
www.apress.com

M
ardan

Full Stack JavaScript

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S®

Full Stack
JavaScript

THE E XPER T ’S VOICE®

Full Stack JavaScript

This is a hands-on book which introduces you to agile JavaScript web and
mobile so�ware development using the latest cutting-edge front-end and back-
end technologies including: Node.js, MongoDB, Backbone.js, Parse.com, Heroku, and
Windows Azure. Practical examples include building multiple versions of the Chat app:

• jQuery + Parse.com JS REST API
• Backbone and Parse.com JS SDK
• Backbone and Node.js
• Backbone and Node.js + MongoDB

The Chat application has all the foundation of a typical web/mobile application:
fetching data, displaying it, submitting new data. Other examples in the book are
as follows:

• jQuery + Twitter RESP API “Tweet Analyzer”
• Parse.com “Save John”
• MongoDB “Print Collections”
• Backbone.js “Apple Database”
• Monk + Express.js “REST API Server”

This book will save you many hours by providing a hand-picked and tested collection
of quick start guides. RPJS has practical examples that allow to spend less time
learning and more time building your own applications. Prototype fast and ship
code that matters!

• Gain a basic understanding from a collection of quick start guides, tutorials and
suggestions for the development apps discussed in this book.

• In addition to coding examples, this book covers virtually all setup and deploy-
ment step-by-step.

• You’ll learn from the examples of Chat web/mobile applications starting with
front-end components; over the course of the book, you’ll put front-end and
back-end together and deploy to the production environment.

Learn Backbone.js,
Node.js and MongoDB
—
Azat Mardan

9 781484 217504

53999
ISBN 978-1-4842-1750-4

US $39.99

Shelve in:
Web Development/JavaScript

User level:
Beginning–Intermediate

www.it-ebooks.info

http://www.it-ebooks.info/

Full Stack
JavaScript

Learn Backbone.js, Node.js
and MongoDB

Second Edition

Azat Mardan

www.it-ebooks.info

http://www.it-ebooks.info/

Full Stack JavaScript: Learn Backbone.js, Node.js and MongoDB

Copyright © 2015 by Azat Mardan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1750-4

ISBN-13 (electronic): 978-1-4842-1751-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jeffrey Pepper
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editors: Teresa Horton and Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484217504. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217504
www.apress.com/source-code/
http://www.it-ebooks.info/

To my parents, Almas and Alsu, who bought me my first computer, and
let me use the phone line for dial-up Internet

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author��� xiii

Acknowledgments�� xv

Preface��� xvii

Introduction��� xix

■■Chapter 1: Basics�� 1

■■Chapter 2: Setup�� 21

■■Chapter 3: jQuery and Parse.com�� 43

■■Chapter 4: Intro to Backbone.js��� 79

■■Chapter 5: Backbone.js and Parse.com��������������������������������������� 121

■■Chapter 6: Intro to Node.js�� 137

■■Chapter 7: Intro to MongoDB��� 155

■■Chapter 8: Putting It All Together�� 167

■■Appendix A: Conclusion and Further Reading����������������������������� 187

Index��� 193

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author��� xiii

Acknowledgments�� xv

Preface��� xvii

Introduction��� xix

■■Chapter 1: Basics�� 1

Front-End Definitions��� 1

Web Request Cycle�� 2

Mobile Development�� 3

HyperText Markup Language��� 4

Cascading Style Sheets��� 6

JavaScript�� 7

Agile Methodologies��� 13

Scrum�� 13

Test-Driven Development�� 14

Continuous Deployment and Integration��� 14

Pair Programming�� 15

Back-End Definitions�� 15

Node.js��� 15

NoSQL and MongoDB�� 16

Cloud Computing��� 16

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

HTTP Requests and Responses��� 17

RESTful API�� 18

Summary�� 19

■■Chapter 2: Setup�� 21

Local Setup�� 21

Development Folder�� 22

Browsers��� 23

IDEs and Text Editors��� 25

Version Control Systems�� 26

Local HTTP Servers�� 29

Database: MongoDB�� 30

Other Components��� 33

Cloud Setup�� 36

SSH Keys��� 36

GitHub�� 37

Windows Azure�� 38

Heroku��� 40

Summary�� 41

■■Chapter 3: jQuery and Parse.com�� 43

Definitions�� 44

JavaScript Object Notation�� 44

AJAX�� 45

Cross-Domain Calls��� 45

jQuery Functions�� 46

Twitter Bootstrap�� 47

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

LESS��� 50

LESS Variables��� 51

LESS Mix-ins��� 52

LESS Operations�� 53

An Example Using a Third-Party API (Twitter) and jQuery�������������������� 54

Parse.com�� 61

Message Board with Parse.com Overview��� 65

Message Board with Parse.com: REST API and jQuery Version������������������������������� 65

Pushing to GitHub�� 72

Deployment to Windows Azure��� 73

Deployment to Heroku�� 74

Updating and Deleting Messages��� 77

Summary�� 77

■■Chapter 4: Intro to Backbone.js��� 79

Setting Up Backbone.js App from Scratch�� 80

Backbone.js Dependencies�� 80

Working with Backbone.js Collections��� 83

Backbone.js Event Binding��� 88

Backbone.js Views and Subviews with Underscore.js��������������������������� 92

Refactoring Backbone.js Code��� 100

AMD and Require.js for Backbone.js Development������������������������������ 107

Require.js for Backbone.js Production��� 115

Super Simple Backbone.js Starter Kit�� 118

Summary�� 119

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

■■Chapter 5: Backbone.js and Parse.com��������������������������������������� 121

Message Board with Parse.com: JavaScript SDK and
Backbone.js Version��� 121

Taking Message Board Further�� 134

Summary�� 135

■■Chapter 6: Intro to Node.js�� 137

Building “Hello World” in Node.js��� 137

Node.js Core Modules��� 139

http�� 139

util��� 140

querystring�� 140

url�� 140

fs�� 140

npm Node Package Manager�� 141

Deploying "Hello World" to PaaS�� 142

Deploying to Windows Azure�� 143

Deploying to Heroku��� 143

Message Board with Node.js: Memory Store Version�� 144

Unit Testing Node.js��� 144

Summary�� 153

■■Chapter 7: Intro to MongoDB��� 155

MongoDB Shell��� 155

BSON�� 157

MongoDB Native Driver�� 157

MongoDB on Heroku: MongoLab�� 159

Message Board: MongoDB Version��� 163

Summary�� 166

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

■■Chapter 8: Putting It All Together�� 167

Adding CORS for Different Domain Deployment����������������������������������� 168

Message Board UI�� 169

Message Board API�� 174

Deployment to Heroku�� 178

Same Domain Deployment Server��� 179

Deployment to Amazon Web Services�� 182

Summary�� 185

■■Appendix A: Conclusion and Further Reading����������������������������� 187

Conclusion�� 187

Further Reading�� 188

JavaScript Resources and Free E-Books��� 188

JavaScript Books��� 189

Node.js Resources and Free E-Books�� 190

Node.js Books�� 190

Interactive Online Classes and Courses�� 191

Startup Books and Blogs��� 191

Index��� 193

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

About the Author

Azat Mardan has over 14 years of experience in web,
mobile, and software development. With a Bachelor’s
degree in Informatics and a Master of Science degree
in Information Systems Technology, Azat possesses
deep academic knowledge as well as extensive practical
experience. Azat is an experienced software engineer,
author and educator. He has published 11 books and
counting.

Currently, Azat works as a Technology Fellow
at Capital One Financial Corporation, a technology
company with a focus on finance. Before that, Azat
was a Team Lead at DocuSign, where his team rebuilt

50 million user products (DocuSign web app) using the tech stack of Node.js, Express.js,
Backbone.js, CoffeeScript, Jade, Stylus, and Redis.

Recently, he worked as an engineer at the curated social media news aggregator web
site, Storify.com (acquired by LiveFyre), which is used by BBC, NBC, CNN, the White
House, and others. Storify runs everything on Node.js unlike other companies. It’s the
maintainer of the open source library jade browser.

Before that, Azat worked as a CTO/Cofounder at Gizmo—an enterprise cloud
platform for mobile marketing campaigns, and has undertaken the prestigious 500
Startups business accelerator program.

Prior to this, Azat was developing the developed mission-critical applications for
government agencies in Washington, DC, including the National Institutes of Health,
the National Center for Biotechnology Information, and the Federal Deposit Insurance
Corporation, as well as Lockheed Martin.

Azat is a frequent attendee at Bay Area tech meet-ups and hackathons (AngelHack
hackathon ’12 finalist with team FashionMetric.com, which went on to raise venture
capital from Mark Cuban and TechStars).

In addition, Azat teaches technical classes at General Assembly, Hack Reactor,
pariSOMA, and Marakana (acquired by Twitter) to much acclaim.

In his spare time, he writes about technology on his blog: Webapplog.com, which was
a number one in “express.js tutorial” Google search results for some time.

www.it-ebooks.info

http://Storify.com
http://FashionMetric.com
http://Webapplog.com
http://www.it-ebooks.info/

■ About the Author

xiv

Azat is also the author of Pro Express.js, Practical Node.js and Node Program, and
others. Azat is the creator of open source Node.js projects, including ExpressWorks,
mongoui, and HackHall.

You can reach Azat and say hi using one of these methods:
Twitter: [@azat_co](https://twitter.com/azat_co) - Azat loves getting "Hi" on

Twitter
Facebook
Blog: webapplog.com
GitHub: github.com/azat-co/fullstack-javascript
Share on Twitter
Tweet “I’m starting FullStack JavaScript by @azat_co @Apress ” by opening this link

http://ctt.ec/he3Ug.

www.it-ebooks.info

http://https://twitter.com/azat_co
http://webapplog.com
http://github.com/azat-co/fullstack-javascript
http://ctt.ec/he3Ug
http://www.it-ebooks.info/

xv

Acknowledgments

I would like to thank the team of early Node contributors bringing JavaScript to the
servers. Without them, the full stack JavaScript development wouldn’t be possible.

I’m grateful to my copy and content editors at Apress specifially to James Markham,
Mark Powers, Teresa Horton, and Karen Jameson. They accomplished an amazing feat by
bringing this book to life in a span of a few weeks.

Also, I’m grateful to the students of Hack Reactor, Marakana, pariSOMA, and General
Assembly where I taught and used early Full Stack JavaScript (or its parts) training
material.

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

Preface

I’m writing this as I’m sitting at the San Francisco airport waiting for my flight to Portland,
Oregon, for the biggest Node.js conference. I’ll be speaking there about Node.js. It’s scary
and funny at the same time to think that I started to learn Node only three years ago. Yes,
I remember how I decided that the best way to learn is to teach others. For this reason
I started teaching my first Node classes and writing this book. The book was mostly for
me, so I could remember how to push Heroku or how to create Node servers that talk to
MongoDB. It was called Rapid Prototyping with JS back then. Three years sped away; I
published a few more Node books as well as released several Node apps in production;
and a few months ago Apress approached me wanting to publish an updated edition
under a new title.

The main reason I bet my time and energy on JavaScript and Node in the first place
is that I felt both intuitively and logically the potential of the full stack JavaScript. The one
language to rule the whole stack across all the layers. Logically I understood the code
reuse, expressiveness, and performance advantages of Node.js and the ever-increasing
importance of front-end development with MVC-like frameworks such as Backbone.
Intuitively, I just freaking fell in love with JavaScript both on the browser and on the
server.

Yes, I used JavaScript for many years but it was more pain than fun. Not anymore.
I was able to get a sense of what’s going on at the front end while at the same time getting
all the power and flexibility on the server. My brain started to think 5, maybe 10 times
faster than before because I started to remember all the obscure methods from Array or
String objects. I stopped having Mozilla Developer Network or Google open next to my
code editor. And what a relief when you don’t need to wait for the compiler each time that
you want to test something really quickly.

The airline crew announced my boarding. I need to get on the plane, but I hope this
easy, beginner-friendly manual will open the world of full stack JavaScript and cloud
computing. Jump on the train of this amazing technology with me.

www.it-ebooks.info

http://www.it-ebooks.info/

xix

Introduction

The kind of programming that C provides will probably remain similar
absolutely or slowly decline in usage, but relatively, JavaScript or its
variants, or XML, will continue to become more central.

—Dennis Ritchie

In this chapter, we cover:

• Reasons behind full stack JavaScript development in general and
for the writing of this book;

• Answers to questions what to expect and what not, what are
prerequisites;

• Suggestions on how to use the book and examples;

• Explanation of the book’s notation format.

Full Stack JavaScript is a hands-on book that introduces you to rapid software
prototyping using the latest cutting-edge web and mobile technologies including Node.js,
MongoDB, Twitter Bootstrap, LESS, jQuery, Parse.com, Heroku, and others.

Why This Book?
This book was borne out of frustration. I have been in software engineering for many
years, and when I started learning Node.js and Backbone.js, I learned the hard way that
their official documentation and the Internet lack in quick start guides and examples.
Needless to say, it was virtually impossible to find all of the tutorials for JS-related modern
technologies in one place.

The best way to learn is to do, right? Therefore, I’ve used the approach of small
simple examples, that is, quick start guides, to expose myself to the new cool tech. After
I was done with the basic apps, I needed some references and organization. I started to
write this manual mostly for myself, so I can understand the concepts better and refer to
the samples later. Then StartupMonthly and I taught a few two-day intensive classes on
the same subject—helping experienced developers to jump-start their careers with only-
one-language development, that is, JavaScript. The manual we used was updated and
iterated many times based on the feedback received. The end result is this book.

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xx

Why Go Full Stack JavaScript?
The reasons I love developing with full stack JavaScript, or as others call it universal or
isomorphic JavaScript, are numerous:

• Code reuse: I can share my libraries, templates, and models
between the browser and the server

• No context switch: my brain learns and thinks faster leaving me
more time to work on the actual tasks at hand

• Great ecosystem: npm!

• Vibrant community: people who are eager to help and not all
closed up

• Great masters: treasure chest of knowledge and best practices
accumulated through the years of browser JavaScript

• Tons of tutorials and good books: JavaScript is the most popular
language, hence more people writing about it

• No compilation: development is faster with interpreted platforms

• Good performance: Node’s non-blocking I/O is fast

• Evolving Standard: EMCA is pushing new and better version of
JavaScript

I’m sure I’ve missed a few points, but you got the idea. Whatever the drawbacks of
ES5 (the language most of us know as JavaScript) are, they are getting fixes in ES6/ES2015
and newer versions. The future for JavaScript is so bright we all will have to code with
sunglasses on.

What to Expect
A typical reader of Full Stack JavaScript should expect a collection of quick start guides,
tutorials, and suggestions (e.g., Git workflow). There is a lot of coding and not much
theory. All the theory we cover is directly related to some of the practical aspects and is
essential for better understanding of technologies and specific approaches in dealing
with them, for example, JSONP and cross-domain calls.

In addition to coding examples, the book covers virtually all setup and deployment
step by step.

You’ll learn on the examples of Chat web/mobile applications starting with front-
end components. There are a few versions of these applications, but by the end we’ll put
front end and back end together and deploy to the production environment. The Chat
application contains all of the necessary components typical for a basic web app and
will give you enough confidence to continue developing on your own, apply for a job/
promotion, or build a startup!

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Introduction

xxi

Who This Book Is For
The book is designed for advanced-beginner and intermediate-level web and mobile
developers: somebody who has been (or still is) an expert in other languages like Ruby
on Rails, PHP, Perl, Python, or/and Java. The type of a developer who quickly wants to
learn more about JavaScript and Node.js-related techniques for building web and mobile
application prototypes. Our target user doesn’t have time to dig through voluminous (or
tiny, at the other extreme) official documentation. The goal of Full Stack JavaScript is not
to make an expert out of a reader, but to help him/her to start building apps as soon as
possible.

Full Stack JavaScript: Learn Backbone.js, Node.js and MongoDB, as you can tell
from the name, is about taking your idea to a functional prototype in the form of a web
or a mobile application as fast as possible. This thinking adheres to the Lean Startup
methodology; therefore, this book would be more valuable to startup founders, but big
companies’ employees might also find it useful, especially if they plan to add new skills to
their resumes.

What This Book Is Not
Full Stack JavaScript is neither a comprehensive book on several frameworks, libraries,
or technologies (or just a particular one), nor a reference for all the tips and tricks of web
development. Examples similar to ones in this book might be publicly available online.

Even more so, if you’re not familiar with fundamental programming concepts like
loops, if/else statements, arrays, hashes, object and functions, you won’t find them in Full
Stack JavaScript. Additionally, it would be challenging to follow our examples.

Many volumes of great books have been written on fundamental topics — the list of
such resources is at the end of the book in the chapter “Further Reading.” The purpose of
Full Stack JavaScript is to give agile tools without replicating theory of programming and
computer science.

Prerequisites
We recommend the following things to get the full advantage of the examples and
materials covered:

• Knowledge of the fundamental programming concepts such as
objects, functions, data structures (arrays, hashes), loops
(for, while), conditions (if/else, switch)

• Basic web development skills including, but not limited to,
HTML and CSS

• Mac OS X or UNIX/Linux systems are highly recommended
for this book’s examples and for web development in general,
although it’s still possible to hack your way on a Windows-based
system

www.it-ebooks.info

http://www.it-ebooks.info/

■ Introduction

xxii

• Access to the Internet

• 5-20 hours of time

• Some cloud services require users’ credit/debit card information
even for free accounts

How to Use the Book
The digital version of this book comes in three formats:

	 1.	 PDF: suited for printing; opens in Adobe Reader, Mac OS X
Preview, iOS apps, and other PDF viewers.

	 2.	 ePub: suited for iBook app on iPad and other iOS devices; to
copy to devices use iTunes, Dropbox or e-mail to yourself.

	 3.	 mobi: suited for Kindles of all generations as well as desktop
and mobile Amazon Kindle apps and Amazon Cloud Reader;
to copy to devices use Whispernet, USB cable, or e-mail to
yourself.

The links are either spelled out in parenthesis or provided in the footnotes. In the
PDF version and other digital versions like Mobi for Kindle, the table of contents has local
hyperlinks that allow you to jump to any part or chapter of the book. This is very useful
for referring to certain parts of content later, e.g., if you want to look up how to deploy to
Heroku, you can quickly jump to the needed commands.

I encourage you to take notes and highlight text as you read it studiously. It will
improve the retention of the material.

There are summaries in the beginning of each chapter describing in a few short
sentences what examples and topics the particular chapter covers.

Each project comes with a YouTube screencast video. I recommend reading and
watching the videos to improve the comprehension. You can watch the videos first or
read the text first. The videos are supplemental, so it’s not a big deal if you are reading
digital book offline or a print book, and don’t have the ability to watch the video. The
text covers everything there’s in the videos. The reason why I recorded the screencast is
because people learn differently; some prefer text and other videos. This way, you can
take advantage of both media as well as see certain development steps in action.

For faster navigation between parts, chapters, and sections of the book, please use
the book’s navigation pane, which is based on the Table of Contents (the screenshot is
below).

www.it-ebooks.info

http://www.it-ebooks.info/

 ■ Introduction

xxiii

Examples
All of the source code for examples used in this book is available in the book itself
for the most part, as well as at the book’s apress.com product page (www.apress.
com/9781484217504) and in a public GitHub repository (github.com/azat-co/fullstack-
javascript). You can also download files as a ZIP archive or use Git to pull them. More
on how to install and use Git will be covered later in the book. The source code files, folder
structure, and deployment files are supposed to work locally and/or remotely on PaaS
solutions, that is, Windows Azure and Heroku, with minor or no modifications.

Source code that is in the book is technically limited by the platform to the width
of about 70 characters. We tried our best to preserve the best JavaScript and HTML
formatting styles, but from time to time you might see backslashes (\). There is nothing
wrong with the code. Backslashes are line escape characters, and if you copy-paste the
code into the editor, the example should work just fine. Please note that code in GitHub
and in the book might differ in formatting.

The Table of Contents pane in the Mac OS X Preview app

www.it-ebooks.info

www.apress.com/9781484217504
www.apress.com/9781484217504
http://github.com/azat-co/fullstack-javascript
http://github.com/azat-co/fullstack-javascript
http://www.it-ebooks.info/

■ Introduction

xxiv

Last, let me (and others) know if you spot any bugs, by submitting an issue to
GitHub! Please, don’t send me bugs in an e-mail, because a public forum like GH Issue
will help others, prevent duplicates, and keep everything organized.

Notation
This is what source code blocks look like:

var object = {};
object.name = "Bob";

Terminal commands have a similar look but start with a dollar sign or $:

$ git push origin heroku
$ cd /etc/
$ ls

Inline file names, path/folder names, quotes, and special words/names are italicized,
while command names (e.g., mongod and emphasized words, such as Note, are bold.

Terms
For the purposes of this book, we’re using some terms interchangeably. Depending on
the context, they might not mean exactly the same thing. For example, function = method
= call, attribute = property = member = key, value = variable, object = hash = class,
list = array, framework = library = module.

Additionally, “full stack” is listed as fullstack within code snippets.

www.it-ebooks.info

http://www.it-ebooks.info/

1

Chapter 1

Basics

I think everyone should learn how to program a computer, because
it teaches you how to think. I view computer science as a liberal art,
something everyone should learn to do.

—Steve Jobs

In this chapter, we’ll cover these topics:

• Overview of HTML, CSS, and JavaScript syntaxes

• Brief introduction to Agile methodology

• Advantages of cloud computing, Node.js, and MongoDB

•	 Descriptions of HTTP requests/responses and RESTful API concepts

If you are an experienced web developer, I don’t recommend it, but feel free to skip
this chapter. It’s important to brush up on the fundamental concepts before moving
forward. Why? Maybe you have heard and are familiar with some terms, but wonder what
they actually mean. Another good reason is that this chapter will cover the RESTful API in
a very beginner-friendly manner. REST is used in virtually all modern web architectures,
and we’ll use it in the book a lot. There is one last reason: You’ll look smart at a cocktail
party or in front of your colleagues and your boss by acing the hodpodge of web acronyms.

Front-End Definitions
Front end is a term for browser applications. In some conversations, it could mean servers
facing the requests first. However, for this book we assume that all front end is limited to
the browser and mobile apps and their code.

Front-end development, or front-end web development, implies the usage of various
technologies. Each of them individually is not too complex, but the sheer number of them
makes beginners timid. For example, there are Cascading Style Sheets (CSS), Hypertext
Markup Language (HTML), Extensible Markup Language (XML), JavaScript, JavaScript
Object Notation (JSON), Uniform Resource Identifier (URI), Hypertext Transfer Protocol
(HTTP), and many other abbreviations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Basics

2

In addition to the low-level technologies, there are numerous frameworks, tools, and
libraries; for example, jQuery, Backbone.js, Angular.js, Grunt, and so on. Please don’t
confuse front-end frameworks with back-end frameworks: The latter run on the server
whereas the former run on the browser.

Front-end web development consists of these components:

1.	 HTML or templates that compile to HTML

2.	 Stylesheets to make HTML pretty

3.	 JavaScript to add interactivity or some business logic to the
browser app

4.	 Some hosting (AWS, Apache, Heroku, etc.)

5.	 Build scripts to prepare code, manage dependencies, and do
pretty much anything that’s needed

6.	 Logic to connect to the server (typically via XHR requests and
RESTful API)

Now you know what a job that has the title of front-end developer entails. The great
payback to mastering this hodgepodge is the ability to express your creativity by building
beautiful and useful apps.

Before we start building, let’s cover a bird’s-eye view of the web request cycle.

Web Request Cycle
This is important for someone very new to the web development. The whole World Wide Web
or the Internet is about communication between clients and servers. This communication
happens by sending requests and receiving responses. Typically browsers (the most popular
web clients) send requests to servers. Behind the scenes, servers send their own requests
to other servers. Those requests are similar to the browser requests. The language of
requests and responses is HTTP(S). Let’s explore the browser request in more details.

The web request consists of the following steps:

1.	 A user types a URL or follows a link in his or her browser (also
called the client).

2.	 The browser makes an HTTP request to the server.

3.	 The server processes the request, and if there are any
parameters in a query string or body of the request, it takes
them into account.

4.	 The server updates, gets, and transforms data in the database.

5.	 The server responds with an HTTP response containing data
in HTML, JSON, or other formats.

6.	 The browser receives the HTTP response.

7.	 The browser renders an HTTP response to the user in HTML
or any other format (e.g., JPEG, XML, JSON).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Basics

3

Mobile applications act in the same manner as regular web sites, only instead of
a browser there is a native app. Mobile apps (native or HTML5) are just another client.
Other minor differences between mobile and web include data transfer limitation due
to carrier bandwidth, smaller screens, and the more efficient use of local storage. Most
likely you, my reader, are a web developer aspiring to use your web chops in mobile. With
JavaScript and HTML5 it’s possible, so it’s worth covering web development closer.

Mobile Development
Is mobile going to overtake web and desktop platforms? Maybe. For now the mobile
development field is extremely immature and new. It’s good if you are a pioneer, but
most of us are not. This is a bigger gap in tooling and libraries compared to web. The gap
is closing. With HTML5, you can write once and reuse code on mobile. There are other
approaches as well.

These are the approaches to mobile development, each with its own advantages and
disadvantages:

1.	 Native: Native iOS, Android, Blackberry apps built with
Objective-C and Java.

2.	 Abstracted native: Native apps built with JavaScript in
Appcelerator (http://www.appcelerator.com), Xamarin,
(https://xamarin.com), Smartface (http://www.smartface.
io) React Native or similar tools, and then compiled into native
Objective-C or Java.

3.	 Responsive: Mobile web sites tailored for smaller screens with
responsive design, CSS frameworks like Twitter Bootstrap
(http://twitter.github.io/bootstrap/) or Foundation
(http://foundation.zurb.com/), regular CSS, or different
templates. You might use some JavaScript frameworks for the
development like Backbone.js, Angular.js, Ember.js, or React.js.

4.	 Hybrid: HTML5 apps that consist of HTML, CSS, and
JavaScript, and are usually built with frameworks like Sencha
Touch (http://www.sencha.com/products/touch), Trigger.
io (https://trigger.io), JO (http://joapp.com), React
Native (https://facebook.github.io/react-native), or
Ionic (http://ionicframework.com) and then wrapped into
a native app with PhoneGap (http://phonegap.com). As in
the third approach, you probably will want to use a JavaScript
framework for the development, such as Backbone.js, Angular.
js, Ember.js, or React.js.

My personal favorites are the second and fourth approaches. The second approach
doesn’t require a different code base. A minimal viable product (MVP) can be built by
just adding a single link to the CSS library. The fourth approach is more powerful and
provides more scalable (in a development sence) UIs. This is better suited for complex
apps. Code reuse between cross-platform mobile and web is easy because most of the
times you’re writing in JavaScript.

www.it-ebooks.info

http://www.appcelerator.com
https://xamarin.com
http://www.smartface.io
http://www.smartface.io
http://twitter.github.io/bootstrap/
http://foundation.zurb.com/
http://www.sencha.com/products/touch
https://trigger.io
http://joapp.com
https://facebook.github.io/react-native
http://ionicframework.com
http://phonegap.com
http://www.it-ebooks.info/

Chapter 1 ■ Basics

4

HyperText Markup Language
HTML is not a programming language in itself. It is a set of markup tags that describe
the content and present it in a structured and formatted way. HTML tags consist of a tag
name inside of the angle brackets (<>). In most cases, tags surround the content, with the
end tag having forward slash before the tag name.

In this example, each line is an HTML element:

<h2>Overview of HTML</h2>
<div>HTML is a ...</div>
<link rel="stylesheet" type="text/css" href="style.css" />

An HTML document itself is an element of the <html> tag, and all other elements are
children of that <html> tag:

<!DOCTYPE html>
<html lang="en">
 <head>
 <link rel="stylesheet" type="text/css" href="style.css" />
 </head>
 <body>
 <h2>Overview of HTML</h2>

<p>HTML is a ...</p>
 </body>
</html>

There are different flavors and versions of HTML, such as DHTML, XHTML 1.0,
XHTML 1.1, XHTML 2, HTML 4, and HTML 5. This article does a good job of explaining
the differences: Misunderstanding Markup: XHTML 2/HTML 5 Comic Strip
(http://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-
xhtml-2-comic-strip/) .

Any HTML element can have attributes. The most important of them are class, id,
style, data-name, onclick, and other event attributes such as onmouseover, onkeyup, and
so on.

class
The class attribute defines a class that is used for styling in CSS or Domain Object Model
(DOM) manipulation; for example:

<p class="normal">...</p>

id
The id attribute defines an ID that is similar in purpose to element class, but it has to be
unique; for example:

<div id="footer">...</div>

www.it-ebooks.info

http://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
http://coding.smashingmagazine.com/2009/07/29/misunderstanding-markup-xhtml-2-comic-strip
http://www.it-ebooks.info/

Chapter 1 ■ Basics

5

style
The style attribute defines inline CSS to style an element; for example:

...

title
The title attribute specifies additional information that is usually presented in tooltips
by most browsers; for example:

...

data-name
The data-name attribute allows for metadata to be stored in the DOM; for example:

<tr data-token="fa10a70c-21ca-4e73-aaf5-d889c7263a0e">...</tr>

onclick
The onclick attribute calls inline JavaScript code when a click event happens; for example:

<input type="button" onclick="validateForm();">...

onmouseover
The onmouseover attribute is similar to onclick but for mouse hover events; for example:

...

Other HTML element attributes for inline JavaScript code are as follows:

• onfocus: When the browser focuses on an element

• onblur: When the browser focus leaves an element

• onkeydown: When a user presses a keyboard key

• ondblclick: When a user double-clicks the mouse

• onmousedown: When a user presses a mouse button

• onmouseup: When a user releases a mouse button

• onmouseout: When a user moves mouse out of the element area

• oncontextmenu: When a user opens a context menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Basics

6

The full list of such events and a browser compatibility table are presented in Event
compatibility tables (http://www.quirksmode.org/dom/events/index.html).

We’ll use classes extensively with Twitter Bootstrap framework, but the use of inline
CSS and JavaScript code is generally a bad idea, so we’ll try to avoid it. However, it’s good to
know the names of the JavaScript events because they are used all over the place in jQuery,
Backbone.js, and, of course, plain JavaScript. To convert the list of attributes to a list of JS
events, just remove the prefixes on; for example, onclick attribute means click event.

More information is available at Example: Catching a mouse click
(https://developer.mozilla.org/en-US/docs/JavaScript/Getting_
Started#Example:_Catching_a_mouse_click), Wikipedia (http://en.wikipedia.org/
wiki/HTML) and MDN (https://developer.mozilla.org/en-US/docs/Web/HTML).

Cascading Style Sheets
CSS provides a way to format and present content. An HTML document can have an
external stylesheet included in it by a <link> tag, as shown in the previous examples, or it
can have CSS code directly inside of a <style> tag:

<style>
 body {
 padding-top: 60px; /* 60px to make some space */
 }
</style>

Each HTML element can have id attributes, class attributes, or both:

<div id="main" class="large">
 Lorem ipsum dolor sit amet,
 Duis sit amet neque eu.
</div>

In CSS we access elements by their id, class, tag name, and in some edge cases, by
parent–child relationships or element attribute value.

This sets the color of all the paragraphs (<p> tag) to gray (#999999):

p {
 color: #999999;
}

This sets padding of a <div> element with the id attribute of main:

div#main {
 padding-bottom: 2em;
 padding-top: 3em;
}

www.it-ebooks.info

http://www.quirksmode.org/dom/events/index.html
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started#Example:_Catching_a_mouse_click
https://developer.mozilla.org/en-US/docs/JavaScript/Getting_Started#Example:_Catching_a_mouse_click
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
http://www.it-ebooks.info/

Chapter 1 ■ Basics

7

This sets the font size to 14 pixels for all elements with a class large:

.large {
 font-size: 14pt;
}

This hides <div>, which are direct children of the <body> element:

body > div {
 display: none;
}

This sets the width to 150 pixels for input which the name attribute is email:

input[name="email"] {
 width: 150px;
}

More information is available at Wikipedia (http://en.wikipedia.org/wiki/
Cascading_Style_Sheets) and MDN (https://developer.mozilla.org/en-US/docs/
Web/CSS).

CSS3 is an upgrade to CSS that includes new ways of doing things such as rounded
corners, borders, and gradients, which were possible in regular CSS only with the help of
PNG/GIF images and by using other tricks.

For more information refer to CSS3.info (http://css3.info), w3school
(http://www.w3schools.com/css3/default.asp), and CSS3 vs. CSS comparison article
on Smashing (http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-
speed-benchmark).

JavaScript
JavaScript (JS) was started in 1995 at Netscape as LiveScript. It has the same relationship
with Java as a hamster has with a ham, so please don’t confuse one with another.

These days, JavaScript is used for both client-side and server-side web, as well as
in desktop application development, drones, Internet of Things (IoT), and other things.
This is the main focus of this book because with JavaScript you can develop across all the
layers. You don’t need any other languages!

Let’s start with JavaScript in HTML. Putting JS code into a <script> tag is the easiest
way to use JavaScript in an HTML document:

<script type="text/javascript" language="javascript">
 alert("Hello world!")
 //simple alert dialog window
</script>

Be advised that mixing HTML and JS code is not a good idea, so to separate them
we can move the code to an external file, and include it by setting source attribute
src="filename.js" on script tag, for example, for the app.js resource:

<script src="js/app.js" type="text/javascript" language="javascript">
</script>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
http://css3.info
http://www.w3schools.com/css3/default.asp
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://coding.smashingmagazine.com/2011/04/21/css3-vs-css-a-speed-benchmark
http://www.it-ebooks.info/

Chapter 1 ■ Basics

8

Note that the closing </script> tag is mandatory even with an empty element like
we have where we include the external source file. Type and language attributes over
the years became optional in modern browsers due to the overwhelming dominance of
JavaScript.

Other ways to run JavaScript include the following:

• The inline approach already covered

• WebKit browser Developer Tools and FireBug consoles

• The interactive Node.js shell

One of the advantages of the JavaScript language is that it’s loosely typed. This loose
or weak typing, as opposed to strong typing (http://en.wikipedia.org/wiki/Strong_
typing) in languages like C and Java, makes JavaScript a better programming language
for prototyping. Here are some of the main types of JavaScript objects or classes (there are
not classes per se; objects inherit from objects).

Number Primitives
Number primitives are numerical values; for example:

var num = 1

Number Object
This is the Number (https://developer.mozilla.org/en-US/docs/JavaScript/
Reference/Global_Objects/Number) object and its methods; for example:

var numObj = new Number('123') //Number object
var num = numObj.valueOf() //number primitive
var numStr = numObj.toString() //string representation

String Primitives
String primitives are sequences of characters inside of single or double quotes; for example:

var str = 'some string'
var newStr = "abcde".substr(1,2)

For convenience, JavaScript automatically wraps string primitives with String object
methods, but they are not quite the same (https://developer.mozilla.org/en-US/
docs/JavaScript/Reference/Global_Objects/String#Distinction_between_string_
primitives_and_String_objects).

www.it-ebooks.info

http://en.wikipedia.org/wiki/Strong_typing
http://en.wikipedia.org/wiki/Strong_typing
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#Distinction_between_string_primitives_and_String_objects
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#Distinction_between_string_primitives_and_String_objects
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String#Distinction_between_string_primitives_and_String_objects
http://www.it-ebooks.info/

Chapter 1 ■ Basics

9

String Object
The String object has a lot of useful methods, like length, match, and so on; for example:

var strObj = new String("abcde") //String object
var str = strObj.valueOf() //string primitive
strObj.match(/ab/)
str.match(/ab/) //both call will work

RegExp Object
Regular Expressions or RegExps are patterns of characters used in finding matches,
replacing, and testing of strings.

var pattern = /[A-Z]+/
'ab'.match(pattern) // null
'AB'.match(pattern) // ["AB"]

The match() method returns an array of matches (["AB"]). If all you need is a
Boolean true/false, then simply use pattern.test(str). For example:

var str = 'A'
var pattern = /[A-Z]+/
pattern.test(str) // true

Special Types
When in doubt (when debugging), you can always call typeof obj. Here are some of the
special types used in JS:

• NaN: Not a number

• null: Null, nada, zip

• undefined: Undeclared variable

• function: Function

JSON
The JSON library allows us to parse and serialize JavaScript objects; for example:

var obj = JSON.parse('{a: 1, b: "hi"}')
var stringObj = JSON.stringify({a: 1, b: 'hi'})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Basics

10

Array Object
Arrays (https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_
Objects/Array) are zero-index-based lists. For example, to create an array:

var arr = new Array()
var arr = ['apple', 'orange', 'kiwi']

The Array object has a lot of nice methods, like indexOf, slice, and join. Make sure
that you’re familiar with them, because if used correctly, they’ll save a lot of time.

