






 ББК 32.988.02-018.1 
 УДК 004.43 
 К83 

 

 Крокфорд Д. 
К83 JavaScript: сильные стороны. — СПб.: Питер, 2012. — 176 с.: ил. 

 ISBN 978-5-459-01263-7 
Любой язык программирования имеет свои сильные и слабые стороны, однако язык JavaScript 

в большей степени состоит из последних, так как был разработан в спешке и практически не отла-
живался. В этой книге среди множества самых ужасных JavaScript-конструкций выделены наибо-
лее надежные, понятные и удобные в сопровождении — то подмножество языка, которое позволя-
ет создавать по-настоящему расширяемый и эффективный код. 
 Автор — уважаемый среди разработчиков эксперт в области JavaScript — выделяет массу инте-
ресных идей, которые делают JavaScript прекрасным объектно-ориентированным языком про-
граммирования. Эта книга откроет вам красивый, элегантный, простой и выразительный язык про-
граммирования, позволяющий создавать эффективный код независимо от того, управляете вы 
библиотеками объектов или просто пытаетесь заставить Ajax работать быстрее. Если вы разраба-
тываете сайты или приложения для Интернета, эта книга вам просто необходима. 

 

 ББК 32.988.02-018.1 
 УДК 004.43 

Права на издание получены по соглашению с O’Reilly. Все права защищены. Никакая часть данной книги не 
может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских 
прав. 
Информация, содержащаяся в данной книге, получена из источников, рассматриваемых издательством как 
надежные. Тем не менее, имея в виду возможные человеческие или технические ошибки, издательство не 
может гарантировать абсолютную точность и полноту приводимых сведений и не несет ответственности за 
возможные ошибки, связанные с использованием книги. 

ISBN 978-0596517748 англ. © Authorized Russian translation of the English edition of titled JavaScript: The 
   Good Parts, 1st Edition (ISBN 9780596517748) © 2008, Yahoo!, Inc. 
   This translation is published and sold by permission of O’Reilly Media, Inc., which 
   owns or controls all rights to publish and sell the same. 

ISBN 978-5-459-01263-7 © Перевод на русский язык ООО Издательство «Питер», 2012 

   © Издание на русском языке, оформление ООО Издательство «Питер», 2012 



Краткое оглавление

Предисловие................................................................................. 14

Глава 1. Сильные стороны............................................................ 17

Глава 2. Грамматика..................................................................... 22

Глава 3. Объекты......................................................................... 37

Глава 4. Функции......................................................................... 44

Глава 5. Наследование................................................................. 66

Глава 6. Массивы......................................................................... 78

Глава 7. Регулярные выражения................................................... 86

Глава 8. Методы......................................................................... 100

Глава 9. Стиль............................................................................ 118

Глава 10. Прекрасные черты........................................................ 122

Приложение A. Кошмарные вещи................................................ 125

Приложение Б. Плохие вещи....................................................... 134

Приложение В. JSLint.................................................................. 141

Приложение Г. Синтаксические диаграммы.................................. 153

Приложение Д. JSON................................................................... 163



Оглавление

Краткое оглавление....................................................................... 5
Об авторе.........................................................................................................................................12

Предисловие................................................................................. 14
Условные обозначения............................................................................................................... 15
Использование примеров кода................................................................................................ 15
Благодарности...............................................................................................................................15

Глава 1. Сильные стороны.......................................................... 17
Почему JavaScript?.......................................................................................................................18
Анализ JavaScript.........................................................................................................................19
Простая проверка.........................................................................................................................21

Глава 2. Грамматика.................................................................... 22
Пробельные символы.................................................................................................................. 23
Имена................................................................................................................................................24
Числа.................................................................................................................................................25
Строки..............................................................................................................................................26
Инструкции....................................................................................................................................27
Выражения......................................................................................................................................32
Литералы.........................................................................................................................................35
Функции..........................................................................................................................................36

Глава 3. Объекты......................................................................... 37
Литералы объектов......................................................................................................................37
Получение значений....................................................................................................................38
Обновление.....................................................................................................................................39
Ссылки.............................................................................................................................................39
Прототипы......................................................................................................................................39
Отражения......................................................................................................................................40



Оглавление ﻿      7

Перечисление.................................................................................................................................41
Удаление..........................................................................................................................................42
Ослабление глобальности......................................................................................................... 42

Глава 4. Функции......................................................................... 44
Объекты функций........................................................................................................................44
Литералы функций......................................................................................................................45
Вызовы.............................................................................................................................................45

Шаблон вызова метода........................................................................................................... 46
Шаблон вызова функции....................................................................................................... 47
Шаблон вызова конструктора.............................................................................................. 47
Шаблон вызова метода apply................................................................................................ 48

Аргументы.......................................................................................................................................49
Возвращение управления из функции.................................................................................. 50
Исключения...................................................................................................................................50
Расширенные типы......................................................................................................................51
Рекурсия..........................................................................................................................................52
Область видимости......................................................................................................................54
Замыкания......................................................................................................................................55
Обратные вызовы.........................................................................................................................58
Модули.............................................................................................................................................59
Каскады............................................................................................................................................61
Каррирование................................................................................................................................62
Мемоизация....................................................................................................................................63

Глава 5. Наследование................................................................ 66
Псевдоклассовое наследование............................................................................................... 67
Спецификаторы объектов......................................................................................................... 70
Прототипизированное наследование.................................................................................... 70
Функциональное наследование.............................................................................................. 72
Детали...............................................................................................................................................75

Глава 6. Массивы......................................................................... 78
Литералы массивов......................................................................................................................78
Длина................................................................................................................................................79
Удаление..........................................................................................................................................80
Перечисление.................................................................................................................................81
Путаница.........................................................................................................................................81
Методы.............................................................................................................................................82
Размерность....................................................................................................................................83



8      Оглавление

Глава 7. Регулярные выражения................................................ 86
Пример.............................................................................................................................................87
Конструкция..................................................................................................................................92
Элементы.........................................................................................................................................93

Выбор регулярного выражения........................................................................................... 93
Последовательность регулярных выражений................................................................ 94
Фрагмент регулярного выражения.................................................................................... 94
Управляющие символы регулярных выражений.......................................................... 95
Группы регулярных выражений.......................................................................................... 96
Классы регулярных выражений.......................................................................................... 97
Управляющие символы в классах регулярных выражений...................................... 98
Квантификатор регулярного выражения......................................................................... 98

Глава 8. Методы......................................................................... 100
Массивы.........................................................................................................................................100

array.concat(item...).................................................................................................................100
array.join(separator)................................................................................................................100
array.pop()..................................................................................................................................101
array.push(item...)....................................................................................................................101
array.reverse()...........................................................................................................................101
array.shift()................................................................................................................................102
array.slice(start, end)...............................................................................................................102
array.sort(comparefn)..............................................................................................................102
array.splice(start, deleteCount, item...)..............................................................................105
array.unshift(item...)................................................................................................................106

Функции........................................................................................................................................107
function.apply(thisArg, argArray).......................................................................................107

Числа...............................................................................................................................................107
number.toExponential(fractionDigits)...............................................................................107
number.toFixed(fractionDigits)...........................................................................................108
number.toPrecision(precision).............................................................................................108
number.toString(radix)..........................................................................................................108

Объекты.........................................................................................................................................109
object.hasOwnProperty(name)............................................................................................109

Регулярные выражения............................................................................................................109
regexp.exec(sting)....................................................................................................................109
regexp.test(string)....................................................................................................................111

Строки............................................................................................................................................112
string.charAt(pos)....................................................................................................................112
string.charCodeAt(pos)..........................................................................................................112



Оглавление ��﻿﻿      9

string.concat(string...).............................................................................................................112
string.indexOf(searchString, position)...............................................................................112
string.lastIndexOf(searchString, position)........................................................................113
string.localeCompare(that)....................................................................................................113
string.match(regexp)...............................................................................................................113
string.replace(searchValue, replaceValue)........................................................................114
string.search(regexp)...............................................................................................................115
string.slice(start, end)..............................................................................................................115
string.split(separator, limit)...................................................................................................116
string.substring(start, end)....................................................................................................117
string.toLocaleLowerCase()..................................................................................................117
string.toLocaleUpperCase()..................................................................................................117
string.toLowerCase()..............................................................................................................117
string.toUpperCase()..............................................................................................................117
String.fromCharCode(char...)...............................................................................................117

Глава 9. Стиль............................................................................ 118

Глава 10. Прекрасные черты.................................................... 122

Приложение A. Кошмарные вещи............................................ 125
Глобальные переменные..........................................................................................................125
Область видимости....................................................................................................................126
Автоматическая вставка точки с запятой..........................................................................126
Зарезервированные слова........................................................................................................127
Unicode...........................................................................................................................................127
typeof...............................................................................................................................................128
parseInt...........................................................................................................................................128
Оператор +....................................................................................................................................129
Плавающая точка.......................................................................................................................129
NaN..................................................................................................................................................129
Странные массивы.....................................................................................................................130
Значения falsy..............................................................................................................................131
hasOwnProperty..........................................................................................................................132
Object..............................................................................................................................................132

Приложение Б. Плохие вещи.................................................... 134
Оператор ==.................................................................................................................................134
Инструкция with.........................................................................................................................135
eval...................................................................................................................................................135
Инструкция continue.................................................................................................................136



10      Оглавление

Провал сквозь switch.................................................................................................................136
Безблочные инструкции..........................................................................................................137
Операторы ++ и --......................................................................................................................137
Битовые операторы....................................................................................................................138
Инструкция function против выражения function .........................................................138
Типизированные оболочки.....................................................................................................139
Оператор new...............................................................................................................................139
Оператор void..............................................................................................................................140

Приложение В. JSLint................................................................. 141
Неопределенные переменные и функции..........................................................................142
Members.........................................................................................................................................142
Опции.............................................................................................................................................143
Точка с запятой...........................................................................................................................144
Разрыв строки..............................................................................................................................145
Запятая...........................................................................................................................................145
Обязательные блоки..................................................................................................................145
Закрытые блоки..........................................................................................................................146
Инструкция с выражением.....................................................................................................146
Инструкция for in.......................................................................................................................146
Инструкция switch.....................................................................................................................147
Инструкция var...........................................................................................................................147
Инструкция with.........................................................................................................................147
Оператор =....................................................................................................................................148
Операторы == и !=.....................................................................................................................148
Метки..............................................................................................................................................148
Недостижимый код....................................................................................................................149
Путаница с плюсами и минусами.........................................................................................149
Инкремент и декремент...........................................................................................................149
Битовые операторы....................................................................................................................149
Зловещая функция eval............................................................................................................149
Оператор void..............................................................................................................................150
Регулярные выражения............................................................................................................150
Конструкторы и префикс new................................................................................................150
Чего JSLint не ищет...................................................................................................................150
HTML.............................................................................................................................................151
JSON................................................................................................................................................151
Отчет...............................................................................................................................................151



Оглавление ��﻿﻿      11

Приложение Г. Синтаксические диаграммы............................ 153

Приложение Д. JSON.................................................................. 163
Синтаксис JSON.........................................................................................................................163
Безопасное использование JSON..........................................................................................166
JSON-парсер.................................................................................................................................167



Об авторе

Дуглас Крокфорд — ведущий специалист по JavaScript в Yahoo! Он известен как 
создатель и популяризатор формата JSON ( JavaScript Object Notation). Он наи-
более авторитетный из ныне живущих специалистов по JavaScript. Он регулярно 
принимает участие в конференциях, посвященных передовым веб-технологиям, 
а также является членом комитета ECMAScript.



Моим друзьям: Клементу, Филберту, Сеймуру, 
Стерну и, чтобы не забыть, К. Твилдо



Предисловие

Коль не удастся нам пиеса, мы желали, 
Чтоб знали вы, что мы не с тем пришли сюда, 
Чтоб нам не удалось; мы вот чего искали: 
Вам предложить свои услуги, господа; 
Вот нашего конца вернейшее начало.

Уильям Шекспир. Сон в летнюю ночь

Эта книга по программированию на JavaScript. Она предназначена для тех, кто 
случайно или из любопытства впервые решил познакомиться с JavaScript, а также 
для тех, кто уже немного работал с этим языком и готов поднять свои отношения 
с ним на новый уровень. JavaScript — удивительно мощный язык. И хотя изуче-
ние JavaScript представляется затруднительным в силу его нетрадиционности, это 
компенсируется его небольшим объемом.

Моя цель — помочь вам научиться думать в терминах JavaScript. Я покажу вам не-
которые компоненты языка и помогу найти пути, которые позволят объединить их 
в завершенных конструкциях. Эта книга — не справочник. Представленная здесь 
информация о языке JavaScript и его особенностях не является исчерпывающей. 
Все нюансы вы можете легко найти в Интернете. Эта книга содержит только то, 
что действительно важно.

Эта книга не для начинающих. Когда-нибудь я надеюсь написать книгу «JavaScript: 
первые шаги», но это не она. Это книга не о библиотеке Ajax и не о веб-програм
мировании. Основное внимание в ней сконцентрировано на языке JavaScript, яв-
ляющимся лишь одним из языков, которыми должен овладеть веб-разработчик.

Эта книга не для чайников. Она небольшая, но содержательная. В ней собрано 
много материала. Не расстраивайтесь, если придется прочесть ее не один раз. 
Ваши старания будут вознаграждены.



Благодарности      15

Условные обозначения

В этой книге используются следующие условные обозначения:

Курсивом��  обозначены термины, встречающиеся в книге впервые.
Специальным шрифтом��  выделены URL-адреса, а также названия и расширения 
файлов.
Моноширинным��  шрифтом обозначены фрагменты компьютерного кода в широком 
смысле, включая команды, опции, переменные, атрибуты, ключи, запросы, функ-
ции, методы, типы, классы, модули, свойства, параметры, значения, объекты, 
события, обработчики событий, XML- и XHTML-теги, макросы и ключевые 
слова.

Использование примеров кода

Эта книга написана, чтобы помочь вам справиться с поставленной задачей. В об-
щем, вы можете использовать код, приведенный в этой книге, в своих программах 
и документации. Для этого вам не нужно разрешение. Так, к примеру, чтобы на-
писать программу, содержащую несколько фрагментов кода из этой книги, раз-
решение не потребуется. А вот продажа или распространение на компакт-дисках 
примеров уже требует разрешения. Разрешение не нужно, если вы, отвечая на во-
прос, процитировали эту книгу и привели несколько примеров кода. В то же время 
включение значительного количества примеров кода из этой книги в документа-
цию по вашему продукту уже требует разрешения.

Если вам кажется, что использование примеров кода выходит за рамки упомя-
нутых здесь требований, не стесняйтесь обращаться к нам по адресу permissions@
oreilly.com.

Благодарности

Я хочу поблагодарить экспертов, отыскавших множество моих вопиющих ошибок. 
Что может быть лучше, чем ситуация, когда действительно умные люди замечают 
ваши промахи? Но еще лучше, если это происходит, прежде чем ваши ошибки ста-
нут достоянием общественности. Спасибо Стиву Соудерсу (Steve Souders), Биллу 
Скотту (Bill Scott), Жульен Леконта ( Julien Lecomte), Стояну Стефанову (Stoyan 
Stefanov), Эрику Мираджила (Eric Miraglia) и Эллиотт Расти Гарольд (Elliotte 
Rusty Harold).

Я хочу поблагодарить людей, с которыми работал в Electric Communities и State 
Software, ведь они помогли мне обнаружить столько хорошего в JavaScript. Особая 



16      ﻿Предисловие

благодарность Чипу Морнингстару (Chip Morningstar), Ренди Фармеру (Randy 
Farmer), Джону Ла Марк Миллеру ( John La, Mark Miller), Скотту Шаттаку (Scott 
Shattuck) и Биллу Эдни (Bill Edney).

Я хочу поблагодарить компанию Yahoo! за предоставленное мне время для ра-
боты над этим проектом и за прекрасное рабочее место. Спасибо всем бывшим 
и нынешним членам Ajax Strike Force. Спасибо O'Reilly Media, Inc., в частности 
Мари Треслер (Mary Treseler), Саймону Сен Лорану (Simon St.Laurent) и Самиту 
Мукерджи (Sumita Mukherji), благодаря которым все прошло так гладко.

Особая благодарность профессору Лизе Дрейк (Lisa Drake) за все то, что она дела-
ет. Кроме того, я хочу поблагодарить ребят из ECMA TC39, упорно пытающихся 
улучшить ECMAScript.

Наконец, спасибо Брендану Эйчи (Brendan Eich), автору наиболее недооцененно-
го языка программирования в мире, без которого эта книга была бы не нужна.

От издательства

Ваши замечания, предложения и вопросы отправляйте по адресу электронной по-
чты comp@piter.com (издательство «Питер», компьютерная редакция).

Мы будем рады узнать ваше мнение!

Подробную информацию о наших книгах вы найдете на сайте издательства  
http://www.piter.com.



Сильные стороны

…привлекательная внешность, мужественная 
осанка — вот и все мое колдовство.

Уильям Шекспир. Виндзорские насмешницы

В начале своей карьеры программиста я хотел досконально изучить языки, на ко-
торых писал, чтобы в полной мере использовать все их возможности. Думаю, это 
был отличный способ проявить себя, и это сработало, я стал тем, к кому можно 
обратиться, чтобы узнать, как использовать ту или иную функцию.

Со временем я понял, что использование некоторых функций приносит больше 
вреда, чем пользы. Одни функции были плохо определены, что, вероятнее всего, 
объяснялось проблемами переносимости. Другие превращали код в нечитабель-
ный и плохо модифицируемый, что делало его чрезмерно сложным и было чрева-
то ошибками. Кроме того, некоторые функции были плохо спроектированы. Ино-
гда разработчики языка тоже совершают ошибки.

Любой язык программирования имеет свои сильные и слабые стороны. Я по-
нял, что мог бы стать хорошим программистом, используя только достоинства 
и избегая недостатков. В конце концов, как получить что-то хорошее из плохих 
деталей?

Иногда комитеты по стандартизации могут убрать из языка неудачные фрагменты, 
способные привести к сбою программ, в которых эти несовершенные фрагменты 
используются. Но, как правило, они лишь добавляют новые функции к многочис-
ленным уже существующим и не слишком удачным, причем эти новые функции 
не всегда гармонично сочетаются с существующими, что порождает новые про-
блемы.

Тем не менее у вас есть возможность определять собственные подмножества 
и создавать хорошие программы, основываясь исключительно на удачных фраг-
ментах.

Язык JavaScript почти полностью состоит из недостатков. Все началось с того, 
что основы были заложены в небывало короткий промежуток времени. У раз-

1



18      Глава 1. Сильные стороны

работчиков так и не нашлось времени, чтобы все опробовать и отладить. То же 
произошло и с Netscape Navigator 2 — все было сделано довольно грубо. Идея соз-
дания Java™-приложений провалилась, и язык JavaScript занял место «основного 
языка для Веб». Хотя популярность JavaScript почти не зависит от его качеств как 
языка программирования.

К счастью, у JavaScript есть и довольно сильные стороны. Это красивый, элегант-
ный и очень выразительный язык, похороненный под грудой добрых намерений 
и ошибок. Лучшие черты JavaScript так старательно скрыты, что на протяжении 
многих лет бытует мнение о том, что JavaScript — это просто невзрачная сломан-
ная игрушка. Моя цель — открыть сильные стороны JavaScript, как выдающего-
ся из динамических языков программирования. Будем считать, что JavaScript — 
это кусок мрамора, и я, отсекая все лишнее, попытаюсь показать его истинную 
суть. Я  считаю, что мне удалось выделить более элегантное подмножество, чем 
JavaScript в целом, более надежное, удобное для чтения и сопровождения.

Эта книга не является детальным описанием JavaScript. Основное внимание 
здесь сосредоточено на сильных сторонах этого языка и советах, помогающих из-
бежать слабых. Упомянутые в этой книге конструкции могут быть использованы 
для построения надежных и понятных программ любого объема. Концентрируясь 
только на хороших конструкциях, можно сократить время обучения, повысить на-
дежность и спасти несколько деревьев (которые иначе пришлось бы извести на 
лишнюю бумагу).

Возможно, наибольшая польза от изучения сильных сторон языка состоит в том, 
что это не требует отучиваться от использования его слабых сторон. Отучить-
ся применять плохие программные шаблоны очень трудно. Большинство из нас 
сталкивается с этой непростой задачей с крайней неохотой. Иногда языки под-
разделяют на подмножества, чтобы облегчить работу студентов. Однако в данном 
случае я выделил такие подмножества JavaScript, которые способны облегчить 
работу профессионалам.

Почему JavaScript?

JavaScript важен, потому что это язык веб-браузера. Его связь с браузером делает 
JavaScript одним из самых популярных языков программирования в мире, хотя 
в то же время он один из самых презираемых. API браузера, объектная модель до-
кументов (Document Object Model, DOM) просто ужасны, но обвинять JavaScript 
несправедливо. На любом языке нелегко работать с DOM, так как эта модель 
плохо определена и непоследовательно реализована. Эта книга вскользь касается 
DOM. Я думаю, что написать книгу о сильных сторонах DOM было бы крайне 
сложно.

JavaScript презирают потому, что этот язык не похож на какой-либо другой. 
Если вы разбираетесь в каком-нибудь другом языке, но вам приходится рабо-



Анализ JavaScript      19

тать в программной среде, которая поддерживает только JavaScript, это раздра-
жает. Большинство людей в такой ситуации даже не стараются вначале изучить 
JavaScript, а потом удивляются, когда оказывается, что JavaScript отличается от 
других языков, которые они предпочли бы использовать, и что эти различия су-
щественны.

У JavaScript есть удивительная особенность  — этот язык позволяет решать по-
ставленные задачи, даже не имея особого представления ни о самом языке, ни 
о программировании вообще. Он обладает огромной выразительной силой. Тем 
не менее лучше, если вы знаете, что делаете. Программирование — дело трудное. 
И без должных знаний браться за него не стоит.

Анализ JavaScript

В основу JavaScript положены как очень хорошие, так и очень плохие идеи.

Очень хорошие идеи касаются функций, нестрогой типизации, динамических объ-
ектов, а также нотации литералов объектов. Плохие же идеи связаны с моделью 
программирования на основе глобальных переменных.

Функции в JavaScript представляют собой различного рода объекты (в основном) 
в лексическом контексте. JavaScript  — один из основных языков, использую-
щих лямбда-выражения. По сути, JavaScript имеет гораздо больше общего с Lisp 
и Scheme, нежели чем с Java. JavaScript  — это Lisp в «шкуре» С, что делает его 
удивительно мощным языком.

Сегодня в большинстве языков программирования мода требует строгой типи-
зации. Существует теория, что строгая типизация позволяет компилятору обна-
руживать больше ошибок во время компиляции. Чем скорее мы сможем найти 
и исправить ошибки, тем дешевле они нам обойдутся. В JavaScript нет строгой 
типизации, поэтому компиляторы не в состоянии обнаружить ошибки типиза-
ции. Это вызывает беспокойство людей, которые пришли в JavaScript из языков 
со строгой типизацией. Однако оказывается, что строгая типизация не избавля-
ет от необходимости тщательного тестирования. Я обнаружил, что некоторые из 
ошибок, которые компилятор определяет как ошибки типизации, вовсе не явля-
ются ошибками, и это настораживает. Я вообще считаю, что решать подобные про-
блемы поможет нестрогая типизация. Совершенно не обязательно выстраивать 
сложные иерархии классов и ломать голову над системой типов, чтобы достигнуть 
желаемого результата.

В JavaScript реализована очень мощная нотация литералов объектов. Объекты 
создаются простым указанием их компонентов. Эта нотация привела к появле-
нию популярного формата обмена данными JSON. (Подробнее о JSON рассказано 
в приложении Д.)

Прототипическое наследование в JavaScript  — спорная концепция. Объекты 
в JavaScript не привязаны к классам и наследуют свойства непосредственно от 



20      Глава 1. Сильные стороны

других объектов. На самом деле, это довольно мощный инструмент, но он не зна-
ком программистам с классическим образованием. Если вы попытаетесь приме-
нять классические шаблоны разработки непосредственно в JavaScript, вы буде-
те разочарованы. Однако если вы научитесь работать с прототипами в контексте 
JavaScript, ваши усилия будут вознаграждены.

Язык JavaScript сильно пострадал из-за клеветы, касающийся его основных идей. 
По большей части, эти идеи хороши, если не необычны. Но кое-что действительно 
ужасно: JavaScript зависит от глобальных переменных. Все переменные высшего 
уровня собраны вместе в общем пространстве имен, названном глобальным объ-
ектом. Это плохо, так как использование глобальных переменных — не лучшее ре-
шение, но в JavaScript они являются основополагающими. К счастью, в JavaScript 
предусмотрены инструменты, способные решить эту проблему.

Некоторые недостатки невозможно игнорировать. Иногда они неизбежно при-
водят к ужасным последствиям, о чем рассказывается в приложении А. Однако 
избежать большинства из них можно, обобщая написанное в приложении Б. Об-
ратитесь к любой другой книге по JavaScript, если захотите побольше узнать о не-
достатках.

Стандарт, определяющий JavaScript (известный как JScript)  — третье издание 
языка ECMAScript, доступен по адресу http://www.ecma-international.org/publications/
files/ecma-st/ECMA-262.pdf. В этой книге описывается не весь язык, обладающий 
массой недостатков, а лишь подмножество ECMAScript. Приводимые рекомен-
дации не являются исчерпывающими, но помогают в крайних случаях, которых 
следует избегать.

В приложении В описан программный продукт под названием JSLint. Это анали-
затор JavaScript, который проверяет код, написанный на JavaScript, и сообщает 
о его недостатках. JSLint обеспечивает точность, которой не хватает для развития 
JavaScript, и дает вам уверенность в том, что ваши программы состоят только из 
хороших частей.

JavaScript — это язык контрастов. В нем много ошибок и сложностей, которые за-
ставляют задаться вопросом: «Почему я должен использовать JavaScript?» Есть 
два ответа. Во-первых, у вас всегда есть выбор. Сеть стала важной площадкой для 
разработки приложений, а JavaScript — единственный язык, который поддержи-
вается всеми браузерами. Очень жаль, что идея Java провалилась, она могла бы 
стать альтернативой для тех, кому нужен строго типизированный классический 
язык. Но Java потерпел неудачу, а JavaScript процветает, так что еще не известно, 
так ли плох JavaScript.

Во-вторых, несмотря на все свои недостатки, JavaScript действительно хорош. Это 
легкий и выразительный язык. И приобретя некоторые навыки, вы поймете, что 
функциональное программирование — дело довольно веселое.

Однако для того чтобы использовать язык хорошо, нужно быть хорошо инфор-
мированным об ограничениях, которые порой ставят в тупик. Но пусть это вам не 
мешает. Сильные стороны с лихвой компенсируют слабые.



Простая проверка      21

Простая проверка

Веб-браузер и любой текстовый редактор — это все, что необходимо для запуска 
программ на JavaScript. Во-первых, создайте HTML-файл и назовите его, к при-
меру, program.html:

<html><body><pre><script src="program.js">
</script></pre></body></html>

Затем создайте в том же каталоге файл с именем program.js:

document.writeln('Hello, world!');

Теперь, чтобы увидеть результат, откройте ваш HTML-файл в браузере. На про-
тяжении всей книги метод method используется для определения новых методов. 
Он определяется следующим образом:

Function.prototype.method = function (name, func) { 
    this.prototype[name] = func; 
    return this;
};

Подробнее этот метод описан в главе 4.



Грамматика

… знаком он мне: В грамматике 
читал его когда-то.

Уильям Шекспир. Тит Андроник

Описанная в этой главе грамматика сильных сторон JavaScript дает общее пред-
ставление о структуре языка. Описать грамматику можно с помощью синтаксиче-
ских диаграмм.

Правила интерпретации таких диаграмм довольно просты:

Синтаксические диаграммы читаются слева направо.��

Овалами обозначены символьные значения, прямоугольниками — правила или ��
описания.

Верная последовательность может быть получена из элементов, стоящих друг ��
за другом.

Любая другая последовательность не верна.��

Синтаксическая диаграмма, имеющая на концах одинарные штрихи, может быть ��
вставлена между двумя другими диаграммами, но с диаграммами, имеющими 
на концах двойные штрихи, это невозможно.

Грамматика сильных сторон JavaScript, описанная в этой главе, значительно про-
ще грамматики всего языка.

2



Пробельные символы      23

Пробельные символы

Пробелы применяются для разделения символов или комментариев. Пробельные 
символы, как правило, не важны, но иногда их приходится использовать для раз-
деления последовательностей символов, которые могли бы быть объединены. На-
пример:

var that = this;

Пробел между var и that удалять не следует, хотя другие пробелы могут быть уда-
лены.

В JavaScript существует два способа задания комментариев: блочные коммента-
рии начинаются с /* и заканчиваются */, строчный комментарий начинается с //. 
Чтобы облегчить чтение кода, принято использовать комментарии, точно описы-
вающие программный код. Нет ничего хуже, чем устаревшие комментарии.

Блочное задание комментариев символами /* */пришло из языка PL/1. В PL/1 та-
кое сочетание было выбрано потому, что оно вряд ли могло бы встретиться в про-
грамме, разве что внутри строки. В JavaScript эти сочетания могут возникнуть 
и в регулярных выражениях, поэтому блочные комментарии не совсем безопасны. 
Например:

/*
    var rm_a = /a*/.match(s);
*/



24      Глава 2. Грамматика

Приведенный код содержит ошибку, поэтому рекомендуется избегать символов 
/* */ в комментариях, а использовать для комментариев символы //. В этой книге 
применяется исключительно второй способ.

Имена

Имя может состоять из одной и более букв, цифр или символов подчеркивания. 
В  качестве имени нельзя использовать одно из следующих зарезервированных 
слов:

abstract
boolean break byte
case catch char class const continue 
debugger default delete do double
else enum export extends
false final finally float for function
goto
if implements import in instanceof int interface
long
native new null
package private protected public 
return
short static super switch synchronized 
this throw throws transient true try typeof 
var volatile void 
while with

Большинство из этих зарезервированных слов в JavaScript не используются. При 
этом в приведенный список не включены несколько слов, которые следует заре-
зервировать, например undefined, NaN и Infinity. Не допускается использование за-
резервированных слов для именования переменных или параметров. Более того, 
их нельзя применять в качестве имен параметров объекта, причем ни при сим-
вольном задании объекта, ни после точки.

Имена служат для объявления переменных, параметров, свойств, операторов 
и меток.



Числа      25

Числа

В JavaScript всего один числовой тип. Как и double в Java, он представляет собой 
64-разрядное число с плавающей точкой. В отличие от большинства других язы-
ков программирования, в JavaScript нет отдельного целого типа, поэтому 1 и 1.0 — 
это одно и то же значение. Это довольно удобно, так как полностью исключает 
проблему переполнения для небольших целых чисел. Все, что вам нужно знать 
о числе — это то, что оно действительно число. Таким образом, удается избежать 
множества ошибок, связанных с числовыми типами.

Если числовое значение содержит показатель степени, то оно буквально вычисля-
ется путем умножения на 10 части, стоящей перед е, столько раз, сколько указано 
после e. Так, 100 и 1e2 — это одно и то же.

