JAVASCRIPT
FOR KIDS

A PLAYFUL INTRODUCTION TO PROGRAMMING

http://www.it-ebooks.info/

JAVASCRIPT FOR KIDS

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JAVASCRIPT
FOR KIDS

A PLAYFUL INTRODUCTION
TO PROGRAMMING

BY NICK MORGAN

0

no starch
press

San Francisco

www.it-ebooks.info

http://www.it-ebooks.info/

JAVASCRIPT FOR KIDS. Copyright © 2015 by Nick Morgan.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

Printed in USA
First printing
18171615 14 123456789

ISBN-10: 1-59327-408-4
ISBN-13: 978-1-59327-408-5

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Illustration: Tina Salameh

Illustrator: Miran Lipovaca

Developmental Editors: William Pollock and Seph Kramer
Technical Reviewer: Angus Croll

Copyeditor: Rachel Monaghan

Compositor: Riley Hoffman

Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Control Number: 2014953113

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no inten-
tion of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-
tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in it.

www.it-ebooks.info

http://www.it-ebooks.info/

To Philly
(and Pancake)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Nick Morgan is a frontend engineer at Twitter. He loves all pro-
gramming languages but has a particular soft spot for JavaScript.
Nick lives in San Francisco (the foggy part) with his fiancée and
their fluffy dog, Pancake. He blogs at skilldrick.co.uk.

Miran Lipovaca is the author of Learn You a Haskell for Great
Good!. He enjoys boxing, playing bass guitar, and, of course,
drawing. He has a fascination with dancing skeletons and the
number 71, and when he walks through automatic doors he pre-
tends that he’s actually opening them with his mind.

Angus Croll is the author of If Hemingway Wrote JavaScript,
and he is obsessed with JavaScript and literature in equal
measure. He works on Twitter’s UI framework team, where he
co-authored the Flight framework. He writes the influential
JavaScript, JavaScript blog and speaks at conferences worldwide.
He tweets at @angustweets.

www.it-ebooks.info

skilldrick.co.uk
https://twitter.com/angustweets
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

BRIEF CONTENTS

Acknowledgments. Xx1

Introduction. xx111

PART I: FUNDAMENTALS

Chapter 1: What Is JavaScript?.o 3
Chapter 2: Data Types and Variables 13
Chapter B: ArTayS . .ottt e e 39
Chapter 4: ObJects. . . oo vttt ettt ettt e e 63
Chapter 5: The Basicsof HTML. 77
Chapter 6: Conditionals and Loopso oot 89
Chapter 7: Creating a Hangman Game.ciuurnn.. 105
Chapter 8 Functions e 123

PART II: ADVANCED JAVASCRIPT

Chapter 9: The DOM and JQuery.ciiiiiiiinnnnn 143
Chapter 10: Interactive Programming.coiuuunnn.. 155
Chapter 11: Find the Buried Treasure!............................ 167
Chapter 12: Object-Oriented Programming 181

PART Iil: CANVAS

Chapter 13: Thecanvas Element. 199
Chapter 14: Making Things Move on the Canvas. 217
Chapter 15: Controlling Animations with the Keyboard 235
Chapter 16: Making a Snake Game: Part 1 251
Chapter 17: Making a Snake Game: Part 2 267
Afterword: Where to Gofrom Here 293
GloSSaTY . « v oo e 299
Index 305

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xXX1
INTRODUCTION xXm
Who Should Read This Book?. i XX1v
How to Read This Book. oo e XX1V
What’s in This Book? XXV
Have Fun! xxvl

PART I: FUNDAMENTALS

1
WHAT IS JAVASCRIPT? 3
Meet JavaScript e 4
Why Learn JavaScript? e e 6
Writing Some JavaScript e e 7
The Structure of a JavaScript Program. 8
SYIAX .« 10
Commentst e 10
What You Learned 11
2
DATA TYPES AND VARIABLES 13
Numbers and Operators.ttt i 15
Variables o 17
Naming Variables. 19
Creating New Variables Using Math......................... 19
Incrementing and Decrementing 21
+= (plus-equals) and —= (minus-equals). 22
T ' V4= PP 23
JOINING StIINGS . .ot v ittt ettt 25
Finding the Length of a String. 25
Getting a Single Character froma String 26
Cutting Up Stringst e e 27
Changing Strings to All Capital or All Lowercase Letters........ 28
Booleans. e 30
Logical Operators, 30
Comparing Numbers with Booleans 33

www.it-ebooks.info

http://www.it-ebooks.info/

undefined and null 37

What You Learned 38
Why Should You Care About Arrays? 40
Creating an ATTay. . ..ottt e et 41
Accessing an Array’s Elements 42
Setting or Changing Elements in an Array., 43
Mixing Data Typesinan Array 45
Working with Arrays 46
Finding the Length of an Array 46
Adding Elements toan Array. 47
Removing Elements from an Array 48
Adding Arrays 50
Finding the Index of an Element in an Array 52
Turning an Array intoa String 53
Useful Things to Dowith Arrays........ 54
Finding Your WayHome 54
Decision Maker 56
Creating a Random Insult Generator 59
What You Learned 60
Programming Challenges. 61
#l:NewInsults 61
#2: More Sophisticated Insults. 61
#3:Use +0rjoIn?. . ..o 61
#4: Joining Numbers. e 61
Creating ObJectso vttt 64
Keys Without Quotes 65
Accessing Valuesin Objects et 66
Adding Valuesto Objects 67
Adding Keys with Dot Notation............................. 68
Combining Arrays and Objectsuiiiiiiiiiiiinnn. 69
An Arrayof Friends 69
Exploring Objects inthe Console. 71
Useful Things to Do with Objects 72
Keeping Track of Owed Money. 72
Storing Information About Your Movies 74
What You Learned 75

XNl Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Challenges. 76

BL: SCOreReePer . . . 76
#2: Digging into Objects and Arrayscoounn.. 76
Text Editors. 78
Our First HTML Document i 79
Tags and Elements 80
Heading Elements. 80
Thep Element. 81
Whitespace in HTML and Block-Level Elements 81
Inline Elements. i 82
AFull HTML Document.ttt 83
HTML Hierarchy e e 84
Adding Links to Your HTML 85
Link Attributes 86
Title Attributes 87
What You Learned 88
Embedding JavaScript in HTML. 90
Conditionals 91
If Statements 91
if...else Statements. 93
Chaining if...else Statements. 94
15700 o 1= 96
while Loops . .. oo oo 97
for Loops .o oo 99
What You Learned 102
Programming Challenges. 103
#l: Awesome Animals. 103
#2: Random String Generator 103
#3: h4ck3r sp34k 104
Interacting witha Player............. 106
Creating a Prompt. 106
Using confirm to Ask a Yes or No Question 108
Using Alerts to Give a Player Information 109
Why Use alert Instead of consoledog? 109

Contents in Detail

www.it-ebooks.info

xm

http://www.it-ebooks.info/

Designing Your Game. e 110

Using Pseudocode to Design the Game 110
Tracking the State of the Word 111
Designing the Game Loop. 112
Coding the Game. 113
Choosing a Random Word. 113
Creating the Answer Array 114
Codingthe Game Loop 114
Endingthe Game 118
The Game Code.ot e e et 118
What You Learned 120
Programming Challenges. 121
#l: More Wordso 121
#2: Capital Letters 121
#3: Limiting GUeSSeS. . . .o 121
#4:FixingaBug 121
The Basic Anatomy of a Function 124
Creating a Simple Function 124
Calling a Function 125
Passing Arguments into Functions 126
Printing Cat Faces!. 127
Passing Multiple Arguments to a Function. 128
Returning Values from Functions 129
Using Function Callsas Values. 131
Using Functions to Simplify Code 132
A Function to Pick a Random Word. 132
A Random Insult Generator............................... 133
Making the Random Insult Generator into a Function 134
Leaving a Function Early with return. 135
Using return Multiple Times Instead of if...else Statements........... 136
What YouLearned 138
Programming Challenges. 138
#1: Doing Arithmetic with Functions. 138
#2: Are These Arraysthe Same? 138
#3: Hangman, Using Functions 139

XIV Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting DOM Elements i 144

Using id to Identify Elements, 145

Selecting an Element Using getElementById. 145

Replacing the Heading Text Usingthe DOM 146

Using jQuery to Work with the DOM Tree......................... 148

Loading jQuery on Your HTML Page 148

Replacing the Heading Text Using jQuery 148

Creating New Elements with jQuery. 150

Animating Elements with jQuery 151

Chaining jQuery Animationsov ittt 152

What You Learned 153

Programming Challenges. 154
#1: Listing Your Friends with jQuery

(And Making Them Smell!). 154

#2: Making a Heading Flash 154

#3: Delaying Animations 154

#4: UsingfadeTo 154

Delaying Code with setTimeout................ 156

Canceling a Timeout. e 157

Calling Code Multiple Times with setInterval 158

Animating Elements with setInterval............................. 159

Responding to User Actions 162

Responding to Clicks. 162

The mousemove Event 164

What You Learned 165

Programming Challenges. 165

#1: Followthe Clicks. 165

#2: Create Your Own Animation 165

#3: Cancel an Animationwitha Click....................... 166

#4: Make a “Click the Header” Game! 166

Contents in Detail

www.it-ebooks.info

XV

http://www.it-ebooks.info/

Designingthe Game 168

Creating the Web Page with HTML 169
Picking a Random Treasure Location 170
Picking Random Numbers, 170
Setting the Treasure Coordinates 171
The Click Handler. e 171
Counting Clicks.t e 172
Calculating the Distance Between the Click and the Treasure. .. 172
Using the Pythagorean Theorem 173
Telling the Player How Close They Are...................... 175
Checking If the Player Won 176
Putting It All Together. 176
What You Learned 178
Programming Challenges. 179
#1: Increasing the Playing Area. 179
#2: Adding More Messages. 179
#3: Adding a Click Limit. 179
#4: Displaying the Number of Remaining Clicks 179
A SImple ObJect. . .o i i 182
Adding Methods to Objects.ot 182
Using the this Keyword 183
Sharing a Method Between Multiple Objects 183
Creating Objects Using Constructorsc.uuuuurrunnnnnn. 185
Anatomy of the Constructor............................... 185
Creating a Car Constructor 186
Drawing the Cars e 188
Testing the drawCar Function. 189
Customizing Objects with Prototypes 190
Adding a draw Method to the Car Prototype.................. 191
Adding a moveRight Method 192
Adding the Left, Up, and Down move Methods. 193
What You Learned 195
Programming Challenges. 195
#1: Drawing in the Car Constructor. 195
#2: Adding a speed Property. 196
#3:Racing Cars........ ... 196

xXVI Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

Creatinga BasicCanvas 200

Drawingonthe Canvas i 200
Selecting and Saving the canvas Element. 201
Getting the Drawing Context. 201
Drawing a Square. i 201
Drawing Multiple Squares 202

Changing the Drawing Color 203

Drawing Rectangle Outlines 205

Drawing Linesor Paths 206

Filling Paths e 207

Drawing Arcs and Circles. i 209
Drawing a Quarter Circleoran Arc. 210
Drawing a Half Circle. i 211
Drawinga FullCircle 211

Drawing Lots of Circles with a Function. 212

What You Learned 214

Programming Challenges. 214
#1: A Snowman-Drawing Function 214
#2: Drawing an Array of Points 215
#3: Painting with Your Mouse 215
#4: Drawing the Man in Hangman 215

Moving Acrossthe Page 218
Clearingthe Canvasttt 219
Drawingthe Rectangle 219
Changing the Position. 219
Viewing the Animation in the Browser...................... 219

Animating the Sizeof aSquare 220

ARandom Bee. 221
A Newcircle Function. 222
Drawingthe Bee i 222
Updating the Bee’s Location. 224
Animating Our BuzzingBee. 225

Bouncinga Balll 227
The Ball Constructor. 227
Drawingthe Ball........ 228

Contents in Detail

www.it-ebooks.info

xvii

http://www.it-ebooks.info/

Movingthe Ball.............. 229

Bouncingthe Ball 229
Animatingthe Ball 231
What You Learned 232
Programming Challenges. 233
#1: Bouncing the Ball Around a Larger Canvas 233
#2: Randomizing this.xSpeed and this.ySpeed 233
#3: Animating More Balls. 234
#4: Making the Balls Colorful. 234
Keyboard Events. 236
Setting Upthe HTML File 236
Adding the keydown Event Handler 237
Using an Object to Convert Keycodes into Names 238
Moving a Ball with the Keyboard 239
Setting UptheCanvas 240
Defining the circle Function............................... 240
Creating the Ball Constructor 240
Defining the move Method 241
Defining the draw Method 242
Creating a setDirection Method 243
Reacting tothe Keyboard 244
Animatingthe Ball 245
Putting It All Together. 246
Runningthe Code 248
What You Learned 249
Programming Challenges. 249
#1: Bouncing Off the Walls. 249
#2: Controlling the Speed 249
#3: Flexible Controls. 249
The Game Play 252
The Structure of the Game. 253
Using setInterval to Animatethe Game 254
Creating the Game Objects. 254
Setting Up Keyboard Control 255
Game Setup. . ..o o 255
Creatingthe HTML 255
Defining the canvas, ctx, width, and height Variables.......... 256

XVIl Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

Dividing the CanvasintoBlocks 256

Defining the score Variable 258
Drawing the Border 258
Displaying the Score. i e 260

Setting the Text Baseline................................. 261

Setting the Sizeand Font................................. 262

Writing the drawScore Function 263
Ending the Game i e 264
What You Learned 265
Programming Challenges. 266

#1: Putting It Together. 266

#2: Animating the Score 266

#3: Adding Textto Hangman 266
Building the Block Constructor 268

Adding the drawSquare Method 269

Adding the drawCircle Method 270

Adding theequal Method 272
Creating the Snake. i 273

Writing the Snake Constructor 273

Drawingthe Snake 274
Moving the Snake e 275

Adding the move Method 275

Adding the checkCollision Method. 279
Setting the Snake’s Direction with the Keyboard. 281

Adding the keydown Event Handler 281

Adding the setDirection Method 282
Creating the Apple e 283

Writing the Apple Constructor. vo.... 283

Drawingthe Apple 283

Moving the Apple 284
Putting It All Together. 285
What You Learned 291
Programming Challenges. 291

#1: Making the Game Bigger 291

#2: Coloringthe Snake 291

#3: Making the Game Speed Upas YouPlay 292

#4: Fixing the apple.move Method 292

Contents in Detail

www.it-ebooks.info

XX

http://www.it-ebooks.info/

AFTERWORD

WHERE TO GO FROM HERE 293
More JavaScript e 294
Web Programmingttt 294
HTML. . .. e 294
G . e 295
Server-Side Code with Node.js. 295
Graphical Programming. 295
CATLVAS & v vttt e e e ettt e e e et e e e 295
SVG Using Raphaél 296
3D Programming.c.uttt it e 296
Programming Robots 296
Audio Programming e 297
Game Programming 297
Sharing Your Code Using JSFiddle. 297
GLOSSARY 299
INDEX 305

XX Contents in Detail

www.it-ebooks.info

http://www.it-ebooks.info/

So many thanks to my wonderful fiancée, Philly, for her encour-
agement and support during the past 18 months. I truly couldn’t
have done it without her. And thanks to Pancake, our dog, for
graciously allowing me to use him in my code examples.

Thanks to Angus, without whom I wouldn’t be here, in San
Francisco, writing this book. Angus referred me to Twitter back
in 2011, and then in 2013 suggested to Bill Pollock that I might
be interested in writing this book you’re holding. And to top it all,
he agreed to be the technical reviewer, catching a great number of
JavaScript faux pas.

Thanks to Bill Pollock, Seph Kramer, Riley Hoffman, Tyler
Ortman, and everyone else at No Starch Press, who patiently
guided me through the process of writing this book. Special thanks
to Bill and Seph for massaging my writing into its current form.

Thanks to the young reviewers River Bradley, Damien Champ,
and Alex Chu, who had some great feedback on the early PDFs.

Finally, thanks to Miran Lipovaca. I've been a fan of Miran
for years—his book Learn You a Haskell for Great Good is one
of my favorite programming books, and his illustrations for it
are amazing. Finding out hed be illustrating my book was like a
dream come true. His pictures for this book are better than I could
have imagined, and I'm humbled to have had the chance to work
with him.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Welcome to JavaScript for Kids! In this book, you’ll
learn to program with JavaScript, the language

of the Web. But more than that, you'll become a
programmer—someone who not only uses computers
but also controls them. Once you learn to program,
you can bend computers to your will and make them
do whatever you want!

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript is a great programming language to learn because
it’s used everywhere. Web browsers like Chrome, Firefox, and
Internet Explorer all use JavaScript. With the power of JavaScript,
web programmers can transform web pages from simple docu-
ments into full-blown interactive applications and games.

But you’re not limited to building web pages. JavaScript can
run on web servers to create whole websites and can even be used
to control robots and other hardware!

This book is for anyone who wants to learn JavaScript or to start
programming for the first time. The book is designed to be kid
friendly, but it can serve as a first programming book for begin-
ners of all ages.

With this book, you’ll build up your knowledge of JavaScript
gradually, starting with JavaScript’s simple data types, before
moving onto complex types, control structures, and functions.
After that you'll learn how to write code that reacts when the
user moves the mouse or presses a key on the keyboard. Finally,
you’ll learn about the canvas element, which lets you use JavaScript
to draw and animate anything you can imagine!

Along the way, you’ll create a few games to stretch your pro-
gramming skills and put what you've learned to good use.

First off, read it in order! That might sound like a silly thing to
say, but lots of people want to jump straight into the fun stuff, like
making games. But each chapter is meant to build on what was
covered in earlier chapters, so if you begin at the beginning, you’ll
have an easier time when you get to the games.

Programming languages are like spoken languages: you have
to learn the grammar and the vocabulary, and this takes time.
The only way to improve is by writing (and reading) a lot of code.
As you write more and more JavaScript, you'll find certain parts of
the language become second nature, and eventually you’ll become
a fluent writer of JavaScript.

As you read, I encourage you to type out and test the code
examples throughout the book. If you don’t fully understand what’s

XXIV Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

going on, try making small changes to see what effect they have.
If the changes don’t have the effect you expected, see if you can
find out why.

Above all, work through the “Try It Out” and “Programming
Challenges” sections. Typing out the code that appears in the book
1s a good first step, but you'll understand programming at a deeper
level when you start writing your own code. If you find a challenge
interesting, then keep at it! Come up with your own challenges to
build even more onto the programs you've written.

You'll find sample solutions to the programming challenges (as
well as the code files for the games and other examples) at http://
nostarch.com/javascriptforkids/. Try looking at the solutions after
you've solved a challenge, so you can compare your approach to
mine. Or, if you're stuck, you can check the solution for hints. But
remember that these are just sample solutions. There are many,
many different ways to accomplish the same goal in JavaScript,
so don’t worry if you end up with a completely different solution
from mine!

If you come across a word and you don’t know what it means,
check the glossary at the back of the book. The glossary contains
definitions for many of the programming terms you’ll encounter in
this book.

Chapter 1 gives you a quick introduction to JavaScript and gets
you started writing JavaScript in Google Chrome.

Chapter 2 introduces variables and the basic data types used by
JavaScript: numbers, strings, and Booleans.

Chapter 3 is all about arrays, which are used to hold lists of other
pieces of data.

Chapter 4 is about objects, which contain pairs of keys and values.

Chapter 5 is an introduction to HTML, the language used to
create web pages.

Chapter 6 shows you how to gain more control over your code
using if statements, for loops, and other control structures.

Chapter 7 puts together everything you've learned so far to create
a simple Hangman word-guessing game.

Introduction XXV

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 shows you how to write your own functions so you can
group together and reuse blocks of code.

Chapter 9 introduces jQuery, a tool that makes it easy to control
web pages using JavaScript.

Chapter 10 shows you how to use timeouts, intervals, and event
handlers to make your code more interactive.

Chapter 11 uses functions, jJQuery, and event handlers to create a
game called “Find the Buried Treasure!”

Chapter 12 teaches a style of programming called object-oriented
programming.

Chapter 13 introduces the canvas element, which allows you to
draw graphics on a web page with JavaScript.

Chapter 14 builds on the animation techniques you learned
in Chapter 10 so you can create animations with canvas, and
Chapter 15 shows you how to control those canvas animations
with the keyboard.

In Chapters 16 and 17, you'll program a complete Snake game,
using everything you learned in the previous 15 chapters!

The Afterword gives you some ideas for how to learn even more
about programming.

The Glossary contains definitions for many of the new words
you’ll encounter.

One last thing to remember: Have fun! Programming can be a
playful and creative activity, just like drawing or playing a game
(in fact, you’ll be drawing and playing games with JavaScript a lot
in this book). Once you get the hang of how to write code, the only
limit is your imagination. Welcome to the amazing world of com-
puter programming—I hope you have a blast!

XXVI Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

o i AR O G ‘. o U 5 C e®e ° ~ ? o’ ° |- ® @ o 00 ® oo ? e
e 0 & ., o @ () (4 o« ® v 0. ..o - e o .) LA o. ® ‘e
. . ° v og o CPc e g4 8 oo % ° o ARy o o ° %o g 00 -
o OF ° “ .. o ® o° Qe o - .‘ Qe .. Qo . o ° e * ° o ®° o 0@ :
.. ° o o, .. Se .° °o® o, . ° ., ., - * °° . S o 4 s e Q-
° ° e g ° % o . g . -) ° .0. 5 © e° . o °° ey o ~ ®q °
R O R T
° o, o ° ¥ o9 e ¢, . . .o. Y e ° ®e 0. o <o ®® .. ‘
5 po ° o c e . o, 8 . S O ° .0. Py e o .‘ -
. e o & a8 e °) .. . o o® <« 8 e - . : ... e ® ° . 3 .
.O '.. e ® o ve @ ° .‘.0 - .. '.‘ pe * o “ o0 ...O ¢ S
: @ . g . 0, o 0 ® e . c . ® N ® e © g 0 ° e 0 o s
e . ..' .. '.o‘. e % e o'-o ‘v‘."- ‘e -
[. ¢° @ - PR ° ... e O ‘e @ o° ‘e
LI D | . r o "0 ° -0, .
. N .. ‘ l
'.o e ¢ o '. o® e 9% « & . ¢
e [] 'Y - . ° 0. s, .. ".
g B o0 ‘0 o ' T ce0® 0@
o o °."‘ .® -"-.o..-. "-0'0 .o‘--'- ':OQ'.
“ e o o, .. -'-" .-.0.0‘0
e Q
o -0 9 0 . ’n > O .. e o . ‘e . ’' . [] ° .. * (4
®e . @ o .o % O *.e® %o . &0, g, %0
. A .. [° o o ° °c o o L) ° : P .. ™ e o ® .- ° . -. .o .o . ‘
o e® |, e o @ % © ‘e’ of . e 0 o. . % ° . ‘e ©°0 ° ¢
O “« @ o o o o, R X o ° o0 @ N ®.¢ e ® g e @ . ‘e
e . O Y o“ .. e" ® e ° - ® e .. ° @ o e o ° oC . o '
S - o’ " o . JRU BN '.. ¢ ‘s °° -9 - .= °)
¢ o v ° e e« * %0 o - ° H ..) . » ° . S v "V, 0. ., e
° . ® . o0 @ "o .’ @ @ ° s ° o . ° - e ° a’ L . S
.‘. — ' ‘.. s e o ° o - @ .. 0. o, > $ - S ..']
. ‘o = e O o - L . L I v 8 ce *° - . e 0 ,°°
T R L RPN S PN T
o . ..' o ¢ - .° e o (. .« 0 .'0‘ P .0 . Qo ® o 6. o
L) s g0 o° o . ‘. . o0 P ..‘ ..'. .' . o % . P Q > ®
° o °® . - ° o = . o 0 e o . °e . - 00" 3 * o e+ 0° '.
- ..0 . ° . g0 @0 @’ ‘o LA e ®°® . ®, . e s° e O O° C ‘. I
%Be, e % .0 o e, & oo . e "o o ° e e v
[2N ® D.' s LS ..‘ O e o ® o > [] .Q . . 9.
o Uo C e 9 ° - o ® [] f. ¢ o o0 ° O a ¢ LS . Q...- PN J
® S O . o c L - .oo 0." - 08 ° - te - ’ °o ¢ - ° !‘
v 0 € 4 v a9 g%, % o, o - ¢ ¢ ¢ . S, e e

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Computers are incredibly powerful machines, capable
of performing amazing feats like playing competitive
chess, serving thousands of web pages, or making
millions of complex calculations in less than a few
seconds. But deep down, computers are actually pretty
dumb. Computers can only do exactly what we humans
tell them to do. We tell computers how to behave using
computer programs, which are just sets of instructions
for the computers to follow. Without programs, com-
puters can’t do anything at all!

www.it-ebooks.info

http://www.it-ebooks.info/

MEET JAVASCRIPT

Even worse, computers can’t understand English or any

other spoken language. Computer programs are written in a
programming language like JavaScript. You might not have
heard of JavaScript before, but you've certainly used it. The
JavaScript programming language is used to write programs
that run in web pages. JavaScript can control how a web page
looks or make the page respond when a viewer clicks a button
or moves the mouse.

Sites like Gmail, Facebook, and Twitter use JavaScript to
make it easier to send email, post comments, or browse web-
sites. For example, when you’re on Twitter reading tweets from
@nostarch and you see more tweets at the bottom of the page as
you scroll down, that’s JavaScript in action.

You only have to visit a couple of websites to see why
JavaScript is so exciting.

+ JavaScript lets you play music and create amazing visual
effects. For example, you can fly through an interactive music
video created by HelloEnjoy for Ellie Goulding’s song “Lights”
(http://lights.helloenjoy.com/), as shown in Figure 1-1.

+ JavaScript lets you build tools for others to make their own
art. Patatap (http://www.patatap.com/) is a kind of virtual
“drum machine” that creates all kinds of cool noises—and cool
animations to go along with them—as shown in Figure 1-2.

q Chapter 1

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1: You control the flashing cursor in HelloEnjoy’s “Lights” music
video.

Figure 1-2: When you visit Patatap, try pressing a bunch of keys to make
different noises!

What Is JavaScript? B

www.it-ebooks.info

http://www.it-ebooks.info/

+ JavaScript lets you play fun games. CubeSlam (https://www
.cubeslam.com/) is a 3D re-creation of the classic game Pong,
which looks a little like air hockey. You can play against one
of your friends or a computer-generated bear, as shown in
Figure 1-3.

R 4 A4
1&“5{5‘ ﬁﬂ - dug o

oo

Figure 1-3: The CubeSlam game is programmed entirely in JavaScript!

WHY LEARN JAVASCRIPT?

6

Chapter 1

JavaScript isn’t the only programming language out there—in
fact, there are literally hundreds of programming languages.
But there are many reasons to learn JavaScript. For one, it’s a
lot easier (and more fun) to learn than many other programming
languages. But perhaps best of all, in order to write and run
JavaScript programs, all you need is a web browser like Internet
Explorer, Mozilla Firefox, or Google Chrome. Every web browser
comes with a JavaScript interpreter that understands how to read
JavaScript programs.

Once you've written a JavaScript program, you can send people
a link to it, and they can run it in a web browser on their computer,
too! (See “Sharing Your Code Using JSFiddle” on page 297.)

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s write a bit of simple JavaScript in Google Chrome (http://
www.google.com/chrome/). Install Chrome on your computer (if it’s
not already installed), and then open it and type about:blank in the
address bar. Now press ENTER and you’ll see a blank page, like the
one in Figure 1-4.

We’ll begin by coding in Chrome’s JavaScript console, which
1s a secret way programmers can test out short JavaScript pro-
grams. On Microsoft Windows or Linux, hold down the CTRL and
SHIFT keys and press J. On Mac OS, hold down the COMMAND and
OPTION keys and press d.

If you've done everything correctly, you should see a blank
web page and, beneath that, a blinking cursor (]) next to a right
angle bracket (), as shown in Figure 1-4. That’s where you’ll write
JavaScript!

The Chrome console will color your code text; for example, the text
you input will be blue, and output will be colored based on its type.
In this book, we’ll use similar colors for our code text wherever we're
using the console.

800 about:blank

&« C f [about:blank

Address bar: This is how you visit web pages,
like Facebook.com or Google.com. For now,
we want an empty page, so we've navigated
to about:blank and pressed ENTER.

Q. Elements Network Sources Timeline Profiles Resources Audits | Console |
® v <topframe> v
> |

JavaScript console: Here's where
we'll test short JavaScript programs.

Figure 1-4: Google Chrome’s JavaScript console

What Is JavaScript? 72

www.it-ebooks.info

http://www.it-ebooks.info/

When you enter code at the cursor and press ENTER, JavaScript
should run, or execute, your code and display the result (if any) on
the next line. For example, type this into the console:

3 +4;

Now press ENTER. JavaScript should output the answer (7) to
this simple bit of addition on the following line:

3+ 4;
7

Well, that’s easy enough. But isn’t JavaScript more than a
glorified calculator? Let’s try something else.

THE STRUCTURE OF A JAVASCRIPT
PROGRAM

8

Chapter 1

Let’s create something a bit sillier—a JavaScript program to print
a series of cat faces that look like this:

JANRAY

Unlike our addition program, this
JavaScript program will take up mul-
tiple lines. To type the program into the
console, you'll have to add new lines by
pressing SHIFT-ENTER at the end of
each line. (If you just press ENTER,
Chrome will try to execute what you've
written, and the program won’t work as
expected. I warned you that computers
were dumb!)

Type this into your browser console:

// Draw as many cats as you want!
var drawCats = function (howManyTimes) {
for (var i = 0; i < howManyTimes; i++) {
console.log(i + " =r.7=");
}
};

drawCats(10); // You can put any number here instead of 10.

www.it-ebooks.info

http://www.it-ebooks.info/

At the very end, press ENTER instead of SHIFT-ENTER. When you
do that, you should see the following output:

> > > > > > > > > >
.

> > > > > > > > > >

L oo~NOTUVTS WNPRER O
"

If you made any typos, your output might look very different or
you might get an error. That’s what I mean when I say computers
are dumb—even a simple piece of code must be perfect for a com-
puter to understand what you want it to do!

I won’t go through exactly how this code works for now (we’ll
return to this program in Chapter 8), but let’s look at some of the
features of this program and of JavaScript programs in general.

What Is JavaScript? 9

www.it-ebooks.info

http://www.it-ebooks.info/

10

Chapter 1

Our program includes lots of symbols, including parentheses (),
semicolons ;, curly brackets {}, plus signs +, and a few words that
might seem mysterious at first (like var and console.log). These are
all part of JavaScript’s syntax—that is, JavaScript’s rules for how
to combine symbols and words to create working programs.

When you're learning a new programming language, one of
the trickiest parts is getting used to the rules for how to write
different kinds of instructions to the computer. When you're first
starting out, it’s easy to forget when to include parentheses, or to
mix up the order in which you need to include certain values. But
as you practice, you’ll start to get the hang of it.

In this book, we’ll go slow and steady, introducing new syntax
little by little so that you can build increasingly powerful programs.

The first line in our cats program is this:

// Draw as many cats as you want!

This is called a comment. Programmers use comments to
make it easier for other programmers to read and understand
their code. The computer ignores comments completely. Comments
in JavaScript start with two forward slashes (/7). Everything fol-
lowing the slashes (on the same line) is ignored by the JavaScript
interpreter, so the comments don’t have any effect on how a pro-
gram is executed—they are just there to provide a description.

In the code in this book, you’ll see comments that describe
what’s happening in the code. As you write your own code, add your
own comments. Then when you look at your code later, your com-
ments will remind you how the code works and what’s happening in
each step.

There’s another code comment on the last line of our program.
Remember, everything after that // isn’t run by the computer!

drawCats(10); // You can put any number here instead of 10.

Code comments can be on their own line, or they can come
after your code. If you put the // at the front, like this:

// drawCats(10);

www.it-ebooks.info

http://www.it-ebooks.info/

... nothing will happen! Chrome sees the whole line as a com-
ment, even if it’s JavaScript.

Once you start reading JavaScript code out in the wild world,
you'll also see comments that look like this:

/*

Draw as many cats
as you want!

*/

This is a different style of commenting, which is typically used
for comments that are longer than one line. But it does the same
thing: everything between the /* and the */ is a comment that the
computer won’t run.

WHAT YOU LEARNED

In this chapter, you learned a bit about what JavaScript is and
what it can be used for. You also learned how to run JavaScript
using the Google Chrome browser and tried out a sample program.
All of the code examples in this book, unless I say otherwise, can
(and should!) be used in Chrome’s JavaScript console. Don’t just
read the code—try typing things out! It’s the only way to learn to
program.

In the next chapter, you’ll
start learning the fundamen-
tals of JavaScript, beginning
with the three basic types
of information you can work
with: numbers, strings, and
Booleans.

What Is JavaScript? 11

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Programming is all about manipulating data, but
what is data? Data is information that we store in our
computer programs. For example, your name is a piece
of data, and so is your age. The color of your hair, how
many siblings you have, where you live, whether you're
male or female—these things are all data.

www.it-ebooks.info

http://www.it-ebooks.info/

14

Chapter 2

In JavaScript, there are three basic types of data: numbers,
strings, and Booleans. Numbers are used for representing, well,
numbers! For example, your age can be represented as a number,
and so can your height. Numbers in JavaScript look like this:

5;

Strings are used to represent text. Your name can be rep-
resented as a string in JavaScript, as can your email address.
Strings look like this:

"Hi, I'm a string";

Booleans are values that can be true or
false. For example, a Boolean value about
you would be whether you wear glasses.
Another could be whether you like broccoli.
A Boolean looks like this:

true;

There are different ways to work with each data type. For
example, you can multiply two numbers, but you can’t multiply
two strings. With a string, you can ask for the first five characters.
With Booleans, you can check to see whether two values are both
true. The following code example illustrates each of these possible
operations.

99 * 123;

12177

"This is a long string".slice(0, 4);
"This"

true && false;

false

All data in JavaScript is just a combination of these types of
data. In this chapter, we’ll look at each type in turn and learn dif-
ferent ways to work with each type.

You may have noticed that all of these commands end with a
semicolon (;). Semicolons mark the end of a particular JavaScript
command or instruction (also called a statement), sort of like the
period at the end of a sentence.

www.it-ebooks.info

http://www.it-ebooks.info/

NUMBERS AND OPERATORS

JavaScript lets you perform basic mathematical operations like
addition, subtraction, multiplication, and division. To make these
calculations, we use the symbols +, -, *, and /, which are called
operators.

You can use the JavaScript console just like a calculator. We've
already seen one example, adding together 3 and 4. Let’s try some-
thing harder. What'’s 12,345 plus 56,789?

12345 + 56789;
69134

That’s not so easy to work out in your head, but JavaScript cal-
culated it in no time.
You can add multiple numbers with multiple plus signs:

22 + 33 + 44;
99

JavaScript can also do subtraction . . .

1000 - 17;
983

and multiplication, using an asterisk . . .

123 * 456;
56088

and division, using a forward slash . . .

12345 / 250;
49.38

You can also combine these simple operations to make some-
thing more complex, like this:

1234 + 57 * 3 - 31 / 4;
1397.25

Here it gets a bit tricky, because the result of this calcula-
tion (the answer) will depend on the order that JavaScript does

Data Types and Variables 15

www.it-ebooks.info

http://www.it-ebooks.info/

16

Chapter 2

each operation. In math, the rule is 1234 + 57 *3 - 31/ 4
that multiplication and division always

take place before addition and subtrac- 1234 + 171 - 31 / 4

tion, and JavaScript follows this rule [

as well. 1234 + 171 - 7.75
Figure 2-1 shows the order Java-

Script would follow. First, JavaScript 1405 - 7.75

multiplies 57 * 3 and gets 171 (shown

in red). Then it divides 31 / 4 to get 7.75 1397.25

(shown in blue). Next it adds 1234 + 171

to get 1405 (shown in green). Finally it Figure 2-1: The order of

operations: multiplication,
division, addition,
subtraction

subtracts 1405 - 7.75 to get 1397.25, which
is the final result.

What if you wanted to do the addi-
tion and the subtraction first, before
doing the multiplication and division? For example, say you have
1 brother and 3 sisters and 8 candies, and you want to split the
candies equally among your 4 siblings? (You've already taken your
share!) You would have to divide 8 by your number of siblings.

Here’s an attempt:

8/ 1+ 3;
11

That can’t be right! You can’t give each sibling 11 candies
when you've only got 8! The problem is that JavaScript does divi-
sion before addition, so it divides 8 by 1 (which equals 8) and then
adds 3 to that, giving you 11. To fix this and make JavaScript do
the addition first, we can use
parentheses:

8/ (1+3);
2

That’s more like it! Two
candies to each of your sib-
lings. The parentheses force
JavaScript to add 1 and 3
before dividing 8 by 4.

www.it-ebooks.info

http://www.it-ebooks.info/

TRY IT OUT!

Let’s say your friend is trying to use JavaScript to work
out how many balloons to buy. She’s throwing a party and
wants everyone to have 2 balloons to blow up. There were
originally 15 people coming, but then she invited 9 more.
She tries the following code:

15 + 9 * 2;
33

But that doesn’t seem right.

The problem is that the multiplication is happening before

the addition. How would you add parentheses to make sure
that JavaScript does the addition first? How many balloons
does your friend really need?

JavaScript lets you give names to values using variables. You can
think of a variable as a box that you can fit one thing in. If you put

something else in it, the first thing goes away.

To create a new variable, use the keyword var, followed by
the name of the variable. A keyword is a word that has special

meaning in JavaScript. In this case, when we type var, JavaScript
knows that we are about to enter the name of a new variable. For

example, here’s how you'd make a new variable called nick:

var nick;

We've created a new variable called nick. The console spits

out undefined in response. But this isn’t an error! That’s just
what JavaScript does whenever a command doesn’t return a

value. What’s a return value? Well, for example, when you typed
12345 + 56789;, the console returned the value 69134. Creating a
variable in JavaScript doesn’t return a value, so the interpreter

prints undefined.

Data Types and Variables

www.it-ebooks.info

17

http://www.it-ebooks.info/

18

Chapter 2

To give the variable a value, use the equal sign:

var age = 12;

Setting a value is called assignment (we are assigning the
value 12 to the variable age). Again, undefined is printed, because
we're creating another new variable. (In the rest of my examples,
I won’t show the output when it’s undefined.)

The variable age is now in our interpreter and set to the value
12. That means that if you type age on its own, the interpreter will
show you its value:

age;
12

Cool! The value of the variable isn’t set in stone, though
(they’re called variables because they can vary), and if you want
to update it, just use = again:

age = 13;
13

This time I didn’t use the var keyword, because the variable age
already exists. You need to use var only when you want to create
a variable, not when you want to change the value of a variable.
Notice also, because we’re not creating a new variable, the value 13
1s returned from the assignment and printed on the next line.

This slightly more complex example solves the candies problem
from earlier, without parentheses:

var numberOfSiblings = 1 + 3;

var numberOfCandies = 8;
numberOfCandies / numberOfSiblings;
2

First we create a variable called number0fSiblings and assign it
the value of 1 + 3 (which JavaScript works out to be 4). Then we
create the variable numberOfCandies and assign 8 to it. Finally, we
write numberOfCandies / numberOfSiblings. Because numberOfCandies is 8
and number0fSiblings is 4, JavaScript works out 8 / 4 and gives us 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Be careful with your variable names, because it’s easy to misspell
them. Even if you just get the capitalization wrong, the JavaScript
interpreter won’t know what you mean! For example, if you acci-
dentally used a lowercase ¢ in numberOfCandies, youd get an error:

numberOfcandies / numberOfSiblings;
ReferenceError: numberOfcandies is not defined

Unfortunately, JavaScript will only do exactly what you ask it
to do. If you misspell a variable name, JavaScript has no idea what
you mean, and it will display an error message.

Another tricky thing about variable names in JavaScript is
that they can’t contain spaces, which means they can be difficult
to read. I could have named my variable numberofcandies with no
capital letters, which makes it even harder to read because it’s not
clear where the words end. Is this variable “numb erof can dies” or
“numberofcan dies”? Without the capital letters, it’s hard to tell.

One common way to get around
this is to start each word with a
capital letter as in NumberOfCandies.

(This convention is called camel
case because it supposedly looks ¢
like the humps on a camel.) \

The standard practice is to
have variables start with a lower-
case letter, so it’s common to
capitalize each word except for the
first one, like this: numberOfCandies.

(I'11 follow this version of the camel
case convention throughout this
book, but you're free to do whatever
you want!)

You can create new variables by doing some math on older ones.
For example, you can use variables to find out how many seconds
there are in a year—and how many seconds old you are! Let’s start
by finding the number of seconds in an hour.

Data Types and Variables 19

www.it-ebooks.info

http://www.it-ebooks.info/

20

Chapter 2

SECONDS IN AN HOUR

First we create two new variables called secondsInAMinute and
minutesInAnHour and make them both 60 (because, as we know,
there are 60 seconds in a minute and 60 minutes in an hour).
Then we create a variable called secondsInAnHour and set its value
to the result of multiplying secondsInAMinute and minutesInAnHour.
At @, we enter secondsInAnHour, which is like saying, “Tell me the
value of secondsInAnHour right now!” JavaScript then gives you the
answer: it’s 3600.

var secondsInAMinute = 60;

var minutesInAnHour = 60;

var secondsInAnHour = secondsInAMinute * minutesInAnHour;
secondsInAnHour;

3600

SECONDS IN A DAY 6

Now we create a variable called hoursInADay and set
it to 24. Next we create the variable secondsInADay
and set it equal to secondsInAnHour multiplied by
hoursInADay. When we ask for the value secondsInADay
at @, we get 86400, which is the number of seconds
in a day.

var hoursInADay = 24;

var secondsInADay = secondsInAnHour * hoursInADay;
secondsInADay;

86400

SECONDS IN A YEAR

Finally, we create the variables daysInAYear and secondsInAYear.

The daysInAvear variable is assigned the value 365, and the variable
secondsInAYear is assigned the value of secondsInADay multiplied by
daysInAvear. Finally, we ask for the value of secondsInAYear, which is
31536000 (more than 31 million)!

var daysInAYear = 365;

var secondsInAYear = secondsInADay * daysInAYear;
secondsInAYear;

31536000

www.it-ebooks.info

http://www.it-ebooks.info/

AGE IN SECONDS

Now that you know the number of seconds in a year, you can eas-
ily figure out how old you are in seconds (to the nearest year). For
example, as I'm writing this, I'm 29:

var age = 29;
age * secondsInAYear;
914544000

To figure out your age in seconds, enter the same code, but
change the value in age to your age. Or just leave out the age vari-
able altogether and use a number for your age, like this:

29 * secondsInAYear;
914544000

I'm more than 900 million seconds old! How many seconds old
are you?

INCREMENTING AND DECREMENTING

As a programmer, you’ll often need to increase or decrease the
value of a variable containing a number by 1. For example, you
might have a variable that counts the number of high-fives you
received today. Each time someone high-fives you, you'd want to
increase that variable by 1.

Increasing by 1 is called incrementing, and decreasing by 1 is
called decrementing. You increment and decrement using the oper-
ators ++ and --.

var highFives = 0;
++highFives;

1

++highFives;

2

--highFives;

1

When we use the ++ operator, the value of highFives goes up by 1,
and when we use the -- operator, it goes down by 1. You can also
put these operators after the variable. This does the same thing,
but the value that gets returned is the value before the increment
or decrement.

Data Types and Variables 21

www.it-ebooks.info

http://www.it-ebooks.info/

22

Chapter 2

highFives = 0;
highFives++;

0

highFives++;

1

highFives;

2

In this example, we set highFives to \)L/

0 again. When we call highFives++, the
variable is incremented, but the value
that gets printed is the value before the
increment happened. You can see at the
end (after two increments) that if we ask
for the value of highFives, we get 2.

o+

(PLUS-EQUALS) AND
(MINUS-EQUALS)

To increase the value of a variable by a certain amount, you could
use this code:

var x = 10;
X =X+ 5;
X3
15

Here, we start out with a variable called x, set to 10. Then, we
assign x + 5 to x. Because x was 10, x + 5 will be 15. What we’re
doing here is using the old value of x to work out a new value for x.
Therefore, x = x + 5 really means “add 5 to x.”

JavaScript gives you an easier way of increasing or decreas-
ing a variable by a certain amount, with the += and -= operators.
For example, if we have a variable x, then x += 5 is the same as
saying x = x + 5. The -= operator works in the same way, so x -= 9
would be the same as x = x - 9 (“subtract 9 from x”). Here’s an
example using both of these operators to keep track of a score
in a video game:

var score = 10;

score += 7;
17
score -= 3;
14

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, we start with a score of 10 by assigning the
value 10 to the variable score. Then we beat a monster, which
increases score by 7 using the += operator. (score += 7 is the same
as score = score + 7.) Before we beat the monster, score was 10, and
10 + 7 is 17, so this operation sets score to 17.

After our victory over the monster, we crash into a meteor
and score is reduced by 3. Again, score -= 3 is the same as score =
score - 3. Because score is 17 at this point, score - 3 1is 14, and that
value gets reassigned to score.

TRY IT OUT!

There are some other operators that are similar to += and -=.
For example, there are *= and /=. What do you think these
do? Give them a try:

var balloons = 100;

balloons *= 2;
22?2

What does balloons *= 2 do? Now try this:

var balloons = 100;

balloons /= 4;
22?2

What does balloons /= 4 do?

So far, we've just been working with numbers. Now let’s look at
another type of data: strings. Strings in JavaScript (as in most pro-
gramming languages) are just sequences of characters, which can
include letters, numbers, punctuation, and spaces. We put strings
between quotes so JavaScript knows where they start and end. For
example, here’s a classic:

"Hello world!";
"Hello world!"

Data Types and Variables 23

www.it-ebooks.info

http://www.it-ebooks.info/

To enter a string, just type a double quotation mark (") fol-
lowed by the text you want in the string, and then close the string
with another double quote. You can also use single quotes ('), but
to keep things simple, we’ll just be using double quotes in this book.

You can save strings into variables, just like numbers:

var myAwesomeString = "Something REALLY awesome!!!";

There’s also nothing stopping you from assigning a string to a
variable that previously contained a number:

var myThing = 5;
myThing = "this is a string";
"this is a string"

What if you put a number between quotes? Is that a string or
a number? In JavaScript, a string is a string (even if it happens to
have some characters that are numbers). For example:

var numberNine
var stringNine

95
||9||;

numberNine is a number, and stringNine is a string. To see how
these are different, let’s try adding them together:

numberNine + numberNine;
18

stringNine + stringNine;
II99II

When we add the number values 9 and 9, we get 18. But when
we use the + operator on "9" and "9", the strings are simply joined
together to form "99".

24 Chapter 2

www.it-ebooks.info

http://www.it-ebooks.info/

JOINING STRINGS

As you just saw, you can use the + operator with strings, but the
result is very different from using the + operator with numbers.
When you use + to join two strings, you make a new string with
the second string attached to the end of the first string, like this:

var greeting = "Hello";
var myName = "Nick";
greeting + myName;
"HelloNick"

Here, we create two variables (greeting and myName) and assign
each a string value ("Hello" and "Nick", respectively). When we add
these two variables together, the strings are combined to make a
new string, "HelloNick".

That doesn’t look right, though—there should be a space
between Hello and Nick. But JavaScript won’t put a space there
unless we specifically tell it to by adding a space in one of the
original strings:

var greeting = "Hello ";
var myName = "Nick";
greeting + myName;
"Hello Nick"

The extra space inside the quotes at @ puts a space in the final
string as well.

You can do a lot more with strings other than just adding them
together. Here are some examples.

