ebooks.info

109

http://www.it-ebooks.info/

110

}
}
For a little while, this change was a micro-optimization in most browsers. But now
performance swings the other way: browser engines recognize the patterns in the first
example, and optimize accordingly.

Now imagine JavaScript arrays didn’t have a length property. Imagine a count method
instead that iterated over the entire array every time it was called (don’t imagine too
hard—this is how it works in PHP):

function loop(items) {
for (var 1 = 0, len = items.count(); i1 < len; i++) {
doSomething(i)
}
}

In this case, storing the length of the array in a variable is significantly more efficient.
It’s worth the lower readability.

If we consider the broader picture, though, in almost every case this micro-
optimization was unnecessary and only complicated the code. Our community
preached patterns without understanding or explaining the thought processes behind
them.

2. The Conjecture

Shinichi Mochizuki is both the world’s only “inter-universal geometer” and the only
person who currently understands what that means. To the rest of us, Mochizuki is a
mathematician. For almost two decades, Mochizuki worked to solve the abc conjec-
ture, a proposition that, if proven, would establish unknown fundamental properties
of prime numbers. In August 2012, he released a 512-page solution to the conjecture.

Three years later his solution remains unverified, and not for lack of trying. This might
be partially due to the fact that Mochizuki invented an entirely new branch of mathe-
matics, “inter-universal geometry,” to write the proof—which, in turn, is built atop
concepts from a complex, little-known branch of mathematics called anabelian geome-
try. And if you were hoping for any inroads into the thousands of pages of mathemati-
cal literature, you're out of luck. Mochizuki practically refuses to lecture on the topic,
with only a handful of seminars offered at his home university in Japan.

It’s no wonder the proof is yet to be deciphered. To put this in perspective, this is akin

to an engineer requesting to merge a single commit that rewrites the Linux kernel in a
new programming language that he invented solely for that commit with no explana-

tion or comment. Even if appears to run perfectly, it’s not getting merged.

CHAPTER TWELVE: CODING BEYOND LOGIC

www.it-ebooks.info

http://bit.ly/abc_conjecture
http://bit.ly/abc_conjecture
http://www.it-ebooks.info/

To Mochizuki, the abc conjecture has been proven. To the rest of the world, it remains
unsolved. When asked about Mochizuki’s proof, math professor Cathy O’Neil said,
“You don’t get to say you’ve proved something if you haven’t explained it. A proof is a
social construct. If the community doesn’t understand it, you haven’t done your job.”

While JavaScript doesn’t have the same burden of proof as mathematics (and we’re
lucky that’s the case), software operates in much the same fashion. As an author, you
must identify your audience: the maintainers, the contributors, the readers. If they
don’t understand your code, how effective can it be in the long run?

Software is a social construct. A pull request requires understanding and approval
from project maintainers before it can be merged. Documentation is only useful if it’s
comprehensible. An APT must be explained before it can be used.

Even if you're the only author of the code, the same needs apply—they're just easier
to ignore. While you have more insight into your own thought process than anyone
else, memory degrades over time. It’s not about when the code is written, but the
weeks, months, and years that follow. When you inevitably decide to refactor in six
months, you'll be glad you added that documentation.

We create social conventions to govern our code: common design patterns, style
guides, and shared philosophies. The desire for understanding drives the unrelenting
march toward the consistent and thorough, fuels the fires of style guides, and ensures
that every name endures just enough bikeshedding and pedantry to emerge slightly
more sensible.

But in a codebase where each line of code perfectly adheres to a guide, it’s still appa-
rent when code is written by multiple authors. The giveaways are the snippets the
guide doesn’t specify—whether it’s the whitespace between operators or when meth-
ods should return early. Everyone has a calling card. It’s the broadest strokes that are
the most telling: we each think about problems differently. Certain patterns are our
crutches. Maybe it’s using factories, or a preferred method of inheritance. Maybe it’s
taking a more functional approach.

The code is just the surface—a reflection of its contributors, of their ideas and culture.
The thought processes behind those contributions are easily lost, archived in code
reviews and meeting notes, cobwebbed in the corners of institutional memory. In
1994, mathematician William Thurston published “On Proof and Progress in Mathe-
matics”, a survey of the culture of mathematics in the form of a scholarly paper. Thur-
ston observed how formalism drowned out institutional thought processes as pub-
lished work spread:

There is another effect caused by the big differences between how we think
about mathematics and how we write it. A group of mathematicians interact-
ing with each other can keep a collection of mathematical ideas alive for a

2. THE CONJECTURE

www.it-ebooks.info

111

http://bit.ly/thurston_paper
http://bit.ly/thurston_paper
http://www.it-ebooks.info/

112

period of years, even though the recorded version of their mathematical work
differs from their actual thinking, having much greater emphasis on language,
symbols, logic and formalism. But as new batches of mathematicians learn
about the subject they tend to interpret what they read and hear more liter-
ally, so that the more easily recorded and communicated formalism and
machinery tend to gradually take over from other modes of thinking.

So it is in JavaScript. Shared knowledge is the bedrock of programming. Every pro-
gram is built atop an ever-growing mountain of abstractions. The most accessible pro-
grams are those that leverage and extend our collective knowledge, utilizing familiar
patterns. They're aware of the audience.

As engineers, our goal is to minimize the distance between the thought process and
the final result. Why was this solution selected? Where are the pitfalls? Institutional
memory is an inevitable byproduct of writing code. It’s impossible to perfectly express
our thinking, but it’s important to try.

3. Peer Review

It may seem that Mochizuki could fill the role of a human Quine’s paradox. His work
is largely self-referential, and his it’s-proven-because-I-say-so attitude is directly in
conflict with a community that prides itself on correctness, formality, and peer review.
And if he cannot convince the world of his proof, he risks his work becoming as orna-
mental as a quine. But time passes on, and there’s hope for him yet.

In December 2014, Mochizuki posted a progress report on his website (which is truly
glorious and worth visiting in its own right, with a very serious Mochizuki gazing into
the distance, surrounded by bubbles and animated GIFs of clip art textbooks, phi
glyphs, and lightbulbs). In the report he repeatedly praises his three collaborators,
criticizes every other practicing mathematician, and liberally uses italics.

After claiming that “the verification of [the proof] is, for all practical purposes, com-
plete” and underscoring “the quite essential importance of reading through the papers
carefully,” Mochizuki dismisses every other mathematician as “a complete novice with
respect to the mathematics” surrounding the proof, and “simply not qualified to issue
a definitive (i.e., mathematically meaningful) judgment.”

He’s a little prickly. With three assenting reviewers, his work will likely be verified. But
even once his work is verified, Mochizuki risks the same problem. If no one under-
stands his work, the theory is purely decorative—an elaborate exercise in self-
reference. Despite his repeated admonishments and sardonic tone, it appears Mochi-
zuki understands this, and has settled on a strategy that will ensure his work becomes
a part of the mathematical canon:

CHAPTER TWELVE: CODING BEYOND LOGIC

www.it-ebooks.info

http://bit.ly/mochizuki_site
http://www.it-ebooks.info/

In light of the present state of affairs, the only reasonable course of action lies
in taking a long-term approach to promoting the dissemination of [the proof]
by cultivating a collection of researchers, one by one.

Now he’s being reasonable.

The arbiter of successful code is not the author, but the reader and the passage of time.
What matters are the people who interact with your code, including you.

Over the past two decades, JavaScript has exploded into a sprawling ecosystem of pro-
grammers, browsers, libraries, servers, frameworks, and standards bodies. It’s through
that chaos—through sharing and building off of one another’s ideas—that JavaScript
has flourished. As Paul Ford wrote,

Making a new language is hard. Making a popular language is much harder
still and requires the smile of fortune. And changing the way a popular lan-
guage works appears to be one of the most difficult things humans can do,
requiring years of coordination to make the standards align. Languages are
large, complex, dynamic expressions of human culture.

Through our collective work we’ve overcome pedantry and dead ends and comments
that begin with “Actually...” to create an ecosystem where our language and our
thought processes can evolve. But we only grow when we listen to one another.

Which brings me back to the basement. I smile when I remember how my physicist
friends thought I could instantly know what they were trying to accomplish just from
seeing a graph and a handful of variables.

What I initially experienced was the disconnect between the program as a logical con-
struct and the program as an expression of culture. My eyes parsed loops, variables,
and methods, but I failed to understand the purpose and context of the code. The
expectation that I could understand the intent behind code simply because I knew
how to program was flattering, but impossible.

And who taught them to code? As it turns out, it was mathematicians and scientists.
Over time, I came to realize that just because their program didn’t conform to my
expectation of what a program should look like didn't mean it was wrong or ineffec-
tive. It just meant that I was not the intended reader, and in my arrogance I judged
them for it. Maybe I shouldn’t have been so hasty. The fact that they shared their work
and I understood their explanation was success enough.

Even quines aren’t meant to sit in isolation. The quine is not only an exercise for the
author, but an exercise for the reader as well. Quines are meant to be shared. That is
the true purpose of The Quine Page—as Thompson writes, “These programs are
written for educational purposes, to further one’s computer science skills. It seems
rather paradoxical to create such a program and not share your unique solution.”

3. PEER REVIEW

www.it-ebooks.info

113

http://bit.ly/ford_what_is_code
http://www.it-ebooks.info/

As engineers, we continually reinforce the notion that a program is a logical construct,
but a program is also a means of communication, and no means of communication
can perfectly convey intent. There’s more to code than just logic. Programming is lossy,
and therein lies its beauty.