Для задания отрицательных чисел используется префикс -.

Для обозначения результатов вычислений, в ходе которых не может быть получен 
нормальный результат, используется значение NaN. NaN не имеет конкретного чис-
ленного значения. Функция isNaN(number) проверяет, имеет ли число значение NaN.

Бесконечностью считаются все значения больше 1.79769313486231570e +308.

К числам применяются методы, которые подробно описаны в главе 8. В JavaScript 
существует объект Math, содержащий набор методов для работы с числами. На-
пример, метод Math.floor(number) преобразует значения чисел в целые.



26      Глава 2. Грамматика

Строки

Строка может быть заключена в одинарные или двойные кавычки. Она может со-
держать ноль и более символов. Обратный слэш (\) является экранирующим сим-
волом. В то время когда разрабатывался язык JavaScript, стандарт Unicode состо-
ял из набора 16-разрядных символов, так что все символы в JavaScript являются 
16-разрядными.

JavaScript не имеет символьного типа. Для того чтобы получить символ, нужно 
задать строку из одного символа.

"

'

двойная кавычка

одинарная кавычка

забой

цифры

э

э
'



Инструкции      27

Управляющие последовательности позволяют вставлять в строки символы, кото-
рые обычно вставлять не разрешается, например обратный слэш, кавычки и управ-
ляющие символы. Последовательность \u позволяет задать кодовое значение сим-
вола.

"" === "\ U0041"

У строк есть свойство length. Например, "seven".length равно 5.

Строки являются постоянными. После того как строка создана, она не может быть 
изменена. Однако можно легко создать новую строку, объединив другие строки 
вместе с помощью оператора +.

Две строки, содержащие одни и те же символы в одном и том же порядке, счита-
ются одинаковыми. Например:

'c' + 'a' + 't' === 'cat'

Это равенство верно.

У строк имеются методы (см. главу 8), например:

'cat'.toUpperCase() === 'CAT'

Инструкции

Компилируемый модуль содержит набор исполняемых инструкций. Каждый тег 
<script> указывает веб-браузеру фрагмент, который необходимо скомпилиро-
вать и немедленно выполнить. Не имея компоновщика, JavaScript собирает их все 
вместе в общем глобальном пространстве имен. Подробное описание глобальных 
переменных приведено в приложении А.

Для объявления закрытых переменных инструкция var помещается внутрь функ-
ции.

Инструкции switch, while, for и do могут иметь дополнительный префикс label, 
который используется с инструкцией break.



28      Глава 2. Грамматика

Как правило, инструкции выполняются по порядку сверху вниз. Последователь-
ность выполнения может быть изменена с помощью условных операторов (if 
и switch), циклов (while, for и do), прерываний (break, return и throw) и вызовов 
функций.

Блок представляет собой набор инструкций, заключенных в фигурные скобки. 
В отличие от многих других языков, блоки в JavaScript не создают новой обла-
сти видимости, так что определять переменные следует в начале функции, а не 
в блоках.

Инструкция if изменяет ход выполнения программы в зависимости от значения 
выражения. Если значение выражения истинно, выполняется блок, следующий за 
then, в противном случае будет выбрана ветвь, следующая за else.



Инструкции      29

Ложными являются следующие значения:

false�� ;
null�� ;
undefined�� ;
значение �� '' (пустая строка);
значение 0;��
значение �� NaN.

Все другие значения являются истинными, в том числе строка 'false' и все объ-
екты.

Оператор switch выполняет множество ветвей. Он проверяет равенство выраже-
ния всем ветвям case. Выражение может быть числом или строкой. Если найдено 
точное соответствие, выполняются инструкции соответствующей ветви. Если со-
впадения нет, выполняются инструкции ветви default.

Предложение case содержит одно или несколько выражений. Выражения для 
сравнения не должны быть постоянными. Каждый блок внутри case должен со-
держать инструкцию прерывания, чтобы предотвратить переход к следующему 
условию. Для выхода из инструкции switch необходимо использовать инструк-
цию break.



30      Глава 2. Грамматика

С помощью инструкции while можно организовать цикл. Если выражение ста-
новится ложным, то выполнение цикла перерывается. Пока выражение истинно, 
блок выполняется.

Используя инструкцию for, можно организовать более сложный цикл. Существу-
ет две формы цикла for.

Если цикл задан в обычной форме, то работа с ним осуществляется в три этапа: 
инициализация, проверка условия, приращение. Во-первых, выполняется ини-
циализация, которая обычно задает начальные переменные цикла. Затем оцени-
вается состояние. Как правило, переменная цикла проверяется на соответствие 
критерию завершения цикла. Если условие опущено, предполагается, что условие 
истинно. Если условие ложно, цикл прерывается. В противном случае при ис-
полнении блока выполняется приращение, а затем цикл повторяется с проверки 
условия.

В другой форме (имеется в виду for in) перечисляют имена свойств (или ключей) 
объекта. На каждой итерации переменной присваивается очередная строка, соот-
ветствующая имени свойства объекта.

Обычно для проверки используется метод object.hasOwnProperty(variable), 
определяющий, обладает ли объект заданным свойством или был найден среди 
прототипов.

for (myvar in obj) {
    if (obj.hasOwnProperty(myvar)) {
        ...
    }
}



Инструкции      31

Инструкция do похожа на while за исключением того, что выражение проверяется 
после выполнения блока, а не до него. Это означает, что блок всегда будет выпол-
нен хотя бы один раз.

Инструкция try выполняет блок и перехватывает все вбрасываемые блоком ис-
ключения. В предложении catch определяется новая переменная, которая полу-
чит объект исключения.

Инструкция throw запускает исключение. Если инструкция throw содержит блок 
try, то управление передается в предложение catch. В противном случае выпол-
нение функции прекращается, и управление передается в предложение catch ин-
струкции try вызывавшей ее функции.

Здесь выражение — это, как правило, литерал объекта, содержащий свойства name 
и message. Перехватчик исключений может использовать эту информацию для 
управления дальнейшими действиями.

Инструкция return досрочно возвращает результат вызова функции. Также в ней 
можно указать возвращаемое значение. Если возвращаемое выражение не указа-
но, то оно будет undefined.

В JavaScript конец строки не может находиться между инструкцией return и вы-
ражением.

Инструкция break заставляет выйти из цикла или из инструкции switch. Опци-
онально она может содержать метку, которая приведет к выходу из помеченной 
этой меткой инструкции.

В JavaScript конец строки не может находиться между инструкцией break и мет-
кой.

Инструкция выражения позволяет присваивать значения одной или нескольких 
переменных или членов объекта, вызывать методы, удалять свойства объекта. Для 
присваивания используется оператор = . Не стоит путать его с оператором равен-
ства ===. Оператор += применяется для сложения и конкатенации.



32      Глава 2. Грамматика

Выражения

Простейшее выражение может представлять собой литеральное значение (на-
пример, строку или число), переменную, встроенное значение (true, false, null, 
undefined, NaN или Infinity), вызывающее выражение, начинающееся с new, уточ-
няющее выражение, начинающееся с delete, выражение, заключенное в круглые 
скобки, выражение, которому предшествует префиксный оператор, или выраже-
ние, за которым следует:

инфиксный оператор и другое выражение;��

тернарный оператор �� ?, за которым следует другое выражение, а затем после : 
еще одно;

вызов;��

уточнение.��

Тернарный оператор ? принимает три операнда. Если первый операнд истинен, 
оператор принимает значение второго операнда. Если же первый операнд ложен, 
он принимает значение третьего операнда.

Операторы, находящиеся в верхней части табл. 2.1, имеют более высокий приори-
тет. Операторы в нижней части таблицы имеют низкий приоритет. Для изменения 
нормального приоритета могут быть использованы скобки:

2 + 3 * 5 === 17 
(2 + 3) * 5 === 25



Выражения      33

Таблица 2.1. Приоритеты операторов

Операторы Описание

. [] () Очистка и вызов

delete new typeof + - ! Унарные операторы

* / % Умножение, деление, получение остатка

+ - Сложение (конкатенация), вычитание

>= <= >< Неравенство

=== !== Равенство

&& Логическое И

|| Логическое ИЛИ

?: Тернарный оператор



34      Глава 2. Грамматика

В операторе typeof могут использоваться значения 'number', 'string', 'boolean', 
'undefined', 'function' и 'object'. Если операнд — массив или null, то результа-
том будет 'object', что неверно. Подробнее использование оператора typeof опи-
сано в главе 6 и приложении А.

Если операнд оператора ! принимает значение true, то возвращается false. В про-
тивном случае он возвращает true.

Оператор + выполняет сложение или конкатенацию. Если вы собираетесь исполь-
зовать его для сложения, убедитесь, что оба операнда являются числами.

Оператор / может вернуть нецелый результат, даже если оба операнда являются 
целыми.

Оператор && возвращает значение первого операнда, если первый операнд ложен. 
В противном случае он возвращает значение второго операнда.

Оператор || возвращает значение первого операнда, если первый операнд исти-
нен. В противном случае он возвращает значение второго операнда.

Вызовом функции является имя функции, за которым следует пара круглых ско-
бок. В скобках могут содержаться аргументы, которые передаются в функцию. 
Подробнее о функциях рассказывается в главе 4.

Уточнение позволяет задать свойство или элемент объекта или массива. В сле-
дующей главе об этом рассказывается более подробно.



Литералы      35

Литералы

Литералы объектов представляют собой удобную нотацию для задания новых 
объектов. Названия свойств могут указываться как имена или как строки. Имена 
трактуются как литеральные имена, а не как имена переменных, поэтому име-
на свойств объекта должны быть известны на этапе компиляции. Значениями 
свойств являются выражения. Подробнее литералы-объекты описаны в следую-
щей главе.

Для определения новых массивов удобно использовать литерал массива, который 
более подробно описан в главе 6.

О регулярных выражениях подробно рассказывается в главе 7.



36      Глава 2. Грамматика

Функции

Литерал функции определяет ее значение. Он может иметь имя (необязательно), 
которое дает возможность использовать рекурсивный вызов. Он может содержать 
список параметров, которые будут выступать в качестве аргументов функции. 
В теле функции находятся объявление переменных и инструкции. Подробнее 
о функциях рассказывается в главе 4.



Объекты

Любовь слепа на пошлые предметы.

Уильям Шекспир. Два веронца

Числа, строки, логические переменные (true и false), а также значения null 
и undefined в JavaScript относятся к простым типам данных. Все остальное явля-
ется объектами. Числа, строки и логические переменные похожи на объекты тем, 
что имеют методы, но в отличие от объектов они неизменны. Объекты в JavaScript 
имеют изменяемые ключевые коллекции. В JavaScript объектами являются мас-
сивы, функции, регулярные выражения, и, конечно, объекты также являются объ-
ектами.

Объект представляет собой контейнер свойств, где каждое свойство имеет имя 
и значение. Именем свойства может быть любая строка, в том числе пустая. Зна-
чением свойства может быть любое значение, исключая undefined.

Объекты в JavaScript не привязаны к классам, поэтому не существует ограниче-
ний на именование новых свойств или на присваивание им значений. Объекты 
довольно удобно использовать для сбора и организации данных. Объекты мо-
гут содержать другие объекты, поэтому с их помощью можно легко представить 
структуру дерева или графа.

В JavaScript предусмотрена возможность прототипизирования сборки, позволяю-
щая одному объекту наследовать свойства другого. При правильном использова-
нии это может сократить время инициализации объекта и потребление памяти.

Литералы объектов

Литералы объектов представляют собой очень удобную нотацию для создания 
новых объектных значений. Литерал объекта задается парой фигурных скобок, 

3



38      Глава 3. Объекты

внутрь которых можно поместить пару имя/значение или оставить их пустыми. 
Литерал объекта может указываться везде, где может находиться выражение:

var empty_object = {};

var stooge = {
    "first-name": "Jerome", 
    "last-name": "Howard"
};

Именем свойства может быть любая строка, включая пустую. Кавычки вокруг 
имени свойства в литерале объекта указывать не обязательно, если это имя до-
пустимо в JavaScript и не является зарезервированным словом. Таким образом, 
кавычки необходимы в имени "first-name", но не обязательны для first_name. Для 
разделения пар имя/значение используются запятые.

Значение свойства может быть получено из любого выражения, в том числе из 
другого литерала объекта. Объекты могут быть вложенными:

var flight = {
    airline: "Oceanic", 
    number: 815, 
    departure: {
        IATA: "SYD",
        time: "2004-09-22 14:55", 
        city: "Sydney"
    },
    arrival: {
        IATA: "LAX",
        time: "2004-09-23 10:42", city: "Los Angeles"
    }
};

Получение значений
Получить значения свойств объекта можно, заключив строку в квадратные скоб-
ки []. Если строка является строковым литералом, допустима в JavaScript и не яв-
ляется зарезервированным словом, то вместо квадратных скобок можно исполь-
зовать точку (.). Поскольку нотация с точкой компактнее и лучше читается, она 
считается более предпочтительной:

stooge["first-name"]     // "Jerome" 
flight.departure.IATA    // "SYD"

При попытке получить несуществующий член объекта возвращается значение 
undefined:

stooge["middle-name"]    // undefined
flight.status             // undefined
stooge["FIRST-NAME"]     // undefined



Прототипы      39

Для задания значений, предлагаемых по умолчанию, может быть использован 
оператор ||:

var middle = stooge["middle-name"] || "(none)"; 
var status = flight.status || "unknown";

При попытке получения значения undefined вбрасывается исключение TypeError. 
Этого можно избежать, воспользовавшись оператором &&:

flight.equipment                            // undefined
flight.equipment.model                      // вброс "TypeError"
flight.equipment && flight.equipment.model   // undefined

Обновление
Значение объекта может быть обновлено путем присваивания. Если свойство 
с таким именем уже существует в объекте, его значение заменяется:

stooge['first-name'] = 'Jerome';

Если объект еще не имеет свойства с таким именем, оно добавляется к объекту:

stooge['middle-name'] = 'Lester'; 
stooge.nickname = 'Curly'; 
flight.equipment = { 
    model: 'Boeing 777'
};
flight.status = 'overdue';

Ссылки
Объекты передаются по ссылке. Они никогда не копируются:

var x = stooge;
x.nickname = 'Curly';
var nick = stooge.nickname;
    // nick имеет значение 'Curly', так как x и stooge
    // являются ссылками на один и тот же объект
var a = {}, b = {}, c = {};
    // каждый из объектов a, b и c – это ссылка на
    // новый пустой объект 
a = b = c = {};
    // все объекты a, b и c являются ссылками на
    // один и тот же объект

Прототипы
Каждый объект связан с объектом-прототипом, от которого он может наследо-
вать свойства. Все объекты, создаваемые указанием литералов объектов, связаны 
с объектом Object.prototype, который обычно поставляется вместе с JavaScript. 



40      Глава 3. Объекты

При создании нового объекта можно выбрать объект, который будет его прототи-
пом. Механизм, обеспечивающий подобную возможность в JavaScript, реализован 
довольно запутанно и неаккуратно, но может быть значительно упрощен. Для это-
го к функции Object нужно добавить метод create. Метод create создает новый 
объект, использующий старый объект в качестве прототипа. Подробнее функции 
описаны в следующей главе.

if (typeof Object.create !== 'function') { 
    Object.create = function (o) { 
        var F = function () {}; 
        F.prototype = o; 
        return new F();
    };
}
var another_stooge = Object.create(stooge);

Связывание объекта с прототипом никак не влияет на обновление. В случае если 
в объект вносятся изменения, то они не касаются прототипа объекта:

another_stooge['first-name'] = 'Harry'; 
another_stooge['middle-name'] = 'Moses';
another_stooge.nickname = 'Moe';

Ссылка на прототип нужна только для получения значения. Если мы начнем по-
лучать значение свойства, которое отсутствует у объекта, то JavaScript попыта-
ется получить значение этого свойства у объекта-прототипа. А если его не будет 
и у этого объекта, то он, в свою очередь, обратится к своему прототипу и т. д., пока, 
наконец, дело не дойдет до объекта Object.prototype. Если требуемого свойства 
не существует в цепочке прототипов, то результатом будет значение undefined. 
Этот процесс называется делегированием.

Прототипы имеют динамические отношения. Если добавить прототипу новое 
свойство, то оно немедленно станет видимым для всех объектов, производных от 
этого прототипа:

stooge.profession = 'actor'; 
another_stooge.profession    // 'actor'

Подробнее цепочки прототипов описаны в главе 6.

Отражения
Можно легко проверить, существуют ли свойства объекта, которые он пытается 
получить, и изучить полученные значения. Оператор typeof может быть очень по-
лезным при определении типа свойства:

typeof flight.number      // 'number'
typeof flight.status      // 'string'
typeof flight.arrival     // 'object'
typeof flight.manifest    // 'undefined'



Перечисление      41

Необходимо соблюдать некоторую осторожность, поскольку любое свойство це-
почке прототипов может дать значение:

typeof flight.toString    // 'function' 
typeof flight.constructor // 'function'

Существует два подхода к решению проблемы несуществующих свойств. Во-
первых, создание собственной программы с функциями получения и исключения 
нежелательных значений свойств. Когда используется отражение, важны данные, 
поэтому нельзя забывать, что некоторые свойства могут быть функциями.

Другой подход заключается в использовании метода hasOwnProperty, который 
возвращает значение true, если объект обладает заданным свойством. Метод 
hasOwnProperty не обращается к цепочке прототипов:

flight.hasOwnProperty('number')            // true
flight.hasOwnProperty('constructor')       // false

Перечисление

В цикле for in можно задать имена всех свойств объекта. Перечисление будет 
включать в себя все свойства, в том числе функции и свойства прототипов, кото-
рые не всегда важны, но такие значения можно отфильтровать. Наиболее распро-
страненные фильтры — метод hasOwnProperty и функция TypeOf:

var name;
for (name in another_stooge) {
    if (typeof another_stooge[name] !== 'function') {
        document.writeln(name + ': ' + another_stooge[name]);
    }
}

Будьте готовы к тому, что свойства могут появляться в любом порядке. Если вы 
хотите, чтобы свойства появлялись в определенном порядке, то лучше избегать 
объявления объекта целиком и вместо этого создать массив, содержащий имена 
свойств в нужном порядке:

var i;
var properties = [ 
    'first-name', 
    'middle-name', 
    'last-name', 
    'profession'
];
for (i = 0; i < properties.length; i += 1) { 
    document.writeln(properties[i] + ': ' + 
        another_stooge[properties[i]]);
}



42      Глава 3. Объекты

Используя цикл for in, можно получить необходимые свойства, не беспокоясь 
о том, что они будут извлечены из цепочки прототипов, причем получить их мож-
но в нужном порядке.

Удаление

Оператор delete может быть использован для удаления свойств объекта. Он уда-
ляет свойство объекта, если оно есть. Удаление не касается свойств объектов, свя-
занных по цепочке прототипов.

Удаление свойства объекта дает возможность использовать значение одноимен-
ного свойства объекта-прототипа:

another_stooge.nickname    // 'Moe'

// После удаления свойства nickname объекта another_stooge
// станет доступно свойство nickname объекта-прототипа

delete another_stooge.nickname; 

another_stooge.nickname        // 'Curly'

Ослабление глобальности

JavaScript позволяет легко определять глобальные переменные, содержащие все 
переменные вашего приложения. К сожалению, глобальные переменные делают 
программы менее устойчивыми, поэтому их следует избегать.

Одним из способов минимизировать использование глобальных переменных яв-
ляется создание в приложении единственной глобальной переменной:

var MYAPP = {};

Эта переменная становится контейнером вашего приложения:

MYAPP.stooge = {
    "first-name": "Joe", 
    "last-name": "Howard"
};
MYAPP.flight = {
    airline: "Oceanic", 
    number: 815, 
    departure: {
        IATA: "SYD",
        time: "2004-09-22 14:55", 
        city: "Sydney"
    },



Ослабление глобальности      43

    arrival: {
        IATA: "LAX",
        time: "2004-09-23 10:42", 
        city: "Los Angeles"
    }
};

За счет использования одной глобальной переменной можно значительно сни-
зить вероятность неудачного взаимодействия с другими приложениями, видже-
тами или библиотеками. Программа станет более понятной, так как очевидно, что 
MYAPP.stooge ссылается на высший уровень структуры. В следующей главе рас-
сказывается о способах использования замыканий для скрытия информации, что 
является еще одним эффективным методом «ослабления глобальности».



Функции

Но каждый грех еще до совершенья 
Уж осужден. Обязанность свою 
Я обратил бы в нуль…

Уильям Шекспир. Мера за меру

Лучше всего в JavaScript реализованы функции. В них почти все правильно. Поч-
ти, но не все, как, впрочем, и следовало бы ожидать от JavaScript.

Каждая функция состоит из группы инструкций. Функции — фундаментальный 
модульный элемент JavaScript. Они необходимы для многократного использо-
вания одних и тех же фрагментов кода, скрытия информации и построения про-
грамм. Функции определяют поведение объектов. Основная задача программиро-
вания — это перевод поставленных требований в функции и структуры данных.

Объекты функций

Функции в JavaScript являются объектами. Объекты представляют собой кол-
лекции пар имя/значение, имеющие скрытую ссылку на прототип объекта. Объ-
екты, созданные посредством литералов объектов, связаны с объектом Object.
prototype. Объекты функций связаны с объектом Function.prototype (который, 
в свою очередь, связан с Object.prototype). Кроме того, каждая функция создает-
ся с двумя дополнительными скрытыми свойствами: контекстом функции и ко-
дом, реализующим поведение функции.

При создании каждый объект функции получает свойство prototype. Значением 
этого свойства является объект, имеющий свойство constructor, значение кото-
рого — функция. Это совсем не похоже на скрытую связь с объектом Function.
prototype. Суть данной запутанной схемы раскрывается в следующей главе.

Поскольку функции являются объектами, они могут использоваться как любые 
другие переменные. Функции могут храниться в переменных, объектах и массивах. 

4



Вызовы      45

Их можно передавать в качестве аргументов, а также возвращать в качестве ре-
зультата вызова других функций. Кроме того, поскольку функции являются объ-
ектами, они могут иметь методы.

Отличительной особенностью функций является возможность их вызова.

Литералы функций

Объекты функций создаются с помощью литералов функций:

// Создаем переменную add для хранения
// функции сложения двух чисел.
var add = function (a, b) { 
    return a + b;
};

Литерал функции состоит из четырех частей. Первая часть — это зарезервирован-
ное слово function.

Необязательная вторая часть — имя функции. Функция может задействовать свое 
имя для рекурсивного вызова. Кроме того, имя может использоваться отладчика-
ми и средствами разработки для идентификации функции. Если у функции нет 
имени, как в предыдущем примере, она называется анонимной.

Третья часть — это набор параметров функции, заключенный в скобки. В скобках 
могут находиться несколько параметров, разделенных запятыми, или же параме-
тров может не быть вообще. Имена параметров определяются в функции как пере-
менные. В отличие от обычных переменных, они инициализируется не значением 
undefined, а аргументами, получаемыми функцией при ее вызове.

Четвертая часть представляет собой набор инструкций, заключенных в фигур-
ные скобки. Эти инструкции составляют тело функции и выполняются при ее 
вызове.

Литерал функции может располагаться в любом месте кода, где допустимы вы-
ражения. Функции могут определяться внутри других функций. Естественно, 
что внутренняя функция имеет доступ к своим параметрам и переменным. Кроме 
того, она будет иметь доступ к параметрам и переменным вызвавшей ее функции. 
Объект функции, созданный с помощью литерала функции, содержит ссылку 
на внешний контекст. Это называется замыканием. Замыкание  — это источник 
огромной силы.

Вызовы

Вызов функции приостанавливает выполнение текущей функции и передает 
управление и параметры новой функции. В дополнение к объявленным параме-



46      Глава 4. Функции

трам каждая функция получает два дополнительных параметра: this и arguments. 
Эти параметры очень важны в объектно-ориентированном программировании, 
и их значение определяется шаблоном вызова. В JavaScript поддерживаются четы-
ре шаблона вызова: шаблон вызова метода, шаблон вызова функции, шаблон вы-
зова конструктора и шаблон вызова метода apply. Шаблоны отличаются способом 
инициализации параметра this.

Оператор вызова представляет собой пару круглых скобок с любым выражением, 
возвращающим значение функции. Скобки могут содержать несколько выраже-
ний, разделенных запятыми, или не содержать их вообще. Результатом каждого 
выражения является значение одного аргумента. Каждое из значений аргументов 
присваивается имени параметра функции. Даже в том случае, если количество 
аргументов не соответствует количеству параметров функции, ошибки времени 
выполнения не возникает. Если значений аргументов слишком много, лишние 
значения аргументов игнорируются. Если слишком мало, недостающие значения 
заменяются значением undefined. Проверки типа значения аргументов не проис-
ходит: любому параметру может быть передано значение любого типа.

Шаблон вызова метода
Когда функция хранится как свойство объекта, она называется методом. Когда 
вызывается метод, параметр this связывается с этим объектом. Если выражение 
вызова содержит уточнение, то есть точку или выражение [индекс], то оно вызы-
вается как метод:

// Создаем объект MyObject. Он имеет значение и метод приращения.
// Метод приращения принимает дополнительные параметры.
// Если аргумент не является числом, то 
// по умолчанию имеет значение 1.

var myObject = { value: 0,
    increment: function (inc) {
        this.value += typeof inc === 'number' ? inc : 1;
    }
};

myObject.increment( ); 
document.writeln(myObject.value);    // 1

myObject.increment(2); 
document.writeln(myObject.value);    // 3

Методы можно использовать для доступа к объекту, с их помощью можно изме-
нять объект или получать его значения. Связывание объекта с this происходит во 
время вызова. Такое позднее связывание дает больше возможностей для много-
кратного использования функции, имеющей параметр this. Методы, которые по-
лучают контекст объекта от this, называются открытыми.



Вызовы      47

Шаблон вызова функции
Если функция не является свойством объекта, она вызывается как функция:

var sum = add(3, 4);    // sum имеет значение 7

Когда функция вызывается таким способом, this связывается с глобальным объ-
ектом. Это ошибка в конструкции языка. Если бы JavaScript был разработан пра-
вильно, то при вызове внутренней функции параметр this был бы по-прежнему 
привязан к переменной this внешней функции. Следствием этой ошибки являет-
ся то, что метод не может использовать внутреннюю функцию, которая помогла 
бы ему решить поставленную задачу, потому что внутренняя функция не разделя-
ет доступ метода к объекту, так как this связывается с неправильной переменной. 
К счастью, есть простое решение этой проблемы. Если метод определяет перемен-
ную и присваивает ей значение this, внутренняя функция получает доступ к this 
через эту переменную. Общепринятое имя этой переменной — that:

// Дополняем MyObject методом double.

myObject.double = function () {
    var that = this;    // Решение.

    var helper = function () {
        that.value = add(that.value, that.value);
    };

    helper( );          // Вызов функции helper.
};

// Вызов метода double.

myObject.double( );
document.writeln(myObject.value);    //6

Шаблон вызова конструктора
JavaScript — язык наследования прототипов. Это означает, что объекты могут 
наследовать свойства непосредственно от других объектов. Это язык без клас-
сов.

Вот такое радикальное отступление от современной моды. Большинство языков 
сегодня поддерживают классы. Наследование прототипов  — довольно мощный, 
но не общепризнанный механизм. Похоже, язык JavaScript сам не очень уверен 
в своей прототипизированной природе, поэтому его синтаксис создания объектов 
напоминает классические языки. Не многие из классических программистов счи-
тают приемлемым наследование прототипов, к тому же схожесть с классическим 
синтаксисом скрывает истинную природу прототипизированного языка, и  это 
хуже всего.



48      Глава 4. Функции

Если функция вызывается с префиксом new, то новый объект создается со скры-
той связью со значением члена prototype функции, и параметр this связывается 
с этим новым объектом.

Кроме того, префикс new меняет поведение инструкции return. Подробнее об этом 
рассказывается далее.

// Создаем функцию конструктора с именем Quo.
// Она создает объект со свойством status.

var Quo = function (string) { 
    this.status = string;
};

// Передаем все экземпляры Quo открытому 
// методу get_status.

Quo.prototype.get_status = function () { 
    return this.status;
};

// Создаем экземпляр Quo. 

var myQuo = new Quo("confused");

document.writeln(myQuo.get_status( ));

Функции, предназначенные для использования с префиксом new, называются 
конструкторами. По соглашению они хранятся в переменных, имена которых на-
чинаются с прописной буквы. Если вызвать конструктор без префикса new, могут 
произойти очень плохие вещи, причем без всяких предупреждений на этапе ком-
пиляции или выполнения, так что использовать прописные буквы действительно 
важно.

Применять подобный подход не рекомендуется. Более удачные альтернативы 
описаны в следующей главе.

Шаблон вызова метода apply
Поскольку JavaScript — это функциональный объектно-ориентированный язык, 
функции могут иметь методы.

Метод apply позволяет создать массив аргументов, используемых для вызова 
функции. Также он позволяет выбирать значение this. Метод apply принимает 
два параметра. Первый — переменная, которая должна быть связана с this. Вто-
рой — массив параметров.

// Создает массив из двух чисел и складывает их.
var array = [3, 4];
var sum = add.apply(null, array);    // sum имеет значение 7



Аргументы      49

// Создает объект, имеющий свойство status.

var statusObject = { 
    status: 'A-OK'
};

// statusObject не наследуется от Quo.prototype, 
// но может вызывать метод get_status для
// statusObject, хотя statusObject не имеет 
// метода get_status.

var status = Quo.prototype.get_status.apply(statusObject);
    // status имеет значение 'A-OK'

Аргументы

Дополнительный параметр, доступный функции во время вызова, представляет 
собой массив arguments. Функция имеет доступ ко всем аргументам, объявлен-
ным во время ее вызова, в том числе к лишним аргументам, которым не были на-
значены параметры. Это позволяет писать функции, принимающие неопределен-
ное количество параметров:

// Создаем функцию, добавляющую данные.

// Обратите внимание, что определение переменной sum внутри
// функции не влияет на значение sum,
// определеное вне функции. Функция видит 
// только внутреннюю переменную.

var sum = function () {
    var i, sum = 0;
    for (i = 0; i < arguments.length; i += 1) { 
        sum += arguments[i];
    }
    return sum;
};

document.writeln(sum(4, 8, 15, 16, 23, 42));     // 108

Это не особенно полезный шаблон. О том, как добавить аналогичный метод для 
массива, рассказывается в главе 6.

Из-за ошибки проектирования arguments — это, на самом деле, не массив, а объ-
ект подобный массиву. arguments имеет свойство length, но ему не хватает мето-
дов массива. К чему может привести подобная ошибка проектирования, описано 
в конце этой главы.



50      Глава 4. Функции

Возвращение управления из функции
При вызове функции она выполняется, начиная с первой инструкции, и заканчи-
вается после фигурной скобки, закрывающей тело функции. В этот момент функ-
ция возвращает управление той части программы, которая ее вызвала.

Инструкция return служит для преждевременного завершения функции. При 
этом функция немедленно возвращает управление без выполнения оставшихся 
инструкций.