FINDING THE LENGTH OF A STRING
To get the length of a string, just add .1length to the end of it.

"Supercalifragilisticexpialidocious".length;
34

You can add .length to the end of the actual string or to a vari-
able that contains a string:

var java = "Java";
java.length;
4

Data Types and Variables 295

www.it-ebooks.info

http://www.it-ebooks.info/

26

Chapter 2

var script = "Script";
script.length;

6

var javascript = java + script;
javascript.length;

10

Here we assign the string "Java" to the variable java and the
string "Script" to the variable script. Then we add .length to the
end of each variable to determine the length of each string, as well
as the length of the combined strings.

Notice that I said you can add .length to “the actual string or
to a variable that contains a string.” This illustrates something
very important about variables: anywhere you can use a number
or a string, you can also use a variable containing a number or a
string.

GETTING A SINGLE CHARACTER
FROM A STRING

Sometimes you want to get a single character from a string. For
example, you might have a secret code where the message is made
up of the second character of each word in a list of words. You'd
need to be able to get just the second characters and join them all
together to create a new word.

To get a character from a particular position in a string, use
square brackets, []. Just take the string, or the variable contain-
ing the string, and put the number of the character you want in
a pair of square brackets at the end. For example, to get the first
character of myName, use myName[0], like this:

var myName = "Nick";
myName[0];

ny

myName[1];

nim

myName[2];

C

Notice that to get the first character of the string, we use o
rather than 1. That’s because JavaScript (like many other pro-
gramming languages) starts counting at zero. That means when

www.it-ebooks.info

http://www.it-ebooks.info/

you want the first character of a string, you use 0; when you want
the second one, you use 1; and so on.

Let’s try out our secret code, where we hide a message in some
words’ second characters. Here’s how to find the secret message in
a sequence of words:

var codeWordl = "are";

var codeWord2 = "tubas";

var codeWord3 = "unsafe";

var codeWord4 = "?!1";

codeWord1[1] + codeWord2[1] + codeWord3[1] + codeWord4[1];
"run!"

Again, notice that to get the second character of each string,
we use 1.

CUTTING UP STRINGS

To “cut off” a piece of a big string, you can use slice. For example,
you might want to grab the first bit of a long movie review to
show as a teaser on your website. To use slice, put a period after

a string (or a variable containing a string), followed by the word
slice and opening and closing parentheses. Inside the parentheses,
enter the start and end positions of the slice of the string you want,
separated by a comma. Figure 2-2 shows how to use slice.

These two numbers
set the start and end of the slice.

V!

"a string".slice(1, 5)

Figure 2-2: How to use slice to get characters from a string

For example:

var longString = "My long string is long";
longString.slice(3, 14);
"long string"

The first number in parentheses is the number of the charac-
ter that begins the slice, and the second number is the number of

Data Types and Variables 27

www.it-ebooks.info

http://www.it-ebooks.info/

28

Chapter 2

the character after the last character in the slice. Figure 2-3 shows
which characters this retrieves, with the start value (3) and stop
value (14) highlighted in blue.

r ing is l on g

Moy 1
0 1 3 10 11 12 13|14 15 16 17 18 19 20 21

g t
6 9

0o n s
2 4 5 7 8

Figure 2-3: In the example above, slice grabs the characters shown in the
gray box.

Here we basically tell JavaScript, “Pull a slice out of this lon-
ger string starting at the character at place 3 and keep going until
you hit place 14.”

If you include only one number in the parentheses after slice,
the string that it slices will start from that number and continue
all the way to the end of the string, like this:

var longString = "My long string is long";
longString.slice(3);
"long string is long"

CHANGING STRINGS TO ALL CAPITAL OR
ALL LOWERCASE LETTERS

If you have some text that you just want to shout, try using
toUpperCase to turn it all into capital letters.

"Hello there, how are you doing?".toUpperCase();
"HELLO THERE, HOW ARE YOU DOING?"

When you use .toUpperCase() on a string, it makes a new string
where all the letters are turned into uppercase.
You can go the other way around, too:

"hELlo THERE, hOW ARE yOu doINg?".toLowerCase();
"hello there, how are you doing?"

As the name suggests, .tolLowerCase() makes all of the charac-
ters lowercase. But shouldn’t sentences always start with a capital
letter? How can we take a string and make the first letter upper-
case but turn the rest into lowercase?

www.it-ebooks.info

http://www.it-ebooks.info/

Q000006

See if you can figure out how to turn "hELlo THERE, hOW ARE yOu
doINg?" into "Hello there, how are you doing?" using the tools you
just learned. If you get stuck, review the sections on getting a single

character and using slice. Once youre done, come back and have a
look at how I did it.

Here’s one approach:

var sillyString = "hELlo THERE, hOW ARE yOu doINg?";
var lowerString = sillyString.tolLowerCase();

var firstCharacter = lowerString[o];

var firstCharacterUpper = firstCharacter.toUpperCase();
var restOfString = lowerString.slice(1);
firstCharacterUpper + restOfString;

"Hello there, how are you doing?"

Let’s go through this line by
line. At ©®, we create a new vari-
able called sillyString and save the
string we want to modify to that
variable. At @, we get the lower-
case version of sillyString ("hello
there how are you doing?") with
.toLowerCase() and save that in a
new variable called lowerString.

At ©, we use [0] to get the first
character of lowerString ("h") and
save it in firstCharacter (0 is used
to grab the first character). Then,
at @, we create an uppercase ver-
sion of firstCharacter ("H") and call
that firstCharacterUpper.

At @, we use slice to get all the
characters in lowerString, starting from the second character ("ello
there how are you doing?") and save that in rest0fString. Finally,
at @, we add firstCharacterUpper ("H") to restOfString to get "Hello
there, how are you doing?".

Data Types and Variables 29

www.it-ebooks.info

http://www.it-ebooks.info/

Because values and variables can be substituted for each other,
we could turn lines ® through @® into just one line, like this:

var sillyString = "hELlo THERE, hOW ARE yOu doINg?";
sillyString[o].toUpperCase() + sillyString.slice(1).toLowerCase();
"Hello there, how are you doing?"

It can be confusing to follow along with code written this way,
though, so it’s a good idea to use variables for each step of a com-
plicated task like this—at least until you get more comfortable
reading this kind of complex code.

BOOLEANS

30

Chapter 2

Now for Booleans. A Boolean value is simply a value that’s either
true or false. For example, here’s a simple Boolean expression.

var javascriptIsCool = true;
javascriptIsCool;
true

In this example, we created a new variable called javascriptIsCool
and assigned the Boolean value true to it. On the second line, we
get the value of javascriptIsCool, which, of course, is true!

LOGICAL OPERATORS

Just as you can combine numbers with mathematical operators
(+, -, *, /, and so on), you can combine Boolean values with Boolean
operators. When you combine Boolean values with Boolean opera-
tors, the result will always be another Boolean value (either true or
false).

The three main Boolean operators in JavaScript are &8, ||,
and !. They may look a bit weird, but with a little practice, they're
not hard to use. Let’s try them out.

&& (AND)

8& means “and.” When reading aloud, people call it “and,” “and-
and,” or “ampersand-ampersand.” (Ampersand is the name of the
character &.) Use the 8& operator with two Boolean values to see if
they’re both true.

www.it-ebooks.info

http://www.it-ebooks.info/

For example, before you go to school, you want to make sure
that you've had a shower and you have your backpack. If both are
true, you can go to school, but if one or both are false, you can’t
leave yet.

var hadShower = true;

var hasBackpack = false;
hadShower && hasBackpack;
false

Here we set the variable hadShower to
true and the variable hasBackpack to false.
When we enter hadShower && hasBackpack, we
are basically asking JavaScript, “Are both
of these values true?” Since they aren’t
both true (you don’t have your backpack),
JavaScript returns false (you're not ready
for school).

Let’s try this again, with both values
set to true:

var hadShower = true;

var hasBackpack = true;
hadShower && hasBackpack;
true

Now JavaScript tells us that hadShower
& hasBackpack is true. You're ready for
school!

Il (OR)

The Boolean operator || means “or.” It can be pronounced “or,” or
even “or-or,” but some people call it “pipes,” because programmers
call the | character a pipe. You can use this operator with two
Boolean values to find out whether either one is true.

For example, say you're still getting ready to go to school
and you need to take a piece of fruit for lunch, but it doesn’t mat-
ter whether you take an apple or an orange or both. You can use
JavaScript to see whether you have at least one, like this:

var hasApple = true;
var hasOrange = false;

Data Types and Variables 31

www.it-ebooks.info

http://www.it-ebooks.info/

32

Chapter 2

hasApple || hasOrange;
true

hasApple || hasOrange will be true if either hasApple or hasOrange
1s true, or if both are true. But if both are false, the result will be
false (you don’t have any fruit).

! (NOT)

I just means “not.” You can call it “not,” but lots of people call it
“bang.” (An exclamation point is sometimes called a bang.) Use it
to turn false into true or true into false. This is useful for working
with values that are opposites. For example:

var isWeekend = true;

var needToShowerToday = !isWeekend;
needToShowerToday;

false

In this example, we set the variable isWeekend to true. Then
we set the variable needToShowerToday to !isWeekend. The bang
converts the value to its opposite—so if isWeekend is true, then
lishWeekend 1s not true (it’s false). So when we ask for the value of
needToShowerToday, we get false (you don’t need to shower today,
because it’s the weekend).

Because needToShowerToday is false, !needToShowerToday will
be true:

needToShowerToday;
false
IneedToShowerToday;
true

In other words, it’s true that you do not need to shower today.

COMBINING LOGICAL OPERATORS

Operators get interesting when you start combining them. For
example, say you should go to school if it’s not the weekend and
you've showered and you have an apple or you have an orange. We
could check whether all of this is true with JavaScript, like this:

var isWeekend = false;
var hadShower = true;
var hasApple = false;

www.it-ebooks.info

http://www.it-ebooks.info/

var hasOrange = true;

var shouldGoToSchool = !isWeekend &3 hadShower 88 (hasApple || hasOrange);
shouldGoToSchool ;

true

In this case, it’s not the weekend, you have showered, and you
don’t have an apple but you do have an orange—so you should go
to school.

hasApple || hasOrange is in parentheses because we want to make
sure JavaScript works out that bit first. Just as JavaScript calcu-
lates * before + with numbers, it also calculates && before || in logical
statements.

COMPARING NUMBERS WITH BOOLEANS

Boolean values can be used to answer ques-
tions about numbers that have a simple yes
or no answer. For example, imagine you're
running a theme park and one of the rides
has a height restriction: riders must be at
least 60 inches tall, or they might fall out!
When someone wants to go on the ride and
tells you their height, you need to know if it’s
greater than this height restriction.

GREATER THAN

We can use the greater-than operator () to
see if one number is greater than another.
For example, to see if the rider’s height
(65 inches) 1s greater than the height
restriction (60 inches), we could set the
variable height equal to 65 and the variable
heightRestriction equal to 60, and then use >
to compare the two:

var height = 65;

var heightRestriction = 60;
height > heightRestriction;
true

With height > heightRestriction, we're asking JavaScript to tell
us whether the first value is greater than the second. In this case,
the rider is tall enough!

Data Types and Variables 33

www.it-ebooks.info

http://www.it-ebooks.info/

34

Chapter 2

What if a rider were exactly 60 inches tall, though?

var height = 60;

var heightRestriction = 60;
height > heightRestriction;
false

Oh no! The rider isn’t tall enough! But if the height restriction
1s 60, then shouldn’t people who are exactly 60 inches be allowed
in? We need to fix that. Luckily, JavaScript has another operator,
>=, which means “greater than or equal to™

var height = 60;

var heightRestriction = 60;
height >= heightRestriction;
true

Good, that’s better—60 is greater than or equal to 60.

LESS THAN

The opposite of the greater-than operator (>) is the less-than opera-
tor (<). This operator might come in handy if a ride were designed
only for small children. For example, say the rider’s height is 60
inches, but riders must be no more than 48 inches tall:

var height = 60;

var heightRestriction = 48;
height < heightRestriction;
false

We want to know if the rider’s height is less than the restric-
tion, so we use <. Because 60 is not less than 48, we get false
(someone whose height is 60 inches is too tall for this ride).

And, as you may have guessed, we can also use the operator
<=, which means “less than or equal to™

var height = 48;

var heightRestriction = 48;
height <= heightRestriction;
true

Someone who is 48 inches tall is still allowed to go on the ride.

www.it-ebooks.info

http://www.it-ebooks.info/

EQUAL TO

To find out if two numbers are exactly the
same, use the triple equal sign (===), which
means “equal to.” But be careful not to con-
fuse === with a single equal sign (=), because
=== means “are these two numbers equal?”
and = means “save the value on the right in
the variable on the left.” In other words, ===
asks a question, while = assigns a value to a
variable.

When you use =, a variable name has to be on the left and the
value you want to save to that variable must be on the right. On
the other hand, === is just used for comparing two values to see if
they’re the same, so it doesn’t matter which value is on which side.

For example, say you're running a competition with your
friends Chico, Harpo, and Groucho to see who can guess your
secret number, which is 5. You make it easy on your friends by
saying that the number is between 1 and 9, and they start to
guess. First you set mySecretNumber equal to 5. Your first friend,
Chico, guesses that it’s 3 (chicoGuess). Let’s see what happens next:

var mySecretNumber = 5;
var chicoGuess = 3;

mySecretNumber === chicoGuess;
false

var harpoGuess = 7;
mySecretNumber === harpoGuess;
false

var grouchoGuess = 5;
mySecretNumber === grouchoGuess;
true

The variable mySecretNumber stores your secret number. The vari-
ables chicoGuess, harpoGuess, and grouchoGuess represent your friends’
guesses, and we use === to see whether each guess is the same as
your secret number. Your third friend, Groucho, wins by guessing 5.

When you compare two numbers with ===, you get true only
when both numbers are the same. Because grouchoGuess is 5 and
mySecretNumber is 5, mySecretNumber === grouchoGuess returns true. The
other guesses didn’t match mySecretNumber, so they returned false.

Data Types and Variables 395

www.it-ebooks.info

http://www.it-ebooks.info/

36

Chapter 2

You can also use === to compare two strings or two Booleans. If
you use === to compare two different types—for example, a string
and a number—it will always return false.

DOUBLE EQUALS

Now to confuse things a bit: there’s another JavaScript operator
(double equals, or ==) that means “equal-ish.” Use this to see whether
two values are the same, even if one is a string and the other is

a number. All values have some kind of type. So the number 5 is
different from the string "5", even though they basically look like
the same thing. If you use === to compare the number 5 and the
string "5", JavaScript will tell you they’re not equal. But if you
use == to compare them, it will tell you they’re the same:

var stringNumber = "5";
var actualNumber = 5;

stringNumber === actualNumber;
false
stringNumber == actualNumber;
true

At this point, you might be thinking to yourself, “Hmm, it
seems much easier to use double equals than triple equals!” You
have to be very careful, though, because double equals can be very
confusing. For example, do you think o0 is equal to false? What
about the string "false"? When you use double equals, 0 is equal
to false, but the string "false" is not:

0 == false;

true

"false" == false;
false

This 1s because when JavaScript tries to compare two values
with double equals, it first tries to make them the same type. In this
case, it converts the Boolean into a number. If you convert Booleans
to numbers, false becomes 0, and true becomes 1. So when you type
0 == false, you get true!

Because of this weirdness, it’s probably safest to just stick with
=== for now.

www.it-ebooks.info

http://www.it-ebooks.info/

TRY IT OUT!

You've been asked by the local movie theater managers to
implement some JavaScript for a new automated system
they’re building. They want to be able to work out whether
someone is allowed into a PG-13 movie or not.

The rules are, if someone is 13 or over, they're allowed
in. If they’re not over 13, but they are accompanied by an
adult, they’re also allowed in. Otherwise, they can’t see the
movie.

var age = 12;
var accompanied = true;
N

Finish this example using the age
and accompanied variables to work out
whether this 12-year-old is allowed
to see the movie. Try changing the
values (for example, set age to 13 and
accompanied to false) and see if your
code still works out the right answer.

\

UNDEFINED AND NULL

Finally, we have two values that don’t fit any particular mold.
They’re called undefined and null. Theyre both used to mean
“nothing,” but in slightly different ways.

undefined 1s the value JavaScript uses when it doesn’t have a
value for something. For example, when you create a new variable,
if you don’t set its value to anything using the = operator, its value
will be set to undefined:

var myVariable;
myVariable;
undefined

Data Types and Variables 37

www.it-ebooks.info

http://www.it-ebooks.info/

The null value is usually used when you want to deliberately
say “This is empty.”

var myNullVariable = null;
myNullVariable;

At this point, you won’t be using undefined or null very often.
You'll see undefined if you create a variable and don’t set its value,
because undefined is what JavaScript will always give you when
it doesn’t have a value. It’s not very common to set something to
undefined; if you feel the need to set a variable to “nothing,” you
should use null instead.

null is used only when you actually want to say something’s
not there, which is very occasionally helpful. For example, say
you're using a variable to track what your favorite vegetable is.
If you hate all vegetables and don’t have a favorite, you might set
the favorite vegetable variable to null.

Setting the variable to null would make it obvious to anyone
reading the code that you don’t have a favorite vegetable. If it were
undefined, however, someone might just think you hadn’t gotten
around to setting a value yet.

Now you know all the basic data types in JavaScript—numbers,
strings, and Booleans—as well as the special values null and
undefined. Numbers are used for math-type things, strings are used
for text, and Booleans are used for yes or no questions. The values
null and undefined are there to give us a way to talk about things
that don’t exist.

In the next two chapters, we’ll look at arrays and objects,
which are both ways of joining basic types to create more complex
collections of values.

38 Chapter 2

www.it-ebooks.info

http://www.it-ebooks.info/

So far we've learned about numbers and strings, which
are types of data that you can store and use in your
programs. But numbers and strings are kind of bor-
ing. There’s not a lot that you can do with a string on
its own. JavaScript lets you create and group together
data in more interesting ways with arrays. An array is
just a list of other JavaScript data values.

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if your friend asked you what your three favor-
ite dinosaurs were, you could create an array with the names of
those dinosaurs, in order:

var myTopThreeDinosaurs = ["T-Rex", "Velociraptor", "Stegosaurus"];

So instead of giving your friend three separate strings, you
can just use the single array myTopThreeDinosaurs.

WHY SHOULD YOU CARE ABOUT ARRAYS?

40

Chapter 3

Let’s look at dinosaurs again. Say you want to use a program to
keep track of the many kinds of dinosaurs you know about. You
could create a variable for each dinosaur, like this:

var dinosaurl = "T-Rex";
var dinosaur2 = "Velociraptor";

var dinosaur3 = "Stegosaurus";
var dinosaur4 = "Triceratops";
var dinosaur5 = "Brachiosaurus";

var dinosaur6 = "Pteranodon";
var dinosaur7 = "Apatosaurus";
var dinosaur8 = "Diplodocus";
var dinosaur9 = "Compsognathus";

This list is pretty awkward to use, though, because you have
nine different variables when you could have just one. Imagine
if you were keeping track of 1000 dinosaurs! You'd need to create
1000 separate variables, which would be almost impossible to
work with.

www.it-ebooks.info

http://www.it-ebooks.info/

It’s like if you had a shopping list, but every item was on a
different piece of paper. You'd have one piece of paper that said
“eggs,” another piece that said “bread,” and another piece that said
“oranges.” Most people would write the full list of things they want
to buy on a single piece of paper. Wouldn’t it be much easier if you
could group all nine dinosaurs together in just one place?

You can, and that’s where arrays come in.

CREATING AN ARRAY

To create an array, you just use square brackets, []. In fact, an
empty array is simply a pair of square brackets, like this:

[]
[]

)

But who cares about an empty array? Let’s fill it with our
dinosaurs!

To create an array with values in it, enter the values, sepa-
rated by commas, between the square brackets. We can call the
individual values in an array items or elements. In this example,
our elements will be strings (the names of our favorite dinosaurs),
so we'll write them with quote marks. We'll store the array in a
variable called dinosaurs:

var dinosaurs = ["T-Rex", "Velociraptor", "Stegosaurus", «
"Triceratops", "Brachiosaurus", "Pteranodon", "Apatosaurus", «
"Diplodocus”, "Compsognathus"];

Because this is a book and the page is only so wide, we can’t actu-
ally fit the whole array on one line. The <~ is to show where we've
put the code onto an extra line because the page is too narrow.
When you type this into your computer, you can type it all on
one line.

Long lists can be hard to read on one line, but luckily that’s
not the only way to format (or lay out) an array. You can also for-
mat an array with an opening square bracket on one line, the

Arrays 41

www.it-ebooks.info

http://www.it-ebooks.info/

list of items in the array each on a new line, and a closing square
bracket, like this:

var dinosaurs = |
"T-Rex",
"Velociraptor",
"Stegosaurus",
"Triceratops",
"Brachiosaurus",
"Pteranodon”,
"Apatosaurus”,
"Diplodocus",
"Compsognathus"

If you want to type this into your browser console, you’ll need
to hold down the SHIFT key when you press the ENTER key for each
new line. Otherwise the JavaScript interpreter will think you’re
trying to execute the current, incomplete, line. While we’re work-
ing in the interpreter, it’s easier to write arrays on one line.

Whether you choose to format the items in an array on one
line or on separate lines, it’s all the same to JavaScript. However
many line breaks you use, JavaScript just sees an array—in this
example, an array containing nine strings.

ACCESSING AN ARRAY'S ELEMENTS

42

Chapter 3

When it’s time to access elements in an array, you use square
brackets with the index of the element you want, as you can see
in the following example:

dinosaurs[0];
"T-Rex"

dinosaurs[3];
"Triceratops"

An index is the number that corresponds to (or matches) the
spot in the array where a value is stored. Just as with strings, the
first element in an array is at index 0O, the second is at index 1,
the third at index 2, and so on. That’s why asking for index 0
from the dinosaurs array returns "T-Rex" (which is first in the list),
and index 3 returns "Triceratops" (which is fourth in the list).

www.it-ebooks.info

http://www.it-ebooks.info/

It’s useful to be able to access individual elements from an
array. For example, if you just wanted to show someone your abso-
lute favorite dinosaur, you wouldn’t need the whole dinosaurs array.
Instead you would just want the first element:

dinosaurs[0];
"T-Rex"

SETTING OR CHANGING ELEMENTS
IN AN ARRAY

You can use indexes in square brackets to set, change, or even add
elements to an array. For example, to replace the first element

in the dinosaurs array ("T-Rex") with "Tyrannosaurus Rex", you could
do this:

dinosaurs[0] = "Tyrannosaurus Rex";

After you've done that, the dinosaurs array would look like this:

["Tyrannosaurus Rex", "Velociraptor", "Stegosaurus", "Triceratops",
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus",
"Compsognathus"]

Arrays 43

www.it-ebooks.info

http://www.it-ebooks.info/

a4

Chapter 3

You can also use square brackets with indexes to add new ele-
ments to an array. For example, here’s how you could create the
dinosaurs array by setting each element individually with square
brackets:

var dinosaurs = [];

dinosaurs[0] = "T-Rex";
dinosaurs[1] = "Velociraptor";
dinosaurs[2] = "Stegosaurus"”;
dinosaurs[3] = "Triceratops"”;
dinosaurs[4] = "Brachiosaurus"”;
dinosaurs[5] = "Pteranodon";
dinosaurs[6] = "Apatosaurus"”;
dinosaurs[7] = "Diplodocus”;
dinosaurs[8] = "Compsognathus"”;
dinosaurs;

["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops",
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus",
"Compsognathus"]

First we create an empty array with var dinosaurs = []. Then,
with each following line we add a value to the list with a series
of dinosaurs[] entries, from index O to index 8. Once we finish the
list, we can view the array (by typing dinosaurs;). We see that
JavaScript has stored all the names ordered according to the
indexes.

You can actually add an element at any index you want. For
example, to add a new (made-up) dinosaur at index 33, you could
write the following:

dinosaurs[33] = "Philosoraptor”;

dinosaurs;

["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops",
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus",
"Compsognathus", undefined x 24 "Philosoraptor"]

The elements between indexes 8 and 33 will be undefined.
When you output the array, Chrome helpfully tells you how many
elements were undefined, rather than listing them all individually.

www.it-ebooks.info

http://www.it-ebooks.info/

MIXING DATA TYPES IN AN ARRAY

Array elements don’t all have to be the same type. For example,
the next array contains a number (3), a string ("dinosaurs"),

an array (["triceratops", "stegosaurus", 3627.5]), and another
number (10):

var dinosaursAndNumbers = [3, "dinosaurs", ["triceratops"”,
"stegosaurus", 3627.5], 10];

To access an individual element in this array’s inner array,
you would just use a second set of square brackets. For example,
while dinosaursAndNumbers[2]; returns the entire inner array,
dinosaursAndNumbers[2][0]; returns only the first element of that
inner array, which is "triceratops".

dinosaursAndNumbers[2];
["triceratops", "stegosaurus", 3627.5]
dinosaursAndNumbers[2][0];
"triceratops”

When we type dinosaursAndNumbers[2][0];, we tell JavaScript
to look at index 2 of the array dinosaursAndNumbers, which contains
the array ["triceratops", "stegosaurus", 3627.5], and to return the
value at index O of that second array. Index 0 is the first value of
the second array, which is "triceratops". Figure 3-1 shows the index
positions for this array.

index index index index
[0] [1] [2] [3]
} | , v ;o
[3, "dinosaurs", ["triceratops", "stegosaurus", 3627.5], 10];
t t t
index index index
[2][0] [2][1] [2][2]

Figure 3-1: The index positions of the main array are labeled in red, and the indexes of the
inner array are labeled in blue.

Arrays 45

www.it-ebooks.info

http://www.it-ebooks.info/

WORKING WITH ARRAYS

Properties and methods help you work with arrays. Properties gen-
erally tell you something about the array, and methods usually do
something to change the array or return a new array. Let’s have

a look.

FINDING THE LENGTH OF AN ARRAY

Sometimes it’s useful to know how many elements there are in
an array. For example, if you kept adding dinosaurs to your dinosaurs
array, you might forget how many dinosaurs you have.

The length property of an array tells you how many elements
there are in the array. To find the length of an array, just add
.length to the end of its name. Let’s try it out. First we’ll make a
new array with three elements:

var maniacs = ["Yakko", "Wakko", "Dot"];
maniacs[0];

"Yakko"

maniacs[1];

"Wakko"

maniacs[2];

"Dot"

To find the length of the array, add .length to maniacs:

maniacs.length;
3

JavaScript tells us that there are 3 elements in the array, and
we already know they have the index positions 0, 1, and 2. This
gives us a useful piece of information: the last index in an array is
always the same number as the length of the array minus 1. This
means that there is an easy way to access the last element in an
array, however long that array is:

maniacs[maniacs.length - 1];
IIDOtII

46 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

Here, we're asking JavaScript for an element from our array.
But instead of entering an index number in the square brackets,
we use a little bit of math: the length of the array minus 1.
JavaScript finds maniacs.length, gets 3, and then subtracts 1 to
get 2. Then it returns the element from index 2—the last maniac
in the array, "Dot".

ADDING ELEMENTS TO AN ARRAY

To add an element to the end of an array, you can use the push
method. Add .push to the array name, followed by the element you
want to add inside parentheses, like this:

var animals = [];
animals.push("Cat");

1

animals.push("Dog");

2
animals.push("Llama");
3

animals;

[Ilcat", IIDOgII, "Llama"]
animals.length;
3

Here we create an empty array with
var animals = [];, and then use the push
method to add "Cat" to the array. Then,
we use push again to add on "Dog" and
then "Llama". When we display animals;,
we see that "Cat", "Dog", and "Llama" were
added to the array, in the same order we
entered them.

The act of running a method in
computer-speak is known as calling the
method. When you call the push method,
two things happen. First, the element
in parentheses is added to the array.
Second, the new length of the array is
returned. That’s why you see those num-
bers printed out every time you call push.

Arrays 47

www.it-ebooks.info

http://www.it-ebooks.info/

48

Chapter 3

To add an element to the beginning of an array, you can use
.unshift(element), like this:

animals;

["Cat", "Dog", "Llama"]
animals[0];

"Cat"

animals.unshift("Monkey");

4

animals;

["Monkey", "Cat", "Dog", "Llama"]
animals.unshift("Polar Bear");

5

animals;

["Polar Bear", "Monkey", "Cat", "Dog", "Llama"]
animals[0];

"Polar Bear"

animals[2];

"Cat"

Here we started with the
array that we've been using,
["Cat", "Dog", "Llama"]. Then,
as we add the elements "Monkey"
and "Polar Bear" to the begin-
ning of the array with unshift,
the old values get pushed along
by one index each time. So
"Cat", which was originally at
index 0 @, i1s now at index 2 @,

Again, unshift returns the
new length of the array each
time it is called, just like push.

REMOVING ELEMENTS FROM AN ARRAY

To remove the last element from an array, you can pop it off by
adding .pop() to the end of the array name. The pop method can be
particularly handy because it does two things: it removes the last
element, and it returns that last element as a value. For example,
let’s start with our animals array, ["Polar Bear", "Monkey", "Cat",
"Dog", "Llama"]. Then we’ll create a new variable called lastAnimal
and save the last animal into it by calling animals.pop().

www.it-ebooks.info

http://www.it-ebooks.info/

animals;

["Polar Bear", "Monkey", "Cat", "Dog", "Llama"]
var lastAnimal = animals.pop();
lastAnimal;

"Llama"

animals;

["Polar Bear", "Monkey", "Cat", "Dog"]
animals.pop();

"Dog"

animals;

["Polar Bear", "Monkey", "Cat"]
animals.unshift(lastAnimal);

4

animals;

["Llama", "Polar Bear", "Monkey", "Cat"]

When we call animals.pop() at @, the last item in the animals
array, "Llama", is returned and saved in the variable lastAnimal.
"Llama" 1s also removed from the array, which leaves us with four
animals. When we call animals.pop() again at @, "Dog" is removed
from the array and returned, leaving only three animals in the
array.

When we used animal.pop() on "Dog", we didn’t save it into a
variable, so that value isn’t saved anywhere anymore. The "Llama",
on the other hand, was saved to the variable lastAnimal, so we can
use it again whenever we need it. At ©, we use unshift(lastAnimal)
to add "Llama" back onto the front of the array. This gives us a final
array of ["Llama", "Polar Bear", "Monkey", "Cat"].

Pushing and popping are a useful pair because sometimes you
care about only the end of an array. You can push a new item onto
the array and then pop it off when you’re ready to use it. We’ll look
at some ways to use pushing and popping later in this chapter.

u_lama“
["Polar Bear", "Monkey", "Cat", "Dog",]
/ push
"Ll "
[llca_tu, "DOg", ama]

Arrays 49

www.it-ebooks.info

http://www.it-ebooks.info/

50

Chapter 3

To remove and return the first element of an array, use
.shift():

animals;

["Llama", "Polar Bear", "Monkey", "Cat"]
var firstAnimal = animals.shift();
firstAnimal;

"Llama"

animals;

["Polar Bear", "Monkey", "Cat"]

animals.shift() does the same thing as animals.pop(), but
the element comes off the beginning instead. At the start of
this example, animals is ["Llama", "Polar Bear", "Monkey", "Cat"].
When we call .shift() on the array, the first element, "Llama", is
returned and saved in firstAnimal. Because .shift() removes the
first element as well as returning it, at the end animals is just
["Polar Bear", "Monkey", "Cat"].

You can use unshift and shift to add and remove items from
the beginning of an array just as you'd use push and pop to add and
remove items from the end of an array.

"Llama n
[, "Polar Bear", "Monkey", "Cat"]
/ unshift
"Llama n

[

, "Polar Bear", "Monkey", "Cat"]

ADDING ARRAYS

To add two arrays together to make a new, single array, you can
use firstArray.concat(otherArray). The term concat is short for
concatenate, a fancy computer science word for joining two values
together. The concat method will combine both arrays into a new
array, with the values from firstArray added in front of those from
otherArray.

www.it-ebooks.info

http://www.it-ebooks.info/

For example, say we have a list of some
furry animals and another list of some scaly
animals, and we want to combine them. If
we put all of our furry animals in an array
called furryAnimals and all of our scaly ani-
mals in an array called scalyAnimals, entering
furryAnimals.concat(scalyAnimals) will create a
new array that has the values from the first
array at the beginning and the values from
the second array at the end.

var furryAnimals = ["Alpaca", "Ring-tailed Lemur", "Yeti"];

var scalyAnimals = ["Boa Constrictor", "Godzilla"];

var furryAndScalyAnimals = furryAnimals.concat(scalyAnimals);
furryAndScalyAnimals;

["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor", "Godzilla"]
furryAnimals;

["Alpaca", "Ring-tailed Lemur", "Yeti"]

scalyAnimals;

["Boa Constrictor", "Godzilla"]

Even though firstArray.concat(otherArray) returns an array
containing all the elements from firstArray and secondArray, neither
of the original arrays is changed. When we look at furryAnimals and
scalyAnimals, they’re the same as when we created them.

JOINING MULTIPLE ARRAYS

You can use concat to join more than two arrays together. Just put
the extra arrays inside the parentheses, separated by commas:

var furryAnimals = ["Alpaca", "Ring-tailed Lemur", "Yeti"];

var scalyAnimals = ["Boa Constrictor", "Godzilla"];

var featheredAnimals = ["Macaw", "Dodo"];

var allAnimals = furryAnimals.concat(scalyAnimals, featheredAnimals);
allAnimals;

["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor", "Godzilla",
"Macaw", "Dodo"]

Here the values from featheredAnimals get added to the very end
of the new array, since they are listed last in the parentheses after
the concat method.

concat 1s useful when you have multiple arrays that you want
to combine into one. For example, say you have a list of your favor-
ite books, and your friend also has a list of favorite books, and you

Arrays 51

www.it-ebooks.info

http://www.it-ebooks.info/

52

Chapter 3

want to go see if the books are available to buy all at once at the
bookstore. It would be easier if you had only one list of books. All
youd have to do is concat your list with your friend’s, and voila!
One list of books.

FINDING THE INDEX OF AN ELEMENT
IN AN ARRAY

To find the index of an element in an array, use .index0f(element).
Here we define the array colors and then ask for the index
positions of "blue" and "green" with colors.index0f("blue") and
colors.index0f("green"). Because the index of "blue" in the array
1s 2, colors.index0f("blue") returns 2. The index of "green" in the
array is 1, so colors.index0f("green") returns 1.

var colors = ["red", "green", "blue"];
colors.index0f("blue");

2

colors.indexOf("green");

1

index0f 1s like the reverse of using square brackets to get
a value at a particular index; colors[2] 1s "blue", so colors
.index0f("blue") is 2

colors[2];

n bluell
colors.index0f("blue");
2

Even though "blue" appears third in the array, its index posi-
tion is 2 because we always start counting from 0. And the same
goes for "green", of course, at index 1.

If the element whose position you ask for is not in the array,
JavaScript returns -1.

colors.index0f("purple");
-1

This is JavaScript’s way of saying “That doesn’t exist here,”
while still returning a number.

www.it-ebooks.info

http://www.it-ebooks.info/

If the element appears more than once in the array, the index0f
method will return the first index of that element in the array.

var insects = ["Bee", "Ant", "Bee", "Bee", "Ant"];
insects.indexOf("Bee");
0

TURNING AN ARRAY INTO A STRING

You can use .join() to join all the elements in an array together
into one big string.

var boringAnimals = ["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join();
"Monkey, Cat,Fish,Lizard"

When you call the join method on an array, it returns a string
containing all the elements, separated by commas. But what if you
don’t want to use commas as the separator?

You can use .join(separator) to do
the same thing, but with your own
chosen separator between each value.
The separator is whatever string
you put inside the parentheses. For
example, we can use three different
separators: a hyphen with spaces on
either side, an asterisk, and the word
sees with spaces on either side. Notice
that you need quote marks around
the separator, because the separator
is a string.

var boringAnimals = ["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join(" - ");

"Monkey - Cat - Fish - Lizard"

boringAnimals.join("*")

"Monkey*Cat*Fish*Lizard"

boringAnimals.join(" sees ")

"Monkey sees Cat sees Fish sees Lizard"

This is useful if you have an array that you want to turn into
a string. Say you have lots of middle names and you’ve got them
stored in an array, along with your first and last name. You might

Arrays 53

www.it-ebooks.info

http://www.it-ebooks.info/

be asked to give your full name as a string. Using join, with a
single space as the separator, will join all your names together
into a single string:

var myNames = ["Nicholas", "Andrew", "Maxwell", "Morgan"];
myNames.join(" ");
"Nicholas Andrew Maxwell Morgan"

If you didn’t have join, you'd have to do something like this,
which would be really annoying to type out:

myNames[0] + + myNames[1] +
"Nicholas Andrew Maxwell Morgan"

+ myNames[2] + + myNames[3];

Also, this code would work only if you had exactly two middle
names. If you had one or three middle names, you'd have to change
the code. With join, you don’t have to change anything—it prints
out a string with all of the elements of the array, no matter how
long the array is.

If the values in the array aren’t strings, JavaScript will con-
vert them to strings before joining them together:

var ages = [11, 14, 79];
ages.join(" ");
"11 14 79"

USEFUL THINGS TO DO WITH ARRAYS

54

Chapter 3

Now you know lots of different ways to create arrays and play
around with them. But what can you actually do with all these
properties and methods? In this section, we’ll write a few short
programs that show off some useful things to do with arrays.

FINDING YOUR WAY HOME

Picture this: your friend has come over to your house. Now she
wants to show you her house. The only problem is that you've
never been to her house before, and later you’ll have to find your
way back home on your own.

Luckily, you have a clever idea to help you with your prob-
lem: on the way to your friend’s house, you'll keep a list of all the
landmarks you see. On the way back, you’ll go through the list in

www.it-ebooks.info

http://www.it-ebooks.info/

reverse and check items off the end of the list every time you pass
a landmark so you know where to go next.

BUILDING THE ARRAY WITH PUSH

Let’s write some code that would do exactly that. We start off by
creating an empty array. The array starts off empty because you
don’t know what landmarks you’ll see until you actually start
walking to your friend’s house. Then, for each landmark on the
way to your friend’s house, we’ll push a description of that land-
mark onto the end of the array. Then, when it’s time to go home,
we’ll pop each landmark off the array.

var landmarks = [];

landmarks.push("My house");
landmarks.push("Front path");
landmarks.push("Flickering streetlamp");
landmarks.push("Leaky fire hydrant");
landmarks.push("Fire station");
landmarks.push("Cat rescue center");
landmarks.push("My old school");
landmarks.push("My friend's house");

Here we create an empty array named landmarks and then use
push to store all the landmarks you pass on the way to your friend’s
house.

GOING IN REVERSE WITH POP

Once you arrive at your friend’s house, you can inspect your array
of landmarks. Sure enough, the first item is "My house", followed
by "Front path", and so on through the end of the array, with the
final item "My friend's house". When it’s time to go home, all you
need to do is pop off the items one by one, and you’ll know where
to go next.

landmarks.pop();

"My friend's house"
landmarks.pop();

"My old school"
landmarks.pop();
"Cat rescue center"
landmarks.pop();
"Fire station”
landmarks.pop();
"Leaky fire hydrant"

Arrays 55

www.it-ebooks.info

http://www.it-ebooks.info/

landmarks.pop();
"Flickering streetlamp"
landmarks.pop();

"Front path"
landmarks.pop();

"My house"

Phew, you made it home!

Did you notice how the first landmark
you put in the array was also the last one you
got out of it? And the last landmark you put
in the array was the first one that came out?
You might have thought that you'd always
want the first item you put in to be the first
item you get out, but you can see that it’s
sometimes helpful to go back through an
array in reverse.

It’s actually very common to use a process like this in larger
programs, which is why JavaScript makes pushing and popping
SO easy.

g??

This technique is known as a stack in computer-speak. Think of

it like a stack of pancakes. Every time you cook a new pancake, it
goes on top (like push), and every time you eat one, it comes off the
top (like pop). Popping a stack is like going back in time: the last
item you pop is the first one you pushed. It’s the same with pan-
cakes: the last pancake you eat is the first one that was cooked. In
programming jargon, this is also called Last In, First Out (LIFO).
The alternative to LIFO is First In, First Out (FIFO). This is also
known as a queue, because it acts like a queue (or line) of people.
The first person to join the queue is the first person to be served.

DECISION MAKER

We can use arrays in JavaScript to build a program to make deci-
sions for us (like a Magic 8-Ball). First, though, we need to find
out how to get random numbers.

56 Chapter 3

www.it-ebooks.info

http://www.it-ebooks.info/

USING MATH.RANDOM()

We can produce random numbers using a special method called
Math.random(), which returns a random number between 0 and 1
each time it’s called. Here’s an example:

Math.random();

0.8945409457664937
Math.random();

0.3697543195448816
Math.random();

0.48314980138093233

It’s important to note that Math.random() always returns a num-
ber less than 1 and will never return 1 itself.

If you want a bigger number, just multiply the result of calling
Math.random(). For example, if you wanted numbers between 0 and
10, you would multiply Math.random() by 10:

Math.random() * 10;
7.648027329705656
Math.random() * 10;
9.7565904534421861
Math.random() * 10;
0.21483442978933454

ROUNDING DOWN WITH MATH.FLOORI()

We can’t use these numbers as array indexes, though, because
indexes have to be whole numbers with nothing after the decimal
point. To fix that, we need another method called Math.floor(). This
takes a number and rounds it down to the whole number below it
(basically getting rid of everything after the decimal point).

Math.floor(3.7463463);

3

Math.floor(9.9999);

9
Math.floor(0.793423451963426);
0

We can combine these two techniques to create a random
index. All we need to do is multiply Math.random() by the length of

Arrays B7

www.it-ebooks.info

http://www.it-ebooks.info/

58

Chapter 3

the array and then call Math.floor() on that value. For example,
if the length of the array were 4, we would do this:

Math.floor(Math.random() * 4);
2 // could be 0, 1, 2, or 3

Every time you call the code above, it returns a random num-
ber from 0 to 3 (including 0 and 3). Because Math.random() always
returns a value less than 1, Math.random() * 4 will never return 4 or
anything higher than 4.

Now, if we use that random number as an index, we can select
a random element from an array:

var randomWords = ["Explosion", "Cave", "Princess", "Pen"];
var randomIndex = Math.floor(Math.random() * 4);
randomWords[randomIndex];

"Cave"

Here we use Math.floor(Math.random() * 4); to pick a random
number from 0 to 3. Once that random number is saved to the
variable randomIndex, we use it as an index to ask for a string from
the array randomWords.

In fact, we could shorten this by doing away with the randomIndex
variable altogether and just say:

randomWords[Math.floor(Math.random() * 4)];
"Princess”

THE COMPLETE DECISION MAKER

Now let’s create our array of phrases, and we can use this code
to pick a random one. This is our decision maker! I'm using com-
ments here to show some questions you might want to ask your
computer.

var phrases = [
"That sounds good",
"Yes, you should definitely do that",
"I'm not sure that's a great idea",
"Maybe not today?",
"Computer says no."

www.it-ebooks.info

http://www.it-ebooks.info/

// Should I have another milkshake?
phrases[Math.floor(Math.random() * 5)];
"I'm not sure that's a great idea"

// Should I do my homework?
phrases[Math.floor(Math.random() * 5)];
"Maybe not today?"

Here we created an array called phrases that stores different
pieces of advice. Now, every time we have a question, we can ask
for a random value from the phrases array, and it will help us make
a decision!

Notice that because our array of decisions has five items, we
multiply Math.random() by 5. This will always return one of five
index positions: 0, 1, 2, 3, or 4.

CREATING A RANDOM INSULT GENERATOR

We can extend the decision maker example to create a program
that generates a random insult every time you run it!

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Pick a random body part from the randomBodyParts array:

var randomBodyPart = randomBodyParts[Math.floor(Math.random() * 3)];
// Pick a random adjective from the randomAdjectives array:

var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)];
// Pick a random word from the randomWords array:

var randomWord = randomWords[Math.floor(Math.random() * 5)];

// Join all the random strings into a sentence:

var randomInsult = "Your " + randomBodyPart +
randomAdjective + " " + randomWord + "!!!";
randomInsult;

"Your Nose is like a Stupid Marmot!!!™

is like a " + ~

Here we have three arrays, and in

lines @, ®, and ©, we use three indexes

to pull a random word from each array.
Then, we combine them all in the variable
randomInsult to create a complete insult.
At @ and ® we're multiplying by 3 because
randomAdjectives and randomBodyParts both
contain three elements. Likewise, we're
multiplying by 5 at ® because randomiords is

Arrays 59

www.it-ebooks.info

http://www.it-ebooks.info/

five elements long. Notice that we add a string with a single space
between randomAdjective and randomWord. Try running this code a
few times—you should get a different random insult each time!

TRY IT OUT!

If you wanted to be really clever, you could replace line ©
with this:

var randomWord = randomWords[Math.floor(Math.random() * «
randomhords.length)];

We know that we always need to multiply Math.random()
by the length of the array, so using randomiWords.length means
we don’t have to change our code if the length of the array
changes.

Here’s another way to build up our random insult:

var randomInsult = ["Your", randomBodyPart, "is", "like", "a", <
randomAdjective, randomWord + "!!!"].join(" ");
"Your Hair is like a Smelly Fly!!!"

In this example, each word of the sentence is a separate
string in an array, which we join with the space character. There’s
only one place where we dont want a space, which is in between
randomhord and "!!!". In this case, we use the + operator to join
those two strings without the space.

WHAT YOU LEARNED

60

Chapter 3

As you've seen, JavaScript arrays are a way to store a list of
values. Now you know how to create and work with arrays, and
you have many ways of accessing their elements.

Arrays are one of the ways JavaScript gives you to bring mul-
tiple values together into one place. In the next chapter, we’ll look
at objects, which are another way of storing multiple values as a
single unit. Objects use string keys to access the elements, rather
than number indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

r

PROGRAMMING CHALLENGES

Try out these challenges to practice the skills you learned in
this chapter.

#1: NEW INSULTS

Make your own random insult generator with your own set
of words.

#2: MORE SOPHISTICATED INSULTS

Extend the random insult generator so it generates insults
like “Your [body part] is more [adjective] than a [animal]’s
[animal body part].” (Hint: You’ll need to create another
array.)

#3: USE + OR JOIN?

Make two versions of your random insult generator: one that
uses the + operator to create the string, and one that creates
an array and joins it with " ". Which do you prefer, and why?

#4: JOINING NUMBERS

How could you turn the array [3, 2, 1] into the string "3 is
bigger than 2 is bigger than 1" using the join method?

~

J

Arrays

www.it-ebooks.info

61

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Objects in JavaScript are very similar to arrays, but
objects use strings instead of numbers to access the
different elements. The strings are called keys or
properties, and the elements they point to are called
values. Together these pieces of information are called
key-value pairs. While arrays are mostly used to
represent lists of multiple things, objects are often

www.it-ebooks.info

http://www.it-ebooks.info/

64

Chapter 4

used to represent single things with multiple characteristics, or
attributes. For example, in Chapter 3 we made several arrays
that listed different animal names. But what if we wanted to
store different pieces of information about one animal?

We could store lots of information about a single animal by creat-
ing a JavaScript object. Here’s an object that stores information
about a three-legged cat named Harmony.

var cat = {
"legs": 3,
"name": "Harmony",
"color": "Tortoiseshell"

};

Here we create a variable called cat
and assign an object to it with three key-
value pairs. To create an object, we use
curly brackets, {}, instead of the straight
brackets we used to make arrays. In
between the curly brackets, we enter
key-value pairs. The curly brackets and
everything in between them are called
an object literal. An object literal is a
way of creating an object by writing out
the entire object at once.

n_n

We've also seen array literals (for example, ["a", "b", "c"]), number
literals (for example, 37), string literals (for example, "moose"), and
Boolean literals (true and false). Literal just means that the whole
value is written out at once, not built up in multiple steps.

