
FOREWORD BY ERIC A. MEYER

“This is a new generation of CSS books, for a new generation
of CSS. Nobody is better at making sense of this new CSS than

 Lea Verou—among the handful of truly amazing coders I’ve known.”
—Jeffrey Zeldman, author, Designing With Web Standards

www.it-ebooks.info

http://www.it-ebooks.info/

B
E

T
T

E
R

 S
O

L
U

T
IO

N
S T

O
 E

V
E

R
Y

D
A

Y
 W

E
B

 D
E

S
IG

N
 P

R
O

B
L

E
M

S
V

E
R
O

U

Lea Verou is an Invited Expert in the W3C

CSS Working Group, the committee that

designs the CSS language, and previously

worked as a Developer Advocate at the

W3C, the Web’s main standards organization.

Currently, Lea conducts research in Human-

Computer Interaction at the Massachusetts

Institute of Technology (MIT). She also blogs,

speaks at international conferences, and

codes popular open source projects to help

fellow developers.

MORE PRAISE FOR CSS SECRETS:

“There aren’t many books which provide as
many practical techniques as Lea Verou’s
CSS Secrets. Filled with dozens of solutions
to common design problems, the book is
a truly valuable collection of smart tips and
tricks for getting things done well, and fast.
Worth reading, even if you think that you
know the ins and outs of CSS!”

�	—�Vitaly Friedman
Co-founder and Editor-in-chief
Smashing Magazine

“Without fail, whenever I read something
written by Lea Verou, I manage to learn
something new. CSS Secrets is no different.
The book is broken down into easy-to-
digest chunks filled with lots of juicy bits of
knowledge. While some of the book is very
forward looking, there is plenty that I’ve
been able to take away and apply to my
own projects right away.”

	—�Jonathan Snook
Web Designer and Developer​

“Lea Verou’s CSS Secrets is useful not
so much as a collection of CSS tips, but
as a textbook on how to solve problems
with CSS. Her in-depth explanation of the
thought process behind each secret will
teach you how to create your own solutions
to CSS problems. And don’t miss the
Introduction, which contains some must-
read CSS Best Practices.”

	—�Elika J. Etemad aka fantasai
W3C CSS Working Group
Invited Expert

“Lea Verou’s encyclopaedic
mind is one of a kind, but
thanks to this generous book,
you too can get an insight into
what it’s like to wield CSS to
do just about anything you
can think of. Even if you think
you know CSS inside-out, I
guarantee that there are still
secrets in this book waiting
to be revealed.”

�	—�Jeremy Keith
Shepherd of Unknown
Futures, Clearleft

“If you want the inside scoop
on fascinating CSS techniques,
smart best practices, and
some flat-out brilliance, don’t
hesitate—read this book.
I loved it!”

	—Eric A. Meyer

“CSS Secrets is an instant
classic—so many wonderful
tips and tricks you can use
right away to enhance your
UX designs!”

	—�Christopher Schmitt
Author of CSS Cookbook

“Lea is an exceedingly clever
coder. This book is absolutely
packed with clever and useful
ideas, even for people who
know CSS well. Even better,
you’ll feel more clever in your
work as this book encourages
pushing beyond the obvious.”

	—�Chris Coyier
CodePen

In this practical guide, CSS expert Lea Verou provides 47
undocumented techniques and tips to help intermediate-to-
advanced CSS developers devise elegant solutions to a wide
range of everyday web design problems.

Rather than focus on design, CSS Secrets shows you how
to solve problems with code. You’ll learn how to apply Lea’s
analytical approach to practically every CSS problem you
face to attain DRY, maintainable, flexible, lightweight, and
standards-compliant results.

Inspired by her popular talks at over 60 international web
development conferences, Lea Verou provides a wealth
of information for topics including:

n	 Background & Borders	 n	 User Experience
n	 Shapes	 n	 Structure & Layout
n	 Visual Effects	 n	 Transitions & Animations
n	 Typography

“This is a new generation of CSS books, for a new generation
of CSS. Nobody is better at making sense of this new CSS than

 Lea Verou—among the handful of truly amazing coders I’ve known.”
—Jeffrey Zeldman, author, Designing With Web Standards

oreilly.com
FOREWORD BY ERIC A. MEYER

CSS/Web Development

ISBN: 978-1-449-37263-7

US $39.99	 CAN $45.99

www.it-ebooks.info

http://www.it-ebooks.info/

“

“

“

Praise for CSS Secrets

This is a new generation of CSS books, for a new generation of CSS. No longer a simple language

tied to complicated browser hacks and workarounds, CSS is now a richly powerful and deeply complex

ecosystem of over 80 W3C specifications. Nobody is better at making sense of this new CSS, and of

providing design principles that help you solve problems with it, than Lea Verou—among the handful

of truly amazing coders I’ve known.”

— Jeffrey Zeldman
author, Designing with Web Standards

Lea Verou’s encyclopaedic mind is one of a kind, but thanks to this generous book, you too can get

an insight into what it’s like to wield CSS to do just about anything you can think of. Even if you think

you know CSS inside-out, I guarantee that there are still secrets in this book waiting to be revealed.”

— Jeremy Keith
Shepherd of Unknown Futures, Clearleft

If you want the inside scoop on fascinating CSS techniques, smart best practices, and some flat-out

brilliance, don’t hesitate—read this book. I loved it!”

— Eric A. Meyer

www.it-ebooks.info

http://www.it-ebooks.info/

“

“

“

“

“

Lea is an exceedingly clever coder. This book is absolutely packed with clever and useful ideas, even

for people who know CSS well. Even better, you’ll feel more clever in your work as this book encour-

ages pushing beyond the obvious.”

— Chris Coyier
CodePen

CSS Secrets is an instant classic—so many wonderful tips and tricks you can use right away to enhance

your UX designs!”

— Christopher Schmitt
author of CSS Cookbook

There aren’t many books that provide as many practical techniques as Lea Verou’s CSS Secrets. Filled

with dozens of solutions to common design problems, the book is a truly valuable collection of smart

tips and tricks for getting things done well, and fast. Worth reading, even if you think that you know

the ins and outs of CSS!”

— Vitaly Friedman
cofounder and editor-in-chief of Smashing Magazine

Without fail, whenever I read something written by Lea Verou, I manage to learn something new.

CSS Secrets is no different. The book is broken down into easy-to-digest chunks filled with lots of

juicy bits of knowledge. While some of the book is very forward looking, there is plenty that I’ve been

able to take away and apply to my own projects right away.”

— Jonathan Snook
web designer and developer

Lea’s book is fantastic. She bends and contorts CSS to do things I’m pretty sure even the spec authors

never imagined! You will learn multiple ways of accomplishing each graphic effect by trying out the

techniques she walks through in each chapter. Later, in your work, you’ll find yourself saying, “hmm,

that thing Lea did will work perfectly here!” Before you know it, your site is almost image free because

your graphics are all in easy to maintain CSS components. What’s more, her techniques are fun,

walking the line between practical and improbable!”

— Nicole Sullivan
Principal Software Engineer, creator of OOCSS

www.it-ebooks.info

http://www.it-ebooks.info/

“

“

“

“

“

Lea Verou’s CSS Secrets is useful not so much as a collection of CSS tips, but as a textbook on how

to solve problems with CSS. Her in-depth explanation of the thought process behind each secret will

teach you how to create your own solutions to CSS problems. And don’t miss the Introduction, which

contains some must-read CSS best practices.”

— Elika J. Etemad (aka fantasai)
W3C CSS Working Group Invited Expert

Lea’s presentations have long been must-see events at web development conferences around the

world. A distillation of her years of experience, CSS Secrets provides elegant solutions for thorny web

design issues, while also—and more importantly—showing how to solve problems in CSS. It’s an

absolute must-read for every frontend designer and developer.”

— Dudley Storey
designer, developer, writer, web education specialist

I thought I had a pretty advanced understanding of CSS, then I read Lea Verou’s book. If you want to

take your CSS knowledge to the next level, this is a must-own.”

— Ryan Seddon
Team Lead, Zendesk

CSS Secrets is by far the most technical book that I have ever read on the topic. Lea has managed to

push the boundaries of a language as simple as CSS so far that you will not be able to distinguish this

from magic. Definitely not a beginner’s read; it’s heavily recommended to anyone thinking they know

CSS all too well.”

— Hugo Giraudel
frontend developer, Edenspiekermann

I often think that CSS can seem a bit like magic: a few rules can transform your web pages from blah

to beautiful. In CSS Secrets, Lea takes the magic to a whole new level. She is a master magician of

CSS, and we get to explore that magical world along with her. I can’t count how many times I said

out loud while reading this book, “That’s so cool!” The only trouble with CSS Secrets is that after

reading it, I want to stop everything else I’m doing and play with CSS all day.”

— Elisabeth Robson
cofounder of WickedlySmart.com and coauthor of Head First JavaScript Programming

www.it-ebooks.info

http://www.it-ebooks.info/

“

“

CSS Secrets is a book that all web developers should have in their library. Using the information it

contains you’ll learn numerous hints and tips to make CSS perform tasks you never thought possible.

I was astonished at how often the author came up with simple and elegant lateral thinking solutions

to problems that had bugged me for years.”

— Robin Nixon
web developer, online instructor, and author of several books on CSS

As a master designer and programmer, Lea Verou’s book is as beautiful and as well thought out as

her code. Whether you’re fairly new to CSS, or well versed in the intricacies of CSS3, this book has

something for everyone.”

— Estelle Weyl
Open Web Evangelist and coauthor of CSS: The Definitive Guide

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CSS Secrets
by Lea Verou

Copyright © 2015 Lea Verou. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions

are also available for most titles (http://safaribooksonline.com). For more information, contact our

corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Meg Foley

Production Editor: Kara Ebrahim

Copyeditor: Jasmine Kwityn

Indexer: WordCo Indexing Services

Proofreader: Charles Roumeliotis

Interior Designer: Lea Verou

Cover Designer: Monica Kamsvaag

Illustrator: Lea Verou

See http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The cover image and related trade dress are trademarks of O’Reilly

Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work

are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for

damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own

risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property

rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

Print History: First Edition, June 2015

Revision History for the First Edition:

2015-06-03 First Release

2015-07-17 Second Release

ISBN: 978-1-4493-7263-7

[TI]

www.it-ebooks.info

http://safaribooksonline.com
http://www.oreilly.com/catalog/errata.csp?isbn=0636920031123
http://www.it-ebooks.info/

In loving memory of

my mother & best friend, Maria Verou (–),

who left this world way too early.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Foreword xv

Preface xvii

Words of thanks xix

Making of xxii

About this book xxiv

CHAPTER 1
Introduction 1

Web standards: friend or foe? 2

CSS coding tips 9

CHAPTER 2
Backgrounds & Borders 23

1 Translucent borders 24

2 Multiple borders 28

3 Flexible background positioning 32

4 Inner rounding 36

5 Striped backgrounds 40

6 Complex background patterns 50

7 (Pseudo)random backgrounds 62

8 Continuous image borders 68

CHAPTER 3
Shapes 75

9 Flexible ellipses 76

10 Parallelograms 84

11 Diamond images 90

12 Cutout corners 96

13 Trapezoid tabs 108

14 Simple pie charts 114

CHAPTER 4
Visual Effects 129

15 One-sided shadows 130

16 Irregular drop shadows 134

17 Color tinting 138

TABLE OF CONTENTS ix

www.it-ebooks.info

http://www.it-ebooks.info/

18 Frosted glass effect 146

19 Folded corner effect 156

CHAPTER 5
Typography 167

20 Hyphenation 168

21 Inserting line breaks 172

22 Zebra-striped text lines 178

23 Adjusting tab width 182

24 Ligatures 184

25 Fancy ampersands 188

26 Custom underlines 194

27 Realistic text effects 200

28 Circular text 210

CHAPTER 6
User Experience 217

29 Picking the right cursor 218

30 Extending the clickable area 224

31 Custom checkboxes 228

32 De-emphasize by dimming 234

33 De-emphasize by blurring 240

34 Scrolling hints 244

35 Interactive image comparison 250

CHAPTER 7
Structure & Layout 261

36 Intrinsic sizing 262

37 Taming table column widths 266

38 Styling by sibling count 270

39 Fluid background, fixed content 276

40 Vertical centering 280

41 Sticky footers 288

CHAPTER 8
Transitions & Animations 293

42 Elastic transitions 294

43 Frame-by-frame animations 308

44 Blinking 314

45 Typing animation 320

46 Smooth state animations 328

47 Animation along a circular path 334

Index 347

TABLE OF CONTENTSx

www.it-ebooks.info

http://www.it-ebooks.info/

Secrets by Specification

CSS Animations
w3.org/TR/css-animations

42 Elastic transitions 294

43 Frame-by-frame animations 308

44 Blinking 314

45 Typing animation 320

46 Smooth state animations 328

47 Animation along a circular path 334

CSS Backgrounds & Borders
w3.org/TR/css-backgrounds

1 Translucent borders 24

2 Multiple borders 28

3 Flexible background positioning 32

4 Inner rounding 36

5 Striped backgrounds 40

6 Complex background patterns 50

7 (Pseudo)random backgrounds 62

8 Continuous image borders 68

9 Flexible ellipses 76

12 Cutout corners 96

14 Simple pie charts 114

15 One-sided shadows 130

19 Folded corner effect 156

22 Zebra-striped text lines 178

26 Custom underlines 194

30 Extending the clickable area 224

32 De-emphasize by dimming 234

34 Scrolling hints 244

35 Interactive image comparison 250

CSS Backgrounds & Borders
Level 4
dev.w3.org/csswg/css-backgrounds-4

12 Cutout corners 96

SECRETS BY SPECIFICATION xi

www.it-ebooks.info

http://w3.org/TR/css-animations
http://w3.org/TR/css-animations
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-backgrounds
http://dev.w3.org/csswg/css-backgrounds-4
http://dev.w3.org/csswg/css-backgrounds-4
http://dev.w3.org/csswg/css-backgrounds-4
http://www.it-ebooks.info/

CSS Basic User Interface
w3.org/TR/css3-ui

2 Multiple borders 28

4 Inner rounding 36

35 Interactive image comparison 250

CSS Box Alignment
w3.org/TR/css-align

40 Vertical centering 280

CSS Flexible Box Layout
w3.org/TR/css-flexbox

40 Vertical centering 280

41 Sticky footers 288

CSS Fonts
w3.org/TR/css-fonts

24 Ligatures 184

25 Fancy ampersands 188

CSS Image Values
w3.org/TR/css-images

5 Striped backgrounds 40

6 Complex background patterns 50

7 (Pseudo)random backgrounds 62

8 Continuous image borders 68

12 Cutout corners 96

14 Simple pie charts 114

19 Folded corner effect 156

22 Zebra-striped text lines 178

26 Custom underlines 194

34 Scrolling hints 244

35 Interactive image comparison 250

CSS Image Values Level 4
w3.org/TR/css4-images

5 Striped backgrounds 40

6 Complex background patterns 50

14 Simple pie charts 114

CSS Intrinsic & Extrinsic Sizing
w3.org/TR/css3-sizing

36 Intrinsic sizing 262

CSS Masking
w3.org/TR/css-masking

11 Diamond images 90

12 Cutout corners 96

CSS Text
w3.org/TR/css-text

20 Hyphenation 168

23 Adjusting tab width 182

CSS Text Level 4
dev.w3.org/csswg/css-text-4

20 Hyphenation 168

CSS Text Decoration
w3.org/TR/css-text-decor

26 Custom underlines 194

27 Realistic text effects 200

SECRETS BY SPECIFICATIONxii

www.it-ebooks.info

http://w3.org/TR/css3-ui
http://w3.org/TR/css3-ui
http://w3.org/TR/css-align
http://w3.org/TR/css-align
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-fonts
http://w3.org/TR/css-fonts
http://w3.org/TR/css-images
http://w3.org/TR/css-images
http://w3.org/TR/css4-images
http://w3.org/TR/css4-images
http://w3.org/TR/css3-sizing
http://w3.org/TR/css3-sizing
http://w3.org/TR/css-masking
http://w3.org/TR/css-masking
http://w3.org/TR/css-text
http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4
http://dev.w3.org/csswg/css-text-4
http://w3.org/TR/css-text-decor
http://w3.org/TR/css-text-decor
http://www.it-ebooks.info/

CSS Transforms
w3.org/TR/css-transforms

10 Parallelograms 84

11 Diamond images 90

12 Cutout corners 96

13 Trapezoid tabs 108

14 Simple pie charts 114

19 Folded corner effect 156

35 Interactive image comparison 250

40 Vertical centering 280

47 Animation along a circular path 334

CSS Transitions
w3.org/TR/css-transitions

11 Diamond images 90

12 Cutout corners 96

17 Color tinting 138

33 De-emphasize by blurring 240

42 Elastic transitions 294

CSS Values & Units
w3.org/TR/css-values

3 Flexible background positioning 32

32 De-emphasize by dimming 234

40 Vertical centering 280

41 Sticky footers 288

45 Typing animation 320

Compositing and Blending
w3.org/TR/compositing

17 Color tinting 138

35 Interactive image comparison 250

Filter Effects
w3.org/TR/filter-effects

16 Irregular drop shadows 134

17 Color tinting 138

18 Frosted glass effect 146

33 De-emphasize by blurring 240

35 Interactive image comparison 250

Fullscreen API
fullscreen.spec.whatwg.org

32 De-emphasize by dimming 234

Scalable Vector Graphics
w3.org/TR/SVG

6 Complex background patterns 50

14 Simple pie charts 114

28 Circular text 210

Selectors
w3.org/TR/selectors

31 Custom checkboxes 228

38 Styling by sibling count 270

SECRETS BY SPECIFICATION xiii

www.it-ebooks.info

http://w3.org/TR/css-transforms
http://w3.org/TR/css-transforms
http://w3.org/TR/css-transitions
http://w3.org/TR/css-transitions
http://w3.org/TR/css-values
http://w3.org/TR/css-values
http://w3.org/TR/compositing
http://w3.org/TR/compositing
http://w3.org/TR/filter-effects
http://w3.org/TR/filter-effects
http://fullscreen.spec.whatwg.org
http://fullscreen.spec.whatwg.org
http://w3.org/TR/SVG
http://w3.org/TR/SVG
http://w3.org/TR/selectors
http://w3.org/TR/selectors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

Ah, the good old days. Back in the previous millennium, we had just two

CSS-capable browsers, and what they did was a fairly limited subset of a

fairly limited specification, so you could fairly easily keep a complete map

of what worked and what didn’t in your head. That map included the bugs

in each implementation, as they had many errors and oversights, some of

them verging on the comical. Heck, some bugs were so fundamental that

they made the browsers’ layout behavior completely incompatible, forcing

us to come up with a whole army of parser-bug-exploiting hacks just to work

around the differences!

Wait a minute. The old days were horrible. Glad we’re done with

all that!

Things really have gotten so much better in the last several years, CSS-

wise. Browsers have, for the most part, converged on compatibility, and

where they are incompatible, it’s nearly always because one browser doesn’t

support a feature that another does, as opposed to both of them trying to

support the same thing differently, and usually badly. The specifications

have pushed capabilities forward even as they’ve added features that re-

create the convoluted tricks of old in much simpler, more compact ways.

CSS has far more features and far more power than ever before—but, as

we all know, with great power comes great complexity. It’s not even a case

of intentional complexity: when you combine enough working parts, no

FOREWORD xv

www.it-ebooks.info

http://www.it-ebooks.info/

matter how simple each may be, interesting things can and do emerge. (For

more on this topic, see The LEGO Movie.)

But it’s exactly that unintended complexity that gives CSS the ability to

surprise us with emergent features we never expected, or even planned.

There are secrets to be found in the intersections of properties and the

bending of values. You can carve corners with gradients, animate elements,

increase clickable areas, even create pie charts…and so much more. CSS has

capabilities that we only dreamed of back when I was but a lad, possibilities

beyond anything we imagined. It’s added abilities that I once thought could

never be expressed in a compact, human-readable manner—animations, to

pick one example. It’s advanced far enough that I’m confident there are

many, many secrets yet to be discovered. Perhaps you’ll discover some

of them.

Until that day arrives, there are plenty of fascinating techniques that

have already been unearthed, and few have done more than Lea Verou to

find and share them with the world. From her blog posts to her open source

contributions to her dynamic, interactive talks all over the world, Lea has

amassed a formidable reserve of CSS knowledge. This book is a beautiful

distillation of that knowledge. You now possess a guide to some of the most

interesting, surprising, and useful techniques that CSS has yielded, a guide

compiled by one of the brightest minds in the field. What Lea has prepared

for you in these pages will enrich, delight, and—yes—even astonish.

Go forth, learn well, and let these discoveries be secrets no more.

— Eric A. Meyer

FOREWORDxvi

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

In the past few years, CSS has undergone a transformation, similar to

the JavaScript revolution circa 2004. It went from being a dead-simple styl-

ing language with limited power, to a complex technology defined by over

80 W3C specifications (including drafts), with its own developer ecosys-

tem, its own conferences, and its own frameworks and tooling. CSS has

grown so much that it’s practically impossible for any single person

to hold all of it in their brain. Even in the W3C CSS Working Group that

defines the language, nobody is an expert on every single aspect of CSS—

and few even come close. Instead, most WG members focus on certain CSS

specifications and might know very little about others.

Up until roughly 2009, CSS expertise was not defined by how well the

language was known. This was more or less a given for any serious CSS

work. Instead, CSS prowess was defined by the number of browser bugs

and workarounds that had been committed to memory. Fast-forward to

2015, and browsers are now designed to support standards, and flimsy

browser-specific hacks are frowned upon. There are still some unavoidable

incompatibilities, but—especially because most browsers now auto-update

—the pace of change is so fast, that attempting to document them in a

book would be a waste of time and space.

The challenge in modern CSS has little to do with working around

transient browser bugs. The challenge now is using the CSS features we

have in a creative way, in order to come up with DRY, maintainable,

PREFACE xvii

www.it-ebooks.info

http://www.it-ebooks.info/

flexible, lightweight, and as much as possible, standards-compliant

solutions. This is exactly what this book is all about.

There are many books out there that document certain CSS features

from A to Z. CSS Secrets, for better or for worse, is not one of them. Its

purpose is to fill the knowledge gaps that are left after you’ve already fam-

iliarized yourself with the reference material—to open your mind to new

ways to take advantage of the features you already know about, or to let

you know about useful CSS features that aren’t as shiny and popular, and

that deserve more love. However, above all, the main purpose of this book

is to teach you how to solve problems with CSS.

CSS Secrets is not a cookbook either. Each “secret” is not a canned

recipe, with rigid steps you must follow to achieve a specific effect. Instead,

I’ve tried to describe the thinking behind every technique in detail, as I be-

lieve that understanding the process of finding a solution is far more

valuable than the solution itself. Even if you don’t think that a certain

technique is relevant to your work, learning how to reach a solution might

still prove valuable for tackling even completely different problems. Long

story short, you will hopefully get many proverbial fish from this

book, but its main goal is to “feed you for a lifetime,” by teaching

you how to catch them.

PREFACExviii

DRY is an acronym that stands for

“Don’t Repeat Yourself.” It’s a pop-

ular programming mantra to pro-

mote an aspect of maintainable

code: being able to change its pa-

rameters with as few edits as possi-

ble, ideally one. Emphasis on DRY

CSS code is a recurring theme in this

book. The opposite of DRY is WET,

which stands for “We Enjoy Typing”

or “Write Everything Twice.”

www.it-ebooks.info

http://www.it-ebooks.info/

Words of thanks

This book would not have been possible without the help and support of a

number of fantastic people, to whom I’m deeply grateful. A big, heartfelt

thank you goes to:

■ All those who supported my work over the years, otherwise I wouldn’t have

found myself in the position of writing a book in the first place. To readers

of my blog (lea.verou.me), Twitter (twitter.com/leaverou), and

elsewhere, and even more to you, dear reader of my first book! To everyone

who has used my open source work (github.com/leaverou) and even

more to those who contributed.

■ All the conference organizers who have invited me for talks and workshops

over the years, especially to Damian Wielgosik and Paweł Czerski who

first believed in me and invited me to the inaugural Front-Trends conference

in 2010. And to Vasilis Vassalos who trusted me to design a web devel-

opment course for Athens University of Economics and Business back in

2010, as all these experiences taught me a great deal about teaching (and

a technical book is basically teaching).

■ Everyone in the CSS Working Group who voted to bring me on as an

Invited Expert, which has transformed my perspective on web technologies

in general and on CSS in particular.

WORDS OF THANKS xix

■

■

■

www.it-ebooks.info

http://lea.verou.me
http://twitter.com/leaverou
http://github.com/leaverou
http://www.it-ebooks.info/

■ My editors, Mary Treseler and Meg Foley, who gave me control over the

entire process and have been incredibly patient with me when I missed

deadlines (which happened more often than I’d care to admit).

■ My production editor, Kara Ebrahim, who spent copious amounts of time

fixing layout issues and manually compensating for CSS rendering bugs and

limitations in the PDF renderer used for this book.

■ My technical editors: Elika Etemad, Tab Atkins, Ryan Seddon, Elisabeth

Robson, Ben Henick, Robin Nixon, and Hugo Giraudel. They not only

helped me correct factual mistakes, but also provided invaluable feedback

regarding the understandability of the prose.

■ Eric Meyer, who I still cannot believe agreed to write a Foreword for

my book.

■ My research advisor, David Karger, who was extremely understanding

when I arrived at MIT without having finished this book, which was sup-

posed to be done long before then. Without his continued patience, the

fate of this book would have been bleak.

■ My dad, Miltiades Komvoutis, who taught me art and aesthetics very early

on. Without him, I would probably have zero interest in design and CSS,

and this book would have been about something else, like C++ or kernel

programming.

■ My uncle/second dad, Stratis Veros, and his lovely wife, Maria Brere, who

put up with me when I was at my most cranky while writing this book. Also

to their kids, Leonie and Phoebe, who are the cutest little girls in the world

and without whom, this book would have finished around a month earlier.

■ My incredible late mother, Maria Verou, to whom this book is dedicated.

For the 27 years our lives overlapped, she was my best friend and biggest

supporter. Her own life was a huge inspiration: she moved to the other side

of the world to do postgraduate research at MIT in the 1970s, a time when

most women in Greece barely made it to college, and got her degree with

distinction. She taught me ambition, kindness, integrity, independence,

open-mindedness. But most importantly, she taught me to not take life too

seriously. I miss her sorely.

PREFACExx

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

Photo credits
A big thanks to the lovely people who publish their photos with permissive

Creative Commons licenses; otherwise, every example in this book would

feature pictures of my cat (and many examples do, regardless). Here is a list

of the CC photos I used and where you can find them:

“House Made Sausage from Prairie Grass Cafe, Northbrook,” Kurman

Communications, Inc.

flickr.com/kurmanphotos/7847424816

“Cats that Webchick Is Herding,” Kathleen Murtagh

flickr.com/ceardach/4549876293

“Stone Art,” by Josef Stuefer

flickr.com/josefstuefer/5982121

“A Field of Tulips,” Roman Boed

flickr.com/romanboed/867231576

“Resting in the Sunshine,” Steve Wilson

flickr.com/pokerbrit/10780890983

“Naxos Island, Greece,” Chris Hutchison

flickr.com/employtheskinnyboy/3904743709

WORDS OF THANKS xxi

www.it-ebooks.info

http://www.flickr.com/kurmanphotos/7847424816
http://www.flickr.com/kurmanphotos/7847424816
http://www.flickr.com/ceardach/4549876293
http://www.flickr.com/josefstuefer/5982121
http://www.flickr.com/romanboed/867231576
http://www.flickr.com/pokerbrit/10780890983
http://www.flickr.com/employtheskinnyboy/3904743709
http://www.it-ebooks.info/

Making of

This is a book that eats its own dog food, proverbially speaking. It was

written in clean HTML5, with a few data- attributes, defined by

O’Reilly’s HTMLBook standard (oreillymedia.github.io/HTMLBook).

This means that everything you see in this book—the layout, the figures,

the colors—is HTML styled with CSS. A lot of the figures are also gener-

ated with SVG or use SVG data URIs, generated via SCSS functions. The few

math formulas were written in LaTeX and then converted to MathML be-

hind the scenes. You may find it amusing that the page numbers, chapter

numbers, and secret numbers are merely CSS counters.

Many of the books O’Reilly publishes these days are made that way.

They have built a system especially for this purpose, called Atlas

(atlas.oreilly.com). The best thing about Atlas is that it’s also available

for the public, not just for official O’Reilly use.

However, this book was not a typical Atlas use case. It pushed the limits

of what is possible today with CSS for printing, in a way that—to my knowl-

edge—no other book has. It helped us find many bugs in Atlas and Antenna

House (the PDF renderer used by Atlas) and even many issues with the print-

related CSS specifications themselves, which I took to the CSS WG.

“How much code does it take to make a book like this with web tech-

nologies?” you might ask. Let’s look at a few statistics (before production):

■ This book is styled with 4,700 lines of SCSS, compiling to 3,800 lines of CSS.

■ A little over 10,000 lines of HTML.

PREFACExxii

■

■

www.it-ebooks.info

http://oreillymedia.github.io/HTMLBook
http://atlas.oreilly.com
http://www.it-ebooks.info/

■ There are 322 figures in the entire book, but only 140 image files (including

SVG images and screenshots), as most figures are just a series of divs styled

with CSS. (Figure styling accounts for 65% of the book’s CSS and SCSS

code!)

Here is a list of tools used in making this book, besides Atlas:

■ Git for version control

■ SCSS for CSS preprocessing

■ The entire book was written in the Espresso (macrabbit.com/espresso)

text editor

■ CodeKit was used for compiling SCSS to CSS

■ Dabblet (dabblet.com) was used for the live demos and for the few fig-

ures that are screenshots of the demos

■ The SVG-based figures that were not hand coded were created in Adobe

Illustrator

■ Adobe Photoshop was used to edit screenshots, when needed

The fonts used were Rockwell for the headings, Frutiger for the body text,

Consolas for the code, and Baskerville for the dedication and many figures.

The book was written on a 13″ MacBook Air, in a variety of countries,

including Greece, Kenya, Australia, New Zealand, the Philippines, Singa-

pore, Chile, Brazil, the United States, France, Spain, the UK, Wales, Poland,

Canada, and Austria.

MAKING OF xxiii

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://macrabbit.com/espresso
http://dabblet.com
http://www.it-ebooks.info/

About this book

Who this book is for
The primary target audience for this book is intermediate to advanced

CSS developers. By getting the introductory stuff out of the way, we can

explore more advanced use cases of modern CSS features and combinations

thereof. This, however, means that quite a few assumptions have been

made about you, dear reader:

■ I assume you know CSS 2.1 inside out, and have a few years of experience

with it. You don’t struggle to understand how positioning works. You’ve

used generated content to enhance your designs without extraneous mark-

up or images. You don’t resort to plastering !important all over your code

because you actually understand specificity, inheritance, and the cascade.

You know what the different parts of the box model are, and you are not

fazed by margin collapsing. You are familiar with the different length units

and know when it’s best to use each one.

■ You’ve read quite a bit about the most popular CSS3 features, online

and/or in books, and have tried them out, even if only in personal projects.

Even if you haven’t studied them in depth, you know how to create rounded

corners, add a box-shadow, or create a linear gradient. You’ve played with

some basic 2D transforms, and have enhanced interactions with basic tran-

sitions and animations.

PREFACExxiv

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

■ You have seen SVG and know what it’s used for, even if you don’t quite

know how to write it yourself.

■ You can read and understand basic, vanilla JavaScript, such as creating

elements, manipulating their attributes, and adding them to the document.

■ You’ve heard of CSS preprocessors and know what they can do, even if

you choose not to use one.

■ You’re familiar with middle school level math, such as square roots, the

Pythagorean theorem, sines, cosines, and logarithms.

However, to enable readers that don’t meet all these assumptions to enjoy

this book, there is a “Prerequisites” box in the beginning of some secrets,

briefly listing any CSS knowledge or previous secrets that need to be known

for the secret to make sense (excluding CSS 2.1 features, otherwise the box

would get really long). It looks like this:

Prerequisites
box-shadow, basic CSS gradients, the “Flexible ellipses” secret on

page 76

This way, even if certain things are not already known, one can read

up about them and come back to the secret afterward. As long as their

prerequisites are met, the secrets can actually be read in any order,

though there is value in reading them in the book order, as a lot of thought

has been put into what the optimal order is.

Note that I mentioned “CSS developers” and that “design skills” are

not in the list of assumptions above. It’s important to note that this is not

a design book. While it unavoidably touches on certain design principles

and describes a few UX improvements, CSS Secrets is first and foremost a

book about solving problems with code. CSS might have a visual output,

but it is still code, just like SVG, WebGL/OpenGL, or the JavaScript Canvas

API is code, not design. Writing good, flexible CSS requires the same kind

of analytical thinking that programming does. Nowadays, most people use

preprocessors for their CSS, with variables, math, conditionals, and loops,

so it’s almost starting to look like programming!

ABOUT THIS BOOK xxv

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

This is not to imply that designers are discouraged from reading

this book. Anybody who has sufficient coding experience with CSS can

benefit from it, and there are many talented designers who can also write

excellent CSS code. However, it’s important to note that teaching you how

to improve the visual design or usability of a website is not among the goals

of this book, even if it happens as a side effect.

Format & conventions used
The book consists of 47 “secrets,” grouped by topic in seven chapters.

These secrets are more or less independent and—as long as their prerequi-

sites are met—can be read in any order. The demos in every secret are not

complete websites, or even parts thereof. They are purposefully as small and

simple as possible, in order to facilitate understanding. The assumption is

that you already know what you want to implement. The purpose of this

book is not to give design ideas, but implementation solutions.

Every secret is split into two or more sections. The first section, titled

“The problem,” introduces a common CSS challenge that we are going to

solve. Sometimes this introduction might describe widely popular solutions

that are suboptimal (e.g., solutions that require a lot of markup, hardcoded

values, etc.), and usually concludes with variations of the question “Is there

a better way to achieve this?”

After introducing the problem, one or more solutions follow. This book

was inspired by the CSS talks I have presented at various conferences so I

tried to maintain the interactive presentation format as much as a book

allows. Therefore, every solution is illustrated by a number of figures, dem-

onstrating the visual output for every step of the solution that results in a

visual change. Because figures are not always directly next to the text that

describes what they demonstrate, they are numbered and referenced in the

text. You can see an example of a figure in Figure P.1 and the current sen-

tence was an example of a reference to it.

Inline code is denoted by monospace text and colors often have a

small preview next to them as well (e.g., #f06). Block-level code looks

like this:

PREFACExxvi

FIGURE P.1
This is an example sidebar figure,

introducing the great Sir Adam

Catlace

Notes, such as this one, provide ad-

ditional information or explain a

term mentioned in the text.

! This is a warning. Its purpose is

to warn you (surprising, I

know!) about possible false assump-

tions and certain things that could

go wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

TRIVIA Side trivia
Dark “Trivia” sections at the bottom of pages introduce tangentially related trivia, such as the historical or

technical background behind a CSS feature. They are not necessary for using or understanding the main

material, but readers might find them interesting nevertheless.

background: url("adamcatlace.jpg");

or this:

<figure>

 <figcaption>Sir Adam Catlace</figcaption>

</figure>

As you might have noticed, when the language of a code block is not CSS,

it’s noted in the top-right corner. Also, when the example discussed only

involves a single element, and no pseudo-classes or pseudo-elements are

involved, there is usually no selector or braces ({}) included in the code

blocks, for brevity.

All JavaScript examples in the book are vanilla JavaScript, with no

frameworks or libraries required. There is only one helper function used,

$$(), in order to make it easier to loop over a set of elements that match

a certain CSS selector. The function’s definition is:

function $$(selector, context) {

 context = context || document;

 var elements = context.querySelectorAll(selector);

 return Array.prototype.slice.call(elements);

}

ABOUT THIS BOOK xxvii

HTML

JS

www.it-ebooks.info

http://www.it-ebooks.info/

FUTURE Future solutions
“Future” sections (positioned at the bottom of pages and set on a dark background) introduce techniques

that are already in draft specifications, but at the time of writing have no implementations. Readers should

always check if these techniques are supported, as they might have been implemented after the publication

of this book. In cases where the feature is obscure enough that browser support websites might not include

it, the section will include a test that the reader can load, in short memorable URLs, such as the one shown

here in the “Test!” example. These tests are usually designed so that shades of green appear when the

feature is supported and shades of red otherwise. The exact instructions are mentioned in the code, as a

comment.

TEST! play.csssecrets.io/test-conic-gradient

Every secret includes one or more live examples that can be accessed with

short, memorable URLs in play.csssecrets.io. The references to them

look like this:

▶ PLAY! play.csssecrets.io/polka

It is strongly recommended that you check out the “Play!” examples, espe-

cially if you are confused by the techniques described or if you get stuck

while following along.

Credit where it’s due: When a technique described was first documented

by someone else in the community, credit will be given in a “Hat Tip” para-

graph like this one, referencing the URL of the source as well. We all know

that having to find the “References” section at the end of a book is a hassle,

so these essentially provide references in context.

PREFACExxviii

HAT TIP

www.it-ebooks.info

http://play.csssecrets.io/test-conic-gradient
http://play.csssecrets.io
http://play.csssecrets.io/polka
http://www.it-ebooks.info/

RELATED

SPECS

At the end of almost every secret you’ll find a list of related specifica-

tions that looks like this:

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ Selectors

w3.org/TR/selectors

■ Scalable Vector Graphics

w3.org/TR/SVG

This includes references to all the specifications from which features

were mentioned. However, just like the “Prerequisites” box, this does not

apply to CSS 2.1 (w3.org/TR/CSS21), otherwise it would be listed in the

“Related Specs” section of every single secret. This means that the few se-

crets that only discuss CSS 2.1 features have no “Related Specs” section

at all.

Browser support & fallbacks
Possibly the biggest peculiarity of this book is the complete lack of brows-

er compatibility tables. This was a conscious decision, as with today’s

browser release cycles, such information is bound to get out of date before

this book even hits the shelves. I believe that inaccurate browser support

information is misleading, and is actually worse than no information.

However, most secrets described either currently have decent browser

support and/or degrade gracefully. In cases where a technique described

presently has particularly poor browser support, there is a “Limited Support”

warning icon next to the relevant solution, like the one next to this para-

graph. This should be enough to hint that you should not use the solution

without looking up browser support for it and taking extra care for providing

good fallbacks.

There are plenty of excellent websites containing up-to-date browser

support information. Here are some suggestions:

ABOUT THIS BOOK xxix

LIMITED
SUPPORT

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-backgrounds
http://w3.org/TR/selectors
http://w3.org/TR/SVG
http://w3.org/TR/CSS21
http://www.it-ebooks.info/

■ Can I Use…? (caniuse.com)

■ WebPlatform.org

■ Mozilla Developer Network (developer.mozilla.org)

■ Wikipedia’s “Comparison of Layout Engines (Cascading Style

Sheets)” (en.wikipedia.org/wiki/

Comparison_of_layout_engines_(Cascading_Style_Sheets))

Sometimes you might find that a certain feature is supported, but slightly

differently across browsers. For example, it might need a vendor prefix, or

slightly different syntax. Only the standards-compliant, unprefixed syntax

will be included in the examples. However, you can almost always use dif-

ferent syntaxes alongside and let the cascade take care of which one wins.

For this reason, always place the standard version last. For example, to

get a vertical linear gradient from yellow to red, the book would

only list the standard version:

background: linear-gradient(90deg, yellow, red);

However, if you want to support very old browsers, you might end up

having to write something like the following:

background: -moz-linear-gradient(0deg, yellow, red);

background: -o-linear-gradient(0deg, yellow, red);

background: -webkit-linear-gradient(0deg, yellow, red);

background: linear-gradient(90deg, yellow, red);

Because the landscape of these differences is just as fluid as browser sup-

port, it is expected that things like this are part of your standard research

before using a CSS feature and are not discussed further in the solutions

presented.

Similarly, most of the time it’s good practice to provide fallbacks, so

that your website doesn’t break in older browsers, even if it doesn’t look as

fancy in them. These are not discussed extensively when they are obvious,

as the assumption is that you know how the cascade works. For example,

PREFACExxx

You can read more on vendor pre-

fixes, why they exist, and how to ab-

stract them away from your code in

the “A story of ice, fire, and ven-

dor prefixes” section on page 6.

■

■

■

■

www.it-ebooks.info

http://caniuse.com
http://webplatform.org
http://developer.mozilla.org
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)
http://en.wikipedia.org/wiki/Comparison_of_layout_engines_(Cascading_Style_Sheets)
http://www.it-ebooks.info/

when specifying a gradient, such as the one just shown, you should also

add a solid color version before all of them. A good idea for the solid color

might be the average of the two gradient colors (in this case,

rgb(255, 128, 0)):

background: rgb(255, 128, 0);

background: -moz-linear-gradient(0deg, yellow, red);

background: -o-linear-gradient(0deg, yellow, red);

background: -webkit-linear-gradient(0deg, yellow, red);

background: linear-gradient(90deg, yellow, red);

However, sometimes it’s not possible to provide decent fallbacks through

the cascade. As a last resort, you could use tools like Modernizr

(modernizr.com), which adds classes like textshadow or no-

textshadow to the root element (<html>), so you can use them to target

elements only when certain features are (not) supported, like so:

h1 { color: gray; }

.textshadow h1 {

 color: transparent;

 text-shadow: 0 0 .3em gray;

}

If the feature you are trying to create a fallback for is sufficiently new, you

could use the @supports rule, which is the “native” Modernizr. For ex-

ample, the preceding code would become:

h1 { color: gray; }

@supports (text-shadow: 0 0 .3em gray) {

 h1 {

 color: transparent;

ABOUT THIS BOOK xxxi

www.it-ebooks.info

http://modernizr.com
http://www.it-ebooks.info/

 text-shadow: 0 0 .3em gray;

 }

}

However, for now, be wary of using @supports. By using it here we just

limited our effect not only to browsers that support text shadows, but also

to browsers that support the @supports rule—a much more limited set.

Last, but not least, there is always the option of using a few lines of

home-baked JavaScript to perform feature detection and add classes to the

root element in the same fashion as Modernizr. The main way to determine

whether a property is supported is to check its existence on the

element.style object of any element:

var root = document.documentElement; // <html>

if ('textShadow' in root.style) {

 root.classList.add('textshadow');

}

else {

 root.classList.add('no-textshadow');

}

If we need to test for multiple properties, we can easily turn this into a

function:

function testProperty(property) {

 var root = document.documentElement;

 if (property in root.style) {

 root.classList.add(property.toLowerCase());

 return true;

 }

PREFACExxxii

JS

JS

www.it-ebooks.info

http://www.it-ebooks.info/

 root.classList.add('no-' + property.toLowerCase());

 return false;

}

If we want to test a value, we need to assign it to the property and check if

the browser retains it. Because we are modifying styles here and not just

testing for their existence, it makes sense to use a dummy element:

var dummy = document.createElement('p');

dummy.style.backgroundImage = 'linear-gradient(red,tan)';

if (dummy.style.backgroundImage) {

 root.classList.add('lineargradients');

}

else {

 root.classList.add('no-lineargradients');

}

This can easily be converted to a function as well:

function testValue(id, value, property) {

 var dummy = document.createElement('p');

 dummy.style[property] = value;

 if (dummy.style[property]) {

 root.classList.add(id);

 return true;

 }

 root.classList.add('no-' + id);

 return false;

}

ABOUT THIS BOOK xxxiii

JS

JS

www.it-ebooks.info

http://www.it-ebooks.info/

Testing selectors and @rules is a bit more complex, but follows the same

principle: when it comes to CSS, browsers drop anything they don’t under-

stand, so we can check if a feature is recognized by dynamically applying it

and checking if it was retained. Of course, keep in mind that a browser being

able to parse a CSS feature offers no guarantee that the feature is cor-

rectly implemented, or even that it’s implemented at all.

PREFACExxxiv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction 1
www.it-ebooks.info

http://www.it-ebooks.info/

Web standards:
friend or foe?

The standards process
Contrary to popular belief, the W3C (World Wide Web Consortium) does

not “make” standards. Instead, it acts as a forum for interested parties to

get together and do so, in its W3C Working Groups. Of course, the W3C is

not a mere observer: it sets the ground rules and it oversees the process.

But it’s not (primarily) W3C staff that actually write the specifications.

CSS specifications, in particular, are written by the members of the CSS

Working Group, often abbreviated as CSS WG. At the time of writing, the

CSS WG includes 98 members, and its composition is as follows:

■ 86 members from W3C member companies (88%)

■ 7 Invited Experts, including yours truly (7%)

■ 5 W3C staff members (5%)

As you might notice, the vast majority of WG members (88%) come from

W3C member companies. These are companies—such as browser vendors,

popular websites, research institutes, general technology companies, etc.—

that have a vested interest in seeing web standards flourish. Their yearly

membership dues represent the majority of the W3C’s funding, enabling

CHAPTER 1: INTRODUCTION2

FIGURE 1.1
“Standards are like sausages: it’s

better not to see them being made”

— Anonymous W3C WG member ■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

the Consortium to distribute its specifications freely and openly, unlike

other standards bodies that have to charge for them.

Invited Experts are web developers who have been asked to participate

in the standards process, after demonstrating a continuous commitment to

helping out, and a sufficient technical background to participate in the

discussions.

Last, but not least, W3C staff members are people who actually work

at the Consortium and facilitate communication between the WG and

the W3C.

A widespread misconception among web developers is that the W3C

creates standards from up high that the poor browsers then have to follow,

whether they like them or not. However, this couldn’t be further from the

truth: browser vendors have much more of a say than the W3C in what

goes into standards, as evidenced by the numbers listed before.

Also contrary to popular belief, standards are not created in a

vacuum, behind closed doors. The CSS WG is committed to transparency

and all its communications are open to the public, inviting review and

participation:

■ Most discussions happen in its mailing list, www-style (lists.w3.org/

Archives/Public/www-style). www-style is publicly archived, and is

open to participation from anyone.

■ There is a weekly telcon, with a duration of one hour. This is not open to

participation by non-WG members, but is minuted in real time in the #css

channel on the W3C’s IRC server (irc.w3.org/). These minutes are then

cleaned up and posted to the mailing list a few days later.

■ There are also quarterly face-to-face meetings, which are also minuted

in the same fashion as telcons. They are also often open to observation

(auditing), after requesting permission from the WG chairs.

All this is part of the W3C process and has to do with decision making.

However, the ones that are actually responsible for putting these decisions

to writing (i.e., authoring the specifications) are the Spec Editors. Spec Ed-

itors might be W3C staff members, browser developers, interested Invited

Experts, or member company employees who are doing it as a full-time job,

paid by their companies to advance standards for the common good.

WEB STANDARDS: FRIEND OR FOE? 3

FIGURE 1.2
The composition of the CSS WG:

 Member companies

 Invited Experts

 W3C staff members

■

■

■

www.it-ebooks.info

http://lists.w3.org/Archives/Public/www-style
http://irc.w3.org/
http://www.it-ebooks.info/

Each specification goes through multiple stages as it evolves from initial

inception to maturity:

1. Editor’s Draft (ED): The first stage of a spec could be as messy as being

just a collection of ideas by the spec editor. There are no requirements for

this stage and no guarantee that it’s approved by the WG. However, this is

also the first stage of every revision: all changes are first made in an ED, then

published.

2. First Public Working Draft (FPWD): The first published version of a spec,

after it’s deemed ready for public feedback by the WG.

3. Working Draft (WD): There are many WDs after the first one, each slightly

better, incorporating feedback from the WG and the broader community.

First implementations often start at this stage, but it’s not unheard of to have

experimental implementations of earlier stage specs.

4. Candidate Recommendation (CR): This is considered a relatively stable

version. Now it’s time for implementations and tests. A spec cannot advance

past this stage without a full test suite and at least two independent

implementations.

5. Proposed Recommendation (PR): Last chance for W3C member compa-

nies to express disagreement with the specification. This rarely happens, so

it’s usually just a matter of time for every PR spec to move to the next, final

stage.

6. Recommendation (REC): The final stage of a W3C specification.

One or two WG members have the role of being chairs. Chairs are

responsible for organizing meetings, coordinating calls, timekeeping, and

generally moderating the whole thing. Being chair is a very time-consuming

and energy-draining role, and is frequently compared to herding cats. Of

course, everyone involved in standards knows that such a comparison is

moot: herding cats is actually considerably easier.

CHAPTER 1: INTRODUCTION4

Interested in learning more? Elika

Etemad (fantasai) has written a

series of amazing articles on

how the CSS WG operates

(fantasai.inkedblade.net/

weblog/2011/inside-csswg).

Very highly recommended.

FIGURE 1.3
Chairing a W3C Working Group is

frequently compared to herding cats

1.

2.

3.

4.

5.

6.

www.it-ebooks.info

http://fantasai.inkedblade.net/weblog/2011/inside-csswg
http://fantasai.inkedblade.net/weblog/2011/inside-csswg
http://fantasai.inkedblade.net/weblog/2011/inside-csswg
http://www.it-ebooks.info/

CSS3, CSS4, and other mythical creatures
CSS 1 was a very short and relatively simple specification, published in 1996

by Håkon Wium Lie and Bert Bos. It was so small that it was all included in

a single HTML page, which required around 68 sheets of A4 paper to print.

CSS 2, published in 1998, was more strictly defined, and included much

more power and two more spec editors: Chris Lilley and Ian Jacobs. At this

point, the length of the specification had grown to 480 (!) printed pages

and was already getting too big to be held in human memory in its entirety.

After CSS Level 2, the CSS WG realized that the language was getting

too big to be contained in a single specification. Not only was it extremely

unwieldy to read and edit, but it was also holding CSS back. Remember that

for a specification to advance to the final stages, every single feature

in it needs at least two independent implementations and exhaus-

tive tests. This was no longer practical. Therefore, it was decided that going

forward, CSS was going to be broken into multiple specifications (modules),

each with its own versioning. Those that expand on features that were al-

ready present in CSS 2.1 would have a level number of 3. For example, some

of these modules are:

■ CSS Syntax (w3.org/TR/css-syntax-3)

■ CSS Cascading and Inheritance (w3.org/TR/css-cascade-3)

■ CSS Color (w3.org/TR/css3-color)

■ Selectors (w3.org/TR/selectors)

■ CSS Backgrounds & Borders (w3.org/TR/css3-background)

■ CSS Values and Units (w3.org/TR/css-values-3)

■ CSS Text (w3.org/TR/css-text-3)

■ CSS Text Decoration (w3.org/TR/css-text-decor-3)

■ CSS Fonts (w3.org/TR/css3-fonts)

■ CSS Basic User Interface (w3.org/TR/css3-ui)

However, modules that introduce entirely new concepts start from Level 1.

Here are a few examples:

WEB STANDARDS: FRIEND OR FOE? 5

■

■

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-syntax-3
http://w3.org/TR/css-cascade-3
http://w3.org/TR/css3-color
http://w3.org/TR/selectors
http://w3.org/TR/css3-background
http://w3.org/TR/css-values-3
http://w3.org/TR/css-text-3
http://w3.org/TR/css-text-decor-3
http://w3.org/TR/css3-fonts
http://w3.org/TR/css3-ui
http://www.it-ebooks.info/

■ CSS Transforms (w3.org/TR/css-transforms-1)

■ Compositing and Blending (w3.org/TR/compositing-1)

■ Filter Effects (w3.org/TR/filter-effects-1)

■ CSS Masking (w3.org/TR/css-masking-1)

■ CSS Flexible Box Layout (w3.org/TR/css-flexbox-1)

■ CSS Grid Layout (w3.org/TR/css-grid-1)

Despite the popularity of the “CSS3” buzzword, there is actually no

specification defining such a thing, like there was for CSS 2.1 or its

predecessors. Instead, what most authors are referring to is an arbitrary set

of Level 3 specs, plus some Level 1 specs. Although there is some good

degree of consensus among authors on which specs are included in “CSS3,”

as CSS modules evolve at different rates over the years, it will become more

and more difficult to refer to things like CSS3, CSS4, and so on and be

universally understood.

A story of ice, fire, and vendor prefixes
In standards development, there is always a big catch-22: standards groups

need input from developers to create specifications that address real devel-

opment needs. However, developers are generally not interested in trying

out things they can’t use in production. When experimental technologies

get widely used in production, the WG is forced to stick with the early,

experimental version of the technology, to avoid breaking several existing

websites if they change it. Obviously, this completely negates the benefits

of getting developers to try out early standards.

Over the years, many solutions have been proposed to address this co-

nundrum, none of them perfect. The universally despised vendor prefixes

were one of them. The idea was that every browser would be able to im-

plement experimental (or even proprietary) features with their own prefix

prepended to its name. The most common prefixes are -moz- for Firefox,

-ms- for IE, -o- for Opera, and -webkit- for Safari and Chrome.

Developers would be able to freely experiment with these prefixed features

and provide feedback to the WG, which would then incorporate this feed-

back into the specs and slowly perfect the design of the feature. Because

CHAPTER 1: INTRODUCTION6

■

■

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-transforms-1
http://w3.org/TR/compositing-1
http://w3.org/TR/filter-effects-1
http://w3.org/TR/css-masking-1
http://w3.org/TR/css-flexbox-1
http://w3.org/TR/css-grid-1
http://www.it-ebooks.info/

the final, standardized version would have a different name (no prefix), it

wouldn’t collide with the existing uses of its prefixed counterparts.

Sounds great, right? Of course, as you probably know, the reality was

quite different from the vision. When developers realized that these exper-

imental, vendor-prefixed properties could make it so much easier to create

effects that previously required messy workarounds, they started using them

everywhere. Vendor-prefixed properties quickly became the CSS trend of

the time. Tutorials were written, StackOverflow replies were given, and soon

almost every self-respecting CSS developer was using them all over the

place.

Eventually, authors realized that using only existing vendor prefixes

meant they would have to go back to previous work and add new declara-

tions every time another browser implemented their favorite cool new CSS

feature. Not to mention how hard it became to keep up with which prefixes

were needed for what feature. The solution? Add all possible vendor pre-

fixes preemptively, including the unprefixed version at the end, to future-

proof it. We ended up with code like the following:

-moz-border-radius: 10px;

-ms-border-radius: 10px;

-o-border-radius: 10px;

-webkit-border-radius: 10px;

border-radius: 10px;

Two of the declarations here are completely redundant: -ms-border-

radius and -o-border-radius never existed in any browser, as IE and

Opera implemented border-radius unprefixed from the get-go.

Obviously, repeating every declaration up to five times was tedious and

unmaintainable. It was only a matter of time until tools were built to auto-

mate this:

■ Websites like CSS3, Please! (css3please.com) or pleeease

(pleeease.io/playground.html) allow you to paste your unprefixed

CSS code and get back CSS with all necessary prefixes added. Such apps

were among the first ideas devised to automate vendor prefix addition, but

WEB STANDARDS: FRIEND OR FOE? 7

■

www.it-ebooks.info

http://css3please.com
http://pleeease.io/playground.html
http://www.it-ebooks.info/

are not very popular anymore, as using them incurs quite a lot of overhead

compared to other solutions.

■ Autoprefixer (github.com/ai/autoprefixer) uses the database from

Can I Use… (caniuse.com) to determine which prefixes to add to unpre-

fixed code and compiles it locally, like a preprocessor.

■ My own -prefix-free (leaverou.github.io/prefixfree) performs fea-

ture testing in the browser to determine which prefixes are needed. The

benefit is that it rarely needs updating, as it gets everything from the browser

environment, including the list of properties.

■ Preprocessors like LESS (lesscss.org) or Sass (sass-lang.com) don’t

offer any means of prefixing out of the box, but many authors create mixins

for the features they prefix most often, and there are several libraries of such

mixins in circulation.

Because authors were using the unprefixed version of features as a means

to future-proof their code, it became impossible to change them. We were

basically stuck with half-baked early specs that we could change in very

limited ways. It didn’t take long for everyone involved to realize that vendor

prefixes were an epic failure.

These days, vendor prefixes are rarely used for new experimental im-

plementations. Instead, experimental features require config flags to be

turned on, effectively preventing developers from using them in production,

as you can’t really tell users to change their settings in order to view your

website properly. Of course, this has the consequence that fewer authors

get to play with experimental features, but we still get enough feedback,

and arguably, better quality feedback, without the drawbacks of vendor

prefixes. However, it will be a long time before the ripple effects of vendor

prefixes stop haunting us all.

CHAPTER 1: INTRODUCTION8

■

■

■

www.it-ebooks.info

https://github.com/ai/autoprefixer
http://caniuse.com
http://leaverou.github.io/prefixfree
http://lesscss.org
http://sass-lang.com
http://www.it-ebooks.info/

CSS coding tips

Minimize code duplication
Keeping code DRY and maintainable is one of the biggest challenges in

software development, and that applies to CSS as well. In practice, one big

component of maintainable code is minimizing the amount of edits

necessary to make a change. For example, if to enlarge a button you need

to make 10 edits in many different rules, chances are you will miss a few of

them, especially if you are not the one who wrote the original code. Even if

the edits are obvious, or you eventually find them, you have just wasted

time that could be put to better use.

Furthermore, this is not just about future changes. Flexible CSS makes

it easier to write CSS once, and then create variations with very little code,

as there are only a few values you need to override. Let’s look at an example.

Take a look at the following CSS, which styles the button shown in

Figure 1.4:

padding: 6px 16px;

border: 1px solid #446d88;

background: #58a linear-gradient(#77a0bb, #58a);

border-radius: 4px;

box-shadow: 0 1px 5px gray;

color: white;

CSS CODING TIPS 9

Yes!Yes!