114 CHAPTER TWELVE: CODING BEYOND LOGIC

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER THIRTEEN

JavaScript Is Cutieful

Graeme Roberts

All This Loose Beauty

JavaScript is beautiful, and I can say that with certainty, for beauty is in the eye of the
beholder, and in the hands of that beholder is a language soft as plasticine that will
mold and change at will and not protest against maltreatment, and will trust the code
it’s given as though it were the word of God.

Beauty, I suppose, is a rather personal thing. Some detest the rain, and others cry in it
and feel the force of life itself in drops as it hammers on their skin.

And so, in JavaScript.

Some fear and remonstrate against a single use of anything not sanctioned by ancestral
coders in whom they’ve learned to place their trust. As though experimentation,
thought, invention, play, discovery, and learning were some capital offense.

Some of the authors in this book have quite deftly shown the beauty in the structure
and the safety of those parts of the language we’ve accepted as permissible.

Others have, with expertise and confidence and thorough knowledge of their craft,
demonstrated elegance and let us see the power and succinctness that these oft lam-
basted features can grant a learned user.

The Absurdity of Dali

The work of Dali is often absurd, disturbing, strange, enchanting, comical, and surpris-
ing—and it is beautiful.

I want to explore a part of JavaScript that captures that same kind of beauty for me.

www.it-ebooks.info

115

http://www.it-ebooks.info/

116

Dali’s JavaScript

Array.apply(null, { length: 10 }).map(eval.call, Number)
// > [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Before reading on, just look at that for a little while. Really drink it in. Just look at
what is going on there, until soft clocks inside your head melt all down your repl.

Is This Beauty Just Ugly?

I can see why detractors might say that this is quite the opposite of beauty. They may
know that in other languages they would be treated to something friendly like
range(10).

But try to let that feeling pass. Or, better yet, let’s pretend we really do have such a
thing as Math.range(10), and let that free us to appreciate the details of the true beauty
here.

An Unfortunate Necessity

Array.apply(null, { length: 10 }) and Array.apply(null, Array(10)) are two ver-
sions of an unfortunate, and slightly offensive, necessity in order to generate an array
of 10 undefineds rather than an array of length 10 without defined contents.

The Beauty Is in the Madness

So now we’ve got ourselves a tasty array like this:

[undefined, undefined, undefined, undefined, undefined, undefined, undefined,
undefined, undefined, undefined]

Nothing rousing about that. “I'm not roused,” I pretend to imagine that I hear you
think.

But, my dear, the beauty that I promised is to be found within the madness of
map(eval.call, Number).

The use of eval is not actually relevant. I chose it because it’s short (and because typ-
ing eval makes me feel mischievous). Any function will do; function(){}.call works
just as well. It’s the call we want!

Let’s Have a Wee Look at map

You probably already know all this. Sorry.

Array.prototype.map expects a callback function as an argument, which it will call in
turn for each value in the array. To callback it passes arguments value, index, and the
full array. In the end, it returns a new array with the result of callback in place, or
each item.

CHAPTER THIRTEEN: JAVASCRIPT IS CUTIEFUL

www.it-ebooks.info

http://www.it-ebooks.info/

There’s a beautiful JS goldmine in passing native constructors to [].map:

["10", "20", "lol"].map(Number)
// > [10, 20, NaN]

Adorable, right? I love this with [].filter too; it’s just some real cute-as-a-box-of-
buttons JavaScript:

["10", "20", "lol"].map(Number).filter(Boolean)
// > [10, 20]

Hello, thisArg

[1.map also takes a second argument, and that’s a calling context, or thisArg. This is
the object that will serve as this when callback is running on the values:

["lol", "wow", "ok"].map(function(string) {
return this[string];

1o
lol: "yeah!",
wow: "alright!",
ok: "cool!"

b

// » ["yeah!", "alright!", "cool!"]

So it’s essentially like [].map(fn.bind(obj)).

Okay! So That's a Bunch of Stuff | Already Knew About [1.map—
Now What?

Well, let’s have another look at Dali’s map:
Array(null, { length: 10 }).map(eval.call, Number)

Rad. We're covered up to about character 38 now. So what else is going on here?

calling All Cars

So, Function.prototype.call takes a thisArg. It’s thanks to it that we are able to
indulge in such pleasures as the ever-merciful var args = [].slice.call(arguments).
Supplemental arguments will be passed to the function being called.

Number

Number takes one argument, and it tries earnestly to coax that argument into becoming
a number:

Number(" 47 ")
/) > 47

Number (true)

/71

THE ABSURDITY OF DALI

www.it-ebooks.info

117

http://www.it-ebooks.info/

118

Now | Know Everything
One last look at this:
Array(null, { length: 10 }).map(eval.call, Number)

For each undefined in our array, Function.prototype.call is being called with a this
context of Number, like:

Function.prototype.call.bind(Number, undefined, index, array);
which is like:
Number.call(undefined, index, array)

which equates to Number with a this context of undefined (which has no effect because
Number doesn’t utilize this) being passed the arguments index and array:

Number (index, array)

Number ignores the array and returns the number, delivering us a new array consisting
of the indexes of the old array.

Wild
Now, this is clearly completely insane.

Like, really mental.

But it does make a quite flamboyant display of what I think is one of the most gor-
geous and powerful mechanisms in sweet JavaScript: the ability to call any function
you find lying about, in the context of any object you choose. And I really think that
that is beautiful JavaScript.

But I'm one of the ones outside crying in the rain.

CHAPTER THIRTEEN: JAVASCRIPT IS CUTIEFUL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FOURTEEN

Functional JavaScript

Anton Kovalyov

Is JavaScript a functional programming language? This question has long been a topic
of great debate within our community. Given that JavaScript’s author was recruited to
do “Scheme in the browser,” one could argue that JavaScript was designed to be used
as a functional language. On the other hand, JavaScript’s syntax closely resembles
Java-like object-oriented programming, so perhaps it should be utilized in a similar
manner. Then there might be some other arguments and counterarguments, and the
next thing you know the day is over and you didn’t do anything useful.

This chapter is not about functional programming for its own sake, nor is it about
altering JavaScript to make it resemble a pure functional language. Instead, this chap-
ter is about taking a pragmatic approach to functional programming in JavaScript, a
method by which programmers use elements of functional programming to simplify
their code and make it more robust.

Functional Programming

Programming languages come in several varieties. Languages like Go and C are called
procedural: their main programming unit is the procedure. Languages like Java and
SmallTalk are object oriented: their main programming unit is the object. Both these
approaches are imperative, which means they rely on commands that act upon the
machine state. An imperative program executes a sequence of commands that change
the program’s internal state over and over again.

Functional programming languages, on the other hand, are oriented around expres-
sions. Expressions—or rather, pure expressions—don’t have a state, as they merely
compute a value. They don’t change the state of something outside their scope, and
they don’t rely on data that can change outside their scope. As a result, you should be

www.it-ebooks.info

119

http://www.it-ebooks.info/

able to substitute a pure expression with its value without changing the behavior of a
program. Consider an example:

function add(a, b) {
return a + b

}
add(add(2, 3), add(4, 1)) // 16

To illustrate the process of substituting expressions, let’s evaluate this example. We
start with an expression that calls our add function three times:

add(add(2, 3), add(4, 1))

Since add doesn’t depend on anything outside its scope, we can replace all calls to it
with its contents. Let’s replace the first argument that is not a primitive value—
add(2, 3):

add(2 + 3 , add(4, 1))

Then we replace the second argument:
add(2 + 3, 4 + 1)

Finally, we replace the last remaining call to our function and calculate the result:
(2 +3)+(4+1)// 10

This property that allows you to substitute expressions with their values is called refer-
ential transparency. It is one of the essential elements of functional programming.

Another important element of functional programming is functions as first-class citizens.
Michael Fogus gave a great explanation of functions as first-class citizens in his book,
Functional JavaScript. His definition is one of the best I've seen:

The term “first-class” means that something is just a value. A first-class func-
tion is one that can go anywhere that any other value can go—there are few
to no restrictions. A number in JavaScript is surely a first-class thing, and
therefore a first-class function has a similar nature:
e A number can be stored in a variable and so can a function:
var fortytwo = function() { return 42 };
e A number can be stored in an array slot and so can a function:
var fortytwos = [42, function() { return 42 }];
e A number can be stored in an object field and so can a function:
var fortytwos = {number: 42, fun: function() { return 42 }};
e A number can be created as needed and so can a function:

42 + (function() { return 42 })(); // => 84

120 CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

http://shop.oreilly.com/product/0636920028857.do
http://www.it-ebooks.info/

e A number can be passed to a function and so can a function:

function weirdAdd(n, f) { return n + f() }

weirdAdd(42, function() { return 42 }); // => 84

e A number can be returned from a function and so can a function:

return 42;

return function() { return 42 };

Having functions as first-class citizens enables another important element of functional
programming: higher-order functions. A higher-order function is a function that operates
on other functions. In other words, higher-order functions can take other functions as

their arguments, return new functions, or do both. One of the most basic examples is a
higher-order map function:

map([1, 2, 3], function (n) { return n + 1 }) // [2, 3, 4]

This function takes two arguments: a collection of values and another function. Its
result is a new list with the provided function applied to each element from the list.