For example, if you wanted to make an array with the numbers
1 through 3 in it, you could use the array literal [1, 2, 3]. Or you
could create an empty array and then use the push method to add 1,
2, and 3 to the array. You don’t always know at first what’s going to
be in your array or object, which is why you can’t always use literals
to build arrays and objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-1 shows the basic syn- { "key1": 99 }
tax for creating an object. } K
When you create an object, the

key goes before the colon (:), and The key, The value,
which is always which can be

the. Va.lue goes after.' The colon acts a string of any type

a bit like an equal sign—the values

on the right get assigned to the Figure 4-1: The general syntax

names on the left, just like when for creating an object

you create variables. In between

each key-value pair, you have to

put a comma. In our example, the commas are at the ends of the
lines—but notice that you don’t need a comma after the last key-
value pair (color: "Tortoiseshell"). Because it’s the last key-value
pair, the closing curly bracket comes next, instead of a comma.

KEYS WITHOUT QUOTES

In our first object, we put each key in quotation marks, but you
don’t necessarily need quotes around the keys—this is a valid cat
object literal as well:

var cat = {
legs: 3,
name: "Harmony",
color: "Tortoiseshell"

};

JavaScript knows that the keys will always be strings, which
1s why you can leave out the quotes. If you don’t put quotes around
the keys, the unquoted keys have to follow the same rules as vari-
able names: spaces aren’t allowed in an unquoted key, for example.
If you put the key in quotes, then spaces are allowed:

var cat = {
legs: 3,
"full name": "Harmony Philomena Snuggly-Pants Morgan",
color: "Tortoiseshell"

};

Note that, while a key is always a string (with or without
quotes), the value for that key can be any kind of value, or even
a variable containing a value.

Objects 695

www.it-ebooks.info

http://www.it-ebooks.info/

You can also put the whole object on one line, but it can be
harder to read like that:

var cat = { legs: 3, name: "Harmony", color: "Tortoiseshell" };

ACCESSING VALUES IN OBJECTS

You can access values in objects using square brackets, just like
with arrays. The only difference is that instead of the index (a
number), you use the key (a string).

cat["name"];
"Harmony"

Just as the quotes around keys are optional when you create
an object literal, the quotes are also optional when you are access-
ing keys in objects. If you're not going to use quotes, however, the
code looks a bit different:

cat.name;
"Harmony"

This style is called dot notation. Instead of typing the key
name in quotes inside square brackets after the object name, we
just use a period, followed by the key, without any quotes. As with
unquoted keys in object literals, this will work only if the key
doesn’t contain any special characters, such as spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Instead of looking up a value by typing its key, say you wanted
to get a list of all the keys in an object. JavaScript gives you an
easy way to do that, using Object.keys():

var dog = { name: "Pancake", age: 6, color: "white", bark: "Yip yap <
yip!" };

var cat = { name: "Harmony", age: 8, color: "tortoiseshell" };
Object.keys(dog);

["name", "age", "color", "bark"]

Object.keys(cat);

["name", "age", "color"]

Object.keys(anyObject) returns an array containing all the keys
of anyObject.

ADDING VALUES TO OBJECTS

An empty object is just like an empty array, but it uses curly
brackets, { }, instead of square brackets:

var object = {};

You can add items to an object just as you'd add items to an
array, but you use strings instead of numbers:

var cat = {};
cat["legs"] = 3;

cat["name"] = "Harmony";
cat["color"] = "Tortoiseshell";
cat;

{ color: "Tortoiseshell", legs: 3, name: "Harmony" }

Here, we started with an empty object named cat. Then we
added three key-value pairs, one by one. Then, we type cat;, and
the browser shows the contents of the object. Different browsers
may output objects differently, though. For example, Chrome (at
the time I’'m writing this) outputs the cat object like this:

Object {legs: 3, name: "Harmony", color: "Tortoiseshell"}

While Chrome prints out the keys in that order (legs, name,
color), other browsers may print them out differently. This is

Objects 67

www.it-ebooks.info

http://www.it-ebooks.info/

because JavaScript doesn’t store objects with their keys in any par-
ticular order.

Arrays obviously have a certain order: index 0O is before index
1, and index 3 is after index 2. But with objects, there’s no obvi-
ous way to order each item. Should color go before legs or after?
There’s no “correct” answer to this question, so objects simply store
keys without assigning them any particular order, and as a result
different browsers will print the keys in different orders. For this
reason, you should never write a program that relies on object keys
being in a precise order.

ADDING KEYS WITH DOT NOTATION

You can also use dot notation when adding new keys. Let’s try
the previous example, where we started with an empty object and
added keys to it, but this time we’ll use dot notation:

var cat = {};

cat.legs = 3;

cat.name = "Harmony";
cat.color = "Tortoiseshell";

If you ask for a property that JavaScript doesn’t know about,
it returns the special value undefined. undefined just means “There’s
nothing here!” For example:

var dog = {
name: "Pancake",
legs: 4,
isAwesome: true
b
dog.isBrown;
undefined

Here we define three properties for dog: name, legs, and isAwesome.
We didn’t define isBrown, so dog.isBrown returns undefined.

68 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

COMBINING ARRAYS AND OBJECTS

So far, we've looked only at arrays and objects that contain simple

types like numbers and strings. But there’s nothing stopping you

from using another array or object as a value in an array or object.
For example, an array of dinosaur objects might look like this:

var dinosaurs = |
{ name: "Tyrannosaurus Rex", period: "Late Cretaceous” },
{ name: "Stegosaurus", period: "Late Jurassic" },
{ name: "Plateosaurus", period: "Triassic" }

15

To get all the information about the first dinosaur, you can use
the same technique we used before, entering the index in square
brackets:

dinosaurs[0];
{ name: "Tyrannosaurus Rex", period: "Late Cretaceous" }

If you want to get only the name of the first dinosaur, you can
just add the object key in square brackets after the array index:

dinosaurs[0]["name"];
"Tyrannosaurus Rex"

Or, you can use dot notation, like this:

dinosaurs[1].period;
"Late Jurassic"

You can use dot notation only with objects, not with arrays.

AN ARRAY OF FRIENDS

Let’s look at a more complex example now. We'll create an array of
friend objects, where each object also contains an array. First, we’ll
make the objects, and then we can put them all into an array.

var anna = { name: "Anna", age: 11, luckyNumbers: [2, 4, 8, 16] };
var dave = { name: "Dave", age: 5, luckyNumbers: [3, 9, 40] };
var kate = { name: "Kate", age: 9, luckyNumbers: [1, 2, 3] };

Objects 69

www.it-ebooks.info

http://www.it-ebooks.info/

70

Chapter 4

First, we make three objects and save them into variables
called anna, dave, and kate. Each object has three keys: name, age,
and luckyNumbers. Each name key has a string value assigned to it,
each age key has a single number value assigned to it, and each
luckyNumbers key has an array assigned to it, containing a few dif-
ferent numbers.

Next we’ll make an array of our friends:

var friends = [anna, dave, kate];

Now we have an array saved to the variable friends with three
elements: anna, dave, and kate (which each refer to objects). You can
retrieve one of these objects using its index in the array:

friends[1];
{ name: "Dave", age: 5, luckyNumbers: Array[3] }

This retrieves the second object in the array, dave (at index 1).
Chrome prints out Array[3] for the luckyNumbers array, which is
just its way of saying, “This is a three-element array.” (You can
use Chrome to see what’s in that array; see “Exploring Objects in
the Console” on page 71.) We can also retrieve a value within an
object by entering the index of the object in square brackets followed
by the key we want:

friends[2].name
llKatell

This code asks for the element at index 2, which is the variable
named kate, and then asks for the property in that object under
the key "name", which is "Kate". We could even retrieve a value from
an array that’s inside one of the objects inside the friends array,
like so:

friends[0].luckyNumbers[1];
4

Figure 4-2 shows each index. friends[0] is the ele-
ment at index O in the friends array, which is the object anna.
friends[0].luckyNumbers is the array [2, 4, 8, 16] from the object
called anna. Finally, friends[0].luckyNumbers[1] is index 1 in that
array, which is the number value 4.

www.it-ebooks.info

http://www.it-ebooks.info/

friends[0]

var friends = [anna, dave, kate];

friends[0].luckyNumbers

{

R —
{ name: "Anna", age: 11, luckyNumbers: [2, 4, 8, 16] };

{

friends[0].luckyNumbers[1]

Figure 4-2: Accessing nested values

EXPLORING OBJECTS IN THE CONSOLE

Chrome will let you dig into objects that you print out in the con-
sole. For example, if you type . . .

friends[1];

Chrome will display the output shown in Figure 4-3.

friends[1];
> Object {name: "Dave", age: 5, LuckyNumbers: Array[3]}

Figure 4-3: How an object is displayed in the Chrome interpreter

The triangle on the left means that this object can be
expanded. Click the object to expand it, and you’ll see what’s
shown in Figure 4-4.

friends[1];
¥ Object {name: "Dave", age: 5, LuckyNumbers: Array[3]}
age: 5
» luckyNumbers: Array[3]
name: "Dave"
» proto : Object

Figure 4-4: Expanding the object
Objects 71

www.it-ebooks.info

http://www.it-ebooks.info/

You can expand luckyNumbers, too, by clicking it (see Figure 4-5).

friends[1];
V¥ Object {name: "Dave", age: 5, LuckyNumbers: Array[3]}
age: 5
v luckyNumbers: Array[3]
0: 3
1: 9
2: 40
length: 3
» proto : Array[0Q]
name: "Dave"
» proto : Object

Figure 4-5: Expanding an array within the object

Don’t worry about those _proto properties—they have to
do with the object’s prototype. We'll look at prototypes later, in
Chapter 12. Also, you’ll notice that the interpreter shows the value
of the array’s length property.

You can also view the entire friends array and expand each ele-
ment in the array, as shown in Figure 4-6.

friends
[V Object , ¥ Object , ¥ Object]
age: 11 age: 5 age: 9
» luckyNumbers: Array[4] » luckyNumbers: Array[3] » luckyNumbers: Array[3]
name: "Anna" name: "Dave" name: "Kate"
» proto : Object » proto : Object » proto : Object

Figure 4-6: All three objects from the friends array, as shown in the Chrome interpreter

USEFUL THINGS TO DO WITH OBJECTS

Now that you know a few different ways to create objects and add
properties to them, let’s put what we’ve learned to use by trying
out some simple programs.

KEEPING TRACK OF OWED MONEY

Let’s say you've decided to start a bank. You lend your friends
money, and you want to have a way to keep track of how much
money each of them owes you.

72 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

9 0000

You can use an object as a way of linking a string and a value
together. In this case, the string would be your friend’s name, and
the value would be the amount of money he or she owes you. Let’s
have a look.

var owedMoney = {};
owedMoney["Jimmy"] = 5;
owedMoney["Anna"] = 7;
owedMoney["Jimmy"];

5

owedMoney["Jinen"];
undefined

At @, we create a new empty
object called owedMoney. At @, we
assign the value 5 to the key "Jimmy".
We do the same thing at ©, assign-
ing the value 7 to the key "Anna".
At @, we ask for the value associ-
ated with the key "Jimmy", which
1s 5. Then at ©, we ask for the value
associated with the key "Jinen",
which is undefined because we didn’t
set it.

Now let’s imagine that Jimmy
borrows some more money (say, $3).
We can update our object and add 3
to the amount Jimmy owes with the
plus-equals operator (+=) that you
saw in Chapter 2.

owedMoney["Jimmy"] += 3;
owedMoney ["Jimmy"];
8

This is like saying owedMoney["Jimmy"] = owedMoney["Jimmy"] + 3.
We can also look at the entire object to see how much money each
friend owes us:

owedMoney;
{ Jimmy: 8, Anna: 7 }

Objects 73

www.it-ebooks.info

http://www.it-ebooks.info/

74

Chapter 4

STORING INFORMATION ABOUT YOUR MOVIES

Let’s say you have a large collection of movies on DVD and Blu-ray.
Wouldn't it be great to have the information about those movies on
your computer so you can find out about each movie easily?

You can create an object to store information about your movies,
where every key is a movie title, and every value is another object
containing information about the movie. Values in objects can be
objects themselves!

var movies = {

"Finding Nemo": {
releaseDate: 2003,
duration: 100,
actors: ["Albert Brooks", "Ellen DeGeneres", "Alexander Gould"],
format: "DVD"

}s

"Star Wars: Episode VI - Return of the Jedi": {
releaseDate: 1983,
duration: 134,
actors: ["Mark Hamill", "Harrison Ford", "Carrie Fisher"],
format: "DVD"

}s

"Harry Potter and the Goblet of Fire": {
releaseDate: 2005,
duration: 157,
actors: ["Daniel Radcliffe", "Emma Watson", "Rupert Grint"],
format: "Blu-ray"

}
};

You might have noticed that I used quotes for the movie
titles (the keys in the outer object) but not for the keys in the
inner objects. That’s because the movie titles need to have
spaces—otherwise, I'd
have to type each title like
StarWarsEpisodeVIReturnOfTheJledi,
and that’s just silly! I didn’t need
quotes for the keys in the inner
objects, so I left them off. It can
make code look a bit cleaner
when there aren’t unnecessary
punctuation marks in it.

www.it-ebooks.info

http://www.it-ebooks.info/

Now, when you want information about a movie, it’s easy to find:

var findingNemo = movies["Finding Nemo"];
findingNemo.duration;

100

findingNemo.format;

"DVD"

Here we save the movie information about Finding Nemo into
a variable called findingNemo. We can then look at the properties of
this object (like duration and format) to find out about the movie.
You can also easily add new movies to your collection:

var cars = {
releaseDate: 2006,
duration: 117,
actors: ["Owen Wilson", "Bonnie Hunt", "Paul Newman"],
format: "Blu-ray"
};

movies["Cars"] = cars;

Here we create a new object of movie information about Cars.
We then insert this into the movies object, under the key "Cars".

Now that you're building up your collection, you might want to
find an easy way to list the names of all your movies. That’s where
Object.keys comes in:

Object.keys(movies);
["Finding Nemo", "Star Wars: Episode VI - Return of the Jedi", "Harry
Potter and the Goblet of Fire", "Cars"]

WHAT YOU LEARNED

Now you've seen how objects work in JavaScript. They’re a lot like
arrays, because you can use them to hold lots of pieces of infor-
mation together in one unit. One major difference is that you use
strings to access elements in an object and you use numbers to
access elements in an array. For this reason, arrays are ordered,
while objects are not.

We'll be doing a lot more with objects in later chapters, once
we've learned about more of JavaScript’s features. In the next
chapter, we’ll look at conditionals and loops, which are both ways
of adding structure to our programs to make them more powerful.

Objects 75

www.it-ebooks.info

http://www.it-ebooks.info/

-
PROGRAMMING CHALLENGES

Try out these challenges to practice working with objects.

Imagine you're playing a game with some friends and you
want to keep track of the score. Create an object called
scores. The keys will be the names of your friends, and the
values will be the scores (which will all start at 0). As the
players earn points, you must increase their scores. How
would you increase a player’s score in the scores object?

Say you had the following object:

var myCrazyObject = {
"name": "A ridiculous object”,
"some array": [7, 9, { purpose: "confusion", number: 123 }, 3.3],
"random animal": "Banana Shark"

IS

How would you get the number 123 out of this object
using one line of JavaScript? Try it out in the console to see
if you're right.

\

76 Chapter 4

www.it-ebooks.info

http://www.it-ebooks.info/

The browser-based JavaScript console that we've been
using so far is great for trying out small snippets of
code, but 1n order to create actual programs, we’ll need
something a bit more flexible, like a web page with
some JavaScript in it. In this chapter, we’ll learn how
to create a basic HTML web page.

www.it-ebooks.info

http://www.it-ebooks.info/

78

Chapter 5

HTML (HyperText Markup Language) is the language used
to make web pages. The word HyperText refers to text that is con-
nected by hyperlinks, the links on a web page. A markup language
1s used to annotate documents so that they’re not just plaintext.
The markup tells software (like a web browser) how to display the
text and what to do with it.

In this chapter, I'll show you how to write HTML documents
in a text editor, a simple program designed for writing plaintext
files without the formatting you find in word processors like
Microsoft Word. Word-processed documents contain formatted
text (with different fonts, type colors, font sizes, etc.), and word
processors are designed to make it easy to change the formatting
of the text. Word processors usually allow you to insert images and
graphics as well.

Plaintext files contain just text, without any /_/\
information about the font, color, size, and so on. =(°w°)=
You can’t put an image in a text file unless you) (/7
make it out of text—Ilike this cat, for example. ()7

We'll write our HTML in the cross-platform (compatible with
Windows, Mac OS, and Linux) Sublime Text editor. You can
download and use Sublime Text for free, but after a while you’ll
be asked to pay for a license. If you don’t like that idea, I've listed
some completely free alternatives below. My instructions in this
chapter are geared toward Sublime Text, but since text editors are
relatively simple, the instructions should work pretty much the
same for any editor.

* Gedit is a cross-platform text editor from the GNOME project
(https://wiki.gnome.org/Apps/Gedit/).

* For Microsoft Windows, Notepad++ (http://notepad-plus-plus
.org/) 1s another good alternative.

* On Mac OS, TextWrangler (http://www.barebones.com/
products/textwrangler/) is a good option.

To install Sublime Text, visit hAttp://www.sublimetext.com/.
Installation instructions differ for each operating system, but you
should find them pretty clear. If you run into any problems, try the
Support section at the Sublime Text home page.

www.it-ebooks.info

http://www.barebones.com/products/textwrangler/
http://www.it-ebooks.info/

SYNTAX HIGHLIGHTING

Sublime Text will color-code your programs with syntax
highlighting. This is designed to make programs easier for
programmers to read by assigning different colors to differ-
ent types of code. For example, strings might be green, while
keywords like var might be orange.

Sublime Text has lots of color schemes to choose from.
In this book, we’re using the IDLE color scheme, which you
can match on your screen by going to Preferences » Color
Scheme and selecting IDLE.

OUR FIRST HTML DOCUMENT

Once you've installed Sublime Text, start the program and create
a new file with File »New File. Next, choose File » Save to save
your new, blank file; name it page.html and save it to your desktop.

Now it’s time to write some HTML. Enter the following text
into your page.html file:

<h1>Hello world!</h1>
<p>My first web page.</p>

Save your updated version of page.html with File » Save. Now
let’s see what that page would look like in a web browser. Open
Chrome, choose File » Open File, and select page.html from your
desktop. You should see something like Figure 5-1.

8 00 / page.html b4

= C [file:///Users/js4kids/Desktop/page.html

Hello world!

My first web page. A

Figure 5-1: Your first HTML page in Chrome

You've just created your first HTML document! Although
you're viewing it in your web browser, it’s not actually on the
Internet. Chrome is opening your page locally and just reading
your markup tags to figure out what to do with its text.

The Basics of HTML 79

www.it-ebooks.info

http://www.it-ebooks.info/

TAGS AND ELEMENTS

HTML documents are made up of elements. An element starts
with a start tag and ends with an end tag. For example, in our
document so far we have two elements: h1 and p. The h1 element
starts with the start tag <h1> and ends with the end tag </h1>. The
p element starts with the start tag <p> and ends with the end tag
</p>. Anything between the opening and closing tags is the content
of the element.

Start tags consist of the element name surrounded by angle
brackets: < and >. End tags are the same, but they have a forward
slash (/) before the element name.

HEADING ELEMENTS

Each element has a special meaning and use. For example, the h1
element means “This is a top-level heading.” The content you put
in between the opening and closing <h1> tags is displayed by the
browser on its own line, in a large, bold font.

There are six levels of heading elements in HTML: h1, h2, h3,
h4, hs, and h6. They look like this:

<h1>First-level heading</h1>
<h2>Second-level heading</h2>
<h3>Third-level heading</h3>
<h4>Fourth-level heading</h4>
<h5>Fifth-level heading</h5>
<h6>Sixth-level heading</h6>

Figure 5-2 shows how the headings look on a web page.

800 / page.html *x

€« C [file:///Users/js4kids/Desktop/page.html

First-level heading

Second-level heading
Third-level heading

Fourth-level heading

Fifth-level heading

Sixth-level heading

Figure 5-2: The different heading elements

80 Chapter 5

www.it-ebooks.info

http://www.it-ebooks.info/

THE P ELEMENT

The p element is used to define separate paragraphs of text. Any
text you put between <p> tags will display in a separate paragraph,
with some space above and below the paragraph. Let’s try creating
multiple p elements. Add this new line to your page.html document
(the old lines are shown in gray):

<h1>Hello world!</h1>
<p>My first web page.</p>
<p>Let's add another paragraph.</p>

Figure 5-3 shows the web page with the new paragraph.

8 00)_.-' || page.html x

[= C [file:///Users/js4kids/Desktop/page.html

Hello world!

My first web page.

Let's add another paragraph.

Figure 5-3: The same page but with an extra
paragraph

Notice that the paragraphs appear on different lines and are
separated by a bit of space. This is all because of the <p> tags.

WHITESPACE IN HTML AND BLOCK-LEVEL
ELEMENTS
What would our page look like without the tags? Let’s take a look:

Hello world!
My first web page.
Let's add another paragraph.

Figure 5-4 shows our page without any tags.

8 00)_.-' || page.html x

€« C [file:///Users/js4kids/Desktop/page.html

Hello world! My first web page. Let's add another paragraph.

Figure 5-4: The same page but with no
HTML tags

The Basics of HTML 81

www.it-ebooks.info

http://www.it-ebooks.info/

82

Chapter 5

Oh no! Not only have we lost
the formatting, but everything’s on
one long line! The reason is that in
HTML, all whitespace is collapsed
into a single space. Whitespace
means any character that results
in blank space on the page—for
example, the space character, the
tab character, and the newline
character (the character that is
inserted when you press ENTER
or RETURN). Any blank lines you
insert between two pieces of text
in an HTML document will get
collapsed into a single space.

The p and h1 elements are called block-level elements because
they display their content in a separate block, starting on a new
line, and with any following content on a new line.

INLINE ELEMENTS

Let’s add two more elements to our document, em and strong:

<h1>Hello world!</h1>
<p>My first web page.</p>
<p>Let's add another paragraph.</p>

Figure 5-5 shows what the page looks like with the new tags.

800 / page.html x

[= C [file:///Users/js4kids/Desktop/page.html

Hello world!

My first web page.

Let's add another paragraph.

Figure 5-5: The em and strong elements

The em element makes its content italic. The strong element
makes its content bold. The em and strong elements are both inline
elements, which means that they don’t put their content onto a new
line, as block-level elements do.

www.it-ebooks.info

http://www.it-ebooks.info/

To make content bold and italic, put it inside both tags. Notice
in the previous example that the bold italic text has the tags in
this order: paragraph. It’s important to
properly nest elements. Nesting means that if an element is inside
another element, its opening and closing tags should both be inside
the parent element. For example, this is not allowed:

paragraph

In this case, the closing tag comes before the closing
 tag. Browsers generally won’t tell you when you've made a
mistake like this, but getting nesting wrong can cause your pages
to break in strange ways.

What we've looked at so far is really just a snippet of HTML. A
full HTML document requires some extra elements. Let’s take a
look at an example of a complete HTML document and what each
part means. Update your page.html file with these new elements:

<!DOCTYPE html>
<html>
<head>
<title>My first proper HTML page</title>
</head>

<body>

</body>
</html>

Sublime Text should automatically indent certain lines for you, as
shown in this example. It’s actually identifying lines based on their
tags (like <htmls, <h1>, and so on) and indenting them according

to their nesting. Sublime Text doesn’t indent the <head> and <body>
tags, though some editors do.

The Basics of HTML 83

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-6 shows the complete HTML document.

800 My first proper HTML page *

Ny

& - C [} file:///Users/js4kids/Desktop/page.html

Hello world!

My first web page.

Let's add another paragraph.

Figure 5-6: The complete HTML document

Let’s take a walk through the elements in our page.html file.
The <!DOCTYPE html> tag is just a declaration. It simply says, “This is
an HTML document.” Next comes the opening <html> tag (the clos-
ing </html> tag is at the very end). All HTML documents must have
an html element as their outermost element.

There are two elements inside the html element: head and body.
The head element contains certain information about your HTML
document, such as the title element, which contains the docu-
ment’s title. For example, notice that in Figure 5-6, the title in the
browser tab—“My first proper HTML page”—matches what we
entered in the title element. The title element is contained inside
the head element, which is contained inside the html element.

The body element contains the content that will be displayed in
the browser. Here, we've just copied the HTML from earlier in the
chapter.

HTML HIERARCHY

84

Chapter 5

HTML elements have a clear hierarchy, or order, and can be
thought of as a kind of upside-down tree. You can see how our
document would look as a tree in Figure 5-7.

<html>

<head> <body>

| N

<title> <h1> <p>

Figure 5-7: The elements from Figure 5-6,
shown as a tree

www.it-ebooks.info

http://www.it-ebooks.info/

The top element is the html element. It contains the head and
body elements. The head contains the title element, and the body
contains the h1 and p elements. The browser interprets your HTML
according to this hierarchy. We’ll look at how to change the docu-
ment structure later, in Chapter 9.

Figure 5-8 shows another way of visualizing the HTML hier-
archy, as a set of nested boxes.

html

head

title

body

h1

Figure 5-8: The HTML hierarchy, shown
as nested boxes

ADDING LINKS TO YOUR HTML

Earlier in this chapter, we learned that the HT in HTML stands for
HyperText, or linked text. HTML documents can contain hyperlinks
(links for short) that take you to other web pages. The a element (for
anchor) creates a link element.

Modify your HTML document to match the following example:
delete the second p element and the and tags, and then
add the new colored code to create a link to http://xked.com/:

<!DOCTYPE html>
<html>
<head>
<title>My first proper HTML page</title>
</head>

The Basics of HTML 85

www.it-ebooks.info

http://www.it-ebooks.info/

86

Chapter 5

<body>
<h1>Hello world!</h1>
<p>My first web page.</p>
<p>Click here to read some excellent
comics.</p>
</body>
</html>

Now save and open your page in your browser, and it should
look like Figure 5-9.

8 00 / My first proper HTML page *

€« 0O uﬁle:f;‘,«’l;lse.rs,«’js4 kidstes ktop/ page.htrﬁl

Hello world!

My first web page.

Click here to read some excellent comics.

Figure 5-9: A web page containing a link to
http://xked.com/

If you click that link, your browser should go to the xked web-
site, hitp://xked.com/. Once you've had your fill of geeky comics,
click the back button to return to your page.

LINK ATTRIBUTES

Let’s take a closer look at how we
created that HTML link. To tell the
browser where to go when you click
the a element, we added something
called an attribute to the anchor ele-
ment. Attributes in HTML elements
are similar to key-value pairs in
JavaScript objects. Every attribute
has a name and a value. Here’s the
xked link we created again:

Click here

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, the attribute name is href and the attribute value
1s "http://xkcd.com". The name href stands for hypertext reference,
which is a fancy way of saying “web address.”

Figure 5-10 shows all the parts of the link.

This text
The web address will appear
in quotes as the link.

l !

Click here

1 1

The opening anchor tag The closing anchor tag

Figure 5-10: The basic syntax for creating a hyperlink

The link will take you to whatever web address is entered as
the value of the href attribute.

TITLE ATTRIBUTES

Another attribute we can add to links is the title attribute. This
attribute sets the text you see when you hover your mouse over a
link. For example, change the opening <a> tag so it looks like this:

Click here

Now reload the page. When you hover your cursor over the
link, you should see the text “xked: Land of geeky comics!” floating
above the page, as shown in Figure 5-11.

8 00 / My first proper HTML page »

€« C [file:///Users/js4kids/Desktop/page.html

Hello world!

My first web page.

Click here to read some excellent comics.

xkcd: Land of geeky comics!

Figure 5-11: A web page containing a link
to http://xkcd.com/ with a title attribute

The Basics of HTML 87

www.it-ebooks.info

http://www.it-ebooks.info/

TRY IT OUT!

Make a new file called links.html. It should contain the
same HTML structure as our page.html, but with a new
title and heading and three paragraph (p) elements. In each
paragraph, include a link to one of your favorite websites.
Make sure all the a elements have href and title attributes.

In this chapter, you learned the basics of HTML, the language
used to create web pages. We created a simple page containing a
link to another page.

In the next chapter, we’ll look at how to embed JavaScript in
our web page. This will make it much easier to create larger pro-
grams as we explore more features of JavaScript in the next few
chapters.

This is a book on JavaScript, not HTML, so I've introduced
only the very basics of creating HTML documents. Here are some
resources where you can learn more about HTML:

The Mozilla Developer Network’s Introduction to HTML:
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/

Introduction/

* Codecademy’s HTML and CSS course: http://www.codecademy
.com/tracks/web/

* Mozilla Webmaker: https://webmaker.org/

88 Chapter 5

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
http://www.codecademy.com/tracks/web/
http://www.it-ebooks.info/

Conditionals and loops are two of the most important
concepts in JavaScript. A conditional says, “If some-
thing 1s true, do this. Otherwise, do that.” For example,
1f you do your homework, you can have ice cream,

but if you don’t do your homework, you don’t get the
1ce cream. A [oop says, “As long as something is true,
keep doing this.” For example, as long as you are
thirsty, keep drinking water.

www.it-ebooks.info

http://www.it-ebooks.info/

Conditionals and loops are powerful concepts that are key
to any sophisticated program. They are called control structures
because they allow you to control which parts of your code are
executed when and how often they’re executed, based on certain
conditions you define.

We first need to go over how to embed JavaScript in our
HTML file so we can start creating longer programs than we've
looked at so far.

EMBEDDING JAVASCRIPT IN HTML

Here is the HTML file we created in Chapter 5, with additions in
color and the existing text in gray. (To make this example a little
simpler, I've also deleted the link to xked.)

<!DOCTYPE html>
<html>
<head>
<title>My first proper HTML page</title>
</head>

<body>
<h1>Hello world!</h1>
<p>My first web page.</p>
<script>
var message = "Hello world!";
console.log(message);
</script>

</body>

</html>

Here we've added a new element, called script. This is a spe-
cial element in HTML. With most HTML elements, the content
between the opening and closing tags is displayed on the page.
With script, on the other hand, everything between the tags is
treated as JavaScript and run by the JavaScript interpreter.

Now let’s look at the code inside the script element:

var message = "Hello world!";
©® console.log(message);

90 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

Running JavaScript in an
HTML file is quite different from
running it in the console. When
you're using the JavaScript con-
sole, each line you type is run
as soon as you press ENTER, and
the value of that line is printed
out to the console. In a web page,
the JavaScript is all run from
top to bottom at one time, and
nothing is automatically printed
to the console, unless we tell the
browser otherwise. We can use
console.log to print things out, which will make it easier to see
what’s going on as we run our programs. The console.log method
takes any value and prints out, or logs, that value to the console.
For example, if you load the HTML file from the beginning of this
section with the JavaScript console open, you’ll see this:

Hello world!

Calling console.log(message) at @ caused the string "Hello world!"
to be printed to the console.

Now that you know how to write longer programs with
JavaScript, you can start learning about conditionals.

There are two forms of conditional statements in JavaScript: if
statements and if...else statements. An if statement is used to
execute a piece of code if something is true. For example, if you've
been good, you get a treat. An if...else statement executes one
piece of code if something is true and another if not. For example,
if you've been good, you get a treat; else, you get grounded.

The if statement is the simplest of JavaScript’s control structures.
It’s used to run code only if a condition is true. Return to your

Conditionals and Loops ©1

www.it-ebooks.info

http://www.it-ebooks.info/

92

o0 eC

Chapter 6

HTML file and replace the two lines inside the script element
with this:

name = "Nicholas";
console.log("Hello " + name);
(name.length > 7) {
console.log("Wow, you have a REALLY long name!");
}

First, at ® we create a variable called name and set its value
to the string "Nicholas". Then we use console.log to log the string
"Hello Nicholas" at @.

At © we use an if statement to check whether the length of
name is greater than 7. If it is, the console will display "Wow, you have
a REALLY long name!", using console.log at @.

As Figure 6-1 shows, an if statement has two main parts: the
condition and the body. The condition should be a Boolean value.
The body is one or more lines of JavaScript code, which are exe-
cuted if the condition is true.

The if statement
checks whether this
condition is true.

}

(condition) {
console.log("Do something");

} AN

Some code to run
if the condition is true,
called the body

Figure 6-1: The general structure of an if statement

When you load your HTML page with this JavaScript in it,
you should see the following in the console:

Hello Nicholas
Wow, you have a REALLY long name!

Because the name Nicholas has eight characters, name.length
returns 8. Therefore, the condition name.length > 7 is true, which
causes the body of the if statement to be run, resulting in this

www.it-ebooks.info

http://www.it-ebooks.info/

somewhat startling message being logged. To avoid triggering the
if condition, change the name Nicholas to Nick (leaving the rest of
the code as 1s):

var name = "Nick";

Now save the file and reload the page. This time, the condi-
tion name.length > 7 is not true, because name.length is 4. That means
that the body of the if statement is not run and all that gets printed
to the console is this:

Hello Nick

The body of an if statement is executed only if the condition is
true. When the condition is false, the interpreter simply skips over
the if statement and moves on to the next line.

IF...ELSE STATEMENTS

As I said before, an if statement will execute its body only if the

condition is true. If you want something else to happen when

the condition is false, you need to use an if...else statement.
Let’s extend the example from earlier:

var name = "Nicholas";
console.log("Hello " + name);
if (name.length > 7) {
console.log("Wow, you have a REALLY long name!");
} else {
console.log("Your name isn't very long.");

This does the same thing as before, except
that if the name isn’t longer than seven charac-
ters, it prints out an alternative message.

As Figure 6-2 shows, if...else statements
look like if statements, but with two bodies. The
keyword else is placed between the two bodies.
In an if...else statement, the first body is run
if the condition 1s true; otherwise, the second
body is run.

Conditionals and Loops 93

www.it-ebooks.info

http://www.it-ebooks.info/

o949

Chapter 6

Something that is

either true or false
l Some code to run if the

condition is true
if (condition) {
console.log("Do something");
} else {

console.log("Do something else!™);

Some code to run
if the condition is false

Figure 6-2: The general structure of an if...else statement

CHAINING IF...ELSE STATEMENTS

Often we need to check a sequence of conditions and do something
when one of them is true. For example, say youre ordering Chinese
food and you’re choosing what to eat. Your favorite Chinese dish

is lemon chicken, so you’ll have that if it’s on the menu. If it’s

not, you’ll have beef with black bean sauce. If that’s not on the
menu, you'll have sweet and sour pork. In the rare case that none
of those options is available, you’ll have egg fried rice, because you
know all the Chinese restaurants you go to will have that.

var lemonChicken = false;
var beefWithBlackBean = true;
var sweetAndSourPork = true;

if (lemonChicken) {
console.log("Great! I'm having lemon chicken!");
} else if (beefWithBlackBean) {
console.log("I'm having the beef.");
} else if (sweetAndSourPork) {
console.log("OK, I'l1l have the pork.");
} else {
console.log("Well, I guess I'll have rice then.");

}

To create a chain of if...else statements, start with a nor-
mal if statement and, after the closing brace of its body, enter the
keywords else if, followed by another condition and another body.
You can keep doing this until you run out of conditions; there’s no

www.it-ebooks.info

http://www.it-ebooks.info/

limit to the number of conditions. The final else section will run if
none of the conditions is true. Figure 6-3 shows a generic chain of
if...else statements.

Each condition has code to run
if the condition is true.

if (condition1) { /

console.log("Do this if condition 1 is true");
} else if (condition2) {

console.log("Do this if condition 2 is true");
} else if (condition3) {

console.log("Do this if condition 3 is true");
} else {

console.log("Do this otherwise");
}

AN

Some code to run
if all the conditions are false

Figure 6-3: Chaining multiple if...else statements

You can read this as follows:

If the first condition is true, execute the first body.

2. Otherwise, if the second condition is true, execute the
second body.

3. Otherwise, if the third condition is true, execute the third body.
4. Otherwise, execute the else body.

When you have a chain of if...else statements like this with
a final else section, you can be sure that one (and only one) of the
bodies will be run. As soon as a true condition 1s found, its asso-
ciated body is run, and none of the
other conditions is checked. If we run
the code in the previous example, I'm
having the beef will be printed to the
console, because beefWithBlackBean is
the first condition that’s found to be
true in the if...else chain. If none of
the conditions is true, the else body
1s run.

Conditionals and Loops o5

www.it-ebooks.info

http://www.it-ebooks.info/

LOOPS

26

Chapter 6

There’s one other thing to note: you don’t necessarily have to
include the final else. If you don’t, though, and none of the conditions
1s true, then nothing inside the if...else chain will be executed.

var lemonChicken = false;
var beefWithBlackBean = false;
var sweetAndSourPork = false;

if (lemonChicken) {

console.log("Great! I'm having lemon chicken!");
} else if (beefWithBlackBean) {

console.log("I'm having the beef.");
} else if (sweetAndSourPork) {

console.log("0K, I'll have the pork.");

}

In this example, we've left out the final else section. Because
none of your favorite foods is available, nothing gets printed out
(and it looks like you're not going to have anything to eat!).

TRY IT OUT!

Write a program with a name variable. If name is your name,
print out Hello me!; otherwise, print Hello stranger!. (Hint:
Use === to compare name to your name.)

Next, rewrite the program so it’ll say hi to your dad if
name 18 set to your dad’s name or hi to your mom if name is
your mom’s name. If it’s neither of them, say Hello stranger!
as before.

As we've seen, conditionals allow you to run a piece of code

once if a condition is true. Loops, on the other hand, allow you to
run a piece of code multiple times, depending on whether a condi-
tion remains true. For example,
while there’s food on your plate,
you should keep eating; or,
while you still have dirt on your
face, you should keep washing.

www.it-ebooks.info

http://www.it-ebooks.info/

(o)

WHILE LOOPS

The simplest kind of loop is a while loop. A while loop repeatedly
executes its body until a particular condition stops being true. By
writing a while loop, you are saying, “Keep doing this while this
condition is true. Stop when the condition becomes false.”

As Figure 6-4 shows, while loops start with the while key-
word, followed by a condition in parentheses and then a body
in braces.

This condition is checked
each time the loop repeats.

!
while (condition) {
console.log("Do something");
i++;

} Some code to run and repeat
as long as the condition is true
(something in here should change things
so the condition is eventually false)

Figure 6-4: The general structure of a while loop

Like an if statement, the body of a while loop is executed if the
condition is true. Unlike an if statement, after the body is executed,
the condition is checked again, and if it’s still true, the body runs
again. This cycle goes on until the condition is false.

COUNTING SHEEP WITH A WHILE LOOP

Say you’re having trouble sleeping and you want to count sheep.
But you're a programmer, so why not write a program to count
sheep for you?

var sheepCounted = 0;

while (sheepCounted < 10) {

console.log("I have counted " + sheepCounted +
sheepCounted++;

sheep!");

console.log("Zzzzzzzz227");

Conditionals and Loops 97

www.it-ebooks.info

http://www.it-ebooks.info/

o8

Chapter 6

We create a variable called sheepCounted and set its value
to 0. When we reach the while loop @, we check to see whether
sheepCounted is less than 10. Because 0 is less than 10, the code
inside the braces (the body of the loop) ® runs, and "I have
counted " + sheepCounted + " sheep!" is logged as “I have counted
0 sheep!” Next, sheepCounted++ adds 1 to the value of sheepCounted,
and we go back to the start of the loop, over and over:

have counted
have counted
have counted
have counted 3 sheep!
have counted 4 sheep!

I 0 sheep!
I 1
I 2
I 3
I 4
I have counted 5 sheep!
I 6
I 7
I 8
I 9
yA

sheep!
sheep!

have counted 6 sheep!
have counted 7 sheep!
have counted 8 sheep!
have counted 9 sheep!
17727777777

This repeats until sheepCounted becomes 10, at which point the
condition becomes false (10 is not less than 10), and the program
moves on to whatever comes after the loop. In this case, it prints
177277277777.

PREVENTING INFINITE LOOPS

Keep this in mind when you’re using loops: if the condition you
set never becomes false, your loop will loop forever (or at least
until you quit your browser). For example, if you left out the line

sheepCounted++;, then sheepCounted would remain 0, and the output
would look like this:

I have counted 0 sheep!
I have counted 0 sheep!
I have counted 0 sheep!
I have counted 0 sheep!

www.it-ebooks.info

http://www.it-ebooks.info/

Because there’s nothing to stop it, the program would keep
doing this forever! This is called an infinite loop.

for loops make it easier to write loops that create a variable, loop
until a condition is true, and update the variable at the end of
each turn around the loop. When setting up a for loop, you create
a variable, specify the condition, and say how the variable should
change after each cycle—all before you reach the body of the loop.
For example, here’s how we could use a for loop to count sheep:

(sheepCounted = 0; sheepCounted < 10; sheepCounted++) {
console.log("I have counted " + sheepCounted + " sheep!");

}

console.log("Zzzzzzz27272");

As Figure 6-5 shows, there are three parts to this for loop,
separated by semicolons: the setup, condition, and increment.

Something to run
This code runs Something that is after each repetition
before the loop starts. either true or false of the loop body

N\ ! '

(setup; condition; increment) {
console.log("Do something");

}

Some code to run
as long as the
condition is true

Figure 6-5: The general structure of a for loop

The setup (var sheepCounted = 0) is run before the loop starts.
It’s generally used to create a variable to track the number of times
the loop has run. Here we create the variable sheepCounted with an
initial value of o.

The condition (sheepCounted < 10) is checked before each run
of the loop body. If the condition is true, the body is executed,;
if it’s false, the loop stops. In this case, the loop will stop once
sheepCounted is no longer less than 10.

The increment (sheepCounted++) is run after every execution of
the loop body. It’s generally used to update the looping variable.
Here, we use it to add 1 to sheepCounted each time the loop runs.

Conditionals and Loops 99

www.it-ebooks.info

http://www.it-ebooks.info/

for loops are often used to do something a set number of times.
For example, this program will say Hello! three times.

var timesToSayHello = 3;

for (var i = 0; 1 < timesToSayHello; i++) {
console.log("Hello!");

}

Here is the output:

Hello!
Hello!
Hello!

If we were the JavaScript interpreter running this code, we
would first create a variable called timesToSayHello and set it to
3. When we reach the for loop, we run the setup, which creates a
variable i and sets it to 0. Next, we check the condition. Because
iis equal to 0 and timesToSayHello is 3, the condition is true, so we
enter the loop body, which simply outputs the string "Hello!". We
then run the increment, which increases i to 1.

Now we check the condition again. It’s still true, so we run
the body and increment again. This happens repeatedly until i is
equal to 3. At this point, the condition is false (3 is not less than 3),
so we exit the loop.

USING FOR LOOPS WITH ARRAYS AND STRINGS

One very common use of for loops is to do something with every
element in an array or every character in a string. For example,
here is a for loop that prints out the animals in a zoo:

var animals = ["Lion", "Flamingo", "Polar Bear", "Boa Constrictor"];

for (var i = 0; 1 < animals.length; i++) {
console.log("This zoo contains a " + animals[i] + ".");

}

In this loop, i starts at 0 and goes up to one less than
animals.length, which in this case is 3. The numbers 0, 1, 2,
and 3 are the indexes of the animals in the animals array. This

100 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

means that every time around
the loop, i is a different index,
and animals[i] is another animal
from the animals array. When i is
0, animals[i] 1s "Lion". When i is 1,
animals[i] is "Flamingo", and so on.
Running this would output:

This zoo contains a Lion.

This zoo contains a Flamingo.

This zoo contains a Polar Bear.

This zoo contains a Boa Constrictor.

As you saw in Chapter 2, you can access individual characters
in a string in the same way you can access individual elements in
an array, using square brackets. This next example uses a for loop
to print out the characters in a name:

var name = "Nick";

for (var i = 0; i < name.length; i++) {
console.log("My name contains the letter

}

+ name[i] + ".");

This would output:

My name contains the letter N.
My name contains the letter i.
My name contains the letter c.
My name contains the letter k.

OTHER WAYS TO USE FOR LOOPS

As you might imagine, you don’t always have to start the looping
variable at 0 and increment it by 1. For example, here’s a way to
print all the powers of 2 below the number 10,000:

for (var x = 2; x < 10000; x = x * 2) {
console.log(x);

Conditionals and Loops 101

www.it-ebooks.info

http://www.it-ebooks.info/

We set x to 2 and increment the value of x using x = x * 2;,
which will double the value of x each time the loop runs. The result
gets big very quickly, as you can see:

2

4

8

16
32
64
128
256
512
1024
2048
4096
8192

And voila! This short for loop prints out all the powers of 2
below 10,000.

TRY IT OUT!

Write a loop to print the powers of 3 under 10,000 (it should
print 3, 9, 27, etc.).

Rewrite this loop with a while loop. (Hint: Provide the
setup before the loop.)

In this chapter, you learned about conditionals and loops.
Conditionals are used to run code only when a certain condition
1s true. Loops are used to run code multiple times and to keep
running that code as long as a certain condition is true. You can
use conditionals to make sure that the right code is run at the
right time, and you can use loops to keep your program running
as long as necessary. Having the ability to do these two things
opens up a whole new world of programming possibilities.

In the next chapter, we’ll use the power of conditionals and
loops to make our first real game!

102 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

(

~
PROGRAMMING CHALLENGES

Try out these challenges to practice
working with conditionals and loops.

#1: AWESOME ANIMALS

Write a for loop that modifies an
array of animals, making them
awesome! For example, if your
starting array is . . .

var animals = ["Cat", "Fish", «
"Lemur", "Komodo Dragon"];

then after you run your loop, it
should look like this:

["Awesome Cat", "Awesome Fish", "Awesome Lemur", "Awesome «
Komodo Dragon"]

Hint: You'll need to reassign values to the array at each
index. This just means assigning a new value at an existing
position in the array. For example, to make the first animal
awesome, you could say:

animals[0] = "Awesome " + animals[0];

#2: RANDOM STRING GENERATOR

Make a random string generator. You'll need to start with a
string containing all the letters in the alphabet:

var alphabet = "abcdefghijklmnopgrstuvwxyz";

To pick a random letter from this string, you can
update the code we used for the random insult generator in
Chapter 3: Math.floor(Math.random() * alphabet.length). This
will create a random index into the string. You can then use
square brackets to get the character at that index.

(continued)

Conditionals and Loops 103

www.it-ebooks.info

http://www.it-ebooks.info/

(")

To create the random string, start with an empty string
(var randomString = ""). Then, create a while loop that will
continually add new random letters to this string, as long
as the string length is less than 6 (or any length you choose).
You could use the += operator to add a new letter to the end
of the string. After the loop has finished, log it to the console
to see your creation!

Turn text into hack3r sp34k! A lot of people on the Internet
like to replace certain letters with numbers that look like
those letters. Some numbers that look like letters are 4 for
A, 3 for E, 1 for I, and o for 0. Even though the numbers look
more like capital letters, we’ll be replacing the lowercase
versions of those letters. To change normal text to h4ack3r
sp34k, we'll need an input string and a new empty string:

input = "javascript is awesome";

output g

You'll then need to use a for loop to go through all the
letters of the input string. If the letter is "a", add a "4" to the
output string. If it’s "e", add a "3". If it’s "i", add a "1", and
if it’s "o", add a "0". Otherwise, just add the original letter
to the new string. As before, you can use += to add each new
letter to the output string.