FIGURE 1.4
The button we are going to use in

our example

www.it-ebooks.info

http://www.it-ebooks.info/

text-shadow: 0 -1px 1px #335166;

font-size: 20px;

line-height: 30px;

There are several issues with the maintainability of this code that we can

fix. The low-hanging fruit is the font metrics. If we decide to change the

font size (perhaps to create a variation that will be used for important, bigger

buttons), we also need to adjust the line spacing, as they are both absolute

values. Furthermore, the line spacing doesn’t reflect what its relationship is

to the font size, so we would even need to perform calculations to figure

out what it should be for a different font size. When values depend on

each other, try to reflect their relationship in the code. In this case, the

line spacing is 150% the line height. Therefore, it would be much more

maintainable to show this in the code:

font-size: 20px;

line-height: 1.5;

While we’re at it, why did we specify the font size as an absolute

length? Sure, absolute lengths are easy to work with, but they come back

to bite you every single time you make changes. Now, if we decide to make

the parent font size bigger, we would have to change every single rule in

the stylesheet that uses absolute font measurements. It’s much better to use

percentages or ems:

font-size: 125%; /* Assuming a 16px parent font size */

line-height: 1.5;

Now if I change the parent font size, the button will instantly become

bigger. However, it will look quite different (Figure 1.5), because all other

effects were designed for a smaller button and did not scale. We can make

all the other effects scalable as well, by specifying any lengths in ems, so that

CHAPTER 1: INTRODUCTION10

Yes!Yes!
FIGURE 1.5
Enlarging the font size breaks other

effects in our button (corner

rounding being the most

noticeable), as they are specified

using absolute lengths

www.it-ebooks.info

http://www.it-ebooks.info/

they all depend on the font size. This way, we can control the size of the

button in one place:

padding: .3em .8em;

border: 1px solid #446d88;

background: #58a linear-gradient(#77a0bb, #58a);

border-radius: .2em;

box-shadow: 0 .05em .25em gray;

color: white;

text-shadow: 0 -.05em .05em #335166;

font-size: 125%;

line-height: 1.5;

Now our larger button looks much more like a scaled version of the

original (Figure 1.6). Notice that we still left some lengths as absolute val-

ues. It’s a judgment call which effects should scale with the button

and which ones should stay the same. In this case, we wanted our bor-

der thickness to stay 1px regardless of the button dimensions.

However, making the button smaller or larger is not the only thing we

might want to change. Colors are another big one. For example, what if we

want to create a red Cancel button, or a green OK button? Currently, we

would need to override four declarations (border-color, background,

box-shadow, text-shadow), not to mention the hassle of recalculating

all the different darker/lighter variants of our main color, #58a, and fig-

uring out how much lighter or darker each color is. Also, what if we want

to place our button on a non-white background? Using gray for its

shadow will only look as intended on a white background.

We could easily eliminate this hassle by using semi-transparent white

and black for lighter/darker variants, respectively, overlaid on our main color:

padding: .3em .8em;

border: 1px solid rgba(0,0,0,.1);

background: #58a linear-gradient(hsla(0,0%,100%,.2),

 transparent);

CSS CODING TIPS 11

Here we wanted our font size and

measurements to be relative to the

parent font size, so we used ems. In

some cases, you want them to be

relative to the root font size (i.e.,

the font size of <html>), and ems

result in complex calculations. In that

case, you can use the rem unit. Rel-

ativity is an important feature in CSS,

but you do have to think about

what things should be relative to.

Yes!Yes!
FIGURE 1.6
Now we can make our button larger,

and all its effects scale too

TIP! Use HSLA instead of

RGBA for semi-

transparent white, as it has slightly

fewer characters and is quicker to

type, due to the lack of repetition.

www.it-ebooks.info

http://www.it-ebooks.info/

border-radius: .2em;

box-shadow: 0 .05em .25em rgba(0,0,0,.5);

color: white;

text-shadow: 0 -.05em .05em rgba(0,0,0,.5);

font-size: 125%;

line-height: 1.5;

Now all it takes to create variations with different colors is to override

background-color (Figure 1.7):

button.cancel {

 background-color: #c00;

}

button.ok {

 background-color: #6b0;

}

Our button is already much more flexible. However, this example doesn’t

demonstrate every opportunity to make your code more DRY. You will find

a few more tips in the following sections.

Maintainability versus brevity

Sometimes, maintainability and brevity can be mutually exclusive.

Even in the previous example, our final code is a bit longer than our original.

Consider the following snippet to create a 10px thick border on every side

of an element, except the left one:

border-width: 10px 10px 10px 0;

It’s only one declaration, but to change the border thickness we would need

to make three edits. It would be much easier to edit as two declarations,

and it’s arguably easier to read that way too:

CHAPTER 1: INTRODUCTION12

OKOK CancelCancel

FIGURE 1.7
All it took to create these color

variations was changing the

background color

www.it-ebooks.info

http://www.it-ebooks.info/

border-width: 10px;

border-left-width: 0;

currentColor

In CSS Color Level 3 (w3.org/TR/css3-color), we got many new color

keywords like lightgoldenrodyellow, which aren’t that useful.

However, we also got a special new color keyword, borrowed from SVG:

currentColor. This does not correspond to a static color value. Instead,

it always resolves to the value of the color property, effectively making it

the first ever variable in CSS. A very limited variable, but a variable

nevertheless.

For example, let’s assume we want all of the horizontal separators (all

<hr> elements) to automatically have the same color as the text. With

currentColor, we could do this:

hr {

 height: .5em;

 background: currentColor;

}

You might have noticed similar behavior with many existing properties. For

example, if you specify a border with no color, it automatically gets the text

color. This is because currentColor is also the initial value of many CSS

color properties: border-color, the text-shadow and box-shadow

colors, outline-color, and others.

In the future, when we get functions to manipulate colors in native

CSS, currentColor will become even more useful, as we will be able to

use variations of it.

Inheritance

While most authors are aware of the inherit keyword, it is often forgot-

ten. The inherit keyword can be used in any CSS property and it always

CSS CODING TIPS 13

Some would argue that the em unit

was actually the first variable in CSS,

as it referred to the value of font-

size. Most percentages play a sim-

ilar role, though in less exciting

ways.

www.it-ebooks.info

http://w3.org/TR/css3-color
http://www.it-ebooks.info/

corresponds to the computed value of the parent element (in pseudo-

elements that is the element they are generated on). For example, to give

form elements the same font as the rest of the page, you don’t need to re-

specify it, just use inherit:

input, select, button { font: inherit; }

Similarly, to give hyperlinks the same color as the rest of the text, use

inherit:

a { color: inherit; }

The inherit keyword can often be useful for backgrounds as well.

For example, to create speech bubbles where the pointer automatically in-

herits the background and border (Figure 1.8):

.callout { position: relative; }

.callout::before {

 content: "";

 position: absolute;

 top: -.4em; left: 1em;

 padding: .35em;

 background: inherit;

 border: inherit;

 border-right: 0;

 border-bottom: 0;

 transform: rotate(45deg);

}

CHAPTER 1: INTRODUCTION14

FIGURE 1.8
A speech bubble where the pointer

gets the background color and

border from the parent

www.it-ebooks.info

http://www.it-ebooks.info/

Trust your eyes, not numbers
The human eye is far from being a perfect input device. Sometimes accurate

measurements result in looking inaccurate and designs need to account for

that. For example, it’s well known in visual design literature that our eyes

don’t perceive something as being vertically centered when it is. Instead, it

needs to be slightly above the geometrical middle to be perceived as such.

See that phenomenon for yourself, in Figure 1.9.

Similarly, in type design, it is well known that round glyphs such as “O”

need to be slightly larger than more rectangular glyphs, as we tend to per-

ceive round shapes as smaller than they actually are. Check that out for

yourself in Figure 1.10.

Such optical illusions are very common in any form of visual de-

sign, and need to be accounted for. An extremely common example is pad-

ding in containers with text. The issue is present regardless of the amount

of text—it could be a word or several paragraphs. If we specify the same

amount of padding on all four sides of a box, it actually ends up looking

uneven, as Figure 1.11 demonstrates. The reason is that letterforms are

much more straight on the sides than their top and bottom, so our

eyes perceive that extra space as extra padding. Therefore, we need to

specify less padding for the top and bottom sides if we want it to be

perceived as being the same. You can see the difference this makes in

Figure 1.12.

On Responsive Web Design
RWD (Responsive Web Design) has been all the rage over the past few years.

However, the emphasis is often placed on how important it is for websites

to be “responsive,” leaving a lot unsaid about what good RWD entails.

The common practice is testing a website in multiple resolutions and

adding more and more media queries to fix the issues that arise. However,

every media query adds overhead to future CSS changes, and they

should not be added lightly. Every future edit to the CSS code requires

CSS CODING TIPS 15

FIGURE 1.9
In the first rectangle, the brown

square is mathematically vertically

centered, but doesn’t look so; in the

second one, it is actually placed

slightly above the geometrical

center, but it looks more centered to

the human eye

FIGURE 1.10
The circle looks smaller, but its

bounding box is exactly the same as

the square

www.it-ebooks.info

http://www.it-ebooks.info/

checking whether any media queries apply, and potentially editing those

too. This is often forgotten, resulting in breakage. The more media queries

you add, the more fragile your CSS code becomes.

That is not to say that media queries are a bad practice. Used right,

they can be indispensable. However, they should be a last resort, after

every other attempt to make a website design flexible has failed, or when

we want to completely change an aspect of the design in smaller/larger

viewports (e.g., making the sidebar horizontal). The reason is that media

queries do not fix issues in a continuous manner. They are all about specific

thresholds (a.k.a. “breakpoints”), and unless the rest of the code is written

to be flexible, media queries will only fix specific resolutions, essentially

sweeping issues under the rug.

Of course, it goes without saying that media query thresholds

should not be dictated by specific devices, but by the design itself. Not

only because there are so many different devices (especially if we take future

devices into account) that a website should look good at any possible res-

olution, but also because a website on the desktop might be viewed in a

window of any size. If you are confident that your design works well in every

possible viewport size, who cares about what resolution specific devices

have?

Following the principles described in the “Minimize code duplica-

tion” section on page 9 will also help with this, as you won’t have to

override as many declarations in your media queries, essentially minimizing

the overhead they cause.

Here are a few more tips to avoid needless media queries:

■ Use percentages instead of fixed widths. When that’s not possible, use

viewport-relative units (vw, vh, vmin, vmax), which resolve to a fraction of

the viewport width or height.

■ When you want a fixed width for larger resolutions, use max-width, not

width, so it can still adapt to smaller ones without media queries.

■ Don’t forget to set a max-width of 100% for replaced elements such as

img, object, video, and iframe.

■ In cases when a background image needs to cover an entire container,

background-size: cover can help maintain that regardless of said

container’s size. However, bear in mind that bandwidth is not unlimited, and

CHAPTER 1: INTRODUCTION16

yolo

FIGURE 1.11
Specifying the same padding (.5em

here) on all four sides of a container

with text makes it look larger on the

top and bottom sides

yolo

FIGURE 1.12
Specifying larger padding

(here: .3em .7em) on the left and

right side makes it look much more

uniform

TIP! Consider using ems in

your media queries in-

stead of pixels. This allows text zoom

to trigger layout changes as

necessary.

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

it’s not always wise to include large images that are going to be scaled down

via CSS in mobile designs.

■ When laying out images (or other elements) in a grid of rows and columns,

let the number of columns be dictated by the viewport width. Flexible Box

Layout (a.k.a. Flexbox) or display: inline-block and regular text

wrapping can help with that.

■ When using multi-column text, specify column-width instead of

column-count, so that you get one column only in small resolutions.

In general, the idea is to strive for liquid layouts and relative sizing be-

tween media query breakpoints. When a design is sufficiently flexible,

making it responsive shouldn’t take more than a few short media queries.

The designers of Basecamp wrote about this very matter in late 2010:

“As it turned out, making the layout work on a variety of devices was just

a matter of adding a few CSS media queries to the finished product. The

key to making it easy was that the layout was already liquid, so optimizing

it for small screens meant collapsing a few margins to maximize space

and tweaking the sidebar layout in the cases where the screen is too

narrow to show two columns.”

— Experimenting with responsive design in Iterations (signalvnoise.com/posts/2661-

experimenting-with-responsive-design-in-iterations)

If you find yourself needing a boatload of media queries to make your

design adapt to smaller (or larger) screens, take a step back and reexamine

your code structure, because in all likelihood, responsiveness is not the only

issue there.

Use shorthands wisely
As you probably know, the following two lines of CSS are not equivalent:

background: rebeccapurple;

background-color: rebeccapurple;

CSS CODING TIPS 17

■

■

www.it-ebooks.info

http://signalvnoise.com/posts/2661-experimenting-with-responsive-design-in-iterations
http://www.it-ebooks.info/

The former is a shorthand and will always give you a rebeccapurple

background, whereas the element with the longhand (background-

color) could end up with a pink gradient, a picture of a cat, or anything

really, as there might also be a background-image declaration in effect.

This is the problem when you mainly use longhands: you are not resetting

all the other properties that could be affecting what you’re trying to

accomplish.

You could of course try to set all the longhands and call it a day, but

then you might forget some. Or the CSS WG might introduce more long-

hands in the future, and your code will have failed to reset those. Don’t be

afraid of shorthands. It is good defensive coding and future-proofing

to use them, unless we intentionally want to use cascaded properties

for everything else, like we did for the colored button variants in the “Min-

imize code duplication” section on page 9.

Longhands are also very useful in combination with shorthands, to

make code DRY-er in properties whose values are a comma-separated list,

such as the background properties. This is best explained with an example:

background: url(tr.png) no-repeat top right / 2em 2em,

 url(br.png) no-repeat bottom right / 2em 2em,

 url(bl.png) no-repeat bottom left / 2em 2em;

Notice how the background-size and background-repeat values are

repeated three times, despite being the same for every image. We can take

advantage of CSS list expansion rules which say that if only one value is

provided, it is expanded to apply to every item in the list, and move

these repeated values to longhands:

background: url(tr.png) top right,

 url(br.png) bottom right,

 url(bl.png) bottom left;

background-size: 2em 2em;

background-repeat: no-repeat;

CHAPTER 1: INTRODUCTION18

www.it-ebooks.info

http://www.it-ebooks.info/

TRIVIA Weird shorthand syntax
You might have noticed in the shorthand and longhand example that specifying background-size in the

background shorthand requires also providing a background-position (even if it’s the same as the

initial one) and using a slash (/) to separate them. Why do some shorthands have such weird rules?

This is almost always done for disambiguation purposes. Sure, in the example here, it’s obvious that

top right is a background-position and 2em 2em a background-size regardless of their ordering.

However, think of values like 50% 50%. Is it a background-size or a background-position? When

you are using the longhands, the CSS parser knows what you mean. However, in the shorthand, the parser

needs to figure out what that 50% 50% refers to without any help from the property name. This is why the

slash is needed.

For most shorthands, there is no such disambiguation issue and their values can be specified in any

order. However, it’s always good practice to look up the exact syntax, to avoid nasty surprises. If you are

familiar with regexes and grammars, you could also check the grammar for the property in the relevant

specification, which is probably the quickest way to see if there is a specific ordering.

Now we can change the background-size and background-repeat

with only one edit instead of three. You will see this technique used through-

out the book.

Should I use a preprocessor?
You’ve probably heard of CSS preprocessors such as LESS (lesscss.org),

Sass (sass-lang.com), or Stylus (learnboost.github.io/stylus).

They offer several conveniences for authoring CSS, such as variables, mixins,

functions, rule nesting, color manipulation, and more.

Used properly, they can help keep code more flexible in a large

project, when CSS itself proves too limited to let us do so. As much as we

strive to code robust, flexible, DRY CSS, sometimes we just stumble on the

limitations of the language. However, preprocessors also come with a few

issues of their own:

■ You lose track of your CSS’ filesize and complexity. Concise, small code

might compile to a CSS behemoth that is sent down the wires.

CSS CODING TIPS 19

■

www.it-ebooks.info

http://lesscss.org
http://sass-lang.com
http://learnboost.github.io/stylus
http://www.it-ebooks.info/

■ Debugging becomes harder, as the CSS you see in the developer tools is

not the CSS you wrote. This is becoming less of an issue, as SourceMaps get

more debugger support. SourceMaps are a cool new technology that aims

to mitigate this issue by telling the browser what preprocessor CSS corre-

sponds to what generated CSS, down to the line number.

■ They introduce some degree of latency in our development process. Even

though they are generally fast, it still takes a second or so to compile your

code to CSS, which you have to wait for before previewing its result.

■ With every abstraction, comes more effort required by someone to start

working on our codebase. We either have to only collaborate with people

fluent in the preprocessor dialect of our choice, or teach it to them. So we

are either restricted in our choice of collaborators or need to spend

extra time for training, both of which are suboptimal.

■ Let’s not forget the Law of Leaky Abstractions: “All non-trivial abstractions,

to some degree, are leaky.” Preprocessors are written by humans, and like

every non-trivial program humans have ever written, they have their own

bugs, which can be very insidious as we rarely suspect that a preprocessor

bug might be the culprit behind our CSS issues.

In addition to the issues listed here, preprocessors also pose the risk of

making authors dependent on them, perpetuating their use even when

unnecessary, such as in smaller projects or in the future, after their most

popular features have been added to native CSS. Surprised? Yes, many

preprocessor-inspired features have been making their way into

pure CSS:

■ There is already a draft about variable-like custom properties, under the title

of CSS Custom Properties for Cascading Variables (w3.org/TR/css-

variables-1).

■ The function calc() from CSS Values & Units Level 3 not only is very pow-

erful for performing calculations, but also very well supported, even today.

■ The color() function in CSS Color Level 4 (dev.w3.org/csswg/css-

color) will provide means to manipulate colors.

■ There are several serious discussions in the CSS WG about nesting, and even

a draft spec (ED) existed about it in the past.

CHAPTER 1: INTRODUCTION20

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-variables-1
http://dev.w3.org/csswg/css-color
http://www.it-ebooks.info/

Note that native features like these are generally much more power-

ful than the ones provided by preprocessors, as they are dynamic. For

example, a preprocessor has no clue how to perform a calculation like 100%

- 50px, because the value percentages resolve to is not known until the

page is actually rendered. However, native CSS calc() has no trouble

evaluating such expressions. Similarly, variable use like the following is not

possible with preprocessor variables:

ul { --accent-color: purple; }

ol { --accent-color: rebeccapurple; }

li { background: var(--accent-color); }

Can you see what we did there? The background of list items in ordered

lists will be rebeccapurple, whereas the background of list items in

unordered lists will be purple. Try doing that with a preprocessor! Of

course, in this case, we could have just used descendant selectors, but the

point of the example was to show how dynamic these variables will be.

CSS CODING TIPS 21

Don’t forget that native CSS features

like these can be manipulated

through scripting too. For example,

you could use JS to change the value

of a variable.

FIGURE 1.13
Myth (myth.io) is an experimental

preprocessor that emulates these

native CSS features, instead of

introducing proprietary syntax,

essentially acting like a CSS polyfill

www.it-ebooks.info

http://myth.io
http://www.it-ebooks.info/

Because most of the aforementioned native CSS features are not well

supported today, in many cases using preprocessors is unavoidable if main-

tainability matters (and it should). My advice would be to start off every

project with pure CSS, and when it starts being impossible to keep it DRY,

switch to using a preprocessor then. To avoid becoming completely depen-

dent on preprocessors or using them when they are not actually needed,

their use needs to be a conscious decision, not a mindless first step

performed by default in every new project.

In case you were wondering (and haven’t read the first chapter, tsk-

tsk), the style of this book was authored in SCSS, although it started as

pure CSS and only switched when the code grew too complex to be main-

tainable. Who said CSS and its preprocessors are only for the Web?

CHAPTER 1: INTRODUCTION22

www.it-ebooks.info

http://www.it-ebooks.info/

Backgrounds
& Borders 2

www.it-ebooks.info

http://www.it-ebooks.info/

Translucent
borders

Prerequisites
RGBA/HSLA colors

The problem
By now, you’ve probably dabbled quite a bit with semi-transparent colors

in CSS, such as rgba() and hsla(). They were a huge revolution back in

2009, when we were finally able to use them in our designs, despite the

required fallbacks, shims, and even ugly IE filter hacks for the daring. How-

ever, their uses in the wild were mostly centered around backgrounds. There

were a few reasons for this:

■ Some early adopters hadn’t quite realized that these new color formats were

actually colors just like #ff0066 or orange, and treated them like

images, using them only in backgrounds.

■ It was much easier to provide fallbacks for backgrounds than for other

properties. For example, the fallback for a semi-transparent background

CHAPTER 2: BACKGROUNDS & BORDERS24

1

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

could be a single pixel semi-transparent image. For other properties, the only

possible fallback was a solid color.

■ Using them in other properties, such as borders, wasn’t always as straight-

forward. We’ll see why next.

Suppose we want to style a container with a white background and a

semi-transparent white border, through which our body background shows.

Our first attempt would probably look like this:

border: 10px solid hsla(0,0%,100%,.5);

background: white;

Unless you have a good understanding of how backgrounds and borders

work, the result (shown in Figure 2.2) can be quite baffling. Where did our

border go? And if we cannot achieve semi-transparent borders by using a

semi-transparent color for the border, then how can we do it?!

SECRET #1: TRANSLUCENT BORDERS 25

FIGURE 2.1
24ways.org was one of the first

websites to really utilize semi-

transparent colors in its design, as

early as 2008, although they were

also mostly backgrounds (design by

Tim Van Damme)

Can I haz semi-

transparent borders?

Pretty please?

FIGURE 2.2
Our initial attempt to achieve semi-

transparent borders

■

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

The solution
Although it might not look like it, our border is still there. By default, back-

grounds extend underneath the border area, which you can easily check by

applying a good ol’ dashed border to an element with a background

(Figure 2.3). This doesn’t make much of a difference when you’re using

solid opaque borders, but in this case, it completely changes our design.

Instead of having a semi-transparent white border through which our nice

body background shows, we ended up having semi-transparent white bor-

ders on opaque white, which are indistinguishable from plain white borders.

In CSS 2.1, this was just how backgrounds worked. We just had to

accept it and move on. Thankfully, since Backgrounds & Borders Level 3

(w3.org/TR/css3-background), we are able to adjust this behavior when

it’s not convenient, through the background-clip property. Its initial

value is border-box, which means that backgrounds are clipped at the

outer edge of the element’s border box. If we want our background to not

extend underneath the border, all we have to do is to give it the value

padding-box, which tells the browser to clip the background at the pad-

ding edge:

border: 10px solid hsla(0,0%,100%,.5);

background: white;

background-clip: padding-box;

The much nicer result can be seen in Figure 2.4.

▶ PLAY! play.csssecrets.io/translucent-borders

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

CHAPTER 2: BACKGROUNDS & BORDERS26

FIGURE 2.3
By default, backgrounds extend

underneath the border area

Can I haz semi-

transparent borders?

Pretty please?

FIGURE 2.4
Fixing the issue with background-

clip

■

www.it-ebooks.info

http://w3.org/TR/css3-background
http://play.csssecrets.io/translucent-borders
http://w3.org/TR/css-backgrounds
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Multiple
borders

Prerequisites
Basic box-shadow use

The problem
Back in the day, when Backgrounds & Borders Level 3 (w3.org/TR/

css3-background) was still a draft, there was a lot of discussion in the CSS

WG about whether multiple borders should be allowed, just like multiple

background images. Unfortunately, the consensus at the time was that

there weren’t enough use cases, and authors could always use border-

image to achieve the same effect. However, what the Working Group

missed is that we usually want the flexibility of being able to adjust borders

in CSS code, so developers ended up resorting to ugly hacks such as using

multiple elements to emulate multiple borders. However, there are better

ways to solve this without polluting our markup with useless extra elements.

CHAPTER 2: BACKGROUNDS & BORDERS28

2

www.it-ebooks.info

http://w3.org/TR/css3-background
http://www.it-ebooks.info/

box-shadow solution
By now, most of us have probably (over)used box-shadow to create shad-

ows. However, it is little known that it accepts a fourth parameter (called

“spread radius”), which makes the shadow larger (positive lengths) or

smaller (negative lengths) by the amount you specify. A positive spread

radius combined with zero offsets and zero blur creates a “shadow” that

looks more like a solid border (Figure 2.5):

background: yellowgreen;

box-shadow: 0 0 0 10px #655;

This is not particularly impressive, as you can create the same kind of border

by using the border property. However, the good thing about box-

shadow is that we can have as many of them as we want, comma

separated. So, we can pretty easily add a second deeppink “border”

to the previous example:

background: yellowgreen;

box-shadow: 0 0 0 10px #655, 0 0 0 15px deeppink;

The only thing to keep in mind is that box-shadows are overlaid one on

top of the other, with the first one being the topmost. Therefore, you need

to adjust the spread radius accordingly. For example, in the preceding code,

we wanted a 5px outer border, so we specified a spread radius of 15px

(10px + 5px). You can even specify a regular shadow after all the “out-

lines,” if you want:

background: yellowgreen;

box-shadow: 0 0 0 10px #655,

 0 0 0 15px deeppink,

 0 2px 5px 15px rgba(0,0,0,.6);

SECRET #2: MULTIPLE BORDERS 29

FIGURE 2.5
Emulating an outline with box-

shadow

FIGURE 2.6
Emulating two outlines with box-

shadow

www.it-ebooks.info

http://www.it-ebooks.info/

The shadow solution works quite well in most cases, but has a few caveats:

■ Shadows don’t work exactly like borders, as they don’t affect layout and are

oblivious to the box-sizing property. However, you can emulate the extra

space a border would occupy via padding or margins (depending on wheth-

er the shadow is inset or not).

■ The method we demonstrated creates fake “borders” on the outside of

elements. These do not capture mouse events such as hovering or clicking.

If this is important, you can add the inset keyword to make the shadows

be drawn on the inside of your element. Note that you will need to add

extra padding to produce sufficient spacing.

▶ PLAY! play.csssecrets.io/multiple-borders

outline solution
In some cases, if we only need two borders, we can use a regular border

and the outline property for the outer one. This also gives us flexibility

regarding the border style (what if we want a dashed second border?),

whereas with the box-shadow method, we can only emulate solid borders.

Here is how the code for Figure 2.6 would look with this method:

background: yellowgreen;

border: 10px solid #655;

outline: 15px solid deeppink;

Another good thing about outlines is that you can control their distance

from the boundaries of the element, via outline-offset, which even

accepts negative values. This can be useful for a number of effects. For ex-

ample, check out Figure 2.8 for a basic stitching effect.

However, this method has a few limitations:

■ As mentioned, it only works for two “borders,” as outline does not ac-

cept a comma-separated list of outlines. If we need more, the previous

technique is our only option.

CHAPTER 2: BACKGROUNDS & BORDERS30

FIGURE 2.7
Including an actual shadow after the

“outlines”

FIGURE 2.8
Using negative outline-offset

with a dashed outline, for a basic

stitching effect

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/multiple-borders
http://www.it-ebooks.info/

RELATED

SPECS

■ Outlines do not have to follow rounding (through border-radius), so

even if your corners are round, the outline may have straight corners

(Figure 2.9). Note this behavior is considered a bug by the CSS WG, and is

likely to be changed to match the border-radius in the future.

■ Per the CSS User Interface Level 3 specification (w3.org/TR/css3-ui),

“Outlines may be non-rectangular.” Although in most cases they tend to be

rectangular, if you use this method, make a mental note to test the result

thoroughly in different browsers.

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Basic User Interface

w3.org/TR/css3-ui

SECRET #2: MULTIPLE BORDERS 31

FIGURE 2.9
Outlines created through the

outline property do not follow the

element’s rounding, although that

could change in the future

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css3-ui
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui
http://www.it-ebooks.info/

Flexible
background
positioning

The problem
Fairly often, we want to position a background image with offsets from a

different corner than the top-left one, such as the bottom right. In CSS 2.1,

we could only specify offsets from the top-left corner or keywords for the

other three corners. However, we often want to leave some space (akin to

padding) between the background image and the corner it’s on, to avoid

things that look like Figure 2.10.

For containers with fixed dimensions, this is possible with CSS 2.1, but

it’s messy: we can calculate what offset your background image would have

from the top-left corner based on its dimensions and the offset we want

from the bottom-right corner, and apply that. However, on elements with

variable dimensions (due to variable contents), this is not possible. Devel-

opers often end up approximating it by setting the background position to

some percentage that is slightly smaller than 100%, such as 95%. Surely,

with modern CSS, there must be a better way!

CHAPTER 2: BACKGROUNDS & BORDERS32

3
Code Pirate

FIGURE 2.10
background-position:

bottom right; doesn’t usually

yield very aesthetically pleasing

results, as the image has no spacing

from the sides

www.it-ebooks.info

http://www.it-ebooks.info/

Extended background-position solution
The background-position property was extended to allow specifying

offsets from any corner in CSS Backgrounds & Borders Level 3

(w3.org/TR/css3-background), by providing keywords before the off-

sets. For example, if we want our background image to have a 20px offset

from the right side and a 10px offset from the bottom side, we can do this:

background: url(code-pirate.svg) no-repeat #58a;

background-position: right 20px bottom 10px;

You can see the result in Figure 2.11. The last step is to provide a decent

fallback. As it currently stands, on browsers that don’t support the extended

background-position syntax, the background image will be stuck on

the top-left corner (the default position) and will look awful, not to mention

it will render the text unreadable (Figure 2.12). Providing a fallback is as

easy as including a good ol’ bottom right position in the background

shorthand:

background: url(code-pirate.svg)

 no-repeat bottom right #58a;

background-position: right 20px bottom 10px;

▶ PLAY! play.csssecrets.io/extended-bg-position

background-origin solution
One of the most common cases for wanting to apply offsets from a corner

is to make the background image follow padding. With the extended back-

ground position we just described, the code would look like this:

SECRET #3: FLEXIBLE BACKGROUND POSITIONING 33

Code Pirate

FIGURE 2.11
Specifying offsets from different

sides; the background image is

shown here with a dashed outline, to

make it clearer how the offsets work

Code Pirate

FIGURE 2.12
We need to specify a fallback, if we

don’t want users of older browsers

to see this

www.it-ebooks.info

http://w3.org/TR/css3-background
http://play.csssecrets.io/extended-bg-position
http://www.it-ebooks.info/

padding: 10px;

background: url(code-pirate.svg) no-repeat #58a;

background-position: right 10px bottom 10px;

You can see the result in Figure 2.13. As you can see, it works, but it’s not

very DRY: every time we change the padding value, we need to update it in

three different places! Thankfully, there is a simpler way to do this, which

automatically follows the padding we specify, without the need to redeclare

the offsets.

You’ve probably written things like background-position: top

left; quite a few times over the course of your web development career.

Have you ever wondered: which top-left corner? As you may know, there

are four boxes in every element (Figure 2.14): the margin box, the border

box, the padding box, and the content box. Which box’s top left corner

does background-position refer to?

By default, background-position refers to the padding box, so

that borders don’t end up obscuring background images. Therefore, top

left is by default the top-left outer corner of the padding box. In

Backgrounds & Borders Level 3 (w3.org/TR/css3-background), how-

ever, we got a new property that we can use to change this behavior:

background-origin. By default, its value is (quite predictably)

padding-box. If we change it to content-box, as in the following code,

the side and corner keywords we use in background-position will refer

to the edge of the content box (effectively, this means that any background

images will be offset from the sides/corners as much as our padding is):

padding: 10px;

background: url("code-pirate.svg") no-repeat #58a

 bottom right; /* or 100% 100% */

background-origin: content-box;

The visual result is exactly the same as in Figure 2.13, just with more DRY

code. Keep in mind that you can also combine the two techniques we

showed if needed! If you want offsets that generally vary with the padding,

CHAPTER 2: BACKGROUNDS & BORDERS34

Code Pirate

FIGURE 2.13
Applying offsets to the background

image that are equal to the padding

value

Content Box

FIGURE 2.14
The box model

Border Box

Padding Box

www.it-ebooks.info

http://w3.org/TR/css3-background
http://www.it-ebooks.info/

RELATED

SPECS

but are inset/outset a little more than that, you can use background-

origin: content-box together with additional offsets via the extended

background-position.

▶ PLAY! play.csssecrets.io/background-origin

calc() solution
Let’s revisit our original challenge: we want to position our background im-

age 10px from the bottom and 20px from the right side. However, if we

think of it in terms of offsets from the top-left corner, we basically want

an offset of 100% - 20px horizontally and 100% - 10px vertically.

Thankfully, the calc() function allows us to do exactly that sort of calcu-

lation and it works perfectly with background-position:

background: url("code-pirate.svg") no-repeat;

background-position: calc(100% - 20px) calc(100% - 10px);

▶ PLAY! play.csssecrets.io/background-position-calc

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Values & Units

w3.org/TR/css-values

SECRET #3: FLEXIBLE BACKGROUND POSITIONING 35

! Don’t forget to include white-

space around any - and + oper-

ators in calc(), otherwise it’s a

parsing error! The reason for this

weird rule is forward compatibility: in

the future, keywords might be al-

lowed inside calc(), and they can

contain hyphens.

■

■

www.it-ebooks.info

http://play.csssecrets.io/background-origin
http://play.csssecrets.io/background-position-calc
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-values
http://www.it-ebooks.info/

Inner
rounding

Prerequisites
box-shadow, outline, the “Multiple borders” secret on page 28

The problem
Sometimes we want a container that is only rounded on the inside, but the

outer corners of its border/outline are sharp, such as the one in

Figure 2.15. It’s an interesting effect that’s not overdone yet. It’s trivial to

achieve this effect with two elements:

<div class="something-meaningful"><div>

 I have a nice subtle inner rounding,

 don’t I look pretty?

</div></div>

CHAPTER 2: BACKGROUNDS & BORDERS36

4

I have a nice subtle inner

rounding, don’t I look pretty?

FIGURE 2.15
A container with an outline and

rounding only on the inside

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

.something-meaningful {

 background: #655;

 padding: .8em;

}

.something-meaningful > div {

 background: tan;

 border-radius: .8em;

 padding: 1em;

}

This works fine, but it forces us to use two elements when we only need

one. Is there a way to achieve the same effect with only one element?

The solution
The previous solution is more flexible, as it allows us to use the full power

of backgrounds. For example, if we want our “border” to not just be a solid

color, but have a noise texture as well, it’s pretty easy to do. However, when

we’re dealing with good ol’ solid colors, there is a way to do this, with just

one element (granted it is a bit hacky). Take a look at the following CSS:

background: tan;

border-radius: .8em;

padding: 1em;

box-shadow: 0 0 0 .6em #655;

outline: .6em solid #655;

Can you guess what the visual result is? It produces the effect in Figure 2.15.

We basically took advantage of the fact that outlines do not follow the

element’s rounding (and thus, have sharp corners) but box-shadows do.

Therefore, if we overlay one on top of the other, the box-shadow covers

the gaps that the outline leaves on the corners (Figure 2.17), so their

SECRET #4: INNER ROUNDING 37

I’m a sad element, because my

outline doesn’t get along with

my round corners :-(

FIGURE 2.16
Using the outline property on a

rounded element

I’m a happy element, because

my fake outline gets along

with my round corners :-)

FIGURE 2.17
Using the box-shadow property

with no offsets and no blur on an

element with rounded corners

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

combination gives us the desired effect. Figure 2.18 displays the shadow

and outline with different colors, to provide a clearer visual explanation.

Note that we didn’t really need to specify a box-shadow spread that

is equal to the outline, we only need to specify a large enough spread to

cover those “gaps.” In fact, specifying a spread equal to our outline width

can cause rendering artifacts in some browsers, so I would recommend

something a bit smaller. This begs the question: what is the smallest

spread we could specify that covers these gaps?

To answer this question, we need to remember the Pythagorean the-

orem we learned at school about calculating the lengths of the sides of right

triangles. The theorem states that the hypotenuse (the longest, diagonal

side of the triangle) is equal to a2 + b2 where a and b are the lengths of

its legs. When both legs are of equal length, the formula becomes

2a2 = a 2.

You might be wondering how on Earth middle school geometry is rel-

evant to our inner rounding effect. Check out Figure 2.19 for a visual ex-

planation of how it can be used to calculate the minimum spread we need.

In our case, border-radius is .8em, so the minimum spread is

. 8 2 − 1 ≈ . 33137085em. All we need is to round it up a little and specify

a spread radius of .34em. To avoid having to make the calculation every

time, you can just use half of your corner radius, which is guaranteed to be

large enough, because 2 − 1 < 0 . 5.

Note that these calculations uncover another constraint of this

method: for this effect to work, our spread radius needs to be smaller than

our outline width, but it also needs to be larger than 2 − 1 r, where r is

our border-radius. This means that if our outline width is smaller than

2 − 1 r, this is not possible and we cannot apply this effect.

▶ PLAY! play.csssecrets.io/inner-rounding

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Basic User Interface

w3.org/TR/css3-ui

CHAPTER 2: BACKGROUNDS & BORDERS38

I have a nice subtle inner

rounding, don’t I look pretty?

FIGURE 2.18
Here the outline is shown in black

and the shadow in magenta, to

make it clearer what is going on;

notice that the outline is the one

drawn on top

! Why is this hacky? Because it

depends on the fact that

outlines do not follow corner

rounding, but there is no guarantee

this will stay that way. The spec cur-

rently gives browsers a lot of leeway

in outline drawing, but in the future

it will explicitly recommend fol-

lowing rounding, per a recent

CSS WG decision. Whether brows-

ers will honor that decision remains

to be seen.

r
r 2

FIGURE 2.19
When our border radius is r, the

length from the center of the

border-radius circle to the

corner of the outline rectangle is

r 2, which means the minimum

possible spread is

r 2 − r = 2 − 1 r

■

■

www.it-ebooks.info

http://play.csssecrets.io/inner-rounding
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css3-ui
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Striped
backgrounds

Prerequisites
CSS linear gradients, background-size

The problem
Stripes of all sizes, colors, and angles are at least as ubiquitous on the Web

as in any other medium of visual design, from magazines to wallpaper.

However, the workflow of implementing them is far from ideal. Usually, we

would create a separate bitmap image and need an image editor every time

we needed to make changes. Some might use SVG instead, but it’s still a

separate file and the syntax is far from friendly. Wouldn’t it be awesome if

we could create stripes directly in our CSS? You might be surprised to find

that we actually can.

CHAPTER 2: BACKGROUNDS & BORDERS40

5

www.it-ebooks.info

http://www.it-ebooks.info/

The solution
Assume we have a basic vertical linear gradient, from #fb3 to #58a

(Figure 2.20):

background: linear-gradient(#fb3, #58a);

Now let’s try to bring the color stops a little closer together (Figure 2.21):

background: linear-gradient(#fb3 20%, #58a 80%);

Now the top 20% of our container is filled with solid #fb3 and the bot-

tom 20% with solid #58a. The actual gradient only occupies 60% of our

container height. If we bring the color stops even closer together (40% and

60% respectively, seen in Figure 2.22), the actual gradient becomes even

smaller. One starts to wonder, what happens if the color stops meet at the

exact same position?

background: linear-gradient(#fb3 50%, #58a 50%);

“If multiple color stops have the same position, they produce an infinites-

imal transition from the one specified first in the rule to the one specified

last. In effect, the color suddenly changes at that position rather than

smoothly transitioning.”

— CSS Image Values Level 3 (w3.org/TR/css3-images)

As you can see in Figure 2.23, there is no longer any gradient, just two

solid colors, each occupying half of our background-image. Essentially,

we have already created two big horizontal stripes.

Because gradients are just generated background images, we can treat

them the same as any other background image and adjust their size with

background-size:

SECRET #5: STRIPED BACKGROUNDS 41

FIGURE 2.20
Our starting point

FIGURE 2.21
Gradient now occupies 60% of total

height, the rest being solid colors;

color stop positions are shown with

dashed lines

FIGURE 2.22
Gradient now occupies 20% of total

height, the rest being solid colors;

color stop positions are shown with

dashed lines

www.it-ebooks.info

http://w3.org/TR/css3-images
http://www.it-ebooks.info/

background: linear-gradient(#fb3 50%, #58a 50%);

background-size: 100% 30px;

As you can see in Figure 2.24, we shrunk the size of our two stripes

to 15px height each. Because our background is repeated, we now have

our whole container filled with horizontal stripes (Figure 2.25).

We can similarly create stripes with unequal widths, by adjusting the

color stop positions (Figure 2.26):

background: linear-gradient(#fb3 30%, #58a 30%);

background-size: 100% 30px;

To avoid having to adjust two numbers every time we want to change the

stripe width, we can take advantage of the specification:

“If a color stop has a position that is less than the specified position of any

color stop before it in the list, set its position to be equal to the largest

specified position of any color stop before it.”

— CSS Images Level 3 (w3.org/TR/css3-images)

This means that if we set the second color’s position at 0, its position

will be adjusted by the browser to be equal to the position of the previous

color stop, which is what we wanted anyway. Therefore, the following code

also creates the exact same gradient we saw in Figure 2.26, but is a little

more DRY:

background: linear-gradient(#fb3 30%, #58a 0);

background-size: 100% 30px;

It’s just as easy to create stripes with more than two colors. For example,

the following snippet will produce horizontal stripes of three colors

(Figure 2.27):

CHAPTER 2: BACKGROUNDS & BORDERS42

FIGURE 2.23
Both stops are now at 50%

FIGURE 2.24
Our generated background without

the repetition

FIGURE 2.25
The final horizontal stripes

FIGURE 2.26
Stripes with unequal widths

www.it-ebooks.info

http://w3.org/TR/css3-images
http://www.it-ebooks.info/

background: linear-gradient(#fb3 33.3%,

 #58a 0, #58a 66.6%, yellowgreen 0);

background-size: 100% 45px;

▶ PLAY! play.csssecrets.io/horizontal-stripes

Vertical stripes
Horizontal stripes are the easiest to code, but not all striped backgrounds

we see on the Web are horizontal. Just as many are vertical stripes

(Figure 2.28), and probably the most popular and visually interesting are

some form of diagonal stripes. Thankfully, CSS gradients can help us recre-

ate those too, with varying degrees of difficulty.

The code for vertical stripes is almost the same, with one main differ-

ence: an extra first argument that specifies the gradient direction. We could

have specified it for horizontal stripes too, but the default (to bottom) was

exactly what we needed for them. We also need to set a different

background-size, for obvious reasons:

background: linear-gradient(to right, /* or 90deg */

 #fb3 50%, #58a 0);

background-size: 30px 100%;

▶ PLAY! play.csssecrets.io/vertical-stripes

Diagonal stripes
After creating horizontal and vertical stripes, we might attempt to create

diagonal stripes (45°) by just changing the background-size and direc-

tion of the gradient again, like so:

SECRET #5: STRIPED BACKGROUNDS 43

FIGURE 2.27
Stripes with three colors

FIGURE 2.28
Our vertical stripes

Top: Our background tile without

the repetition

Bottom: The repeated stripes

FIGURE 2.29
Our first failed attempt for diagonal

stripes

www.it-ebooks.info

http://play.csssecrets.io/horizontal-stripes
http://play.csssecrets.io/vertical-stripes
http://www.it-ebooks.info/

background: linear-gradient(45deg,

 #fb3 50%, #58a 0);

background-size: 30px 30px;

However, as you can see in Figure 2.29, this doesn’t work. The reason

is that we just rotated the gradient inside each tile by 45 degrees, not the

repeated background as a whole. Try to remember the bitmap images we

usually use to create diagonal stripes, such as the one in Figure 2.30. They

include four stripes instead of two, so that they tile seamlessly. This is the

kind of tile we need to recreate in CSS, so we will need quite a few more

color stops:

background: linear-gradient(45deg,

 #fb3 25%, #58a 0, #58a 50%,

 #fb3 0, #fb3 75%, #58a 0);

background-size: 30px 30px;

You can see the result in Figure 2.31. As you can see, we were successful

at creating diagonal stripes, but they look thinner than our horizontal and

vertical ones. To understand why this happened, we need to remember the

Pythagorean theorem we learned at school about calculating the lengths of

the sides of right triangles. The theorem states that the hypotenuse (the

longest, diagonal side of the triangle) is equal to a2 + b2 where a and b are

the lengths of its legs. On a 45° right triangle, both its legs are of the same

length, so the formula becomes 2a2 = a 2. In our diagonal stripes, the

background size specifies the length of the hypotenuse, but the stripe width

is actually the length of the leg. Check out Figure 2.32 for a visual

explanation.

This means that to get our original stripe width of 15px, we need to

specify a background size of 2 × 15 2 ≈ 42 . 426406871 pixels:

background: linear-gradient(45deg,

 #fb3 25%, #58a 0, #58a 50%,

CHAPTER 2: BACKGROUNDS & BORDERS44

FIGURE 2.30
The kind of image that tiles

seamlessly to create diagonal stripes;

does it look familiar?

FIGURE 2.31
Our 45° stripes; the dashed lines

indicate the repeating tile

FIGURE 2.32
A background size of 20px results in

a stripe width of
15

2
≈ 10 . 606601718 pixels

15px

15px

2

15px

15px

2

www.it-ebooks.info

http://www.it-ebooks.info/

 #fb3 0, #fb3 75%, #58a 0);

background-size: 42.426406871px 42.426406871px;

You can see the final result in Figure 2.33. However, unless somebody

is pointing a gun at your head threatening to kill you unless you are able to

produce diagonal stripes that are exactly 15 pixels wide (in which case, you

would die anyway, because 2 is not a rational number, so even this is an

approximation—though a very high-precision one), I would strongly rec-

ommend rounding this unwieldy number, to something like 42.4px or

even 42px.

▶ PLAY! play.csssecrets.io/diagonal-stripes

Better diagonal stripes
The method shown in the previous section is not very flexible. What if we

want stripes that are 60° instead of 45°? Or 30°? Or 3.1415926535°? If we

just try to change the angle of the gradient, the result looks awful (check

out Figure 2.34 for a failed attempt at 60° stripes).

Thankfully, there is a better way to create diagonal stripes. A little-

known fact is that linear-gradient() and radial-gradient() also

have repeating versions: repeating-linear-gradient() and

repeating-radial-gradient(). These work exactly the same way,

with one difference: the color stops are repeated indefinitely, until they fill

up the whole image. So, for example, this repeating gradient (shown in

Figure 2.35):

background: repeating-linear-gradient(45deg,

 #fb3, #58a 30px);

would be equivalent to this simple linear gradient:

SECRET #5: STRIPED BACKGROUNDS 45

FIGURE 2.33
Our final 45° stripes; note that now

the stripe width is the same as our

other examples

FIGURE 2.34
Our failed naïve attempt at 60°

stripes

FIGURE 2.35
A repeating linear gradient

www.it-ebooks.info

http://play.csssecrets.io/diagonal-stripes
http://www.it-ebooks.info/

background: linear-gradient(45deg,

 #fb3, #58a 30px,

 #fb3 30px, #58a 60px,

 #fb3 60px, #58a 90px,

 #fb3 90px, #58a 120px,

 #fb3 120px, #58a 150px, ...);

Repeating linear gradients are perfect for — you guessed it — stripes! Due

to their repeating nature, it means our whole background can be in the

generated gradient image. Therefore, we don’t need to worry about creat-

ing seamless tiles that can be repeated.

For comparison, the background we created in Figure 2.33 could have

been produced by this repeating gradient:

background: repeating-linear-gradient(45deg,

 #fb3, #fb3 15px, #58a 0, #58a 30px);

The first obvious benefit is reduced repetition: we can change any of the

colors with two edits instead of three. Also note that our measurements are

now in the gradient color stops instead of background-size. The back-

ground size is the initial one, which for gradients is the size of the element.

This means that the lengths are also more straightforward, as they are

measured on the gradient line, which is perpendicular to our stripes. No

more clunky 2 calculations!

However, the biggest benefit is that now we can just change the angle

to whatever we want, and it just works without having to think hard and

long about how to make a seamless tile. For example, here are our 60°

stripes (Figure 2.36):

background: repeating-linear-gradient(60deg,

 #fb3, #fb3 15px, #58a 0, #58a 30px);

CHAPTER 2: BACKGROUNDS & BORDERS46

FIGURE 2.36
Our actual 60° stripes

www.it-ebooks.info

http://www.it-ebooks.info/

FUTURE Color stops with two positions
Soon, we will be able to specify two positions on the same color stop, as one of the simpler planned additions

in CSS Image Values Level 4 (w3.org/TR/css4-images). This will work as a shortcut to two consec-

utive color stops with the same color and different positions, something very commonly needed to

create gradient-based patterns. For example, the code for the diagonal stripes in Figure 2.36 would become:

background: repeating-linear-gradient(60deg, #fb3 0 15px, #58a 0 30px);

Not only is this significantly more concise, but also considerably more DRY: the colors are no longer dupli-

cated, so we can change them with only one edit. Unfortunately, at the time of writing, this is not yet

supported in any browser.

TEST! play.csssecrets.io/test-color-stop-2positions

It was as easy as just changing the angle! Note that with this method we

need four color stops for two stripe colors, regardless of the stripe angle.

This means it’s usually better to use the first method for horizontal and ver-

tical stripes and this one for diagonal stripes. If we’re dealing with 45°

stripes, we could even combine the two methods, by essentially using re-

peating linear gradients to simplify the code that creates our repeating tile:

background: repeating-linear-gradient(45deg,

 #fb3 0, #fb3 25%, #58a 0, #58a 50%);

background-size: 42.426406871px 42.426406871px;

▶ PLAY! play.csssecrets.io/diagonal-stripes-60deg

SECRET #5: STRIPED BACKGROUNDS 47

www.it-ebooks.info

http://w3.org/TR/css4-images
http://play.csssecrets.io/test-color-stop-2positions
http://play.csssecrets.io/diagonal-stripes-60deg
http://www.it-ebooks.info/

Flexible subtle stripes
More often than not, our stripes are not completely different colors but

subtle brightness variations of the same color. For example, take a look at

these stripes:

background: repeating-linear-gradient(30deg,

 #79b, #79b 15px, #58a 0, #58a 30px);

You can see in Figure 2.37 that they are stripes of one color

(#58a) and a lighter variant of that. However, that relationship between

the colors is not easy to tell by reading the code. Moreover, if we wanted to

change the base color, we would have to make four (!) edits.

Thankfully, there is a better way: instead of specifying separate colors

for every stripe, we can specify our darkest color as the background color,

which will show through stripes with semi-transparent white:

background: #58a;

background-image: repeating-linear-gradient(30deg,

 hsla(0,0%,100%,.1),

 hsla(0,0%,100%,.1) 15px,

 transparent 0, transparent 30px);

The result looks exactly the same as Figure 2.37, but we can now change

the color in only one place. We also get the added benefit of our base color

functioning as a fallback color for browsers that don’t support CSS gradi-

ents. Furthermore, as we will see in the next secret, gradient patterns with

transparent regions allow us to create very complex patterns by superim-

posing multiple different ones.

▶ PLAY! play.csssecrets.io/subtle-stripes

CHAPTER 2: BACKGROUNDS & BORDERS48

FIGURE 2.37
Stripes with subtle lightness

variation

www.it-ebooks.info

http://play.csssecrets.io/subtle-stripes
http://www.it-ebooks.info/

RELATED

SPECS
■ CSS Image Values

w3.org/TR/css-images

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values Level 4

w3.org/TR/css4-images

SECRET #5: STRIPED BACKGROUNDS 49

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css4-images
http://www.it-ebooks.info/

Complex
background
patterns

Prerequisites
CSS gradients, the “Striped backgrounds” secret on page 40

The problem
In the previous section, we learned how to use CSS gradients to create all

sorts of stripes. However, stripes are not the be-all and end-all of background

patterns or even just geometric patterns. We quite often need many other

different types, such as grids, polka dots, checkerboards, and many others.

Thankfully, CSS gradients can help with many of these too. It’s possible

to create almost any kind of geometric pattern with CSS gradients,

although it’s not always practical. If we’re not careful, we might end up

with an insane amount of unmaintainable code. CSS patterns are also

one case where it really pays off to use a CSS preprocessor, such as

CHAPTER 2: BACKGROUNDS & BORDERS50

6

www.it-ebooks.info

http://www.it-ebooks.info/

Sass (sass-lang.com) to reduce repetition, as the more complex they get,

the less DRY they become.

SECRET #6: COMPLEX BACKGROUND PATTERNS 51

FIGURE 2.38
My CSS3 Patterns Gallery (found at

lea.verou.me/css3patterns)

showed what is possible with CSS

gradients as early as 2011. It was

included in almost every article,

book, and conference talk that

mentioned CSS gradients between

2011 and 2012 and was used by

several browser vendors to fine-tune

their CSS gradients implement-

ations. However, not every pattern

showcased in it would be a good use

case for a production website. Some

of them are included only to show

what is possible, but their code is

extremely long and repetitive. For

those cases, SVG is a better choice.

For some examples of SVG patterns,

visit philbit.com/svgpatterns,

which was created as the SVG

answer to the CSS Patterns Gallery.

www.it-ebooks.info

http://sass-lang.com
http://lea.verou.me/css3patterns
http://philbit.com/svgpatterns
http://www.it-ebooks.info/

In this secret, we will focus on creating some of the easiest and commonly

needed patterns.

Grids
When using only one gradient, there aren’t that many patterns we can cre-

ate. The magic starts to unfold when we combine multiple gradients,

having them show through each other’s transparent regions. Perhaps the

easiest such pattern is overlaying horizontal and vertical stripes to create

various types of grids. For example, the following code creates the

tablecloth-reminiscent (gingham) pattern shown in Figure 2.39:

background: white;

background-image: linear-gradient(90deg,

 rgba(200,0,0,.5) 50%, transparent 0),

 linear-gradient(

 rgba(200,0,0,.5) 50%, transparent 0);

background-size: 30px 30px;

In some cases, we want to be able to adjust the cell size of the grid,

and have the width of its lines remain constant—for example, to create

grid lines that serve as guides. This is a great use case for using lengths

instead of percentages as gradient color stops:

background: #58a;

background-image:

 linear-gradient(white 1px, transparent 0),

 linear-gradient(90deg, white 1px, transparent 0);

background-size: 30px 30px;

The result (seen on Figure 2.40) is a grid of 1px white lines with a grid cell

size of 30px. Just like in the “Flexible subtle stripes” section on page

48, the base color is also functioning as a fallback color.

CHAPTER 2: BACKGROUNDS & BORDERS52

FIGURE 2.39
Our tablecloth (gingham) pattern, as

well as the two gradients that

comprise it (transparency shown

here as the conventional gray

checkerboard)

FIGURE 2.40
A basic blueprint grid CSS pattern

whose lines remain 1px regardless

of the size of the grid

www.it-ebooks.info

http://www.it-ebooks.info/

This grid is a good example of a pattern that can be made with rea-

sonably maintainable (though not completely DRY) CSS code:

■ It’s quite easy to figure out what to edit if we need to change the grid size,

line thickness, or any of the colors.

■ We don’t have to make tons of edits to change any of this; we only need

to edit one or two values.

■ It’s also quite short, at only four lines of code and 170 bytes. An SVG would

not have been shorter.

We can even overlay two grids with different line widths and colors to create

a more realistic blueprint grid (Figure 2.41):

background: #58a;

background-image:

 linear-gradient(white 2px, transparent 0),

 linear-gradient(90deg, white 2px, transparent 0),

 linear-gradient(hsla(0,0%,100%,.3) 1px,

 transparent 0),

 linear-gradient(90deg, hsla(0,0%,100%,.3) 1px,

 transparent 0);

background-size: 75px 75px, 75px 75px,

 15px 15px, 15px 15px;

▶ PLAY! play.csssecrets.io/blueprint

Polka dot
So far, we have only used linear gradients to make patterns. However, radial

gradients can be very useful as well, as they allow us to create circles, ellipses,

or parts thereof. The simplest pattern we can create with a radial gradient

is an array of dots (Figure 2.42):

SECRET #6: COMPLEX BACKGROUND PATTERNS 53

TIP! To calculate the file size of

your CSS pattern, paste

the code in

bytesizematters.com.

FIGURE 2.41
A more complex blueprint grid,

comprised of two grids with

different parameters

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/blueprint
http://bytesizematters.com
http://www.it-ebooks.info/

background: #655;

background-image: radial-gradient(tan 30%, transparent 0);

background-size: 30px 30px;

Admittedly, this is not very useful on its own. However, we can combine

two of those gradients and give them different background positions, to

create a polka dot pattern (Figure 2.43):

background: #655;

background-image: radial-gradient(tan 30%, transparent 0),

 radial-gradient(tan 30%, transparent 0);

background-size: 30px 30px;

background-position: 0 0, 15px 15px;

▶ PLAY! play.csssecrets.io/polka

Note that for the effect to work, the second background position must be

half of the tile size. Unfortunately, this means that to change the tile size,

we need to make four edits. This is on the brink of being unmaintainable,

although whether it has crossed the line is debatable. If you are using a

preprocessor, you may want to convert it into a mixin:

@mixin polka($size, $dot, $base, $accent) {

 background: $base;

 background-image:

 radial-gradient($accent $dot, transparent 0),

 radial-gradient($accent $dot, transparent 0);

 background-size: $size $size;

 background-position: 0 0, $size/2 $size/2;

}

CHAPTER 2: BACKGROUNDS & BORDERS54

FIGURE 2.42
An array of dots; the repeating tile is

shown with dashed lines

FIGURE 2.43
Polka dot pattern; both repeating

tiles are shown with dashed lines

SCSS

www.it-ebooks.info

http://play.csssecrets.io/polka
http://www.it-ebooks.info/

Then, to create the polka dot pattern, we would call it like this:

@include polka(30px, 30%, #655, tan);

Checkerboards
Checkerboard patterns are used in a number of cases. For instance, subtle

checkerboards can be an interesting alternative to a bland solid color back-

ground. Also, a gray checkerboard pattern is the de facto standard way to

depict transparency, which is required in a number of different UIs. Making

a checkerboard pattern in CSS is possible, but considerably trickier than one

might expect.