Data Object

var obj = {name: 'Gala', url: 'img/gala100x100.jpg', price: 129}

or

var obj = new Object()

We provide more on inheritance patterns later.

Boolean Primitives and Objects
Just as with String and Number, Boolean (https://developer.mozilla.org/en-US/docs/
JavaScript/Reference/Global_Objects/Boolean) can be a primitive and an object.

var bool1 = true
var bool2 = false
var boolObj = new Boolean(false)

Date Object
Date (https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_
Objects/Date) objects allow us to work with dates and time; for example:

var timestamp = Date.now() // 1368407802561
var d = new Date() // Sun May 12 2013 18:17:11 GMT-0700 (PDT)

Math Object
These are used for mathematical constants and functions (https://developer.mozilla.
org/en-US/docs/JavaScript/Reference/Global_Objects/Math); for example:

var x = Math.floor(3.4890)
var ran = Math.round(Math.random()*100)

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Boolean
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/Math
http://www.it-ebooks.info/

Chapter 1 ■ Basics

11

Browser Objects
Browser objects give us access to a browser and its properties like URLs; for example:

window.location.href = 'http://rapidprototypingwithjs.com'
console.log('test')

DOM Objects
DOM objects or DOM (https://developer.mozilla.org/en/docs/Web/API/Node)
nodes are the browser interface to the DOM elements rendered on the page. They have
properties such as width, height, position, and so on, and, of course, inner content, which
can be another element or text. To get a DOM node, you can use its ID; for example:

var transactionsContainer = document.createElement('div')
transactionsContainer.setAttribute('id', 'main')
var content = document.createTextNode('Transactions')
transactionsContainer.appendChild(content)
document.body.appendChild(transactionsContainer)
var main = document.getElementById('main')
console.log(main, main.offsetWidth, main.offsetHeight)

Globals
In addition to classes such as String, Array, Number, and Math, which have a lot of useful
methods, you can call the following methods known as globals, meaning you can invoke
them from anywhere in your code:

• encodeURI (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/encodeURI): Encodes a
Uniform Resource Identifier (URI) to give you a URL; for example,
encodeURI('http://www.webapplog.com/js is awesome')

• decodeURI (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/decodeURI): Decodes a URI

• encodeURIComponent (https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/
encodeURIComponent): Encode URI for URL parameters (don’t use
it for the entire URL string)

• decodeURIComponent (https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Global_Objects/
decodeURIComponent): Decodes the fragment

• isNaN (https://developer.mozilla.org/en/docs/Web/
JavaScript/Reference/Global_Objects/isNaN): Determines
whether a value is a number or not

• JSON (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/JSON): Parsing (parse())
and serializing (stringify()) of JSON data

www.it-ebooks.info

http://rapidprototypingwithjs.com/
https://developer.mozilla.org/en/docs/Web/API/Node
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/isNaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
http://www.it-ebooks.info/

Chapter 1 ■ Basics

12

• parseFloat (https://developer.mozilla.org/en/docs/Web/
JavaScript/Reference/Global_Objects/parseFloat): Converts
a string to a floating number

• parseInt (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/parseInt): Converts a
string to a number

• Intl (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Intl): Language-
specific string comparison methods

•	 Error (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Error): An error object
that you can use to instantiate your own error objects; for example,
throw new Error('This book rocks!')

• Date (https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Date): Various methods
to work with dates

Conventions
JavaScript uses a number of style conventions. One of them is camelCase, in which you
type multiple words as one word, capitalizing the first characters of the each word starting
from the second one.

Semicolons are optional. Names starting with an underscore are private methods or
attributes, but not because they are protected by the language. We use _ to simply to alert
the developers not to use them because they might change in the future.

JavaScript supports numbers only up to 53 bits in size. Check out large numbers’
libraries if you need to deal with numbers larger than that.

The full references for JavaScript and DOM objects are available at Mozilla
Developer Network (https://developer.mozilla.org/en-US/docs/JavaScript/
Reference) and w3school (http://www.w3schools.com/jsref/default.asp).

For JS resources such as ECMA specs, check out the list at JavaScript Language
Resources (https://developer.mozilla.org/en-US/docs/JavaScript/Language_
Resources). As of this writing, the latest JavaScript specification is ECMA-262 Edition 5.1
(http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf)
and HTML (http://www.ecma-international.org/ecma-262/5.1/).

Another important distinction of JS is that it’s a functional and prototypal language.
Typical syntax for function declaration looks like this:

function Sum(a,b) {
 var sum = a + b
 return sum
}
console.log(Sum(1, 2))

www.it-ebooks.info

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/parseFloat
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
(https://developer.mozilla.org/en-US/docs/JavaScript/Reference
(https://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://www.smartface.io/
https://developer.mozilla.org/en-US/docs/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/JavaScript/Language_Resources
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/ecma-262/5.1/
http://www.it-ebooks.info/

Chapter 1 ■ Basics

13

Functions in JavaScript are first-class citizens (http://en.wikipedia.org/wiki/First-
class_function) due to the functional programming (http://en.wikipedia.org/wiki/
Functional_programming) nature of the language. Therefore, functions can be used as other
variables or objects; for example, functions can be passed to other functions as arguments:

var f = function (str1){
 return function(str2){
 return str1 + ' ' + str2
 }
}
var a = f('hello')
var b = f('goodbye')
console.log((a('Catty'))
console.log((b('Doggy'))

It’s good to know that there are several ways to instantiate an object in JS:

• Classical inheritance (http://www.crockford.com/javascript/
inheritance.html) pattern

• Pseudo-classical inheritance (http://javascript.info/
tutorial/pseudo-classical-pattern) pattern

• Functional inheritance pattern

For further reading on inheritance patterns, check out Inheritance Patterns in
JavaScript (http://bolinfest.com/javascript/inheritance.php) and Inheritance
revisited (https://developer.mozilla.org/en-US/docs/JavaScript/Guide/
Inheritance_Revisited).

More information about browser-run JavaScript is available at Mozilla Developer
Network (https://developer.mozilla.org/en-US/docs/JavaScript/Reference),
Wikipedia (http://en.wikipedia.org/wiki/JavaScript), and w3schools
(http://www.w3schools.com/js/default.asp).

Agile Methodologies
The Agile software development methodology evolved due to the fact that traditional
methods like Waterfall weren’t good enough in situations of high unpredictability; that
is, when the solution is unknown (http://www.startuplessonslearned.com/2009/03/
combining-agile-development-with.html). Agile methodology includes Scrum/sprint,
test-driven development, continuous deployment, paired programming, and other
practical techniques, many of which were borrowed from extreme programming.

www.it-ebooks.info

http://en.wikipedia.org/wiki/First-class_function
http://en.wikipedia.org/wiki/First-class_function
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Functional_programming
(http://www.crockford.com/javascript/inheritance.html
(http://www.crockford.com/javascript/inheritance.html
http://javascript.info/tutorial/pseudo-classical-pattern
http://javascript.info/tutorial/pseudo-classical-pattern
http://bolinfest.com/javascript/inheritance.php
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Inheritance_Revisited
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Inheritance_Revisited
https://developer.mozilla.org/en-US/docs/JavaScript/Reference
http://en.wikipedia.org/wiki/JavaScript
http://www.w3schools.com/js/default.asp
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.startuplessonslearned.com/2009/03/combining-agile-development-with.html
http://www.it-ebooks.info/

Chapter 1 ■ Basics

14

Scrum
In regard to management, the Agile methodology uses the Scrum approach. More about
Scrum can be read at the following sources:

• Scrum Guide in PDF (http://www.scrumguides.org/docs/
scrumguide/v1/scrum-guide-us.pdf)

• Scrum.org (http://www.scrum.org/)

• Scrum development Wikipedia article (http://en.wikipedia.
org/wiki/Scrum_(development))

The Scrum methodology is a sequence of short cycles, and each cycle is called a
sprint. One sprint usually lasts from one to two weeks. A typical sprint starts and ends with
a sprint planning meeting where new tasks are assigned to team members. New tasks
cannot be added to the sprint in progress; they can be added only at the sprint meetings.

An essential part of the Scrum methodology is the daily scrum meeting, hence the
name. Each scrum is a 5- to 15-minute-long meeting, often conducted in a hallway.
In scrum meetings, each team member answers three questions:

1.	 What have you done since yesterday?

2.	 What are you going to do today?

3.	 Do you need anything from other team members?

Flexibility makes Agile an improvement over the Waterfall methodology, especially
in situations of high uncertainty (i.e., in startups).

The advantage of Scrum methodology is that it is effective where it is hard to plan
ahead of time, and also in situations where a feedback loop is used as the main
decision-making authority.

Test-Driven Development
Test-driven development (TDD) consists of the following steps:

1.	 Write failing automated test cases for new features, tasks, or
enhancement by using assertions that are either true or false.

2.	 Write code to successfully pass the test cases.

3.	 Refactor code if needed, and add functionality while keeping
the test cases passed.

4.	 Repeat until all tasks are complete.

Tests can be split into functional and unit testing. The latter is when a system tests
individual units, methods, and functions with dependencies mocked up, whereas the
former (also called integration testing) is when a system tests a slice of a functionality,
including dependencies.

www.it-ebooks.info

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrum.org/
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Scrum_(development)
http://www.it-ebooks.info/

Chapter 1 ■ Basics

15

There are several advantages of TDD:

• Fewer bugs and defects

• More efficient codebase

• Confidence that code works and doesn’t break the old functionality

Continuous Deployment and Integration
Continuous deployment (CD) is a set of techniques to rapidly deliver new features,
bug fixes, and enhancements to the customers. CD includes automated testing and
automated deployment. Using CD, manual overhead is decreased and feedback loop time
is minimized. Basically, the faster a developer can get the feedback from the customers,
the sooner the product can pivot, which leads to more advantages over the competition.
Many startups deploy multiple times in a single day in comparison to the 6- to 12-month
release cycle that is still typical for corporations and big companies.

The advantages of the CD approach include decreased feedback loop time and
manual labor overhead.

The difference between CD and continuous integration is outlined in the post
Continuous Delivery vs. Continuous Deployment vs. Continuous Integration
- Wait huh? (http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/
Continuous-Delivery-vs-Continuous-Deployment-vs-Continuous-Integration-Wait-
huh.aspx)

Some of the most popular solutions for continuous integration include the following:

• Jenkins (http://jenkins-ci.org/): An extendable open source
continuous integration server

• CircleCI (https://circleci.com/): Ship better code, faster

• Travis CI (https://travis-ci.org/): A hosted continuous
integration service for the open source community

Pair Programming
Pair programming is a technique when two developers work together in one
environment. One of the developers is a driver, and the other is an observer. The driver
writes code, and the observer assists by watching and making suggestions. Then they
switch roles. The driver has a more tactical role of focusing on the current task. In
contrast, the observer has a more strategic role, overseeing “the bigger picture” and
finding bugs and ways to improve an algorithm.

The following are the advantages of paired programming:

• Pairs result in shorter and more efficient codebase, and introduce
fewer bugs and defects.

• As an added bonus, knowledge is passed among programmers
as they work together. However, conflicts between developers are
possible, and not uncommon at all.

www.it-ebooks.info

http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/Continuous-Delivery-vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx
http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/Continuous-Delivery-vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx
http://blog.assembla.com/assemblablog/tabid/12618/bid/92411/Continuous-Delivery-vs-Continuous-Deployment-vs-Continuous-Integration-Wait-huh.aspx
http://jenkins-ci.org/
https://circleci.com/
https://travis-ci.org/
http://www.it-ebooks.info/

Chapter 1 ■ Basics

16

Back-End Definitions
The back end is another name for the server. It’s everything after the browser. It includes
server platforms like PHP, Python, Java, Ruby, and of course Node.js, as well as databases
and other technologies.

Luckily, with modern back-end-as-a-service solutions you can bypass the back-end
development entirely. With just a single <script> tag included, you can get a real-time
database with the ability to put some logic into it like access level control (ALC),
validation, and so on. I’m talking about Firebase.com and Parse.com.

In those cases where you still need your own custom server code, Node.js is the
weapon of choice!

Node.js
Node.js is an open source, event-driven asynchronous I/O technology for building
scalable and efficient web servers. Node.js consists of Google’s V8 JavaScript engine
(http://en.wikipedia.org/wiki/V8_(JavaScript_engine)). It was maintained by cloud
company Joyent (http://joyent.com), but moved to the Technical Steering Committee
governance.

The purpose and use of Node.js is similar to Twisted (http://twistedmatrix.com/
trac/) for Python and EventMachine (http://rubyeventmachine.com/) for Ruby. The
JavaScript implementation of Node was the third one after attempts at using Ruby and
C++ programming languages.

Node.js is not in itself a framework like Ruby on Rails; it’s more comparable to the
pair of PHP and Apache. I’ll provide a list of the top Node.js frameworks chapter 6.

The following are the advantages of using Node.js:

• Developers have high likelihood of familiarity with JavaScript
due to its status as a de facto standard for web and mobile
development

• Using one language for front-end and back-end development
speeds up the coding process. A developer’s brain doesn’t have to
switch between different syntaxes, a so-called context switch. The
learning of methods and classes goes faster.

• With Node.js, you could prototype quickly and go to market to do
your customer development and customer acquisition early. This
is an important competitive advantage over other companies that
use less agile technologies (e.g., PHP and MySQL).

• Node.js is built to support real-time applications by utilizing
web sockets.

For more information go to Wikipedia (http://en.wikipedia.org/wiki/Nodejs),
Nodejs.org (http://nodejs.org/about/), and articles on ReadWrite (http://readwrite.
com/2011/01/25/wait-whats-nodejs-good-for-aga) and O’Reilly (http://radar.
oreilly.com/2011/07/what-is-node.html).

For the current state of Node.js (as of this writing), refer to the official Node.js blog
(https://nodejs.org/en/blog/).

www.it-ebooks.info

http://en.wikipedia.org/wiki/V8_(JavaScript_engine)
http://joyent.com
http://twistedmatrix.com/trac/
http://twistedmatrix.com/trac/
http://rubyeventmachine.com/
http://dx.doi.org/10.1007/978-1-4842-1751-1_6
http://en.wikipedia.org/wiki/Nodejs
http://nodejs.org/about/
http://readwrite.com/2011/01/25/wait-whats-nodejs-good-for-aga
http://readwrite.com/2011/01/25/wait-whats-nodejs-good-for-aga
http://radar.oreilly.com/2011/07/what-is-node.html
http://radar.oreilly.com/2011/07/what-is-node.html
https://nodejs.org/en/blog/
http://www.it-ebooks.info/

Chapter 1 ■ Basics

17

NoSQL and MongoDB
MongoDB, from huMONGOus, is a high-performance, no-relationship database for huge
quantities of data. The NoSQL concept came out when traditional relational database
management systems (RDBMSs) were unable to meet the challenges of huge amounts
of data.

Here are the advantages of using MongoDB:

• Scalability: Due to a distributed nature, multiple servers and data
centers can have redundant data.

• High performance: MongoDB is very effective for storing and
retrieving data, partially owing to the absence of relationships
between elements and collections in the database.

• Flexibility: A key-value store is ideal for prototyping because it
doesn’t require developers to know the schema and there is no
need for fixed data models or complex migrations.

Cloud Computing
Cloud computing consists of the following components:

• Infrastructure as a Service (IaaS), including Rackspace and
Amazon Web Services

• Platform as a Service (PaaS), including Heroku and Windows Azure

• Back end as a Service (BaaS), the newest, coolest kid on the block,
including Parse.com and Firebase

• Software as a Service (SaaS), including Google Apps and
Salesforce.com

Cloud application platforms provide the following advantages:

• Scalability; for example, they can spawn new instances in a matter
of minutes

• Ease of deployment; for example, to push to Heroku you can just
use $ git push

• Pay-as-you-go plans where users add or remove memory and disk
space based on demands

• Add-ons for easier installation and configuration of databases,
app servers, packages, and so on

• Security and support

PaaS and BaaS are ideal for prototyping, building minimal viable products (MVP),
and for early-stage startups in general.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Basics

18

Here is the list of the most popular PaaS solutions:

• Heroku (http://heroku.com)

• Windows Azure (http://windowsazure.com)

• Nodejitsu (http://nodejitsu.com)

• Nodester (http://nodester.com)

HTTP Requests and Responses
Each HTTP Request and Response consists of the following components:

• Header: Information about encoding, length of the body, origin,
content type, and so on

• Body: Content, usually parameters or data, that is passed to the
server or sent back to a client

In addition, the HTTP Request contains these elements:

• Method: There are several methods with the most common being
GET, POST, PUT, and DELETE

• URL: Host, port, path; for example, https://graph.facebook.com/
498424660219540

• Query string: Everything after a question mark in the URL
(e.g., ?q=rpjs&page=20)

RESTful API
RESTful (REpresentational State Transfer) API became popular due to the demand in
distributed systems whereby each transaction needs to include enough information
about the state of the client. In a sense, this standard is stateless because no information
about the clients’ states is stored on the server, thus making it possible for each request to
be served by a different system.

Here are some of the distinct characteristics of RESTful API:

• It has better scalability support due to the fact that different
components can be independently deployed to different servers.

• It replaced Simple Object Access Protocol (SOAP) because of the
simpler verb and noun structure.

• It uses HTTP methods such as GET, POST, DELETE, PUT, OPTIONS,
and so on.

Table 1-1 is an example of a simple Create, Read, Update and Delete (CRUD) RESTful
API for Message Collection.

www.it-ebooks.info

http://heroku.com
http://windowsazure.com
http://nodejitsu.com
http://nodester.com
https://graph.facebook.com/498424660219540
https://graph.facebook.com/498424660219540
http://www.it-ebooks.info/

Chapter 1 ■ Basics

19

REST is not a protocol; it is an architecture in the sense that it’s more flexible than
SOAP, which is a protocol. Therefore, REST API URLs could look like /messages/list.html
or /messages/list.xml in case we want to support these formats.

PUT and DELETE are idempotent methods (http://en.wikipedia.org/wiki/Hypertext_
Transfer_Protocol#Idempotent_methods_and_web_applications), which means that if the
server receives two or more similar requests, the end result will be the same.

 GET is nullipotent and POST is not idempotent and might affect state and cause side effects.
Further reading on REST API can be found at Wikipedia (http://en.wikipedia.

org/wiki/Representational_state_transfer) and A Brief Introduction to REST article
(http://www.infoq.com/articles/rest-introduction).

Summary
This concludes the first chapter. In this chapter we’ve covered some of the core concepts
of web development. They’ll be a solid foundation for the rest of the book. I’m sure some
of the concepts were familiar to you:

• HTML

• CSS

• JavaScript types and objects

• Agile

• Node.js

• NoSQL

• HTTP Request

• RESTful API

Nevertheless, it’s good to brush up on them because they are numerous and vast.
Theory is not that useful or interesting without understanding how it applies and benefits
the actual code. Therefore, we’ll move swiftly to the technical setup to get you to the
coding projects fast.

Table 1-1.  An Example of a CRUD RESTful API

Method URL Meaning

GET /messages.json Return list of messages in JSON format

PUT /messages.json Update/replace all messages and return status/error
in JSON

POST /messages.json Create new message and return its ID in JSON format

GET /messages/{id}.json Return message with ID {id} in JSON format

PUT /messages/{id}.json Update/replace message with ID {id}, if {id} message
doesn’t exist, create it

DELETE /messages/{id}.json Delete message with id {id}, return status/error in
JSON format

www.it-ebooks.info

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol%23Idempotent_methods_and_web_applications
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol%23Idempotent_methods_and_web_applications
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.infoq.com/articles/rest-introduction
http://www.it-ebooks.info/

21

Chapter 2

Setup

One of my most productive days was throwing away 1,000 lines of code.

—Ken Thompson

In this chapter, we1 cover the following topics:

• Suggestions for the toolset

• Step-by-step installation of local components

• Preparation for the use of cloud services

The proper setup is absolutely crucial to the productive development. You need to
have everything ready when you embark on a long journey, right? The toolset will make
you productive, and the other installations are dependencies like Node.js or MongoDB.
They enable the server-side code and persistence, respectively. In addition to that, in the
cloud section, we cover setup of the services for deployment and development. They will
enable you to keep your code under version control and deploy in a scalable manner.

Local Setup
Local setup is what we use on our development machines when we work on the project.
It includes anything from folders, browsers, editors, and HTTP servers to databases.
Figure 2-1 shows an example of the initial development environment setup.

Figure 2-1.  Initial development environment setup

www.it-ebooks.info

http://en.wikipedia.org/wiki/Ken_Thompson
http://www.it-ebooks.info/

Chapter 2 ■ Setup

22

Development Folder
If you don’t have a specific development folder for your web development projects, you
could create a Development folder in the Documents folder (path will be Documents/
Development). To work on the code example, create a fullstack-javascript folder
inside your web development projects folder; for example, if you create a fullstack-
javascript folder inside of the Development folder, the path will be Documents/
Development/fullstack-javascript. You could use the Finder on Mac OS X or the
following terminal commands on OS X/Linux systems:

$ cd ~/Documents
$ mkdir Development
$ cd Development
$ mkdir fullstack-javascript

■ Tip  To open Mac OS Finder app in the current directory from Terminal, just type and
run the $ open . command. On Windows, Terminal is command prompt.

To get the list of files and folders, use this UNIX/Linux command:

$ ls

or to display hidden files and folders, like .git, use this:

$ ls -lah

Another alternative to $ ls is $ ls -alt. The difference between the -lah and
the -alt options is that the latter sorts items chronologically and the former sorts them
alphabetically.

You can use the Tab key to autocomplete names of the files and folders.
Later, you could copy examples into the fullstack-javascript folder as well as

create apps in that folder.

■ Tip  Another useful thing is to have the New Terminal at Folder option in Finder on Mac
OS X. To enable it, open your System Preferences (you could use Command + Space, a.k.a.
Spotlight, for it). Find Keyboard and click it. Open Keyboard Shortcuts and click Services.
Select the New Terminal at Folder and New Terminal Tab at Folder check boxes. Close the
window (optional).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Setup

23

Browsers
We recommend downloading the latest version of the WebKit (http://en.wikipedia.
org/wiki/WebKit) or Gecko at http://en.wikipedia.org/wiki/Gecko_(layout_
engine) browser of your choice:

• Chrome (http://www.google.com/chrome) (recommended)

• Safari (http://www.apple.com/safari/)

• Firefox (http://www.mozilla.org/en-US/firefox/new)

Whereas Chrome and Safari already come with built-in developer tools, you’ll need
the Firebug plug-in for Firefox (Figure 2-2).

Firebug and developer tools allow developers to do many things, including these:

• Debug JavaScript

• Manipulate HTML and DOM elements

• Modify CSS on the fly

• Monitor HTTP requests and responses

• Run profiles and inspect heap dumps

• See loaded assets such as images, CSS, and JS files

Figure 2-2.  Chrome Developer Tools in action

www.it-ebooks.info

http://en.wikipedia.org/wiki/WebKit
http://en.wikipedia.org/wiki/WebKit
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://www.google.com/chrome
http://www.apple.com/safari/
http://www.mozilla.org/en-US/firefox/new
http://www.it-ebooks.info/

Chapter 2 ■ Setup

24

Figure 2-3.  Google tutorials for mastering web developer tools

Figure 2-4.  Mastering Chrome DevTools

There are some great Chrome Developer Tools (DevTools) tutorials, such as the
following and those shown in Figures 2-3 and 2-4:

• Explore and Master Chrome DevTools (http://discover-
devtools.codeschool.com/) with Code School

• Chrome DevTools videos (https://developers.google.com/
chrome-developer-tools/docs/videos)

• Chrome DevTools overview (https://developers.google.com/
chrome-developer-tools)

www.it-ebooks.info

http://discover-devtools.codeschool.com/
http://discover-devtools.codeschool.com/
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://en.wikipedia.org/wiki/Gecko_(layout_engine
http://www.it-ebooks.info/

Chapter 2 ■ Setup

25

IDEs and Text Editors
One of the best things about JavaScript is that you don’t need to compile the code.
Because JS lives in and is run in a browser, you can do debugging right there, in a
browser! It’s an interpreted language, not a compiled one. Therefore, we highly recommend
a lightweight text editor instead of a full-blown integrated development environment
(http://en.wikipedia.org/wiki/Integrated_development_environment), or IDE,
but if you are already familiar and comfortable with the IDE of your choice like Eclipse,
(http://www.eclipse.org/) NetBeans (http://netbeans.org/) or Aptana
(http://aptana.com/), feel free to stick with it.

Here is the list of the most popular text editors and IDEs used in web development:

• TextMate (http://macromates.com/): Mac OS X version only, free
30-day trial for v1.5, dubbed The Missing Editor for Mac OS X.

• Sublime Text (http://www.sublimetext.com/): Mac OS X and
Windows versions are available. This is an even better alternative
to TextMate, with an unlimited evaluation period (Figure 2-5).

• Coda (http://panic.com/coda/): All-in-one editor with FTP
browser and preview, has support for development with and on
an iPad.

• Aptana Studio (http://aptana.com/): Full-sized IDE with a built-
in terminal and many other tools.

• Notepad ++ (http:notepad-plus-plus.org/): Free Windows-
only lightweight text editor with the support of many languages.

Figure 2-5.  Sublime Text code editor home page

www.it-ebooks.info

http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.eclipse.org/
http://netbeans.org/
http://aptana.com/
http://macromates.com/
http://www.sublimetext.com/
http://panic.com/coda/
http://aptana.com/
http://notepad-plus-plus.org/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

26

• WebStorm IDE (http://www.jetbrains.com/webstorm/):
Feature-rich IDE that allows for Node.js debugging. It is
developed by JetBrains and marketed as the smartest JavaScript
IDE (Figure 2-6).

• MS Visual Studio (https://www.visualstudio.com/features/
node-js-vs): Node.js tools for the famous Visual Studio
environment from a small Redmond company.

Version Control Systems
A version control system (http://en.wikipedia.org/wiki/Revision_control) is a
must-have even in an only-one-developer situation. Also many cloud services (e.g.,
Heroku) require Git for deployment. We also highly recommend getting used to Git and
Git terminal commands instead of using Git visual clients and apps with a GUI: GitX
(http://gitx.frim.nl/), Gitbox (http://www.gitboxapp.com/) or GitHub for Mac
(http://mac.github.com/).

Subversion is a nondistributed version control system. This article compares
Git vs. Subversion (https://git.wiki.kernel.org/index.php/GitSvnComparison).

Figure 2-6.  WebStorm IDE home page

www.it-ebooks.info

http://www.jetbrains.com/webstorm/
https://www.visualstudio.com/features/node-js-vs
https://www.visualstudio.com/features/node-js-vs
http://en.wikipedia.org/wiki/Revision_control
http://gitx.frim.nl/
http://www.gitboxapp.com/
http://en.wikipedia.org/wiki/Gecko_(layout_engine
https://git.wiki.kernel.org/index.php/GitSvnComparison
http://www.it-ebooks.info/

Chapter 2 ■ Setup

27

Here are the steps to install and set up Git on your machine:

1.	 Download the latest version for your OS at http://git-scm.com/
downloads (Figure 2-7).

2.	 Install Git from the downloaded *.dmg package; that is, run
the *.pkg file and follow the wizard.

3.	 Find the terminal app by using Command + Space, a.k.a.
Spotlight (Figure 2-8), on OS X. For Windows you could use
PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/
putty/) or Cygwin (http://www.cygwin.com/).

Figure 2-7.  Downloading latest release of Git

www.it-ebooks.info

http://git-scm.com/downloads
http://git-scm.com/downloads
http://www.chiark.greenend.org.uk/%7esgtatham/putty/
http://www.chiark.greenend.org.uk/%7esgtatham/putty/
http://www.cygwin.com/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

28

4.	 In your terminal, type these commands, substituting "John Doe"
 and johndoe@example.com with your name and e-mail:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

5.	 To check the installation, run command:

$ git version

6.	 You should see something like this in your terminal window
(your version might vary; in our case it’s 1.8.3.2, as shown in
Figure 2-9):

git version 1.8.3.2

Figure 2-9.  Configuring and testing Git installation

Figure 2-8.  Using Spotlight to find and run an application

Generating SSH keys and uploading them to SaaS/PaaS web sites will be covered later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Setup

29

Local HTTP Servers
Although you can do most of the front-end development without a local HTTP server, it
is needed for loading files with HTTP Requests/AJAX calls. Also, it’s just good practice in
general to use a local HTTP server. This way, your development environment is as close to
the production environment as possible.

I recommend you use Node-based tools as static web servers. They lack GUIs, but
they are simple and fast. You can install them with npm (comes with Node.js; instructions
are later in this chapter):

• node-static (https://github.com/cloudhead/node-static):
Static file server with built-in caching.

• http-server (https://www.npmjs.com/package/http-server):
Zero-configuration command-line HTTP server.

If you prefer something with GUIs to a command-line interface (CLI), you might want
to consider the following modifications of the Apache web server. MAMP, MAMP Stack, and
XAMPP have intuitive GUIs that allow you to change configurations and host file settings.

• MAMP (http://www.mamp.info/en/index.html): Mac, Apache,
MySQL, PHP personal web server for Mac OS X.

• MAMP Stack (http://bitnami.com/stack/mamp): Mac app with
PHP, Apache, MySQL, and phpMyAdmin stack build by BitNami
(Apple App Store) (https://itunes.apple.com/es/app/mamp-
stack/id571310406?l=en).

• XAMPP (http://www.apachefriends.org/en/xampp.html):
Apache distribution containing MySQL, PHP and Perl for
Windows, Mac, Linux, and Solaris.

The MAMP for Mac home page is shown in Figure 2-10.

Figure 2-10.  MAMP for Mac home page

www.it-ebooks.info

https://github.com/cloudhead/node-static
http://www.mamp.info/en/index.html
https://itunes.apple.com/es/app/mamp-stack/id571310406?l=en
https://itunes.apple.com/es/app/mamp-stack/id571310406?l=en
http://www.apachefriends.org/en/xampp.html
http://www.it-ebooks.info/

Chapter 2 ■ Setup

30

Database: MongoDB
The following steps are better suited for Mac OS X/Linux-based systems, but with some
modification they can be used for Windows systems as well (i.e., $PATH variable, Step 3).
Here we describe the MongoDB installation from the official package, because we found
that this approach is more robust and leads to less conflicts. However, there are many
other ways to install it on Mac (http://docs.mongodb.org/manual/tutorial/install-
mongodb-on-os-x/), for example using Brew, as well as on other systems (http://docs.
mongodb.org/manual/installation/).

1.	 MongoDB can be downloaded at (http://www.mongodb.org/
downloads). For the latest Apple laptops, like MacBook Air,
select OS X 64-bit version. The owners of older Macs should
browse the link at (http://dl.mongodb.org/dl/osx/i386).

■ Tip  To figure out the architecture type of your processor, type the $ uname -p at the
command line. 

2.	 Unpack the package into your web development folder
(~/Documents/Development or any other). If you want, you
could install MongoDB into the /usr/local/mongodb folder.

3.	 Optional: If you would like to access MongoDB commands
from anywhere on your system, you need to add your mongodb
path to the $PATH variable. For Mac OS X the open system
paths file with:

sudo vi /etc/paths

or, if you prefer TextMate:

mate /etc/paths

And add this line to the /etc/paths file:

/usr/local/mongodb/bin

4.	 Create a data folder; by default, MongoDB uses /data/db.
Please note that this might be different in new versions
of MongoDB. To create it, type and execute the following
commands in the terminal (Figure 2-11):

$ sudo mkdir -p /data/db
$ sudo chown `id -u` /data/db

www.it-ebooks.info

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/
http://www.mongodb.org/downloads
http://www.mongodb.org/downloads
http://dl.mongodb.org/dl/osx/i386
http://www.it-ebooks.info/

Chapter 2 ■ Setup

31

If you prefer to use a path other than /data/db you could
specify it using the --dbpath option to mongod (the main
MongoDB service).

5.	 Go to the folder where you unpacked MongoDB. That location
should have a bin folder in it. From there, type the following
command in your terminal:

$./bin/mongod

6.	 If you see something like the following (and as in Figure 2-12)
it means that the MongoDB database server is running:

MongoDB starting: pid =7218 port=27017...

By default, it’s listening at http://localhost:27017. If you
go to your browser and type http://localhost:28017 you
should be able to see the version number, logs, and other
useful information. In this case the MondoDB server is using
two different ports (27017 and 28017): One is primary (native)
for the communications with apps and the other is a web-
based GUI for monitoring and statistics. In our Node.js code
we’ll be using only 27017. Don’t forget to restart the Terminal
window after adding a new path to the $PATH variable.

Now, to take it even further, we can test to determine if we
have access to the MongoDB console/shell, which will act as
a client to this server. This means that we’ll have to keep the
terminal window with the server open and running.

Figure 2-11.  Initial setup for MongoDB: Create the data directory

www.it-ebooks.info

http://localhost:27017/
http://localhost:28017/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

32

7.	 Open another terminal window at the same folder and execute:

$./bin/mongo

You should be able to see something like "MongoDB shell
version 2.0.6 ..."

8.	 Then type and execute:

> db.test.save({ a: 1 })
> db.test.find()

If you see that your record is being saved, then everything
went well (Figure 2-13).

Figure 2-12.  Starting up the MongoDB server

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Setup

33

Commands find and save do exactly what you might think
they do.

Detailed instructions are also available at MongoDB.org: Install MongoDB on
OS X (http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x).
For Windows users there is a good walk-through article at Installing MongoDB
(http://www.tuanleaded.com/blog/2011/10/installing-mongodb).

■ Note  MAMP and XAMPP applications come with MySQL—an open source traditional
SQL database—and phpMyAdmin—a web interface for MySQL database.

On Mac OS X (and most UNIX systems), to close the process use Control + C. If you
use Control + Z it will put the process to sleep (or detach the terminal window); in this
case, you might end up with the lock on data files and will have to use the kill command
or Activity Monitor, and manually delete the locked file in the data folder. In vanilla Mac
Terminal Command + . is an alternative to Control + C.

Other Components
These are required technologies. Please make sure you have them before proceeding to
the next chapter.

1.	 Node.js: We need it for build tools and back-end apps.

2.	 Browser JS libraries: We need them for front-end apps.

3.	 LESS app: We need it to compile LESS into CSS (Mac OS X only).

Figure 2-13.  Running MongoDB client and storing sample data

www.it-ebooks.info

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x
http://www.tuanleaded.com/blog/2011/10/installing-mongodb
http://www.it-ebooks.info/

Chapter 2 ■ Setup

34

Node.js Installation
Node.js is available at http://nodejs.org/#download (Figure 2-14). The installation
is trivial: Download the archive and run the *.pkg package installer. To check the
installation of Node.js, you could type and execute:

$ node -v

Figure 2-14.  Node.js home page

I use v5.1.0 for this book and tested all examples with v5.1.0. If you use another
version, do so at your own risk. I cannot guarantee that the examples will run.

Assuming you have 5.1.0, it should show something similar to this:

v5.1.0

If you want to switch between multiple versions of Node.js, there are solutions for that:

• nvm (https://github.com/creationix/nvm): Node.js
Version Manager

• Nave (https://github.com/isaacs/nave): Virtual environments
for Node.js

• n (https://github.com/tj/n): Node.js version management

The Node.js package already includes Node Package Manager (https://npmjs.org)
(NPM). We’ll use NPM extensively to install Node.js modules.

www.it-ebooks.info

http://nodejs.org/#download
https://github.com/creationix/nvm
https://github.com/isaacs/nave
https://github.com/tj/n
https://npmjs.org
http://www.it-ebooks.info/

Chapter 2 ■ Setup

35

Browser JavaScript Libraries
Front-end JavaScript libraries are downloaded and unpacked from their respective web
sites. Those files are usually put in the Development folder (e.g., ~/Documents/Development)
for future use. Often, there is a choice between the minified production version (more on
that in the AMD and Require.js section of Chapter 4) and the extensively rich in comments
development one.

Another approach is to hot-link these scripts from CDNs such as Google Hosted
Libraries (https://developers.google.com/speed/libraries/devguide), CDNJS
(http://cdnjs.com/), Microsoft Ajax Content Delivery Network (http://www.asp.net/
ajaxlibrary/cdn.ashx), and others. By doing so the apps will be faster for some users,
but won’t work locally at all without the Internet.

• LESS as a front-end interpreter is available at lesscss.org. You
could unpack it into your development folder (~/Documents/
Development) or any other folder.

• Twitter Bootstrap is a CSS/LESS framework. It’s available at
twitter.github.com/bootstrap.