After the loop, log the output string to the console. If it

works correctly, you should see it log "javascript 1s 4aw3som3".

104 Chapter 6

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter we’ll build a Hangman game! We'll
learn how to use dialogs to make the game interactive
and take input from someone playing the game.

Hangman is a word-guessing game. One player
picks a secret word, and the other player tries to
guess it.

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if the word were TEACHER, the first player
would write:

The guessing player tries to guess the letters in the word.
Each time they guess a letter correctly, the first player fills in the
blanks for each occurrence of that letter. For example, if the guess-
ing player guessed the letter E, the first player would fill in the Es
in the word TEACHER like so:

When the guessing player guesses a letter that isn’t in the
word, they lose a point and the first player draws part of a stick-
man for each wrong guess. If the first player completes the
stickman before the guessing
player guesses the word, the
guessing player loses.

In our version of Hangman,
the JavaScript program will
choose the word and the human
player will guess letters. We
won’t be drawing the stickman,
because we haven'’t yet learned
how to draw in JavaScript
(we’ll learn how to do that in
Chapter 13).

To create this game, we have to have some way for the guessing
player (human) to enter their choices. One way is to open a pop-up
window (which JavaScript calls a prompt) that the player can
type into.

First, let’s create a new HTML document. Using File » Save As,
save your page.html file from Chapter 5 as prompt.html. To create

106 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

a prompt, enter this code between the <script> tags of prompt.html
and refresh the browser:

name = prompt("What's your name?");
console.log("Hello " + name);

Here we create a new variable, called name, and assign to it
the value returned from calling prompt("What's your name?"). When
prompt is called, a small window (or dialog) is opened, which should
look like Figure 7-1.

P‘ JavaScript
™) What's your name?

| Cancel | [LoOK |

Figure 7-1: A prompt dialog

Calling prompt("What's your name?") pops up a window with
the text “What’s your name?” along with a text box for input.

At the bottom of the dialog are two buttons, Cancel and OK. In
Chrome, the dialog has the heading JavaScript, to inform you
that JavaScript opened the prompt.

When you enter text in the box and click OK, that text
becomes the value that is returned by prompt. For example, if I
were to enter my name into the text box and click OK, JavaScript
would print this in the console:

Hello Nick

Because I entered Nick in the text box and clicked OK, the
string "Nick" is saved in the variable name and console.log prints
"Hello " + "Nick", which gives us "Hello Nick".

The second time you open any kind of dialog in Chrome, it adds an
extra line to the dialog with a checkbox saying, “Prevent this page
from creating additional dialogs.” This is Chrome’s way of protect-
ing users from web pages with lots of annoying pop-ups. Just leave
the box unchecked for the exercises in this chapter.

Creating a Hangman Game 107

www.it-ebooks.info

http://www.it-ebooks.info/

()
WHAT HAPPENS IF YOU CLICK CANCEL?

If you click the Cancel button, prompt returns the value null.
In Chapter 2, we learned that you can use null to indicate
when something is intentionally empty.

Click Cancel at the dialog, and you should see this:

Hello null

Here, null is printed as a string by console.log. Normally,
null isn’t a string, but since only strings can be printed
to the console and you told JavaScript to print "Hello " +
null, JavaScript turns the value null into the string "null"
so it can be printed. When JavaScript converts a value into
another type, it’s called coercion.

Coercion is an example of JavaScript trying to be clever.
There isn’t any way to combine a string and null using the
+ operator, so JavaScript does its best with the situation. In
this case, it knows it needs two strings. The string version
of null is "null", which is why you see the string "Hello null"
printed.

USING CONFIRM TO ASK A
YES OR NO QUESTION

The confirm function is a way to take user
input without a text box by asking for a
yes or no (Boolean) answer. For example,
here we use confirm to ask the user if they
like cats (see Figure 7-2). If so, the vari-
able likesCats 1s set to true, and we respond
with “You're a cool cat!” If they don’t like
cats, likesCats is set to false, so we respond
with “Yeah, that’s fine. You're still cool!”

var likesCats = confirm("Do you like cats?");
if (likesCats) {
console.log("You're a cool cat!");
} else {
console.log("Yeah, that's fine. You're still cool!");

108 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript
‘ Do you like cats?

Figure 7-2: A confirm dialog

| Cancel |[OK]

The answer to the confirm prompt is returned as a Boolean
value. If the user clicks OK in the confirm dialog shown in
Figure 7-2, true is returned. If they click Cancel, false is
returned.

USING ALERTS TO GIVE A PLAYER
INFORMATION

If you want to just give the player some information, you can
use an alert dialog to display a message with an OK button. For
example, if you think that JavaScript is awesome, you might use
this alert function:

alert("JavaScript is awesome!");

Figure 7-3 shows what this simple alert dialog would look like.

JavaScript Alert
‘ JavaScript is awesome!

Figure 7-3: An alert dialog

Alert dialogs just display a message and wait until the user
clicks OK.

WHY USE ALERT INSTEAD OF CONSOLE.LOG?

Why use an alert dialog in a game instead of using console.log?
First, because if all you want to do is tell the player something,
using alert means the player doesn’t have to interrupt game play
to open the console to see a status message. Second, calling alert
(as well as prompt and confirm) pauses the JavaScript interpreter

Creating a Hangman Game 109

www.it-ebooks.info

http://www.it-ebooks.info/

DESIGNING YOUR GAME

until the user clicks OK (or Cancel,
in the case of prompt and confirm). Jawoleriet
That means the player has time to w\wbs
read the alert. On the other hand,
when you use console.log, the text
1s displayed immediately and the
interpreter moves on to the next
line in your program.

Before we start writing the
Hangman game, let’s think about
its structure. There are a few
things we need our program to do:

Pick a random word.

Take the player’s guess.

Quit the game if the player wants to.

Check that the player’s guess is a valid letter.
Keep track of letters the player has guessed.
Show the player their progress.

NSk L

Finish when the player has guessed the word.

Apart from the first and last tasks (picking a word for the
player to guess and finishing the game), these steps all need to
happen multiple times, and we don’t know how many times (it
depends on how well the player guesses). When you need to do the
same thing multiple times, you know you’ll need a loop.

But this simple list of tasks doesn’t really give us any idea of
what needs to happen when. To get a better idea of the structure
of the code, we can use pseudocode.

USING PSEUDOCODE TO DESIGN THE GAME

Pseudocode is a handy tool that programmers often use to design
programs. It means “fake code,” and it’s a way of describing how a
program will work that looks like a cross between written English
and code. Pseudocode has loops and conditionals, but other than

110 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

that, everything is just plain English. Let’s look at a pseudocode
version of our game to get an idea:

Pick a random word

the word has not been guessed {
Show the player their current progress
Get a guess from the player

the player wants to quit the game {
Quit the game
}
the guess is not a single letter {
Tell the player to pick a single letter

}
{
the guess is in the word {
Update the player's progress with the guess
}
}
}

Congratulate the player on guessing the word

As you can see, none of this is real code, and no computer could
understand it. But it gives us an idea of how our program will be
structured, before we get to actually writing the code and having
to deal with the messy details, like how we’re going to pick a ran-
dom word.

In the previous pseudocode, one of the first lines says, “Show

the player their current progress.” For the Hangman game, this
means filling in the letters that the player has guessed correctly
and showing which letters in the secret word are still blank. How
are we going to do this? We can actually keep track of the player’s
progress in a similar way to how traditional Hangman works:
by keeping a collection of blank spaces and filling them in as the
player guesses correct letters.

In our game, we’ll do this using an array of blanks for each
letter in the word. We'll call this the answer array, and we’ll fill it
with the player’s correct guesses as they’re made. We'll represent
each blank with the string " ".

Creating a Hangman Game 111

www.it-ebooks.info

http://www.it-ebooks.info/

The answer array will start out as a group of these empty
entries equal in number to the letters in the secret word. For
example, if the secret word is fish, the array would look like this:

["_"J "_"J ! ") ! "]

If the player correctly guessed the letter i, we'd change the sec-
ond blank to an i:

[" ") "i") ! ") ! "]

Once the player guesses all the correct letters, the completed
array would look like this:

[II_FII, Ilill, IISII, llhll]

nr"'
S

We’ll also use a variable to keep track of the number of
remaining letters the player has to guess. For every occurrence
of a correctly guessed letter, this variable will decrease by 1.
Once it hits 0, we know the player has won.

The main game takes place inside a while loop (in our pseudo-
code, this loop begins with the line “While the word has not been
guessed”). In this loop we display the current state of the word
being guessed (beginning with all blanks); ask the player for a
guess (and make sure it’s a valid, single-letter guess); and update
the answer array with the chosen letter, if that letter appears

in the word.

112 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

Almost all computer games are built around a loop of some
kind, often with the same basic structure as the loop in our
Hangman game. A game loop generally does the following:

1. Takes input from the player
2. Updates the game state
3. Displays the current state of the game to the player

Even games that are constantly changing follow this
same kind of loop—they just do it really fast. In the case of our
Hangman game, the program takes a guess from the player,
updates the answer array if the guess is correct, and displays
the new state of the answer array.

Once the player guesses all letters in the word, we show the
completed word and a congratulatory message telling them that
they won.

Now that we know the general structure of our game, we can start
to go over how the code will look. The following sections will walk
you through all the code in the game. After that, you'll see the whole
game code in one listing so you can type it up and play it yourself.

The first thing we have to do is to choose a random word. Here’s
how that will look:

words = [
"javascript",
"monkey",
"amazing",
"pancake"

word = words[Math.floor(Math.random() * words.length)];

We begin our game at @ by creating an array of words
(javascript, monkey, amazing, and pancake) to be used as the
source of our secret word, and we save the array in the words
variable. The words should be all lowercase. At @ we use
Math.random and Math.floor to pick a random word from the array,
as we did with the random insult generator in Chapter 3.

Creating a Hangman Game 113

www.it-ebooks.info

http://www.it-ebooks.info/

14

Chapter 7

CREATING THE ANSWER ARRAY

Next we create an empty array called answerArray and fill it with
underscores () to match the number of letters in the word.

var answerArray = [];
for (var i = 0; i < word.length; i++) {

answerArray[i] = " ";

}

var remainingletters = word.length;

The for loop at @ creates a looping variable i that starts at 0
and goes up to (but does not include) word.length. Each time around
the loop, we add a new element to answerArray, at answerArray[i].
When the loop finishes, answerArray will be the same length as word.
For example, if word is "monkey" (which has six letters), answerArray
will be [", " ", " ", " ", " " " "] (six underscores).

Finally, we create the variable remainingletters and set it to
the length of the secret word. We'll use this variable to keep track
of how many letters are left to be guessed. Every time the player
guesses a correct letter, this value will be decremented (reduced)
by 1 for each instance of that letter in the word.

CODING THE GAME LOOP
The skeleton of the game loop looks like this:

while (remainingletters > 0) {
// Game code goes here
// Show the player their progress
// Take input from the player
// Update answerArray and remainingletters for every correct guess

}

We use a while loop, which
will keep looping as long as
remainingletters > 0 remains true.
The body of the loop will have
to update remainingletters for every
correct guess the player makes. Once
the player has guessed all the letters,
remainingletters will be 0 and the loop
will end.

www.it-ebooks.info

http://www.it-ebooks.info/

o~

The following sections explain the code that will make up the
body of the game loop.

SHOWING THE PLAYER'S PROGRESS

The first thing we need to do inside the game loop is to show the
player their current progress:

alert(answerArray.join(" "));

We do that by joining the elements of answerArray into a string,
using the space character as the separator, and then using alert
to show that string to the player. For example, let’s say the word
1s monkey and the player has guessed m, o, and e so far. The
answer array would look like this ["m", "o", " ", " ", "e", " "],
and answerArray.join(" ") would be "m o _ e _". The alert dialog

would then look like Figure 7-4.

P JavaScript Alert
@ -

—

Figure 7-4: Showing the player’s progress
using alert

HANDLING THE PLAYER'S INPUT

Now we have to get a guess from the player and ensure that it’s a
single character.

var guess = prompt("Guess a letter, or click Cancel to stop playing.");
if (guess === null) {
break;
} else if (guess.length !== 1) {
alert("Please enter a single letter.");
} else {
// Update the game state with the guess
}

At O, prompt takes a guess from the player and saves it to the
variable guess. One of four things will happen at this point.

Creating a Hangman Game 115

www.it-ebooks.info

http://www.it-ebooks.info/

16

©Q

Chapter 7

First, if the player clicks the Cancel button, then guess will be
null. We check for this condition at @ with if (guess === null). If
this condition is true, we use break to exit the loop.

You can use the break keyword in any loop to immediately stop loop-
ing, no matter where the program is in the loop or whether the while
condition is currently true.

The second and third possibilities are that the player enters
either nothing or too many letters. If they enter nothing but click
OK, guess will be the empty string "". In this case, guess.length
will be 0. If they enter anything more than one letter, guess.length
will be greater than 1.

At ©, we use else if (guess.length !== 1) to check for these
conditions, ensuring that guess is exactly one letter. If it’s not,
we display an alert saying, “Please enter a single letter.”

The fourth possibility is that the player enters a valid guess of
one letter. Then we have to update the game state with their guess
using the else statement at @, which we’ll do in the next section.

UPDATING THE GAME STATE

Once the player has entered a valid guess, we must update the
game’s answerArray according to the guess. To do that, we add the
following code to the else statement:

(j = 0; j < word.length; j++) {
(word[j] guess) {
answerArray[j] = guess;
remainingletters--;
}
}

At @, we create a for loop with a new looping variable called j,
which runs from 0 up to word.length. (We're using j as the variable
in this loop because we already used i in the previous for loop.) We
use this loop to step through each letter of word. For example, let’s
say word is pancake. The first time around this loop, when j is 0,
word[j] will be "p". The next time, word[j] will be "a", then "n", "c",
"a", "k", and finally "e".

At @, we use if (word[j] === guess) to check whether the cur-
rent letter we're looking at matches the player’s guess. If it does,
we use answerArray[j] = guess to update the answer array with

www.it-ebooks.info

http://www.it-ebooks.info/

the current guess. For each letter in the word that matches guess,
we update the answer array at the corresponding point. This
works because the looping variable j can be used as an index for
answerArray just as it can be used as an index for word, as you can
see in Figure 7-5.

Index (j) 0 1 2 4 6
word "p a n a e "
answeI_AI_ray [ll_ll’ ll_ll’ ll_ll’ n II’ II_II, n Il, II_II]

Figure 7-5: The same index can be used for both word
and answerArray.

For example, imagine we've just started playing the game and

we reach the for loop at @. Let’s say word is "pancake", guess is "a",
and answerArray currently looks like this:

[II n non non non non non n u]
—) I | I | —) —) —) —

The first time around the for loop at @, j is 0, so word[j]
1s "p". Our guess is "a", so we skip the if statement at @ (because

n_n

p" === "a" is false). The second time around, j is 1, so word[j]
1s "a". This is equal to guess, so we enter the if part of the state-
ment. The line answerArray[j] = guess; sets the element at index

1 (the second element) of answerArray to guess, so answerArray now

looks like this:

non n_n non non non non non
[) a)))))]

The next two times around the loop, word[j] is "n" and then
"c", which don’t match guess. However, when j reaches 4, word[j]
1s "a" again. We update answerArray again, this time setting the

element at index 4 (the fifth element) to guess. Now answerArray
looks like this:

non n_n non non n_n non non
[—) a) —)) a b b]

The remaining letters don’t match "a", so nothing happens the
last two times around the loop. At the end of this loop, answerArray
will be updated with all the occurrences of guess in word.

Creating a Hangman Game 117

www.it-ebooks.info

http://www.it-ebooks.info/

THE GAME CODE

18

Chapter 7

For every correct guess, in addition to updating answerArray,
we also need to decrement remaininglLetters by 1. We do this at ©
using remainingletters--;. Every time guess matches a letter in word,
remainingletters decreases by 1. Once the player has guessed all the
letters correctly, remainingletters will be 0.

ENDING THE GAME

As we've already seen, the main game loop condition is
remainingletters > 0, so as long as there are still letters to
guess, the loop will keep looping. Once remainingletters
reaches 0, we leave the loop. We end with the following code:

alert(answerArray.join(" "));
alert("Good job! The answer was

+ word);

The first line uses alert to show the
answer array one last time. The second
line uses alert again to congratulate the
winning player.

Now we've seen all the code for the game,
and we just need to put it together. What
follows is the full listing for our Hangman
game. I've added comments throughout to
make it easier for you to see what’s happen-
ing at each point. It’s quite a bit longer than
any of the code we've written so far, but
typing it out will help you to become more
familiar with writing JavaScript. Create a
new HTML file called hangman.html and
type the following into it:

<!DOCTYPE html>

<html>

<head>
<title>Hangman!</title>

</head>

www.it-ebooks.info

http://www.it-ebooks.info/

<body>
<h1>Hangman!</h1>

<script>
// Create an array of words
var words = [

"javascript",

"monkey",

"amazing",

"pancake"

I

// Pick a random word
var word = words[Math.floor(Math.random() * words.length)];

// Set up the answer array
var answerArray = [];
for (var i = 0; 1 < word.length; i++) {

answerArray[i] = R

var remainingletters = word.length;

// The game loop

while (remaininglLetters > 0) {
// Show the player their progress
alert(answerArray.join(" "));

// Get a guess from the player
var guess = prompt("Guess a letter, or click Cancel to stop
playing.");
if (guess === null) {
// Exit the game loop
break;
} else if (guess.length !== 1) {
alert("Please enter a single letter.");
} else {
// Update the game state with the guess
for (var j = 0; j < word.length; j++) {
if (word[j] === guess) {
answerArray[j] = guess;
remainingletters--;
}
}
}

Creating a Hangman Game 119

www.it-ebooks.info

http://www.it-ebooks.info/

// The end of the game loop
}

// Show the answer and congratulate the player
alert(answerArray.join(" "));
alert("Good job! The answer was " + word);
</script>

</body>

</html>

If the game doesn’t run, make sure that you typed in every-
thing correctly. If you make a mistake, the JavaScript console
can help you find it. For example, if you misspell a variable name,
you’ll see something like Figure 7-6 with a pointer to where you
made your mistake.

@ P Uncaught ReferenceError: remaininglLetter is not defined hangman. html:30

Figure 7-6: A JavaScript error in the Chrome console

If you click hangman.html:30,
you’ll see the exact line where
the error is. In this case, it’s
showing us that we misspelled
remainingletters as remainingletter
at the start of the while loop.

Try playing the game a few
times. Does it work the way you
expected it to work? Can you
imagine the code you wrote run-
ning in the background as you
play it?

In just a few pages, you've created your first JavaScript game!
As you can see, loops and conditionals are essential for creating
games or any other interactive computer program. Without these
control structures, a program just begins and ends.

In Chapter 8, we’ll use functions to package up code so you can
run it from different parts of your programs.

120 Chapter 7

www.it-ebooks.info

http://www.it-ebooks.info/

f

PROGRAMMING CHALLENGES

Here are some challenges to build on and improve the
Hangman game you created in this chapter.

Add your own words to the words array. Remember to enter
words in all lowercase.

If a player guesses a capital letter, it won’t match a lowercase
letter in the secret word. To address this potential problem,
convert the player’s guess to lowercase. (Hint: You can use
the tolLowerCase method to convert a string to lowercase.)

Our Hangman game gives a player unlimited guesses. Add
a variable to track the number of guesses and end the game
if the player runs out of guesses. (Hint: Check this variable in
the same while loop that checks whether remaininglLetters > o.
As we did in Chapter 2, you can use 88& to check whether two
Boolean conditions are true.)

There’s a bug in the game: if you keep guessing the same
correct letter, remainingletters will keep decrementing. Can
you fix it? (Hint: You could add another condition to check
whether a value in answerArray is still an underscore. If it’s
not an underscore, then that letter must have been guessed
already.)

~

Creating a Hangman Game

www.it-ebooks.info

1221

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A function 1s a way to bundle code so that it can be
reused. Functions allow us to run the same piece of
code from multiple places in a program without hav-
Ing to copy and paste the code repeatedly. Also, by
hiding long bits of code in a function and giving it
an easy-to-understand name, you’ll be better able to
plan out your code because you can focus on organiz-
ing your functions rather than all of the little code

www.it-ebooks.info

http://www.it-ebooks.info/

details that make them up. Splitting up your code into smaller,
more manageable pieces allows you to see the bigger picture and
think about how your programs are structured at a higher level.

You'll find functions really useful when you need to repeatedly
perform a calculation or action throughout a program. Earlier in
the book, you used various functions such as Math.random, Math.floor,
alert, prompt, and confirm. In this chapter, you’ll learn how to create
your own functions.

THE BASIC ANATOMY OF A FUNCTION

Figure 8-1 shows how a function is built. The code between the
curly brackets is called the function body, just as the code between
the curly brackets in a loop is called the loop body.

function () {
console.log("Do something");

The function body
goes between curly brackets.

Figure 8-1: The syntax for creating a function

CREATING A SIMPLE FUNCTION

Let’s create a simple function that prints Hello world!. Enter the
following code in the browser console. Use SHIFT-ENTER to start
each new line without executing the code.

var ourFirstFunction = function () {
console.log("Hello world!");

}5

This code creates a new function and saves it in the variable
ourFirstFunction.

124 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

CALLING A FUNCTION

To run the code inside a function (the
function body), we need to call the func-
tion. To call a function, you enter its
name followed by a pair of opening and
closing parentheses, as shown here.

ourFirstFunction();
Hello world!

Calling ourFirstFunction executes the body of the function,
which is console.log("Hello world!");, and the text we asked to be
printed is displayed on the next line: Hello world!.

But if you call this function in your browser, you’ll notice that
there’s a third line, with a little left-facing arrow, as shown in
Figure 8-2. This is the return value of the function.

> ourFirstFunction();
Hello, world!
undefined

Figure 8-2: Calling a function
with an undefined return value

A return value is the value that a function outputs, which can
then be used elsewhere in your code. In this case, the return value
1s undefined because we didn’t tell the function to return any par-
ticular value in the body of the function. All we did was ask it to
print a message to the console, which is not the same as returning
a value. A function always returns undefined unless there is some-
thing in the function body that tells it to return a different value.
(We'll look at how to specify a return value in “Returning Values
from Functions” on page 129.)

In the Chrome console and in the code listings throughout this
book, return values are always color-coded based on data type,
while text printed with console.log is always plain black.

Functions 1295

www.it-ebooks.info

http://www.it-ebooks.info/

PASSING ARGUMENTS INTO FUNCTIONS

ourFirstFunction just prints the same line of text every time you call
it, but you’ll probably want your functions to be more flexible than
that. Function arguments allow us to pass values into a function in
order to change the function’s behavior when it’s called. Arguments
always go between the function parentheses, both when you create
the function and when you call it.

The following sayHelloTo function uses an argument (name) to
say hello to someone you specify.

var sayHelloTo = function (name) {
console.log("Hello " + name + "!");

};

We create the function in the first line and assign it to the
variable sayHelloTo. When the function is called, it logs the string
"Hello " + name + "!", replacing name with whatever value you pass
to the function as an argument.

Figure 8-3 shows the syntax for a function with one argument.

An argument name

!

function (argument) {
console.log("My argument was: " + argument);
J AN

This function body can
use the argument.

Figure 8-3: The syntax for creating a function with one argument

To call a function that takes an argument, place the value
youd like to use for the argument between the parentheses fol-
lowing the function name. For example, to say hello to Nick, you
would write:

sayHelloTo("Nick");
Hello Nick!

126 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

Or, to say hello to Lyra, write:

sayHelloTo("Lyra");
Hello Lyral!

Each time we call the function, the argument we pass in for
name 1s included in the string printed by the function. So when we
pass in "Nick", the console prints "Hello Nick!", and when we pass
in "Lyra", it prints "Hello Lyra!".

PRINTING CAT FACES!

One reason to pass an argument
into a function might be to tell it
how many times to do something.
For example, the function drawCats
prints cat faces (like this: =*.”=) to
the console. We tell the function
how many cats to print using the
argument howManyTimes:

var drawCats = function (howManyTimes) {
for (var i = 0; i < howManyTimes; i++) {
console.log(i + " =".7=");
}
};

The body of the function is a for loop that loops as many times
as the howManyTimes argument tells it to (since the variable i starts
at 0 and repeats until it increments to howManyTimes minus 1). Each
time through the loop, the function logs the string i + " =~.”=".

Here’s what happens when we call this function with the argu-
ment 5 for howManyTimes:

drawCats(5);
0 =/\./\=
1 =/\./\=
2 =/\./\=
3 =/\./\=

4 =M. A=

Try it out with howManyTimes equal to 100 to print 100 cat faces!

Functions 127

www.it-ebooks.info

http://www.it-ebooks.info/

PASSING MULTIPLE ARGUMENTS TO A
FUNCTION

You can pass more than one value into a function using mul-

tiple arguments. To add another argument, enter the arguments
between the parentheses after the function keyword, separating
them by commas. Figure 8-4 shows the syntax for a function with
two arguments.

Each argument name is
separated by a comma.

function (argument1, argument2) {
console.log("My first argument was: " + argumentl);
console.log("My second argument was: " + argument2);
J t
The function body can

use both arguments.

Figure 8-4: The syntax for creating a function with two arguments

The following function, printMultipleTimes, is like drawCats
except that it has a second argument called whatToDraw.

var printMultipleTimes = function (howManyTimes, whatToDraw) {
for (var i = 0; i < howManyTimes; i++) {
console.log(i + " " + whatToDraw);
}
15

The printMultipleTimes function prints
the string you enter for whatToDraw as many r)
times as you specify with the argument h
howManyTimes. The second argument tells the
function what to print, and the first argu- <\
ment tells the function how many times F
to print it.

When calling a function with multiple
arguments, insert the values you wish to
use between the parentheses following
the function name, separated by commas.

128 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

For example, to print out cat faces using this new printMultipleTimes
function, you'd call it like this:

printMultipleTimes(5, "=".”=");
0 =I\.I\=
1 =I\.I\=
2 =I\.I\=
3 =I\.I\=

4 =A.A=

To have printMultipleTimes print a happy face four times, you
could do this:

printMultipleTimes(4, "~ *");
0 ANERAY
1 A_/\

2A/\

3 A:/\

When we call printMultipleTimes, we pass in the arguments 4
for howManyTimes and "~ ~" for whatToDraw. As a result, the for loop
loops four times (with i incrementing from O to 3), printing i +
+ "~ A" each time.

To draw the character (> <) two times, you could write:

printMultipleTimes(2, "(>_<)");
0 (> <)
1 (> <)

In this case, we pass in 2 for howManyTimes and "(> <)" for
whatToDraw.

RETURNING VALUES FROM FUNCTIONS

The functions we've looked at so far have all printed text to the
console using console.log. That’s an easy and useful way to make
JavaScript display values, but when we log a value to the console,
we aren’t able to use that value later in the program. What if you
want your function to output that value so that you can keep using
it in other parts of your code?

Functions 129

www.it-ebooks.info

http://www.it-ebooks.info/

As mentioned earlier in this chap-
ter, the output of a function is called
the return value. When you call a
function that returns a value, you can
use that value in the rest of your code
(you could save a return value in a
variable, pass it to another function,
or simply combine it with other code).
For example, the following line of code
adds 5 to the return value of the call to
Math.floor(1.2345):

5 + Math.floor(1.2345);
6

Math.floor is a function that returns the number you pass to
it, rounded down to the nearest whole number. When you see a
function call like Math.floor(1.2345), imagine replacing it with the
return value of that function call, which is the number 1.

Let’s create a function that returns a value. The function double
takes the argument number and returns the result of number * 2. In
other words, the value returned by this function is twice the number
supplied as its argument.

var double = function (number) {
©® return number * 2;

};

To return a value from a function, use the keyword return,
followed by the value you want to return. At @, we use the return
keyword to return the value number * 2 from the double function.

Now we can call our double function to double numbers:

double(3);
6

Here, the return value (6) is shown on the second line. Even
though functions can take multiple arguments, they can return
only one value. If you don’t tell the function to return anything, it
will return undefined.

130 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

USING FUNCTION CALLS AS VALUES

When you call a function from within a larger piece of code, the
function’s return value is used wherever that function call was
placed. For example, let’s use our double function to determine the
result of doubling two numbers and then adding the results:

double(5) + double(6);
22

In this example, we call the double function twice and add the
two return values together. You can think of the call double(5) as
the value 10 and the call double(6) as the value 12.

You can also pass a function call into another function as an
argument, and the function call will be substituted with its return
value. In this next example we call double, passing the result of
calling double with 3 as an argument. We replace double(3) with 6
so that double(double(3)) simplifies to double(6), which then simpli-
fies to 12.

double(double(3));
12

Here’s how JavaScript calculates this:

double(double(3));

©® double(3 * 2)

)

(2] double(6)
(3) 6 * 2
(4] 12

The body of the double function returns number * 2, so at @
we replace double(3) with 3 * 2. At ® we replace 3 * 2 with 6.
Then at ©, we do the same thing and replace double(6) with 6 * 2.
Finally, at @, we can replace 6 * 2 with 12.

Functions 131

www.it-ebooks.info

http://www.it-ebooks.info/

USING FUNCTIONS TO SIMPLIFY CODE

In Chapter 3, we used the methods Math.random and Math.floor to
pick random words from arrays and generate random insults. In
this section, we’ll re-create our insult generator and simplify it by
creating functions.

A FUNCTION TO PICK A RANDOM WORD

Here is the code we used in Chapter 3 to choose a random word
from an array:

randomWords[Math.floor(Math.random() * randomWords.length)];

If we turn this code into a function, we can reuse it to pick a
random word from an array without having to enter the same code
each time. For example, here’s how we could define a pickRandomWord
function.

var pickRandomWord = function (words) {
return words[Math.floor(Math.random() * words.length)];

};

All we're doing here is wrapping the previous code in a func-
tion. Now, we can create this randomWords array . . .

var randomWords = ["Planet", "Worm", "Flower", "Computer"];

and pick a random word from this array using the pickRandomiord
function, like this:

pickRandomWord(randomWords);
"Flower"

We can use this same function on any array. For example,
here’s how we would pick a random name from an array of
names:

pickRandomWord(["Charlie", "Raj", "Nicole", "Kate", "Sandy"]);
llRajII

132 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

A RANDOM INSULT GENERATOR

Now let’s try re-creating our random insult generator, using our
function that picks random words. First, here’s a reminder of what
the code from Chapter 3 looked like:

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Pick a random body part from the randomBodyParts array:

var randomBodyPart = randomBodyParts[Math.floor(Math.random() * 3)];
// Pick a random adjective from the randomAdjectives array:

var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)];
// Pick a random word from the randomWords array:

var randomWord = randomWords[Math.floor(Math.random() * 5)];

// Join all the random strings into a sentence:

var randomString = "Your " + randomBodyPart +
randomAdjective + " " + randomWord + "!!!";
randomString;

"Your Nose is like a Stupid Marmot!!!"

is like a " + <4

Notice that we end up repeating words[Math.floor(Math.random()
* length)] quite a few times in this code. Using our pickRandomhord
function, we could rewrite the program like this:

var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:
var randomString = "Your " + pickRandomWord(randomBodyParts) + «

" is like a " + pickRandomWord(randomAdjectives) +
" " + pickRandomWord(randomWords) + "111";
randomString;

"Your Nose is like a Smelly Marmot!!!"

There are two changes here. First, we
use the pickRandomiWord function when we
need a random word from an array, instead
of using words[Math.floor(Math.random() *
length)] each time. Also, instead of sav-
ing each random word in a variable before
adding it to the final string, we're adding
the return values from the function calls

Functions 133

www.it-ebooks.info

http://www.it-ebooks.info/

134

Chapter 8

directly together to form the string. A call to a function can be
treated as the value that the function returns. So really, all we're
doing here is adding together strings. As you can see, this version
of the program is a lot easier to read, and it was easier to write
too, since we reused some code by using a function.

MAKING THE RANDOM INSULT GENERATOR
INTO A FUNCTION

We can take our random insult generator one step further by
creating a larger function that produces random insults. Let’s
take a look:

generateRandomInsult = function () {
var randomBodyParts = ["Face", "Nose", "Hair"];
var randomAdjectives = ["Smelly", "Boring", "Stupid"];
var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:
var randomString = "Your " + pickRandomWord(randomBodyParts) + «

" is like a " + pickRandomWord(randomAdjectives) +
" " + pickRandomWord(randomWords) + "!!I";
return randomString;

};

generateRandomInsult();

"Your Face is like a Smelly Stick!!!"™
generateRandomInsult();

"Your Hair is like a Boring Stick!!!"™
generateRandomInsult();

"Your Face is like a Stupid Fly!!!"

Our new generateRandomInsult function is just the code from
before placed inside a function with no arguments. The only addi-
tion is at @, where we have the function return randomString at the
end. You can see a few sample runs of the preceding function, and
it returns a new insult string each time.

Having the code in one function means we can keep calling
that function to get a random insult, instead of having to copy and
paste the same code every time we want a new insult.

www.it-ebooks.info

http://www.it-ebooks.info/

LEAVING A FUNCTION EARLY WITH RETURN

As soon as the JavaScript interpreter reaches return in a func-
tion, it leaves the function, even if more code remains in the
function body.

One common way to use
return is to leave a function early
if any of the arguments to the
function are invalid; that 1s, if
they’re not the kind of arguments
the function needs in order to run
properly. For example, the fol-
lowing function returns a string
telling you the fifth character of
your name. If the name passed
to the function has fewer than
five characters, the function uses
return to leave the function imme-
diately. This means the return
statement at the end, which tells
you the fifth letter of your name,
1s never executed.

var fifthLetter = function (name) {
if (name.length < 5) {
return;

}

return "The fifth letter of your name is

};

+ name[4] + ".";

At @ we check to see whether the length of the input name is
less than five. If it is, we use return at @ to exit the function early.
Let’s try calling this function.

fifthLetter("Nicholas");
"The fifth letter of your name is o."

The name Nicholas is longer than five characters, so
fifthLetter completes and returns the fifth letter in the name

Functions 135

www.it-ebooks.info

http://www.it-ebooks.info/

Nicholas, which is the letter o. Let’s try calling it again on a
shorter name:

fifthLetter("Nick");
undefined

When we call fifthLetter with the name Nick, the function
knows that the name isn’t long enough, so it exits early with the
first return statement at @. Because there is no value specified
after the return at @, the function returns undefined.

USING RETURN MULTIPLE TIMES INSTEAD
OF IF...ELSE STATEMENTS

We can use multiple return keywords
inside different if statements in a
function body to have a function
return a different value depending
on the input. For example, say you're
writing a game that awards players
medals based on their score. A score
of 3 or below 1s a bronze medal, scores
between 3 and 7 are silver, and any-
thing above 7 is gold. You could use a
function like medalForScore to evaluate
a score and return the right kind of
medal, as shown here:

var medalForScore = function (score) {
if (score < 3) {
(1} return "Bronze";

}

® if (score < 7) {
return "Silver";

}

® return "Gold";
b

At @ we return "Bronze" and exit the function if the score is
less than 3. If we reach ® we know that score must be at least 3,
because if it was less than 3, we would have returned already

136 Chapter 8

www.it-ebooks.info

http://www.it-ebooks.info/

(that is, we would have exited the function when we reached the
return keyword in the first test). Finally, if we reach ©, we know
that score must be at least 7, so there’s nothing left to check, and
we can just return "Gold".

Although we’re checking multiple conditions, we don’t need to
use chained if...else statements. We use if...else statements to
ensure that only one of the options is executed. When each of the
options has its own return statement, this also ensures that only
one of the options will be executed (because functions can return
only once).

SHORTHAND FOR CREATING FUNCTIONS

There’s a longhand way and a shorthand way to write

functions. I'm using the longhand way because it shows

more clearly how a function is stored as a variable. Still, you

should know what the shorthand looks like because lots of

JavaScript code uses it. Once you’re used to how functions

work, you might want to use the shorthand version, too.
Here’s an example of a longhand function:

var double = function (number) {
return number * 2;

};

The shorthand version looks like this:

function double(number) {
return number * 2;

}

As you can see, in the longhand version, we explicitly
create a variable name and assign the function to the
variable, so double appears before the function keyword.

By contrast, the function keyword appears first in the
shorthand version, followed by the function name. In this
version, the variable double is created by JavaScript behind
the scenes.

In technical terms, the longhand version is known as
a function expression. The shorthand version is known as a
function declaration.

Functions 137

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT YOU LEARNED

138

Chapter 8

Functions allow us to reuse blocks of code. They can do differ-

ent things depending on the arguments passed to them, and they

can return values to the location in the code where the function
was called. Functions also make it possible to give a piece of

code a meaningful name. For example, the name of the function
pickRandomhWord makes clear that the function has something to do

with picking a random word.

In the next chapter, we’ll learn how to write JavaScript that

can manipulate HTML documents.

-
PROGRAMMING CHALLENGES

Here are some challenges for you to practice working with
functions.

Create two functions, add and multiply. Each should take
two arguments. The add function should sum its arguments
and return the result, and multiply should multiply its
arguments.

Using only these two functions, solve this simple
mathematical problem:

36325 * 9824 + 777

Write a function called areArraysSame that takes two arrays
of numbers as arguments. It should return true if the two
arrays are the same (that is, they have the same numbers

in the same order) and false if they’re different. Try running
the following code to make sure your functions are working
correctly:

areArraysSame([1, 2, 3], [4, 5, 6]);
false

~

www.it-ebooks.info

http://www.it-ebooks.info/

areArraysSame([1, 2, 3], [1, 2, 3]);
true

areArraysSame([1, 2, 3], [1, 2, 3, 4]);
false

Hint 1: you’ll need to use a for loop to go through each of
the values in the first array to see whether they're the same
in the second array. You can return false in the for loop if
you find a value that’s not equal.

Hint 2: you can leave the function early and skip the for
loop altogether if the arrays are different lengths.

Go back to your Hangman game from Chapter 7. We're going
to rewrite it using functions.

I've rewritten the final Hangman code here, but with
certain parts of the code replaced by function calls. All you
need to do is write the functions!

// Write your functions here

var word = pickWord();
var answerArray = setupAnswerArray(word);
var remainingletters = word.length;

while (remainingletters > 0) {
showPlayerProgress(answerArray);
var guess = getGuess();
if (guess === null) {
break;
} else if (guess.length !== 1) {
alert("Please enter a single letter.");
} else {
var correctGuesses = updateGameState(guess, word, answerArray);
remainingletters -= correctGuesses;
}
}

showAnswerAndCongratulatePlayer(answerArray);

(continued)

Functions 139

www.it-ebooks.info

http://www.it-ebooks.info/

140

r

Chapter 8

This version of the code using functions is almost as
simple as the pseudocode version from Chapter 7. This should
give you some idea of how useful functions can be for making
code easier to understand.

Here are the functions you need to fill in:

var pickWord = function () {
// Return a random word

i

var setupAnswerArray = function (word) {
// Return the answer array

i

var showPlayerProgress = function (answerArray) {
// Use alert to show the player their progress
};

var getGuess = function () {
// Use prompt to get a guess

};

var updateGameState = function (guess, word, answerArray) {
// Update answerArray and return a number showing how many
// times the guess appears in the word so remainingletters
// can be updated

};

var showAnswerAndCongratulatePlayer = function (answerArray) {
// Use alert to show the answer and congratulate the player

i

~

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

ADVANCED
JAVASCRIPT

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

So far, we've been using JavaScript to do relatively
simple things like print text to the browser console or
display an alert or prompt dialog. But you can also use
JavaScript to manipulate (control or modify) and inter-
act with the HTML you write in web pages. In this
chapter, we’ll discuss two tools that will allow you to
write much more powerful JavaScript: the DOM and

jQuery.

www.it-ebooks.info

http://www.it-ebooks.info/

The DOM, or document object
model, is what allows JavaScript to
access the content of a web page. Web
browsers use the DOM to keep track of
the elements on a page (such as para-
graphs, headings, and other HTML
elements), and JavaScript can manipu-
late DOM elements in various ways. For
example, you'll soon see how you can use
JavaScript to replace the main heading
of the HTML document with input from
a prompt dialog.

We'll also look at a useful tool called jQuery, which makes it
much easier to work with the DOM. jQuery gives us a set of func-
tions that we can use to choose which elements to work with and to
make changes to those elements.

In this chapter, we’ll learn how to use the DOM and jQuery to
edit existing DOM elements and create new DOM elements, giving
us full control over the content of our web pages from JavaScript.
We'll also learn how to use jQuery to animate DOM elements—for
example, fading elements in and out.

SELECTING DOM ELEMENTS

When you load an HTML document into a browser, the browser
converts the elements into a tree-like structure. This tree is known
as the DOM tree. Figure 9-1 shows a simple DOM tree—the same
tree we used in Chapter 5 to illustrate the hierarchy of HTML. The
browser gives JavaScript programmers a way to access and modify
this tree structure using a collection of methods called the DOM.

<html>

<head> <body>

| N

<title> <h1> <p>

Figure 9-1: The DOM tree for a simple HTML
document, like the one we made in Chapter 5

144 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

USING ID TO IDENTIFY ELEMENTS

The HTML id attribute lets you assign a unique name, or identifier,
to an HTML element. For example, this h1 element has an id
attribute:

<h1 id="main-heading">Hello world!</h1>

In this example, the id of "main-heading" will let us identify, and
eventually change, this particular heading without affecting other
elements or even other h1 headings.

SELECTING AN ELEMENT USING
GETELEMENTBYID

Having uniquely identified an element with id (each id must have a
unique value), we can use the DOM method document.getElementById
to return the "main-heading" element:

var headingElement = document.getElementById("main-heading");

By calling document.getElementById("main-heading"), we tell the
browser to look for the element with the id of "main-heading”. This
call returns a DOM object that corresponds to the id, and we save
this DOM object to the variable headingElement.

Once we've selected an element,
we can manipulate it with JavaScript.
For example, we can use the innerHTML
property to retrieve and replace the
text inside the selected element:

headingElement.innerHTML;

This code returns the HTML con-
tents of headingElement—the element
we selected using getElementById. In
this case, the content of this element
1s the text Hello world! that we entered
between the <h1> tags.

The DOM and jQuery 145

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s an example of how to replace heading text using the DOM.
First, we create a new HTML document called dom.html contain-
ing this code:

<!DOCTYPE html>

<html>
<head>
<title>Playing with the DOM</title>
</head>
<body>
<h1 id="main-heading">Hello world!</h1>
<script>
o headingElement = document.getElementById("main-heading");
(2] console.log(headingElement.innerHTML);
(3] newHeadingText = prompt("Please provide a new heading:");
4] headingElement.innerHTML = newHeadingText;
</script>
</body>
</html>

At @ we use document.getElementById to get the h1 element (with
the id of "main-heading") and save it into the variable headingElement.
At ® we print the string returned by headingElement.innerHTML, which
prints Hello world! to the console. At ® we use a prompt dialog to
ask the user for a new heading and save the text the user enters in
the variable newHeadingText. Finally, at @ we set the innerHTML prop-
erty of headingElement to the text saved in newHeadingText.

146 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

When you load this page, you should see a prompt dialog like
the one shown in Figure 9-2.

000 = Playing with the DOM x

4= X i | < file:///Users/js4kids/Desktop/dom.html

Hello world!

JavaScript
. Please provide a new heading:

| Cancel I[oK

Figure 9-2: Our page with the dialog open

Enter the text JAVASCRIPT IS AWESOME into the dialog and click
OK. The heading should update instantly with the new text, as
shown in Figure 9-3.

800 /|| Playing with the DOM N
J

“ C [file:///Users/js4kids/Desktop/dom.html

JAVASCRIPT IS AWESOME

Figure 9-3: Our page after the heading change

Using the innerHTML property, we can change the content of any
DOM element using JavaScript.

The DOM and jQuery 147

www.it-ebooks.info

http://www.it-ebooks.info/

USING JQUERY TO WORK WITH THE
DOM TREE

The built-in DOM methods are great, but they’re not very easy
to use. Because of this, many developers use a set of tools called
jQuery to access and manipulate the DOM tree. jQuery is a
JavaScript library—a collection of related tools (mostly func-
tions) that gives us, in this case, a simpler way to work with DOM
elements. Once we load a library onto our page, we can use its
functions and methods in addition to those built into JavaScript
and those provided by the browser.

LOADING JQUERY ON YOUR HTML PAGE

To use the jQuery library, we first tell the browser to load it with
this line of HTML:

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

Notice that the <script> tag here has no contents, and it has a
src attribute. The src attribute lets us insert a JavaScript file into
our page by including its URL (web address). In this case, https://
code.jquery.com/jquery-2.1.0.js is the URL for a specific version of
jQuery (version 2.1.0) on the jQuery website.

To see the jQuery library, visit that URL; you’ll see the
JavaScript that will be loaded when this <script> tag is added.
The entire library is over 9,000 lines of complicated JavaScript,
though, so don’t expect to understand it all right now!

REPLACING THE HEADING TEXT USING
JQUERY

In “Replacing the Heading Text Using the DOM” on page 146,
you learned how to replace text using the built-in DOM methods.
In this section, we’ll update that code to use jQuery to replace
the heading text instead. Open dom.html and make the changes
shown.

148 Chapter 9

www.it-ebooks.info

https://code.jquery.com/jquery-2.1.0.js
http://www.it-ebooks.info/

o <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

(2] ("#main-heading").text(newHeadingText);

At @ we add a new <script> tag to the page to load jQuery.
With jQuery loaded, we use the jQuery function $ to select an
HTML element.

The $ function takes one argument, called a selector string,
which tells jJQuery which element or elements to select from the
DOM tree. In this case, we entered "#main-heading" as the argu-
ment. The # character in a selector string means “ID,” so our
selector string "#main-heading" means “the element with an id of
main-heading.”

The $ function returns a jQuery object that represents
the elements you selected. For example, $("#main-heading")
returns a jQuery object for the h1 element (which has an id of
"main-heading").

We now have a jQuery object representing the h1 element. We
can modify its text by calling the text method on the jQuery object
at @, passing in the new text for that element, and replacing the
text of the heading with the user input saved to the variable new-
HeadingText. As before, when you load this page, a dialog should
prompt you to enter replacement text for the old text in the h1
element.

The DOM and jQuery 149

www.it-ebooks.info

http://www.it-ebooks.info/

CREATING NEW ELEMENTS WITH JQUERY

In addition to manipulating elements with jQuery, we can also use
jQuery to create new elements and add them to the DOM tree. To
do so, we call append on a jQuery object with a string containing
HTML. The append method converts the string to a DOM element
(using the HTML tags in the string) and adds the new element to
the end of the original one.

For example, to add a p element to the end of the page, we
could add this to our JavaScript:

$("body").append("<p>This is a new paragraph</p>");

The first part of this statement uses the $ function with the
selector string "body" to select the body of our HTML document.
The selector string doesn’t have to be an id. The code $("body")
selects the body element. Likewise, we could use the code $("p")
to select all the p elements.

Next, we call the append method on the object returned by
$("body"). The string passed to append is turned into a DOM ele-
ment, and it is added inside the body element, just before the closing
tag. Figure 9-4 shows what our revised page would look like.

800 / Playing with the DOM b4

& © C f§ [file///Users/js4kids/Desktop/dom.html

JAVASCRIPT IS AWESOME

This is a new paragraph

Figure 9-4: Our document with a new element

We could also use append to add multiple elements in a for loop
like this:

for (var i = 0; i < 3; i++) {
var hobby = prompt("Tell me one of your hobbies!");
$("body").append("<p>" + hobby + "</p>");

}

This loops three times. Each time through a loop, a prompt
appears, asking users to enter one of their hobbies. Each hobby is

150 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

then put inside a set of <p> tags and passed to the append method,
which adds the hobby to the end of the body element. Try adding
this code to your dom.html document, and then load it in a browser
to test it. It should look like Figure 9-5.