The typical tile that generates a checkerboard when repeated consists

of two squares from each color, like the one indicated in Figure 2.44. It

looks like it should be easy to recreate with CSS: we would just create two

squares with different background positions, right? Not exactly. Yes, we can

technically create squares with CSS gradients, but with no spacing around

them, the result will look like a solid color. However, there is no way to create

squares with space around them with one CSS gradient. If you’re having

doubts, try to find a gradient that, when repeated, produces the image in

Figure 2.45.

The trick is to compose the square from two right triangles. We

already know how to create right triangles (remember our failed attempt at

diagonal stripes in Figure 2.29?). To refresh your memory, the code looked

like this (here with different colors and transparency):

background: #eee;

background-image:

 linear-gradient(45deg, #bbb 50%, transparent 0);

background-size: 30px 30px;

You might be wondering how this helps with anything. Sure, if we tried to

compose squares from two triangles like the ones in Figure 2.29, we would

SECRET #6: COMPLEX BACKGROUND PATTERNS 55

FIGURE 2.44
A gray checkerboard pattern to

indicate transparency; if this was

created by repeating an image, the

tile would be the one denoted by the

dashed line

FIGURE 2.45
Repeating a square with space

around it; the tile is shown with

dashed lines

SCSS

www.it-ebooks.info

http://www.it-ebooks.info/

FUTURE Conical gradients
In the future, we won’t have to resort to meticulously overlaying triangles

to create checkerboards. CSS Image Values Level 4 (w3.org/TR/css4-

images) defines a new set of gradient functions to generate conical gra-

dients (a.k.a. “angle gradients”). These gradients often look like a cone

observed from above, hence the name “conical.” They are generated by

a line that gradually changes color as it rotates around a fixed point. For example, the hue wheel shown here

would be created with the following gradient:

background: conic-gradient(red, yellow, lime, aqua, blue, fuchsia, red);

Conical gradients are useful for far more things than hue wheels: starbursts, brushed metal effects, and

many other kinds of backgrounds, including (you guessed it!) checkerboards. They would enable us to create

the repeating tile of Figure 2.44 in just one gradient:

background: repeating-conic-gradient(#bbb 0, #bbb 25%, #eee 0, #eee 50%);

background-size: 30px 30px;

Unfortunately, there is no browser support for conical gradients at the time of writing.

TEST! play.csssecrets.io/test-conic-gradient

end up with a solid color. However, what if we reduce the legs of these

triangles to half their original size, so that they occupy 1
8 of the tile, instead

of the current 1
2? We can easily do that by changing the color stop po-

sition to 25% instead of 50%. Then we would end up with something

like Figure 2.46.

Similarly, we can create triangles of the opposite direction if we flip the

color stops (Figure 2.47):

CHAPTER 2: BACKGROUNDS & BORDERS56

FIGURE 2.46
Right triangles with a lot of spacing

around them

www.it-ebooks.info

http://w3.org/TR/css4-images
http://play.csssecrets.io/test-conic-gradient
http://www.it-ebooks.info/

background: #eee;

background-image:

 linear-gradient(45deg, transparent 75%, #bbb 0);

background-size: 30px 30px;

Can you guess what happens if we combine the two? The code would look

like this:

background: #eee;

background-image:

 linear-gradient(45deg, #bbb 25%, transparent 0),

 linear-gradient(45deg, transparent 75%, #bbb 0);

background-size: 30px 30px;

At first, the result in Figure 2.48 doesn’t look like we’re getting any-

where. However, we just need to move the second gradient by half the

tile size, in order to combine them into a square:

background: #eee;

background-image:

 linear-gradient(45deg, #bbb 25%, transparent 0),

 linear-gradient(45deg, transparent 75%, #bbb 0);

background-position: 0 0, 15px 15px;

background-size: 30px 30px;

Can you guess what the result looks like? It’s exactly what we were

trying to achieve earlier, and looks like Figure 2.49. Notice that this is es-

sentially half a checkerboard. All we need to turn this into a full checker-

board is to repeat the two gradients to create another set of squares and

offset their positions again, a bit like applying the polka dot technique twice:

background: #eee;

SECRET #6: COMPLEX BACKGROUND PATTERNS 57

FIGURE 2.47
If we flip the color stops, we get

triangles in the opposite direction

FIGURE 2.48
Combining the two triangles

www.it-ebooks.info

http://www.it-ebooks.info/

background-image:

 linear-gradient(45deg, #bbb 25%, transparent 0),

 linear-gradient(45deg, transparent 75%, #bbb 0),

 linear-gradient(45deg, #bbb 25%, transparent 0),

 linear-gradient(45deg, transparent 75%, #bbb 0);

background-position: 0 0, 15px 15px,

 15px 15px, 30px 30px;

background-size: 30px 30px;

The result is a checkerboard, identical to the one in Figure 2.44. We can

improve the code a bit by combining the opposite facing triangles (i.e., the

first with the second and the third with the fourth) and making the darker

gray semi-transparent black, so that we can change the base color without

always having to adjust the top color accordingly:

background: #eee;

background-image:

 linear-gradient(45deg,

 rgba(0,0,0,.25) 25%, transparent 0,

 transparent 75%, rgba(0,0,0,.25) 0),

 linear-gradient(45deg,

 rgba(0,0,0,.25) 25%, transparent 0,

 transparent 75%, rgba(0,0,0,.25) 0);

background-position: 0 0, 15px 15px;

background-size: 30px 30px;

Now we have two gradients instead of four, but the code is almost as

WET as before. To change the accent color or the cell size, we need to make

four edits. At this point, it might be a good idea to use a preprocessor mixin

to reduce duplication. For example, in Sass it would look like this:

@mixin checkerboard($size, $base,

 $accent: rgba(0,0,0,.25) {

CHAPTER 2: BACKGROUNDS & BORDERS58

FIGURE 2.49
Our combined triangles now form

squares with space around them; the

two tiles are shown with dashed

lines and the second gradient is

shown slightly darker

FIGURE 2.50
This is a complex pattern and it’s

often difficult to wrap one’s head

around how it works, especially after

reducing it to two gradients. It

usually aids understanding of how a

pattern works to give a random color

to one of the gradients or color

stops. For example, here the first

gradient is shown with

rebeccapurple instead of the

semi-transparent black and the two

tiles are outlined with dashed lines.

WET stands for “We Enjoy Typing”

and is the opposite of DRY code (i.e.,

it refers to repetitive, unmaintainable

code).

SCSS

www.it-ebooks.info

http://www.it-ebooks.info/

 background: $base;

 background-image:

 linear-gradient(45deg,

 $accent 25%, transparent 0,

 transparent 75%, $accent 0),

 linear-gradient(45deg,

 $accent 25%, transparent 0,

 transparent 75%, $accent 0);

 background-position: 0 0, $size $size,

 background-size: 2*$size 2*$size;

}

/* Used like… */

@include checkerboard(15px, #58a, tan);

In any case, this is so much code that it might actually be better to go the

SVG route. An SVG tile for Figure 2.44 would be as small and simple as:

<svg xmlns="http://www.w3.org/2000/svg"

 width="100" height="100" fill-opacity=".25" >

 <rect x="50" width="50" height="50" />

 <rect y="50" width="50" height="50" />

</svg>

One could reply, “But CSS gradients save us HTTP requests!” However, with

modern browsers, we can embed the SVG file in our stylesheet as a data

URI, and we don’t even need to base64 or URLencode most of it:

background: #eee url('data:image/svg+xml,\

 <svg xmlns="http://www.w3.org/2000/svg" \

 width="100" height="100"

 fill-opacity=".25">\

 <rect x="50" width="50" height="50" /> \

SECRET #6: COMPLEX BACKGROUND PATTERNS 59

SVG

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

 <rect y="50" width="50" height="50" /> \

 </svg>');

background-size: 30px 30px;

The SVG version is not only 40 characters shorter, but also considerably

less repetitive. For example, we can change the colors in only one place and

the size with two edits.

▶ PLAY! play.csssecrets.io/checkerboard-svg

■ CSS Image Values

w3.org/TR/css-images

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ Scalable Vector Graphics

w3.org/TR/SVG

■ CSS Image Values Level 4

w3.org/TR/css4-images

CHAPTER 2: BACKGROUNDS & BORDERS60

TIP! Note how you can break

a CSS string into multiple

lines for readability, by just escaping

the line breaks with a backslash (\)!

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/checkerboard-svg
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG
http://w3.org/TR/css4-images
http://www.it-ebooks.info/

FIGURE 2.51
Combining these techniques with blending modes

(w3.org/TR/compositing-1), by using

background-blend-mode with values other than

normal for some (or even all) of the layers a

background pattern is made of can yield very

interesting results, as this pattern gallery by

Bennett Feely (bennettfeely.com/gradients)

demonstrates. Most of these patterns only use the

multiply blending mode, but other values such as

overlay, screen, or difference can be very

useful too.

www.it-ebooks.info

http://w3.org/TR/compositing-1
http://bennettfeely.com/gradients
http://bennettfeely.com/gradients
http://www.it-ebooks.info/

(Pseudo)random
backgrounds

Prerequisites
CSS gradients, the “Striped backgrounds” secret on page 40, the

“Complex background patterns” secret on page 50

The problem
Repeating geometric patterns are nice, but can be a bit boring. Hardly

anything in nature ever repeats in identical tiles. Even in repetition,

there is always variation and randomness. Look at a field with flowers: while

it’s uniform enough to be beautiful, it is also random enough to be inter-

esting. No two flowers are ever exactly the same. This is why when we are

trying to make background patterns appear as natural as possible, we are

also trying to have as few and as hard to notice “seams” between the re-

peating tiles as possible, which directly conflicts with our desire to keep the

filesize low.

CHAPTER 2: BACKGROUNDS & BORDERS62

7

FIGURE 2.52
Nature doesn’t repeat itself in

“seamless” tiles

www.it-ebooks.info

http://www.it-ebooks.info/

“[W]hen you notice a distinctive feature—for instance, a knot in some

woodgrain—repeating at regular intervals, it really breaks the illusion of

organic randomness.”

— Alex Walker, The Cicada Principle and Why It Matters to Web Designers

(sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers)

Replicating randomness can be challenging, because CSS does not of-

fer any inherent randomness capabilities. Let’s take the example of stripes.

Assume we want vertical stripes of various colors and widths (let’s keep it

simple and say four colors), with no visible “seams” of repeating tiles. Our

first thought might be to create one gradient with all four stripes, like so:

background: linear-gradient(90deg,

 #fb3 15%, #655 0, #655 40%,

 #ab4 0, #ab4 65%, hsl(20, 40%, 90%) 0);

background-size: 80px 100%;

As you can see in Figure 2.53, the repetition is obvious, as the pattern

repeats itself every 80px (our background-size). Can we do better?

The solution
One first idea might be to enhance the illusion of randomness by splitting

the flat stripe tile into layers: one base color and three layers of stripes,

repeating in different intervals. We can easily achieve this by hardcoding the

stripe width in the color stops and using background-size to control

their spacing. The code might look like this:

SECRET #7: (PSEUDO)RANDOM BACKGROUNDS 63

FIGURE 2.53
Our original attempt at

pseudorandom stripes, with all the

colors generated by the same linear

gradient

www.it-ebooks.info

http://sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers
http://www.it-ebooks.info/

background: hsl(20, 40%, 90%);

background-image:

 linear-gradient(90deg, #fb3 10px, transparent 0),

 linear-gradient(90deg, #ab4 20px, transparent 0),

 linear-gradient(90deg, #655 20px, transparent 0);

background-size: 80px 100%, 60px 100%, 40px 100%;

Because the repetition in the topmost tile will be most noticeable (as it’s not

covered by anything), we want to put the tile with the largest repeat

interval on top (in this case, the orange stripes).

As you can see in Figure 2.54, these look significantly more random,

but if we look closely, we can still see the repeating tile every 240px. The

end of the first repeating tile of such a composition is the offset at which

all our individual background images have repeated an integer

amount of times. As you might remember from school, if we have a few

numbers, the minimum number that can contain any of them an integer

amount of times is their least common multiple (often abbreviated as LCM).

Therefore, here the size of the tile is the LCM of the background sizes

and the LCM of 40, 60, and 80 is 240.

It logically follows that to increase perceived randomness, we need to

maximize the size of the repeating tile. Thanks to math, we don’t have

to think long and hard about how to achieve this, because we already know

the answer. To achieve maximum LCM, the numbers need to be

CHAPTER 2: BACKGROUNDS & BORDERS64

FIGURE 2.54
Our second attempt, involving

overlaying different gradients with

different background sizes; the

(perceived) repeating tile is shown

with dashed lines

Note that here “tile” is used a bit lib-

erally: it’s not referring to the repeat-

ed image of any individual gradient,

but the perceived repeating tile of

their composition (i.e., if we

weren’t using multiple backgrounds,

what size would our repeated back-

ground image have to be to achieve

the same result?).

www.it-ebooks.info

http://www.it-ebooks.info/

Prime numbers are integers that can’t be divided by any other number besides 1 and them-

selves. For example, the first 10 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. On the other

hand, relatively prime is a relation between numbers, not an attribute of a single number. Relatively

prime numbers have no common divisors, but may have many divisors in general (e.g., 10 and 27

are relatively prime, but neither is prime). Of course, a prime number is relatively prime with

any other number.

*

relatively prime.* In that case, their LCM is their product. For example, 3,

4, and 5 are relatively prime, so their LCM is 3 × 4 × 5 = 60. An easy way to

achieve this is to choose prime numbers, because they’re always rela-

tively prime with any other number. Lists of primes up to very large

numbers are widely available on the Web.

To maximize randomness even further, we can even use prime numbers

for the stripe widths. This is what our code would look like:

background: hsl(20, 40%, 90%);

background-image:

 linear-gradient(90deg, #fb3 11px, transparent 0),

 linear-gradient(90deg, #ab4 23px, transparent 0),

 linear-gradient(90deg, #655 41px, transparent 0);

background-size: 41px 100%, 61px 100%, 83px 100%;

Yes, the code is not pretty, but good luck trying to find any seams in

Figure 2.55. The size of our repeating tile is now 41 × 61 × 83 = 207, 583

pixels, larger than any screen resolution one could possibly imagine!

This technique was dubbed “The Cicada Principle” by Alex Walker,

who first had the idea of using primes to increase perceived randomness of

backgrounds. Note that this is not only useful for backgrounds, but also for

anything that involves repetition. Other applications include:

SECRET #7: (PSEUDO)RANDOM BACKGROUNDS 65

FIGURE 2.55
Our final stripes, using prime

numbers to increase perceived

randomness

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

■ Applying small pseudorandom rotations on the images in a photo gallery,

with multiple :nth-child(an) selectors where a is a prime.

■ Making an animation that doesn’t seem to ever repeat exactly in the same

way, by applying multiple animations with prime durations. (Check out

play.csssecrets.io/cicanimation for an example.)

▶ PLAY! play.csssecrets.io/cicada-stripes

Hat tip to Alex Walker for coming up with an idea that inspired this tech-

nique in “The Cicada Principle and Why It Matters to Web Designers”

(sitepoint.com/the-cicada-principle-and-why-it-matters-to-

web-designers). Eric Meyer (meyerweb.com) later had the idea of cre-

ating something called “Cicadients” (meyerweb.com/eric/thoughts/

2012/06/22/cicadients), which involves applying the technique on

background images generated via CSS gradients. Dudley Storey has also

written a very informative piece on this concept (demosthenes.info/

blog/840/Brood-X-Visualizing-The-Cicada-Principle-In-CSS).

■ CSS Image Values

w3.org/TR/css-images

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

CHAPTER 2: BACKGROUNDS & BORDERS66

HAT TIP

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/cicanimation
http://play.csssecrets.io/cicada-stripes
http://www.sitepoint.com/the-cicada-principle-and-why-it-matters-to-web-designers
http://meyerweb.com
http://meyerweb.com/eric/thoughts/2012/06/22/cicadients
http://demosthenes.info/blog/840/Brood-X-Visualizing-The-Cicada-Principle-In-CSS
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Continuous
image borders

Prerequisites
CSS gradients, basic border-image, the “Striped backgrounds” se-

cret on page 40, basic CSS animations

The problem
Sometimes we want to apply a pattern or image not as a background,

but as a border. For example, check out Figure 2.57 for an element with

a decorative border that is basically an image clipped to the border area. In

addition, we want the image to resize to cover the entire border area re-

gardless of the dimensions of our element. How would we attempt to do

something like this with CSS?

At this point, there might be a very loud voice in your head screaming,

“border-image, border-image, we can use border-image, that’s

not a problem anymore!!!11.” Not so fast, young padawan. Recall how

border-image actually works: it’s basically 9-slice scaling. You slice the

CHAPTER 2: BACKGROUNDS & BORDERS68

8

FIGURE 2.56
Our stone art image, used

throughout this secret

www.it-ebooks.info

http://www.it-ebooks.info/

image into nine boxes and apply them to the corners and sides accordingly.

Figure 2.58 offers a visual reminder of how this works.

How could we possibly slice our image via border-image to create

the example in Figure 2.57? Even if we meticulously get it right for specific

dimensions and border width, it wouldn’t adjust properly for different ones.

The issue is that there is no specific part of the image that we want to be

at the corners; the part of the image shown in the corner squares changes

with the dimensions of the element and border width. If you try it for a bit,

you will likely also conclude that this is not possible with border-image.

But then what can we do?

The easiest way is to use two HTML elements: one using a background

with our stone art image, and one with a white background covering it for

our content area:

<div class="something-meaningful"><div>

 I have a nice stone art border,

 don’t I look pretty?

</div></div>

.something-meaningful {

 background: url(stone-art.jpg);

 background-size: cover;

 padding: 1em;

}

.something-meaningful > div {

 background: white;

 padding: 1em;

}

This works fine to create the “border” shown in Figure 2.57, but it requires

an extra HTML element. This is suboptimal: not only does it mix presentation

and styling, but modifying the HTML is simply not an option in certain cases.

Can we do this with only one element?

SECRET #8: CONTINUOUS IMAGE BORDERS 69

I have a nice stone art

border, don’t I look pretty?

I have a nice stone art

border, don’t I look pretty?

Bacon ipsum dolor amet

fatback alcatra tenderloin

chicken shank, sausage

pork meatball leberkas tri-

tip spare ribs salami filet

mignon ball tip cow.

FIGURE 2.57
Our image used as a border with

varying heights

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

The solution
Thanks to CSS gradients and the background extensions introduced in

Backgrounds & Borders Level 3 (w3.org/TR/css3-background), we

can achieve the exact same effect with only one element. The main idea is

to use a second background of pure white, covering the stone art

image. However, to make the second image show through the border area,

we should apply different values of background-clip to them. One last

thing is that we can only have a background color on the last layer, so we

need to fake the white via a CSS gradient from white to white.

This is how our first attempt to apply this idea might look:

padding: 1em;

border: 1em solid transparent;

background: linear-gradient(white, white),

 url(stone-art.jpg);

background-size: cover;

background-clip: padding-box, border-box;

As we can see in Figure 2.59, the result is very close to what we wanted,

but there is some weird repetition. The reason is that the default

background-origin is padding-box, and thus, the image is sized

based on the padding box and placed on the 0,0 point on the padding box.

The rest is just repetitions of that first background tile. To correct this, we

just need to set background-origin to border-box as well:

padding: 1em;

border: 1em solid transparent;

background: linear-gradient(white, white),

 url(stone-art.jpg);

background-size: cover;

background-clip: padding-box, border-box;

CHAPTER 2: BACKGROUNDS & BORDERS70

FIGURE 2.58
A quick primer on border-image

Top: Our sliced image; the dashed

lines indicate its slicing

Middle: border-image:

33.34% url(…) stretch;

Bottom: border-image:

33.34% url(…) round;

Play with the code at

play.csssecrets.io/border-

image

www.it-ebooks.info

http://w3.org/TR/css3-background
http://play.csssecrets.io/border-image
http://play.csssecrets.io/border-image
http://www.it-ebooks.info/

background-origin: border-box;

These new properties are also available on the background shorthand,

which can help us reduce our code significantly here:

padding: 1em;

border: 1em solid transparent;

background:

 linear-gradient(white, white) padding-box,

 url(stone-art.jpg) border-box 0 / cover;

▶ PLAY! play.csssecrets.io/continuous-image-borders

Of course, we can use the same technique with gradient-based pat-

terns. For example, take a look at the following code, which generates a

vintage envelope themed border:

padding: 1em;

border: 1em solid transparent;

background: linear-gradient(white, white) padding-box,

 repeating-linear-gradient(-45deg,

 red 0, red 12.5%,

 transparent 0, transparent 25%,

 #58a 0, #58a 37.5%,

 transparent 0, transparent 50%)

 0 / 5em 5em;

You can see the result in Figure 2.61. You can easily change the width of

the stripes via the background-size and the thickness of the border via

the border declaration. Unlike our stone art border example, this effect is

doable with border-image too:

SECRET #8: CONTINUOUS IMAGE BORDERS 71

I have a nice stone art

border, don’t I look pretty?

FIGURE 2.59
Our first attempt is very close to what

we wanted

FIGURE 2.60
An actual vintage envelope

TIP! To see these issues in ac-

tion, visit

play.csssecrets.io/vintage-

envelope-border-image and ex-

periment with changing values.

www.it-ebooks.info

http://play.csssecrets.io/continuous-image-borders
http://play.csssecrets.io/vintage-envelope-border-image
http://play.csssecrets.io/vintage-envelope-border-image
http://www.it-ebooks.info/

padding: 1em;

border: 16px solid transparent;

border-image: 16 repeating-linear-gradient(-45deg,

 red 0, red 1em,

 transparent 0, transparent 2em,

 #58a 0, #58a 3em,

 transparent 0, transparent 4em);

However, the border-image approach has several issues:

■ We need to update border-image-slice every time we change the

border-width and make them match.

■ Because we cannot use ems in border-image-slice, we are restricted

to only pixels for the border thickness.

■ The stripe thickness needs to be encoded in the color stop positions, so we

need to make four edits to change it.

▶ PLAY! play.csssecrets.io/vintage-envelope

Another fun application of this technique is using it to make marching

ants borders! Marching ants borders are dashed borders that seem to scroll

like marching ants (if you imagine that the dashes are ants). These are in-

credibly common in GUIs; image editors use them almost always to indicate

area selection (Figure 2.62).

To create marching ants, we are going to use a variation of the “vintage

envelope” effect. We will convert the stripes to just black and white, reduce

the width of the border to 1px (notice how the stripes now turn to a dashed

border?), and change the background-size to something appropriate.

Then, we animate the background-position to 100% to make it scroll:

@keyframes ants { to { background-position: 100% } }

.marching-ants {

 padding: 1em;

CHAPTER 2: BACKGROUNDS & BORDERS72

My border is reminiscent of

vintage envelopes, how

cool is that?

FIGURE 2.61
Our “vintage envelope” border

FIGURE 2.62
Marching ants are also used in

Adobe Photoshop to indicate area

selection

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/vintage-envelope
http://www.it-ebooks.info/

 border: 1px solid transparent;

 background:

 linear-gradient(white, white) padding-box,

 repeating-linear-gradient(-45deg,

 black 0, black 25%, white 0, white 50%

) 0 / .6em .6em;

 animation: ants 12s linear infinite;

}

You can see a still of the result in Figure 2.63. Obviously, this is not

only useful for marching ants, but also for creating all sorts of custom

dashed borders, with different color dashes and custom dash-gap

width.

Currently, the only way to achieve a similar effect via border-image

is to use an animated GIF for border-image-source, as shown in

chrisdanford.com/blog/2014/04/28/marching-ants-animated-

selection-rectangle-in-css. When browsers start supporting gradi-

ent interpolation, we will also be able to do it with gradients, though in a

messy, WET way.

▶ PLAY! play.csssecrets.io/marching-ants

1 This is a footnote.

However, border-image can also be quite powerful, and even more when

used with gradients. For example, assume we want a clipped top border,

like the one commonly used in footnotes. All it takes is border-image and

a vertical gradient, with the clipping length hardcoded. The border width is

controlled by …border-width. The code would look like this:

SECRET #8: CONTINUOUS IMAGE BORDERS 73

FIGURE 2.63
It’s not really possible to show

marching ants in a book (a still just

looks like dashed borders); visit the

live example—it’s fun!

FIGURE 2.64
Top border clipping, to mimic

traditional footnotes

www.it-ebooks.info

http://chrisdanford.com/blog/2014/04/28/marching-ants-animated-selection-rectangle-in-css
http://chrisdanford.com/blog/2014/04/28/marching-ants-animated-selection-rectangle-in-css
http://play.csssecrets.io/marching-ants
http://www.it-ebooks.info/

RELATED

SPECS

border-top: .2em solid transparent;

border-image: 100% 0 0 linear-gradient(90deg,

 currentColor 4em,

 transparent 0);

padding-top: 1em;

The result is identical to Figure 2.64. In addition, because we specified ev-

erything in ems, the effect will adjust with font-size changes, and be-

cause we used currentColor, it will also adapt to color changes (as-

suming we want the border to be the same color as the text).

▶ PLAY! play.csssecrets.io/footnote

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

CHAPTER 2: BACKGROUNDS & BORDERS74

■

■

www.it-ebooks.info

http://play.csssecrets.io/footnote
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://www.it-ebooks.info/

Shapes 3
www.it-ebooks.info

http://www.it-ebooks.info/

Flexible
ellipses

Prerequisites
Basic usage of the border-radius property

The problem
You have probably noticed at some point that any square element with a

sufficiently large border-radius can turn into a circle, with CSS code akin

to the following:

background: #fb3;

width: 200px;

height: 200px;

border-radius: 100px; /* >= half the side */

You might have also noticed that you could specify any radius larger than

100px and it will still result in a circle. The reason is outlined in the

specification:

CHAPTER 3: SHAPES76

9

FIGURE 3.1
A circle, generated by fixed

dimensions and a border-radius

of half that

www.it-ebooks.info

http://www.it-ebooks.info/

“When the sum of any two adjacent border radii exceeds the size of the

border box, user agents must proportionally reduce the used values of all

border radii until none of them overlap.”

— CSS Backgrounds & Borders Level 3 (w3.org/TR/css3-background/#corner-

overlap)

However, we often cannot provide a specific width and height on an

element, as we want it to adjust to its content, which may not be known

ahead of time. Even if we are designing a static website and its exact content

is predetermined, we might want to modify it at some point, or it could be

displayed in a fallback font with different metrics. In that case, we usually

want it to be an ellipse when the width and height are not exactly

equal and a circle when they are. However, with our previous code, that

is not the case. The resulting shape when the width is larger than the height

is shown in Figure 3.2. Can we even use border-radius to make an

ellipse, let alone a flexible one?

The solution
One lesser known fact is that border-radius accepts different hori-

zontal and vertical radii, if you use a slash (/) to separate the two. This

allows us to create elliptical rounding at the corners (Figure 3.3). So, if

we had an element with dimensions of 200px × 150px, for example, we

could turn it into an ellipse with radii equal to half its width and height,

respectively:

border-radius: 100px / 75px;

You can see the result in Figure 3.4.

However, this has a major flaw: if the dimensions change, the

border-radius values need to change as well. You can see in Figure 3.5

how the border-radius looks when you have a 200px × 300px element

instead. When our dimensions vary depending on content, we have a

problem.

SECRET #9: FLEXIBLE ELLIPSES 77

FIGURE 3.2
Our previous circle example, when

the height is smaller than the width;

the border-radius circle is shown

here with dashed lines

FIGURE 3.3
A box with unequal horizontal and

vertical border-radius; our

corner curving now follows an ellipse

with horizontal and vertical radii

equal to the border-radius we

specified, shown here with dashed

lines

www.it-ebooks.info

http://w3.org/TR/css3-background/#corner-overlap
http://www.it-ebooks.info/

TRIVIA Why “border-radius”?
Many wonder why border-radius was named that way, as it doesn’t require borders to work. It seems

that corner-radius would have been much more appropriate. The reason for this (admittedly confusing)

name is that border-radius rounds the edge of the element’s border box. When the element has no

borders, this makes no difference, but when it does, it’s the outer corner of the border that is rounded. The

rounding of the inner corner is smaller (max(0, border-radius - border-width) to be precise).

Or, do we? Another lesser known feature of border-radius is that

it accepts percentages, not just lengths. The percentage resolves to

the corresponding dimension, width for the horizontal radius and height

for the vertical one. This means the same percentage can compute to

different horizontal and vertical radii. Therefore, to create a flexible el-

lipse, we can replace both radii with 50%:

border-radius: 50% / 50%;

And because the parts before and after the slash are now the same (even

though they don’t compute to the same value), we can further simplify

it to:

border-radius: 50%;

The result is a flexible ellipse with just one line of CSS, regardless of width

and height.

▶ PLAY! play.csssecrets.io/ellipse

Half ellipses
Now that we know how to make a flexible ellipse with CSS, it naturally

follows to wonder if we can make other common shapes, like fractions of

CHAPTER 3: SHAPES78

FIGURE 3.4
Irregular border-radius curves

used to create an ellipse

FIGURE 3.5
Our ellipse breaks when the

dimensions change; the silver lining

though is that this shape would be

super useful for some sort of

cylinder!

www.it-ebooks.info

http://play.csssecrets.io/ellipse
http://www.it-ebooks.info/

an ellipse. Let’s take a moment to think about a half ellipse (e.g., the one

in Figure 3.6).

It’s symmetrical across the vertical axis, but not across the horizontal

one. Even if we can’t know the exact border-radius values (or if it’s at

all possible) yet, it starts to become obvious that we will need different radii

per corner. However, the values we’ve examined so far only allow for one

value for all four corners.

Fortunately, the border-radius syntax is more flexible than that.

You might be surprised to find that border-radius is actually a short-

hand. We can provide different values for each corner, and there are two

different ways to do that. One way would be to use the longhand properties

it’s comprised of:

■ border-top-left-radius

■ border-top-right-radius

■ border-bottom-right-radius

■ border-bottom-left-radius

However, the more concise way is to use the border-radius shorthand

and to provide multiple whitespace-separated values. If we provide four

values, they each apply to one corner, in clockwise order, starting from

the top left. If we provide fewer than four values, they are multiplied in

the usual CSS way, akin to properties like border-width. Three values

mean the fourth is the same as the second. Two values mean the third is the

same as the first. Figure 3.7 provides a visual explanation of how this works.

We can even provide different horizontal and vertical radii for all four

corners, by specifying 1–4 values before the slash and 1–4 different values

after it. Note that these are expanded into four values individually. For ex-

ample, a border-radius value of 10px / 5px 20px is equivalent to

10px 10px 10px 10px / 5px 20px 5px 20px.

SECRET #9: FLEXIBLE ELLIPSES 79

A half ellipse can become a semicir-

cle when the width is double the

height (or when the height is double

the width, for ellipses cut down the

vertical axis).

FIGURE 3.6
A half ellipse

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

border-radius: ;

border-radius: ;

border-radius: ;

border-radius: ;

Let’s now examine the half ellipse problem again with this newfound knowl-

edge. Is it possible to specify such border-radius values that would gen-

erate a shape like this? We cannot know until we’ve tried. Let’s start by

making a few observations:

■ The shape is symmetrical horizontally, which means both the top left

and top right radii should be the same; likewise, the bottom left and

bottom right radii should also match.

■ There are no straight horizontal edges at the top (i.e., the entire top side is

curved), which means the top left and top right radii together should

total 100% of the shape’s width.

■ From the previous two observations, we can deduce that the horizontal left

and right radii should be 50%.

■ Vertically, it seems that the rounding for the two top corners occupies

the entire element’s height and there is no rounding at the bottom

corners. Therefore, it seems that a reasonable value for the vertical part of

the border-radius would be 100% 100% 0 0.

■ Because the vertical rounding of the bottom corners is zero, it doesn’t matter

what horizontal rounding they have, as that will always compute to zero

anyway. (Can you imagine a corner with zero vertical rounding and positive

horizontal rounding? Yup, neither could the spec writers.)

Putting all this together, we can come up with the CSS code for the flexible

half ellipse in Figure 3.6 pretty easily:

CHAPTER 3: SHAPES80

FIGURE 3.7
The rounding of which corner is

specified with a border-radius

of 4, 3, 2, or 1 whitespace-separated

values (note that for elliptical radii,

there could be up to four

arguments before and after the

slash, and they refer to the same

corners, regarding the horizontal

radii before the slash and the vertical

radii after it)

■

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

border-radius: 50% / 100% 100% 0 0;

It’s equally simple to come up with values that create half ellipses cut

down the vertical axis instead, like the one shown in Figure 3.8:

border-radius: 100% 0 0 100% / 50%;

As an exercise, try to write CSS code for the other half of the ellipse.

▶ PLAY! play.csssecrets.io/half-ellipse

Quarter ellipses
After creating a whole ellipse and a half ellipse, the natural next question is

whether we can make a quarter ellipse, like the one shown in Figure 3.9.

Following a similar thought process as before, we can notice that to create

a quarter ellipse, one of the corners needs to have a 100% radius both

horizontally and vertically, and the other four will have no round-

ing. Because the percentage will be the same for both horizontal and ver-

tical radii of all four corners, no slash notation is needed. The code would

look like this:

border-radius: 100% 0 0 0;

Unfortunately, in case you are now wondering what other fractions of el-

lipses are possible with border-radius (e.g., is 18 th of an ellipse possible?

One third?), I’m afraid you will be disappointed, because there are no pos-

sible border-radius values to generate that.

SECRET #9: FLEXIBLE ELLIPSES 81

FIGURE 3.8
A half ellipse cut down the vertical

axis

Similarly to the half ellipse example,

when the width and height are

equal, this will be a quarter circle.

FIGURE 3.9
A quarter ellipse

www.it-ebooks.info

http://play.csssecrets.io/half-ellipse
http://www.it-ebooks.info/

RELATED

SPECS

▶ PLAY! play.csssecrets.io/quarter-ellipse

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

CHAPTER 3: SHAPES82

FIGURE 3.10
Simurai masterfully used border-

radius to its full extent to create all

sorts of shapes for his BonBon

buttons (simurai.com/archive/

buttons)

■

www.it-ebooks.info

http://play.csssecrets.io/quarter-ellipse
http://w3.org/TR/css-backgrounds
http://simurai.com/archive/buttons
http://simurai.com/archive/buttons
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Parallelograms

Prerequisites
Basic CSS transforms

The problem
Parallelograms are a superset of rectangles: their sides are parallel but their

corners are not necessarily straight (see Figure 3.11). In visual design,

they’re often useful to make the design appear more dynamic and convey

a sense of movement (Figure 3.12).

Let’s try to create a button-style link with that style in CSS. Our starting

point will be a plain flat button, with some simple styling, like the one in

Figure 3.13. Then, we can create the skewed rectangle shape with a

skew() transform, like so:

transform: skewX(-45deg);

CHAPTER 3: SHAPES84

10

FIGURE 3.11
A parallelogram

www.it-ebooks.info

http://www.it-ebooks.info/

However, this also results in the content being skewed, which makes it

ugly and unreadable (Figure 3.14). Is there a way to only skew the con-

tainer shape without skewing the contents?

Nested elements solution
We can apply an opposite skew() transform to the content, which

will cancel out the outer transform, effectively giving us the result we

want. Unfortunately, that means we will have to use an extra HTML element

to wrap around the content, such as a div:

 <div>Click me</div>

SECRET #10: PARALLELOGRAMS 85

CLICK ME

FIGURE 3.13
Our button, before any transforms

are applied

FIGURE 3.14
Our skewed button, making the text

hard to read

CLICK ME

FIGURE 3.15
The final result

CLICK ME
HTML

FIGURE 3.12
Parallelograms in web design (design

by Martina Pitakova)

www.it-ebooks.info

http://www.it-ebooks.info/

.button { transform: skewX(-45deg); }

.button > div { transform: skewX(45deg); }

As you can see in Figure 3.15 it works quite well, but it means we have to

use an extra HTML element. If markup changes are not an option or you

really want markup purity, fear not, as there’s also a pure CSS solution.

▶ PLAY! play.csssecrets.io/parallelograms

Pseudo-element solution
Another idea is to use a pseudo-element to apply all styling to (back-

grounds, borders, etc.), and then transform that. Because our content is

not contained in the pseudo-element, it is not affected by the transforma-

tion. Let’s try to use this technique to style a link in the same way as in the

previous section.

We need our pseudo-element box to remain flexible and automatically

inherit the dimensions of its parent, even when they are determined by its

contents. An easy way to do that is to apply position: relative to the

parent, position: absolute to the generated content, and set all off-

sets to zero so that it stretches horizontally and vertically to the size of its

parent. This is how this code would look:

.button {

 position: relative;

 /* text color, paddings, etc. */

}

.button::before {

 content: '';

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

}

CHAPTER 3: SHAPES86

! If you’re applying this effect to

an element that is inline by de-

fault, don’t forget to set its display

property to something else, like

inline-block or block, other-

wise transforms will not apply.

Same goes for the inner element.

www.it-ebooks.info

http://play.csssecrets.io/parallelograms
http://www.it-ebooks.info/

At this point, the generated box is above the content and once we apply

some background to it, it will obscure the contents (Figure 3.16). To fix this,

we can apply z-index: -1 to the pseudo-element, so that it moves un-

derneath its parent.

Now it’s finally time to apply transforms to our heart’s content on it and

enjoy the result. The finished code would look like this and produce exactly

the same visual result as the previous technique:

.button {

 position: relative;

 /* text color, paddings, etc. */

}

.button::before {

 content: ''; /* To generate the box */

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 z-index: -1;

 background: #58a;

 transform: skew(45deg);

}

These techniques are not only useful for skew() transforms. They can also

be used with any other transformation, in order to transform an ele-

ment’s shape without transforming its contents. For example, using a

variation of this technique with a rotate() transform on a square element

would easily give us a diamond (rhombus) shape.

Also, the idea of using pseudo-elements and positioning to generate a

box that is then styled and placed underneath its parent can be used in a

number of cases, for very different types of effects, such as:

■ It was a common workaround for multiple backgrounds in IE8, discovered

by Nicolas Gallagher (nicolasgallagher.com/multiple-

backgrounds-and-borders-with-css2).

■ It could be another solution to effects like the “Inner rounding” secret on

page 36. Can you guess how?

SECRET #10: PARALLELOGRAMS 87

CLICK ME

FIGURE 3.16
Our pseudo-element is currently

above the contents, so applying

background: #58a to it obscures

them

■

■

www.it-ebooks.info

http://nicolasgallagher.com/multiple-backgrounds-and-borders-with-css2
http://www.it-ebooks.info/

RELATED

SPECS

■ It could be used to independently apply properties like opacity to a “back-

ground,” pioneered by Nicolas Gallagher (nicolasgallagher.com/

css-background-image-hacks).

■ It can be used to emulate multiple borders in a more flexible way, in case

we can’t use the techniques in the “Multiple borders” secret on page

28. For example, when we need multiple dashed borders or multiple borders

with spacing and transparency between them.

▶ PLAY! play.csssecrets.io/parallelograms-pseudo

■ CSS Transforms

w3.org/TR/css-transforms

CHAPTER 3: SHAPES88

■

■

■

www.it-ebooks.info

http://nicolasgallagher.com/css-background-image-hacks
http://play.csssecrets.io/parallelograms-pseudo
http://w3.org/TR/css-transforms
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Diamond
images

Prerequisites
CSS transforms, the “Parallelograms” secret on page 84

The problem
Cropping images in a diamond shape is rather common in visual design, but

still not quite straightforward to do in CSS. In fact, until recently, it was

basically impossible. Therefore, when web designers want to follow this

style, they more often than not pre-crop their images via an image editor.

Of course, it goes without saying that this is really not a maintainable way

to apply any effect and ends up being a mess if one wants to change the

image styling in the future.

Surely, these days there must be a better way, right? Actually, there are

two!

CHAPTER 3: SHAPES90

11

www.it-ebooks.info

http://www.it-ebooks.info/

transform-based solution
The main idea is the same as the first solution discussed in the previous secret

(the “Parallelograms” secret on page 84)—we need to wrap our image

with a <div>, then apply opposite rotate() transforms to them:

<div class="picture">

</div>

.picture {

 width: 400px;

 transform: rotate(45deg);

 overflow: hidden;

}

.picture > img {

 max-width: 100%;

 transform: rotate(-45deg);

}

SECRET #11: DIAMOND IMAGES 91

FIGURE 3.18
Our original image, which we are

going to crop in a diamond shape

HTML

FIGURE 3.17
Following its 2013 redesign,

24ways.org now displays author

profile pictures cropped in a

diamond shape, using the technique

discussed here

www.it-ebooks.info

http://www.it-ebooks.info/

However, as you can see in Figure 3.19, this doesn’t quite work out of the

box and accomplish what we are trying to achieve. Unless, of course, we

were trying to crop the image in an octagon shape, in which case we can

stop now and go do something else with our time. To crop it to a diamond

shape, however, there’s still some more sweating in order.

The main issue is the max-width: 100% declaration. 100% refers to

the side of our .picture container. However, we want our image to be

as wide as its diagonal, not its side. You might have guessed that yes,

we need the Pythagorean theorem again (if you need a refresher, there is

one in the “Diagonal stripes” section on page 43). As the theorem tells

us, the diagonal of a square is equal to its side multiplied by

2 ≈ 1 . 414213562. Therefore, it makes sense to set max-width to

2 × 100 % ≈ 141 . 4213562 %, or round it up to 142%, as we don’t want

it to be smaller under any circumstances (but slightly larger is OK, as we’re

cropping our image anyway).

Actually, it makes even more sense to enlarge the image through a

scale() transform, for a couple of reasons:

■ We want the size of the image to remain 100% if CSS transforms are not

supported.

■ Enlarging an image through a scale() transform will scale it from the

center (unless a different transform-origin is specified). Enlarging it via

its width property will scale it from the top-left corner, so we will end up

having to use negative margins to move it.

Putting it all together, our final code looks like this:

.picture {

 width: 400px;

 transform: rotate(45deg);

 overflow: hidden;

}

.picture > img {

 max-width: 100%;

 transform: rotate(-45deg) scale(1.42);

}

CHAPTER 3: SHAPES92

FIGURE 3.19
Opposite rotate() transforms are

not enough to achieve this effect

(.picture div is shown with a

dashed outline)

FIGURE 3.20
Our final cropped image

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

As you can verify in Figure 3.20, this finally gives us the result we wanted.

▶ PLAY! play.csssecrets.io/diamond-images

Clipping path solution
The previous solution works, but it’s basically a hack. It requires an extra

HTML element, and it’s messy, convoluted, and fragile: if we happen to be

dealing with non-square images, it will break miserably (Figure 3.21).

Actually, there is a much better way to do it. The main idea is to use

the clip-path property, another feature borrowed from SVG, that these

days can be applied to HTML content too (at least in supporting browsers)

with a nice, readable syntax, unlike its SVG counterpart, which is known to

have driven people to madness. Its main caveat is its (at the time of writing)

limited browser support. However, it degrades gracefully (no clipping), so

it’s an alternative that should at least be considered.

You might be familiar with clipping paths from image editing apps like

Adobe Photoshop. Clipping paths allow us to clip the element in the shape

that we please. In this case, we’re going to use a polygon() shape to

specify a diamond, which allows us to specify any polygon shape as a series

of comma-separated points. We can even use percentages, and they refer

to the dimensions of the element. The code is as simple as:

clip-path: polygon(50% 0, 100% 50%, 50% 100%, 0 50%);

That’s it, believe it or not! The result is identical to Figure 3.20, but instead

of requiring two HTML elements and eight lines of cryptic CSS code, it’s now

created with only one simple line.

The wonders of clip-path don’t stop here. The property is even ani-

matable, as long as we animate between the same shape functions

(polygon(), in our case), with the same number of points. Therefore, if

we want to smoothly uncover the whole image on mouseover, we would

do something like this:

SECRET #11: DIAMOND IMAGES 93

LIMITED
SUPPORT

FIGURE 3.21
The transform-based solution breaks

badly when dealing with non-square

images

www.it-ebooks.info

http://play.csssecrets.io/diamond-images
http://www.it-ebooks.info/

RELATED

SPECS

img {

 clip-path: polygon(50% 0, 100% 50%,

 50% 100%, 0 50%);

 transition: 1s clip-path;

}

img:hover {

 clip-path: polygon(0 0, 100% 0,

 100% 100%, 0 100%);

}

Furthermore, this method adjusts nicely to non-square images, as you can

verify in Figure 3.22. Ah, the joys of modern CSS…

▶ PLAY! play.csssecrets.io/diamond-clip

■ CSS Transforms

w3.org/TR/css-transforms

■ CSS Masking

w3.org/TR/css-masking

■ CSS Transitions

w3.org/TR/css-transitions

CHAPTER 3: SHAPES94

FIGURE 3.22
The clip-path method adjusts

nicely to non-square images

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/diamond-clip
http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Cutout
corners

Prerequisites
CSS gradients, background-size, the “Striped backgrounds” secret

on page 40

The problem
Cutting corners is not just a way to save money, but also a rather popular

style in both print and web design. It usually involves cutting out one or

more of an element’s corners in a 45° angle (also known as beveled cor-

ners). Especially lately, with flat design winning over skeuomorphism, there

has been an increase in the popularity of this effect. When the cutout cor-

ners are only on one side and occupy 50% of the element’s height each, it

creates an arrow shape that is very popular for buttons and breadcrumb

navigation — see Figure 3.23.

However, CSS is still not well equipped for creating this effect in an

easy, straightforward one-liner. This leads most authors toward using back-

ground images to achieve it, either by obscuring the cutout corners with

CHAPTER 3: SHAPES96

12

Next
FIGURE 3.23
A button with cutout corners,

creating an arrow shape that

emphasizes its meaning

www.it-ebooks.info

http://www.it-ebooks.info/

triangles (when the backdrop is a solid color), or by using one or more im-

ages for the entire background, with the corner(s) already cut.

Such methods are clearly inflexible, difficult to maintain, and add latency,

both by increasing HTTP requests and the total filesize of the website. Is

there a better way?

The solution
One solution comes in the form of the omnipotent CSS gradients. Let’s as-

sume we only want one cutout corner, say the bottom-right one. The main

trick is to take advantage of the fact that gradients can accept an angle

direction (e.g., 45deg) and color stop positions in absolute lengths, both

of which are not affected by changes in the dimensions of the element

the background is on.

Putting it all together, all we need is one linear gradient. It would

need a transparent color stop for the cutout corner and another color stop

in the same position, with the color we want for our background. The CSS

looks like this (for a 15px size corner):

background: #58a;

background:

 linear-gradient(-45deg, transparent 15px, #58a 0);

SECRET #12: CUTOUT CORNERS 97

FIGURE 3.24
An example of a website where a

cutout corner (bottom-left of the

semi-transparent “Find & Book”

box) really adds to the design

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.25
An element with the bottom right

corner cut off, through a simple CSS

gradient

www.it-ebooks.info

http://www.it-ebooks.info/

Simple, wasn’t it? You can see the result in Figure 3.25. Technically,

we don’t even need the first declaration. We only included it as a fall-

back: if CSS gradients are not supported, the second declaration will be

dropped, so we still want to get at least a solid color background.

Now, let’s assume we want two cutout corners, say the two bottom

ones. We can’t achieve this with only one gradient, so we will need two.

Our first thought might be something like this:

background: #58a;

background:

 linear-gradient(-45deg, transparent 15px, #58a 0),

 linear-gradient(45deg, transparent 15px, #655 0);

However, as you can see in Figure 3.26, this doesn’t work. By default,

both gradients occupy the entire element, so they obscure each other.

We need to make them smaller, by using background-size to make each

gradient occupy only half the element:

background: #58a;

background:

 linear-gradient(-45deg, transparent 15px, #58a 0)

 right,

 linear-gradient(45deg, transparent 15px, #655 0)

 left;

background-size: 50% 100%;

You can see what happens in Figure 3.27. As you can see, although

background-size was applied, the gradients are still covering each

other. The reason for this is that we forgot to turn background-repeat

off, so each of our backgrounds is repeated twice. Therefore, our back-

grounds are still obscuring each other — by repetition this time. The new

code would look like this:

CHAPTER 3: SHAPES98

TIP! We are using separate

colors (#58a and

#655) for easier debugging. In

practice, both gradients would be

the same color.

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.26
Failed attempt to apply the cutout

effect to both bottom corners

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.27
background-size is not enough

www.it-ebooks.info

http://www.it-ebooks.info/

background: #58a;

background:

 linear-gradient(-45deg, transparent 15px, #58a 0)

 right,

 linear-gradient(45deg, transparent 15px, #655 0)

 left;

background-size: 50% 100%;

background-repeat: no-repeat;

You can see the result in Figure 3.28 and verify that—finally—it works!

At this point, you are probably able to figure out how to apply this effect

to all four corners. You will need four gradients, and the code looks

like this:

background: #58a;

background:

 linear-gradient(135deg, transparent 15px, #58a 0)

 top left,

 linear-gradient(-135deg, transparent 15px, #655 0)

 top right,

 linear-gradient(-45deg, transparent 15px, #58a 0)

 bottom right,

 linear-gradient(45deg, transparent 15px, #655 0)

 bottom left;

background-size: 50% 50%;

background-repeat: no-repeat;

You can see the result in Figure 3.29. One issue with the preceding code is

that it’s not particularly maintainable. It requires five edits to change the

background color and four to change the corner size. A preprocessor

mixin could help reduce the repetition. Here’s how the code could look with

SCSS:

SECRET #12: CUTOUT CORNERS 99

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.28
Our bottom-left and bottom-right

cutout corners work now

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.29
The effect applied to all four corners,

with four gradients

www.it-ebooks.info

http://www.it-ebooks.info/

@mixin beveled-corners($bg,

 $tl:0, $tr:$tl, $br:$tl, $bl:$tr) {

 background: $bg;

 background:

 linear-gradient(135deg, transparent $tl, $bg 0)

 top left,

 linear-gradient(225deg, transparent $tr, $bg 0)

 top right,

 linear-gradient(-45deg, transparent $br, $bg 0)

 bottom right,

 linear-gradient(45deg, transparent $bl, $bg 0)

 bottom left;

 background-size: 50% 50%;

 background-repeat: no-repeat;

}

Then, where needed, it would be used like this, with 2–5 arguments:

@include beveled-corners(#58a, 15px, 5px);

In this example, the element we will get a 15px top-left and bottom-right

cutout corner and a 5px top-right and bottom-left one, similar to how

border-radius works when we provide fewer than four lengths. This is

due to the fact that we provided default values for the arguments in our

SCSS mixin, and yes, these default values can refer to other arguments

as well.

▶ PLAY! play.csssecrets.io/bevel-corners-gradients

Curved cutout corners
A variation of the gradient method works to create curved cutout corners,

an effect many people refer to as “inner border radius,” as it looks like an

CHAPTER 3: SHAPES100

SCSS

SCSS

www.it-ebooks.info

http://play.csssecrets.io/bevel-corners-gradients
http://www.it-ebooks.info/

inverse version of rounded corners. The only difference is using radial gra-

dients instead of linear ones:

background: #58a;

background:

 radial-gradient(circle at top left,

 transparent 15px, #58a 0) top left,

 radial-gradient(circle at top right,

 transparent 15px, #58a 0) top right,

 radial-gradient(circle at bottom right,

 transparent 15px, #58a 0) bottom right,

 radial-gradient(circle at bottom left,

 transparent 15px, #58a 0) bottom left;

background-size: 50% 50%;

background-repeat: no-repeat;

You can see the result in Figure 3.31. Just like in the previous technique,

the corner size can be controlled through the color stop positions and a

mixin would make the code more maintainable here as well.

SECRET #12: CUTOUT CORNERS 101

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.31
Curved cutout corners, with radial

gradients

FIGURE 3.30
An excellent use of curved cutout

corners in g2geogeske.com; the

designer has made them the central

design element, as they are present

in the navigation, the content, and

even the footer

www.it-ebooks.info

http://g2geogeske.com
http://www.it-ebooks.info/

▶ PLAY! play.csssecrets.io/scoop-corners

Inline SVG & border-image solution
While the gradient-based solution works, it has quite a few issues:

■ The code is very long and repetitive. In the common case, where we want

the same corner size on all four corners, we need to make four edits to

modify it. Similarly, we need to make four edits to modify the background

color, five counting the fallback.

■ It is messy to downright impossible (depending on the browser) to animate

between different corner sizes.

Thankfully, there are a couple different methods we could use, de-

pending on our needs. One of them is to use border-image with an inline

SVG that generates the corners. Given how border-image works (if you

don’t remember, take a look at the quick primer in Figure 2.58), can you

imagine how our SVG would look?

Because dimensions don’t matter (border-image takes care of scal-

ing and SVGs scale perfectly regardless of dimensons — ah, the joy of vector

graphics!), every measurement could be 1, for easier, shorter, numbers. The

corners would be of length 1, and the straight edges would also be 1. The

result (zoomed) would look like Figure 3.32. The code would look like this:

border: 15px solid transparent;

border-image: 1 url('data:image/svg+xml,\

 <svg xmlns="http://www.w3.org/2000/svg"

 width="3" height="3" fill="%2358a">\

 <polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

 </svg>');

Note that we used a slice size of 1. This does not mean 1 pixel; it is referring

to the coordinate system of the SVG file (hence the lack of units). If we had

specified it in percentages, we would need to approximate 1
3 of the image

with something like 33.34%. Approximating numbers is always risky,

CHAPTER 3: SHAPES102

FIGURE 3.32
Our SVG-based border image, with

its slicing

■

■

www.it-ebooks.info

http://play.csssecrets.io/scoop-corners
http://www.it-ebooks.info/

because not all browsers use the same level of precision. However, by using

units of the coordinate system of the SVG file, we’re saved from precision

headaches.

The result is shown in Figure 3.33. As you can see, our cutout corners

are there, but there is no background. We can solve that in two ways: either

by specifying a background, or by adding the keyword fill to our

border-image declaration, so that it doesn’t discard the middle

slice. In this case, we are going to go with specifying a background, because

it will also act as a fallback.

In addition, you may have noticed that our corners are smaller than

with the previous technique, which can be baffling. But we specified a

15px border width! The reason is that with the gradient, the 15px was

along the gradient line, which is perpendicular to the direction of the gra-

dient. The border width, however, is not measured diagonally, but horizon-

tally/vertically. Can you see where this is going? Yup, it’s the ubiquitous Py-

thagorean theorem again, that we also saw in the “Striped backgrounds”

secret on page 40. Figure 3.34 should help make things clearer. Long story

short, to achieve the same size, we need to use a border width that is 2

times larger than the size we would use with the gradient method. In this

case, that would be 15 × 2 ≈ 21 . 213203436 pixels, which is sensible to

approximate to 20px, unless we really, absolutely need the diagonal size

to be as close to 15px as possible:

border: 20px solid transparent;

border-image: 1 url('data:image/svg+xml,\

 <svg xmlns="http://www.w3.org/2000/svg"

 width="3" height="3" fill="%2358a">\

 <polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

 </svg>');

background: #58a;

However, as you can see in Figure 3.35, this doesn’t exactly have the

expected result. Where did our laboriously created cutout corners go? Fear

not, young padawan, for our corners are still there. You can understand

SECRET #12: CUTOUT CORNERS 103

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.33
Applying our SVG on the border-

image property

15px

15px

2

FIGURE 3.34
Specifying a border-width of

15px, results in a (diagonally

measured) corner size of
15

2
≈ 10 . 606601718, which is

why our corners looked smaller

www.it-ebooks.info

http://www.it-ebooks.info/

what’s happening if you set the background to a different color, such as

#655.

As you can see in Figure 3.36, the reason our corners disappeared was

that the background we specified was obscuring them. All we need to do

to fix this is to use background-clip to prevent the background from

extending to the border area:

border: 20px solid transparent;

border-image: 1 url('data:image/svg+xml,\

 <svg xmlns="http://www.w3.org/2000/svg"\

 width="3" height="3" fill="%2358a">\

 <polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

 </svg>');

background: #58a;

background-clip: padding-box;

The issue is now fixed and our box now looks exactly like

Figure 3.29. However, we can easily change the corner size in only one

place: we just modify the border width. We can even animate it, because

border-width is animatable! We can also change the background with

only two edits instead of five. In addition, because our background is

now independent of the corner effect, we can even specify a gradient on

it, or any other pattern, as long as it’s still #58a toward the edges. For

example, check out Figure 3.37 for an example using a radial gradient from

hsla(0,0%,100%,.2) to transparent.

There is only one small issue remaining. If border-image is not sup-

ported, the fallback is not only the absence of corners. Due to background

clipping, it also looks like there is less spacing between the box edge

and its content. To fix that, we could just give our border a color that is

identical to the background:

border: 20px solid #58a;

border-image: 1 url('data:image/svg+xml,\

 <svg xmlns="http://www.w3.org/2000/svg"\

CHAPTER 3: SHAPES104

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.35
Where did our nice corners go?!

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.36
Changing our background to

another color solves the …

disappearing corners mystery

Hey, focus! You’re supposed to

be looking at my corners, not

reading my text. The text is

just placeholder!

FIGURE 3.37
Our cutout corners with a radial

gradient background

www.it-ebooks.info

http://www.it-ebooks.info/

 width="3" height="3" fill="%2358a">\

 <polygon points="0,1 1,0 2,0 3,1 3,2 2,3 1,3 0,2"/>\

 </svg>');

background: #58a;

background-clip: padding-box;

This color is ignored when border-image applies, but will provide a more

graceful fallback when it doesn’t, which will look like Figure 3.35. As a

drawback, this increases the number of edits we need to make to change

the background color to three.