Функция всегда возвращает значение. Если возвращаемое значение не задано, то 
она возвращает значение undefined.

Если функция вызывается с префиксом new, а возвращаемым значением return не 
является объект, то вместо него возвращается this (новый объект).

Исключения
В JavaScript предусмотрен механизм обработки исключений. Исключениями яв-
ляются необычные (но не совсем неожиданные) ошибки, которые мешают нор-
мальному выполнению программы. В случае их обнаружения программа должна 
сгенерировать исключение:

var add = function (a, b) {
    if (typeof a !== 'number' || typeof b !== 'number') { 
        throw {
            name: 'TypeError',
            message: 'add needs numbers'
        };
    }
    return a + b;
}

Инструкция throw прерывает выполнение функции. Ей передается объект исклю-
чения, содержащий свойство name, которое определяет тип исключения, и свой-
ство message, необходимое для описания исключения. Также можно добавить 
и другие свойства.

Далее объект исключения попадает в соответствующую ветвь catch инструкции try:

// Создаем функцию try_it, некорректно вызывающую 
// новую функцию add.
var try_it = function () {
    try {
        add("seven"); 
    } catch (e) {
        document.writeln(e.name + ': ' + e.message);
    }
}
try_it();



Расширенные типы      51

Если исключение генерируется внутри блока try, управление передается в пред-
ложение catch.

В каждой инструкции try одна из ветвей catch предназначается для перехвата 
всех исключений. Если вариант обработки зависит от типа исключения, то обра-
ботчик будет проверять свойство name, чтобы определить тип исключения.

Расширенные типы

JavaScript позволяет расширить основные типы языка. В главе 3 говорилось, что 
добавление метода в объект Object.prototype делает этот метод доступным всем 
объектам. Этот подход работает также для функций, массивов, строк, чисел, регу-
лярных выражений и логических переменных.

Например, расширив объект Function.prototype, можно создать метод, доступ-
ный для всех функций:

Function.prototype.method = function (name, func) { 
    this.prototype[name] = func; 
    return this;
};

Расширяя объект Function.prototype методом method, не нужно задавать имя 
свойства prototype. Теперь можно скрыть это небольшое безобразие.

JavaScript не имеет отдельного целого типа, но иногда требуется получить только 
целую часть числа. В JavaScript соответствующий метод реализован не очень кра-
сиво. Однако это можно исправить, добавив в Number.prototype метод integer. Он 
использует либо Math.ceil, либо Math.floor, в зависимости от знака числа:

Number.method('integer', function ( ) {
    return Math[this < 0 ? 'ceil' : 'floor'](this);
});

document.writeln((-10 / 3).integer());    // -3

В JavaScript не хватает метода, который удалял бы пробелы в конце строки. Это 
можно легко исправить следующим образом:

String.method('trim', function () {
    return this.replace(/A\s+|\s+$/g, '');
});

document.writeln('"' + " neat ".trim() + '"');

Метод trim использует регулярные выражения. Подробнее о регулярных выраже-
ниях рассказывается в главе 7.

Расширяя основные типы, можно значительно усилить выразительность языка. 
Из-за динамичного характера прототипизированного наследования в JavaScript 



52      Глава 4. Функции

все значения сразу наделены новыми методами, даже значения, которые были соз-
даны до создания методов.

Прототипы базовых типов  — это открытые структуры, поэтому необходимо со-
блюдать осторожность при смешивании библиотек. Один из способов защиты — 
это добавление следующего метода, если его, конечно, не хватает:

// Добавляем условный метод.
Function.prototype.method = function (name, func) { 
    if (!this.prototype[name]) { 
        this.prototype[name] = func; 
        return this;
    }
};

Еще одной проблемой является то, что инструкция цикла for in плохо взаимо-
действует с прототипами. Как было сказано в главе 3, для сглаживания этого не-
достатка можно использовать метод hasOwnProperty, отсекающий наследуемые 
свойства, или искать свойства конкретного типа.

Рекурсия

Рекурсивной называется функция, которая прямо или косвенно вызывает саму 
себя. Рекурсия — мощное средство программирования, где проблема делится на 
множество подобных подзадач, каждая из которых решается довольно просто. 
Как правило, рекурсивная функция вызывает саму себя для решения своих под-
задач.

Ханойская башня — довольно известная головоломка. В ней имеются три шты-
ря и набор дисков различного диаметра с отверстиями в центре. Диски собра-
ны в пирамиду на одном из штырей, причем диски меньшего размера лежат на 
б ˆольших. Задача состоит в том, чтобы полностью переместить пирамиду на дру-
гой штырь, причем перемещать диски нужно по одному, а класть больший диск 
на меньший запрещено. У этой головоломки есть тривиальное рекурсивное ре-
шение:

var hanoi = function hanoi(disc, src, aux, dst) { 
    if (disc > 0) {
        hanoi(disc - 1, src, dst, aux); 
        document.writeln('Move disc ' + disc + 
            ' from ' + src + ' to ' + dst); 
        hanoi(disc - 1, aux, src, dst);
    }
};

hanoi(3, 'Src', 'Aux', 'Dst');



Рекурсия      53

Вот решение для трех дисков:

Перемещаем диск 1 с Src на Dst 
Перемещаем диск 2 с Src на Aux 
Перемещаем диск 1 с Dst на Aux 
Перемещаем диск 3 с Src на Dst 
Перемещаем диск 1 с Aux на Src 
Перемещаем диск 2 с Aux на Dst 
Перемещаем диск 1 с Src на Dst

Функция hanoi перемещает стопки дисков с одного штыря на другой, используя 
третий, если это необходимо, что разбивает задачу на три подзадачи. Во-первых, 
она освобождает нижний диск, перемещая вышестоящие на другие позиции. За-
тем он становится нижним диском новой пирамиды. Наконец, на него последо-
вательно перемещаются остальные диски. Такое перемещение вызывается рекур-
сивно для каждой подзадачи.

В функцию hanoi передается количество дисков, которые необходимо переме-
стить, и три возможные позиции. Когда она вызывает себя, она должна работать 
с  диском, который находится над текущим. В конце концов, она будет вызвана 
с несуществующего диска. В таком случае она ничего не делает. Это говорит о том, 
что рекурсия прекращается.

Рекурсивные функции могут быть очень эффективны при манипулировании дре-
вовидными структурами, такими как объектная модель документа (DOM) брау-
зера. Каждый рекурсивный вызов обрабатывает меньшую часть дерева:

// Определяем функцию walk_the_DOM, которая обходит каждый 
// узел дерева в HTML-документе по порядку, начиная 
// с некоторого заданного узла. Она вызывает функцию, в которую,
// в свою очередь, передает следующий узел. walk_the_DOM вызывает 
// саму себя для обработки дочерних узлов.

var walk_the_DOM = function walk(node, func) { 
    func(node);
    node = node.firstChild; 
    while (node) {
        walk(node, func);
        node = node.nextSibling;
    }
};

// Определяем функцию getElementsByAttribute. Она 
// принимает строку имени атрибута и, необязательно, 
// соответствующее значение. Она вызывает функию walk_the_DOM, 
// передавая ей функцию, которая ищет имя атрибута в узле. 
// Найденные узлы собираются в массиве результатов.

var getElementsByAttribute = function (att, value) { 
    var results = []; продолжение 



54      Глава 4. Функции

    walk_the_DOM(document.body, function (node) {
        var actual = node.nodeType === 1 && node.getAttribute(att); 
        if (typeof actual === 'string' &&
                (actual === value || typeof value !== 'string')) { 
            results.push(node);
        }
    });

    return results;
};

Некоторые языки предлагают оптимизацию хвостовой рекурсии. Это означает, 
что если функция завершается рекурсивным вызовом самой себя, то вызов заме-
няется циклом, что может значительно ускорить процесс. К сожалению, JavaScript 
в настоящее время не обеспечивают оптимизацию хвостовой рекурсии. Функции, 
уходящие в глубокую рекурсию, в ходе обработки стека возврата могут завер-
шиться неудачей:

// Делаем функцию factorial с хвостовой 
// рекурсией. Это будет хвостовая рекурсия, потому что 
// функция возвращает в качестве результат вызов самой себя.

// JavaScript в настоящее время не позволяет оптимизировать эту форму.

var factorial = function factorial(i, a) { 
    a = a || 1;
    if (i < 2) {
        return a;
    }
    return factorial(i - 1, a * i);
};

document.writeln(factorial(4));    // 24

Область видимости

Область видимости в языке программирования определяет видимость и время 
жизни переменных и параметров. Это важное для программистов понятие, кото-
рое помогает избежать конфликтов имен и обеспечивает автоматическое управле-
ние памятью:

var foo = function () { 
    var a = 3, b = 5;

    var bar = function () { 
        var b = 7, c = 11;
// В этот момент a равно 3, b равно 7, c равно 11

        a += b + c;



Замыкания      55

// В этот момент a равно 21, b равно 7, c равно 11

    };
// В этот момент a равно 3, b равно 5, c не определено

    bar( );
// В этот момент a равно 21, b равно 5

};

Большинство языков, синтаксис которых напоминает синтаксис языка С, поддер-
живает понятие области видимости блока. Все переменные, определенные в неко-
тором блоке (в перечне инструкций, заключенном в фигурные скобки), не видны 
извне блока. Переменные, определенные в блоке, могут быть освобождены, когда 
выполнение блока завершится. Это — хорошая вещь.

К сожалению, в JavaScript понятие области видимости блока не поддерживается, 
хотя, глядя на синтаксис блока инструкций, кажется, что должно поддерживаться. 
Подобная путаница может стать источником ошибок.

В то же время в JavaScript поддерживается понятие области видимости функции. 
Это означает, что параметры и переменные, определенные в функции, не видны за 
пределами функции, а переменная, определенная в любой точке функции, видна 
повсюду в пределах функции.

Во многих современных языках рекомендуется объявлять переменные как можно 
позже, при их первом использовании. Но для языка JavaScript это оказывается 
плохим советом, поскольку в нем отсутствует понятие области видимости блока. 
Вместо этого все переменные, используемые в функции, лучше всего объявлять 
в начале тела функции.

Замыкания

Положительный момент, связанный с областью видимости функций, состоит в том, 
что внутренние функции получают доступ к параметрам и переменным функций, 
в которых они определены (за исключением параметров this и arguments), — это 
очень полезная вещь.

Функция getElementsByAttribute работает, поскольку в ней объявлена перемен-
ная result, и внутренняя функция walk_the_DOM также имеет доступ к переменной 
result.

Гораздо интереснее случай, когда внутренняя функция имеет более долгое время 
жизни, чем внешняя.

Ранее был создан объект MyObject, имеющий методы value и increment. Предпо-
ложим, что необходимо защитить значения свойств объекта от несанкциониро-
ванных изменений.



56      Глава 4. Функции

Вместо того чтобы инициализировать MyObject с помощью литерала объекта, 
нужно инициализировать MyObject, вызвав функцию, возвращающую литерал 
объекта. В этой функции определяется переменная value, для которой всегда до-
ступны методы increment и getValue, но область видимости функции скрывает ее 
от остальной части программы:

var myObject = (function () { 
    var value = 0;
    return {
        increment: function (inc) {
            value += typeof inc === 'number' ? inc : 1;
        },
        getValue: function () { 
            return value;
        }
    };
}());

В этом примере объект MyObject не присваивается функции. Ему присваивается 
результат вызова этой функции. Обратите внимание на круглые скобки ( ) в по-
следней строке. Функция возвращает объект, содержащий два метода, и эти мето-
ды продолжают пользоваться привилегиями доступа к переменной value.

Ранее в этой главе был описан конструктор Quo, который создает объект, обла-
дающий свойством status и методом get_status. Но это, кажется, было не очень 
интересно. Почему метод получения свойства имеет доступ к его значению? Было 
бы полезнее, если бы свойство status было закрытым? Итак, давайте определим 
различные варианты функции quo, чтобы достигнуть поставленной цели:

// Создаем функцию с именем quo. Это делает объект
// с методом get_status и закрытым свойством status.
var quo = function (status) { 
    return {
        get_status: function ( ) { 
            return status;
        }
    };
};

// Создаем экземпляр quo. 

var myQuo = quo("amazed");
document.writeln(myQuo.get_status());

Функция quo спроектирована так, что при ее использовании не требуется префикс 
new, поэтому ее имя не нужно писать с заглавной буквы. При вызове quo она воз-
вращает новый объект, содержащий метод get_status. В myQuo хранится ссылка 
на этот объект. Метод get_status имеет привилегированный доступ к  свойству 
status функции quo, хотя функция quo уже вернула управление. Метод get_status 



Замыкания      57

имеет доступ не к копии параметра, а к самому параметру. Такое возможно, по-
скольку функции доступен контекст, в котором она была создана. Это и называ-
ется замыканием.

Рассмотрим более полезный пример:

// Определяем функцию, которая устанавливает желтый цвет 
// для узла DOM, а затем заменяет его белым.

var fade = function (node) { 
    var level = 1; 
    var step = function () {
        var hex = level.toString(16); 
        node.style.backgroundColor = '#FFFF' + hex + hex; 
        if (level < 15) { 
            level += 1;
            setTimeout(step, 100);
        }
    };
    setTimeout(step, 100);
};
fade(document.body);

Мы вызываем функцию fade, в которую передаем параметр document.body (узел, 
созданный HTML-тегом <body>). Функция fade устанавливает для level значе
ние 1, которое определяется функцией step. Она вызывает метод setTimeout, пе-
редавая ему функцию step и время (100 миллисекунд). После этого она возвраща-
ет управление — fade завершается.

Внезапно, около 10 секунд спустя, вызывается функция step. Она задает базу из 
16 символов из параметра level функции fade. Затем она изменяет цвет фона узла 
fade. Далее она ищет значение level из функции fade. Если цвет еще не белый, 
то level пошагово увеличивается и использует setTimeout, чтобы запланировать 
свой очередной запуск.

Вдруг функция step вызывается снова. Но на этот раз значение level функции 
fade равно 2. Функция fade возвращает результат, но ее переменные продолжают 
существовать до тех пор, пока они используются хотя бы одной функцией внутри 
fade.

Важно понимать, что внутренняя функция имеет доступ к реальным переменным 
внешней функции, а не к их копиям, благодаря чему можно избежать следующей 
проблемы:

// ПЛОХОЙ ПРИМЕР
// Делаем функцию, которая присваивает функции обработчика события 
// массив узлов (неверный путь). При щелчке на узле в окне 
// предупреждения должен отображаться порядковый номер узла. 
// Но вместо этого там всегда отображается число узлов.

продолжение 



58      Глава 4. Функции

var add_the_handlers = function (nodes) { 
    var i;
    for (i = 0; i < nodes.length; i += 1) { 
        nodes[i].onclick = function (e) {
            alert(i);
        };
    }
};
// ОКОНЧАНИЕ ПЛОХОГО ПРИМЕРА

Функция add_the_handlers должна была присваивать каждому обработчику уни-
кальный номер i. Ничего не получилось потому, что обработчик функции связы-
вается с переменной i, а не со значением переменной i в момент создания функ-
ции.

// Лучший пример

// Делаем функцию, которая присваивает функции обработчика события 
// массив узлов. При щелчке на узле в окне предупреждения
// отображается порядковый номер узла.

var add_the_handlers = function (nodes) { 
    var helper = function (i) { 
        return function (e) {
            alert(i);
        };
    };
    var i;
    for (i = 0; i < nodes.length; i += 1) { 
        nodes[i].onclick = helper(i);
    }
};

Следует избегать создания функций внутри цикла, так как это может усложнить 
вычисления и привести к путанице, как произошло в плохом примере. Избежать 
путаницы поможет функция helper, созданная вне цикла, которая возвращает 
функцию, связанную с текущим значением i.

Обратные вызовы

Функции облегчают обработку дискретных событий. К примеру, представим сле-
дующую последовательность: пользователь отправляет запрос серверу и получа-
ет ответ. Было бы наивно полагать, что она описывается следующим образом:

request = prepare_the_request();
response = send_request_synchronously(request);
display(response);



Модули      59

Недостаток данного подхода в том, что синхронный запрос по сети оставляет кли-
ента в ожидании ответа от сервера. Если сеть или сервер работает медленно, время 
отклика возрастает в разы.

В этом случае лучше использовать асинхронный запрос, обеспечивающий выпол-
нение функции обратного вызова после получения ответа от сервера. Асинхрон-
ная функция немедленно возвращает значение, так что клиент не блокируется 
в ожидании ответа, как в предыдущем случае:

request = prepare_the_request();
send_request_asynchronously(request, function (response) { 
    display(response);
});

В функцию send_request_asynchronously в качестве параметра передается функ-
ция, которая вызывается после получения ответа от сервера.

Модули

Для создания модулей используются функции и замыкания. Модуль представ-
ляет собой функцию или объект, который предоставляет интерфейс, но скрывает 
свое состояние и реализацию. При использовании функций для создания модулей 
почти полностью исключается применение глобальных переменных, тем самым 
сглаживается один из главных недостатков JavaScript.

Например, предположим, что необходимо изменить строку с помощью метода 
deentityify, задача которого состоит в поиске HTML-элементов в строке и за-
мене их эквивалентными символами. Имеет смысл хранить названия элементов 
и их эквиваленты в объекте. Но где же хранить сам объект? Можно хранить его 
в глобальной переменной, но это — не лучшее решение. Можно определить объект 
в самой функции, но это чревато увеличением времени выполнения программы, 
так как объект будет обрабатываться при каждом вызове функции. Идеальным ре-
шением является хранение его в локальной переменной внутри замыкания, также, 
возможно, потребуется определить метод, позволяющий добавлять дополнитель-
ные объекты:

String.method('deentityify', function () {

// Таблица сущностей. Отображает имена сущностей на символы.

var entity = { 
    quot: '"',
    lt:   '<',
    gt:   '>'
};

продолжение 



60      Глава 4. Функции

// Возвращаем метод deentityify.
    return function () {

// Метод deentityify. Метод строки вызывается для замены найденной 
// подстроки, начинающейся с символа '&' и заканчивающейся символом ';'.
// Если символы внутри есть в таблице сущностей, то эти элементы 
// заменяются символами из таблицы. Метод используется 
// в регулярных выражениях (см. главу 7).

        return this.replace(/&([A&;]+);/g, 
            function (a, b) {
                var r = entity[b];
                return typeof r === 'string' ? r : a;
            }
        );
    };
}());

Обратите внимание на последнюю строку. В ней функция вызывается с помощью 
оператора (). Такой вызов создает и возвращает функцию, которая становится ме-
тодом deentityify.

document.writeln(
    '&lt;&quot;&gt;'.deentityify());   // <">

Шаблон модуля использует возможности области видимости функции и возмож-
ности замыкания для представления функциональности и данных, связанных 
и упакованных вместе. В данном примере только метод deentityify имеет доступ 
к данным.

Обобщенный шаблон модуля — это функция, определяющая закрытые перемен-
ные и функции; создающая привилегированные функции, которые благодаря за-
мыканию, получают доступ к закрытым переменным и функциям, и возвращаю-
щая привилегированные функции или хранящая их в доступном месте.

Программный шаблон модуля позволяет отказаться от использования глобаль-
ных переменных благодаря сокрытию информации и другим полезным наработ-
кам. Этот подход очень эффективен в изолирующих приложениях.

Кроме того, он может пригодиться при создании защищенных объектов. Предпо-
ложим, что необходимо создать объект, задающий серийный номер:

var serialjnaker = function () {

// Создает объект, задающий уникальные значения строк. Уникальная строка
// состоит из двух частей: префикса и порядкового номера. Для объекта
// определены методы задания префикса и порядкового номера, 
// а также метод gensym, создающий уникальные строки.

    var prefix = ''; 
    var seq = 0; 



Каскады      61

    return {
        set_prefix: function (p) { 
            prefix = String(p);
        },
        set_seq: function (s) { 
            seq = s;
        },
        gensym: function ( ) {
            var result = prefix + seq; 
            seq += 1; 
            return result;
        }
    };
};

var seqer = serial_maker();
seqer.set_prefix('Q');
seqer.set_seq(1000);
var unique = seqer.gensym();    // unique принимает значение "Q1000"

Эти методы нельзя использовать c this или that, так как seqer подвергается ри-
ску. В этом случае невозможно будет получить или изменить prefix или seq без 
разрешенных методов. Объект seqer изменяемый, так что методы можно заме-
нить, но это еще не дает полного доступа к нему. Метод seqer — это просто набор 
функций, которые дают возможность предоставлять определенные полномочия 
для получения или редактирования его скрытых состояний.

Если рассматривать функцию seqer.gensym с другой стороны, она должна иметь 
возможность создавать уникальные строки, не изменяя prefix или seq.

Каскады

Некоторые методы не имеют возвращаемого значения, что характерно, например, 
для методов, устанавливающих или изменяющих состояние объекта. В случае 
когда методы возвращают this вместо undefined, можно задействовать каскады. 
С помощью каскада можно последовательно вызвать несколько методов одного 
объекта в одном выражении. При наличии библиотеки Ajax, подключающей ка-
скады, это могло бы выглядеть так:

getElement('myBoxDiv') 
    .move(350, 150) 
    .width(100) 
    .height(100) 
    .color('red') 
    .border('10px outset') 
    .padding('4px')

продолжение 



62      Глава 4. Функции

    .appendText("Please stand by")
    .on('mousedown', function (m) {
        this.startDrag(m, this.getNinth(m));
    })
    .on('mousemove', 'drag') 
    .on('mouseup', 'stopDrag') 
    .later(2000, function () {
        this
            .color('yellow')
            .setHTML("What hath God wraught?") 
            .slide(400, 40, 200, 200);
    })
        .tip("This box is resizeable.");

В этом примере функция getElement возвращает объект, предоставляющий функ-
ции для DOM-элемента id="myBoxDiv". Эти методы позволяют удалить элемент, 
изменить его размер и стиль, добавить поведение. Каждый из этих методов воз-
вращает объект, поэтому результат вызова может быть использован для следую-
щего вызова.

Каскады позволяют строить очень выразительные интерфейсы, такие, которые 
дают возможность делать сразу много вещей.

Каррирование

Поскольку функции являются значениями, существует множество интересных 
способов ими манипулировать. Каррирование1 позволяет создать новую функ-
цию, объединяющую функцию и аргумент:

var add1 = add.curry(1); 
document.writeln(add1(6));    // 7

Здесь add1  — это функция, созданная путем передачи единицы методу carry 
объекта add. Функция add1 добавляет единицу к своему аргументу. В JavaScript 
нет метода carry, но это можно исправить путем расширения объекта Function.
prototype:

Function.method('curry', function () { 
    var args = arguments, that = this; 
    return function ( ) {
        return that.apply(null, args.concat(arguments));
    };
});    // Что-то не так...

1	 Каррирование или карринг (англ.  currying) — преобразование функции пары аргументов 
в функцию, берущую свои аргументы по одному. Это преобразование получило свое на-
звание в честь Х. Карри. — Примеч. ред.



Мемоизация      63

Метод carry создает замыкание, которое хранит первоначальную функцию и ар-
гументы в carry. Замыкание возвращает функцию, при вызове которой, в свою 
очередь, возвращается результат вызова первоначальной функции, в которую 
передаются все аргументы carry и текущего вызова. Для объединения двух мас-
сивов аргументов используется метод concat, принадлежащий Array.

К сожалению, как уже отмечалось, массив arguments не является массивом и по-
этому не имеет метода concat. Для того чтобы избежать этого недостатка, можно 
применить метод массива slice к обоим массивам arguments. Этот метод создаст 
массивы, ведущие себя корректно при использовании метода concat:

Function.method('curry', function ( ) { 
    var slice = Array.prototype.slice,
        args = slice.apply(arguments),
        that = this; 
    return function ( ) {
        return that.apply(null, args.concat(slice.apply(arguments)));
    };
});

Мемоизация

Функции могут использовать объекты для хранения результатов предыдущих 
вычислений, что позволяет избежать ненужной работы. Для такой оптимизации, 
называемой мемоизацией, в JavaScript применяются объекты и массивы.

К примеру, пусть необходимо задать рекурсивную функцию для вычисления чи-
сел Фибоначчи. Число Фибоначчи является суммой двух предыдущих чисел Фи-
боначчи. Первые два числа — это 0 и 1:

var fibonacci = function (n) {
    return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
};

for (var i = 0; i <= 10; i += 1) {
    document.writeln('// ' + i + ': ' + fibonacci(i));
}

// 0: 0 
// 1: 1 
// 2: 1
// 3: 2 
// 4: 3
// 5: 5
// 6: 8
// 7: 13 
// 8: 21
// 9: 34
// 10: 55



64      Глава 4. Функции

Этот пример работает, но в нем много лишнего. Функция fibonacci вызывается 
453 раза: 11 раз она вызывается в программе и еще 442 раза она вызывает себя для 
расчета значений, которые, вероятно, уже были вычислены. Если мемоизировать 
функцию, то можно значительно сократить рабочую нагрузку.

Будем хранить результаты мемоизации в массиве memo, который можно скрыть 
посредством замыкания. При вызове функция сначала проверяет, известен ли ей 
результат. Если да, то его следует немедленно вернуть:

var fibonacci = (function () { 
    var memo = [0, 1];
    var fib = function (n) {
        var result = memo[n];
        if (typeof result !== 'number') {
            result = fib(n - 1) + fib(n - 2); 
            memo[n] = result;
        }
        return result;
    };
    return fib;
}());

Эта функция возвращает тот же результат, но вызывается всего 29 раз: 11 раз она 
вызывается в программе и 18 раз она вызывает себя, чтобы получить ранее мемо
изированные результаты.

Обобщить все сказанное можно, создав функцию мемоизации. Функция memoizer 
получает исходный массив memo и функцию formula. Она возвращает рекурсив-
ную функцию, управляющую хранилищем memo и вызывающую функцию formula 
по мере необходимости. Функция recur вместе с параметрами передается в функ-
цию formula:

var memoizer = function (memo, formula) { 
    var recur = function (n) { 
        var result = memo[n]; 
        if (typeof result !== 'number') { 
            result = formula(recur, n); 
            memo[n] = result;
        }
        return result;
    };
    return recur;
};

Теперь fibonacci объявляется с помощью функции memoizer, получающей исход
ный массив memo и функцию formula:

var fibonacci = memoizer([0, 1], function (recur, n) { 
    return recur(n - 1) + recur(n - 2);
});



Мемоизация      65

Разрабатывая функции, создающие другие функции, можно значительно сокра-
тить итоговый объем работы. Например, для создания функции мемоизации фак-
ториала нужно всего лишь написать основную формулу факториала:

var factorial = memoizer([1, 1], function (recur, n) { 
    return n * recur(n - 1);
});



Наследование

Дробится вещь на множество частей. 
Картины есть такие: если взглянешь 
На них вблизи, то видишь только пятна,

Уильям Шекспир. Ричард II

Наследование — весьма важный раздел большинства языков программирования.

В классических языках (например, Java) наследование (или расширение) дает две 
довольно полезные возможности. Во-первых, это способ многократного использо-
вания кода. Если новый класс похож на существующий, остается только описать 
различия. Готовые программные шаблоны могут существенно снизить затраты 
на разработку программного обеспечения. Еще одним преимуществом классиче-
ского наследования является то, что оно включает в себя спецификацию системы 
типов. Это освобождает программиста от необходимости описывать операции для 
явного приведения типов, что, вообще говоря, очень даже неплохо, так как приве-
дение типов может поставить под угрозу безопасность системы типов.

В JavaScript, где нет типизации, не существует и приведения типов. Происхожде-
ние объекта не имеет значения. Важно знать, на что объект способен, а не то, от 
кого он происходит.

JavaScript предоставляет богатый набор готовых программных шаблонов для 
многократного использования кода. JavaScript позволяет сымитировать классиче-
ский шаблон, но также предлагает и другие шаблоны, часто более выразительные. 
Набор доступных программных шаблонов наследования в JavaScript огромен. 
В этой главе подробно рассмотрены только некоторые из самых простых. Можно 
создавать и гораздо более сложные конструкции, но, как правило, чем проще, тем 
лучше.

В классических языках объекты являются экземплярами классов, а каждый класс 
может наследоваться от другого класса. JavaScript — это язык прототипов, а это 
означает, объекты наследуются непосредственно от других объектов.

5



Псевдоклассовое наследование      67

Псевдоклассовое наследование

JavaScript противоречит своей прототипизированной природе. Механизм прото-
типов скрыт за сложными синтаксическими правилами, смутно напоминающими 
классические. Вместо того чтобы наследоваться непосредственно от других объ-
ектов, объекты создаются с помощью конструктора функций.

При создании объекта функции конструктор Function работает примерно так:

this.prototype = {constructor: this};

Новый объект функции задается свойством prototype, причем его значением яв-
ляется объект, содержащий свойство constructor, значением которого, в свою 
очередь, является новый объект функции. Объект prototype — это то место, где 
хранятся унаследованные черты. Каждая функция получает объект prototype, по-
тому что в JavaScript нет возможности определить, какие функции предназначены 
для использования в качестве конструктора. Свойство constructor не так важно, 
как объект prototype.

Если функция вызывается посредством шаблона вызова конструктора с пре-
фиксом new, меняется способ исполнения функции. Если бы оператор new был 
методом, а не оператором, функция могла бы быть реализована следующим об-
разом:

Function.method('new', function () {

// Создаем новый объект, который наследуется от конструктора prototype.

    var that = Object.create(this.prototype);

// Вызов конструктора, связывающего this с новым объектом.

    var other = this.apply(that, arguments);

// Если возвращаемое значение не является объектом, 
// оно заменяется новым объектом.

    return (typeof other === 'object' && other) || that;
});

Можно определить конструктор и расширить его прототип:

var Mammal = function (name) { 
    this.name = name;
};

Mammal.prototype.get_name = function () { 
    return this.name;
}; продолжение 



68      Глава 5. Наследование

Mammal.prototype.says = function () { 
    return this.saying || '';
};

Теперь можно сделать, например, следующее:

var myMammal = new Mammal('Herb the Mammal');
var name = myMammal.get_name(); // 'Herb the Mammal'

Можно создать еще один псевдокласс, наследуемый от Mammal, определив соб-
ственную функцию constructor и заменить ее свойство prototype экземпляром 
Mammal:

var Cat = function (name) { 
    this.name = name; 
    this.saying = 'meow';
};

// Заменяем Cat.prototype новым экземпляром Mammal

Cat.prototype = new Mammal();

// Расширяем новый с методами purr and get_name.