• jQuery is available at jquery.com.

• Backbone.js is available at backbonejs.org.

• Underscore.js is available at underscorejs.org.

• Require.js is available at requirejs.org.

LESS App
The LESS App is a Mac OS X application for “on-the-fly” compilation of LESS to CSS.
It’s available at incident57.com/less (Figure 2-15).

Figure 2-15.  LESS App for Mac home page

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1751-1_4
https://developers.google.com/speed/libraries/devguide
http://cdnjs.com/
http://lesscss.org/
http://twitter.github.com/bootstrap/
http://jquery.com/
http://backbonejs.org/
http://underscorejs.org/
http://requirejs.org/
http://incident57.com/less/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

36

Cloud Setup
The Cloud setup discussed in the following sections will allow you to keep your code
under version control and deploy in a scalable manner.

SSH Keys
SSH keys provide a secure connection without the need to enter user name and password
every time. For GitHub repositories, the latter approach is used with HTTPS URLs; for
example, https://github.com/azat-co/fullstack-javascript.git; and the former
with SSH URLs; for example, git@github.com:azat-co/fullstack-javascript.git.

To generate SSH keys for GitHub on Mac OS X/UNIX machines do the following:

1.	 Check for existing SSH keys:

$ cd ~/.ssh
$ ls -lah

2.	 If you see some files like id_rsa (please refer to Figure 2-16 for
an example), you could delete them or back them up into a
separate folder by using the following commands:

$ mkdir key_backup
$ cp id_rsa* key_backup
$ rm id_rsa*

3.	 Now we can generate a new SSH key pair using the ssh-keygen
command, assuming we are in the ~/.ssh folder:

$ ssh-keygen -t rsa -C "your_email@youremail.com"

4.	 Answer the questions; it is better to keep the default name of
id_rsa. Then copy the content of the id_rsa.pub file to your
clipboard (Figure 2-16):

$ pbcopy < ~/.ssh/id_rsa.pub

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript.git
http://www.it-ebooks.info/

Chapter 2 ■ Setup

37

5.	 Alternatively, open id_rsa.pub file in the default editor:

$ open id_rsa.pub

6.	 Or in TextMate:

$ mate id_rsa.pub

GitHub
1.	 After you have copied the public key, go to github.com, log in,

go to your account settings, select SSH Key, and add the new
SSH key. Assign a name, such as the name of your computer,
and paste the value of your public key.

2.	 To check if you have an SSH connection to GitHub, type and
execute the following command in your terminal:

$ ssh -T git@github.com

If you see something like this:

Hi your-GitHub-username! You've successfully authenticated,
but GitHub does not provide shell access.

then everything is set up.

Figure 2-16.  Generating RSA key for SSH and copying public key to clipboard

www.it-ebooks.info

http://github.com/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

38

3.	 The first time you connect to GitHub, you can receive an
Authenticity of Host ... Can’t Be Established warning. Please
don’t be confused with such a message—just proceed by
answering Yes as shown in Figure 2-17.

Figure 2-17.  Testing SSH connection to GitHub for the very first time

If for some reason you have a different message, please
repeat Steps 3 and 4 from the previous section on SSH keys or
reupload the content of your *.pub file to GitHub.

■ Warning  Keep your id_rsa file private and don't share it with anybody!

More instructions are available at GitHub: Generating SSH Keys (https://help.
github.com/articles/generating-ssh-keys).

Windows users might find the SSH key generator feature in [PuTTY] useful.

Windows Azure
Here are the steps to set up a Windows Azure account:

1.	 You’ll need to sign up for Windows Azure Web Site and Virtual
Machine previews. Currently they have a 90-day free trial
available at https://azure.microsoft.com/en-us/.

2.	 Enable Git Deployment and create a user name and password,
then upload the SSH public key to Windows Azure.

3.	 Install the Node.js SDK, which is available at https://azure.
microsoft.com/en-us/develop/nodejs/.

www.it-ebooks.info

https://help.github.com/articles/generating-ssh-keys
https://help.github.com/articles/generating-ssh-keys
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/develop/nodejs/
https://azure.microsoft.com/en-us/develop/nodejs/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

39

4.	 To check your installation type:

$ azure -v

You should be able to see something like this:

Windows Azure: Microsoft's Cloud Platform... Tool Version 0.6.0

5.	 Log in to Windows Azure Portal at https://windows.azure.com/
 (Figure 2-18).

Figure 2-18.  Registering on Windows Azure

6.	 Select New, then select Web Site, and Quick Create. Type the
name that will serve as the URL for your web site, and click OK.

7.	 Go to this newly created web site’s Dashboard and select Set
Up Git Publishing. Come up with a user name and password.
This combination can be used to deploy to any web site
in your subscription, meaning that you do not need to set
credentials for every web site you create. Click OK.

www.it-ebooks.info

https://windows.azure.com/
https://windows.azure.com/
http://www.it-ebooks.info/

Chapter 2 ■ Setup

40

8.	 On the follow-up screen, it should show you the Git URL to
push to, something like this:

https://azatazure@azat.scm.azurewebsites.net/azat.git

You will also see instructions on how to proceed with
deployment. We’ll cover them later.

9.	 Advanced user option: Follow this tutorial to create a virtual
machine and install MongoDB on it: Install MongoDB on a
virtual machine running CentOS Linux in Windows Azure
(https://www.windowsazure.com/en-us/manage/linux/
common-tasks/mongodb-on-a-linux-vm/).

Heroku
Heroku is a polyglot agile application deployment platform (see http://www.heroku.com/).
Heroku works similarly to Windows Azure in the sense that you can use Git to deploy
applications. There is no need to install Virtual Machine for MongoDB because Heroku
has a MongoHQ add-on (https://addons.heroku.com/mongohq).

To set up Heroku, follow these steps:

1.	 Sign up at (http://heroku.com). Currently they have a free
account; to use it, select all options as minimum (0) and
database as shared.

2.	 Download Heroku Toolbelt at (https://toolbelt.heroku.com).
Toolbelt is a package of tools; that is, libraries that consist of
Heroku, Git, and Foreman (https://github.com/ddollar/
foreman). For users of older Macs, get this client
(https://github.com/heroku/heroku) directly.
If you utilize another OS, browse Heroku Client GitHub
(https://github.com/heroku/heroku).

3.	 After the installation is done, you should have access to the
heroku command. To check it and log in to Heroku, type:

$ heroku login

It will ask you for Heroku credentials (user name and
password), and if you’ve already created the SSH key, it will
automatically upload it to the Heroku web site (Figure 2-19).

www.it-ebooks.info

https://azatazure@azat.scm.azurewebsites.net/azat.git
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm/
https://www.windowsazure.com/en-us/manage/linux/common-tasks/mongodb-on-a-linux-vm/
http://www.heroku.com/
https://addons.heroku.com/mongohq
http://heroku.com/
https://toolbelt.heroku.com/
https://github.com/ddollar/foreman
https://github.com/ddollar/foreman
http://assets.heroku.com/heroku-client/heroku-client.tgz
https://github.com/heroku/heroku
http://www.it-ebooks.info/

Chapter 2 ■ Setup

41

4.	 If everything went well, to create a Heroku application inside
of your specific project folder, you should be able to run this
command:

$ heroku create

More detailed step-by-step instructions are available at
Heroku: Quickstart (https://devcenter.heroku.com/
articles/quickstart) and Heroku: Node.js
(https://devcenter.heroku.com/articles/nodejs).

Summary
In this chapter, we’ve covered the technical setup of the version control system, cloud
clients as well as installed various tools and libraries. We’ll use these libraries and tools
in the books, for this reason it’s important to have them installed and ready to go. In
addition, the chapter provided a few links to external resources which can make you
understand and learn web development tools better. One of the most useful of such
resources is DevTools.

You must be dying to get started with the actual coding. The wait is over. Meet the
first fullstack JavaScript code in the next chapter.

Figure 2-19.  The response to the successful $ heroku login command

www.it-ebooks.info

https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/quickstart
https://devcenter.heroku.com/articles/nodejs
http://www.it-ebooks.info/

43

Chapter 3

jQuery and Parse.com

There are two ways of constructing a software design: One way is to make
it so simple that there are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious deficiencies. The first
method is far more difficult.

—Tony Hoare

This chapter covers the following topics:

• Definitions of JSON, AJAX, and CORS

• Overview of main jQuery functions

• Twitter Bootstrap scaffolding

• Main LESS components

• Illustrations of JSONP calls on OpenWeatherMap API example

• Parse.com overview

• Explanations on how to build a Message Board front-end only
application with jQuery and Parse.com

• Step-by-step instructions on deployment to Windows Azure
and Heroku

• Updating and deleting of messages

This chapter is a basic introduction to front-end web development. It covers things
important to front-end development of apps such as Twitter Bootstrap and LESS. These
amazing libraries allow developers to have a nice user interface in no time.

It covers the terminology and explains JSON, AJAX, and CORS. We then explore the
example of a weather app.

We use Parse.com as our back end to streamline things and make development faster
while still keeping it realistic. The cornerstone of this chapter is a persistent message
board application built with Parse.com and jQuery.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Charles_Antony_Richard_Hoare
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

44

Definitions
Before anything else, let’s clarify some terms. They are important enough for us to pause
and get familiar with them. If these are familiar to you, you might want to skip ahead.

JavaScript Object Notation
Here is the definition of JavaScript Object Notation (JSON) from www.json.org

JavaScript Object Notation, or JSON, is a lightweight data-interchange format. It
is easy for humans to read and write. It is easy for machines to parse and generate. It is
based on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd
Edition - December 1999 (www.ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf).

JSON is a text format that is completely language independent but uses conventions
that are familiar to programmers of the C-family of languages, including C, C++, C#,
Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.

JSON has become a standard for transferring data between different components of
web and mobile applications and third-party services. JSON is also widely used inside the
applications as a format for configuration, locales, translation files, or any other data.

A typical JSON object looks like this:

{
 "a": "value of a",
 "b": "value of b"
}

We have an object with key/value pairs. Keys are on the left and values are on the right
side of colons (:). In computer science terminology, JSON is equivalent to a hash table,
a keyed list, or an associative array (depending on the particular language). The only big
difference between JSON and JS object literal notation (native JS objects) is that the former
is more stringent and requires double quotes (") for key identifiers and string values.
Both types can be serialized into a string representation with JSON.stringify() and
deserialized with JSON.parse(), assuming we have a valid JSON object in a string format.

However, every member of an object can be an array, primitive, or another object;
for example:

{
 "posts": [{
 "title": "Get your mind in shape!",
 "votes": 9,
 "comments": ["nice!", "good link"]
 }, {
 "title": "Yet another post",
 "votes": 0,
 "comments": []
 }
],

www.it-ebooks.info

http://www.json.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

45

 "totalPost": 2,
 "getData": function () {
 return new Data().getDate();
 }
}

In this example, we have an object with the posts property. The value of the posts
property is an array of objects with each one of them having title, votes, and comments
keys. The votes property holds a number primitive, whereas comments is an array of
strings. We also can have functions as values; in this case, the key is called a method; that
is, getData.

JSON is much more flexible and compact than XML or other data formats, as
outlined in this article: JSON: The Fat-Free Alternative to XML (www.json.org/xml.html).
Conveniently, MongoDB uses a JSON-like format called Binary JSON
(http://bsonspec.org) (BSON), discussed further in BSON later in Chapter 7.

AJAX
Asynchronous JavaScript and XML (AJAX) is used on the client side (browser) to send and
receive data from the server by utilizing an XMLHttpRequest object in JavaScript language.
Despite the name, the use of XML is not required, and JSON is often used instead. That’s
why developers almost never say AJAX anymore. Keep in mind that HTTP requests could
be made synchronously, but it’s not a good practice to do so. The most typical example of
a sync request would be the <script> tag inclusion.

Cross-Domain Calls
For security reasons, the initial implementation of an XMLHTTPRequest object did
not allow for cross-domain calls, when a client-side code and a server-side one are on
different domains. There are methods to work around this issue.

One of them is to use JSONP (http://en.wikipedia.org/wiki/JSONP), JSON with
padding/prefix. It’s basically a dynamic manipulation via DOM generated <script> tag.
Script tags don’t fall into the same domain limitation. The JSONP request includes the
name of a callback function in a request query string. For example, the jQuery.ajax()
function automatically generates a unique function name and appends it to the request
(which is one string broken into multiple lines for readability):

https://graph.facebook.com/search
 ?type=post
 &limit=20
 &q=Gatsby
 &callback=jQuery16207184716751798987_1368412972614&_=1368412984735

www.it-ebooks.info

http://www.json.org/xml.html
http://www.json.org/xml.html
http://bsonspec.org
http://dx.doi.org/10.1007/978-1-4842-1751-1_7
http://en.wikipedia.org/wiki/JSONP
https://graph.facebook.com/search
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

46

The second approach is to use cross-origin resource sharing
(CORS (http://www.w3.org/TR/cors)), which is a better solution, but it requires control
over the server side to modify response headers. We use this technique in the final
version of the Message Board example application. Here is an example of a CORS server
response header:

Access-Control-Allow-Origin: *

More about CORS is available at Resources by Enable CORS
 (http://enable-cors.org/resources.html) and Using CORS by HTML5 Rocks Tutorials
(http://www.html5rocks.com/en/tutorials/cors/). You can test CORS requests at
test-cors.org.

jQuery Functions
During the training we’ll be using jQuery (http://jquery.com/) for DOM manipulations,
HTTP Requests, and JSONP calls. jQuery became a de facto standard because of its
$ object or function, which provides a simple yet efficient way to access any HTML
DOM element on a page by its ID, class, tag name, attribute value, structure, or any
combination thereof. The syntax is very similar to CSS, where we use # for id and . for
class selection. For example:

$('#main').hide()
$('p.large').attr('style','color:red')
$('#main').show().html('<div>new div</div>')

Here is the list of most commonly used jQuery API functions:

• find() (http://api.jquery.com/find): Selects elements based
on the provided selector string

• hide() (http://api.jquery.com/hide): Hides an element if it
was visible

• show() (http://api.jquery.com/show): Shows an element if it
was hidden

• html() (http://api.jquery.com/html): Gets or sets an inner
HTML of an element

• append() (http://api.jquery.com/append) Injects an element
into the DOM after the selected element

• prepend() (http://api.jquery.com/prepend) Injects an
element into the DOM before the selected element

• on() (http://api.jquery.com/on): Attaches an event listener to
an element

• off() (http://api.jquery.com/off) Detaches an event listener
from an element

www.it-ebooks.info

http://www.w3.org/TR/cors
http://enable-cors.org/resources.html
http://enable-cors.org/resources.html
http://www.html5rocks.com/en/tutorials/cors/
http://client.cors-api.appspot.com/client
http://jquery.com/
http://api.jquery.com/find
http://api.jquery.com/hide
http://api.jquery.com/show
http://api.jquery.com/html
http://api.jquery.com/append
http://api.jquery.com/prepend
http://api.jquery.com/on
http://api.jquery.com/off
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

47

• css() (http://api.jquery.com/css): Gets or sets the style
attribute value of an element

• attr() (http://api.jquery.com/attr) Gets or sets any
attribute of an element

• val() (http://api.jquery.com/val): Gets or sets the value
attribute of an element

• text() (http://api.jquery.com/text): Gets the combined text
of an element and its children

• each() (http://api.jquery.com/each): Iterates over a set of
matched elements

Most jQuery functions act not only on a single element, on which they are called,
but on a set of matched elements if the result of the selection has multiple items. This
is a common pitfall that leads to bugs, and it usually happens when a jQuery selector is
too broad.

Also, jQuery has many available plug-ins and libraries that provide a rich user
interface or other functionality. For example:

• jQuery UI (http://jqueryui.com/)

• jQuery Mobile (http://jquerymobile.com/)

Twitter Bootstrap
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1RKx9uY.

Twitter Bootstrap (http://getbootstrap.com) is a collection of CSS/LESS rules
and JavaScript plug-ins for creating a good user interface and user experience without
spending a lot of time on such details as rounded-edge buttons, cross-compatibility,
responsiveness, and so on. This collection or framework is perfect for rapid prototyping
of your ideas. Nevertheless, due to its ability to be customized, Twitter Bootstrap is also a
good foundation for serious projects. The source code is written in LESS
(http://lesscss.org), but plain CSS can be downloaded and used as well.

Here is a simple example of using Twitter Bootstrap scaffolding for the version
v4.0.0-alpha. The structure of the project should look like this:

/01-bootstrap
-index.html
/css
-bootstrap.css
-bootstrap.min.css
... (other files if needed)

 /js
-bootstrap.js
-bootstrap.min.js
-npm.js

www.it-ebooks.info

http://api.jquery.com/css
http://api.jquery.com/attr
http://api.jquery.com/val
http://api.jquery.com/text
http://api.jquery.com/each
http://jqueryui.com/
http://jquerymobile.com/
http://bit.ly/1RKx9uY
http://www.smartface.io/
http://www.smartface.io/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

48

First let’s create the index.html file with proper tags:

<!DOCTYPE html>
<html lang="en">
 <head>

 </head>
 <body>
 </body>
</html>

Include the Twitter Bootstrap library as a minified CSS file:

<!DOCTYPE html>
<html lang="en">
 <head>
 <link
 type="text/css"
 rel="stylesheet"
 href="css/bootstrap.min.css" />
 </head>
 <body>
 </body>
</html>

Apply scaffolding with container-fluid and row-fluid classes:

 <body >
 <div class="container-fluid">
 <div class="row-fluid">
 </div> <!-- row-fluid -->
 </div> <!-- container-fluid -->
 </body>

Twitter Bootstrap uses a 12-column grid. The size of an individual cell could
be specified by classes spanN, for example, span1, span2, span12. There are also
classes offsetN, for example, offset1, offset2, ... offset12, to move cells to the
right. A complete reference is available at http://twitter.github.com/bootstrap/
scaffolding.html.

We’ll use the span12 and hero-unit classes for the main content block:

 <div class="row-fluid">
 <div class="span12">
 <div id="content">

<div class="row-fluid">
<div class="span12">
<div class="hero-unit">

www.it-ebooks.info

http://twitter.github.com/bootstrap/scaffolding.html
http://twitter.github.com/bootstrap/scaffolding.html
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

49

<h1>
Welcome to Super
Simple Backbone
Starter Kit

</h1>
<p>

This is your home page.
To edit it just modify
the <i>index.html</i> file!

</p>
<p>
<a
class="btn btn-primary btn-large"
href="http://twitter.github.com/bootstrap"
target="_blank">
Learn more

</p>

</div> <!-- hero-unit -->
</div> <!-- span12 -->

</div> <!-- row-fluid -->
 </div> <!-- content -->
 </div> <!-- span12 -->
 </div> <!-- row-fluid -->

This is the full source code of the index.html from 1-bootstrap:

<!DOCTYPE html>
<html lang="en">
<head>
 <link type="text/css" rel="stylesheet" href="css/bootstrap.css" />
</head>
 <body >

<div class="container-fluid">
<div class="row-fluid">

<div class="span12">
<div id="content">

<div class="row-fluid">
<div class="span12">

<div class="hero-unit">
�<h1>Welcome to Super Simple Backbone
Starter Kit</h1>
�<p>This is your home page. To edit it
just modify <i>index.html</i> file!</p>
�<p><a class="btn btn-primary btn-large"
href="http://twitter.github.com/bootstrap"
target="_blank" >Learn more </p>

www.it-ebooks.info

http://twitter.github.com/bootstrap
https://github.com/azat-co/fullstack-javascript/tree/master/1-bootstrap
http://twitter.github.com/bootstrap
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

50

</div> <!-- hero-unit -->
</div> <!-- span12 -->

</div> <!-- row-fluid -->
</div> <!-- content -->

</div> <!-- span12 -->
</div> <!-- row-fluid -->

 </div> <!-- container-fluid -->
</body>
</html>

This example is available for downloading and pulling from the GitHub public
repository at github.com/azat-co/fullstack-javascript under the 01-bootstrap folder
(https://github.com/azat-co/fullstack-javascript/tree/master/01-bootstrap). If
you prefer to watch screencasts, I recorded one on YouTube (http://bit.ly/1RKx9uY).

This and other videos, will walk you through the same steps as outlined in the book.
So if you are reading this book in print, no worries. The information in the book is enough.

Here are some other useful tools—CSS frameworks and CSS preprocessors—worth
checking out:

• Compass: CSS framework (http://compass-style.org/)

• SASS: Extension of CSS3 and analog to LESS (http://sass-lang.com/)

• Blueprint: CSS framework (http://blueprintcss.org/)

• Foundation: Responsive front-end framework
(http://foundation.zurb.com/)

• Bootswatch: Collection of customized Twitter Bootstrap themes
(http://bootswatch.com/)

• WrapBootstrap: Marketplace for customized Bootstrap themes
(https://wrapbootstrap.com/)

To work with the Twitter Bootstrap source file, you need to use LESS or SASS
(another CSS framework similar to LESS).

LESS
LESS is a dynamic stylesheet language. Sometimes, and in this case, it’s true that less is
more and more is less. A browser cannot interpret LESS syntax, so LESS source code must
be compiled to CSS in one of the three ways:

1.	 In the browser by the LESS JavaScript library

2.	 On the server side by language or framework; for example,
for Node.js there is the LESS module
(https://www.npmjs.com/package/less)

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript
https://github.com/azat-co/fullstack-javascript/tree/master/01-bootstrap
https://github.com/azat-co/fullstack-javascript/tree/master/01-bootstrap
http://bit.ly/1RKx9uY
http://compass-style.org/
http://compass-style.org/
http://sass-lang.com/
http://sass-lang.com/
http://blueprintcss.org/
http://blueprintcss.org/
http://foundation.zurb.com/
http://foundation.zurb.com/
http://bootswatch.com/
http://bootswatch.com/
https://wrapbootstrap.com/
https://wrapbootstrap.com/
https://github.com/twbs/bootstrap-sass
https://npmjs.org/package/less
https://www.npmjs.com/package/less
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

51

3.	 Locally on your machine by command line (installed with
npm by running $ npm install -g less), WinLess
(http://winless.org/), LESS App
(http://incident57.com/codekit/index.html), SimpLESS
(http://wearekiss.com/simpless), or a similar app

The browser option is suitable for a development environment, but suboptimal for a
production environment.

Here are some online tools for compilation:

• LESS2CSS (http://less2css.org/): A slick, browser-based LESS
to CSS converter built on Express.js

• lessphp (http://leafo.net/lessphp/): An online demo compiler

• Dopefly
(http://www.dopefly.com/LESS-Converter/less-converter.html):
An online LESS converter

LESS has variables, mix-ins, and operators that make it faster for developers to reuse
CSS rules.

LESS Variables
Variables reduce redundancy and allow developers to change values quickly by having
them in one canonical place, and we know that in design (and styling) we often have to
change values very frequently.

We sometimes have some LESS code with the variable marked by the @ sign, such as
in @color:

@color: #4D926F;
#header {
 color: @color;
}
h2 {
 color: @color;
}

This code will be compiled to the equivalent in CSS:

#header {
 color: #4D926F;
}
h2 {
 color: #4D926F;
}

The benefit is that in LESS, you need to update the color value in only one place
versus two in CSS. This is abstraction at its best.

www.it-ebooks.info

http://winless.org/
http://winless.org/
http://incident57.com/less
http://incident57.com/codekit/index.html
http://wearekiss.com/simpless
http://wearekiss.com/simpless
http://less2css.org/
http://less2css.org/
http://leafo.net/lessphp/
http://leafo.net/lessphp/
http://www.dopefly.com/LESS-Converter/less-converter.html
http://www.dopefly.com/LESS-Converter/less-converter.html
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

52

LESS Mix-ins
This about mix-ins as functions. The syntax for a mix-in is the same as for creating a class
selector. For example this is a .border mix-in:

.border {
 border-top: dotted 1px black;
 border-bottom: solid 2px black;
}
#menu a {
 color: #111;
 .border;
}
.post a {
 color: red;
 .border;
}

That converts into this CSS, in which the .border is replaced with the actual styles,
not the name:

.border {
 border-top: dotted 1px black;
 border-bottom: solid 2px black;
}
#menu a {
 color: #111;
 border-top: dotted 1px black;
 border-bottom: solid 2px black;
}
.post a {
 color: red;
 border-top: dotted 1px black;
 border-bottom: solid 2px black;
}

Even more useful is to pass a parameter to a mix-in. This enables developers to
create even more versatile code. For example, .rounded-corners is a mix-in that can
change size based on the value of the parameter radius:

.rounded-corners (@radius: 5px) {
 border-radius: @radius;
-webkit-border-radius: @radius;
-moz-border-radius: @radius;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

53

#header {
 .rounded-corners;
}
#footer {
 .rounded-corners(10px);
}

That code will compile into this in CSS:

#header {
 border-radius: 5px;
-webkit-border-radius: 5px;
-moz-border-radius: 5px;

}
#footer {
 border-radius: 10px;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;

}

Whether you use mix-ins without parameters or with multiple parameters, they are
great at creating abstractions and enabling better code reuse.

LESS Operations
LESS supports operations. With operations, we can perform math functions on numbers,
colors, or variables. This is useful for sizing, colors, and other number-related styles.

Here is an example of an operator in LESS where we perform multiplication and
addition:

@the-border: 1px;
@base-color: #111;
@red: #842210;

#header {
 color: @base-color * 3;
 border-left: @the-border;
 border-right: @the-border * 2;
}
#footer {
 color: @base-color + #003300;
 border-color: desaturate(@red, 10%);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

54

That code compiles in this CSS in which the compiler substituted variables and
operations for the results of the expressions:

#header {
 color: #333333;
 border-left: 1px;
 border-right: 2px;
}
#footer {
 color: #114411;
 border-color: #7d2717;
}

As you can see, LESS dramatically improves the reusability of plain CSS. It’s a time
saver in large projects, as you can create LESS modules and reuse them in multiple apps.

Other important LESS features (http://lesscss.org/#docs) include the following:

• Pattern-matching

• Nested rules

• Functions

• Namespaces

• Scope

• Comments

• Importing

An Example Using a Third-Party API
(OpenWeatherMap) and jQuery
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1RKxyxA.

This example is for purely demonstrative purposes. It is not a part of the main
Message Board application covered in later chapters. The goal is to just illustrate the
combination of jQuery, JSONP, and REST API technologies.

Note that this example uses OpenWeatherMap API 2.5. The API requires an authentication
(an app ID) for REST calls. You can get the necessary keys at openweathermap.org/appid.
The API documentation is available at openweathermap.org/api.

The idea of this weather application is to show you an input field for the city name
and buttons for metric and imperial systems. Once you enter the city name and click one
of the buttons, the app will fetch the forecast from OpenWeatherMap.

www.it-ebooks.info

http://lesscss.org/#docs
http://lesscss.org/#docs
http://bit.ly/1RKxyxA
http://openweathermap.org/
http://openweathermap.org/appid
http://openweathermap.org/api
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

55

In this example, we’ll use jQuery’s $.ajax() function. It has the following syntax:

var request = $.ajax({
 url: url,
 dataType: 'jsonp',
 data: {q: cityName, appid: appId, units: units},
 jsonpCallback: 'fetchData',
 type: 'GET'
 }).fail(function(error){
 console.error(error)
 alert('Error sending request')
 })

In the code fragment of an ajax() function just shown, we used the following
parameters:

• url is an endpoint of the API.

• dataType is the type of data we expect from the server; for
example, “json”, “xml”, “jsonp” (JSON with prefix—format for
servers that don’t support CORS).

• data is the data to be sent to the server.

• jsonpCallback is a name of the function, in a string format, to be
called after the request comes back; by default jQuery will create
a name.

• type is HTTP method of the request; for example, “GET”, “POST”.

There is also a chained method .fail, which has logic for what to do when the
request has an error (i.e., it fails).

For more parameters and examples of the ajax() function, go to api.jquery.com/
jQuery.ajax.

To assign our function to a user-triggered event, we need to use the click function
from the jQuery library. The syntax is very simple:

$('#btn').click(function() {
 ...
}

$('#btn') is a jQuery object that points to an HTML element in the DOM with the
id of btn.

To make sure that all of the elements we want to access and use are in the DOM,
we need to enclose all of the DOM manipulation code inside of the following jQuery
function:

$(document).ready(function(){
 ...
}

www.it-ebooks.info

http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

56

This is a common mistake with dynamically generated HTML elements. They are not
available before they have been created and injected into the DOM.

We must put the event handlers for the buttons in the $(document).ready() callback.
Otherwise, the code might try to attach an event listener to a nonexisting DOM element.
The $(document).ready() ensures that the browser rendered all the DOM elements.

$(document).ready(function(){
 $('.btn-metric').click(function() {
 prepareData('metric')
 })
 $('.btn-imperial').click(function() {
 prepareData('imperial')
 })
})

We use classes instead of IDs, because classes are more flexible (you cannot have
more than one ID with the same name). Here’s the HTML code for the buttons:

<div class="row">
 <div class="span6 offset1">
 �<input type="button" class="btn-primary btn btn-metric"

value="Get forecast in metric"/>
 <div class="span6 offset1">
 �<input type="button" class="btn-danger btn btn-imperial"

value="Get forecast in imperial"/>
 </div>
 <div class="span3">
 <p id="info"></p>
 </div>
</div>

The last container with the ID info is where we’ll put the forecast.
The idea is simple: We have button and event listeners to do something once a user

clicks the buttons. The aforementioned buttons call the prepareData() method. This is
its definition:

var openWeatherAppId = 'GET-YOUR-KEY-AT-OPENWEATHERMAP',
 openWeatherUrl = 'http://api.openweathermap.org/data/2.5/forecast'

var prepareData = function(units) {
 var cityName = $('#city-name').val()
 if (cityName && cityName != ''){
 cityName = cityName.trim()
 getData(openWeatherUrl, cityName, openWeatherAppId, units)
 }
 else {
 alert('Please enter the city name')
 }
}

www.it-ebooks.info

http://api.openweathermap.org/data/2.5/forecast
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

57

The code should be straightforward. We get the value of the city name from the input
box, check that it’s not empty, and call getDada(), which will make the XHR request to
the server. You’ve already seen an example of the $.ajax request. Please note that the
callback function is named fetchData. This function will be called after the browser gets
the response from the OpenWeatherMap API. Needless to say, we must pass the city
name, app ID, and units as follows:

function getData (url, cityName, appId, units) {
 var request = $.ajax({
 url: url,
 dataType: 'jsonp',
 data: {
 q: cityName,
 appid: appId,
 units: units
 },
 jsonpCallback: 'fetchData',
 type: 'GET'
 }).fail(function(error){
 console.error(error)
 alert('Error sending request')
 })
}

The JSONP fetching function magically (thanks to jQuery) makes cross-domain
calls by injecting script tag, and appending the callback function name to the request
query string.

At this point, we need to implement fetchData and update the view with the
forecast. The console.log is useful to look up the data structure of the response; that is,
where fields are located. The city name and country will be displayed above the forecast
to make sure the location found is the same as the one we requested in the input box.

function fetchData (forecast) {
 console.log(forecast)
 var html = '',
 cityName = forecast.city.name,
 country = forecast.city.country

Now we form the HTML by iterating over the forecast and concatenating the string:

html += '<h3> Weather Forecast for '
+ cityName
+ ', '
+ country
+ '</h3>'

forecast.list.forEach(function(forecastEntry, index, list){
 html += '<p>'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

58

+ forecastEntry.dt_txt
+ ': '
+ forecastEntry.main.temp
+ '</p>'

})

Finally, we get a jQuery object for the div with ID log, and inject the HTML with the
city name and the forecast:

$('#log').html(html)

In a nutshell, there is a button element that triggers prepareData(), which calls
getData(), in the callback of which is fetchData(). If you found that confusing, here’s
the full code of the index.html file:

<!DOCTYPE html>
<html lang="en">
<head>
 <link type="text/css" rel="stylesheet" href="css/bootstrap.css" />
 <script src="js/jquery.js" type="text/javascript"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <script>

var openWeatherAppId = 'GET-YOUR-KEY-AT-OPENWEATHERMAP',
openWeatherUrl = 'http://api.openweathermap.org/data/2.5/forecast'

var prepareData = function(units) {
var cityName = $('#city-name').val()
if (cityName && cityName != ''){

cityName = cityName.trim()
getData(openWeatherUrl, cityName, openWeatherAppId, units)

}
else {

alert('Please enter the city name')
}

}

$(document).ready(function(){
$('.btn-metric').click(function() {

prepareData('metric')
})
$('.btn-imperial').click(function() {

prepareData('imperial')
})

})

www.it-ebooks.info

http://api.openweathermap.org/data/2.5/forecast
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

59

function getData (url, cityName, appId, units) {
var request = $.ajax({

url: url,
dataType: 'jsonp',
data: {

q: cityName,
appid: appId,
units: units

},
jsonpCallback: 'fetchData',
type: 'GET'

}).fail(function(error){
console.error(error)
alert('Error sending request')

})
}

function fetchData (forecast) {
console.log(forecast)
var html = '',
cityName = forecast.city.name,

country = forecast.city.country

html += '<h3> Weather Forecast for '
+ cityName

+ ', '
+ country
+ '</h3>'

forecast.list.forEach(function(forecastEntry, index, list){
html += '<p>'
+ forecastEntry.dt_txt
+ ': '
+ forecastEntry.main.temp
+ '</p>'

})

$('#log').html(html)
}

 </script>
</head>
<body>

 <div class="container">

<div class="row">
<div class="span4 offset 3">

<h2>Weather App</h2>
<p>Enter city name to get the weather forecast</p>

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

60

�<div class="span6 offset1"><input class="span4" type="text"
placeholder="Enter the city name" id="city-name" value=""/>
</div>

</div>
<div class="row">

�<div class="span6 offset1"><input type="button" class="btn-
primary btn btn-metric" value="Get forecast in metric"/>
�<div class="span6 offset1"><input type="button"
class="btn-danger btn btn-imperial" value="Get forecast in imperial"/>
</div>
<div class="span3">

<p id="info"></p>
</div>

</div>

<div class="row">
<div class="span6 offset1">

<div id="log">Nothing to show yet</div>
</div>

</div>

<div class="row">
<hr/>
<p>Azat Mardan (@azat_co)</p>

</div>

 </div>

</body>
</html>

Try launching it and see if it works with or without the local HTTP server (just
opening index.html in the browser). It should not work without an HTTP server
because of its reliance on JSONP technology. You can get http-static or http-server
command-line tools as described in Chapter 2.

The source code is available in the 02-weather folder and on GitHub
(https://github.com/azat-co/fullstack-javascript/tree/master/02-weather).
There’s a screencast video on YouTube which walks you through the implementation and
demonstrates the app.

This example was built with OpenWeatherMap API v2.5 and might not work with
later versions. Also, you need the API key called app ID. You can get the necessary keys at
openweathermap.org/appid. If you feel that there must be a working example, please submit
your feedback to the GitHub repository for the book’s projects
(https://github.com/azat-co/fullstack-javascript).

jQuery is a good library for getting data from the RESTful servers. Sometimes we
are not just reading the data from the servers; we also want to write it. This way the
information persists and can be accessed later. Parse.com will allow you to save your data
without friction.

www.it-ebooks.info

http://twitter.com/azat_co%22%3E@azat_co%3C/a%3E)%3C/p
http://dx.doi.org/10.1007/978-1-4842-1751-1_2
https://github.com/azat-co/fullstack-javascript/tree/master/2-weather
https://github.com/azat-co/fullstack-javascript/tree/master/02-weather
http://bit.ly/1RKxyxA
http://openweathermap.org/appid
https://github.com/azat-co/fullstack-javascript
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

61

Parse.com
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1SU8imX.

Parse.com (http://parse.com) is a service that can be a substitute for a database
and a server. It started as means to support mobile application development.
Nevertheless, with the REST API and the JavaScript SDK, Parse.com can be used in any
web and desktop applications for data storage (and much more), making it ideal for rapid
prototyping.

Go to Parse.com and sign up for a free account. Create an application, and copy the
Application ID, REST API Key, and JavaScript Key. We’ll need these keys to access our
collection at Parse.com. Please note the Data Browser tab, as that’s where you can see
your collections and items.