▶ PLAY! play.csssecrets.io/bevel-corners

Hat tip to Martijn Saly (twitter.com/martijnsaly) for coming up with

the initial idea of using border-image and inline SVG as a solution for

beveled corners, in a tweet of his from January 5, 2015 (twitter.com/

martijnsaly/status/552152520114855936).

Clipping path solution
While the border-image solution is very compact and relatively DRY, it

still has its limitations. For example, we still need to have either a solid color

background, or a background that is a solid color toward the edges. What

if we want a different kind of background, such as a texture, a pattern, or

a linear gradient?

There is another way that doesn’t have these limitations, though it of

course has other limitations of its own. Remember the clip-path property

from the “Diamond images” secret on page 90? The amazing thing

about CSS clipping paths is that we can mix percentages (which refer to the

element dimensions) with absolute lengths, offering us tremendous

flexibility.

For example, the code for the clipping path to clip an element in a

rectangle with beveled corners of 20px size (measured horizontally) would

look like this:

SECRET #12: CUTOUT CORNERS 105

HAT TIP

LIMITED
SUPPORT

www.it-ebooks.info

http://play.csssecrets.io/bevel-corners
http://twitter.com/martijnsaly
http://twitter.com/martijnsaly/status/552152520114855936
http://www.it-ebooks.info/

FUTURE Cutout corners
In the future, we won’t have to resort to CSS gradients, clipping, or SVG for this effect. A new property,

corner-shape, is coming in CSS Backgrounds & Borders Level 4 (dev.w3.org/csswg/css-

backgrounds-4/) to save us from these pains. It will be used in conjunction with border-radius to

produce cutout corners of different shapes, with their sizes defined in border-radius. For example, spec-

ifying 15px cutout corners on all sides would be as simple as:

border-radius: 15px;

corner-shape: bevel;

background: #58a;

clip-path: polygon(

 20px 0, calc(100% - 20px) 0, 100% 20px,

 100% calc(100% - 20px), calc(100% - 20px) 100%,

 20px 100%, 0 calc(100% - 20px), 0 20px

);

Despite the code being short, this doesn’t mean it’s DRY, which is one

of its biggest issues if you’re not using a preprocessor. In fact, it’s the most

WET of the pure CSS solutions we presented, with eight (!) edits required

to change the corner size. On the other hand, we can change the back-

ground in only one place, so there’s that.

Among its benefits is that we can have any background we want,

or even clip replaced elements such as images. Check out Figure 3.38

for an image styled with beveled corners. None of the previous methods can

do this. In addition, it is also animatable, not only to different corner sizes,

but different shapes altogether. All we need to do is use a different clipping

path.

Beyond its WETness and its limited browser support, it also has the

drawback that it will clip text, if there is no sufficient padding, as it just

clips the element without distinguishing between its parts. In contrast, the

CHAPTER 3: SHAPES106

FIGURE 3.38
An image styled with beveled

corners, via clip-path

www.it-ebooks.info

http://dev.w3.org/csswg/css-backgrounds-4/
http://www.it-ebooks.info/

RELATED

SPECS

gradient method will just let the text overflow beyond the corners (because

they’re just a background) and the border-image method will act just like

a border and make the text wrap.

▶ PLAY! play.csssecrets.io/bevel-corners-clipped

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

■ CSS Transforms

w3.org/TR/css-transforms

■ CSS Masking

w3.org/TR/css-masking

■ CSS Transitions

w3.org/TR/css-transitions

■ CSS Backgrounds & Borders Level 4

dev.w3.org/csswg/css-backgrounds-4

SECRET #12: CUTOUT CORNERS 107

■

■

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/bevel-corners-clipped
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms
http://w3.org/TR/css-masking
http://w3.org/TR/css-transitions
http://dev.w3.org/csswg/css-backgrounds-4
http://www.it-ebooks.info/

Trapezoid
tabs

Prerequisites
Basic 3D transforms, the “Parallelograms” secret on page 84

The problem
Trapezoids are even more generalized than parallelograms: only two of their

sides are parallel. The other two can be at any angle. Traditionally, they have

been notoriously difficult shapes to create in CSS, although they are

also very frequently useful, especially for tabs. When authors were not em-

ulating them through carefully crafted background images, they were usu-

ally created as a rectangle with two triangles on each side, faked through

borders (Figure 3.39).

Although this technique saves us the extra HTTP request we would

spend on an image, and can easily adjust to different widths, it’s still sub-

optimal. It wastes both available pseudo-elements, and is also very inflexible

styling-wise. For example, good luck adding a border, a background texture,

or some rounding on that tab.

CHAPTER 3: SHAPES108

13

Trapezoid

FIGURE 3.39
Trapezoid shapes, faked through

borders on pseudo-elements (for

clarity, the pseudo-elements are

shown here in darker blue)

www.it-ebooks.info

http://www.it-ebooks.info/

Because all of the well-known techniques for trapezoids are quite mes-

sy and/or difficult to maintain, most tabs we see on the Web are not slanted,

although real-life tabs usually are. Is there a sane, flexible way to make

trapezoid tabs?

The solution
If a combination of 2D transforms existed that could create a trapezoid

shape, we could just apply a variation of the solutions discussed in the

“Parallelograms” secret on page 84 and be done with it. Unfortunately,

there isn’t.

However, think about rotating a rectangle in the physical, three-

dimensional world. The two-dimensional image we usually end up seeing is

a trapezoid, due to perspective! Thankfully, we can emulate this effect in

CSS by using a 3D rotation:

SECRET #13: TRAPEZOID TABS 109

FIGURE 3.40
Cloud9 IDE (c9.io) features

trapezoid tabs for each open

document

FIGURE 3.41
An earlier redesign of css-

tricks.com featured trapezoid

tabs, although they were only

slanted in one direction

www.it-ebooks.info

http://c9.io
http://css-tricks.com
http://css-tricks.com
http://www.it-ebooks.info/

transform: perspective(.5em) rotateX(5deg);

You can see how this creates a trapezoid shape in Figure 3.42. Of course,

because we applied the 3D transform to our entire element, the text is also

distorted. 3D transforms cannot be “canceled” inside the element in

the same way as 2D transforms can (i.e., via an opposite transform).

Canceling them on the inner element is technically possible, but very com-

plicated. Therefore, the only pragmatic way to take advantage of 3D trans-

forms to create a trapezoid shape is to apply the transform to a pseudo-

element, akin to the approach taken for parallelograms in the “Parallelo-

grams” secret on page 84:

.tab {

 position: relative;

 display: inline-block;

 padding: .5em 1em .35em;

 color: white;

}

.tab::before {

 content: ''; /* To generate the box */

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 z-index: -1;

 background: #58a;

 transform: perspective(.5em) rotateX(5deg);

}

As you can see in Figure 3.43, this works to create a basic trapezoid

shape. There is still one issue, though. When we apply a transform without

setting a transform-origin, the element is rotated in space around its

center. Therefore, its dimensions on the 2D projection in our screen change

in many ways, as Figure 3.44 highlights: its width increases, it shifts a bit

CHAPTER 3: SHAPES110

FIGURE 3.42
Creating a trapezoid shape through

3D rotation

Top: Before

Bottom: After

FIGURE 3.43
Applying the 3D transform to the

box generated by the pseudo-

element, so that our text is not

affected

www.it-ebooks.info

http://www.it-ebooks.info/

to the top, there is a small decrease in its height, and so on, which makes

it hard to design around.

To make its metrics a bit more manageable, we can specify

transform-origin: bottom; so that its base remains fixed as it

rotates in space. You can see the difference in Figure 3.45. Now it’s much

more predictable: only its height decreased. However, the decrease in height

is much sharper, because the entire element rotates away from the viewer,

whereas before, half of it rotated “behind” the screen and the other half

above it, so the entire element was closer to the viewer in the three-

dimensional space. To fix this, we might think of applying some extra top

padding. However, the result will then look awful in browsers with no 3D

transforms support (Figure 3.46). Instead, we will increase its size via a

transform as well, so that the entire thing is dropped when 3D transforms

are not supported. With a little experimentation, we find that some vertical

scaling (i.e., the scaleY() transform) of about 130% is sufficient to make

up for the lost space:

transform: scaleY(1.3) perspective(.5em)

 rotateX(5deg);

transform-origin: bottom;

You can see both the result and the fallback in Figure 3.47. At this point,

the result is visually equivalent to the old border-based technique discussed

earlier; it’s only the syntax that is considerably more concise. However, the

superiority of this technique begins to emerge when you start applying some

styling to the tabs. For example, take a look at the following code, which is

used for styling the tabs in Figure 3.48:

nav > a {

 position: relative;

 display: inline-block;

 padding: .3em 1em 0;

}

SECRET #13: TRAPEZOID TABS 111

FIGURE 3.44
Our trapezoid overlaid on its pre-

transform version, to highlight the

changes its metrics go through

FIGURE 3.45
Our trapezoid overlaid on its pre-

transform version, to highlight the

changes its metrics go through when

using transform-origin:

bottom;

FIGURE 3.46
Fixing the issue with extra padding

results in a very weird-looking

fallback (shown at the top)

FIGURE 3.47
Making up the lost height with

scale() provides a much better

fallback (shown at the top)

www.it-ebooks.info

http://www.it-ebooks.info/

nav > a::before {

 content: '';

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 z-index: -1;

 background: #ccc;

 background-image: linear-gradient(

 hsla(0,0%,100%,.6),

 hsla(0,0%,100%,0));

 border: 1px solid rgba(0,0,0,.4);

 border-bottom: none;

 border-radius: .5em .5em 0 0;

 box-shadow: 0 .15em white inset;

 transform: perspective(.5em) rotateX(5deg);

 transform-origin: bottom;

}

As you can see, we’ve applied backgrounds, borders, rounded corners, and

box shadows—and they just worked, no questions asked! Furthermore, by

merely changing the transform-origin to bottom left or bottom

right, we can get left- or right-slanted tabs, respectively! (For an example,

see Figure 3.49.)

CHAPTER 3: SHAPES112

FIGURE 3.48
The advantage of this technique is its

flexibility regarding styling

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

Despite all its virtues, this technique is not perfect by any means. It involves

a pretty major drawback: the angle of the sides depends on the width

of the element. Therefore, it’s tricky to get trapezoids with the same angles

when dealing with variable content. However, this works great for elements

that involve small width variations, such as a navigation menu. In those

cases, the difference is hardly noticeable.

▶ PLAY! play.csssecrets.io/trapezoid-tabs

■ CSS Transforms

w3.org/TR/css-transforms

SECRET #13: TRAPEZOID TABS 113

FIGURE 3.49
Slanted tabs by changing the

transform-origin

■

www.it-ebooks.info

http://play.csssecrets.io/trapezoid-tabs
http://w3.org/TR/css-transforms
http://www.it-ebooks.info/

Simple
pie charts

Prerequisites
CSS gradients, basic SVG, CSS animations, the “Striped backgrounds”

secret on page 40, the “Flexible ellipses” secret on page 76

The problem
Pie charts, even in their simplest two-color form, have traditionally been

anything but simple to create with web technologies, despite being incred-

ibly common for things ranging from simple stats to progress indicators

and timers.

Implementations usually involved either using an external image editor

to create multiple images for multiple values of the pie chart, or large Java-

Script frameworks designed for much more complex charts.

Although the feat is not as impossible as it once was, there’s still no

simple one-liner for it. However, there are many better, more maintainable

ways to achieve it today.

CHAPTER 3: SHAPES114

14

www.it-ebooks.info

http://www.it-ebooks.info/

transform-based solution
This solution is the best in terms of markup: it only needs one element and

the rest is done with pseudo-elements, transforms, and CSS gradients. Let‘s

start with a simple element:

<div class="pie"></div>

For now, let’s assume we want a pie chart that displays the hardcoded

percentage 20%. We will work on making it flexible later. Let’s first style the

element as a circle, which will be our background (Figure 3.50):

.pie {

 width: 100px; height: 100px;

 border-radius: 50%;

 background: yellowgreen;

}

Our pie chart will be green (specifically yellowgreen) with brown

(#655) showing the percentage. We might be tempted to use skew

transforms for the percentage part, but as a little experimentation shows,

they prove to be a very messy solution. Instead, we will color the left and

right parts of our circle in our two colors, and use a rotating pseudo-

element to uncover only the percentage we need.

To color the right part of our circle brown, we will use a simple linear

gradient:

background-image:

 linear-gradient(to right, transparent 50%, #655 0);

As you can see in Figure 3.51, this is all that’s needed. Now, we can proceed

to styling the pseudo-element that will act as a mask:

SECRET #14: SIMPLE PIE CHARTS 115

FIGURE 3.50
Our starting point (or, a pie chart

showing 0%)

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

.pie::before {

 content: '';

 display: block;

 margin-left: 50%;

 height: 100%;

}

You can see in Figure 3.52 where our pseudo-element currently lies

relative to the pie element. Currently, it’s not styled and it doesn’t cover

anything. It’s merely an invisible rectangle. To start styling it, let’s make a few

observations:

■ Because we want it to cover the brown part of our circle, we need to

apply a green background to it, using background-color: inherit to

avoid duplication, as we want it to have the same background color as its

parent.

■ We want it to rotate around the circle’s center, which is on the middle

of the pseudo-element’s left side, so we should apply a transform-

origin of 0 50% to it, or just left.

■ We don’t want it to be a rectangle, as it makes it bleed past the edges of

the pie chart, so we need to either apply overflow: hidden to the .pie,

or an appropriate border-radius to make it a semicircle.

Putting it all together, our pseudo-element’s CSS will look like this:

.pie::before {

 content: '';

 display: block;

 margin-left: 50%;

 height: 100%;

 border-radius: 0 100% 100% 0 / 50%;

 background-color: inherit;

 transform-origin: left;

}

CHAPTER 3: SHAPES116

FIGURE 3.51
Coloring the right part of our circle

brown, with a simple linear gradient

FIGURE 3.52
The pseudo-element that will act as

a mask is shown here with dashed

lines

! Careful not to use

background: inherit;,

instead of the background-

color: inherit;, otherwise the

gradient will be inherited too!

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

Our pie currently looks like Figure 3.54. This is where the fun begins!

We can start rotating the pseudo-element, by applying a rotate()

transform. For the 20% we were trying to achieve, we can use a value of

72deg (0.2 × 360 = 72), or .2turn, which is much more readable. You can

see how it looks for a few other values as well, in Figure 3.53.

We might be tempted to think we’re done, but unfortunately it’s not

that simple. Our pie chart works great for displaying percentages from 0 to

50%, but if we try to depict a 60% percentage (by applying a .6turn

rotation), Figure 3.55 happens. Don’t lose hope yet though, as we can —

and we will — fix this!

If we think about 50%–100% percentages as a separate problem, we

might notice that we can use an inverted version of the previous solu-

tion for them: a brown pseudo-element, rotating from 0 to .5turn, re-

spectively. So, for a 60% pie, the pseudo-element code would look like this:

.pie::before {

 content: '';

 display: block;

 margin-left: 50%;

 height: 100%;

 border-radius: 0 100% 100% 0 / 50%;

 background: #655;

 transform-origin: left;

 transform: rotate(.1turn);

}

You can see this in action in Figure 3.56. Because we’ve now figured out a

way to depict any percentage, we could even animate the pie chart from

0% to 100% with CSS animations, creating a fancy progress indicator:

@keyframes spin {

 to { transform: rotate(.5turn); }

}

SECRET #14: SIMPLE PIE CHARTS 117

FIGURE 3.53
Our simple pie chart showing

different percentages; from top to

bottom: 10% (36deg or .1turn),

20% (72deg or .2turn), 40%

(144deg or .4turn)

www.it-ebooks.info

http://www.it-ebooks.info/

@keyframes bg {

 50% { background: #655; }

}

.pie::before {

 content: '';

 display: block;

 margin-left: 50%;

 height: 100%;

 border-radius: 0 100% 100% 0 / 50%;

 background-color: inherit;

 transform-origin: left;

 animation: spin 3s linear infinite,

 bg 6s step-end infinite;

}

▶ PLAY! play.csssecrets.io/pie-animated

All this is good, but how do we style multiple static pie charts with

different percentages, which is the most common use case? Ideally, we

want to be able to type something like this:

<div class="pie">20%</div>

<div class="pie">60%</div>

...and get two pie charts, one showing 20%, and the other one showing

60%. First, we will explore how we can do it with inline styles, and then

we could always write a short script to parse the text content and add said

inline styles, for code elegance, encapsulation, maintainability, and

perhaps most importantly, accessibility.

The challenge to controlling the pie chart percentage with inline styles

is that the CSS code that is responsible for setting the percentage is set on

the pseudo-element. As you already know, we cannot set inline styles

on pseudo-elements, so we need to be inventive.

CHAPTER 3: SHAPES118

FIGURE 3.54
Our pseudo-element (shown here

with a dashed outline) after we

finished styling it

FIGURE 3.55
Our pie chart breaks for percentages

greater than 50% (shown here:

60%)

FIGURE 3.56
Our now correct 60% pie

HTML

www.it-ebooks.info

http://play.csssecrets.io/pie-animated
http://www.it-ebooks.info/

The solution comes from one of the most unlikely places. We are

going to use the animation we already presented, but it will be

paused. Instead of running it like a normal animation, we are going to use

negative animation delays to step through to any point in the ani-

mation statically and stay there. Confused? Yes, a negative animation-

delay is not only allowed by the specification, but is very useful for cases

like this:

“A negative delay is valid. Similar to a delay of 0s, it means that the ani-

mation executes immediately, but is automatically progressed by the ab-

solute value of the delay, as if the animation had started the specified

time in the past, and so it appears to start partway through its active

duration.”

— CSS Animations Level 1 (w3.org/TR/css-animations/#animation-delay)

Because our animation is paused, the first frame of it (defined by our

negative animation-delay), will be the only one displayed. The per-

centage shown on the pie chart will be the percentage of the total du-

ration our animation-delay is. For example, with the current duration

of 6s, we would need an animation-delay of -1.2s to display a 20%

percentage. To simplify the math, we will set a duration of 100s. Keep in

mind that because the animation is paused forever, the duration we

specify has no other effect.

There is one last issue: the animation is on the pseudo-element, but

we want to set an inline style on the .pie element. However, because

there is no animation on the <div>, we can set the animation-delay

on that as an inline style, and then use animation-delay: inherit;

on the pseudo-element. To put it together, our markup for the 20% and

60% pie charts will look like this:

<div class="pie"

 style="animation-delay: -20s"></div>

<div class="pie"

 style="animation-delay: -60s"></div>

SECRET #14: SIMPLE PIE CHARTS 119

TIP! You can use the same

technique for other cases

where you want to use values from

a spectrum without repetition and

complex calculations, as well as for

debugging animations by step-

ping through them. For a simpler,

isolated example of the technique,

check out play.csssecrets.io/

static-interpolation.

HTML

www.it-ebooks.info

http://w3.org/TR/css-animations/#animation-delay
http://play.csssecrets.io/static-interpolation
http://play.csssecrets.io/static-interpolation
http://www.it-ebooks.info/

And the CSS code we just presented for this animation would now become

(not including the .pie rule, as that stays the same):

@keyframes spin {

 to { transform: rotate(.5turn); }

}

@keyframes bg {

 50% { background: #655; }

}

.pie::before {

 /* [Rest of styling stays the same] */

 animation: spin 50s linear infinite,

 bg 100s step-end infinite;

 animation-play-state: paused;

 animation-delay: inherit;

}

At this point, we can convert the markup to use percentages as content,

like what we originally aimed for, and add the animation-delay inline

styles via a simple script:

$$('.pie').forEach(function(pie) {

 var p = parseFloat(pie.textContent);

 pie.style.animationDelay = '-' + p + 's';

});

Note that we left the text intact, because we need it for accessibility and

usability reasons. Currently, our pie charts look like Figure 3.57. We need

to hide the text, which we can do accessibly via color: transparent,

so that it remains selectable and printable. As extra polish, we can center

the percentage in the pie chart, so that it’s not in a random place when

the user selects it. To do that, we need to:

CHAPTER 3: SHAPES120

20%

60%

FIGURE 3.57
Our text, before we hide it

JS

www.it-ebooks.info

http://www.it-ebooks.info/

■ Convert the pie’s height to line-height (or add a line-height equal

to the height, but that’s pointless code duplication, because line-

height would set the computed height to that as well).

■ Size and position the pseudo-element via absolute positioning, so that it

doesn’t push the text down

■ Add text-align: center; to horizontally center the text.

The final code looks like this:

.pie {

 position: relative;

 width: 100px;

 line-height: 100px;

 border-radius: 50%;

 background: yellowgreen;

 background-image:

 linear-gradient(to right, transparent 50%, #655 0);

 color: transparent;

 text-align: center;

}

@keyframes spin {

 to { transform: rotate(.5turn); }

}

@keyframes bg {

 50% { background: #655; }

}

.pie::before {

 content: '';

 position: absolute;

 top: 0; left: 50%;

 width: 50%; height: 100%;

 border-radius: 0 100% 100% 0 / 50%;

 background-color: inherit;

SECRET #14: SIMPLE PIE CHARTS 121

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

 transform-origin: left;

 animation: spin 50s linear infinite,

 bg 100s step-end infinite;

 animation-play-state: paused;

 animation-delay: inherit;

}

▶ PLAY! play.csssecrets.io/pie-static

SVG solution
SVG makes a lot of graphical tasks easier, and pie charts are no exception.

However, instead of creating a pie chart with paths, which would require

complex math, we are going to use a little trick instead.

Let’s start from a circle:

<svg width="100" height="100">

<circle r="30" cx="50" cy="50" />

</svg>

Now, let’s apply some basic styling to it:

circle {

 fill: yellowgreen;

 stroke: #655;

 stroke-width: 30;

}

You can see our stroked circle in Figure 3.58. SVG strokes don’t just

consist of the stroke and stroke-width properties. There are many

other less popular stroke-related properties to fine-tune strokes. One of

CHAPTER 3: SHAPES122

FIGURE 3.58
Our starting point: a green SVG circle

with a fat #655 stroke

As you might know, these CSS

properties are also available as

attributes on the SVG element,

which might be convenient if porta-

bility is a concern.

SVG

www.it-ebooks.info

http://play.csssecrets.io/pie-static
http://www.it-ebooks.info/

them is stroke-dasharray, intended for creating dashed strokes. For

example, we could use it like this:

stroke-dasharray: 20 10;

This means we want dashes of length 20 with gaps of length 10, like the

ones in Figure 3.59. At this point, you might have started wondering what

on Earth this SVG stroke primer has to do with pie charts. It starts getting

clearer when we apply a stroke with a dash width of 0 and a gap width

greater than or equal to the circumference of our circle (C = 2πr, so in our

case C = 2π × 30 ≈ 189):

stroke-dasharray: 0 189;

As you can see in the first circle in Figure 3.60, this completely re-

moves any stroke, and we’re left with just a green circle. However, the fun

begins when we start increasing the first value (Figure 3.60): because

the gap is so long, we no longer get a dashed stroke, just a stroke that covers

the percentage of the circle’s circumference that we specify.

You might have started to figure out where this is going: if we reduce

the radius of our circle enough that it’s completely covered by its

stroke, we end up with something that resembles a pie chart quite closely.

For example, you can see in Figure 3.61 how that looks when applied to a

circle with a radius of 25 and a stroke-width of 50, like what’s produced

by the following code:

SECRET #14: SIMPLE PIE CHARTS 123

FIGURE 3.59
A simple dashed stroke, created with

stroke-dasharray

FIGURE 3.60
Multiple stroke-dasharray

values and their effect; from left to

right:

0 189

40 189

95 189

150 189

FIGURE 3.61
Our SVG graphic is starting to

resemble a pie chart

www.it-ebooks.info

http://www.it-ebooks.info/

<svg width="100" height="100">

 <circle r="25" cx="50" cy="50" />

</svg>

circle {

 fill: yellowgreen;

 stroke: #655;

 stroke-width: 50;

 stroke-dasharray: 60 158; /* 2π × 25 ≈ 158 */

}

Now, turning it into a pie chart like the ones we made with in the previous

solution is rather easy: we just need to add a larger green circle under-

neath the stroke, and rotate it 90° counterclockwise so that it starts

from the top middle. Because the <svg> element is also an HTML element,

we can just style that:

svg {

 transform: rotate(-90deg);

 background: yellowgreen;

 border-radius: 50%;

}

You can see the final result in Figure 3.62. This technique makes it even

easier to animate the pie chart from 0% to 100%. We just need to create a

CSS animation that animates stroke-dasharray from 0 158 to 158

158:

@keyframes fillup {

 to { stroke-dasharray: 158 158; }

}

CHAPTER 3: SHAPES124

Remember: SVG strokes are always

half inside and half outside the ele-

ment they’re applied to. In the fu-

ture, we will be able to control this

behavior.

FIGURE 3.62
The final SVG pie chart

SVG

www.it-ebooks.info

http://www.it-ebooks.info/

circle {

 fill: yellowgreen;

 stroke: #655;

 stroke-width: 50;

 stroke-dasharray: 0 158;

 animation: fillup 5s linear infinite;

}

As an additional improvement, we can specify a certain radius on the circle

so that the length of its circumference is (infinitesimally close to) 100, so

that we can specify the stroke-dasharray lengths as percentages,

without having to make calculations. Because the circumference is 2πr, our

radius needs to be 100
2π ≈ 15 . 915494309, which for our needs could be

rounded up to 16. We will also specify the SVG’s dimensions in the viewBox

attribute instead of the width and height attributes, to make it adjust to

the size of its container.

After these modifications, the markup for the pie chart of Figure 3.62

would now become:

<svg viewBox="0 0 32 32">

 <circle r="16" cx="16" cy="16" />

</svg>

And the CSS would become:

svg {

 width: 100px; height: 100px;

 transform: rotate(-90deg);

 background: yellowgreen;

 border-radius: 50%;

}

circle {

SECRET #14: SIMPLE PIE CHARTS 125

SVG

www.it-ebooks.info

http://www.it-ebooks.info/

 fill: yellowgreen;

 stroke: #655;

 stroke-width: 32;

 stroke-dasharray: 38 100; /* for 38% */

}

Note how easy it now is to change the percentage. Of course, even with

this simplification, we don’t want to have to repeat all this SVG markup for

every pie chart. It’s time for JavaScript to lend us its helping hand for a little

bit of automation. We will write a small script to take simple HTML markup

like the following…

<div class="pie">20%</div>

<div class="pie">60%</div>

…and add an inline SVG inside every .pie element, with all necessary el-

ements and attributes. It will also add a <title> element, for accessibil-

ity, so that screen reader users can also know what percentage is displayed.

The final script will look like this:

$$('.pie').forEach(function(pie) {

 var p = parseFloat(pie.textContent);

 var NS = "http://www.w3.org/2000/svg";

 var svg = document.createElementNS(NS, "svg");

 var circle = document.createElementNS(NS, "circle");

 var title = document.createElementNS(NS, "title");

 circle.setAttribute("r", 16);

 circle.setAttribute("cx", 16);

 circle.setAttribute("cy", 16);

 circle.setAttribute("stroke-dasharray", p + " 100");

 svg.setAttribute("viewBox", "0 0 32 32");

 title.textContent = pie.textContent;

 pie.textContent = '';

CHAPTER 3: SHAPES126

HTML

JS

www.it-ebooks.info

http://www.it-ebooks.info/

FUTURE Pie charts
Remember conical gradients from the “Checkerboards” section on page

55? They would be immensely helpful here too. All it would take for a pie chart

would be a circular element, with a conical gradient of two color stops. For

example, the 40% pie chart in Figure 3.53 would be as simple as:

.pie {

 width: 100px; height: 100px;

 border-radius: 50%;

 background: conic-gradient(#655 40%, yellowgreen 0);
}

Furthermore, once the updated attr() function defined in CSS Values Level 3 (w3.org/TR/css3-

values/#attr-notation) is widely implemented, you will be able to control the percentage with a simple

HTML attribute:

background: conic-gradient(#655 attr(data-value %), yellowgreen 0);

This also makes it incredibly easy to add a third color. For example, for a pie chart like the one shown on the

top right of this box, we would just add two more color stops:

background: conic-gradient(deeppink 20%, #fb3 0, #fb3 30%, yellowgreen 0);

 svg.appendChild(title);

 svg.appendChild(circle);

 pie.appendChild(svg);

});

SECRET #14: SIMPLE PIE CHARTS 127

www.it-ebooks.info

http://w3.org/TR/css3-values/#attr-notation
http://www.it-ebooks.info/

RELATED

SPECS

That’s it! You might be thinking that the CSS method is better, because

its code is simpler and less alien. However, the SVG method has certain

benefits that the pure CSS solution lacks:

■ It’s very easy to add a third color: just add another stroked circle and shift

its stroke with stroke-dashoffset. Alternatively, add its stroke length

to the stroke length of the circle before (underneath) it. How exactly do you

picture adding a third color to pie charts made with the first solution?

■ We don’t have to take any extra care for printing, as SVG elements are

considered content and are printed, just like elements. The first sol-

ution depends on backgrounds, and thus, will not print.

■ We can change the colors with inline styles, which means we can easily

change them via scripting (e.g., depending on user input). The first solu-

tion relies on pseudo-elements, which cannot take inline styles except via

inheritance, which is not always convenient.

▶ PLAY! play.csssecrets.io/pie-svg

■ CSS Transforms

w3.org/TR/css-transforms

■ CSS Image Values

w3.org/TR/css-images

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ Scalable Vector Graphics

w3.org/TR/SVG

■ CSS Image Values Level 4

w3.org/TR/css4-images

CHAPTER 3: SHAPES128

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/pie-svg
http://w3.org/TR/css-transforms
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/SVG
http://w3.org/TR/css4-images
http://www.it-ebooks.info/

Visual
Effects 4

www.it-ebooks.info

http://www.it-ebooks.info/

One-sided
shadows

The problem
One of the most common questions I see being asked about box-shadow

on Q&A websites is how a shadow could be applied on one (or, more rarely,

two) sides only. A quick search on stackoverflow.com reveals close to a

thousand results for this. This makes sense, as showing a shadow only on

one side creates a subtler, but equally realistic effect. Often, frustrated de-

velopers will even write to the CSS Working Group mailing list requesting

new properties like box-shadow-bottom to be able to do this. However,

such effects are already possible with clever use of the good ol’ box-

shadow property we’ve learned and love.

Shadow on one side
Most people use box-shadow with three lengths and a color, like so:

box-shadow: 2px 3px 4px rgba(0,0,0,.5);

CHAPTER 4: VISUAL EFFECTS130

15

www.it-ebooks.info

http://stackoverflow.com
http://www.it-ebooks.info/

The following series of steps is a good (albeit not completely technically

accurate) way to visualize how this shadow is drawn (Figure 4.1):

1. A rgba(0,0,0,.5) rectangle is drawn with the same dimensions and

position as our element.

2. It’s moved 2px to the right and 3px to the bottom.

3. It’s blurred by 4px with a Gaussian blur algorithm (or similar). This essentially

means that the color transition on the edges of the shadow between the

shadow color and complete transparency will be approximately as long as

double the blur radius (8px, in our example).

4. The blurred rectangle is then clipped where it intersects with our orig-

inal element, so that it appears to be “behind” it. This is a little different

from the way most authors visualize shadows (a blurred rectangle under-

neath the element). However, for some use cases, it’s important to realize

that no shadow will be painted underneath the element. For example,

if we set a semi-transparent background on the element, we will not see a

shadow underneath. This is different than text-shadow, which is not

clipped underneath the text.

The use of 4px blur radius means that the dimensions of our shadow

are approximately 4px larger than our element’s dimensions, so part of the

shadow will show through from every side of the element. We could change

the offsets to hide any shadow from the top and left, by increasing them to

at least 4px. However, then this results in a way too conspicuous shadow,

which doesn’t look nice (Figure 4.2). Also, even if this wasn’t a problem,

we wanted a shadow on only one side, not two, remember?

The solution lies in the lesser known fourth length parameter, speci-

fied after the blur radius, which is called the spread radius. The spread

radius increases or (if negative) decreases the size of the shadow by

SECRET #15: ONE-SIDED SHADOWS 131

FIGURE 4.1
Example mental model of a box-

shadow being painted

Unless otherwise noted, referring to

an element’s dimensions here means

the dimensions of its border box, not

its CSS width and height.

To be precise, we will see a 1px

shadow on the top (4px - 3px),

2px on the left (4px - 2px), 6px

on the right (4px + 2px), and 7px

on the bottom (4px + 3px). In

practice, it will look smaller because

the color transition on the edges is

not linear, like a gradient would be.

1.

2.

3.

4.

www.it-ebooks.info

http://www.it-ebooks.info/

the amount you specify. For example, a spread radius of -5px will reduce

the width and height of the shadow by 10px (5px on each side).

It logically follows that if we apply a negative spread radius whose ab-

solute value is equal to the blur radius, then the shadow has the exact same

dimensions as the element it’s applied on. Unless we move it with offsets

(the first two lengths), we will not see any of it. Therefore, if we apply a

positive vertical offset, we will start seeing a shadow on the bottom of our

element, but not on any of the other sides, which is the effect we were

trying to achieve:

box-shadow: 0 5px 4px -4px black;

You can see the result in Figure 4.3.

▶ PLAY! play.csssecrets.io/shadow-one-side

Shadow on two adjacent sides
Another frequently asked question concerns applying a shadow on two

sides. If the two sides are adjacent (e.g., right and bottom), then this is

easier: you can either settle for an effect like the one in Figure 4.2 or apply

a variation of the trick discussed in the previous section, with the following

differences:

■ We don’t want to shrink the shadow to account for blurring in both sides,

but only one of them. Therefore, instead of the spread radius having the

opposite value of the blur radius, it will be half of that.

■ We need both offsets, as we want to move the shadow both horizontally

and vertically. Their value needs to be greater or equal to half the blur radius,

as we want to hide the remaining shadow from the other two sides.

For example, here is how we can apply a black, 6px shadow to the

right and bottom sides:

CHAPTER 4: VISUAL EFFECTS132

FIGURE 4.2
Trying to hide the shadow from the

top and left sides by using offsets

equal to the blur radius

FIGURE 4.3
box-shadow on the bottom

side only

FIGURE 4.4
box-shadow on two adjacent sides

only

■

■

www.it-ebooks.info

http://play.csssecrets.io/shadow-one-side
http://www.it-ebooks.info/

RELATED

SPECS

box-shadow: 3px 3px 6px -3px black;

You can see the result in Figure 4.4.

▶ PLAY! play.csssecrets.io/shadow-2-sides

Shadow on two opposite sides
It starts getting trickier when we want a shadow on two opposite sides, such

as the left and right. Because the spread radius is applied on all sides equally

(i.e., there is no way to specify that we want to enlarge the shadow hori-

zontally and shrink it vertically), the only way to do this is to use two shad-

ows, one on each side. Then we basically apply the trick discussed in the

“Shadow on one side” section on page 130 twice:

box-shadow: 5px 0 5px -5px black,

 -5px 0 5px -5px black;

You can see the result in Figure 4.5.

▶ PLAY! play.csssecrets.io/shadow-opposite-sides

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

SECRET #15: ONE-SIDED SHADOWS 133

There are discussions in the CSS WG

about allowing for separate hori-

zontal/vertical spread radius val-

ues in the future, which would sim-

plify this.

FIGURE 4.5
box-shadow on two opposite sides

■

www.it-ebooks.info

http://play.csssecrets.io/shadow-2-sides
http://play.csssecrets.io/shadow-opposite-sides
http://w3.org/TR/css-backgrounds
http://www.it-ebooks.info/

Irregular drop
shadows

Prerequisites
box-shadow

The problem
box-shadow works great when we want to cast a drop shadow on a rec-

tangle or any shape that can be created with border-radius (refer to the

“Flexible ellipses” secret on page 76 for a few examples on that). How-

ever, it becomes less useful when we have pseudo-elements or other

semi-transparent decorations, because box-shadow shamelessly ig-

nores transparency. Some examples include:

■ Semi-transparent images, background images, or border-images (e.g., a

vintage gold picture frame)

■ Dotted, dashed, or semi-transparent borders with no background (or when

background-clip is not border-box)

■ Speech bubbles, with their pointer created via a pseudo-element

CHAPTER 4: VISUAL EFFECTS134

16

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

■ Cutout corners like the ones we saw in the “Cutout corners” secret on

page 96

■ Most folded corner effects, including the one later in this chapter

■ Shapes created via clip-path, like the diamond images in the “Diamond

images” secret on page 90

The results of the futile attempt to apply box-shadow to some of them is

shown in Figure 4.6. Is there a solution for such cases, or do we have to

give up shadows altogether?

The solution
The Filter Effects specification (w3.org/TR/filter-effects) offers a

solution to this problem, through a new filter property, borrowed from

SVG. However, although CSS filters are basically SVG filters, they do not

require any SVG knowledge. Instead, they are specified through a num-

ber of convenient functions, such as blur(), grayscale(), or—wait for

it—drop-shadow()! You may even daisy-chain multiple filters if you want

to, by whitespace separating them, like this:

filter: blur() grayscale() drop-shadow();

The drop-shadow() filter accepts the same parameters as basic box-

shadows, meaning no spread radius, no inset keyword, and no multiple,

comma-separated shadows. For example, instead of:

SECRET #16: IRREGULAR DROP SHADOWS 135

FIGURE 4.6
Elements with CSS styling that

renders box-shadow useless; the

value of the box-shadow applied is

2px 2px 10px rgba(0,0,0,.5)

LIMITED
SUPPORT

■

■

■

www.it-ebooks.info

http://w3.org/TR/filter-effects
http://www.it-ebooks.info/

box-shadow: 2px 2px 10px rgba(0,0,0,.5);

we would write:

filter: drop-shadow(2px 2px 10px rgba(0,0,0,.5));

You can see the result of this drop-shadow() filter when applied on

the same elements as Figure 4.6 in Figure 4.7.

The best thing about CSS filters is that they degrade gracefully: when they

are not supported, nothing breaks, there is just no effect applied. You can

get slightly better browser support by using an SVG filter alongside,

if you absolutely need this effect to work in as many browsers as possible.

You can find the corresponding SVG filters for every filter function in the

Filter Effects specification (w3.org/TR/filter-effects/). You can in-

clude both the SVG filter and the simplified CSS one alongside and let the

cascade take care of which one wins:

filter: url(drop-shadow.svg#drop-shadow);

filter: drop-shadow(2px 2px 10px rgba(0,0,0,.5));

Unfortunately, if the SVG filter is a separate file, it’s not as customizable as

a nice, human-friendly function that’s right in your CSS code, and if it’s inline,

it clutters the code. The parameters are fixed inside the file, and it’s not

practical to have multiple files if we want a slightly different shadow. We

could use data URIs (which would also save the extra HTTP request), but

CHAPTER 4: VISUAL EFFECTS136

! These might use different blur

algorithms, so you might need

to adjust your blur value!

FIGURE 4.7
A drop-shadow() filter, applied to

the elements from Figure 4.6

www.it-ebooks.info

http://www.w3.org/TR/filter-effects/
http://www.it-ebooks.info/

RELATED

SPECS

they would still contribute to a large filesize. Because this is a fallback, it

makes sense to use one or two variations, even for slightly different drop-

shadow() filters.

Another consideration to keep in mind is that every non-transparent

area will cast a shadow indiscriminately, including text (when your back-

ground is transparent), as you have already seen in Figure 4.7. You might

think you can cancel this by using text-shadow: none;, but text-

shadow is completely separate and will not cancel the effects of a drop-

shadow() filter on text. In addition, if you’re using text-shadow to cast

an actual shadow on the text, this shadow will also be shadowed by a drop-

shadow() filter, essentially creating a shadow of a shadow! Take a

look at the following example CSS code (and excuse the cheesiness of the

result—it’s trying to demonstrate the issue in all its weirdness):

color: deeppink;

border: 2px solid;

text-shadow: .1em .2em yellow;

filter: drop-shadow(.05em .05em .1em gray);

You can see a sample rendering in Figure 4.8, showing both the text-

shadow and the drop-shadow() it casts.

▶ PLAY! play.csssecrets.io/drop-shadow

■ Filter Effects

w3.org/TR/filter-effects

SECRET #16: IRREGULAR DROP SHADOWS 137

FIGURE 4.8
text-shadows also cast a shadow

through the drop-shadow() filter

■

www.it-ebooks.info

http://play.csssecrets.io/drop-shadow
http://w3.org/TR/filter-effects
http://www.it-ebooks.info/

Color
tinting

Prerequisites
HSL color model, background-size

The problem
Adding a color tint to a grayscale image (or an image that has been con-

verted to grayscale) is a popular and elegant way to give visual unity to a

group of photos with very disparate styles. Often, the effect is applied stat-

ically and removed on :hover and/or some other interaction.

Traditionally, we use an image editing application to create two versions

of the image, and write some simple CSS code to take care of swapping

them. This approach works, but it adds bloat and extra HTTP requests, and

is a maintenance nightmare. Imagine deciding to change the color of the

effect: you would have to go through all the images and create new mon-

ochrome versions!

CHAPTER 4: VISUAL EFFECTS138

17

www.it-ebooks.info

http://www.it-ebooks.info/

Other approaches involve overlaying a semi-transparent color on top of the

image or applying opacity to the image and overlaying it on a solid color.

However, this is not a real tint: in addition to not converting all the colors in

the image to tints of the target color, it also reduces contrast significantly.

There are also scripts that turn images into a <canvas> element and

apply the tint through JavaScript. This does produce proper tinting, but is

fairly slow and restrictive.

Wouldn’t it be so much easier to be able to apply a color tint to images

straight from our CSS?

Filter-based solution
Because there is no single filter function specifically designed for this effect,

we need to get a bit crafty and combine multiple filters.

The first filter we will apply is sepia(), which gives the image a de-

saturated orange-yellow tint, with most pixels having a hue of around

35–40. If this is the color we wanted, then we’re done. However, in most

cases it won’t be. If our color is more saturated, we can use the

saturate() filter to increase the saturation of every pixel. Let’s assume

SECRET #17: COLOR TINTING 139

FIGURE 4.9
The CSSConf 2014 website used this

effect for speaker photos, but

showed the full color picture on

hover and focus

LIMITED
SUPPORT

www.it-ebooks.info

http://www.it-ebooks.info/

we want to give the image a tint of hsl(335, 100%, 50%). We need

to increase saturation quite a bit, so we will use a parameter of 4. The exact

value depends on your case, and we generally have to eyeball it. As

Figure 4.11 demonstrates, this combined filter gives our image a warm

golden tint.

As nice as our image now looks, we didn’t want to colorize it with this

orangish yellow, but with a deep, bright pink. Therefore, we also need to

apply a hue-rotate() filter, to offset the hue of every pixel by the

degrees we specify. To make the hue 335 from around 40, we’d need to

add around 295 (335 - 40) to it:

filter: sepia() saturate(4) hue-rotate(295deg);

At this point, we’ve colorized our image and you can check out how it

looks in Figure 4.12. If it’s an effect that gets toggled on :hover or other

states, we could even apply CSS transitions to it:

img {

 transition: .5s filter;

 filter: sepia() saturate(4) hue-rotate(295deg);

}

img:hover,

img:focus {

 filter: none;

}

▶ PLAY! play.csssecrets.io/color-tint-filter

CHAPTER 4: VISUAL EFFECTS140

FIGURE 4.10
Top: Original image

Bottom: Image after sepia() filter

FIGURE 4.11
Our image after adding a

saturate() filter

FIGURE 4.12
Our image after adding a hue-

rotate() filter as well

www.it-ebooks.info

http://play.csssecrets.io/color-tint-filter
http://www.it-ebooks.info/

Blending mode solution
The filter solution works, but you might have noticed that the result is not

exactly the same as what can be obtained with an image editor. Even though

we were trying to colorize with a very bright color, the result still looks rather

washed out. If we try to increase the parameter in the saturate() filter,

we start getting a different, overly stylized effect. Thankfully, there is a

better way to approach this: blending modes!

If you’ve ever used an image editor such as Adobe Photoshop, you are

probably already familiar with blending modes. When two elements overlap,

blending modes control how the colors of the topmost element

blend with the colors of whatever is underneath it. When it comes to

colorizing images, the blending mode you need is luminosity. The

luminosity blending mode maintains the HSL lightness of the top-

most element, while adopting the hue and saturation of its back-

drop. If the backdrop is our color and the element with the blending mode

applied to it is our image, isn’t this essentially what color tinting is supposed

to do?

To apply a blending mode to an element, there are two properties

available to us: mix-blend-mode for applying blending modes to entire

elements and background-blend-mode for applying blending modes

to each background layer separately. This means that to use this method

on an image we have two options, neither of them ideal:

■ Wrapping our image in a container with a background color of the color

we want

■ Using a <div> instead of an image, with its background-image set to

the image we want to colorize and a second background layer underneath

with our color

Depending on the specific use case, we can choose either of the two. For

example, if we wanted to apply the effect to an element, we would

need to wrap it in another element. However, if we already have another

element, such as an <a>, we can use that:

SECRET #17: COLOR TINTING 141

LIMITED
SUPPORT

FIGURE 4.13
Comparison of the filter method

(top) and the blending mode

method (bottom)

HTML

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

Then, you only need two declarations to apply the effect:

a {

 background: hsl(335, 100%, 50%);

}

img {

 mix-blend-mode: luminosity;

}

Just like CSS filters, blending modes degrade gracefully: if they are not sup-

ported, no effect is applied but the image is still perfectly visible.

An important consideration is that while filters are animatable,

blending modes are not. We already saw how you can animate the picture

slowly fading into monochrome with a simple CSS transition on the filter

property, but you cannot do the same with blending modes. However, do

not fret, as this does not mean animations are out of the question, it just

means we need to think outside the box.

As already explained, mix-blend-mode blends the whole element

with whatever is underneath it. Therefore, if we apply the luminosity

blending mode through this property, the image is always going to be blen-

ded with something. However, using the background-blend-mode

property blends each background image layer with the ones underneath it,

unaware of anything outside the element. What happens then when we

only have one background image and a transparent background color?

You guessed it: no blending takes place!

We can take advantage of that observation and use the background-

blend-mode property for our effect. The HTML will have to be a little

different:

CHAPTER 4: VISUAL EFFECTS142

www.it-ebooks.info

http://www.it-ebooks.info/

<div class="tinted-image"

 style="background-image:url(tiger.jpg)">

</div>

Then we only need to apply CSS to that one <div>, as this technique does

not require any extra elements:

.tinted-image {

 width: 640px; height: 440px;

 background-size: cover;

 background-color: hsl(335, 100%, 50%);

 background-blend-mode: luminosity;

 transition: .5s background-color;

}

.tinted-image:hover {

 background-color: transparent;

}

However, as mentioned previously, neither of the two techniques are

ideal. The main issues at play here are:

■ The dimensions of the image need to be hardcoded in the CSS code.

■ Semantically, this is not an image and will not be read as such by screen

readers.

Like most things in life, there is no perfect way to do this, but in this section

we’ve seen three different ways to apply this effect, each with its own pros

and cons. The one you choose depends on the specific needs of your project.

▶ PLAY! play.csssecrets.io/color-tint

SECRET #17: COLOR TINTING 143

HTML

■

■

www.it-ebooks.info

http://play.csssecrets.io/color-tint
http://www.it-ebooks.info/

RELATED

SPECS

Hat tip to Dudley Storey (demosthenes.info) for coming up with the

animating trick for blending modes (demosthenes.info/blog/888/

Create-Monochromatic-Color-Tinted-Images-With-CSS-blend).

■ Filter Effects

w3.org/TR/filter-effects

■ Compositing and Blending

w3.org/TR/compositing

■ CSS Transitions

w3.org/TR/css-transitions

CHAPTER 4: VISUAL EFFECTS144

HAT TIP

■

■

■

www.it-ebooks.info

http://demosthenes.info
http://demosthenes.info/blog/888/Create-Monochromatic-Color-Tinted-Images-With-CSS-blend
http://demosthenes.info/blog/888/Create-Monochromatic-Color-Tinted-Images-With-CSS-blend
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transitions
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Frosted
glass effect

Prerequisites
RGBA/HSLA colors

The problem
One of the first use cases of semi-transparent colors was using them as

backgrounds, over photographic or otherwise busy backdrops, to decrease

contrast and make the text possible to read. The result is quite impressive,

but can still be hard to read, especially with very low opacity colors and/or

busy backdrops. For example, take a look at Figure 4.14, where the main

element has a semi-transparent white background. The markup looks

like this:

<main>

 <blockquote>

 “The only way to get rid of a temptation[…]”

CHAPTER 4: VISUAL EFFECTS146

18

We are using the term “backdrop”

here to mean the part of the page

that is underneath an element,

which shows through its semi-

transparent background.

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

 <footer>—

 <cite>

 Oscar Wilde,

 The Picture of Dorian Gray

 </cite>

 </footer>

 </blockquote>

</main>

And the CSS looks like this (with all irrelevant bits omitted for brevity):

body {

 background: url("tiger.jpg") 0 / cover fixed;

}

main {

 background: hsla(0,0%,100%,.3);

}

As you can observe, the text is really hard to read, due to the image behind

it being busy and the background color only being 25% opaque. We could

SECRET #18: FROSTED GLASS EFFECT 147

FIGURE 4.14
Our semi-transparent white

background makes the text hard to

read

www.it-ebooks.info

http://www.it-ebooks.info/

of course improve readability by increasing the alpha parameter of the

background color, but then the effect will not be as interesting (see

Figure 4.15).

In traditional print design, this issue is often addressed by blurring the

part of the photo that is underneath our text container. Blurred back-

grounds are not as busy, and thus, text on them is easier to read. Because

blurring is computationally expensive, in the past its toll on resources was

prohibitive for using this technique in websites and UI design. However, with

GPUs improving and hardware acceleration becoming more commonplace

for more and more things, these days it’s used quite frequently. In the past

few years, we have seen this technique in newer versions of both Microsoft

Windows, as well as Apple iOS and Mac OS X (Figure 4.16).

CHAPTER 4: VISUAL EFFECTS148

FIGURE 4.16
Translucent UIs with a blurred

backdrop have been becoming

increasingly common in the past few

years, as the toll of blurring on

resources has stopped being

prohibitively expensive (Apple iOS

8.1 is shown on the left and Apple

OS X Yosemite is shown on the

right)

FIGURE 4.15
Increasing the alpha value of our

background color does fix the

readability issue, but also makes our

design less interesting

www.it-ebooks.info

http://www.it-ebooks.info/

We also got the ability to blur elements in CSS, via the blur() filter, which

is essentially a hardware-accelerated version of the corresponding SVG blur

filter primitive that we always had for SVG elements. However, if we directly

apply a blur() filter to our example, the entire element is blurred, which

makes it even less readable. (Figure 4.17). Is there any way to just apply it

to the element’s backdrop (i.e., the part of the background that is behind

our element)?

The solution
Provided that our element has a background-attachment of fixed,

this is possible, albeit a bit tricky. Because we cannot apply the blurring to

our element itself, we will apply it to a pseudo-element that is posi-

tioned behind the element and whose background seamlessly

matches the one on <body>.

First, we add the pseudo-element and position it absolutely, with all

offsets being 0, so that it covers the entire <main> element:

main {

 position: relative;

 /* [Rest of styling] */

SECRET #18: FROSTED GLASS EFFECT 149

FIGURE 4.17
Applying a blur() filter to the

element itself makes things worse

It’s also possible even with non-fixed

backgrounds, just messier.

www.it-ebooks.info

http://www.it-ebooks.info/

}

main::before {

 content: '';

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 background: rgba(255,0,0,.5); /* for debugging */

}

We also applied a semi-transparent red background, so we can see

what we’re doing, otherwise debugging becomes difficult when we’re deal-

ing with a transparent (and therefore, invisible) element. As you can see in

Figure 4.18, our pseudo-element is currently above our content, thus ob-

scuring it. We can fix this by adding z-index: -1; (Figure 4.20).

Now it’s time to replace that semi-transparent red background, with

one that actually matches our backdrop, either by copying over the <body>

background, or by splitting it into its own rule. Can we blur now? Let’s

try it:

body, main::before {

 background: url("tiger.jpg") 0 / cover fixed;

}

main {

 position: relative;

 background: hsla(0,0%,100%,.3);

}

main::before {

 content: '';

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 filter: blur(20px);

}

CHAPTER 4: VISUAL EFFECTS150

! Be careful when using a nega-

tive z-index to move a child

underneath its parent: if said parent

is nested within other elements with

backgrounds, the child will go below

those as well.

Why not just use background:

inherit on main::before? Be-

cause then it will inherit from main,

not body, so the pseudo-element

will get a semi-transparent white

background as well.

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see in Figure 4.21, we’re pretty much there. The blurring effect

looks perfect toward the middle, but is less blurred closer to the edges. This

happens because blurring reduces the area that is covered by a solid color

by the blur radius. Applying a red background to our pseudo-element

helps clarify what’s going on (Figure 4.22).

SECRET #18: FROSTED GLASS EFFECT 151

FIGURE 4.18
The pseudo-element is currently

obscuring the text

FIGURE 4.19
We fixed the faded blurring at the

edges, but now there is some

blurring outside our element too

www.it-ebooks.info

http://www.it-ebooks.info/

To circumvent this issue, we will make the pseudo-element at least 20px

(as much as our blur radius) larger than the dimensions of its contain-

er, by applying a margin of -20px or less to be on the safe side, as different

browsers might use different blurring algorithms. As Figure 4.19 demon-

strates, this fixes the issue with the faded blurring at the edges, but now

there is also some blurring outside our container, which makes it look like

a smudge instead of frosted glass. Thankfully, this is also easy to fix: we will

just apply overflow: hidden; to main, in order to clip that extraneous

blurring. The final code looks as follows, and its result can be seen in

Figure 4.23:

body, main::before {

 background: url("tiger.jpg") 0 / cover fixed;

}

main {

 position: relative;

 background: hsla(0,0%,100%,.3);

 overflow: hidden;

}

main::before {

CHAPTER 4: VISUAL EFFECTS152

FIGURE 4.20
Moving the pseudo-element behind

its parent, with z-index: -1;

www.it-ebooks.info

http://www.it-ebooks.info/

 content: '';

 position: absolute;

 top: 0; right: 0; bottom: 0; left: 0;

 filter: blur(20px);

 margin: -30px;

}

SECRET #18: FROSTED GLASS EFFECT 153

FIGURE 4.21
Blurring our pseudo-element almost

works, but its less blurry on the

edges, diminishing the frosted glass

illusion

FIGURE 4.22
Adding a red background helps

make sense of what’s happening

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

Note how much more readable our page has now become, and how much

more elegant it looks. It’s debatable whether the fallback for this effect

constitutes graceful degradation. If filters are not supported, we will get the

result we saw in the beginning (Figure 4.14). We can make our fallback a

bit more readable by increasing the opacity of the background color.

▶ PLAY! play.csssecrets.io/frosted-glass

■ Filter Effects

w3.org/TR/filter-effects

CHAPTER 4: VISUAL EFFECTS154

FIGURE 4.23
Our final result

■

www.it-ebooks.info

http://play.csssecrets.io/frosted-glass
http://w3.org/TR/filter-effects
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Folded corner
effect

Prerequisites
CSS transforms, CSS gradients, the “Cutout corners” secret on page

96

The problem
Styling one corner (usually the top-right or bottom-right one) of an element

in a way that makes it look folded, with various degrees of realism, has

been a very popular decoration for years now.

These days, there are several helpful pure CSS solutions, the first of

which was published as easly as 2010 by the pseudo-element master, Nic-

olas Gallagher (nicolasgallagher.com/pure-css-folded-corner-

effect). Their main premise is usually adding two triangles on the top-left

corner: one for the page flip and a white one, to obscure the corner of the

main element. These triangles are usually created with the old border trick.

CHAPTER 4: VISUAL EFFECTS156

19

www.it-ebooks.info

http://http://nicolasgallagher.com/pure-css-folded-corner-effect
http://http://nicolasgallagher.com/pure-css-folded-corner-effect
http://www.it-ebooks.info/

Impressive as these solutions were for their time, today they are very limiting

and fall short in several cases:

■ When the background behind our element is not a solid color, but a pattern,

a texture, a photo, a gradient, or any other kind of background image

■ When we want a different angle than 45° and/or a rotated fold

Is there a way to create a more flexible folded corner effect with CSS that

doesn’t fail on these cases?

The 45° solution
We will start from an element with a beveled top-right corner, which is

created with the gradient-based solution in the “Cutout corners” secret

on page 96. To create a top-right bevel corner of size 1em with this tech-

nique, the code looks like this and the sample rendering can be seen in

Figure 4.25:

background: #58a; /* Fallback */

background:

 linear-gradient(-135deg, transparent 2em, #58a 0);

At this point, we’re already halfway done: all we need to do is to add a

darker triangle for the page flip. We will do that by adding another

SECRET #19: FOLDED CORNER EFFECT 157

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.25
Our starting point: an element with

a top-right cutout corner, done via a

gradient

FIGURE 4.24
Several earlier redesigns of css-

tricks.com featured folded

corners, on the top-right corner of

every article box

■

■

www.it-ebooks.info

http://css-tricks.com
http://css-tricks.com
http://www.it-ebooks.info/

gradient to create the triangle, which we will resize to our needs with

background-size and position on the top-right corner.

To create the triangle, all we need is an angled linear gradient with two

stops that meet in the middle:

background:

 linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 no-repeat 100% 0 / 2em 2em;

You can see the result of having only this background in Figure 4.26.

