
Сделайте веб-страницы интерактивны.ми!

Карманный справочник

O'REILLY® В Дэвид Флэнаган

3-е издание

JavaScript
Карманный справочник

Third Edition

JavaScript
Pocket Reference

David Flanagan

O'REILLY@
Beijing · Cambridge · Farnham - Kбln · Sebastopol · Tokyo

3-е издание

JavaScript
Карманный справочник

Дэвид Флэнаган

Москва· Санкт-Петербург· Киев
2013

ББК 32.973.26-018.2. 75
Ф73

УДК 681.3.07
Издательский дом "Вильяме"
Главный редактор С.Н. Триzуб

Зав. редакцией В.Р. Гишбург
Перевод с английского и редакция канд. техн. наук А.Г. Съи:инюка
По общим вопросам обращайтесь в Издательский дом "Вильяме"

по адресу: шfo@williamsRuЬlishing.com, http:/ /www.williamspuЫishing.com
Флэваrан, Дэвид.

Ф73 JavaScrirt: кар�анный справо.чник, 3-е изд. : !"lep. с
англ. - М . . ООО И.Д. Вильяме , 2013. - 320 с .. ил. -
Парал. тит. англ.

ISBN 978-5-8459-1830-7 (рус.)

ББК 32.973.26-018.2.75
Все названия проrраммных продукгов являются зарегистриро­

ванными торговыми марками соответствующих фирм.
Никакая часrь настоящего издания ни в каких целях не может

бьпъ воспроизведена в какой бы то ни было форме и какими бы то ни
было средствами, будь то злектронные или механические, включая
фотокопирование и запись на магнитный носитель, если на это нет
письменного Rазрешения издательства О'RеЩу Media, Inc.

Authorizea Russian tгans\ation of the Engl1sh edition of Java&ript
Pocket Re{erma, Third EditIOn, © 2012 Ьу David Flanagan (ISBN 978-1-449-
31685-3У.

This tгanslation is puЫished and sold Ьу peпnission of O'Reilly
Media, Inc" which owns or controls all rights to puЫish and sell the same.

All rights resetved. No part of th1s book тау Ье reproduced or
tгansmitte<I in any foпn or Ъу any means, electronic or mechanical,
including photocopying, recording, or Ьу any infoпnation stoгage or
retrieval system, without the prior written peпnission of the copyright
owner and the PuЬlisher.

Научно-популярное издание
Дзвид Флзнаган

J avaScript: карманный справочник, 3-е издание
Литературный редактор Л.Н Красножон

Верстка О.В. Мишутина
Художественный редактор В.Г. Пй8Лютин

Корректор Л.А. Гордиенко
Подписано в печать 14.12.2012. Формат 70х100/32

Гарнитура Times. Печать офсетная
Усл. печ. л. 12.9. Уч.-изд. л. 10,5

Тираж 1500 экз. Заказ № 653

Первая Академическая типография "На�"
199034, Санкт-Петербург, 9-я линия, 12/28

ООО "И. Д. Вильяме", 127055, г. Москва, ул. Лесная, д. 43, стр. 1

ISBN 978-5-8459-1830-7 (рус.) © 2013 Издательский дом "Вильяме"
ISBN 978-1-449-31685-3 (англ.) © 2012 David Flanagan

Оrnавnение

Введение 14
Гnава 1. ЛекО11ческая структура 17
Гnава 2. Типы данных, значенин и переменные 23
Гnава 3. Выражения и операторы 45
Гnава 4. Инструкции 75
Гnава 5. Объекты 105
Гnава 6. МасО11вы 127
Гnава 7. Функции 147
Гnава 8. Кnассы 173
Гnава 9. Реrуnярные выражения 191
Г11ава 1 О. JavaSaipt на стороне кnиента 207
Гnава 11. Работа с документами 225
Гnава 12. Обработка событий 255
Гnава 13. Сетевое взаимодействие 279
Г11ава 14. Хранение данных на стороне кnиента 295
Предметный указатеnь 311

Содержание

Об авторе 13
Изображение на обложке 13

Введение 14

Гnава 1 . Лексическая структура 17

Комментарии 17
Идентификаторы и зарезервированные слова 18
Необязательные точки с запятой 20

Гnава 2. Типы данных, значения и переменные 23

Числа 24
Текст 28

Строковые литералы 28
Булевы значения 32
Значения null и undefined 34
Глобальный объект 35
Преобразование типов 36
Объявление переменных 41

Гnава 3. Выражения и операторы 45

Выражения 45
Инициализаторы 46
Обращение к свойствам 48
Определение функции 49
Вызов функции 49
Создание объекта 50

Операторы

Арифметические операторы

Операторы сравнения

Логические выражения

Операторы присваивания

Интерпретация строк

Дополнительные операторы
Условный оператор ? :
Оператор typeof
Оператор de lete
Оператор void
Оператор "запятая"

Глава 4. Инструкции
Инструкция-выражение

Составные и пустые инструкции

Инструкция-объявление
va r
f u n c t i o n

Условия
i f
e l s e i f
swi t c h

Циклы
w h i l e
d o/while
f o r
fo r/i n

Переходы
Помеченные инструкции
b reak
cont i n ue
ret u r n
t r h ow

51

56
61
64
68
69
7 1
7 1
72
73
73
74

75

77
78
79
80
8 1
82
83
84
85

88
88
89
89
9 1
93
9j
94
95
96
97

Содержание 1 7

t ry/catch/finally 98
Другие инструкции 100

wit h 100
debugger 101
"use st rict" 102

Гnава 5. Объекты 105
Создание объектов 106

Объектные литер�лы 106
Ключевое слово new 107
Прототипы 107
Функция Obj ect. с reate() 108

Свойства 110
Чтение и запись свойств 110
Наследование свойств 111
Удаление свойств 112
Проверка свойств 113
Перечисление свойств 115
Сериализация свойств и объектов 116
Методы чтения и записи свойств 117
Атрибуты свойств 119

Атрибуты объекта 123
p rototype 123
class 124
extensiЫe 124

Гnава 6. Массивы 127
Создание массива 128
Элементы и длина массива 130
Перечисление элементов массива 131
Многомерные массивы ш
Методы массивов 133

join() 133
reve rse() 133

8 1 Содержание

so rt () 134
concat() 135
slice() 136
spl ice() 136
push() и рор () 137
u n s h i ft() и shi ft() 138
toSt r i ng() 138

Методы массивов ECMAScript 5 139
fo rEach () 139
map() 140
fi lte r() 140
eve ry() и some() 140
reduce() и reduceRig ht() 141
i ndexOf() и lastlndexOf() 143

ТипАrrау 143
"Массивоподобные" объекты 144
Строки в качестве массивов 145

Гnава 7. Функции 147
Определение функции 148

Вложенные функции 151
Выполнение функций 152

Вызов функции 152
Вызов метода 154
Вызов конструктора 156
Косвенные вызовы 158

Аргументы и параметры функции 160
Необязательные параметры 160
Список аргументов переменной длины: объект А rg uments 161