Note how this map function uses all three elements of functional programming
described previously. It doesn’t change anything outside of its scope, nor does it use
anything from the outside besides the values of its arguments. It also treats functions
as first-class citizens by accepting a function as its second argument. And since it uses
that argument to compute the value, one can definitely call it a higher-order function.

Other elements of functional programming include recursion, pattern matching, and
infinite data structures, although I will not elaborate on these elements in this chapter.

Functional JavaScript

So, is JavaScript a truly functional programming language? The short answer is no.
Without support for tail-call optimization, pattern matching, immutable data struc-
tures, and other fundamental elements of functional programming, JavaScript is not
what is traditionally considered a truly functional language. One can certainly try to
treat JavaScript as such, but in my opinion, such efforts are not only futile but also
dangerous. To paraphrase Larry Paulson, author of the Standard ML for the Working Pro-
grammer, a programmer whose style is “almost” functional had better not be lulled into
a false sense of referential transparency. This is especially important in a language like
JavaScript, where one can modify and overwrite almost everything under the sun.

Consider JSON.stringify, a built-in function that takes an object as a parameter and
returns its JSON representation:

JSON.stringify({ foo: "bar" }) // -> "{"foo":"bar"}"

FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

121

http://www.it-ebooks.info/

122

One might think that this function is pure, that no matter how many times we call it
or in what context we call it, it always returns the same result for the same arguments.
But what if somewhere else, most probably in code you don’t control, someone over-
writes the Object.prototype.toJSON method?

JSON.stringify({ foo: "bar" })
// -> "{"foo": "bar"}"

Object.prototype.toJSON = function () {
return "reality ain't always the truth"

}

JSON.stringify({ foo: "bar" })

// -> ""reality ain't always the truth""
As you can see, by slightly moditying a built-in Object, we managed to change the
behavior of a function that looks pretty pure and functional from the outside. Func-
tions that read mutable references and properties aren’t pure, and in JavaScript, most
nontrivial functions do exactly that.

My point is that functional programming, especially when used with JavaScript, is
about reducing the complexity of your programs and not about adhering to one partic-
ular ideology. Functional JavaScript is not about eliminating all the mutations; it’s
about reducing occurrences of such mutations and making them very explicit. Con-
sider the following function, merge, which merges together two arrays by pairing their
corresponding members:

function merge(a, b) {

b.forEach(function (v, i) { a[i] = [a[1l], b[i]] })

}
This particular implementation does the job just fine, but it also requires intimate
knowledge of the function’s behavior: does it modify the first argument, or the
second?

var a = [1, 2, 3]
var b ["one", "two", "three"]

merge(a, b)

a// ->[[1, "one"], [2, "two"],..]
Imagine that you're unfamiliar with this function. You skim the code to review a
patch, or maybe just to familiarize yourself with a new codebase. Without reading the
function’s source, you have no information regarding whether it merges the first argu-
ment into the second, or vice versa. It’s also possible that the function is not destruc-
tive and someone simply forgot to use its value.

Alternatively, you can rewrite the same function in a nondestructive way. This makes
the state change explicit to everyone who is going to use that function:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

http://www.it-ebooks.info/

function merge(a, b) {
return a.map(function (v, 1) { return [v, b[1]] })

}

Since this new implementation doesn’t modify any of its arguments, all mutations will
have to be explicit:

var a = [1, 2, 3]
var b = ["one", "two", "three"]

merge(a, b) // -> [[1, "one"], [2, "two"],..]

// a and b still have their original values.
// Any change to the value of a will have to
// be explicit through an assignment:

a = merge(a, b)

To further illustrate the difference between the two approaches, let’s run that function
three times without assigning its value:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
// -> [[1, "one"], [2, "two"]]; a and b are the same
merge(a, b)
/) -> [[1, "one"], [2, "two"]]; a and b are the same

As you can see, the return value never changes. It doesn’t matter how many times you
run this function; the same input will always lead to the same output. Now let’s go
back to our original implementation and perform the same test:

var a = [1, 2]
var b = ["one", "two"]

merge(a, b)

// -> undefined; a is now [[1, "one"], [2, "two"]]

merge(a, b)

// -> undefined; a is now [[[1,"one"], "one"], [[2, "two"],"two"]]
merge(a, b)

// -> undefined; a is even worse now; the universe imploded

Even better is that this version of merge allows us to use it as a value itself. We can
return the result of its computation or pass it around without creating temporary vari-
ables, just like we would do with any other variable holding a primitive value:
function prettyTable(table) {
return table.map(function (row) {
return row.join(" ")
1) .join("\n")
}

FUNCTIONAL JAVASCRIPT 123

www.it-ebooks.info

http://www.it-ebooks.info/

124

console.log(prettyTable(merge([1, 2, 3], ["one", "two", "three"])))

// prints:

// 1 "one"
// 2 "two"
// 3 "three"

This type of function, known as a zip function, is quite popular in the functional pro-
gramming world. It becomes useful when you have multiple data sources that are
coordinated through matching array indexes. JavaScript libraries such as Underscore
and LoDash provide implementations of zip and other useful helper functions so you
don’t have to reinvent the wheel within your projects.

Let’s look at another example where explicit code reads better than implicit. JavaScript
—at least, its newer revisions—allows you to create constants in addition to variables.
Constants can be created with a const keyword. While everyone else (including yours
truly) primarily uses this keyword to declare module-level constants, my friend Nick
Fitzgerald uses consts virtually everywhere to make clear which variables are expected
to be mutated and which are not:

function invertSourceMaps(code, mappings) {
const generator = new SourceMapGenerator(...)

return DevToolsUtils.yieldingEach(mappings, function (m) {
/...
D)
}

With this approach, you can be sure that a generator is always an instance of SourceMap
Generator, regardless of where it is being used. It doesn’t give us immutable data struc-
tures, but it does make it impossible to point this variable to a new object. This means
there’s one less thing to keep track of while reading the code.

Here’s a bigger example of a functional approach to programming: a few weeks ago, I
wrote a static site generator in JavaScript for the JSHint website and my personal blog.
The main module that actually reads all the templates, generates a new site, and writes
it back to disk consists of only three small functions. The first function, read, takes a
path as an argument and returns an object that contains the whole directory tree plus
the contents of the source files. The second function, build, does all the heavy work: it
compiles all the templates and Markdown files into HTML, compresses static files, and
so on. The third function, write, takes the site structure and saves it to disk.

There’s absolutely no shared state between those three functions. Each has a set of
arguments it accepts and some data it returns. An executable script I use from my
command line does precisely the following:

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

http://jshint.com/
http://www.it-ebooks.info/

#!/usr/bin/env node

require("./index.js")
process.argv.slice(2)

var oddweb
var args

oddweb.write(oddweb.build(oddweb.read(args[1]))

I also get plug-ins for free. If I need a plug-in that deletes all files with names ending
with .draft, all I do is write a function that gets a site tree as an argument and returns a
new site tree. I then plug in that function somewhere between read and write, and I'm
golden.

Another benefit of using a functional programming style is simpler unit tests. A pure
function takes in some data, computes it, and returns the result. This means that all
that’s needed in order to test that function is input data and an expected return value.
As a simple example, here’s a unit test for our function merge:

function testMerge() {
var data = [
{ // Both lists have the same size
a: [1, 2, 31,
b: ["a", "b", "c"],
ret: [[1, "a"], [2, "b"], [3, "c"]]
}’

{ // Second list is larger

a: [1, 2],

b: ["a", "b", "c'],

ret: [[1, "a"], [2, "b"]]
}’

{ // Etc.

}
]

data.forEach(function (test) {
isEqual(merge(test.a, test.b), test.ret)

D)
}
This test is almost fully declarative. You can clearly see what input data is used and
what is expected to be returned by the merge function. In addition, writing code in a
functional way means you have less testing to do. Our original implementation of
merge was modifying its arguments, so that a proper test would have had to cover cases
where one of the arguments was frozen using Object.freeze.

All functions involved in the preceding example—forEach, isEqual, and merge—were
designed to work with only simple, built-in data types. This approach, where you build
your programs around composable functions that work with simple data types, is

FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

125

http://www.it-ebooks.info/

called data-driven programming. Tt allows you to write programs that are clear and ele-
gant and have a lot of flexibility for expansion.

Objects

Does this mean you shouldn’t use objects, constructors, and prototype inheritance? Of
course not! If something makes your code easier to understand and maintain, it’d be
silly not to use it. However, JavaScript developers often start making overcomplicated
object hierarchies without even considering whether there are simpler ways to solve
the problem.

Consider the following object that represents a robot. This robot can walk and talk, but
otherwise it’s pretty useless:

function Robot(name) {
this.name = name

}

Robot.prototype = {
talk: function (what) { /* ... */ },
walk: function (where) { /* ... */ }
}
What would you do if you wanted two more robots: a guard robot to shoot things and
a housekeeping robot to clean things? Most people would immediately create child
objects GuardRobot and HousekeeperRobot that inherit methods and properties from the
parent Robot object and add their own methods. But what if you then decided you
wanted a robot that can both clean and shoot things? This is where hierarchy gets
complicated and software fragile.