The last step would be to combine them, and we’ll be done, right? Let’s try

that, making sure that the page flip triangle is above our cutout corner

gradient:

background: #58a; /* Fallback */

background:

 linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 no-repeat 100% 0 / 2em 2em,

 linear-gradient(-135deg, transparent 2em, #58a 0);

As you can see in Figure 4.27, the result is not exactly what we ex-

pected. Why don’t the sizes match? They’re both 2em!

The reason is that (as we’ve discussed in the “Cutout corners” secret

on page 96) the 2em corner size in our second gradient is in the color stop,

and thus is measured along the gradient line, which is diagonal. On the

other hand, the 2em length in background-size is the width and

height of the background tile, which is measured horizontally and

vertically.

To make the two align, we need to do one of the following, depending

on which of the two sizes we want to keep:

■ To keep the diagonal 2em size, we can multiply the background-size

with 2.

CHAPTER 4: VISUAL EFFECTS158

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.26
Our second gradient for the folded

triangle, isolated; the text is shown

here as faint gray instead of white,

so you can see where it is

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.27
Combining the two gradients

doesn’t produce exactly the

expected result

■

www.it-ebooks.info

http://www.it-ebooks.info/

■ To keep the horizontal and vertical 2em size, we can divide the color stop

position of our cutout corner gradient by 2.

Because the background-size is repeated twice, and most other CSS

measurements are not measured diagonally, going with the latter is usually

preferable. The color stop position will become 2
2

= 2 ≈ 1 . 414213562,

which we will round up to 1.5em:

background: #58a; /* Fallback */

background:

 linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 no-repeat 100% 0 / 2em 2em,

 linear-gradient(-135deg,

 transparent 1.5em, #58a 0);

As you can see in Figure 4.28, this finally gives us a nice, flexible, minimal-

istic rounded corner.

▶ PLAY! play.csssecrets.io/folded-corner

Solution for other angles
Folded corners in real life are rarely exactly 45°. If we want something

a tad more realistic, we can use a slightly different angle, for example

-150deg for a 30° one. If we just change the angle of the beveled corner,

however, the triangle representing the flipped part of the page will not ad-

just, resulting in breakage that looks like Figure 4.29. However, adjusting

its dimensions is not straightforward. The size of that triangle is not defined

by an angle, but by its width and height. How can we find what width and

height we need? Well, it’s time for some—gasp—trigonometry!

SECRET #19: FOLDED CORNER EFFECT 159

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.28
After changing the color stop

position of the blue gradient, our

folded corner finally works

! Make sure to have at least as

much padding as the corner

size, otherwise the text will overlap

the corner (because it’s just a back-

ground), spoiling the folded corner

illusion.

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.29
Changing the angle of our cutout

corner causes this breakage

■

www.it-ebooks.info

http://play.csssecrets.io/folded-corner
http://www.it-ebooks.info/

x

y
θ
r

y

x

The code currently looks like this:

background: #58a; /* Fallback */

background:

 linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 no-repeat 100% 0 / 2em 2em,

 linear-gradient(-150deg,

 transparent 1.5em, #58a 0);

As you can see in Figure 4.30, we basically need to calculate the length of

the hypotenuse from two 30-60-90 right triangles when we know the

length of one of their legs. As the trigonometric circle shown in Figure 4.31

reminds us, if we know the angles and the length of one of a right tri-

angle’s sides, we can calculate the length of its other two sides by using

sines, cosines, and the Pythagorean theorem. We know from math (or a

calculator) that cos 30° = 3
2 and sin 30° = 1

2 . We also know from the trig-

onometric circle that in our case, sin 30° = 1 . 5
x and cos 30° = 1 . 5

y .

Therefore:

1
2 = 1 . 5

x ⇒ x = 2 × 1.5 ⇒ x = 3

3
2 = 1 . 5

y ⇒ y = 2 × 1 . 5
3 ⇒ y = 3 ≈ 1.732050808

CHAPTER 4: VISUAL EFFECTS160

A 30-60-90 right triangle is a right

triangle whose other two angles are

30° and 60°.

1.5em

x

yz

FIGURE 4.30
Our cutout corner, enlarged (the

gray marked angles are 30°)

FIGURE 4.31
Sines and cosines help us calculate

the legs of right triangles based on

their angle and hypotenuse

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, we can also calculate z, via the Pythagorean theorem:

z = x2 + y2 = 32 + 32 = 3 + 9 = 12 = 2 3

We can now resize the triangle to match:

background: #58a; /* Fallback */

background:

 linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 no-repeat 100% 0 / 3em 1.73em,

 linear-gradient(-150deg,

 transparent 1.5em, #58a 0);

At this point, our corner looks like Figure 4.32. As you can see, the

triangle now does match our cutout corner, but the result looks even

less realistic! Although we might not be able to easily figure out why, our

eyes have seen many folded corners before and instantly know that this

grossly deviates from the pattern they are used to. You can help your con-

scious mind understand why it looks so fake by trying to fold an actual

sheet of paper in approximately this angle. There is literally no way to

fold it and make it look even vaguely like Figure 4.32.

As you can see in an actual, real-life folded corner, such as the one in

Figure 4.33, the triangle we need to create is slightly rotated and has the

same dimensions as the triangle we “cut” from our element’s corner. Be-

cause we cannot rotate backgrounds, it’s time to move the effect to a

pseudo-element:

.note {

 position: relative;

 background: #58a; /* Fallback */

 background:

 linear-gradient(-150deg,

 transparent 1.5em, #58a 0);

SECRET #19: FOLDED CORNER EFFECT 161

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.32
Although we did achieve the result

we wanted, it turns out that it looks

even less realistic than before

www.it-ebooks.info

http://www.it-ebooks.info/

}

.note::before {

 content: '';

 position: absolute;

 top: 0; right: 0;

 background: linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 100% 0 no-repeat;

 width: 3em;

 height: 1.73em;

}

At this point, we’ve just replicated the same effect as in Figure 4.32 with

pseudo-elements. Our next step would be to change the orientation of the

existing triangle by swapping its width and height to make it mirror

the cutout corner instead of complementing it. Then, we will rotate it by

30° ((90° – 30°) – 30°) counterclockwise, so that its hypotenuse becomes

parallel to our cutout corner:

.note::before {

 content: '';

 position: absolute;

 top: 0; right: 0;

 background: linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.4) 0)

 100% 0 no-repeat;

 width: 1.73em;

 height: 3em;

 transform: rotate(-30deg);

}

You can see how our note looks after these changes in Figure 4.34.

As you can see, we’re basically there and we just need to move the triangle

so that the hypotenuses of our two triangles (the dark one and the cutout

CHAPTER 4: VISUAL EFFECTS162

FIGURE 4.33
An analog version of the folded

corner effect (fancy sheet of paper

courtesy of Leonie and Phoebe

Verou)

www.it-ebooks.info

http://www.it-ebooks.info/

one) coincide. As things currently stand, we need to move the triangle both

horizontally and vertically, so it’s more difficult to figure out what to do. We

can make things easier for ourselves by setting transform-origin to

bottom right, so that the bottom-right corner of the triangle be-

comes the center of rotation, and thus, stays fixed in the same place:

.note::before {

 /* [Rest of styling] */

 transform: rotate(-30deg);

 transform-origin: bottom right;

}

As you can see in Figure 4.35, we now only need to move our triangle

vertically toward the top. To find the exact amount, we can use some ge-

ometry again. As you can see in Figure 4.36, the vertical offset our triangle

needs is x − y = 3 − 3 ≈ 1 . 267949192, which we can round up to 1.3em:

.note::before {

 /* [Rest of styling] */

 transform: translateY(-1.3em) rotate(-30deg);

 transform-origin: bottom right;

}

The sample rendering in Figure 4.37 confirms that this finally gives us

the effect we were going for. Phew, that was intense! In addition, now that

our triangle is generated via pseudo-elements, we can make it even more

realistic, by adding rounded corners, (actual) gradients, and box-

shadows! The final code looks as follows:

SECRET #19: FOLDED CORNER EFFECT 163

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.34
We’re starting to get there, but we

need to move the triangle

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.35
Adding transform-origin:

bottom right; makes things

easier: now we only need to move

our triangle vertically

x

y
x

x-y

FIGURE 4.36
Figuring out how much to move our

triangle isn’t as difficult as it first

looks

www.it-ebooks.info

http://www.it-ebooks.info/

.note {

 position: relative;

 background: #58a; /* Fallback */

 background:

 linear-gradient(-150deg,

 transparent 1.5em, #58a 0);

 border-radius: .5em;

}

.note::before {

 content: '';

 position: absolute;

 top: 0; right: 0;

 background: linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.2) 0, rgba(0,0,0,.4))

 100% 0 no-repeat;

 width: 1.73em;

 height: 3em;

 transform: translateY(-1.3em) rotate(-30deg);

 transform-origin: bottom right;

 border-bottom-left-radius: inherit;

 box-shadow: -.2em .2em .3em -.1em rgba(0,0,0,.15);

}

And you can admire the fruits of our labor in Figure 4.38.

▶ PLAY! play.csssecrets.io/folded-corner-realistic

The effect looks nice, but how DRY is it? Let’s think about some common

edits and variations one might want to make:

■ It only takes one edit to change the element dimensions and other met-

rics (padding, etc.).

■ It only takes two edits (one without the fallback) to change the back-

ground color.

CHAPTER 4: VISUAL EFFECTS164

! Make sure to put the

translateY() transform be-

fore the rotation, otherwise our tri-

angle will move along its 30° angle,

as every transformation also

transforms the entire coordinate

system of the element, not just the

element per se!

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.37
Our triangles are finally aligned and

touching

“The only way to get rid of a
temptation is to yield to it.”
— Oscar Wilde, The Picture
of Dorian Gray

FIGURE 4.38
With a few more effects, our folded

corner comes to life

■

■

www.it-ebooks.info

http://play.csssecrets.io/folded-corner-realistic
http://www.it-ebooks.info/

■ It takes four edits and several nontrivial calculations to change the fol-

ded corner size.

■ It takes five edits and several even less trivial calculations to change

the folded corner angle.

The last two are really bad. It might be time for a preprocessor mixin:

@mixin folded-corner($background, $size,

 $angle: 30deg) {

position: relative;

background: $background; /* Fallback */

background:

 linear-gradient($angle - 180deg,

 transparent $size, $background 0);

border-radius: .5em;

$x: $size / sin($angle);

$y: $size / cos($angle);

&::before {

 content: '';

 position: absolute;

 top: 0; right: 0;

 background: linear-gradient(to left bottom,

 transparent 50%, rgba(0,0,0,.2) 0,

 rgba(0,0,0,.4)) 100% 0 no-repeat;

 width: $y; height: $x;

 transform: translateY($y - $x)

 rotate(2*$angle - 90deg);

 transform-origin: bottom right;

 border-bottom-left-radius: inherit;

 box-shadow: -.2em .2em .3em -.1em rgba(0,0,0,.2);

}

}

SECRET #19: FOLDED CORNER EFFECT 165

SCSS

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

/* used as... */

.note {

 @include folded-corner(#58a, 2em, 40deg);

}

▶ PLAY! play.csssecrets.io/folded-corner-mixin

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

■ CSS Transforms

w3.org/TR/css-transforms

CHAPTER 4: VISUAL EFFECTS166

! At the time of writing, SCSS

does not support trigonometric

functions natively. To enable sup-

port, you could use the Compass

framework (compass-

style.org), among other libraries.

You could even write them yourself,

using the Taylor expansions of the

functions! LESS, on the other hand,

includes them out of the box.

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/folded-corner-mixin
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-transforms
http://compass-style.org
http://compass-style.org
http://www.it-ebooks.info/

Typography 5
www.it-ebooks.info

http://www.it-ebooks.info/

Hyphenation

The problem
Designers love text justification. If you look at any stunningly designed

magazine or book, you will see it everywhere. However, on the Web, justi-

fication is very sparingly used, and even less so by skilled designers. Why is

that, given that we’ve had text-align: justify; since CSS 1?

The reason becomes apparent if you look at Figure 5.1. Look at all the

“rivers of white” created by adjusting spacing to justify the text. Not only

does this look bad, it also hinders readability. In print, justification always

goes hand in hand with hyphenation. Because hyphenation allows words

to be broken down into syllables, much less whitespace adjustment is need-

ed, resulting in the text looking much more natural.

Until recently, there were ways to hyphenate text on the Web, but they

were the kind of solution that is worse than the problem. The usual way

involved using server-side code, JavaScript, online generators, or even just

our bare hands and lots of patience to insert soft hyphens (­) between

syllables, so that the browser knows where each word could be broken.

Usually, such an overhead was not worth it so the designer decided to go

with a different kind of text alignment instead.

CHAPTER 5: TYPOGRAPHY168

20

FIGURE 5.1
The default effect of CSS justification

www.it-ebooks.info

http://www.it-ebooks.info/

TRIVIA How does word wrapping work?
Like many things in computer science, word wrapping sounds simple and straightforward, but is actually

neither. There are many algorithms to accomplish it, but the most popular are the Greedy algorithm and the

Knuth-Pass algorithm. The Greedy algorithm works by analyzing one line at a time, filling it with as many

words (or syllables, when using hyphenation) as possible and moving on to the next line when it encounters

the first word/syllable that doesn’t fit.

The Knuth-Plass algorithm, derived from the names of the engineers who developed it, is far more

sophisticated. It works by taking the entire text into account, and produces much more aesthetically pleasing

results, but is also considerably slower to calculate.

Most desktop text processing applications use the Knuth-Plass algorithm. However, browsers currently

use the Greedy one for performance reasons, so their justification results are still not as good.

The solution
In CSS Text Level 3, a new property came along: hyphens. It accepts three

values: none, manual, and auto. Its initial value is manual, to match the

existing behavior: we could always hyphenate manually, with soft hyphens.

Obviously, hyphens: none; would disable this behavior, but the truly

magical results are achieved with this very simple line of CSS:

hyphens: auto;

That’s all it takes. You can see the result in Figure 5.2. Of course, for

this to work, you need to have declared a language through the lang

HTML attribute, but that’s something you should have done regardless.

If you want more fine-grained control over hyphenation (e.g., in short

intro text), you can still use a few soft hyphens (­) to help the

browser. The hyphens property will prioritize them, and then figure out

where else it can break words.

SECRET #20: HYPHENATION 169

FIGURE 5.2
The result of hyphens: auto

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

FUTURE Control over hyphenation
If you are coming from a more design-oriented background, you might be cringing at the idea of hyphenation

as a toggle, with no other settings to control how it breaks words.

You might be happy to hear that in the future, we will have more fine-grained control over hyphenation,

with several related properties planned in CSS Text Level 4 (dev.w3.org/csswg/css-text-4), some of

which are:

■ hyphenate-limit-lines

■ hyphenate-limit-chars

■ hyphenate-limit-zone

■ hyphenate-limit-last

■ hyphenate-character

CSS hyphenation degrades very gracefully. If the hyphens property is

not supported, you just get text justification that looks like Figure 5.1. Sure,

it’s not pretty or particularly pleasant to read, but is still perfectly accessible.

▶ PLAY! play.csssecrets.io/hyphenation

■ CSS Text

w3.org/TR/css-text

■ CSS Text Level 4

dev.w3.org/csswg/css-text-4

CHAPTER 5: TYPOGRAPHY170

■

■

■

■

■

■

■

www.it-ebooks.info

http://dev.w3.org/csswg/css-text-4
http://play.csssecrets.io/hyphenation
http://w3.org/TR/css-text
http://dev.w3.org/csswg/css-text-4
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Inserting
line breaks

The problem
The need to insert line breaks via CSS usually arises with definition lists

(Figure 5.3), but also in several other cases. More often than not, we use a

definition list because we want to be good netizens and use proper, se-

mantic markup, even when what we visually wanted was just a few lines

of name/value pairs. For example, consider this markup:

<dl>

 <dt>Name:</dt>

 <dd>Lea Verou</dd>

 <dt>Email:</dt>

 <dd>lea@verou.me</dd>

 <dt>Location:</dt>

 <dd>Earth</dd>

</dl>

CHAPTER 5: TYPOGRAPHY172

21
Name: Lea Verou
Email: lea@verou.me
Location: Earth

FIGURE 5.3
A definition list with a name/value

pair on each line

Name:
Lea Verou
Email:
lea@verou.me
Location:
Earth

FIGURE 5.4
The default styling of our definition

list

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

The visual result we wanted was something like the simple styling shown in

Figure 5.3. The first step is usually to apply some basic CSS like the

following:

dd {

 margin: 0;

 font-weight: bold;

}

However, because <dt>s and <dd>s are block elements, we end up

with something that looks more like Figure 5.4, with both names and values

on their own line. The next attempt usually involves trying different values

of the display property on <dt>s, <dd>s, or both, often even at random

as we slowly become more desperate. However, that way, we usually end

up with something like Figure 5.5.

Before we start pulling our hair out, cursing at the CSS gods, or giving

up separation of concerns and modifying our markup, is there a way to keep

both our sanity and our (coding) morals?

The solution
Basically, what we need to do is add line breaks at the end of every <dd>.

If we didn’t mind presentational markup, we could have done it with good

ol’
 elements, like so:

<!-- If you do this, kittens die -->

<dt>Name:</dt>

<dd>Lea Verou
</dd>

...

Then, we would apply display:inline; to both <dt>s and <dd>s

and we’d be done with it. Of course, not only is this a bad practice for

maintainability, but it also bloats our markup. If only we could use generated

SECRET #21: INSERTING LINE BREAKS 173

Name: Lea Verou Email:
lea@verou.me Location: Earth

FIGURE 5.5
display: inline just breaks

everything even worse

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

content to add line breaks that work like
 elements, then our problem

would be solved! But we can’t do that, right? …Or can we?

There is actually a Unicode character that corresponds to line breaks:

0x000A. In CSS, this would be written as "\000A", or more simply "\A".

We could use it as the content of our ::after pseudo-element in order to

add it at the end of every <dd>, like so:

dd::after {

 content: "\A";

}

This looks like it could work, but if we try it out, the results are disappointing:

nothing changed from Figure 5.5. However, this doesn’t mean we’re not

on the right track; it just means we forgot something. What we effectively

did with this CSS code is equivalent to adding line breaks in our HTML

markup, right before the closing </dd> tags. Remember what happens

with line breaks in HTML code? By default, they’re collapsed along with

the rest of our whitespace. This is usually a great thing, otherwise we’d have

to format our entire HTML page as one line! However, sometimes we want

to retain whitespace and line breaks, such as in code blocks. Remember

what we usually do in such cases? We apply white-space: pre;. We

can do exactly the same here, and apply it only to the generated line break.

We only have one line break character, so we don’t really care whether

whitespace will be preserved or not (because there is none), so any pre

value would work (pre, pre-line, pre-wrap). I would recommend

pre, for its wider browser support. Let’s put it all together:

dt, dd { display: inline; }

dd {

 margin: 0;

 font-weight: bold;

}

CHAPTER 5: TYPOGRAPHY174

Technically, 0x000A corresponds to

“Line Feed” characters, which is

what we get in JavaScript with

"\n". There is also the “Carriage Re-

turn” character ("\r" in JS, "\D" in

CSS), but that is not needed in

modern browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

dd::after {

 content: "\A";

 white-space: pre;

}

If you test this, you will see that it actually works and it renders exactly like

Figure 5.3! However, is it really flexible? Assume we want to add a second

email to the user our definition list was describing:

...

<dt>Email:</dt>

<dd>lea@verou.me</dd>

<dd>leaverou@mit.edu</dd>

...

Name: Lea Verou
Email: lea@verou.me
leaverou@mit.edu
Location: Earth

Now the result looks like Figure 5.6, which is really confusing. Because we

have a line break after every <dd>, every value is on a separate line, even

when there’s no need to wrap. It would be much better if the multiple values

were separated by commas, and on the same line (provided there is suffi-

cient space).

Ideally, we would want to target the last <dd> before a <dt> and only

add line breaks in that one, not in all <dd>s. However, this is still not possible

with the current state of CSS selectors, because they cannot look ahead to

elements after the subject in the DOM tree. We need to think of a different

way. One idea would be to try adding the line breaks before <dt>s instead

of after <dd>s:

SECRET #21: INSERTING LINE BREAKS 175

FIGURE 5.6
Our solution breaks with multiple

<dd>s

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

dt::before {

 content: '\A';

 white-space: pre;

}

However, this leads to a blank first line, as the selector applies to the first

<dt> too. To mitigate this, we could try using any of the following selectors

instead of dt:

■ dt:not(:first-child)

■ dt ~ dt

■ dd + dt

We are going to use the latter, as it also works when there are multiple

<dt>s for the same value, unlike the first two selectors which would break

in that case. We also need to separate the multiple <dd>s somehow, unless

we’re fine with multiple values being space separated (which is perfectly

fine for some cases, but not others). Ideally, we want to be able to tell the

browser “add a comma after every <dd> that precedes another <dd>,” but

again, that’s not possible with CSS selectors today. So, we will have to resort

to adding a comma before every <dd> that follows another <dd>. Here’s

the CSS we end up with (you can see the result in Figure 5.7):

dd + dt::before {

 content: '\A';

 white-space: pre;

}

dd + dd::before {

 content: ', ';

 font-weight: normal;

}

CHAPTER 5: TYPOGRAPHY176

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

Name: Lea Verou
Email: lea@verou.me, leaverou@mit.edu
Location: Earth

Keep in mind that if your markup includes (uncommented) whitespace be-

tween the multiple consecutive <dd>s, there will be a space before the

comma. There are many ways to fix this, none perfect. For example, neg-

ative margins:

dd + dd::before {

 content: ', ';

 margin-left: -.25em;

 font-weight: normal;

}

This would work, but it’s quite flimsy. If your content is displayed on a

different font, with different metrics, the space might be wider or nar-

rower than 0.25em, in which case the result could look a little off. How-

ever, with most fonts, the difference is negligible.

▶ PLAY! play.csssecrets.io/line-breaks

SECRET #21: INSERTING LINE BREAKS 177

FIGURE 5.7
The final result

www.it-ebooks.info

http://play.csssecrets.io/line-breaks
http://www.it-ebooks.info/

Zebra-striped
text lines

Prerequisites
CSS gradients, background-size, the “Striped backgrounds” secret

on page 40, the “Flexible background positioning” secret on page 32

The problem
When we first got the :nth-child()/:nth-of-type() pseudo-classes

a few years ago, one of the most common use cases was “zebra-striping”

tables (Figure 5.8). While this previously required server-side code, client-

side scripts, or tedious handcoding, it had now become as simple as these

lines of code:

tr:nth-child(even) {

 background: rgba(0,0,0,.2);

}

CHAPTER 5: TYPOGRAPHY178

22

www.it-ebooks.info

http://www.it-ebooks.info/

However, we were still left powerless when it came to applying the

same effect to lines of text, instead of rows in a table. This is especially

useful for making snippets of code more readable. Many authors ended

up using JavaScript to wrap every line in its own <div> so they can follow

the same :nth-child() technique, often abstracting this ugliness away

in the syntax highlighters. Not only is this suboptimal for theoretical purity

reasons (JS should not be concerned with styling), but also because too

many DOM elements can slow down the page and it’s a fragile solu-

tion anyway (what happens when you increase the text size and one of

the “lines” wraps?). Is there a better way?

The solution
Instead of applying a darker background to elements that represent rows,

let’s think about the problem in a different way. Why not apply a background

image to the whole element, and have the zebra striping baked in it?

This might sound like an terrible idea at first, but remember that we can

generate backgrounds directly in CSS, through CSS gradients, and size

them in ems, so that they automatically adapt to font-size changes.

Let’s give this idea a spin to make the code in Figure 5.9 zebra striped.

First, we need to create horizontal stripes, in the way described in the

“Striped backgrounds” secret on page 40. The background-size

SECRET #22: ZEBRA-STRIPED TEXT LINES 179

Many authors even ended up re-

questing an :nth-line() pseudo-

class from the CSS Working Group,

which was rejected for performance

reasons.

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.9
A snippet of code, without any zebra

striping, just a plain ol’ solid color

background

FIGURE 5.8
Tables with zebra-striped rows have

always been common both in UI

design (such as the Mac OS X

Yosemite file listing shown here) as

well as print design, as the zebra

striping helps our eyes follow a long

line more easily

www.it-ebooks.info

http://www.it-ebooks.info/

needs to be twice the line-height, as each stripe accounts for two

lines. The code for our first attempt would look like this:

padding: .5em;

line-height: 1.5;

background: beige;

background-image: linear-gradient(

 rgba(0,0,0,.2) 50%, transparent 0);

background-size: auto 3em;

As Figure 5.10 demonstrates, the result is very close to what we

wanted. We can even try to change the font size, and the stripes shrink or

grow as necessary! However, there’s a bit of a serious issue: the lines are

misaligned, which kind of defeats the purpose. Why is that?

If you look more closely at Figure 5.10, you will notice that the first

stripe begins at the top of our container, as we would expect from a back-

ground image. However, our code doesn’t start there, as then it would

look ugly. As you can see, we have applied a .5em padding to it, which is

exactly the offset our stripes have from where they should be.

One way to solve this would be to use background-position to

move the stripes .5em to the bottom. However, if we decide to later adjust

the padding, we would also need to adjust the background position as well,

which is not very DRY. Can we make the background automatically fol-

low the padding length?

Let’s remember background-origin from the “Flexible back-

ground positioning” secret on page 32. This is exactly what we need: a

way to tell the browser to use the content box edge as the reference

for resolving background-position, instead of the default, which is

the padding box edge. Let’s add that to the mix as well:

padding: .5em;

line-height: 1.5;

background: beige;

background-size: auto 3em;

CHAPTER 5: TYPOGRAPHY180

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.10
Our first attempt at zebra-striping

our code snippet

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.11
The final result

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

This assumes we’re dealing with code snippets. In the general case, it can also break when there are

inline elements that force a larger line height, such as images or inline content with a larger font-

size.

*

background-origin: content-box;

background-image: linear-gradient(rgba(0,0,0,.2) 50%,

 transparent 0);

As you can see in Figure 5.11, this was exactly what we needed to

achieve the zebra-striped effect! Because we used semi-transparent colors

in the stripes, we can even adjust the background color, and the zebra strip-

ing will still work. Basically, it’s so flexible that the only way to break it*

would be to change the line-height, without changing the

background-size accordingly.

▶ PLAY! play.csssecrets.io/zebra-lines

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

SECRET #22: ZEBRA-STRIPED TEXT LINES 181

Why did we not just use the

background shorthand for all our

background-related values? Because

then we would need a separate fall-

back declaration for older browsers,

so we would need to include beige

twice, making our code WET.

■

■

www.it-ebooks.info

http://play.csssecrets.io/zebra-lines
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://www.it-ebooks.info/

Adjusting
tab width

The problem
Code-heavy web pages, such as documentation or tutorials, come with their

own styling challenges. The <pre> and <code> elements that we use to

display code do come with some default styling by the user agent, which

looks like this:

pre, code {

 font-family: monospace;

}

pre {

 display: block;

 margin: 1em 0;

 white-space: pre;

}

However, this is hardly sufficient to account for all the unique chal-

lenges of displaying code. One of the biggest issues is that while tabs are

ideal for indenting code, they are often avoided on the Web because

CHAPTER 5: TYPOGRAPHY182

23

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.12
Code displayed with the default tab

width of eight characters

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

browsers display them with a width of eight characters (!). Take a look at

Figure 5.12 and see how bad such wide indents look and how wasteful

they are: our code didn’t even fit in its box!

The solution
Thankfully, in CSS Text Level 3, we got a new CSS property to control that:

tab-size. It accepts a number (of characters) or a length (which is rarely

useful). We would usually want to set it at 4 (meaning four characters wide),

or 2, which seems to be the latest trend in indent sizes:

pre {

 tab-size: 4;

}

As you can verify in Figure 5.13, it now looks much easier to read. You could

even set tab-size to 0 to completely disable tabs, but that’s rarely (if ever)

a good idea, as you can see for yourself in Figure 5.14. If the property is

not supported, nothing breaks—we just get the default awfully wide tabs

that we’ve learned to live with all these years.

▶ PLAY! play.csssecrets.io/tab-size

■ CSS Text

w3.org/TR/css-text

SECRET #23: ADJUSTING TAB WIDTH 183

Did you just wince at the mention of

tabs for indentation? The topic is out

of scope for this book, but you can

find my reasoning here

(lea.verou.me/2012/01/why-

tabs-are-clearly-superior).

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.13
The same code as Figure 5.12,

displayed with a tab width of two

characters

while (true) {

 var d = new Date();

 if (d.getDate()==1 &&

 d.getMonth()==3) {

 alert("TROLOLOL");

 }

}

FIGURE 5.14
Code displayed with a tab size of 0,

making all tab-based indents

disappear—don’t do this!■

www.it-ebooks.info

http://play.csssecrets.io/tab-size
http://w3.org/TR/css-text
http://lea.verou.me/2012/01/why-tabs-are-clearly-superior
http://www.it-ebooks.info/

Ligatures

The problem
Just like people, not all glyphs go naturally well together. For exam-

ple, take f and i in most serif fonts. The dot in the i often clashes with the

ascender of the f, making the pair look clumsy (first example in Figure 5.15).

To mitigate this, type designers often include extra glyphs in their

fonts, called ligatures. These are individually designed pairs and triplets

of glyphs, destined to be used by the typesetting program when their

equivalent characters are next to each other. For example, look at

Figure 5.15 for some common ligatures and how much better they look

than their equivalent glyphs put together.

There are also the so-called discretionary ligatures (Figure 5.16), which

are designed as a stylistic alternative, and not because there is an issue when

their equivalent pairs of characters are next to each other.

However, browsers never use discretionary ligatures by default (which

is the correct behavior) and often don’t even utilize common ligatures

(which is a bug). In fact, until recently, the only way to explicitly use any

ligature was to use its equivalent Unicode character—for example, typing

ﬁ for the fi ligature. This method brings more problems than

it solves:

CHAPTER 5: TYPOGRAPHY184

24
fi fi
fl fl

ffi ffi
FIGURE 5.15
Common ligatures found in most

serif typefaces

www.it-ebooks.info

http://www.it-ebooks.info/

■ Obviously, it makes the markup difficult to read and even more difficult to

write (good luck figuring out what word deﬁne is!).

■ If the current font doesn’t include this ligature character, the result will re-

semble ransom notes (Figure 5.17).

■ Not every ligature has an equivalent, standardized, Unicode character. For

example, the ct ligature does not correspond to any Unicode character and

any fonts that include it need to place it in the Unicode PUA (Private Use

Area) block.

■ It can break accessibility of the text, including copy/paste, searches, and

voice. Many applications are smart enough to handle this well, but not all.

It even breaks search in some browsers.

Surely, at this time and age, there ought to be a better way, right?

The solution
In CSS Fonts Level 3 (w3.org/TR/css3-fonts), the good ol’ font-

variant was converted to a shorthand, comprised of many new long-

hand properties. One of them is font-variant-ligatures, designed

specifically for the purpose of turning ligatures on and off. To turn on all

possible ligatures, you would have to use three identifiers:

font-variant-ligatures: common-ligatures

 discretionary-ligatures

 historical-ligatures;

The property is inherited. You might find that discretionary ligatures can

hinder readability and you might want to turn them off. In that case, you

might want to only turn on common ligatures:

font-variant-ligatures: common-ligatures;

SECRET #24: LIGATURES 185

In fact, the humble ampersand (&)

we all know and love started off as a

ligature of the letters E and t (“et” is

latin for “and”).

st st
ct ct

FIGURE 5.16
Discretionary ligatures found in

many professionally designed serif

typefaces

piffle
FIGURE 5.17
Using hardcoded ligatures can often

have awful results, when the used

font doesn’t have a glyph for our

ligature

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css3-fonts
http://www.it-ebooks.info/

RELATED

SPECS

You can even explicitly turn the other two kinds off:

font-variant-ligatures: common-ligatures

 no-discretionary-ligatures

 no-historical-ligatures;

font-variant-ligatures also accepts the value none, which turns off

ligatures altogether. Don’t use none unless you absolutely know what

you’re doing. To reset font-variant-ligatures to its initial value, you

should use normal, not none.

▶ PLAY! play.csssecrets.io/ligatures

CSS Fonts

w3.org/TR/css-fonts

CHAPTER 5: TYPOGRAPHY186

www.it-ebooks.info

http://play.csssecrets.io/ligatures
http://w3.org/TR/css-fonts
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Fancy
ampersands

Prerequisites
Basic font embedding through @font-face rules

The problem

You will find many hymns to the humble ampersand in typographic litera-

ture. No other character can instantly add the elegance a nicely designed

ampersand has the power to add. Entire websites have been devoted to

finding the font with the best looking ampersands. However, the font with

the nicest ampersand is not necessarily the one you want for the rest of your

text. After all, a really beautiful and elegant effect for headlines is the

CHAPTER 5: TYPOGRAPHY188

25

FIGURE 5.18
A few nice ampersands in fonts that

are readily available in most

computers; from left to right:

Baskerville, Goudy Old Style,

Garamond, Palatino (all italic)

www.it-ebooks.info

http://www.it-ebooks.info/

contrast between a nice sans serif font and beautiful, intricate serif

ampersands.

Web designers realized this a while ago, but the techniques employed

to achieve it are rather crude and tedious. They usually involve wrapping

every ampersand with a , through a script or manually, like so:

HTML & CSS

Then, we apply the font styling we want to just the .amp class:

.amp {

 font-family: Baskerville, "Goudy Old Style",

 Garamond, Palatino, serif;

 font-style: italic;

}

This works fine and you can see the before and after in Figure 5.19. How-

ever, the technique to achieve it is rather messy and sometimes even down-

right impossible, when we cannot easily modify the HTML markup (e.g.,

when using a CMS). Can’t we just tell CSS to style certain characters

differently?

The solution
It turns out that we can, indeed, style certain characters (or even ranges of

characters) with a different font, but the way to do it is not as straightfor-

ward as you might have hoped.

We usually specify multiple fonts (font stacks) in font-family dec-

larations so that in case our top preference is not available, the browser can

fall back to other fonts that would also fit our design. However, many

authors forget that this works on a per-character basis as well. If a font

is available, but only contains a few characters, it will be used for those

characters and the browser will fall back to the other fonts for the rest. This

SECRET #25: FANCY AMPERSANDS 189

HTML & CSS
HTML & CSS
FIGURE 5.19
Our “HTML & CSS” headline, before

and after the ampersand treatment

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

applies to both local and embedded fonts included through @font-

face rules.

It follows that if we have a font with only one character (guess which

one!), it will only be used for that one character, and all others will get the

second, third, etc. font from our font stack. So, we have an easy way to only

style ampersands: create a web font with just the ampersand we want, in-

clude it through @font-face, then use it first in your font stack:

@font-face {

 font-family: Ampersand;

 src: url("fonts/ampersand.woff");

}

h1 {

 font-family: Ampersand, Helvetica, sans-serif;

}

While this is very flexible, it’s suboptimal if all we wanted was to style

ampersands with one of the built-in fonts. Not only is it a hassle to create

a font file, it also adds an extra HTTP request, not to mention the potential

legal issues, if the font you were going for forbids subsetting. Is there a

way to use local fonts for this?

You might know that the src descriptor in @font-face rules also

accepts a local() function, for specifying local font names. Therefore,

instead of a separate web font, you could instead specify a font stack of

local fonts:

@font-face {

 font-family: Ampersand;

 src: local('Baskerville'),

 local('Goudy Old Style'),

 local('Garamond'),

 local('Palatino');

}

CHAPTER 5: TYPOGRAPHY190

HTML & CSS
FIGURE 5.20
Including local fonts through

@font-face results in them being

applied to the whole text by default

www.it-ebooks.info

http://www.it-ebooks.info/

However, if you try to apply the Ampersand font now, you will notice that

our serif font was applied to the entire text (Figure 5.20), as these fonts

include all characters. This doesn’t mean we’re going the wrong way; it just

means we are missing a descriptor to declare that we are only interested

in the ampersand glyph from these local fonts. Such a descriptor exists, and

its name is unicode-range.

The unicode-range descriptor only works inside @font-face rules

(hence the term descriptor; it is not a CSS property) and limits the characters

used to a subset. It works with both local and remote fonts. Some browsers

are even smart enough to not download remote fonts if those characters

are not used in the page!

Unfortunately, unicode-range is as cryptic in its syntax as it is useful

in its application. It works with Unicode codepoints, not literal characters.

Therefore, before using it, you need to find the hexadecimal codepoint of

the character(s) you want to specify. There are numerous online sources for

that, or you can just use the following snippet of JS in the console:

"&".charCodeAt(0).toString(16); // returns 26

Now that you have the hex codepoint(s), you can prepend them with U+

and you’ve already specified a single character! Here’s how the declaration

would look for our ampersand use case:

unicode-range: U+26;

If you wanted to specify a range of characters, you would still need one U+,

like so: U+400-4FF. In fact, for that kind of range, you could have used

wildcards and specified it as U+4?? instead. Multiple characters or

ranges are also allowed, separated by commas, such as U+26, U+4??,

U+2665-2670. In this case, however, a single character is all we need. Our

code now looks like this:

SECRET #25: FANCY AMPERSANDS 191

! String#charCodeAt() re-

turns incorrect results for Uni-

code characters beyond the BMP

(Basic Multilingual Plane). However,

99.9% of the characters you will

need to look up will be in it. If the

result you get is in the D800-DFFF

range, it means you have an “astral”

character and you’re better off using

a proper online tool to figure out

what its Unicode codepoint is. The

ES6 method

String#codePointAt() will

solve this issue.

JS

www.it-ebooks.info

http://www.it-ebooks.info/

@font-face {

 font-family: Ampersand;

 src: local('Baskerville'),

 local('Goudy Old Style'),

 local('Palatino'),

 local('Book Antiqua');

 unicode-range: U+26;

}

h1 {

 font-family: Ampersand, Helvetica, sans-serif;

}

If you try it out (Figure 5.21), you will see that we did, in fact, apply a

different font to our ampersands! However, the result is still not exactly what

we want. The ampersand in Figure 5.19 was from the italic variant of the

Baskerville font, as in general, italic serif fonts tend to have much nicer

ampersands. We’re not styling the ampersands directly, so how can we

italicize them?

Our first thought might be to use the font-style descriptor in the

@font-face rule. However, this does not have the effect we want at all.

It merely tells the browser to use these fonts in italic text. Therefore, it will

make our Ampersand font be completely ignored, unless the whole headline

is italic (in which case, we will indeed get the nice italic ampersand).

Unfortunately, the only solution here is a bit of a hacky one: instead of

using the font family name, we need to use the PostScript Name of the

individual font style/weight we want. So, to get the italic versions of the

fonts we used, the final code would look like this:

@font-face {

 font-family: Ampersand;

 src: local('Baskerville-Italic'),

 local('GoudyOldStyleT-Italic'),

 local('Palatino-Italic'),

CHAPTER 5: TYPOGRAPHY192

HTML & CSS
FIGURE 5.21
Applying a different font to our

ampersands, with the help of font

stacks and the unicode-range

descriptor

To find a font’s PostScript Name in

Mac OS X, select it in the FontBook

application and press ⌘I.

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

 local('BookAntiqua-Italic');

 unicode-range: U+26;

}

h1 {

 font-family: Ampersand, Helvetica, sans-serif;

}

And this finally works great to give us the ampersands we wanted, just like

in Figure 5.19. Unfortunately, if we need to customize their styling even

more (e.g., to increase their font size, reduce their opacity, or anything else),

we would need to go the HTML element route. However, if we only want a

different font and font style/weight, this trick works wonders. You can use

the same general idea to also style numbers with a different font, symbols,

punctuation—the possibilities are endless!

▶ PLAY! play.csssecrets.io/ampersands

Hat tip to Drew McLellan (allinthehead.com) for coming up with the

first version of this effect (24ways.org/2011/creating-custom-

font-stacks-with-unicode-range).

■ CSS Fonts

w3.org/TR/css-fonts

SECRET #25: FANCY AMPERSANDS 193

HAT TIP

■

www.it-ebooks.info

http://play.csssecrets.io/ampersands
http://allinthehead.com
http://24ways.org/2011/creating-custom-font-stacks-with-unicode-range
http://24ways.org/2011/creating-custom-font-stacks-with-unicode-range
http://w3.org/TR/css-fonts
http://www.it-ebooks.info/

Custom
underlines

Prerequisites
CSS gradients, background-size, text-shadow, the “Striped

backgrounds” secret on page 40

The problem
Designers are a picky bunch. We always strive to customize things and care-

fully craft them to closely match our vision and make our designs more

intuitive and easier to use. The default is rarely good enough.

Text underlines are one of those things we’d love to customize. Al-

though the default is useful, it’s usually too intrusive, not to mention it’s

rendered differently in every browser. Although text underlines have

been with us since the dawn of the Web, we never really got more ways to

customize them. Even after CSS came along, it merely gave us an on/off

switch for them:

CHAPTER 5: TYPOGRAPHY194

26

www.it-ebooks.info

http://www.it-ebooks.info/

text-decoration: underline;

As usual, when we are not given the tools we need, we hack them

together. We had no way to customize text underlines, so we started faking

them with borders, probably one of the first CSS tricks we ever came

up with:

a[href] {

 border-bottom: 1px solid gray;

 text-decoration: none;

}

While emulating a text underline with border-bottom gave us control

over color, thickness, and style, it wasn’t perfect. As you can see in

Figure 5.22, these “underlines” have a very large distance from the

text, being even underneath the descenders of the glyphs! We could at-

tempt to fix the issue by giving the links a display of inline-block and

a smaller line-height, like so:

display: inline-block;

border-bottom: 1px solid gray;

line-height: .9;

This works to bring the underline closer to the text, but it prevents proper

text wrapping, as you can see in Figure 5.23.

These days, we might try to use an inset box-shadow to emulate an

underline:

box-shadow: 0 -1px gray inset;

SECRET #26: CUSTOM UNDERLINES 195

“The only way to get
rid of a temptation is
to yield to it.”

FIGURE 5.22
Fake underlines created with

border-bottom

“The only way to
get rid of a tempta‐
tion
is to yield to it.”

FIGURE 5.23
Trying to fix the issue with border-

based “underlines” works, until the

text needs to wrap—then hell breaks

loose

www.it-ebooks.info

http://www.it-ebooks.info/

TRIVIA Text underlines in the future
In the future, we will not have to resort to such hacks for customizing our underlines. There are several

properties planned in CSS Text Decoration Level 3 (w3.org/TR/css-text-decor-3), specifically for this,

such as:

■ text-decoration-color to customize the color of underlines and other decorations

■ text-decoration-style to customize the style of decorations (e.g., solid, dashed, wavy, etc.)

■ text-decoration-skip to skip spaces, descenders, and other objects

■ text-underline-position to fine-tune the exact placement of the underline line

However, these properties currently have very little browser support.

However, this has the same issues as border-bottom, except that it’s

drawn slightly closer to the text. Is there any way to get proper, flexible,

custom underlines?

The solution
Often the best solutions come from the most unexpected places. In this case,

it comes in the form of background-image and related properties. You

might think this is insane, but bear with me for a bit. Backgrounds follow

wrapped text perfectly, and with the new background-related properties we

got in CSS Backgrounds & Borders Level 3 such as background-

size, we have very fine-grained control over them. We don’t even need a

separate HTTP request for them, as we can generate the image on the fly,

through CSS gradients:

background: linear-gradient(gray, gray) no-repeat;

background-size: 100% 1px;

background-position: 0 1.15em;

You can see how elegant and unobtrusive the result looks in

Figure 5.24. However, we can still make one small improvement. Notice

CHAPTER 5: TYPOGRAPHY196

How much closer? As much as the

line thickness, as the only difference

of this method is that it’s drawn in-

side the box.

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-text-decor-3
http://www.it-ebooks.info/

how our underlines cross the descenders of letters like p and y. Wouldn’t

it look so much nicer if there was some breathing space around them? If

our background is a solid color, we can fake that with two solid text-

shadows in the same color as our background (Figure 5.25):

background: linear-gradient(gray, gray) no-repeat;

background-size: 100% 1px;

background-position: 0 1.15em;

text-shadow: .05em 0 white, -.05em 0 white;

The brilliant thing about using gradients for this is that they are ex-

tremely flexible. For example, to create a dashed underline, you could do

something like (Figure 5.26):

background: linear-gradient(90deg,

 gray 66%, transparent 0) repeat-x;

background-size: .2em 2px;

background-position: 0 1em;

Then you could control the dash and gap proportion via the color stop po-

sitions and their size via background-size.

▶ PLAY! play.csssecrets.io/underlines

As an exercise, you could try to create wavy red underlines, such as the

ones used for highlighting spelling mistakes. (Hint: You will need two

gradients.) You will find the solution in the following Play! example, but try

to avoid peeking at the solution without giving it a shot—it’s more fun

that way!

▶ PLAY! play.csssecrets.io/wavy-underlines

SECRET #26: CUSTOM UNDERLINES 197

“The only way to get
rid of a temptation is
to yield to it.”

FIGURE 5.24
Our carefully crafted custom

underlines, through CSS gradients

“The only way to getgetgetgetget
rid of a temptationrid of a temptationrid of a temptationrid of a temptationrid of a temptation is
to yieldyieldyieldyieldyield to it.”

FIGURE 5.25
Our custom underlines, treated with

text-shadow to not cross our

descenders

“The only way to getgetgetgetget
rid of a temptationrid of a temptationrid of a temptationrid of a temptationrid of a temptation is
to yieldyieldyieldyieldyield to it.”

FIGURE 5.26
Fully customized dashed underlines,

with CSS gradients

www.it-ebooks.info

http://play.csssecrets.io/underlines
http://play.csssecrets.io/wavy-underlines
http://www.it-ebooks.info/

RELATED

SPECS

Hat tip to Marcin Wichary (aresluna.org) for coming up with the first

version of this effect (medium.com/designing-medium/crafting-

link-underlines-on-medium-7c03a9274f9).

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

■ CSS Text Decoration

w3.org/TR/css-text-decor

CHAPTER 5: TYPOGRAPHY198

HAT TIP

■

■

■

www.it-ebooks.info

http://www.aresluna.org
http://medium.com/designing-medium/crafting-link-underlines-on-medium-7c03a9274f9
http://medium.com/designing-medium/crafting-link-underlines-on-medium-7c03a9274f9
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://w3.org/TR/css-text-decor
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Realistic
text effects

Prerequisites
Basic text-shadow

The problem
Sometimes, certain text treatments become very widespread on the Web.

For example, letterpress text, blurring text on mouseover, extruded

(pseudo-3D) text, and so on. These usually depend on a combination of

carefully crafted text shadows, and some knowledge of how our eyes work,

as many of these are based on optical illusions to some degree. They are

easy to make, once you know the tricks involved, but not always as easy to

reverse engineer through developer tools.

This secret is devoted to creating such effects, so that you never again

find yourself wondering, “How on Earth does this effect work?”

CHAPTER 5: TYPOGRAPHY200

27

www.it-ebooks.info

http://www.it-ebooks.info/

Letterpress
The letterpress effect is one of the most popular text treatments on skeuo-

morphic design websites. While skeuomorphic design is not as trendy as it

used to be, it will always have its devoted fans.

This effect works best with a medium lightness background with darker

text, but it can also be used with lighter text on darker backgrounds, as long

as the text is not black and the background is not completely white or black.

It’s based on the same premise that has been used since the very first

GUIs to create the impression of pressed or extruded buttons: a lighter

shadow at the bottom (or a darker one at the top) creates the illusion that

an object is “carved in” the main surface. Similarly, a darker shadow at

the bottom (or a lighter one at the top), creates the illusion that an object

is extruded from the main surface. The reason this works is that we usu-

ally assume that the light source is above us, so an extruded object would

create a shadow underneath it, and an embossed object would be lit at the

bottom.

Let’s use the colors in Figure 5.28 as a starting point. The text color is

hsl(210, 13%, 30%) and hsl(210, 13%, 60%) is the back-

ground color:

background: hsl(210, 13%, 60%);

color: hsl(210, 13%, 30%);

SECRET #27: REALISTIC TEXT EFFECTS 201

FIGURE 5.27
It’s easy to forgo accessibility when

using such effects, but never forget

to test your contrast ratios (a useful

tool for this is leaverou.github.io/

contrast-ratio, as it accepts any

supported CSS color format)

FIGURE 5.28
The letterpress effect on dark text on

a lighter background (top: before,

bottom: after)

www.it-ebooks.info

http://leaverou.github.io/contrast-ratio
http://leaverou.github.io/contrast-ratio
http://www.it-ebooks.info/

When we have darker text on lighter background (like in our example here),

a lighter shadow at the bottom usually works best. How light depends

on the exact colors you have and how subtle you want the effect to be, so

you need to experiment a bit with the alpha parameter until it looks good.

In this case, we settled on 80% white, but your mileage may vary:

background: hsl(210, 13%, 60%);

color: hsl(210, 13%, 30%);

text-shadow: 0 1px 1px hsla(0,0%,100%,.8);

You can see the result in Figure 5.28. In this case, we used pixels instead

of ems for the effect, but if you have text that could be any size, from tiny

to very large, ems might suit your case better:

text-shadow: 0 .03em .03em hsla(0,0%,100%,.8);

What happens when we have lighter text on a darker background? Our

shadow above would yield awful results if the colors were reversed

(Figure 5.29), making our text blurry. Does this mean we cannot apply a

letterpress effect in this case? No, it just means we need to adjust our ap-

proach. In these cases, a darker shadow on the top works best, as you can

verify in Figure 5.30. The CSS code would look like this:

background: hsl(210, 13%, 40%);

color: hsl(210, 13%, 75%);

text-shadow: 0 -1px 1px black;

▶ PLAY! play.csssecrets.io/letterpress

CHAPTER 5: TYPOGRAPHY202

FIGURE 5.29
Letterpress gone wrong: applying

the previous effect on text that is

lighter than its background

FIGURE 5.30
Letterpress effect when using lighter

text on darker background (top:

before, bottom: after)

www.it-ebooks.info

http://play.csssecrets.io/letterpress
http://www.it-ebooks.info/

Stroked text
In the future, outlined/stroked text will be quite easy, as we will be able to

just use the spread parameter of text-shadows to make them larger so

that they look like a stroke, akin to how we use box-shadow spread to

emulate outlines. Unfortunately, browser support for this is currently very

limited, so we have to resort to other ways to emulate it, with more or less

satisfying results.

The most widespread way is to layer multiple text-shadows with

slightly different offsets, like so (Figure 5.32):

background: deeppink;

color: white;

text-shadow: 1px 1px black, -1px -1px black,

 1px -1px black, -1px 1px black;

Alternatively, you could layer multiple slightly blurred shadows, with no

offsets:

text-shadow: 0 0 1px black, 0 0 1px black,

 0 0 1px black, 0 0 1px black,

 0 0 1px black, 0 0 1px black;

However, this doesn’t always produce great results and is more expen-

sive performance-wise, due to blurring.

Unfortunately, the thicker the stroke, the worse the result both of these

ideas produce. For example, see how bad a 3px outline looks (Figure 5.33):

background: deeppink;

color: white;

text-shadow: 3px 3px black, -3px -3px black,

 3px -3px black, -3px 3px black;

SECRET #27: REALISTIC TEXT EFFECTS 203

CSSCSS
FIGURE 5.31
True stroked text, via text-shadow

spread

CSSCSSCSSCSSCSS
FIGURE 5.32
Fake 1px outline by layering multiple

text-shadows

CSSCSSCSSCSSCSS
FIGURE 5.33
An (awful) 3px outline, created with

multiple text-shadows with

slightly different offsets

www.it-ebooks.info

http://www.it-ebooks.info/

There is always the solution of using SVG, but it adds a lot of cruft to our

markup. For example, assume we wanted to use it in a first-level heading.

The HTML would look like this:

<h1><svg width="2em" height="1.2em">

 <use xlink:href="#css" />

 <text id="css" y="1em">CSS</text>

</svg></h1>

Then in our CSS, we’d write something like:

h1 {

 font: 500%/1 Rockwell, serif;

 background: deeppink;

 color: white;

}

h1 text {

 fill: currentColor;

}

h1 svg { overflow: visible }

h1 use {

 stroke: black;

 stroke-width: 6;

 stroke-linejoin: round;

}

Certainly not ideal, but it produces the best visual results (Figure 5.34), and

even in ancient browsers where SVG is not supported, the text is still read-

able, styled, and crawlable.

▶ PLAY! play.csssecrets.io/stroked-text

CHAPTER 5: TYPOGRAPHY204

CSSCSS
FIGURE 5.34
Using SVG for proper thick outlines

SVG

www.it-ebooks.info

http://play.csssecrets.io/stroked-text
http://www.it-ebooks.info/

Glowing text
Glowing text is a rather common effect for hovering over links, or headlines

in certain types of websites. It’s one of the easiest effects to create. In its

simplest form you just use a couple layered text-shadows, with no offsets

and the same color as the text (Figure 5.35):

background: #203;

color: #ffc;

text-shadow: 0 0 .1em, 0 0 .3em;

If used as a hover effect, you should also include a transition, like so:

a {

 background: #203;

 color: white;

 transition: 1s;

}

a:hover {

 text-shadow: 0 0 .1em, 0 0 .3em;

}

You can create an even more interesting effect by hiding the text itself

on :hover, effectively making it appear like it’s slowly blurring (see

Figure 5.36):

a {

 background: #203;

 color: white;

 transition: 1s;

}

a:hover {

SECRET #27: REALISTIC TEXT EFFECTS 205

FIGURE 5.35
Glowing text with only two simple

text-shadows

FIGURE 5.36
Pseudo-blurred text, by hiding the

text and showing only its shadows

www.it-ebooks.info

http://www.it-ebooks.info/

 color: transparent;

 text-shadow: 0 0 .1em white, 0 0 .3em white;

}

However, keep in mind that depending on text-shadow for text to appear

does not degrade gracefully: if text-shadow is not supported, no text will

show up. So, you need to be careful to only apply this in environments that

support text-shadow. Alternatively, you can blur the text through CSS

filters:

a {

 background: #203;

 color: white;

 transition: 1s;

}

a:hover {

 filter: blur(.1em);

}

It may have worse browser support this way, but at least nothing will break

when it’s not supported.

▶ PLAY! play.csssecrets.io/glow

Extruded text
Another popular (and perhaps overused) effect in skeuomorphically de-

signed websites is extruded (pseudo-3D) text (Figure 5.37). The main idea

is having lots of stacked shadows, with no blur and only 1px difference,

getting progressively darker, with a highly blurred dark shadow at the end,

emulating the shade the whole thing would create.

Let’s use the text on Figure 5.38 as a starting point, which is styled

through this simple CSS code:

CHAPTER 5: TYPOGRAPHY206

www.it-ebooks.info

http://play.csssecrets.io/glow
http://www.it-ebooks.info/

background: #58a;

color: white;

Now let’s add a few progressively darker text-shadows:

background: #58a;

color: white;

text-shadow: 0 1px hsl(0,0%,85%),

 0 2px hsl(0,0%,80%),

 0 3px hsl(0,0%,75%),

 0 4px hsl(0,0%,70%),

 0 5px hsl(0,0%,65%);

As you can see in Figure 5.39, we’re getting there, but the result still looks

quite unrealistic. Believe it or not, all we need to go from this to the finished

result in Figure 5.37 is one more shadow at the bottom:

background: #58a;

color: white;

text-shadow: 0 1px hsl(0,0%,85%),

 0 2px hsl(0,0%,80%),

 0 3px hsl(0,0%,75%),

 0 4px hsl(0,0%,70%),

 0 5px hsl(0,0%,65%),

 0 5px 10px black;

▶ PLAY! play.csssecrets.io/extruded

This kind of repetitive, unwieldy code is a prime candidate for a preprocessor

mixin. Here is one way we could do this in SCSS:

@mixin text-3d($color: white, $depth: 5) {

SECRET #27: REALISTIC TEXT EFFECTS 207

FIGURE 5.37
Extruded text through multiple CSS

text-shadows

FIGURE 5.38
Our starting point

FIGURE 5.39
Almost there, but still looks

unrealistic

SCSS

www.it-ebooks.info

http://play.csssecrets.io/extruded
http://www.it-ebooks.info/

 $shadows: ();

 $shadow-color: $color;

 @for $i from 1 through $depth {

 $shadow-color: darken($shadow-color, 10%);

 $shadows: append($shadows,

 0 ($i * 1px) $shadow-color, comma);

 }

 color: $color;

 text-shadow: append($shadows,

 0 ($depth * 1px) 10px black, comma);

}

h1 { @include text-3d(#eee, 4); }

There are many variations of this effect. For example, by having all

shadows be black and removing the last blurry shadow, you can emu-

late a typography effect commonly found in old/retro signage (Figure 5.40):

color: white;

background: hsl(0,50%,45%);

text-shadow: 1px 1px black, 2px 2px black,

 3px 3px black, 4px 4px black,

 5px 5px black, 6px 6px black,

 7px 7px black, 8px 8px black;

This one is even easier to convert to a mixin, or — more appropriately for this

case — a function:

@function text-retro($color: black, $depth: 8) {

 $shadows: (1px 1px $color,);

CHAPTER 5: TYPOGRAPHY208

RETRORETRORETRORETRORETRORETRORETRORETRORETRO
typography

FIGURE 5.40
Retro-style typography

SCSS

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

 @for $i from 2 through $depth {

 $shadows: append($shadows,

 ($i*1px) ($i*1px) $color, comma);

 }

 @return $shadows;

}

h1 {

 color: white;

 background: hsl(0,50%,45%);

 text-shadow: text-retro();

}

■ CSS Text Decoration

w3.org/TR/css-text-decor

SECRET #27: REALISTIC TEXT EFFECTS 209

■

www.it-ebooks.info

http://w3.org/TR/css-text-decor
http://www.it-ebooks.info/

Circular
text

Prerequisites
Basic SVG

The problem
Although it’s not a particularly common effect, sometimes the need arises

to have a short line of text follow a circular path. When that time comes,

CSS leaves us in the cold. There is no CSS property or feature to achieve this

and the only CSS ways we can think of are so hacky they make us feel dirty

just for thinking about them. Is there any way to achieve such a type treat-

ment without resorting to images and without losing our sanity and

self-respect?