Cat.prototype.purr = function (n) { 
    var i, s = '';
    for (i = 0; i < n; i += 1) { 
        if (s) { 
            s +=
        }
        s += 'r';
    }
    return s;
};
Cat.prototype.get_name = function () {
    return this.says( ) + ' ' + this.name + ' ' + this.says( );
};

var myCat = new Cat('Henrietta');
var says = myCat.says(); // 'meow'
var purr = myCat.purr(5); // 'r-r-r-r-r'
var name = myCat.get_name();
// 'meow Henrietta meow'

Программный шаблон псевдокласса должен напоминать объектно-ориентирован
ный класс, но выглядит он иначе. Некоторые уродства можно скрыть с помощью 
метода method и определения метода inherits:

Function.method('inherits', function (Parent) { 
    this.prototype = new Parent(); return this;
});



Псевдоклассовое наследование      69

Методы inherits и method возвращают this, что позволяет использовать каскады. 
Теперь можно задать Cat одной инструкцией:

var Cat = function (name) { 
    this.name = name; 
    this.saying = 'meow';
}.
    inherits(Mammal). 
    method('purr', function (n) { 
        var i, s = '';
        for (i = 0; i < n; i += 1) { 
            if (s) { 
                s +=
            }
            s += 'r';
        }
        return s;
    }).
    method('get_name', function ( ) {
        return this.says( ) + ' ' + this.name + ' ' + this.says( );
    });

Теперь, благодаря тому, что наиболее броские черты prototype скрыты, насле-
дование выглядит чуть менее непривычным. Но разве ситуация действительно 
улучшилась? Появились конструкторы функций, действующие как классы, но 
имеющие странное поведение. И никакой приватности — все свойства открыты. 

Хуже того, существует серьезная опасность, связанная с использованием кон-
структора функций. Если при вызове конструктора функций отсутствует пре-
фикс new, то this не связывается с новым объектом. К сожалению, this свя-
зывается с  глобальным объектом, так что вместо создания нового объекта 
произойдет замена глобальных переменных. Это действительно ужасно. При-
чем предупреждение не возникнет ни на этапе компиляции, ни при выполне-
нии программы.

Это серьезная ошибка разработчиков языка. Чтобы избежать этой проблемы, при-
нято соглашение, согласно которому все названия конструкторов функций пи-
шутся с заглавной буквы и далее нигде в названии заглавная буква не использует-
ся. Остается надеяться, что при просмотре удастся найти недостающие префиксы 
new. Однако гораздо лучше вовсе не использовать оператор new.

Хотя псевдоклассовая форма наследования удобна для программистов, не зна-
комых с JavaScript, она скрывает истинную природу языка. Схожесть с класси-
ческими языками может заставить программистов создавать излишне глубокие 
и сложные иерархии. Сложные иерархии классов, как правило, связаны с ограни-
чениями в плане проверки статических типов. Язык JavaScript лишен подобных 
ограничений. В классических языках наследование классов является единствен-
ной формой многократного использования кода, в то время как JavaScript предо-
ставляет для этого гораздо больше возможностей.



70      Глава 5. Наследование

Спецификаторы объектов

Бывает, что в конструктор передается довольно большое число параметров. Это 
может вызвать уйму хлопот, поскольку очень трудно запомнить порядок следова-
ния аргументов. В таких случаях гораздо удобнее написать конструктор, прини-
мающий один спецификатор объекта, содержащий спецификацию конструируе-
мого объекта. Таким образом:

var myObject = maker(f, l, m, c, s);

Вместо этой инструкции можно написать следующее:

var myObject = maker({ 
    first: f, 
    last: l, 
    middle: m, 
    state: s, 
    city: c
});

Теперь аргументы можно перечислять в любом порядке, при использовании кон-
структора по умолчанию их можно вообще опустить, что делает код более понят-
ным.

Это второе преимущество при работе с JSON (детали см. в приложении Д). С по-
мощью JSON-текста можно описывать только данные, но иногда данные представ-
ляют собой объекты, поэтому было бы полезно связывать данные с их методами. 
Решить эту проблему не сложно, если конструктор будет принимать специфика-
тор объекта, так как достаточно просто передать JSON-объект в конструктор, ко-
торый вернет полностью сформированный объект.

Прототипизированное наследование

В чисто прототипизированных программных шаблонах можно обойтись без клас-
сов. Вместо этого необходимо сосредоточиться на объектах. Такое наследование 
концептуально проще, чем классическое: новый объект может наследовать свой-
ства старого объекта. Это не очень привычно, но вполне понятно. Сначала можно 
сделать какие-то полезные объекты, а затем уже на их основе создать множество 
похожих объектов. Классификации, то есть процесса разбиения приложений на 
множество вложенных абстрактных классов, можно полностью избежать.

Начнем с создания объекта с помощью литерала объекта:

var myMammal = {
    name : 'Herb the Mammal', 
    get_name : function ( ) { 
        return this.name;
    },



Прототипизированное наследование      71

    says : function ( ) {
        return this.saying || '';
    }
};

Как только удается получить нужный объект, с помощью Object можно создавать 
экземпляры этого объекта. Для этого можно воспользоваться методом create из 
главы 3, а затем настроить каждый из новых экземпляров:

var myCat = Object.create(myMammal); 
myCat.name = 'Henrietta'; 
myCat.saying = 'meow'; 
myCat.purr = function (n) { 
    var i, s = '';
    for (i = 0; i < n; i += 1) { 
        if (s) { 
            s +=
        }
        s += 'r';
    }
    return s;
};
myCat.get_name = function () {
    return this.says( ) + ' ' + this.name + ' ' + this.says( );
};

Это пример дифференцированного наследования, основанного на изменении ново-
го объекта с указанием отличий от объекта-родителя.

Иногда это может быть полезно при наследовании структур данных. Например, 
пусть необходимо сделать грамматический разбор фрагмента внутри фигурных 
скобок, написанного на JavaScript или TEX. Элементы, определенные внутри ско-
бок, не видны за их пределами. В некотором смысле, область внутри скобок на-
следуется от внешней области. В JavaScript такое отношение можно легко пред-
ставить с помощью объектов. Когда встречается открывающая фигурная скобка, 
вызывается тело функции. Функция parse ищет символы внутри scope и расши-
ряет область видимости при обнаружении новых символов:

var block = function () {

// Запоминаем текущее значение scope. Создаем новый объект scope, 
// включающий в себя все значения scope, начиная с текущего.
    var oldScope = scope;
    scope = Object.create(scope);

// Advance получает открывающую фигурную скобку.
    advance('{'); 

// Parse использует новое значение scope.
    parse(scope); продолжение 



72      Глава 5. Наследование

// Advance получает закрывающую фигурную скобку и отбрасывает 
// новое значение scope, возвращая старое.
    advance('}'); 
    scope = oldScope;
};

Функциональное наследование

Одним из недостатков программных шаблонов наследования, как уже отмечалось, 
является отсутствие возможности добиться приватности. Все свойства объекта ока-
зываются видимыми, приватных переменных и методов не существует. Иногда это 
совсем не важно, но бывают ситуации, когда приватность имеет огромное значение. 
К сожалению, некоторые плохо осведомленные программисты принимают шабло-
ны за механизм, обеспечивающий приватность. Если необходимо задать приватное 
свойство, они дают ему странное название в надежде, что другие программисты, 
использующие этот код, сделают вид, что не видят этих странных членов объекта. 
К  счастью, есть прекрасная альтернатива этому  — программный шаблон модуля.

Для начала необходимо создать функцию, производящую объекты. Дадим ей имя, 
начинающееся со строчной буквы, поскольку нет необходимости использовать 
префикс new. Функция выполняется в четыре этапа:

Создает новый объект. Существует множество способов создать объект: с помо-1.	
щью литерала объекта, путем вызова конструктора функции с префиксом new, 
методом Object.create, который создает новый экземпляр уже существующего 
объекта, или вызвав любую функцию, возвращающую объект.
При необходимости определяет приватные методы и переменные экземпляра. 2.	
Это обычные переменные функции.
Дополняет новый объект методами, которые будут иметь привилегированный 3.	
доступ к параметрам и переменным, определенным на втором этапе.
Возвращает новый объект.4.	

Вот псевдокод программного шаблона функционального конструктора (полужир-
ным шрифтом выделены основные этапы создания функции):

var constructor = function (spec, my) {
    var that, другие приватные переменные;
    my = my || {};

    Дополняем my открытыми переменными и функциями

    that = a new object; 

    Дополняем that привилегированными методами

    return that;
};



Функциональное наследование      73

Объект spec содержит всю информацию, необходимую конструктору для созда-
ния экземпляра. Эти данные могут быть скопированы в приватные переменные 
или преобразованы другими функциями. Кроме того, в случае необходимости ме-
тоды могут получить доступ к данным из spec (для упрощения можно заменить 
spec одним значением, что бывает полезно, когда при создании объекта не требу-
ется весь объект spec).

Объект my представляет собой контейнер со скрытыми данными, доступными для 
конструкторов в цепи наследования. Совершенно не обязательно использовать 
объект my. Если my не будет передан конструктору, тот создаст объект my сам.

Несколько слов об объявлении приватных методов и переменных экземпляра объ-
екта. Достаточно просто объявить переменные. Переменные и внутренние функ-
ции конструктора будут приватными членами экземпляра. Внутренние функции 
будут иметь доступ к spec, my, that и приватным переменным.

Затем путем присваивания добавим объекту my скрытые данные:

my.member = value;

Теперь создадим новый объект и свяжем его с that. Существует множество спосо-
бов создать объект: с помощью литерала объекта, путем вызова псевдоклассового 
конструктора функции с префиксом new, с использованием метода Object.create 
для прототипа объекта или вызвав конструктор функции и передав ему объект 
spec (возможно, тот же объект spec, который был передан при создании самого 
конструктора) и объект my. Объект my предоставляет другому конструктору до-
ступ к вложенным данным. Другой конструктор также может предоставить свои 
скрытые данные my, которыми может воспользоваться конструктор объекта my.

Кроме того, можно расширить that, добавив привилегированные методы, состав
ляющие интерфейс объекта. Можно задать новые функции, которые будут яв-
ляться членами that. Хотя безопаснее сначала определить функции в качестве 
приватных методов, а затем связать их с that:

var methodical = function () {
    ...
};
that.methodical = methodical;

Преимущество определения methodical в два этапа состоит в следующем: если по-
надобится вызвать methodical для другого метода, можно будет вызвать metho
dical() вместо that.methodical(). Если экземпляр был поврежден или изменен 
таким образом, что метод that.methodical оказался замененным методом, вызы-
вающим methodical, он продолжит работать, как раньше, поскольку приватная 
функция methodical не влияет на изменение экземпляра.

Ну и в конце возвращаем that.

Давайте исследуем этот программный шаблон на примере с млекопитающими. 
Здесь нет необходимости использовать объект my, поэтому его можно просто от-
бросить, но объект spec понадобится.



74      Глава 5. Наследование

Свойства name и saying сейчас полностью закрыты. Они доступны только через 
привилегированные методы get_Name и says:

var mammal = function (spec) { 
    var that = {};

    that.get_name = function () { 
        return spec.name;
    };

    that.says = function () { 
        return spec.saying || '';
    };

    return that;
};

var myMammal = mammal({name: 'Herb'});

В псевдоклассовом программном шаблоне функция конструктора Cat дублирова-
ла работу конструктора Mammal. Это совершенно не обязательно в функциональ-
ном шаблоне, потому что конструктор Cat вызовет конструктор Mammal, позволяя 
Mammal выполнить большую часть работы по созданию объекта, так что конструк-
тору Cat останется только позаботиться о различиях:

var cat = function (spec) {
    spec.saying = spec.saying || 'meow'; 
    var that = mammal(spec); 
    that.purr = function (n) { 
        var i, s = '';
        for (i = 0; i < n; i += 1) { 
            if (s) { 
                s +=
            }
            s += 'r';
        }
        return s;
    };
    that.get_name = function () {
        return that.says() + ' ' + spec.name + ' ' + that.says();
    };
    return that;
};

var myCat = cat({name: 'Henrietta'});

Использование функционального программного шаблона позволяет также иметь 
дело с суперметодами. Создадим метод superior, получающий имя метода и воз-
вращающий функцию, которая вызывает этот метод. Функция будет вызывать 
оригинальный метод, даже если свойство изменится:



Детали      75

Object.method('superior', function (name) { 
    var that = this,
        method = that[name]; 
    return function ( ) {
        return method.apply(that, arguments);
    };
});

Испробуем этот подход на объекте сoolсat, похожем на Cat, но имеющем соб-
ственный метод get_Name, который вызывает суперметод. Потребуется небольшая 
подготовка. Объявим переменную super_get_name и присвоим ей результат вы-
зова метода superior:

var coolcat = function (spec) { 
    var that = cat(spec),
        super_get_name = that.superior('get_name'); 
    that.get_name = function (n) {
        return 'like ' + super_get_name() + ' baby';
    };
    return that;
};

var myCoolCat = coolcat({name: 'Bix'});
var name = myCoolCat.get_name();
// 'like meow Bix meow baby'

Функциональный программный шаблон довольно гибок. Его применение требует 
меньше усилий, чем применение псевдоклассового шаблона, и при этом лучше обе-
спечивает инкапсуляцию и скрытие информации, а также доступ к суперметодам.

Объект защищен от взлома, если все его свойства будут приватными. Свойства 
объекта могут быть заменены или удалены, но целостность объекта не будет нару-
шена. Если создать объект согласно функциональному шаблону, и его методы не 
будут использовать this или that, то объект будет надежен. Надежный объект — 
это просто набор функций, предоставляющих определенные возможности.

Надежный объект не может находиться под угрозой. Доступ к надежным объек-
там не даст злоумышленнику возможности получить доступ к внутреннему со-
стоянию объекта, кроме как посредством разрешенных методов.

Детали

Можно создавать объекты из множества деталей. Например, создать функцию, 
добавляющую простые функции обработки событий к любому объекту. Эта функ-
ция добавляет методы on, fire и приватные события реестра:

var eventuality = function (that) { 
    var registry = {}; продолжение 



76      Глава 5. Наследование

    that.fire = function (event) {

// Fire - событие объекта on. Событием может быть либо строка, содержащая
// название события, либо объект, который содержит свойство type, 
// хранящее имя события. Обработчики регистрируются методом 'on', 
// который вызывается в соответствии с именем события.

        var array, 
            func, 
            handler,
            i,
            type = typeof event === 'string' ? event : event.type;
// Если для этого события существует массив обработчиков,  
// то пройдем по нему и выполним все обработчики по порядку.

        if (registry.hasOwnProperty(type)) { 
            array = registry[type]; 
            for (i = 0; i < array.length; i += 1) { 
                handler = array[i];

// Запись обработчика содержит метод и массив параметров (не обязательно).
// Если метод - это имя, найдем функцию.

                func = handler.method; 
                if (typeof func === 'string') { 
                    func = this[func];
                }

// Вызваем обработчик. Если запись содержит параметры, передаем их. 
// В противном случае переходим к объекту события.

                func.apply(this,
                    handler.parameters || [event]);
            }
        }
        return this;
    };

    that.on = function (type, method, parameters) {

// Региструем событие. Создаем обработчик записи. Помещаем его 
// в массив обработчиков, создавая, если его еще не существует 
// для этого значения type.

        var handler = { 
            method: method, 
            parameters: parameters
        };



Детали      77

        if (registry.hasOwnProperty(type)) { 
            registry[type].push(handler);
        } else {
            registry[type] = [handler];
        }
        return this;
    };
    return that;
};

Можно вызвать eventuality для любого объекта, наделяя его методами обработки 
событий. Также можно вызвать его внутри функции конструктора до того, как 
возвращен объект that:

eventuality(that);

Таким образом, конструктор может собирать объекты из набора деталей. Свобод-
ная типизация в JavaScript здесь является огромным преимуществом, поскольку 
отсутствует система типов, для которой важно происхождение классов. Вместо 
этого можно сосредоточиться на характере их содержимого.

Если необходимо дать функции eventuality доступ к приватным состояниям объ-
екта, можно передать ей объект my.



Массивы

Ты, волк в овечьей шкуре, с глаз долой!

Уильям Шекспир. Генрих VI. Часть 1

Массив представляет собой непрерывный фрагмент памяти, доступ к элементам ко-
торого осуществляется с помощью целых чисел (индексов), использующихся для 
вычисления смещения. Массивы могут обеспечивать быстрый доступ к данным. 
К сожалению, в JavaScript нет ничего похожего на такое определение массива.

Однако в JavaScript есть объекты, чем-то напоминающие массивы. Индексы массива 
преобразуются в строки, которые используются для создания свойств объекта. Хотя 
такие структуры значительно медленнее реальных массивов, они могут оказаться 
удобнее в использовании. Получение и изменение свойств происходит так же, как 
в  случае объектов, исключая трюк с именами целочисленных свойств. Массивы 
имеют собственный формат литерала. Кроме того, существует довольно большой 
набор полезных встроенных методов массивов, которые описаны в главе 8.

Литералы массивов

С помощью литералов массивов довольно удобно задавать новые значения мас-
сива. Литерал массива представляет собой пару квадратных скобок, которая со-
держит несколько значений, разделенных запятыми, или не содержит вообще ни 
одного значения. Литерал массива может указываться в любом выражении. Пер-
вое значение внутри скобок получает имя свойства '0', второе — имя свойства '1' 
и т. д.:

var empty = []; 
var numbers = [
    'zero', 'one', 'two', 'three', 'four', 
    'five', 'six', 'seven', 'eight', 'nine'
];

6



Длина      79

empty[1]          // undefined
numbers[1]        // 'one'

empty.length      // 0
numbers.length    // 10

Литерал объекта:

var numbers_object = {
    '0': 'zero', '1': 'one', '2': 'two', 
    '3': 'three', '4': 'four', '5': 'five', 
    '6': 'six', '7': 'seven', '8': 'eight', 
    '9': 'nine'
};

Результат в обоих случаях аналогичный. Массив numbers, как и numbers_object, 
является объектом, содержащим 10 свойств, имеющих точно такие же имена и зна-
чения. Но есть и существенные различия. Объект numbers наследуется от Array.
prototype, в то время как numbers_object — от Object.prototype, поэтому numbers 
наследует больший набор полезных методов. Кроме того, numbers получает скры-
тое свойство length, а numbers_object нет.

В большинстве языков все элементы массива должны быть одинакового типа. 
JavaScript позволяет создавать массивы, содержащие самые разные значения:

var misc = [
    'string', 98.6, true, false, null, undefined, 
    ['nested', 'array'], {object: true}, NaN, 
    Infinity
];
misc.length        // 10

Длина

Каждый массив имеет свойство length. В отличие от большинства других языков, 
длина массива length в JavaScript не является его верхней границей. Если необ-
ходимо хранить элемент с индексом, большим или равным текущему значению 
length, то оно увеличится до требуемого значения. Благодаря этому не возникнет 
ошибки переполнения массива.

Значение свойства length равно наибольшему индексу в массиве плюс один. Это 
значение может не соответствовать количеству свойств в массиве:

var myArray = [];
myArray.length    // 0

myArray[1000000] = true;
myArray.length    // 1000001
// myArray содержит одно свойство.



80      Глава 6. Массивы

Постфиксный оператор индексирования [ ] преобразует выражение в строку, ис-
пользуя для выражения метод toString, если он существует. Эта строка становит-
ся именем свойства. Если строка выглядит как натуральное число, большее или 
равное текущему значению длины массива и меньшее 4294 967 295, то значение 
length устанавливается на единицу большим нового индекса.

Значение length можно задать в явном виде. Если задать его больше, чем потре-
буется для массива, память под незаданные значения на выделяется. Однако если 
задать значение length меньше, чем необходимо, то все свойства с индексом, боль-
шим или равным новой длине массива, удаляются:

numbers.length = 3;
// numbers имеет значения ['zero', 'one', 'two']

Если присвоить новому элементу индекс, который равен текущему значению 
length, то элемент добавляется в конец массива:

numbers[numbers.length] = 'shi';
// numbers имеет значения ['zero', 'one', 'two', 'shi']

Иногда для этого удобнее пользоваться методом push:

numbers.push('go');
// numbers имеет значения ['zero', 'one', 'two', 'shi', 'go']

Удаление

Так как массивы в JavaScript на самом деле являются объектами, для удаления 
элементов из массива может быть использован оператор delete:

delete numbers[2];
// numbers имеет значения ['zero', 'one', undefined, 'shi', 'go']

Такой способ, к сожалению, оставляет «дырки» в массиве, поскольку у элементов, 
расположенных правее удаляемого, остаются исходные имена. Для того чтобы до-
биться желаемого результата, требуется поочередно сдвинуть все последующие 
элементы справа налево.

Однако для работы с массивами в JavaScript существует также метод splice, по-
зволяющий удалить несколько элементов массива и заменить их другими. Пер-
вый аргумент  — это порядковый номер элемента, с которого требуется начать 
удаление из массива. Второй аргумент — число элементов для удаления. Все до-
полнительные аргументы вставляются в указанную первым аргументом точку 
массива:

numbers.splice(2, 1);
// numbers имеет значения ['zero', 'one', 'shi', 'go']

Здесь ключ свойства, имеющего значение 'shi', меняется с '3' на '2'. Так как 
для каждого свойства, следующего за удаленным, ключ должен быть уничтожен 



Путаница      81

и заменен новым, это довольно длительный процесс, особенно для больших 
массивов.

Перечисление

Благодаря тому, что в JavaScript массивы — это объекты, для перемещения по эле-
ментам массива может использоваться инструкция for in. К сожалению, for in 
не дает никаких гарантий относительно порядка предоставления элементов, в то 
время как для большинства приложений требуется получать элементы массива 
поочередно (согласно их индексу). Кроме того, существует проблема с необычны-
ми свойствами, полученными по цепочке прототипов.

К счастью, обычная инструкция for позволяет избежать этих проблем. Инструк-
ция for в JavaScript выполняется примерно так же, как в большинстве C-подобных 
языков. Ее выполнение зависит от трех вещей: начала цикла, условия выполнения 
цикла и шага цикла.

var i;
for (i = 0; i < myArray.length; i += 1) { 
    document.writeln(myArray[i]);
}

Путаница

Распространенной ошибкой при написании программ на JavaScript является ис-
пользование объекта, когда требуется массив, или массива, когда требуется объ-
ект. Правило простое: если имена свойств — это небольшая последовательность 
целых чисел, следует использовать массив. В противном случае — объект.

Язык JavaScript и сам порождает путаницу между массивами и объектами. Опе-
ратор typeof в качестве типа массива возвращает 'object', что совсем не способ-
ствует прояснению ситуации.

В JavaScript нет хорошего механизма, который позволили бы различать масси-
вы и объекты. Обойти этот недостаток можно, определив собственную функцию 
is_array:

var is_array = function (value) {
    return value && typeof value === 'object' && 
    value.constructor === Array;
};

К сожалению, она не сможет идентифицировать массивы, создаваемые в другом 
окне или фрейме. Если необходимо точно идентифицировать такие внешние мас-
сивы, функцию is_array придется немного усложнить:



82      Глава 6. Массивы

var is_array = function (value) {
    return Object.prototype.toString.apply(value) === '[object Array]';
};

Методы

JavaScript предоставляет ряд методов для работы с массивами. Эти методы явля-
ются функциями, хранящимися в Array.prototype. Как отмечено в главе 3, объект 
Object.prototype может быть расширен. Также может быть расширен и Array.
prototype.

Предположим, что требуется добавить в массив метод, позволяющий производить 
вычисления с элементами массива:

Array.method('reduce', function (f, value) { 
    var i;
    for (i = 0; i < this.length; i += 1) { 
        value = f(this[i], value);
    }
    return value;
});

Каждый массив наследует метод, созданный при добавлении функции в Array.
prototype. В данном примере был определен метод reduce, который принимает 
функцию и начальное значение value и для каждого элемента массива вызывает 
функцию, аргументами которой являются элемент массива и переданное началь-
ное значение, а затем вычисляет новое значение переменной value. Когда цикл 
заканчивается, функция возвращает переменную value. Если передать функцию, 
которая складывает два числа, метод вычислит сумму. Если передать функцию, 
которая перемножает два числа, — произведение:

// Создаем массив чисел.

var data = [4, 8, 15, 16, 23, 42];

// Объявляем две простые функции. Одна будет суммировать 
// два числа. Другая будет перемножать два числа.

var add = function (a, b) { 
    return a + b;
};

var mult = function (a, b) { 
    return a * b;
};



Размерность      83

// Вызываем метод reduce для массива data, передавая 
// ему функцию сложения.

var sum = data.reduce(add, 0);    // sum имеет значение 108

// Снова вызываем метод reduce, на этот раз передаем 
// ему функцию умножения.

var product = data.reduce(mult, 1); 
    // product имеет значение 7418880

Поскольку массив на самом деле является объектом, можно добавлять методы не-
посредственно для каждого массива:

// Задаем функцию total для массива data.

data.total = function () {
    return this.reduce(add, 0);
};

total = data.total();    // total имеет значение 108

Так как строка 'total' не является целым числом, добавление в массив свойства 
total не приведет к изменению значения length. Удобство использования мас-
сивов в том, что хотя имена свойств и являются целыми числами, массивы по-
прежнему остаются объектами, а объекты могут принимать любую строку в каче-
стве имени свойства.

Нет смысла использовать с массивами метод Object.create из главы 3, поскольку 
он создает объект, а не массив. Созданный таким образом объект будет наследо-
вать значения и методы массива, но не будет иметь свойства length.

Размерность

В JavaScript массивы обычно не инициализируются. Если создать новый массив 
с помощью оператора [ ], то он будет пустым. Если обратиться к недостающим 
элементам, будет возвращено значение undefined. Если осознавать это или зада-
вать каждый элемент прежде, чем пытаться его получить, то все будет хорошо. 
Однако если реализовать алгоритмы в предположении, что каждый элемент начи-
нается с определенного значения (такого как 0), следует подготовить массив само-
стоятельно. Язык JavaScript мог бы в той или иной степени обеспечить Array.dim 
средствами делать нечто подобное, но и самостоятельно можно легко исправить 
это упущение:

Array.dim = function (dimension, initial) { 
    var a = [], i;
    for (i = 0; i < dimension; i += 1) { 

продолжение 



84      Глава 6. Массивы

        a[i] = initial;
    }
    return a;
};

// Создадим массив, состоящий из 10 нулей.

var myArray = Array.dim(10, 0);

В JavaScript нет массивов, имеющих размерность больше единицы, но, как и в боль
шинстве C-подобных языков, можно создавать массивы массивов:

var matrix = [
    [0, 1, 2],
    [3, 4, 5],
    [6, 7, 8]
];
matrix[2][1]     // 7

Для того чтобы создать двухмерный массив или массив массивов, необходимо 
объявить собственный массив:

for (i = 0; i < n; i += 1) { 
    my_array[i] = [];
}

// Примечание: в данной ситуации Array.dim (п, []) не сработает. 
// Каждый элемент получит ссылку на один и тот же 
// массив, что плохо.

Первоначально ячейки пустой матрицы будут иметь значение undefined. Если воз-
никнет необходимость, чтобы они имели те или иные начальные значения, при-
дется задать их явно. Опять же, язык JavaScript мог бы предоставить более каче-
ственную поддержку матриц. Однако и этот недостаток можно исправить:

Array.matrix = function (m, n, initial) { 
    var a, i, j, mat = []; 
    for (i = 0; i < m; i += 1) { 
        a = [];
        for (j = 0; j < n; j += 1) { 
            a[j] = initial;
        }
        mat[i] = a;
    }
    return mat;
};

// Создадим матрицу 4 * 4, заполненную нулями.



Размерность      85

var myMatrix = Array.matrix(4, 4, 0);

document.writeln(myMatrix[3][3]);    // 0

// Создадим для матрицы метод identity.

Array.identity = function (n) {
    var i, mat = Array.matrix(n, n, 0); 
    for (i = 0; i < n; i += 1) { 
        mat[i][i] = 1;
    }
    return mat;
};

myMatrix = Array.identity(4); 

document.writeln(myMatrix[3][3]);    // 1



Регулярные выражения

Брак по любви блаженством наделяет 
И образ мира высшего являет. 
На ком жениться должен наш король…

Уильям Шекспир. Генрих VI. Часть 1

Многие черты JavaScript позаимствованы у других языков. Синтаксис взят у Java, 
функции — у Scheme, прототипизированное наследование — у Self. Ну а механизм 
работы с регулярными выражениями JavaScript позаимствовал у Perl.

Регулярное выражение — это спецификация синтаксиса простого языка. Регуляр-
ные выражения необходимы для реализации методов поиска, замены и получе-
ния информации из строк. К методам для работы с регулярными выражениями 
относятся regexp.exec, regexp.test, string.match, string.replace, string.search 
и  string.split — все они подробно описаны в главе 8. В JavaScript регулярные 
выражения, как правило, значительно производительнее эквивалентных строко-
вых операций.

Регулярные выражения основаны на математической теории формализованных 
языков. Кен Томпсон (Ken Thompson) адаптировал теоретическую работу Сти-
вена Клини (Stephen Kleene) о языках типа 3 в реальном шаблоне соответствия, 
который можно встраивать в программные продукты, такие как текстовые редак-
торы и языки программирования.

Синтаксис регулярных выражений в JavaScript почти полностью соответству-
ет оригинальной формулировке из Bell Labs, за исключением нескольких пере
осмысленных фрагментов и расширений, заимствованных из Perl. Правила на-
писания регулярных выражений могут быть на удивление сложными, поскольку 
одни и те же символы в разных позициях могут интерпретироваться и как опера-
торы, и как литералы. А еще хуже то, что чем сложнее написано регулярное выра-
жение, тем труднее в нем разобраться и тем опаснее его модифицировать. Нужно 
иметь достаточно полное представление о сложности регулярных выражений, что-
бы правильно их читать. Чтобы облегчить себе задачу, немного упростим правила. 
Представляемые здесь регулярные выражения немного компактнее и лаконичнее, 

7



Пример      87

поэтому их будет проще правильно использовать. И это хорошо, потому что регу-
лярные выражения часто вызывают затруднения в поддержке и отладке.

Сегодня использование регулярных выражений не является обязательным, но 
может быть довольно полезным. Регулярные выражения, как правило, настолько 
лаконичны, что напоминают шифр. Их легко использовать в простейшей форме, 
но при этом они быстро могут завести вас в тупик. Читать регулярные выражения 
в JavaScript может быть трудно отчасти еще и потому, что в них не может быть ни 
комментариев, ни пробелов. Все части регулярного выражения следуют друг за 
другом, что делает его почти нечитабельным. Это обстоятельство вызывает осо-
бую обеспокоенность, если регулярные выражения используются в приложениях 
для поиска и проверки. Если невозможно прочитать и понять регулярное выраже-
ние, как можно быть уверенным, что оно будет работать правильно? Тем не менее, 
несмотря на их очевидные недостатки, регулярные выражения широко использу-
ются.

Пример

А вот и пример. Это регулярное выражение, соответствующее URL-адресу. Стра-
ницы этой книги не бесконечно широкие, поэтому разобьем его на две строки. 
В JavaScript-коде регулярное выражение должно представлять собой одну строку, 
так как пробелы имеют значение:

var parse_url = /A(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)
(?::(\d+))?(?:\/([A?#]*))?(?:\?([A#]*))?(?:#(.*))?$/;

var url = "http://www.ora.com:80/goodparts?q#fragment";

Вызовем метод exec для parse_url. Если регулярное выражение parse_url соот-
ветствует переданной методу строке, то он вернет массив, содержащий части, из-
влеченные из URL-адреса:

var url = "http://www.ora.com:80/goodparts?q#fragment"; 

var result = parse_url.exec(url);

var names = ['url', 'scheme', 'slash', 'host', 'port', 
    'path', 'query', 'hash'];

var blanks = '    ';
var i;

for (i = 0; i < names.length; i += 1) { 
    document.writeln(names[i] + ':' +
        blanks.substring(names[i].length), result[i]);
}



88      Глава 7. Регулярные выражения

В результате получаем:

url:     http://www.ora.com:80/goodparts?q#fragment scheme: http
slash:   //
host:    www.ora.com
port:    80
path:    goodparts
query:   q
hash:    fragment

В главе 2 для описания языка JavaScript использовались синтаксические диа-
граммы. С помощью аналогичных диаграмм можно описать язык, заданный ре-
гулярными выражениями. Благодаря синтаксическим диаграммам можно легко 
увидеть, что делает регулярное выражение. Вот диаграмма parse_url:

,
,

,

,
,

,

Регулярные выражения не могут быть разбиты на более мелкие фрагменты подоб-
но функциям, поэтому требуется время, чтобы отследить выполнение выражения 
parse_url.