800 ! Playing with the DOM x

“ C ff [file:///Users/js4kids/Desktop/dom.html

JAVASCRIPT IS AWESOME

This is a new paragraph
Writing JavaScript
Reading about JavaScript

Watching cat videos

Figure 9-5: Extra elements added in a loop

ANIMATING ELEMENTS WITH JQUERY

Lots of websites use animations to show and hide content. For
example, if you were adding a new paragraph of text to your page,
you might want to fade it in slowly so it doesn’t appear all of a
sudden.

jQuery makes it easy to animate elements. For example,
to fade an element out, we can use the fadeOut method. To test
this method, replace the contents of the second script element in
dom.html with this:

$("h1").fadeOut(3000);

We use the $ function to select all h1 elements. Because
dom.html has only one h1 element (the heading containing the
text Hello world!), that heading is selected as a jQuery object. By
calling .fadeOut(3000) on this jQuery object, we make the heading
fade away until it disappears, over the course of 3 seconds. (The
argument to fadeOut is in milliseconds, or thousandths of a second,
so entering 3000 makes the animation last 3 seconds.)

As soon as you load the page with this code, the h1 element
should start to fade away.

The DOM and jQuery 151

www.it-ebooks.info

http://www.it-ebooks.info/

CHAINING JQUERY ANIMATIONS

When you call a method on a jQuery object, the method usually
returns the original object that it was called on. For example,
$("h1") returns a jQuery object representing all h1 elements,
and $("h1").fadeOut(3000) returns the same jQuery object repre-
senting all h1 elements. To change the text of the h1 element and
fade it out, you could enter:

$("h1").text("This will fade out").fadeOut(3000);

Calling multiple methods in a row like this is known as
chaining.

We can chain multiple animations on the same element. For
example, here’s how we could chain a call to the fadeOut and fadeIn
methods to fade an element out and then immediately fade it in
again:

$("h1").fadeOut(3000).fadeIn(2000);

The fadeIn animation makes an invisible element fade back in.
jQuery is smart enough to know that when you chain two anima-
tions in a row like this, you probably want them to happen one
after the other. Therefore, this code
fades the h1 element out over the course
of 3 seconds and then fades it back in
over 2 seconds.

jQuery provides two additional
animation methods similar to fadeOut
and fadeln, called slideUp and slideDown.
The slideUp method makes elements
disappear by sliding them up, and
slideDown makes them reappear by slid-
ing them down. Replace the second
script element in the dom.htm!l docu-
ment with the following, and reload the
page to try it out:

$("h1").slideUp(1000).s1lideDown(1000);

Here we select the h1 element, slide it up over 1 second, and
then slide it down over 1 second until it reappears.

152 Chapter 9

www.it-ebooks.info

http://www.it-ebooks.info/

TRY IT OUT!

We use fadeIn to make invisible elements visible. But what
happens if you call fadeIn on an element that’s already
visible or an element that comes after the element you're
animating?

For example, say you add a new p element to your
dom.html document after the heading. Try using slideUp
and slideDown to hide and show the h1 element, and see what
happens to the p element. What if you use fadeOut and fadeIn?

What happens if you call fadeOut and fadeIn on the same
element without chaining the calls? For example:

("h1").fadeOut(1000);
("h1").fadeIn(1000);

Try adding the preceding code inside a for loop set to
run five times. What happens?

What do you think the show and hide jQuery methods do?
Try them out to see if you're right. How could you use hide to
fade in an element that’s already visible?

In this chapter, you learned how to update HTML pages using
JavaScript by manipulating DOM elements. As you've seen, jQuery
gives us even more powerful ways to select elements and change or
even animate them. You also learned a new HTML attribute, id,
which allows you to give an element a unique identifier.

In the next chapter, you’ll learn how to control when your
JavaScript is run—for example, once a timer has run out or when
you click a button. We’ll also look at how to run the same piece of
code multiple times with a time delay in between—for example,
updating a clock once every second.

The DOM and jQuery 153

www.it-ebooks.info

http://www.it-ebooks.info/

1549

Chapter 9

PROGRAMMING CHALLENGES

Try these challenges to practice more things you can do with
jQuery and DOM elements.

Create an array containing the names of a few friends.
Using a for loop, create a p element for each of your friends
and add it to the end of the body element using the jQuery
append method. Use jQuery to change the h1 element so it says
My friends instead of Hello world!. Use the hide method followed
by the fadeIn method to fade in each name as it’s provided.
Now, modify the p elements you created to add the text
smells! after each friend. Hint: If you select the p elements
using $("p"), the append method will apply to all the p elements.

How could you use fadeOut and fadeIn to cause the heading to
flash five times, once a second? How could you do this using
a for loop? Try modifying your loop so it fades out and fades
1n over 1 second the first time, over 2 seconds the second time,
over 3 seconds the third time, and so on.

The delay method can be used to delay animations. Using
delay, fadeOut, and fadeIn, make an element on your page fade
out and then fade back in again after 5 seconds.

Try using the fadeTo method. Its first argument is a number
of milliseconds, as in all the other animation methods. Its
second argument is a number between 0 and 1. What happens
when you run the following code?

("h1").fadeTo(2000, 0.5);

What do you think the second argument means? Try
using different values between 0 and 1 to figure out what
the second argument is used for.

J

www.it-ebooks.info

http://www.it-ebooks.info/

Until now, the JavaScript code on our web pages has
run as soon as the page is loaded, pausing only if we
include a call to a function like alert or confirm. But
we don’t always necessarily want all of our code to run
as soon as the page loads—what if we want some code
to run after a delay or in response to something the
user does?

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we’ll look at different ways of modifying when
our code is run. Programming in this way is called interactive
programming. This will let us create interactive web pages that
change over time and respond to actions by the user.

DELAYING CODE WITH SETTIMEOUT

Instead of having JavaScript execute a function immediately,
you can tell it to execute a function after a certain period of time.
Delaying a function like this is called setting a timeout. To set a
timeout in JavaScript, we use the function setTimeout. This func-
tion takes two arguments (as shown in Figure 10-1): the function
to call after the time has elapsed and the amount of time to wait
(in milliseconds).

The function to call after
timeout milliseconds have passed

!

setTimeout(func, timeout)

1

The number of milliseconds to wait
before calling the function

Figure 10-1: The arguments for setTimeout

The following listing shows how we could use setTimeout to dis-
play an alert dialog.

® var timeUp = function () {
alert("Time's up!");

};

O setTimeout(timeUp, 3000);
1

At @ we create the function timeUp, which opens an alert dialog
that displays the text "Time's up!". At @ we call setTimeout with two
arguments: the function we want to call (timeUp) and the number
of milliseconds (3000) to wait before calling that function. We're
essentially saying, “Wait 3 seconds and then call timeUp.” When
setTimeout(timeUp, 3000) is first called, nothing happens, but after
3 seconds timeUp is called and the alert dialog pops up.

156 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that calling setTimeout returns 1. This return value is
called the timeout ID. The timeout ID is a number that’s used to
1dentify this particular timeout (that is, this particular delayed
function call). The actual number returned could be any number,
since it’s just an identifier. Call setTimeout again, and it should
return a different timeout ID, as shown here:

setTimeout(timeUp, 5000);
2

You can use this timeout ID with the clearTimeout function to
cancel that specific timeout. We'll look at that next.

Once you've called setTimeout to set up a delayed

function call, you may find that you don’t actually

want to call that function after all. For example, if T
you set an alarm to remind you to do your home-

work, but you end up doing your homework early,

youd want to cancel that alarm. To cancel a time- ’
out, use the function clearTimeout on the timeout

ID returned by setTimeout. For example, say we

create a “do your homework” alarm like this:

doHomeworkAlarm O {
alert("Hey! You need to do your homework!");

};

timeoutId = setTimeout(doHomeworkAlarm, 60000);

The function doHomeworkAlarm pops up an alert dialog telling
you to do your homework. When we call setTimeout (doHomeworkAlarm,
60000) we're telling JavaScript to execute that function after
60,000 milliseconds (or 60 seconds) has passed. At ® we make
this call to setTimeout and save the timeout ID in a new variable
called timeoutId.

To cancel the timeout, pass the timeout ID to the clearTimeout
function like this:

clearTimeout(timeoutId);

Now setTimeout won’t call the doHomeworkAlarm function after all.

Interactive Programming 157

www.it-ebooks.info

http://www.it-ebooks.info/

CALLING CODE MULTIPLE TIMES WITH
SETINTERVAL

158

The setInterval function is like setTimeout, except that it repeatedly
calls the supplied function after regular pauses, or intervals. For
example, if you wanted to update a clock display using JavaScript,
you could use setInterval to call an update function every second.
You call setInterval with two arguments: the function you want to
call and the length of the interval (in milliseconds), as shown in
Figure 10-2.

The function to call
every interval milliseconds

!

setInterval(func, interval)

1

The number of milliseconds to wait
between each call

Figure 10-2: The arguments for setInterval

Here’s how we could write a message to the console every
second:

var counter = 1;

var printMessage = function () {
console.log("You have been staring at your console for

+ " seconds");
counter++;

};

+ counter <

var intervalld = setInterval(printMessage, 1000);
You have been staring at your console for 1 seconds
You have been staring at your console for 2 seconds
You have been staring at your console for 3 seconds
You have been staring at your console for 4 seconds
You have been staring at your console for 5 seconds
You have been staring at your console for 6 seconds
clearInterval(intervalld);

Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

At @ we create a new variable called counter and set it to 1.
We'll be using this variable to keep track of the number of seconds
you've been looking at your console.

At ® we create a function called
printMessage. This function does two
things. First, it prints out a message
telling you how long you have been
staring at your console. Then, at ©, it
increments the counter variable.

Next, at @, we call setInterval,
passing the printMessage function and
the number 1000. Calling setInterval
like this means “call printMessage
every 1,000 milliseconds.” Just as
setTimeout returns a timeout ID,
setInterval returns an interval
ID, which we save in the variable
intervalld. We can use this interval ID
to tell JavaScript to stop executing the
printMessage function. This is what we
do at @, using the clearInterval function.

TRY IT OUT!

Modify the preceding example to print the message every
five seconds instead of every second.

ANIMATING ELEMENTS WITH SETINTERVAL

As 1t turns out, we can use setInterval to animate elements in a

browser. Basically, we need to create a function that moves an ele-
ment by a small amount, and then pass that function to setInterval
with a short interval time. If we make the movements small enough
and the interval short enough, the animation will look very smooth.

Interactive Programming 159

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s animate the position of some text in an HTML document
by moving the text horizontally in the browser window. Create a
document called interactive.html, and fill it with this HTML:

<!DOCTYPE html>
<html>
<head>
<title>Interactive programming</title>
</head>

<body>
<h1 id="heading">Hello world!</h1>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>
// We'll fill this in next
</script>

</body>

</html>

Now let’s look at the JavaScript. As always, put your code
inside the <script> tags of the HTML document.

(1] leftOffset = 0;
(2] moveHeading O {
(3] ("#theading").offset({ left: leftOffset });
O leftOffset++;
(5] (leftoffset > 200) {
leftOffset = 0;
}
};

@ setInterval(moveHeading, 30);

When you open this page, you should see the heading element
gradually move across the screen until it travels 200 pixels; at that
point, it will jump back to the beginning and start again. Let’s see
how this works.

At @ we create the variable leftoffset, which we’ll use later to
position our Hello world! heading. It starts with a value of 0, which
means the heading will start on the far left side of the page.

160 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

Next, at @, we create the function moveHeading, which we’ll
call later with setInterval. Inside the moveHeading function, at ©, we
use $("#heading") to select the element with the id of "heading" (our
h1 element) and use the offset method to set the left offset of the
heading—that is, how far it is from the left side of the screen.

The offset method takes an object that can contain a left
property, which sets the left offset of the element, or a top property,
which sets the top offset of the element. In this example we use
the left property and set it to our leftoffset variable. If we wanted
a static offset (that is, an offset that doesn’t change), we could set
the property to a numeric value. For example, calling $("#heading")
.offset({ left: 100 }) would place the heading element 100 pixels
from the left side of the page.

At @ we increment the leftoffset variable by 1. To make sure
the heading doesn’t move too far, at ® we check to see if leftoffset
1s greater than 200, and if it is, we reset it to 0. Finally, at ® we
call setInterval, and for its arguments we pass in the function
moveHeading and the number 30 (for 30 milliseconds).

This code calls the moveHeading function every 30 milliseconds,
or about 33 times every second. Each time moveHeading is called, the
leftOffset variable is incremented, and the value of this variable
1s used to set the position of the heading element. Because the
function is constantly being called and leftOffset is incremented
by 1 each time, the heading gradually moves across the screen by
1 pixel every 30 milliseconds.

TRY IT OUT!

You can speed up this animation by raising the amount
that leftoffset is increased every time moveHeading is called
or by reducing the time that setInterval waits between calls
to moveHeading.

How would you double the speed that the heading moves?
Try it with both techniques. What difference do you see?

Interactive Programming 161

www.it-ebooks.info

http://www.it-ebooks.info/

As you've seen, one way to control when code is run is with the
functions setTimeout and setInterval, which run a function once

a fixed amount of time has passed. Another way is to run code
only when a user performs certain actions, such as clicking, typ-
ing, or even just moving the mouse. This will let users interact
with your web page so that your page responds according to what
they do.

In a browser, every time you perform an action such as click-
ing, typing, or moving your mouse, something called an event is
triggered. An event is the browser’s way of saying, “This thing hap-
pened!” You can listen to these events by adding an event handler
to the element where the event happened. Adding an event handler
1s your way of telling JavaScript, “If this event happens on this
element, call this function.” For example, if you want a function to
be called when the user clicks a heading element, you could add a
click event handler to the heading element. We'll look at how to do
that next.

When a user clicks an element in the browser, this triggers a
click event. JQuery makes it easy to add a handler for a click
event. Open the interactive.html document you created earlier,
use File »Save As to save it as clicks.html, and replace its second
script element with this code:

clickHandler (event) {
console.log("Click! " + event.pageX

};

® $("h1").click(clickHandler);

(-]

event.pageY);

At ©® we create the function clickHandler with the single argu-
ment event. When this function is called, the event argument will
be an object holding information about the click event, such as
the location of the click. At @, inside the handler function, we use
console.log to output the properties pageX and pageY from the event
object. These properties tell us the event’s x- and y-coordinates—
in other words, they say where on the page the click occurred.

Finally, at ® we activate the click handler. The code $("h1")
selects the h1 element, and calling $("h1").click(clickHandler)

162 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

means “When there is a click on the
h1 element, call the clickHandler func-
tion and pass it the event object.” In
this case, the click handler retrieves
information from the event object to
output the x- and y-coordinates of
the click location.

Reload your modified page in
your browser and click the head-
ing element. Each time you click
the heading, a new line should be
output to the console, as shown
in the following listing. Each line
shows two numbers: the x- and
y-coordinates of the clicked location.

Click! 88 43
Click! 63 53
Click! 24 53
Click! 121 46
Click! 93 55
Click! 103 48

BROWSER COORDINATES

In the web browser and in

most programming and graphics
environments, the 0 position of
the x- and y-coordinates is at the
top-left corner of the screen. As
the x-coordinate increases, you
move right across the page, and
as the y-coordinate increases,
you move down the page (see
Figure 10-3).

www.it-ebooks.info

0 3
0 1 1 1 1

— ot

v
K

“~
(3, 2)

Figure 10-3: Coordinates
in the browser, showing
a click at the coordinate
(3,2)

Interactive Programming 163

http://www.it-ebooks.info/

THE MOUSEMOVE EVENT

The mousemove event is triggered every time the mouse moves. To
try it out, create a file called mousemove.html and enter this code:

<!DOCTYPE html>

<html>

<head>
<title>Mousemove</title>

</head>

<body>
<h1 id="heading">Hello world!</h1>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>
o $("html").mousemove(function (event) {
(2] $("#heading").offset({
left: event.pageX,
top: event.pageY
D;
D;
</script>
</body>
</html>

At ® we add a handler for the mousemove event using $("html")
.mousemove (handler). In this case, the handler is the entire function
that appears after mousemove and before </script>. We use $("html")
to select the html element so that the handler is triggered by mouse
movements that occur anywhere on the page. The function that we
pass into the parentheses after mousemove will be called every time
the user moves the mouse.

In this example, instead of creating the event handler sepa-
rately and passing the function name to the mousemove method
(as we did with our clickHandler function
earlier), we're passing the handler func-
tion directly to the mousemove method.
This is a very common way of writing
event handlers, so it’s good to be famil-
1ar with this type of syntax.

At @, inside the event handler
function, we select the heading element
and call the offset method on it. As I

164 Chapter 10

www.it-ebooks.info

http://www.it-ebooks.info/

mentioned before, the object passed to offset can have left and
top properties. In this case, we set the left property to event.pageX
and the top property to event.pageY. Now, every time the mouse
moves, the heading will move to that location. In other words,
wherever you move the mouse, the heading follows it!

WHAT YOU LEARNED

In this chapter, you learned how to write JavaScript that runs
only when you want it to. The setTimeout and setInterval functions
are great for timing code to run after a delay or at certain inter-
vals. If you want to run code when the user does something in the
browser, you can use events like click and mousemove, but there are
many others.

In the next chapter, we’ll put what you've just learned to good
use to make a game!

4)
PROGRAMMING CHALLENGES

Here are a few challenges to explore more ways to use inter-
active programming.

Modify the previous mousemove program so that instead of
following your mouse, the heading will follow just your clicks.
Whenever you click the page, the heading should move to the
click location.

Use setInterval to animate an h1 heading element around
the page, in a square. It should move 200 pixels to the right,
200 pixels down, 200 pixels to the left, 200 pixels up, and
then start again. Hint: You’ll need to keep track of your
current direction (right, down, left, or up) so that you know
whether to increase or decrease the left or top offset of the
heading. You'll also need to change the direction when you
reach a corner of the square.

(continued)

Interactive Programming 1695

www.it-ebooks.info

http://www.it-ebooks.info/

166

Chapter 10

Building upon Challenge #2, add a click handler to the mov-
ing h1 element that cancels the animation. Hint: You can
cancel intervals with the clearInterval function.

Modify Challenge #3 so that every time a player clicks the
heading, instead of stopping, the heading speeds up, making
it harder and harder to click. Keep track of the number of
times the heading has been clicked and update the heading
text so it shows this number. When the player has reached
10 clicks, stop the animation and change the text of the
heading to “You Win.” Hint: To speed up, you'll have to
cancel the current interval and then start a new one with

a shorter interval time.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s put what we’ve learned so far to good use and
make a game! The aim of this game is to find the hid-
den treasure. In this game, the web page will display
a treasure map. Inside that map, the program will
pick a single pixel location, which represents where
the hidden treasure is buried. Every time the player
clicks the map, the web page will tell them how close

www.it-ebooks.info

http://www.it-ebooks.info/

to the treasure they are. When they click the location of the
treasure (or very close to it), the game congratulates them on
finding the treasure and says how many clicks it took to find it.
Figure 11-1 shows what the game will look like after a player
clicks the map.

808 / [Find the buried treasure! G \

& — C [file:///Users/js4kids/Desktop/treasure.html

Find the buried treasure!

Warm

Figure 11-1: The buried treasure game

DESIGNING THE GAME

Before we start writing the code, let’s break down the overall
structure of this game. Here is a list of steps we need to take
to set up the game so it can respond accordingly when a player
clicks the treasure map.

1. Create a web page with an image (the treasure map) and a
place to display messages to the player.

2. Pick a random spot on the map picture to hide the treasure.

168 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

3. Create a click handler. Each time the player clicks the map,
the click handler will do the following:

a.

b.

Add 1 to a click counter.

Calculate how far the click location is from the treasure
location.

Display a message on the web page to tell the player
whether they’re hot or cold.

Congratulate the player if they click on the treasure or
very close to it, and say how many clicks it took to find the
treasure.

I’ll show you how to implement each of these features in the
game, and then we’ll go through the full code.

CREATING THE WEB PAGE WITH HTML

Let’s look at the HTML for the game. We'll use a new element
called img for the treasure map and add a p element where we can
display messages to the player. Enter the following code into a new
file called treasure.html.

o
(2]

<IDOCTYPE html>

<html>
<head>

<title>Find the buried treasure!</title>

</head>

<body>

<h1 id="heading">Find the buried treasure!</h1>

<img id="map" width=400 height=400 <~

src="http://nostarch.com/images/treasuremap.png">

<p id="distance"></p>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>
// Game code goes here
</script>

</body>
</html>

Find the Buried Treasure! 169

www.it-ebooks.info

http://www.it-ebooks.info/

The img element is used to include images in HTML docu-
ments. Unlike the other HTML elements we’ve looked at, img
doesn’t use a closing tag. All you need is an opening tag, which,
like other HTML tags, can contain various attributes. At @ we've
added an img element with an id of "map". We set the width and
height of this element using the width and height attributes, which
are both set to 400. This means our image will be 400 pixels tall
and 400 pixels wide.

To tell the document which image we want to display, we use
the src attribute to include the web address of the image at @. In
this case, we're linking to an image called treasuremap.png on the
No Starch Press website.

Following the img element is an empty p element at ®, which
we give an id of "distance". We’'ll add text to this element by using
JavaScript to tell the player how close they are to the treasure.

PICKING A RANDOM TREASURE LOCATION

Now let’s build the JavaScript for
our game. First we need to pick a
random location for the hidden trea-
sure inside the treasure map image.
Since the dimensions of the map
are 400 by 400 pixels, the coordi-
nates of the top-left pixel will be

{ x: 0, y: 0}, and the bottom-right
pixel will be { x: 399, y: 399 }.

PICKING RANDOM NUMBERS

To set a random coordinate point within the treasure map, we
pick a random number between 0 and 399 for the x value and a
random number between 0 and 399 for the y value. To generate
these random values, we’ll write a function that takes a size argu-
ment as input and picks a random number from 0 up to (but not
including) size:

var getRandomNumber = function (size) {
return Math.floor(Math.random() * size);

};

This code is similar to the code we've used to pick random
words in earlier chapters. We generate a random number between

170 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

0 and 1 using Math.random, multiply that by the size argument, and
then use Math.floor to round that number down to a whole num-
ber. Then we output the result as the return value of the function.
Calling getRandomNumber (400) will return a random number from 0
to 399, which is just what we need!

SETTING THE TREASURE COORDINATES

Now let’s use the getRandomNumber function to set the treasure
coordinates:

® vaor width = 400;
var height = 400;

® var target = {
x: getRandomNumber (width),
y: getRandomNumber (height)

)

The section of code at @ sets the width and height variables,
which represent the width and height of the img element that we're
using as a treasure map. At @ we create an object called target,
which has two properties, x and y, that represent the coordinates
of the buried treasure. The x and y properties are both set by
getRandomNumber. Each time we run this code, we get a new random
location on the map, and the chosen coordinates will be saved in
the x and y properties of the target variable.

THE CLICK HANDLER

The click handler is the function that will be called when the player
clicks the treasure map. Start building this function with this code:

$("#map").click(function (event) {
// Click handler code goes here

B

First we use $("#map") to select the treasure map area (because
the img element has an id of "map"), and then we go into the click
handler function. Each time the player clicks the map, the function
body between the curly brackets will be executed. Information about
the click is passed into that function body as an object through the
event argument.

Find the Buried Treasure! 121

www.it-ebooks.info

http://www.it-ebooks.info/

This click handler function needs to do quite a bit of work: it
has to increment the click counter, calculate how far each click
1s from the treasure, and display messages. Before we fill in the
code for the click handler function, we’ll define some variables and
create some other functions that will help execute all these steps.

COUNTING CLICKS

The first thing our click handler needs to do is track the total
number of clicks. To set this up, we create a variable called clicks
at the beginning of the program (outside the click handler) and
initialize it to zero:

var clicks = 0;

Inside the click handler, we’ll include clicks++ so that we incre-
ment clicks by 1 each time the player clicks the map.

CALCULATING THE DISTANCE BETWEEN THE
CLICK AND THE TREASURE

To figure out whether the player is hot or cold (close to the treasure
or far away), we need to measure the distance between where the
player clicked and the location of the hidden treasure. To do this,
we’ll write a function called getDistance, like so:

var getDistance = function (event, target) {
var diffX = event.offsetX - target.x;
var diffY = event.offsetY - target.y;
return Math.sqrt((diffX * diffX) + (diffy * diffy));

};

The getDistance function takes two objects as arguments:
event and target. The event object is the object passed to the click
handler, and it comes with lots of built-in information about the
player’s click. In particular, it contains two properties called
offsetX and offsetY, which tell us the x- and y-coordinates of the
click, and that’s exactly the information we need.

Inside the function, the variable diffX stores the horizontal
distance between the clicked location and the target, which we
calculate by subtracting target.x (the x-coordinate of the treasure)
from event.offsetX (the x-coordinate of the click). We calculate the

172 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

vertical distance between the points in the same way, and store
the result as diffy. Figure 11-2 shows how we would calculate diffX
and diffy for two points.

0 1 2 3 4 5
0 | | | | | , X
1 —

diffx=3-1
target: (1, 2) =2
2 — t———,
diffy=3-2
=1
3 —
event: (3, 3)

4 —
5 —

Yy

Figure 11-2: Calculating the horizontal and vertical
distances between event and target

USING THE PYTHAGOREAN THEOREM

Next, the getDistance func-
tion uses the Pythagorean
theorem to calculate the dis-
tance between two points. The
Pythagorean theorem says
that for a right triangle, where
a and b represent the lengths
of the two sides bordering the
right angle and ¢ represents
the length of the diagonal side
(the hypotenuse), a® + b* = c*.
Given the lengths of a and b,
we can calculate the length

of the hypotenuse by calculat-
ing the square root of a® + b

Find the Buried Treasure! 173

www.it-ebooks.info

http://www.it-ebooks.info/

To calculate the distance between the event and the target, we
treat the two points as if they’re part of a right triangle, as shown
in Figure 11-3. In the getDistance function, diffX is the length of the
horizontal edge of the triangle, and diffY is the length of the verti-
cal edge.

To calculate the distance between the click and the trea-
sure, we need to calculate the length of the hypotenuse, based
on the lengths diffX and diffy. A sample calculation is shown in
Figure 11-3.

target: (1, 2)

diffy=3-2
=1

event: (3, 3)

Hypotenuse = V(diffx? + diffY?)
@+
=N4+1)
=5
=2.236

Figure 11-3: Calculating the hypotenuse to find out
the distance between event and target

To get the length of the hypotenuse, we first have to square
diffx and diffy. We then add these squared values together, and
get the square root using the JavaScript function Math.sqrt. So our
complete formula for calculating the distance between the click and
the target looks like this:

Math.sqrt((diffX * diffX) + (diffy * diffY))

The getDistance function calculates this and returns the result.

174 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

TELLING THE PLAYER HOW CLOSE THEY ARE

Once we know the distance between the player’s click and the
treasure, we want to display a hint telling the player how close
they are to the treasure, without telling them exactly how far
away the treasure is. For this, we use the getDistanceHint function
shown here:

var getDistanceHint = function (distance) {
if (distance < 10) {
return "Boiling hot!";
} else if (distance < 20) {
return "Really hot";
} else if (distance < 40) {
return "Hot";
} else if (distance < 80) {
return "Warm";
} else if (distance < 160) {
return "Cold";
} else if (distance < 320) {
return "Really cold";
} else {
return "Freezing!";
}
};

This function returns different strings depending on the cal-
culated distance from the treasure. If the distance is less than 10,
the function returns the string "Boiling hot!". If the distance is
between 10 and 20, the function returns "Really hot". The strings
get colder as the distance increases, up to the point where we
return "Freezing!" if the distance is greater than 320 pixels.

We display the message to the player by adding it as text in
the p element of the web page. The following code will go inside our
click handler to calculate the distance, pick the appropriate string,
and display that string to the player:

var distance = getDistance(event, target);
var distanceHint = getDistanceHint(distance);
$("#distance").text(distanceHint);

As you can see, we first call getDistance and then save the
result as the variable distance. Next we pass that distance to the
getDistanceHint function to pick the appropriate string and save it
as distanceHint.

Find the Buried Treasure! 1795

www.it-ebooks.info

http://www.it-ebooks.info/

The code $("#distance").text(distanceHint); selects the element
with the id of "distance" (in this case the p element) and sets its
text to distanceHint so that each time the player clicks the map,
our web page tells them how close they are to the target.

CHECKING IF THE PLAYER WON

Finally, our click handler needs to check whether the player has
won. Because pixels are so small, instead of making the player
click the exact location of the treasure, we’ll let them win if
they click within 8 pixels.

This code checks the distance to the treasure and displays a
message telling the player that they’ve won:

if (distance < 8) {
alert("Found the treasure in

}

+ clicks + " clicks!");

If the distance is less than 8 pixels, this code uses alert to tell
the player they found the treasure and how many clicks it took
them to do so.

PUTTING IT ALL TOGETHER

Now that we have all the pieces, let’s combine them to make one
script.

// Get a random number from 0 to size
var getRandomNumber = function (size) {
return Math.floor(Math.random() * size);

b

// Calculate distance between click event and target
var getDistance = function (event, target) {

var diffX = event.offsetX - target.x;

var diffY = event.offsetY - target.y;

return Math.sqrt((diffX * diffX) + (diffy * diffy));

b

// Get a string representing the distance
var getDistanceHint = function (distance) {
if (distance < 10) {
return "Boiling hot!";

176 Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

} else if (distance < 20) {
return "Really hot",;

} else if (distance < 40) {
return "Hot";

} else if (distance < 80) {
return "Warm";

} else if (distance < 160) {
return "Cold";

} else if (distance < 320) {
return "Really cold";

} else {
return "Freezing!";

}

};

// Set up our variables
var width = 400;

var height = 400;

var clicks = 0;

// Create a random target location
var target = {

x: getRandomNumber (width),

y: getRandomNumber (height)

.
)

// Add a click handler to the img element
$("#tmap").click(function (event) {
clicks++;

// Get distance between click event and target
var distance = getDistance(event, target);

// Convert distance to a hint

var distanceHint = getDistanceHint(distance);

// Update the #distance element with the new hint
$("#distance").text(distanceHint);

// If the click was close enough, tell them they won

if (distance < 8) {
alert("Found the treasure in

}
b

+ clicks + " clicks!");

First, we have the three functions getRandomNumber, getDistance,
and getDistanceHint, which we've already looked at. Then, at @, we

Find the Buried Treasure! 127

www.it-ebooks.info

http://www.it-ebooks.info/

178

set up the variables we’ll need: width, height, and clicks. After that,
at @, we create the random location for the treasure.

At © we create a click handler on the map element. The first
thing this does is increment the clicks variable by 1. Then, at @, it
works out the distance between event (the click location) and target
(the treasure location). At ® we use the function getDistanceHint
to convert this distance into a string representing the distance
("Cold", "Warm", and so on). We update the display at ® so the user
can see how far they are. Finally, at @, we check to see whether
the distance is under 8, and if so, we tell the player they’ve won
and in how many clicks.

This is the entire JavaScript for our game. If you add this to
the second <script> tag in treasure.html, you should be able to play
it in your browser! How many clicks does it take you to find the
treasure?

In this chapter, you used your new event-handling skills to create
a game. You also learned about the img element, which can be used
to add images to a web page. Finally, you learned how to measure
the distance between two points using JavaScript.

In the next chapter, we’ll learn about object-oriented program-
ming, which will give us more tools for organizing our code.

Chapter 11

www.it-ebooks.info

http://www.it-ebooks.info/

(

PROGRAMMING CHALLENGES

Here are a few ways you could change the game and add
more features.

#1: INCREASING THE PLAYING AREA

You could make the game harder by increasing the size of
the playing area. How would you make it 800 pixels wide by
800 pixels tall?

#2: ADDING MORE MESSAGES

Try adding some extra messages to display to the player
(like "Really really cold!"), and modify the distances to make
the game your own.

#3: ADDING A CLICK LIMIT

Add a limit to the number of clicks and show the message
"GAME OVER" if the player exceeds this limit.

#4: DISPLAYING THE NUMBER OF REMAINING CLICKS

Show the number of remaining clicks as an extra piece of
text after the distance display so the player knows if they’re
about to lose.

~

Find the Buried Treasure! 179

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 discussed JavaScript objects—collections
of keys paired with values. In this chapter, we’ll look
at ways to create and use objects as we explore object-
oriented programming. Object-oriented programming
1s a way to design and write programs so that all of
the program’s important parts are represented by
objects. For example, when building a racing game,

www.it-ebooks.info

http://www.it-ebooks.info/

you could use object-oriented programming techniques to repre-
sent each car as an object and then create multiple car objects that
share the same properties and functionality.

A SIMPLE OBJECT

In Chapter 4, you learned that objects are made up of properties,
which are simply pairs of keys and values. For example, in the fol-
lowing code the object dog represents a dog with the properties name,
legs, and isAwesome:

var dog = {
name: "Pancake",
legs: 4,
isAwesome: true

};

Once we create an object, we can access its properties using dot
notation (discussed in “Accessing Values in Objects” on page 66).
For example, here’s how we could access the name property of our
dog object:

dog.name;
"Pancake"

We can also use dot notation to add properties to a JavaScript
object, like this:

dog.age = 6;

This adds a new key-value pair (age: 6) to the object, as you
can see below:

dog;
Object {name: "Pancake", legs: 4, isAwesome: true, age: 6}

ADDING METHODS TO OBJECTS

In the preceding example, we created several properties with dif-
ferent kinds of values saved to them: a string ("Pancake"), numbers
(4 and 6), and a Boolean (true). In addition to strings, numbers,
and Booleans, you can save a function as a property inside an

182 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

®Q

object. When you save a function as a property in an object, that
property is called a method. In fact, we've already used several
built-in JavaScript methods, like the join method on arrays and
the toUpperCase method on strings.

Now let’s see how to create our own methods. One way to add a
method to an object is with dot notation. For example, we could add
a method called bark to the dog object like this:

dog.bark = function () {
console.log("Woof woof! My name is " + this.name + "!");

};

dog.bark();
Woof woof! My name is Pancake!

At @ we add a property to the dog object called bark and assign
a function to it. At @, inside this new function, we use console.log
to log Woof woof! My name is Pancake!. Notice that the function uses
this.name, which retrieves the value saved in the object’s name prop-
erty. Let’s take a closer look at how the this keyword works.

USING THE THIS KEYWORD

You can use the this keyword inside a method to refer to the object
on which the method is currently being called. For example, when
you call the bark method on the dog object, this refers to the dog
object, so this.name refers to dog.name. The this keyword makes
methods more versatile, allowing you to add the same method

to multiple objects and have it access the properties of whatever
object it’s currently being called on.

SHARING A METHOD BETWEEN
MULTIPLE OBJECTS

Let’s create a new function called speak that we can use as a
method in multiple objects that represent different animals. When
speak 1s called on an object, it will use the object’s name (this.name)
and the sound the animal makes (this.sound) to log a message.

var speak = function () {
console.log(this.sound + "! My name is " + this.name + "!");

};

Object-Oriented Programming 183

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s create another object so we can add speak to it as a
method:

var cat = {
sound: "Miaow",
name: "Mittens",
©® speak: speak

)

Here we create a new object called cat, with sound, name, and
speak properties. We set the speak property at @ and assign it
the speak function we created earlier. Now cat.speak is a method
that we can call by entering cat.speak(). Since we used the this
keyword in the method, when we call it on cat, it will access the
cat object’s properties. Let’s see that now:

cat.speak();
Miaow! My name is Mittens!

When we call the cat.speak method, it retrieves two proper-
ties from the cat object: this.sound (which is "Miaow") and this.name
(which is "Mittens").

We can use the same speak function as a method in other
objects too:

var pig = {
sound: "0ink",
name: "Charlie",
speak: speak

)

var horse = {
sound: "Neigh",
name: "Marie",
speak: speak

)

pig.speak();
Oink! My name is Charlie!

horse.speak();
Neigh! My name is Marie!

184 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

Again, each time this appears inside a method, it refers to the
object on which the method is called. In other words, when you call
horse.speak(), this will refer to horse, and when you call pig.speak(),
this refers to pig.

To share methods between multiple
objects, you can simply add them to each
object, as we just did with speak. But if you
have lots of methods or objects, adding the
same methods to each object individually
can become annoying, and it can make
your code messier, too. Just imagine if
you needed a whole zoo full of 100 animal
objects and you wanted each to share a set
of 10 methods and properties.

JavaScript object constructors offer a
better way to share methods and proper-
ties between objects, as we’ll see next.

A JavaScript constructor is a function that creates objects and
gives them a set of built-in properties and methods. Think of it as
a specialized machine for creating objects, kind of like a factory
that can churn out tons of copies of the same item. Once you've

set up a constructor, you can use it to make as many of the same
object as you want. To try it out, we’ll build the beginnings of a
racing game, using a Car constructor to create a fleet of cars with
similar basic properties and methods for steering and acceleration.

Each time you call a constructor, it creates an object and gives the
new object built-in properties. To call a normal function, you enter
the function name followed by a pair of parentheses. To call a con-
structor, you enter the keyword new (which tells JavaScript that you
want to use your function as a constructor), followed by the con-
structor name and parentheses. Figure 12-1 shows the syntax for
calling a constructor.

Object-Oriented Programming 185

www.it-ebooks.info

http://www.it-ebooks.info/

The new object
is saved into Arguments passed

this variable. to the constructor

l |

var car = new Car(100, 200)

The name of
the constructor

Figure 12-1: The syntax for calling a constructor
named Car with two arguments

Most JavaScript programmers start constructor names with a capi-
tal letter so it’s easy to see at a glance that they're different from
other functions.

CREATING A CAR CONSTRUCTOR

Now let’s create a Car constructor that will add an x and y property
to each new object it creates. These properties will be used to set
each car’s onscreen position when we draw it.

CREATING THE HTML DOCUMENT

Before we can build our constructor, we need to create a new
HTML document. Make a new file called cars.html and enter
this HTML into it:

<!DOCTYPE html>

<html>

<head>
<title>Cars</title>

</head>

<body>
<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>
// Code goes here
</script>

</body>

</html>

186 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

THE CAR CONSTRUCTOR FUNCTION

Now add this code to the empty <script> tags in cars.html (replac-
ing the comment // Code goes here) to create the Car constructor
that gives each car a set of coordinates.

<script>
var Car = function (x, y) {
this.x = x;
this.y
};

</script>

Y5

Our new constructor Car takes the arguments x and y. We've
added the properties this.x and this.y to store the x and y values
passed to Car in our new object. This way, each time we call Car as
a constructor, a new object is created with its x and y properties set
to the arguments we specify.

CALLING THE CAR CONSTRUCTOR

As I mentioned earlier, the keyword new tells JavaScript that we're
calling a constructor to create a new object. For example, to create
a car object named tesla, open cars.html in a web browser and then
enter this code in the Chrome JavaScript console:

var tesla = new Car(10, 20);
tesla;
Car {x: 10, y: 20}

The code new Car(10, 20) tells JavaScript to create an object
using Car as a constructor, pass in the arguments 10 and 20 for its
x and y properties, and return that object. We assign the returned
object to the tesla variable with var tesla.

Then when we enter tesla, the Chrome console returns the
name of the constructor and its x and y values: Car {x: 10, y: 20}.

Object-Oriented Programming 187

www.it-ebooks.info

http://www.it-ebooks.info/

To show the objects created by the Car constructor, we'll create

a function called drawCar to place an image of a car at each car
object’s (x, y) position in a browser window. Once we’ve seen how
this function works, we’ll rewrite it in a more object-oriented way
in “Adding a draw Method to the Car Prototype” on page 191. Add
this code between the <script> tags in cars.html:

drawCar (car) {
o carHtml = '";
(2] carElement (carHtml);
(3] carElement.css({

position: "absolute",
left: car.x,
top: car.y

1;

(4] ("body").append(carElement);
};

At @ we create a string containing HTML that points to an
1image of a car. (Using single quotes to create this string lets us
use double quotes in the HTML.) At ® we pass carHTML to the $
function, which converts it from a string to a JQuery element. That
means the carElement variable now holds a jQuery element with the
information for our tag, and we can tweak this element before
adding it to the page.

At © we use the css method on carElement to set the position
of the car image. This code sets the left position of the image to
the car object’s x value and its top position to the y value. In other
words, the left edge of the image will be x pixels from the left edge
of the browser window, and the top edge of the image will be y pixels
down from the top edge of the window.

188 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the css method works like the offset method we
used in Chapter 10 to move elements around the page. Unfortu-
nately, offset doesnt work as well with multiple elements, and since
we want to draw multiple cars, we're using css here instead.

Finally, at @ we use jQuery to append the carElement to the
body element of the web page. This final step makes the carElement
appear on the page. (For a reminder on how append works, see
“Creating New Elements with jQuery” on page 150.)

TESTING THE DRAWCAR FUNCTION

Let’s test the drawCar function to make sure it works. Add this code
to your cars.html file (after the other JavaScript code) to create
two cars.

$("body").append(carElement);
};
var tesla = new Car(20, 20);
var nissan = new Car(100, 200);

drawCar(tesla);
drawCar(nissan);
</script>

Here, we use the Car constructor to create two car objects, one
at the coordinates (20, 20) and the other at (100, 200), and then
we use drawCar to draw each of them in the browser. Now when you
open cars.html, you should see two car images in your browser
window, as shown in Figure 12-2.

Object-Oriented Programming 189

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 |_E'|Car5 x

<« C M [file:///Users/js4kids/Desktop/cars.html

(=

(=

Figure 12-2: Drawing cars using drawCar

CUSTOMIZING OBJECTS WITH
PROTOTYPES

A more object-oriented way to draw our cars would be to give each
car object a draw method. Then, instead of writing drawCar(tesla),
youd write tesla.draw(). In object-oriented programming, we want
objects to have their own functionality built in as methods. In this
case, the drawCar function is always meant to be used on car objects,
so instead of saving drawCar as a separate function, we should include
it as part of each car object.

JavaScript prototypes make it easy to share functionality
(as methods) between different objects. All constructors have a
prototype property, and we can add methods to it. Any method that
we add to a constructor’s prototype property will be available as a
method to all objects created by that constructor.

Figure 12-3 shows the syntax for adding a method to a
prototype property.

190 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

The The
constructor method
name name

! !

Car.prototype.draw = function () {
// The body of the method

}

Figure 12-3: The syntax for adding a method to a prototype property

ADDING A DRAW METHOD TO THE CAR
PROTOTYPE

Let’s add a draw method to Car.prototype so that all objects we create
using Car will have the draw method. Using File » Save As, save
your cars.html file as cars2.html. Then replace all of the JavaScript
in your second set of <script> tags in cars2.html with this code:

var Car = function (x, y) {
this.x = x;
this.y = vy;
};

Car.prototype.draw = function () {
var carHtml = '";

this.carElement = $(carHtml);

this.carElement.css({
position: "absolute",
left: this.x,

top: this.y

D;

$("body").append(this.carElement);
};

var tesla = new Car(20, 20);
var nissan = new Car(100, 200);

tesla.draw();
nissan.draw();

Object-Oriented Programming 191

www.it-ebooks.info

http://www.it-ebooks.info/

After creating our Car constructor at @, we add a new method
called draw to Car.prototype at ®. This makes the draw method part
of all of the objects created by the Car constructor.

The contents of the draw method are a modified version of
our drawCar function. First, we create an HTML string and save
it as carHTML. At ® we create a jQuery element representing this
HTML, but this time we save it as a property of the object by
assigning it to this.carElement. Then at @, we use this.x and
this.y to set the coordinates of the top-left corner of the current
car image. (Inside a constructor, this refers to the new object cur-
rently being created.)

When you run this code, the result should look like Figure 12-2.
We haven’t changed the code’s functionality, only its organization.
The advantage to this approach is that the code for drawing the car
1s part of the car, instead of a separate function.

ADDING A MOVERIGHT METHOD

Now let’s add some methods to move the cars around, beginning
with a moveRight method to move the car 5 pixels to the right of
its current position. Add the following code after your definition of
Car.prototype.draw:

this.carElement.css({
position: "absolute",
left: this.x,

top: this.y

1

$("body").append(this.carElement);
b5

Car.prototype.moveRight = function () {
this.x += 5;

NS

this.carElement.css({
left: this.x,

top: this.y

D;

};

192 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

We save the moveRight method in Car.prototype to share it with
all objects created by the Car constructor. With this.x += 5 we add 5
to the car’s x value, which moves the car 5 pixels to the right. Then
we use the css method on this.carElement to update the car’s posi-
tion in the browser.

Try the moveRight method in the browser console. First, refresh
cars2.html, and then open the console and enter these lines:

tesla.moveRight();
tesla.moveRight();
tesla.moveRight();

Each time you enter tesla.moveRight, the top car should move
5 pixels to the right. You could use this method in a racing game to
show the car moving down the racetrack.

TRY IT OUT!

Try moving nissan to the right. How many times do you need
to call moveRight on nissan to make it line up with tesla?

Use setInterval and moveRight to animate nissan so that it
drives across the browser window.

ADDING THE LEFT, UP, AND DOWN
MOVE METHODS

Now we’ll add the remaining directions to our code so that we can
move our cars around the screen in any direction. These methods
are basically the same as moveRight, so we’ll write them all at once.

Add the following methods to cars2.html just after the code for
moveRight:

Car.prototype.moveRight = function () {
this.x += 5;

this.carElement.css({
left: this.x,

top: this.y

s

};

Object-Oriented Programming 193

www.it-ebooks.info

http://www.it-ebooks.info/

Car.prototype.moveLeft = function () {
this.x -= 5;

this.carElement.css({
left: this.x,

top: this.y

D;

};

Car.prototype.movelp = function () {
this.y -= 5;

this.carElement.css({
left: this.x,

top: this.y

D;

};

Car.prototype.moveDown = function () {
this.y += 5;

this.carElement.css({
left: this.x,

top: this.y

D;

};

Each of these methods moves the car by 5 pixels in the speci-
fied direction by adding or subtracting 5 from each car’s x or y
value.

Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT YOU LEARNED

In this chapter, you learned the basics of object-oriented program-
ming in JavaScript, including how to create constructors to build
new objects and how to modify the prototype property of those con-
structors to share methods between objects.

In object-oriented programs, most functions are written as
methods. For example, to draw the car, we call the draw method
on the car, and to move the car to the right, we call the moveRight
method. Constructors and prototypes are JavaScript’s built-in way
of letting you create objects that share the same set of methods,
but there are many ways to write object-oriented JavaScript. (For
more on object-oriented JavaScript, see Nicholas C. Zakas’s The
Principles of Object-Oriented JavaScript [No Starch Press, 2014].)

Writing JavaScript in an object-oriented way can help you
structure your code. Having well-structured code means that when
you come back to it later to make changes, it should be easier to
figure out how your program works if you don’t remember (this is
particularly important with bigger programs or when you start to
work with other programmers who may need to access your code).
For example, in the final project in this book, we’ll build a Snake
game that requires quite a bit of code, and we’ll use objects and
methods to organize our game and handle a lot of the important
functionality.

In the next chapter, we’ll go over how to draw and animate
lines and shapes on a web page using the canvas element.

4)
PROGRAMMING CHALLENGES

Try these challenges to practice working with objects and
prototypes.

Add a call to the draw method from inside the Car constructor
so that car objects automatically appear in the browser as
soon as you create them.

(continued)

\ _J

Object-Oriented Programming 1995

www.it-ebooks.info

http://www.it-ebooks.info/

Modify the Car constructor to add a new speed property
with a value of 5 to the constructed objects. Then use
this property instead of the value 5 inside the movement
methods.