We’ll create a simple application that will save values to the collections using the
Parse.com JavaScript SDK. Our application will consist of an index.html file and an
app.js file. Here is the structure of our project folder:

/03-parse-sdk
-index.html
-app.js
-jquery.js
/css
-boostrap.css

The sample is available in the 03-parse-sdk folder on GitHub
(https://github.com/azat-co/fullstack-javascript/tree/master/03-parse-sdk),
but you are encouraged to type your own code from scratch. To start, create the index.
html file:

<html lang="en">
<head>

Include the minified jQuery v2.1.4 library from the local file (you can download and
save it into the folder):

 <script
 type="text/javascript"
 src=
 "jquery.js">
 </script>

Include the Parse.com JavaScript SDK library v1.6.7 from Parse CDN location:

 <script
 src="//www.parsecdn.com/js/parse-1.6.7.min.js">
 </script>

www.it-ebooks.info

http://bit.ly/1SU8imX
http://parse.com
https://github.com/azat-co/fullstack-javascript/tree/master/03-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/03-parse-sdk
http://www.parsecdn.com/js/parse-1.6.7.min.js
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

62

Include our app.js file and the Twitter Bootstrap v4.0.0-alpha:

 <script type="text/javascript" src="app.js"></script>
 <link type="text/css" rel="stylesheet" href="css/bootstrap.css" />
</head>
<body>
<!-- We'll do something here -->
</body>
</html>

The <body> of the HTML page consists of the <textarea> element. We’ll use it to
enter JSON:

<body>
 <div class="container-fluid">

<div class="row-fluid">
<div class="span12">

<div id="content">
<div class="row-fluid">

<div class="span12">
<div class="hero-unit">

<h1>Parse JavaScript SDK demo</h1>
<textarea cols="60" rows="7">{
"name": "John",
"text": "hi"

}</textarea>

The indentation of the <textarea> looks out of whack because this element
preserves white space and we don’t want to have it when we process that string into
JSON.

After the input area, there’s a button that will trigger the saving to Parse.com:

�<p><a class="btn btn-primary btn-large
btn-save" >Save object</p>
<pre class="log"></pre>
�Go to <a href="https://parse.com/apps/"
target="_blank">Parse.com to check
the data.

</div> <!-- hero-unit -->
</div> <!-- span12 -->

</div> <!-- row-fluid -->
</div> <!-- content -->

</div> <!-- span12 -->
 </div> <!-- row-fluid -->
 </div> <!-- container-fluid -->

</body>
</html>

www.it-ebooks.info

https://parse.com/apps/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

63

Create the app.js file and use the $(document).ready function to make sure that the
DOM is ready for manipulation:

$(document).ready(function() {

Change parseApplicationId and parseJavaScriptKey to values from the Parse.com
application dashboard (you’ll need to sign up for the service):

var parseApplicationId = 'GET-YOUR-KEYS-AT-PARSE.COM'
var parseJavaScriptKey = 'GET-YOUR-KEYS-AT-PARSE.COM'

Because we’ve included the Parse JavaScript SDK library, we now have access to the
global object Parse. We initialize a connection with the keys, and create a reference to a
Test collection:

 Parse.initialize(parseApplicationId, parseJavaScriptKey)
 var Test = Parse.Object.extend('Test')
 var test = new Test()

This simple code will save an object with the keys name and text to the Parse.com
Test collection:

var Test = Parse.Object.extend('Test')
 var test = new Test()
 $('.btn-save').click(function(){

The next few statements deal with getting your JSON from the <textarea> and
parsing it into a normal JavaScript object. The try/catch is crucial because the JSON
structure is very rigid. You cannot have any extra symbols. Each time there’s a syntax
error, it will break the entire app. Therefore, we need to account for erroneous syntax:

try {
var data = JSON.parse($('textarea').val())

} catch (e) {
alert('Invalid JSON')

}
if (!data) return false

Conveniently, the save() method accepts the callback parameters success and
error just like the jQuery.ajax() function. To get a confirmation, we’ll just have to look
at the log container (<pre class="log"></pre>) on the page:

 success: function(object) {
console.log('Parse.com object is saved: ', object)
$('.log').html(JSON.stringify(object, null, 2))
// Alternatively you could use alert('Parse.com object is saved')

 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

64

It’s important to know why we failed to save an object:

 error: function(object) {
console.log('Error! Parse.com object is not saved: ', object)

 }
 })
 })

})

Just so you don’t have to click on the Github link (or type it from the book) to look up
the full source code of the app.js file, I provide it here:

$(document).ready(function() {
 var parseApplicationId = 'GET-YOUR-KEYS-AT-PARSE.COM'
 var parseJavaScriptKey = 'GET-YOUR-KEYS-AT-PARSE.COM'
 // Change parseApplicationId and parseJavaScriptKey to values from
Parse.com application dashboard

 Parse.initialize(parseApplicationId, parseJavaScriptKey)

 var Test = Parse.Object.extend('Test')
 var test = new Test()
 $('.btn-save').click(function(){

try {
var data = JSON.parse($('textarea').val())

} catch (e) {
alert('Invalid JSON')

}
if (!data) return false
test.save(data, {
success: function(object) {
console.log('Parse.com object is saved: ', object)
$('.log').html(JSON.stringify(object, null, 2))

},
error: function(object) {
console.log('Error! Parse.com object is not saved: ', object)

}
})

 })
})

We need to use the JavaScript SDK Key from the Parse.com dashboard with this
approach. For the jQuery example, we’ll be using the REST API Key from the same web page.

To run the app, start your local web server at the project folder and navigate to the
address (e.g., http://localhost:8080) in your browser. If you get a 401 Unauthorized
error from Parse.com, that’s probably because you have the wrong API key.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

65

If everything was done properly, you should be able to see the Test in Parse.com’s
Data Browser populated with values “John” and “hi”. Also, you should see the proper
message with the newly created ID. Parse.com automatically creates object IDs and
timestamps, which will be very useful in our Message Board application.

Parse.com also has thorough instructions for the Hello World application that are
available in the Quick Start Guide sections for new projects
(https://parse.com/apps/quickstart#js/blank) and existing ones
(https://parse.com/apps/quickstart#js/existing) .

Let’s move on to the Message Board app.

Message Board with Parse.com Overview
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1SU8pyS.

The Message Board will consist of an input field, a list of messages, and a send
button. We need to display a list of existing messages and be able to submit new
messages. We’ll use Parse.com as a back end for now, and later switch to Node.js with
MongoDB.

You can get a free account at Parse.com. The JavaScript Guide is available at
https://parse.com/docs/js_guide and the JavaScript API is available at
https://parse.com/docs/js/.

After signing up for Parse.com, go to the dashboard and create a new app if you
haven’t done so already. Copy your newly created app’s Application ID and JavaScript key
and REST API key. You will need them later. There are a few ways to use Parse.com:

• REST API: We’re going to use this approach with the jQuery
example.

• JavaScript SDK: We just used this approach in our preceding test
example, and we’ll use it in the Backbone.js example later.

REST API is a more generic approach. Parse.com provides endpoints that we can
request with the $.ajax() method from the jQuery library. The description of available
URLs and methods can be found at parse.com/docs/rest.

Message Board with Parse.com: REST API and jQuery
Version
The full code is available in the 04-board-parse-rest
(https://github.com/azat-co/fullstack-javascript/tree/master/04-board-parse-rest)
folder, but we encourage you to try to write your own application first.

We’ll use Parse.com’s REST API and jQuery. Parse.com supports different origin
domain AJAX calls, so we won’t need JSONP.

When you decide to deploy your back-end application, which will act as a substitute
for Parse.com, on a different domain you’ll need to use either JSONP on the front end or
custom CORS headers on a back end. This topic is covered later in the book.

www.it-ebooks.info

https://parse.com/apps/quickstart#js/blank
https://parse.com/apps/quickstart#js/existing
http://bit.ly/1SU8pyS
https://parse.com/docs/js_guide
https://parse.com/docs/js/
https://parse.com/docs/rest
https://github.com/azat-co/fullstack-javascript/tree/master/04-board-parse-rest
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

66

Right now the structure of the application should look like this:

index.html
 css/bootstrap.min.css
 css/style.css
 js/app.js
 img/spinner.gif

Let’s create a visual representation for the Message Board app. We just want to
display a list of messages with names of users in chronological order. Therefore, a table
will do just fine, and we can dynamically create <tr> elements and keep inserting them as
we get new messages.

Create a simple HTML file index.html with the following content:

• Inclusion of JS and CSS files

• Responsive structure with Twitter Bootstrap

• A table of messages

• A form for new messages

Let’s start with the head and dependencies. We’ll include CDN jQuery, local app.js,
local minified Twitter Bootstrap, and custom stylesheet style.css:

<!DOCTYPE html>
<html lang="en">
 <head>

�<script src="js/jquery.js" type="text/javascript"
language="javascript" ></script>
�<script src="js/app.js" type="text/javascript" language="javascript" >
</script>
<link href="css/bootstrap.min.css" type="text/css" rel="stylesheet" />
<link href="css/style.css" type="text/css" rel="stylesheet" />
<meta name="viewport" content="width=device-width, initial-scale=1">

 </head>

The body element will have typical Twitter Boostrap scaffolding elements defined by
classes container-fluid and row-fluid:

 <body>
 <div class="container-fluid">
 <div class="row-fluid">

<h1>Message Board with Parse REST API</h1>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

67

The table of messages is empty, because we’ll populate it programmatically from
within the JS code:

<table class="table table-bordered table-striped">
<caption>Messages</caption>
<thead>
<tr>
<th>

Username
</th>
<th>
Message

</th>
</tr>

</thead>
<tbody>
<tr>
<td colspan="2"></td>

</tr>
</tbody>

</table>
</div>

Another row and here is our new message form in which the Send button uses
Twitter Bootstrap classes btn and btn-primary:

 <div class="row-fluid">
<form id="new-user">
<input type="text" name="username"
placeholder="Username" />

<input type="text" name="message"
placeholder="Message" />

SEND
</form>

 </div>
 </div>
 </body>
</html>

The table will contain our messages and the form will provide input for new messages.
Now we are going to write three main functions:

1.	 getMessages(): The function to get the messages

2.	 updateView(): The function to render the list of messages

3.	 $('#send').click(...): The function that triggers sending a
new message

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

68

To keep things simple, we’ll put all of the logic in one file app.js. Of course, it a good
idea to separate code base on the functionality when your project grows larger.

Replace these values with your own, and be careful to use the REST API key (not the
JavaScript SDK key from the previous example):

var parseID='YOUR_APP_ID'
var parseRestKey='YOUR_REST_API_KEY'

Let’s start with document.ready. It will have the logic for fetching messages, and
define the Send button’s on-click event:

$(document).ready(function(){
 getMessages()
 $('#send').click(function(){

Let’s save the button object:

var $sendButton = $(this)

We should show a spinner image (“Loading...”) on the button because the request
might take some time and we want users to see that our app is working, not just freezing
for no apparent reason.

$sendButton.html('')
var username = $('input[name=username]').val()
var message = $('input[name=message]').val()

When we submit a new message (a POST request), we make the HTTP call with
the jQuery.ajax function. A full list of parameters for the ajax function is available at
api.jquery.com/jQuery.ajax. The most important ones are URL, headers, and type
parameters.

 $.ajax({
 url: ' https://api.parse.com/1/classes/MessageBoard',
 headers: {

'X-Parse-Application-Id': parseAppID,
'X-Parse-REST-API-Key': parseRestKey

 },
 contentType: 'application/json',

The type of the data is JSON:

 dataType: 'json',
 processData: false,
 data: JSON.stringify({

'username': username,
'message': message

 }),

www.it-ebooks.info

http://api.jquery.com/jQuery.ajax/
https://api.parse.com/1/classes/MessageBoard
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

69

 type: 'POST',
 success: function() {

console.log('sent')

Assuming the our POST request to Parse saved the new message (success), we now
want to get the updated list of messages that will include our message, and replace the
spinner image with text as it was before someone clicked the button:

getMessages()
$sendButton.html('SEND')

 },
 error: function() {

console.log('error')
$sendButton.html('SEND')

 }
 })

To summarize, clicking the Send button will send a POST request to the Parse.com REST
API and then, on successful response, get messages calling the getMessages() function.

The getMessages() method to fetch messages from our remote REST API server also
uses the jQuery.ajax function. The URL has the name of the collection (MessageBoard)
and a query string parameter that sets the limit at 1,000:

function getMessages() {
 $.ajax({

url: ' https://api.parse.com/1/classes/MessageBoard?limit=1000',

We need to pass the keys in a header:

headers: {
'X-Parse-Application-Id': parseAppID,
'X-Parse-REST-API-Key': parseRestKey

},
contentType: 'application/json',
dataType: 'json',
type: 'GET',

If the request is completed successfully (status 200/ok or similar), we call the
updateView function:

success: function(data) {
console.log('get')
updateView(data)

},
error: function() {

console.log('error')
}

 })
}

www.it-ebooks.info

https://api.parse.com/1/classes/MessageBoard?limit=1000
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

70

Then, on successful response, it will call the updateView() function, which clears the
table tbody and iterates through results of the response using the $.each jQuery function
(api.jquery.com/jQuery.each).

This function is rendering the list of messages that we get from the server:

function updateView(messages) {

We use the jQuery selector .table tbody to create an object referencing that
element. Then we clean all the innerHTML of that element:

 var table=$('.table tbody')
 table.html('')

We use the jQuery.each function to iterate through every message:

 $.each(messages.results, function (index, value) {
 var trEl =

The following code creates HTML elements (and the jQuery object of those elements)
programmatically:

 ('<tr><td>'
+ value.username
+ '</td><td>'
+ value.message +
'</td></tr>')

In a sense trEl is a string with HTML for each message or row in the message board.
The next line appends (injects after) the table’s tbody element our row:

 table.append(trEl)
 })
 console.log(messages)
}

Here is another way to dynamically create an HTML element (e.g., div) using jQuery:

$('<div>')

For your reference, here is the entire app.js:

var parseAppID='your-parse-app-id'
var parseRestKey='your-rest-api-key'

$(document).ready(function(){
 getMessages()
 $('#send').click(function(){

var $sendButton = $(this)
$sendButton.html('')
var username = $('input[name=username]').val()

www.it-ebooks.info

http://api.jquery.com/jQuery.each/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

71

var message = $('input[name=message]').val()
$.ajax({

url: ' https://api.parse.com/1/classes/MessageBoard',
headers: {

'X-Parse-Application-Id': parseAppID,
'X-Parse-REST-API-Key': parseRestKey

},
contentType: 'application/json',
dataType: 'json',
processData: false,
data: JSON.stringify({

'username': username,
'message': message

}),
type: 'POST',
success: function() {

console.log('sent')
getMessages()
$sendButton.html('SEND')

},
error: function() {

console.log('error')
$sendButton.html('SEND')

}
})

 })
})
function getMessages() {
 $.ajax({

url: ' https://api.parse.com/1/classes/MessageBoard?limit=1000',
headers: {

'X-Parse-Application-Id': parseAppID,
'X-Parse-REST-API-Key': parseRestKey

},
contentType: 'application/json',
dataType: 'json',
type: 'GET',
success: function(data) {

console.log('get')
updateView(data)

},
error: function() {

console.log('error')
}

 })
}

www.it-ebooks.info

https://api.parse.com/1/classes/MessageBoard
https://api.parse.com/1/classes/MessageBoard?limit=1000
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

72

function updateView(messages) {
 var table=$('.table tbody')
 table.html('')
 $.each(messages.results, function (index, value) {

var trEl=('<tr><td>'
+ value.username
+ '</td><td>'
+ value.message
+ '</td></tr>')

table.append(trEl)
 })

 console.log(messages)
}

Try running the code with your local HTTP server. You should see the messages
(obviously, there should be no messages for the very first time) and by clicking the button
be able to post new ones.

This is fine if all you need to do is develop the app on your local machine, but what
about deploying it to the cloud? To do that, we’ll need to apply version control with Git first.

Pushing to GitHub
Supplemental video which walks you through the deployment of the project (Git and
Heroku part starts at 9minute and 57 seconds): http://bit.ly/1SU8K4I.

To create a GitHub repository, go to github.com, log in and create a new repository.
There will be an SSH address; copy it. In your terminal window, navigate to the project
folder that you would like to push to GitHub.

1.	 Create a local Git and .git folder in the root of the project folder:

$ git init

2.	 Add all of the files to the repository and start tracking them:

$ git add .

3.	 Make the first commit:

$ git commit -am "initial commit"

4.	 Add the GitHub remote destination:

$ git remote add your-github-repo-ssh-url

It might look something like this:

$ git remote add origin git@github.com:azat-co/simple-message-
board.git

www.it-ebooks.info

http://bit.ly/1SU8K4I
http://github.com/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

73

5.	 Now everything should be set to push your local Git repository
to the remote destination on GitHub with the following
command:

$ git push origin master

6.	 You should be able to see your files at github.com under your
account and repository.

Later, when you make changes to the file, there is no need to repeat all of these steps.
Just execute:

$ git add .
$ git commit -am "some message"
$ git push origin master

If there are no new untracked files you want to start tracking, use this:

$ git commit -am "some message"
$ git push origin master

To include changes from individual files, run:

$ git commit filename -m "some message"
$ git push origin master

To remove a file from the Git repository, use:

$ git rm filename

For more Git commands, see:

$ git --help

Deploying applications with Windows Azure or Heroku is as simple as pushing code
and files to GitHub. The last three steps (4–6) would be substituted with a different remote
destination (URL) and a different alias.

Deployment to Windows Azure
You should be able to deploy to Windows Azure with Git using this procedure.

1.	 Go to the Windows Azure Portal at https://windows.azure.com/1,
log in with your Live ID and create a web site if you haven’t done
so already. Enable Set Up Git Publishing by providing a user
name and password (they should be different from your Live ID
credentials). Copy your URL somewhere.

www.it-ebooks.info

http://github.com/
https://windows.azure.com/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

74

2.	 Create a local Git repository in the project folder that you
would like to publish or deploy:

$ git init

3.	 Add all of the files to the repository and start tracking them:

$ git add .

4.	 Make the first commit:

$ git commit -am "initial commit"

5.	 Add Windows Azure as a remote Git repository destination:

$ git remote add azure your-url-for-remote-repository

In my case, this command looked like this:

$ git remote add
> azure https://azatazure@azat.scm.azurewebsites.net/azat.git

6.	 Push your local Git repository to the remote Windows Azure
repository, which will deploy the files and application:

$ git push azure master

As with GitHub, there is no need to repeat the first few steps when you have updated
the files later, as we already should have a local Git repository in the form of a .git folder
in the root of the project folder.

Deployment to Heroku
Supplemental video which walks you through the deployment of the project (Git and
Heroku part starts at 9minute and 57 seconds): http://bit.ly/1SU8K4I.

The only major difference is that Heroku uses Cedar Stack, which doesn’t support
static projects, including plain HTML applications like our Parse.com test application or
Parse.com version of the Message Board application. We can use a “fake” PHP project to get
past this limitation. Create a file index.php on the same level as index.html in the project
folder, which you would like to publish or deploy to Heroku with the following content:

<?php echo file_get_contents('index.html'); ?>

For your convenience, the index.php file is already included in 04-board-parse-rest.

www.it-ebooks.info

https://azatazure@azat.scm.azurewebsites.net/azat.git
http://bit.ly/1SU8K4I
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

75

There is an even simpler way to publish static files on Heroku with
Cedar Stack, which is described in the post Static Sites on Heroku Cedar
(http://kennethreitz.com/static-sites-on-heroku-cedar.html). To make Cedar
Stack work with your static files, all you need to do is to type and execute the following
commands in your project folder:

$ touch index.php
$ echo 'php_flag engine off' > .htaccess

Alternatively, you could use the Ruby Bamboo stack. In this case, we would need the
following structure:

-project folder
-config.ru
/public
-index.html
-/css
app.js
...

The path in index.html to CSS and other assets should be relative, that is
'css/style.css'. The config.ru file should contain the following code:

use Rack::Static,
 :urls => ["/stylesheets", "/images"],
 :root => "public"

run lambda { |env|
 [
 200,
 {
 'Content-Type' => 'text/html',
 'Cache-Control' => 'public, max-age=86400'
 },
 File.open('public/index.html', File::RDONLY)
]
}

For more details, you can refer to devcenter.heroku.com/articles/static-sites-
on-heroku.

Once you have all of the support files for Cedar Stack or Bamboo, follow these steps:

1.	 Create a local Git repository and .git folder if you haven’t
done so already:

$ git init

2.	 Add files:

$ git add .

www.it-ebooks.info

http://kennethreitz.com/static-sites-on-heroku-cedar.html
https://devcenter.heroku.com/articles/static-sites-on-heroku
https://devcenter.heroku.com/articles/static-sites-on-heroku
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

76

3.	 Commit files and changes:

$ git commit -m "my first commit"

4.	 Create the Heroku Cedar Stack application and add the
remote destination:

$ heroku create

If everything went well, it should tell you that the remote has
been added and the app has been created, and give you the
app name.

5.	 To look up the remote type and execute (optional):

$ git remote show

6.	 Deploy the code to Heroku with:

$ git push heroku master

Terminal logs should tell you whether or not the deployment
went smoothly.

7.	 To open the app in your default browser, type:

$ heroku open

or just go to the URL of your app, something like
http://yourappname-NNNN.herokuapp.com.

8.	 To look at the Heroku logs for this app, type:

$ heroku logs

To update the app with the new code, repeat the following
steps only:

$ git add -A
$ git commit -m "commit for deploy to heroku"
$ git push -f heroku

You’ll be assigned a new application URL each time you create a new Heroku app
with the command: $ heroku create.

www.it-ebooks.info

http://yourappname-nnnn.herokuapp.com/
http://www.it-ebooks.info/

Chapter 3 ■ jQuery and Parse.com

77

Updating and Deleting Messages
In accordance with the REST API, an update on an object is performed via the PUT
method and a delete is performed with the DELETE method. Both of them can easily be
performed with the same jQuery.ajax function that we’ve used for GET and POST, as long
as we provide an ID of an object on which we want to execute an operation.

Summary
This chapter was a handful. Hopefully you got some helpful ideas about JSON, AJAX, and
cross-domain calls. Remember, when accessing servers you’ll need to make sure they
support CORS or JSONP.

We’ve covered some of the meatiest LESS features and worked with Parse to persist
the data. We also deployed our app to the cloud using the Git version system.

www.it-ebooks.info

http://www.it-ebooks.info/

79

Chapter 4

Intro to Backbone.js

Code is not an asset. It’s a liability. The more you write, the more you’ll
have to maintain later.

—Unknown

This chapter will demonstrate:

• Setting up a Backbone.js app from scratch and installing
dependencies

• Working with Backbone.js collections

• Backbone.js event binding

• Backbone.js views and subviews with Underscore.js

• Refactoring Backbone.js code

• AMD and Require.js for Backbone.js development

• Require.js for Backbone.js production

• A simple Backbone.js starter kit

Backbone.js has been around for a while so it’s very mature and can be trusted
to be used in serious front-end development projects. This framework is decidedly
minimalistic and unopinionated. You can use Backbone.js with a lot of other libraries and
modules. I think of Backbone.js as the foundation to build a custom framework that will
be tightly suited to your particular use case.

Some people are turned off by the fact that Backbone.js is unopinionated and
minimalistic. They prefer frameworks that do more for them and enforce a particular
way of doing things (e.g., the Angular best practices (https://github.com/johnpapa/
angular-styleguide)). This is totally fine with me, and you can pursue the study of a
more complex front-end framework. They all fit nicely into the Node.js stack and the
ecosystem. For the purpose of this book, Backbone.js is ideal because it provides some
much needed sanity to the plain nonframework jQuery code, and at the same time it
doesn’t have a steep learning curve. All you need to know is a few classes and methods,
which we cover in this book. Everything else is JavaScript, not a domain-specific
language.

www.it-ebooks.info

https://github.com/johnpapa/angular-styleguide
https://github.com/johnpapa/angular-styleguide
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

80

Setting Up Backbone.js App from Scratch
We’re going to build a typical starter Hello World application using Backbone.js and Mode-
View-Controller (MVC) architecture. It might sound like overkill in the beginning, but as we
go along we’ll add more and more complexity, including models, subviews, and collections.

Full source code for the Hello World app is available under 05-backbone/hello-world
and on GitHub (https://github.com/azat-co/fullstack-javascript/tree/master/
05-backbone/hello-world).

Backbone.js Dependencies
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1O7xRCY.

Download the following libraries:

• jQuery v2.1.4 development source file
http://code.jquery.com/jquery-2.1.4.js

• Underscore.js v1.8.3 development source file
http://underscorejs.org/underscore.js

• Backbone.js v1.2.3 development source file
http://backbonejs.org/backbone.js

Obviously by the time this book is in print, these versions won’t be the most recent.
I recommend sticking with the versions in this book, because that’s what I used to
test all the examples and projects. Using different, newer versions might cause some
unexpected conflicts.

Create an index.html file, and include these frameworks in this file like this:

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>

 <script>
 // TODO write some awesome JS code!
 </script>

</head>
<body>
</body>
</html>

We can also put <script> tags right after the </body> tag at the end of the file. This
will change the order in which scripts and the rest of the HTML is loaded, and affect
performance in large files.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/hello-world
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/hello-world
http://bit.ly/1O7xRCY
http://code.jquery.com/jquery-2.1.4.js
http://underscorejs.org/underscore.js
http://backbonejs.org/backbone.js
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

81

Let’s define a simple Backbone.js router inside of a <script> tag:

 ...
 var router = Backbone.Router.extend({
 })
 ...

For now, to keep it simple (KISS-keep it stupid simple), we’ll be putting all of
our JavaScript code right into the index.html file. This is not a good idea for a real
development or production code, so we’ll refactor it later.

Next, set up a special routes property inside of an extend call:

 var router = Backbone.Router.extend({
 routes: {
 }
 })

The Backbone.js routes property needs to be in the following format:
'path/:param':'action'

This will result in the filename#path/param URL triggering a function named action
(defined in the Router object). For now, we’ll add a single home route:

 var router = Backbone.Router.extend({
 routes: {
 '': 'home'
 }
 })

This is good, but now we need to add a home function:

 var router = Backbone.Router.extend({
 routes: {
 '': 'home'
 },
 home: function(){
 // TODO render HTML
 }
 })

We’ll come back to the home function later to add more logic for creating and
rendering of a View. Right now we should define our homeView:

 var homeView = Backbone.View.extend({
 })

It looks familiar, right? Backbone.js uses similar syntax for all of its components: the
extend function and a JSON object as a parameter to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

82

There are a multiple ways to proceed from now on, but the best practice is to use the
el and template properties, which are special in Backbone.js:

 var homeView = Backbone.View.extend({
 el: 'body',
 template: _.template('Hello World')
 })

The property el is just a string that holds the jQuery selector (you can use class name
with ‘ . ’ and id name with ‘#’). The template property has been assigned an Underscore.
js function template with just a plain text ‘Hello World’.

To render our homeView we use this.$el, which is a compiled jQuery object
referencing element in an el property, and the jQuery .html() function to replace HTML
with this.template() value. Here is what the full code for our Backbone.js View looks like:

 var homeView = Backbone.View.extend({
 el: 'body',
 template: _.template('Hello World'),
 render: function(){
 this.$el.html(this.template({}))
 }
 })

Now, if we go back to the router we can add these two lines to the home function:

 var router = Backbone.Router.extend({
 routes: {
 '': 'home'
 },
 initialize: function(){

 },
 home: function(){
 this.homeView = new homeView
 this.homeView.render()
 }
 })

The first line creates the homeView object and assigns it to the homeView property
of the router. The second line will call the render() method in the homeView object,
triggering the ‘Hello World’ output.

Finally, to start a Backbone app, we call new Router inside of a document-ready
wrapper to make sure that the file’s DOM is fully loaded:

 var app
 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

83

This time, I won’t list the full source code of the index.html because it’s rather simple.
Open index.html in the browser to see if it works; that is, the ‘Hello World’ message

should be on the page.

Working with Backbone.js Collections
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1O7xRCY.

The full source code of this example is under 05-backbone/collections. It’s built
on top of the “Hello World” example from the Setting up Backbone.js App from Scratch
exercise, which is available for download at GitHub (https://github.com/azat-co/
fullstack-javascript/tree/master/05-backbone/collections).

We should add some data to play around with, and to hydrate our views. To do this,
add this right after the <script> tag and before the other code:

 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]

This is our apple database, or to be more correct, our REST API endpoint substitute,
which provides us with names and image URLs of the apples (data models).

Note that this mock data set can be easily substituted by assigning REST API
endpoints of your back end to url properties in Backbone.js collections, models, or both,
and calling the fetch() method on them.

Now to make the user experience a little bit better, we can add a new route to the
routes object in the Backbone route:

 ...
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 ...

This will allow users to go to index.html#apples/SOMENAME and expect to see
some information about an apple. This information will be fetched and rendered by the
loadApple function in the Backbone router definition:

 loadApple: function(appleName){
 this.appleView.render(appleName)
 }

www.it-ebooks.info

http://bit.ly/1O7xRCY
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/collections
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/collections
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

84

Have you noticed an appleName variable? It’s exactly the same name as the one that
we’ve used in route. This is how we can access query string parameters
(e.g., ?param=value&q=search) in Backbone.js.

Now we’ll need to refactor some more code to create a Backbone collection, populate
it with data in our appleData variable, and pass the collection to homeView and appleView.
Conveniently enough, we do it all in the router constructor method initialize:

 initialize: function(){
 var apples = new Apples()
 apples.reset(appleData)
 this.homeView = new homeView({collection: apples})
 this.appleView = new appleView({collection: apples})
 },

At this point, we’re pretty much done with the Router class and it should look like this:

 var router = Backbone.Router.extend({
 routes: {
 '': 'home',
 'apples/:appleName': 'loadApple'
 },
 initialize: function(){
 var apples = new Apples()
 apples.reset(appleData)
 this.homeView = new homeView({collection: apples})
 this.appleView = new appleView({collection: apples})
 },
 home: function(){
 this.homeView.render()
 },
 loadApple: function(appleName){
 this.appleView.render(appleName)
 }
 })

Let’s modify our homeView a bit to see the whole database:

 var homeView = Backbone.View.extend({
 el: 'body',
 template: _.template('Apple data: <%= data %>'),
 render: function(){
 �this.$el.html(this.template({data: JSON.stringify(this.collection.

models)}))
 }
 // TODO subviews
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

85

For now, we just output the string representation of the JSON object in the browser.
This is not user-friendly at all, but later we’ll improve it by using a list and subviews.

Our apple Backbone Collection is very clean and simple:

 var Apples = Backbone.Collection.extend({
 })

Backbone automatically creates models inside of a collection when we use the
fetch() or reset() functions from its API. I find using these functions to be very useful.

Apple View is not any more complex; it has only two properties: template and
render. In a template, we want to display figure, img, and figcaption tags with specific
values. The Underscore.js template engine is handy at this task:

 var appleView = Backbone.View.extend({
 template: _.template(
 '<figure>\

<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'),
 ...
 })

To make a JavaScript string that has HTML tags in it more readable, we can use the
backslash line breaker escape (\) symbol, or close strings and concatenate them with a
plus sign (+). This is an example of appleView earlier, which is refactored using the latter
approach:

 var appleView = Backbone.View.extend({
 template: _.template(
 '<figure>'+

+'<img src="<%= attributes.url %>"/>'+
+'<figcaption><%= attributes.name %></figcaption>'+

 +'</figure>'),
 ...
 })

Please note the ‘<%=’ and ‘%>’ symbols; they are the instructions for Undescore.js to
print values in properties url and name of the attributes object.

Finally, we’re adding the render function to the appleView class.

 render: function(appleName){

To get the list of apples filtered by name, there’s a where method on the Collection
class. We just need the very first item in that array and because arrays in JavaScript are
zero-based (they start with a 0 rather than 1 index), the syntax to get the apple model by
name is this:

 var appleModel = this.collection.where({name: appleName})[0]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

86

Once we have our model, all we need to do is to pass the model to the template (also
called hydrating templates). The result is some HTML that we inject into the <body>:

 var appleHtml = this.template(appleModel)
 $('body').html(appleHtml)
}

So we find a model within the collection via where() method and use [] to pick the
first element. Right now, the render function is responsible for both loading the data and
rendering it. Later we’ll refactor the function to separate these two functionalities into
different methods.

For your convenience, here’s the whole app, which is in the 05-backbone/
collections/index.html and GitHub (https://github.com/azat-co/fullstack-
javascript/blob/master/05-backbone/collections/index.html) folder:

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>

 <script>
 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]
 var app
 var router = Backbone.Router.extend({
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 initialize: function(){

var apples = new Apples()
apples.reset(appleData)
this.homeView = new homeView({collection: apples})
this.appleView = new appleView({collection: apples})

 },
 home: function(){

this.homeView.render()
 },

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/collections/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/collections/index.html
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

87

 loadApple: function(appleName){
this.appleView.render(appleName)

 }
 })

 var homeView = Backbone.View.extend({
 el: 'body',
 template: _.template('Apple data: <%= data %>'),
 render: function(){

�this.$el.html(this.template({data: JSON.stringify(this.collection.
models)}))

 }
 })

 var Apples = Backbone.Collection.extend({

 })
 var appleView = Backbone.View.extend({
 template: _.template('<figure>\

<img src="<%= attributes.url%>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'),
 render: function(appleName){

var appleModel = this.collection.where({name: appleName})[0]
var appleHtml = this.template(appleModel)
$('body').html(appleHtml)

 }
 })
 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })

 </script>
</head>
<body>
 <div></div>
</body>
</html>

Open collections/index.html file in your browser. You should see the data from
our database; that is, Apple data: [{"name":"fuji","url":"img/fuji.jpg"},
{"name":"gala","url":"img/gala.jpg"}].

Now, let’ go to collections/index.html#apples/fuji or collections/
index.html#apples/gala in your browser. We expect to see an image with a caption.
It’s a detailed view of an item, which in this case is an apple. Nice work!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

88

Backbone.js Event Binding
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1k0ZnUB.

In real life, getting data does not happen instantaneously, so let’s refactor our code to
simulate it. For a better user experience (UX), we’ll also have to show a loading icon
(a spinner or ajax-loader) to users to notify them that the information is being loaded.

It’s a good thing that we have event binding in Backbone. Without it, we would have
to pass a function that renders HTML as a callback to the data loading function, to make
sure that the rendering function is not executed before we have the actual data to display.

Therefore, when a user goes to detailed view (apples/:id) we only call the function
that loads the data. Then, with the proper event listeners, our view will automagically
(this is not a typo) update itself when there is new data (or on a data change; Backbone.js
supports multiple and even custom events).

For your information, if you don’t feel like typing out the code (which I recommend),
it’s in 05-backbone/binding and GitHub (https://github.com/azat-co/fullstack-
javascript/blob/master/05-backbone/binding/index.html).

Let’s change the code in the router:

 ...
 loadApple: function(appleName){
 this.appleView.loadApple(appleName)
 }
 ...

Everything else remains the same until we get to the appleView class. We’ll need to
add a constructor or an initialize method, which is a special word or property in the
Backbone.js framework. It’s called each time we create an instance of an object, such as
var someObj = new SomeObject(). We can also pass extra parameters to the initialize
function, as we did with our views (we passed an object with the key collection and
the value of apples Backbone Collection). Read more on Backbone.js constructors at
backbonejs.org/#View-constructor.

 ...
 var appleView = Backbone.View.extend({
 initialize: function(){
 // TODO: create and setup model (aka an apple)
 },
 ...

We have our initialize function; now we need to create a model that will represent
a single apple and set up proper event listeners on the model. We’ll use two types of
events, change and a custom event called spinner. To do that, we are going to use the
on() function, which takes these properties: on(event, actions, context). You can
read more about it at backbonejs.org/#Events-on.

www.it-ebooks.info

http://bit.ly/1k0ZnUB
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/binding/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/binding/index.html
http://backbonejs.org/#View-constructor
http://backbonejs.org/#Events-on
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

89

 ...
 var appleView = Backbone.View.extend({
 initialize: function(){
 this.model = new (Backbone.Model.extend({}))
 this.model.bind('change', this.render, this)
 this.bind('spinner', this.showSpinner, this)
 },
 ...
 })
 ...

The preceding code basically boils down to two simple things:

1.	 Call the render() function of the appleView object when the
model has changed.

2.	 Call the showSpinner() method of the appleView object when
event spinner has been fired.

So far, so good, right? But what about the spinner, a GIF icon? Let’s create a new
property in appleView:

 ...
 templateSpinner: '',
 ...

Remember the loadApple call in the router? This is how we can implement the
function in appleView:

 ...
 loadApple:function(appleName){

To show the spinner GIF image, use this.trigger to make Backbone call the
showSpinner:

 this.trigger('spinner')

Next, we’ll need to access the context inside of a closure. Sometimes I like to use a
meaningful name instead of _this or self, so:

 var view = this

Next, you would have an XHR call (e.g., $.ajax()) to the server to get the data. We’ll
simulate the real time lag when fetching data from the remote server with:

 setTimeout(function(){
 view.model.set(view.collection.where({
 name:appleName
 })[0].attributes)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

90

 }, 1000)
 },
 ...