Consider the alternative approach, where you extend instances with functions that
define their behavior and not their type. You don’t have a GuardRobot and a Housekee
perRobot anymore; instead, you have an instance of a Robot that can clean things,
shoot things, or do both. The implementation will probably look something like this:
function extend(robot, skills) {
skills.forEach(function (skill) {

robot[skill.name] = skill.fn.bind(null, rb)
b

return robot

}

To use it, all you have to do is to implement the behavior you need and attach it to the
instance in question:

function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

126 CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

http://www.it-ebooks.info/

var rdo = new Robot("R. Daniel Olivaw")
extend(rdo, { shoot: shoot, clean: clean })

rdo.talk("Hi!") // OK
rdo.walk("Mozilla SF") // OK
rdo.shoot() // OK
rdo.clean() // 0K

— NOTE

My friend Irakli Gozalishvili, after reading this chapter, left a comment saying that
his approach would be different. What if objects were used only to store data?

function talk(robot) { /* ... */ }
function shoot(robot) { /* ... */ }
function clean(robot) { /* ... */ }

var rdo = { name: "R. Daniel Olivaw" }

talk(rdo, "Hi!") // OK
walk(rdo, "Mozilla SF") // OK
shoot(rdo) // OK

clean(rdo) // 0K

With his approach you don'’t even need to extend anything: all you need to do is
pass the correct object.

At the beginning of this chapter, I warned JavaScript programmers against being lulled
into the false sense of referential transparency that can result from using a pure func-
tional programming language. In the example we just looked at, the function extend
takes an object as its first argument, modifies it, and returns the modified object. The
problem here is that JavaScript has a very limited set of immutable types. Strings are
immutable. So are numbers. But objects—such as an instance of Robot—are mutable.
This means that extend is not a pure function, since it mutates the object that was
passed into it. You can call extend without assigning its return value to anything, and
rdo will still be modified.

Now What?

The major evolution that is still going on for me is towards a more functional
programming style, which involves unlearning a lot of old habits, and backing
away from some OOP directions.

—John Carmack

JavaScript is a multiparadigm language supporting object-oriented, imperative, and
functional programming styles. It provides a framework in which you can mix and
match different styles and, as a result, write elegant programs. Some programmers,
however, forget about all the different paradigms and stick only with their favorite

NOW WHAT? 127

www.it-ebooks.info

http://www.it-ebooks.info/

128

one. Sometimes this rigidity is due to fear of leaving a comfort zone; sometimes it’s
caused by relying too heavily on the wisdom of elders. Whatever the reason, these
people often limit their options by confining themselves to a small space where it’s
their way or the highway.

Finding the right balance between different programming styles is hard. It requires
many hours of experimentation and a healthy number of mistakes. But the struggle is
worth it. Your code will be easier to reason about. It will be more flexible. You'll ulti-
mately find yourself spending less time debugging, and more time creating something
new and exciting.

So don’t be afraid to experiment with ditferent language features and paradigms.
They’re here for you to use, and they aren’t going anywhere. Just remember: there’s
no single true paradigm, and it’s never too late to throw out your old habits and learn
something new.

CHAPTER FOURTEEN: FUNCTIONAL JAVASCRIPT

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER FIFTEEN

Progress

Rick Waldron

This is a risky chapter to write—it’s possible that some of the code it contains will be
wrong by the time this book goes to print. In June 2015 the sixth edition of the
ECMAScript standard is scheduled to be published, which means that by the time
you're reading it, this chapter is either a goldmine or a dud. While being rational cer-
tainly has its merits, being adventurous and perhaps a little irrational is also valuable,
so here we go.

To be clear: I really love JavaScript—as a general-purpose programming language, it is
a truly unique and beautiful creation. When I say beautiful, I don’t necessarily mean it
in the classical sense: sometimes a beast can also be beautiful—that beast just needs
someone to love it and dress it in nice clothes for the ball.

JavaScript has an easy-to-use mechanism for inheritance.
—No one

If T had a nickel for every mention of “JavaScript inheritance” on the Internet-
according-to-Google, at the time of this writing I would have over $2,000.! The top
results? all disagree with each other, but in interesting and not-incorrect ways. The
problem is that JavaScript’s built-in mechanism for defining a class of object and its
behavior is the same mechanism used for defining any encapsulated operation: a func-
tion. Additionally, veterans of other programming languages like C++, C#, Java,
Python, Ruby, and so on tend to get hung up on JavaScript’s lack of inheritance as

1 As this book entered production, Google showed over 45,000 hits for the quoted term “JavaScript
inheritance.”

2 “Classical Inheritance in JavaScript—Douglas Crockford”, “Understanding JavaScript Inheritance—
Alex Sexton”, “Inheritance and the prototype chain—JavaScriptMDN”, and “John Resig—Simple
JavaScript Inheritance”.

www.it-ebooks.info

129

http://www.crockford.com/javascript/inheritance.html
http://alexsexton.com/blog/2013/04/understanding-javascript-inheritance/
http://alexsexton.com/blog/2013/04/understanding-javascript-inheritance/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Inheritance_and_the_prototype_chain
http://ejohn.org/blog/simple-javascript-inheritance/
http://ejohn.org/blog/simple-javascript-inheritance/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://bit.ly/cpp_class_decl
http://bit.ly/c_sharp_classes
http://bit.ly/java_class
http://bit.ly/python_classes
http://bit.ly/ruby_class
http://www.it-ebooks.info/

they understand it in those languages. JavaScript’s prototypal inheritance model is
often the target of unfair name calling, and the truth is, while beautiful and powerful,
it’s a bit confusing to learn and more so to master. As an added kick in the pants, Jav-
aScript’s built-in classes weren’t designed with subclassing in mind.

Thwarted at every turn!

Early in the history of jQuery, John Resig attempted to make it a subclass of the built-
in Array class. He ultimately moved on after discovering that not only is length prop-
erty assignment “magic” lost for Array subclasses, but older versions of Internet
Explorer would always report a value of 0, regardless of the length of items in the
instance of the Array subclass. This was before the fifth edition of ECMAScript had
been published, so the Array built-in hadn’t grown the familiar API that it sports
today—which also meant that in addition to length property issues, John had to
design and implement his own API for interacting with array-like collections. These
obstacles led to the current jQuery design: a class that implements collection-centric
iterative operation methods and produces instances that are array-like. In this chapter,
I'm going to show you what this means in terms of code, by implementing a class
whose instances are an array-like list of elements with a few simple but useful meth-
ods, and then evolve the code by refactoring it several times using modern, then
future, language features. The “test suite” will assert the basic functionality of the
library—none of the refactorings will violate their expectations. The full code can be
found at Attp://bit.ly/jquery_test_suite.

This is approximately what the output will look like:

// file:criteria.js

(Result) The Elements class prototype
(Result) Zero length instance

(Result) Elements from Elements

(Result) One match will have a length of 1 (no context)
(Result) One match will have a length of 1
(Result) Two matches will have a length of 2
(Result) Add a class

(Result) Set and get an attribute

(Result) Set and get a css style property
(Result) Set and get some html

(Result) Filtering produces a new instance
(Result) Filter with a dummy predicate
(Result) Filter with a predicate

(Result) Invocation forEach item in the list
(Result) Find the indexOf an element
(Result) Push an element onto the list
(Result) Push returns the instance, not the length
(Result) Slicing produces a new instance
(Result) Slice a list of elements

(Result) Sort a list of elements by nodeName

130 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://bit.ly/js_subclasses
http://jquery.com
http://ejohn.org
http://bit.ly/jquery_as_subclass
http://bit.ly/subclass_js_array
http://bit.ly/jquery_test_suite
http://www.it-ebooks.info/

——NOTE
(Result) will be either Pass or Fail.

Engineers often dismiss testing and the value it provides to their code, but I believe
that in order to write truly beautiful code in any language, you must prove that code
through tests. A good way to think about writing tests is as an agreement, where the
agreement is that the code being written behaves a certain way and produces a certain
result and will do so for all time (or until the requirements change). Tests will there-
fore help guide the process of refactoring the code several times over by forcing us to
uphold our side of the agreement.

The following library code is the first iteration of the Elements class. This implementa-
tion does not attempt to subclass the built-in Array class.

—NOTE

Every call to context.querySelectorAll(selector) will be wrapped in a try-
catch to suppress exceptions thrown by invalid selectors.