Для того чтобы увидеть, как оно работает, рассмотрим выражение parse_url по 
частям.



Пример      89

^

Знак ^ указывает на начало строки — это якорь, который не дает при выполнении 
пропустить префикс, не свойственный для URL-адресов.

(?:([A-Za-Z]+):)?

Этот фрагмент задает расположение, но только в том случае, если за ним следует 
двоеточие (:). Знаки (?:...) обозначают не захватываемую группу. Суффикс ? 
показывает, что группа не является обязательной.

Это значит, что такая группа ни разу не повторяется или повторяется только один 
раз. Знаки (...) обозначают захватываемую группу. Захватываемая группа ко-
пирует соответствия, найденные в тексте, и помещает их в результирующий мас-
сив. Каждой захватываемой группе присваивается номер. Номер первой захва-
тываемой группы — 1, поэтому совпадения, найденные с помощью этой группы, 
в результирующем массиве будут иметь индекс [1]. Класс символов обозначает-
ся знаками [...]. Класс символов A-Za-z содержит 26 прописных и 26 строчных 
букв. Диапазон от А до Z задается дефисом. Суффикс + означает, что класс симво-
лов может иметь одно и более соответствие. Группа, за которой следует двоеточие 
(:), — это символ, которому необходимо найти точное соответствие.

(\/{0,3})

Следующий фрагмент — это захватываемая группа номер 2. Знаки \/ указывают, 
что необходимо найти символ / (слэш). Он используется со знаком \ (обратный 
слэш), что не будет считаться ошибкой, так как в данном случае / не является 
концом регулярного выражения. Суффикс {0,3} означает, что символ / может 
встретиться 0, 1, 2 или 3 раза.

([0-9.\-A-Za-Z]+)

Следующим фрагментом является захватываемая группа номер 3, которая долж-
на соответствовать названию хоста, состоящему из одной или нескольких цифр, 
букв, символов . или -. Чтобы не путать символ - с дефисом, задающим диапазон, 
его экранируют обратным слэшем (\-).

(?::(\d+))?

Следующий фрагмент находит соответствие для номера порта, указывать кото-
рый не обязательно. Он представляет собой последовательность из одной или 
нескольких цифр, которым предшествует символ двоеточие (:). Знаки \d озна-
чают цифровой символ. Захватываемая группа 4 будет состоять из одной и более 
цифр.

(:?\/([?#]*))?

Есть также и другие необязательные группы. Одна из них начинается с симво-
ла /. Класс символов [^?#] начинается с ^, это указывает на то, что данный класс 
включает в себя все символы, кроме ? и #. Знак * показывает, что данные символы 
могут встретиться несколько раз или же вообще не иметь соответствий.



90      Глава 7. Регулярные выражения

Здесь допущена некоторая неточность. Класс, включающий все символы, кроме 
? и #, включает также и символы конца строки, управляющие символы и множе-
ство других символов, которые вообще не используются в данной строке. В боль-
шинстве случаев это даст получить желаемый результат, но есть риск получить 
лишние результаты. Небрежно составленные регулярные выражения являются 
основным источником брешей в области безопасности, поскольку допустить не-
точность при написании регулярного выражения гораздо проще, чем этого не 
сделать.

(:?\([#]*))?

Далее идет необязательная группа, начинающаяся с символа ?. Она включает 
в себя захватываемую группу номер 6, которая может содержать несколько сим-
волов (кроме #) или не содержать ни одного символа.

(?:#(.*))?

Последняя необязательная группа начинается с символа #. Здесь знак . означает 
соответствие любому символу, исключая символы конца строки.

$

Символ $ означает конец строки. Он сообщает, что следом за URL-адресом нет 
никакой дополнительной информации.

Все это — фрагменты регулярного выражения parse_url1.

Конечно, можно создавать и более сложные регулярные выражения, нежели 
parse_url, но нежелательно. Лучше всего, когда регулярные выражения корот-
кие и простые. Только тогда можно быть уверенным, что они работают правильно 
и в случае необходимости их можно будет успешно модифицировать.

Степень совместимости между процессорами языка JavaScript очень высока. Реали-
зация регулярных выражений является наименее переносимой частью языка. Слож-
ные и запутанные регулярные выражения, вероятнее всего, приведут к проблемам 
переносимости. А вложенные регулярные выражения могут стать источником се-
рьезных проблем производительности. Наилучшей стратегией является простота.

Рассмотрим другой пример: регулярное выражение для сопоставления чисел. Чис-
ла могут состоять из целой части с необязательным знаком минус, необязательной 
дробной части и необязательной экспоненциальной части.

var parse_number = /A-?\d+(?:\.\d*)?(?:e[+\-]?\d+)?$/i;

var test = function (num) {
    document.writeln(parse_number.test(num));
};

1	Если попробовать еще раз ввести все вместе, можно легко запутаться:

/A(?:([A-Za-z]+):)?(\/{0,3})([0-9.\-A-Za-z]+)(?::(\d+))?(?:\/([A?#]*))?(?:\?([A#]*))?(?:#(.
*))?$/



Пример      91

test('1');               // верно
test('number');          // не верно
test('98.6');            // верно
test('132.21.86.100');   // не верно
test('123.45E-67');      // верно
test('123.45D-67');      // не верно

Выражение parse_number успешно идентифицировало строки как соответствую-
щие заданной спецификации, так и все остальные, но не дало никакой информа-
ции о том, почему и где оно не смогло установить соответствие.

Разберем выражение parse_number.

/^ $/i

Заключаем регулярное выражение внутрь знаков ^ и $. В этом случае все символы 
в тексте будут сравниваться с регулярным выражением. Если опустить эти якоря, 
регулярное выражение сообщит, что строка содержит число. С якорями оно со-
общит, что строка содержит только число. Если использовать только знак ^, регу-
лярное выражение будет соответствовать строкам, начинающимся с числа. Если 
использовать только знак $, будут подбираться строки, заканчивающиеся числом.

При использования флага i буквы при сравнении игнорируются. Единственная 
буква в нашем шаблоне — это e. Необходимо также, чтобы буква е соответствова-
ла Е. Можно задать фрагмент, обозначающий e как [Еe] или (?:Е|е), но это невоз-
можно из-за наличия флага i.

-?

Суффикс ? для знака минус указывает, что он не обязателен.

\d+

Знаки \d означают то же, что знаки [0-9], и соответствуют любой цифре. Суф-
фикс + означает, что выражение может содержать одну или несколько цифр.



92      Глава 7. Регулярные выражения

(:?\.\d*)?

Знаки (?:...)? указывают на необязательную не захватываемую группу. Как 
правило, лучше использовать не захватываемую группу, хотя захватываемая 
группа и выглядит красивее. Причина в том, что применение захватываемой 
группы приведет к снижению производительности. Группе будет соответство-
вать десятичная дробь с несколькими цифрами или вообще без цифр после 
точки.

(:?е[+\-]\d+)?

Это еще одна необязательная не захватываемая группа. Ей соответствует знак е 
(или Е), необязательный знак и одна или несколько цифр.

Конструкция

Есть два пути создания объекта RegExp. Как видно из примеров, предпочтительнее 
использовать литерал регулярного выражения.

Литералы регулярных выражений заключаются между двумя символами слэша, 
что может вызвать некоторые затруднения, поскольку этот знак используется как 
оператор деления, а также в комментариях.

Для объекта RegExp может быть установлен один из трех флагов, которые обо-
значаются буквами g, i и m, как показано в табл. 7.1. Флаги добавляются непосред-
ственно в конце литерала RegExp:

// Создаем объект для регулярного выражения, соответствующего
// JavaScript-строке.

var my_regexp = /"(?:\\.|[A\\\"])*"/g;

Таблица 7.1. Флаги регулярных выражений

Флаг Значение

G Глобальный (встречается несколько раз, точный смысл меняется в зависимости 
от метода)

I Нечувствительный к регистру (регистр букв игнорируется)

M Многострочный (^ и $ может соответствовать символам конца строки)

Другой способ создать регулярное выражение — использовать конструктор RegExp. 
Конструктор принимает строку и преобразует ее в объект RegExp. Следует обратить 
особое внимание на построение этой строки, так как в регулярных выражениях 



Элементы      93

обратный слэш имеет несколько иной смысл, чем в строковых литералах. Как пра-
вило, необходимо удвоить обратный слэш и использовать кавычки:

// Создаем объект для регулярного выражения, соответствующего 
// JavaScript-строке.

var my_regexp = new RegExp("'(?:\\\\.|[A\\\\\\,])*'", 'g'));

Вторым параметром является строка, определяющая флаги. Конструктор RegExp 
может пригодиться, когда регулярное выражение должно быть сгенерировано в ходе 
выполнения программы и использовать недоступные программисту данные.

Объекты RegExp содержат свойства, перечисленные в табл. 7.2.

Таблица 7.2. Свойства объекта RegExp

Свойство Значение свойства

Global true, если используется флаг g

ignoreCase true, если используется флаг i

Lastlndex Индекс, с которого при выполнении начинается следующее совпадение. 
Изначально равен нулю

multiline true, если используется флаг m

source Исходный текст регулярного выражения

Объекты RegExp, заданные с помощью литералов регулярных выражений, явля-
ются частями одного экземпляра объекта:

function make_a_matcher() { 
    return /a/gi;
}

var x = make_a_matcher(); 
var y = make_a_matcher();

// Осторожно: х и у — это один и тот же объект!

x.lastIndex = 10;

document.writeln(y.lastIndex);    // 10

Элементы
Рассмотрим подробнее элементы, составляющие регулярные выражения.

Выбор регулярного выражения
Элемент выбора регулярного выражения представляет собой одну или несколько 
последовательностей регулярных выражений. Последовательности разделяются 



94      Глава 7. Регулярные выражения

символом | (вертикальная черта). Соответствие считается найденным, если хотя 
бы одна из последовательностей имеет соответствие. Соответствие для каждой 
последовательности ищется по порядку . Итак:

"into".match(/in|int/)

Найдено соответствие in в into. Соответствие int не ищется, потому что оно уже 
найдено для in.

Последовательность регулярных выражений
Последовательность регулярных выражений состоит из одного или нескольких 
фрагментов регулярных выражений, после каждого из которых дополнительно 
может содержаться квантификатор, определяющий, сколько раз этот фрагмент 
долен появляться. Если квантификатор не указан, он считается равным единице.

Фрагмент регулярного выражения
Фрагментом регулярного выражения может быть символ, парные скобки, класс 
символов или управляющая последовательность. Все символы рассматриваются 
буквально за исключением управляющих и специальных символов:

\ / [] () {} ? + * | . ^ $

Если следует читать эти символы буквально, то они должны экранироваться пре-
фиксом \. Также следует экранировать с помощью префикса \ вызывающие со-
мнения специальные символы. С буквами или цифрами префикс \ не применя-
ется.

Неэкранированный символ . соответствует любому символу кроме символа кон-
ца строки.

Неэкранированный символ ̂  соответствует началу текста, если значение свойства 
lastIndex равно нулю. Также он может соответствовать символу конца строки, 
если указан флаг m.

Неэкранированный символ $ соответствует концу текста. Также он может соот-
ветствовать символу конца строки, если указан флаг m.



Элементы      95

Управляющие символы регулярных выражений
Обратный слэш служит для управления как фрагментами регулярных выражений, 
так и строками, но с регулярными выражениями он работает несколько иначе.

Как и в строках, знаки \f означают переход на новую страницу, \n  — переход 
на новую строку, \r  — возврат каретки, \t  — табуляцию, \u  — преобразование 
Unicode-символа в 16-разрядную шестнадцатеричную константу. Для фрагмен-
тов регулярных выражений знаки \b не удаляют предыдущий символ.

Знаки \d так же, как и [0-9], соответствуют цифре. Знаки \D, наоборот: [^0-9].

Знаки \s, как и [\f\n\r\t\u000B\u0020\u00A0\u2028\u2029], означают неполный 
набор символов пробелов в Unicode. Знаки \S, напротив: [^\f\n\r\t\u000B\u0020\
u00A0\u2028\u2029].

Знаки \w означают то же, что и [0-9A-z_a-г]. Знаки \W, наоборот: [^0-9A-Z_a-z]. 
Так должны быть представлены символы, используемые в словах. К сожалению, 
отвечающий за это класс практически бесполезен для работы с любым реальным 



96      Глава 7. Регулярные выражения

языком. Если требуется задать соответствие буквенному классу, лучше создать 
собственный класс.

Знаки [A-Za-z\u00C0-\u1FFF\u2800-\uFFFD] означают простой буквенный класс, 
включающий все Unicode-буквы, а также тысячи символов, не являющихся бук-
вами. Стандарт Unicode довольно большой и сложный. Можно задать более точ-
ный буквенный класс из символов основной многоязычной матрицы, но он будет 
сложным и неэффективным. Регулярные выражения в JavaScript очень слабо под-
держивают интернационализацию.

Знаки \b задумывались как якорь, означающий границы слова и призванный об-
легчить поиск соответствия по словам. К сожалению, для определения границ 
слов используются знаки \w, что совершенно бесполезно для многоязычных при-
ложений. И это далеко не сильная сторона JavaScript.

Знаки \1 представляют собой ссылку на текст захватываемой группы номер 1, 
используемую для повторного поиска соответствий. Например, пусть требуется 
найти в тексте повторяющиеся слова:

var doubled_words =
    /([A-Za-z\u00C0-\u1FFF\u2800-\uFFFD]+)\s+\1/gi;

Здесь выражение doubled_words ищет вхождения слов (строк, содержащих одну 
или несколько букв), за которым следует пробел и то же слово.

Знаки \2 означают ссылку на группу номер 2, знаки \3 — на группу 3 и т. д.

Группы регулярных выражений
Есть четыре вида групп регулярных выражений:

Захватываемая группа

Захватываемая группа обеспечивает выбор регулярного выражения, заклю-
ченного в круглые скобки. При этом символы, соответствующие группе, за-
хватываются. Каждой захватываемой группе присваивается номер. Первая за-
хватываемая группа начинается с символа ( в регулярном выражении группы 
номер 1. Вторая начинается с символа ( в регулярном выражении группы 2.



Элементы      97

Не захватываемая группа

Не захватываемая группа имеет префикс (:. Не захватываемая группа просто 
находит соответствия, не захватывая соответствующий текст, что может слегка 
повысить производительность. Не захватываемые группы не нарушают нуме-
рацию захватываемых групп.

Позитивный просмотр вперед

При позитивном просмотре вперед группа имеет префикс (?=. В отличие от не 
захватываемых групп, такой группе будет найдено соответствие, если для сле-
дующей за ней группы также будет найдено соответствие. Это трудно назвать 
сильной стороной.

Негативный просмотр вперед

При негативном просмотре вперед группа имеет префикс (?!. В отличие от 
групп с позитивным просмотром вперед, такой группе будет найдено соответ-
ствие, если для следующей за ней группы соответствия не будет, что также не 
является сильной стороной.

Классы регулярных выражений
Класс регулярных выражений  — это удобное средство задания набора симво-
лов. К  примеру, чтобы найти в тексте все гласные, можно было бы написать 
(?:a|e|i|o|u), но удобнее задать класс [aeiou].

Классы имеют ряд преимуществ. Первым преимуществом является возможность 
указать диапазон символов. Например, рассмотрим набор 32 специальных ASCII-
символов:

! " # $ % & ' ( ) * + , - . / : ; < = > ? @ [ \ ] A _ ~ { | } ~

Этот же набор может быть записан в виде:

(?:!|"|#|\$|%|&|'|\(|\)|\*|\+|,|-|\.|\/|:|;|<|=|>|@|\[|\\|]|\^|_|` |\
{|\||\}|~)

Однако намного изящнее записать его в виде класса:

[!-\/:-@\[-'{-~]



98      Глава 7. Регулярные выражения

Здесь представлены символы от ! до /, от : до @, от [ до ', от { до ~. Тем не ме-
нее нельзя не отметить, что смотреть на эту мешанину символом по-прежнему не 
слишком приятно.

Второе преимущество классов: если первый символ после [ — это ^, то класс не 
будет включать указанные символы.

Так, последовательность [^!-\/:-@\[-'{-~] соответствует любому символу, кро-
ме специальных ASCII-символов.

Управляющие символы в классах 
регулярных выражений

Правила использования управляющих символов в классах немного отличаются от 
тех, что применяются для фрагментов регулярных выражений. Знаки [\b] означа-
ют возврат к предыдущему символу. Вот специальные символы, которые следует 
экранировать при задании класса символов:

- / [ \ ] ^

Квантификатор регулярного выражения
Фрагмент регулярного выражения может иметь суффикс, являющийся квантифи-
катором регулярного выражения и определяющий, сколько соответствий может 
иметь данный фрагмент. Число в фигурных скобках означает, что текст, соответ-
ствующий фрагменту, может встретиться несколько раз. Таким образом, последо-
вательность /www/ будет соответствовать /w{3}/, последовательность {3,6} — 3, 4, 
5 или 6 повторениям, а последовательность {3,} — 3 и более повторениям.



Элементы      99

Знак ? означает то же самое, что {0,1}, знак * — то же, что {0}, а знак + — то же, 
что {1}.

Квантификация может быть жадной, в этом случае поиск соответствий будет 
продолжаться до последнего повторения. Если у квантификатора есть дополни-
тельный суффикс ?, то квантификация является ленивой, в этом случае поиск со-
ответствий будет производиться до минимально возможного числа повторений. 
Обычно лучше задействовать жадную квантификацию.



Методы

Хотя это и безумие, метод все же есть.

Уильям Шекспир. Гамлет

JavaScript обладает небольшим набором готовых методов, доступных для стан-
дартных типов данных.

Массивы

array.concat(item...)
Метод concat создает новый массив, содержащий копию массива array, допол-
ненную элементами item. Если item является массивом, то добавляются только 
те элементы, которых еще нет в исходном массиве. Далее в этой главе описан еще 
один похожий метод array.push(item...).

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.concat(b, true);
// массив c равен ['a', 'b', 'c', 'x', 'y', 'z', true]

array.join(separator)
Метод join преобразует array в строку. Каждый элемент массива преобразу-
ется в строку, затем строки объединяются вместе через разделитель separator. 
По умолчанию separator имеет значение ','. Для того чтобы объединить стро-
ки без разделителя, необходимо задать в качестве значения separator пустую 
строку.

8



Массивы      101

Если нужно получить строку из множества частей, может быть быстрее собрать 
их в массив и использовать метод join, чем объединять все части с помощью опе-
ратора +:

var a = ['a', 'b', 'c']; 
a.push('d');
var c = a.join('');    // строка c равна 'abcd';

array.pop()
Методы pop и push позволяют работать с массивом как со стеком. Метод pop уда-
ляет из array последний элемент и возвращает его в качестве результата. Если 
массив array пуст, то возвращается значение undefined.

var a = ['a', 'b', 'c'];
var c = a.pop();    // массив a равен ['a', 'b'], c равно 'c'

Метод pop может быть реализован следующим образом:

Array.method('pop', function () {
    return this.splice(this.length - 1, 1)[0];
});

array.push(item...)
Метод push добавляет элемент item в конец массива. В отличие от метода concat, 
он модифицирует исходный массив array и добавляет сразу все элементы масси-
ва. Метод push возвращает новое значение длины массива array:

var a = ['a', 'b', 'c'];
var b = ['x', 'y', 'z'];
var c = a.push(b, true);
// массив a равен ['a', 'b', 'c', ['x', 'y', 'z'], true]
// c равно 5;

Метод push может быть реализован следующим образом:

Array.method('push', function () { 
    this.splice.apply(
        this,
        [this.length,0].concat(Array.prototype.slice.apply(arguments)));
    return this.length;
});

array.reverse()
Метод reverse переставляет элементы массива array в обратном порядке и воз-
вращает новое значение array:

var a = ['a', 'b', 'c'];
var b = a.reverse();
// оба массива a и b равны ['c', 'b', 'a']



102      Глава 8. Методы

array.shift()
Метод shift удаляет первый элемент array и возвращает его значение. Если мас-
сив пуст, то возвращается значение undefined. Метод shift, как правило, гораздо 
медленнее, чем pop:

var a = ['a', 'b', 'c'];
var c = a.shift();    // массив a равен ['b', 'c'], c равно 'a'

Метод shift может быть реализован следующим образом:

Array.method('shift', function () { 
    return this.splice(0, 1)[0];
});

array.slice(start, end)
Метод slice создает копию части array, начиная с элемента array[start] и закан-
чивая элементом array[end]. Задавать параметр end не обязательно, по умолчанию 
он равен array.length. Если один из параметров отрицателен, чтобы получить не-
отрицательное значение, к нему будет добавлено значение array.length. Если пара-
метр start больше или равен array.length, метод возвращает новый пустой массив. 
Не путайте методы slice и splice. Метод string.slice описан далее в этой главе.

Var a = ['a', 'b', 'c'];
Var b = a.slice(0, 1);    // массив b равен ['a']
Var c = a.slice(1);       // массив c равен ['b', 'c']
Var d = a.slice(1, 2);    // массив d равен ['b']

array.sort(comparefn)
Метод sort упорядочивает элементы массива array, но числа он сортирует непра-
вильно:

var n = [4, 8, 15, 16, 23, 42]; 
n.sort();
// массив n равен [15, 16, 23, 4, 42, 8] 

Стандартная функция сравнения в JavaScript предполагает, что элементы, кото-
рые требуется отсортировать, являются строками. Эта функция не так хороша, 
чтобы перед сравнением проверять тип элементов, она преобразует числа в строки 
и сравнивает их, предоставляя на удивление неправильные результаты.

К счастью, можно заменить функцию сравнения собственной, которая будет при-
нимать два параметра и возвращать 0, если они равны; отрицательное число, если 
сначала должен идти первый параметр; и положительное число, если сначала дол-
жен быть второй. (Некоторым старожилам это может напомнить арифметическую 
инструкцию IF в FORTRAN II.)

n.sort(function (a, b) { 
    return a - b;
});
// массив n равен [4, 8, 15, 16, 23, 42];



Массивы      103

Эта функция служит для сортировки чисел, но не строк. Если есть необходимость 
отсортировать массив, элементы которого могут принадлежать к любому просто-
му типу, придется немного потрудиться:

var m = ['aa', 'bb', 'a', 4, 8, 15, 16, 23, 42]; 
m.sort(function (a, b) { 
    if (a === b) { 
        return 0;
    }
    if (typeof a === typeof b) { 
        return a < b ? -1 : 1;
    }
    return typeof a < typeof b ? -1 : 1;
});
// массив m имеет вид [4, 8, 15, 16, 23, 42, 'a', 'aa', 'bb']

Если не оговорено специально, то перед сравнением функция должна приводить 
операнды к нижнему регистру. Далее в этой главе описан похожий метод string.
localeCompare.

Более совершенная функция сравнения может позволить сортировать массив объ-
ектов. Для того чтобы упростить задачу, напишем функцию, создающую функции 
сравнения:

// Функция by принимает строку с именем члена объекта и возвращает 
// функцию сравнения, которая может быть использована для сортировки 
// массива объектов, содержащих этот член.

var by = function (name) { 
    return function (o, p) { 
        var a, b;
        if (typeof o === 'object' && typeof p === 'object' && o && p) { 
            a = o[name]; 
            b = p[name]; 
            if (a === b) { 
                return 0;
            }
            if (typeof a === typeof b) { 
                return a < b ? -1 : 1;
            }
            return typeof a < typeof b ? -1 : 1;
        } else {
            throw {
                name: 'Error',
                message: 'Expected an object when sorting by ' + name;
            };
        }
    };
};

продолжение 



104      Глава 8. Методы

var s = [
    {first: 'Joe',   last: 'Besser'}, 
    {first: 'Moe',   last: 'Howard'}, 
    {first: 'Joe',   last: 'DeRita'}, 
    {first: 'Shemp', last: 'Howard'}, 
    {first: 'Larry', last: 'Fine'}, 
    {first: 'Curly', last: 'Howard'}
];

s.sort(by('first'));    // массив s равен [
//    {first: 'Curly',    last: 'Howard'},
//    {first: 'Joe',      last: 'DeRita'},
//    {first: 'Joe',      last: 'Besser'},
//    {first: 'Larry',    last: 'Fine'},
//    {first: 'Moe',      last: 'Howard'},
//    {first: 'Shemp',    last: 'Howard'}
// ]

Метод sort недостаточно стабилен, так следующая инструкция не гарантирует 
правильной последовательности:

s.sort(by('first')).sort(by('last'));

Если необходима сортировка по нескольким ключам, придется еще немного по-
трудиться. Можно изменить функцию by и передать ей два параметра, создать 
другой метод сравнения, вызываемый для разрыва связей после того, как произо-
шло сравнение с главным ключом:

// Функция by принимает строку c именем члена объекта 
// и необязательную функцию сравнения minor и возвращает 
// функцию сравнения, которая может быть использована для сортировки 
// массива объектов, содержащих этот член.
// Функция сравнения minor используется для разрыва связей,
// если o[name] и p[name] равны.

var by = function (name, minor) { 
    return function (o, p) { 
        var a, b;
        if (o && p && typeof o === 'object' && typeof p === 'object') { 
            a = o[name]; 
            b = p[name]; 
            if (a === b) {
                return typeof minor === 'function' ? minor(o, p) : 0;
            }
            if (typeof a === typeof b) { 
                return a < b ? -1 : 1;
            }
            return typeof a < typeof b ? -1 : 1;
        } else {



Массивы      105

            throw {
                name: 'Error',
                message: 'Expected an object when sorting by ' + name;
            };
        };
    };
};

s.sort(by('last', by('first')));        // массив s равен [ 
//    {first: 'Joe',      last: 'Besser'}, 
//    {first: 'Joe',      last: 'DeRita'},
//    {first: 'Larry',    last: 'Fine'}, 
//    {first: 'Curly',    last: 'Howard'},
//    {first: 'Moe',      last: 'Howard'},
//    {first: 'Shemp',    last: 'Howard'}
// ]

array.splice(start, deleteCount, item...)
Метод splice удаляет элементы массива, заменяя их новыми элементами item. 
Параметр start  — это индекс элемента в массиве array, с которого следует на-
чать удаление. Параметр deleteCount — это количество удаляемых элементов, на-
чиная с указанной позиции. Если заданы дополнительные параметры, элементы 
item вставляются в указанную позицию. Метод возвращает массив, содержащий 
удаленные элементы.

Чаще всего splice используется для удаления элементов из массива. Не путайте 
методы splice и slice:

var a = ['a', 'b', 'c'];
var r = a.splice(1, 1, 'ache', 'bug');
// массив a равен ['a', 'ache', 'bug', 'c']
// массив r равен ['b']

Метод splice может быть реализован так:

Array.method('splice', function (start, deleteCount) { 
    Var max = Math.max, 
        min = Math.min,
        delta,
        element,
        insertCount = max(arguments.length - 2, 0), 
        k = 0,
        len = this.length, 
        new_len, 
        result = [], 
        shift_count;
    start = start || 0; 
    if (start < 0) { 

продолжение 



106      Глава 8. Методы

        start += len;
    }
    start = max(min(start, len), 0);
    deleteCount = max(min(typeof deleteCount === 'number' ?
            deleteCount : len, len - start), 0); 
    delta = insertCount - deleteCount; 
    new_len = len + delta; 
    while (k < deleteCount) {
        element = this[start + k]; 
        if (element !== undefined) { 
            result[k] = element;
        }
        k += 1;
    }
    shift_count = len - start - deleteCount; 
    if (delta < 0) {
        k = start + insertCount; 
        while (shift_count) {
            this[k] = this[k - delta]; 
            k += 1;
            shift_count -= 1;
        }
        this.length = new_len; 
    } else if (delta > 0) { 
        k = 1;
        while (shift_count) {
            this[new_len - k] = this[len - k]; 
            k += 1;
            shift_count -= 1;
        }
        this.length = new_len;
    }
    for (k = 0; k < insertCount; k += 1) { 
        this[start + k] = arguments[k + 2];
    }
    return result;
});

array.unshift(item...)
Метод unshift, в отличие от push, добавляет элемент item в начало массива array, 
а не в конец. Метод возвращает новое значение length массива array:

var a = ['a', 'b', 'c'];
var r = a.unshift('?', '@');
// массив a равен ['?',    'a', 'b', 'c']
// массив r равен 5



Функции      107

Метод unshift может быть реализован так:

Array.method('unshift', function ( ) { 
    this.splice.apply(this,
        [0, 0].concat(Array.prototype.slice.apply(arguments))); 
    return this.length;
});

Функции

function.apply(thisArg, argArray)
Метод apply вызывает функцию, в которую передает объект, связанный с this, 
и необязательный массив аргументов. Метод apply используется в программном 
шаблоне вызова метода apply (см. главу 4):

Function.method('bind', function (that) {

// Возвращаем функцию, вызывающую эту функцию как метод объекта that.

    var method = this,
        slice = Array.prototype.slice,
        args = slice.apply(arguments, [1]); 
    return function ( ) {
        return method.apply(that,
            args.concat(slice.apply(arguments, [0])));
        };
    });

    var x = function () { 
        return this.value; 
    }.bind({value: 666}); 
    alert(x());     // 666

Числа

number.toExponential(fractionDigits)
Метод toExponential преобразует число number в строку в экспоненциальной 
форме. Необязательный параметр fractionDigits задает количество знаков после 
запятой в диапазоне от 0 до 20:

document.writeln(Math.PI.toExponential(o)); 
document.writeln(Math.PI.toExponential(2)); 
document.writeln(Math.PI.toExponential(7)); 
document.writeln(Math.PI.toExponential(16)); 
document.writeln(Math.PI.toExponential());

продолжение 



108      Глава 8. Методы

// Получаем

3e+0
3.14e+0
3.1415927e+0
3.1415926535897930e+0
3.141592653589793e+0

number.toFixed(fractionDigits)
Метод toFixed преобразует число number в строку в десятичной форме. Необяза-
тельный параметр fractionDigits задает количество знаков после запятой в диа-
пазоне от 0 до 20. По умолчанию он равен 0:

document.writeln(Math.PI.toFixed(0)); 
document.writeln(Math.PI.toFixed(2)); 
document.writeln(Math.PI.toFixed(7)); 
document.writeln(Math.PI.toFixed(16)); 
document.writeln(Math.PI.toFixed( ));

// Получаем

3
3.14
3.1415927
3.1415926535897930 
3

number.toPrecision(precision)
Метод toPrecision преобразует число number в строку в десятичной форме. Необя-
зательный параметр precision задает число значащих цифр в диапазоне от 1 до 21:

document.writeln(Math.PI.toPrecision(2)); 
document.writeln(Math.PI.toPrecision(7)); 
document.writeln(Math.PI.toPrecision(16)); 
document.writeln(Math.PI.toPrecision( ));

// Получаем

3.1
3.141593
3.141592653589793 
3.141592653589793

number.toString(radix)
Метод toString преобразует число number в строку. Необязательный параметр 
radix задает основание системы счисления в диапазоне от 2 до 36. По умолчанию 



Регулярные выражения      109

значение radix равно 10. Параметр radix чаще используется с целыми числами, 
но не обязательно.