The solution
There are a few scripts out there to accomplish this. They rely on wrapping

each letter in a separate element and rotating them separately to

CHAPTER 5: TYPOGRAPHY210

28

www.it-ebooks.info

http://www.it-ebooks.info/

form a circle. Not only is this extremely hacky, it also adds a lot of bloat and

dozens of DOM elements to our page for no good reason.

Although there is currently no better way to accomplish this with

pure CSS, we can easily do it with a little inline SVG. SVG natively supports

text on any path, and circles are just a special case of a path. Let’s give it

a shot!

The basic way text on a path works in SVG is by having a <textPath>

element containing our text, inside a <text> element. The <textPath>

element also references a <path> element defining our path by its id. Text

within inline SVG also inherits most of our font styling (except line-

height, as that’s manual in SVG), so we don’t have to worry about that,

like we do with an external SVG image.

Let’s assume we want to style the phrase “circular reasoning works

because” as circular text, occupying the entire circumference of a circle, like

it looks in Figure 5.42. We start by adding an inline SVG inside our HTML

element, and defining a path for our circle:

<div class="circular">

 <svg viewBox="0 0 100 100">

 <path d="M 0,50 a 50,50 0 1,1 0,1 z"

 id="circle" />

 </svg>

</div>

SECRET #28: CIRCULAR TEXT 211

Unfortunately, <textPath> only

works with <path> elements, which

is why we cannot use the much more

readable <circle> element for our

circle.

FIGURE 5.42
The final result we want to

accomplish

SVG

FIGURE 5.41
Circular text used on

juliancheal.co.uk for the

buttons (see what I did there?) on

the left side; note that circular text

here was the only way to avoid

breaking the button metaphor, as

the center of the button shape is

taken by the holes and thread

www.it-ebooks.info

http://juliancheal.co.uk
http://www.it-ebooks.info/

Note that we defined its units via viewBox and not the width and height

attributes. This enables us to set the coordinate system and aspect ratio of

the graphic, without it having an intrinsic size. Not only is this more compact,

it also saves us a few lines of CSS, as we no longer need to apply a width

and height of 100% to the <svg> element—it just naturally adjusts to the

size of its container.

If you do not understand the path syntax, do not worry. Hardly any-

one does, and even those initiated into the secret art of SVG path syntax

tend to forget about it in a matter of minutes. If you are curious, the three

commands this exceedingly cryptic syntax includes are:

■ M 0,50: Move to the point (0,50)

■ a 50,50 0 1,1 0,1: Draw an arc from the point you are at currently, to

a point that is 0 units to the right and 1 unit to the bottom of your current

position. The arc should have a radius of 50, both horizontally and vertically.

Out of the two possible angles, pick the largest and out of those two

possible arcs, pick the one on the right of the two points, not the one

on the left.

■ z: Close the path via a straight line segment.

Currently, our path is just a black circle (Figure 5.43). We add the text via

the <text> and <textPath> elements and link it to our circle via the

xlink:href property, like so:

<div class="circular">

 <svg viewBox="0 0 100 100">

 <path d="M 0,50 a 50,50 0 1,1 0,1 z"

 id="circle" />

 <text><textPath xlink:href="#circle">

 circular reasoning works because

 </textPath></text>

 </svg>

</div>

CHAPTER 5: TYPOGRAPHY212

Why is the SVG path syntax so

cryptic? Back when it was designed,

it was believed that nobody would

author SVG by hand, so the SVG WG

went for the most compact syntax

possible, to reduce filesize.

FIGURE 5.43
Our path is currently a circle, with the

default black fill

SVG

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see in Figure 5.44, although we still have a lot of work to

do to make this presentable and readable, we’ve already achieved some-

thing that we could not in a million years have done with CSS!

The next step would be to remove the black fill from our circle

path. We don’t want the circle to be visible in any way; we only want it to

act as a guide for our text. There are many ways to do that, such as nesting

it into a <defs> element (which is designed for this very purpose). However,

here we want to minimize the amount of SVG markup we need for this

effect, so we are going to apply a fill: none via CSS:

.circular path { fill: none; }

Now that the black circle is gone (Figure 5.45), we can study the other

problems more carefully. The next biggest issue is that most of our text is

outside the SVG element, and clipped by it. To correct this, we need to

make our containing element smaller, and apply overflow: visible to

the SVG element, so that it doesn’t clip any content outside its viewport:

.circular {

 width: 30em;

 height: 30em;

}

.circular svg {

 display: block;

 overflow: visible;

}

You can see the result in Figure 5.46. Note that we are almost there, but

some text is still clipped. The reason is that the SVG element affects flow

only based on its dimensions, not its overflow. Therefore, the fact that there

is text overflowing outside the box the <svg> element creates does not

push the SVG element down. We need to do that manually, via a margin:

SECRET #28: CIRCULAR TEXT 213

FIGURE 5.44
Although there is a lot left to do, we

have already achieved something

that CSS simply cannot do

FIGURE 5.45
After making our path invisible, the

other issues become easier to see

www.it-ebooks.info

http://www.it-ebooks.info/

.circular {

 width: 30em;

 height: 30em;

 margin: 3em auto 0;

}

.circular svg {

 display: block;

 overflow: visible;

}

That’s it! Our example now looks exactly like Figure 5.42, and the text is

perfectly accessible. If we only have one instance of circular text (e.g., a

website logo), then we are done. However, if we have more than one in-

stance of this type treatment, we don’t want to have to repeat this SVG

markup every time. To avoid that, we can write a short script that gener-

ates the necessary SVG elements automatically, from markup like this:

<div class="circular">

 circular reasoning works because

</div>

The code would go through all elements with a class of “circular”, re-

move their text and store it in a variable, and add the necessary SVG ele-

ments to it:

$$('.circular').forEach(function(el) {

 var NS = "http://www.w3.org/2000/svg";

 var xlinkNS = "http://www.w3.org/1999/xlink";

 var svg = document.createElementNS(NS, "svg");

 var circle = document.createElementNS(NS, "path");

 var text = document.createElementNS(NS, "text");

 var textPath = document.createElementNS(NS, "textPath");

CHAPTER 5: TYPOGRAPHY214

FIGURE 5.46
Top: Applying a width and height to

our container element

Bottom: Adding overflow:

visible to the mix
HTML

JS

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

 svg.setAttribute("viewBox", "0 0 100 100");

 circle.setAttribute("d", "M0,50 a50,50 0 1,1 0,1z");

 circle.setAttribute("id", "circle");

 textPath.textContent = el.textContent;

 textPath.setAttributeNS(xlinkNS, "xlink:href", "#circle");

 text.appendChild(textPath);

 svg.appendChild(circle);

 svg.appendChild(text);

 el.textContent = '';

 el.appendChild(svg);
});

▶ PLAY! play.csssecrets.io/circular-text

■ Scalable Vector Graphics (SVG)

w3.org/TR/SVG

SECRET #28: CIRCULAR TEXT 215

■

www.it-ebooks.info

http://play.csssecrets.io/circular-text
http://w3.org/TR/SVG
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

User
Experience 6

www.it-ebooks.info

http://www.it-ebooks.info/

Picking the
right cursor

The problem
The purpose of a mouse pointer is not just to display where the cursor is on

the screen, but also to communicate which actions are possible to the user.

This common UX practice in desktop applications often gets forgotten in

web apps.

Authors are not the only ones to blame for this. Back in the days of CSS

2.1, we didn’t really have access to many built-in cursors. We mainly used

the cursor property to indicate that something is clickable, with a

pointer cursor, or sometimes to indicate tooltips with a help cursor. Some

also utilized a the wait or progress cursors instead of (or alongside) a

loader. But that was about it. However, although in CSS User Interface

Level 3 (w3.org/TR/css3-ui/#cursor) we got a boatload of new built-

in cursors to utilize, most authors comfortably stayed in their old cursor

habits. Like many UX improvements, you don’t really realize there is a prob-

lem, until you reach the solution. Let’s advance to that then!

CHAPTER 6: USER EXPERIENCE218

29

www.it-ebooks.info

http://w3.org/TR/css3-ui/#cursor
http://w3.org/TR/css3-ui/#cursor
http://www.it-ebooks.info/

default crosshair help move

pointer progress text wait

e-resize ne-resize nw-resize n-resize

se-resize sw-resize s-resize w-resize

The solution
You can see the full list of new built-in cursors in Figure 6.2 and read about

their purpose in the specification, but as you can imagine, not all of them

are useful for most web apps. For example, there’s even a cell cursor,

which “indicates that a cell or set of cells may be selected.” As you can

imagine, there aren’t many use cases for that beyond spreadsheets and ed-

itable grids.

This secret is not aiming to be an exhaustive reference of the potential

use cases of all these new cursors. However, a few of them stand out, as

they can instantly improve the usability of a large number of web apps, with

very little code.

SECRET #29: PICKING THE RIGHT CURSOR 219

FIGURE 6.1
The set of built-in cursors in CSS 2.1

was rather limited (cursors shown as

they’re displayed in OS X)

www.it-ebooks.info

http://www.it-ebooks.info/

none context-menu cell vertical-text

alias copy no-drop not-allowed

ew-resize ns-resize nesw-resize nwse-resize

col-resize row-resize all-scroll zoom-in

zoom-out

Indicating disabled state

Arguably, the most widely applicable addition is the not-allowed cursor

(Figure 6.3). It’s incredibly useful to hint that interaction with a certain con-

trol is not possible for whatever reason — usually because said control is dis-

abled. Especially these days, where most forms are extremely stylized, it can

often be difficult to tell whether a form control is enabled or not, and this

is a welcome aid. You could use it in a quite generic way, like so:

CHAPTER 6: USER EXPERIENCE220

FIGURE 6.3
Using a not-allowed cursor to

hint that a control is disabled

FIGURE 6.2
The new built-in cursors we got in

CSS User Interface Level 3

(w3.org/TR/css3-ui/#cursor)

(cursors shown as they’re displayed

in OS X)

www.it-ebooks.info

http://w3.org/TR/css3-ui/#cursor
http://www.it-ebooks.info/

:disabled, [disabled], [aria-disabled="true"] {

 cursor: not-allowed;

}

▶ PLAY! play.csssecrets.io/disabled

Hiding the cursor

Hiding the cursor sounds like a usability nightmare, doesn’t it? Why on Earth

would somebody want to do that and why would web standards make it

easier for them? Before you get angry at all these people that clearly have

some unresolved issues against usability, remember all those times when

you used one of those awful public touchscreens (e.g., those used for in-

formation booths or in-flight entertainment) and the developers forgot to

hide the mouse cursor, so there was one lingering on the screen in weird

places. Or those times when you had to move your mouse to the right of

the screen while watching a video, because your cursor was in the way.

Clearly, there are multiple use cases where hiding the cursor can ac-

tually improve usability. This is why one of the new cursor keywords is

none. Hiding the cursor was possible in CSS 2.1, but it involved using a

transparent 1×1 GIF, like so:

video {

 cursor: url(transparent.gif);

}

These days, we don’t need this, as we can just use cursor: none. How-

ever, you might still want to provide a fallback, for browsers that haven’t

caught up with Level 3 cursors yet. We can easily do that with the cascade:

cursor: url('transparent.gif');

cursor: none;

SECRET #29: PICKING THE RIGHT CURSOR 221

! If you hide the cursor over vid-

eos, make sure you don’t acci-

dentally also hide it over playback

controls as well, otherwise you will

be causing more harm than good.

www.it-ebooks.info

http://play.csssecrets.io/disabled
http://www.it-ebooks.info/

RELATED

SPECS
■ CSS Basic User Interface

w3.org/TR/css3-ui

CHAPTER 6: USER EXPERIENCE222

■

www.it-ebooks.info

http://w3.org/TR/css3-ui
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending the
clickable area

The problem
If you are interested in user experience, you have likely heard of Fitts’ Law.

First proposed by American psychologist Paul Fitts in as early as 1954, Fitts’

law is the idea that the time required to rapidly move to a target area

is a logarithmic function of the ratio between the distance to the

target and the width of the target. Its most commonly used mathemat-

ical formulation is expressed as T = a + b log2 1 + D
W where T is the time

taken, D is the distance to the center of the target, W is the width of the

target, and a and b are constants.

Although graphical user interfaces did not exist at the time, Fitts’ Law

applies perfectly to pointing devices and has now become the most widely

known HCI (Human-Computer Interaction) principle. This may sound sur-

prising at first, but keep in mind that Fitts’ Law has more to do with human

motor control than with specific hardware.

An obvious corollary is that the bigger the target, the easier it is to

reach. Therefore, it often increases usability to extend the clickable

area (hit area) around smaller controls that might otherwise be difficult to

reach, if enlarging them is not an option. With the increasing popularity of

touch screens, this has become even more important. Nobody wants to

CHAPTER 6: USER EXPERIENCE224

30
TIP! See Fitts’ Law in action,

via the interactive visuali-

zation at simonwallner.at/ext/

fitts.

www.it-ebooks.info

http://simonwallner.at/ext/fitts
http://simonwallner.at/ext/fitts
http://www.it-ebooks.info/

In usability, an affordance is a property of a control that visibly hints how we can interact with

it. For example, a button’s 3D appearance hints that it can be pushed, and a doorknob’s appearance

that it can be pulled or turned. For more info, check out en.wikipedia.org/wiki/Affordance.

There is some debate among usability professionals as to whether mouse cursor changes are an

affordance or visual feedback.

*

tap a dozen times trying to get that pesky little button and yet, this

is still an everyday occurence.

Other times, we want an element to slide in when we hover over a side

of the window—for example, an auto-hiding header that slides from the

top when the mouse is near, which also involves increasing its hit area (to-

ward one direction only). Can we do this with plain CSS?

The solution
Let’s assume we have a simple button like the one shown on Figure 6.4 and

we want to increase its hit area by 10px in all four directions. We have

already applied some simple styling to it, as well as cursor: pointer,

which both provides an affordance* for mouse interaction, but also helps

us test where the hit area actually is.

The easiest way to extend our hit area is a transparent solid border, as

mouse interaction on borders triggers these mouse events on the element,

unlike outlines and shadows. For example, extending an element’s hit area

by 10px toward all directions is as simple as this:

border: 10px solid transparent;

However, as you can see in Figure 6.5, this is no good, as it also makes

our button larger! The reason is that backgrounds extend underneath bor-

ders by default. Good ol’ background-clip can help constrain the back-

ground where it should be:

border: 10px solid transparent;

background-clip: padding-box;

SECRET #30: EXTENDING THE CLICKABLE AREA 225

+ +

FIGURE 6.4
Our starting point in two states: with

the cursor on the button (right) or

further down (left)

+ +

FIGURE 6.5
Oops! Extending our hit area with

border also made our button larger

www.it-ebooks.info

http://en.wikipedia.org/wiki/Affordance
http://www.it-ebooks.info/

As you can see in Figure 6.6, this works fine. Until you end up needing

an actual border around the button and realize you’ve already used up the

only one you get to extend the hit area. What happens then? Easy, you

could emulate a (solid) border with an inset shadow (Figure 6.7):

border: 10px solid transparent;

box-shadow: 0 0 0 1px rgba(0,0,0,.3) inset;

background-clip: padding-box;

▶ PLAY! play.csssecrets.io/hit-area-border

Unlike borders, you don’t only get one box-shadow, so if you need more,

you can just use a comma-separated list of shadows instead. However, if we

combine inset and outset (non-inset) shadows, we get a very weird effect,

because outset shadows are drawn outside the border box. For ex-

ample, we might think of doing something like this to add an actual blurred

shadow to make the button “pop out” of the page, which is another af-

fordance for clicking:

box-shadow: 0 0 0 1px rgba(0,0,0,.3) inset,

 0 .1em .2em -.05em rgba(0,0,0,.5);

However, if we try that, we see that the result is very different from what

we might expect (Figure 6.8). This solution is not perfect for other reasons

too. Borders affect layout, and that might be out of the question in certain

cases. What do we do then? We remove the border and take advantage of

the fact that pseudo-elements also capture mouse interaction for their

parent element.

We can then overlay a transparent pseudo-element on our button that

is 10px larger on every direction:

CHAPTER 6: USER EXPERIENCE226

+ +

FIGURE 6.6
Getting our button size back to

normal with background-clip

+ +

FIGURE 6.7
Using an inset box-shadow to

emulate a border

+ +

FIGURE 6.8
Adding an actual shadow as well

doesn’t work well with this solution

www.it-ebooks.info

http://play.csssecrets.io/hit-area-border
http://www.it-ebooks.info/

RELATED

SPECS

button {

 position: relative;

 /* [rest of styling] */

}

button::before {

 content: '';

 position: absolute;

 top: -10px; right: -10px;

 bottom: -10px; left: -10px;

}

This just works, and as long as we don’t need both pseudo-elements, it

doesn’t really interfere with anything. The pseudo-element solution is in-

credibly flexible—we could basically make the hit area be any size, place,

or shape we want, even completely disconnected from the element

itself!

▶ PLAY! play.csssecrets.io/hit-area

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

SECRET #30: EXTENDING THE CLICKABLE AREA 227

■

www.it-ebooks.info

http://play.csssecrets.io/hit-area
http://w3.org/TR/css-backgrounds
http://www.it-ebooks.info/

Custom
checkboxes

The problem
Designers always wanted more control over every element in a web page.

When a graphic designer with limited CSS experience is tasked to create a

website mockup, they almost always produce one with customized form

elements, making the developer tasked to convert it to CSS want to pull

their hair out.

When CSS was first introduced, form styling was extremely limited and

is still not clearly defined in any of the various CSS specifications. However,

browsers got more and more permissive over the years about what CSS

properties they allow on form controls, enabling us to style most of them

quite extensively.

Unfortunately, checkboxes and radio buttons are not among those

form controls. To this day, most browsers allow little to no styling when

it comes to them. As a result, authors end up either coming to terms with

their default look or employing awful, inaccessible hacks, such as recreating

them with divs and JS.

Is there a way to get around these restrictions and customize the look

of our checkboxes, without bloat and without giving up on semantics and

accessibility?

CHAPTER 6: USER EXPERIENCE228

31
For readability, we will refer to

“checkboxes” throughout this se-

cret, but everything discussed ap-

plies to both checkboxes and

radio buttons unless otherwise

noted.

www.it-ebooks.info

http://www.it-ebooks.info/

From the CSS 2.1 specification: “[A replaced element is] an element whose content is outside the

scope of the CSS formatting model, such as an image, embedded document, or applet.” Replaced

elements cannot have generated content applied to them, though some browsers allow it.

*

The solution
Until a few years ago, this task was impossible without scripting. However,

in Selectors Level 3 (w3.org/TR/css3-selectors), we got a new

pseudo-class: :checked. This pseudo-class only matches when the check-

box is checked, whether that is done through user interaction, or through

script.

It’s not very useful when applied directly to checkboxes, as — like we

previously mentioned — there aren’t many properties we can successfully

apply to them. However, we can always use combinators to style other

elements based on a checkbox state.

You might be wondering what other elements we may want to style

based on whether a checkbox is checked or not. Well, there is one kind of

element that has special behavior around checkboxes: <label>s. A

<label> that is associated with a checkbox also acts as a toggle

for it.

Because labels—unlike checkboxes—are not replaced elements,* we

can add generated content to them and style that based on checkbox

state. Then, we could hide the real checkbox in a way that doesn’t re-

move it from the tabbing order, and have the generated content act as

a styled checkbox instead!

Let’s see this in action. We will start from the following simple markup:

<input type="checkbox" id="awesome" />

<label for="awesome">Awesome!</label>

The next step is to generate a pseudo-element that will be used as our styled

checkbox, and apply some basic styling to it:

SECRET #31: CUSTOM CHECKBOXES 229

TIP! Wondering what the dif-

ference is be-

tween :checked and the attribute

selector [checked]? The latter

doesn’t update based on user inter-

action, as user interaction doesn’t af-

fect the HTML attribute.

Nesting the checkbox in the label

would free us from using ids, but

then we wouldn’t be able to target

the label based on the checkbox sta-

tus, because we do not yet have par-

ent selectors.

Awesome!

FIGURE 6.9
Our rudimentary custom checkbox

alongside the original checkbox

HTML

www.it-ebooks.info

http://w3.org/TR/css3-selectors
http://www.it-ebooks.info/

input[type="checkbox"] + label::before {

 content: '\a0'; /* non-break space */

 display: inline-block;

 vertical-align: .2em;

 width: .8em;

 height: .8em;

 margin-right: .2em;

 border-radius: .2em;

 background: silver;

 text-indent: .15em;

 line-height: .65;

}

You can see how our checkbox and label currently look in Figure 6.9.

The original checkbox is still visible, but we will hide it later. Now we need

to apply a different style to our checkbox when it’s checked. This could be

as simple as applying a different color and adding a checkmark as content:

input[type="checkbox"]:checked + label::before {

 content: '\2713';

 background: yellowgreen;

}

As you can see in Figure 6.10, this is already functioning as a rudi-

mentary styled checkbox. Now, we need to hide the original checkbox in an

accessible way, which means we can’t use display: none, as that would

remove it from the keyboard tabbing order entirely. Instead, we could use

something like this:

input[type="checkbox"] {

 position: absolute;

 clip: rect(0,0,0,0);

}

CHAPTER 6: USER EXPERIENCE230

The style we will apply to our check-

boxes in these examples is pretty ba-

sic, but the possibilities are endless.

You could even skip CSS styling al-

together and use images for all dif-

ferent checkbox states!

✓Awesome!

FIGURE 6.10
Styling our pseudo-element as a

customized checked checkbox

! Be careful when using such per-

missive selectors. Using

input[type="checkbox"] will

also hide checkboxes without a

label after them (e.g., those nested

in a label), essentially making them

unusable.

www.it-ebooks.info

http://www.it-ebooks.info/

That’s it, we’ve made a very basic custom checkbox! We could of course

improve it further—for example, by changing its style when it’s focused or

disabled, which you can see in Figure 6.11:

input[type="checkbox"]:focus + label::before {

 box-shadow: 0 0 .1em .1em #58a;

}

input[type="checkbox"]:disabled + label::before {

 background: gray;

 box-shadow: none;

 color: #555;

}

You could even make these effects smoother by applying transitions or ani-

mations or go nuts and create things like skeuomorphic switches. The pos-

sibilities really are endless!

▶ PLAY! play.csssecrets.io/checkboxes

Hat tip to Ryan Seddon for coming up with the first version of this effect,

now known as “the checkbox hack” (thecssninja.com/css/custom-

inputs-using-css). Ryan has since used this idea to implement all sorts

of widgets that require state persistence (labs.thecssninja.com/

bootleg), such as modal dialogs, dropdown menus, tabs, and carousels,

though abusing checkboxes this much results in accessibility problems.

Toggle buttons
You could use a variation of “the checkbox hack” to emulate toggle but-

tons, as HTML does not provide a native way to create them. Toggle buttons

are push buttons that act like checkboxes: they are used to toggle a setting

on or off, and look pressed when checked and unpressed when unchecked.

SECRET #31: CUSTOM CHECKBOXES 231

Awesome!

Awesome!

✓Awesome!

FIGURE 6.11
Top to bottom: customized focused

checkbox, customized disabled

checkbox, and checked checkbox

Although the possibilities are end-

less, avoid styling checkboxes as cir-

cles: most users associate round tog-

gles with radio buttons. Same ap-

plies to square radio buttons.

HAT TIP

FIGURE 6.12
A toggle button in both its states

www.it-ebooks.info

http://play.csssecrets.io/checkboxes
http://thecssninja.com
http://thecssninja.com/css/custom-inputs-using-css
http://labs.thecssninja.com/bootleg
http://labs.thecssninja.com/bootleg
http://www.it-ebooks.info/

Semantically, there is no real difference between toggle buttons and check-

boxes, so you can both use this trick and maintain semantic purity.

To create toggle buttons with this trick, you would just style the labels

as buttons, instead of using pseudo-elements. For example, to create the

toggle buttons shown in Figure 6.12, the code would look like this:

input[type="checkbox"] {

 position: absolute;

 clip: rect(0,0,0,0);

}

input[type="checkbox"] + label {

 display: inline-block;

 padding: .3em .5em;

 background: #ccc;

 background-image: linear-gradient(#ddd, #bbb);

 border: 1px solid rgba(0,0,0,.2);

 border-radius: .3em;

 box-shadow: 0 1px white inset;

 text-align: center;

 text-shadow: 0 1px 1px white;

}

input[type="checkbox"]:checked + label,

input[type="checkbox"]:active + label {

 box-shadow: .05em .1em .2em rgba(0,0,0,.6) inset;

 border-color: rgba(0,0,0,.3);

 background: #bbb;

}

However, be wary about using toggle buttons. In most cases, toggle but-

tons hinder usability as they can easily be confused with regular buttons

that perform an action when pressed.

CHAPTER 6: USER EXPERIENCE232

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

▶ PLAY! play.csssecrets.io/toggle-buttons

■ Selectors

w3.org/TR/selectors

SECRET #31: CUSTOM CHECKBOXES 233

■

www.it-ebooks.info

http://play.csssecrets.io/toggle-buttons
http://w3.org/TR/selectors
http://www.it-ebooks.info/

De-emphasize
by dimming

Prerequisites
RGBA colors

The problem
Quite often, we need to dim everything behind an element through a semi-

transparent dark overlay, to emphasize and draw user attention to a certain

UI element. For example, lightboxes (Figure 6.13) and interface “quick

tours” often benefit from this effect. The most common technique to do

this is to add an extra HTML element for the dimming and apply some CSS

that looks like this:

.overlay { /* For dimming */

 position: fixed;

 top: 0;

 right: 0;

CHAPTER 6: USER EXPERIENCE234

32

www.it-ebooks.info

http://www.it-ebooks.info/

 bottom: 0;

 left: 0;

 background: rgba(0,0,0,.8);

}

.lightbox { /* The element to draw attention to */

 position: absolute;

 z-index: 1;

 /* [rest of styling] */
}

The overlay is responsible for dimming everything behind the element we

want to draw attention to. The .lightbox then gets a higher z-index

to be drawn above the overlay. All this is fine and dandy, but it requires an

extra HTML element, which means the effect cannot be applied with CSS

alone. This is not a major problem, but it’s an inconvenience that we’d rather

avoid, if possible. Thankfully, in most cases we can.

SECRET #32: DE-EMPHASIZE BY DIMMING 235

FIGURE 6.13
Twitter is using this effect for its

popup dialogs

www.it-ebooks.info

http://www.it-ebooks.info/

Pseudo-element solution
We can use pseudo-elements to eliminate the need for an extra HTML ele-

ment, like so:

body.dimmed::before {

 position: fixed;

 top: 0;

 right: 0;

 bottom: 0;

 left: 0;

 z-index: 1;

 background: rgba(0,0,0,.8);
}

This is a slightly better solution, as it means we can now apply this effect

directly from CSS. However, the problem is that it’s not very portable, as the

<body> element might already have something else applied on

its ::before pseudo-element. Also, it means that to apply this effect we

usually need some sort of JavaScript to apply the dimmed class.

We could solve this by applying the overlay on the element’s

own ::before pseudo-element and giving it a z-index: -1; so that

it’s underneath our element. Although this solves the portability issue, it

doesn’t give us very fine-grained control over the overlay’s Z axis placement.

It might end up being underneath our element (which is desirable) or un-

derneath our element and several of its ancestors.

Another issue with this is that pseudo-elements cannot have their

own JavaScript event handlers. When using a separate element for an

overlay, we could assign event handlers to it so that — for example — the

lightbox closes when the user clicks on the overlay. When using pseudo-

elements on the same element we want to highlight, it becomes trickier to

detect whether the user clicked on the overlay or the element.

CHAPTER 6: USER EXPERIENCE236

www.it-ebooks.info

http://www.it-ebooks.info/

box-shadow solution
The pseudo-element solution is more flexible and usually fits what most

people expect from an overlay. However, for simpler use cases or prototyp-

ing, we can take advantage of the fact that a box-shadow’s spread radius

enlarges it by the amount you specify on every side. This means we can

create an extremely large shadow with zero offsets and zero blur, to emulate

an overlay the quick-and-dirty way:

box-shadow: 0 0 0 999px rgba(0,0,0,.8);

One obvious problem with this first pass solution is that it won’t work with

very large resolutions (> 2000px). We can mitigate this either by using a

larger number, or solve it completely by using viewport units, so that we

can be sure that the “overlay” is always larger than our viewport. Because

we can’t use different horizontal and vertical spread radius values, the view-

port unit that makes the most sense to use is vmax. In case you’re not fa-

miliar with the vmax unit, 1vmax is equivalent to either 1vw or 1vh,

whichever is larger. 100vw is equal to the viewport’s width and, similarly,

100vh is equivalent to its height. Therefore, the minimum value that covers

our needs is 50vmax, as it will be added on each side, so our overlay’s final

dimensions will be 100vmax + our element’s dimensions:

box-shadow: 0 0 0 50vmax rgba(0,0,0,.8);

This technique is very quick and easy to apply, but it has two rather serious

issues that limit its usefulness. Can you spot them?

First, because the dimensions of our element are viewport related and

not page related, we will see the boundaries of the overlay when we

scroll, unless the element has position: fixed; or the page isn’t long

enough for scrolling. Furthermore, because pages can be really long, it

wouldn’t be wise to attempt to overcome this by just increasing the spread

radius even more. Instead, I’d recommend limiting your use of this

SECRET #32: DE-EMPHASIZE BY DIMMING 237

www.it-ebooks.info

http://www.it-ebooks.info/

technique to elements with fixed positioning or pages with minimal

to no scrolling.

Second, using a separate element (or a pseudo-element) as the overlay

doesn’t only visually guide the user’s focus to the element we want. It also

prevents them from using the mouse to interact with the rest of the

page, because it captures pointer events. A box-shadow does not have

this property. Therefore, it only visually helps draw the user’s attention

to a particular element, but it will not capture any mouse interaction

by itself. Whether this is acceptable or not depends on your specific

use case.

▶ PLAY! play.csssecrets.io/dimming-box-shadow

backdrop solution
If the element you want to bring into focus is a modal <dialog> (a

<dialog> element displayed via its showModal() method), it already has

an overlay, via the User Agent stylesheet. This native overlay can also be

styled via the ::backdrop pseudo-element, for example, to make it darker:

dialog::backdrop {

 background: rgba(0, 0, 0, .8);

}

The only caveat of this method is that at the time of writing, browser sup-

port for it is very limited, so make sure to check its current status before

using it. Keep in mind, however, that even if it’s not supported, nothing will

break if a dialog has no overlay because it’s just a UX improvement.

▶ PLAY! play.csssecrets.io/native-modal

CHAPTER 6: USER EXPERIENCE238

LIMITED
SUPPORT

www.it-ebooks.info

http://play.csssecrets.io/dimming-box-shadow
http://play.csssecrets.io/native-modal
http://www.it-ebooks.info/

RELATED

SPECS
■ CSS Values & Units

w3.org/TR/css-values/#viewport-relative-

lengths

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ Fullscreen API

fullscreen.spec.whatwg.org/#::backdrop-pseudo-element

SECRET #32: DE-EMPHASIZE BY DIMMING 239

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-values/#viewport-relative-lengths
http://w3.org/TR/css-backgrounds
http://fullscreen.spec.whatwg.org/#::backdrop-pseudo-element
http://www.it-ebooks.info/

De-emphasize
by blurring

Prerequisites
Transitions, the “Frosted glass effect” secret on page 146, the “De-

emphasize by dimming” secret on page 234

The problem
In the “De-emphasize by dimming” secret on page 234, we saw a way

to de-emphasize parts of a web app by dimming them, through a semi-

transparent black overlay. However, when there is a lot going on the page,

we need to dim it quite a lot to provide sufficient contrast for text to appear

on it, or to draw attention to a lightbox or other element. A more elegant

way, shown in Figure 6.14, is to blur everything else in addition to (or in-

stead of) dimming it. This is also more realistic, as it creates depth by mim-

icking how our vision treats objects that are physically closer to us

when we are focusing on them.

CHAPTER 6: USER EXPERIENCE240

33

www.it-ebooks.info

http://www.it-ebooks.info/

However, this is a far more difficult effect to achieve. Until Filter Effects

(w3.org/TR/filter-effects), it was impossible, but even with the

blur() filter, it is quite difficult. What do we apply the blur filter to, if we

want to apply it to everything except a certain element? If we apply it to the

<body> element, everything in the page will be blurred, including the ele-

ment we want to draw attention to. It’s very similar to the problem we ad-

dressed in the “Frosted glass effect” secret on page 146, but we cannot

apply the same solution here, as anything could be behind our dialog box,

not just a background image. What do we do?

The solution
Unfortunately, we will need an extra HTML element for this effect: we will

need to wrap everything in our page except the elements that shouldn’t be

blurred in a wrapper element, so that we can apply the blurring to it. The

<main> element is perfect for this, because it serves a double purpose: it

both marks up the main content of the page (dialogs aren’t usually main

content) and gives us the styling hook we need. The markup could look

like this:

<main>Bacon Ipsum dolor sit amet…</main>

<dialog>

SECRET #33: DE-EMPHASIZE BY BLURRING 241

FIGURE 6.14
The gaming website polygon.com

features an excellent example of

drawing user attention to a dialog

box by blurring everything else

behind it

LIMITED
SUPPORT

HTML

www.it-ebooks.info

http://w3.org/TR/filter-effects
http://polygon.com
http://www.it-ebooks.info/

 O HAI, I’m a dialog. Click on me to dismiss.

</dialog>

<!-- any other dialogs go here too -->

You can see how this looks with no overlay in Figure 6.15. Then, we need

to apply a class to the <main> element every time we make a dialog appear

and apply the blur filter then, like so:

main.de-emphasized {

 filter: blur(5px);
}

As you can see in Figure 6.16, this already is a huge improvement.

However, right now the blurring is applied immediately, which doesn’t look

very natural and feels like rather awkward UX. Because CSS filters are ani-

matable, we can instead smoothly transition to the blurred page:

main {

 transition: .6s filter;

}

main.de-emphasized {

 filter: blur(5px);
}

It’s often a good idea to combine the two de-emphasizing effects (dimming

and blurring). One way to do this is using the brightness() and/or

contrast() filters:

main.de-emphasized {

 filter: blur(3px) contrast(.8) brightness(.8);

}

CHAPTER 6: USER EXPERIENCE242

We assume that all <dialog> ele-

ments will be initially hidden and at

most one of them will be visible at

any time.

FIGURE 6.15
A plain dialog with no overlay to de-

emphasize the rest of the page

FIGURE 6.16
Blurring the <main> element when

the dialog is visible

FIGURE 6.17
Applying both blurring and

dimming, both via CSS filters

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

You can see the result in Figure 6.17. Dimming via CSS filters means that

if they are not supported, there is no fallback. It might be a better idea to

perform the dimming via some other method, which can also serve as a

fallback (e.g., the box-shadow method we saw in the previous secret). This

would also save us from the “halo effect” you can see on the edges of

Figure 6.17. Notice how in Figure 6.18 where we used a shadow for the

dimming, this issue is gone.

▶ PLAY! play.csssecrets.io/deemphasizing-blur

Hat tip to Hakim El Hattab (hakim.se) for coming up with a smiliar effect

(lab.hakim.se/avgrund). In addition, in Hakim’s version of the effect, the

content also becomes smaller via a scale() transform, to further enhance

the illusion that the dialog is getting physically closer to us.

■ Filter Effects

w3.org/TR/filter-effects

■ CSS Transitions

w3.org/TR/css-transitions

SECRET #33: DE-EMPHASIZE BY BLURRING 243

FIGURE 6.18
Applying blurring via CSS filters and

dimming via a box-shadow, which

also serves as a fallback

HAT TIP

■

■

www.it-ebooks.info

http://play.csssecrets.io/deemphasizing-blur
http://hakim.se
http://lab.hakim.se/avgrund
http://w3.org/TR/filter-effects
http://w3.org/TR/css-transitions
http://www.it-ebooks.info/

Scrolling
hints

Prerequisites
CSS gradients, background-size

The problem
Scrollbars are the primary control to indicate that there is more content in

an element than meets the eye. However, they are often clunky and visually

distracting, so modern operating systems have started to streamline them,

often hiding them completely until the user is actually interacting with the

scrollable element.

While scrollbars are rarely used to control scrolling these days (users

tend to scroll via gestures instead), indicating that there is more content

in an element than what meets the eye is very useful information that

is helpful to convey in a subtle way, even for elements the user is not cur-

rently interacting with.

The UX designers working on Google Reader, a (now discontinued)

feed reader by Google, found a very elegant way to indicate this: when there

CHAPTER 6: USER EXPERIENCE244

34

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Void
FIGURE 6.19
This box has more content and is

scrollable, but unless you interact

with it, you won’t know

■
■
■
■
■
■
■

www.it-ebooks.info

http://www.it-ebooks.info/

was more content, a subtle shadow was displayed on the top and/or bottom

side of the sidebar (Figure 6.20).

However, to achieve this effect in Google Reader, quite a bit of scripting was

used. Was that really needed, or can we achieve the same effect with CSS?

The solution
Let’s first start with some simple markup, a plain unordered list with some

placeholder content (geeky cat names!):

 Ada Catlace

 Alan Purring

 Schrödingcat

 Tim Purrners-Lee

 WebKitty

 Json

 Void

 Neko

 NaN

 Cat5

SECRET #34: SCROLLING HINTS 245

FIGURE 6.20
Google Reader’s elegant UX pattern

to indicate that scrolling is needed to

view the full contents of the sidebar

Left: Scrolled all the way up

Middle: Scrolled to the middle of

the feed list

Right: Scrolled all the way to the

bottom

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

 Vector

We can then apply some basic styling to the to make it smaller than

its contents and scrollable:

overflow: auto;

width: 10em;

height: 8em;

padding: .3em .5em;

border: 1px solid silver;

This is where things start to get interesting. Let’s apply a shadow at the

top, with a radial gradient:

background: radial-gradient(at top, rgba(0,0,0,.2),

 transparent 70%) no-repeat;

background-size: 100% 15px;

You can see the result in Figure 6.21. Currently it stays in the same place

when we scroll. This is on par with how background images work by default:

their position is fixed relative to the element, regardless of how far the ele-

ment is scrolled. This also applies to images with background-

attachment: fixed. Their only difference is that they also stay in place

when the page itself scrolls. Is there any way to get a background image

to scroll with an element’s contents?

Until a few years ago, this simple thing was impossible. However, the

problem was pretty obvious and a new background-attachment key-

word was added in Backgrounds & Borders Level 3 (w3.org/TR/css3-

background/#local0) to address it: local.

However, background-attachment: local doesn’t solve our use

case out of the box. If we apply it to our shadow gradient, it gives us the

exact opposite result: we get a shadow when we scroll all the way to the

CHAPTER 6: USER EXPERIENCE246

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ VoidFIGURE 6.21
Our top shadow

■
■
■
■
■
■
■

www.it-ebooks.info

http://w3.org/TR/css3-background/#local0
http://www.it-ebooks.info/

top, but when we scroll down, the shadow disappears. It is a start, though

—we’re starting to get somewhere.

The trick is to use two backgrounds: one for the shadow, and one

that is basically a white rectangle to cover the shadow, acting as a mask.

The background that generates the shadow will have the default

background-attachment (scroll), because we want it to stay in place

at all times. However, we will give the masking background a

background-attachment of local, so that it covers the shadow when

we are scrolled all the way up, but scrolls with the contents when we scroll

down, thus revealing the shadow.

We will use a linear gradient to create the masking rectangle, with the

same color as the element’s background (in our case, white):

background: linear-gradient(white, white),

 radial-gradient(at top, rgba(0,0,0,.2),

 transparent 70%);

background-repeat: no-repeat;

background-size: 100% 15px;

background-attachment: local, scroll;

You can see how this looks in different stages of scrolling in Figure 6.22.

You may notice that this seems to produce the desired effect, but it has one

significant drawback: when we are only slightly scrolled, the way the shad-

ow is revealed is very choppy and awkward. Is there any way to make it

smoother?

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

 ■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Void

SECRET #34: SCROLLING HINTS 247

FIGURE 6.22
Our two backgrounds in different

stages of scrolling

Left: Scrolled all the way to the top

Middle: Slightly scrolled down

Right: Scrolled down significantly

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

 ■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ VoidWe can take advantage of the fact that our “mask” is a (degenerate)

linear gradient and convert it to a real gradient from white to transparent

white (hsla(0,0%,100%,0) or rgba(255,255,255,0)), so that it

smoothly reveals our shadow:

background: linear-gradient(white, hsla(0,0%,100%,0)),

 radial-gradient(at top, rgba(0,0,0,.2),

 transparent 70%);

This is a step in the right direction. As you can see in Figure 6.23, it does

progressively reveal the shadow, like we wanted. However, it currently has

a pretty serious flaw: it no longer completely obscures the shadow when

we are scrolled all the way to the top. We can fix this by moving the white

color stop a little lower down (15px to be precise, equal to our shadow

height), so that we get an area of solid white before the fading starts. Fur-

thermore, we need to increase the size of the “mask” to be larger than the

shadow, otherwise we would get no gradient. The exact height depends on

how smooth we want the effect to be (i.e., how quickly should shadow be

revealed when we scroll?). After some experimentation, it seems that 50px

is a reasonable value. The final code looks as follows, and you can see the

result in Figure 6.24:

CHAPTER 6: USER EXPERIENCE248

Why transparent white and not just

transparent? The latter is actually

an alias of rgba(0,0,0,0), so the

gradient might include shades of

gray as it transitions from opaque

white to transparent black. If brows-

ers are interpolating colors in what is

called a premultiplied RGBA space

per the specification, this shouldn’t

happen. Different interpolation al-

gorithms are outside the scope of

this book, but there is a lot of mate-

rial on this online.

FIGURE 6.23
Using a gradient of white to

transparent as a first attempt to

fade the shadow in smoothly

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

 ■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Ada Catlace

■ Alan Purring

■ Schrödingcat

■ Tim Purrners-Lee

■ WebKitty

■ Json

■ Void
background: linear-gradient(white 30%, transparent),

 radial-gradient(at 50% 0, rgba(0,0,0,.2),

 transparent 70%);

background-repeat: no-repeat;

background-size: 100% 50px, 100% 15px;

background-attachment: local, scroll;

Of course, to achieve the original effect, we need two more gradients for

the bottom shadow and its mask, but the logic is exactly the same, so

this can be left as an exercise for the reader (or check out the following Play!

example for the solution).

▶ PLAY! play.csssecrets.io/scrolling-hints

Hat tip to Roman Komarov for coming up with an early version of this

effect (kizu.ru/en/fun/shadowscroll). His version used pseudo-

elements and positioning instead of background images, and might be an

interesting alternative for certain use cases.

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ CSS Image Values

w3.org/TR/css-images

SECRET #34: SCROLLING HINTS 249

HAT TIP

FIGURE 6.24
The final result

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/scrolling-hints
http://kizu.ru/en
http://kizu.ru/en/fun/shadowscroll
http://kizu.ru/en/fun/shadowscroll
http://w3.org/TR/css-backgrounds
http://w3.org/TR/css-images
http://www.it-ebooks.info/

Interactive
image
comparison

The problem
Sometimes the need arises to showcase the visual differences between two

images, usually as a before-and-after comparison. For example, demon-

strating the effects of photo manipulation in a portfolio, the results of cer-

tain beauty treatments in a beautician’s website or the visible results of a

catastrophic event in a geographical area.

The most common solution would be to just place the images side by

side. However, this way the human eye only notices very conspicuous dif-

ferences and misses the smaller ones. This is fine if the comparison is un-

important or the differences are large, but in all other cases, we need some-

thing more helpful.

There are many solutions to this problem from a UX perspective. A

common solution is to show both images in the same place in quick suc-

cession, through an animated GIF or a CSS animation. This is much better

than showing the images next to each other, but it’s time consuming for the

user to notice all the differences as they have to wait for several iterations,

fixating their eyes at a different area of the images every time.

CHAPTER 6: USER EXPERIENCE250

35

www.it-ebooks.info

http://www.it-ebooks.info/

A solution that is much more usable is what is known as an “image

comparison slider.” This control superimposes both images and lets the user

drag the divisor to reveal one or the other. Of course, such a control does

not actually exist in HTML. We have to emulate it via the elements we do

have, and there have been many such implementations over the years, usu-

ally requiring JavaScript frameworks and a boatload of JS code.

Is there a simpler way to implement such a control? Actually, there

are two!

CSS resize solution
If we think about it, an image comparison slider basically includes an image

and a horizontally resizable element that progressively reveals another im-

age. This is where the JavaScript frameworks usually come in: to make the

top image horizontally resizable. However, we don’t really need scripting to

make an element resizable. In CSS User Interface Level 3 (w3.org/TR/

css3-ui/#resize), we got a property for that: the humble resize!

SECRET #35: INTERACTIVE IMAGE COMPARISON 251

In some variations, the user just

moves the mouse instead of drag-

ging. This has the benefit of being

easier to notice and use, but the ex-

perience can be quite irritating.

FIGURE 6.25
An example of an interactive image

comparison widget, enabling users

to compare the catastrophic results

of the 2011 London riots, from

major UK news outlet The Guardian.

The user is supposed to drag the

white bar separating the two

images, but there is no affordance

to indicate the bar is draggable,

which is why the help text (“Move

the slider…”) was needed. Ideally, a

good, learnable, interface doesn’t

need help text.

Source: theguardian.com/uk/

interactive/2011/aug/09/

london-riots-before-after-

photographs

www.it-ebooks.info

http://w3.org/TR/css3-ui/#resize
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://theguardian.com/uk/interactive/2011/aug/09/london-riots-before-after-photographs
http://www.it-ebooks.info/

Even if you’ve never heard of this property, you’ve probably experienced

its behavior as it’s set to both by default on <textarea>s, which makes

them resizable in both directions. However, it can actually be set on any

element, as long as its overflow property is not visible. In almost every

element resize is set to none by default, which disables resizing. Besides

both, it also accepts the values horizontal and vertical, which re-

strict the direction of the resizing.

This might make one wonder: could we perhaps use this property to

implement our image slider? We can’t know until we give it a shot!

Our first thought might be to just include two elements. How-

ever, applying resize directly to an would look awful, as resizing

an image directly distorts it. It makes more sense to apply it to a container

<div>. Therefore, we end up with markup like the following:

<div class="image-slider">

 <div>

 </div>

</div>

Then we need to apply some basic CSS for positioning and dimensions:

.image-slider {

 position:relative;

 display: inline-block;

}

.image-slider > div {

 position: absolute;

 top: 0; bottom: 0; left: 0;

 width: 50%; /* Initial width */

 overflow: hidden; /* Make it clip the image */

}

CHAPTER 6: USER EXPERIENCE252

It’s usually a good idea to apply

resize: vertical to

<textarea>s to maintain resizabil-

ity but disable horizontal resizing,

which usually breaks layouts.

Once object-fit and object-

position gain more widespread

browser support, this won’t be an is-

sue, as we’ll be able to control how

images scale in the same way as

we’re able to control background

image scaling.

FIGURE 6.26
After some basic styling, this is

already starting to resemble an

image slider, but we can’t change

the width of the top image yet

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

.image-slider img { display: block; }

Right now the result looks like Figure 6.26 but is still static. If we manually

change the width, we can see it going through all stages that a user would

resize it to. To make the width change dynamically with user interaction,

through the resize property, we need two more declarations:

.image-slider > div {

 position: absolute;

 top: 0; bottom: 0; left: 0;

 width: 50%;

 overflow: hidden;

 resize: horizontal;

}

The only visual change is that a resize handler now appears at the

bottom-right corner of the before image (Figure 6.27), but we can now

drag it and resize it to our heart’s content! However, playing with our widget

a little reveals a few weaknesses:

■ We can resize the <div> past the width of the images.

■ The resize handler is difficult to spot.

The first issue is very easy to solve. All we need is to specify a max-width

of 100%. However, the second issue is a bit more complicated. Unfortu-

nately, there is still no standard way to style the resize handler. Some ren-

dering engines support proprietary pseudo-elements (such as ::-webkit-

resizer) for this, but their results are limited, both in terms of browser

support, as well as styling flexibility. However, hope is not lost: it turns out

that overlaying a pseudo-element on the resize handle doesn’t interfere with

its function, even without pointer-events: none. So, a cross-browser

solution to style the resize handler would be to just …overlay another on

top of it. Let’s do that:

SECRET #35: INTERACTIVE IMAGE COMPARISON 253

FIGURE 6.27
Our image slider now actually

functions like an image slider, but

still has a few issues

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

.image-slider > div::before {

 content: '';

 position: absolute;

 bottom: 0; right: 0;

 width: 12px; height: 12px;

 background: white;

 cursor: ew-resize;

}

Note the cursor: ew-resize declaration: this adds an extra af-

fordance, as it hints to the user that they can use this area as a resize han-

dler. However, we should not depend on cursor changes as our only

affordance, because they are only visible when the user is already inter-

acting with a control.

Right now, our resize handler will appear as a white square (see

Figure 6.28). At this point, we can go ahead and style it to our liking. For

example, to make it a white triangle with 5px spacing from the sides of the

image (Figure 6.29), we could write:

padding: 5px;

background:

 linear-gradient(-45deg, white 50%, transparent 0);

background-clip: content-box;

As an additional improvement, we could apply user-select: none to

both images, so that failing to grab the resize handler would not result in

them pointlessly being selected. To sum up, the full code would look

like this:

.image-slider {

 position:relative;

 display: inline-block;

}

CHAPTER 6: USER EXPERIENCE254

FIGURE 6.28
Styling the resize handler as a white

square, by overlaying a pseudo-

element on it

FIGURE 6.29
Styling the fake resizer pseudo-

element as a triangle with 5px

spacing from the edges of the image

www.it-ebooks.info

http://www.it-ebooks.info/

.image-slider > div {

 position: absolute;

 top: 0; bottom: 0; left: 0;

 width: 50%;

 max-width: 100%;

 overflow: hidden;

 resize: horizontal;

}

.image-slider > div::before {

 content: '';

 position: absolute;

 bottom: 0; right: 0;

 width: 12px; height: 12px;

 padding: 5px;

 background:

 linear-gradient(-45deg, white 50%, transparent 0);

 background-clip: content-box;

 cursor: ew-resize;

}

.image-slider img {

 display: block;

 user-select: none;

}

▶ PLAY! play.csssecrets.io/image-slider

Range input solution
The CSS resize method described in the previous section works great and

involves very little code. However, it has a few shortcomings:

SECRET #35: INTERACTIVE IMAGE COMPARISON 255

www.it-ebooks.info

http://play.csssecrets.io/image-slider
http://www.it-ebooks.info/

■ It’s not keyboard accessible.

■ Dragging is the only way to resize the top image, which can be tedious for

large images or motor-impaired users. Being able to also click to a point

and have the image resize to that point offers a much better experience.

■ The user can only resize the top image from its bottom-right corner, which

might be hard to notice, even if we style it in the way previously described.

If we are willing to use a little scripting, we could use a slider control (HTML

range input) overlaid on top of the images to control the resizing, which

solves all three issues. Because we’re using JS anyway, we can add all extra

elements via scripting, so we can start with the cleanest possible markup:

<div class="image-slider">

</div>

Then, our JS code will convert it to the following, and add an event on the

slider so that it also sets the div’s width:

<div class="image-slider">

 <div>

 </div>

 <input type="range" />

</div>

The JavaScript code is fairly straightforward:

$$('.image-slider').forEach(function(slider) {

 // Create the extra div and

 // wrap it around the first image

CHAPTER 6: USER EXPERIENCE256

HTML

HTML

JS

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

 var div = document.createElement('div');

 var img = slider.querySelector('img');

 slider.insertBefore(img, div);

 div.appendChild(img);

 // Create the slider

 var range = document.createElement('input');

 range.type = 'range';

 range.oninput = function() {

 div.style.width = this.value + '%';

 };

 slider.appendChild(range);

});

The CSS we will use as a starting point is basically the same as in the previous

solution. We will only delete the parts we no longer need:

■ We don’t need the resize property.

■ We don’t need the .image-slider > div::before rule, because we

no longer have a resizer.

■ We don’t need max-width because the slider will control that.

Here’s how our CSS code will look after these modifications:

.image-slider {

 position:relative;

 display: inline-block;

}

.image-slider > div {

 position: absolute;

 top: 0; bottom: 0; left: 0;

 width: 50%;

 overflow: hidden;

SECRET #35: INTERACTIVE IMAGE COMPARISON 257

FIGURE 6.30
Our control now works, but we still

need to style that range input

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

}

.image-slider img {

 display: block;

 user-select: none;

}

If we test this code now, you will see that it already works, but it

looks awful: there’s a range input just randomly placed under our images

(Figure 6.30). We need to apply some CSS to position it on top of

them, and make it as wide as they are:

.image-slider input {

 position: absolute;

 left: 0;

 bottom: 10px;

 width: 100%;

 margin: 0;

}

As you can see in Figure 6.31, this already looks decent. There are several

proprietary pseudo-elements to style range inputs exactly how we want

them. These include ::-moz-range-track, ::-ms-track, ::-

webkit-slider-thumb, ::-moz-range-thumb, and ::-ms-thumb.

Like most proprietary features, their results are inconsistent, flimsy, and un-

predictable, so I would recommend against using them, unless you really

have to. You’ve been warned.

CHAPTER 6: USER EXPERIENCE258

TIP! Use input:in-range

instead of just input to

only style the range input if

range inputs are supported. Then

you could use the cascade to hide it

or style it differently in older

browsers.

FIGURE 6.31
Our range input styled to be overlaid

on the images

www.it-ebooks.info

http://www.it-ebooks.info/

However, if we just want to visually unify the range input with the

control a bit more, we could use a blending mode and/or a filter. The blend-

ing modes multiply, screen, or luminosity seem to produce good

results. Also, filter: contrast(4) would make the slider black and

white and a contrast value lower than 1 would make it more gray. The

possibilities are endless, and there’s no universally optimal choice here. You

could even combine blending modes and filters, like so:

filter: contrast(.5);

mix-blend-mode: luminosity;

We could also increase the area the user can use for resizing to make

it a more pleasant experience (per Fitts’ Law), by reducing the width and

making up the difference with CSS transforms:

width: 50%;

transform: scale(2);

transform-origin: left bottom;

You can see the result of both treatments in Figure 6.32. Another benefit

of this approach—albeit a transient one—is that range inputs currently have

better browser support than the resize property.

Hat tip to Dudley Storey for coming up with the first version of

this solution (demosthenes.info/blog/819/A-Before-And-After-

Image-Comparison-Slide-Control-in-HTML5).

SECRET #35: INTERACTIVE IMAGE COMPARISON 259

FIGURE 6.32
Using blending modes and filters to

visually unify the range input with

our control and CSS transforms to

make it larger

HAT TIP

www.it-ebooks.info

http://demosthenes.info
http://demosthenes.info/blog/819/A-Before-And-After-Image-Comparison-Slide-Control-in-HTML5
http://demosthenes.info/blog/819/A-Before-And-After-Image-Comparison-Slide-Control-in-HTML5
http://www.it-ebooks.info/

RELATED

SPECS
■ CSS Basic User Interface

w3.org/TR/css3-ui

■ CSS Image Values

w3.org/TR/css-images

■ CSS Backgrounds & Borders

w3.org/TR/css-backgrounds

■ Filter Effects

w3.org/TR/filter-effects

■ Compositing and Blending

w3.org/TR/compositing

■ CSS Transforms

w3.org/TR/css-transforms

CHAPTER 6: USER EXPERIENCE260

■

■

■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css3-ui
http://w3.org/TR/css-images
http://w3.org/TR/css-backgrounds
http://w3.org/TR/filter-effects
http://w3.org/TR/compositing
http://w3.org/TR/css-transforms
http://www.it-ebooks.info/

Structure
& Layout 7

www.it-ebooks.info

http://www.it-ebooks.info/

Intrinsic
sizing

The problem
As we all know, if we don’t set a specific height on an element, it auto-

matically adjusts to its contents. What if we want a similar behavior for the

width as well? For example, let’s assume we have HTML5 figures, with

markup like the following:

<p>Some text […]</p>

<figure>

 <figcaption>

 The great Sir Adam Catlace was named after

 Countess Ada Lovelace, the first programmer.

 </figcaption>

</figure>

<p>More text […].</p>

Let’s also assume we’re applying some basic styling to them, such as a

border around the figures. By default, this looks like Figure 7.1. We want

to make the figures as wide as the image they contain (which could vary

CHAPTER 7: STRUCTURE & LAYOUT262

36

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

In CSS spec jargon, we need the width to be intrinsically determined instead of extrinsically.*

in size) and center them horizontally. The current rendering is quite far

from what we want: the lines of text are much longer than the image. How

do we make the width of the figure determined by the width of the image

it contains instead of the width of its parent?* Over the course of our career,

we have probably built our own list of CSS styles that result in such width

behavior, usually as a side effect:

■ Floating the <figure> gives us the right width, but also drastically alters

the layout of the figure, in ways we might not want (Figure 7.2).