The attributes is a Backbone.js model property that gives a normal JavaScript
object with the model’s properties. To summarize, the first line will trigger the spinner
event (the function for which we still have to write). The second line is just for scoping
issues (so we can use appleView inside of the closure).

The setTimeout function is simulating a time lag of a real remote server
response. Inside of it, we assign attributes of a selected model to our view’s model by
using a model.set() function and a model.attributes property (which returns the
properties of a model).

Now we can remove an extra code from the render method and implement the
showSpinner function:

 render: function(appleName){
 var appleHtml = this.template(this.model)
 $('body').html(appleHtml)
 },
 showSpinner: function(){
 $('body').html(this.templateSpinner)
 }
 ...

That’s all! Open index.html#apples/gala or index.html#apples/fuji in your
browser and enjoy the loading animation while waiting for an apple image to load.

Here is the full code of the index.html file (also in 05-backbone/binding/index.
html and https://github.com/azat-co/fullstack-javascript/blob/master/5-
backbone/binding/index.html):

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>

 <script>
 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/5-backbone/binding/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/5-backbone/binding/index.html
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

91

 var app
 var router = Backbone.Router.extend({
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 initialize: function(){

var apples = new Apples()
apples.reset(appleData)
this.homeView = new homeView({collection: apples})
this.appleView = new appleView({collection: apples})

 },
 home: function(){

this.homeView.render()
 },
 loadApple: function(appleName){

this.appleView.loadApple(appleName)

 }
 })

 var homeView = Backbone.View.extend({
 el: 'body',
 template: _.template('Apple data: <%= data %>'),
 render: function(){

�this.$el.html(this.template({data: JSON.stringify(this.collection.
models)}))

 }
 })

 var Apples = Backbone.Collection.extend({
 })
 var appleView = Backbone.View.extend({
 initialize: function(){

this.model = new (Backbone.Model.extend({}))
this.model.on('change', this.render, this)
this.on('spinner', this.showSpinner, this)

 },
 template: _.template('<figure>\

<img src="<%= attributes.url%>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'),
 templateSpinner: '',
 loadApple:function(appleName){

this.trigger('spinner')
var view = this
setTimeout(function() {
view.model.set(view.collection.where({name: appleName})[0].attributes)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

92

}, 1000)
 },
 render: function(appleName){

var appleHtml = this.template(this.model)
$('body').html(appleHtml)

 },
 showSpinner: function(){

$('body').html(this.templateSpinner)
 }
 })

 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })

 </script>
</head>
<body>
 <div></div>
</body>
</html>

Backbone.js Views and Subviews with
Underscore.js
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1k0ZnUB. And this example is available at https://github.com/
azat-co/fullstack-javascript/tree/master/05-backbone/subview.

Subviews are Backbone Views that are created and used inside of another Backbone
View. A subviews concept is a great way to abstract (separate) UI events (e.g., clicks), and
templates for similarly structured elements (e.g., apples).

A use case of a Subview might include a row in a table, an item in a list, a paragraph,
or a new line.

We’ll refactor our home page to show a nice list of apples. Each list item will have an
apple name and a Buy link with an onClick event. Let’s start by creating a subview for a
single apple with our standard Backbone extend() function:

 ...
 var appleItemView = Backbone.View.extend({
 tagName: 'li',
 template: _.template(''

+'<a href="#apples/<%=name%>" target="_blank">'
+'<%=name%>'
+' buy'),

 events: {

www.it-ebooks.info

http://bit.ly/1k0ZnUB
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/subview
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/subview
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

93

 'click .add-to-cart': 'addToCart'
 },
 render: function() {
 this.$el.html(this.template(this.model.attributes))
 },
 addToCart: function(){
 this.model.collection.trigger('addToCart', this.model)
 }
 })
 ...

Now we can populate the object with tagName, template, events, render, and
addToCart properties and methods.

 ...
 tagName: 'li',
 ...

tagName automatically allows Backbone.js to create an HTML element with the
specified tag name, in this case for list item. This will be a representation of a single
apple, a row in our list.

 ...
 template: _.template(''

+'<a href="#apples/<%=name%>" target="_blank">'
+'<%=name%>'
+' buy'),

 ...

The template is just a string with Underscore.js instructions. They are wrapped in
<% and %> symbols. <%= simply means print a value. The same code can be written with
backslash escapes:

 ...
 template: _.template('\

<a href="#apples/<%=name%>" target="_blank">\
<%=name%>\
 buy\
'),

 ...

Each will have two anchor elements (<a>), links to a detailed apple view
(#apples/:appleName), and a Buy button. Now we’re going to attach an event listener to
the Buy button:

 ...
 events: {
 'click .add-to-cart': 'addToCart'
 },
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

94

The syntax follows this rule:

event + jQuery element selector: function name

Both the key and the value (right and left parts separated by the colon) are strings.
For example:

'click .add-to-cart': 'addToCart'

or

'click #load-more': 'loadMoreData'

To render each item in the list, we’ll use the jQuery html() function on the this.$el
jQuery object, which is the HTML element based on our tagName attribute:

 ...
 render: function() {
 this.$el.html(this.template(this.model.attributes))
 },
 ...

addToCart will use the trigger() function to notify the collection that this particular
model (apple) is up for the purchase by the user:

 ...
 addToCart: function(){
 this.model.collection.trigger('addToCart', this.model)
 }
 ...

Here is the full code of the appleItemView Backbone View class:

 ...
 var appleItemView = Backbone.View.extend({
 tagName: 'li',
 template: _.template(''

+ '<a href="#apples/<%=name%>" target="_blank">'
+ '<%=name%>'
+ ' buy'),

 events: {
 'click .add-to-cart': 'addToCart'
 },
 render: function() {
 this.$el.html(this.template(this.model.attributes))
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

95

 addToCart: function(){
 this.model.collection.trigger('addToCart', this.model)
 }
 })
 ...

Easy peasy! But what about the master view, which is supposed to render all of our
items (apples) and provide a wrapper container for li HTML elements? We need to
modify and enhance our homeView.

To begin with, we can add extra properties of string type understandable by jQuery
as selectors to homeView:

 ...
 el: 'body',
 listEl: '.apples-list',
 cartEl: '.cart-box',
 ...

We can use properties from earlier in the template, or just hard-code them
(we’ll refactor our code later) in homeView:

 ...
 template: _.template('Apple data: \
 <ul class="apples-list">\
 \
 <div class="cart-box"></div>'),
 ...

The initialize function will be called when homeView is created (new homeView()).
There we render our template (with our favorite html() function), and attach an event
listener to the collection, which is a set of apple models:

 ...
 initialize: function() {
 this.$el.html(this.template)
 this.collection.on('addToCart', this.showCart, this)
 },
 ...

The syntax for the binding event is covered in the previous section. In essence, it is
calling the showCart() function of homeView. In this function, we append appleName to
the cart (along with a line break, a
 element):

 ...
 showCart: function(appleModel) {
 $(this.cartEl).append(appleModel.attributes.name + '
')
 },
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

96

Finally, here is our long-awaited render() method, in which we iterate through each
model in the collection (each apple), create an appleItemView for each apple, create an
 element for each apple, and append that element to view.listEl — element
with a class apples-list in the DOM:

 ...
 render: function(){
 view = this
 // So we can use view inside of closure
 this.collection.each(function(apple){
 var appleSubView = new appleItemView({model:apple})
 // Creates subview with model apple
 appleSubView.render()
 // Compiles template and single apple data
 $(view.listEl).append(appleSubView.$el)
 // Append jQuery object from single
 // Apple to apples-list DOM element
 })
 }
 ...

Let’s make sure we didn’t miss anything in the homeView Backbone View. Here’s the
full code sans the inline comments:

 ...
 var homeView = Backbone.View.extend({
 el: 'body',
 listEl: '.apples-list',
 cartEl: '.cart-box',
 template: _.template('Apple data: \
 <ul class="apples-list">\
 \
 <div class="cart-box"></div>'),
 initialize: function() {
 this.$el.html(this.template)
 this.collection.on('addToCart', this.showCart, this)
 },
 showCart: function(appleModel) {
 $(this.cartEl).append(appleModel.attributes.name + '
')
 },
 render: function(){
 view = this
 this.collection.each(function(apple){

var appleSubView = new appleItemView({model: apple})
appleSubView.render()
$(view.listEl).append(appleSubView.$el)

 })
 }
 })
 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

97

You should be able to click the Buy button and populate the cart with the apples of
your choice. Looking at an individual apple does not require typing its name in the URL
address bar of the browser anymore. We can click the name to open a new window with a
detailed view.

By using subviews, we reused the template for all of the items (apples) and attached
a specific event to each of them (see Figure 4-1). Those events are smart enough to pass
the information about the model to other objects: views and collections.

Figure 4-1.  The list of apples rendered by subviews

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

98

Just in case, here is the full code for the subviews example, which is also available
at https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/
subview/index.html:

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>

 <script>
 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]
 var app
 var router = Backbone.Router.extend({
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 initialize: function(){

var apples = new Apples()
apples.reset(appleData)
this.homeView = new homeView({collection: apples})
this.appleView = new appleView({collection: apples})

 },
 home: function(){

this.homeView.render()
 },
 loadApple: function(appleName){

this.appleView.loadApple(appleName)

 }
 })
 var appleItemView = Backbone.View.extend({
 tagName: 'li',
 template: _.template('\

<a href="#apples/<%=name%>" target="_blank">\
<%=name%>\

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/subview/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/subview/index.html
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

99

 buy\
'),

 events: {
'click .add-to-cart': 'addToCart'

 },
 render: function() {

this.$el.html(this.template(this.model.attributes))
 },
 addToCart: function(){

this.model.collection.trigger('addToCart', this.model)
 }
 })

 var homeView = Backbone.View.extend({
 el: 'body',
 listEl: '.apples-list',
 cartEl: '.cart-box',
 template: _.template('Apple data: \

<ul class="apples-list">\
\
<div class="cart-box"></div>'),

 initialize: function() {
this.$el.html(this.template)
this.collection.on('addToCart', this.showCart, this)

 },
 showCart: function(appleModel) {

$(this.cartEl).append(appleModel.attributes.name + '
')
 },
 render: function(){

view = this
this.collection.each(function(apple){
var appleSubView = new appleItemView({model: apple})
appleSubView.render()
$(view.listEl).append(appleSubView.$el)

})
 }
 })
 var Apples = Backbone.Collection.extend({
 })
 var appleView = Backbone.View.extend({
 initialize: function(){

this.model = new (Backbone.Model.extend({}))
this.model.on('change', this.render, this)
this.on('spinner', this.showSpinner, this)

 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

100

 template: _.template('<figure>\
<img src="<%= attributes.url%>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'),
 templateSpinner: '',
 loadApple:function(appleName){

this.trigger('spinner')
var view = this
setTimeout(function(){
view.model.set(view.collection.where({name: appleName})[0].attributes)

}, 1000)
 },
 render: function(appleName){

var appleHtml = this.template(this.model)
$('body').html(appleHtml)

 },
 showSpinner: function(){

$('body').html(this.templateSpinner)
 }
 })

 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })

 </script>
</head>
<body>
 <div></div>
</body>
</html>

The link to an individual item, for example, collections/index.html#apples/fuji,
also should work independently, by typing it in the browser address bar.

Refactoring Backbone.js Code
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1k0ZnUB.

At this point you are probably wondering what the benefit is of using the framework
and still having multiple classes, objects, and elements with different functionalities in
one single file. This was done for the purpose of adhering to the idea of keeping
things simple.

www.it-ebooks.info

http://bit.ly/1k0ZnUB
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

101

The bigger your application is, the more pain there is in an unorganized code base.
Let’s break down our application into multiple files where each file will be one of these
types:

• View

• Template

• Router

• Collection

• Model

Let’s write these scripts to include tags into our index.html head, or body, as noted
previously:

<script src="apple-item.view.js"></script>
<script src="apple-home.view.js"></script>
<script src="apple.view.js"></script>
<script src="apples.js"></script>
<script src="apple-app.js"></script>

The names don’t have to follow the convention of dashes and dots, as long as it’s easy
to tell what each file is supposed to do.

Now, let’s copy our objects and classes into the corresponding files.
Our main index.html file should look very minimalistic:

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>

 <script src="apple-item.view.js"></script>
 <script src="apple-home.view.js"></script>
 <script src="apple.view.js"></script>
 <script src="apples.js"></script>
 <script src="apple-app.js"></script>

</head>
<body>
 <div></div>
</body>
</html>

The other files just have the code that corresponds to their file names.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

102

The content of apple-item.view.js will have the appleView object:

 var appleView = Backbone.View.extend({
 initialize: function(){
 this.model = new (Backbone.Model.extend({}))
 this.model.on('change', this.render, this)
 this.on('spinner', this.showSpinner, this)
 },
 template: _.template('<figure>\

<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\
</figure>'),

 templateSpinner: '',

 loadApple:function(appleName){
 this.trigger('spinner')
 var view = this
 // We'll need to access that inside of a closure
 setTimeout(function(){
 // Simulates real time lag when fetching
 // data from the remote server

view.model.set(view.collection.where({
name: appleName

})[0].attributes)
 }, 1000)
 },

 render: function(appleName){
 var appleHtml = this.template(this.model)
 $('body').html(appleHtml)
 },
 showSpinner: function(){
 $('body').html(this.templateSpinner)
 }
 })

The apple-home.view.js file has the homeView object:

 var homeView = Backbone.View.extend({
 el: 'body',
 listEl: '.apples-list',
 cartEl: '.cart-box',
 template: _.template('Apple data: \
 <ul class="apples-list">\
 \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

103

 <div class="cart-box"></div>'),
 initialize: function() {
 this.$el.html(this.template)
 this.collection.on('addToCart', this.showCart, this)
 },
 showCart: function(appleModel) {
 $(this.cartEl).append(appleModel.attributes.name + '
')
 },
 render: function(){
 view = this // So we can use view inside of closure
 this.collection.each(function(apple){

var appleSubView = new appleItemView({model:apple})
// Create subview with model apple
appleSubView.render()
// Compiles template and single apple data
$(view.listEl).append(appleSubView.$el)
// Append jQuery object from
// single apple to apples-list DOM element
})

 }
 })

The apple.view.js file contains the master apples list:

 var appleView = Backbone.View.extend({
 initialize: function(){
 this.model = new (Backbone.Model.extend({}))
 this.model.on('change', this.render, this)
 this.on('spinner',this.showSpinner, this)
 },
 template: _.template('<figure>\

<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\
</figure>'),

 templateSpinner: '',
 loadApple:function(appleName){
 this.trigger('spinner')
 var view = this
 // We'll need to access that inside of a closure
 setTimeout(function(){
 // Simulates real time lag when
 // fetching data from the remote server

view.model.set(view.collection.where({
name:appleName

})[0].attributes)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

104

 }, 1000)
 },
 render: function(appleName){
 var appleHtml = this.template(this.model)
 $('body').html(appleHtml)
 },
 showSpinner: function(){
 $('body').html(this.templateSpinner)
 }
 })

apples.js is an empty collection:

 var Apples = Backbone.Collection.extend({
 })

apple-app.js is the main application file with the data, the router, and the starting
command:

 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]
 var app
 var router = Backbone.Router.extend({
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 initialize: function(){

var apples = new Apples()
apples.reset(appleData)
this.homeView = new homeView({collection: apples})
this.appleView = new appleView({collection: apples})

 },
 home: function(){

this.homeView.render()
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

105

 loadApple: function(appleName){
this.appleView.loadApple(appleName)

 }
 })
 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })

Now let’s try to open the application. It should work exactly the same as in the
previous Subviews example.

It’s a far better code organization, but it’s still far from perfect, because we still have
HTML templates directly in the JavaScript code. The problem is that designers and
developers can’t work on the same files, and any change to the presentation requires a
change in the main code base.

We can add a few more JS files to our index.html file:

 <script src="apple-item.tpl.js"></script>
 <script src="apple-home.tpl.js"></script>
 <script src="apple-spinner.tpl.js"></script>
 <script src="apple.tpl.js"></script>

Usually, one Backbone View has one template, but in the case of our appleView—a
detailed view of an apple in a separate window—we also have a spinner, a "loading" GIF
animation.

The contents of the files are just global variables that are assigned some string values.
Later we can use these variables in our views, when we call the Underscore.js helper
method _.template().

Here is the apple-item.tpl.js file:

var appleItemTpl = '\
 <a href="#apples/<%=name%>" target="_blank">\
 <%=name%>\
 buy\
 '

This is the apple-home.tpl.js file:

var appleHomeTpl = 'Apple data: \
<ul class="apples-list">\
\
<div class="cart-box"></div>'

Here is the apple-spinner.tpl.js file:

var appleSpinnerTpl = ''

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

106

This is the apple.tpl.js file:

var appleTpl = '<figure>\
<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'

Try to start the application now. The full code is at https://github.com/azat-co/
fullstack-javascript/tree/master/05-backbone/refactor.

As you can see in the previous example, we used global scoped variables (without
the keyword window).

Be careful when you introduce a lot of variables into the global namespace (window
keyword). There might be conflicts and other unpredictable consequences. For example,
if you wrote an open source library and other developers started using the methods and
properties directly, instead of using the interface, what would happen later when you
decide to finally remove or deprecate those global leaks? To prevent this, properly written
libraries and applications use JavaScript closures (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Closures).

Here is an example of using closure and a global variable module definition:

;(function() {
 var apple= function() {
 ...// Do something useful like return apple object
 }
 window.Apple = apple
}())

In a case when we need to access the app object (which creates a dependency on
that object):

;(function() {
 var app = this.app
 // Equivalent of window.appliation
 // in case we need a dependency (app)
 this.apple = function() {
 ...
 // Return apple object/class
 // Use app variable
 }
 // Equivalent of window.apple = function(){...}
}())

As you can see, we’ve created the function and called it immediately while also
wrapping everything in parentheses ().

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/refactor
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/refactor
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

107

AMD and Require.js for Backbone.js Development
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1k0ZnUB.

AMD allows us to organize development code into modules, manage dependencies,
and load them asynchronously. This article does a great job at explaining why AMD is a
good thing: WHY AMD?

Start your local HTTP server, for example, MAMP (https://www.mamp.info/en) or
node-static (https://github.com/cloudhead/node-static).

Let’s enhance our code by using the Require.js library.
Our index.html will shrink even more:

<!DOCTYPE>
<html>
<head>
 <script src="jquery.js"></script>
 <script src="underscore.js"></script>
 <script src="backbone.js"></script>
 <script src="require.js"></script>
 <script src="apple-app.js"></script>
</head>
<body>
 <div></div>
</body>
</html>

We only included libraries and the single JavaScript file with our application. This file
has the following structure:

require([...],function(...){...})

In a more explanatory way:

require([
 'name-of-the-module',
 ...
 'name-of-the-other-module'
],function(referenceToModule, ..., referenceToOtherModule){
 ...// Some useful code
 referenceToModule.someMethod()
})

www.it-ebooks.info

http://bit.ly/1k0ZnUB
http://requirejs.org/docs/whyamd.html
http://www.smartface.io/
https://github.com/cloudhead/node-static
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

108

Basically, we tell a browser to load the files from the array of file names—the first
parameter of the require() function—and then pass our modules from those files to
the anonymous callback function (second argument) as variables. Inside of the main
function (anonymous callback) we can use our modules by referencing those variables.
Therefore, our apple-app.js metamorphoses into:

 require([
 'apple-item.tpl', // Can use shim plug-in
 'apple-home.tpl',
 'apple-spinner.tpl',
 'apple.tpl',
 'apple-item.view',
 'apple-home.view',
 'apple.view',
 'apples'
],function(
 appleItemTpl,
 appleHomeTpl,
 appleSpinnerTpl,
 appleTpl,
 appelItemView,
 homeView,
 appleView,
 Apples
){
 var appleData = [
 {

name: 'fuji',
url: 'img/fuji.jpg'

 },
 {

name: 'gala',
url: 'img/gala.jpg'

 }
]
 var app
 var router = Backbone.Router.extend({
 // Check if need to be required
 routes: {

'': 'home',
'apples/:appleName': 'loadApple'

 },
 initialize: function(){

var apples = new Apples()
apples.reset(appleData)
this.homeView = new homeView({collection: apples})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

109

this.appleView = new appleView({collection: apples})
 },
 home: function(){

this.homeView.render()
 },
 loadApple: function(appleName){

this.appleView.loadApple(appleName)
 }
 })

 $(document).ready(function(){
 app = new router
 Backbone.history.start()
 })
 })

We put all of the code inside the function that is a second argument of require(),
mentioned modules by their file names, and used dependencies via corresponding
parameters. Now we should define the module itself. This is how we can do it with the
define() method:

define([...],function(...){...})

The meaning is similar to the require() function: Dependencies are strings of file
names (and paths) in the array that is passed as the first argument. The second argument
is the main function that accepts other libraries as parameters (the order of parameters
and modules in the array is important):

define(['name-of-the-module'],function(nameOfModule){
 var b = nameOfModule.render()
 return b
})

Note that there is no need to append .js to file names. Require.js does it
automatically. The Shim plug-in is used for importing text files such as HTML templates.

Let’s start with the templates and convert them into the Require.js modules.
Here is the new apple-item.tpl.js file:

define(function() {
 return '\

<a href="#apples/<%=name%>" target="_blank">\
<%=name%>\
 buy\
'

})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

110

This is the apple-home.tpl file:

define(function(){
 return 'Apple data: \

<ul class="apples-list">\
\
<div class="cart-box"></div>'

})

Here is the apple-spinner.tpl.js file:

define(function(){
 return ''
})

This is the apple.tpl.js file:

define(function(){
 return '<figure>\

<img src="<%= attributes.url %>"/>\
<figcaption><%= attributes.name %></figcaption>\

</figure>'
 })

Here is the apple-item.view.js file:

define(function() {
 return '\

<a href="#apples/<%=name%>" target="_blank">\
<%=name%>\
 buy\
'

})

In the apple-home.view.js file, we need to declare dependencies on apple-home.
tpl and apple-item.view.js files:

define(['apple-home.tpl', 'apple-item.view'], function(
 appleHomeTpl,
 appleItemView){
return Backbone.View.extend({
 el: 'body',
 listEl: '.apples-list',
 cartEl: '.cart-box',
 template: _.template(appleHomeTpl),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

111

 initialize: function() {
this.$el.html(this.template)
this.collection.on('addToCart', this.showCart, this)

 },
 showCart: function(appleModel) {

$(this.cartEl).append(appleModel.attributes.name + '
')
 },
 render: function(){

view = this // So we can use view inside of closure
this.collection.each(function(apple){
var appleSubView = new appleItemView({model:apple})
// Create subview with model apple
appleSubView.render()
// Compiles template and single apple data
$(view.listEl).append(appleSubView.$el)
// Append jQuery object from
// a single apple to apples-list DOM element

})
 }
 })
})

The apple.view.js file depends on two templates:

define([
 'apple.tpl',
 'apple-spinner.tpl'
], function(appleTpl,appleSpinnerTpl){
 return Backbone.View.extend({
 initialize: function(){
 this.model = new (Backbone.Model.extend({}))
 this.model.on('change', this.render, this)
 this.on('spinner',this.showSpinner, this)
 },
 template: _.template(appleTpl),
 templateSpinner: appleSpinnerTpl,
 loadApple:function(appleName){
 this.trigger('spinner')
 var view = this
 // We'll need to access that inside of a closure
 setTimeout(function(){
 // Simulates real time lag when
 // fetching data from the remote server

view.model.set(view.collection.where({
name:appleName

})[0].attributes)
 }, 1000)
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

112

 render: function(appleName){
 var appleHtml = this.template(this.model)
 $('body').html(appleHtml)
 },
 showSpinner: function(){
 $('body').html(this.templateSpinner)
 }
 })
})

This is the apples.js file:

define(function(){
 return Backbone.Collection.extend({})
})

I hope you can see the pattern by now. All of our code is split into the separate files
based on the logic (e.g., view class, collection class, template). The main file loads all of
the dependencies with the require() function. If we need some module in a nonmain
file, then we can ask for it in the define() method. Usually, in modules we want to return
an object; for example, in templates we return strings and in views we return Backbone
View classes and objects.

Try launching the example located at https://github.com/azat-co/fullstack-
javascript/blob/master/05-backbone/amd/. Visually, there shouldn’t be any changes.
If you open the Network tab in the Developers Tool, you can see a difference in how the
files are loaded.

The old file shown in Figure 4-2 (https://github.com/azat-co/fullstack-
javascript/tree/master/05-backbone/refactor/index.html) loads our JavaScript
scripts in a serial manner, whereas the new file shown in Figure 4-3 (https://github.
com/azat-co/fullstack-javascript/blob/master/05-backbone/amd/index.html)
loads them in parallel.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/amd/
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/amd/
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/refactor/index.html
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/refactor/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/amd/index.html
https://github.com/azat-co/fullstack-javascript/blob/master/05-backbone/amd/index.html
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

113

Figure 4-2.  The old 05-backbone/refactor/index.html file

Figure 4-3.  The new 05-backbone/amd/index.html file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

114

Require.js has a lot of configuration options that are defined through the requirejs.
config() call in the top level of an HTML page. More information can be found at
requirejs.org/docs/api.html#config.

Let’s add a bust parameter to our example. The bust argument will be appended
to the URL of each file, preventing a browser from caching the files. This is perfect for
development and terrible for production.

Add this to the apple-app.js file in front of everything else:

requirejs.config({
 urlArgs: 'bust=' + (new Date()).getTime()
})
require([
...

Notice in Figure 4-4 that each file request now has status 200 instead of 304 (not modified).

Figure 4-4.  Network tab with bust parameter added

www.it-ebooks.info

http://requirejs.org/docs/api.html#config
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

115

Require.js for Backbone.js Production
We’ll use the Node Package Manager (NPM) to install the requirejs library (it’s not a typo;
there’s no period in the name). In your project folder, run this command in a terminal:

$ npm init

Then run

$ npm install requirejs

or add -g for global installation:

$ npm install -g requirejs

Create a file named app.build.js:

({
 appDir: "./js",
 baseUrl: "./",
 dir: "build",
 modules: [

{
name: "apple-app"

}
]
})

Move the script files into the js folder (appDir property). The builded files will be
placed in the build folder (dir parameter). For more information on the build file, check
out the extensive example with comments available at https://github.com/jrburke/
r.js/blob/master/build/example.build.js.

Now everything should be ready for building one gigantic JavaScript file that will
include all of our dependencies and modules:

$ r.js -o app.build.js

or

$ node_modules/requirejs/bin/r.js -o app.build.js

You should get a list of the r.js processed files, as shown in Figure 4-5.

www.it-ebooks.info

https://github.com/jrburke/r.js/blob/master/build/example.build.js
https://github.com/jrburke/r.js/blob/master/build/example.build.js
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

116

Open index.html from the build folder in a browser window, and check if the
Network tab shows any improvement now with just one request or file to load (Figure 4-6).

Figure 4-6.  Performance improvement with one request or file to load

Figure 4-5.  A list of the r.js processed files

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

117

For more information, check out the official r.js documentation at requirejs.org/
docs/optimization.html.

The example code is available at https://github.com/azat-co/fullstack-
javascript/tree/master/05-backbone/r and https://github.com/azat-co/
fullstack-javascript/tree/master/05-backbone/r/build.

For uglification of JS files (which decreases the file sizes), we can use the Uglify2
module. To install it with NPM, use:

$ npm install uglify-js

Then update the app.build.js file with the optimize: "uglify2" property:

({
 appDir: "./js",
 baseUrl: "./",
 dir: "build",
 optimize: "uglify2",
 modules: [

{
name: "apple-app"

}
]
})

Run r.js with:

$ node_modules/requirejs/bin/r.js -o app.build.js

You should get something like this:

define("apple-item.tpl",[],function(){return' <a href="#apples/<%=name%>"
target="_blank"> <%=name%> buy
'}),define("apple-home.tpl",[],function(){return'Apple data:<ulclass=
"apples-list"><div class="cart-box"></div>'}),define("apple-spinner.tpl",
[],function(){return''}),define(
"apple.tpl",[],function(){return'<figure><img src="<%= attributes.url %>"/>
<figcaption><%= attributes.name %></figcaption></figure>'}),define("apple-
item.view",["apple-item.tpl"],function(e){return Backbone.View.extend({tagName:
"li",template:_.template(e),events:{"click .add-to-cart":"addToCart"},
render:function(){this.$el.html(this.template(this.model.attributes))},
addToCart:function(){this.model.collection.trigger("addToCart",this.model)}})}),
define("apple-home.view",["apple-home.tpl","apple-item.view"],function(e,t)
{return Backbone.View.extend({el:"body",listEl:".apples-list",cartEl:
".cart-box",template:_.template(e),initialize:function(){this.$el.html(this.
template),this.collection.on("addToCart",this.showCart,this)},showCart:
function(e){$(this.cartEl).append(e.attributes.name+"
")},render:
function(){view=this,this.collection.each(function(e){var i=new t({model:e});
i.render(),$(view.listEl).append(i.$el)})}})}),define("apple.view",

www.it-ebooks.info

http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/r
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/r
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/r/build
https://github.com/azat-co/fullstack-javascript/tree/master/05-backbone/r/build
https://github.com/mishoo/UglifyJS2
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

118

["apple.tpl","apple-spinner.tpl"],function(e,t){return Backbone.View.extend
({initialize:function(){this.model=new(Backbone.Model.extend({})),this.
model.on("change",this.render,this),this.on("spinner",this.showSpinner,
this)},template:_.template(e),templateSpinner:t,loadApple:function(e)
{this.trigger("spinner");var t=this;setTimeout(function(){t.model.set(t.
collection.where({name:e})[0].attributes)},1e3)},render:function()
{var e=this.template(this.model);$("body").html(e)},showSpinner:function()
{$("body").html(this.templateSpinner)}})}),define("apples",[],function()
{return Backbone.Collection.extend({})}),requirejs.config({urlArgs:
"bust="+(new Date).getTime()}),require(["apple-item.tpl","apple-home.tpl",
"apple-spinner.tpl","apple.tpl","apple-item.view","apple-home.view",
"apple.view","apples"],function(e,t,i,n,a,l,p,o){var r,s=[{name:"fuji",
url:"img/fuji.jpg"},{name:"gala",url:"img/gala.jpg"}],c=Backbone.Router.
extend({routes:{"":"home","apples/:appleName":"loadApple"},initialize:
function(){var e=new o;e.reset(s),this.homeView=new l({collection:e}),
this.appleView=new p({collection:e})},home:function(){this.homeView.
render()},loadApple:function(e){this.appleView.loadApple(e)}});$(document).
ready(function(){r=new c,Backbone.history.start()})}),define("apple-app",
function(){});

The file is intentionally not formatted to show how Uglify2
(https://github.com/mishoo/UglifyJS2) works. Without the line break escape symbols,
the code is on one line. Also notice that variables’ and objects’ names are shortened.

Super Simple Backbone.js Starter Kit
To jump-start your Backbone.js development, consider using Super Simple Backbone
Starter Kit (https://github.com/azat-co/super-simple-backbone-starter-kit) or
similar projects:

•	 Backbone Boilerplate available at http://backboneboilerplate.com/

• Sample App with Backbone.js and Twitter Bootstrap available
at http://coenraets.org/blog/2012/02/sample-app-with-
backbone-js-and-twitter-bootstrap/

• More Backbone.js tutorials available at github.com/
documentcloud/backbone/wiki/Tutorials%2C-blog-posts-and-
example-sites

www.it-ebooks.info

https://github.com/mishoo/UglifyJS2
https://github.com/azat-co/super-simple-backbone-starter-kit
https://github.com/azat-co/super-simple-backbone-starter-kit
https://github.com/azat-co/super-simple-backbone-starter-kit
http://backboneboilerplate.com/
http://backboneboilerplate.com/
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap/
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap/
http://coenraets.org/blog/2012/02/sample-app-with-backbone-js-and-twitter-bootstrap/
https://github.com/documentcloud/backbone/wiki/Tutorials%2C-blog-posts-and-example-sites
https://github.com/documentcloud/backbone/wiki/Tutorials%2C-blog-posts-and-example-sites
https://github.com/documentcloud/backbone/wiki/Tutorials%2C-blog-posts-and-example-sites
http://www.it-ebooks.info/

Chapter 4 ■ Intro to Backbone.js

119

Summary
So far we’ve covered how to:

• Build a Backbone.js application from scratch.

• Use views, collections, subviews, models, and event binding.

• Use AMD and Require.js on the example of the apple database
application.

In this chapter, you’ve learned enough about Backbone.js to make sure you can start
using it in your web or mobile apps. Without a framework like Backbone, your code will
become exponentially more complex as it grows. On the other hand, with Backbone or a
similar MVC, you can scale the code better.

www.it-ebooks.info

http://www.it-ebooks.info/

121

Chapter 5

Backbone.js and Parse.com

Java is to JavaScript what Car is to Carpet.

—Chris Heilmann

In this chapter, we’ll explore the practical aspect of leveraging Parse.com for a Backbone.
js app. The chapter will illustrate the Backbone.js uses with Parse.com and its JavaScript
SDK on the modified Message Board app.

If you’ve written some complex client-side applications, you might have found that
it’s challenging to maintain the spaghetti code of JavaScript callbacks and UI events.
Backbone.js provides a lightweight yet powerful way to organize your logic into a
Model-View-Controller (MVC) type of structure. It also has nice features like URL routing,
REST API support, event listeners, and triggers. For more information and step-by-step
examples of building Backbone.js applications from scratch, please refer to the chapter
“Intro to Backbone.js.”

Message Board with Parse.com: JavaScript SDK
and Backbone.js Version
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnqsQC.

It’s easy to see that if we keep adding more and more buttons such as “DELETE,”
“UPDATE,” and other functionalities, our system of asynchronous callback will grow more
complicated. And we’ll have to know when to update the view (i.e., the list of messages)
based on whether or not there were changes to the data. The Backbone.js Model-
View-Controller (MVC) framework can be used to make complex applications more
manageable and easier to maintain.

If you felt comfortable with the previous example, let’s build upon it with the use
of the Backbone.js framework. Here we’ll go step by step, creating a Message Board
application using Backbone.js and Parse.com JavaScript SDK. If you feel familiar
enough with it, you could download the Super Simple Backbone Starter Kit at
github.com/azat-co/super-simple-backbone-starter-kit. Integration with Backbone.
js will allow for a straightforward implementation of user actions by binding them to
asynchronous updates of the collection.

www.it-ebooks.info

http://christianheilmann.com/
http://bit.ly/1QnqsQC
http://github.com/azat-co/super-simple-backbone-starter-kit
http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

122

The application is available at https://github.com/azat-co/fullstack-
javascript/tree/master/06-board-backbone-parse-sdk, but again you are encouraged
to start from scratch and try to write your own code using the example only as a reference.

The following shows the structure of Message Board with Parse.com, JavaScript SDK,
and Backbone.js version:

/06-board-backbone-parse-sdk
-index.html
-home.html
-footer.html
-header.html
-app.js
/css
-bootstrap.css
-bootstrap.min.css

 /js
-backbone.js
-jquery.js
-underscore.js

 /libs
-require.min.js
-text.js

Create a folder; in the folder create an index.html file with the following content
skeleton:

<!DOCTYPE html>
<html lang="en">
 <head>

...

 </head>
 <body>

...

 </body>
</html>

Download the necessary libraries or hot-link them from Google API. Now include
JavaScript libraries and Twitter Bootstrap style sheets into the head element along with
other important but not required meta elements.