В большинстве случаев number.toString() можно записать проще, как String(num
ber):

document.writeln(Math.PI.toString(2)); 
document.writeln(Math.PI.toString(8)); 
document.writeln(Math.PI.toString(16)); 
document.writeln(Math.PI.toString());

// Получаем

11.001001000011111101101010100010001000010110100011
3.1103755242102643
3.243f6a8885a3
3.141592653589793

Объекты

object.hasOwnProperty(name)
Метод hasOwnProperty возвращает true, если объект обладает свойством name. Це-
почка прототипов в данном методе не рассматривается, к тому же он бесполезен, 
если параметр name — это hasOwnProperty:

var a = {member: true};
var b = Object.create(a);              // см. главу 3
var t = a.hasOwnProperty('member');    // t имеет значение true
var u = b.hasOwnProperty('member');    // u имеет значение false
var v = b.member;                      // v имеет значение true

Регулярные выражения

regexp.exec(sting)
Метод exec является самым мощным (и самым медленным) методом для рабо-
ты с регулярными выражениями. Если выражение regexp соответствует строке 
string, то метод возвращает массив. Нулевой элемент массива будет содержать 
подстроку, соответствующую регулярному выражению, первый элемент — текст 
захватываемой группы номер 1, второй элемент — текст захватываемой группы 2 
и т. д. Если найти соответствие не удается, метод возвращает null.

Если выражение regexp имеет флаг g, ситуация немного усложняется. По-
иск начинается не с нулевой позиции в строке, а с позиции regexp.lastIndex 



110      Глава 8. Методы

(которая считается нулевой). Если соответствие успешно найдено, то индекс 
regexp.lastIndex устанавливается в позицию символа, следующего за фрагментом, 
где было обнаружено соответствие. В случае неудачи значение regexp.lastIndex 
сбрасывается в 0.

Вызов exec в цикле позволяет найти в строке несколько вхождений шаблона. 
Важно не упустить следующее: чтобы досрочно выйти из цикла, перед очередным 
входом в цикл необходимо самостоятельно сбросить значение regexp.lastIndex 
в 0. Кроме того, начать поиск соответствий с начала можно только при нулевом 
значении regexp.lastIndex:

// Разобъем простой HTML-текст на теги и текст. 
// (См. string.replace для метода entityify.)
// Для каждого тега или текста создается массив, содержащий:
// [0] полное соответствие тегу или тексту
// [1] символ /, если он есть
// [2] имя тега
// [3] атрибуты, если таковые имеются

var text = '<html><body bgcolor=linen><p>' +
        'This is <b>bold<\/b>!<\/p><\/body><\/html>';

var tags = /[A<>]+|<(\/?)([A-Za-z]+)([A<>]*)>/g;
var a, i;

while ((a = tags.exec(text))) {
    for (i = 0; i < a.length; i += 1) {
        document.writeln(('// [' + i + '] ' + a[i]).entityify());
    }
    document.writeln( );
}

// Результат:

// [0] <html>
// [1]
// [2] html
// [3]

// [0] <body bgcolor=linen>
// [1]
// [2] body
// [3] bgcolor=linen

// [0] <p>
// [1]
// [2] p
// [3]



Регулярные выражения      111

// [0] This is
// [1] undefined
// [2] undefined
// [3] undefined

// [0] <b>
// [1]
// [2] b
// [3]

// [0] bold
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </b>
// [1] /
// [2] b
// [3]

// [0] !
// [1] undefined
// [2] undefined
// [3] undefined

// [0] </p>
// [1] /
// [2] p
// [3]

// [0] </body>
// [1] / 
// [2] body
// [3]

// [0] </html>
// [1] /
// [2] html
// [3]

regexp.test(string)
Метод test — самый простой (и самый быстрый) метод для работы с регуляр-
ными выражениями. Если выражение regexp соответствует строке string, он 
возвращает true, в противном случае — false. Не используйте с этим методом 
флаг g:



112      Глава 8. Методы

var b = /&.+;/.test('frank &amp; beans'); 
// b имеет значение true

Метод test может быть реализован так:

RegExp.method('test', function (string) { 
    return this.exec(string) !== null;
});

Строки

string.charAt(pos)
Метод charAt возвращает символ из строки string в позиции pos. Если значение 
pos меньше нуля или больше либо равно string.length, вернет пустую строку. 
В  JavaScript нет символьного типа. Результатом вызова этого метода является 
строка:

var name = 'Curly';
var initial = name.charAt(0);    // initial равна 'C'

Метод charAt может быть реализован так:

String.method('charAt', function ( pos) { 
    return this.slice(pos, pos + 1);
});

string.charCodeAt(pos)
Метод charCodeAt, в отличие от charAt, вместо строки возвращает целое значение 
кода символа из строки string в позиции pos. Если значение pos меньше нуля или 
больше либо равно string.length, метод возвращает NaN:

var name = 'Curly';
var initial = name.charCodeAt(0);    // initial имеет значение 67

string.concat(string...)
Метод concat создает новую строку путем объединения других строк. Поскольку 
оператор + гораздо удобнее, метод concat используется редко:

var s = 'C'.concat('a', 't');     // s равно 'Cat'

string.indexOf(searchString, position)
Метод indexOf ищет подстроку SearchString в строке string. Если она находит-
ся, то метод возвращает позицию первого символа подстроки, в противном случае 
он возвращает –1. Необязательный параметр position задает позицию, с которой 
следует начать поиск в строке string:



Строки      113

var text = 'Mississippi';
var p = text.indexOf('ss');   // p имеет значение 2
p = text.indexOf('ss', 3);    // p имеет значение 5
p = text.indexOf('ss', 6);    // p имеет значение -1

string.lastIndexOf(searchString, position)
Метод lastIndexOf, в отличие от IndexOf, начинает поиск с конца строки, а не с на-
чала:

var text = 'Mississippi';
var p = text.lastIndexOf('ss');   // p имеет значение 5
p = text.lastIndexOf('ss', 3);    // p имеет значение 2
p = text.lastIndexOf('ss', 6);    // p имеет значение 5

string.localeCompare(that)
Метод localeCompare сравнивает две строки. Правила сравнения строк не указы-
ваются. Если строка that меньше string, результат отрицательный. Если стро-
ки равны, то результат равен нулю. Этот метод напоминает функцию сравнения 
array.sort:

var m = ['AAA', 'A', 'aa', 'a', 'Aa', 'aaa']; 
m.sort(function (a, b) {
    return a.localeCompare(b);
});
//     m (в некотором случае) равен
//         ['a', 'A', 'aa', 'Aa', 'aaa', 'AAA']

string.match(regexp)
Метод match ищет соответствие между строкой и регулярным выражением. Как он 
это делает, зависит от флага g. Если флаг g не указан, то результат вызова string.
match(regexp) такой же, как при вызове regexp.exec(string). Однако если регу-
лярное выражение имеет флаг g, то метод match возвращает массив со всеми соот-
ветствиями за исключением захватываемых групп:

var text = '<html><body bgcolor=linen><p>' +
    'This is <b>bold<\/b>!<\/p><\/body><\/html>'; 
var tags = /[A<>]+|<(\/?)([A-Za-z]+)([A<>]*)>/g; 
var a, i;

a = text.match(tags);
for (i = 0; i < a.length; i += 1) {
    document.writeln(('// [' + i + '] ' + a[i]).entityify());
}

продолжение 



114      Глава 8. Методы

// Результат:

// [0] <html>
// [1] <body bgcolor=linen>
// [2] <p>
// [3] This is
// [4] <b>
// [5] bold
// [6] </b>
// [7] !
// [8] </p> 
// [9] </body> 
// [10] </html>

string.replace(searchValue, replaceValue)
Метод replace производит операции поиска и замены внутри строки string, соз-
давая новую строку. Аргумент searchValue может быть строкой или объектом ре-
гулярного выражения. Если это строка, то заменяется только первое вхождение 
значения searchValue:

var result = "mother_in_law".replace('_', '-'); 

В результате мы, к несчастью, получаем строку "mother-in_law".

Если аргумент searchValue является регулярным выражением и имеет флаг g, то 
заменяются все вхождения. Если флага g нет, то метод заменяет только первое 
вхождение.

Аргумент replaceValue может быть строкой или функцией. Если replaceValue — 
строка, символ $ имеет особое значение (табл. 8.1):

// 3 цифры, заключенные в скобки

var oldareacode = /\((\d{3})\)/g;
var p = '(555)666-1212'.replace(oldareacode, '$1-');
// p равно '555-666-1212'

Таблица 8.1. Значения символа $

Последовательность со знаком $ Замена
$$ $

$& Соответствующий текст

$number Текст захватываемой группы

$` Текст, предшествующий соответствию

$' Текст, следующий за соответствием

Если аргумент replaceValue является функцией, то она вызывается для каждого 
соответствия, и строка, возвращаемая функцией, используется в качестве текста 
замены. Первый параметр передает функции соответствующий текст. Вторым 



Строки      115

параметром является текст захватываемой группы 1, следующий параметр — это 
текст захватываемой группы 2 и т. д.:

String.method('entityify', function ( ) {

var character = { 
    '<' : '&lt;',
    '>' : '&gt;', 
    '&' : '&amp;', 
    '"' : '&quot;'
};

// Возвращаем метод string.entityify, который, в свою очередь,
// возвращает результат вызова метода replace. 
// Функция replaceValue возвращает результат поиска символа в объекте. 
// Это бывает необходимо при использовании инструкции switch.

    return function ( ) {
        return this.replace(/[<>&"]/g, function (c) { 
            return character[c];
        });
    };
}());
alert("<&>".entityify());    // &lt;&amp;&gt;

string.search(regexp)
Метод search, в отличие от indexOf, получает в качестве параметра объект регу-
лярного выражения, а не строку. Он возвращает позицию первого символа перво-
го соответствия, если таковое имеется, или –1, если поиск не удался. Флаг g игно-
рируется. Метод не имеет параметра position:

var text = 'and in it he says "Any damn fool could'; 
var pos = text.search(/["']/);    // pos имеет значение 18

string.slice(start, end)
Метод slice создает новую строку, копируя часть строки string. Если значение 
параметра start отрицательно, к нему добавляется величина string.length. Па-
раметр end является необязательным, по умолчанию его значение равно string.
length. Если значение параметра end отрицательно, к нему добавляется величи-
на string.length. Значение end на единицу больше позиции последнего символа. 
Для того чтобы получить n символов, начиная с позиции р, следует использовать 
метод string.slice(р, р+n). В конце и начале этой главы описаны похожие мето-
ды string.substring и array.slice.

var text = 'and in it he says "Any damn fool could';
var a = text.slice(18);

продолжение 



116      Глава 8. Методы

// a равна '"Any damn fool could'
var b = text.slice(0, 3);
// b равна 'and'
var c = text.slice(-5);
// c равна 'could'
var d = text.slice(19, 32);
// d равна 'Any damn fool'

string.split(separator, limit)
Метод split создает массив строк, разделяя на части строку string. Необяза-
тельный параметр limit может ограничить количество этих частей. Параметр 
separator может быть строкой или регулярным выражением.

Если разделитель separator — это пустая строка, получаем массив символов:

var digits = '0123456789';
var a = digits.split('', 5);
// массив a равен ['0', '1', '2', '3', '4']

В противном случае в строке string ищутся все вхождения разделителя separator. 
Каждая единица текста между разделителями копируется в массив. Флаг g игно-
рируется:

var ip = '192.168.1.0';
var b = ip.split('.');
// массив b равен ['192', '168', '1', '0']

var c = '|a|b|c|'.split('|'); 
// массив c равен ['', 'a', 'b', 'c', ''] 

var text = 'last, first ,middle'; 
var d = text.split(/\s*,\s*/);
// массив d равен [ 
//    'last', 
//    'first',
//    'middle'
// ]

Обратите внимание на следующий случай: текст захватываемой группы включа-
ется в результат:

var e = text.split(/\s*(,)\s*/);
// массив e равен [
//    'last',
//    ',',
//    'first',
//    ',',
//    'middle'
// ]



Строки      117

Существуют реализации, исключающие пустые строки из получаемого массива, 
если разделитель separator является регулярным выражением.

var f = '|a|b|c|'.split(/\|/);
// в некоторых системах массив f равен ['a', 'b', 'c'],
// в других массив f равен ['', 'a', 'b', 'c', ''].

string.substring(start, end)
Метод substring, в отличие от slice, не обрабатывает отрицательные параметры. 
Поэтому лучше использовать метод slice, а не substring.

string.toLocaleLowerCase()
Метод toLocaleLowerCase создает новую строку, которая получается путем при-
ведения строки string к нижнему регистру в соответствии с правилами локали-
зации. Это может быть полезно для турецкого языка, где 'I' превращается в 1,  
а не 'i'.

string.toLocaleUpperCase()
Метод toLocaleUpperCase создает новую строку, которая получается путем при-
ведения строки string к верхнему регистру в соответствии с правилами локали-
зации. Это может быть полезно для турецкого языка, где 'i' превращается в 'İ', 
а не в 'I'.

string.toLowerCase()
Метод toLowerCase создает новую строку, которая получается путем приведения 
строки string к нижнему регистру.

string.toUpperCase()
Метод toLocaleUpperCase создает новую строку, которая получается путем при-
ведения строки string к верхнему регистру.

String.fromCharCode(char...)
Функция String.fromCharCode создает строку из последовательности чисел.
var a = String.fromCharCode(67, 97, 116);
// a равно 'Cat'



Стиль

Дурацкая напыщенная речь!

Уильям Шекспир. Генрих VI. 
Часть 1

Программирование  — далеко не самая простая вещь, придуманная человеком. 
Программы состоят из огромного количества частей, представленных в опреде-
ленной последовательности в виде функций, инструкций и выражений, так чтобы 
теоретически не содержать ошибок. Процесс выполнения имеет мало общего с ре-
ализующей его программой. Как правило, ожидается, что программное обеспече-
ние на протяжении своего жизненного цикла будет обновляться. Однако преоб-
разование одной корректной программы в другую, не менее корректную, — задача 
чрезвычайно сложная.

Хорошие программы не слишком загромождены, они имеют ясную структуру, 
предвосхищающую возможные изменения. Четко выстроенная программа повы-
шает шансы понимать код, успешно его модифицировать или исправлять ошибки.

Все эти замечания справедливы для любых языков программирования, и особен-
но для JavaScript. Для того чтобы компенсировать нестрогую типизацию и слиш-
ком поверхностное отношение к ошибкам, вызванное недостатком времени на 
компиляцию, а также гарантировать качество программ, следует придерживаться 
строгой организации кода.

В JavaScript довольно много недостатков, способных свести на «нет» любые по-
пытки создания хороших программ. Очевидно, что недостатки нужно пытаться 
обойти. Иногда рискованно использовать даже те средства, которые могут быть 
полезны, но ненадежны. Такие средства обладают свойством притягивать пробле-
мы, и отказываясь от них, можно исключить довольно широкий класс потенци-
альных ошибок.

Продолжительность использования какого-либо программного обеспечения на-
прямую зависит от качества кода. За свой жизненный цикл программа проходит 
не через одну пару рук и глаз. Когда структура и характеристики представлены 

9



Стиль      119

предельно ясно, в случае если в далеком будущем потребуется внести в нее какие-
либо изменения, вероятность краха программы будет ниже.

Зачастую JavaScript-код предназначен непосредственно для публикации, что тре-
бует от него определенного уровня качества и аккуратности изложения. Четко 
и последовательно написанные программы удобнее читать.

Программисты могут бесконечно спорить о том, что такое хороший стиль. Боль-
шинство программистов зациклились на том, к чему привыкли, поэтому у них 
преобладает стиль, который они использовали в школе или на своей первой рабо-
те. Некоторые из них построили свою карьеру без малейшего чувства стиля. Но 
разве это не доказывает, что стиль не имеет никакого значения? А если стиль не 
так важен, может ли один стиль быть лучше, чем любой другой?

Оказывается, что стиль в программировании имеет то же значение, что и в письме. 
Он нужен для удобства чтения.

Иногда компьютерные программы разрабатываются для внутренней среды, поэто-
му, пока программа работает, совершенно не важно, как она написана. Тем не ме-
нее оказывается, что вероятность того, что понятно написанная программа будет 
работать, выше, а это, в свою очередь, повышает вероятность того, что програм-
ма будет работать именно так, как предполагалось. Кроме того, в течение своего 
жизненного цикла программное обеспечение может претерпевать колоссальные 
изменения. И если программисты смогут успешно читать и понимать код, можно 
надеяться, что они смогут его изменить и улучшить.

В этой книге при написании примеров я использовал единый стиль. Моей целью 
было создать код, который, по возможности, будет легко читать. Для того чтобы ак-
центировать внимание на смысле программ, я не жалел дополнительных пробелов.

Содержимое блоков и литералов объектов я выделял отступом в четыре пробела. 
Я оставлял пространство между символами if и (, чтобы инструкция if не была 
похожа на вызов функции. Только в вызовах символ ( идет сразу за предыдущим 
символом. Я оставлял пробелы вокруг всех инфиксных операторов, исключая опе-
раторы . и [, которым из-за более высокого приоритета это не требуется. Я встав-
лял пробелы после каждой запятой и двоеточия.

Я оставлял не более чем по одной инструкции в строке. Несколько инструкций 
в строке могут вызвать ошибку. Если инструкция не помещалась в строке, после 
запятой или бинарного оператора я переносил ее на следующую. Это позволяет 
защититься от ошибок копирования и вставки, возникающих из-за механизма ав-
томатического дополнения строк точками с запятой. (Вся трагичность этой ситуа-
ции описана в приложении А.) После переноса части инструкции я делал отступ 
из четырех пробелов или восьми, если наличие четырех пробелов добавляло не-
однозначности (например, при переносе строки с инструкцией if).

Чтобы избежать ошибок, я всегда использовал блоки структурированных ин-
струкций, таких как if и while. Например:

if (a)
    b();



120      Глава 9. Стиль

Я видел, что этот текст может стать таким:

if (a) 
    b(); 
    c();

То есть превратиться в ошибку, которую будет очень трудно обнаружить. Это по-
хоже на следующий фрагмент:

if (a) {
    b();
    c();
}

Однако означает он совсем другое:

if (a) { 
    b();
}
c();

Код, который выглядит как одно, а на самом деле означает другое, является источ-
ником ошибок. Фигурные скобки — довольно простое средство защиты от оши-
бок, обнаружить которые бывает не так уж просто.

Я всегда использую K&R-стиль и ставлю символ { в конце строки, а не в начале, 
потому что это позволяет избежать ужасной ошибки, связанной с применением 
JavaScript-инструкции return.

Я включил в код комментарии. Мне нравится помещать в своих программах ком-
ментарии и оставлять в них информацию, которую потом смогут прочесть другие 
(а возможно и я сам), чтобы понять, о чем я думал. Иногда комментарии мне ка-
жутся своеобразной машиной времени, которую я использую, чтобы слать себе 
в будущее важные сообщения.

Я изо всех сил старался сделать комментарии актуальными. Ошибки в коммента-
риях могут еще сильнее затруднить чтение и понимание программы, а этого я себе 
позволить не могу.

Я старался не тратить время на бесполезные комментарии вроде этого:

i = 0; // Устанавливает для i значение ноль.

В JavaScript я предпочитаю использовать однострочные комментарии. Блочные 
комментарии я оставляю для формального документирования и комментирова-
ния вывода.

Я предпочитаю создавать такую программную структуру, которая говорила бы 
сама за себя, и комментарии были бы излишне. Но это не всегда удается, поэто-
му, пока мои программы не достигли совершенства, я продолжу писать коммен-
тарии.

Язык JavaScript обладает синтаксисом C, но у его блоков не существует области ви-
димости. Таким образом, соглашение о том, что переменные должны объявляться 



Стиль      121

при их первом использовании, в JavaScript неприменимо. В JavaScript предусмо-
трена область видимости для функции, но не для блоков, поэтому я объявляю все 
необходимые переменные в начале каждой функции. JavaScript позволяет объяв-
лять переменные уже после их использования. Для меня это выглядит как ошибка, 
а я не хочу создавать код, даже просто похожий на неправильный. Я хочу, чтобы 
всегда можно было заметить ошибку. Также я никогда не использую выражение 
присваивания в условной части инструкции if:

if (a = b) { ... }

Здесь вероятно предполагается следующее:

if (a === b) { ... }

А я хочу избежать идиом, похожих на ошибки.

Используя инструкцию switch, я всегда исключаю переход к выполнению сле-
дующего блока case. Однажды сразу после пламенной речи о том, почему иногда 
полезно бывает переход к следующему блоку case, я нашел в своем коде ошибку, 
вызванную таким непреднамеренным переходом. Мне повезло, что я умею учить-
ся на собственном опыте. Сегодня при описании особенностей языка я стараюсь 
обратить особое внимание на возможности, которые иногда могут быть довольно 
полезны, но иногда задействовать их бывает просто опасно. И это хуже всего, ведь 
так трудно сказать, используются ли они правильно или в них кроются ошибки.

Вероятно, при разработке, реализации и стандартизации JavaScript высокое каче-
ство во главу угла не ставилось, что, несомненно, увеличивает нагрузку на пользо-
вателей, вынужденных бороться с недостатками этого языка.

Язык JavaScript поддерживает создание больших программ, однако его формы 
и идиомы работают против этого. Например, хотя в JavaScript удобно использо-
вать глобальные переменные, из-за сложностей, связанных с областями видимо-
сти, это становится проблематично.

Я задействую единственную глобальную переменную для хранения приложения 
или библиотеки. Каждый объект имеет собственное пространство имен, поэтому, 
используя объекты, мне удается легко организовать свой код. А применение за-
мыканий, обеспечивающих дополнительное скрытие информации, повышает на-
дежность моих модулей.



Прекрасные черты

В ожидании ответа оскверняю мои губы 
твоими стопами, глаза — твоим обликом, 
сердце — всеми частями твоего тела. Твой, 
в глубочайшей готовности к служению 
пребывающий…

Уильям Шекспир. Бесплодные усилия любви

В прошлом году Энди Орам (Andy Oram) и Грег Уилсон (Greg Wilson) пригла-
сили меня внести свой вклад в главу для их книги «Идеальный код» (O'Reilly), 
антологии на тему красоты в компьютерных программах. Я хотел написать свою 
главу на JavaScript. Представить этот язык как некий абстрактный, мощный и по-
лезный инструмент, чтобы показать, на что он способен. Кроме того, я хотел из-
бежать браузеров и других инструментов, где применение JavaScript тривиально. 
Мне хотелось показать нечто респектабельное и значимое.

Я сразу подумал об инструменте Вогана Пратта (Vaughn Pratt) для разбора вы-
ражений, который я использую в JSLint (см. приложение В). Разбор выражений — 
важная тема в вычислительной технике. Способность написать компилятор сама 
по себе является для языка испытанием на прочность.

Я хотел представить весь код парсера на JavaScript, причем программа должна 
была осуществлять синтаксический разбор JavaScript. Однако моя глава была 
лишь одной из 30 или 40, так что количество страниц было ограничено. Еще одна 
сложность состояла в том, что большинство потенциальных читателей моей главы 
не имело опыта работы с JavaScript, поэтому я должен был познакомить их с этим 
языком и его особенностями.

Итак, я решил описать подмножество языка, иначе мне пришлось бы разбирать 
весь язык JavaScript. Я назвал это подмножество Simplified JavaScript. Выбор под-
множества не был трудным: оно включало только функции, необходимые для на-
писания парсера. Вот как я описал его в книге «Идеальный код»:

Simplified JavaScript — это только хорошее, в том числе:

Функции, как первый класс объектов

Функции в Simplified JavaScript — это лямбда-выражения внутри лексиче
ского контекста.

10



Прекрасные черты      123

Динамические объекты с прототипизированным наследованием

Объекты не привязаны к классам. Можно добавить новый член к любому объ
екту обычным присваиванием. Объект может наследовать члены от другого 
объекта.

Литералы объектов и литералы массивов

С помощью литералов очень удобно создавать новые объекты и массивы. 
JavaScript-литералы стали источником вдохновения для формата обмена 
данными JSON.

В этой подборке перечислено все самое лучшее, что есть в моей книге. Даже если 
бы этот язык обладал только этими чертами, он был бы очень выразительным 
и мощным. В JavaScript есть множество дополнительных возможностей, которые 
дают не так уж много, но, как будет видно из приложений, имеют ряд негативных 
особенностей. А в этой моей подборке нет ничего опасного или плохого. Все толь-
ко самое лучшее.

Simplified JavaScript не является строгим подмножеством JavaScript. Я добавил 
в него несколько новых функций. Добавил число pi как простую константу. Я сде-
лал это, чтобы продемонстрировать особенности парсера. Кроме того, я приме-
нил улучшенную политику зарезервированных слов и показал, что они не нужны. 
В функции слово не может быть одновременно использовано и как переменная 
или имя параметра, и как характеристика языка. Вы можете задействовать его для 
чего-то одного, и у программиста появляется выбор. Это позволяет быстрее осво-
ить язык, так как не обязательно быть в курсе его особенностей, которыми вы не 
пользуетесь. И это делает язык более расширяемым, поскольку нет необходимо-
сти резервировать слова для описания новых возможностей.

Кроме того, я добавил область видимости для блоков; это хотя и не является необ-
ходимым, но ее отсутствие смущает опытных программистов. Я включил область 
видимости для блоков, так как предполагал, что моя программа разбора будет ис-
пользоваться для синтаксического разбора не только JavaScript, но других языков, 
область видимости которых задана правильно. Код своей программы я написал 
так, чтобы было совершенно не важно, доступны области видимости блоков или 
нет. Я рекомендую вам писать точно так же.

Когда я начал думать о своей книге, то хотел развить эту мою идею подмножества, 
позволяющую показать, как можно взять существующий язык программирования 
и существенно его улучшить, просто исключив из него некоторые малозначащие 
возможности.

Существует множество продуктов, где во главу угла ставятся те или иные характе-
ристики, а цена, которую приходится за них платить, не учитывается. Это способ-
но оказать негативное влияние на потребителей, поскольку может усложнить по-
нимание и использование продукта. Людям нравятся продукты, которые работают 
просто. Оказывается, что создавать проекты, которые способны работать просто, 
намного сложнее, чем проекты, предлагающие огромный список возможностей.



124      Глава 10. Прекрасные черты

Каждая дополнительная возможность имеет свою цену, связанную с затратами 
на спецификацию, проектирование и развертывание. Существуют затраты и на 
тестирование, и на поддержание надежности. Чем больше характеристик, тем 
больше трудностей в их разработке и взаимодействии. Незначительные затраты 
на хранение информации в стационарных программных комплексах становятся 
значительными в мобильных приложениях. Возрастают затраты на поддержание 
производительности, поскольку закон Мура не распространяется на батарейки.

Все характеристики связаны с затратами на их документирование. Описание каж-
дой характеристики добавляется к страницам руководства, повышая затраты на 
обучение. Затраты на то, что необходимо лишь единичному числу пользователей, 
ложатся на плечи всех остальных. Однако при разработке программных продук-
тов и языков программирования нам хотелось бы иметь только то, что хорошо 
работает и реально востребовано, потому что только тогда мы сможем создавать 
нечто полезное.

Все находят что-то хорошее в продуктах, которыми пользуются. Все ценят про-
стоту, а если нам не могут предложить эту простоту, мы пытаемся организовать ее 
сами. Моя микроволновая печь имеет множество возможностей, но я использую 
ее только для подогрева пищи. То же самое с часами, настройка которых — дело 
не простое. Мы справляемся с чрезмерной сложностью некоторых конструкций, 
находя и используя в них только то, что нам реально необходимо.

Вообще-то было бы неплохо, если бы программные продукты и языки программи-
рования имели только достоинства.



Приложение A.  
Кошмарные вещи

… и на словах 
И в жизни помнит божий страх…

Уильям Шекспир. Перикл, царь Тирский

В этом приложении представлены проблемные черты JavaScript, избежать кото-
рых не так уж просто. Следует помнить о них, чтобы всегда быть готовым спра-
виться с ситуацией.

Глобальные переменные

Самое кошмарное из всего плохого, что есть в JavaScript, связано с глобальны-
ми переменными. Глобальная переменная — это такая переменная, которая видна 
в любой части программы. Такие переменные могут быть полезны в небольших 
программах, но как только программы становятся больше, управлять глобальны-
ми переменными становится все труднее. Ведь глобальную переменную в любой 
части программы всегда можно изменить, а это может существенно сказаться на 
поведении программы. Использование глобальных переменных снижает надеж-
ность программ, в которых они применяются.

Глобальные переменные затрудняют запуск внутри программы независимых под-
программ. Если глобальные переменные основной программы и подпрограмм бу-
дут иметь одинаковые имена, то они начнут мешать друг другу, но определить, 
в чем проблема, будет довольно трудно.

Глобальные переменные используются во многих языках. Например, открытые 
статические члены классов в Java являются глобальными переменными. Пробле-
ма JavaScript не только в том, что этот язык позволяет существовать глобальным 
переменным, но и в том, что он от них требует. В JavaScript нет компоновщика. 
Все единицы компиляции загружаются в общий глобальный объект.

А



126      Приложение A. Кошмарные вещи 

Существуют три способа объявления глобальных переменных. Во-первых, такую 
переменную можно объявить вне функций с ключевым словом var:

var foo = value;

Во-вторых, глобальную переменную можно добавить непосредственно как свой-
ство глобального объекта. Глобальный объект является контейнером для всех гло-
бальных переменных. В веб-браузерах глобальный объект называется window:

window.foo = value;

В-третьих, можно использовать переменную без объявления, в этом случае под-
разумевается, что переменная является глобальной:

foo = value;

Необязательность объявления переменных перед их использованием может быть 
удобной для начинающих. Но, к сожалению, забыть объявить переменную — до-
вольно распространенная ошибка. Политика JavaScript превращать необъявлен-
ные переменные в глобальные, что приводит к ошибкам, которые очень трудно 
найти.

Область видимости

Синтаксис JavaScript происходит от C. Во всех остальных C-подобных языках 
блок (набор инструкций, заключенных в фигурные скобки) создает область ви-
димости. Переменные, объявленные внутри блока, не видны снаружи. Хотя в Java
Script используется блочный синтаксис, блоки имеют собственную область види-
мости: переменная, объявленная в блоке, видна внутри всей функции, содержащей 
блок. Это может неприятно удивить программистов, имеющих опыт работы с дру-
гими языками.