Now try out different values for speed to make the cars
move faster or slower.

Modify the moveLeft, moveRight, moveUp, and moveDown methods
so they take a single distance argument, the number of
pixels to move, instead of always moving 5 pixels. For
example, to move the nissan car 10 pixels to the right, you
would call nissan.moveRight(10).

Now, use setInterval to move the two cars (nissan and
tesla) to the right every 30 milliseconds by a different
random distance between 0 and 5. You should see the two
cars animate across the screen, jumping along at varying
speeds. Can you guess which car will make it to the edge
of the window first?

196 Chapter 12

www.it-ebooks.info

http://www.it-ebooks.info/

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript 1sn’t all about playing with text and num-
bers. You can also use JavaScript to draw pictures with
the HTML canvas element, which you can think of as
a blank canvas or sheet of paper. You can draw almost
anything that you want on this canvas, such as lines,
shapes, and text. The only limit is your imagination!

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, you’ll learn the basics of drawing on the can-
vas. In the following chapters, we’ll build on our knowledge to
create a canvas-based JavaScript game.

CREATING A BASIC CANVAS

As our first step in using the canvas, create a new HTML docu-
ment for the canvas element, as shown in the following listing. Save
this document as canvas.html:

<!DOCTYPE html>

<html>

<head>
<title>Canvas</title>

</head>

<body>
<canvas id="canvas" width="200" height="200"></canvas>

<script>
// We'll fill this in next
</script>

</body>

</html>

As you can see at @, we create a canvas element and give it
an id property of "canvas", which we’ll use to select the element in
our code. The width and height properties set the dimensions of the
canvas element in pixels. Here we set both dimensions to 200.

DRAWING ON THE CANVAS

200

Now that we've built a page with a canvas element, let’s draw some
rectangles with JavaScript. Enter this JavaScript between the
<script> tags in canvas.html.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.fillRect(0, 0, 10, 10);

We'll go over this code line by line in the following sections.

Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

SELECTING AND SAVING
THE CANVAS ELEMENT

First, we select the canvas element using
document.getElementById("canvas"). As we
saw in Chapter 9, the getElementById
method returns a DOM object repre-
senting the element with the supplied
id. This object is assigned to the canvas
variable with the code var canvas =
document.getElementById("canvas").

o=
GETTING THE DRAWING

= e
CONTEXT

Next, we get the drawing context from the canvas element. A draw-
ing context is a JavaScript object that includes all the methods
and properties for drawing on a canvas. To get this object, we call
getContext on canvas and pass it the string "2d" as an argument.
This argument says that we want to draw a two-dimensional
image on our canvas. We save this drawing context object in the
variable ctx using the code var ctx = canvas.getContext("2d").

DRAWING A SQUARE

Finally, on the third line, we draw a rectangle on the canvas by
calling the method fillRect on the drawing context. The fillRect
method takes four arguments. In order, these are the x- and
y-coordinates of the top-left corner of the rectangle (0, 0) and the
width and height of the rectangle (10, 10). In this case, we're say-
ing, “Draw a 10-pixel-by-10-pixel rectangle at coordinates (0, 0),”
which are at the top-left corner of the canvas.

When you run this code, you should see a small black square
on your screen, as shown in Figure 13-1.

8 00 /| canvas x

&« C [file:///Users/js4kids/Desktop/canvas.html

Figure 13-1: Our first canvas drawing

The canvas Element 201

www.it-ebooks.info

http://www.it-ebooks.info/

DRAWING MULTIPLE SQUARES

How about trying something a bit more interesting? Rather than
drawing just one square, let’s use a loop to draw multiple squares
running diagonally down the screen. Replace the code in the
<script> tags with the following. When you run this code, you
should see a set of eight black squares, as shown in Figure 13-2:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
for (var i = 0; i < 8; i++) {

ctx.fillRect(i * 10, i * 10, 10, 10);

}

The first two lines are the same as in the earlier listing. In the
third line, we create a for loop that runs from 0 to 8. Next, inside
this loop, we call fillRect on the drawing context.

8 00 / Canvas x

[= C [file:///Users/js4kids/Desktop/canvas.html

Figure 13-2: Drawing multiple squares using
a for loop

The x and y positions for the top-left corner of each square
are based on the loop variable, i. The first time around the loop,
when i 1s 0, the coordinates are (0, 0) because 0 X 10 is equal to O.
This means that when we run the code
ctx.fillRect(i * 10, i * 10, 10, 10), we
will draw a square at the coordinates
(0, 0), with a width and height of 10
pixels by 10 pixels. This is the top-left
square in Figure 13-2.

The second time around the loop, when
i is 1, the coordinates are (10, 10) because
1 X 10 is equal to 10. This time, the code
ctx.fillRect(i * 10, i * 10, 10, 10) draws
a square at the coordinates (10, 10),

202 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

but the square’s size is still 10 pixels by 10 pixels (because we're
not changing the width and height arguments). This is the second
square down in Figure 13-2.

Since i increments by 1 each time through the loop, the x- and
y-coordinates keep increasing by 10 pixels each time through the
loop, but the width and height of the square stay fixed at 10. The
remaining six squares are drawn over the remaining six times
around the loop.

TRY IT OUT!

Now that you know how to draw squares
and rectangles on the canvas, try drawing
this little robot using the fillRect method.
Hint: You’ll need to draw six sepa-
rate rectangles. I made the head using a
50-pixel-by-50-pixel rectangle. The neck,
arms, and legs are all 10 pixels wide.

By default, when you call fillRect, JavaScript draws a black
rectangle. To use a different color, you can change the fillStyle
property of the drawing context. When you set fillStyle to a new
color, everything you draw will be drawn in that color until you
change fillStyle again.

The easiest way to set a color for fillStyle is to give it the
name of a color as a string. For example:

canvas = document.getElementById("canvas");
ctx = canvas.getContext("2d");
ctx.fillStyle = "Red";
ctx.fillRect(0, 0, 100, 100);

At @ we tell the drawing context that everything we draw
from now on should be colored red. Running this code should draw
a bright red square on the screen, as shown in Figure 13-3.

The canvas Element 203

www.it-ebooks.info

http://www.it-ebooks.info/

/[Canvas W
& - C [file:///Users/js4kids/Desktop/canvas.html

Figure 13-3: A red square

JavaScript understands more than
100 color names, including Green,
Blue, Orange, Red, Yellow, Purple,
White, Black, Pink, Turquoise, Violet,
SkyBlue, PaleGreen, Lime, Fuchsia,
DeepPink, Cyan, and Chocolate.
You'll find a full list on the CSS-Tricks
website: http://css-tricks.com/snippets/
css/mamed-colors-and-hex-equivalents/.

(~)
TRY IT OUT!

Look at the CSS-Tricks website (http://css-tricks.com/
snippets/css/named-colors-and-hex-equivalents/) and
choose three colors you like. Draw three rectangles using
these colors. Each rectangle should be 50 pixels wide and
100 pixels tall. Don’t include any space between them. You
should end up with something like this:

8606 ./ n
| | Canvas

& — C f [file:///Users/js4kids/Desktop/canvas.html

¢

W i

... although I'm sure you can find some more interesting
colors than red, green, and blue!

_J

204 Chapter 13

www.it-ebooks.info

http://css-tricks.com/snippets/css/named-colors-and-hex-equivalents/
http://css-tricks.com/snippets/css/named-colors-and-hex-equivalents/
http://www.it-ebooks.info/

DRAWING RECTANGLE OUTLINES

-

As we've seen, the fillRect method draws a filled-in rectangle.
That’s fine if that’s what you want, but sometimes you might want
to draw just the outline, as if you were using a pen or pencil. To
draw just the outline of a rectangle, we use the strokeRect method.
(The word stroke is another word for outline.) For example, run-
ning this code should draw the outline of small rectangle, as
shown in Figure 13-4:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.strokeRect(10, 10, 100, 20);

800 | | Canvas x

&« C u file:///Users/js4kids/Desktop/canvas.html

I

Figure 13-4: Using strokeRect to draw the
outline of a rectangle

The strokeRect method takes the same arguments as fillRect:
first the x- and y-coordinates of the top-left corner, followed by the
width and height of the rectangle. In this example, we see that
a rectangle is drawn starting at 10 pixels from the top left of the
canvas, and it is 100 pixels wide by 20 pixels tall.

Use the strokeStyle property to change the color of the rect-
angle’s outline. To change the thickness of the line, use the
lineWidth property. For example:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.strokeStyle = "DeepPink";

ctx.lineWidth = 4;

ctx.strokeRect(10, 10, 100, 20);

Here, we set the color of the line to DeepPink at @ and the
width of the line to 4 pixels at @. Figure 13-5 shows the resulting
rectangle.

The canvas Element 209

www.it-ebooks.info

http://www.it-ebooks.info/

800 / L] Canvas x

&« [.E-ﬁle:,’;‘lUsers,«’jstl kids/Des ktop,’canvas.i'lt_nﬂ

Figure 13-5: A deep pink rectangle with a
4-pixel-wide outline

DRAWING LINES OR PATHS

206

2000000 0Q

Lines on the canvas are called paths. To draw a path with the
canvas, you use x- and y-coordinates to set where each line should
begin and end. By using a careful combination of starting and
stopping coordinates, you can draw specific shapes on the canvas.
For example, here’s how you might draw the turquoise X shown in
Figure 13-6:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.strokeStyle = "Turquoise";

ctx.lineWidth = 4;

ctx.beginPath();

ctx.moveTo(10, 10);

ctx.lineTo(60, 60);

ctx.moveTo(60, 10);

ctx.lineTo(10, 60);

ctx.stroke();

® 00 __iCanvas x.

b= Cc u ﬁle:f;‘lUsers,«’js4kids;‘[}esktopfcanvas.htm

Figure 13-6: A turquoise X, drawn with moveTo
and lineTo

At @ and @ we set the color and width of the line. At ® we
call the beginPath method on the drawing context (saved as ctx)
to tell the canvas that we want to start drawing a new path.
At @ we call the moveTo method with two arguments: x- and

Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

y-coordinates. Calling moveTo picks up our virtual JavaScript pen
off the canvas paper and moves it to those coordinates without
drawing a line.

To start drawing a line, we call the lineTo method at ® with
x- and y-coordinates, which places the virtual pen back on the can-
vas and traces a path to these new coordinates. Here, we draw a
line from the point (10, 10) to the point (60, 60)—a diagonal line
from the top left of the canvas to the bottom right, forming the
first line of the X.

At @ we call moveTo again, which
sets a new location to draw from.
At @ we call 1ineTo again, to draw
a line from (60, 10) to (10, 60)—a
diagonal line from the top right of
the canvas to the bottom left, com-
pleting the X shape.

But we're not done yet! So far
we've only told the canvas what we'd
like to draw; we haven’t actually
drawn anything. So at @, we call the
stroke method, which finally makes
the lines appear on the screen.

TRY IT OUT!

Try drawing this happy stickman using the
beginPath, moveTo, lineTo, and stroke methods. You
can use the strokeRect method for the head. The
head is a 20-pixel-by-20-pixel square, and the line
width is 4 pixels.

So far we've looked at strokeRect for drawing rectangle outlines,
fillRect for filling rectangles with color, and stroke for outlining

a path. The equivalent of fillRect for paths is called fill. To fill a
closed path with color instead of just drawing an outline, you can
use the fill method instead of stroke. For example, you could use
this code to draw the simple sky blue house shown in Figure 13-7.

The canvas Element 207

www.it-ebooks.info

http://www.it-ebooks.info/

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

ctx.fillStyle = "SkyBlue";
ctx.beginPath();
ctx.moveTo(100, 100);
ctx.1lineTo(100, 60);
ctx.lineTo(130, 30);
ctx.1lineTo(160, 60);
ctx.1lineTo(160, 100);
ctx.1lineTo(100, 100);
O ctx.fill();

800 | 1 Canvas x

= c |_. f'il.e:f;‘,«’Users,-’js4kidé;‘Desktopfcanvas.htmi

Figure 13-7: A sky blue house, drawn with a
path and filled with the fill method

Here’s how this code works. After setting our drawing color
to SkyBlue, we begin our path with beginPath and then move to our
starting point of (100, 100) using moveTo. Next we call lineTo five
times for each corner of the house, using five sets of coordinates.
The final call to 1ineTo completes the path by going back to the
starting point of (100, 100).

Figure 13-8 shows the same house, but with each coordinate
labeled.

800 | 1 Canvas x

= c |_. f'il.e:f;‘,«’Users,-’js4kidé;‘Desktopfcanvas.htmi

(130, 30)
(100, 60) (160, 60)
(100, 100) (160, 100)

Figure 13-8: The house from Figure 13-7 with
coordinates labeled

208 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, at @ we call the fill method, which fills our path with
the chosen fill color, SkyBlue.

In addition to drawing straight lines on the canvas, you can
use the arc method to draw arcs and circles. To draw a circle,
you set the circle’s center coordinates and radius (the distance
between the circle’s center and outer edge) and tell JavaScript
how much of the circle to draw by providing a starting angle and
ending angle as arguments. You can draw a full circle, or just a
portion of a circle to create an arc.

The starting and ending angles are measured in radians. When
measured in radians, a full circle starts at 0 (at the right side of the
circle) and goes up to @ X 2 radians. So to draw a full circle, you tell
arc to draw from O radians to © X 2 radians. Figure 13-9 shows a
circle labeled with radians and their equivalent in degrees. The
values 360° and 7 X 2 radians both mean a full circle.

n x 3 + 2 radians (270°)

nt x 2 radians (360°)

n radians (180°) 0 radians (0°)

 + 2 radians (90°)

Figure 13-9: Degrees and radians, starting from the right side of
the circle and moving clockwise

For example, the following code will create a quarter circle, a
half circle, and a full circle, as shown in Figure 13-10.

ctx.lineWidth = 2;
ctx.strokeStyle = "Green";

ctx.beginPath();

ctx.arc(50, 50, 20, 0, Math.PI / 2, false);
ctx.stroke();

The canvas Element 209

www.it-ebooks.info

http://www.it-ebooks.info/

ctx.beginPath();
® ctx.arc(100, 50, 20, 0, Math.PI, false);
ctx.stroke();

ctx.beginPath();
® ctx.arc(150, 50, 20, 0, Math.PI * 2, false);
ctx.stroke();

8 0o | Canvas x

= (5= .j f'ile:,-';‘{Users{js4kids;‘I.J.esktopfcan\.ras.html

J_/O

Figure 13-10: Drawing a quarter circle, a half
circle, and a full circle

We’ll go over all three shapes in the following sections.

DRAWING A QUARTER CIRCLE OR AN ARC

The first block of code draws a quarter circle. At @, after calling
beginPath, we call the arc method. We set the center of the circle at
the point (50, 50) and the radius to 20 pixels. The starting angle
1s 0 (which draws the arc starting from the right of the circle), and
the ending angle is Math.PI / 2. Math.PI is how JavaScript refers
to the number 7 (pi). Because a full circle is © X 2 radians, « radi-
ans means a half circle, and © + 2 radians (which we’re using for
this first arc) gives us a quarter circle. Figure 13-11 shows the
start and end angles.

2
0 px 0 radians (0°)

 + 2 radians (90°)

Figure 13-11: The start angle (0 radians, or 0°)
and end angle (r + 2 radians, or 90°) of the
quarter-circle

210 Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

We pass false for the final argument,
which tells arc to draw in a clockwise direc-
tion. If you want to draw in a counterclockwise
direction, pass true for this final argument.

Next we draw a half circle. The arc at ® has a center at (100, 50),
which places it 50 pixels to the right of the first arc, which was

at (50, 50). The radius is again 20 pixels. We also start at 0 radi-
ans again, but this time we end at Math.PI, drawing a half circle.
Figure 13-12 shows the start and end angles.

20 px
nt radians (180°) 0 radians (0°)

Figure 13-12: The start angle (0 radians, or 0°) and
end angle (rt radians, or 180°) of the half circle

At ©® we draw a full circle. The center is at (150, 50), and the radius
1s 20 pixels. For this circle, we start the arc at 0 radians and end it

at Math.PI * 2 radians, drawing a full circle. Figure 13-13 shows the
start and end angles.

1 x 2 radians (360°)
0 radians (0°)

Figure 13-13: The start angle (0 radians, or 0°) and
end angle (r x 2 radians, or 360°) of the full circle

The canvas Element 21

www.it-ebooks.info

http://www.it-ebooks.info/

DRAWING LOTS OF CIRCLES
WITH A FUNCTION

212

If you just want to draw circles, the arc method is a bit compli-
cated. For circles, you're always going to want to start the arc at 0
and end at w X 2, and the direction (clockwise or counterclockwise)
doesn’t matter. Also, to actually draw the circle you always need

to call ctx.beginPath and ctx.stroke before and after calling the arc
method. We can make a function to draw circles that lets us ignore
those details so that we have to supply only the x, y, and radius
arguments. Let’s do that now.

var circle = function (x, y, radius) {
ctx.beginPath();

ctx.arc(x, y, radius, 0, Math.PI * 2, false);
ctx.stroke();

};

As with the arc method, inside this function the first thing we
have to do is call ctx.beginPath to tell the canvas we want to draw
a path. Then, we call ctx.arc, passing the x, y, and radius variables
from the function arguments. As before, we use o for the start
angle, Math.PI * 2 for the end angle, and false to draw the circle
clockwise.

Now that we have this function, we can draw lots of circles
simply by filling in the center coordinates and radius as arguments.
For example, this code would draw some colorful concentric circles:

ctx.lineWidth = 4;

ctx.strokeStyle = "Red";
circle(100, 100, 10);

ctx.strokeStyle = "Orange";
circle(100, 100, 20);

ctx.strokeStyle = "Yellow";
circle(100, 100, 30);

ctx.strokeStyle = "Green";
circle(100, 100, 40);

ctx.strokeStyle = "Blue";
circle(100, 100, 50);

Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

ctx.strokeStyle = "Purple”;
circle(100, 100, 60);

You can see what this should look like in Figure 13-14.
First, we set the line width to a thick 4 pixels. Then we set the
strokeStyle to "Red" and use the circle function to draw a circle at
the coordinates (100, 100), with a radius of 10 pixels. This is the
red center ring.

800 | | Canvas x

[= C M [file:///Users/js4kids/Desktop/canvas.html

Figure 13-14: Colorful concentric circles, drawn
using our circle function

We then use the same technique to draw an orange circle at
the same location but with a radius of 20 pixels; we follow that

with a yellow circle, again in the same location but with a radius of
30 pixels. The last three circles are also in the same location, but

with increasingly larger radii and in green, blue, and purple.

TRY IT OUT!

How would you modify our circle function to make it fill
the circle instead of outline it? Add a fourth argument, a
Boolean, that says whether the circle should

be filled or outlined. Passing true indicates

that you want the circle to be filled. You can O
call the argument fillCircle.
Using your modified function, draw this
snowman, using a mix of outlined and filled
circles.

The canvas Element

www.it-ebooks.info

213

http://www.it-ebooks.info/

WHAT YOU LEARNED

214

In this chapter, you learned about a new HTML element called
canvas. Using the canvas’s drawing context, we can easily draw

rectangles, lines, and circles, with full control over their location,
line width, color, and so on.
In the next chapter, we’ll learn how to animate our drawings,
using some of the techniques we learned in Chapter 9.

r

PROGRAMMING CHALLENGES

Try these challenges to practice drawing to the canvas.

#1: A SNOWMAN-DRAWING FUNCTION

Building on your code for drawing a snowman (page 213),
write a function that draws a snowman at a specified
location, so that calling this . . .

drawSnowman (50, 50);

would draw a snowman at the point (50, 50).

~

Chapter 13

www.it-ebooks.info

http://www.it-ebooks.info/

-

Write a function that will take an array of points like this:

~

points = [[50, 50], [50, 100], [100, 100], [100, 50], «
[50, 50]];
drawPoints(points);

and draw a line connecting the points. In this example,
the function would draw a line from (50, 50) to (50, 100) to
(100, 100) to (100, 50) and back to (50, 50).

Now use this function to draw the following points:

mysteryPoints = [[50, 50], [50, 100], [25, 120], «
[100, 50], [70, 90], [100, 90], [70, 120]];
drawPoints(mysteryPoints);

Hint: You can use points[0][0] to get the first x-coordinate
and points[0][1] to get the first y-coordinate.

Using jQuery and the mousemove event, draw a filled circle
with a radius of 3 pixels at the mouse position whenever
you move your mouse over the canvas. Because this event is
triggered by every tiny movement of the mouse, these circles
will join into a line as you move the mouse over the canvas.

Hint: Refer to Chapter 10 for a reminder of how to respond
to mousemove events.

In Chapter 7 we created our own version of the
game Hangman. Now you can make it closer to
the real game by drawing part of a stick man every
time the player gets a letter wrong.

Hint: Keep track of the number of times the player has
guessed incorrectly. Write a function that takes this num-
ber as an argument and draws a different part of the body
depending on the number passed in.

J

The canvas Element

www.it-ebooks.info

215

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating canvas animations in JavaScript is a lot
like creating a stop-motion animation. You draw a
shape, pause, erase the shape, and then redraw it in
a new position. This may sound like a lot of steps,
but JavaScript can update the position of the shape
very quickly in order to create a smooth animation.
In Chapter 10, we learned how to animate DOM
elements. In this chapter, we’ll animate our canvas
drawings.

www.it-ebooks.info

http://www.it-ebooks.info/

MOVING ACROSS THE PAGE

Let’s use canvas and setInterval to draw a square and move it slowly
across a page. Create a new file called canvasanimation.html and

add the following HTML:

<!DOCTYPE html>
<html>
<head>
<title>Canvas Animation</title>
</head>

<body>
<canvas id="canvas" width="200" height="200"></canvas>

<script>
// We'll fill this in next
</script>

</body>

</html>

Now add the following JavaScript to the script element:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var position = 0;

setInterval(function () {
ctx.clearRect(0, 0, 200, 200);
ctx.fillRect(position, 0, 20, 20);

position++;
if (position > 200) {
position = 0;
}
}, 30);

©o® ©OC

(]

The first two lines in this code create the canvas and the con-
text. Next, we create the variable position and set it to 0, with the
code var position = 0. We'll use this variable to control the left-to-
right movement of the square.

Now we call setInterval to start our animation. The first argu-
ment to setInterval is a function, which draws a new square each
time it’s called.

218 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

CLEARING THE CANVAS

Inside the function we passed to setInterval,
we call clearRect at @, which clears a rect-
angular area on the canvas. The clearRect
method takes four arguments, which set

the position and size of the rectangle to be
cleared. As with fillRect, the first two argu-
ments represent the x- and y-coordinates

of the top-left corner of the rectangle, and
the last two represent the width and height.
Calling ctx.clearRect(0, 0, 200, 200) erases
a 200-by-200-pixel rectangle, starting at the
very top-left corner of the canvas. Because our
canvas is exactly 200 by 200 pixels, this will
clear the entire canvas.

DRAWING THE RECTANGLE

Once we've cleared the canvas, at ® we use ctx.fillRect
(position, 0, 20, 20) to draw a 20-pixel square at the point
(position, 0). When our program starts, the square will be
drawn at (0, 0) because position starts off set to o.

CHANGING THE POSITION

Next, we increase position by 1, using position++ at ©. Then at @
we ensure that position doesn’t get larger than 200 with the check
if (position > 200). If it is, we reset it to o.

VIEWING THE ANIMATION IN THE BROWSER

When you load this page in your browser, setInterval will call the
supplied function once every 30 milliseconds, or about 33 times
a second (this time interval is set by the second argument to
setInterval, at ©). Each time the supplied function is called, it
clears the canvas, draws a square at (position, 0), and increments
the variable position. As a result, the square gradually moves
across the canvas. When the square reaches the end of the canvas
(200 pixels to the right), its position is reset to O.

Figure 14-1 shows the first four steps of the animation, zoomed
in to the top-left corner of the canvas.

Making Things Move on the Canvas 219

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 14-1: A close-up of the top-left corner of the canvas for the first four steps of the ani-
mation. At each step, position is incremented by 1 and the square moves 1 pixel to the right.

By making only three changes to the code in the previous section,
we can create a square that grows larger instead of moving. Here’s
what that code would look like:

size = 0;

ctx.fillRect(0, 0, size, size);

size++;
(size > 200) {
size = 0;

As you can see, we've done two things. First, instead of a
position variable, we now have a variable named size, which will
control the dimensions of the square. Second, instead of using this
variable to set the square’s horizon-
tal position, we're using it to set the
square’s width and height with the
code ctx.fillRect(0, 0, size, size).
This will draw a square at the top-
left corner of the canvas, with the
width and height both set to match

S

220 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

size. Because size starts at 0, the square will start out invisible. The
next time the function is called, size will be 1, so the square will
be 1 pixel wide and tall. Each time the square is drawn, it grows a
pixel wider and a pixel taller. When you run this code, you should
see a square appear at the top-left corner of the canvas and grow
until it fills the entire canvas. Once it fills the entire canvas—that
is, if (size > 200)—the square will disappear and start growing
again from the top-left corner.

Figure 14-2 shows a close-up of the top-left corner of the can-
vas for the first four steps of this animation.

Figure 14-2: In each step of this animation, size is incremented by 1 and the width and
height of the square grow by 1 pixel.

Now that we know how to move and grow objects on our screen,
let’s try something a bit more fun. Let’s make a bee that flies ran-
domly around the canvas! We’ll draw our bee using a number of

circles, like this:
Q

The animation will work very similarly to the moving square
animation: we’ll set a position, and then for every step of the ani-
mation, we'll clear the canvas, draw the bee at that position, and
modify the position. The difference is that to make the bee move
randomly, we’ll need to use more complex logic for updating the
bee’s position than we used for the square animation. We’ll build
up the code for this animation in a few sections.

Making Things Move on the Canvas 221

www.it-ebooks.info

http://www.it-ebooks.info/

We'll draw our bee using a few circles, so first we’ll make a circle
function to fill or outline circles:

circle (x, y, radius, fillCircle) {
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
(fillCircle) {
ctx.fill();

}
ctx.stroke();

}

© o000

};

The function takes four arguments: x, y, radius, and fillCircle.
We used a similar circle function in Chapter 13, but here we’ve
added fillCircle as an extra argument. When we call this func-
tion, this argument should be set to true or false, which determines
whether the function draws a filled circle or just an outline.

Inside the function, we use the arc method at @ to create the
circle with its center at the position (x, y) and a radius of radius.
After this, we check to see if the fillCircle argument is true at @.
If it 1s true, we fill the circle using ctx.fill at ®. Otherwise, we
outline the circle using ctx.stroke at @.

Next, we create the drawBee function to draw the bee. The drawBee
function uses the circle function to draw a bee at the coordinates
specified by its x and y arguments. It looks like this:

drawBee (x, y) {
O ctx.lineWidth = 2;
ctx.strokeStyle = "Black"”;
ctx.fillStyle = "Gold";

® circle(x, y, 8, true);
circle(x, y, 8, false);
circle(x - 5, y - 11, 5, false);
circle(x + 5, y - 11, 5, false);
circle(x - 2, y - 1, 2, false);
circle(x + 2, y - 1, 2, false);

b

222 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

In the first section of this code at @, we set the lineWidth,
strokeStyle, and fillStyle properties for our drawing. We set the
lineWidth to 2 pixels and the strokeStyle to Black. This means that
our outlined circles, which we’ll use for the bee’s body, wings, and
eyes, will have thick black borders. The fillStyle is set to Gold,
which will fill the circle for our bee body with a nice yellow color.

In the second section of the code at ®, we draw a series of
circles to create our bee. Let’s go through those one at a time.

The first circle draws the bee’s body using a filled circle with
a center at the point (x, y) and a radius of 8 pixels:

circle(x, y, 8, true);

Because we set the fillStyle to Gold, this circle will be filled in
with yellow like so:

This second circle draws a black outline around the bee’s body
that’s the same size and in the same place as the first circle:

circle(x, y, 8, false);

Added to the first circle, it looks like this:

O

Next, we use circles to draw the bee’s wings. The first wing is
an outlined circle with its center 5 pixels to the left and 11 pixels
above the center of the body, with a radius of 5 pixels. The second
wing is the same, except it’s 5 pixels to the right of the body’s
center.

circle(x - 5, y - 11, 5, false);
circle(x + 5, y - 11, 5, false);

With those circles added, our bee looks like this:

o)

Making Things Move on the Canvas 223

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, we draw the eyes. The first one is 2 pixels to the left of
the center of the body and 1 pixel above, with a radius of 2 pixels.
The second one is the same, except it’s 2 pixels right of center.

circle(x - 2, y - 1, 2, false);
circle(x + 2, y - 1, 2, false);

Together, these circles create a bee, with its body centered
around the (x, y) coordinate passed into the drawBee function.

We'll create an update function to randomly change the bee’s x-
and y-coordinates in order to make it appear to buzz around the
canvas. The update function takes a single coordinate; we update
the x- and y-coordinates one at a time so that the bee will move
randomly left and right and up and down. The update function

looks like this:
update (coordinate) {
(1] offset = Math.random() * 4 - 2;
® coordinate offset;
(3] (coordinate > 200) {
coordinate = 200;
}
(4] (coordinate < 0) {
coordinate = 0;
}
(5] coordinate;
};

CHANGING THE COORDINATE WITH AN OFFSET VALUE

At @, we create a variable called offset, which will determine how
much to change the current coordinate. We generate the offset value
by calculating Math.random() * 4 - 2. This will give us a random num-
ber between —2 and 2. Here’s how: calling Math.random() on its own
gives us a random number between 0 and 1, so Math.random() * 4
produces a random number between 0 and 4. Then we subtract 2
to get a random number between —2 and 2.

224 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

0

At @® we use coordinate += offset to modify our coordinate with
this offset number. If offset is a positive number, coordinate will
increase, and if it’s a negative number, coordinate will decrease.
For example, if coordinate is set to 100 and offset is 1, then after we
run the line at @, coordinate will be 101. However, if coordinate is 100
and offset is -1, this would change coordinate to 99.

CHECKING IF THE BEE REACHES THE EDGE

At © and ® we prevent the bee from leaving the canvas by mak-
Ing sure coordinate never increases above 200 or shrinks below 0.
If coordinate gets bigger than 200, we set it back to 200, and if it
goes below 0, we reset it to o.

RETURNING THE UPDATED COORDINATE

Finally, at ® we return coordinate. Returning the new value of
coordinate lets us use that value in the rest of our code. Later we’ll
use this return value from the update method to modify the x and y
values like this:

X
y

update(x);
update(y);

ANIMATING OUR BUZZING BEE

Now that we have the circle, drawBee, and update functions, we can
write the animation code for our buzzing bee.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var x = 100,
var y = 100;

setInterval(function () {
ctx.clearRect(0, 0, 200, 200);

drawBee(x, y);
x = update(x);
y = update(y);

ctx.strokeRect(0, 0, 200, 200);
}, 30);

Making Things Move on the Canvas 225

www.it-ebooks.info

http://www.it-ebooks.info/

As usual, we start with the var canvas and var ctx lines to get
the drawing context. Next, we create the variables x and y and
set both to 100. This sets the bee’s starting position at the point
(100, 100), which puts it in the middle of the canvas, as shown in
Figure 14-3.

Next we call setInterval, passing a func-

tion to call every 30 milliseconds. Inside
this function, the first thing we do is call
clearRect at @ to clear the canvas. Next,
at ® we draw the bee at the point (x, y). The
first time the function is called, the bee is
drawn at the point (100, 100), as you can see
in Figure 14-3, and each time the function

1s called after that, it will draw the bee at a

new, updated (x, y) position. Figure 14-3: The bee
Next we update the x and y values start- drawn at the point

ing at ©. The update function takes a number, (100, 100)

adds a random number between —2 and 2 to

it, and returns that updated number. So the

code x = update(x) basically means “change x
by a small, random amount.”

Finally, we call strokeRect at @ to draw
a line around the edge of the canvas. This
makes it easier for us to see when the bee is
getting close to it. Without the border, the
edge of the canvas is invisible.

When you run this code, you should see Figure 14-4: The ran-
the yellow bee randomly buzz around the dom bee animation
canvas. Figure 14-4 shows a few frames from
our animation.

226 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

BOUNCING A BALL!

Now let’s make a ball that bounces around the canvas. Whenever
the ball hits one of the walls, it will bounce off at an angle, as a
rubber ball would.

First, we'll create a JavaScript object to represent our ball
with a Ball constructor. This object will store the ball’s speed and
direction using two properties, xSpeed and ySpeed. The ball’s hori-
zontal speed will be controlled by xSpeed, and the vertical speed
will be controlled by ySpeed.

We'll make this animation in a new file. Create a new HTML
file called ball.html, and add the following HTML.:

<!DOCTYPE html>
<html>
<head>
<title>A Bouncing Ball</title>
</head>

<body>
<canvas id="canvas" width="200" height="200"></canvas>

<script>
// We'll fill this in next
</script>

</body>

</html>

THE BALL CONSTRUCTOR

First we’ll create the Ball constructor, which we’ll use to create
our bouncing ball. Type the following code into the <script> tags
in ball.html:

var Ball = function () {
this.x = 100;

this.y = 100;
this.xSpeed
this.ySpeed
}s

I -

_2;
3;

Our constructor is very straightforward: it simply sets the
starting position of the ball (this.x and this.y), the ball’s horizon-
tal speed (this.xSpeed), and its vertical speed (this.ySpeed). We set

Making Things Move on the Canvas 227

www.it-ebooks.info

http://www.it-ebooks.info/

the starting position to the point (100, 100),
which is the center of our 200-by-200-pixel
canvas.

this.xSpeed is set to -2. This will make .
the ball move 2 pixels to the left for every /
step of the animation. this.ySpeed is set to 3.
This will make the ball move 3 pixels down

for every step of the animation. Therefore,

the ball will move diagonally down (3 pixels) ~ 9ure 14-5 The

starting position

and to the left (2 pixels) between every frame. of the ball, with an
Figure 14-5 shows the starting position arrow indicating its
of the ball and its direction of movement. direction

Next we’ll add a draw method to draw the ball. We'll add this
method to the Ball prototype so that any objects created by the
Ball constructor can use it:

circle (x, y, radius, fillCircle) {
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
(fillCircle) {
ctx.fill();

}
ctx.stroke();
}
};
Ball.prototype.draw O {
circle(this.x, this.y, 3, true);
};

First we include our circle function, the same one we used ear-
Lier in “A New circle Function” on page 222. We then add the draw
method to Ball.prototype. This method simply calls circle(this.x,
this.y, 3, true) to draw a circle. The circle’s center will be at
(this.x, this.y): the location of the ball. It will have a radius of
3 pixels. We pass true as the final argument to tell the circle
function to fill the circle.

228 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

MOVING THE BALL

To move the ball, we just have to
update the x and y properties based
on the current speed. We’'ll do that
using the following move method:

Ball.prototype.move = function () {
this.x += this.xSpeed;
this.y += this.ySpeed;
};

We use this.x += this.xSpeed to add the horizontal speed of the
ball to this.x. Then this.y += this.ySpeed adds the vertical speed
to this.y. For example, at the beginning of the animation, the
ball will be at the point (100, 100), with this.xSpeed set to -2 and
this.ySpeed set to 3. When we call the move method, it subtracts 2
from the x value and adds 3 to the y value, which places the ball at
the point (98, 103). This moves the ball’s location to the left 2 pixels
and down 3 pixels, as illustrated in Figure 14-6.

Step 1 (100, 100)
-2 43
Step 2 (98, 103)
-2 43
Step 3 (96, 106)

Figure 14-6: The first three steps of the animation,
showing how the x and y properties change

BOUNCING THE BALL

At every step of the animation, we check to see if the ball has

hit one of the walls. If it has, we update the xSpeed or ySpeed prop-
erty by negating it (multiplying it by —1). For example, if the ball
hits the bottom wall, we negate this.ySpeed. So if this.ySpeed is 3,
negating it will make it -3. If this.ySpeed is -3, negating it will set
it back to 3.

Making Things Move on the Canvas 229

www.it-ebooks.info

http://www.it-ebooks.info/

230

We'll call this method checkCollision, because it checks to see if
the ball has collided with (hit) the wall.

Ball.prototype.checkCollision = function () {
if (this.x < 0 || this.x > 200) {
this.xSpeed = -this.xSpeed;

}
if (this.y < 0 || this.y > 200) {
this.ySpeed = -this.ySpeed;

};

At @, we determine whether the ball has hit the left wall or
the right wall by checking to see if its x property is either less
than 0 (meaning it hit the left edge) or greater than 200 (mean-
ing it hit the right edge). If either of these is true, the ball has
started to move off the edge of the canvas, so we have to reverse
its horizontal direction. We do this by setting this.xSpeed equal to
-this.xSpeed. For example, if this.xSpeed was -2 and the ball hit the
left wall, this.xSpeed would become 2.

At @, we do the same thing for the top and bottom walls. If
this.y is less than O or greater than 200, we know the ball has hit
the top wall or the bottom wall, respectively. In that case, we set
this.ySpeed to be equal to -this.ySpeed.

Figure 14-7 shows what happens when the ball hits the left
wall. this.xSpeed starts as -2, but after the collision it is changed
to 2. However, this.ySpeed remains unchanged at 3.

Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

o

2]
(3]

(4]

e
(6]

Step 1 (3, 50)
-2 43
Step 2 (1, 53)
-2 43
Step 3 (-1, 56)
+2 43
Step 4 (1, 59)
+2 43
Step 5 (3, 62)

Figure 14-7: How this. xSpeed changes after a
collision with the left wall

As you can see in Figure 14-7, in this case the center of the
ball goes off the edge of the canvas at step 3 when it collides with
a wall. During that step, part of the ball will disappear, but this
happens so quickly that it’s barely noticeable when the animation
1s running.

ANIMATING THE BALL

Now we can write the code that gets the animation running.
This code sets up the object that represents the ball, and it uses
setInterval to call the methods that draw and update the ball for
each animation step.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var ball = new Ball();

setInterval(function () {
ctx.clearRect(0, 0, 200, 200);

ball.draw();
ball.move();
ball.checkCollision();

ctx.strokeRect(0, 0, 200, 200);
}, 30);

Making Things Move on the Canvas 231

www.it-ebooks.info

http://www.it-ebooks.info/

We get the canvas and drawing context as usual on the first
two lines. Then we create a ball object using new Ball() and save it
in the variable ball at @. Next, we call setInterval at @, passing a
function and the number 30 at ®. As you've seen before, this means
“call this function every 30 milliseconds.”

The function we pass to setInterval does several things. First,
it clears the canvas, using ctx.clearRect(0, 0, 200, 200) at ©. After
this, it calls the draw, move, and checkCollision methods at @ on the
ball object. The draw method draws the ball at its current x- and
y-coordinates. The move method updates the position of the ball
based on its xSpeed and ySpeed properties. Finally, the checkCollision
method updates the direction of the ball, if it hits a wall.

The last thing we do in the function passed to setInterval is
call ctx.strokeRect(0, 0, 200, 200) at ® to draw a line around the
edge of the canvas, so we can see the walls the ball is hitting.

When you run this code, the ball should immediately start
moving down and to the left. It should hit the bottom wall first,
and bounce up and to the left. It will continue to bounce around
the canvas as long as you leave the browser window open.

In this chapter, we combined our knowledge of animation from
Chapter 11 with our knowledge of the canvas element to create
various canvas-based animations. We began simply by moving and
growing squares on the canvas. Next, we made a bee buzz ran-
domly around the screen, and we ended with an animation of a
bouncing ball.

232 Chapter 14

www.it-ebooks.info

http://www.it-ebooks.info/

All of these animations work in basically the same way: we
draw a shape of a particular size in a particular position, then
we update that size or position, and then we clear the canvas and
draw the shape again. For elements moving around a 2D canvas,
we generally have to keep track of the x- and y-coordinates of the
element. For the bee animation, we added or subtracted a random
number from the x- and y-coordinates. For the bouncing ball, we
added the current xSpeed and ySpeed to the x- and y-coordinates. In
the next chapter, we’ll add interactivity to our canvas, which will
let us control what’s drawn to the canvas using the keyboard.

PROGRAMMING CHALLENGES

Here are some ways you can build on the bouncing ball
animation from this chapter.

Our 200-by-200-pixel canvas is a bit small. What if you
wanted to increase the canvas size to 400 by 400 pixels or
some other arbitrary size?

Instead of entering the width and height of the canvas
manually throughout your program, you can create width and
height variables and set the variables using the canvas object.
Use the following code:

width = canvas.width;
height = canvas.height;

Now if you use these variables throughout your program,
you only have to change the properties on the canvas element
in the HTML if you want to try out a new size. Try changing
the size of the canvas to 500 pixels by 300 pixels. Does your
program still work?

To make the animation more interesting, set this.xSpeed and
this.ySpeed to different random numbers (between —5 and 5)
in the Ball constructor.

(continued)

Making Things Move on the Canvas 233

www.it-ebooks.info

http://www.it-ebooks.info/

234

Chapter 14

#3: ANIMATING MORE BALLS

Instead of creating just one ball, create an empty array of
balls, and use a for loop to add 10 balls to the array. Now,
in the setInterval function, use a for loop to draw, move, and
check collisions on each of the balls.

#4: MAKING THE BALLS COLORFUL

How about making some colored bouncing balls? Set a new
property in the Ball constructor called color and use it in the
draw method. Use the pickRandomhord function from Chapter 8
to give each ball a random color from this array:

var colors = ["Red", "Orange", "Yellow", "Green", "Blue", <
"Purple"];

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you know how to work with the canvas;
draw and color objects; and make objects move, bounce,
and grow 1n size, let’s liven things up by adding some
Iinteractivity!

In this chapter, you'll learn how to make your can-
vas animations respond when a user presses a key on
the keyboard. This way, a player can control an anima-
tion by pressing an arrow key or one of a few assigned

www.it-ebooks.info

http://www.it-ebooks.info/

letters on their keyboard (like the classic W, A, S, D game con-

trols). For example, instead of just having a ball bounce across

a screen, we can have a player control the movement of the ball
using the arrow keys.

KEYBOARD EVENTS

JavaScript can monitor the keyboard through keyboard events.
Each time a user presses a key on the keyboard, they generate
a keyboard event, which is a lot like the mouse events we saw
in Chapter 10. With mouse events, we used jQuery to determine
where the cursor was when the event took place. With keyboard
events, you can use jQuery to determine which key was pressed
and then use that information in your code. For example, in this
chapter we’ll make a ball move left, right, up, or down when the
user presses the left, right, up, or down arrow key.

We'll use the keydown event, which is triggered whenever a
user presses a key, and we’ll use jQuery to add an event handler
to the keydown event. That way, every time a keydown event occurs,
our event handler function can find out which key was pressed
and respond accordingly.

SETTING UP THE HTML FILE

To begin, create a clean HTML file containing the following code
and save it as keyboard.html.

<!DOCTYPE html>
<html>
<head>
<title>Keyboard input</title>
</head>

<body>
<canvas id="canvas" width="400" height="400"></canvas>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>
// We'll fill this in next
</script>

</body>

</html>

236 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Now let’s add some JavaScript to respond to keydown events. Enter
this code inside the empty <script> tags in your keyboard.html file.

("body") . keydown((event) {
console.log(event.keyCode);

1;

In the first line, we use the jQuery $ function to select the
body element in our HTML and then call the keydown method.
The argument to the keydown method is a function that will be
called whenever a key is pressed. Information about the keydown
event is passed in to the function through the event object. For
this program, we want to know which key was pressed, and that
information is stored in the event object as event.keyCode.

Inside the function, we use console.log to output the event
object’s keyCode property: a number representing the pressed key.
Each key on your keyboard has a unique
keycode. For example, the keycode for the
spacebar is 32, and the left arrow is 37.

Once you've edited your keyboard.html
file, save it and then open it in a browser.
Now open the console so you can see the out-
put, and click in the main browser window
to have JavaScript register your keypresses.
Now, if you start pressing keys, the corre-
sponding keycodes should be printed to the
console.

For example, if you type hi there, you should see the following
output in the console:

72
73
32
84
72
69
82
69

Every key you press has a different keycode. The H key is 72,
the I key i1s 73, and so on.

Controlling Animations with the Keyboard 237

www.it-ebooks.info

http://www.it-ebooks.info/

TRY IT OUT!

Press various keys to see their keycodes. What are the
keycodes for the up, down, left, and right arrows? What
about SHIFT and ENTER? The number and letter keys each
have their own keycodes too.

To make it easier to work with keys, we’ll use an object to convert
the keycodes into names so that the keypresses will be easier to
recognize. In this next example, we create an object called keyNames,
where the object keys are keycodes and the values are the names of
those keys. Delete the JavaScript in keyboard.html and replace it

with this:
keyNames = {

32: "space",

37: "left",

38: "up"”,

39: "right”,

40: "down"
};

("body") .keydown((event) {

® console.log(keyNames[event.keyCode]);

D;

First, we create the keyNames object and fill it with the keycodes
32, 37, 38, 39, and 40. The keyNames object uses key-value pairs to
match keycodes (such as 32, 37, and so on) with corresponding labels
(such as "space" for the spacebar and "left" for the left arrow).

We can then use this object to find out the name of a key
based on its keycode. For example, to look up the keycode 32,
enter keyNames[32]. That returns the string "space".

At @, we use the keyNames object in the keydown event handler
to get the name of the key that was just pressed. If the event key-
code referenced by event.keyCode matches one of the keys in the
keyNames object, this function will log the name of that key. If no
key matches, this code will log undefined.

238 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Load keyboard.html in your browser. Open the console, click in
the main browser window, and try pressing a few keys. If you press
one of the five keys in the keyName object (the arrow keys or space-
bar), the program should print the name of the key. Otherwise, it
will print undefined.

TRY IT OUT!

Add more key-value pairs to the keyNames object so that it can
convert more keys to names. Insert the keycodes and names
for SHIFT, ENTER/RETURN, and ALT/OPTION.

Now that we can determine which key is
being pressed, we can write a program to use
the keyboard to control the movement of a -]
ball. Our program will draw a ball and move
it to the right. Pressing the arrow keys will
change the ball’s direction, and pressing the
spacebar will stop it. If the ball goes off the
edge Qf thg canvas, it will wrap around to the Figure 15-1: If the
opposite side. For example, if the ball goes ball moves off the
off the right edge of the canvas, it will show right side of the

up again on the left edge while continuing canvas, it will reap-
to move in the same direction, as shown in pear on the left.
Figure 15-1.

We’ll use an object called
keyActions to find out which key
was pressed and then use that
information to set the direction
of the ball’s movement. We'll use
setInterval to continually update
the ball’s position and redraw it
at its new position.

Controlling Animations with the Keyboard 239

www.it-ebooks.info

http://www.it-ebooks.info/

240

SETTING UP THE CANVAS

First we need to set up the canvas and the context object. Open
keyboard.html and replace the JavaScript between the second set
of <script> tags with this code:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var width = canvas.width;

var height = canvas.height;

On the first line, we use document.getElementById to select the
canvas element. On the second line, we call getContext on the canvas
to get the context object. Then, in the var width and var height lines,
we store the width and height of the canvas element in the variables
width and height. This way, when we need the canvas dimensions,
we can use these variables instead of having to enter the num-
bers manually. Now, if we choose to change the size of the canvas,
we can simply edit the HTML, and the JavaScript code should
still work.