 <head>
 <meta charset="utf-8" />
 <title>Message Board</title>
 <meta name="author" content="Azat Mardan" />

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/06-board-backbone-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/06-board-backbone-parse-sdk
http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

123

We need this for responsive behavior:

 <meta name="viewport"
 content="width=device-width, initial-scale=1.0" />

Link jQuery v2.1.4 from a local file:

 <script src="js/jquery.js"></script>

Do the same for Underscore v1.8.3 and Backbone v1.2.3:

 <script src="js/underscore.js"></script>
 <script src="js/backbone.js"></script>

The Parse JavaScript SDK v1.5.0 is hot-linked from Parse.com CDN. Note the version
number, because the older versions might not work properly with this example:

 <script src="//www.parsecdn.com/js/parse-1.5.0.min.js"></script>

Twitter Bootstrap CSS inclusion:

 <link type="text/css" rel="stylesheet" href="css/bootstrap.css" />

We need to have RequireJS v2.1.22 for loading dependencies:

 <script type="text/javascript" src="libs/require.js"></script>

And here’s our JS application inclusion:

 <script type="text/javascript" src="app.js"></script>
</head>

Populate the <body> element with Twitter Bootstrap scaffolding (more about it in the
“Basics” chapter):

 <body>
 <div class="container-fluid">
 <div class="row-fluid">
 <div class="span12">

<div id="header">
</div>

 </div>
 </div>
 <div class="row-fluid">
 <div class="span12">

<div id="content">
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

124

 </div>
 </div>
 <div class="row-fluid">
 <div class="span12">

<div id="footer">
</div>

 </div>
 </div>
 </div>
 </body>

Create an app.js file and put Backbone.js views inside:

• headerView: menu and app-common information

• footerView: copyrights and contact links

• homeView: home page content

We use Require.js syntax and shim plugin for HTML templates:

 require([
 'libs/text!header.html',
 'libs/text!home.html',
 'libs/text!footer.html'], function (
 headerTpl,
 homeTpl,
 footerTpl) {

The application router with a single index route:

 var ApplicationRouter = Backbone.Router.extend({
 routes: {
 "": "home",
 "*actions": "home"
 },

Before we do anything else, we can initialize views that are going to be used across
the app:

 initialize: function() {
 this.headerView = new HeaderView()
 this.headerView.render()
 this.footerView = new FooterView()
 this.footerView.render()
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

125

This code takes care of the home route:

 home: function() {
 this.homeView = new HomeView()
 this.homeView.render()
 }
 })

The header Backbone View is attached to the #header element and uses the
headerTpl template:

 HeaderView = Backbone.View.extend({
 el: '#header',
 templateFileName: 'header.html',
 template: headerTpl,
 initialize: function() {
 },
 render: function() {
 console.log(this.template)
 $(this.el).html(_.template(this.template))
 }
 })

To render the HTML, we use the jQuery.html() function:

 FooterView = Backbone.View.extend({
 el: '#footer',
 template: footerTpl,
 render: function() {
 this.$el.html(_.template(this.template))
 }
 })

The home Backbone View definition uses the #content DOM element:

 HomeView = Backbone.View.extend({
 el: '#content',
 template: homeTpl,
 initialize: function() {
 },
 render: function() {
 $(this.el).html(_.template(this.template))
 }
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

126

To start an app, we create a new instance and call Backbone.history.start():

 app = new ApplicationRouter()
 Backbone.history.start()
})

The full code of the app.js file:

require([
 'libs/text!header.html',
 // Example of a shim plugin use
 'libs/text!home.html',
 'libs/text!footer.html'],
 function (
 headerTpl,
 homeTpl,
 footerTpl) {
 var ApplicationRouter = Backbone.Router.extend({
 routes: {
 '': 'home',
 '*actions': 'home'
 },
 initialize: function() {
 this.headerView = new HeaderView()
 this.headerView.render()
 this.footerView = new FooterView()
 this.footerView.render()
 },
 home: function() {
 this.homeView = new HomeView()
 this.homeView.render()
 }
 })
 HeaderView = Backbone.View.extend({
 el: '#header',
 templateFileName: 'header.html',
 template: headerTpl,
 initialize: function() {
 },
 render: function() {
 console.log(this.template)
 $(this.el).html(_.template(this.template))
 }
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

127

 FooterView = Backbone.View.extend({
 el: '#footer',
 template: footerTpl,
 render: function() {
 this.$el.html(_.template(this.template))
 }
 })

 HomeView = Backbone.View.extend({
 el: '#content',
 template: homeTpl,
 initialize: function() {
 },
 render: function() {
 $(this.el).html(_.template(this.template))
 }
 })

 app = new ApplicationRouter()
 Backbone.history.start()
})

The code above displays templates. All views and routers are inside, requiring the
module to make sure that the templates are loaded before we begin to process them.

Here is what home.html looks like:

• A table of messages

• Underscore.js logic to output rows of the table

• A new message form

Let’s use the Twitter Bootstrap library structure (with its responsive components)
by assigning row-fluid and span12 classes:

<div class="row-fluid" id="message-board">
<div class="span12">
 <table class="table table-bordered table-striped">
 <caption>Message Board</caption>
 <thead>
 <tr>

<th class="span2">Username</th>
<th>Message</th>

 </tr>
 </thead>
 <tbody>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

128

This part has Underscore.js template instructions, which are just some JS code
wrapped in <% and %> marks. Right away we are checking that the models variable is
defined and not empty:

 <%
 if (typeof models != 'undefined' && models.length > 0) {

_.each() is an iteration function from the UnderscoreJS library (underscorejs.
org/#each), which does exactly what it sounds like—iterates through elements of an
object/array:

_.each(models, function (value, key, list) { %>
<tr>

Inside of the iterator function we have value that is a model. We can access Backbone
model’s attributes with model.attributes.attributeName. To output variables in
Underscore, we use <%= NAME %> instead of <% CODE %>:

<td><%= value.attributes.username %></td>
<td><%= value.attributes.message %></td>

</tr>
<% })

 }

But what if models is undefined or empty? In this case, we print a message that says
that there’s no messages yet. It goes into the else block. We use colspan=2 to merge two
cells into one:

 else { %>
 <tr>

<td colspan="2">No messages yet</td>
 </tr>

We close the table and other HTML tags:

 <%}%>
 </tbody>
 </table>
</div>
</div>

For the new message form, we also use the row-fluid class and then add <input>
elements:

<div class="row-fluid" id="new-message">
 <div class="span12">
 <form class="well form-inline">

www.it-ebooks.info

http://underscorejs.org/#each
http://underscorejs.org/#each
http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

129

The input element must have the name username because that’s how we find this
element and get the username value in the JavaScript code:

 <input type="text"
name="username"
class="input-small"
placeholder="Username" />

Analogous to the username <input> tag, the message text tag needs to have the
name. In this case, it’s message:

 <input type="text" name="message"
class="input-small"
placeholder="Message Text" />

Lastly, the send button must have the ID of send. This is what we use in the
Backbone’s events property on the HomeView class:

 SEND
 </form>
 </div>
</div>

For your convenience, here’s the full code of the home.html template file:

<div class="row-fluid" id="message-board">
<div class="span12">
 <table class="table table-bordered table-striped">
 <caption>Message Board</caption>
 <thead>
 <tr>

<th class="span2">Username</th>
<th>Message</th>

 </tr>
 </thead>
 <tbody>
 <% if (typeof models != 'undefined' && models.length>0) {

_.each(models, function (value, key, list) { %>
<tr>
<td><%= value.attributes.username %></td>
<td><%= value.attributes.message %></td>

</tr>
<% })

 }
 else { %>
 <tr>

<td colspan="2">No messages yet</td>
 </tr>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

130

 <%}%>
 </tbody>
 </table>
</div>
</div>
<div class="row-fluid" id="new-message">
 <div class="span12">
 <form class="well form-inline">
 <input type="text"

name="username"
class="input-small"
placeholder="Username" />

 <input type="text" name="message"
class="input-small"
placeholder="Message Text" />

 SEND
 </form>
 </div>
</div>

Now we can add the following components to:

• Parse.com collection

• Parse.com model

• Send/add message event

• Getting/displaying messages functions

Backbone-compatible model object/class from Parse.com JS SDK with a mandatory
className attribute (this is the name of the collection that will appear in the Data
Browser of the Parse.com web interface):

Message = Parse.Object.extend({
 className: 'MessageBoard'
})

Backbone-compatible collection object from Parse.com JavaScript SDK that points
to the model:

MessageBoard = Parse.Collection.extend ({
 model: Message
})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

131

The home view needs to have the click event listener on the “SEND” button:

HomeView = Backbone.View.extend({
 el: '#content',
 template: homeTpl,
 events: {

'click #send': 'saveMessage'
 },

When we create homeView, let’s also create a collection and attach event listeners to it:

 initialize: function() {
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch()
this.collection.on('add', function(message) {

message.save(null, {
success: function(message) {

console.log('saved ' + message)
},
error: function(message) {

console.log('error')
}

})
console.log('saved' + message)

})
 },

The definition of saveMessage() calls for the “SEND” button click event:

 saveMessage: function(){

Firstly, we get the form object by its ID (#new-message) because it’s more effective
and readable to use a stored object rather than use jQuery selector every time.

 var newMessageForm = $('#new-message')

The next two lines will get the values of the input fields with names username
and message:

 var username = newMessageForm.find('[name="username"]').val()
 var message = newMessageForm.find('[name="message"]').val()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

132

Once we have the values of a new message (text and author), we can invoke the
this.collection.add:

this.collection.add({
'username': username,
'message': message

})
 },

Last, we output the collections by using _.template with the template and then
invoking it with data this.collection:

 render: function() {
$(this.el).html(_.template(this.template)(this.collection))

 }

The end result of our manipulations in app.js might look something like this:

require([
 'libs/text!header.html',
 'libs/text!home.html',
 'libs/text!footer.html'], function (

headerTpl,
homeTpl,
footerTpl) {

 Parse.initialize('your-parse-app-id', 'your-parse-js-sdk-key')

 var ApplicationRouter = Backbone.Router.extend({
routes: {

'': 'home',
'*actions': 'home'

},
initialize: function() {

this.headerView = new HeaderView()
this.headerView.render()
this.footerView = new FooterView()
this.footerView.render()

},
home: function() {

this.homeView = new HomeView()
this.homeView.render()

}
 })

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

133

 HeaderView = Backbone.View.extend ({
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {
},
render: function() {

$(this.el).html(_.template(this.template))
}

 })

 FooterView = Backbone.View.extend({
el: '#footer',
template: footerTpl,
render: function() {

this.$el.html(_.template(this.template))
}

 })
 Message = Parse.Object.extend({

className: 'MessageBoard'
 })
 MessageBoard = Parse.Collection.extend ({

model: Message
 })

 HomeView = Backbone.View.extend({
el: '#content',
template: homeTpl,
events: {

'click #send': 'saveMessage'
},

initialize: function(){
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch()
this.collection.on('add', function(message) {

message.save(null, {
success: function(message) {

console.log('saved ' + message)
},
error: function(message) {

console.log('error')
}

})
console.log('saved' + message)

})
},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

134

saveMessage: function(){
var newMessageForm = $('#new-message')
var username = newMessageForm.find('[name="username"]').val()
var message = newMessageForm.find('[name="message"]').val()
this.collection.add({

'username': username,
'message': message
})

},
render: function() {
$(this.el).html(_.template(this.template)(this.collection))

}
 })

 app = new ApplicationRouter ()
 Backbone.history.start()
})

The full source code of the Backbone.js and Parse.com Message Board application is
available at https://github.com/azat-co/fullstack-javascript/tree/master/
06-board-backbone-parse-sdk.

Taking Message Board Further
Once you are comfortable that your front-end application works well locally, with or
without a local HTTP server like MAMP or XAMPP, deploy it to Windows Azure or
Heroku. In-depth deployment instructions are described in the “jQuery and Parse.com”
chapter.

In the last two examples, Message Board had very basic functionality. You could
enhance the application by adding more features.

Additional features for intermediate level developers:

• Sort the list of messages through the updateAt attribute before
displaying it.

• Add a “Refresh” button to update the list of messages.

• Save the username after the first message entry in a runtime
memory or in a session.

• Add an up-vote button next to each message, and store the votes.

• Add a down-vote button next to each message, and store the
votes.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/06-board-backbone-parse-sdk
https://github.com/azat-co/fullstack-javascript/tree/master/06-board-backbone-parse-sdk
http://www.it-ebooks.info/

Chapter 5 ■ Backbone.js and Parse.com

135

Additional features for advanced level developers:

• Add a User collection.

• Prevent the same user from voting multiple times.

• Add user sign-up and log-in actions by using Parse.com functions.

• Add a Delete Message button next to each message created
by a user.

• Add an Edit Message button next to each message created
by a user.

Summary
This short chapter gives you yet another way of building apps with nothing but JavaScript
(and HTML and CSS, obviously). With Parse.com or a similar back-end-as-a-service
(BaaS) solution, it is straightforward to persist the data without having to code your own
back end. BaaS solutions event takes it a step further by allowing for access-level controls,
authentications, server-side logic, and third-party integrations.

In addition to Parse.com, in this chapter we saw how Backbone can be flexible in
terms that you can overload its classes to build your own custom ones. This is a way to
use Backbone to build your own framework. This is what we did at DocuSign where we
had base Backbone models and extended them for custom use cases. We even shared
Backbone models between the server and the browser, allowing for faster data loading.
Speaking of the server JavaScript, in the next chapter we’ll explore how to write JavaScript
on the server with Node.js.

www.it-ebooks.info

http://www.it-ebooks.info/

137

Chapter 6

Intro to Node.js

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

—Martin Fowler

In this chapter, we’ll cover the following:

• Building “Hello World” in Node.js

• Node.js Core Modules

• npm Node Package Manager

• Message Board with Node.js: Memory Store Version

• Unit Testing Node.js

Node.js is a non-blocking platform for building web applications. It uses JavaScript,
so it’s a centerpiece in our fullstack JavaScript development. We’ll start with Hello World
and cover core modules and npm. Then, we deploy our Hello World app to cloud.

Building “Hello World” in Node.js
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnqFmF.

To check if you have Node.js installed on your computer, type and execute this
command in your terminal:

$ node -v

As of this writing, the latest version is 5.1.0. If you don’t have Node.js installed, or if your
version is behind, you can download the latest version at nodejs.org/#download. You can
use one of these tools for version management (i.e., switching between Node.js versions):

• n (https://github.com/tj/n)

• nave (https://github.com/isaacs/nave)

• nvm (https://github.com/creationix/nvm)

www.it-ebooks.info

http://en.wikipedia.org/wiki/Martin_Fowler
http://bit.ly/1QnqFmF
http://nodejs.org/#download
https://github.com/tj/n
https://github.com/tj/n
https://github.com/isaacs/nave
https://github.com/isaacs/nave
https://github.com/creationix/nvm
https://github.com/creationix/nvm
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

138

As usual, you could copy example code at https://github.com/azat-co/
fullstack-javascript/tree/master/07-hello, or write your own program from
scratch. If you wish to do the latter, create a folder hello for your “Hello World” Node.js
application. Then create file a server.js and line by line type the code below.

This will load the core http module for the server (more on the modules later):

var http = require('http')

We’ll need a port number for our Node.js server. To get it from the environment or
assign 1337 if the environment is not set, use:

var port = process.env.PORT || 1337

This will create a server, and a callback function will contain the response handler code:

var server = http.createServer(function (req, res) {

To set the right header and status code, use:

 res.writeHead(200, {'Content-Type': 'text/plain'})

To output “Hello World” with the line end symbol, use:

 res.end('Hello World\n')
})

To set a port and display the address of the server and the port number, use:

server.listen(port, function() {
 console.log('Server is running at %s:%s ',
 server.address().address, server.address().port)
})

From the folder in which you have server.js, launch in your terminal the following
command:

$ node server.js

Open localhost:1337 or 127.0.0.1:1337 or any other address you see in the terminal
as a result of console.log() function, and you should see “Hello World” in a browser.
To shut down the server, press Control + C.

■ Note T he name of the main file could be different from server.js (e.g., index.js or app.js).
In case you need to launch the app.js file, just use $ node app.js.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/07-hello
https://github.com/azat-co/fullstack-javascript/tree/master/07-hello
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

139

Node.js Core Modules
Unlike other programming technologies, Node.js doesn’t come with a heavy standard
library. The core modules of node.js are a bare minimum and the rest can be cherry-picked
via the Node Package Manager (NPM) registry. The main core modules, classes, methods,
and events include:

• http (https://nodejs.org/api/http.html#http_http): Module
for working with HTTP protocol

• util (https://nodejs.org/api/util.html): Module with various
helpers

• querystring (https://nodejs.org/api/querystring.html):
Module for parsing query string from the URI

• url (https://nodejs.org/api/url.html): Module for parsing
URI information

• fs (https://nodejs.org/api/fs.html): Module for working with
the file system

These are the most important core modules. Let’s cover each of them.

http
This is the main module responsible for Node.js HTTP server. Here are the main methods:

• http.createServer(): returns a new web server object

• http.listen(): begins accepting connections on the specified
port and hostname

• http.createClient(): node app can be a client and make
requests to other servers

• http.ServerRequest(): incoming requests are passed to request
handlers

–– data: emitted when a piece of the message body is received

–– end: emitted exactly once for each request

–– request.method(): the request method as a string

–– request.url(): request URL string

www.it-ebooks.info

http://nodejs.org/api/http.html#http_http
https://nodejs.org/api/http.html#http_http
http://nodejs.org/api/util.html
https://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
https://nodejs.org/api/querystring.html
http://nodejs.org/api/url.html
https://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
https://nodejs.org/api/fs.html
http://nodejs.org/api/http.html#http_http
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

140

• http.ServerResponse(): this object is created internally by an
HTTP server—not by the user, and used as an output of request
handlers

–– response.writeHead(): sends a response header to the request

–– response.write(): sends a response body

–– response.end(): sends and ends a response body

util
This module provides utilities for debugging. Some of the methods include:

• util.inspect(): Return a string representation of an object,
which is useful for debugging

querystring
This module provides utilities for dealing with query strings. Some of the methods
include:

• querystring.stringify(): Serialize an object to a query string

• querystring.parse(): Deserialize a query string to an object

url
This module has utilities for URL resolution and parsing. Some of the methods include:

• parse(): Take a URL string, and return an object

fs
fs handles file system operations such as reading and writing to/from files. There are
synchronous and asynchronous methods in the library. Some of the methods include:

• fs.readFile(): reads file asynchronously

• fs.writeFile(): writes data to file asynchronously

There is no need to install or download core modules. To include them in your
application, all you need is to follow the syntax:

var http = require('http')

www.it-ebooks.info

http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
http://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

141

The lists of non-core modules can be found at:

• npmjs.org: Node Package Manager registry

• Nipster (http://eirikb.github.io/nipster): NPM search
tool for Node.js

• node-modules (http://node-modules.com): npm search engine

If you would like to know how to code your own modules, take a look at the article
located here: https://quickleft.com/blog/creating-and-publishing-a-node-js-module/.

npm Node Package Manager
Node Package Manager, or NPM, manages dependencies and installs modules for you.
Node.js installation comes with NPM, whose web site is npmjs.org.

package.json contains meta information about our Node.js application such as a
version number; author name; and, most important, what dependencies we use in the
application. All of that information is in the JSON formatted object, which is read by NPM.

If you would like to install packages and dependencies specified in package.json, type:

$ npm install

A typical package.json file might look like this:

{
 "name": "Blerg",
 "description": "Blerg blerg blerg.",
 "version": "0.0.1",
 "author": {
 "name" : "John Doe",
 "email" : "john.doe@gmail.com"
 },
 "repository": {

"type": "git",
"url": "http://github.com/johndoe/blerg.git"

 },
 "engines": [

"node >= 0.6.2"
],
 "scripts": {
 "start": "server.js"
 },

www.it-ebooks.info

https://npmjs.org/
http://eirikb.github.io/nipster
http://node-modules.com
https://quickleft.com/blog/creating-and-publishing-a-node-js-module/
http://npmjs.org/
http://github.com/johndoe/blerg.git
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

142

 "license" : "MIT",
 "dependencies": {

"express": ">= 2.5.6",
"mustache": "0.4.0",
"commander": "0.5.2"

 },
 "bin" : {

"blerg" : "./cli.js"
 }
}

While most of the properties in the package.json example above like description
and name are self-explanatory, others deserve more explaining. Dependencies is an
object, and each item has the name on the left side and the version number on the right
side (e.g., “express”: “>= 2.5.6”). The version can be exact: for example, “express”: “2.5.6,”
or greater than, or wild-card, for example, “express”: “*” (a great way to blow up your app
in production with new untested dependencies: therefore not recommended).

The bin property is for command-line utilities. It tells the system what file to launch.
And the scripts object has scripts that you can launch with $ npm run SCRIPT_NAME. The
start script and test are exceptions. You can run them with $ npm start and $ npm test.

To update a package to its current latest version or the latest version that is allowable
by the version specification defined in package.json, use:

$ npm update name-of-the-package

Or for single module installation:

$ npm install name-of-the-package

The only module used in this book’s examples—and which does not belong to the
core Node.js package—is mongodb. We’ll install it later in the book.

Heroku will need package.json to run NPM on the server.
For more information on NPM, take a look at the article “Tour of NPM”

(http://tobyho.com/2012/02/09/tour-of-npm).

Deploying "Hello World" to PaaS
For Heroku and Windows Azure deployment, we’ll need a Git repository. To create it from
the root of your project, type the following command in your terminal:

$ git init

Git will create a hidden .git folder. Now we can add files and make the first commit:

$ git add .
$ git commit -am "first commit"

www.it-ebooks.info

http://tobyho.com/2012/02/09/tour-of-npm/
http://tobyho.com/2012/02/09/tour-of-npm
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

143

■ Tip T o view hidden files on the Mac OS X Finder app, execute this command
in a terminal window: defaults write com.apple.finder AppleShowAllFiles
-bool true. To change the flag back to hidden: defaults write com.apple.finder
AppleShowAllFiles -bool false.

Deploying to Windows Azure
In order to deploy our “Hello World” application to Windows Azure, we must add Git
remote. You could copy the URL from Windows Azure Portal, under Web Site, and use it
with this command:

$ git remote add azure yourURL

Now we should be able to make a push with this command:

$ git push azure master

If everything went okay, you should see success logs in the terminal and “Hello World”
in the browser of your Windows Azure Web Site URL.

To push changes, just execute:

$ git add .
$ git commit -m "changing to hello azure"
$ git push azure master

A more meticulous guide can be found in the tutorial https://azure.microsoft.com/
en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac.

Deploying to Heroku
For Heroku deployment, we need to create two extra files: Procfile and package.json.
You could get the source code from https://github.com/azat-co/fullstack-
javascript/tree/master/07-hello or write your own one.

The structure of the “Hello World” application looks like this:

/07-hello
-package.json
-Procfile
-server.js

Procfile is a mechanism for declaring what commands are run by your application’s
dynos on the Heroku platform. Basically, it tells Heroku what processes to run. Procfile
has only one line in this case:

web: node server.js

www.it-ebooks.info

https://azure.microsoft.com/en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac
https://azure.microsoft.com/en-us/documentation/articles/web-sites-nodejs-develop-deploy-mac
https://github.com/azat-co/fullstack-javascript/tree/master/07-hello
https://github.com/azat-co/fullstack-javascript/tree/master/07-hello
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

144

For this example, we keep package.json simple:

{
 "name": "node-example",
 "version": "0.0.1",
 "dependencies": {
 },
 "engines": {
 "node": ">=0.6.x"
 }
}

After we have all of the files in the project folder, we can use Git to deploy the
application. The commands are pretty much the same as with Windows Azure except that
we need to add Git remote, and create Cedar stack with:

$ heroku create

After it’s done, we push and update with:

$ git push heroku master
$ git add .
$ git commit -am "changes :+1:"
$ git push heroku master

If everything went okay, you should see success logs in the terminal and “Hello
World” in the browser of your Heroku app URL.

Message Board with Node.js: Memory Store Version
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnqO9P.

The first version of the Message Board back-end application will store messages only
in runtime memory storage for the sake of KISS (http://en.wikipedia.org/wiki/KISS_
principle). That means that each time we start/reset the server, the data will be lost.

We’ll start with a simple test case first to illustrate the Test-Driven Development
approach. The full code is available at https://github.com/azat-co/fullstack-
javascript/tree/master/08-test.

Unit Testing Node.js
We should have two methods:

1.	 Get all of the messages as an array of JSON objects for the GET
/message endpoint using the getMessages() method

2.	 Add a new message with properties name and message for
POST /messages route via the addMessage() function

www.it-ebooks.info

http://bit.ly/1QnqO9P
http://en.wikipedia.org/wiki/KISS_principle
http://en.wikipedia.org/wiki/KISS_principle
https://github.com/azat-co/fullstack-javascript/tree/master/08-test
https://github.com/azat-co/fullstack-javascript/tree/master/08-test
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

145

We’ll start by creating an empty mb-server.js file. After it’s there, let’s switch to tests
and create the test.js file with the following content:

var http = require('http')
var assert = require('assert')
var querystring = require('querystring')
var util = require('util')

var messageBoard = require('./mb-server')

assert.deepEqual('[{"name":"John","message":"hi"}]',
 messageBoard.getMessages())
assert.deepEqual ('{"name":"Jake","message":"gogo"}',
 messageBoard.addMessage ("name=Jake&message=gogo"))
assert.deepEqual('[{"name":"John","message":"hi"},{"name":"Jake",
message":"gogo"}]',
 messageBoard.getMessages())

Please keep in mind that this is a very simplified comparison of strings and
not JavaScript objects. So every space, quote, and case matters. You could make the
comparison “smarter” by parsing a string into a JSON object with:

JSON.parse(str)

For testing our assumptions, we use core the Node.js module assert. It provides a
bunch of useful methods like equal(), deepEqual(), etc.

More advanced libraries include alternative interfaces with TDD and/or BDD
approaches:

• Expect: Minimalistic BDD-style assertion library:, for example,
expect(user.name).to.eql('azat')

• Should (https://github.com/shouldjs/should.js): BDD-style
assertion library that works by modifying Object.prototype: for
example, user.name.should.be.eql('azat')

For more Test-Driven Development and cutting-edge automated testing, you could
use the following libraries and modules:

• Mocha (https://mochajs.org/): Feature-rich testing framework
(my default choice)

• NodeUnit (https://github.com/caolan/nodeunit): Simple
assert-style unit testing library

• Jasmine (https://github.com/jasmine/jasmine): BDD testing
framework with built-in assertion and spy (for mocking) libraries

• Vows (http://vowsjs.org/): BDD framework for Node.js tailored
to testing asynchronous code

www.it-ebooks.info

http://nodejs.org/api/assert.html
https://github.com/LearnBoost/expect.js
https://github.com/shouldjs/should.js
https://github.com/shouldjs/should.js
https://mochajs.org/
https://mochajs.org/
https://github.com/caolan/nodeunit
https://github.com/caolan/nodeunit
https://github.com/jasmine/jasmine
https://github.com/jasmine/jasmine
http://vowsjs.org/
http://vowsjs.org/
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

146

• Chai (http://chaijs.com/): BDD/TDD assertion library that can
be paired with a testing framework and has its own versions of
Should, Expect, and Assert

• Tape (https://github.com/substack/tape): A minimalistic TAP
(Test Anything Protocol) library

• Jest (http://facebook.github.io/jest/): Jasmine-and-Expect-like
testing library with automatic mocks

You could copy the “Hello World” script into the mb-server.js file for now or even
keep it empty. If we run test.js by the terminal command:

$ node test.js

We should see an error. Probably something like this one:

TypeError: Object #<Object> has no method 'getMessages'

That’s totally fine, because we haven’t written getMessages() method yet. So let’s do
it and make our application more useful by adding two new methods: to get the list of the
messages for Chat and to add a new message to the collection.

mb-server.js file with global exports object:

exports.getMessages = function() {
 return JSON.stringify(messages)
 // Output array of messages as a string/text
}
exports.addMessage = function (data){
 messages.push(querystring.parse(data))
 // To convert string into JavaScript object we use parse/deserializer
 return JSON.stringify(querystring.parse(data))
 // Output new message in JSON as a string
}

We import dependencies:

var http = require('http')
// Loads http module
var util= require('util')
// Usefull functions
var querystring = require('querystring')
// Loads querystring module, we'll need it to serialize and deserialize
objects and query strings

www.it-ebooks.info

http://chaijs.com/
http://chaijs.com/
https://github.com/substack/tape
https://github.com/substack/tape
https://facebook.github.io/jest
http://facebook.github.io/jest/
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

147

And set the port. If it’s set in the env var, we use that value; and if it’s not set, we use a
hard-coded value of 1337:

var port = process.env.PORT || 1337

So far, nothing fancy, right? To store the list of messages, we’ll use an array:

var messages=[]
// This array will hold our messages
messages.push({
 'name': 'John',
 'message': 'hi'
})
// Sample message to test list method

Generally, fixtures like dummy data belong to the test/spec files and not to the main
application code base.

Our server code will look slightly more interesting. For getting the list of messages,
according to REST methodology, we need to make a GET request. For creating/adding a
new message, it should be a POST request. So in our createServer object, we should add
req.method() and req.url() to check for an HTTP request type and a URL path.

Let’s load the http module:

var http = require('http')

We’ll need some of the handy functions from the util and querystring modules
(to serialize and deserialize objects and query strings):

var util= require('util')
// Usefull functions
var querystring = require('querystring')
// Loads querystring module, we'll need it to serialize and deserialize
objects and query strings

To create a server and expose it to outside modules (i.e., test.js):

exports.server=http.createServer(function (req, res) {
// Creates server

Inside of the request handler callback, we should check if the request method is
POST and the URL is messages/create.json:

 if (req.method == 'POST' && req.url == '/messages/create.json') {
 // If method is POST and URL is messages/ add message to the array

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

148

If the condition above is true, we add a message to the array. However, data must be
converted to a string type (with encoding UTF-8) prior to the adding, because it is a type
of Buffer:

 var message = ''
 req.on('data', function(data, msg){
 console.log(data.toString('utf-8'))
 message=exports.addMessage(data.toString('utf-8'))
 �// Data is type of Buffer and must be converted to string with

encoding UTF-8 first
 // Adds message to the array
 })

These logs will help us to monitor the server activity in the terminal:

 req.on('end', function(){
 console.log('message', util.inspect(message, true, null))
 console.log('messages:', util.inspect(messages, true, null))
 // Debugging output into the terminal

The output should be in a text format with a status of 200 (okay):

 res.writeHead(200, {'Content-Type': 'text/plain'})
 // Sets the right header and status code

We output a message with a newly created object ID:

 res.end(message)
 // Out put message, should add object id
 })

If the method is GET and the URL is /messages/list.json output a list of messages:

 } else
 if (req.method == 'GET' && req.url == '/messages/list.json') {
 // If method is GET and URL is /messages output list of messages

Fetch a list of messages:

 var body = exports.getMessages()
 // Body will hold our output

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

149

The response body will hold our output:

 res.writeHead(200, {
 'Content-Length': body.length,
 'Content-Type': 'text/plain'
 })
 res.end(body)

The next else is for when there’s not matches for any of the previous conditions.
This sets the right header and status code:

 } else {
 res.writeHead(200, {'Content-Type': 'text/plain'})
 // Sets the right header and status code

In case it’s neither of the two endpoints above, we output a string with a line end symbol:

 res.end('Hello World\n')
 // Outputs string with line end symbol
 }

Start the server:

}).listen(port)
// Sets port and IP address of the server

Now, we should set a port and IP address of the server:

console.log('Server running at http://127.0.0.1:%s/', port)

We expose methods for the unit testing in test.js (exports keyword), and this
function returns an array of messages as a string/text:

exports.getMessages = function() {
 return JSON.stringify(messages)
}

addMessage() converts a string into a JavaScript object with the parse/deserializer
method from querystring:

exports.addMessage = function (data){
 messages.push(querystring.parse(data))

Also returning a new message in a JSON-as-a-string format:

 return JSON.stringify(querystring.parse(data))
}

www.it-ebooks.info

http://127.0.0.1:%s/
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

150

Here is the full code of mb-server.js minus the comments. It’s also available
at 08-test:

var http = require('http')
// Loads http module
var util= require('util')
// Usefull functions
var querystring = require('querystring')
// Loads querystring module, we'll need it to serialize and deserialize
objects and query strings

var port = process.env.PORT || 1337

var messages=[]
// This array will hold our messages
messages.push({
 'name': 'John',
 'message': 'hi'
})
// Sample message to test list method

exports.server=http.createServer(function (req, res) {
// Creates server
 if (req.method == 'POST' && req.url == '/messages/create.json') {
 // If method is POST and URL is messages/ add message to the array
 var message = ''
 req.on('data', function(data, msg){
 console.log(data.toString('utf-8'))
 message=exports.addMessage(data.toString('utf-8'))
 �// Data is type of Buffer and must be converted to string with

encoding UTF-8 first
 // Adds message to the array
 })
 req.on('end', function(){
 console.log('message', util.inspect(message, true, null))
 console.log('messages:', util.inspect(messages, true, null))
 // Debugging output into the terminal
 res.writeHead(200, {'Content-Type': 'text/plain'})
 // Sets the right header and status code
 res.end(message)
 // Out put message, should add object id
 })
 } else

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/08-test
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

151

 if (req.method == 'GET' && req.url == '/messages/list.json') {
 // If method is GET and URL is /messages output list of messages
 var body = exports.getMessages()
 // Body will hold our output
 res.writeHead(200, {
 'Content-Length': body.length,
 'Content-Type': 'text/plain'
 })
 res.end(body)
 } else {
 res.writeHead(200, {'Content-Type': 'text/plain'})
 // Sets the right header and status code
 res.end('Hello World\n')
 // Outputs string with line end symbol
 }

}).listen(port)
// Sets port and IP address of the server
console.log('Server running at http://127.0.0.1:%s/', port)

exports.getMessages = function() {
 return JSON.stringify(messages)
 // Output array of messages as a string/text
}
exports.addMessage = function (data){
 messages.push(querystring.parse(data))
 // To convert string into JavaScript object we use parse/deserializer
 return JSON.stringify(querystring.parse(data))
 // Output new message in JSON as a string
}

To check it, go to localhost:1337/messages/list.json. You should see an example
message.

Alternatively, you could use the terminal command to fetch the messages:

$ curl http://127.0.0.1:1337/messages/list.json

To make the POST request by using a command-line interface:

$ curl -d "name=BOB&message=test" http://127.0.0.1:1337/messages/create.json

www.it-ebooks.info

http://127.0.0.1:%s/
http://localhost:1337/messages/list.json
http://127.0.0.1:1337/messages/list.json
http://127.0.0.1:1337/messages/create.json
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

152

And you should get the output in a server terminal window and a new message
“test” when you refresh localhost:1337/messages/list.json. Needless to say, all three tests
should pass.

Your application might grow bigger with more methods, URL paths to parse and
conditions. That is where frameworks come in handy. They provide helpers to process
requests and other nice things like static file support, sessions, etc. In this example, we
intentionally didn’t use any frameworks like Express (http://expressjs.com/) or Restify
(http://mcavage.github.com/node-restify/). Other notable Node.js frameworks:

• Derby (http://derbyjs.com/):MVC framework making it easy to
write real-time, collaborative applications that run in both Node.
js and browsers

• Express.js (http://expressjs.com/en/index.html): the most
robust, tested and used Node.js framework

• Restify (http://restify.com/): lightweight framework for REST
API servers

• Sails.js (http://sailsjs.org/): MVC Node.js framework

• hapi (http://spumko.github.io/): Node.js framework built on
top of Express.js

• Connect (https://github.com/senchalabs/connect#readme): a
middleware framework for node, shipping with over 18 bundled
middlewares and a rich selection of third-party middleware

• GeddyJS (http://geddyjs.org/): a simple, structured MVC web
framework for Node

• CompoundJS (http://compoundjs.com/) (ex-RailswayJS): Node.
JS MVC framework based on ExpressJS

• Tower.js (http://tower.github.io/): a full stack web framework
for Node.js and the browser

• Meteor (https://www.meteor.com/): open-source platform for
building top-quality web apps in a fraction of the time

For a list of hand-picked frameworks, take a look at (http://nodeframeworks.com).
Ways to improve the application:

• Improve existing test cases by adding object comparison instead
of a string one

• Move the seed data to test.js from mb-server.js

• Add test cases to support your front-end (e.g., up-vote, user log in)

• Add methods to support your front-end (e.g., up-vote, user log in)

• Generate unique IDs for each message and store them in a Hash
instead of an Array

• Install Mocha and re-factor test.js so it uses this library

www.it-ebooks.info

http://localhost:1337/messages/list.json
http://expressjs.com/
http://mcavage.github.com/node-restify/
http://derbyjs.com/
http://derbyjs.com/
http://expressjs.com/
http://expressjs.com/en/index.html
http://mcavage.github.com/node-restify/
http://restify.com/
http://sailsjs.org/
http://sailsjs.org/
http://spumko.github.io/
http://spumko.github.io/
http://www.senchalabs.org/connect/
https://github.com/senchalabs/connect#readme
http://geddyjs.org/
http://geddyjs.org/
http://compoundjs.com/
http://compoundjs.com/
http://towerjs.org/
http://tower.github.io/
http://meteor.com/
https://www.meteor.com/
http://nodeframeworks.com
http://www.it-ebooks.info/

Chapter 6 ■ Intro to Node.js

153

So far we’ve been storing our messages in the application memory, so each time the
application is restarted, we lose it. To fix it, we need to add a persistence, and one of the
ways is to use a database like MongoDB.