Как правило, объявлять переменные в большинстве языков лучше всего при их 
первом использовании, чего в JavaScript делать нежелательно именно потому, что 
блоки в JavaScript не имеют собственной области видимости. Поэтому объявлять 
все переменные следует в начале каждой функции.

Автоматическая вставка точки с запятой

В JavaScript существует механизм, который пытается дополнять строки точками 
с запятой, автоматически корректируя распространенную ошибку программиро-
вания. Однако не стоит на него надеяться. Этот механизм может спровоцировать 
более серьезные ошибки.

Иногда он вставляет точку с запятой там, где это не требуется. Рассмотрим воз-
можные последствия его работы на примере инструкции return. 



Unicode      127

Если инструкция return:

return 
{
    status: true
};

Подразумевается, что будет возвращен объект, имеющий член status. К сожале-
нию, вставка точки с запятой сразу после ключевого слова return превращает его 
в инструкцию, возвращающую значение undefined. Нигде не говорится, что авто-
матическая вставка точки с запятой может привести к неправильной интерпрета-
ции программы. Избежать этой проблемы можно, если взять за правило ставить 
открывающую фигурную скобку в конце строки после ключевого слова return, 
а не в начале следующей строки:

return {
    status: true
};

Зарезервированные слова

В JavaScript зарезервированы следующие слова:

abstract boolean break byte case catch char class const continue 
debugger default delete do double else enum export extends false final 
finally float for function goto if implements import in instanceof int 
interface long native new null package private protected public return 
short static super switch synchronized this throw throws transient true 
try typeof var volatile void while with

При этом большинство из них в самом языке JavaScript не используется.

Ключевыми словами нельзя называть переменные и параметры. Когда необходи-
мо использовать зарезервированные слова в качестве ключей в литералах объек-
тов, их следует заключать в кавычки. Их нельзя указывать с точкой, поэтому ино-
гда вместо этого приходится добавлять скобки:

var method;                   // допустимо
var class;                    // недопустимо
object = {box: value};        // допустимо
object = {case: value};       // недопустимо
object = {'case': value};     // допустимо
object.box = value;           // допустимо
object.case = value;          // недопустимо
object['case'] = value;       // допустимо

Unicode

Язык JavaScript разрабатывался в то время, когда стандарт Unicode описывал не более 
65 536 символов. С тех пор его объем возрос более чем до одного миллиона символов.



128      Приложение A. Кошмарные вещи 

В JavaScript используются 16-разрядные символы. Этого достаточно, чтобы по-
крыть первоначальный объем в 65  536 символов, который сейчас известен как 
основная многоязыковая плоскость (basic multilingual plane). Каждый из остав-
шихся символов можно представить с помощью пары символов. Проблема в том, 
что такие пары в Unicode считаются одним символом, а в JavaScript — двумя раз-
ными символами.

typeof

Оператор typeof возвращает строку, показывающую тип операнда. Например:

typeof 98,6 

Это выражение возвращает 'number'. Еще пример:

typeof null

К сожалению, это выражение возвращает 'object', а не 'null'. Увы. Лучше про-
верять null попроще:

my_value === null

Еще большей проблемой является проверка «объектности». Оператор typeof не 
может отличить null от объекта, но проверку можно выполнить иначе, поскольку 
значение null является ложным, а все объекты истинны:

if (my_value && typeof my_value === 'object') { 
    // my_value – это объект или массив!
}

Мы еще вернемся к этой теме далее в разделах «NaN» и «Странные массивы».

В различных реализациях тип объектов регулярных выражений трактуется по-
разному. Например:

typeof /a/

В некоторых реализациях это выражение возвращает 'object', в других  — 
'function'. Было бы полезней, если бы возвращалось 'regexp', но стандарты это-
го не позволяют.

parseInt

Функция parseInt просто преобразует строку в целое число. Однако parse
Int("l6") и parseInt("l6 tons") дадут одинаковый результат. Было бы неплохо, 
если бы функция как-нибудь сообщала о дополнительном тексте, но этого не про-
исходит.



NaN      129

Если первый символ строки равен 0, то строка преобразуется в число с основани-
ем 8, а не с основанием 10. В системе с основанием 8 нет цифр 8 и 9, поэтому вызо-
вы parseInt("08") и parseInt("09") возвращают 0. Эта ошибка приводит к про-
блемам в программах, анализирующих дату и время. К счастью, в parseInt систему 
счисления можно задать с помощью параметра, так что вызов parseInt("08", 10) 
возвращает 8. Рекомендую всегда задавать этот параметр.

Оператор +

Оператор + может использоваться и для сложения, и для конкатенации строк. Как 
именно он будет работать, зависит от типа параметров. Если один из операндов 
является пустой строкой, другой операнд преобразуется в строку. Если оба опе-
ранда являются числами, оператор + возвращает их сумму. В противном случае 
он преобразует оба операнда в строки и выполняет конкатенацию. Такое сложное 
поведение является распространенным источником ошибок. Если вы собираетесь 
произвести сложение, убедитесь, что оба операнда — числа.

Плавающая точка

Двоичные числа с плавающей точкой не работают с десятичными дробями, напри-
мер: 0.1 + 0.2 не равно 0.3 — это наиболее распространенная ошибка в JavaScript, 
которая является следствием применения стандарта IEEE, принятого для двоич-
ной арифметики с плавающей точкой (IEEE 754). Этот стандарт идеально под-
ходит для многих приложений, но нарушает привычное представление о числах, 
заложенное всем в средней школе.

К счастью, целочисленная арифметика с плавающей точкой дает точные резуль-
таты, так что ошибок десятичного представления можно избежать путем округле-
ния.

Например, долларовые значения умножением на 100 могут быть преобразованы 
в целочисленные значения центов. Центы складываются нормально. Затем сумму 
можно разделить на 100 и преобразовать обратно в доллары. Когда люди считают 
деньги, они хотят, чтобы результаты были точными.

NaN

Значение NaN — это специальная величина, определенная стандартом IEEE 754. 
Она означает не число, и тем не менее:

typeof NaN === 'number' // true



130      Приложение A. Кошмарные вещи 

Значение NaN можно получить при попытке преобразовать строку в число, если 
строка не похожа на число. Например:

+ '0'        // 0
+ 'oops'     // NaN

Если NaN выступает в роли операнда в арифметическом выражении, то результа-
том тоже является NaN. Так что если цепочка формул возвращает результат NaN, 
по крайней мере, одним из входных параметров было значение NaN или оно было 
получено как промежуточный результат.

Можно устроить для NaN проверку. Как говорилось ранее, оператор typeof не ви-
дит разницы между 'number' и NaN, к тому же оказывается, что NaN не равно само-
му себе. На удивление:

NaN === NaN        // false
NaN !== NaN        // true

Чтобы отличить 'number' и NaN, в JavaScript используется функция isNaN:

isNaN(NaN)         // true
isNaN(0)           // false
isNaN('oops')      // true
isNaN('0')         // false

Функция isFinite — это лучшее средство определить, может ли переменная быть 
использована как число, потому что она отсеет значения NaN и Infinity. К сожале-
нию, isFinite будет пытаться конвертировать операнд в число, так что это луч
ший вариант, если переменная на самом деле не является числом. Можно опреде-
лить собственную функцию isNumber:

var isNumber = function isNumber(value) { 
    return typeof value === 'number' && isFinite(value);
}

Странные массивы

В JavaScript нет настоящих массивов. Но не все так плохо. Массивы в JavaScript 
предельно просты в использовании. Не нужно задавать их размерность, и они ни-
когда не вызовут ошибок, связанных с выходом за границы массива. Хотя они и не 
так эффективны, как настоящие массивы.

Оператор typeof не делает различий между массивами и объектами. Для того 
чтобы определить, является ли значение переменной массивом, необходимо по-
лучить значение ее свойства constructor:

if (my_value && typeof my_value === 'object' && 
        my_value.constructor === Array) { 
    // my_value – это массив!
}



Значения falsy      131

Такая проверка даст отрицательный результат, если массив был создан в другом 
фрейме или в другом окне. Вот реализация более надежной проверке значения 
переменной, созданной в другом фрейме:

if (Object.prototype.toString.apply(my_value) === '[object Array]'){ 
    // my_value - это действительно массив!
}

Массив аргументов — это не массив, а объект, имеющий член length (длина мас-
сива). Подобные проверки не покажут, что массив аргументов является масси-
вом.

Значения falsy

JavaScript обладает удивительно большим набором значений falsy, которые пред-
ставлены в табл. A.1.

Таблица A.1. Многочисленные falsy-значения в JavaScript

Значение Тип
0 Number
NaN (не число) Number
' ' (пустая строка) String
false Boolean
null Object
undefined Undefined

Хотя все эти значения являются ложными, они не взаимозаменяемы. Вот, к при-
меру, неудачный способ определить, является ли объект отсутствующим чле-
ном:

value = myObject[name]; 
if (value == null) {
    alert(name + ' not found.');
}

Хотя значением отсутствующих членов объекта является undefined, здесь прово-
дится проверка на null. К тому же здесь вместо более надежного оператора === 
используется оператор == (детали см. в приложении Б), который производит срав-
нение с приведением типов. Иногда две эти ошибки компенсируют друг друга, 
иногда нет.

Значения undefined и NaN не константы — это глобальные переменные, значения 
которых можно изменить. Так не должно быть, но так есть. И лучше этого не де-
лать.



132      Приложение A. Кошмарные вещи 

hasOwnProperty

В главе 3, чтобы обойти проблемы, связанные с инструкцией for in, предла-
галось использовать в качестве фильтра метод hasOwnProperty. К сожалению, 
hasOwnProperty — это метод, а не оператор, поэтому в любом объекте он может быть 
заменен другой функцией или даже не функцией, а просто значением:

var name;
another_stooge.hasOwnProperty = null; // проблема
for (name in another_stooge) {
    if (another_stooge.hasOwnProperty(name)) { // бум
        document.writeln(name + ': ' + another_stooge[name]);
    }
}

Object

Объекты в JavaScript никогда реально не бывают пустыми, потому что они по-
лучают свои члены из цепочки прототипов. Иногда это очень важно. К примеру, 
предположим, что вы пишете программу, подсчитывающую количество вхожде-
ний каждого слова в текст. Можно использовать метод toLowerCase для приведе-
ния текста к нижнему регистру, а затем для получения массива слов использовать 
метод регулярных выражений split. После этого можно перебрать все слова и по-
считать, сколько раз встречается каждое из них:

var i; 
var word; 
var text =
        "This oracle of comfort has so pleased me, " + 
        "That when I am in heaven I shall desire " + 
        "To see what this child does, " + 
        "and praise my Constructor.";

var words = text.toLowerCase().split(/[\s,.]+/); 
var count = {};
for (i = 0; i < words.length; i += 1) { 
    word = words[i]; 
    if (count[word]) { 
        count[word] += 1;
    } else {
        count[word] = 1;
    }
}

Если мы посмотрим на результаты, то выясним, что count['this'] равно 2, 
count.heaven равно 1, а вот в count.constructor окажется сумасшедшего вида 



Object      133

строка. Причина в том, что объект count наследуется от Object.prototype, а Object.
prototype содержит элемент с именем constructor, значением которого является 
Object. Оператор +=, как и оператор +, не производит сложение, если его операнды 
не являются числами. Object — это функция, поэтому += каким-то непонятным 
образом преобразует ее в строку и выполняет ее конкатенацию с единицей.

Можно избежать проблем, напоминающих проблему инструкции for in, исполь-
зуя метод hasOwnProperty или подбирая конкретные типы. В этом случае проверка 
истинности count[word] не совсем ясна. Вместо нее можно было бы написать:

if (typeof count[word] === 'number') {



Приложение Б.  
Плохие вещи

…так я объявлю его трусом. Скажи мне, 
за какой из моих пороков полюбила ты меня?

Уильям Шекспир. Много шума из ничего

В этом приложении я описываю некоторые недостатки JavaScript, которые мож-
но легко обойти. Действуя в этом направлении, можно совершенствовать язык 
JavaScript и совершенствоваться как программисту.

Оператор ==

В JavaScript есть две группы операторов равенства/неравенства, это операторы 
=== и !== и их злые близнецы == и !=. Хорошие работают так, как и следовало 
ожидать. Если два операнда одного и того же типа имеют одинаковое значение, 
то оператор === возвращает значение true, а оператор !== возвращает false. Их 
злые близнецы тоже делают все правильно, если оба операнды одного типа, но 
если нет, они пытаются привести значения к одному типу. Правила, по которым 
они это делают, очень запутаны и их непросто запомнить. Вот лишь некоторые 
интересные случаи:

'' == '0'            // false
0 == ''              // true
0 == '0'             // true

false == 'false'     // false
false == '0'         // true

false == undefined    // false 
false == null        // false 
null == undefined     // true

' \t\r\n ' == 0      // true

Б



eval      135

Нетранзитивность вызывает опасения. Советую всегда использовать только опе-
раторы === и !== и никогда не использовать их злых близнецов. Все только что 
приведенные примеры при сравнении с помощью оператора === возвращают зна-
чение false.

Инструкция with

Инструкция with в JavaScript должна обеспечивать быстрый доступ к свойствам 
объекта. К сожалению, результаты иногда могут быть непредсказуемы, поэтому ее 
использования следует избегать.

Пример:

with (obj) { 
    a = b;
}

Эта инструкция делает то же самое, что и следующая:

if (obj.a === undefined) {
    a = obj.b === undefined ? b : obj.b;
} else {
    obj.a = obj.b === undefined ? b : obj.b;
}

Таким образом, в результате выполняется одна из следующих инструкций:

a = b; 
a = obj.b; 
obj.a = b; 
obj.a = obj.b;

Во время чтения программы невозможно сказать, какая из этих инструкций будет 
получена. Ситуация может меняться при каждом запуске программы или даже 
в ходе ее выполнения. Если вам не удается прочитать программу и понять, что она 
собирается делать, нельзя быть уверенным, что все будет сделано правильно.

Просто присутствуя в языке, инструкция with заметно тормозит процессор Java
Script, поскольку нарушает лексические связи между именами переменных. На-
мерения были благими, но языку было бы лучше без нее.

eval

Функция eval передает строку компилятору JavaScript и обрабатывает резуль-
тат. Многие злоупотребляют этой функцией. Чаще всего ее используют те, кто не 



136      Приложение Б. Плохие вещи 

очень хорошо знает JavaScript. Например, если вы знаете о точечной нотации, но 
не знаете правил задания индекса, вы можете написать:

eval("myValue = myObject." + myKey + ";");

А надо было действовать проще:

myvalue = myObject[myKey];

То, что написано в инструкции с функцией eval, понять гораздо труднее. Да и вы-
полняется эта инструкция значительно медленнее, потому что приходится запу-
скать компилятор, чтобы обработать тривиальное присваивание. Кроме того, она 
мешает верификатору JSLint (детали см.  в  приложении  В) в плане выявления 
проблем в коде.

Кроме того, функция eval ставит под угрозу безопасность разрабатываемого при-
ложения, поскольку предоставляет слишком много полномочий тексту внутри 
функции. А это подобно инструкции with влияет на язык в целом.

Конструктор Function — еще одна форма функции eval и его также следует из-
бегать.

Браузер предоставляет функции setTimeout и setInterval, принимающие в ка-
честве аргументов строки или функции. Если аргументы являются строками, 
setTimeout и setInterval работают аналогично функции eval. Аргументов в стро-
ковой форме также следует избегать.

Инструкция continue

Инструкция continue передает управление в начало цикла. Я еще никогда не ви-
дел такого фрагмента кода, который не стал бы лучше после того, как из него убра-
ли все инструкции continue.

Провал сквозь switch

Инструкция switch напоминает go to из FORTRAN IV. Если явно не прерывать 
течение программы, после выполнения каждой ветви case будет происходить пе-
реход к следующей ветви case.

Кто-то писал мне, что верификатор JSLint должен предупреждать, если происхо-
дит подобный провал с одной ветви case на другую. Он отмечал, что это довольно 
распространенная ошибка, которую трудно заметить в коде. Я ответил, что все вер-
но, но получаемая компактность кода с лихвой компенсирует вероятность ошибки.

На следующий день он сообщил, что JSLint сигнализирует об ошибке, причем 
ошибка определяется неверно. Я все проверил и выяснил, что это был как раз та-
кой случай провала сквозь инструкцию switch. И тогда меня осенило. Теперь я 



Операторы ++ и --      137

больше не пытаюсь специально организовать подобные провалы, поскольку тогда 
проще найти провал, если он произойдет по ошибке.

Плохим в языке является не то, что явно опасно или бесполезно. Этим можно про-
сто не пользоваться. Плохими являются кажущиеся привлекательными возмож-
ности, которые одновременно и полезны, и опасны.

Безблочные инструкции

Инструкции if, while, do или for могут быть блочными или безблочными. Без-
блочная форма этих инструкций  — еще один очевидный недостаток JavaScript. 
Она позволяет сэкономить два символа, но это — сомнительное достоинство. Без-
блочная форма скрывает структуру программы, что при последующих манипуля-
циях с кодом может легко породить ошибки. Например:

if (ok)
    t = true;

Эта инструкция при модификации может стать такой:

if (ok)
    t = true;
    advance();

А это напоминает следующее:

if (ok) {
    t = true; 
    advance();
}

Хотя на самом деле означает совсем другое:

if (ok) {
    t = true;
}
advance();

Программы, которые должны делать одно, но на самом деле делают другое, вряд 
ли можно считать правильными. Постоянное аккуратное использование блоков 
делает все проще и понятнее.

Операторы ++ и --

Операторы инкремента и декремента делают код чрезвычайно кратким. В таких 
языках, как C, это дает возможность одной строкой кода задать весь процесс ко-
пирования строки:

for (p = src, q = dest; !*p; p++, q++) *q = *p;



138      Приложение Б. Плохие вещи 

Так поощряется довольно опрометчивый стиль программирования. Большинство 
ошибок переполнения буфера, порождающих кошмарные уязвимости, связано 
с подобным кодом.

На собственной практике я заметил, что код при наличии операторов ++ и --, как 
правило, становился слишком угловатым, сложным и загадочным. Так что из со-
ображений дисциплины я их больше не использую. Думаю, что в результате мой 
стиль кодирования стал чище.

Битовые операторы

В JavaScript имеется тот же набор битовых операторов, что и в Java:

& — и;

| — или;

^ — исключающее или;

~ — не;

>> — правый сдвиг с переносом знака;

>>> — правый сдвиг без переноса знака;

<< — левый сдвиг.

В Java битовые операторы работают с целыми числами. В JavaScript целых чисел 
нет, а есть только вещественные числа с плавающей точкой. Таким образом, би-
товые операторы преобразуют числа-операнды в целые числа, и проделав с ними 
все необходимые операции, преобразуют их обратно. В большинстве языков такие 
операторы близки к аппаратным и довольно быстры. В JavaScript они очень да-
леки от аппаратных и чрезвычайно медленны. Из-за этого битовые манипуляции 
в JavaScript используется крайне редко.

То есть, вероятнее всего, в программах на JavaScript оператор & — это просто уста-
ревший оператор &&. Наличие битовых операторов в некоторой степени уменьша-
ет избыточность языка, но позволяет ошибкам оставаться незамеченными.

Инструкция function против 
выражения function 

В JavaScript есть как инструкция function, так и выражение function. Это сби-
вает с толку, так как они могут выглядеть совершенно одинаково. Инструкция 
function — это сокращенная форма инструкции var со значением функции.

Например:

function foo() {} 



Оператор new      139

Эта инструкция значит то же, что и следующая:

var foo = function foo() {};

В этой книге я использую вторую форму написания, поскольку она дает понять, 
что foo — это переменная, содержащая значение функции. Чтобы использовать 
язык правильно, важно понимать, что функции являются значениями.

Инструкции function поднимаются вверх. Это означает, что независимо от того, 
где находится инструкция function, она перемещается в верхнюю часть области 
видимости, в которой она определена. Это смягчает требование о том, что функ-
ции должны объявляться перед своим использованием, что открывает лазейку 
для небрежности. Кроме того, это мешает использованию инструкций function 
внутри инструкций if. И это при том, что большинство браузеров допускают на-
личие инструкций function внутри инструкций if, но интерпретируют эту ситуа-
цию по-разному, что приводит к проблемам переносимости.

Первым элементом в инструкции не может быть выражение function, так как 
официальная грамматика предполагает, что инструкция, которая начинается со 
слова function, является инструкцией function. Обойти это ограничение можно, 
заключив весь вызов в скобки:

(function ( ) {
    var hidden_variable;

    // Эта функция влияет на свое
    // окружение, но не вводит новых
    // глобальных переменных.
}());

Типизированные оболочки

JavaScript содержит набор типизированных оболочек, например:

new Boolean(false)

Эта инструкция возвращает объект, имеющий метод valueOf, который возвращает 
обернутое значение. Это не только совершенно не нужно, но и непонятно. Никог-
да не используйте new Boolean, new Number или new String.

Кроме того, избегайте new Object и new Array, используйте вместо них скобки {} 
и [].

Оператор new

Оператор new в JavaScript создает новый объект, который наследуется от члена 
прототипа операнда, а затем вызывает операнд, связывая новый объект с this. Это 



140      Приложение Б. Плохие вещи 

дает операнду (лучше, чтобы это был конструктор функции) возможность задать 
новый объект, прежде чем будет обработан запрос.

Если вы забыли использовать оператор new, вместо него вы получите обычный вы-
зов функции, и свойство this будет связано не с новым, а с глобальным объектом. 
Значит, что при попытке инициализации новых членов функция будет затирать 
глобальные переменные. Это очень плохо. Тем более учитывая, что никаких пред-
упреждений ни во время компиляции, ни во время выполнения не возникнет.

Функциям, предназначенным для использования с оператором new, принято да-
вать имена, начинающиеся с прописной буквы. А имена, начинающиеся с про-
писной буквы, должны применяться только с конструктором функции, который 
получает префикс new. Это соглашение дает визуальный сигнал, указывающий на 
место возникновения ошибок, которые сам язык стремится не замечать.

Поэтому лучше всего вовсе не использовать оператор new.

Оператор void

Во многих языках void — это тип, который не имеет значения. В JavaScript void 
является оператором, принимающим операнд и возвращающим неопределенное 
значение. Оператор void — весьма бесполезная и запутанная конструкция, кото-
рой лучше избегать.



Приложение В.  
JSLint

… Какое заблужденье 
Пристало к зрению и слуху моему?

Уильям Шекспир. Комедия ошибок

Когда C был еще молодым языком программирования, довольно часто возникали 
программные ошибки, которые не выявлялись примитивными компиляторами, 
поэтому была разработана вспомогательная программа lint, сканирующая исход
ный файл в поисках проблем.

Когда язык C заматерел, был определен точнее, его надежность возросла, компиля-
торы стали выдавать более точные предупреждения, и потребность в lint пропала.

JavaScript — довольно молодой язык программирования. Первоначально он был 
ориентирован на решение достаточно простых задач в веб-страницах, для которых 
язык Java был слишком сложным и неудобным. Однако новый язык оказался спо-
собен на большее и в настоящее время он широко используется даже в больших 
проектах. Однако многие возможности языка, призванные упростить его приме-
нение, в больших проектах могут стать источником серьезных проблем. То есть 
для JavaScript потребовалась своя программа lint, которой стала JSLint — сред-
ство верификации и проверки синтаксиса JavaScript.

JSLint  — это инструмент, проверяющий качество JavaScript-кода: на входе он 
получает исходный текст и сканирует его в поисках проблем. Если JSLint обна-
руживает проблему, он возвращает сообщение, содержащее ее описание и при-
близительное местоположение. Проблема — это не обязательно синтаксическая 
ошибка, хотя часто именно она. JSLint проверяет также стилистические соглаше-
ния и выявляет структурные проблемы. Верификатор JSLint не гарантирует, что 
ваша программа верна, он просто дает шанс взглянуть свежим взглядом на воз-
можные проблемы.

JSLint определяет специальное подмножество JavaScript, более строгое чем то, 
которое описано в третьем издании ECMAScript Language Specification. Это 

В



142      Приложение В. JSLint 

подмножество тесно связано с рекомендациями относительно стиля программи-
рования, которые я дал в главе 9.

JavaScript — достаточно сырой язык, но по сути он элегантен и хорош. JSLint по-
могает сделать ваши программы грамотнее, избежать множества неприятностей.

JSLint можно найти по адресу http://www.JSLint.com/.

Неопределенные переменные и функции

Самая серьезная проблема JavaScript — глобальные переменные. Если переменная 
не объявлена явно (как правило, с помощью инструкции var), то JavaScript считает 
ее глобальной. А это может скрывать ошибки в именовании и ряд других проблем.

JSLint считает, что все переменные и функции должны объявляться перед тем, как 
будут использованы или вызваны, что позволяет выявлять подразумеваемые гло-
бальные переменные. Такая практика помогает делать программы более понятными.

Иногда в файле используются глобальные переменные и функции, определенные 
в другом месте. Можно сообщить это JSLint, включив в файл комментарии со спи-
ском глобальных функций и объектов, используемых вашей программой, но не 
определенных в ней или в файле сценария.

В комментариях с глобальными объявлениями могут быть перечислены все име-
на, которые вы намеренно используете в качестве глобальных переменных. JSLint 
может задействовать эту информацию для выявления пропущенных и забытых 
объявлений var. Глобальное объявление может выглядеть следующим образом:

/*global getElementByAttribute, breakCycles, hanoi */

Глобальное объявление начинается с /*global. Обратите внимание, что перед 
буквой g нет пробела. Можно создавать сколько угодно комментариев, начинаю-
щихся с символов /*global. Они должны быть указаны прежде, чем будут исполь-
зованы перечисленные в них переменные.

Некоторые глобальные переменные могут предопределяться (детали см.  в  раз-
деле «Опции»). Выбор варианта Assume a browser (Предполагаемый браузер) пре-
допределяет стандартные глобальные свойства веб-браузеров, такие как window, 
document и alert. Выбор варианта Assume Rhino (Предполагаемая среда Rhino) зара-
нее определяет глобальные свойства среды Rhino. Выбор варианта Assume a Yahoo 
Widget (Предполагаемый Yahoo-виджет) заранее определяет глобальные свойства 
среды Yahoo-виджетов.

Members

Так как JavaScript — динамический объектно-ориентированный язык со слабой 
типизацией, во время компиляции невозможно определить, есть ли ошибки в на-
писании имен свойств. JSLint может в этом помочь.



Опции      143

В конце своего отчета JSLint помещает комментарий /*members*/, содержащий 
все имена и строковые литералы, которые используются для именования членов 
объектов в точечной нотации, в индексной нотации или в литералах объектов. 
Это позволяет просмотреть список опечаток. Имена членов, встречающихся 
только один раз, выделяются курсивом, поэтому обнаружить опечатки гораздо 
легче.

Можно скопировать комментарий /*members*/ в файл сценария. JSLint по спи-
ску проверит написание всех имен свойств. Таким образом, можно использовать 
JSLint для поиска опечаток:

/*members doTell, iDoDeclare, mercySakes, 
    myGoodness, ohGoOn, wellShutMyMouth */

Опции

Реализация JSLint получает особый объект опций, что позволяет вам настроить 
требуемое подмножество JavaScript. Кроме того, опции можно задать непосред-
ственно в сценарии.

Задание опций может выглядеть следующим образом:

/*jsLint nomen: true, evil: false */

Спецификация начинается с символов /*jsLint. Обратите внимание, что перед 
символом j нет пробела. Подобная спецификация содержит последовательность 
пар имя/значение, где имена — это JSLint-опции, а значения — true или false. 
Приоритет спецификации опций выше, чем приоритет объекта опций. Все опции 
по умолчанию имеют значение false. Опции, доступные в JSLint, перечислены 
в табл. В.1.

Таблица В.1. Доступные в JSLint опции

Опция Значение

adsafe true, если применяются правила ADsafe.org

bitwise true, если допускается использование битовых операторов

browser true, если предопределены стандартные глобальные свойства веб-браузеров

cap true, если в HTML допускается верхний регистр

debug true, если допускается использование отладки

eqeqeq true, если допускается использование оператора ===

evil true, если допускается использование функции eval

forin true, если допускается использование инструкции for in без фильтра

fragment true, если допускается включение HTML-фрагментов

laxbreak true, если требуется проверять инструкции прерывания

продолжение 



144      Приложение В. JSLint 

Опция Значение

nomen true, если требуется проверять имена

on true, если допускается применение HTML-обработчиков событий

passfail true, если сканирование должно быть прекращено при обнаружении первой 
ошибки

plusplus true, если не допускается применение операторов ++ и ––

rhino true, если заранее определены глобальные свойства среды Rhino

undef true, если неопределенные глобальные переменные считаются ошибкой

white true, если применяются строгие правила расстановки пробелов

widget true, если заранее определяет глобальные свойства Yahoo-виджетов

Точка с запятой

В JavaScript используется C-подобный синтаксис, требующий символа точки с за-
пятой для разделения выражений. Разработчики JavaScript попытались сделать 
так, чтобы программисту не нужно было самому вводить точки с запятой, преду-
смотрев механизм их автоматической вставки. Однако это опасно.

Как и в C, в JavaScript есть операторы ++, -- и (, которые могут быть как префик-
сами, так и суффиксами. А точка с запятой может привести к неоднозначности 
выражения.

В JavaScript разрыв строки может расцениваться и как пробел, и как место для 
точки с запятой. Вместо одной неопределенности возникает другая.

Таблица В.1 (продолжение)



Обязательные блоки      145

JSLint считает, что за каждой инструкцией должен располагаться знак точки с запятой 
(;), исключая инструкции for, function, if, switch, try и while. JSLint не предполагает 
возможности существования ненужных точек с запятой или пустых инструкций.

Разрыв строки

Для того чтобы не пропустить ошибки, связанные с механизмом автоматического 
дополнения строк точкой с запятой, JSLint предполагает, что длинная инструк-
ция может прерваться только после одного из следующих знаков препинания или 
операторов:

, ; : { } ( [ = < > ? ! + - * / % ~ ^ | &
== != <= >= += -=*= /= %= ^= |= &= << >> || &&
=== !== <<= >>= >>> >>>=

JSLint не ожидает, что длинная инструкция может прерваться после идентифи-
катора, строки, числа, замыкания или любого из следующих суффиксных опера-
торов:

) ] . ++ --

JSLint позволяет включить режим Tolerate sloppy line breaking вид_разрыва (Допу-
скается случайный разрыв строки вид_разрыва).

Из-за автоматической вставки точек с запятой возможна маскировка ошибок ко-
пирования/вставки. Если вы привыкли завершать инструкцию переходом на но-
вую строку, JSLint может помочь искать такие ошибки.

Запятая

Оператор запятой может чрезмерно усложнить выражение, кроме того, он маски-
рует некоторые ошибки программирования.

JSLint считает, что запятая может использоваться в качестве разделителя, но не 
оператора (исключая инициализирующую и инкрементирующую части инструк-
ции for). JSLint не предполагает, что с помощью запятых могут обозначаться не-
достающие элементы литералов массивов. Дополнительные запятые не нужны. 
Не нужна запятая и после последнего элемента литерала массива или литерала 
объекта, поскольку некоторые браузеры могут неверно ее истолковать.