■ Applying display: inline-block to the figure does size it based on

its contents, but not in the way we want (Figure 7.3). In addition, even if

the width computation was on par with our expectations, it would be very

tricky to horizontally center figures this way. We would need to apply text-

align: center to its parent and text-align: left to any possible

child of that parent (p, ul, ol, dl, ...).

■ As a last resort, developers often apply a fixed width or max-width to

figures, and apply max-width: 100% to figure > img. However, this

underutilizes the available space, might still be off for overly small figures,

and is not responsive.

Is there any decent CSS solution to this problem or should we give up and

start coding a script to dynamically set the figure widths?

The solution
A relatively new specification, CSS Intrinsic & Extrinsic Sizing Module

Level 3 (w3.org/TR/css3-sizing), defined several new width and

height keywords, one of the most useful of which was min-content.

This keyword gives us the width of the largest unbreakable element inside

the box (i.e., the widest word or image or fixed-width box). This is exactly

what we need! Now, giving our figures an appropriate width and horizon-

tally centering them as simple is two lines of code:

SECRET #36: INTRINSIC SIZING 263

Let’s assume we have some text here. Bacon ipsum dolor sit amet turkey veniam shankle, culpa short ribs kevin t-bone occaecat.

The great Sir Adam Catlace was named after Countess Ada Lovelace, the first programmer ever.

We also have some more text here. Et laborum venison nostrud, ut veniam sint kielbasa ullamco pancetta.

FIGURE 7.1
The default way our markup is

rendered, after a bit of CSS for

borders and padding

The great Sir Adam Catlace was named after
Countess Ada Lovelace, the first programmer.

Let’s assume we have some text here. Bacon ipsum dolor sit amet turkey veniam shankle, culpa short ribs kevin t-bone occaecat.

We also have some more text here. Et laborum venison nostrud, ut veniam
sint kielbasa ullamco pancetta.

FIGURE 7.2
Trying to solve the width issue by

floating creates new issues

Let’s assume we have some text here. Bacon ipsum dolor sit amet turkey veniam shankle, culpa short ribs kevin t-bone occaecat.

The great Sir Adam Catlace was named after Countess Ada Lovelace, the first programmer.

We also have some more text here. Et laborum venison nostrud, ut veniam sint kielbasa ullamco pancetta.

FIGURE 7.3
Contrary to our expectations,

display: inline-block does

not result in the width we wanted

■

■

■

www.it-ebooks.info

http://w3.org/TR/css3-sizing
http://w3.org/TR/css3-sizing
http://www.it-ebooks.info/

RELATED

SPECS

figure {

 width: min-content;

 margin: auto;

}

You can see the result in Figure 7.4. To offer a graceful fallback for

older browsers, we could combine this technique with a fixed max-

width, like so:

figure {

 max-width: 300px;

 max-width: min-content;

 margin: auto;

}

figure > img { max-width: inherit; }

On a modern browser, the latter max-width declaration would override

the former and if the figure is sized intrinsically, max-width: inherit

has no effect.

▶ PLAY! play.csssecrets.io/intrinsic-sizing

Hat tip to Dudley Storey (demosthenes.info) for coming up with this

use case (demosthenes.info/blog/662/Design-From-the-Inside-

Out-With-CSS-MinContent).

■ CSS Intrinsic & Extrinsic Sizing

w3.org/TR/css3-sizing

CHAPTER 7: STRUCTURE & LAYOUT264

Another value, max-content,

would give us the same width as we

saw with display: inline-

block earlier. And fit-content

gives us the same behavior as floats

(which is often the same as min-

content, but not always).

Let’s assume we have some text here. Bacon ipsum dolor sit amet turkey veniam shankle, culpa short ribs kevin t-bone occaecat.

The great Sir Adam Catlace was named after
Countess Ada Lovelace, the first programmer.

We also have some more text here. Et laborum venison nostrud, ut veniam sint kielbasa ullamco pancetta.

FIGURE 7.4
The final result

HAT TIP

■

www.it-ebooks.info

http://play.csssecrets.io/intrinsic-sizing
http://demosthenes.info
http://demosthenes.info/blog/662/Design-From-the-Inside-Out-With-CSS-MinContent
http://demosthenes.info/blog/662/Design-From-the-Inside-Out-With-CSS-MinContent
http://w3.org/TR/css3-sizing
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Taming table
column widths

The problem
Although we stopped using tables for layout long ago, tables still have their

place on modern websites, for tabular data such as statistics, emails, listings

of items with lots of metadata, and many other things. Also, we can make

other elements behave like table-related elements, by using the table-

related keywords for the display property. However, convenient as they

may seem at times, their layout is very unpredictable for dynamic content.

This is due to the fact that column dimensions are adjusted based on their

contents and even explicit width declarations are treated more like hints,

as Figure 7.5 illustrates.

For this reason, we often end up using different elements even for tab-

ular data or we just accept the unpredictability of it all. Is there any way we

could get tables to just behave?

The solution
The solution comes in the form of a little-known CSS 2.1 property called

table-layout. Its default value is auto, which results in the so-called

automatic table layout algorithm, with the familiar behavior shown in

CHAPTER 7: STRUCTURE & LAYOUT266

37

www.it-ebooks.info

http://www.it-ebooks.info/

If we don’t…
specify a cell width, they will be assigned one that depends
on their contents. Notice how the cell with more content
here is much wider.

If we don’t…
specify a cell width, they will be assigned one
that depends on their contents. Notice how
the cell with more content here is much wider.

All rows take part in
calculating the widths, not
just the first one.

Notice how the dimensions here are different
than the previous example.

If we specify a width, it
will not always be
followed. I have a width
of 1000px…

…and I have a width of 2000px. Because
there’s not enough space for 3000px, they are
reduced proportionally, to 33.3% and 66.6%
of the total width.

If we prevent
word
wrapping, the
table can
become so
wide it grows
beyond its
container.

…and text-overflow: ellipsis doesn’t help either.

Large images
and blocks of
code can also
cause the
same issue.

SECRET #37: TAMING TABLE COLUMN WIDTHS 267

FIGURE 7.5
The default table layout algorithm

for tables with 2 columns and varied

contents (the container of these

tables is shown with a dashed

border)

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7.5. However, there is a second value, fixed, which results in more

predictable behavior. It leaves more up to the author (you, that is!) and

less up to the rendering engine. Styling is respected and not treated like

some sort of hint, overflow behaves the same way as any other element

(including text-overflow), and table contents only affect the height of

each row and nothing else.

In addition to being more predictable and convenient, the fixed table

layout algorithm is also considerably faster. Because table contents do

not affect cell widths, no redraws/repaints are needed while the page is

downloading. We are all familiar with the disruptive image of a table that

keeps readjusting the widths of its columns as the page is downloading.

This never happens with fixed table layouts.

To use it, we apply the property to <table> elements and elements

with display: table. Note that you need to specify a width to these

tables (even if it’s 100%) for the magic to happen. Also, for text-

overflow: ellipsis to work, we need to set a width to that column

as well. That’s all! You can see the results in Figure 7.6:

table {

 table-layout: fixed;

 width: 100%;

}

▶ PLAY! play.csssecrets.io/table-column-widths

Hat tip to Chris Coyier (css-tricks.com) for coming up with this tech‐

nique (css-tricks.com/fixing-tables-long-strings).

CHAPTER 7: STRUCTURE & LAYOUT268

HAT TIP

www.it-ebooks.info

http://play.csssecrets.io/table-column-widths
http://css-tricks.com
http://css-tricks.com/fixing-tables-long-strings
http://css-tricks.com/fixing-tables-long-strings
http://www.it-ebooks.info/

If we don’t…

specify a cell width, they will be
assigned one that depends on their
contents. Notice how the cell with
more content here is much wider.

If we don’t…

specify a cell width, they will be
assigned one that depends on their
contents. Notice how the cell with
more content here is much wider.

All rows take part in calculating the
widths, not just the first one.

Notice how the dimensions here are
different than the previous example.

If we specify a width, it will not always be followed. I have a width of 1000px…

If we prevent
word
wrapping, the
table can
become so
wide it grows
beyond its
container.

…and text-overflow: ellipsis doesn’t h…

Large images
and blocks of
code can also
cause the
same issue.

SECRET #37: TAMING TABLE COLUMN WIDTHS 269

FIGURE 7.6
The same tables as in Figure 7.5, but

with table-layout: fixed

applied. Note the following, in order:

■ When we don’t define any widths,

all columns get the same width.

■ A second row does not affect the

column widths.

■ Large widths are applied as-is, not

shrunk down.

■ The overflow and text-

overflow properties are respected.

■ Content can overflow table cells (if

overflow is visible)

■

■

■

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

Styling by
sibling count

The problem
There are many cases when we need to style elements differently based on

how many siblings they have total. The main use case is improving UX and

conserving screen real estate in an expanding list, by hiding controls or

making them more compact as the list grows. Here are a few examples:

■ A list of emails or similar text-based items. If we only have a handful of items,

we can display a long preview. As the list grows, we reduce the lines of

preview we can show. When the length of the list is longer than the viewport

height, we might opt to hide previews completely and make any buttons

smaller, to minimize scrolling.

■ A to-do list app, where we show every item with a large font when there

are fewer items, but progressively make the font size smaller (for all items)

as the total number of items increases.

■ A color palette app, with controls displayed on every color. One might want

to make these controls more compact as the number of colors increases and

the space they occupy decreases accordingly (Figure 7.7).

■ An app with multiple <textarea>s where every time we add a new one,

we make them all smaller (like in bytesizematters.com).

CHAPTER 7: STRUCTURE & LAYOUT270

38

■

■

■

■

www.it-ebooks.info

http://bytesizematters.com
http://www.it-ebooks.info/

However, targeting elements based on their total number of siblings is

not trivial with CSS selectors. For example, suppose we want to apply certain

styles to a list’s items when their total count is 4. We could use li:nth-

child(4) to select the fourth item in the list, but this is not what we

needed; we needed to select every item, but only when their total count

is 4.

Our next idea might be to use the generalized sibling combinator (~)

together with :nth-child(), like li:nth-child(4), li:nth-

child(4) ~ li. However, this only targets the fourth child and items

after it (Figure 7.8), regardless of the total count. Because there is no

combinator that can “look backward” and select previous siblings, is

attempting to accomplish this with CSS doomed to fail? Let’s not lose hope

just yet.

SECRET #38: STYLING BY SIBLING COUNT 271

FIGURE 7.7
Progressively making controls

smaller as the number of colors

increases and the available space

shrinks. Note the special handling on

the case where we only have one

color: We then hide the delete

button.

Colors are taken from the Adobe

Color (color.adobe.com) palettes:

■ Agave (color.adobe.com/

agave-color-theme-387108)

■ Sushi Maki (color.adobe.com/

Sushi-Maki-color-

theme-350205)

■

■

1 2 3 4
✓✓

5
✓✓

 6
✓✓

 7
✓✓

 8
✓✓

FIGURE 7.8
Which elements get selected with

li:nth-child(4),

li:nth-child(4) ~ li

www.it-ebooks.info

http://color.adobe.com
http://color.adobe.com
http://color.adobe.com/agave-color-theme-387108
https://color.adobe.com/Sushi-Maki-color-theme-350205
http://www.it-ebooks.info/

The solution
For the special case of having exactly one item, there is an obvious

solution: :only-child, which was created exactly for this purpose. This

is not only useful as a starting point, but there are several use cases for it,

which is why it was added to the specification. For example, note in

Figure 7.7 that we are hiding the delete button when we only have one

color; this could be done by a CSS selector using :only-child:

li:only-child {

 /* Styles for when we only have 1 item */

}

However, :only-child is equivalent to :first-child:last-child,

for obvious reasons: if the first item is also the last item, it logically follows

that it is the only item. However, :last-child is also a shortcut, to :nth-

last-child(1):

li:first-child:nth-last-child(1) {

 /* Same as li:only-child */

}

However, now 1 is a parameter, and we can tweak it to our liking. Can you

guess what li:first-child:nth-last-child(4) targets? If you an-

swered that it generalizes :only-child by targeting list items when their

total count is four, you might be overdoing it a bit with the optimism. We’re

not there yet, but we are on the right track. Think about both pseudo-classes

separately: we are looking for elements that match both :first-child

and :nth-last-child(4). Therefore, elements who are—at the same

time—the first child of their parent counting from the start, and the fourth

child counting from the end. Which elements would fulfill this criteria?

The answer is the first element in a list with exactly four elements

(Figure 7.9). This is not quite what we wanted, but it’s very close: because

CHAPTER 7: STRUCTURE & LAYOUT272

We will use :nth-child() selec-

tors throughout this section, but ev-

erything discussed applies to :nth-

of-type() selectors equally,

which are often a better fit, as we

usually have siblings of different

types and we are only concerned

with one type. We will be using list

items in the examples, but what we

discuss is applicable to elements of

any type.

www.it-ebooks.info

http://www.it-ebooks.info/

we now have a way to target the first child of such a list, we can use the

general sibling combinator (~) to target every sibling that follows such a

first child, effectively targeting every list item in a list if and only if it

contains four items total, which is exactly what we were trying to

accomplish:

li:first-child:nth-last-child(4),

li:first-child:nth-last-child(4) ~ li {

 /* Target list items iff the list

 contains exactly four items */

}

To avoid the verbosity and repetition of the solution just shown, a prepro-

cessor, such as SCSS, could be used, although the syntax of existing pre-

processors for this is rather clumsy:

/* Define mixin */

@mixin n-items($n) {

 &:first-child:nth-last-child(#{$n}),

 &:first-child:nth-last-child(#{$n}) ~ & {

 @content;

 }

}

/* Use it like so: */

li {

 @include n-items(4) {

 /* Properties and values */

 }

}

SECRET #38: STYLING BY SIBLING COUNT 273

1 2 3

1
✓✓

 2 3 4

1 2 3 4

5 6 7 8

FIGURE 7.9
Which elements get selected with

li:first-child:nth-last-

child(4) in lists of three, four, and

eight elements

SCSS

www.it-ebooks.info

http://www.it-ebooks.info/

Hat tip to André Luís (andr3.net) for coming up with an idea that in‐

spired this technique (andr3.net/blog/post/142).

Selecting by range of sibling count
In most practical applications, we do not want to target specific numbers

of items, but ranges thereof. There is a handy trick that we can use to

make :nth-child() selectors target ranges such as “select everything

after the fourth child.” Besides simple numbers as parameters, we can also

use an+b expressions (e.g., :nth-child(2n+1)), where n stands for a

variable that ranges from 0 to +∞ in theory (in practice, values after a certain

point don’t select anything anymore because the number of elements we

have is finite). If we use an expression of the form n+b (where a is implied

to be 1), then there is no positive integer for n that could give us a value

smaller than b. Therefore, expressions of the form n+b can be used to select

every child from the bth onward; for example, :nth-child(n+4) se-

lects every child except the first, second, and third (Figure 7.10).

1 2 3

1 2 3 4
✓✓

1 2 3 4
✓✓

 5
✓✓

 6
✓✓

 7
✓✓

 8
✓✓

We can take advantage of this to select list items when the total num-

ber of items is four or more (Figure 7.11). In this case, we could use n+4

as the expression inside :nth-last-child():

li:first-child:nth-last-child(n+4),

li:first-child:nth-last-child(n+4) ~ li {

 /* Target list items iff the list

 contains at least four items */

}

CHAPTER 7: STRUCTURE & LAYOUT274

HAT TIP

TIP! It can be hard to wrap

one’s head

around :nth-* selectors. If you’re

having trouble, you could use an on-

line tester to experiment with a few

expressions. I’ve written one at

lea.verou.me/demos/nth.html,

but there are plenty of others

around.

FIGURE 7.10
Which elements get selected with

li:nth-child(n+4) in lists of

three, four, and eight elements

www.it-ebooks.info

http://andr3.net
http://andr3.net/blog/post/142
http://andr3.net/blog/post/142
http://lea.verou.me/demos/nth.html
http://www.it-ebooks.info/

RELATED

SPECS

Similarly, expressions of the form -n+b can be used to select the first b

elements. Therefore, to select all list items if and only if there are four or

fewer of them in the same list (Figure 7.12), we would write:

li:first-child:nth-last-child(-n+4),

li:first-child:nth-last-child(-n+4) ~ li {

 /* Target list items iff the list

 contains at most four items */

}

Of course, we could combine the two, but the code now gets even more

unwieldy. Assume we want to target list items when the list contains be-

tween 2–6 items:

li:first-child:nth-last-child(n+2):nth-last-child(-n+6),

li:first-child:nth-last-child(n+2):nth-last-child(-n+6) ~ li {

 /* Target list items iff the list

 contains 2-6 items */

}

▶ PLAY! play.csssecrets.io/styling-sibling-count

■ Selectors

w3.org/TR/selectors

SECRET #38: STYLING BY SIBLING COUNT 275

1 2 3

1
✓✓

 2
✓✓

 3
✓✓

 4
✓✓

1
✓✓

 2
✓✓

 3
✓✓

 4
✓✓

5
✓✓

 6
✓✓

 7
✓✓

 8
✓✓

FIGURE 7.11
Which elements get selected with

li:first-child:nth-last-

child(n+4),

li:first-child:nth-last-

child(n+4) ~ li in lists of three,

four, and eight elements

1
✓✓

 2
✓✓

 3
✓✓

1
✓✓

 2
✓✓

 3
✓✓

 4
✓✓

1 2 3 4

5 6 7 8

FIGURE 7.12
Which elements get selected with

li:first-child:nth-last-

child(-n+4),

li:first-child:nth-last-

child(-n+4) ~ li in lists of

three, four, and eight elements

■

www.it-ebooks.info

http://play.csssecrets.io/styling-sibling-count
http://w3.org/TR/selectors
http://www.it-ebooks.info/

Fluid
background,
fixed content

The problem
In the past few years, there is a certain web design trend that has been

growing in popularity: it’s what I call “fluid background width, fixed content

width.” The typical characteristics of this pattern are:

■ There are multiple sections, each occupying the entire width of the viewport

and each with a different background.

■ The content is of fixed width, even if that width varies in different resolutions

because said fixed width is modified by media queries. In some cases, dif-

ferent sections have different content widths as well.

Sometimes the entire website is comprised of sections styled this way

(Figure 7.15, or, more subtly, Figure 7.14). More frequently, only specific

sections follow this pattern, especially footers (Figure 7.13).

CHAPTER 7: STRUCTURE & LAYOUT276

39

FIGURE 7.13
Popular home-sharing website

airbnb.com uses this pattern in its

footer

■

■

www.it-ebooks.info

http://airbnb.com
http://www.it-ebooks.info/

The most common way to accomplish something like this is using two

elements for each section, one for the fluid background and one for the

fixed content width. The latter is centered horizontally via margin:

auto. For example, the markup for such a footer could look like this:

<footer>

 <div class="wrapper">

 <!-- Footer content here -->

 </div>

</footer>

The CSS usually involves rules of this general structure:

footer {

 background: #333;

}

.wrapper {

 max-width: 900px;

 margin: 1em auto;

}

SECRET #39: FLUID BACKGROUND, FIXED CONTENT 277

FIGURE 7.14
Popular travel booking website

kayak.com uses this pattern

throughout its homepage, in a very

subtle way

HTML

www.it-ebooks.info

http://kayak.com
http://www.it-ebooks.info/

Looks familiar? Most web designers/developers have written similar code at

some point. Are the extra elements a necessary evil, or can we use modern

CSS to avoid them?

The solution
Let’s think for a bit about what margin: auto does in this case. The mar-

gin it produces is equal to half of the viewport width, minus half of our page

width. Because percentages here refer to the viewport width (assuming

there is no ancestor with an explicit width), we could express this in our case

as 50% - 450px. However, the calc() function, defined in CSS Values

and Units Level 3 (w3.org/TR/css-values-3/#calc), allows us to spec-

ify this kind of simple math directly in our stylesheet. By substituting auto

with calc(), our wrapper rule will become:

.wrapper {

 max-width: 900px;

 margin: 1em calc(50% - 450px);

}

The only reason we had to use a second wrapper element was to be able

to apply the magic auto keyword on its margin. However, now we re-

moved the magic and replaced it with calc(), so it’s just another CSS

length value that can be used in any property that accepts lengths. This

means that if we want, we can now apply it to the parent instead as

padding:

footer {

 max-width: 900px;

 padding: 1em calc(50% - 450px);

 background: #333;

}

.wrapper {}

CHAPTER 7: STRUCTURE & LAYOUT278

FIGURE 7.15
The beautiful Irish website of

Cono Sur Vineyards and Winery

(conosur.ie) makes extensive use

of this pattern

! Don’t forget to include white-

space around any - and + oper-

ators in calc(), otherwise it’s a

parsing error! The reason for this

weird rule is forward compatibility: in

the future, identifiers might be al-

lowed inside calc(), and they can

contain hyphens.

www.it-ebooks.info

http://w3.org/TR/css-values-3/#calc
http://w3.org/TR/css-values-3/#calc
http://conosur.ie
http://conosur.ie
http://www.it-ebooks.info/

RELATED

SPECS

As you can see, by doing that, we’ve eliminated any CSS code from the

wrapper, which means we don’t really need it anymore and we can safely

get rid of it from our markup. We have now achieved the style we wanted

with no redundant HTML. Can we improve it even further? As usual, the

answer to this question is yes.

Notice that if we comment out the width declaration, nothing hap-

pens. The visual result is exactly the same, and behaves the same regardless

of viewport size. Why is that? Because a padding of 50% - 450px only

leaves 900px (2 × 450px) of available space anyway. We would see a dif-

ference if width was anything other than 900px, smaller or larger. But

900px is the space we get anyway, so it’s redundant and we can remove

it, which results in DRY-er code.

Another improvement we can make is to improve backward compati-

bility, by adding a fallback so that we at least get some padding if calc()

is not supported:

footer {

 padding: 1em;

 padding: 1em calc(50% - 450px);

 background: #333;

}

This is it: we’ve achieved a flexible, DRY, backward-compatible result in only

three lines of CSS and no extra markup!

▶ PLAY! play.csssecrets.io/fluid-fixed

■ CSS Values & Units

w3.org/TR/css-values

SECRET #39: FLUID BACKGROUND, FIXED CONTENT 279

FIGURE 7.16
Popular Mac OS productivity

application Alfred

(alfredapp.com) also uses this style

throughout its website

! This solution could end up with

no padding if the screen got

narrower than the content width!

We can fix that with media queries.

■

www.it-ebooks.info

http://play.csssecrets.io/fluid-fixed
http://w3.org/TR/css-values
http://alfredapp.com
http://www.it-ebooks.info/

Vertical
centering

The problem
“44 years ago we put a man on the moon, yet we still can’t vertically centre

things in CSS.”

— James Anderson (twitter.com/jsa/status/358603820516917249)

Centering an element horizontally in CSS is very straightforward: if it’s an

inline element, we apply text-align: center to its parent, if it’s a block

element, we apply margin: auto to it. However, just the thought of

vertically centering an element is enough to make our skin crawl.

Over the years, vertical centering has become the holy grail of CSS, as

well as a popular inside joke between frontend professionals. The reason

being that it has all of the following properties at the same time:

■ It’s very frequently needed.

■ It sounds exceedingly easy and simple in theory.

■ It used to be incredibly difficult in practice, especially for elements of variable

dimensions.

Frontend developers over the years have exhausted their creativity in coming

up with solutions to this conundrum, most of them disturbingly hacky. In

this secret, we are going to explore some of the best modern techniques to

CHAPTER 7: STRUCTURE & LAYOUT280

40

■

■

■

www.it-ebooks.info

https://twitter.com/jsa/status/358603820516917249
http://www.it-ebooks.info/

achieve vertical centering for all needs. Note that there are a few popular

techniques that are not discussed here, for various reasons:

■ The table layout method (using table display modes) is not included, as it

requires several redundant HTML elements.

■ The inline-block method is not included, as it’s too hacky for my taste.

However, if you are interested, you can read about both of these techniques

on Chris Coyier’s excellent article “Centering in the Unknown” (css-

tricks.com/centering-in-the-unknown).

Unless otherwise noted, we will use the following markup right inside

the <body> element, although the solutions we will explore should work

regardless of container:

<main>

 <h1>Am I centered yet?</h1>

 <p>Center me, please!</p>

</main>

We also apply some basic CSS for backgrounds, padding, and so on, in order

to get to the starting point shown in Figure 7.17.

The absolute positioning solution
One of the earliest vertical centering techniques was the following, which

required a fixed width and height:

main {

 position: absolute;

 top: 50%;

 left: 50%;

 margin-top: -3em; /* 6/2 = 3 */

 margin-left: -9em; /* 18/2 = 9 */

 width: 18em;

SECRET #40: VERTICAL CENTERING 281

Am I centered yet?
Center me, please!

FIGURE 7.17
Our starting point

HTML

■

■

www.it-ebooks.info

http://css-tricks.com/centering-in-the-unknown
http://www.it-ebooks.info/

 height: 6em;

}

Essentially, it places the element’s top-left corner at the center of the view-

port (or the closest positioned ancestor) and then uses negative margins of

half its width and height to move it up and left so that the element’s center

is at the center of the viewport. With calc() it could be simplified to

use two declarations fewer:

main {

 position: absolute;

 top: calc(50% - 3em);

 left: calc(50% - 9em);

 width: 18em;

 height: 6em;

}

Obviously, the biggest problem with this technique is that it requires

fixed dimensions, while we often need to center elements whose dimen-

sions are determined by their contents. If only we had a way to use percen-

tages that resolve to the element’s dimensions, our issue would be solved!

Unfortunately, for most CSS properties (including margin), percentages

resolve relative to the dimensions of their parent.

As is common with CSS, often solutions come from the most unlikely

places. In this case, CSS transforms. When we use percentages in

translate() transforms, we are moving the element relative to its own

width and height, which is exactly what we need here. We can thus replace

the negative offsets that hardcode our elements dimensions with

percentage-based CSS transforms and get rid of the hardcoded dimensions:

CHAPTER 7: STRUCTURE & LAYOUT282

FIGURE 7.18
Vertical centering with unspecified

dimensions via our CSS transforms

trick

Am I centered

yet?
Center me, please!

www.it-ebooks.info

http://www.it-ebooks.info/

main {

 position: absolute;

 top: 50%;

 left: 50%;

 transform: translate(-50%, -50%);

}

You can see the result in Figure 7.18, but there aren’t really any surprises

there: our container is perfectly centered, just like what we’d expect.

Of course, no technique is perfect, and this one has a few caveats:

■ Absolute positioning is often not an option as its effects on the whole layout

are quite drastic.

■ If the element to be centered is taller than the viewport, its top is clipped

(Figure 7.19). There are ways to work around this, but they are incredibly

hacky.

■ In some browsers, this can cause elements to appear slightly blurry, due to

them being placed on a half pixel. This can be fixed by applying

transform-style: preserve-3d, although this is a hack and is not

guaranteed to be future-proof.

▶ PLAY! play.csssecrets.io/vertical-centering-abs

It proved quite difficult to track down who originally came up with this

helpful trick, but the earliest source seems to be the StackOverflow

(stackoverflow.com) user “Charlie” (stackoverflow.com/users/

479836/charlie) as a response to the question “Align vertically using

CSS 3?” (stackoverflow.com/a/16026893/90826) on April 16, 2013.

SECRET #40: VERTICAL CENTERING 283

FIGURE 7.19
If the element we are trying to center

is taller than the viewport, its top is

clipped

Am I centered

yet?
Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

Center me, please!

HAT TIP

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/vertical-centering-abs
http://stackoverflow.com
http://stackoverflow.com/users/479836/charlie
http://stackoverflow.com/a/16026893/90826
http://stackoverflow.com/a/16026893/90826
http://www.it-ebooks.info/

The viewport unit solution
Assuming we want to avoid absolute positioning, we could still use the

translate() trick to move the element by half its width and height.

However, how do we give it the initial offsets of 50% from the top and left

corner of the container, without left and top?

Our first thought might be to use percentages in the margin property,

like so:

main {

 width: 18em;

 padding: 1em 1.5em;

 margin: 50% auto 0;

 transform: translateY(-50%);

}

However, as you can see in Figure 7.20, this produces rather odd re-

sults. The reason is that percentages in margin are computed relative

to the width of the parent. Yes, even percentages for margin-top and

margin-bottom!

Thankfully, if we are trying to center an element on the viewport, there

is still hope. CSS Values and Units Level 3 (w3.org/TR/css-values-3/

#viewport-relative-lengths) defined a family of new units, called

viewport-relative lengths:

■ vw is relative to the viewport width. Contrary to many expectations, 1vw

stands for 1% of the viewport width, not 100%.

■ Similarly to vw, 1vh represents 1% of the viewport height.

■ 1vmin is equal to 1vw if the viewport width is smaller than the height,

otherwise it is equal to 1vh.

■ 1vmax is equal to 1vw if the viewport width is larger than the height, other-

wise it is equal to 1vh.

In this case, what we need is vh for our margins:

CHAPTER 7: STRUCTURE & LAYOUT284

Am I centered yet?
Center me, please!

FIGURE 7.20
Using percentages in margin to

refer to the viewport dimensions

does not produce the expected

results ■

■

■

■

www.it-ebooks.info

http://w3.org/TR/css-values-3/#viewport-relative-lengths
http://www.it-ebooks.info/

main {

 width: 18em;

 padding: 1em 1.5em;

 margin: 50vh auto 0;

 transform: translateY(-50%);

}

As you can see in Figure 7.21, this works flawlessly. Of course, the useful-

ness of this technique is severely limited due to the fact that it only works

for vertically centering in the viewport.

▶ PLAY! play.csssecrets.io/vertical-centering-vh

The Flexbox solution
This is undoubtedly the best solution available, as Flexbox (w3.org/TR/

css-flexbox) was designed precisely to help with issues like this. The only

reason other solutions are still discussed is because other methods have

better browser support, although these days browser support for Flexbox in

modern browsers is very good.

All it takes is two declarations: display: flex on the parent of the

centered element (the <body> element in our example) and our familiar

margin: auto on the child to be centered (<main> in our example):

body {

 display: flex;

 min-height: 100vh;

 margin: 0;

}

main {

 margin: auto;

}

SECRET #40: VERTICAL CENTERING 285

Note that you can also use viewport-

relative lengths to create full-screen

sections with no scripting. For more

details, see “Make full screen sec-

tions with 1 line of CSS” by An-

drew Ckor (medium.com/@ckor/

make-full-screen-sections-

with-1-line-of-css-

b82227c75cbd).

Am I centered yet?
Center me, please!

FIGURE 7.21
Using 50vh as the top margin solved

our problem and now our box is

vertically centered

www.it-ebooks.info

http://play.csssecrets.io/vertical-centering-vh
http://w3.org/TR/css-flexbox
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
https://medium.com/@ckor/make-full-screen-sections-with-1-line-of-css-b82227c75cbd
http://www.it-ebooks.info/

FUTURE Align all the things!
As is already planned in CSS Box Alignment Level 3 (w3.org/TR/css-align-3), in the future we won’t

even need to use a different layout mode for easy vertical centering, we will just be able to do it with the

following line:

align-self: center;

This will just work, regardless of what other properties are applied to the element. It may sound too good

to be true, but it’s coming soon at a browser near you!

Note that when using Flexbox, margin: auto doesn’t only cen-

ter the element horizontally, but vertically as well. Also note that we

didn’t even have to set a width (though we could, if we wanted to): the

assigned width is equivalent to max-content (remember the intrinsic siz-

ing keywords from the “Intrinsic sizing” secret on page 262?).

If Flexbox is not supported, the result would look like our starting point

in Figure 7.17 (if we set a width), which is perfectly acceptable, even if not

vertically centered.

Another advantage of Flexbox is that it can be used to vertically center

anonymous containers (i.e., text without any wrapper). For example, if our

markup was the following:

<main>Center me, please!</main>

We could specify fixed dimensions to main and center the text inside

it too, via the align-items and justify-content properties that

Flexbox introduced (Figure 7.22):

CHAPTER 7: STRUCTURE & LAYOUT286

Center me, please!

FIGURE 7.22
Using Flexbox to center anonymous

text boxes

We could have used the same prop-

erties on <body> to center the

<main> element, but the margin:

auto approach is more elegant and

doubles as a fallback.

HTML

www.it-ebooks.info

http://w3.org/TR/css-align-3
http://www.it-ebooks.info/

RELATED

SPECS

main {

 display: flex;

 align-items: center;

 justify-content: center;

 width: 18em;

 height: 10em;

}

▶ PLAY! play.csssecrets.io/vertical-centering

■ CSS Transforms

w3.org/TR/css-transforms

■ CSS Values & Units

w3.org/TR/css-values

■ CSS Flexible Box Layout

w3.org/TR/css-flexbox

■ CSS Box Alignment

w3.org/TR/css-align

SECRET #40: VERTICAL CENTERING 287

■

■

■

■

www.it-ebooks.info

http://play.csssecrets.io/vertical-centering
http://w3.org/TR/css-transforms
http://w3.org/TR/css-values
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-align
http://www.it-ebooks.info/

Sticky
footers

Prerequisites
Viewport-relative units (see the “Vertical centering” secret on page

280), calc()

The problem
This is one of the oldest and most common problems in web design, so

common that most of us have experienced it at one point or another. It can

be summarized as follows: a footer with any block-level styling, such as a

background or shadow, works fine when the content is sufficiently long,

but breaks on shorter pages (such as error messages). The breakage in this

case being that the footer does not “stick” at the bottom of the viewport

like we would want it to, but at the bottom of the content.

It is not only its ubiquity that made it popular, but also how deceptively

easy it looks at first. It’s a textbook case of the type of problem that re-

quires significantly more time to solve than expected. In addition, this is

still not a solved problem in CSS 2.1: almost all classic solutions require

CHAPTER 7: STRUCTURE & LAYOUT288

41

Specifically, the issue appears on

pages whose content is shorter than

the viewport height minus the footer

height.

www.it-ebooks.info

http://www.it-ebooks.info/

a fixed height for the footer, which is flimsy and rarely feasible. Furthermore,

all of them are overly complicated, hacky, and have specific markup

requirements. Back then, this was the best we could do, given the limita-

tions of CSS 2.1. But can we do better with modern CSS, and if so, how?

Fixed height solution
We will work with an extremely bare-bones page with the following markup

inside the <body> element:

<header>

 <h1>Site name</h1>

</header>

<main>

 <p>Bacon Ipsum dolor sit amet…

 <!-- Filler text from baconipsum.com --></p>

</main>

<footer>

 <p>© 2015 No rights reserved.</p>

 <p>Made with ♥ by an anonymous pastafarian.</p>
</footer>

We have also applied some basic styling to it, including a background

on the footer. You can see how it looks in Figure 7.23. Now, let’s reduce

the content a bit. You can see what happens then, in Figure 7.24. This is

the sticky footer problem in all its glory! Great, we have recreated the prob-

lem, but how do we solve it?

If we assume that our footer text will never wrap, we can deduce a CSS

length for its height:

2 lines × line height + 3 × paragraph margin + vertical padding =

2 × 1.5em + 3 × 1em + 1em = 7em

SECRET #41: STICKY FOOTERS 289

If you’ve never had the pleasure of

pulling your hair out and diving in

the existing literature for this prob-

lem, here are a few popular links

with existing, widely used solutions

that have served many a web devel-

oper before CSS Level 3 specs were

conceived:

■ cssstickyfooter.com

■ ryanfait.com/sticky-footer

■ css-tricks.com/

snippets/css/sticky-footer

■ pixelsvsbytes.com/blog/

2011/09/sticky-css-footers-

the-flexible-way

■ mystrd.at/modern-clean-css-

sticky-footer

The last two are the most minimal in

the lot, but still have their own

limitations.

■

■

■

■

■

Site name
Bacon ipsum dolor sit amet turkey veniam shankle,
culpa short ribs kevin t-bone occaecat. Et laborum
venison nostrud, ut veniam sint kielbasa ullamco
pancetta. Qui drumstick tail, bacon leberkas shoulder
capicola laborum. Minim ipsum bacon, mollit laboris
t-bone pariatur. Ham hock reprehenderit sint beef,
sausage pig eiusmod t-bone shankle strip steak.

Cow enim excepteur, boudin dolore lorem magna
fugiat consequat voluptate. Picanha fugiat chicken,
cupim aliquip magna filet mignon prosciutto ut
nostrud. Kielbasa rump frankfurter sunt corned beef.
Andouille in cillum deserunt, rump et picanha
landjaeger tongue anim.

Dolore reprehenderit ex, meatball doner commodo
consectetur ea ribeye. Ad aliqua kevin, chuck
excepteur minim et cow esse ham hock landjaeger.
Alcatra bresaola dolore tempor do, excepteur in velit
flank officia dolore meatloaf corned beef picanha. Eu
pancetta brisket eiusmod ipsum aute sausage, culpa
rump shoulder excepteur nostrud venison sed pork
loin. Tempor proident do magna ground round. Ut
venison frankfurter et veniam dolore. Pig pork belly
beef ribs kevin, doner exercitation magna esse shankle.

Flank anim chuck boudin id consectetur bresaola ham
pork loin cupim andouille frankfurter. Proident do ball
tip nostrud nulla sed, frankfurter ut commodo corned
beef ut. Ex aute in, pig deserunt beef ribs turducken
pastrami irure ball tip pork belly pork chop sausage
id. Chicken sunt nisi tempor sed. In eiusmod non
fatback tempor tenderloin pastrami adipisicing cow
lorem ut tail jerky cupidatat venison. Jowl consequat
commodo pork loin ipsum pork belly prosciutto aute
beef. Ball tip shoulder aliqua, fugiat landjaeger kevin
pork chop beef ribs leberkas hamburger cillum turkey
ut doner culpa.

© 2015 No rights reserved.

Made with ♥ by an anonymous pastafarian.

FIGURE 7.23
How our simple page looks when its

content is sufficiently long

HTML

www.it-ebooks.info

http://cssstickyfooter.com
http://ryanfait.com/sticky-footer
http://css-tricks.com/snippets/css/sticky-footer
http://css-tricks.com/snippets/css/sticky-footer
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://pixelsvsbytes.com/blog/2011/09/sticky-css-footers-the-flexible-way
http://mystrd.at/modern-clean-css-sticky-footer
http://mystrd.at/modern-clean-css-sticky-footer
http://www.it-ebooks.info/

Similarly, the header height is 2.5em. Therefore, by using viewport-

relative units and calc(), we can “stick” our footer to the bottom with

essentially one line of CSS:

main {

 min-height: calc(100vh - 2.5em - 7em);

 /* Avoid padding/borders screwing up our height: */

 box-sizing: border-box;

}

Alternatively, we could apply a wrapper around our <header> and <main>

elements so that we only need to calculate the footer height:

#wrapper {

 min-height: calc(100vh - 7em);

}

This works (Figure 7.25) and it seems to be slightly better than the existing

fixed height solutions, mainly due to its minimalism. However, except for

very simple layouts, this is not practical at all. It requires us to assume that

the footer text will never wrap, we need to edit the min-height every

time we change the footer metrics (i.e., it is not DRY), and unless we’re

willing to add a wrapper HTML element around our header and content,

we need to do the same calculations and modifications for the header as

well. Surely, in this day and age we can do better, right?

▶ PLAY! play.csssecrets.io/sticky-footer-fixed

Flexible solution
Flexbox is perfect for these kinds of problems. We can achieve perfect flex-

ibility with only a few lines of CSS and there is no need for weird calculations

CHAPTER 7: STRUCTURE & LAYOUT290

Site name
Bacon ipsum dolor sit amet turkey veniam shankle,
culpa short ribs kevin t-bone occaecat. Et laborum
venison nostrud, ut veniam sint.

© 2015 No rights reserved.

Made with ♥ by an anonymous pastafarian.

FIGURE 7.24
The sticky footer problem in all its

glory

! Be careful when using calc()

with subtraction or addition:

the + and - operators require

spaces around them. This very odd

decision was made for future com-

patibility. If at some point keywords

are allowed in calc(), the CSS

parser needs to be able to distinguish

between a hyphen in a keyword and

a minus operator.

Site name
Bacon ipsum dolor sit amet turkey veniam shankle,
culpa short ribs kevin t-bone occaecat. Et laborum
venison nostrud, ut veniam sint.

FIGURE 7.25
The footer after we’ve applied CSS

to make it stick

© 2015 No rights reserved.

Made with ♥ by an anonymous pastafarian.

www.it-ebooks.info

http://play.csssecrets.io/sticky-footer-fixed
http://www.it-ebooks.info/

or extra HTML elements. First, we need to apply display: flex to the

<body> element, as it’s the parent of all three of our main blocks, to toggle

Flexible Box Layout (Flexbox) for all three of them. We also need to set

flex-flow to column, otherwise they will be all laid out horizontally on

a single row (Figure 7.26):

body {

 display: flex;

 flex-flow: column;

}

At this point, our page looks about the same as it did before all the Flexbox

stuff, as every element occupies the entire width of the viewport and its size

is determined by its contents. Ergo, we haven’t really taken advantage of

Flexbox yet.

To make the magic happen, we need to specify a min-height of

100vh on <body>, so that it occupies at least the entire height of the

viewport. At this point, the layout still looks exactly like Figure 7.24, be-

cause even though we have specified a minimum height for the entire body

element, the heights of each box are still determined by their contents (i.e.,

they are intrinsically determined, in CSS spec parlance).

What we need here is for the height of the header and footer to be

intrinsically determined, but the height of the content should flexibly

stretch to all the leftover space. We can do that by applying a flex value

that is larger than 0 (1 will work) to the <main> container:

body {

 display: flex;

 flex-flow: column;

 min-height: 100vh;

}

main { flex: 1; }

SECRET #41: STICKY FOOTERS 291

Site
name

Bacon
ipsum
dolor sit
amet
turkey
veniam
shankle,
culpa
short ribs
kevin t-
bone
occaecat.
Et
laborum
venison
nostrud,
ut veniam
sint.

©
2015
No
rights
reserved.

Made
with
♥
by
an
anonymous
pastafarian.

FIGURE 7.26
Applying flex without applying

anything else arranges the children

of our element horizontally

TIP! The flex property is ac-

tually a shorthand of

flex-grow, flex-shrink, and

flex-basis. Any element with a

flex value greater than 0 becomes

flexible and flex controls the ratio

between the dimensions of different

flexible elements. For example, in

our case, if <main> had flex: 2

and <footer> had flex: 1, the

height of the footer would be twice

the height of the content. Same if

the values were 4 and 2 instead of 2

and 1, because it’s their relation-

ship that matters.

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

That’s it, no more code required! The perfect sticky footer (same visual result

as in Figure 7.25), with only four simple lines of code. Isn’t Flexbox

beautiful?

▶ PLAY! play.csssecrets.io/sticky-footer

Hat tip to Philip Walton (philipwalton.com) for coming up with this

technique (philipwalton.github.io/solved-by-flexbox/demos/

sticky-footer).

■ CSS Flexible Box Layout

w3.org/TR/css-flexbox

■ CSS Values & Units

w3.org/TR/css-values

CHAPTER 7: STRUCTURE & LAYOUT292

HAT TIP

■

■

www.it-ebooks.info

http://play.csssecrets.io/sticky-footer
http://philipwalton.com
http://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer
http://philipwalton.github.io/solved-by-flexbox/demos/sticky-footer
http://w3.org/TR/css-flexbox
http://w3.org/TR/css-values
http://www.it-ebooks.info/

Transitions &
Animations 8

www.it-ebooks.info

http://www.it-ebooks.info/

Elastic
transitions

Prerequisites
Basic CSS transitions, basic CSS animations

The problem
Elastic transitions and animations (i.e., transitions that “bounce”) are a pop-

ular way to make an interface feel more playful and realistic—when objects

are moving in real life, they rarely go from A to B with no elasticity.

From a technical point of view, a bouncing effect is when a transition

reaches the final value, then rewinds for a little bit, then reaches the final

value again, one or more times diminishingly, until it reaches the end for

good. For example, let’s assume we are animating an element styled like a

falling ball (see Figure 8.1), by transitioning transform from none to

translateY(350px).

Of course, bounces are not just about positional movement. They can

greatly enhance almost any kind of transition, including:

CHAPTER 8: TRANSITIONS & ANIMATIONS294

42

Why use transforms and not some

other CSS property, like top or

margin-top? At the time of writ-

ing, transforms tend to be smoother,

whereas other CSS properties often

snap to pixel boundaries.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Size transitions (e.g., making an element larger on :hover, displaying a

popup that grows from transform: scale(0), animating the bars in a

bar chart)

■ Angular movement (e.g., rotations, a pie chart whose slices grow from 0 via

an animation)

Quite a few JavaScript libraries offer animation capabilities with bounce built

in. However, these days we don’t need scripting for animations and transi-

tions any longer. However, what’s the best way to code a bounce in CSS?

Bouncing animations
Our first hunch might be to use a CSS animation, with keyframes such as

the following:

SECRET #42: ELASTIC TRANSITIONS 295

FIGURE 8.1
A real-life bouncing movement

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

@keyframes bounce {

 60%, 80%, to { transform: translateY(350px); }

 70% { transform: translateY(250px); }

 90% { transform: translateY(300px); }

}

.ball {

 /* Dimensions, colors, etc. */

 animation: bounce 3s;

}

The keyframes in the preceding code specify exactly the same steps as

in Figure 8.1. However, if you run this animation, you will notice that it

looks very artificial. One of the reasons for this is that every time the ball

changes direction, it continues accelerating, which looks unnatural. The

reason is that its timing function is the same across all these keyframes.

“Its timing…what?” you might ask. Every transition and animation is

associated with a curve that specifies how it progresses over time (also

known as “easing” in some contexts). If you don’t specify a timing function,

it will get the default one, which unlike what you might expect is not linear

and is shown in Figure 8.2. Note (as shown by the pink point in

Figure 8.2) how when half of the time has elapsed, the transition is

about 80% along the way!

The default timing function can also be explicitly specified with the

keyword ease, either in the animation/transition shorthand or the

animation-timing-function/transition-timing-function

longhands. However, because ease is the default timing function, it’s not

very useful. There are four more pre-baked curves you can use to change

the way the animation progresses, shown in Figure 8.3.

As you can see, ease-out is the reverse of ease-in. This is exactly

what we wanted for our bounce effect: we want to reverse the timing

function every time the direction reverses. We can therefore specify a

main timing function in the animation property and override it in the

keyframes. We want the timing function of the main direction to be the

CHAPTER 8: TRANSITIONS & ANIMATIONS296

PR
O

G
RE

SS
IO

N

(50%, 80%)

TIME

PR
O

G
RE

SS
IO

N

(50%, 80%)

TIME

FIGURE 8.2
The default timing function (ease)

for all transitions and animations

www.it-ebooks.info

http://www.it-ebooks.info/

PR
O

G
RE

SS
IO

N (50%, 32%)

ease-in

TIME

PR
O

G
RE

SS
IO

N (50%, 32%)

ease-in

TIME
 PR

O
G

RE
SS

IO
N

(50%, 68%)

ease-out

TIME

PR
O

G
RE

SS
IO

N

(50%, 68%)

ease-out

TIME

PR
O

G
RE

SS
IO

N

(50%, 50%)

ease-in-out

TIME

PR
O

G
RE

SS
IO

N

(50%, 50%)

ease-in-out

TIME
 PR

O
G

RE
SS

IO
N

(50%, 50%)

linear

TIME

PR
O

G
RE

SS
IO

N

(50%, 50%)

linear

TIME

accelerating one (ease-out) and the one of the reverse direction to be

decelerating (ease-in):

@keyframes bounce {

 60%, 80%, to {

 transform: translateY(400px);

 animation-timing-function: ease-out;

 }

 70% { transform: translateY(300px); }

 90% { transform: translateY(360px); }

}

.ball {

SECRET #42: ELASTIC TRANSITIONS 297

FIGURE 8.3
The available keywords that

correspond to predetermined timing

functions

www.it-ebooks.info

http://www.it-ebooks.info/

 /* Rest of styling here */

 animation: bounce 3s ease-in;

}

If you test the code out, you will see that even this simple change instantly

results in a considerably more realistic bounce. However, restricting

ourselves to these five predetermined curves is extremely limiting. If we

could pick arbitrary timing functions, we would be able to achieve much

more realistic results. For example, if the bounce animation is for a falling

object, then a higher acceleration (such as the one provided by ease)

would create a more realistic result. But how could we create the inverse of

ease, when there is no keyword for it?

All five of these curves are specified through (cubic) Bézier curves. Béz-

ier curves are the kinds of curves you work with in any vector application

(e.g., Adobe Illustrator). They are defined by a number of path segments,

with a handle on each end to control their curvature (these handles are often

called control points). Complex curves contain a large number of such seg-

ments, which are joined at their endpoints (Figure 8.4). CSS timing func-

tions are Bézier curves with only one segment, so they only have two

control points. As an example, you can see the default timing function

(ease) with its control points exposed in Figure 8.5.

In addition to the five predefined curves we discussed in the previous

section, there is also a cubic-bezier() function that allows us to spec-

ify a custom timing function. It takes four arguments, which are the co-

ordinates of the two control points, to create the Bézier curve we are

specifying, with the form cubic-bezier(x1, y1, x2, y2) where (x1,

y1) are the coordinates of the first control point and (x2, y2) of the second.

The endpoints of the line segment are fixed at (0,0), which is the begin-

ning of the transition (zero elapsed time, zero progression) and (1,1),

which is its end (100% elapsed time, 100% progression).

Note that the restriction on having a single segment whose endpoints

are fixed is not the only one. The x values of both control points are restricted

to the [0, 1] range (i.e., we cannot move the handles outside of the graph

horizontally). This restriction is not arbitrary. As we cannot (yet?) travel

through time, we cannot specify a transition that begins before it is triggered

CHAPTER 8: TRANSITIONS & ANIMATIONS298

FIGURE 8.4
A cubic Bézier curve for a spiral, with

its nodes and control points showing

PR
O

G
RE

SS
IO

N

TIME

PR
O

G
RE

SS
IO

N

TIME

FIGURE 8.5
The ease timing function with its

nodes and control points displayed

www.it-ebooks.info

http://www.it-ebooks.info/

or ends after its duration. The only real limitation here is the number of

nodes: restricting the curve to only two nodes limits the result quite con-

siderably, but it also makes the cubic-bezier() function simpler to use.

Despite these limitations, cubic-bezier() allows us to create a very di-

verse set of timing functions.

It logically follows that we can reverse any timing function by

swapping the horizontal with the vertical coordinates for both its

control points. This applies to keywords too; all five keywords we discussed

correspond to cubic-bezier() values. For example, ease is equivalent

to cubic-bezier(.25,.1,.25,1), so its reverse is cubic-bezier(.

1,.25,1,.25) and is shown in Figure 8.6. This way, our bounce anima-

tion can now use ease and look even more realistic:

@keyframes bounce {

 60%, 80%, to {

 transform: translateY(400px);

 animation-timing-function: ease;

 }

 70% { transform: translateY(300px); }

 90% { transform: translateY(360px); }

}

.ball {

 /* Styling */

 animation: bounce 3s cubic-bezier(.1,.25,1,.25);

}

Using a graphical tool like cubic-bezier.com (Figure 8.7) we can experi-

ment further and improve our bounce animation even more.

▶ PLAY! play.csssecrets.io/bounce

SECRET #42: ELASTIC TRANSITIONS 299

PR
O

G
RE

SS
IO

N

(50%, 30%)

TIME

PR
O

G
RE

SS
IO

N

(50%, 30%)

TIME

FIGURE 8.6
The reverse timing function for ease

www.it-ebooks.info

http://cubic-bezier.com
http://play.csssecrets.io/bounce
http://www.it-ebooks.info/

In the animate.css animation library by Dan Eden (daneden.me), the

timing function used is cubic-bezier(.215,.61,.355,1) and

cubic-bezier(.755,.05,.855,.06) instead of its reverse, which is

steeper, for increased realism.

Elastic transitions
Suppose we want to show a callout every time a text field is focused, to

supply additional information, such as allowed values. The markup could

look like this:

<label>

 Your username: <input id="username" />

 Only letters, numbers,

 underscores (_) and hyphens (-) allowed!

</label>

CHAPTER 8: TRANSITIONS & ANIMATIONS300

HAT TIP

TIP! If you were using a

height and not a trans-

form to show the callout, you would

notice that transitions from

height: 0 (or any other) to

height: auto do not work, be-

cause auto is a keyword and cannot

be expressed as an animatable value.

In those cases, use max-height

instead with a sufficiently large

height.

HTML

FIGURE 8.7
Cubic Bézier curves are notoriously

hard to specify and understand

without a visualization, especially

when they are acting as timing

functions for a transition; thankfully,

there are quite a few online tools for

this, such as cubic-bezier.com

(shown here), made by yours truly

www.it-ebooks.info

http://daneden.me
http://cubic-bezier.com
http://www.it-ebooks.info/

And the CSS for toggling the display could look like the following (we have

omitted everything related to styling or layout):

input:not(:focus) + .callout {

 transform: scale(0);

}

.callout {

 transition: .5s transform;

 transform-origin: 1.4em -.4em;

}

As it currently stands, when the user focuses on our text field, there is a half-

second transition that looks like Figure 8.8. Nothing wrong with that, but

it would look more natural and playful if it overshot a bit at the end (e.g., if

it grew to 110% its size, and then snapped back to 100%). We can do this

by converting the transition to an animation, and applying what we learned

in the previous section:

@keyframes elastic-grow {

 from { transform: scale(0); }

 70% {

 transform: scale(1.1);

 animation-timing-function:

 cubic-bezier(.1,.25,1,.25); /* Reverse ease */

SECRET #42: ELASTIC TRANSITIONS 301

FIGURE 8.8
How our transition looks initially

www.it-ebooks.info

http://www.it-ebooks.info/

 }

}

input:not(:focus) + .callout { transform: scale(0); }

input:focus + .callout { animation: elastic-grow .5s; }

.callout { transform-origin: 1.4em -.4em; }

If we try it out, we will see that it does indeed work. You can see how it

looks in Figure 8.9 and compare it with the previous transition. However,

we’ve essentially used an animation when we really needed a transition.

Animations might be very powerful, but in a case like this where all we

needed was to add some elasticity to our transition, it feels a bit overkill,

like using a chainsaw to cut ourselves a slice of bread. Is there a way to

accomplish something like this with a transition?

The solution lies again in custom cubic-bezier() timing functions.

So far, we have only discussed curves whose control points were in the 0–

1 range. As we mentioned in the previous section, we cannot exceed this

range horizontally, although this might change in the future if time ma-

chines are ever invented. However, we are allowed to exceed the 0–1

range vertically and get our transition to go below 0% progression or

above 100%. Can you guess what that means? It means that if we are

moving from a scale(0) transform to a scale(1) transform, we can

make it go further than the final value, and reach values like

scale(1.1), or even more, depending on how steep we make the timing

function.

CHAPTER 8: TRANSITIONS & ANIMATIONS302

FIGURE 8.9
Our UI feels more realistic and playful

if we add some elasticity to our

transition

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, we only want very little elasticity, so we want our timing

function to reach 110% progression (which corresponds to scale(1.1))

and then start transitioning back to 100%. Let’s start from the initial ease

timing function (cubic-bezier(.25,.1,.25,1)) and move the second

control point toward the top until we reach something like cubic-

bezier(.25,.1,.3,1.5). As you can see in Figure 8.10, the transition

now reaches 100% progression at roughly 50% of its total duration. How-

ever, it does not stop there; it continues moving past the end value until

it reaches 110% progression at the 70% time mark and then spends the

remaining 30% of its available time transitioning back to the final value,

resulting in a transition that is very similar to our animation, but is achieved

with only one line of code. For the sake of comparison, our code is now:

input:not(:focus) + .callout { transform: scale(0); }

.callout {

 transform-origin: 1.4em -.4em;

 transition: .5s cubic-bezier(.25,.1,.3,1.5);

}

However, although our transition looks as expected when we focus on the

text field and the callout shows up, the results might not be exactly what

one would expect when the text field loses focus and the callout shrinks and

disappears (Figure 8.11). What happened here?! Odd as the result might

look, it’s actually expected: when we tab out of the input field, the transition

that fires has scale(1) as its starting value and scale(0) as it’s final

value. Therefore, because the same timing function is applied, the transition

will still reach 110% progression after 350ms. Only this time, 110% pro-

gression does not translate to scale(1.1), but to scale(-0.1)!

Don’t give up just yet though, because fixing this issue only adds one

more line of code. Assuming we just want a regular ease timing function

when the callout shrinks, we can do it by overriding the current timing

function in the CSS rule that defines its closed state:

SECRET #42: ELASTIC TRANSITIONS 303

PR
O

G
RE

SS
IO

N

(50%, 100%)

(70%, 110%)

TIME

PR
O

G
RE

SS
IO

N

(50%, 100%)

(70%, 110%)

TIME

FIGURE 8.10
A custom timing function with

vertical coordinates outside the 0–1

range

www.it-ebooks.info

http://www.it-ebooks.info/

input:not(:focus) + .callout {

 transform: scale(0);

 transition-timing-function: ease;

}

.callout {

 transform-origin: 1.4em -.4em;

 transition: .5s cubic-bezier(.25,.1,.3,1.5);

}

If you try it again, you will see that it now closes in exactly the same way as

it did before our custom cubic-bezier() function, but when it opens,

it has the nice elastic effect we were going for.

The most vigilant of readers will also notice another issue: closing the

callout feels very slow. Why is that? Think about it. When it’s growing, it

reaches 100% of its final size at 50% progression (i.e., after 250ms). How-

ever, when it is shrinking, going from 0% to 100% takes up all of the time

we specified for the transition (500ms), so it feels half as fast.