Summary
In this chapter we’ve covered important topics that will lay the foundation. They exhibit
the “Hello World” application in Node.js, list of some of its most important core modules,
NPM workflow, detailed commands for deployment of Node.js apps to Heroku and
Windows Azure; and an example of a test-driven development practice.

www.it-ebooks.info

http://www.it-ebooks.info/

155

Chapter 7

Intro to MongoDB

What is Oracle? A bunch of people. And all of our products were just ideas
in the heads of those people - ideas that people typed into a computer,
tested, and that turned out to be the best idea for a database or for a
programming language.

—Larry Ellison

In this chapter, we’ll explore the following topics:

• MongoDB Shell

• MongoDB Native Driver for Node.js

• MongoDB on Heroku with MongoLab

• Message Board: MongoDB Version

MongoDB is a NoSQL document-store database. It is scalable and performant. It has
no schema so all the logic and relationships are implemented in the application layer. You
can use ODMs like Waterline or Mongoose for that. MongoDB uses JavaScript interface,
which completes the full stack JavaScript stack puzzle of browser, server, and the database
layers. With MongoDB we can use one language for all three layers. The easiest way to get
started with MongoDB is to use its shell, a.k.a. REPL (read-eval-print-loop).

MongoDB Shell
If you haven’t done so already, please install the latest version of MongoDB from
mongodb.org/downloads. For more instructions, please refer to the Database:MongoDB
section in Chapter 2. You might have to create a data folder per instructions.

Now from the folder where you unpacked the archive, launch the mongod service
with:

$./bin/mongod

You should be able to see information in your terminal and in the browser at
localhost:28017.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Larry_Ellison
http://www.mongodb.org/downloads
http://dx.doi.org/10.1007/978-1-4842-1751-1_2
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

156

For the MongoDB shell, or mongo, launch in a new terminal window (important!),
and at the same folder this command:

$./bin/mongo

You should see something like this, depending on your version of the MongoDB
shell:

MongoDB shell version: 2.0.6
connecting to: test

To test the database, use the JavaScript-like interface and commands save and find:

> db.test.save({ a: 1 })
> db.test.find()

More detailed step-by-step instructions are available in the Database:MongoDB
section of Chapter 2.

Some other useful MongoDB shell commands from MongoDB and Mongoose
cheatsheet (https://gum.co/mongodb/git-874e6fb4):

• > show dbs: show databases on the server

• > use DB_NAME: select database DB_NAME

• > show collections: show collections in the selected database

• > db.COLLECTION_NAME.find(): perform the find query on
collection with the COLLECTION_NAME name to find any items

• > db.COLLECTION_NAME.find({"_id": ObjectId("549d9a30
81d0f07866fdaac6")}): perform the find query on collection
with the COLLECTION_NAME name to find item with ID
549d9a3081d0f07866fdaac6

• > db.COLLECTION_NAME.find({"email": /gmail/}): perform
the find query on collection with the COLLECTION_NAME name
to find items with e-mail property matching /gmail

• > db.COLLECTION_NAME.update(QUERY_OBJECT, SET_OBJECT):
perform the update query on collection with the COLLECTION_
NAME name to update items that match QUERY_OBJECT with
SET_OBJECT

• > db.COLLECTION_NAME.remove(QUERY_OBJECT): perform
remove query for items matching QUERY_OBJECT criteria on the
COLLECTION_NAME collection

• > db.COLLECTION_NAME.insert(OBJECT): add OBJECT to the
collection with the COLLECTION_NAME name

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1751-1_2
https://gum.co/mongodb/git-874e6fb4
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

157

So starting from a fresh shell session, you can execute these commands to create a
document, change it, and remove:

> help
> show dbs
> use board
> show collections
> db.messages.remove();
> var a = db.messages.findOne();
> printjson(a);
> a.message = "hi";
> a.name = "John";
> db.messages.save(a);
> db.messages.find({});
> db.messages.update({name: "John"},{$set: {message: "bye"}});
> db.messages.find({name: "John"});
> db.messages.remove({name: "John"});

You can download the MongoDB and Mongoose cheatsheet as a PDF
(https://gumroad.com/l/mongodb/fsjs-CB07C579#) or view it online at
https://github.com/mongodb/node-mongodb-native/#data-types.

A full overview of the MongoDB interactive shell is available at mongodb.org:
Overview – The MongoDB Interactive Shell (https://docs.mongodb.org/manual/
tutorial/getting-started-with-the-mongo-shell/).

BSON
Binary JSON, or BSON, is a special data type that MongoDB utilizes. It is like JSON in
notation but has support for additional more sophisticated data types such as buffer
or date.

A word of caution about BSON: ObjectId in MongoDB is an equivalent to ObjectID in
MongoDB Native Node.js Driver (i.e., make sure to use the proper case). Otherwise
you’ll get an error. More on the types: ObjectId in MongoDB (http://www.mongodb.org/
display/DOCS/Object+IDs) vs Data Types in MongoDB Native Node.js Drier
(https://github.com/mongodb/node-mongodb-native/#data-types). Example
of Node.js code with mongodb.ObjectID(): collection.findOne({_id: new
ObjectID(idString)}, console.log) // ok. On the other hand, in the MongoDB
shell, we employ: db.messages.findOne({_id:ObjectId(idStr)});.

MongoDB Native Driver
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnqZSk.

We’ll use Node.js Native Driver for MongoDB (https://github.com/christkv/
node-mongodb-native) to access MongoDB from Node.js applications. Full
documentation is also available at http://mongodb.github.com/node-mongodb-native/
api-generated/db.html.

www.it-ebooks.info

https://gum.co/mongodb/fsjs-CB07C579
https://gumroad.com/l/mongodb/fsjs-CB07C579
https://github.com/azat-co/cheatsheets/tree/master/mongodb-mongoose
https://github.com/mongodb/node-mongodb-native/#data-types
http://www.mongodb.org/display/DOCS/Overview+-+The+MongoDB+Interactive+Shell
https://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell/
https://docs.mongodb.org/manual/tutorial/getting-started-with-the-mongo-shell/
http://www.mongodb.org/display/DOCS/Object+IDs
http://www.mongodb.org/display/DOCS/Object%2bIDs
http://www.mongodb.org/display/DOCS/Object%2bIDs
https://github.com/mongodb/node-mongodb-native/#data-types
https://github.com/mongodb/node-mongodb-native/#data-types
http://bit.ly/1QnqZSk
https://github.com/christkv/node-mongodb-native
https://github.com/christkv/node-mongodb-native
http://mongodb.github.com/node-mongodb-native/api-generated/db.html
http://mongodb.github.com/node-mongodb-native/api-generated/db.html
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

158

To install MongoDB Native driver for Node.js, use:

$ npm install mongodb

More details are at http://www.mongodb.org/display/DOCS/node.JS.
Don’t forget to include the dependency in the package.json file as well:

{
 "name": "node-example",
 "version": "0.0.1",
 "dependencies": {
 "mongodb":"",
 ...
 },
 "engines": {
 "node": ">=0.6.x"
 }
}

Alternatively, for your own development you could use other mappers, which are
available as an extension of the Native Driver:

• Mongoskin (https://github.com/guileen/node-mongoskin): a
future layer for node-mongodb-native

• Mongoose (http://mongoosejs.com/): an asynchronous
JavaScript driver with optional support for modeling

• Mongolia (https://github.com/masylum/mongolia): a
lightweight MongoDB ORM/driver wrapper

• Monk (https://github.com/Automattic/monk): a tiny layer
that provides simple yet substantial usability improvements for
MongoDB usage within Node.js

This small example will test if we can connect to local MongoDB instance from a
Node.js script.

After we install the library, we can include the mongodb library in our app.js file:

var util = require('util')
var mongodb = require ('mongodb')

This is one of the ways to establish connection to the MongoDB server in which the
db variable will hold reference to the database at a specified host and port:

var Db = mongodb.Db
var Connection = mongodb.Connection
var Server = mongodb.Server
var host = '127.0.0.1'
var port = 27017

var db=new Db ('test', new Server(host,port, {}))

www.it-ebooks.info

http://www.mongodb.org/display/DOCS/node.JS
https://github.com/guileen/node-mongoskin
https://github.com/guileen/node-mongoskin
http://mongoosejs.com/
http://mongoosejs.com/
https://github.com/masylum/mongolia
https://github.com/masylum/mongolia
https://github.com/LearnBoost/monk
https://github.com/Automattic/monk
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

159

To actually open a connection:

db.open(function(error, connection){
 // Do something with the database here
 db.close()
})

To check that we have the connection, we need to handle error. Also, let’s get the
admin object with db.admin() and fetch the list of databases with listDatabases():

var db=new Db ('test', new Server(host, port, {}))
db.open(function(error, connection){
 console.log('error: ', error)
 var adminDb = db.admin()
 adminDb.listDatabases(function(error, dbs) {
 console.log('error: ', error)

console.log('databases: ', dbs.databases)
 db.close()
 })
})

This code snippet is available at https://github.com/mongodb/node-mongodb-
native/#data-types. If we run it, it should output “connected” in the terminal. When
you’re in doubt and need to check the properties of an object, there is a useful method in
the util module:

console.log(util.inspect(db))

Now you might want to set up the database in the cloud and test the connection from
your Node.js script.

MongoDB on Heroku: MongoLab
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1Qnr8Fn.

After you made your application that displays ‘connected’ work locally, it’s time to
slightly modify it and deploy to the platform as a service (i.e., Heroku).

We recommend using the MongoLab add-on (https://elements.heroku.com/
addons/mongolab). MongoLab add-on provides a browser-based GUI to look up and
manipulate the data and collections. More information is available at https://elements.
heroku.com/addons/mongolab#docs.

■ Note  You might have to provide your credit card information to use MongoLab even if
you select the free version. You should not be charged, though.

www.it-ebooks.info

https://github.com/mongodb/node-mongodb- native/#data-types
https://github.com/mongodb/node-mongodb- native/#data-types
http://bit.ly/1Qnr8Fn
https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab
https://elements.heroku.com/addons/mongolab#docs
https://elements.heroku.com/addons/mongolab#docs
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

160

In order to connect to the database server, there is a database connection URL
(a.k.a. MongoLab URL/URI), which is a way to transfer all of the necessary information to
make a connection to the database in one string.

The database connection string MONGOLAB_URI has the following format:

mongodb://user:pass@server_NAME.mongolab.com:PORT/db_name

You could either copy the MongoLab URL string from the Heroku web site
(and hard-code it) or get the string from the Node.js process.env object:

process.env.MONGOLAB_URI

or

var connectionUri = url.parse(process.env.MONGOLAB_URI)

The global object process gives access to environment variables via process.env.
Those variables conventionally used to pass database host names and ports, passwords,
API keys, port numbers, and other system information that shouldn’t be hard-coded into
the main logic.

To make our code work both locally and on Heroku, we can use the logical OR
operator || and assign a local host and port if environment variables are undefined:

var port = process.env.PORT || 1337
var dbConnUrl = process.env.MONGOLAB_URI ||
 'mongodb://127.0.0.1:27017/test'

Here is our updated cross-environment ready app.js file (https://github.com/
azat-co/fullstack-javascript/tree/master/10-db-connect-heroku). I added a
method to get the list of collections listCollections instead of getting the list of the
databases (we have only one database in MongoLab right now):

var util = require('util')
var url = require('url')
var client = require ('mongodb').MongoClient

var dbConnUrl = process.env.MONGOLAB_URI ||
 'mongodb://127.0.0.1:27017/test'

console.log('db server: ', dbConnUrl)

client.connect(dbConnUrl, {}, function(error, db){
 console.log('error: ', error)
 db.listCollections().toArray(function(err, collections) {
 console.log('error: ', error)

console.log('collections: ', collections)
 db.close()
 })
})

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/10-db-connect-heroku
https://github.com/azat-co/fullstack-javascript/tree/master/10-db-connect-heroku
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

161

Following the modification of app.js by addition of MONGOLAB_URI, we can now
initialize Git repository, create a Heroku app, add the MongoLab add-on to it, and deploy
the app with Git.

Utilize the same steps as in the previous examples to create a new git repository:

$ git init
$ git add .
$ git commit -am 'initial commit'

Create the Cedar stack Heroku app:

$ heroku create

If everything went well you should be able to see a message that tell you the new
Heroku app name (and URL) along with a message that remote was added. Having
remote in your local git is crucial; you can always check a list of remote by:

$ git remote show

To install free MongoLab on the existing Heroku app (add-ons work on a per app
basis), use:

$ heroku addons:create mongolab:sandbox

Or log on to Heroku (https://elements.heroku.com/addons/mongolab) with your
Heroku credentials and choose MongoLab Free for that particular Heroku app, if you
know the name of that app.

The project folder needs to have Procfile and package.json. You can copy them
from https://github.com/azat-co/fullstack-javascript/tree/master/10-db-
connect-heroku.

Now you can push you code to Heroku with:

$ git push heroku master

Enjoy the the log that should tell you that the deploy was successful. Now see the
output with this command:

$ heroku logs

The result will be something like this:

2015-12-01T12:34:51.438633+00:00 app[web.1]: db server:
mongodb://heroku_cxgh54g6:9d76gspc45v899i44sm6bn790c@ds035617.mongolab.com:
34457/heroku_cxgh54g6
2015-12-01T12:34:53.264530+00:00 app[web.1]: error: null
2015-12-01T12:34:53.236398+00:00 app[web.1]: error: null

www.it-ebooks.info

https://elements.heroku.com/addons/mongolab
https://github.com/azat-co/fullstack-javascript/tree/master/10-db-connect-heroku
https://github.com/azat-co/fullstack-javascript/tree/master/10-db-connect-heroku
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

162

2015-12-01T12:34:53.271775+00:00 app[web.1]: collections: [{ name:
'system.indexes', options: {} },
2015-12-01T12:34:53.271778+00:00 app[web.1]: { name: 'test', options: {
autoIndexId: true } }]

If you get app.js and modified app.js files working, let’s enhance by adding a HTTP
server, so the ‘connected’ message will be displayed in the browser instead of the terminal
window. To do so, we’ll wrap the server object instantiation in a database connection
callback (file 11-db-server/app.js at https://github.com/azat-co/fullstack-
javascript/blob/master/11-db/app.js).

Supplemental video which walks you through the implementation and demonstrates
the project:

http://bit.ly/1Qnrmwr.
var util = require('util')
var url = require('url')
var http = require('http')
var mongodb = require ('mongodb')
var client = require ('mongodb').MongoClient

var port = process.env.PORT || 1337
var dbConnUrl = process.env.MONGOLAB_URI || 'mongodb://@127.0.0.1:27017/test'

client.connect(dbConnUrl, {}, function(error, db) {
 console.log('error: ', error)
 db.listCollections().toArray(function(error, collections) {
 console.log('error: ', error)

console.log('collections: ', collections)
�var server = http.createServer(function (request, response) {
// Creates server
�response.writeHead(200, {'Content-Type': 'text/plain'})
// Sets the right header and status code
�response.end(util.inspect(collections)) // Outputs string with
line end symbol

})
server.listen(port, function() {

�console.log('Server is running at %s:%s ', server.address().
address, server.address().port) // Sets port and IP address of
the server

})
 db.close()
 })
})

The final Heroku-deployment-ready project is located at https://github.com/
azat-co/fullstack-javascript/tree/master/11-db-serverunder.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/11-db/app.js
https://github.com/azat-co/fullstack-javascript/blob/master/11-db/app.js
http://bit.ly/1Qnrmwr
https://github.com/azat-co/fullstack-javascript/tree/master/11-db-serverunder
https://github.com/azat-co/fullstack-javascript/tree/master/11-db-serverunder
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

163

After the deployment you should be able to open the URL provided by Heroku and
see the list of collections. If it’s a newly created app with an empty database, there would
be no collections. You can create a collection using the MongoLab web interface in
Heroku.

For more information on the native MongoDB driver, check out http://mongodb.
github.io/node-mongodb-native/api-articles/nodekoarticle1.html

Message Board: MongoDB Version
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnsfoE.

We should have everything set up for writing the Node.js application that will work
both locally and on Heroku. The source code is available at https://github.com/azat-
co/fullstack-javascript/tree/master/12-board-api-mongonder. The structure of the
application is simple:

/12-board-api-mongo
-web.js
-Procfile
-package.json

This is what web.js looks like; first we include our libraries:

var http = require('http')
var util = require('util')
var querystring = require('querystring')
var client = require('mongodb').MongoClient

Then put out a magic string to connect to MongoDB:

var uri = process.env.MONGOLAB_URI || 'mongodb://@127.0.0.1:27017/messages'

■ Note T he URI/URL format contains the optional database name in which our collection
will be stored. Feel free to change it to something else: for example, ‘rpjs’ or ‘test’.

We put all the logic inside of an open connection in the form of a callback function:

client.connect(uri, function(error, db) {
 if (error) return console.error(error)

We are getting the collection with the next statement:

var collection = db.collection('messages')

www.it-ebooks.info

http://mongodb.github.io/node-mongodb-native/api-articles/nodekoarticle1.html
http://mongodb.github.io/node-mongodb-native/api-articles/nodekoarticle1.html
http://bit.ly/1QnsfoE
https://github.com/azat-co/fullstack-javascript/tree/master/12-board-api-mongonder
https://github.com/azat-co/fullstack-javascript/tree/master/12-board-api-mongonder
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

164

Now we can instantiate the server and set up logic to process our endpoints/routes.
We need to fetch the documents on GET /messages/list.json:

 var app = http.createServer(function (request, response) {
�if (request.method === 'GET' && request.url ===
'/messages/list.json') {

collection.find().toArray(function(error,results) {
response.writeHead(200,{ 'Content-Type': 'text/plain'})
console.dir(results)
response.end(JSON.stringify(results))

})

On the POST /messages/create.json, we inserting the document:

�} else if (request.method === 'POST' && request.url ===
'/messages/create.json') {

request.on('data', function(data) {
�collection.insert(querystring.parse(data.toString('utf-8')),
{safe:true}, function(error, obj) {

if (error) throw error
response.end(JSON.stringify(obj))

})
})

} else {

This will be shown in the event that the client request is not matching any of the
conditions above. This is a good reminder for us when we try to go to the
http://localhost:1337 instead of http://localhost:1337/messages/list.json:

�response.end('Supported endpoints: \n/messages/list.json\n/
messages/create.json')

}
 })
 var port = process.env.PORT || 1337
 app.listen(port)
})

■ Note  We don’t have to use additional words after the collection/entity name; that is,
instead of /messages/list.json and /messages/create.json it’s perfectly fine to have
just /messages for all the HTTP methods such as GET, POST, PUT, DELETE. If you change
them in your application code make sure to use the updated CURL commands and
front-end code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

165

To test via CURL terminal commands run:

$ curl http://localhost:5000/messages/list.json

Or open your browser at the http://locahost:1337/messages/list.json location.
It should give you an empty array: [], which is fine. Then POST a new message:

$ curl -d "username=BOB&message=test" http://localhost:5000/messages/
create.json

Now we must see a response containing an ObjectID of a newly created
element, for example: [{"username":"BOB","message":"test","_id":"51edc
ad45862430000000001"}]. Your ObjectId might vary.

If everything works as it should locally, try to deploy it to Heroku.
To test the application on Heroku, you could use the same CURL commands

(http://curl.haxx.se/docs/manpage.html), substituting http://localhost/ or
“http://127.0.0.1” with your unique Heroku app’s host/URL:

$ curl http://your-app-name.herokuapp.com/messages/list.json
$ curl -d "username=BOB&message=test"
 http://your-app-name.herokuapp.com/messages/create.json

It’s also nice to double check the database either via Mongo shell: $ mongo terminal
command and then use twitter-clone and db.messages.find(); or via MongoHub
(https://github.com/bububa/MongoHub-Mac), mongoui (https://github.com/azat-co/
mongoui), mongo-express(https://github.com/andzdroid/mongo-express) or in case of
MongoLab through its web interface accessible at the heroku.com web site.

If you would like to use another domain name instead of http://your-app-name.
herokuapp.com, you’ll need to do two things:

1.	 Tell Heroku your domain name:

$ heroku domains:add www.your-domain-name.com

2.	 Add the CNAME DNS record in your DNS manager to point to
http://your-app-name.herokuapp.com.

More information on custom domains can be found at devcenter.heroku.com/
articles/custom-domains

■ Tip  For more productive and efficient development we should automate as much as
possible; that is, use tests instead of CURL commands. There is an article on the Mocha
library in the BONUS chapter that, along with the superagent or request libraries, is a
timesaver for such tasks.

www.it-ebooks.info

http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://127.0.0.1/
http://your-app-name.herokuapp.com/messages/list.json
http://your-app-name.herokuapp.com/messages/create.json
https://github.com/bububa/MongoHub-Mac
https://github.com/azat-co/mongoui
https://github.com/azat-co/mongoui
https://github.com/andzdroid/mongo-express
http://your-app-name.herokuapp.com/
http://your-app-name.herokuapp.com/
http://www.your-domain-name.com/
http://your-app-name.herokuapp.com/
https://devcenter.heroku.com/articles/custom-domains
https://devcenter.heroku.com/articles/custom-domains
http://www.it-ebooks.info/

Chapter 7 ■ Intro to MongoDB

166

Summary
In this chapter we’ve covered the MongoDB database and its shell. MongoDB uses an
extended version of JSON, which is called BSON. Then we switched to Node.js with the
native MongoDB driver. Many other MongoDB Node.js libraries depend on the native
driver and build on top of it. For this reason, it’s good to know it. To use MongoDB on
Heroku, we utilized MongoLab add-on (the magical MONGOLAB_URI). Finally, we use the
acquired knowledge to add persistence to the Message Boards application.

www.it-ebooks.info

http://www.it-ebooks.info/

167

Chapter 8

Putting It All Together

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not
smart enough to debug it.

—Brian W. Kernighan

In this chapter, we’ll cover:

• Adding CORS for Different Domain Deployment

• Message Board UI

• Message Board API

• Deployment to Heroku

• Same Domain Deployment Server

• Deployment to Amazon Web Services

Now, it would be good if we could put our front-end and back-end applications so
they could work together. There are a few ways to do it:

• Different domains (Heroku apps) for front-end and back-end
apps: make sure there are no cross-domain issues by using CORS
or JSONP. This approach is covered in detail later.

• Same domain deployment: make sure Node.js process
static resources and assets for front-end application—not
recommended for serious production applications.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Brian_Kernighan
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

168

Adding CORS for Different Domain Deployment
This is, so far, the best practice for the production environment. Back-end applications
are usually deployed at the http://app. or http://api. subdomains.

One way to make a different domain deployment work is to overcome the
same-domain limitation of AJAX technology with JSONP:

var request = $.ajax({
 url: url,
 dataType: 'jsonp',
 data: {...},
 jsonpCallback: 'fetchData,
 type: 'GET'
})

The other, and better, way to do it is to add the OPTIONS method, and special headers,
which are called cross-origin resource sharing or CORS (https://en.wikipedia.org/
wiki/Cross-origin_resource_sharing), to the Node.js server app before the output:

 ...
 response.writeHead(200,{
 'Access-Control-Allow-Origin': origin,
 'Content-Type':'text/plain',
 'Content-Length':body.length
 })
 ...

or

 ...
 res.writeHead(200, {
 'Access-Control-Allow-Origin', 'your-domain-name',
 ...
 })
 ...

The need for the OPTIONS method is outlined in HTTP access control (https://
developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS). The OPTIONS
request can be dealt with in the following manner:

 ...
 if (request.method=="OPTIONS") {
 response.writeHead("204", "No Content", {
 "Access-Control-Allow-Origin": origin,
 "Access-Control-Allow-Methods":

"GET, POST, PUT, DELETE, OPTIONS",

www.it-ebooks.info

http://app/
http://api/
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://developer.mozilla.org/en-US/docs/HTTP_access_control
https://developer.mozilla.org/en-US/docs/HTTP_access_control
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

169

 "Access-Control-Allow-Headers": "content-type, accept",
 "Access-Control-Max-Age": 10, // Seconds.
 "Content-Length": 0
 })
 response.end();
 };
 ...

Message Board UI
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnsvEb.

Our front-end application used Parse.com as a replacement for a back-end
application. Now we can switch to our own back end replacing the endpoints along with a
few other painless changes. Let me walk you through them.

In the beginning of the app.js file, uncomment the first line for running locally, or
replace the URL values with your Heroku or Windows Azure back-end application public
URLs:

// var URL = 'http://localhost:1337/'
var URL ='http://your-app-name.herokuapp.com/'

Most of the code in app.js and the folder structure remained intact from the
06-board-backbone-parse-sdk project, with the exception of replacing Parse.com
models and collections with original Backbone.js ones. So go ahead and type or copy the
RequireJS block for loading of the dependencies (templates in this case):

require([
 'libs/text!header.html',
 'libs/text!home.html',
 'libs/text!footer.html'],
 function (

headerTpl,
homeTpl,
footerTpl) {

The ApplicationRouter, HeaderView, and FooterView are the same as in the
06-board-backbone-parse-sdk project so I won’t list them here again.

www.it-ebooks.info

http://bit.ly/1QnsvEb
http://your-app-name.herokuapp.com/
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

170

We need to change the the model and collection to this from using Parse.Object
and Parse.Collection. Those are the places where Backbone.js looks up for REST API
URLs corresponding to the specific collection and model:

 Message = Backbone.Model.extend({
url: URL + 'messages/create.json'

 })
 MessageBoard = Backbone.Collection.extend ({

model: Message,
url: URL + 'messages/list.json'

 })

Next is the HomeView where most of the logic resides. I made a few enhancements
to the rendering process, which is a good illustration of what you can do with events in
Backbone. First, create the view and define the element selector, template (loaded via
RequireJS and text plug-in), and event for the SEND button:

 HomeView = Backbone.View.extend({
el: '#content',
template: homeTpl,
events: {

'click #send': 'saveMessage'
},

Now, in the constructor of the view set the homeView to this so we can use this later
by the name inside of the closures (otherwise, this can mutate inside of the closures):

initialize: function() {
var homeView = this

Then, I attached an event listener refresh that will do the rendering. Prior to that we
had the all event, which wasn’t very good, because it triggered re-rendering the addition
of each message. You see, fetch will trigger add as many times as there are messages (10,
100, 1000, etc.) and if we use all event listener, add is part of all. While with this custom
event refresh we can trigger rendering in the appropriate places (you’ll see them later).

homeView.collection = new MessageBoard()
homeView.collection.bind('refresh', homeView.render, homeView)
homeView.collection.fetch({

The fetch method will perform GET XHR request and it has success and error
callbacks:

success: function(collection, response, options){
console.log('Fetched ', collection)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

171

The next line will trigger rendering only after all the messages are in the collection
(and came from the server response):

collection.trigger('refresh')
},
error: function(){

console.error('Error fetching messages')
}

})

This event listener will be triggered by the SEND button as well as by the fetch.
To avoid persisting existing records with message.save(), we add the check for the
message.attributes._id. In other words, if this an existing message and it comes from
the server (fetch), then it will have _id and we stop the execution flow. Otherwise, we
persist the message and trigger rendering on success:

homeView.collection.on('add', function(message) {
if (message.attributes._id) return false
message.save(null, {

success: function(message) {
homeView.collection.trigger('refresh')
console.log('Saved ', message)

},
error: function(message) {

console.log('error')
}

})
})

},

The rest of the HomeView object is the same as in the 06-board-parse-sdk project. In
the saveMessage we get the values of the username and the message text and add the new
message object to the collection with collection.add(). This will call the event listener
add, which we implemented in the initialize.

saveMessage: function(){
var newMessageForm = $('#new-message')
var username = newMessageForm.find('[name="username"]').val()
var message = newMessageForm.find('[name="message"]').val()
this.collection.add({

'username': username,
'message': message
})

},

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

172

Last, we write or copy the render method that takes the template and the collection,
then injects the resulting HTML into the element with ID content (this.el):

render: function() {
console.log('Home view rendered')
$(this.el).html(_.template(this.template)(this.collection))

}
 })

 app = new ApplicationRouter()
 Backbone.history.start()
})

Here is the full source code of the 13-board-ui/app.js file (https://github.com/
azat-co/fullstack-javascript/blob/master/13-board-ui/app.js):

var URL = 'http://localhost:1337/'
// var URL ='http://your-app-name.herokuapp.com/'

require([
 'libs/text!header.html',
 'libs/text!home.html',
 'libs/text!footer.html'],
 function (

headerTpl,
homeTpl,
footerTpl) {

 var ApplicationRouter = Backbone.Router.extend({
routes: {

'': 'home',
'*actions': 'home'

},
initialize: function() {

this.headerView = new HeaderView()
this.headerView.render()
this.footerView = new FooterView()
this.footerView.render()

},
home: function() {

this.homeView = new HomeView()
this.homeView.render()

}
 })

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/blob/master/13-board-ui/app.js
https://github.com/azat-co/fullstack-javascript/blob/master/13-board-ui/app.js
https://github.com/azat-co/fullstack-javascript/blob/master/13-board-ui/app.js
http://localhost:1337/
http://your-app-name.herokuapp.com/
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

173

 HeaderView = Backbone.View.extend({
el: '#header',
templateFileName: 'header.html',
template: headerTpl,
initialize: function() {
},
render: function() {

$(this.el).html(_.template(this.template))
}

 })

 FooterView = Backbone.View.extend({
el: '#footer',
template: footerTpl,
render: function() {

this.$el.html(_.template(this.template))
}

 })
 Message = Backbone.Model.extend({

url: URL + 'messages/create.json'
 })
 MessageBoard = Backbone.Collection.extend ({

model: Message,
url: URL + 'messages/list.json'

 })

 HomeView = Backbone.View.extend({
el: '#content',
template: homeTpl,
events: {

'click #send': 'saveMessage'
},

initialize: function() {
this.collection = new MessageBoard()
this.collection.bind('all', this.render, this)
this.collection.fetch()
this.collection.on('add', function(message) {

message.save(null, {
success: function(message) {

console.log('saved ' + message)
},
error: function(message) {

console.log('error')
}

})

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

174

console.log('saved' + message)
})

},
saveMessage: function(){

var newMessageForm=$('#new-message')
var username=newMessageForm.find('[name="username"]').val()
var message=newMessageForm.find('[name="message"]').val()
this.collection.add({

'username': username,
'message': message
})

},
render: function() {

console.log(this.collection)
$(this.el).html(_.template(this.template, this.collection))

}
 })

 app = new ApplicationRouter()
 Backbone.history.start()
})

This is it. For your reference, the front-end app source code is at https://github.com/
azat-co/fullstack-javascript/tree/master/13-board-u in the GitHub folder. I won’t
list it here because we had only a few changes comparing with the Parse SDK project.
The next piece of the puzzle is the back end.

Message Board API
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnsvEb.

The back-end Node.js application source code is at https://github.com/azat-co/
fullstack-javascript/tree/master/14-board-api in the GitHub folder, which has this
structure:

/14-board-api
-web.js
-Procfile
-package.json

The Procfile is for the Heroku deployment, and the package.json is for project
metadata as well as for Hekoru deployment.

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/13-board-ui
https://github.com/azat-co/fullstack-javascript/tree/master/13-board-ui
http://bit.ly/1QnsvEb
https://github.com/azat-co/fullstack-javascript/tree/master/14-board-api
https://github.com/azat-co/fullstack-javascript/tree/master/14-board-api
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

175

The web.js file is very similar to the 12-board-api-mongo, but has CORS headers
and OPTIONS request handler code. The file starts with importation of dependencies:

var http = require('http')
var util = require('util')
var querystring = require('querystring')
var client = require('mongodb').MongoClient

Then we set the MongoDB connection string:

var uri = process.env.MONGOLAB_URI || 'mongodb://@127.0.0.1:27017/messages'
//MONGOLAB_URI=mongodb://user:pass@server.mongohq.com:port/db_name

We connect to the database using the string and client.connect method. It’s
important to handle the error and finish the execution flow with return if there’s an error:

client.connect(uri, function(error, db) {
 if (error) return console.error(error)

After we are sure that there were no errors (otherwise the execution flow won’t come
to the next line), we select the collection, which is messages in this case:

 var collection = db.collection('messages')

The server code follows. We create the server instance and set up the origin variable
based on the information from the request. This value will be in the Access-Control-
Allow-Origin. The idea is that the response will have the value of the client’s URL:

 var app = http.createServer(function (request, response) {
 var origin = (request.headers.origin || '*')

Check for the HTTP method verb. If it’s OPTIONS, which we must implement for
CORS, we start writing headers to the response object:

 if (request.method == 'OPTIONS') {
 response.writeHead('204', 'No Content', {

'Access-Control-Allow-Origin': origin,

The next header will tell what methods are supported:

'Access-Control-Allow-Methods':
'GET, POST, PUT, DELETE, OPTIONS',

'Access-Control-Allow-Headers': 'content-type, accept',
'Access-Control-Max-Age': 10, // In seconds
'Content-Length': 0

 })
 response.end()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

176

We are done with OPTIONS, but we still need to implement GET and POST:

 �} else if (request.method === 'GET' && request.url ===
'/messages/list.json') {

 collection.find().toArray(function(error,results) {
if (error) return console.error(error)
var body = JSON.stringify(results)

We need to add a few headers to the response of the GET:

response.writeHead(200,{
'Access-Control-Allow-Origin': origin,
'Content-Type': 'text/plain',
'Content-Length': body.length

})
console.log('LIST OF OBJECTS: ')
console.dir(results)
response.end(body)

 })

Last but not least, we process POST:

 �} else if (request.method === 'POST' && request.url ===
'/messages/create.json') {

 request.on('data', function(data) {
console.log('RECEIVED DATA:')
console.log(data.toString('utf-8'))

We need to parse data to get the object so later we can save it into the database.
The next line often causes bugs because front-end apps send data in one format and
the server parses another. Please make sure to use the same format on the browser and
server:

collection.insert(JSON.parse(data.toString('utf-8')),
{safe:true}, function(error, obj) {
if (error) return console.error(error)
console.log('OBJECT IS SAVED: ')
console.log(JSON.stringify(obj))
var body = JSON.stringify(obj)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

177

We add the headers again. Maybe we should write a function and call it instead of
writing the headers manually. Wait? Express.js is actually will do some of it for us but it’s a
topic of another book:

response.writeHead(200,{
'Access-Control-Allow-Origin': origin,
'Content-Type': 'text/plain',
'Content-Length': body.length

})
response.end(body)

})
 })
 }
 })
 var port = process.env.PORT || 1337
 app.listen(port)
})

Here is a source code of web.js, our Node.js application implemented with CORS
headers:

var http = require('http')
var util = require('util')
var querystring = require('querystring')
var client = require('mongodb').MongoClient

var uri = process.env.MONGOLAB_URI || 'mongodb://@127.0.0.1:27017/messages'
//MONGOLAB_URI = mongodb://user:pass@server.mongohq.com:port/db_name

client.connect(uri, function(error, db) {
 if (error) return console.error(error)
 var collection = db.collection('messages')
 var app = http.createServer(function (request, response) {
 var origin = (request.headers.origin || '*')
 if (request.method == 'OPTIONS') {
 response.writeHead('204', 'No Content', {

'Access-Control-Allow-Origin': origin,
'Access-Control-Allow-Methods':
'GET, POST, PUT, DELETE, OPTIONS',

'Access-Control-Allow-Headers': 'content-type, accept',
'Access-Control-Max-Age': 10, // Seconds.
'Content-Length': 0

 })
 response.end()
 �} else if (request.method === 'GET' && request.url ===

'/messages/list.json') {

www.it-ebooks.info

http://proexpressjs.com/
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

178

 collection.find().toArray(function(error,results) {
if (error) return console.error(error)
var body = JSON.stringify(results)
response.writeHead(200,{
'Access-Control-Allow-Origin': origin,
'Content-Type': 'text/plain',
'Content-Length': body.length

})
console.log('LIST OF OBJECTS: ')
console.dir(results)
response.end(body)

 })
 �} else if (request.method === 'POST' && request.url ===

'/messages/create.json') {
 request.on('data', function(data) {

console.log('RECEIVED DATA:')
console.log(data.toString('utf-8'))
collection.insert(JSON.parse(data.toString('utf-8')),
{safe:true}, function(error, obj) {
if (error) return console.error(error)
console.log('OBJECT IS SAVED: ')
console.log(JSON.stringify(obj))
var body = JSON.stringify(obj)
response.writeHead(200,{
'Access-Control-Allow-Origin': origin,
'Content-Type': 'text/plain',
'Content-Length': body.length

})
response.end(body)

})
 })
 }
 })
 var port = process.env.PORT || 1337
 app.listen(port)
})

Deployment to Heroku
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnsvEb.