Функции как пространства имен 162
Замыкания 164
Свойства, методы и конструктор функции 169

Свойство length 169
Свойство р rototype 170

Содержание 1 9

Метод bind ()
Метод toSt rin g ()
Конструктор Funct i o n ()

Гnава 8. Кnассы
Классы и прототипы

Классы и конструкторы
Идентичность классов и конструкторы
Свойство const r ucto r

Классы в стиле Java

Неизменяемые классы

Подклассы

Расширение классов

Гnава 9. Реrуnярные выражения

170
171
172

173

174
176
179
180
182

185
186
188

19 1

Описание шаблонов с помощью регулярных выражений 19 1
Литеральные символы � 192
Классы символов 194
Повторение 195
Альтернативы, группировка и ссылки 196
Задание позиции соответствия 199
Флажки 201

Использование регулярных выражений 201
Методы класса St r i n g 202
Свойства и методы класса RegExp 204

Гnава 1 О. JavaScript на стороне кnиента
Внедрение JavaScript-кoдa в НТМL-документ

Программирование на основе событий

Объект окна
Таймеры
Свойство locat i o n
История браузера
Информация о браузере и экране

10 1 Содержание

207

207
209
210
2 1 1
212
213
214

Диалоговые окна
Элементы документа как свойства окна
Множественные окна и фреймы

Гпава 1 1 . Работа с документами
Обзор модели DOM
Выбор элементов документа

Выбор элементов по идентификатору
Выбор элементов по имени
Выбор элементов по типу дескриптора
Выбор элементов по классам CSS
Выбор элементов по селекторам CSS

Структура и обход документа

Атрибуты

Содержимое элемента
Содержимое элемента в виде НТ Мl-кода
Содержимое элемента в виде простого текста
Содержимое элемента в виде набора узлов

Создание, вставка и удаление узла

Стили элементов

Геометрия и прокрутка

Гпава 1 2. Обработка событий
Типы событий

События формы
События окна
События мыши
События клавиатуры
События НТ Мl5
События сенсорных экранов и мобильных устройств

Регистрация обработчика события
Установка свойства обработчика
Установка атрибута обработчика
Метод add Eve nt L istene r ()

216
217
218

225

225
228
229
230
231
233
234
236
239
241
241
242
243
244
247
251

255

257
257
258
259
261
262
266
267
268
268
270

Содержание 1 1 1

Вызов обработчика события 272
Арrумент обработчика 272
Контекст обработчика 272
Область видимости обработчика 273
Возвращаемое значение обработчика 27 4
Распространение событий 275
Отмена события 276

Г11ава 13. Сетевое взаимодействие 279
Класс XMLHttpRequest 279
Создание запроса 281
Получение ответа 283
НТТР-события прогресса 285
Кроссдоменные запросы 287
Технология JSONP: НТТР-запросы в элементе <sc ript> 288
Протокол Server-Seпt Eveпt 292
Протокол WebSocket 293

Г11ава 14. Хранение данных на стороне кпиента 295
Свойства localStorage и sessionSto rage 296

Время жизни и область видимости хранилища 298
Встроенные функции хранения данных 300
События хранилища 301

Файлы "cookie" 302
Атрибуты записи "cookie": время жизни и область видимости 303
Создание записей "cookie" 306
Чтение записей "cookie" 307
Ограничения файлов "cookie" 309

Предметный указате11ь 311

12 1 Содер1111н11е

Об авторе
Дэвид Флэнагаи - JаvаSсriрt-программист в компа­

нии Mozilla, автор многочисленных книг по языкам про­
граммирования, включая J avaScript,J ava и Ruby. Получил
степень доктора технических наук в Массачусетсском
технологическом институте. Ведет блог по адресу
www.davidflanagan.com.

Изображение на обложке
На обложке книги изображен яванский носорог.

Известны пять видов носорогов. Все они имеют крупные
размеры, один или два рога, трехпалые конечности и тол­
стую кожу, напоминающую броню. Как и суматранские со­
родичи, яванские носороги обитают в лесах. Они похожи
на индийских носорогов, но немного меньше по размеру
и обладают рядом других отличительных признаков.

Введение

JavaScript - это язык программирования для Интер­
нета. Он используется практически на всех современных
веб-сайтах. Во всех современных браузерах и клиентских
устройствах - настольных компьютерах, игровых консо­
лях, планшетах и смартфонах - имеются интерпретато­
ры JavaScript, что делает его самым распространенным
языком в истории программирования. Он входит в базо­
вую триаду технологий, которые необходимо знать всем
разработчикам веб-приложений: HTML (определение
содержимого веб-страниц) , CSS (определение внешнего
вида веб-страниц) и JavaScript (определение поведения
веб-страниц) . И наконец, в последнее время с появлением
технологии No dejs (http://nodesj.org) языкJavaScript стал
важным средством создания современных веб-серверов.

В карманном справочнике рассматриваются те же
темы, что и в более толстых книгах, только в сжатом, ла­
коничном формате. В главах 1-9 описывается синтаксис
языка - типы, значения, переменные, операторы и ин­
струкции, а затем - объекты, массивы, классы и функции.
Эти главы будут полезны для всех программистов, как ис­
пользующих J аvаSсriрt на стороне клиента, так и создаю­
щих серверные приложения No dejs.

В наши дни любой язык должен иметь стандартную
библиотеку функций для выполнения базовьiх операций,
таких как ввод-вывод данных, отображение элементов ин­
терфейса, обработка строк и т.п. В базовой инфраструк­
туре JаvаSсriрt определен минимальный набор библиотек

для работы с текстом, массивами, датами и регулярными
выражениями, но средства ввода-вывода данных в него не
входят. Функции ввода-вывода (а также другие специаль­
ные функции: сетевые, графические и т.п .) обычно предо­
ставляются хостирующей средой, в которую встроен ин­
терпретатор JavaScript. На стороне клиента хостирующей
средой чаще всего служит браузер. В главах 1 -9 рассма­
тривается минимальный набор встроенных библиотек
языка. В главах 1 0-14 описывается хостирующая среда
браузера и обсуждается использование JavaScript на сто­
роне клиента для создания динамических веб-страниц
и веб-приложений.

Количество АРI-функций JavaScript, реализуемых веб­
браузерами, за последние несколько лет значительно
увеличилось, поэтому рассмотреть их все в книге неболь­
шого объема невозможно. В главах 1 0-14 описываются
наиболее важные и фундаментальные средства клиент­
ской чacтиjavaScript: окна, документы, элементы, стили,
события, средства хранения данных и сетевые функции.
Освоив их, можно легко перейти к остальным клиент­
ским библиотекам.