// file:elements-ril.js
function Elements(selector, context) {
var elems, elem, k;

selector = selector || "";

this.context = context || document;

if (Array.isArray(selector) || selector instanceof Elements) {
elems = selector;

} else {
try {

elems = this.context.querySelectorAll(selector);
} catch (e) {
elems = [];
}
}

if (lelems) {
// elems is either:

// - undefined because the selector was invalid
// resulting in a thrown exception

// - null because the querySelectorAll returns
// null instead of an empty object when no
// matching elements are found.

elems = []

}

if (elems.length) {
k = -1;

PROGRESS

www.it-ebooks.info

131

http://www.it-ebooks.info/

while (elem = elems[++k]) {
this[k] = elem;
}
}

this.length = elems.length;
}

Elements.prototype = {
constructor: Elements,
addClass: function(value) {

this.forEach(function(elem) {
elem.classList.add(value);

b;
return this;
1,
attr: function(key, value) {
if (typeof value !== "undefined") {

this.forEach(function(elem) {
elem.setAttribute(key, value);

s

return this;
} else {
return this[0] && this[0].getAttribute(key);

}
}s
css: function(key, value) {
if (typeof value !== "undefined") {

this.forEach(function(elem) {
elem.style[key] = value;
b

return this;
} else {
return this[0] && this[0].style[key];

}
1,
html: function(html) {
if (typeof html !== "undefined") {

this.forEach(function(elem) {
elem.innerHTML = html;
s
return this;
} else {
return this[0] && this[0].innerHTML;
}
1,
filter: function() {
return new Elements([].filter.apply(this, arguments));
}s
forEach: function() {

132 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

[].forEach.apply(this, arguments);
return this;

1,
index0f: function() {
return [].indexOf.apply(this, arguments);

}s

push: function() {
[1.push.apply(this, arguments);
return this;

1
slice: function() {
return new Elements([].slice.apply(this, arguments));

i;rt: function() {
return [].sort.apply(this, arguments);
}
IH
While certainly correct, this code is a technical debt nightmare. The six array alloca-
tions could be replaced with a shared reference to Array.prototype, but this would
require wrapping the entire declaration and prototype definition inside an immedi-
ately invoked function expression to avoid leaking that binding into the global object.
It’s also safe to assume that the explicit reboxing of Array instances into Elements
instances will have performance penalties. Despite these drawbacks, the first imple-
mentation is functional and has revealed that length property assignment semantics,
as they are defined for a built-in Array instance, are not a requirement for this object.
With that understanding, the example can be naively refactored as a rudimentary
Array subclass:
// file:elements-r2.js

function Elements(selector, context) {
Array.call(this);

var elems;
this.context = context || document;
if (Array.isArray(selector) || selector instanceof Elements) {
elems = selector;
} else {
try {
elems = this.context.querySelectorAll(selector || "");

} catch (e) {
elems = [];
}
}

if (lelems) {
// elems is either:

// - undefined because the selector was invalid
// resulting in a thrown exception

PROGRESS

www.it-ebooks.info

133

http://www.it-ebooks.info/

// - null because the querySelectorAll returns

// null instead of an empty object when no
// matching elements are found.
elems = []

}

this.push.apply(this, elems);
}

Elements.prototype = Object.create(Array.prototype);
Elements.prototype.constructor = Elements;

Elements.prototype.addClass = function(value) {
this.forEach(function(elem) {
elem.classList.add(value);

b;
return this;

b

Elements.prototype.attr = function(key, value) {
if (typeof value !== "undefined") {

this.forEach(function(elem) {
elem.setAttribute(key, value);
b;

return this;
} else {
return this[0] && this[0].getAttribute(key);

}

b

Elements.prototype.css = function(key, value) {
if (typeof value !== "undefined") {

this.forEach(function(elem) {
elem.style[key] = value;
b;

return this;
} else {
return this[0] && this[0].style[key];

}

b

Elements.prototype.html = function(html) {
if (typeof html !== "undefined") {

this.forEach(function(elem) {
elem.innerHTML = html;
b
return this;
} else {
return this[0] && this[0].innerHTML;
}
b
Elements.prototype.filter = function() {
return new Elements([].filter.apply(this, arguments));

134 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

éiements.prototype.slice = function() {
return new Elements([].slice.apply(this, arguments));
E{ements.prototype.push = function() {
[].push.apply(this, arguments);
return this;
};
A number of changes have occurred, and the design no longer specifies an explicit def-
inition of forEach, index0f, and sort: these are now inherited directly from the built-in
Array.prototype. This refactored version is still functionally correct and will pass all of
the assertions defined for the Elements class. Unfortunately, refactoring the design so
that it is an Array subclass has cost the library any sense of cohesion: assigning Ele
ments.prototype the value of Object.create(Array.prototype) means that the design
must trade readability of Elements.prototype = {...}; for the forced one-property-
assignment-at-a-time form for all of the subclass’s own prototype methods. This fur-
ther exposes a pathological problem: the source doesn’t visually express the intent,
which is to define a class of thing and its behavior.

A reasonably large portion of readers may cringe at the word class, but it’s important to
remember that c/ass is not about any specific language’s implementation of object-
oriented programming paradigms. Remember where the terms “object” and “class”
came from, with regard to computer programming languages:

A central new concept in Simula 67 is the “object”. An object is a self-
contained program (block instance), having its own local data and actions
defined by a “class declaration”. The class declaration defines a program (data
and action) pattern, and objects conforming to that pattern are said to “belong
to the same class.”

—Ole-Johanv Dahl, Bjorn Myhrhaug, and Kristen Nygaard,
“SIMULA 67 Common Base Language”

With this definition in mind, the piece of code I'm designing is undoubtedly a “class.”
That it is a function declaration with prototype definition is nothing more than an
implementation detail. Once this is accepted, the library may embrace the changes it
will undergo in the final refactoring. Before we can move to the third and final revi-
sion, it’s valuable to revisit patterns that have emerged and gained the most traction.
The constructor function and prototype definition pattern has, unfortunately, proven
itself to be less than intuitive, and for almost a decade JavaScript programmers have
been pursuing a mechanism that will allow them to write program code that includes
some form of class-like semantics. This has led to the proliferation of API-bound
library code that attempts to paper over the lack of syntactic forms, where simplicity is

PROGRESS

www.it-ebooks.info

135

http://bit.ly/simula_67
http://www.it-ebooks.info/

in the eye of the author.®> In more recent years, languages that transpile to JavaScript
have been created to allow for even simpler syntactic forms to fill in the role of the
missing mechanism.* What follows is a collection of various class-like APIs and syntac-
tic class declaration forms, all of which define a List class and a People class: the latter
is a subclass of the former whose push method will reject nonstring entries. These crite-
ria represent a common, not-quite-trivial programming task that will serve to illus-
trate, by example, the approaches taken and the patterns that have emerged.

So, for the following specified criteria:

e Define a List class.
e Define a People subclass of List.

e Define a push method that will reject nonstring entries.

these are the assertions that we’ll write tests for:

(Result) An object named List exists, its type is "function"

(Result) An object named People exists, its type is "function"

(Result) Initialization arguments length equals List object length

(Result) Initialization arguments length equals People object length for
strings only

(Result) Any value may be pushed into a List object.

(Result) String values may be pushed into People object.

A simplified version of these assertions might look like this:

var 1 = new List(1, "foo", [1);
console.log(l.length === 3);
console.log(l.push(42) === 4);

var p = new People("Alice", "Bob", "Carol");

console.log(p.length === 3);
console.log(p.push(42) === 3);
console.log(p.push("Dennis") === 4);

This should be run after each of the following examples (in some cases, after they’ve
been transpiled).

3 See, for example, http://api.prototypejs.org/language/Class/, http://ejohn.org/blog/simple-javascript-
inheritance/, http://dean.edwards.name/weblog/2006/03/base/, and http://dojotoolkit.org/documentation/tuto
rials/1.7/declare/.

4 See http://coffeescript.org/Hclasses.

136 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://api.prototypejs.org/language/Class/
http://ejohn.org/blog/simple-javascript-inheritance/
http://ejohn.org/blog/simple-javascript-inheritance/
http://dean.edwards.name/weblog/2006/03/base/
http://dojotoolkit.org/documentation/tutorials/1.7/declare/
http://dojotoolkit.org/documentation/tutorials/1.7/declare/
http://coffeescript.org/#classes
http://www.it-ebooks.info/

JavaScript:

function List() {
this.push.apply(this, arguments);

}

List.prototype.push = function() {
return [].push.apply(this, arguments);
I

function People() {
List.call(this);
this.push.apply(this, arguments);
}

People.prototype.push = function() {
return List.prototype.push.apply(
this, [].filter.call(arguments, function(peep) {
return typeof peep === "string";
b
)5
b

Prototype.js:

var List = Class.create({
initialize: function() {
this.push.apply(this, arguments);
1,
push: function() {
return [].push.apply(this, arguments);
}
H;

var People = Class.create(List, {
push: function($super) {
return $super.apply(
this, [].slice.call(arguments, 1).filter(function(peep) {
return typeof peep === "string";
D
);
}
H;

Simple JavaScript Inheritance:

var List = Class.extend({
init: function() {
this.push.apply(this, arguments);
1,
push: function() {
return [].push.apply(this, arguments);
}
b

PROGRESS

www.it-ebooks.info

137

http://www.it-ebooks.info/

var People = List.extend({
init: function() {
this._super.apply(this, arguments);
1,
push: function() {
return this._super.apply(
this, [].filter.call(arguments, function(peep) {
return typeof peep === "string";
b
);
}
b

Dojo:

// Thanks to Brian Arnold @brianarn for this one.
// Note that this approach is deprecated and is shown
// here only as a means to illustrate a point.
var List = dojo.declare(null, {
constructor: function() {
this.push.apply(this, arguments);
1,
push: function() {
return [].push.apply(this, arguments);
}
b;

var People = dojo.declare(List, {
push: function() {
return this.inherited(
arguments, [].filter.call(arguments, function(peep) {
return typeof peep === "string";
D
);
}
b;

Ext.js:

Ext.define("List", {
constructor: function () {
this.push.apply(this, arguments);
}s
push: function() {
return [].push.apply(this, arguments);
}
H;

Ext.define("People", {
extend: "List",
push: function() {
return this.callParent(
[].filter.call(arguments, function(peep) {

138 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

return typeof peep === "string";
b
);
}
s

CoftfeeScript:

class List
constructor: (args...) ->
this.push args...

push: (args...) ->
[1.push args...

class People extends List
push: (args...) ->
super (args.filter (peep) -> typeof peep is "string")...