DEFINING THE CIRCLE FUNCTION

Next, we define the same circle function for the ball that we used
in Chapter 14. Add this function after the code from the previous
section:

var circle = function (x, y, radius, fillCircle) {
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
if (fillCircle) {
ctx.fill();
} else {
ctx.stroke();

}
};

CREATING THE BALL CONSTRUCTOR

Now we’ll create a Ball constructor. We’ll use this constructor to
create the moving ball object. We'll be using the same technique
for moving this ball as we did in Chapter 14—using the xSpeed and

Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

ySpeed properties to control the horizontal and vertical speed of the
ball. Add this code after the circle function:

var Ball = function () {
this.x = width / 2;
this.y = height / 2;
this.xSpeed = 5;
this.ySpeed = 0;
}s

We set the x and y values (the ball’s position) to width / 2 and
height / 2 so that the ball will start at the center of the canvas. We
also set this.xSpeed to 5 and this.ySpeed to 0. This means that the
ball will start the animation by moving to the right (that is, with
each animation step, its x position will increase by 5 pixels and its
y position will stay the same).

DEFINING THE MOVE METHOD

In this section, we’ll define the move method. We'll add this method
to Ball.prototype to move the ball to a new location based on its
current location, xSpeed and ySpeed. Add this method after the Ball
constructor:

Ball.prototype.move = function () {
this.x += this.xSpeed;
this.y += this.ySpeed;

if (this.x < 0) {
this.x = width;

} else if (this.x > width) {
this.x = 0;

} else if (this.y < 0) {
this.y = height;

} else if (this.y > height) {
this.y = 0;

}

};

First we update this.x and this.y using this.xSpeed and
this.ySpeed, just as we did in Chapter 14 (see “Moving the Ball”
on page 229). After that is the code for when the ball reaches
the edge of the canvas.

The if...else statement at @ checks the ball’s position to see if
it has moved off the edge of the canvas. If it has, this code makes

Controlling Animations with the Keyboard 241

www.it-ebooks.info

http://www.it-ebooks.info/

the ball wrap around to the other side of the canvas. For example,
if the ball goes off the left edge of the canvas, it should reappear
from the right side of the canvas. In other words, if this.x is less
than 0, we set this.x to width, which places it at the very right edge
of the canvas. The rest of the if...else statement deals with the
other three edges of the canvas in a similar way.

DEFINING THE DRAW METHOD

We'll use the draw method to draw the ball.
Add this after the definition of the move
method:

Ball.prototype.draw = function () {
circle(this.x, this.y, 10, true);

};

This method calls the circle function.
It uses the ball’s x and y values to set the
center of the ball, sets the radius to 10, and
sets fillCircle to true. Figure 15-2 shows the
resulting ball.

800 /|| Keyboard input * N

T

“ C ff [file:///Users/js4kids/Desktop/keyboard.html

Figure 15-2: The ball is a filled circle with a radius of 10.

242 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Now we have to create a way to set the direction of the ball. We’ll
do that with a method called setDirection. This method will be
called by our keydown event handler, which you’ll see in the next
section. The keydown handler will tell setDirection which key was
pressed by passing it a string ("left", "up", "right", "down", or "stop").
Based on that string, setDirection will change the xSpeed and ySpeed
properties of the ball to make it move in the direction that matches
the keypress. For example, if the string "down" is passed, we set
this.xSpeed to 0 and this.ySpeed to 5. Add this code after the draw
method:

Ball.prototype.setDirection (direction) {
(direction "up") {
this.xSpeed = 0;
this.ySpeed 5;
} (direction "down") {
this.xSpeed = 0;
this.ySpeed = 5;
} (direction "left") {
this.xSpeed 5;
this.ySpeed = 0;
} (direction "right") {
this.xSpeed = 5;
this.ySpeed = 0;
} (direction "stop") {
this.xSpeed = 0;
this.ySpeed = 0;
}
}s

The entire body of this method is one long if...else statement.
The new direction is passed into the method as the direction argu-
ment. If direction is equal to "up", we set the ball’s xSpeed property
to 0 and its ySpeed property to -5. The other directions are handled
in the same way. Finally, if the direction is set to the string "stop",
we set both this.xSpeed and this.ySpeed to 0, which means that the
ball will stop moving.

Controlling Animations with the Keyboard 243

www.it-ebooks.info

http://www.it-ebooks.info/

This next snippet of code creates a ball object using the Ball con-
structor, and it listens for keydown events in order to set the ball’s
direction. Add this code after the setDirection method:

o ball Ball();
(2] keyActions = {
32: "stop",
37: "left",
38: "up"”,
39: "right",
40: "down"
b
® $("body").keydown((event) {
(4] direction = keyActions[event.keyCode];
® ball.setDirection(direction);
1

At @, we create a ball object by calling new Ball(). At ® we
create a keyActions object, which we’ll use to convert keycodes
to their corresponding direction. This object is the same as the
keyNames object we created on page 238, except that for 32 (the
keycode for the spacebar) we replace the label "space" with "stop"
since we want the spacebar to stop the ball from moving.

At © we use the jQuery $ function to select the body element
and then call the keydown method to listen for keydown events. The
function passed to the keydown method is called every time a key is
pressed.

Inside this function, we use keyActions[event.keyCode] at @ to
look up the label for the key that was pressed and assign that
label to the direction variable. This sets the direction variable to
a direction: "left" if the left arrow is pressed, "right" if the right
arrow is pressed, "up" for the up arrow, "down" for the down arrow,
and "stop" for the spacebar. If any other key is pressed, direction is
set to undefined, and the animation won’t be affected.

244 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, at ® we call the setDirection method on the ball
object, passing the direction string. As you saw before, setDirection
updates the ball’s xSpeed and ySpeed properties based on the new
direction.

ANIMATING THE BALL

All we have left to do now is animate the ball. The following code
should look familiar, since it’s quite similar to what we used in
Chapter 14. It uses the setInterval function that we've seen in the
animation code in previous chapters to update the ball’s position at
regular intervals. Add this code after the code from the previous
section:

setInterval(function () {
ctx.clearRect(0, 0, width, height);

ball.draw();
ball.move();

ctx.strokeRect(0, 0, width, height);
}, 30);

We use setInterval to call our
animation function every 30 milli-
seconds. The function first clears
the entire canvas with clearRect and
then calls the draw and move methods
on the ball. As we've seen, the draw
method simply draws a circle at the
ball’s current location, and the move
method updates the ball’s position
based on its xSpeed and ySpeed prop-
erties. Finally, it draws a border
with strokeRect so we can see the
edge of the canvas.

Controlling Animations with the Keyboard 245

www.it-ebooks.info

http://www.it-ebooks.info/

PUTTING IT ALL TOGETHER

Now that we’ve gone through all the code, here’s the full listing for
your convenience.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var width = canvas.width;

var height = canvas.height;

var circle = function (x, y, radius, fillCircle) {
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
if (fillCircle) {
ctx.fill();
} else {
ctx.stroke();
}
};

// The Ball constructor
var Ball = function () {
this.x = width / 2;
this.y = height / 2;
this.xSpeed = 5;
this.ySpeed = 0;

};

// Update the ball's position based on its speed
Ball.prototype.move = function () {

this.x += this.xSpeed;

this.y += this.ySpeed;

if (this.x < 0) {
this.x = width;

} else if (this.x > width) {
this.x = 0;

} else if (this.y < 0) {
this.y = height;

} else if (this.y > height) {
this.y = 0;

}

};

// Draw the ball at its current position

Ball.prototype.draw = function () {
circle(this.x, this.y, 10, true);

};

246 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

// Set the ball's direction based on a string
Ball.prototype.setDirection = function (direction) {
if (direction === "up") {
this.xSpeed = 0;
this.ySpeed = -5;
} else if (direction === "down") {
this.xSpeed = 0;
this.ySpeed = 5;
} else if (direction === "left") {
this.xSpeed = -5;
this.ySpeed = 0;
} else if (direction === "right") {
this.xSpeed = 5;
this.ySpeed = 0;
} else if (direction === "stop") {
this.xSpeed = 0;
this.ySpeed = 0;
}
};

// Create the ball object
var ball = new Ball();

// An object to convert keycodes into action names
var keyActions = {

32: "stop",

37: "left",

38: "up",

39: "right",

40: "down"
};

// The keydown handler that will be called for every keypress
$("body").keydown(function (event) {
var direction = keyActions[event.keyCode];
ball.setDirection(direction);

};

// The animation function, called every 30 ms
setInterval(function () {
ctx.clearRect(0, 0, width, height);

ball.draw();
ball.move();

ctx.strokeRect(0, 0, width, height);
}, 30);

Controlling Animations with the Keyboard

www.it-ebooks.info

247

http://www.it-ebooks.info/

RUNNING THE CODE

Now our program is complete. When you run the program, you
should see a black ball moving across the canvas to the right, as
shown in Figure 15-3. When it reaches the right side of the canvas,
it should wrap around to the left side and keep moving to the right.
When you press the arrow keys, the ball should change direction,
and pressing the spacebar should make the ball stop.

806 / [Keyboard input x \\u
& - C f [file:///Users/jsdkids/Desktop/keyboard.html

Figure 15-3: A screenshot from the moving ball animation

NOTE If the animation doesn’t respond to keys as expected, click the page
to make sure the program can access your keypresses.

248 Chapter 15

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT YOU LEARNED

In this chapter, you learned how to make programs that react to
keyboard events. We used this knowledge to create a moving ball,
where the ball’s direction is set by the keyboard.

Now that we can draw to the canvas, create animations, and
update those animations based on user input, we can create a simple
canvas-based game! In the next chapter, we’ll re-create the classic
Snake game, combining everything we've learned up until now.

4)
PROGRAMMING CHALLENGES

Here are a few ways you can build on the final animation to
make it more sophisticated.

Modify the code so the ball bounces off the side and top
walls instead of wrapping around to the other side. Hint:
Just reverse the direction when the ball hits the wall.

The ball currently moves 5 pixels for every step of the ani-
mation. This is because setDirection always sets xSpeed or
ySpeed to -5 or 5. Create a new property in the Ball constructor
called speed and set it to 5. Then use this instead of the num-
ber 5 in setDirection.

Now, change your code so that you can use the number
keys to set the speed from 1 to 9. Hint: Create an object called
speeds, and use it to determine the new speed, if any, based on
the keydown event.

Modify your code so that when you press the Z key, the ball
slows down, and when you press the X key, it speeds up. Once
that’s working, use C to make the ball smaller and V to
make it larger.

What happens if the speed goes below 0? What about the
size? Add a check in the code to make sure the speed and size
never go below 0.

\ _J

Controlling Animations with the Keyboard 249

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter and the next, we’ll build our own
version of the classic arcade game Snake. In Snake,
the player uses the keyboard to control a snake by
directing its movement up, down, left, or right. As the
snake moves around the playing area, apples appear.
When the snake reaches an apple, it eats the apple and
grows longer. But if the snake hits a wall or runs into
part of its own body, the game is over.

www.it-ebooks.info

http://www.it-ebooks.info/

As you create this game,
you’ll combine many of the tools
and techniques you've learned
so far, including jQuery and the
canvas as well as animation and
interactivity. In this chapter, we’ll
look at the general structure of
the game and go through the code
for drawing the border and the
score and ending the game. In
Chapter 17, we’ll write the code for
the snake and the apple and then
put everything together to complete
the game.

THE GAME PLAY

Figure 16-1 shows what our finished game will look like. We’ll
need to keep track of and draw four items on the screen as the
game runs: the border (in gray), the score (in black), the snake
(in blue), and the apple (in lime green).

8 00 /] Snake! x 3

“ C ff [file:///Users/js4kids/Desktop/snake.html

Score: 35

Figure 16-1: Our Snake game

252 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

THE STRUCTURE OF THE GAME

Before we start writing code, let’s take a look at the overall struc-
ture of the game. This pseudocode describes what our program
needs to do:

Set up the canvas
Set score to zero
Create snake
Create apple

Every 100 milliseconds {

Clear the canvas

Draw current score on the screen

Move snake in current direction

If snake collides with wall or itself {
End the game

} Else If snake eats an apple {
Add one to score
Move apple to new location
Make snake longer

}

For each segment of the snake {
Draw the segment

}

Draw apple

Draw border

}

When the user presses a key {
If the key is an arrow {
Update the direction of the snake
}
}

Over the course of this chapter and the
next, we’ll write the code to execute each of
these steps. But first, let’s talk through some
of the major parts of this program and plan
out some of the JavaScript tools we’ll use
for them.

Making a Snake Game: Part 1 253

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see in the pseudocode, every 100 milliseconds we need
to call a series of functions and methods that update and draw
everything to the game board. Just as we’ve done in Chapters 14
and 15, we’ll use setInterval to animate the game by calling those
functions at regular intervals. This is what our call to setInterval
will look like in the final program:

intervalld = setInterval(O {
ctx.clearRect(0, 0, width, height);
drawScore();

snake.move();

snake.draw();

apple.draw();

drawBorder();
}, 100);

In the function that we pass to setInterval, the first line clears
the canvas with clearRect so that we can draw the next step in the
animation. Next we see several function and method calls. Notice
that these all roughly match up with the steps in the pseudocode
listing on the previous page.

Also notice that we save the interval ID in the variable
intervalld. We'll need that interval ID when the game is over
and we want to stop the animation (see “Ending the Game” on
page 264).

For this program, we’ll use the object-oriented programming style
we learned about in Chapter 12 to represent the two main objects
in the game: the snake and the apple. We'll create a constructor for
each of these objects (called Snake and Apple), and we’ll add methods
(like move and draw) to the prototypes of these constructors.

We'll also divide the game board into a grid and then create
a constructor called Block, which we’ll use to create objects that
represent squares in the grid. We’ll use these block objects to rep-
resent the location of segments of the snake, and we’ll use a single
block object to store the apple’s current location. These blocks will
also have methods to let us draw the segments of the snake and
the apple.

2549 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

SETTING UP KEYBOARD CONTROL

In the earlier pseudocode, there’s a sec-
tion devoted to responding to keypresses
by the user. To allow the player to control
the snake using the arrow keys on the
keyboard, we’ll use jQuery to respond to
keypresses, as we did in Chapter 15. We'll
1dentify the key that was pressed by look-
ing up the keycode, and then we’ll set the
snake’s direction accordingly.

GAME SETUP

Now that we've gone through an overview of how the program

will work, let’s start writing some code! In this chapter, we’ll start
by setting up the HTML, the canvas, and some variables we’ll
need throughout the program. Then we’ll tackle a few of the more
straightforward functions we need for this game: one to draw the
border around the board, one to draw the score on the screen, and
one to end the game. In the next chapter, we’ll create the construc-
tors and methods for the snake and apple, create an event handler
for arrow keypresses, and put it all together to complete the game.

CREATING THE HTML

To begin coding our game, enter the following into your text editor
and save it as snake.html.

<!DOCTYPE html>

<html>

<head>
<title>Snake!</title>

</head>

<body>
o <canvas id="canvas" width="400" height="400"></canvas>

(2] <script src="https://code.jquery.com/jquery-2.1.0.js"></script>

© <script>
// We'll fill this in next
</script>
</body>
</html>

Making a Snake Game: Part1 255

www.it-ebooks.info

http://www.it-ebooks.info/

At @ we create a canvas element that is 400 X 400 pixels. This is
where we’ll draw everything for our game. We include the jQuery
library at @, followed by another pair of <script> tags at ®, where
we’ll add our JavaScript code to control the game. Let’s start writ-
ing that JavaScript now.

DEFINING THE CANVAS, CTX, WIDTH, AND
HEIGHT VARIABLES

First we’ll define the variables canvas and ctx, which will let us
draw on the canvas, and the variables width and height, to get the
width and height of the canvas element.

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var width = canvas.width;
var height = canvas.height;

The code in the HTML sets the width and height to 400 pixels;
if you change those dimensions in the HTML, width and height will
match the new dimensions.

DIVIDING THE CANVAS INTO BLOCKS

Next, we'll create variables to help us think about our canvas as

a grid of 10-by-10-pixel blocks, as shown in Figure 16-2. Although
the grid will be invisible (that is, the game won’t actually display it),
everything in the game will be drawn to line up with it.

A

www.it-ebooks.info

256 Chapter 16

http://www.it-ebooks.info/

400 pixels

400 pixels

Figure 16-2: A 10-pixel grid showing the block
layout of the game

The snake and apple will both be one block wide so that they
fit within this grid. For every step of the animation, the snake will
move exactly one block in its current direction.

We'll use these variables to create the blocks on our canvas:

var blockSize = 10;
var widthInBlocks = width / blockSize;
var heightInBlocks = height / blockSize;

At @ we create a variable called blockSize and set it to 10,
since we want our blocks to be 10 pixels tall and wide. At @
we create the variables widthInBlocks and heightInBlocks. We set
widthInBlocks equal to the width of the canvas divided by the block
size, which tells us how many blocks wide the canvas is. Similarly,
heightInBlocks tells us how many blocks tall the canvas is. At the
moment the canvas is 400 pixels wide and tall, so widthInBlocks and
heightInBlocks will both be 40. If you count the number of squares
in Figure 16-2 (including the border), you’ll see that it’s 40 blocks
wide and tall.

Making a Snake Game: Part 1~ 257

www.it-ebooks.info

http://www.it-ebooks.info/

DEFINING THE SCORE VARIABLE

Finally, we define the score
variable.

var score = O,

We'll use the score variable to
keep track of the player’s score.
Because this is the beginning of
the program, we set score equal
to 0. We'll increment it by 1 every
time the snake eats an apple.

DRAWING THE BORDER

258

OO0 Q

Next, we'll create a drawBorder function to draw a border around the
canvas. We'll make this border one block (10 pixels) thick.

Our function will draw four long, thin rectangles, one for each
edge of the border. Each rectangle will be blockSize (10 pixels) thick
and the full width or height of the canvas.

var drawBorder = function () {
ctx.fillStyle = "Gray";
ctx.fillRect(0, 0, width, blockSize);
ctx.fillRect(0, height - blockSize, width, blockSize);
ctx.fillRect(0, 0, blockSize, height);
ctx.fillRect(width - blockSize, 0, blockSize, height);

};

First we set the fillStyle to gray, because we want the border
to be gray. Then, at @, we draw the top edge of the border. Here
we're drawing a rectangle starting at (0, 0)—the top-left corner
of the canvas—with a width of width (400 pixels) and a height of
blockSize (10 pixels).

Next, at @, we draw the bottom edge of the border. This will
be a rectangle at the coordinates (0, height - blockSize), or (0, 390).
This is 10 pixels up from the bottom of the canvas, on the left. Like
the top border, this rectangle has a width of width and a height of
blockSize.

Figure 16-3 shows what the top and bottom borders look like.

Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 16-3: The top and bottom borders

At © we draw the left border, and at @ we draw the right one.
Figure 16-4 shows the addition of these two edges.

Figure 16-4: The left and right borders (with the
top and bottom borders shown in a lighter gray)

Making a Snake Game: Part 1 259

www.it-ebooks.info

http://www.it-ebooks.info/

DISPLAYING THE SCORE

Now let’s write a drawScore function to display the score at the top
left of the canvas, as shown in Figure 16-1 on page 252. This
function will use the fillText context method to add text to the
canvas. The fillText method takes a text string and the x- and
y-coordinates where you want to display that text. For example,

ctx.fillText("Hello world!", 50, 50);

would write the string Hello world! at the coordinates (50, 50) on
your canvas. Figure 16-5 shows how that would look.

Hello world!

(50, 50)

Figure 16-5: The string Hello world! drawn
at the point (50, 50)

Hey look, we've printed text to the canvas! But what if we want
to have more control over how the text looks by tweaking the size
and font or changing the alignment? For the score in our Snake
game, we might want to use a different font, make the text bigger,
and make sure the text appears precisely in the top-left corner,
just below the border. So before we write our drawScore function,
let’s learn a little more about the fillText method and look at some
ways to customize how text appears on the canvas.

260 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

SETTING THE TEXT BASELINE

The coordinate location that determines where the text appears is
called the baseline. By default, the bottom-left corner of the text is
lined up with the baseline point so that the text appears above and
to the right of that point.

To change where the text appears in relation to the baseline,
we can change the textBaseline property. The default value for this
property is "bottom", but you can also set the textBaseline property
to "top" or "middle". Figure 16-6 shows how the text is aligned for
each of these options, in relation to the baseline point (shown as a
red dot) that you pass to fillText.

bottom wmiddle top

Figure 16-6: The effect of changing textBaseline

For example, to run your text below the baseline, enter:

ctx.textBaseline = "top";
ctx.fillText("Hello world!", 50, 50);

Now, when you call fillText, the text will be below the point
(50, 50), as you can see in Figure 16-7.

(50, 50)

Hello world!

Figure 16-7: The string Hello world! with
textBaseline set to "top"

Making a Snake Game: Part 1 261

www.it-ebooks.info

http://www.it-ebooks.info/

262

Similarly, to change the horizontal position of the text relative
to the baseline point, you can set the textAlign property to "left",
"center", or "right". Figure 16-8 shows the results.

Jeft center right,

Figure 16-8: The effect of changing textAlign

SETTING THE SIZE AND FONT

We can change the size and font of the text we draw by setting
the font property of the drawing context. This listing shows some
examples of different fonts we could use:

ctx.font = "20px Courier";
ctx.fillText("Courier", 50, 50);

ctx.font = "24px Comic Sans MS";
ctx.fillText("Comic Sans", 50, 100);

ctx.font = "18px Arial";
ctx.fillText("Arial", 50, 150);

The font property takes a string that includes the size and the
name of the font you want to use. For example, at @ we set the font
property to "20px Courier", which means the text will be drawn at a
size of 20 pixels in the font Courier. Figure 16-9 shows how these
different fonts look when drawn on the canvas.

Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

Courier

Comic Sans

Arial

Figure 16-9: 20px Courier, 24px Comic Sans,
and 18px Atrial

WRITING THE DRAWSCORE FUNCTION

Now we can go ahead and write the drawScore function, which
draws a string showing the current score on the canvas.

var drawScore = function () {
ctx.font = "20px Courier";
ctx.fillStyle = "Black";
ctx.textAlign = "left";
ctx.textBaseline = "top";
ctx.fillText("Score: " + score, blockSize, blockSize);

};

This function sets the font to 20-pixel Courier (20px Courier),
sets its color to black using fillStyle, left-aligns the text with the
textAlign property, and then sets the textBaseline property to "top".

Next, we call fillText with the string "Score: " + score.

The score variable holds the player’s current score as a number.
We set the starting score to 0 at the beginning of the game (in
“Defining the score Variable” on page 258), so at first this will
display "Score: 0".

When we call fillText, we set the x- and y-coordinates to
blockSize. Since we set blockSize to 10, this sets the score’s baseline
point to (10, 10), which is just inside the top-left corner of the bor-
der. And since we set textBaseline to "top", the text will appear just
below that baseline point, as shown in Figure 16-10.

Making a Snake Game: Part 1 263

www.it-ebooks.info

http://www.it-ebooks.info/

Score: 0

Figure 16-10: The position of the score text

ENDING THE GAME

We'll call the gameOver function to end the game when the snake hits
the wall or runs into itself. The gameOver function uses clearInterval
to stop the game and writes the text “Game Over” on the canvas.
Here’s what the gameOver function looks like:

var gameOver = function () {
clearInterval (intervalld);
ctx.font = "60px Courier";
ctx.fillStyle = "Black";
ctx.textAlign = "center";
ctx.textBaseline = "middle";
ctx.fillText("Game Over", width / 2, height / 2);

b

First we stop the game by calling clearInterval and passing
in the variable intervalld. This cancels the setInterval animation
function that we created in “Using setInterval to Animate the
Game” on page 254).

Next, we set our font to 60-pixel Courier in black, center the
text, and set the textBaseline property to "middle". We then call
fillText and tell it to draw the string "Game Over" with width / 2
for the x-position and height / 2 for the y-position. The resulting
“Game Over” text will be centered in the canvas, as shown in
Figure 16-11.

264 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 /| Snake! x

i\

& - C f [file:///Users/js4kids/Desktop/snake.html

: 25

Game Over

Figure 16-11: The “Game Over” screen, after the
snake has hit the left wall

WHAT YOU LEARNED

In this chapter, we looked at the gen-
eral outline of our Snake game and
some of the functions we’ll need to
make the game. You learned how to
draw text onto a canvas and how to
customize its size, font, and position.
In the next chapter, we’ll fin-
ish off our game by writing the code
for the snake and the apple and to
handle keyboard events.

Making a Snake Game: Part 1 2695

www.it-ebooks.info

http://www.it-ebooks.info/

PROGRAMMING CHALLENGES

Here are a few exercises you can try before you go on to
finish programming the game.

Although I haven’t shown all the code for the game yet, you
can run the code for drawing the border and the score. Take
your HTML file (from “Creating the HTML” on page 255)
and add the code for setting up the canvas, creating the score,
drawing the border, and drawing the score. Now you just need
to call drawBorder and drawScore to see the border and score. It
should look just like Figure 16-10. You can try out the gameOver
function, too, but before you call that function, you’ll need to
delete the clearInterval(intervalld); line. You haven't created
the intervalld variable yet, so for now, if you call the function
without removing that line, it will produce an error.

Write your own call to setInterval with a function that
increases the score by 1 and then draws the updated
score using the drawScore function every 100 milliseconds.
Remember that you’ll need to clear the canvas each time,
using the clearRect method on the canvas context.

Programming challenge #4 in
Chapter 13 was to draw the man
in our Hangman game using canvas.
Try extending your Hangman game
by using the fillText method to draw M NKE
the current word underneath the @~ —— ——
hangman, as shown. -

Hint: To underline each letter, I've -~
used 30-pixel-long stroked lines, with
10 pixels between each one.

For even more of a challenge, M NKE
draw the incorrect guesses crossed @ ([—=—=—=—=—=—
out, as shown to the right.

_

266 Chapter 16

www.it-ebooks.info

http://www.it-ebooks.info/

In this chapter, we’ll finish building our Snake
game. In Chapter 16, we set up the playing area
and covered how the game would work in general.
Now we’ll create the objects that represent the snake
and apple in the game, and we’ll program a keyboard
event handler so that the player can control the snake
with the arrow keys. Finally, we’ll look at the complete
code listing for the program.

www.it-ebooks.info

http://www.it-ebooks.info/

As we create the snake and apple objects for this game, we’ll
use the object-oriented programming techniques we learned in
Chapter 12 to create constructors and methods for each object.
Both our snake and apple objects will rely on a more basic block
object, which we’ll use to represent one block on the game board
grid. Let’s start by building a constructor for that simple block
object.

BUILDING THE BLOCK CONSTRUCTOR

268

In this section, we’ll define a Block constructor that will create
objects that represent individual blocks on our invisible game grid.
Each block will have the properties col (short for column) and row,
which will store the location of that particular block on the grid.
Figure 17-1 shows this grid with some of the columns and rows
numbered. Although this grid won’t actually appear on the screen,
our game is designed so that the apple and the snake segments
will always line up with it.

Column
0 10 20 30 39

10

Row

20

30

39

Figure 17-1: The column and row numbers used
by the Block constructor

In Figure 17-1, the block containing the green apple is at col-
umn 10, row 10. The head of the snake (to the left of the apple) is

at column 8, row 10.

Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

(o]

Here’s the code for the Block constructor:

var Block = function (col, row) {
this.col = col;
this.row = row;

b

Column and row values are passed into the Block constructor
as arguments and saved in the col and row properties of the new
object.

Now we can use this constructor to create an object represent-
ing a particular block on the game grid. For example, here’s how
we'd create an object that represents the block in column 5, row 5:

var sampleBlock = new Block(5, 5);

ADDING THE DRAWSQUARE METHOD

So far this block object lets us represent a location on the grid, but
to actually make something appear at that location, we’ll need to
draw it on the canvas. Next, we’ll add two methods, drawSquare and
drawCircle, that will let us draw a square or a circle, respectively, in
a particular block on the grid. First, here’s the drawSquare method:

Block.prototype.drawSquare = function (color) {
var x = this.col * blockSize;

var y = this.row * blockSize;

ctx.fillStyle = color;

ctx.fillRect(x, y, blockSize, blockSize);

}s

In Chapter 12 we learned
that if you attach methods to the
prototype property of a constructor,
those methods will be available to
any objects created with that con-
structor. So by adding the drawSquare
method to Block.protoype, we make it
available to any block objects.

This method draws a square at
the location given by the block’s col
and row properties. It takes a single
argument, color, which determines

Making a Snake Game: Part 2 269

www.it-ebooks.info

http://www.it-ebooks.info/

the color of the square. To draw a square with canvas, we need to
provide the x- and y-positions of the top-left corner of the square.
At @ and @ we calculate these x- and y-values for the current
block by multiplying the col and row properties by blockSize. We
then set the fillStyle property of the drawing context to the meth-
od’s color argument.

Finally, we call ctx.fillRect, passing our computed x- and
y-values and blockSize for both the width and height of the square.

Here’s how we would create a block in column 3, row 4, and
draw it:

var sampleBlock = new Block(3, 4);
sampleBlock.drawSquare("LightBlue");

Figure 17-2 shows this square drawn on the canvas and how
the measurements for the square are calculated.

Column

this.row x blockSize

2 4 x 10 = 40 pixels

2 3 (30, 40)

[a'd b EEEEEE—
4 . l 10 pixels (blockSize)
5 10 pixels

this.col x blockSize
3 x 10 = 30 pixels

Figure 17-2: Calculating the values for
drawing a square

ADDING THE DRAWCIRCLE METHOD

Now for the drawCircle method. It is very similar to the drawSquare
method, but it draws a filled circle instead of a square.

Block.prototype.drawCircle = function (color) {
var centerX = this.col * blockSize + blockSize / 2;
var centerY = this.row * blockSize + blockSize / 2;
ctx.fillStyle = color;
circle(centerX, centerY, blockSize / 2, true);

};

270 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

First we calculate the location of the circle’s center by creat-
ing two new variables, centerX and centerY. As before, we multiply
the col and row properties by blockSize, but this time we also have
to add blockSize / 2, because we need the pixel coordinates for
the circle’s center, which is in the middle of a block (as shown in
Figure 17-3).

We set the context fillStyle to
the color argument as in drawSquare
and then call our trusty circle func-
tion, passing centerX and centerY for
the x- and y-coordinates, blockSize / 2
for the radius, and true to tell the
function to fill the circle. This is the
same circle function we defined in
Chapter 14, so we’ll have to include
the definition for that function once
again in this program (as you can see
in the final code listing).

Here’s how we could draw a circle
in column 4, row 3:

var sampleCircle = new Block(4, 3);
sampleCircle.drawCircle("LightGreen");

Figure 17-3 shows the circle, with the calculations for the cen-
ter point and radius.

Column

1 (this.row x blockSize) + (blockSize / 2)
(3x10)+(10/2)
2 = 35 pixels

(45, 35) . .
| 5 pixels (blockSize / 2)

Row

4 (this.col x blockSize) + (blockSize / 2)
(4%x10)+(10/2)
= 45 pixels

Figure 17-3: Calculating the values for drawing a circle

Making a Snake Game: Part 2 271

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING THE EQUAL METHOD

In our game, we’ll need to know whether two blocks are in the
same location. For example, if the apple and the snake’s head are
in the same location, that means the snake has eaten the apple.
On the other hand, if the snake’s head and tail are in the same
location, then the snake has collided with itself.

To make it easier to compare block locations, we’ll add a
method, equal, to the Block constructor prototype. When we call
equal on one block object and pass another object as an argument,
it will return true if they are in the same location (and false if not).
Here’s the code:

Block.prototype.equal = function (otherBlock) {
return this.col === otherBlock.col && this.row === otherBlock.row;

};

This method is pretty straightforward: if the two blocks
(this and otherBlock) have the same col and row properties (that
1s, if this.col 1s equal to otherBlock.col and this.row is equal to
otherBlock.row), then they are in the same place, and the method
returns true.

For example, let’s create two new blocks called apple and head
and see if they’re in the same location:

var apple = new Block(2, 5);
var head = new Block(3, 5);
head.equal(apple);

false

Although apple and head have the same row property (5), their
col properties are different. If we set the head to a new block object
one column to the left, now the method will tell us that the two
objects are in the same location:

head = new Block(2, 5);
head.equal(apple);
true

Note that it doesn’t make any difference whether we write
head.equal(apple) or apple.equal(head); in both cases we're making
the same comparison.

We'll use the equal method later to check whether the snake
has eaten the apple or collided with itself.

272 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

CREATING THE SNAKE

Now we’ll create the snake. We'll store the snake’s position as an
array called segments, which will contain a series of block objects.
To move the snake, we’ll add a new block to the beginning of the
segments array and remove the block at the end of the array. The
first element of the segments array will represent the head of the
snake.

WRITING THE SNAKE CONSTRUCTOR

First we need a constructor to create our snake object:

var Snake = function () {
® this.segments = [
new Block(7, 5),
new Block(6, 5),
new Block(5, 5)

1;

this.direction = "right";
this.nextDirection = "right";

b

®0

DEFINING THE SNAKE SEGMENTS

The segments property at @ is an array of block objects that

each represent a segment of the snake’s body. When we start the
game, this array will contain three blocks at (7, 5), (6, 5), and (5, 5).
Figure 17-4 shows these initial three segments of the snake.

Making a Snake Game: Part 2 273

www.it-ebooks.info

http://www.it-ebooks.info/

0 1 2 3 4 5 6 7 8
0
1
2
2 3 new Block(6, 5)
[e]
(a2 new Block(5, 5) new Block(7, 5)
4
5
Tail Head

Figure 17-4: The initial blocks that make up the snake

SETTING THE DIRECTION OF MOVEMENT

The direction property at @ stores the current direction of the
snake. Our constructor also adds the nextDirection property at ©,
which stores the direction in which the snake will move for the
next animation step. This property will be updated by our keydown
event handler when the player presses an arrow key (see “Adding
the keydown Event Handler” on page 281). For now, the constructor
sets both of these properties to "right", so at the beginning of the
game our snake will move to the right.

DRAWING THE SNAKE

To draw the snake, we simply have to loop through each of the
blocks in its segments array, calling the drawSquare method we created
earlier on each block. This will draw a square for each segment of
the snake.

Snake.prototype.draw = function () {
for (var i = 0; 1 < this.segments.length; i++) {
this.segments[i].drawSquare("Blue");
}
};

The draw method uses a for loop to operate on each block object
in the segments array. Each time around the loop, this code takes
the current segment (this.segments[i]) and calls drawSquare("Blue")
on it, which draws a blue square in the corresponding block.

274 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to test out the draw method, you can run the follow-
ing code, which creates a new object using the Snake constructor
and calls its draw method:

var snake = new Snake();
snake.draw();

MOVING THE SNAKE

We'll create a move method to move the snake one block in its cur-
rent direction. To move the snake, we add a new head segment
(by adding a new block object to the beginning of the segments
array) and then remove the tail segment from the end of the
segments array.

The move method will also call a
method, checkCollision, to see whether the
new head has collided with the rest of the
snake or with the wall, and whether the
new head has eaten the apple. If the new
head has collided with the body or the wall,
we end the game by calling the gameOver
function we created in Chapter 16. If the
snake has eaten the apple, we increase the
score and move the apple to a new location.

ADDING THE MOVE METHOD
The move method looks like this:

Snake.prototype.move = function () {
var head = this.segments[0];
var newHead;

this.direction = this.nextDirection;

© © o6

if (this.direction === "right") {
newHead = new Block(head.col + 1, head.row);
} else if (this.direction === "down") {
newHead = new Block(head.col, head.row + 1);
} else if (this.direction === "left") {
newHead = new Block(head.col - 1, head.row);
} else if (this.direction === "up") {
newHead = new Block(head.col, head.row - 1);

}

Making a Snake Game: Part 2 2795

www.it-ebooks.info

http://www.it-ebooks.info/

® if (this.checkCollision(newHead)) {
gameOver();
return;

}

® this.segments.unshift(newHead);

@ if (newHead.equal(apple.position)) {
score++;
apple.move();
} else {
this.segments.pop();
}
};

Let’s walk through this method piece by piece.

CREATING A NEW HEAD

At @ we save the first element of the
this.segments array in the variable head.
We'll refer to this first segment of the
snake many times in this method, so
using this variable will save us some
typing and make the code a bit easier
to read. Now, instead of repeating
this.segments[0] over and over again,
we can just type head.

At ® we create the variable newHead,
which we’ll use to store the block rep-
resenting the new head of the snake
(which we're about to add).

At © we set this.direction equal to
this.nextDirection, which updates the
direction of the snake’s movement to
match the most recently pressed arrow
key. (We’ll see how this works in more
detail when we look at the keydown event
handler.)

276 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

DIRECTION AND NEXTDIRECTION

The snake’s direction property will be updated exactly once
for each step in the animation, since the move method is called
once per animation step. The nextDirection property, on the
other hand, will be updated anytime the player presses an
arrow key (so if they press the keys really fast, this property
could theoretically change multiple times per animation step).
By keeping these two properties separate, we make sure the
snake can’t turn back on itself if the player presses two arrow
keys very quickly between two steps in the animation.

Beginning at @, we use a chain of if...else statements to

determine the snake’s direction. In each case, we create a new
head for the snake and save it in the variable newHead. Depending
on the direction of movement, we add or subtract one from the
row or column of the existing head to place this new head directly
next to the old one (either right, left, up, or down depending on the
snake’s direction of movement). For example, Figure 17-5 shows
how the new head is added to the snake when this.nextDirection is
set to "down".

Row

Column

(7, 5)

head

newHead

(7, 6)
newHead = new Block(head.col, head.row + 1);

Figure 17-5: Creating newHead when this.nextDirection is "down"

Making a Snake Game: Part 2

www.it-ebooks.info

277

http://www.it-ebooks.info/

CHECKING FOR COLLISIONS AND ADDING THE HEAD

At © we call the checkCollision method to find out whether the
snake has collided with a wall or with itself. We'll see the code for
this method in a moment, but as you might guess, this method
will return true if the snake has collided with something. If that
happens, the body of the if statement calls the gameOver function to
end the game and print “Game Over” on the canvas.

The return keyword that follows the call to gameOver exits the
move method early, skipping any code that comes after it. We reach
the return keyword only if checkCollision returns true, so if the snake
hasn’t collided with anything, we execute the rest of the method.

As long as the snake hasn’t collided with something, we add
the new head to the front of the snake at ® by using unshift to add
newHead to the beginning of the segments array. For more about how
the unshift method works on arrays, see “Adding Elements to an
Array” on page 47.

EATING THE APPLE

At @, we use the equal method to compare newHead and
apple.position. If the two blocks are in the same location, the
equal method will return true, which means that the snake has
eaten the apple.

If the snake has eaten the apple, we increase the score and
then call move on the apple to move it to a new location. If the snake
has not eaten the apple, we call pop on this.segments. This removes
the snake’s tail while keeping the snake the same size (since move
already added a segment to the snake’s head). When the snake
eats an apple, it grows by one segment because we add a segment
to its head without removing the tail.

278 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

We haven’t defined apple yet, so this method won’t fully work in
its current form. If you want to test it out, you can delete the whole
if...else statement at @ and replace it with this line:

this.segments.pop();

Then all you need to do is define the checkCollision method,
which we’ll do next.

Each time we set a new location for the snake’s head, we have to
check for collisions. Collision detection, a very common step in
game mechanics, is often one of the more complex aspects of game
programming. Fortunately, it’s relatively straightforward in our
Snake game.

We care about two types of collisions in our Snake game: col-
lisions with the wall and collisions with the snake itself. A wall
collision happens if the snake hits a wall. The snake can collide
with itself if you turn the head so that it runs into the body. At the
start of the game, the snake is too short to collide with itself, but
after eating a few apples, it can.

Here is the checkCollision method:

Snake.prototype.checkCollision (head) {
leftCollision = (head.col 0);
topCollision = (head.row 0);

rightCollision = (head.col widthInBlocks - 1);
bottomCollision = (head.row heightInBlocks - 1);

wallCollision = leftCollision topCollision !
rightCollision bottomCollision;

selfCollision = false;

(i = 0; i < this.segments.length; i++) {
(head.equal(this.segments[i])) {
selfCollision = true;
}
}

wallCollision selfCollision;

};

Making a Snake Game: Part 2 279

www.it-ebooks.info

http://www.it-ebooks.info/

280

CHECKING FOR WALL COLLISIONS

At @ we create the variable leftCollision and set it to the value of
head.col === 0. This variable will be true if the snake collides with
the left wall; that is, when it is in column 0. Similarly, the variable
topCollision in the next line checks the row of the snake’s head to
see if it has run into the top wall.

After that, we check for a collision with the right wall by
checking whether the column value of the head is equal to
widthInBlocks - 1. Since widthInBlocks is set to 40, this checks
whether the head is in column 39, which corresponds to the right
wall, as you can see back in Figure 17-1. Then we do the same
thing for bottomCollision, checking whether the head’s row property
is equal to heightInBlocks - 1.

At 8, we determine whether the snake has collided with a wall
by checking to see if leftCollision or topCollision or rightCollision
or bottomCollision is true, using the || (or) operator. We save the
Boolean result in the variable wallCollision.

ey

CHECKING FOR SELF-COLLISIONS

To determine whether the snake has collided with itself, we create
a variable at © called selfCollision and initially set it to false. Then
at @ we use a for loop to loop through all the segments of the snake
to determine whether the new head is in the same place as any
segment, using head.equal(this.segments[i]). The head and all of the
other segments are blocks, so we can use the equal method that we
defined for block objects to see whether they are in the same place.
If we find that any of the snake’s segments are in the same place
as the new head, we know that the snake has collided with itself,
and we set selfCollision to true (at ©).

Finally, at ®, we return wallCollision || selfCollision, which
will be true if the snake has collided with either the wall or itself.

Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

SETTING THE SNAKE'S DIRECTION WITH
THE KEYBOARD

Next we’ll write the code that lets the player set the snake’s direc-
tion using the keyboard. We'll add a keydown event handler to detect
when an arrow key has been pressed, and we’ll set the snake’s
direction to match that key.

ADDING THE KEYDOWN EVENT HANDLER
This code handles keyboard events:

® var directions = {

37: "left",

38: "up",

39: "right",

40: "down"
};

® $("body").keydown(function (event) {
var newDirection = directions[event.keyCode];
® if (newDirection !== undefined) {
snake.setDirection(newDirection);

}
B

At @ we create an object to convert the arrow keycodes into
strings indicating the direction they represent (this object is
quite similar to the keyActions object we used in “Reacting to the
Keyboard” on page 244). At ® we attach an event handler to the
keydown event on the body element. This handler will be called when
the user presses a key (as long as they’ve clicked inside the web
page first).

This handler first converts the event’s keycode into a direction
string, and then it saves the string in the variable newDirection. If
the keycode is not 37, 38, 39, or 40 (the keycodes for the arrow keys
we care about), directions[event.keyCode] will be undefined.

At ©® we check to see if newDirection is not equal to undefined.

If it’s not undefined, we call the setDirection method on the snake,
passing the newDirection string. (Because there is no else case in
this if statement, if newDirection is undefined, then we just ignore
the keypress.)

This code won’t work yet because we haven’t defined the
setDirection method on the snake. Let’s do that now.

Making a Snake Game: Part 2 281

www.it-ebooks.info

http://www.it-ebooks.info/

ADDING THE SETDIRECTION METHOD

The setDirection method takes the new direction from the key-
board handler we just looked at and uses it to update the snake’s
direction. This method also prevents the player from making
turns that would have the snake immediately run into itself. For
example, if the snake is moving right, and then it suddenly turns
left without moving up or down to get out of its own way, it will
collide with itself. We’ll call these illegal turns because we do not
want to allow the player to make them. For example, Figure 17-6
shows the valid directions and the one illegal direction when the
snake is moving right.

Current Valid new
direction directions T
Current lllegal new
direction direction

Figure 17-6: Valid new directions based on the
current direction

The setDirection method checks whether the player is trying
to make an illegal turn. If they are, the method uses return to end
early; otherwise, it updates the nextDirection property on the snake
object.

Here’s the code for the setDirection method.

Snake.prototype.setDirection = function (newDirection) {

® if (this.direction === "up" && newDirection === "down") {

return;

} else if (this.direction === "right" && newDirection === "left") {
return;

} else if (this.direction === "down" && newDirection === "up") {
return;

} else if (this.direction === "left" && newDirection === "right") {
return;

}

® this.nextDirection = newDirection;

};

282 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

The if...else statement at @ has four parts to deal with the
four illegal turns we want to prevent. The first part says that
if the snake is moving up (this.direction is "up") and the player
presses the down arrow (newDirection is "down"), we should exit the
method early with return. The other parts of the statement deal
with the other illegal turns in the same way.

The setDirection method will reach the final line only if
newDirection is a valid new direction; otherwise, one of the return
statements will stop the method.

If newdirection is allowed, we set it as the snake’s nextDirection
property, at @.

CREATING THE APPLE

In this game, we’ll represent the apple as an object with three com-
ponents: a position property, which holds the apple’s position as a
block object; a draw method, which we’ll use to draw the apple; and
a move method, which we’ll use to give the apple a new position once
it’s been eaten by the snake.

WRITING THE APPLE CONSTRUCTOR

The constructor simply sets the apple’s position property to a new
block object.

var Apple = function () {
this.position = new Block(10, 10);

}s

This creates a new block object in column 10, row 10, and
assigns it to the apple’s position property. We’ll use this construc-
tor to create an apple object at the beginning of the game.

DRAWING THE APPLE
We'll use this draw method to draw the apple:

Apple.prototype.draw = function () {
this.position.drawCircle("LimeGreen");

};

Making a Snake Game: Part 2 283

www.it-ebooks.info

http://www.it-ebooks.info/

The apple’s draw method is very simple, as all the hard work is
done by the drawCircle method (created in “Adding the drawCircle
Method” on page 270). To draw the apple, we simply call the
drawCircle method on the apple’s position property, passing the
color "LimeGreen" to tell it to draw a green circle in the given block.

To test out drawing the apple, run the following code:

var apple = new Apple();
apple.draw();

The move method moves the apple to a random new position within
the game area (that is, any block on the canvas other than the
border). We'll call this method whenever the snake eats the apple
so that the apple reappears in a new location.

Apple.prototype.move O 1
o randomCol = Math.floor(Math.random() * (widthInBlocks - 2)) + 1;
randomRow = Math.floor(Math.random() * (heightInBlocks - 2)) + 1;
® this.position Block(randomCol, randomRow);
};

At @ we create the variables randomCol and randomRow. These
variables will be set to a random column and row value within the
playable area. As you saw in Figure 17-1, the columns and rows for
the playable area range from 1 to 38, so we need to pick two ran-
dom numbers in that range.

To generate these random numbers, we can call Math.floor
(Math.random() * 38), which gives us a random number from 0 to 37,
and then add 1 to the result to get a number between 1 and 38
(for more about how Math.floor and Math.random work, see “Decision
Maker” on page 56).

This is exactly what we do at @ to create our random column
value, but instead of writing 38, we write (widthInBlocks - 2). This
means that if we later change the size of the game, we won’t also
have to change this code. We do the same thing to get a random
row value, using Math.floor(Math.random() * (heightInBlocks - 2)) + 1.

Finally, at ® we create a new block object with our random
column and row values and save this block in this.position. This
means that the position of the apple will be updated to a new ran-
dom location somewhere within the playing area.

284 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

You can test out the move method like this:

var apple = new Apple();
apple.move();
apple.draw();

PUTTING IT ALL TOGETHER

Our full code for the game contains almost 200 lines of JavaScript!

After we assemble the whole thing, it looks like this.