Среда программирования No dejs в последнее время
становится все более важной и популярной, но в карман­
ном справочнике для нее просто нет места. Ознакомиться
с ней можно по адресу h t t p://msd n . m ic rosoft . com/ ru-ru/
a sp . net/h h 548232 . Для справочника по АРI-функциям
в книге карманного формата также нет места. Неплохой
справочник доступен здесь:

https : //deve lope r . moz i l l a . o rg/ r u/docs/JavaSc r i pt

Введение 1 1 S

Ждем ваших отзывов!
Вы, читатель этой книги, и есть главный ее критик.

Мы ценим ваше мнение и хотим знать, что было сделано
нами правильно, что можно было сделать лучше и что
еще вы хотели бы увидеть изданным нами. Нам интерес­
ны любые ваши замечания в наш адрес.

Мы ждем ваших комментариев и надеемся на них. Вы
можете прислать нам бумажное или электронное письмо
либо просто по.сетить наш сайт и оставить свои замеча­
ния там. Одним словом, любым удобным для вас способом
дайте нам знать, нравится ли вам эта книга, а также вы­
скажите свое мнение о том, как сделать наши книги более
интересными для вас.

Отправляя письмо или сообщение, не забудьте ука­
зать название книги и ее авторов, а также свой обратный
адрес. Мы внимательно ознакомимся с вашим мнением
и обязательно учтем его при отборе и подготовке к изда­
нию новых книг.

Наши электронные адреса:

E-mail:

WWW:
info@williamspuЫishing.com

http://wi l l i amspuЫi s h i n g.com

Наши почтовые адреса:

в России: 1 27055, Москва, ул. Лесная, д. 43, стр.1
в Украине: 03150, Киев, а/я 1 52

16 1 Введение

Г ЛАВА 1

Лексическая структура

Для написания JavaScript-пpoгpaмм используется набор
символов Unico de , который включает в себя наборы
ASCII и Latin-1 и поддерживается практически всеми язы­
ками и платформами.

ЯзыкJavaScript чувствителен к регистру символов. Это
означает, что ключевые слова языка, имена переменных
и функций и любые другие идентификаторъt должны вво­
диться в строго заданном регистре. Например, ключевое
слово while нельзя ввести как While или WНI LE. Аналогично
o n line, O n lin e , O n line и O N L I NE - это четыре разные пере­
менные.

Комментарии
CинтaкcиcJavaScript поддерживает два вида коммента­

риев. Во-первых, любой текст между символами / / и кон­
цом строки считается комментарием и игнорируется ин­
терпретатором J аvаSсriрt. Во-вторых, любой текст ме жду
символами / * и * / также считается комментарием; ком­
ментарии этого вида могут быть многострочными, но не
могут быть вложенными. Следующие строки кода являют­
ся допустимыми комментариямиJаvаSсriрt.

// Это однострочны й комментарий
/ • Комментарий второго в ида •/ //И еще один . .
/ •

* Это еще один комментарий второ го в ида ,
• расположенны й в нескол ь ки х стро ках .
·!

Идентификаторы и зарезервированные
сnова

Идентификатор- это имя чего-либо. В JavaScript иден­
тификаторы используются для именования переменных,
функций , меток и других сущностей. Идентификатор
в коде JavaScri pt может начинаться с буквы, символа под­
черкивания (_) или символа доллара ($) . Начиная со вто­
рого символа можно использовать буквы, цифры, симво­
лы подчеркивания и доллара.

Зарезервированные слова - это идентификаторы, слу­
жащие ключевыми словами языка. Их нельзя использо­
вать в программе в качестве идентификаторов других сущ­
ностей. Ниже перечислены идентификаторы J avaSc ript .

Ьгеаk
case
catch
cont i n u e
debugge r
default
delete
do
else
false
f i n a l l y
f o r
f u n c t i o n
i f
in
i nstanceof
new

18 [Гnава 1 . Лексическая структура

n u l l
ret u rn
swit c h
t h i s
t h row
t ru e
t ry
typeof
va r
void
wh i l e
with

Кроме того , зарезервировано несколько ключевых
слов, которые сейчас не используются , но могут понадо­
биться в будущих версиях. В спецификации ECМAScript 5
зарезервированы следующие дополнительные слова.

class
const
enum
expo rt
extends
impo rt
s u pe r

Строгий режим (strict mo de) налагает некоторые огра­
ничения на использование приведенных ниже идентифи­
каторов. Они не являются зарезервированными словами,
но их нельзя использовать в качестве имен переменных,
функций и параметров.

a rguments
eval

В спецификации ECM AScript 3 зарезервированы
все ключевые слова Java. Это ограничение отменено
в EC МAScript 5, но, если вы планируете в ып олня ть код

Идентификаторы и зарезервированные слова 1 119

в реализациях ECМAScript 3, следующие ключевые слова
использовать не рекомендуется.

abst ract
boolean
byte
c h a r
class
const
douЫe
enum
expo rt
extends
f i n a l
f loat
goto
implements
import
i n t
i n t e r face
long
nat ive
package
p ri vate
p rotected
p u Ы i c
s h o r t
stat i c
supe r
synch ron i zed
t h rows
t ransient
volat i l e

Необязатеяьные точки с запятой
Как и во многих других языках программирования,

в JavaScript для разделения инструкций (см. главу 4) ис­
пользуется точка с запятой (;) . Смысл кода должен быть

20 1 Гnава 1. Лексическая структура

очевидным: без разделителя (точки с запятой) конец
одной инструкции может выглядеть как начало другой,
и наоборот. В JavaScгipt обычно можно о пустить точку
с запятой между двумя инструкциями, если они находятся
в разных строках. Кроме того, точку с запятой можно опу­
стить в конце программы и перед закрывающей фигурной
скобкой } . Однако многие программисты предпочитают
всегда ставить точку с запятой (так делается и в данной
книге) , чтобы явно обозначить конец инструкции, даже
если точка с запятой в этом месте необязательна . Другой
стиль программирования предполагает опускание точек
с запятыми везде, где это возможно, и добавление их толь­
ко в тех немногих местах, где они обязательны. Выбор
стиля зависит от ваших предпочтений, но есть несколько
факторов, о которых необходимо помнить.

Рассмотрим приведенный ниже код. Две инструкции
находятся в разных строках, поэтому первая точка с запя­
той необязательна.

а 3 ;
ь 4;

Однако в следующем коде первая точка с запятой обя­
зательна.

а = 3 ; ь = 4;

Обратите внимание на то, что интерпретатор
JavaScгipt не считает каждый разрыв строки точкой с за­
пятой . Обычно он интерпретирует разрыв строки как
точку с запятой, только если не может выделить следу ю­
щую лексему и продолжить анализ кода. В частности, раз­
рыв строки интерпретируется как точка с запятой после
ключевых слов ret u r n , b reak и contin ue, перед оператора­
ми ++ и - - , а также если следующий непробельный сим-

Необязатеnьиые точки с запятой 1 21

вол невозможно интер претировать как продолжение те­
кущей инструкции.