...which transpiles to...

var List, People, _ref,
__slice = [].slice,
__hasProp = {}.hasOwnProperty,
__extends = function(child, parent) {
for (var key in parent) {
if (__hasProp.call(parent, key)) child[key] = parent[key];
}
function ctor() {
this.constructor = child;
}
ctor.prototype = parent.prototype;
child.prototype = new ctor();
child.__super__ = parent.prototype;
return child;

};

List = (function() {

function List() {
var args;
args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
this.push.apply(this, args);

}

List.prototype.push = function() {
var args, _ref;
args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];

return (_ref = []).push.apply(_ref, args);
b

return List;

bHO;

PROGRESS

www.it-ebooks.info

139

http://www.it-ebooks.info/

People = (function(_super) {
__extends(People, _super);

function People() {
_ref = People.__super__.constructor.apply(this, arguments);
return _ref;

}

People.prototype.push = function() {

var args;

args = 1 <= arguments.length ? __slice.call(arguments, 0) : [];

return People.__super__.push.apply(this, args.filter(function(peep) {
return typeof peep === "string";

130N

1

return People;

D (List);
TypeScript:

class List {
constructor(...args) {
this.push.apply(this, args);
}
push(...args) {
return [].push.apply(this, args);
}
}

class People extends List {
push(...args) {
return super.push.apply(
this, args.filter(peep => typeof peep === "string")
);
}
}

...which transpiles to...

var __extends = this.__extends || function (d, b) {
for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
function __() { this.constructor = d; }
__.prototype = b.prototype;
d.prototype = new __();
1
var List = (function () {
function List() {
var args = [];
for (var _i = 0; _i < (arguments.length - 0); _i++) {
args[_1i] = arguments[_i + 0];

}

140 CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

this.push.apply(this, args);
}
List.prototype.push = function () {
var args = [];
for (var _i = 0; _i < (arguments.length - 0); _i++) {
args[_1i] = arguments[_i + 0];
}
return [].push.apply(this, args);
b
return List;

bHO;

var People = (function (_super) {
__extends(People, _super);
function People() {
_super.apply(this, arguments);
}
People.prototype.push = function () {
var args = [];
for (var _i = 0; _i < (arguments.length - 0); _i++) {
args[_1i] = arguments[_i + 0];
}
return _super.prototype.push.apply(
this, args.filter(function (peep) {
return typeof peep === "string";
b
);
I3
return People;

D (List);
Nearly all of these examples have one particular thing in common: a class definition
or some other declaration mechanism that actually uses the word “class.” The compile-
to-JavaScript examples provide a syntactic form, while the already-JavaScript exam-
ples offer API-based implementations. In Dojo’s case, the authors have chosen to name
the API declare, but the documentation for dojo.declare, and the AMD replacement
that supersedes it, describes defining a “Class.” The only outlier here is the example
written JavaScript itself—but don’t be fooled, the language has held the word class as
a FutureReservedWord since ECMAScript 1.0 and has used [[Class]] as an internal spec-
ification mechanism for just as long.

The “super” mechanisms are completely different in each of the API-based examples,
but in all cases the user is expected to know that $super, _super, inherited, and call
Parent are designed to allow calling code to reach the superclass’s method of the same
name as the method from which the call originates. Arguably, if these were all consis-
tently named, this semantic relationship would be more intuitive (as it is in other lan-
guages with similar mechanisms).

PROGRESS

www.it-ebooks.info

141

http://www.it-ebooks.info/

142

I applaud the authors of those projects for their impactful creativity and ingenuity;
however, the repetition and boilerplate shown in the API examples, compounded by
the dramatic output of the transpiled examples, should lead a critical mind to the con-
clusion that a class mechanism is desired, and that for it to be powerful enough to
meet the most common needs it must exist at the language level.

The following example is what the JavaScript example will become, in the very near
future:

class List extends Array {
constructor(...args) {
this.push(...args);
}
}

class People extends List {
push(...args) {
return super.push(
...args.filter(peep => typeof peep === "string")
);
}
}
Subjectively, that’s much nicer to look at than all of the API-based examples and visu-
ally on par with compile-to-JavaScript examples. Aesthetics aside, this program is
technically superior to all of the preceding examples. The most obvious change is that
function is no longer used to declare a class, having been replaced with a new declara-
tive form, appropriately named class. Instead of four statement boundaries, as in the
present-day JavaScript example (List, List.prototype, People, People.prototype),
there are now two encapsulated class definitions: List and People. List no longer pro-
vides an explicit declaration of its push method because it’s now inheriting the method
(and correct length semantics) from Array—which can now be safely subclassed. The
extends clause is obviously not limited to built-ins, as we see that the People class is
itself a subclass of List, which is a subclass of Array. Inside of the People class, there is
now a call to a qualified super.push, which is a call to the push method of this class’s
super class (in this case, the call goes up the prototype two steps to Array.proto
type.push). A lot of the ceremonial boilerplate, in most cases irrelevant to what the
program is expressing, has been removed. This is most evident in the lack of any
occurrences of the word “function,” having been replaced by the semantically mean-
ingful “class” and removed in favor of method shorthand notation. Clumsy arguments
objects and verbose parameter handling have been completely replaced by elegantly
simple rest parameters and spread arguments.

With new syntactic forms and language-level mechanisms, we can revisit the Elements
class from earlier in the chapter and apply the same changes to that code—while abid-
ing by the regression tests—for truly dramatic improvements to the code:

CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

// file:elements-r3.js
class Elements extends Array {
constructor(selector = "", context = document) {
super();

let elems;
this.context = context;

if (Array.isArray(selector) ||
selector instanceof Elements) {
elems = selector;
} else {
try {
elems = this.context.querySelectorAll(selector);
} catch (e) {
// Thrown Exceptions caused by invalid selectors
// are a nuisance.
1
}

if (lelems) {
// elems is either:

// - undefined because the selector was invalid
// resulting in a thrown exception
// - null because the querySelectorAll returns
// null instead of an empty object when no
// matching elements are found.
elems = []

}

this.push(...elems);

}
addClass(value) {
return this.forEach(elem => elem.classList.add(value));

}
attr(key, value) {
if (typeof value !== "undefined") {
return this.forEach(elem => elem.setAttribute(key, value));
} else {
return this[0] && this[0].getAttribute(key);
}
}
css(key, value) {
if (typeof value !== "undefined") {
return this.forEach(elem => elem.style[key] = value);
} else {
return this[0] && this[0].style[key];
}
}
html(html) {
if (typeof html !== "undefined") {

return this.forEach(elem => elem.innerHTML = html);

PROGRESS 143

www.it-ebooks.info

http://www.it-ebooks.info/

144

} else {
return this[0] && this[0].innerHTML;

}

}
filter(callback) {
return new Elements(super.filter(callback, this));

}
slice(...args) {
return new Elements(super.slice(...args));

}

forEach(callback) {
super.forEach(callback, this);
return this;

}
push(...elems) {
super.push(...elems);
return this;
}
}
A lot has changed, but it’s very important to remember that despite these changes, this
code produces the same class as the previous version (it’s not identical, but for our
purposes it meets the requirements) version and will pass the test suite written for the

implementation prior to this refactoring.

To more accurately express the intention of this code, the function declaration and
explicit prototype definition have been replaced by a single class declaration. Where
the previous examples required two or three different syntactic forms (function decla-
ration statements, assignment expressions coupled to make expression statements,
etc.), the refactored form provides a distinct boundary (the class body) that encapsu-
lates the constructor and all of the class’s prototype object method definitions—which
use the elegantly succinct concise method syntax. Of course, by using the class form,
the declaration can now take advantage of true subclassing via the extends clause.
Potential “falsy-positive” footguns created by logical OR operations to determine the
default values of the selector and context parameters have been mitigated, and these
are now more clearly expressed in the form of default parameter assignments. The
entirely unobvious use of the Array constructor as a pseudo-super call mechanism has
been replaced by the unmistakably obvious super call in the constructor. All of the
anonymous function expressions have been replaced by arrow functions, eliminating
the clutter incurred by function() { return ...; }.

The most important aspect to consider is the overall removal of “distraction.” This revi-
sion from the future takes the focus away from the esoteric inheritance, method bor-
rowing incantations, and repetitious boilerplate, to bring the semantics of the program
itself into view—and does so in a completely compatible way, as evidenced by the
passing of our regression tests.

CHAPTER FIFTEEN: PROGRESS

www.it-ebooks.info

http://www.it-ebooks.info/

As we’ve seen throughout this chapter, JavaScript is a powerful language that has
always been flexible and expressive enough to empower its users to define the evolu-
tion of the language well ahead of its time. Through this real-world inspiration, the

language itself has been able to progress in ways that directly correspond to the works
of its practitioners.