// Set up canvas
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

// Get the width and height from the canvas element
var width = canvas.width;
var height = canvas.height;

// Work out the width and height in blocks
var blockSize = 10;

var widthInBlocks = width / blockSize;

var heightInBlocks = height / blockSize;

// Set score to O
var score = O;

// Draw the border

var drawBorder = function () {
ctx.fillStyle = "Gray";
ctx.fillRect(0, 0, width, blockSize);
ctx.fillRect(0, height - blockSize, width, blockSize);
ctx.fillRect(0, 0, blockSize, height);
ctx.fillRect(width - blockSize, 0, blockSize, height);

s

// Draw the score in the top-left corner
var drawScore = function () {
ctx.font = "20px Courier";
ctx.fillStyle = "Black";
ctx.textAlign = "left";
ctx.textBaseline = "top";
ctx.fillText("Score: " + score, blockSize, blockSize);

};

Making a Snake Game: Part 2

www.it-ebooks.info

285

http://www.it-ebooks.info/

// Clear the interval and display Game Over text
var gameOver = function () {

clearInterval(intervalld);

ctx.font = "60px Courier";

ctx.fillStyle = "Black";

ctx.textAlign = "center";

ctx.textBaseline = "middle";

ctx.fillText("Game Over", width / 2, height / 2);

};

// Draw a circle (using the function from Chapter 14)
var circle = function (x, y, radius, fillCircle) {
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false);
if (fillCircle) {
ctx.fill();
} else {
ctx.stroke();
}
};

// The Block constructor
® var Block = function (col, row) {
this.col = col;
this.row = row;

};

// Draw a square at the block's location
Block.prototype.drawSquare = function (color) {
var x = this.col * blockSize;

var y = this.row * blockSize;

ctx.fillStyle = color;

ctx.fillRect(x, y, blockSize, blockSize);

};

// Draw a circle at the block's location
Block.prototype.drawCircle = function (color) {
var centerX = this.col * blockSize + blockSize / 2;
var centerY = this.row * blockSize + blockSize / 2;
ctx.fillStyle = color;
circle(centerX, centerY, blockSize / 2, true);

};

// Check if this block is in the same location as another block
Block.prototype.equal = function (otherBlock) {
return this.col === otherBlock.col && this.row === otherBlock.row;

};

286 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

// The Snake constructor
var Snake = function () {
this.segments = [
new Block(7, 5),
new Block(6, 5),
new Block(5, 5)

15

this.direction = "right";
this.nextDirection = "right";

};

// Draw a square for each segment of the snake's body
Snake.prototype.draw = function () {
for (var 1 = 0; 1 < this.segments.length; i++) {
this.segments[i].drawSquare("Blue");
}
b

// Create a new head and add it to the beginning of
// the snake to move the snake in its current direction
Snake.prototype.move = function () {

var head = this.segments[0];

var newHead;

this.direction = this.nextDirection;

if (this.direction === "right") {
newHead = new Block(head.col + 1, head.row);
} else if (this.direction === "down") {
newHead = new Block(head.col, head.row + 1);
} else if (this.direction === "left") {
newHead = new Block(head.col - 1, head.row);
} else if (this.direction === "up") {
newHead = new Block(head.col, head.row - 1);

}

if (this.checkCollision(newHead)) {
gameOver();
return;

}

this.segments.unshift(newHead);
if (newHead.equal(apple.position)) {

score++;
apple.move();

Making a Snake Game: Part 2

www.it-ebooks.info

287

http://www.it-ebooks.info/

} else {
this.segments.pop();
}
15

// Check if the snake's new head has collided with the wall or itself
Snake.prototype.checkCollision = function (head) {

var leftCollision = (head.col === 0);

var topCollision = (head.row === 0);

var rightCollision = (head.col === widthInBlocks - 1);

var bottomCollision = (head.row === heightInBlocks - 1);

var wallCollision = leftCollision || topCollision || «
rightCollision || bottomCollision;

var selfCollision = false;

for (var i = 0; i < this.segments.length; i++) {
if (head.equal(this.segments[i])) {
selfCollision = true;
}
}

return wallCollision || selfCollision;

};

// Set the snake's next direction based on the keyboard
Snake.prototype.setDirection = function (newDirection) {

if (this.direction === "up" && newDirection === "down") {
return;

} else if (this.direction === "right" & newDirection === "left") {
return;

} else if (this.direction === "down" && newDirection === "up") {
return;

} else if (this.direction === "left" && newDirection === "right") {
return;

}

this.nextDirection = newDirection;

};

// The Apple constructor
® var Apple = function () {
this.position = new Block(10, 10);

};

288 Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

// Draw a circle at the apple's location
Apple.prototype.draw = function () {
this.position.drawCircle("LimeGreen");

};

// Move the apple to a new random location

Apple.prototype.move = function () {
var randomCol = Math.floor(Math.random() * (widthInBlocks - 2)) + 1;
var randomRow = Math.floor(Math.random() * (heightInBlocks - 2)) + 1;
this.position = new Block(randomCol, randomRow);

};

// Create the snake and apple objects
var snake = new Snake();
var apple = new Apple();

// Pass an animation function to setInterval
var intervalld = setInterval(function () {
ctx.clearRect(0, 0, width, height);
drawScore();
snake.move();
snake.draw();
apple.draw();
drawBorder();
}» 100);

// Convert keycodes to directions
var directions = {

37: "left",

38: "up”,

39: "right",

40: "down"
b

// The keydown handler for handling direction key presses
$("body") .keydown(function (event) {
var newDirection = directions[event.keyCode];

if (newDirection !== undefined) {
snake.setDirection(newDirection);
}
D;

This code is made up of a number of sections. The first sec-
tion, at @, is where all the variables for the game are set up,
including the canvas, context, width, and height (we looked at
these in Chapter 16). Next, at @, come all the individual func-
tions: drawBorder, drawScore, gameOver, and circle.

Making a Snake Game: Part 2 289

www.it-ebooks.info

http://www.it-ebooks.info/

290

At © comes the code for the Block constructor, followed by its
drawSquare, drawCircle, and equal methods. Then, at @, we have the
Snake constructor and all of its methods. After that, at @, is the
Apple constructor and its draw and move methods.

Finally, at ®, you can see the code that starts the game and
keeps it running. First we create the snake and apple objects. Then
we use setInterval to get the game animation going. Notice that
when we call setInterval, we save the interval ID in the variable
intervalld so we can cancel it later in the gameOver function.

The function passed to setInterval is called for every step of the
game. It is responsible for drawing everything on the canvas and
for updating the state of the game. It clears the canvas and then
draws the score, the snake, the apple, and the border. It also calls
the move method on the snake, which, as you saw earlier, moves the
snake one step in its current direction. After the call to setInterval,
at @, we end with the code for listening to keyboard events and
setting the snake’s direction.

As always, you’ll need to type all this code inside the script
element in your HTML document. To play the game, just load
snake.html in your browser and use the arrows to control the
snake’s direction. If the arrow keys don’t work, you might need to
click inside the browser window to make sure it can pick up the
key events.

If the game doesn’t work, there might be an error in your
JavaScript. Any error will be output in the console, so look there
for any helpful messages. If you can’t determine why things aren’t
working, check each line carefully against the preceding listing.

Now that you have the game running, what do you think? How
high a score can you get?

Chapter 17

www.it-ebooks.info

http://www.it-ebooks.info/

WHAT YOU LEARNED

In this chapter, we made a full game using the canvas element. This
game combines many of the data types, concepts, and techniques
you learned throughout this book: numbers, strings, Booleans,
arrays, objects, control structures, functions, object-oriented pro-
gramming, event handlers, setInterval, and drawing with canvas.

Now that you've programmed this Snake game, there are lots
of other simple two-dimensional games that you could write using
JavaScript. You could make your own version of classic games like
Breakout, Asteroids, Space Invaders, or Tetris. Or you could make
up your own game!

Of course, you can use JavaScript for programs besides games.
Now that you've used JavaScript to do some complicated math, you
could use it to help with your math homework. Or maybe you want
to create a website to show off your programming skills to the
world. The possibilities are endless!

4)
PROGRAMMING CHALLENGES

Here are a few ways you could improve and add features to
the game.

Change the size of the game to 500 pixels square. Where do
you need to modify the code to make it work at 500 pixels?

Our snake is a bit boring: every segment of the body is blue.
It might look a bit more like a real snake if you alternated
the colors to create stripes. For example, make the head
green and then alternate between blue and yellow for the
rest of the body, or choose your own colors.

(continued)

Making a Snake Game: Part 2 291

www.it-ebooks.info

http://www.it-ebooks.info/

292

Chapter 17

Modify the game so that every time the snake eats an apple,
the game speeds up. To do this, you'll have to change the code
to use setTimeout instead of setInterval, because setInterval
keeps calling a function at a regular interval that cannot be
changed. Instead, you can repeatedly call a function with
setTimeout and change the timeout delay each time you call it:

animationTime = 100;

gamelLoop O {
// The code that draws and updates the game should go here

setTimeout(gameLoop, animationTime);

s

gameLoop();

Instead of using setInterval to call a function repeatedly,
the gameLoop function calls setTimeout(gameLoop, animationTime),
which means “call gameLoop again after animationTime milli-
seconds.” Like setInterval, this is a way to call a function over
and over again, with a short pause between each function call.
The difference is that you can easily modify the animation
time from anywhere in your code by changing animationTime,
and the program will use that value for subsequent calls to
setTimeout.

(One other thing to bear in mind here is that you need
to find a new way to stop the game from looping when the
game is over. How would you do that?)

Every time you move the apple, it moves to a new random
location, but as written there’s nothing to stop the apple
from moving to a block that part of the snake is already
occupying. To prevent this, modify the move method to take
into account the current locations of the snake’s segments.
(Hint: Use a while loop to keep calling move until it picks a
location that’s not occupied by the snake.)

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you've learned the basics of JavaScript,
youre ready to venture out into a whole, wide world of
programming. You could learn another programming
language, or you could choose to build on your knowl-
edge of JavaScript, taking your skills to the next level.
Where you go next 1s entirely up to you, but here are
some ideas.

www.it-ebooks.info

http://www.it-ebooks.info/

We've looked at a lot of JavaScript in this book, but there’s much
more you can learn about the language. Here are some books and
websites that will help you learn more of the details of JavaScript:

JavaScript: The Good Parts by Douglas Crockford (O’Reilly
Media, 2008)

Eloquent JavaScript, 2nd Edition, by Marijn Haverbeke
(No Starch Press, 2014)

JavaScript: The Definitive Guide, 4th Edition, by David
Flanagan (O’Reilly Media, 2001)

The Mozilla Developer Network’s JavaScript resources: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/

Codecademy JavaScript courses: http://www.codecademy.com/
en/tracks/javascript/

To create websites, you need to use some HTML and CSS, along
with JavaScript.

HTML is the markup language used for creating web pages. We
learned some basic HITML in Chapter 5, but there’s much more to
learn. Here are some places you can learn more about HTML:

The Mozilla Developer Network’s Introduction to HTML:
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/
Introduction/

Codecademy HTML & CSS course: http://www.codecademy
.com/tracks/web/

Mozilla Webmaker: https://webmaker.org/

294 Afterword

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://www.codecademy.com/en/tracks/javascript
http://www.codecademy.com/en/tracks/javascript
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Introduction
https://webmaker.org/
http://www.codecademy.com/tracks/web/
http://www.codecademy.com/en/tracks/javascript/
http://www.it-ebooks.info/

CSS (short for Cascading Style Sheets) is the language used to con-
trol the appearance of web pages. Learn more about CSS here:

* The Mozilla Developer Network’s Getting Started with CSS:
https://developer.mozilla.org/en-US/docs/ Web/Guide/CSS/
Getting_started/

* Codecademy HTML & CSS course: http://www.codecademy
.com/tracks/web/

Web pages live on web servers. A server stores all the HTML, CSS,
and JavaScript for a web page, and it allows people to access the
page from the Internet. You can also write programs for the server
(called server-side code) to make the server generate new HTML
files each time a web page is loaded. For example, when you visit
http://twitter.com/, a program runs on a server that finds the lat-
est tweets for your feed, generates an HTML file containing those
tweets, and sends that file to your browser.

Node js lets you write server-side code in JavaScript. Find out
more about Node.js with these links:

* Node.js documentation: http://nodejs.org/
* The Node Beginner Book: Attp://www.nodebeginner.org/

If you want to make interactive graphics in JavaScript, you have
two main options: the canvas element and SVG.

We learned the basics of the canvas element in this book, but there’s
much more you can do with it. Here are some tutorials and games
you can use to learn more:

* The Mozilla Developer Network’s Canvas Tutorial: https://
developer.mozilla.org/en-US/docs/Web/API/Canvas_API/
Tutorial/

* Code Monster from Crunchzilla: http://www.crunchzilla.com/
code-monster/

Where to Go from Here 295

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started
https://developer.mozilla.org/en-US/docs/Web/Guide/CSS/Getting_started
http://nodejs.org/
http://www.nodebeginner.org/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
http://www.crunchzilla.com/code-monster
http://www.crunchzilla.com/code-monster
http://www.crunchzilla.com/code-monster/
http://www.codecademy.com/tracks/web/
http://www.it-ebooks.info/

SVG is an image format that lets you draw shapes and animate
them without redrawing from scratch for each animation step.
SVG programming can be difficult to get the hang of, but it’s much
easier if you use the JavaScript library called Raphaél. Here are
some resources for learning Raphaél:

+ Raphaél website: http://raphaeljs.com/

* An Introduction to the Raphaél JS Library: http://code
.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-
library--net-7186/

Remember how in Chapter 13 we told canvas we wanted to make
a 2D drawing context by calling canvas.getContext("2d")? It’s also
possible to do 3D graphics using canvas. This is another one of
those areas where it’s easier to use a library, so I'd recommend
using the library three.js. Here are some resources for learning
three.js:

* threejs Manual: http://threejs.org/docs/index.html#Manual

* The Beginner’s Guide to three.js: http://blog.teamtreehouse.
com/the-beginners-guide-to-three-js/

You can even control robots using JavaScript! For example, the
Parrot AR.Drone is a small flying helicopter that you can control
using Node.js. Or you can check out Johnny-Five, a JavaScript
library that lets you use Node.js to control devices such as the
Arduino (a popular microcontroller that’s used in lots of homemade
electronics and robotics projects). Here are some resources for
learning how to control robots and other devices with JavaScript:

* node-ar-drone: https://github.com/felixge/node-ar-drone/
* NodeCopter: http://nodecopter.com/
* NodeBots: http://nodebots.io/

Johnny-Five: https://github.com/rwaldron/johnny-five/

296 Afterword

www.it-ebooks.info

http://raphaeljs.com/
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-js-library--net-7186
http://threejs.org/docs/index.html#Manual
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js
https://github.com/felixge/node-ar-drone
http://nodecopter.com/
http://nodebots.io/
https://github.com/rwaldron/johnny-five/
http://blog.teamtreehouse.com/the-beginners-guide-to-three-js/
http://code.tutsplus.com/tutorials/an-introduction-to-the-raphael-jslibrary--net-7186/
http://www.it-ebooks.info/

AUDIO PROGRAMMING

JavaScript also allows you to do advanced audio programming
in web browsers using the Web Audio API (short for application
programming interface). You can use the Web Audio API to make
sound effects or even create your own music! Here are some
resources for learning more about the Web Audio API:

The Mozilla Developer Network’s Web Audio API: https://
developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API/

HTMLS5 Rocks: Getting Started with Web Audio API: http://
www.html5rocks.com/en/tutorials/webaudio/intro/

GAME PROGRAMMING

If you want to do more game programming in JavaScript, you
might want to try using a game engine. A game engine is a col-
lection of code that handles a lot of the lower-level concerns of the
game (like keyboard and mouse input), allowing you to concen-
trate on the parts that make your game different. Here are some
resources you can check out to learn more about game program-
ming and game engines:

Crafty game engine: http://craftyjs.com/
Pixi Renderer: https://github.com/GoodBoyDigital/pixi.js
HTML5 Game Engines: http://html5gameengine.com/

Udacity HTML5 Game Development: https://www.udacity
.com/course/cs255

3D Game Programming for Kids by Chris Strom (Pragmatic
Programmers, 2013)

SHARING YOUR CODE USING JSFIDDLE

What if you want to share all the great JavaScript you've written
with the world? There are many ways to do that. One of the easier
ones is JSFiddle (http://jsfiddle.net/). Just type your JavaScript
in the JavaScript box, add any HTML you want in the HTML box,
and then click Run to run your program. To share it, click Save,
which gives you a URL that you can then share with anyone.

Where to Go from Here 297

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
http://www.html5rocks.com/en/tutorials/webaudio/intro/
http://www.html5rocks.com/en/tutorials/webaudio/intro/
http://craftyjs.com/
https://github.com/GoodBoyDigital/pixi.js
http://html5gameengine.com/
https://www.udacity.com/course/cs255
https://www.udacity.com/course/cs255
http://www.html5rocks.com/en/tutorials/webaudio/intro/
https://www.udacity.com/course/cs255
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The world of computer programming has all kinds of
special terms and definitions that can take some time
to get the hang of. In this glossary, you'll find defini-
tions for many of the programming terms used in this
book. As you're reading this book, if you come across
a term that you don’t quite understand, you can look
here for a brief explanation.

www.it-ebooks.info

http://www.it-ebooks.info/

argument A value that can be passed into a function.

array A list of JavaScript values. In an array, each value has an
index, which is the numbered position of that value in the array.
The first value 1s at index 0, the next value is at index 1, and so on.

attribute A key-value pair in an HTML element. You can use
HTML attributes to control certain aspects of an element, like
where the element links to or the size of the element.

Boolean A value that can be either true or false.

call To execute or run a function. To call functions in JavaScript,
you enter the function name followed by a pair of parentheses
(with any arguments inside the parentheses).

camel case A common way to name variables in which you
capitalize the first letter of each word (except the first word)
and then join all the words to make one long word, like so:
myCamelCaseVariable.

comment Text in a program that is not executed by the
JavaScript interpreter—comments are just there to describe
the program for the person reading the code.

conditional statement A statement that executes code after
checking a condition. If the condition is true, the statement will
execute one bit of code; if the condition is false, it will execute a
different bit of code or stop altogether. Examples include if state-
ments and if...else statements.

constructor A kind of function that’s used to create multiple
objects so that they share built-in properties.

control structure A way to control when a piece of code is run
and how often it’s run. Examples include conditional statements
(which control when code is run by checking a condition) and
loops (which repeat a piece of code a certain number of times).

data The information we store and manipulate in computer
programs.

decrement To decrease the value of a variable (usually by 1).

dialog A small pop-up window. You can use JavaScript to open
different kinds of dialogs in a browser, such as an alert (to display
a message) or a prompt (to ask a question and receive input).

300 Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

document object model (DOM) The way that web browsers
organize and keep track of HTML elements on a web page. These
elements are organized in a treelike structure called the DOM tree.
JavaScript and jQuery provide methods that work with the DOM
to create and modify elements.

element Part of an HTML page, such as a header, a paragraph,
or the body. An element is marked by start and end tags (which
determine what type of element it is) and includes everything in
between. The DOM tree is made up of these elements.

event An action that happens in the browser, such as a mouse
click or a keyboard press by the user. We can detect and respond
to these events with event handlers.

event handler A function that is called whenever a certain
event happens in a certain HTML element. For example, in
Chapter 11’s “Find the Buried Treasure!” game, we create an
event handler function that is called whenever the user clicks
on a map image.

execute To run a piece of code, such as a program or function.

function A piece of code that bundles multiple statements so
that they are all executed together. A function makes it easy to
repeat a certain action in different parts of a program. A function
can take arguments as input, and it will output a return value.

increment To increase the value of a variable (usually by 1).

index A number that indicates the position of a value inside
an array. The index can be used to access a specific value in an
array.

infinite loop A loop that never stops repeating (often causing
the interpreter to crash). This error can occur if the conditions of a
loop are set up incorrectly.

interpreter A piece of software that reads and runs code. Web
browsers contain a JavaScript interpreter, which we use to run our
JavaScript throughout this book.

jQuery A JavaScript library that provides many useful methods
for modifying and working with DOM elements on a web page.

Glossary 301

www.it-ebooks.info

http://www.it-ebooks.info/

key-value pair A pair made up of a string (called a key) that
1s matched up with a particular value (which can be any type of
value). Key-value pairs go inside JavaScript objects, and they are
used to define an object’s properties and methods.

keyword A word with a special meaning in JavaScript (for
example, for, return, or function). Keywords can’t be used as vari-
able names.

library A collection of JavaScript code that we can load into our
web pages to provide additional functions and methods. In this
book we use the jQuery library, which gives us functions and
methods for working with the DOM more easily.

loop A way to execute a piece of code multiple times.
method A function that is a property of an object.

null A special value that can be used to indicate that a variable
1s purposely left empty.

object A set of key-value pairs. Each key is a string that can
be paired with any JavaScript value. You can then use the key to
retrieve whatever value it’s paired with in the object.

object-oriented programming A style of programming that
takes advantage of objects and methods to organize the code and
represent the most important features of the program.

programming language A language that programmers can
use to tell computers what to do. JavaScript is one programming
language, but there are many others.

property A name for a key-value pair in an object.

prototype A property of a constructor. Any methods added to a
constructor’s prototype will be available to all objects created by
that constructor.

return The act of leaving a function and returning to the code
that called the function. A function returns when it reaches the
end of its body or when it reaches a return keyword (which can be
used to leave a function early). When a function returns, it outputs
a return value (if no particular return value is specified, it simply
returns the empty value undefined).

302 Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

selector string A string that represents one or more HTML
elements. We can pass this string to jQuery’s $ function to select
those elements.

string A list of characters surrounded by quotes, used to repre-
sent text in computer programs.

syntax How keywords, punctuation, and other characters are
combined to make working JavaScript programs.

tag A marker used to create HTML elements. All elements begin
with a start tag, and most end with an end tag. These tags deter-
mine what type of element is created, and the start tag can include
attributes for the element.

text editor A computer program used to write and edit plain-
text, without any special formatting like font style or color. A good
text editor 1s helpful for writing programs, which are written in
plaintext.

undefined A value that JavaScript uses when something like a
property or variable doesn’t have any particular value assigned
to it.

variable A way of giving a JavaScript value a name. After you
assign a value to a variable, you can use the variable name later to
retrieve the value.

whitespace Invisible characters like spaces, newlines, and tabs.

Glossary 303

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8& (and), 30-31, 33
* (multiplication), 15-17
*= (multiply and assign),
23, 104
: (colon), 65
, (comma), 128
{} (curly brackets), 64, 67
$ (JQuery function), 149. See
also jQuery
" (double quotation mark),
23-24, 65
= (assignment), 18
== (double equals), 36
=== (exactly equals),
35-36, 96
! (not), 3
/ (division), 15-16
/= (divide and assign), 23
> (greater than), 33—-34
(id in selector strings), 149
- (subtraction), 15-16
-- (decrement), 21
-= (subtract and assign), 22
< (less than), 34
() (parentheses), 16-17,
27,125
. (period). See dot notation
|| (or), 31-32, 33
+ (addition), 15-17
with strings, 25, 61, 108
++ (increment), 21
+= (add and assign), 22, 73
; (semicolon), 14, 99
' (single quotation mark), 24
[1 (square brackets)
accessing a character
from a string
with, 26
accessing elements from
an array with,
4243, 45

accessing values in
objects with, 66

adding elements to an
array with, 43—44

creating an array with, 41

add and assign (+=) operator,
22,73
addition, 15-17
with strings, 25, 61, 108
alert method, 109-110
and (&8) operator,
30-31, 33
animation
with canvas
bouncing ball, 227-232
changing size, 220-221
moving horizontally,
218-221
random bee, 221-226
with setInterval, 159-161
append jQuery method,
150, 188
arc context method,
209-212
arguments, for functions,
126, 300
arrays, 39—-40, 54—-60, 300
accessing, 42—43
adding elements to, 47, 50
combining multiple,
50-52
combining with objects,
69-71
converting to a string, 53
creating, 41-42
and data types, 45
finding index of element
in, 52-53
finding length of, 46

www.it-ebooks.info

looping through
elements of,
100-101
modifying, 43—-44
vs. objects, 67—68
removing elements
from, 48-50
assigning values, 18
attributes, HTML,
86-87, 300

beginPath context method,
206-210
block-level HTML elements,
81-82
body
of a control structure,
92-95, 97, 99
of a function, 124
body element, 84-85
Booleans, 14, 30-37, 300
comparing numbers with,
33-37
in conditional statements,
91-96
logical operators, 30—33
for yes-or-no answers,
108-109
brackets
curly, 64, 67
square. See square
brackets
break keyword, 116

calling
functions, 125, 126, 300
methods, 47

camel case, 19, 300

http://www.it-ebooks.info/

canvas element, 199
animating, 217-218
bouncing ball, 227-232
changing size, 220-221
moving horizontally,
218-221
random bee, 221-226
circles and arcs, 209-213
clearing, 219
colors, 203—-204
creating, 200
lines and paths
drawing, 206—207
filling, 207—209
rectangles and squares
drawing, 201-203
outlining, 205-206
resources, 295
Cascading Style Sheets
(CSS), 295
chaining if...else
statements, 94-96
chaining jQuery
animations, 152
Chrome, web browser and
console, 7
clearInterval function,
158-159
clearRect context method,
218-219
clearTimeout function, 157
click events, 162
coercion, 108
collision detection, 229-231,
278-280
colon (:), 65
comma (,), 128
comments, 10-11, 118, 300
concat method, 50-52
condition (of a control
structure)
in for loops, 99
in if...else
statements, 95
in if statements, 92
in while loops, 97

306 INDEX

conditionals, 89, 300
if...else statements, 91,
93-96, 136-137
if statements, 91-93
confirm function, 108
console, 7
calling constructors
in, 187
exploring objects in,
71-72
finding errors with, 120
logging values to, 91
typing in, 42
viewing output from
keyboard events
with, 237
console.log method, 91, 125
vs. alert, 109-110
constructors, 185-186, 300
control structures, 90, 300.
See also conditionals;
loops
coordinates, browser, 163
CSS (Cascading Style
Sheets), 295
¢ss jQuery method, 188-189
curly brackets, 64, 67

data, 14, 300
decrementing, 21, 300
dialogs, 106-110, 300
divide and assign (/)
operator, 23
division, 15-16
document object
model (DOM),
143-147, 301
document.getElementById
DOM method,
145-146, 200-201
DOM (document
object model),
143-147, 301
DOM tree, 144

www.it-ebooks.info

dot notation, 66
accessing object keys
with, 69
adding keys to objects
with, 68
adding methods to objects
with, 182-183
adding properties to
objects with, 182
double equals (==)
operator, 36
double quotation mark ("),
23-24, 65
drawing context (for
canvas), 201

elements, HTML, 80, 301

else keyword, 93, 95

em element, 82—83

end tags, HTML, 80, 303

equal to (===) operator,
35-36, 96

errors, 120

event handlers, 162, 169,
171, 301

event object, 162-163, 172

exactly equals (===
operator, 35—36, 96

execute, 8, 301

fadeIn jQuery method, 152
fadeOut jQuery method, 151
fadeTo jQuery method, 154
false (Boolean value),
14, 30. See also
Booleans
fill context method,
207, 222
fillRect context method,
200-205, 207,
219-220, 258, 269
fillStyle context property,
203, 223, 258,
263-264, 269-270

http://www.it-ebooks.info/

fillText context method,
260, 262—-264
Find the Buried Treasure!
game, 167—169
calculating distances,
172-174
click handler, 171-172
code for, 176-178
creating web page,
169-170
design, 168-169
displaying hints, 175-176
randomizing treasure
location, 170-171
win condition, 176
floor method, 57, 103
font context property,
262—264
for loops, 99-102
function keyword, 128. See
also functions
functions, 123-124, 301
arguments, 126-127,
128-129
calling, 125, 126, 300
vs. if...else statements,
136-137
leaving early, 135
returning values from,
125, 129-131, 302
shorthand, 137
simplifying code with,
132-134

games, programming,
6, 297. See also
Find the Buried
Treasure! game;
Hangman game;
Snake game

getContext canvas method,
200-201

getElementById, 145-146,
200-201

Google Chrome, web
browser and
console, 7

graphical programming, 4

greater than (>) operator,
33-34

hi element, 80
Hangman game, 105-106
choosing a random word,
113-114
code for, 118-120
creating with functions,
139-140
design, 110-113
displaying player’s
progress, 115
drawing
guesses, 266
hangman, 215
responding to player
input, 115-116
updating game state,
116-118
win condition, 118
head element, 84-85
height attribute, 170, 200
hide jQuery method, 153
href attribute, 87
HTML, 77-88, 143—-144, 294
attributes, 8687, 300
elements, 80, 301
hierarchy, 84-85
nesting, 84—85
html element, 84, 164
hyperlinks, 78, 85-86

id attribute, 145, 149

if...else statements, 91,
93-96, 136-137

if statements, 91-93

img element, 169, 171, 188

incrementing, 21, 301

www.it-ebooks.info

indexes, in arrays,
4243, 301
changing elements with,
4344
and data types, 45
finding, 5253
with strings, 57-58
index0f method, 5253
infinite loops, 98-99, 301
inline HTML elements,
82-83
innerHTML property, 145—-147
interactive programming,
155-166
interval ID, 159, 254,
264, 290

join method, 53-54, 61
jQuery, 143—-144, 301
$ function, 149
animating elements with,
151-152
creating new elements
with, 150-151
keyboard events,
responding with,
236, 244
loading on page, 148
replacing page text with,
148-149

keyCode event property,
237, 281
keydown event, 236—238,
244, 281
keys (in objects), 63, 65, 182
adding, 68
and quotation marks, 65
key-value pairs (in objects),
63, 65, 182, 302
keywords, 17, 302

INDEX 307

http://www.it-ebooks.info/

length property
on arrays, 46, 60, 72
on strings, 25-26
less than (<) operator, 34
libraries, 148, 302
lineTo context method,
206—-208
lineWidth context property,
205-206, 223
links, 78, 85-86
literals, 64—65
logs, 91
loops, 89, 302
for loops, 99-102
while loops, 97-99

mathematical operators,
15-17
Math.floor, 57, 103
Math.PI, 210-212
Math.random, 57
Math.sqrt, 174
methods, 42, 302
adding to objects,
182-183
calling, 47
sharing between objects,
183-185
and this, 183
mousemove event,
164-165, 215
moveTo context method,
206—-208
multiplication, 15-17
multiply and assign (*=)
operator, 23, 104
music programming, 4, 297

new keyword, 185-187, 189
Node.js, 295

not (!) operator, 32
numbers, 14-23, 42, 66
null value, 37-38, 108, 302

308 INDEX

Object.keys method, 67, 75
object-oriented
programming,
181-196, 302
objects, 63, 72-75, 302
accessing values in,
66—67
adding keys to, 68
adding methods to,
182-185
adding values to, 67-68
combining with arrays,
69-71
creating, 64—65, 182
with constructors,
185-186
customizing with
prototypes, 190-194
exploring with the
console, 71-72
offset jQuery method,
160-161, 164, 189
offsetX and offsetY event
properties, 172
operators, 15-17
or (| |) operator, 31-32, 33

pageX and pageY event
properties, 162,
164-165

parentheses, (), 16-17,
27,125

p element, 80-81

period (.). See dot notation

pi (), 210-212

plaintext, 78

pop method, 48—49, 55

prompt method, 106-108, 146

properties, 46, 182, 302

__proto__ properties, 72

prototype property, 190, 228

prototypes, 72, 190-196, 228

pseudocode, 110-111, 253

push method, 47, 55

Pythagorean theorem, 173

www.it-ebooks.info

queue (data structure), 56
quotation marks, 23-24, 65

radians, 209-211

random number generation,
with Math.random, 57

returning values from
functions, 125,
129-131, 302

return keyword, 130,
132, 302

script element, 90, 148
selector strings, 149, 303
semicolons, 14, 99
setInterval function,
158-159
bouncing ball, 231-232
with canvas, 218-221
with keyboard input, 245
moving text, 159-161
random bee, 225-226
and Snake game, 254,
285-290
setTimeout function, 156—-157
shift method, 50
show jQuery method, 153
single quotation mark, 24
slice method, 27
slideDown jQuery
method, 152
slideUp jQuery method, 152
Snake game
apple
creating, 283—284
moving, 284285
code for, 285—-290
collision detection, 272,
279-281
design, 253-255
displaying text, 260—-264
drawing
circle, 270-271
square, 269-270

http://www.it-ebooks.info/

ending the game,
264-265, 272
game grid
adding border, 258-260
creating Block, 268—269
setting up, 256258
game play, 252
HTML code, 255-256
snake
creating, 273-275
moving, 275277
setting direction of,
281-283
square brackets, []
accessing a character
from a string
with, 26
accessing elements from
an array with,
4243, 45
accessing values in
objects with, 66
adding elements to an
array with, 43—44
creating an array with, 41
square root, 174
src attribute, 148, 170
stack (data structure), 56
start tag, 80, 303
statements, 14
strings, 14, 23-24, 303
accessing single character
from, 26-27
changing case of, 28-30
finding length of, 25-26
joining, 25
looping through each
character of,
101, 116
as object keys, 63, 65, 66
slicing, 27-28
turning arrays into,
53-54

stroke context method,
206-210, 222
strokeRect context method,
205, 225, 231
strokeStyle context
property,
205-206, 223
strong element, 82—83
Sublime Text, 78-79
subtract and assign (-=)
operator, 22
subtraction, 15-16
SVG, 296
syntax, 10, 303
syntax highlighting, 79

tags, HTML, 80, 303

textAlign context property,
262-264

textBaseline context
property, 261,
263-264

text editors, 78-79, 303

text jQuery method, 176

this keyword, 183, 187,
191-192

timeout ID, 157

title attribute, 87—88

toLowerCase method, 28-29

toUpperCase method, 28-29

true (Boolean value), 14, 30.

See also Booleans

undefined value, 17-18,

37-38, 44, 125, 303

unshift method, 48-49

www.it-ebooks.info

values (in objects), 63,
65, 182
accessing, 66—67
adding, 67-68
data type of, 65
variables, 17-23, 303
vs. arrays, 40
creating with math,
19-21
increasing and decreasing
values of, 21-23
naming, 19
undefined and null for,
37-38
var keyword, 17, 18, 19

web browsers, 6—7

while loops, 97-99
whitespace, 81, 82, 303
width attribute, 170, 200

INDEX 309

http://www.it-ebooks.info/

 UPDATES

Visit http://www.nostarch.com/javascriptforkids for updates, errata, and

other information.

MORE SMART BOOKS FOR CURIOUS KIDS! &4

PYTHON
FOR KIDS

A PLAYFUL INTRODUCTION TO PROGRAMMING.

PYTHON FOR KIDS

APlayful Introduction to Programming
by JASON R. BRIGGS

DEC 2012, 344 Pp., $34.95

ISBN 978-1-59327-407-8

full color

HUMAN BODY, VOL. 1
The Digestive System

by GOMDORI CO. and
HYUN-DONG HAN

ocT 2013, 184 pp., $17.95
ISBN 978-1-59327-471-9
full color

800.420.7240 or 415.863.9900 | sales@nostarch.com

| WIZARDRY

RUBY WIZARDRY
AnIntroduction to Programming for Kids
by ERIC WEINSTEIN

DEC 2014, 360 pp., $29.95

ISBN 978-1-59327-566-2

two color

ELOQUENT
JAVASCRIPT

SECOND EDITION

A Moden etroduction
10 Programming

ELOQUENT JAVASCRIPT,
2ND EDITION

AModern Introduction to Programming
by MARIJN HAVERBEKE

DEC 2014, 400 pp., $39.95

ISBN 978-1-59327-584-6

no starch
press

iPSUM
GOMPUTER SCIENGE

iMPROBABLE THINGS
CARLOS BUENO

LAUREN IPSUM

AStory About Computer Science
and Other Improbable Things
by CARLOS BUENO

DEC 2014, 192 pp., $16.95
ISBN 978-1-59327-574-7
full color

TABASES
f /

THE MANGA GUIDE TO
DATABASES

by MANA TAKAHASHI, SHOKO
AZUMA, and TREND-PRO CO., LTD.
JAN 2009, 224 pp., $19.95

ISBN 978-1-59327-190-9

www.nostarch.com

www.it-ebooks.info

http://www.it-ebooks.info/

REAL PROGRAMMING.
REAL EASY.

ILLUSTRATIONS BY MIRAN LIPOVACA

JavaScript is the programming language of
the Internet, the secret sauce that makes the
Web awesome, your favorite sites interactive,
and online games fun!

JavaScript for Kids is a lighthearted intro-
duction that teaches programming essentials
through patient, step-by-step examples paired
with funny illustrations. You'll begin with
the basics, like working with strings, arrays,
and loops, and then move on to more advanced
topics, like building interactivity with jQuery
and drawing graphics with Canvas.

Along the way, you'll write games such as
Find the Buried Treasure, Hangman, and
Snake. You'll also learn how to:

Create functions to organize and reuse
your code

Write and modify HTML to create
dynamic web pages

Use the DOM and jQuery to make your
web pages react to user input

Use the Canvas element to draw and
animate graphics

Program real user-controlled games with
collision detection and score keeping

©

no starch

With visual examples like bouncing balls,
animated bees, and racing cars, you can really
see what you're programming. Each chapter
builds on the last, and programming challenges
at the end of each chapter will stretch your
brain and inspire your own amazing programs.
Make something cool with JavaScript today!

Nick Morgan is a frontend engineer at
Twitter. He loves all programming languages
but has a particular soft spot for JavaScript.
Nick lives in San Francisco (the foggy part)
with his fiancée and their fluffy dog, Pancake.
He blogs at skilldrick.co.uk.

& Q

$34 95 ($36.95 CDN)

NI IATIHS

1dI¥ISVAVI/SI9VNINYT ONIWWVYI0¥d

skilldrick.co.uk
http://www.it-ebooks.info/

	About the Author
	Brief Contents
	Contents in Detail
	Introduction
	Who Should Read This Book?
	How to Read This Book
	What’s in This Book?
	Have Fun!

	Part I: Fundamentals
	Chapter 1: What Is JavaScript?
	Meet JavaScript
	Why Learn JavaScript?
	Writing Some JavaScript
	The Structure of a JavaScript Program
	Syntax
	Comments

	What You Learned

	Chapter 2: Data Types and Variables
	Numbers and Operators
	Variables
	Naming Variables
	Creating New Variables Using Math
	Incrementing and Decrementing
	+= (plus-equals) and
–= (minus-equals)

	Strings
	Joining Strings
	Finding the Length of a String
	Getting a Single Character
from a String
	Cutting Up Strings
	Changing Strings to All Capital or All Lowercase Letters

	Booleans
	Logical Operators
	Comparing Numbers with Booleans

	undefined and null
	What You Learned

	Chapter 3: Arrays
	Why Should You Care About Arrays?
	Creating an Array
	Accessing an Array’s Elements
	Setting or Changing Elements
in an Array
	Mixing Data Types in an Array
	Working with Arrays
	Finding the Length of an Array
	Adding Elements to an Array
	Removing Elements from an Array
	Adding Arrays
	Finding the Index of an Element
in an Array
	Turning an Array into a String

	Useful Things to Do with Arrays
	Finding Your Way Home
	Decision Maker
	Creating a Random Insult Generator

	What You Learned
	Programming Challenges
	#1: New Insults
	#2: More Sophisticated Insults
	#3: Use + or join?
	#4: Joining Numbers

	Chapter 4: Objects
	Creating Objects
	Keys Without Quotes

	Accessing Values in Objects
	Adding Values to Objects
	Adding Keys with Dot Notation

	Combining Arrays and Objects
	An Array of Friends

	Exploring Objects in the Console
	Useful Things to Do with Objects
	Keeping Track of Owed Money
	Storing Information About Your Movies

	What You Learned
	Programming Challenges
	#1: Scorekeeper
	#2: Digging into Objects and Arrays

	Chapter 5: The Basics of HTML
	Text Editors
	Our First HTML Document
	Tags and Elements
	Heading Elements
	The p Element
	Whitespace in HTML and Block-Level Elements
	Inline Elements

	A Full HTML Document
	HTML Hierarchy
	Adding Links to Your HTML
	Link Attributes
	Title Attributes

	What You Learned

	Chapter 6: Conditionals and Loops
	Embedding JavaScript in HTML
	Conditionals
	if Statements
	if…else Statements
	Chaining if…else Statements

	Loops
	while Loops
	for Loops

	What You Learned
	Programming Challenges
	#1: Awesome Animals
	#2: Random String Generator
	#3: h4ck3r sp34k

	Chapter 7: Creating a Hangman Game
	Interacting with a Player
	Creating a Prompt
	Using Confirm to Ask a
Yes or No Question
	Using Alerts to Give a Player Information
	Why Use alert Instead of console.log?

	Designing Your Game
	Using Pseudocode to Design the Game
	Tracking the State of the Word
	Designing the Game Loop

	Coding the Game
	Choosing a Random Word
	Creating the Answer Array
	Coding the Game Loop
	Ending the Game

	The Game Code
	What You Learned
	Programming Challenges
	#1: More Words
	#2: Capital Letters
	#3: Limit Guesses
	#4: Fixing a Bug

	Chapter 8: Functions
	The Basic Anatomy of a Function
	Creating a Simple Function
	Calling a Function
	Passing Arguments into Functions
	Printing Cat Faces!
	Passing Multiple Arguments to a Function

	Returning Values from Functions
	Using Function Calls as Values
	Using Functions to Simplify Code
	A Function to Pick a Random Word
	A Random Insult Generator
	Making the Random Insult Generator into a Function

	Leaving a Function Early with return
	Using Return Multiple Times Instead of if...else Statements
	What You Learned
	Programming Challenges
	#1: Doing Arithmetic with Functions
	#2: Are These Arrays the Same?
	#3: Hangman, Using Functions

	Part II: Advanced JavaScript
	Chapter 9: The DOM and jQuery
	Selecting DOM Elements
	Using id to Identify Elements
	Selecting an Element Using getElementById
	Replacing the Heading Text Using the DOM

	Using jQuery to Work with the DOM Tree
	Loading jQuery on Your HTML Page
	Replacing the Heading Text Using jQuery

	Creating New Elements with jQuery
	Animating Elements with jQuery
	Chaining jQuery Animations
	What You Learned
	Programming Challenges
	#1: Listing Your Friends with jQuery (And Making Them Smell!)
	#2: Making a Heading Flash
	#3: Delaying Animations
	#4: Using fadeTo

	Chapter 10: Interactive Programming
	Delaying Code with setTimeout
	Canceling a Timeout
	Calling Code Multiple Times with setInterval
	Animating Elements with setInterval
	Responding to User Actions
	Responding to Clicks
	The mousemove Event

	What You Learned
	Programming Challenges
	#1: Follow the Clicks
	#2: Create Your Own Animation
	#3: Cancel an Animation with a Click
	#4: Make a “Click the Header” Game!

	Chapter 11: Find the Buried Treasure!
	Designing the Game
	Creating the Web Page with HTML
	Picking a Random Treasure Location
	Picking Random Numbers
	Setting the Treasure Coordinates

	The Click Handler
	Counting Clicks
	Calculating the Distance Between the Click and the Treasure
	Using the Pythagorean Theorem
	Telling the Player How Close They Are
	Checking If the Player Won

	Putting It All Together
	What You Learned
	Programming Challenges
	#1: Increasing the Playing Area
	#2: Adding More Messages
	#3: Adding a Click Limit
	#4: Displaying the Number of Remaining Clicks

	Chapter 12: Object-Oriented Programming
	A Simple Object
	Adding Methods to Objects
	Using the this Keyword
	Sharing a Method Between Multiple Objects

	Creating Objects Using Constructors
	Anatomy of the Constructor
	Creating a Car Constructor

	Drawing the Cars
	Testing the drawCar Function
	Customizing Objects with Prototypes
	Adding a draw Method to the Car Prototype
	Adding a moveRight Method
	Adding the Left, Up, and Down move Methods

	What You Learned
	Programming Challenges
	#1: Drawing in the Constructor
	#2: Adding a speed Property
	#3: Racing Cars

	Part III: Canvas
	Chapter 13: The canvas Element
	Creating a Basic Canvas
	Drawing on the Canvas
	Selecting and Saving the canvas Element
	Getting the Drawing Context
	Drawing a Square
	Drawing Multiple Squares

	Changing the Drawing Color
	Drawing Rectangle Outlines
	Drawing Lines or Paths
	Filling Paths
	Drawing Arcs and Circles
	Drawing a Quarter Circle or an Arc
	Drawing a Half Circle
	Drawing a Full Circle

	Drawing Lots of Circles
with a Function
	What You Learned
	Programming Challenges
	#1: A Snowman Drawing Function
	#2: Drawing an Array of Points
	#3: Painting with Your Mouse
	#4: Drawing the Man in Hangman

	Chapter 14: Making Things Move on the Canvas
	Moving Across the Page
	Clearing the Canvas
	Drawing the Rectangle
	Changing the Position
	Viewing the Animation in the Browser

	Animating the Size of a Square
	A Random Bee
	A New circle Function
	Drawing the Bee
	Updating the Bee’s Location
	Animating Our Buzzing Bee

	Bouncing a Ball!
	The Ball Constructor
	Drawing the Ball
	Moving the Ball
	Bouncing the Ball
	Animating the Ball

	What You Learned
	Programming Challenges
	#1: Bouncing the Ball Around a Larger Canvas
	#2: Randomizing this.xSpeed and this.ySpeed
	#3: Animating More Balls
	#4: Making the Balls Colorful

	Chapter 15: Controlling Animations with the Keyboard
	Keyboard Events
	Setting Up the HTML File
	Adding the keydown Event Handler
	Using an Object to Convert Keycodes into Names

	Moving a Ball with the Keyboard
	Setting Up the Canvas
	Defining the Circle Function
	Creating the Ball Constructor
	Defining the move Method
	Defining the draw Method
	Creating a setDirection Method
	Reacting to the Keyboard
	Animating the Ball

	Putting It All Together
	Running the Code
	What You Learned
	Programming Challenges
	#1: Bouncing Off the Walls
	#2: Controlling the Speed
	#3: Flexible Controls

	Chapter 16: Making a Snake Game: Part 1
	The Game Play
	The Structure of the Game
	Using setInterval to Animate the Game
	Creating the Game Objects
	Setting Up Keyboard Control

	Game Setup
	Creating the HTML
	Defining the canvas, ctx, width, and height Variables
	Dividing the Canvas into Blocks
	Defining the score Variable

	Drawing the Border
	Displaying the Score
	Setting the Text Baseline
	Setting the Size and Font
	Writing the drawScore Function

	Ending the Game
	What You Learned
	Programming Challenges
	#1: Putting It Together
	#2: Animating the Score
	#3: Adding Text to Hangman

	Chapter 17: Making a Snake Game: Part 2
	Building the Block Constructor
	Adding the drawSquare Method
	Adding the drawCircle Method
	Adding the equal Method

	Creating the Snake
	Writing the Snake Constructor
	Drawing the Snake

	Moving the Snake
	Adding the move Method
	Adding the checkCollision Method

	Setting the Snake’s Direction with the Keyboard
	Adding the Keydown Event Handler
	Adding the setDirection Method

	Creating the Apple
	Writing the Apple Constructor
	Drawing the Apple
	Moving the Apple

	Putting It All Together
	What You Learned
	Programming Challenges
	#1: Making the Game Bigger
	#2: Coloring the Snake
	#3: Making the Game Speed Up as You Play
	#4: Fixing the apple.move Method

	Afterword: Where to Go from Here
	More JavaScript
	Web Programming
	HTML
	CSS
	Server-Side Code with Node.js

	Graphical Programming
	canvas
	SVG Using Raphaël

	3D Programming
	Programming Robots
	Audio Programming
	Game Programming
	Sharing Your Code Using JSFiddle

	Glossary
	Index
	Updates