Описанные правила окончания инструкций приводят
к ряду неожиданных результатов. Приведенный ниже код
выглядит, как две отдельные инструкции, разделенные
разрывом строки.

va r у = х + f

(a+b) . toSt r i ng ()

Однако ско бки во второй строке можно интер прети­
ровать как аргументы вызова функции f, рас положенной
в первой стро ке, поэтому JavaScript интер претирует код
следующим образом.

va r у = f (a+b) . toSt r i ng () ;

22 1 Гnава 1 . Лека1че,кая 'труктура

ГЛАВА 2

Типы данных, значения
и переменные

Фактически вся работа компьютерных программ за­
ключается в манипулировании зна'Че'Нuями, такими как
число 3 . 14 или строка Hello World. Виды или категории
значений, которыми можно манипулировать в программе,
называются типами. Когда программе нужно сохранить
значение для использования в будущем, она присваивает
его переменной (часто пи шут также, что значение сохраня­
ется в переменной) . С каждой переменной ассоциировано
символическое имя (идентификатор) , позволяющее в дру­
гих местах программы ссылаться на значение, хранящееся
в данной переменной.

Типы JavaScript делятся на две категории: примитив­
нъtе и обr,ектнъtе. К примитивным относятся числовой
тип, строка текста (строковый тип) и булев тип, который
может принимать значения t rue и false. В главах 5-7 рас­
сматриваются три вида объектных типов.

В отличие от строго типизированных языков, таких
как Java или С #, интерпретатор JavaScript довольно сво­
бодно преобразует типы значений. Например, если про­
грамма ожидает строку, но получает число, она автомати­
чески преобразует число в строку. Правила преобразова­
ния типов рассматриваются далее.

ПepeмeнныeJavaScript нетипизированнъtе. Это означает,
что переменной можно присвоить значение любого типа,

причем позже этой же переменной можно будет присво­
ить значение другого типа. Переменная обмвляется с клю­
чевым словом va r . В программе нaJavaScript используется
лекси'ЧRская областъ видимости. Это означает, что перемен­
ная, объявленная вне функции, является глоба.лънойи видна
в любой точке программы. Переменная, объявленная вну­
три функции, видна только для кода функции. Более под­
робно объявление переменных рассматривается далее.

Числа
В отличие от многих других языков программирова­

ния, вJavaScript не различаются целочисленные значения
и значения с плавающей точкой 1• В пpoгpaммe JavaScript
все числа представлены 64-разрядными значениями с пла­
вающей точкой (стандарт IEEE 754) в диапазоне значений
±1 .797693 1 348623 157Е+308. Согласно этому же стандарту
наименьшее число равно ±5Е-324.

Числовой формат JavaScript позволяет точно предста­
вить все целые значения в диапазоне от -90071 99254 7 40992
(-2 53) до 9007199254740992 (2 53) включительно. Можно ис­
пользовать также целочисленные значения вне этого диа­
пазона, но будет потеряна точность в последних разрядах.
Однако учтите, что определенные операции (такие, как
индексирование массивов и побитовые операции; см. гла­
ву 3) выполняются с 32-разрядными целыми числами.

Если число записано непосредственно в коде, оно на­
зывается числовъ�м литера.лом. Синтаксис JavaScript под­
держивает числовые литералы в нескольких форматах.

1 В программе нaJavaScript десятичным разделителем всегда слу­
жит точка, даже если в локализованной версии операционной
системы в качестве десятичного разделителя определен другой
символ (например, запятая в русифицированной системе). -

Примеч. ред.

24 1 Гnава 2. Типы данных, значения и переменные

Если перед числовым литералом стоит знак "минус", зна­
чит, число отрицательное.

В программе JavaScript десятичное целое число запи­
сывается как последовательность цифр, например так.

о
1 024

Кроме десятеричных, JavaScript распознает шестнад­
цатеричные значения. Шестнадцатеричный литерал на­
чинается с префикса Ох или ОХ, после которого располо­
жена строка шестнадцатеричных цифр. Набор шестнад­
цатеричных цифр включает цифры от О до 9 и буквы от а

(или А) до f (или F) . Ниже приведены примеры шестнад­
цатеричных литералов.

Oxff // в десятичной системе 1 5 • 1 6+ 1 5=255
OxCA FE91 1

Литералы с плавающей точкой могут содержать точку.
В них применяется традиционный синтаксис действитель­
ных чисел. Действительное значение представлено целой
и дробной частями, разделенными десятичной точкой.

Литералы с плавающей точкой можно записывать в эк­
споненциальной нотации: после действительного литерала
(он называется мантиссой) расположена буква е (или Е), за­
тем - необязательный знак "минус" и целое число (оно на­
зывается паряiЖом) , обозначающее степень десяти. Число
равно мантиссе, умноженной на 1 0 в степени порядка.

Более подробный синтаксис числа в экспоненциаль­
ной форме приведен ниже.

[цифры] [. цифры] [(Е[е) [(+[-)] цифры]

Вот примеры числовых литералов с плавающей точкой.

3 . 1 4
6 . 02е23 // =6 . 02х 1 0�

1 . 473822З Е - 3 2 // = 1 473822х1 О.32

Пpoгpaммы JavaScript работают с числами с помощью
математических операторов, предоставляемых языком.
К ним относятся сложение (+) , вычитание (-) , умножение
(*) , деление (/) и деление по модулю (%, этот оператор
возвращает остаток целочисленного деления) . Более под­
робно эти операторы рассматриваются в главе 3.

Кроме базовых арифметических операторов,
JavaScript поддерживает более сложные математические
операции, предоставляемые посредством набора функ­
ций и конста нт, определенных как свойства объекта Mat h .

Math . pow(2 , 53.) // => 90071 992547 40992 , степень
Mat h . r o und (. 6) // => 1 . 0 , округление до бл ижайше го
Math . ce i l (. 6) // => 1 . 0 , округление вверх
Math . f l oo r (. 6) // = > О . О , округление вниз
Math . a bs (- 5) // => 5 , абсолютное значение
Mat h . max (x , y , z) // максимал ьн ы й а р гумент
Math . mi n (x , y , z) // минимальный ар гумент
Mat h . random () // псе вдослучайное ч исло О<=х< 1 . 0
Math . PI // ч исло р
Math . E // ч исло е
Math . sq rt (3) // квадратный корень
Mat h . pow(3 , 1 /3) // воз ведение в дробную сте п е н ь
Math . s i n (O) // синус
Math . log (1 0) // натурал ьный л о гарифм десяти
Math . l og (1 00) /Math . LN 1 0 // л о гарифм по основанию 1 0
Math . log (5 1 2) /Math . LN 2 // л о гарифм п о основанию 2
Math . ex p (3) // экспонента

В случае переполнения, потери значимости или де­
ления на нуль арифметические операторы JavaScript не
генерируют ошибку. Если результат операции больше,
чем самое большое допустимое число (т.е . при перепол­
нении) , оператор возвращает специальное значение
I п f i n i ty, интерпретируемое как бесконечность. Если же
это число отрицательное, оператор возвращает - I n f i n i ty .
Бесконечные значения обрабатываются так же, как и в

26 1 Глава 2. Тиnы данных, значения и переменные

математике: сложение, вычитание, умножение или де ле­
ние таких значений приводит, опять же, к бесконечнос ти
(но может измениться знак перед числом) .