PROGRESS 145

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

abc conjecture, 110-112

abstract syntax tree (AST), 66
abstraction, 28

advice mixins, 10

Alman, Ben, 108

anabelian geometry, 110

array class, inheritance and, 130-144
art, programming as, 34-38
asynchronous, nonblocking I/0, 97
audience, identifying, 111
augmentation (extend function), 6

Backbone
about, 79

Collection.prototype._prepareModel

function, 50
defining new model in, 47
new possibilities created by, 79-82
Bacon, Francis, 34

Index

Bazaarvoice, 80
Beatty, Frances F. L., 29
beauty, JavaScript, 115-118

binary pattern matches, 21-25

Bootstrap, 35

browsers, error handling in, 91

"bunnies"
defined, 28
"rabbits" vs., 27-38

C

caching
memory leaks and, 54
mixins and, 9
callback, 95
Carmack, John, 127
Carroll, Lewis, 27

Cascading Style Sheets (CSS), 59

choice, paradox of, 60
Chrome browser, 9
error handling with, 91

www.it-ebooks.info

147

http://www.it-ebooks.info/

error messages with, 84 dependencies, 20

class differential inheritance, 2
code for defining, 135-144 Dojo, 79, 141
origin of term, 135 domain-specific languages (DSLs)
classical inheritance, 1 binary pattern matches with, 21-25
mixins vs., 11 compiling down to JavaScript, 21-25
simulating when programming with for math expression parser and eval-
teams, 41-43 uator, 61
Closure Library, 42 mixing languages, 19
closures, 101 speed of, 18
coding beyond logic, 105-114 domains (Node.js feature), 92
and abc conjecture, 110-112 dynamic language, 101
peer review, 112-114
Quines paradox, 105-110 E

CoftfeeScript Wiki, 102
Collection class, 48

education, standardized models and, 33
elements class, 131-135
Endoh, Yusuke, 108
Erlang, 22
error handling, 89-93
global, in browsers, 91
global, in Node.js, 92
error messages, 84

Collection.prototype._prepareModel
function, 50

common language
and paradox of choice, 60
JavaScript as, 57-60

communication, program as means of,
114

concurrency, 99

consistency, for team coding, 43

constants, 124

constructor function, 51

context, defined, 73

errors, 83-93
custom, 88
handling, 89-93
inevitability of, 83
throwing, 84

obit dravi . types of, 86
COPY'_ rf‘ 1t drawing as, when to throw, 86
creativity eval, 102

drawing "rabbits" vs. "bunnies", 27-38
in individual programming
approaches, 32
Croll, Angus, 35

and interface, 14

as tool, 13

common uses, 16

debugging generated code, 21

history, 14
D minimizing cost of, 15
Dahl, Ole-Johan, 135 with template compiler, 16-18
Dali, Salvador, 115 evaluation context, 73
data-driven programming, 125 event loop, Node.js, 95-100
debugging, 21, 40 adding tasks to, 99
(see also error handling, errors) asynchronous, nonblocking I/0, 97

148 INDEX

www.it-ebooks.info

http://www.it-ebooks.info/

concurrency, 99
defined, 96
event-driven programming, 95
event notification systems, 97
event, defined, 95
event-driven programming, 95
evolution of code, teams and, 44
evolution, JavaScript, 77-82
evolutionary complexity, 44
exceptions (see error handling) (see
€Irors)
experimentation, 29-32
expression (personal), programming as,
34-38
expression evaluator, 72-75
expressions, in functional programming
languages, 119
expressive language, JavaScript as, 29-32
extend function, 6

F

factory function, 50
Firefox, error handling with, 84, 91
first-class functions, 120
Fitzgerald, Nick, 124
Flight (Twitter framework), 10
Fogus, Michael, 120
Ford, Paul, 113
formalism, 111
Fuchs, Thomas, 1
Function constructor, 15
functional JavaScript, 119-128

and functional programming,

119-121, 121-126

and objects, 126
Functional JavaScript (Fogus), 120
functional mixins, 7, 9
functional programming, 119

(see also functional Javascript)
FutureReservedWord, 141

G

generated code, debugging, 21

global scope, local scope vs., 14

Gmail, 39

Godel, Escher, Bach: an Eternal Golden
Braid (Hofstadter), 106

goog.inherits, 42

Google, 39, 102

Google Closure, 44

H

Halliday, James, 107

Haskell, 58

higher-order functions, 121

Hofstadter, Douglas, 106

HyperText Markup Language (HTML), 59

If Hemingway Wrote JavaScript (Croll),
35
imperative program, 119
inheritance
and JavaScript evolution, 129-145
classical (see classical inheritance)
instance-based inheritance, 41
inter-universal geometry, 110
Internet Explorer, error messages in, 84
interpreters
defined, 14
for domain-specific languages, 25
Irish, Paul, 77

J

Jargon File, 106

Java virtual machine (JVM), 58

Java, JavaScript vs., 58

JavaScript
advantageous qualities of, 101-103
as common language, 57-60

INDEX

www.it-ebooks.info

149

http://www.it-ebooks.info/

150

as dynamic language, 101
as expressive language, 29-32
as functional language, 102, 121-126
as static language, 102
beauty of, 115-118
functional programming in, 119-128
Googles approach to, 39
"rabbits" vs. "bunnies" in, 29
reasons for popularity of, vii
versatility of, 103

JavaScript MVC, 47

Johnson, Ray, 29

jQuery, 25, 79, 130

JSON data, 16

just-in-time (JIT) compilation, 101

K

Knuth, Donald, 101

L

language(s)
and paradox of choice, 60
creating, 113
JavaScript as common, 57-60
mixing, 19
weak, 19

lexer (tokenizer), 61

lexical analysis, 61-65

liars paradox, 105

libuv (Node.js native library), 96

Lisp, 14

local scope, 14

logic, coding beyond, 105-114
and abc conjecture, 110-112
peer review, 112-114
Quines paradox, 105-110

Maccaw, Alex, 36

INDEX

"Markup-based Unobtrusive Compre-
hensive DOM-ready Execution"
(Irish), 77

math expression parser and evaluator,
61-76
lexical analysis and tokens, 61-65
syntax parser and syntax tree, 66-72
tree walker and expression evaluator,

72-75

memory leaks, 54

Miller, Charles, 11

mixins, 3-12
and advice, 10
and caching, 9
and extend function, 6
and options argument, 8
classic, 5
classical inheritance vs., 11
functional, 7
JavaScript definition, 4
traditional definition, 4
use case schematic, 4

Mochizuki, Shinichi, 110, 112

models
and constructor function, 51
and factory function, 50
and new operator, 51
and UniqueFactory function, 52-54
and uniqueness problem, 48-55
hacking JavaScript constructors to

harmonize, 47-55
scaling to work with any class, 52-54
MVC (Model-View-Controller), 47
Myhrhaug, Bjorn, 135

N

new operator, 51

Node.js
adding tasks to event loop, 99
asynchronous, nonblocking I/0, 97
concurrency, 99

www.it-ebooks.info

http://www.it-ebooks.info/

event loop, 95-100
event-driven programming, 95
global error handling in, 92
util.inherits, 42

nonblocking 1/0, 97

Norman, Donald A., 83, 89

Nygaard, Kristen, 135

(0

object-oriented languages, 119

objects
origin of term, 135
with functional JavaScript, 126

"On Proof and Progress in Mathematics"
(Thurston), 111

ONeil, Cathy, 111

Opera, error messages in, 84

operating system threads, 97

P

paradox of choice, 60

parallelism, 99

Paulson, Larry, 121

peer review, 112-114

personal expression, programming as,
34-38

PhoneGap, 80

Picasso, Pablo, 36

play, programming as, 29

precompilation, 16

procedural languages, 119

programming as expressive gesture,
34-38

prototypal inheritance, 2, 41

prototypes, 2

pseudoarguments, 37

Q

quine (noun), 106-110, 113
Quine Page, The, 106, 113

Quine Relay, 108
Quine, William Van Orman, 105
Quines paradox, 105-110

R

"rabbits"
as educational model, 33
"bunnies" vs., 27-38
defined, 27
Radiation Hardened Quine, 108
Rails, 58
Ratchet, 35
recursive-descent parsing, 66
referential transparency, 120
Resig, John, 78, 130
Robinson, Kim Stanley, 39
robots, 126
Ruby, 58, 108

S

Safari, error messages in, 84

Sammy.js, 79

scanner (tokenizer), 61

Schiffer, Jenn, 57

Sexton, Alex, 78

simplicity, importance of, 40

"SIMULA 67 Common Base Language"
(Dahl, Myhrhaug & Nygaard), 135

single-threaded event loop, 99

social construct, software as, 111

software as social construct, 111

stack property, 85

static language, JavaScript as, 102

style, when programming with teams, 43

Swift, Geoffrey A., 106

switch function, 103

symbol, bunny as, 28

syntactic analysis, 66

syntax parser, 66-72

syntax tree, 66-72

INDEX

www.it-ebooks.info

151

http://www.it-ebooks.info/

152

T

Taivalsaari, Antero, 2
teams, 39-45
and evolution of code, 44
classical inheritance simulation for,
41-43
clear coding with, 40
consistent style for, 43
team members as audience for code,
39
templates
compiler for, 16-18
dependencies and scopes, 20
precompilation, 16
testing, 131
Thompson, Gary P, II, 106, 113
threads, operating system, 97
throwing errors, 84
Thurston, William, 111
tokenizer (lexer), 61
tokens, 61-65
Toura, 80
tree walker, 72-75
try-catch-finally construct, 89
Twitter, 36

INDEX

U

UniqueFactory function, 52-54

uniqueness problem, 48-55

UserFactory function, 50

"Using Objects to Organize Your Code"
(Murphey), 78

util.inherits, 42

\'}

variation in individual programming
approaches, 32
virtual machines, 101

W

"Ways of Paradox, The" (Quine), 105
weak languages, 19

web browsers, error handling, 91
Web Inspector, error messages, 85

X

XhrLite, 44

y4

zip function, 124

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Anton Kovalyov (@valueof) was born and raised in Tashkent, Uzbekistan. Back in
the day, he was mostly writing Python and (re-)compiling Gentoo. In 2008, he moved
to the United States where he joined Disqus. Around the same time, he discovered
JavaScript and the two have been inseparable ever since. While at Disqus, Anton
authored JSHint, a JavaScript linting tool, and coauthored Third-Party JavaScript (Man-
ning). After Disqus, Anton moved to Mozilla, where he worked on the Firefox Devel-
oper Tools team. Today, Anton works at Medium and lives in Oakland, California.