For your convenience, we have the front-end app at https://github.com/azat-co/
fullstack-javascript/tree/master/13-board-ui and the back-end app with CORS is
located at https://github.com/azat-co/fullstack-javascript/tree/master/
14-board-api. By now, you probably know what to do, but as a reference, below are the
steps to deploy these examples to Heroku.

www.it-ebooks.info

http://bit.ly/1QnsvEb
https://github.com/azat-co/fullstack-javascript/tree/master/13-board-ui
https://github.com/azat-co/fullstack-javascript/tree/master/13-board-ui
https://github.com/azat-co/fullstack-javascript/tree/master/14-board-api
https://github.com/azat-co/fullstack-javascript/tree/master/14-board-api
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

179

We’ll start with the API. In the 14-board-api folder, execute the following code
($ heroku login is optional):

$ git init
$ git add .
$ git commit -am "first commit"
$ heroku login
$ heroku create
$ heroku addons:create mongolab:sandbox
$ git push heroku master

Watch the terminal messages. If the API is successfully deployed, you can test
it with CURL or Postman. Then copy the URL from Heroku (e.g., https://guarded-
waters-1780.herokuapp.com), and paste it into the 13-board-ui/app.js file, assigning
the value to the URL variable. Then, in the 13-board-ui folder, execute:

$ git init
$ git add .
$ git commit -am "first commit"
$ heroku create
$ git push heroku master
$ heroku open

That’s it. By now you should be able to see Message Board running in the cloud with
UI (browser app) on one domain and API on another. In high-trafficked apps, the API
will be hiding behind a load balancer so you can have multiple API servers on a single
IP/URL. This way they’ll hande more traffic and the system will become more resilient.
You can take out, restart, or deploy on APIs one at a time with zero down time.

Same Domain Deployment Server
Supplemental video which walks you through the implementation and demonstrates the
project: http://bit.ly/1QnsvEb.

Same domain deployment is not recommended for serious production applications,
because static assets are better served with web servers like Nginx (not Node.js I/O
engine), and separating API makes for less complicated testing, increased robustness,
and quicker troubleshooting/monitoring. However, the same app/domain approach
could be used for staging, testing, development environments, and/or tiny apps.

The idea is that API serves static files for the browser app as well, not just handling
dynamic requests to its routes. So you can copy the 14-board-api code into a new folder
15-board-web. The beginning of the new server file is the same; we have GET and POST
logic (this time CORS is not needed). The last condition in the chain of if/else needs to
process the static files. Here’s how we can do it.

...
 } else {

www.it-ebooks.info

https://guarded-waters-1780.herokuapp.com/
https://guarded-waters-1780.herokuapp.com/
http://bit.ly/1QnsvEb
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

180

We use the url v0.11.0 module from https://github.com/defunctzombie/node-url
to parse the path name from the URL. The path name is everything after the domain; for
example, in http://webapplog.com/es6 the path name is /es6. This will be our folder
and file names.

 var uri = url.parse(request.url).pathname

It’s good to have some logging to know that our system is working as it should:

 console.log('Processing path: ', uri)

The next line deals with the root URI; that is, when you go to the web site and the
path is empty or a slash. In this case, let’s serve the index.html (if it exists):

 if (uri == '' || uri == '/') uri = 'index.html'

The path.join() method will make this code cross-platform by creating a string
with the proper slashes depending on the OS: that is, \ or / as separator. You can see the
resulting path and file name in the logs:

 filename = path.join(__dirname, staticFolder, uri)
 console.log('Processing file: ', filename)

I always say never use synchronous functions in Node.js, unless you have to. This is
such a case. Without the synch methods, we’ll get racing conditions on our files meaning
some will load faster than the others and cause conflicts:

 stats = fs.statSync(filename)
 if (error) {

console.error(error)

Obviously, if the file doesn’t exist we want to send 404 Not Found:

response.writeHead(404, {
'Content-Type': 'text/plain'})

response.write('404 Not Found\n')
return response.end()

 }

Let’s make sure the requested resource is the file. If it’s not the file, you can
implement adding index.html as we did for the root. I don’t have this code here. Our
front-end app only needs to include files so this code will serve the files!

 if(!stats.isFile()) {
response.writeHead(404, {
'Content-Type': 'text/plain'})

response.write('404 Not Found\n')
return response.end()

 } else {

www.it-ebooks.info

https://github.com/defunctzombie/node-url
https://github.com/defunctzombie/node-url
http://webapplog.com/es6
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

181

Finally, we read the file. We use the synchronous function again for the reasons
mentioned above.

var file = fs.readFileSync(filename)
if (!file) {
response.writeHead(500,
{'Content-Type': 'text/plain'})

response.write(err + '\n')
return response.end()

}

I know that Douglas Crockford dislikes switch, but we’ll use it here to determine the
right content type for the response header. Most browsers will understand the content
type okay if you omit the Content-Type header, but why not go an extra mile?

var extname = path.extname(filename)
var contentType = 'text/html'
switch (extname) {

case '.js':
contentType = 'text/javascript'
break

case '.css':
contentType = 'text/css'
break

case '.json':
contentType = 'application/json'
break

case '.png':
contentType = 'image/png'
break

case '.jpg':
case '.jpeg':

contentType = 'image/jpg'
break

case '.wav':
contentType = 'audio/wav'
break

}
response.writeHead(200, {
'Content-Type': contentType,

Another header that we send back with the response is Content-Length:

'Content-Length': file.length
})
response.end(file)

 }
 }
...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

182

So this piece of code goes into the request handler of the server, which is inside of
the database connect call. Just like the Russian Matreshka dolls. Confusing? Just refer to
the full source code at https://github.com/azat-co/fullstack-javascript/tree/
master/15-board-web.

Another, more elegant way is to use Node.js frameworks as Connect
(http://www.senchalabs.org/connect/static.html), or Express
(http://expressjs.com/en/index.html); because there is a special static middleware
for JS and CSS assets. But those frameworks deserve a book on their own.

Now after you mastered basics of Node.js, MongoDB, Backbone.js, and Heroku,
there’s one bonus step to take. Check out the cloud solution Amazon Web Services known
as EC2 (Infrastructure as a Service category of cloud computing).

Deployment to Amazon Web Services
Cloud is eating the world of computing. There are private and public clouds. AWS,
probably the most popular choice among the public cloud offerings, falls under the IaaS
category. The advantages of using an IaaS such as AWS over PaaS-like Heroku are as
follows:

• It’s more configurable (any services, packages, or operation
systems).

• It’s more controllable. There are no restrictions or limitations.

• It’s cheaper to maintain. PaaS can quickly cost a fortune for
high-performance resources.

In this tutorial, we’ll be using 64-bit Amazon Linux AMI with CentOS (http://aws.
amazon.com/amazon-linux-ami/).

Assuming you have your EC2 instance up and running, SSH into it and install all
system updates with yum:

$ sudo yum update

You can try installing Node with yum. It should be available in the Extra Packages for
Enterprise Linux repository (https://fedoraproject.org/wiki/EPEL):

$ sudo yum install nodejs npm --enablerepo=epel

This might take a while. Answer with y as the process goes. In the end, you should
see something like this (your results may vary):

Installed: nodejs.i686 0:0.10.26-1.el6 npm.noarch 0:1.3.6-4.
el6Dependency Installed:...Dependency Updated:...Complete!

You probably know this, but just in case, to check installations, type the following:

$ node –V$ npm –v

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/tree/master/15-board-web
https://github.com/azat-co/fullstack-javascript/tree/master/15-board-web
http://www.senchalabs.org/connect/static.html
http://expressjs.com/en/index.html
http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/
http://aws.amazon.com/amazon-linux-ami/
https://fedoraproject.org/wiki/EPEL
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

183

If the yum Node installation fails, see if you have EPEL (just see if the command
below says epel):

$ yum repolist

If there’s no epel, run:

$ rpm -Uvh http://download-i2.fedoraproject.org/pub/epel/6/i386/epel-
release-6-8.noarch.rpm

Then, try to install both Node.js and NPM again with:

$ sudo yum install nodejs npm --enablerepo=epel

Alternatively, you can compile Node from the source. To do so, install C++ compiler
(again with yum):

$ sudo yum install gcc-c++ make

Same with openSSL:

$ sudo yum install openssl-devel

Then install Git with yum:

$ sudo yum install git

Finally, clone Node repository straight from GitHub:

$ git clone git://github.com/joyent/node.git

And build Node.js:

$ cd node
$ git checkout v0.10.12
$./configure
$ make
$ sudo make install

■ Note  For a different version of Node.js, you can list them all with $ git tag -l and
checkout the one you need.

www.it-ebooks.info

http://download-i2.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
http://download-i2.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

184

To install npm, run:

$ git clone https://github.com/isaacs/npm.git
$ cd npm
$ sudo make install

More information on using yum can be found at the following locations:

• Managing Software with yum (https://www.centos.org/docs/5/
html/yum/)

• Installing Node.js via package managers (https://github.com/
nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-
package-manager)

• Tips on securing your EC2 instance (http://aws.amazon.com/
articles/1233)

Once you have Git and npm and Node, you are good to deploy your code (manually).
Pull the code from the repository. You might need to provide credentials or upload
your SSH keys to the AWS. Then start the Node server with pm2 (https://github.com/
Unitech/pm2) or similar process manager (Figure 8-1). pm2 is good because it has a lot
of features not only to keep the process running but also to scale it; it even has load
balancing.

To install pm2:

$ npm install pm2 -g

To start your application:

$ pm2 start app.js

To list all running processes:

$ pm2 list

Figure 8-1.  pm2 running multiple Node processes

www.it-ebooks.info

https://github.com/isaacs/npm.git
https://www.centos.org/docs/5/html/yum/
https://www.centos.org/docs/5/html/yum/
https://www.centos.org/docs/5/html/yum/
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
https://github.com/nodejs/node-v0.x-archive/wiki/Installing-Node.js-via-package-manager
http://aws.amazon.com/articles/1233
http://aws.amazon.com/articles/1233
http://aws.amazon.com/articles/1233
https://github.com/Unitech/pm2
https://github.com/Unitech/pm2
https://github.com/Unitech/pm2
http://www.it-ebooks.info/

Chapter 8 ■ Putting It All Together

185

That’s pretty much all you need to do. Ideally you want to automate the deployment.
Also, you might want to add some d.init or upstart scripts to launch your pm2 or
another process manager automatically.

Steps for other OS on AWS are similar. You would use their package manager to
install Node, Git, and npm, then get the code (Git or rsync) and launch it with the process
manager. You don’t need the process manager. You can launch with node itself, but it’s
better to use some process manager.

Now, while the Node.js app is running, executing $ netstat -apn | grep 80, the remote
machine should show the process. For example, for a Node app listening on port 80:

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 1064/node

On the EC2 instance, either configure the firewall to redirect connections (e.g., port
to Node.js 3000, but this is too advanced for our example) or disable the firewall (okay for
our quick demonstration and development purposes):

$ service iptables save$ service iptables stop$ chkconfig iptables off

In the AWS console, find your EC2 instance and apply a proper rule to allow for
inbound traffic, for example,

Protocol: TCPPort Range: 80Source: 0.0.0.0/0

And from your local machine, that is, your development computer, you can either
use the public IP or the public DNS (the Domain Name System) domain, which is found
and copied from the AWS console under that instance’s description. For example,

$ curl XXX.XXX.XXX.XXX –v

It’s worth mentioning that AWS supports many other operating systems via its AWS
Marketplace (https://aws.amazon.com/marketplace). Although AWS EC2 is a very
popular and affordable choice, there other alternatives as well: Joyent
(https://www.joyent.com/), Windows Azure (https://azure.microsoft.com/en-us/),
Rackspace Open Cloud (http://www.rackspace.com/cloud), and others.

Summary
This chapter deals with descriptions of different deployment approaches, the final
version of Message Board application, and its deployment with two approaches: different
and the same domains. We covered deployment using the Git and Heroku command-line
interfaces to deploy to PaaS. And we worked through examples of installing and building
a Node.js environment on AWS EC2 and running Node.js apps on AWS with CentOS.

www.it-ebooks.info

https://aws.amazon.com/marketplace
http://www.joyent.com/
https://www.joyent.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://www.rackspace.com/cloud
http://www.rackspace.com/cloud
http://www.it-ebooks.info/

187

Appendix A

Conclusion and Further
Reading

This appendix provides the book’s conclusion, lists of JavaScript blog posts, articles,
e-books, books, and other resources.

Conclusion
We hope you’ve enjoyed this book. It was intended to be small on theory but big on
practice and give you an overview of multiple technologies, frameworks, and techniques
used in modern agile web development. Full Stack JavaScript touched topics such as the
following:

• jQuery, JSON, and AJAX/XHR

• Twitter Bootstrap, CSS, and LESS

• Backbone.js, AMD, and Require.js

• Node.js, REST API, and Parse.com

• MongoDB and BSON

• AWS, Heroku, and MongoLab

If you need in-depth knowledge or references, scroll down to the list of suggested
reading or do a Google search.

Practical aspects included building multiple versions of the Message Board app:

• jQuery + Parse.com JS REST API

• Backbone and Parse.com JS SDK

• Backbone and Node.js

• Backbone and Node.js + MongoDB

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Conclusion and Further Reading

188

The Message Board application has all the foundation of a typical web/mobile
application: fetching data, displaying it, submitting new data. Other examples include:

• jQuery + OpenWeatherMap RESP API

• Parse.com “Save John”

• Node.js “Hello World”

• MongoDB “Print Collections”

• Backbone.js “Hello World”

• Backbone.js “Apple Database”

Please submit a GitHub issue if you have any feedback; comments; suggestions;
or you’ve found typos, bugs, mistakes, or other errata: https://github.com/azat-co/
fullstack-javascript/issues.

Other ways to connect are via: @azat_co (http://twitter.com/azat_co),
http://webapplog.com, http://azat.co.

In case you enjoyed Node.js and want to find out more about building production
web services with Express.js—a de factor standard for Node.js web apps—take a look at
my book Pro Express.js.

Further Reading
Here is a list of resources, courses, books, and blogs for further reading.

JavaScript Resources and Free E-Books
• ES6 Cheatsheet (https://gumroad.com/l/LDwVU/git-1CC81D40)

• MongoDB and Mongoose Cheatsheet
(https://gumroad.com/l/mongodb/git-874e6fb4)

• Express.js 4 Cheatsheet
(https://gumroad.com/l/NQiQ/git-874E6FB4)

• React Cheatsheet
(https://gumroad.com/l/IJRtw/git-FB2C5E22)

• JavaScript For Cats (http://jsforcats.com/): an introduction for
new programmers

• Eloquent JavaScript (http://eloquentjavascript.net/):
a modern introduction to programming

• Superhero.js (http://superherojs.com/): comprehensive
collection of JS resources

• JavaScript Guide (https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide) by Mozilla Developer Network

www.it-ebooks.info

https://github.com/azat-co/fullstack-javascript/issues
https://github.com/azat-co/fullstack-javascript/issues
http://twitter.com/azat_co
http://webapplog.com/
http://azat.co/
http://proexpressjs.com/
https://gum.co/LDwVU/git-1CC81D40
https://gumroad.com/l/LDwVU/git-1CC81D40
https://gum.co/mongodb/git-874e6fb4
https://gumroad.com/l/mongodb/git-874e6fb4
https://gum.co/NQiQ/git-874E6FB4
https://gumroad.com/l/NQiQ/git-874E6FB4
https://gum.co/IJRtw/git-FB2C5E22
https://gumroad.com/l/IJRtw/git-FB2C5E22
http://jsforcats.com/
http://jsforcats.com/
http://eloquentjavascript.net/
http://eloquentjavascript.net/
http://superherojs.com/
http://superherojs.com/
https://developer.mozilla.org/en-US/docs/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
http://www.it-ebooks.info/

Appendix A ■ Conclusion and Further Reading

189

• JavaScript Reference (https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference) by Mozilla Developer Network

• Why Use Closure (http://howtonode.org/why-use-closure):
practical uses of a closure in event-based programming

• Prototypal Inheritance (http://howtonode.org/prototypical-
inheritance): objects with inherited and local properties

• Control Flow in Node (http://howtonode.org/control-flow):
parallel vs. serial flows

• Truthy and Falsey Values (http://docs.nodejitsu.com/
articles/javascript-conventions/what-are-truthy-and-
falsy-values)

• How to Write Asynchronous Code (http://docs.nodejitsu.com/
articles/getting-started/control-flow/how-to-write-
asynchronous-code)

• Smooth CoffeeScript (http://autotelicum.github.io/Smooth-
CoffeeScript/): free interactive HTML5 book and collection of
quick references and other goodies

• Developing Backbone.js Applications (http://addyosmani.
com/backbone-fundamentals/): free early release book By Addy
Osmani and O’Reilly

• Step by step from jQuery to Backbone (https://github.com/
kjbekkelund/writings/blob/master/published/
understanding-backbone.md)

• Open Web Platform Daily Digest (http://daily.w3viewer.com/):
JS daily digest

• DISTILLED HYPE (http://distilledhype.net/): JS blog/newsletter

JavaScript Books
• JavaScript: The Good Parts (http://shop.oreilly.com/

product/9780596517748.do)

• JavaScript: The Definitive Guide (http://www.amazon.com/dp/05
96101996/?tag=stackoverfl08-20)

• Secrets of the JavaScript Ninja (http://www.manning.com/resig/)

• Pro JavaScript Techniques (http://www.amazon.com/dp/1590597
273/?tag=stackoverfl08-20)

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
http://howtonode.org/why-use-closure
http://howtonode.org/why-use-closure
http://howtonode.org/prototypical-inheritance
http://howtonode.org/prototypical-inheritance
http://howtonode.org/prototypical-inheritance
http://howtonode.org/control-flow
http://howtonode.org/control-flow
http://docs.nodejitsu.com/articles/javascript-conventions/what-are-truthy-and-falsy-values
http://docs.nodejitsu.com/articles/javascript-conventions/what-are-truthy-and-falsy-values
http://docs.nodejitsu.com/articles/javascript-conventions/what-are-truthy-and-falsy-values
http://docs.nodejitsu.com/articles/javascript-conventions/what-are-truthy-and-falsy-values
http://docs.nodejitsu.com/articles/getting-started/control-flow/how-to-write-asynchronous-code
http://docs.nodejitsu.com/articles/getting-started/control-flow/how-to-write-asynchronous-code
http://docs.nodejitsu.com/articles/getting-started/control-flow/how-to-write-asynchronous-code
http://docs.nodejitsu.com/articles/getting-started/control-flow/how-to-write-asynchronous-code
http://autotelicum.github.com/Smooth-CoffeeScript/
http://autotelicum.github.io/Smooth-CoffeeScript/
http://autotelicum.github.io/Smooth-CoffeeScript/
http://addyosmani.github.com/backbone-fundamentals/
http://addyosmani.com/backbone-fundamentals/
http://addyosmani.com/backbone-fundamentals/
https://github.com/kjbekkelund/writings/blob/master/published/understanding-backbone.md
https://github.com/kjbekkelund/writings/blob/master/published/understanding-backbone.md
https://github.com/kjbekkelund/writings/blob/master/published/understanding-backbone.md
https://github.com/kjbekkelund/writings/blob/master/published/understanding-backbone.md
http://daily.w3viewer.com/
http://daily.w3viewer.com/
http://distilledhype.com/
http://distilledhype.net/
http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do
http://www.amazon.com/dp/0596101996/?tag=stackoverfl08-20
http://www.amazon.com/dp/0596101996/?tag=stackoverfl08-20
http://www.manning.com/resig/
http://www.amazon.com/dp/1590597273/?tag=stackoverfl08-20
http://www.amazon.com/dp/1590597273/?tag=stackoverfl08-20
http://www.it-ebooks.info/

Appendix A ■ Conclusion and Further Reading

190

Node.js Resources and Free E-Books
• Felix’s Node.js Beginners Guide (http://nodeguide.com/

beginner.html)

• Felix’s Node.js Style Guide (http://nodeguide.com/style.html)

• Felix’s Node.js Convincing the boss guide (http://nodeguide.
com/convincing_the_boss.html)

• Introduction to NPM (http://howtonode.org/
introduction-to-npm)

• NPM Cheatsheet (http://blog.nodejitsu.com/
npm-cheatsheet)

• Interactive Package.json Cheatsheet (http://package.json.
nodejitsu.com)

• Official Node.js Documentation (http://nodejs.org/api)

• Node Guide (http://nodeguide.com)

• Node Tuts (http://nodetuts.com)

• What Is Node? (http://www.amazon.com/What-Is-Node-ebook/
dp/B005ISQ7JC): free Kindle edition

• Mastering Node.js (http://visionmedia.github.com/
masteringnode): open source node ebook

• Mixu’s Node book (http://book.mixu.net): A book about using
Node.js

• Learn Node.js Completely and with Confidence
(http://javascriptissexy.com/learn-node-js-completely-
and-with-confidence): guide to learning JavaScript in 2 weeks

• How to Node (http://howtonode.org): The zen of coding in
node.js

Node.js Books
• The Node Beginner Book (https://leanpub.com/nodebeginner)

• Hands-on Node.js (https://leanpub.com/hands-on-nodejs)

• Backbone Tutorials (https://leanpub.com/backbonetutorials)

• Smashing Node.js (http://www.amazon.com/Smashing-Node-js-
JavaScript-Everywhere-Magazine/dp/1119962595)

• The Node Beginner Book (http://www.nodebeginner.org)

• Hands-on Node.js (http://nodetuts.com/handson-nodejs-
book.html)

www.it-ebooks.info

http://nodeguide.com/beginner.html
http://nodeguide.com/beginner.html
http://nodeguide.com/style.html
http://nodeguide.com/convincing_the_boss.html
http://nodeguide.com/convincing_the_boss.html
http://howtonode.org/introduction-to-npm
http://howtonode.org/introduction-to-npm
http://blog.nodejitsu.com/npm-cheatsheet
http://blog.nodejitsu.com/npm-cheatsheet
http://package.json.nodejitsu.com/
http://package.json.nodejitsu.com/
http://nodejs.org/api
http://nodeguide.com/
http://nodetuts.com/
http://www.amazon.com/What-Is-Node-ebook/dp/B005ISQ7JC
http://www.amazon.com/What-Is-Node-ebook/dp/B005ISQ7JC
http://visionmedia.github.com/masteringnode
http://visionmedia.github.com/masteringnode
http://book.mixu.net/
http://javascriptissexy.com/learn-node-js-completely-and-with-confidence
http://javascriptissexy.com/learn-node-js-completely-and-with-confidence
http://howtonode.org/
https://leanpub.com/nodebeginner
https://leanpub.com/hands-on-nodejs
https://leanpub.com/backbonetutorials
http://www.amazon.com/Smashing-Node-js-JavaScript-Everywhere-Magazine/dp/1119962595
http://www.amazon.com/Smashing-Node-js-JavaScript-Everywhere-Magazine/dp/1119962595
http://www.nodebeginner.org/
http://nodetuts.com/handson-nodejs-book.html
http://nodetuts.com/handson-nodejs-book.html
http://www.it-ebooks.info/

Appendix A ■ Conclusion and Further Reading

191

• Node: Up and Running (http://shop.oreilly.com/
product/0636920015956.do)

• Node.js in Action (http://www.manning.com/cantelon)

• Node: Up and Running (http://www.amazon.com/Node-Running-
Scalable-Server-Side-JavaScript/dp/1449398588): Scalable
Server-Side Code with JavaScript

• Node Web Development (http://www.amazon.com/Node-
Web-Development-David-Herron/dp/184951514X): A practical
introduction to Node

• Node Cookbook (http://www.amazon.com/Node-Cookbook-
David-Mark-Clements/dp/1849517185)

• Pro Express.js (http://proexpressjs.com)

• Practical Node.js (http://practicalnodebook.com)

• Deep Express.js API Reference (http://amzn.to/1xcHanf)

Interactive Online Classes and Courses
• Cody Academy (http://www.codecademy.com): interactive

programming courses

• Programr (http://www.programr.com)

• LearnStreet (http://www.learnstreet.com)

• Treehouse (http://teamtreehouse.com)

• lynda.com (http://www.lynda.com): software, creative and
business courses

• Udacity (https://www.udacity.com): Massive open online courses

• Coursera (https://www.coursera.org)

Startup Books and Blogs
• Hackers & Painters (http://www.amazon.com/Hackers-

Painters-Big-Ideas-Computer/dp/1449389554)

• The Lean Startup (http://theleanstartup.com/book)

• The Startup Owner's Manual (http://www.amazon.com/Startup-
Owners-Manual-Step-Step/dp/0984999302)

• The Entrepreneur's Guide to Customer Development
(http://www.amazon.com/The-Entrepreneurs-Guide-Customer-
Development/dp/0982743602)

• Venture Hacks (http://venturehacks.com)

• Webapplog (http://webapplog.com)

www.it-ebooks.info

http://shop.oreilly.com/product/0636920015956.do
http://shop.oreilly.com/product/0636920015956.do
http://www.manning.com/cantelon
http://www.amazon.com/Node-Running-Scalable-Server-Side-JavaScript/dp/1449398588
http://www.amazon.com/Node-Running-Scalable-Server-Side-JavaScript/dp/1449398588
http://www.amazon.com/Node-Web-Development-David-Herron/dp/184951514X
http://www.amazon.com/Node-Web-Development-David-Herron/dp/184951514X
http://www.amazon.com/Node-Cookbook-David-Mark-Clements/dp/1849517185
http://www.amazon.com/Node-Cookbook-David-Mark-Clements/dp/1849517185
http://proexpressjs.com/
http://practicalnodebook.com/
http://amzn.to/1xcHanf
http://www.codecademy.com/
http://www.programr.com/
http://www.learnstreet.com/
http://teamtreehouse.com/
http://www.lynda.com/
https://www.udacity.com/
https://www.coursera.org/
http://www.amazon.com/Hackers-Painters-Big-Ideas-Computer/dp/1449389554
http://www.amazon.com/Hackers-Painters-Big-Ideas-Computer/dp/1449389554
http://theleanstartup.com/book
http://www.amazon.com/Startup-Owners-Manual-Step-Step/dp/0984999302
http://www.amazon.com/Startup-Owners-Manual-Step-Step/dp/0984999302
http://www.amazon.com/The-Entrepreneurs-Guide-Customer-Development/dp/0982743602
http://www.amazon.com/The-Entrepreneurs-Guide-Customer-Development/dp/0982743602
http://venturehacks.com/
http://webapplog.com/
http://www.it-ebooks.info/

193

�       � A
Agile methodologies

continuous deployment and
integration, 15

pair programming, 15
Scrum, 14
TDD, 15

AJAX technology, 168
Amazon web services, 182
Array object, 10
Asynchronous JavaScript and

XML (AJAX), 45

�       � B
Backbone.js

AMD and Require.js
apple-app.js, 108
apple-home.view.js file, 110
apple-item.tpl.js file, 109
apples.js file, 112
apple.view.js file, 111
define() method, 109
index.html, 107
new 05-backbone/amd/index.

html file, 113
old 05-backbone/refactor/index.

html file, 113
require() function, 108

Collection class, 85
dependencies, 80
event binding, 88
fetch()/reset() functions, 85
homeView, 84
refactoring, 100
render function, 86–87

Require.js, 115
Router class, 84
routes object, 83
<script> tag, 83
super simple Backbone.js

starter kit, 118
views and subviews

appleItemView Backbone
View class, 94

Backbone Views, 92
code, 98–100
extend() function, 92
homeView, 95
homeView Backbone View, 96
initialize function, 95
render() method, 96
showCart() function, 95
tagName, 93
tagName attribute, 94
Underscore.js instructions, 93

where() method, 86
Back-end definitions

cloud computing, 17
HTTP Request and Response, 18
MongoDB, 17
Node.js, 16
NoSQL, 17
RESTful API, 18–19

Browser objects, 11
BSON, 157

�       � C
Cascading style sheets (CSS), 1, 6
Cloud computing, 17
Continuous deployment (CD), 15
Cross-origin resource sharing (CORS), 46

Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

194

�       � D
Data object, 10
Development folder, 22
DOM objects, 11

�       � E
Extensible markup language (XML), 1

�       � F
Free E-Books, 188, 190
Front-end web development

AJAX, 45
API

ajax() function, 55
app ID key, 60
authentication, 54
click function, 55
documentation, 54
DOM, 56
event handlers, 56
fetchData function, 57–59
prepareData() method, 56

cross-domain calls, 45
CSS, 6
Heroku, 74–76
HTML, 4
JavaScript, 7
jQuery functions, 46–47
JSON, 45

data transfer, 44
flexible and compact, 45
vs. JS object, 44
lightweight data-interchange

format, 44
posts property, 45

LESS
dynamic stylesheet language, 50
mix-ins functions, 52–53
operations, 53–54
variables, 51

mobile development, 3
Parse.com

app.js file, 64
applications, 61
collections and items, 61
index.html file creation, 61
JavaScript SDK library v1.6.7, 61
log container, 63

Message Board (see Message
Board, Parse.com)

object IDs and timestamps, 65
process, 61
project folder structure, 61
syntax error, 63
Test collection, 63
<textarea> element, 62

Twitter Bootstrap
container- and row-fluid

classes, 48
index.html, 49
LESS source code, 47
library, 48
project structure, 47
12-column grid, 48–49
user interface and experience, 47

updating and deleting messages, 77
web request cycle, 2
Windows Azure, 73

�       � G
GitHub, 37–38
Git visual clients, 26
Globals, 11

�       � H
Heroku, 40–41, 74, 76, 178

Git remote, 144
memory store version, 144
package.json simple, 144
unit testing

addMessage() function, 144
add req.method() and

req.url(), 147
cutting-edge automated

testing, 145
getMessages() method, 144, 146
global exports object, 146
IP address, 149
JSON-as-a-string format, 149
JSON object, 145
mb-server.js, 150–151
monitor server activity, 148
test-driven development, 145
util and querystring

modules, 147
Hypertext markup language (HTML), 1, 4
Hypertext transfer protocol (HTTP), 1

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

195

�       � I
Integrated development

environment (IDE), 25

�       � J, K, L
JavaScript books, 189
JavaScript (JS), 7
JavaScript object notation (JSON), 1, 44

data-transfer, 44
flexible and compact, 45
vs. JS object, 44
lightweight data-interchange

format, 44
posts property, 45

JavaScript resources, 188
jQuery.ajax() function, 45
jQuery API functions, 46

�       � M
Math object, 10
Message Board AP, 174
Message Board application, 188
Message Board, Parse.com

overview, 65
REST API and jQuery

ajax function, 68
AJAX calls, 65
getMessages() method, 69
GitHub, 72
HTML element, 70, 72
JS code, 67
POST request, 69
Twitter Bootstrap, 66
updateView function, 69
visual representation, 66

Message Board UI, 169
MongoDB, 17

BSON, 157
database

commands, 30
download, 30
initial setup, data directory, 30–31
installation, 30
run, data sorting, 32–33
server start up, 31–32

definition, 155
Message Board, 163
MongoLab, 159

native driver, 157
Shell, 155–156

MongoLab, 159

�       � N
Node.js, 15

books, 190
building “Hello World”, 137
core modules

methods, 139
Node Package Manager, 141
URL resolution, 140
utilities, 140
Windows Azure, 143

Heroku (see Heroku)
PaaS, 142
resources, 190
Windows Azure, 143

Number object, 8
Number primitives, 8

�       � O
Online classes and courses, 191
OPTIONS method, 168

�       � P, Q
Pair programming, 15
Parse.com

app.js file, 124, 126–127
app.js manipulations, 132–134
headerTpl template, 125
home Backbone View, 125
home.html template file, 129
HomeView class, 129–130
index.html file, 122
intermediate level, 134
JavaScript SDK, 130
Message Board, structure of, 122
meta elements, 122
row-fluid class, 127–128
saveMessage(), 131
span12 classes, 127
Twitter Bootstrap scaffolding, 123

�       � R
Regular Expressions, 9
RESTful API, 18–19

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

196

�       � S
Same domain deployment

server, 179
Scrum methodology, 14
startup books and blogs, 191
String object, 9
String primitives, 8

�       � T
Technical setup

Chrome Developer tools, 23
cloud setup

GitHub, 37–38
Heroku, 40–41
SSH keys, 36–37
Windows Azure, 38–39

development folder, 22
DevTools, 24
Firebug and developer tools, 23–24
initial development

environment setup, 21
local HTTP server

Browser JavaScript Libraries, 35
GUIs, 29
LESS App, 35
MAMP, Mac home page, 29
MongoDB (see MongoDB,

database)
Node.js, 34
production environment, 29

text editors and IDEs
Sublime Text code editor

home page, 25
version control system, 28
web development, 25
WebStorm IDE, 26

Test-driven development (TDD), 14

�       � U, V
Uniform resource identifier (URI), 1

�       � W, X, Y, Z
Web request cycle, 2
Windows Azure, 38–39, 73

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Preface
	Introduction
	Chapter 1: Basics
	 Front-End Definitions
	 Web Request Cycle
	 Mobile Development
	 HyperText Markup Language
	class
	 id
	 style
	 title
	 data-name
	 onclick
	 onmouseover

	 Cascading Style Sheets
	 JavaScript
	Number Primitives
	Number Object
	String Primitives
	String Object
	RegExp Object
	Special Types
	JSON
	 Array Object
	 Data Object
	Boolean Primitives and Objects
	Date Object
	 Math Object
	Browser Objects
	DOM Objects
	Globals
	Conventions

	 Agile Methodologies
	 Scrum
	 Test-Driven Development
	 Continuous Deployment and Integration
	 Pair Programming

	 Back-End Definitions
	 Node.js
	 NoSQL and MongoDB
	 Cloud Computing
	 HTTP Requests and Responses
	 RESTful API

	 Summary

	Chapter 2: Setup
	 Local Setup
	 Development Folder
	 Browsers
	 IDEs and Text Editors
	 Version Control Systems

	 Local HTTP Servers
	 Database: MongoDB
	 Other Components
	Node.js Installation
	Browser JavaScript Libraries
	 LESS App

	 Cloud Setup
	 SSH Keys
	 GitHub
	 Windows Azure
	 Heroku

	 Summary

	Chapter 3: jQuery and Parse.com
	 Definitions
	 JavaScript Object Notation
	 AJAX
	 Cross-Domain Calls

	 jQuery Functions
	 Twitter Bootstrap
	 LESS
	 LESS Variables
	 LESS Mix-ins
	 LESS Operations

	 An Example Using a Third-Party API (OpenWeatherMap) and jQuery
	 Parse.com
	 Message Board with Parse.com Overview
	 Message Board with Parse.com: REST API and jQuery Version
	 Pushing to GitHub

	 Deployment to Windows Azure
	 Deployment to Heroku
	 Updating and Deleting Messages
	 Summary

	Chapter 4: Intro to Backbone.js
	 Setting Up Backbone.js App from Scratch
	 Backbone.js Dependencies

	 Working with Backbone.js Collections
	 Backbone.js Event Binding
	 Backbone.js Views and Subviews with Underscore.js
	 Refactoring Backbone.js Code
	 AMD and Require.js for Backbone.js Development
	 Require.js for Backbone.js Production
	 Super Simple Backbone.js Starter Kit
	 Summary

	Chapter 5: Backbone.js and Parse.com
	 Message Board with Parse.com: JavaScript SDK and Backbone.js Version
	 Taking Message Board Further
	 Summary

	Chapter 6: Intro to Node.js
	 Building “Hello World” in Node.js
	 Node.js Core Modules
	 http
	 util
	 querystring
	 url
	 fs
	 npm Node Package Manager

	 Deploying "Hello World" to PaaS
	 Deploying to Windows Azure
	 Deploying to Heroku
	 Message Board with Node.js: Memory Store Version
	 Unit Testing Node.js

	 Summary

	Chapter 7: Intro to MongoDB
	 MongoDB Shell
	 BSON
	 MongoDB Native Driver
	 MongoDB on Heroku: MongoLab
	 Message Board: MongoDB Version
	 Summary

	Chapter 8: Putting It All Together
	 Adding CORS for Different Domain Deployment
	 Message Board UI
	 Message Board AP I
	 Deployment to Heroku
	 Same Domain Deployment Server
	 Deployment to Amazon Web Services
	 Summary

	Appendix A: Conclusion and Further Reading
	 Conclusion
	 Further Reading
	 JavaScript Resources and Free E-Books
	 JavaScript Books
	 Node.js Resources and Free E-Books
	 Node.js Books
	 Interactive Online Classes and Courses
	 Startup Books and Blogs

	Index