Деление н а нуль не считается ошибкой в JavaScri pt.
Оператор всего лишь возвращает положительную или

отрицательную бесконечность. Но из этого правила ест ь
одно важное исключение: при делении нуля на нуль ре­
зультатом не может быть какое-либо определенное зна­
чение , поэтому оператор возвращает специальное значе­
ние NaN (от англ. "not а number" - не число) , считающееся
неопределенным. Кроме того , значение NaN возвращается
при попытке деления бесконечности на бесконечность,
при вычислении квадратного корня отрицательного чис­
ла или при передаче арифметическому оператору нечис­
лового операнда, который невозможно преобразовать
в число.

В JavaScript глобальные предопределенные перемен­
ные Infini ty и NaN интерпретируются как положительн ая
бесконечность и нечисловое значение.

В JavaScript значение NaN обладает одной необычной
особенностью: оно не равно никакому другому значению,
включая себя же. Следовательно, чтобы выяснить, со­
держит ли переменная х значение NaN, нельзя записать
x==NaN. Правильная запись выглядит так: х! =х . Данное
выражение равно true, только если х равно NaN. Можно
также применить функцию isNaN() , которая возвращает
t rue, если аргумент равен NaN или является нечисловым
значением, т.е . строкой (или объектом) , которую нел ьзя
преобразовать в число. Аналогичная функция isFinite()

возвращает true, если аргумент является числом, отлич­
ным от NaN, Infinity или -Infinity.

В математике количество действительных чисел бес­
конечно, но в плавающем формате JavaScript количеств о

Чисnа 1 27

чисел , имеющих точное представление, ограничено (их
количество равно 1 8437 7368744548 1 0627) . Это означает,
что действительные числа в JavaScript не являются тем
же, что действительные числа в математике; они лишь
представляют их с определенной точностью. Впрочем,
точности представления вполне достаточно для любой
практической задачи - не существует ни одной физиче­
ской величины, которую можно было бы измерить с та­
кой точностью.

Текст
Стр01еа - это неизменяемая упорядоченная последо­

вательность 16-битовых значений, каждое из которых
обычно представляет символ Unico de. Строки - это тип
JavaScript, представляющий текст. Длина стр01еи - это ко­
личество хранящихся в ней 1 6-битовых значений (они на­
зываются элементами стр01еи) . В строках (и массивах строк)
JavaScript используется индексация с нуля, т.е . первое зна­
чение находится в позиции О, второе - в позиции 1 и т.д.
Пустая стр01еа - это строка с нулевой длиной (не путайте
ее со строкой, содержащей только пробелы) . В JavaScript
нет специального типа, представляющего один элемент
строки. Для представления одного 16-битового значения
использ уйте строку единичной длины.

Строковые литералы
Чтобы записать строковый литерал, достаточно за­

ключить любую последовательность символов в одинар­
ные (·) или двойные (") кавычки. В строке, ограниченной
парой одинарных кавычек, можно использовать двойные
кавычки, и наоборот: одинарные кавычки можно исполь­
зовать в строке, заключенной в пару двойных кавычек.
Ниже приведены примеры строковых литералов.

28 1 Гnава 2. Тиnы данных, значения и переменные

11 Это пустая строка
' mane= " myfo rm " '
" Вам нравятся кни г и O ' R e i l l y? "
" Эта стро ка\nсостоит из двух стро к на экране

п = 3. 1 4"

Обратная косая черта (\) в строковы х литерала х и ме­
ет специальное назначение: вместе с символом, распол о­
женным после нее , она представляет си мвол, которы й
нельзя представить в строково м литерале ины м образ о м.
Такие последовательности называются специалънъини,
или Еsс-последователъностями. Например, специальная п о­
следовательность \n представляет конец тек уще й стр оки
и вставк у новой.

Еще один пример: последовательность \ · представля­
ет одинарную кавычку. Эта последовательность полезна,
когда нужно добавить одинарную кавычк у в строк овы й
литерал, заключенный в пару одинарны х кавычек.

В табл. 2 . 1 перечислены все специальные послед ова­
тельности JavaScript. Два последни х специальны х си мв о­
ла позволяют представить как шестнадцатерично е числ о
любой символ, определенный в набора х Latin-1 и Unicode.
Например, последовательность \хА9 представляет си мв о л
авторского права (©), который в наборе Latin-1 и меет шес т­
надцатеричный код А9 . Аналогично последовательность \u
представляет произвольный символ Unicode, опре дел ен­
ный четырьмя шестнадцатеричными цифрами. Напри мер,
последовательность \uОЗсО представляет символ р.

Табnица 2.1. Специаnьные посnедоватеnьности JavaScript

Посnедоваtuьность Представмемыi а�мвоn

\О Символ NUL (\uOOOO); не путайте с n u l l

\Ь Клавиша возврата (Backspace, \u0008)

Текст 1 29

Горизонтальная табуляция (\u0009)

Новая строка (\uOOOA)

Вертикальная табуляция (\u OOOB)

Перевод страницы (\u OOOC)

Возврат каретки (\uOOOD)

Двойная кавычка (\u0022)

Одинарная кавычка (\u0027)

Обратная косая черта (\u005C)

Окончание табл. 2.1

\t

\n

\v

\f

\r

\"

\ '

\\

\хХХ Символ latin-1, представленный двумя шестнадцатеричными
цифрами

\uXXX Символ Unicode, представленный четырьмя
шестнадцатеричными цифрами

Если обратная косая черта находится перед любым
символом, не указанным в табл. 2. 1 , она игнорируется (ко­
нечно, в будущих вepcия xjavaScript могут появиться но­
вые специальные последовательности) . Например, после­
довательность \# интерпретируется как # . Спецификация
ECМAScript 5 позволяет вставлять обратную косую черту
перед разрывом строки для размещения строкового лите­
рала в нескольких строках кода.