Jonathan Barronville (@jonathanmarvens) is a 21-year-old Haitian hacker. He
enjoys learning new things and then force-teaching them to you. Although most of his
experience is in web development, Jonathan enjoys low-level systems hacking, data-
base theory, and distributed systems problem:s.

Sara Chipps (@sarajchipps) is a JavaScript developer based in New York City. She has
been working on software and in the open source community since 2001. She’s been
obsessed with hardware and a fan of Nodebots.com since 2012.

Sara is the CEO of Jewelbots.com, a company dedicated to drastically changing the
number of girls entering STEM (science, technology, engineering, and mathematics)
fields using hardware.

In 2010, Sara cofounded Girl Develop It, a nonprofit focused on helping more women
become software developers. Girl Develop It is in 45 cities, and has taught over 17,000
women how to build software.

Angus Croll (@angustweets) is obsessed with JavaScript and literature in equal meas-
ure. He works as a frontend engineer at Twitter and is the author of If Hemingway Wrote
JavaScript (No Starch Press).

Marijn Haverbeke (@marijnjh) is the author of Eloguent JavaScript (No Starch Press)
and creator of CodeMirror and Tern. He’s an independent open source critter and
JavaScript code cowboy.

Ariya Hidayat (@ariyahidayat), currently working for Shape Security, is a passionate
engineer interested in bleeding-edge technologies. He is known as the author of Phan-
tomJS and Esprima. These days, his focus is mostly on software craftsmanship around
web technologies.

Daryl Koopersmith (@koop) is an engineer at Medium, where he leads the web cli-
ent guild. Previously at Automattic, he was a core committer to the WordPress open
source project. Some days, he pretends to be a barista.

www.it-ebooks.info

153

https://twitter.com/valueof
https://twitter.com/jonathanmarvens
https://twitter.com/sarajchipps
http://Nodebots.com
http://Jewelbots.com
https://twitter.com/angustweets
https://twitter.com/marijnjh
https://twitter.com/ariyahidayat
https://twitter.com/koop
http://www.it-ebooks.info/

154

Rebecca Murphey (@rmurphey) is a staff software engineer at Bazaarvoice. She has
played a key role in the software design and development of high-traffic client-side
web applications, and is known for her expertise in best practices for organizing, test-
ing, refactoring, and maintaining JavaScript application code. Rebecca developed the
JS Assessment project, an open source tool used by individuals, companies, and code
schools to evaluate a developer’s JavaScript skills. She was instrumental in getting
promises introduced to jQuery 1.5 and has contributed to several open source projects.
She authored the online book jQuery Fundamentals, contributed to the jQuery Cookbook
(O'Reilly), and served as a technical reviewer for Garann Means’s Node for Front-End
Developers (O'Reilly) and David Herman's Effective JavaScript (Addison-Wesley Professio-
nal). She lives in Austin with her partner and their son.

Daniel Pupius (@dpup) is the head of engineering at Medium. Previously at Google,
he worked on Google+ and Gmail, and cofounded the Closure library.

He cut his teeth fighting version 4 browsers and was involved in the early DHTML
community, before AJAX was a thing. In other lives Dan has raced snowboards, jum-
ped out of planes, and lived in the jungle.

Graeme Roberts (@cheedear), “chee”; recently made redundant by lonely planet;
cyrano de bergerac of svg icons; five foot ten and a half; drinks tom collins; essentially
useless; made of fire and tears.

Jenn Schiffer (@jennschiffer) is an engineer and artist who focuses on open web
technology, open source development, and getting yelled at on Twitter. She is the crea-
tor of make8bitart.com, among other code/art projects, and writes tech satire on a
number of media. You can find everything she has ruined ever online at http://jennmo
ney.biz.

Jacob Thornton (@fat), creator of bootstrap, bower, ratchet, and a handful of other
open source technologies. Twitter, Medium, Obvious, chill tech enterprises. 6" 3”.
Aries. Grows parsley. Emotional. Worst engineer at the company, but third coolest.

Ben Vinegar (@bentlegen) is a software engineer based in San Francisco, and the
coauthor of Third-Party JavaScript (Manning). He was formerly lead frontend engineer
at Disqus.

Rick Waldron (@rwaldron) is an open web engineer at Bocoup, Ecma/TC39 repre-
sentative for the jQuery Foundation, and creator of Johnny-Five, a JavaScript robotics
programming framework.

Nicholas Zakas (@slicknet) is a frontend engineer, author, and speaker. He currently
works at Box making the web application awesome. Prior to that, he worked at Yahoo!
for almost five years, where he was frontend tech lead for the Yahoo! home page and a
contributor to the YUI library. He is the author of Maintainable JavaScript (O’Reilly),

www.it-ebooks.info

https://twitter.com/rmurphey
http://shop.oreilly.com/product/9780596159788.do
http://shop.oreilly.com/product/0636920023258.do
http://shop.oreilly.com/product/0636920023258.do
https://twitter.com/dpup
https://twitter.com/cheedear
https://twitter.com/jennschiffer?lang=en
http://make8bitart.com/
http://jennmoney.biz
http://jennmoney.biz
https://twitter.com/fat
https://twitter.com/bentlegen
https://twitter.com/rwaldron
https://twitter.com/slicknet
http://shop.oreilly.com/product/0636920025245.do
http://www.it-ebooks.info/

Professional JavaScript for Web Developers (Wrox), High Performance JavaScript (O'Reilly),
and Professional Ajax (Wrox). Nicholas is a strong advocate for development best practi-
ces including progressive enhancement, accessibility, performance, scalability, and
maintainability. He blogs regularly at NCZOnline.

Colophon

The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Meri-
dien; the heading fonts are Akzidenz-Grotesk and Adobe Minion Pro; and the code
font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

155

http://shop.oreilly.com/product/9780596802806.do
http://www.nczonline.net
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	About This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Beautiful Mixins
	Classical Inheritance
	Prototypes
	Mixins
	The Basics
	The Use Case
	Classic Mixins
	The extend Function
	Functional Mixins
	Adding Options
	Adding Caching
	Advice

	Wrapup

	eval and Domain-Specific Languages
	What About “eval Is Evil”?
	History and Interface
	Performance
	Common Uses
	A Template Compiler
	Speed
	Mixing Languages
	Dependencies and Scopes
	Debugging Generated Code
	Binary Pattern Matches
	Closing Thoughts

	How to Draw a Bunny
	What Is a Rabbit?
	What Is a Bunny?
	What Does This Have to Do with JavaScript?
	With So Much Variation, Which Way Is Correct?
	How Does This Affect the Classroom?
	Is This Art? And Why Does That Matter?
	What Does This Look Like?
	What Did I Just Read?

	Too Much Rope, or JavaScript for Teams
	Know Your Audience
	Stupid Good
	Keep It Classy
	Style Rules
	Evolution of Code
	Conclusion

	Hacking JavaScript Constructors for Model Harmony
	Doppelgangers
	Miniature Models of Factories
	Constructor Identity Crisis
	Making It Scale
	Conclusion

	One World, One Language
	An Imperative, Dynamic Proposal
	The Paradox of Choice
	Globalcommunicationscript

	Math Expression Parser and Evaluator
	Lexical Analysis and Tokens
	Syntax Parser and Syntax Tree
	Tree Walker and Expression Evaluator
	Final Words

	Evolution
	Backbone
	New Possibilities

	Error Handling
	Assume Your Code Will Fail
	Throwing Errors
	When to Throw Errors
	Types of Errors
	Custom Errors

	Handling Errors
	Global Error Handling in Browsers
	Global Error Handling in Node.js

	Summary

	The Node.js Event Loop
	Event-Driven Programming
	Asynchronous, Nonblocking I/O
	Concurrency
	Adding Tasks to the Event Loop

	JavaScript Is…
	JavaScript Is Dynamic
	JavaScript Can Be Static
	JavaScript Is Functional
	JavaScript Does Everything

	Coding Beyond Logic
	0. The Basement
	1. Quine’s Paradox
	2. The Conjecture
	3. Peer Review

	JavaScript Is Cutieful
	All This Loose Beauty
	The Absurdity of Dalí
	Dalí’s JavaScript
	Is This Beauty Just Ugly?
	An Unfortunate Necessity
	The Beauty Is in the Madness
	Let’s Have a Wee Look at map
	Hello, thisArg
	Okay! So That’s a Bunch of Stuff I Already Knew About [].map—Now What?
	calling All Cars
	Number
	Now I Know Everything
	Wild

	Functional JavaScript
	Functional Programming
	Functional JavaScript
	Objects
	Now What?

	Progress
	Index