Обязательные блоки

JSLint предполагает, что инструкции if и for должны быть блочными, то есть со-
держать выражения, заключенные в фигурные скобки.



146      Приложение В. JSLint 

JavaScript позволяет записать инструкцию if следующим образом:

if (условие) 
    инструкция;

Такая форма, как известно, может привести к ошибке, если над одним проектом 
трудится несколько программистов. Вот почему JSLint предполагает обязатель-
ное использование блоков:

if (условие) { 
    инструкции;
}

Опыт показывает, что такая форма записи более надежна.

Закрытые блоки

Во многих языках блок вводит собственную область видимости. Переменные, 
указанные внутри блока, не видны снаружи блока.

Напротив, в JavaScript блоки не имеют собственной области видимости. Только 
функция обладает областью видимости. Переменная, введенная в любой точке 
функции, видна в любом месте функции. Блоки в JavaScript могут запутать опыт-
ных программистов, что ведет к ошибкам, потому что знакомый синтаксис порож-
дает ложные ожидания.

JSLint считает, что блоки могут использоваться только с инструкциями function, 
if, switch, while, for, do, try и нигде больше. Исключение может быть сделано 
только для ветви else инструкции if, а также для инструкции for in.

Инструкция с выражением

Предполагается, что инструкция с выражением может быть присваиванием, вызо-
вом функции/метода или вызовом оператора delete. Все остальные инструкции 
с выражением считаются ошибками.

Инструкция for in

Инструкция for in позволяет перебрать имена всех свойств объекта. К сожале-
нию, она также перебирает еще и все те свойства, которые унаследованы по цепоч-
ке прототипов. Если вас интересуют только члены данных, этот механизм стано-
вится отрицательным побочным эффектом.

Тело каждой инструкции for in следует упаковать в инструкцию if, действую-
щую как фильтр. Инструкция if позволяет выбрать значения определенного типа 



Инструкция with      147

или диапазон значений — это дает возможность исключить функции или исклю-
чить свойства, унаследованные от прототипов. Пример:

for (name in object) {
    if (object.hasOwnProperty(name)) {
        ...
    }
}

Инструкция switch

Распространенной ошибкой при написании инструкции switch является пропу-
щенная инструкция break в конце каждой ветви case, что приводит к непредна-
меренному «провалу» сквозь switch. JSLint считает, что перед каждой ветвью case 
и перед ветвью default должна находиться одна из инструкций передачи управле-
ния: break, return или throw.

Инструкция var

JavaScript позволяет указывать определение var в любом месте функции. JSLint 
подходит к этому строже.

JSLint ожидает, что:

переменная объявляется с помощью �� var только один раз, причем до ее исполь-
зования;
функция объявляется до ее использования;��
параметры не объявляются как �� var.

JSLint не ожидает, что:

массив аргументов объявляется как �� var;
переменная объявляется в блоке (причина в том, что в JavaScript блоки не ��
имеют собственной области видимости, что может иметь неожиданные по-
следствия, так что лучше определять все переменные в верхней части тела 
функции. 

Инструкция with

Инструкция with призвана обеспечивать быстрый доступ к членам вложенных 
объектов. Однако, к сожалению, при создании новых членов объекта она ведет 
себя очень странно. Вместо нее всегда используйте инструкцию var.

JSLint не предполагает возможность использования инструкции with.



148      Приложение В. JSLint 

Оператор =

JSLint не ожидает встретить оператор присваивания в условной части инструк-
ции if или while. Пример: 

if (a = b) {
    ...
}

JSLint считает это ошибкой, поскольку под этим, вероятнее всего, подразумевает-
ся следующее:

if (a == b) {
    ...
}

Операторы == и !=

Операторы == и != перед сравнением выполняют приведение типов. Это плохо, 
потому что сравнение '\f\r \n\t' == 0 вернет true. Из-за этого ошибки типизации 
могут остаться незамеченными.

При сравнении с любым из следующих значений всегда используйте операторы 
=== или !==, не выполняющие приведения типов:

0 ' ' undefined null false true

Если приведение типов все же необходимо, используйте сокращенную форму за-
писи. Пример:

(foo != 0)

Вместо этого пишите:

(foo)

Еще пример:

(foo == 0)

Вместо этого пишите:

(!foo)

Старайтесь всегда использовать операторы === и !==. Существует режим Disallow 
== and != (Запретить == и !=), который требует обязательного использования опе-
раторов === и !==.

Метки

В JavaScript любая инструкция может иметь метку; для меток существует даже 
отдельное пространство имен. JSLint относится к этому строже.



Зловещая функция eval      149

JSLint ожидает, что метки могут иметь только инструкции, взаимодействующие 
с инструкцией break. К таковым относятся switch, while, do и for. JSLint предпо-
лагает, что метки будут отличаться от переменных и параметров.

Недостижимый код

JSLint ожидает, что за инструкцией return, break, continue или throw всегда сле-
дует либо закрывающая фигурная скобка (}), либо ветвь case или default.

Путаница с плюсами и минусами

JSLint считает, что за оператором + не может следовать оператор + или ++, а за 
оператором - не может следовать оператор - или --. В противном случае забытый 
пробел мог бы превратить + + в ++, и такую ошибку было бы довольно трудно об-
наружить. Используйте скобки, чтобы избежать путаницы.

Инкремент и декремент

Операторы инкремента (++) и декремента (--), как известно, портят код, чрезмер-
но его усложняя. Хуже них могут быть только дефекты архитектуры, дающие до-
рогу вирусам, и другие бреши в системе безопасности. В JSLint режим использо-
вания этих операторов позволяет включить опция plusplus.

Битовые операторы

В JavaScript нет целого типа, но есть битовые операторы. Из-за отсутствия целого 
типа битовые операторы преобразуют операнды с плавающей точкой в целые чис-
ла и обратно, поэтому они не так эффективны, как в С или других языках. Бито-
вые операторы редко используются в приложениях браузера. Их сходство с логи-
ческими операторами может спровоцировать ошибки. Опция bitwise запрещает 
использование этих операторов.

Зловещая функция eval

Функция eval и ее родственники (Function, setTimeout и setInterval) предостав-
ляют доступ к компилятору JavaScript. Иногда это бывает полезно, но чаще сви-
детельствует о низком качестве кода. Функцией eval в JavaScript злоупотребляют 
чаще всего.



150      Приложение В. JSLint 

Оператор void

В большинстве C-подобных языков void  — это тип. В JavaScript void является 
префиксным оператором, который всегда возвращает значение undefined. JSLint 
не ожидает встретить void, поскольку это сбивает с толку и абсолютно бесполезно.

Регулярные выражения

Регулярные выражения записываются в лаконичной и загадочной форме. JSLint 
ищет проблемы, которые могут спровоцировать ошибки переносимости. Кроме 
того, верификатор пытается определить двусмысленные фрагменты и рекоменду-
ет от них избавиться.

Синтаксис литералов регулярных выражений в JavaScript переопределяет символ 
/. Чтобы избежать двусмысленности, JSLint считает, что регулярному выражению 
предшествует символ (, =, : или ,.

Конструкторы и префикс new

Конструкторы — это функции, предназначенные для использования с префиксом 
new. Префикс new создает новый объект на основе прототипа функции и связывает 
этот объект с соответствующим параметром this. Если вы пренебрегаете исполь-
зованием префикса new, новый объект создан не будет, и параметр this окажется 
связанным с глобальным объектом, а это — серьезная ошибка.

JSLint строго следует соглашению о том, что имена конструкторов должны на-
чинаться с прописной буквы. JSLint не предполагает вызова функции, который 
может начинаться с прописной буквы, если он не содержит префикс new. JSLint не 
предполагает наличия префикса new, используемого с функциями, имена которых 
не начинаются с прописной буквы.

JSLint не предполагает возможности существования оболочки new Number, new 
String или new Boolean.

JSLint не ожидает встретить запись new Object (вместо этого используйте {}).

JSLint не ожидает встретить запись new Array (вместо этого используйте []).

Чего JSLint не ищет

JSLint не анализирует поток, чтобы определить, какие значения присваиваются 
переменным перед их использованием, потому что переменные уже имеют значе-
ние (undefined), что для многих приложений, в принципе, довольно разумно.



Отчет      151

JSLint не производит какого-либо глобального анализа. Верификатор не пытается 
определить, какие из функций, используемых с new, действительно являются конструк-
торами (за исключением случаев несоблюдения соглашения о прописных буквах).

HTML

Верификатор JSLint способен обрабатывать HTML-текст. Он может проверить 
JavaScript-код внутри тегов <script> ...</script> или обработчика событий. 
Кроме того, он проверяет HTML-контент и ищет проблемы, которые, как извест-
но, могут повлиять на JavaScript:

все имена тегов должны быть в нижнем регистре;��
все теги, которым требуется закрывающий тег (например, �� </p>), должны его 
иметь;
все теги должны быть правильно вложены;��
литерал �� < должен задаваться символами &lt;.

JSLint не так дотошно требует соответствия, как XHTML, хотя делает это строже, 
чем популярные браузеры.

Кроме того, JSLint отслеживает появление символов </ в строковых литералах. 
Вместо этого всегда следует писать <\/. Дополнительный слэш игнорируется 
компилятором JavaScript, но не средством синтаксического разбора HTML-кода. 
И хотя подобные трюки не должные существовать, он существуют.

Есть опция, позволяющая использовать верхний регистр для имен тегов. Кроме 
того, есть опция, которая дает возможность использовать встроенный обработчик 
HTML-событий.

JSON

JSLint может проверить, правильно ли сформированы структуры JSON-данных. 
Если JSLint обнаруживает, что первым идет символ { или [, то верификатор строго 
контролирует правила JSON. Более подробно этот формат описан в приложении Д.

Отчет

Если JSLint в состоянии завершить проверку, генерируется отчет, в котором для 
каждой функции представлена следующая информация:

Номер строки, на которой она начинается.��
Ее имя. В случае если это анонимная функция, JSLint постарается «угадать» имя.��



152      Приложение В. JSLint 

Параметры.��
Переменные и параметры, объявленные внутри функции и используемые ее ��
внутренними функциями.
Переменные, объявленные внутри функции и используемые только этой функ-��
цией.
Переменные, объявленные внутри функции, но не используемые. Это может ��
свидетельствовать об ошибке.
Переменные, используемые функцией, но объявленные в другой функции.��
Глобальные переменные, используемые функцией.��
Метки, используемые функцией.��

Кроме того, отчет содержит список имен всех используемых членов.



Приложение Г.  
Синтаксические диаграммы

Ты, образ скорби, говоришь без слов!

Уильям Шекспир. Тит Андроник

Г



154      Приложение Г. Синтаксические диаграммы 



Синтаксические диаграммы      155



156      Приложение Г. Синтаксические диаграммы 



Синтаксические диаграммы      157



158      Приложение Г. Синтаксические диаграммы 



Синтаксические диаграммы      159



160      Приложение Г. Синтаксические диаграммы 



Синтаксические диаграммы      161

э

э



162      Приложение Г. Синтаксические диаграммы 



Приложение Д.  
JSON

Прощай. Опасно нам и недосуг 
Слова учтивой дружбы говорить, 
Обмениваясь нежными речами. 
Бог да пошлет нам вольно исполнять 
Обряды нежной дружбы! 
Прощай, прощай; будь смел и торопись!

Уильям Шекспир. Ричард III

JavaScript Object Notation ( JSON) представляет собой простой формат обмена 
данными, основанный на одной из лучших особенностей JavaScript — литералах 
объектов. И хотя JSON — это подмножество JavaScript, оно является независимым 
языком программирования и может использоваться для обмена данными между 
программами, написанными на любом из современных языков программирова-
ния. JSON — это текстовый формат, поэтому он доступен для чтения как людям, 
так и машинам. Его легко реализовывать и просто использовать. Все материалы, 
посвященные JSON, можно найти по адресу http://www.JSON.org/.

Синтаксис JSON

JSON имеет шесть видов значений: объекты, массивы, строки, числа, логиче-
ские значения (true и false), а также специальное значение null. До или после 
какого-либо значения могут быть пробельные символы (пробел, табуляция, воз-
врат каретки или разрыв строки), это упрощает чтение JSON-текстов людьми. 
Для снижения затрат на передачу или хранение пробельные символы могут быть 
опущены.

Д



164      Приложение Д. JSON 

JSON-объект представляет собой неупорядоченный контейнер пар имя/значение. 
Имя — это любая строка. Значение — любое JSON-значение, в том числе массив 
или объект. JSON-объекты могут быть вложенными, но эффективнее оставить их 
относительно плоским. В большинстве языков есть функции, легко отражающие 
такие JSON-объекты, как объект, структура, запись, словарь, хэш-таблица, список 
свойств или ассоциативный массив.

JSON-массив представляет собой упорядоченную последовательность значений. 
Значение — это любое JSON-значение, в том числе массив или объект. В большин-
стве языков есть функции, легко отражающие такие JSON-массивы, как массив, 
вектор, список или последовательность.

JSON-строка заключается в двойные кавычки, для управления используется 
символ \. JSON допускает применение символа / для экранирования, посколь-
ку JSON-текст может быть встроен в HTML-тег <script>. HTML не позволяет 
использовать последовательность </ кроме как в качестве начальных символов 
тега </script>. JSON позволяет использовать символы <\/, которые дают тот же 
результат, но не стоит путать их с HTML-символами.



Синтаксис JSON      165

JSON-числа напоминают числа в JavaScript. Для целых чисел нет значения ноль, 
так как некоторые языки используют его в восьмеричном счислении. Такая пута-
ница со счислением в формате обмена данными нежелательна. Число может быть 
целым, вещественным или экспонентой.

Вот и все. Это весь формат JSON. Целью разработки JSON было создать компакт-
ное, переносимое, текстовое подмножество JavaScript. Чем меньше всего необхо-
димо для взаимодействия, тем легче взаимодействовать.

э

э

э

э



166      Приложение Д. JSON 

[
    {
        "first": "Jerome", 
        "middle": "Lester", 
        "last": "Howard", 
        "nick-name": "Curly", 
        "born": 1903,             "died": 1952,
        "quote": "nyuk-nyuk-nyuk!"
    },
    {
        "first": "Harry", 
        "middle": "Moses", 
        "last": "Howard", 
        "nick-name": "Moe", 
        "born": 1897, 
        "died": 1975, 
        "quote": "Why, you!"
    },
    {
        "first": "Louis", 
        "last": "Feinberg", 
        "nick-name": "Larry", 
        "born": 1902,
        "died": 1975,
        "quote": "I'm sorry. Moe, it was an accident!"
    }
]

Безопасное использование JSON

Поскольку JSON — это JavaScript, этот формат проще всего использовать в веб-
приложениях. С помощью функции eval JSON-текст может быть превращен в не-
обходимую структуру данных:

var myData = eval('(' + myJSONText + ')');

(Круглые скобки вокруг JSON-текста помогают обойти неоднозначность в грам-
матике языка JavaScript.)

Функции eval присущи кошмарные проблемы, связанные с безопасностью. Без-
опасно ли использовать eval для синтаксического разбора JSON-текста? Сейчас 
лучшим способом для передачи данных с сервера в веб-браузер является запрос 
XMLHttpRequest. Однако он позволяет получать данные только с одного сервера, 
который и создал этот HTML-код. Текст evaling, полученный от этого сервера, 
безопасен не меньше, чем оригинальный HTML-текст. Но предположим, что это 
вредоносный сервер. Или просто некомпетентный.

Некомпетентный сервер не сможет правильно выполнить JSON-кодирование. 
Если он создает JSON-текст не с помощью специального JSON-кодера, а просто со-
ставляя вместе строки, он может непреднамеренно отправить опасные материалы. 



JSON-парсер      167

Если он действует как прокси-сервер и просто передает JSON-текст, не определяя, 
как он сформирован, тоже может послать опасные материалы.

Избежать опасных ситуаций можно, используя метод JSON.parse вместо функции 
eval (детали см. по адресу http:// www.JSON.org/json2.js). Если текст содержит опас-
ный фрагмент, JSON.parse генерирует исключение. Для защиты от некомпетент-
ности сервера рекомендуется всегда использовать метод JSON.parse вместо eval. 
Также это может пригодиться, если браузер обеспечивает безопасный доступ 
к данным на других серверах.

При взаимодействии между внешними данными и innerHTML существует еще одна 
опасность  — это общий Ajax-шаблон сервера, предназначенный для отправки 
текста HTML-фрагментов, который присваивается свойству innerHTML HTML-
элементов. Это очень плохо. Если текст содержит HTML-тег <script> или его 
эквивалент, будет исполнен вредоносный сценарий, что опять-таки может быть 
связано с некомпетентностью сервера.

В чем конкретно состоит опасность? Если вредоносный сценарий сможет запу-
ститься на вашей странице, он получит доступ ко всем состояниям и возможно-
стям страницы. Он сможет взаимодействовать с сервером, а сервер не сможет отли-
чить вредоносные запросы от легитимных. Вредоносный сценарий получит доступ 
к глобальному объекту, что даст ему доступ ко всем данным приложения, за ис-
ключением переменных, скрытых в замыканиях. Он будет иметь доступ к  объекту 
документа, предоставляющему доступ ко всему, что видит пользователь, что даст 
вредоносному сценарию возможность диалога с пользователем. Адресная строка 
браузера и вся антифишинговая защита сообщит пользователю, что этому диалогу 
следует доверять. Объект документа также даст вредоносному сценарию доступ к 
сети, чтобы загрузить еще более вредоносный сценарий, изучить сайты, находящи-
еся внутри брандмауэра, или передать полученные секреты на любой сервер мира.

Такая опасная ситуация напрямую зависит от глобального JavaScript-объекта, ко-
торый является, несомненно, худшим из недостатков JavaScript. Подобная опас-
ность не связана с Ajax, JSON, XMLHttpRequest и Web 2.0 (независимо от того, 
что из этого используется). Она была в браузере с момента появления JavaScript 
и будет существовать там, пока язык JavaScript не будет изменен или исправлен. 
Будьте осторожны.

JSON-парсер

Далее представлена написанная на JavaScript реализация средства синтаксиче-
ского разбора для JSON ( JSON-парсер):

var json_parse = function () {

// Эта функция анализирует JSON-текст, возвращая JavaScript-структуру
// данных. Это простое рекурсивное средство синтаксического разбора.

продолжение 



168      Приложение Д. JSON 

// Мы определяем функцию внутри другой функции, чтобы избежать 
// создания глобальных переменных.

    var at,    // Индекс текущего символа
        ch,    // Текущий символ
        escapee = {
            '\\':     '\\',
            '/':     '/', 
            b:        'b',
            f:        '\f',
            n:         '\n', 
            r:        '\r',
            t:        '\t'
        },
        text,

        error = function (m) {

// Функция error вызывается, если что-то не так.

            throw {
                name:        'SyntaxError',
                message:     m,
                at:            at,
                text:        text
            };
        },

        next = function (c) {

// Если задан параметр c, необходимо убедиться, 
// соответствует ли он текущему символу.

            if (c && c !== ch) {
                error("Expected '" + c + "' instead of '" + ch +     );
            }

// Получаем следующий символ. Если символов больше нет, 
// возвращаем пустую строку.

            ch = text.charAt(at); 
            at += 1; 
            return ch;
        },

        number = function () { 

// Анализируем значение number.



JSON-парсер      169

            var number,
                string = '';

            if (ch === '-') { 
                string = next('-');
            }
            while (ch >= '0' && ch <= '9') { 
                string += ch;
                next();
            }
            if (ch === '.') { 
                string +=;
                while (next() && ch >= '0' && ch <= '9') { 
                    string += ch;
                }
            }
            if (ch === 'e' || ch === 'E') { 
                string += ch;
                next();
                if (ch === '-' || ch === '+') { 
                    string += ch;
                    next();
                }
                while (ch >= '0' && ch <= '9') { 
                    string += ch;
                    next();
                }
            }
            number = +string; 
            if (isNaN(number)) { 
                error("Bad number");
            } else {
                return number;
            }
        },

        string = function () { 

// Анализируем значение string.

            var hex,
                i,
                string = '',
                uffff;
// Для анализа значения string нужно найти символы " и \.

            if (ch === '"') { 
                while (next()) {

продолжение 



170      Приложение Д. JSON 

                    if (ch === '"') {
                        next();
                        return string; 
                    } else if (ch === '\\') {
                        next();
                        if (ch === 'u') { 
                            uffff = 0;
                            for (i = 0; i < 4; i += 1) { 
                                hex = parseInt(next(), 16); 
                                if (!isFinite(hex)) { 
                                    break;
                                }
                                uffff = uffff * 16 + hex;
                            }
                            string += String.fromCharCode(uffff); 
                        } else if (typeof escapee[ch] === 'string') { 
                            string += escapee[ch];
                        } else {
                            break;
                        }
                    } else {
                        string += ch;
                    }
                }
            }
            error("Bad string");
        },

        white = function () {

// Пропустим пробелы.

            while (ch && ch <= ' ') { 
                next();
            }
        },

        word = function () {

// true, false или null.

            switch (ch) { 
            case 't':
                next('t');
                next('r'); 
                next('u'); 
                next('e'); 
                return true; 
            case 'f':



JSON-парсер      171

продолжение 

                next('f');
                next('a');
                next('l');
                next('s'); 
                next('e'); 
                return false; 
            case 'n':
                next('n'); 
                next('u');
                next('l'); 
                next('l');
                return null;
            }
            error("Unexpected '" + ch + "'");
        },

        value,    // Место хранения функции value.
        array = function () {

// Анализируем значение array.
            var array = [];

            if (ch === '[') { 
                next('['); 
                white();
                if (ch === ']') { 
                    next(']');
                    return array;    // пустой массив
                }
                while (ch) {
                    array.push(value()); 
                    white();
                    if (ch === ']') { 
                        next(']'); 
                        return array;
                    }
                    next(','); 
                    white();
                }
            }
            error("Bad array");
        },

        object = function () {

// Анализируем значение object.

            var key,



172      Приложение Д. JSON 

                object = {};

            if (ch === '{') { 
                next('{'); 
                white();
                if (ch === '}') { 
                    next('}');
                    return object;    // пустой объект
                }
                while (ch) {
                    key = string();
                    white();
                    next(':');
                    object[key] = value(); 
                    white();
                    if (ch === '}') { 
                        next('}'); 
                        return object;
                    }
                    next(','); 
                    white();
                }
            }
            error("Bad object");
        };

    value = function () {

// Анализируем JSON-значение. Оно не может быть объектом, 
// массивом, строкой, числом или словом.

        white(); 
        switch (ch) { 
        case '{':
            return object();
        case '[':
            return array();
        case '"':
            return string();
        case '-':
            return number(); 
        default:
            return ch >= '0' && ch <= '9' ? number() : word();
        }
    };

// Возвращаем функцию json_parse. Она будет иметь доступ ко всем 
// объявленным выше функциям и переменным.



JSON-парсер      173

    return function (source, reviver) { 
        var result;

        text = source;
        at = 0;
        ch = ' ';
        result = value();
        white();
        if (ch) {
            error("Syntax error");
        }

// Если используется функция reviver, можно рекурсивно перейти 
// к новой структуре, проходя каждую пару имя/значение в функции reviver, 
// чтобы, возможно, ее изменить, начиная с временно загруженного 
// объекта, который хранит результат в пустом ключе. Если функция
// reviver не используется, просто будет возвращен результат.

        return typeof reviver === 'function' ? 
            function walk(holder, key) {
                var k, v, value = holder[key]; 
                if (value && typeof value === 'object') { 
                    for (k in value) {
                        if (Object.hasOwnProperty.call(value, k)) { 
                            v = walk(value, k); 
                            if (v !== undefined) { 
                                value[k] = v;
                            } else {
                                delete value[k];
                            }
                        }
                    }
                }
                return reviver.call(holder, key, value);
            }({'': result}, '') : result;
    };
}();



Дуглас Крокфорд 
JavaScript: сильные стороны 

Перевела с английского А. Лузган 

 Заведующий редакцией А. Кривцов 
 Руководитель проекта А. Кривцов 
 Ведущий редактор Ю. Сергиенко 
 Литературный редактор А. Жданов 
 Художественный редактор Л. Адуевская 
 Корректор В. Листова 
 Верстка Л. Волошина 
   

ООО «Мир книг», 198206, Санкт-Петербург, Петергофское шоссе, 73, лит. А29. 
Налоговая льгота — общероссийский классификатор продукции ОК 005-93, том 2; 95 3005 — литература учебная. 

Подписано в печать 27.02.12. Формат 70х100/16. Усл. п. л. 14,190. Тираж 2000. Заказ 0000. 
Отпечатано по технологии CtP в ОАО «Первая Образцовая типография», обособленное подразделение «Печатный двор». 

197110, Санкт-Петербург, Чкаловский пр., 15. 



ВАМ НРАВЯТСЯ НАШИ КНИГИ?
ЗАРАБАТЫВАЙТЕ ВМЕСТЕ С НАМИ!
У Вас есть свой сайт?
Вы ведете блог?
Регулярно общаетесь на форумах? Интересуетесь литературой, 
любите рекомендовать  хорошие книги и хотели бы стать нашим 
партнером?  
ЭТО ВПОЛНЕ РЕАЛЬНО! 

СТАНЬТЕ УЧАСТНИКОМ 
ПАРТНЕРСКОЙ ПРОГРАММЫ ИЗДАТЕЛЬСТВА «ПИТЕР»!

  Зарегистрируйтесь на нашем сайте в качестве партнера  
 по адресу www.piter.com/ePartners

  Получите свой персональный уникальный номер партнера 

 Выбирайте книги на сайте www.piter.com, размещайте 
  информацию о них на своем сайте, в блоге или на форуме 
 и добавляйте в текст ссылки на эти книги 
 (на сайт www.piter.com)

ВНИМАНИЕ! В каждую ссылку необходимо добавить свой персональный 
уникальный номер партнера.

С этого момента получайте 10% от стоимости каждой покупки, которую 
совершит клиент, придя в интернет-магазин «Питер» по ссылке c Вашим 
партнерским номером. А если покупатель приобрел не только эту книгу, но 
и другие издания, Вы получаете дополнительно по 5% от стоимости каждой 
книги.

Деньги с виртуального счета Вы можете потратить на покупку книг в интернет-
магазине издательства «Питер», а также, если сумма будет больше 500 рублей, 
перевести их на кошелек в системе Яндекс.Деньги или Web.Money.

Пример партнерской ссылки: 
http://www.piter.com/book.phtml?978538800282 – обычная ссылка
http://www.piter.com/book.phtml?978538800282&refer=0000 – партнерская 
ссылка, где 0000 – это ваш уникальный партнерский номер

Подробно о Партнерской программе 
ИД «Питер» читайте на сайте 
WWW.PITER.COM




	Краткое оглавление
	Об авторе

	Предисловие
	Условные обозначения
	Использование примеров кода
	Благодарности

	Глава 1. Сильные стороны
	Почему JavaScript?
	Анализ JavaScript
	Простая проверка

	Глава 2. Грамматика
	Пробельные символы
	Имена
	Числа
	Строки
	Инструкции
	Выражения
	Литералы
	Функции

	Глава 3. Объекты

	Латералы объектов
	Получение значений
	Обновление
	Ссылки
	Прототипы
	Отражения
	Перечисление
	Удаление
	Ослабление глобальности

	Глава 4. 
Функции
	Объекты функций
	Литералы функций
	Вызовы
	Шаблон вызова метода
	Шаблон вызова функции
	Шаблон вызова конструктора
	Шаблон вызова метода apply

	Аргументы
	Возвращение управления из функции
	Исключения
	Расширенные типы
	Рекурсия
	Область видимости
	Замыкания
	Обратные вызовы
	Модули
	Каскады
	Каррирование
	Мемоизация

	Глава 5. Наследование
	Псевдоклассовое наследование
	Спецификаторы объектов
	Прототипизированное наследование
	Функциональное наследование
	Детали

	Глава 6. Массивы
	Литералы массивов
	Длина
	Удаление
	Перечисление
	Путаница
	Методы
	Размерность

	Глава 7. 
Регулярные выражения
	Пример
	Конструкция
	Элементы
	Выбор регулярного выражения
	Последовательность регулярных выражений
	Фрагмент регулярного выражения
	Управляющие символы регулярных выражений
	Группы регулярных выражений
	Классы регулярных выражений
	Управляющие символы в классах регулярных выражений
	Квантификатор регулярного выражения


	Глава 8. 
Методы
	Массивы
	array.concat(item...)
	array.join(separator)
	array.pop()
	array.push(item...)
	array.reverse()
	array.shift()
	array.slice(start, end)
	array.sort(comparefn)
	array.splice(start, deleteCount, item...)
	array.unshift(item...)

	Функции
	function.apply(thisArg, argArray)

	Числа
	number.toExponential(fractionDigits)
	number.toFixed(fractionDigits)
	number.toPrecision(precision)
	number.toString(radix)

	Объекты
	object.hasOwnProperty(name)

	Регулярные выражения
	regexp.exec(sting)
	regexp.test(string)

	Строки
	string.charAt(pos)
	string.charCodeAt(pos)
	string.concat(string...)
	string.indexOf(searchString, position)
	string.lastIndexOf(searchString, position)
	string.localeCompare(that)
	string.match(regexp)
	string.replace(searchValue, replaceValue)
	string.search(regexp)
	string.slice(start, end)
	string.split(separator, limit)
	string.substring(start, end)
	string.toLocaleLowerCase()
	string.toLocaleUpperCase()
	string.toLowerCase()
	string.toUpperCase()
	String.fromCharCode(char...)


	Глава 9. 
Стиль
	Глава 10. 
Прекрасные черты
	Приложение A. Кошмарные вещи
	Глобальные переменные
	Область видимости
	Автоматическая вставка точки с запятой
	Зарезервированные слова
	Unicode
	typeof
	parseInt
	Оператор +
	Плавающая точка
	NaN
	Странные массивы
	Значения falsy
	hasOwnProperty
	Object

	Приложение Б. Плохие вещи
	Оператор ==
	Инструкция with
	eval
	Инструкция continue
	Провал сквозь switch
	Безблочные инструкции
	Операторы ++ и --
	Битовые операторы
	Инструкция function против выражения function 
	Типизированные оболочки
	Оператор new
	Оператор void

	Приложение В. JSLint
	Неопределенные переменные и функции
	Members
	Опции
	Точка с запятой
	Разрыв строки
	Запятая
	Обязательные блоки
	Закрытые блоки
	Инструкция с выражением
	Инструкция for in
	Инструкция switch
	Инструкция var
	Инструкция with
	Оператор =
	Операторы == и !=
	Метки
	Недостижимый код
	Путаница с плюсами и минусами
	Инкремент и декремент
	Битовые операторы
	Зловещая функция eval
	Оператор void
	Регулярные выражения
	Конструкторы и префикс new
	Чего JSLint не ищет
	HTML
	JSON
	Отчет

	Приложение Г. Синтаксические диаграммы
	Приложение Д. JSON
	Синтаксис JSON
	Безопасное использование JSON
	JSON-парсер