В JavaScript встроены средства объединения строк.
Если записать оператор + с числами, он вычислит их сум­
му. Если же записать его со строками, он объединит их
в одну строку. Эта опер ;�щия называется 'КОН'Катенацией.
Ниже приведен пример конкатенации строк два и слова.

msg= "два " + " слова " ; // => "два слова "

30 1 Гnава 2. Тиnы данных, значения и переменные

Для выяснения длины строки (количества хранящих­
ся в ней 1 6-битовых значений) используется свойство
length объекта строки. Например, для вычисления длины
строки s нужно написать следующее.

s . l e n h t h

Кроме свойства length, объект строки имеет ряд мето­
дов, примеры которых приведены ниже.

va r s = " слова дл я теста " // создание строки
11 => " с " первый СИМВОЛ
// => " а " последн и й сим вол
11 => лов с и м волы 2 , 3 и 4
/ / => ЛОВ" ТО же

s . c h a rA t (O)
s . c h a rA t (s . lengt h - 1)
s . s u bst r i пg (1 , 4)
s . s l i c e (1 , 4)
s . s l i ce (- 3)
s . i ndexOf (''l")
s . lasti пdexOf (" a ")
s . i п d exOf (" a " 3)
s. s p l i t (" , ")
s . replace (" c " , "С")

/ / => ста " последние три сим вола
// => 1: позиция с имвола л

s . toUppe rCase ()

// => 1 : позици я последне го а
// => 3: позици я а после 3 - й
/ / => сло в а " для " теста
// => " Сл о в а для тес та "
// замена вхождений
// => " СЛОВА ДЛЯ ТЕСТА"

Не забывайте, что в JavaScript строки неизменяемые.
Методы replace() и toUpperCase() создают новые строки,
а не изменяют существующие.

В ECМ AScript 5 строки можно интерпретировать как
массивы, доступные только для чтения. Программа мо­
жет считывать · отдельные символы (16-битовые значе­
ния) из строки с помощью квадратных скобок (вместо
метода cha rAt ()) .

s = "два сло в а
s [O] / / = > д
s [s . l e пgth - 1] // => " а "

Текст 1 31

Булевы значения
Булево значение представляет одно из дв ух состоя­

ний: "истина" или "ложь" , "включено" или "выключено" ,
"да" или "нет" и т.п. В JavaScript определены два булевых
значения: t rue и false .

Обычно булево значение генерируется в результате
сравнения двух сущностей в программе, например про­
верки на равенство.

а == 4

Этот код проверяет, равно ли значение, хранящееся
в переменной а, числу 4. Если равно, результатом срав­
нения будет значение t r ue . В противном случае оператор
сравнения возвращает false .

В коде J avaScript булевы значения обычно используют­
ся в управляющих конструкциях. Например, инструкция
i f /else выполняет одно из двух действий в зависимости
от того , чему равно булево значение - t rue или false .
Обычно оператор, вычисляющий булево значение, вклю­
чен непосредственно в инструкцию, в которой оно ис­
пользуется.

if (а == 4)
ь = ь + 1 ;

else
а = а + 1 ;

Этот код проверяет, равно ли а четырем. Если равно,
то код увеличивает на единицу переменную Ь , а если нет,
то переменную а .

Далее будет показано, что любое значение JavaScript
может быть автоматически (неявно) преобразовано в бу­
лево. Приведенные ниже значения разных типов преоб­
разуются в false .

3 2 1 Глава 2. Тиnы данных, значения и переменные

u n d e f i ned
n u l l
о
- О
NaN

11 пустая строка

Все другие значения, включая все объекты и массивы,
неявно преобразуются в t r ue . Каждый раз, когда интер­
претатор JavaSc гipt ожидает булево значение, он преоб­
разует полученное значение любого типа в false или t r ue
согласно приведенному выше правилу.

Предположим, переменная о содержит либо объект,
либо значение n u l l . Проверить, какое из этих двух значе­
ний она содержит, можно с помощью следующего опера­
тора сравнения.

if (о ! == n u l l) .

Оператор проверки на неравенство возвращает t r ue
или false . Однако можно опустить оператор и полагаться
на тот факт, что n u l l неявно преобразуется в false , а лю­
бой объект - в t rue .

i f (о) . . .

В первом случае тело инструкции i f вычисляется, толь­
ко если переменная о не равна n u l l . Во втором случае усло­
вие менее жесткое: тело инструкции вычисляется, если
переменная о не равна false или любому другому значе­
нию, которое преобразуется в false , такому как n u l l или
undefi ned . Какую из этих двух инструкций лучше приме­
нить в конкретном случае, зависит от того, какие значения
присваиваются переменной о. Если код должен отличать
n u l l от нуля или пустой строки, необходимо применить яв­
ную проверку на неравенство (первую инструкцию) .

6уnевы зна11ени11 1 33

Значения nul l и undefi ned
Ключевое слово n u l l имеет особую интерпретацию:

оно обычно сообщает об отсутствии какого-либо значения.
Оператор typeof , получив значение n u l l , возвращает стро­
ку obj ect , которая "намекает" на то, что n u l l интерпрети­
руется как специальный объект с названием "нет объекта".
Однако на практике n u l l обычно считается не объектом,
а единственным значением собственного типа, который
можно использовать для указания на отсутствие опреде­
ленного значения любого типа: числа, строки или объекта.
Ключевое слово n u l l есть практически в любом языке про­
граммирования, но в некоторых языках оно может выгля­
деть немного иначе, например n i l или N u l l .

В JavaScript есть еще одно специальное значение,
u n de f i ned , указывающее на отсутствие значения, но в бо­
лее глубоком смысле. Это значение имеет переменная,
которая не была инициализирована. Это также значе­
ние, возвращаемое в результате запроса несуществующе­
го свойства объекта или элемента массива. Кроме того ,
значение u n def i ned возвращается функцией, в теле кото­
рой не определено возвращаемое значение. Это же зна­
чение передается функции в качестве параметра, если
при вызове аргумент не был предоставлен. Фактически
идентификатор u ndef i ned обозначает предопределенную
глобальную переменную (а не ключевое слово языка, как
n u l l) , инициализированную неопределенным значением.
Оператор typeof , получив значение u n def i ned , возвраща­
ет u n de f i n ed . Это говорит о том , что значение u n d e f i ned
является единственным членом специального типа.

Несмотря на все эти отличия, оба ключевых сло­
ва - n u l l и u ndefi ned - указывают на отсутствие опреде­
ленного значения и часто взаимозаменяемы. Оператор
проверки на равенство (==) считает их равными (для их

34 1 Гnава 2. Типы данных, значения и переменные

различения используйте оператор проверки на строгое
равенство ===) . Оба этих значения преобразуются в булев
тип false в логических выражениях. Ни n u l l , ни u ndef i ned
не имеет ни свойств, ни методов. Применение точки или
квадратных скобок для обращения к свойству или методу
этих значений приводит к генерации ошибки Type E r ro r .