To fix that last issue, we can just override the duration as well, either

by using transition-duration or by using the transition shorthand

and overriding everything. If we do the latter, we don’t have to explicitly

specify ease, because it is the initial value:

CHAPTER 8: TRANSITIONS & ANIMATIONS304

FIGURE 8.11
What happened here?!

www.it-ebooks.info

http://www.it-ebooks.info/

input:not(:focus) + .callout {

 transform: scale(0);

 transition: .25s;

}

.callout {

 transform-origin: 1.4em -.4em;

 transition: .5s cubic-bezier(.25,.1,.3,1.5);

}

While elastic transitions can be a nice touch in many kinds of transitions

(some of which we mentioned in the “The problem” section of this secret),

they are a terrible idea for others. The typical case where you don’t want

elastic transitions is colors. Although elastic transitions on colors can be

quite amusing (see Figure 8.12), they are usually not desirable for a UI.

To guard against accidentally applying elastic transitions to colors, try

to restrict transitions to specific properties, instead of not specifying any

like we did before. When we don’t specify any properties in the

transition shorthand, transition-property gets its default value:

all. This means that anything that can be transitioned, will be tran-

sitioned. Therefore, if we later add a background change on the rule that

is applied to open callouts, the elastic transition will now be applied to that

too. The final code looks like this:

input:not(:focus) + .callout {

SECRET #42: ELASTIC TRANSITIONS 305

FIGURE 8.12
An elastic color transition from

rgb(100%, 0%, 40%) to

gray (rgb(50%, 50%, 50%))

with a timing function of cubic-

bezier(.25,.1,.2,3). Each

RGB coordinate interpolates

individually, so we reach weird colors

like rgb(0%, 100%, 60%).

Check out play.csssecrets.io/

elastic-color.

www.it-ebooks.info

http://play.csssecrets.io/elastic-color
http://play.csssecrets.io/elastic-color
http://www.it-ebooks.info/

RELATED

SPECS

 transform: scale(0);

 transition: .25s transform;

}

.callout {

 transform-origin: 1.4em -.4em;

 transition: .5s cubic-bezier(.25,.1,.3,1.5) transform;

}

▶ PLAY! play.csssecrets.io/elastic

■ CSS Transitions

w3.org/TR/css-transitions

■ CSS Animations

w3.org/TR/css-animations

CHAPTER 8: TRANSITIONS & ANIMATIONS306

TIP! Speaking of restricting

transitions to specific

properties, you can even queue the

transitions for the different proper-

ties, via transition-delay,

which is the second time value in the

transition shorthand. For exam-

ple, if both width and height are

transitioning and you want the

height to go first and the width sec-

ond (an effect popularized by many

lightbox scripts), you could do it with

something like transition: .5s

height, .8s .5s width; (i.e.,

the delay of the width transition is

equal to the duration of the height

transition).

■

■

www.it-ebooks.info

http://play.csssecrets.io/elastic
http://w3.org/TR/css-transitions
http://w3.org/TR/css-animations
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Frame-by-frame
animations

Prerequisites
Basic CSS animations, the “Elastic transitions” secret on page 294

The problem
Quite often, we need an animation that is difficult or impossible to achieve

by transitioning CSS properties on elements. For example, a cartoon moving

or a complex progress indicator. In this case, image-based frame-by-frame

animations are perfect, but surprisingly challenging to accomplish on the

Web in a flexible manner.

At this point, you might be wondering, “Can’t we just use animated

GIFs?” The answer is yes, for many cases, animated GIFs are perfect. How-

ever, they have a few shortcomings that might be a dealbreaker for certain

use cases:

■ They are limited to a 256 color palette, shared across all frames.

CHAPTER 8: TRANSITIONS & ANIMATIONS308

43

FIGURE 8.13
A semi-transparent progress

indicator (on dabblet.com); this is

impossible to achieve with animated

GIFs
■

www.it-ebooks.info

http://dabblet.com
http://www.it-ebooks.info/

■ They cannot have alpha transparency, which can be a big problem when

we don’t know what will be underneath our animated GIF. For example, this

is very common with progress indicators (see Figure 8.13).

■ There is no way to modify certain aspects from within CSS, such as duration,

repetitions, pausing, and so on. Once the GIF is generated, everything is

baked into the file and can only be changed by using an image editor and

generating another file. This is great for portability, but not for exper-

imentation.

Back in 2004, there was an effort by Mozilla to address the first two

issues by allowing frame-by-frame animation in PNG files, akin to the

way we can have both static and animated GIF files. It was called APNG and

was designed to be backward compatible with non-supporting PNG view-

ers, by encoding the first frame in the same way as traditional PNG files, so

old viewers would at least display that. Promising as it was, APNG never got

enough traction and to this day, has very limited browser and image editor

support.

Developers have even used JavaScript to achieve flexible frame-by-

frame animations in the browser, by using an image sprite and animating

its background-position with JS. You can even find small libraries to

facilitate this! Is there a straightforward way to achieve this with only nice,

readable CSS code?

The solution
Let’s assume we have all frames of our animation in a PNG sprite like the

one shown in Figure 8.14.

We also have an element that will hold the loader (don’t forget to include

some text, for accessibility!), to which we have already applied the dimen-

sions of a single frame:

SECRET #43: FRAME-BY-FRAME ANIMATIONS 309

For more information about APNG,

see wikipedia.org/wiki/APNG.

FIGURE 8.14
Our spinner’s eight frames

(dimensions: 800×100)

■

■

www.it-ebooks.info

http://wikipedia.org/wiki/APNG
http://www.it-ebooks.info/

<div class="loader">Loading…</div>

.loader {

 width: 100px; height: 100px;

 background: url(img/loader.png) 0 0;

 /* Hide text */

 text-indent: 200%;

 white-space: nowrap;

 overflow: hidden;

}

Currently, the result looks like Figure 8.15: the first frame is displayed,

but there is no animation. However, if we play with different background-

position values, we will notice that -100px 0 gives us the second frame,

-200px 0 gives us the third frame, and so on. Our first thought could be

to apply an animation like this:

@keyframes loader {

 to { background-position: -800px 0; }

}

.loader {

 width: 100px; height: 100px;

 background: url(img/loader.png) 0 0;

 animation: loader 1s infinite linear;

 /* Hide text */

 text-indent: 200%;

 white-space: nowrap;

 overflow: hidden;

}

CHAPTER 8: TRANSITIONS & ANIMATIONS310

FIGURE 8.15
The first frame of our loader shows,

but there is no animation yet

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

However, as you can see in the following stills (taken every 167ms), this

doesn’t really work:

It might seem like we’re going nowhere, but we are actually very close to

the solution. The secret here is to use the steps() timing function, instead

of a Bézier-based one.

“The what timing function?!” you might ask. As we saw in the previous

chapter, all Bézier-based timing functions interpolate between keyframes to

give us smooth transitions. This is great; usually, smooth transitions are ex-

actly the reason we are using CSS transitions or animations. However, in this

case, this smoothness is destroying our sprite animation.

Very unlike Bézier timing functions, steps() divides the whole ani-

mation in frames by the number of steps you specify and abruptly

switches between them with no interpolation. Usually this kind of abrupt-

ness is undesirable, so steps() is not talked about much. As far as CSS

timing functions go, Bézier-based ones are the popular kids that get invited

to all the parties and steps() is the ugly duckling that nobody wants to

have lunch with, sadly. However, in this case, it’s exactly what we need. Once

we convert our animation to the following, our loader suddenly starts work-

ing the way we wanted it to:

animation: loader 1s infinite steps(8);

Keep in mind that steps() also accepts an optional second parameter,

start or end (default) that specifies when the switch happens on every

interval (see Figure 8.17 for the default behavior of end), but that is rarely

SECRET #43: FRAME-BY-FRAME ANIMATIONS 311

FIGURE 8.16
Our initial attempt for a frame-by-

frame animation failed, as we did

not need interpolation between

keyframes

PR
O

G
RE

SS
IO

N

TIME

PR
O

G
RE

SS
IO

N

TIME

FIGURE 8.17
A comparison of steps(8),

linear and the default timing

function, ease

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

needed. If we only need a single step, there are also shortcuts: step-start

and step-end, which are equivalent to steps(1, start) and

steps(1, end), respectively.

▶ PLAY! play.csssecrets.io/frame-by-frame

Hat tip to Simurai (simurai.com/) for coming up with this useful techni-

que in Sprite sheet animation with steps() (simurai.com/blog/

2012/12/03/step-animation).

■ CSS Animations

w3.org/TR/css-animations

CHAPTER 8: TRANSITIONS & ANIMATIONS312

HAT TIP

■

www.it-ebooks.info

http://play.csssecrets.io/frame-by-frame
http://simurai.com/
http://simurai.com/blog/2012/12/03/step-animation
http://w3.org/TR/css-animations
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking

Prerequisites
Basic CSS animations, the “Frame-by-frame animations” secret on

page 308

The problem
Remember the old <blink> tag? Of course you do. It has become a cultural

symbol in our industry, reminding us of the humble, clumsy beginnings of

our discipline, and always willing to serve as an inside joke between old-

timers. It is universally despised, both because it violated separation of

structure and style, but mainly because its overuse made it a pain for anyone

browsing the Web in the late 90s. Even its own inventor, Lou Montulli, has

said “[I consider] the blink tag to be the worst thing I’ve ever done for the

Internet.”

However, now that the nightmare of the <blink> tag is long behind

us, we sometimes still find ourselves needing a blinking animation. It feels

weird at first, a bit like discovering some sort of strange perversion inside us

CHAPTER 8: TRANSITIONS & ANIMATIONS314

44

www.it-ebooks.info

http://www.it-ebooks.info/

that we never knew we had. The identity crisis stops when we realize that

there are a few use cases in which blinking can enhance usability, rather

than reduce it.

A common UX pattern is blinking a few times (no more than three!) to

indicate that a change has been applied somewhere in the UI or to highlight

the current link target (the element whose id matches the URL #hash). Used

in such a limited way, blinking can be very effective to draw the user’s at-

tention to an area, but due to the limited number of iterations, it doesn’t

have the adverse effects the <blink> tag did. Another way to keep the

good of blinking (directing user attention) without the bad (distracting, an-

noying, seizure inducing) is to “smoothe” it out (i.e., instead of alternating

between an abrupt “on” and “off” state, to have a smooth progression

between the two).

However, how do we implement all this? The CSS-only replacement for

the <blink> tag, text-decoration: blink, is too limited to allow us

to do what we want, and even if it was powerful enough, its browser sup-

port is very poor. Can we use CSS animations for this, or is JS our only hope?

The solution
There are actually multiple ways to use CSS animations to achieve any kind

of blinking: on the whole element (via opacity), on the text color (via

color), on its border (via border-color), and so on. In the rest of this

section, we will assume that we want to blink the text only, as that is the

most common use case. However, the solution for other parts of an element

is analogous.

Achieving a smooth blink is rather easy. Our first attempt would prob-

ably look like this:

@keyframes blink-smooth { to { color: transparent } }

.highlight { animation: 1s blink-smooth 3; }

SECRET #44: BLINKING 315

www.it-ebooks.info

http://www.it-ebooks.info/

This almost works. Our text smoothly fades from its text color to transparent,

however it then abruptly jumps back to the original text color. Plotting

the change of text color over time helps us figure out why this happens

(Figure 8.18).

This might actually be desirable. In that case, we are done! However, when

we want the blinking to be smooth both when the text fades out and when

it fades in, we have a bit more work to do. One way to achieve this would

be by changing the keyframes to make the switch happen in the middle of

each iteration:

@keyframes blink-smooth { 50% { color: transparent } }

.highlight {

 animation: 1s blink-smooth 3;

}

This looks like the result we wanted. However, although it doesn’t show in

this particular animation (because it’s difficult to differentiate between tim-

ing functions with color/opacity transitions), it’s important to keep in mind

that the animation is accelerating both when it fades in and when it fades

out, which could look unnatural for certain animations (e.g., pulsating ani-

mations). In that case, we can pull a different tool out of our toolbox:

animation-direction.

The only purpose of animation-direction is to reverse either all

iterations (reverse), every even one (alternate) or every odd one

(alternate-reverse). What is great about it is that it also reverses the

timing function, creating far more realistic animations. We could try it on

our blinking element like so:

@keyframes blink-smooth { to { color: transparent } }

CHAPTER 8: TRANSITIONS & ANIMATIONS316

FIGURE 8.18
The progression of our text color

over three seconds (three iterations)

www.it-ebooks.info

http://www.it-ebooks.info/

.highlight {

 animation: .5s blink-smooth 6 alternate;

}

Note that we had to double the number of iterations (instead of the dura-

tion, like the previous method), as now one fade-in/fade-out pair consists

of two iterations. For the same reason, we also cut animation-duration

in half.

normalnormalnormalnormalnormal

alternatealternatealternatealternatealternate

reversereversereversereversereverse

alternate-reversealternate-reversealternate-reversealternate-reversealternate-reverse

If we want a smooth blink animation, we’re done at this point. However,

what if we want a classic one? How do we go about it? Our first attempt

might look like this:

@keyframes blink { to { color: transparent } }

.highlight {

 animation: 1s blink 3 steps(1);

}

However, this will fail spectacularly: absolutely nothing will happen.

The reason is that steps(1) is essentially equivalent to steps(1,

end), which means that the transition between the current color and

transparent will happen in one step, and the value switch will occur

at the end (Figure 8.20). Therefore, we will see the start value for the

entire length of the animation, except one infinitesimally short point

SECRET #44: BLINKING 317

FIGURE 8.19
All four values of animation-

direction and their effect on a

color animation from black to

transparent over three iterations

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

in time at the end. If we change it to steps(1, start) the opposite

will happen: the switch will occur at the start, so we will only see transparent

text, with no animation or blinking.

A logical next step would be to try steps(2) in both its flavors (start

and end). Now we do see some blinking, but it’s between semi-transparent

text and transparent or semi-transparent and normal respectively, for the

same reason. Unfortunately, because we cannot configure steps() to

make the switch in the middle, but only at the start and end, the only sol-

ution here would be to adjust the animation keyframes to make the switch

at 50%, like we did earlier:

@keyframes blink { 50% { color: transparent } }

.highlight {

 animation: 1s blink 3 steps(1); /* or step-end */

}

This finally works! Who would have guessed that a classic abrupt blink

would have been harder to accomplish than a modern, smooth one? CSS

never ceases to surprise….

▶ PLAY! play.csssecrets.io/blink

■ CSS Animations

w3.org/TR/css-animations

CHAPTER 8: TRANSITIONS & ANIMATIONS318

PR
O

G
RE

SS
IO

N

TIME

PR
O

G
RE

SS
IO

N

TIME

FIGURE 8.20
What steps(1) actually does to

our animation

■

www.it-ebooks.info

http://play.csssecrets.io/blink
http://w3.org/TR/css-animations
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Typing
animation

Prerequisites
Basic CSS animations, the “Frame-by-frame animations” secret on

page 308, the “Blinking” secret on page 314

The problem
Sometimes we want to make text appear one by one character, to simulate

typing. This effect is especially popular on tech websites, using monospace

fonts to resemble a terminal command prompt. Used right, it can really

contribute to the rest of the design.

Usually, this is done with long, hacky, complicated JS code. Even

though this is pure presentation, using CSS for this kind of effect seems like

a pipe dream. Or could it be possible?

CHAPTER 8: TRANSITIONS & ANIMATIONS320

45

www.it-ebooks.info

http://www.it-ebooks.info/

The solution
The main idea is to animate the width of the element that contains our

text from 0 to its content width one by one character. You might have al-

ready realized what the limitation of this approach is: it will not work for

multiline text. Thankfully, most of the time, you only want to use such

styling on single-line text anyway, such as headings.

Another thing to keep in mind is that every animation effect has

diminishing returns as its duration increases: short duration animations

make an interface appear more polished and in some cases can even im-

prove usability. However, the longer the duration of the animation, the more

it starts becoming annoying for the user. Therefore, even if the technique

could be used on longer, multiline text, in most cases that would not

be a good idea.

Let’s get started with the code! Assume we want to apply this to a top-

level heading (<h1>) that we’ve already styled with monospace text, and

that looks like the following:

SECRET #45: TYPING ANIMATION 321

Theoretically, we could make this

work for multiline text, but it would

involve wrapping each line in its own

element and maintaining the appro-

priate animation delays (i.e., it’s the

kind of solution that is worse than

the problem).

FIGURE 8.21
We used a variation of this kind of

animation at CERN, when creating a

web-based simulation of the first

line mode browser (line-

mode.cern.ch)

www.it-ebooks.info

http://line-mode.cern.ch
http://line-mode.cern.ch
http://www.it-ebooks.info/

<h1>CSS is awesome!</h1>

We can easily add an animation that goes from 0 to the final width of the

heading, like so:

@keyframes typing {

 from { width: 0 }

}

h1 {

 width: 7.7em; /* Width of text */

 animation: typing 8s;

}

It makes perfect sense, right? However, as you can see in Figure 8.23,

it’s a trainwreck that has nothing to do with what we wanted.

You might have guessed what the problems are. First, we forgot to

apply white-space: nowrap; to prevent text wrapping, so as the width

grows, its number of lines changes. Second, we forgot to apply overflow:

hidden;, so there is no clipping. If we fix these issues, the real issues with

our animation get uncovered (Figure 8.24). Namely:

■ The obvious problem is that the animation is smooth instead of revealing

the text character by character.

■ The less obvious problem is that so far we have been specifying the width

in ems, which is better than doing it in pixels, but still suboptimal. Where

did this 7.7 come from? How do we calculate it?

We can fix the first issue by using steps(), just like in the “Frame-by-

frame animations” secret on page 308 and the “Blinking” secret on

page 314. Unfortunately, the number of steps we need is the number of

characters in our string, which is difficult to maintain or downright impos-

sible for dynamic text. However, we will see later on that we can automate

this with a tiny snippet of JavaScript code.

CHAPTER 8: TRANSITIONS & ANIMATIONS322

CSS is awesome!

FIGURE 8.22
Our starting point

CSS
is
awesome!

CSS is
awesome!

CSS is awesome!

FIGURE 8.23
Our first attempt at a typing

animation does not resemble typing

at all

CSS is awesome!

CSS is awesome!

CSS is awesome!

FIGURE 8.24
Our second attempt is closer, but still

not quite there

HTML

■

■

www.it-ebooks.info

http://www.it-ebooks.info/

The second issue could be alleviated by using the ch unit. The ch unit

is one of the new units introduced in CSS Values and Units Level 3

(w3.org/TR/css3-values), and represents the width of the “0” glyph. It’s

one of the most unknown new units, because in most cases, we don’t care

about sizing things relative to the width of the 0 glyph. However, mono-

space fonts are special. In monospace fonts, the width of the “0” glyph

is the same as the width of every glyph. Therefore, the width in ch is

the number of characters: 15 in our example.

Let’s put all this together:

@keyframes typing {

 from { width: 0; }

}

h1 {

 width: 15ch; /* Width of text */

 overflow: hidden;

 white-space: nowrap;

 animation: typing 6s steps(15);

}

As you can see in the frames in Figure 8.25, now we finally got the

expected result: our text is revealed character by character. However, it still

doesn’t look realistic. Can you spot what’s missing?

The last touch that will make this way more realistic is adding a blink-

ing caret. We have already seen how to create blinking animations in the

“Blinking” secret on page 314. In this case, we could either implement

the caret via a pseudo-element, and use opacity for the blinking, or we

could save our limited pseudo-elements in case we need them for some-

thing else, and use a right border instead:

@keyframes typing {

 from { width: 0 }

}

SECRET #45: TYPING ANIMATION 323

CS

CSS is a

CSS is aweso

FIGURE 8.25
Now the text is revealed character by

character, but something is still

missing

www.it-ebooks.info

http://w3.org/TR/css3-values
http://www.it-ebooks.info/

@keyframes caret {

 50% { border-color: transparent; }

}

h1 {

 width: 15ch; /* Width of text */

 overflow: hidden;

 white-space: nowrap;

 border-right: .05em solid;

 animation: typing 6s steps(15),

 caret 1s steps(1) infinite;

}

Note that unlike the text revealing animation, the caret needs to blink

indefinitely (even after all of the text has been revealed), hence the

infinite keyword. Also, we did not have to specify a border color, as we

want it to automatically get the text color. You can see a few stills from the

result on Figure 8.26.

Now our animation works perfectly, although it’s still not very main-

tainable: it requires setting different styles on every heading, depending on

the number of characters in the content, and having to update them every

time we edit said content. This is exactly the kind of task that JS is perfect

for:

$$('h1').forEach(function(h1) {

 var len = h1.textContent.length, s = h1.style;

 s.width = len + 'ch';

 s.animationTimingFunction = "steps("+len+"),steps(1)";

});

Just with these few lines of JS we can now have our cake and eat it too: our

animation is not only realistic, but maintainable as well!

CHAPTER 8: TRANSITIONS & ANIMATIONS324

CS

CSS is a

CSS is aweso

FIGURE 8.26
Our animation is now complete with

a realistic blinking caret

JS

www.it-ebooks.info

http://www.it-ebooks.info/

All this is nice and dandy, but what happens with browsers that don’t

support CSS animations? They will essentially drop all animation-related

stuff, so they will only read this:

h1 {

 width: 15ch; /* Width of text */

 overflow: hidden;

 white-space: nowrap;

 border-right: .05em solid;

}

CSS is awesome!
CSS is awesome!

Depending on whether or not they support the ch unit, they will see one

of the fallbacks in Figure 8.27. If you want to avoid the bottom one, you

can provide a fallback in em units as well. If you do not want a non-blinking

caret in your fallback, you could change the caret animation to include the

border in the keyframes, so that when it’s dropped you only get an invisible

transparent border, like so:

@keyframes caret {

 50% { border-color: currentColor; }

}

h1 {

 /* ... */

 border-right: .05em solid transparent;

 animation: typing 6s steps(15),

 caret 1s steps(1) infinite;

}

SECRET #45: TYPING ANIMATION 325

FIGURE 8.27
The potential fallbacks for browsers

with no CSS animation support (top:

with ch unit support, bottom:

without ch unit support)

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

This is pretty much as good as fallbacks get: in older browsers, there is no

animation, but nothing breaks at all and the text is perfectly accessible and

even styled the same way.

▶ PLAY! play.csssecrets.io/typing

■ CSS Animations

w3.org/TR/css-animations

■ CSS Values & Units

w3.org/TR/css-values

CHAPTER 8: TRANSITIONS & ANIMATIONS326

■

■

www.it-ebooks.info

http://play.csssecrets.io/typing
http://w3.org/TR/css-animations
http://w3.org/TR/css-values
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Smooth state
animations

Prerequisites
Basic CSS animations, animation-direction (briefly mentioned in

the “Blinking” secret on page 314)

The problem
Animations do not always start on page load. More often than not, we want

to use animations in response to a user action, such as hovering over

an element or holding the mouse down on it (:active). In that case, we

might not have control over the actual number of iterations, as user activity

might force the animation to stop before it gets a chance to finish the num-

ber of iterations we have specified. For example, the user might trigger a

fancy :hover animation and mouse out of the element before the anima-

tion finishes. What do you expect should happen in these cases?

If you answered something along the lines of “the animation should

stay at its current state” or “it should smoothly transition to the pre-

animation state” you are in for a nasty surprise. By default, the animation

CHAPTER 8: TRANSITIONS & ANIMATIONS328

46

www.it-ebooks.info

http://www.it-ebooks.info/

will just stop and abruptly jump back to the pre-animation state. This

might sometimes be acceptable in the case of very subtle animations. How-

ever, in most cases it just results in very choppy user experience. Can we

change this behavior?

The solution
Assume we have a very long landscape photo, such as the one in

Figure 8.29, but the space we have available to display it is a 150 × 150

pixel square. One way to solve the problem is animation: show the left edge

of the image by default, and make it scroll to reveal the rest when the user

SECRET #46: SMOOTH STATE ANIMATIONS 329

This is yet another reason to use tran-

sitions when possible. Instead of

abruptly jumping to the pre-

animation state, transitions play in

reverse to smoothly transition back

to the original value.

FIGURE 8.28
I finally decided to find a solution to

this problem when working on a

simple one-page website as a

birthday gift for my friend Julian

(juliancheal.co.uk). Notice the

circular picture on the right. The

image file I had was actually

landscape. The circle crops its right

part, but when the user hovers over

it, it slowly starts scrolling to the left,

revealing the cropped part. By

default, when the user moved their

cursor away, it abruptly snapped

back to its original position, which

made the UI feel broken. Because

this was a tiny website, and this

picture the centerpiece, I decided I

couldn’t turn a blind eye to the issue.

www.it-ebooks.info

http://juliancheal.co.uk
http://www.it-ebooks.info/

is interacting with it (e.g., hovering over it). We will use a single element for

the image and animate its background position:

.panoramic {

 width: 150px; height: 150px;

 background: url("img/naxos-greece.jpg");

 background-size: auto 100%;

}

Currently, it looks like Figure 8.30 and there is no animation or inter-

activity. If we experiment however, we can see that manually changing

background-position from the original 0 0 to 100% 0 scrolls through

the entire image. We just found our keyframes!

@keyframes panoramic {

 to { background-position: 100% 0; }

}

.panoramic {

 width: 150px; height: 150px;

 background: url("img/naxos-greece.jpg");

 background-size: auto 100%;

 animation: panoramic 10s linear infinite alternate;

}

CHAPTER 8: TRANSITIONS & ANIMATIONS330

FIGURE 8.30
Our image is cropped

FIGURE 8.29
The entire naxos-greece.jpg

image file, used in the examples

throughout this secret (photo taken

by Chris Hutchison)

www.it-ebooks.info

http://www.it-ebooks.info/

This works great. It sort of resembles a panoramic view and it almost feels

like being in the place and looking left or right. However, the animation is

triggered on page load, which could be distracting in the context of, for

example, a travel web page, where the user might be trying to focus on

reading the text about Naxos, instead of looking at the beautiful panoramic

picture. It would be better to enable the animation when the user hov-

ers over the image. So, our first thought would be this:

.panoramic {

 width: 150px; height: 150px;

 background: url("img/naxos-greece.jpg");

 background-size: auto 100%;

}

.panoramic:hover, .panoramic:focus {

 animation: panoramic 10s linear infinite alternate;

}

This does work as expected when we hover over the image: it starts from

the initial state of showing the leftmost part of the image and slowly scrolls

to reveal the right part of it. However, when we mouse out, it abruptly jumps

to the left position again (Figure 8.31). We’ve just stumbled on the problem

this secret is about!

SECRET #46: SMOOTH STATE ANIMATIONS 331

FIGURE 8.31
Mousing over is very smooth, but

mousing out is abrupt and feels

broken

www.it-ebooks.info

http://www.it-ebooks.info/

To fix this, we need to think differently about what we are trying to achieve

here. What we need is not to apply an animation on :hover, as this implies

no memory of its previous position. What we need is to pause it when

there is no :hover happening. Thankfully, we have a property just for

the purpose of pausing an existing animation: animation-play-state!

Therefore, we are going to apply our original animation to .panoramic,

but have it paused initially, until :hover applies. Because it’s no longer a

matter of applying and canceling an animation, but just pausing and re-

suming an existing animation, there is no abrupt rewinding. The final

code looks like this and you can see the result in Figure 8.32:

@keyframes panoramic {

 to { background-position: 100% 0; }

}

.panoramic {

 width: 150px; height: 150px;

 background: url("img/naxos-greece.jpg");

 background-size: auto 100%;

 animation: panoramic 10s linear infinite alternate;

 animation-play-state: paused;

}

.panoramic:hover, .panoramic:focus {

 animation-play-state: running;

}

CHAPTER 8: TRANSITIONS & ANIMATIONS332

FIGURE 8.32
Now mousing out just pauses the

animation—no abrupt jumps

anymore

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

▶ PLAY! play.csssecrets.io/state-animations

■ CSS Animations

w3.org/TR/css-animations

SECRET #46: SMOOTH STATE ANIMATIONS 333

■

www.it-ebooks.info

http://play.csssecrets.io/state-animations
http://w3.org/TR/css-animations
http://www.it-ebooks.info/

Animation along
a circular path

Prerequisites
CSS animations, CSS transforms, the “Parallelograms” secret on page

84, the “Diamond images” secret on page 90, the “Blinking” secret

on page 314

The problem
A few years ago, back when basic CSS animations were still new and ex-

citing, Chris Coyier (css-tricks.com) asked me if I could think of any

way to animate an element on a circular path with CSS animations. At the

time, it was just a fun CSS exercise, but in the future I stumbled on many

real use cases. For example, Google+ uses such an animation when a new

member is added to a circle with more than 11 members: the existing avatars

animate on a circular path to make space for the new one.

A different, fun example can be seen on the popular Russian tech web-

site habrahabr.ru (Figure 8.34). As is often a good practice with 404 pa-

ges, it offers a navigation menu to a few main areas of the website.

CHAPTER 8: TRANSITIONS & ANIMATIONS334

47

FIGURE 8.33
Google+ uses animation on a

circular path to show that a new

member was added to a “circle”

www.it-ebooks.info

http://css-tricks.com
http://habrahabr.ru
http://www.it-ebooks.info/

However, each menu item is presented as a planet orbiting on a circle and

the text above reads “Fly to other planets of our universe.” Of course, it

makes sense to just move the planets on a circular path and not also rotate

them, which would make their text almost impossible to read.

These are only a few out of many possible examples. But how can we ach-

ieve such an effect with CSS animations?

We are going to work on a very simple example of an avatar animating

on a circular path, a bit like a simplified version of the aforementioned

Google+ effect. The markup would look like this:

<div class="path">

</div>

Before we start thinking about our animation, we will apply some basic

styling to it (sizes, backgrounds, margins, etc.), so that it looks like

Figure 8.35. Because this styling is pretty basic, it is not included here, but

if you are having difficulty with it, you can find it in the live example. The

main thing to keep in mind is that the diameter of the path is 300px, ergo

the radius is 150px.

After we’re done with basic styling, we can start thinking about our

animation. We want to move the avatar in a circle, along the orange path.

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 335

If you’re unsure about how to make

circular shapes with CSS, take a look

at the “Flexible ellipses” secret on

page 76.

HTML

FIGURE 8.34
The 404 page of popular Russian

tech website habrahabr.ru

www.it-ebooks.info

http://www.it-ebooks.info/

How could we possibly use CSS animations to do this? When presented with

this problem, some are quick to reply with something like this:

@keyframes spin {

 to { transform: rotate(1turn); }

}

.avatar {

 animation: spin 3s infinite linear;

 transform-origin: 50% 150px; /* 150px = path radius */

}

While this is a step in the right direction, it does not only move the avatar

on a circular path, it also rotates it around itself (Figure 8.36). For example,

notice how when the avatar is halfway through, it is also upside down. If it

had text, the text would also be upside down, which can be quite a read-

ability issue. We only wanted it to move along the circle, while still main-

taining the same orientation relative to itself.

Back then, neither me nor Chris could think of a reasonable way. The best

way we could come up with was specifying multiple keyframes to

approximate a circle, which is obviously not a good idea by any possible

definition of one. There must be a better way, right?

CHAPTER 8: TRANSITIONS & ANIMATIONS336

FIGURE 8.35
Our starting point, after applying

some basic styling—now we can get

our hands dirty with some CSS

animation!

FIGURE 8.36
A few stills from our failed attempt

at animating on a circular path

www.it-ebooks.info

http://www.it-ebooks.info/

Two element solution
I finally came up with a solution to Chris’ challenge a few months later, after

thinking about the problem as a background process for quite some time.

The main idea behind this solution is the same as in the “Parallelograms”

secret on page 84 or the “Diamond images” secret on page 90: nested

transforms canceling each other. However, instead of doing this stati-

cally, in this case it happens on every single frame of the animation. The

caveat is that, just like the aforementioned secrets, this requires two ele-

ments. Therefore, we need to amend our original clean HTML with an extra

wrapper div:

<div class="path">

 <div class="avatar">

 </div>

</div>

Let’s apply the initial animation we tried earlier to the .avatar wrapper.

Now, as we’ve seen in Figure 8.36, this doesn’t work because it also rotates

the element itself. But what if we applied another rotation to the avatar,

and rotate it around itself by the same amount of degrees in the op-

posite direction? Then the two rotations would cancel each other, and we

would only see the circular movement created by the difference in transform

origins!

There is one problem though: we don’t have a static rotation that we

can cancel, but an animation that goes through a range of angles. For ex-

ample, if it was 60deg, we would cancel it with -60deg (or 300deg), if it

was 70deg we would cancel it with -70deg (or 290deg). But now that it’s

anything between 0-360deg (or 0-1turn, which is the same thing), what

do we cancel it with? The answer is much easier than it might seem. We

just animate over the reverse range (360-0deg), like so:

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 337

HTML

www.it-ebooks.info

http://www.it-ebooks.info/

@keyframes spin {

 to { transform: rotate(1turn); }

}

@keyframes spin-reverse {

 from { transform: rotate(1turn); }

}

.avatar {

 animation: spin 3s infinite linear;

 transform-origin: 50% 150px; /* 150px = path radius */

}

.avatar > img {

 animation: spin-reverse 3s infinite linear;

}

Now, at any point, when the first animation is rotated by x degrees, the

second one is rotated by 360 – x degrees, because one of them is increasing

and the other is decreasing. This is exactly what we wanted and as you can

see in Figure 8.37, it produces the desired effect.

The code, however, could use some improvement. For one, we are re-

peating all parameters of the animation twice. If we need to adjust its du-

ration, we would need to do it twice, which is not very DRY. We can easily

solve this by inheriting all animation properties from the parent, and over-

riding the animation name:

CHAPTER 8: TRANSITIONS & ANIMATIONS338

FIGURE 8.37
We have now achieved the

animation we wanted, but the code

is unwieldy

www.it-ebooks.info

http://www.it-ebooks.info/

@keyframes spin {

 to { transform: rotate(1turn); }

}

@keyframes spin-reverse {

 from { transform: rotate(1turn); }

}

.avatar {

 animation: spin 3s infinite linear;

 transform-origin: 50% 150px; /* 150px = path radius */

}

.avatar > img {

 animation: inherit;

 animation-name: spin-reverse;

}

However, we shouldn’t need a whole new animation just to reverse our

initial one. Remember the animation-direction property from the

“Blinking” secret on page 314? In that secret, we saw why the

alternate value is useful. Here we are going to use the reverse value,

to get a reversed copy of our original animation, thus eliminating the

need for a second one:

@keyframes spin {

 to { transform: rotate(1turn); }

}

.avatar {

 animation: spin 3s infinite linear;

 transform-origin: 50% 150px; /* 150px = path radius */

}

.avatar > img {

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 339

www.it-ebooks.info

http://www.it-ebooks.info/

 animation: inherit;

 animation-direction: reverse;

}

And there we go! It might not be ideal, due to the extra element require-

ment, but we’ve achieved a rather complex animation, with fewer than 10

lines of CSS!

▶ PLAY! play.csssecrets.io/circular-2elements

Single element solution
The technique described in the previous section works, but is suboptimal,

as it requires HTML modifications. When I first came up with that technique,

I wrote to the mailing list of the CSS Working Group (of which I was not a

part of, at the time) and suggested that it should be possible to specify

multiple transform origins for the same element. That should make it pos-

sible to implement something like this with a single element, and it seemed

like a reasonable thing to ask for in general.

The discussion was in high gear, when at some point Aryeh Gregor,

one of the editors of the CSS Transforms specification at the time, made a

statement that seemed confusing at first:

“transform-origin is just syntactic sugar. You should always be able

to use translate() instead.”

— Aryeh Gregor

However, it turns out that every transform-origin can be simula-

ted with two translate() transforms. For example, the following two

code snippets are equivalent:

transform: rotate(30deg);

transform-origin: 200px 300px;

CHAPTER 8: TRANSITIONS & ANIMATIONS340

You can read the whole discussion at

lists.w3.org/Archives/Public/

www-style/2012Feb/0201.html.

www.it-ebooks.info

http://play.csssecrets.io/circular-2elements
http://lists.w3.org/Archives/Public/www-style/2012Feb/0201.html
http://lists.w3.org/Archives/Public/www-style/2012Feb/0201.html
http://www.it-ebooks.info/

transform: translate(100px,50px);

transform-origin: 0 0;

transform: translate(100px,50px)

 rotate(30deg);

transform-origin: 0 0;

transform: translate(100px,50px)

 rotate(30deg)

 translate(-100px,-50px);

transform-origin: 0 0;

transform: translate(200px, 300px)

 rotate(30deg)

 translate(-200px, -300px);

transform-origin: 0 0;

This seems strange at first, but becomes more clear if we keep in mind that

transform functions are not independent. Each of them doesn’t just

transform the element it is applied on, it transforms the entire coordi-

nate system of that element, thus affecting all transforms that come after

it. This is exactly why transform order matters, and different orderings

of the same transforms can produce entirely different results. If this is still

unclear, Figure 8.38 should help eliminate any confusion.

Therefore, we can use the same transform-origin for both our

previous animations by using this idea (we are going to use separate ani-

mations again as their keyframes are now completely different):

100px

50px

100px

30deg

100px

50px

50px

30deg

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 341

transform: rotate(30deg);

transform-origin: 100px 50px;

FIGURE 8.38
How we can substitute a transform

origin with two translations. The red

dot represents the transform origin

each time. Top: Using transform-

origin. Bottom: Using two

translations, step by step.

www.it-ebooks.info

http://www.it-ebooks.info/

@keyframes spin {

 from {

 transform: translate(50%, 150px)

 rotate(0turn)

 translate(-50%, -150px);

 }

 to {

 transform: translate(50%, 150px)

 rotate(1turn)

 translate(-50%, -150px);

 }

}

@keyframes spin-reverse {

 from {

 transform: translate(50%,50%)

 rotate(1turn)

 translate(-50%,-50%);

 }

 to {

 transform: translate(50%,50%)

 rotate(0turn)

 translate(-50%, -50%);

 }

}

.avatar {

 animation: spin 3s infinite linear;

}

.avatar > img {

 animation: inherit;

 animation-name: spin-reverse;

}

CHAPTER 8: TRANSITIONS & ANIMATIONS342

www.it-ebooks.info

http://www.it-ebooks.info/

This looks awfully unwieldy, but do not worry, as we will improve it a lot by

the end of this section. Notice that we now no longer have different trans-

form origins, which was the only reason we needed two elements and two

animations earlier. Now that everything uses the same origin, we can com-

bine the two animations into one and only work with .avatar:

@keyframes spin {

 from {

 transform: translate(50%, 150px)

 rotate(0turn)

 translate(-50%, -150px)

 translate(50%,50%)

 rotate(1turn)

 translate(-50%,-50%)

 }

 to {

 transform: translate(50%, 150px)

 rotate(1turn)

 translate(-50%, -150px)

 translate(50%,50%)

 rotate(0turn)

 translate(-50%, -50%);

 }

}

.avatar { animation: spin 3s infinite linear; }

The code is definitely improving, but is still long and confusing. Can we

make it a bit more concise? There are a few potential improvements.

The low-hanging fruit is to combine consecutive translate() trans-

forms, specifically translate(-50%, -150px) and translate(50%,

50%). Unfortunately, percentages and absolute lengths cannot be com-

bined (unless we use calc() which is also quite unwieldy). However, the

horizontal translations cancel each other, so we basically have two transla-

tions on the Y axis (translateY(-150px) translateY(50%)). Also,

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 343

Note that we don’t need two HTML

elements anymore: we can just apply

the avatar class to the image itself,

as we’re not styling them separately

any longer.

www.it-ebooks.info

http://www.it-ebooks.info/

because the rotations cancel each other, we can remove the horizontal

translations before and after as well and combine the vertical ones. We

currently have these keyframes:

@keyframes spin {

 from {

 transform: translateY(150px) translateY(-50%)

 rotate(0turn)

 translateY(-150px) translateY(50%)

 rotate(1turn);

 }

 to {

 transform: translateY(150px) translateY(-50%)

 rotate(1turn)

 translateY(-150px) translateY(50%)

 rotate(0turn);

 }

}

.avatar { animation: spin 3s infinite linear; }

This is a bit shorter and less repetitive, but still not great. Can we do

any better? If we start from the avatar in the center of the circle (like in

Figure 8.39), we can eliminate the first two translations, which essentially

just place it at the center. Then the animation becomes:

@keyframes spin {

 from {

 transform: rotate(0turn)

 translateY(-150px) translateY(50%)

 rotate(1turn);

 }

 to {

CHAPTER 8: TRANSITIONS & ANIMATIONS344

www.it-ebooks.info

http://www.it-ebooks.info/

RELATED

SPECS

 transform: rotate(1turn)

 translateY(-150px) translateY(50%)

 rotate(0turn);

 }

}

.avatar { animation: spin 3s infinite linear; }

This seems to be the best we can do today. It’s not the DRY-est possible

code, but it’s quite short. There is now minimal repetition and no re-

dundant HTML elements. To make it completely DRY and avoid repeating

the path radius, we could use a preprocessor, which is left as an exercise for

the reader.

▶ PLAY! play.csssecrets.io/circular

■ CSS Animations

w3.org/TR/css-animations

■ CSS Transforms

w3.org/TR/css-transforms

SECRET #47: ANIMATION ALONG A CIRCULAR PATH 345

FIGURE 8.39
If we center the avatar as the starting

point, our keyframes become a bit

shorter; however, note that this state

will also be our fallback in case

animations are not supported, which

may or may not be desirable

■

■

www.it-ebooks.info

http://play.csssecrets.io/circular
http://w3.org/TR/css-animations
http://w3.org/TR/css-transforms
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
(pseudo)random backgrounds, 62-65

.avatar, 337-340, 343

.lightbox, 235

3D rotation, for trapezoids, 109-113

::backdrop, for dimming, 238

:nth-child() pseudo-class, 178, 271-275

:only-child, 272

<blink>, 314

<code> element, 182

<dd>, 173-177

<dialog>, 238

<div>, 252

<dt>, 173-177

<labels>, 229

<main>, 241

<path>, 211

<pre> element, 182

, 189, 210

<textPath>, 211

@font-face, 189

 (soft hyphens), 168

A
absolute positioning, for vertical centering, 281

acceleration, timing function and, 296-299

affordance, 225

align-items, vertical centering and, 286

ampersands, fancy, 188-193

Anderson, James, 280

animated GIFs, shortcomings of, 308

animation, 294-345

along a circular path, 334-345

blinking, 314-318

bouncing, 295-299

converting to transition, 301

duration vs. effectiveness, 321

elastic transitions, 294-305

for pie charts, 119-121

frame-by-frame, 308-312

smooth state, 328-332

typing, 320-326

animation-direction, 316, 339

animation-playstate, 332

animation-timing-function, 296

APNG, 309

assumptions, xxiv

Atlas system, xxii

347

www.it-ebooks.info

http://www.it-ebooks.info/

automatic table layout algorithm, 266

B
background(s)

(pseudo)random, 62-65

and inner-rounded borders, 37

and zebra-striped lines, 180

checkerboards, 55-60

complex patterns, 50-60

diagonal stripes, 43-47

flexible positioning, 32-35

fluid with fixed content, 276-279

grids, 52

polka dots, 53

striped, 40-48

vertical stripes, 43

background-attachment, 246

background-blend mode, 141

background-clip, 26, 70, 225

background-image, text underlining and, 196

background-origin, 33

background-position, 33, 310, 330

background-size

for (pseudo)random backgrounds, 62-65

for stripes, 43

beveled corners, 96, 157-159

Bézier curves, 298

blending modes

filters vs., 142

for color tinting, 141-143

for interactive image comparison, 259

blinking, 314-318

blinking caret, 323

block elements, 173

blur() filter, 149

blurring, for de-emphasis, 240-243

border-bottom, 195

border-box, 26

border-image

for curved cutout corners, 102-105

limitations of, 68

with gradients, 73

border-radius

for ellipses, 76-81

for pie charts, 116

borders, 24

continuous image, 68-74

inner rounding of, 36-38

multiple, 28-30

translucent, 24-26

Bos, Bert, 5

bouncing animations, 295-299

bouncing effect, 294

box-shadow

and extension of clickable area, 226

and inner-rounded borders, 37

for dimming, 237

for multiple borders, 29

for one-sided shadows, 130

with irregular drop shadows, 134

box-sizing, 30

brevity, maintainability vs., 12

brightness() filter, 242

browser support, xxix-xxxiv

buttons, 10-12

parallelograms and, 84

regular v. toggle, 232

toggle buttons, 231

C
calc() (function)

and vertical centering, 282

for flexible background positioning, 35

for sticky footers, 290

callouts, elastic transitions for, 300-304

caret, blinking, 323

cell cursor, 219

Centering in the Unknown (Chris Coyier), 281

centering, vertical, 280-286

ch unit, 323

INDEX348

www.it-ebooks.info

http://www.it-ebooks.info/

checkboxes

custom, 228-232

toggle buttons vs., 232

checked (pseudo-class), 229

checkerboards, 55-60

Cicada Principle, The, 63, 65

circular path, animations along, 334-345

circular text, 210-214

clickable area, extending, 224-227

clip-path

for cutout corners, 105-107

for diamond images, 93

clipped top border, 73

code duplication, minimizing, 9-12

coding tips, 9-22

and eyes behavior, 15

and Responsive Web Design, 15-17

currentColor, 13

inheritance, 13

maintainability vs. brevity, 12

minimize code duplication, 9-12

preprocessors, 19-22

shorthand use, 17-19

color, 11

and elastic transitions, 305

currentColor, 13

for pie charts, 115

with curved cutout corners, 104

with flexible subtle stripes, 48

color stops

and checkerboard patterns, 56

and striped backgrounds, 44

for grids, 52

color tinting, 138-143

blending modes for, 141-143

filters for, 139

column widths, table, 266-268

complex background patterns, 50-60

checkerboards, 55-60

grids, 52

polka dots, 53

continuous image borders, 68-74

contrast() filter, 242

control points, 298

corners, cutout, 96-107

Coyier, Chris, 281, 334

CSS

recent growth and transformation of, xvii

standards/specifications, 2-8

CSS 1, 5

CSS 2, 5

CSS 3, 6

CSS Working Group (CSS WG), 2-8

cubic-bezier () function, 298-299, 302

currentColor, 13

cursors

built-in, 218-221

hiding, 221

indicating disabled state, 220

curved cutout corners, 100

cutout corners, 96-107

clipping path method for, 105-107

curved, 100

gradients for, 97

inline SVG/border-image method, 102-105

D
de-emphasis

by blurring, 240-243

by dimming, 234-238

definition lists, line breaks for, 172

diagonal stripes, 43-47

diamond images, 90-94

dimming

backdrop method, 238

de-emphasis by, 234-238

pseudo-element method, 236

disabled state, cursor, 220

discretionary ligatures, 184

display: flex

INDEX 349

www.it-ebooks.info

http://www.it-ebooks.info/

and vertical centering, 285

for sticky footers, 291

drop shadows, irregular, 134-137

drop-shadow () filter, 135, 137

DRY programming, xviii

duplication of code, minimizing, 9-12

E
ease (keyword), 296

Eden, Dan, 300

elastic transitions, 294-305

bouncing animations, 295-299

for callouts, 300-304

ellipses

flexible, 76-81

half, 79-81

quarter, 81

extended background-position method, 33

extending the clickable area, 224-227

extruded text, 206

eye, human, 15

F
fill (keyword), 103

fill: none, 213

filter(s)

blending modes vs., 142

for color tinting, 139

for interactive image comparison, 259

with irregular drop shadows, 135

Fitts Law, 224

Fitts, Paul, 224

fixed content, fluid backgrounds with, 276-279

fixed table layout algorithm, 268

flex-flow, 291

Flexbox

for vertical centering, 285

flexible background positioning, 32-35

background-origin method for, 33

calc() method for, 35

extended backgrounds for, 33

flexible ellipses, 76-81

flexible subtle stripes, 48

fluid backgrounds, fixed content with, 276-279

folded corner effect, 156-165

for 45º angles, 157-159

for angles other than 45º, 159-165

font size, 10

font-family declarations, 189

font-variant-ligatures, 185

footers, sticky, 288-292

footnote border, 73

formats and conventions, xxvi

frame-by-frame animations, 308-312

frosted glass effect, 146-154

future sections, xxviii

G
Gallagher, Nicolas, 87, 156

Gaussian blur algorithm, 131

GIFs, animated, shortcomings of, 308

glowing text, 205

glyphs, ligatures as, 184

Google Reader, 244

Google+, 334

gradient-based patterns, 71

gradients, for cutout corners, 97

Greedy algorithm, 169

Gregor, Aryeh, 340

H
habrahabr.ru, 334

half ellipses, 79-81

Hattab, Hakim El, 243

hiding the cursor, 221

hue-rotate() filter, 140

hyphenation, 168-170

INDEX350

www.it-ebooks.info

http://www.it-ebooks.info/

hyphens: auto, 169

I
image comparison, interactive, 250-259

CSS resize method for, 251-254

range input method for, 255-259

image, as border, 68

infinite (keyword), 324

inherit (keyword), 13

inheritance, 13

inline SVG, 102-105, 211

inner border radius, 100

inner rounding (borders), 36-38

interactive image comparison, 250-259

intrinsic sizing, 262-264

irregular drop shadows, 134-137

J
Jacobs, Ian, 5

JavaScript

for frame-by-frame animation, 309

for typing animation, 324

justification, text, 168

justify-content, 286

K
Knuth-Pass algorithm, 169

Komarov, Roman, 249

L
latency, 20

Law of Leaky Abstractions, 20

layout, 262-292

fluid backgrounds with fixed content, 276-279

intrinsic sizing, 262-264

sticky footers, 288-292

styling by sibling count, 270-275

table column widths, 266-268

vertical centering, 280-286

least common multiple (LCM), for (pseudo)random back-

grounds, 64

letterpress effect, 201

Lie, Håkon Wium, 5

ligatures, 184-186

Lilley, Chris, 5

line breaks, inserting, 172-177

linear gradient

and grids, 52

and striped backgrounds, 41

for cutout corners, 97

lines, text, zebra-striped, 178-181

local() function, 190

longhands, 18

M
maintainability, brevity vs., 12

marching ants border, 72

margin: auto, 277, 285

max-width, 264

McClellan, Drew, 193

media queries, 15-17

Meyer, Eric, 66

min-content (keyword), 263

mix-blend mode, 141

modal dialog, 238

Montulli, Lou, 314

mouse pointer, 218

Mozilla, 309

multiple borders, 28-30

box-shadow for, 29

outlines for, 30

N
negative animation delays, 119-121

nested elements, for parallelograms, 85

nested transforms, 337

INDEX 351

www.it-ebooks.info

http://www.it-ebooks.info/

not-allowed cursor, 220

O
one-sided shadows, 130-133

optical illusions, 15, 200

outline-offset, 30

outlines, for multiple borders, 30

overflow: hidden, 116, 152

overflow: visible, 213

P
parallelograms, 84-87

pattern, as border, 68

pie charts

SVG solution for, 122-128

transform-based solution for, 115

pie charts, simple, 114-128

PNG sprite animation, 309-312

polka dot backgrounds, 53

polygon(), for diamond images, 93

position: relative/absolute, 86

preprocessors, 19-22

for complex background patterns, 50

for folded-corner effect, 165

prerequisites, xxv

prime numbers, for (pseudo)random backgrounds, 65

pseudo-elements

for dimming, 236

for parallelograms, 86

for pie charts, 116, 117

for trapezoids, 110

mouse interaction capture by, 226

Pythagorean theorem, 160

and inner-rounded borders, 38

and striped backgrounds, 44

for curved cutout corners, 103

Q
quarter ellipses, 81

R
radial gradients

for curved cutout corners, 100

for polka dots, 53

random backgrounds, 62-65

readability, justification and, 168

repeating-linear-gradient(), 45-47

repeating-radial-gradient(), 45

resize, for interactive image comparison, 251-254

Responsive Web Design (RWD), 15-17

rotate() transform

for animation along circular path, 337-340

for diamond images, 91

for parallelograms, 87

for pie charts, 117

rounding, inner (borders), 36-38

S
Saly, Martijn, 105

saturate () filter, 139

scale() transform

for diamond images, 92

for elastic transitions, 302

scrolling, 244-249

Seddon, Ryan, 231

shadows

irregular drop, 134-137

on one side, 130-132

on two adjacent sides, 132

on two opposite sides, 133

one-sided, 130-133

shapes, 76-128

cutout corners, 96-107

diamond images, 90-94

flexible ellipses, 76-81

INDEX352

www.it-ebooks.info

http://www.it-ebooks.info/

half ellipses, 79-81

parallelograms, 84-87

pie charts, 114-128

quarter ellipses, 81

trapezoid tabs, 108-113

shorthands, use of, 17-19

sibling count, styling by, 270-275

simple pie charts, 114-128

Simurai, 312

sizing, intrinsic, 262-264

skew() transform, 84

slider control, 256-259

smooth state animations, 328-332

soft hyphens (), 168

spread radius, 29, 131

sprite animation, 309-312

steps() timing function, 311, 317, 322

sticky footers, 288-292

Storey, Dudley, 66, 144, 259, 264

striped backgrounds, 40-48

diagonal stripes, 43-47

flexible subtle stripes, 48

vertical stripes, 43

striped text lines, 178-181

stroke-dasharray, 122-126

stroked text, 203

style elements, sibling count and, 270-275

SVG

for checkerboard patterns, 59

for pie charts, 122-128

T
tab width adjustments, 182

tab-size, 183

table-layout (property), 266

tables

column widths, 266-268

zebra-striped lines in, 178-181

text effects

circular text, 210-214

extruded text, 206

glowing text, 205

letterpress, 201

realistic, 200-208

stroked text, 203

typing animation, 320-326

text justification, 168

text lines, zebra-striped, 178-181

text underlines, custom, 194-197

text-decoration: blink, 315

text-shadow

and extruded text, 207

and glowing text, 205

and letterpress effect, 202

and stroked text, 203

and text underlining, 197

with irregular drop shadows, 137

three-dimensional (3D) rotation, for trapezoids, 109-113

timing function, 296-299

tinting, 138-143

toggle buttons, 231

transform(s)

and parallelograms, 86

for diamond images, 91

for pie charts, 115, 117

for trapezoids, 109-113

interdependence of transform functions, 341

transform-origin, 163

for trapezoids, 111

translate() vs., 340

transform-style, vertical centering and, 283

transition-duration, 304

transition-property, 305

transition-timing-function, 296

transitions and animations, 294-345

animations along a circular path, 334-345

blinking, 314-318

converting animation to transition, 301

elastic transitions, 294-305

frame-by-frame animations, 308-312

INDEX 353

www.it-ebooks.info

http://www.it-ebooks.info/

smooth state animations, 328-332

typing animation, 320-326

translate()

and vertical centering, 282

for animation along circular path, 343

transform-origin vs., 340

translucent borders, 24-26

transparency, gray checkerboard patterns for depicting,

55

trapezoid tabs, 108-113

triangles

and folded corner effect, 156-165

for checkerboard patterns, 55

typing animation, 320-326

typography, 168-214

circular text, 210-214

custom underlines, 194-197

extruded text effect, 206

fancy ampersands, 188-193

glowing text effect, 205

hyphenation, 168-170

inserting line breaks, 172-177

letterpress effect, 201

ligatures, 184-186

realistic text effects, 200-208

stroked text effect, 203

tab width adjustments, 182

zebra-striped text lines, 178-181

U
underlines, custom, 194-197

unicode-range descriptor, 191

user experience, 218-259

cursor selection, 218-221

custom checkboxes, 228-232

de-emphasis by blurring, 240-243

de-emphasis by dimming, 234-238

extending the clickable area, 224-227

interactive image comparison, 250-259

scrolling, 244-249

toggle buttons, 231

V
vendor prefixes, 6-8

vertical centering, 280-286

absolute positioning for, 281

Flexbox for, 285

viewport unit for, 284

vertical stripes, 43

viewBox, 212

viewport units, 237

vintage envelope themed border, 71

visual effects, 130-165

color tinting, 138-143

folded corner effect, 156-165

frosted glass effect, 146-154

irregular drop shadows, 134-137

one-sided shadows, 130-133

W
W3C (World Wide Web Consortium), 2

Walker, Alex, 63, 65

web standards, 2-8

and CSS evolution, 5

and vendor prefixes, 6-8

creation process, 2-4

WET programming, xviii

white-space:, 174

Wichary, Marcin, 198

word wrapping, 169

wrapping, word, 169

Z
z-index, 235

zebra-striped text lines, 178-181

INDEX354

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Words of thanks
	Making of
	About this book

	Introduction
	Web standards: friend or foe?
	CSS coding tips

	Backgrounds & Borders
	Translucent
borders
	Multiple
borders
	Flexible background positioning
	Inner
rounding
	Striped
backgrounds
	Complex background patterns
	(Pseudo)random backgrounds
	Continuous image borders

	Shapes
	Flexible
ellipses
	Parallelograms
	Diamond
images
	Cutout corners
	Trapezoid tabs
	Simple
 pie charts

	Visual
Effects
	One-sided shadows
	Irregular drop shadows
	Color tinting
	Frosted glass effect
	Folded corner effect

	Typography
	Hyphenation
	Inserting line breaks
	Zebra-striped
text lines
	Adjusting
tab width
	Ligatures
	Fancy ampersands
	Custom underlines
	Realistic
text effects
	Circular text

	User Experience
	Picking the
right cursor
	Extending the clickable area
	Custom checkboxes
	De-emphasize
by dimming
	De-emphasize
by blurring
	Scrolling
hints
	Interactive image comparison

	Structure
& Layout
	Intrinsic sizing
	Taming table column widths
	Styling by sibling count
	Fluid background, fixed content
	Vertical
centering
	Sticky footers

	Transitions & Animations
	Elastic transitions
	Frame-by-frame animations
	Blinking
	Typing animation
	Smooth state animations
	Animation along a circular path