Глобальный объект
В предыдущем разделе были рассмотрены прими­

тивные типы и значения JаvаSсriрt. Объектным типам -
объектам, массивам и функциям - посвящено несколько
следующих глав. Но есть один важный объектный тип, ко­
торый нужно рассмотреть уже сейчас. Глобал:ьний объект -
это встроенный объект JavaScript, предназначенный
для очень важной цели: свойства этого объекта являют­
ся глобальными сущностями, доступными в любом месте
J аvаSсriрt-программы. Когда интерпретатор JavaScript на­
чинает обрабатывать код (при загрузке браузером новой
страницы) , он создает глобальный объект и присваивает
ему набор следующих сущностей:

• глобальные свойства, такие как u n de f i n ed , I n f i n i t y
и NaN ;

• глобальные функции, такие как i s NaN () , pa rsei nt ()
и eva l () ;

• конструкторы, такие как Dat e () , RegExp () , St r i ng () ,
Obj ect () и A r ray() ;

• предопределенные объекты, такие как Ma t h и JSON
(часто их также называют глобальными) .

Начальные свойства глобального объекта н е являются
зарезервированными ключевыми словами, но к ним еле-

Гnобаnьный объект 1 35

дует относиться как к таковым. В данной главе некоторые
из таких свойств уже упоминались. Большинство других
глобальных свойств рассматриваются в соответствующих
главах.

В коде верхнего уровня (т.е . не в теле функции) можно
использовать ключев ое слово t h i s для ссылки на глобаль­
ный объект.

va r g lobal = t h i s ;

В коде JavaScript на стороне клиента объект Window
является глобальным. Он содержит свойство window , ко­
торое указывает на свой же объект Window и может быть
использовано для ссылки на глобальный объект. В объек­
те Wi n dow определены базовые глобальные свойства и ряд
свойств, специфичных для браузера и клиентского кода
JavaScript (см. главу 10) .

При первом создании глобального объекта создаются
все предопределенные глобальные значения JavaScript.
Кроме того, этот объект содержит глобальные свойства,
определенные в программе. Если в коде JavaSc гipt объяв­
лены глобальные переменные, они являются свойствами
глобального объекта.

Преобразование типов
Интерпретатор JavaSc гipt весьма гибок по отношению

к типам значений. Вы уже видели это на примере булевых
значений: когда код ожидает булево значение, он может
получить значение любого типа, а интерпретатор преоб­
разует его в булев тип. Некоторые значения преобразуют­
ся в t rue, а некоторые - в false. То же самое справедли­
во для всех других типов. Например, когда код ожидает
строку, интерпретатор преобразует в строку полученное
значение любого типа. Если код ожидает число, интер-

36 1 Гnава 2. Тиnы данных, значения и переменные

претатор пытается преобразовать полученное значение
в число. Если он не может сделать это , код получит значе­
ние NaN. Рассмотрим ряд примеров.

10 + объект ов " // => " 1 0 объе ктов "
// ч исло 1 0 п реобразует ся в ст року

"7" * " 4 " / / = > 28
// каждая строка п реобразуется в ч исло

va r п = 1 - х · // => NaN
// строку "х" нел ьзя п реобразовать
/ / в ч исло

п + объе кт ов " // => " NaN объект ов "
/ / п равно NaN ; значение NaN
// п реобразуется в строку " N a N "

В табл. 2.2 приведены правила преобразования типов
интерпретатором JavaScript. Полужирным шрифтом вы­
делены неочевидные преобразования, которые многим
пок ажугся удивительными. Пустые ячейки означают, что
в преобразовании нет необходимости и оно не выполня­
ется.

Табnица 2.2. Преобразования типов

uпdef iпed " undefi ned " NaN false Type E r r o r

n u l l " n u l l " о false Type E r r o r

t r ue " t rue" Boolean (t rue)

false " false" о Boolean (false)

о false St r i ng (" ")

" 1 . 2 " 1 . 2 t rue St r i п g (" 1 . 2 ")

Преобразованиетиnов 1 37

one
"

NaN true

о
"О"

false

-О "О"
false

NaN "NaN" false

Infinity "Infini ty" true

-Infinity "-Infinity" true

1 {конечное "1" true
ненулевое
число)

{}{любой toString() toSt ring () true

объект) или valueOf ()

[]{пустой о true
массив)

[9] {один "9" 9 true
числовой
элемент)

[· а ·](любой Используется NaN true
нечисловой функцияjоin()

массив)

function() Исходный код NaN true
{}{любая функции

функция)

38 1 Гnава 2. Типы данных, значения и переменные

Окончание табл. 2.2

String("one")

Number(O)

Number(-1)

Number(NaN)

Number(Infinity)

Number(-
Infinity)

Number(1)

Интерпретатор JavaScript гибко преобразует типы
значений, поэтому поведение оператора проверки на ра ­
венство (==) основано на таких же гибких представлениях
о равенстве. Например, все приведенные ниже выраже­
ния возвращают t r ue .

nu l l == undefi ned
" О " == О // Пе ред сравнением строка

// п реобразуется в ч исл о
О == false // Пе ред сравнением булево значение

// п реобразуется в ч исло
· ·о ·· == false // Пе ред сравнением оба операнда

// п реобразуются в ч исла

В большинстве случаев преобразование типов
J avaScript выполняется автоматически, но иногда полез­
но задать явное преобразование (например, для того что­
бы сделать код понятнее) .

Выполнить явное преобразование типов проще все­
го с помощью функций Boolean () , N umbe r () , St r i ng ()
и Object () .

Numbe r (" З ")
St r i n g (fa l s e)

Boolean ([])
Obj ect (З)

11 => 3
// => " false " Можно та кже
// написать false . t oSt r i пg ()
// => t rue
// => new Numbe r (З)

Любое значение, отличное от n u l l или u ndef i ned , под­
держивает метод toSt r i ng () , возвращающий строковое
представление значения. Обычно результат тот же, что
и возвращаемый функцией St r i ng () .

Некоторые операторы Jav aScript , выполняющие не­
явное преобразование типов, иногда используются спе ­
циально для преобразования. Если в операторе + один из
операндов является строкой, то другой операнд всегда
преобразуется в строку. Унарный оператор + преобразу-

Преобразование типов 1 39

ет свой операнд в число. Унарный операнд 1 преобразует
свой операнд в булев тип и возвращает инвертированное
значение. Ниже приведены типичные выражения, кото­
рые часто можно встретить в реальных программах.

х + 11 Э к в и валент St r i n g (x)
+х 11 Экви валент Numbe r (x) ; можно та кже х - 0
1 ' х 11 Э к в и валент Boolean (x)

Форматирование и синтаксический анализ чисел - ти­
пичные задачи в JavaScript-пpoгpaммa x, поэтому для их
решения предоставлены специальные функции, позволя­
ющие жестко контролировать процесс преобразования
чисел в строки и наоборот.

Метод toSt r i ng () , определенный в классе N umbe r , при­
нимает необязательный аргумент, задающий основание
системы счисления. Если не задать этот аргумент, пре­
образование будет выполнено в десятичном счислении.
Можно задавать основания от 2 до 36.

va r n = 1 7 ;
b i n a ry_st r i n g = n . toSt r i n g (2) ;
octal_st r i n g = · · о - + n . toSt r i ng (8) ;
hex_st r i n g = " О х " + n . toSt r i ng (1 6) ;

11 => " 1 000 1 "
11 => " 0 2 1 "
11 => " О х 1 1 "

При работе с научными и финансовыми данными ча­
сто желательно задавать количество десятичных позиций
после разделителя или точность (количество значащих
цифр) результата преобразования. Иногда желательно
также задать вывод результата в экспоненциальном фор­
мате. Для этого в классе N umbe r есть три метода.

va r n = 1 23456 . 789 ;
n . toFixed (2) ;
n . t o Exponent i a l (3) ;
n . t o P recision (7) ;

11 " 1 23456 . 79 "
11 " 1 . 235е+5 "
11 " 1 23456 . 8 "

40 1 Гnава 2. Тиnы данных, значения и переменные

При получении строки функция Numbe r () пытается
методами синтаксического анализа извлечь из нее цело­
численный или действительный числовой литерал. Эта
функция работает только с основанием счисления 1 О и не
принимает замыкающие символы, не являющиеся частью
литерала. Глобальные функции pa rseint () и pa rseFloat () бо­
лее гибкие. Функция pa rseint () синтаксически анализирует
только целые числа, а функция ра rseFloat () - как целые, так
и действительные. Если строка начинается с " Ох " или " ОХ" ,
функция ра rseint () интерпретирует ее как шестнадцатерич­
ное число. Обе эти функции пропускают ведущие (т.е. рас­
положенные в начале) пробельные символы, считывают
все имеющиеся цифровые символы и пропускают все, что
стоит после первого встретившегося нецифрового симво­
ла. Если первый непробельный символ не является частью
числового литерала, эти функции возвращают NaN .

parseint (" 3 мыш к и ") 11 => 3
parseFloat (" 3 . 1 4 метра ") 11 => 3 ' 1 4
pa rseint (" - 1 2 . 34 ") 11 => - 1 2
pa rseint (" OxFF ") 11 => 255
pa rseFloat (" $72 . 47 ") ; 11 => NaN

Функция pa rse i n t () принимает необязательный вто-
рой аргумент, задающий основание системы счисления.
Допустимы значения от 2 до 36.

pa rse i nt (" 1 1 ' ' , 2) ;
pa rseint (" 077" , 8) ;
pa rseint (" f f " , 1 6) ;

11 => 3 (1 • 2 + 1)

11 => 63 (7 • 8 + 7)
1 1 => 255 (1 5 • 1 6 + 1 5)

Объявление переменных
Перед использованием в программе переменную нуж­

но объявитъ. Объявление переменной выполняется с по­
мощью ключевого слова va r .

Объявnение переменных 1 41

va r i ;
va r sum ;

С помощью одного слова va r можно объявить несколь­
ко переменных.

va r i , s u m ;

При объявлении можно инициализировать перемен­
ные.

va r message = " he l l o " ;
va r i = О , j = О , k = О ;

Если при объявлении переменной с помощью ключе­
вого слова va r не задать начальное значение, переменная
будет объявлена, но будет содержать значение u ndef i ned ,
пока программа явно не присвоит ей другое значение.

Слово va r можно использовать в инструкциях fo r
и fo r / i n (см. главу 4) , что позволяет кратко объявить пере­
менную непосредственно в цикле.

fo r (va r i = О; i < 1 0 ; i++) console . l og (i) ;
f o r (va r i = О , j = 1 0 ; i < 1 0 ; i++ , j - -) console . l og (i • j) ;
fo r (va r р i n о) console . log (p) ;

В статически типизированных языках, таких как С или
Java, ключевое слово va r не имеет аналога, потому что в этих
языках каждой переменной жестко присваивается опреде­
ленный тип. В JavaScript переменная может содержать зна­
чение любого типа. Например, в JavaScript можно сначала
присвоить переменной число, а затем присвоить этой же
переменной строку.

va r i = 1 О ;
i = "десят ь " ;

Переменную можно объявить с помощью ключевого
слова va r несколько раз. Если при повторном объявлении

42 1 Гnава 2. Тиnы данных, значения и переменные

выполняется инициализация, то оно эквивалентно опера­
тору присваивания.

При попытке прочитать значение необъявленной пе­
ременной интерпретатор JavaScript генерирует ошибку.
Согласно ECМAScript 5 в строгом режиме ошибкой также
считается попытка присвоить значение необъявленной
переменной. Однако в нестрогом режиме и в старых ин­
терпретаторах при этом создается переменная, которая
считается свойством глобального объекта и работает поч­
ти так же, как и свойство объявленного глобального объ­
екта. Это означает, что глобальные переменные можно не
объявлять. Тем не менее это плохая привычка, служащая
источником многих ошибок, поэтому рекомендуется всег­
да объявлять переменные с помощью ключевого слова va r .

Областъ видимости переменной - это фрагмент исхо­
дного кода, в котором ее можно использовать, т.е . в кото­
ром она считается определенной. Глобальная переменная
имеет глобальную область видимости; это означает, что
она определена в любой точке программы. В то же время
переменная, объявленная внутри функции, определена
только в теле данной функции; это Л()'l(алъная переменная,
имеющая ограниченную область видимости. Параметры
функции также считаются локальными переменными,
определенными только в теле функции.

Локальная переменная в теле функции обладает при­
оритетом над глобальной переменной с тем же именем.
Как уже упоминалось, глобальную переменную можно не
объявлять, но локальную переменную всегда нужно объ­
являть с помощью ключевого слова va r . Определения
функций могут быть вложенными, причем каждая функ­
ция имеет собственную локальную область видимости,
поэтому допускается несколько вложенных слоев локаль­
ных областей видимости.

Объявnение переменных 1 43

В языках семейства С каждый блок кода в фигурных
скобках имеет собственную область видимости, и перемен­
ная не видна за пределами блока, в котором она объявлена.
Такое поведение называется блачной видимостъю. Однако
в JavaScript используется не блочная, а функционалъная
видимостъ. Это означает, что переменная видима внутри
функции, в которой она объявлена, а также внутри каждой
вложенной функции любого уровня вложенности.

Кроме того, функциональная видимость означает, что
переменная видима во всем теле функции, в которой она
объявлена, в том числе в коде, расположенном до объяв­
ления. Фактически код ведет себя так, как будто все ин­
струкции объявления расположены в начале функции.

44 1 Гnава 2. Типы даииых, значения и переменные

ГЛАВА 3

Выражения и операторы

Выражение - это фрагмент или фраза программы, кото­
рую интерпретатор может вычислить, вернув ее значе­
ние. Наиболее простое выражение - числовой или стро­
ковый литерал. Имя переменной - это тоже выражение,
возвращающее значение переменной. Сложные выраже­
ния состоят из простых. Например, выражение доступа
к элементу массива состоит из его имени, которое возвра­
щает адрес массива, и квадратных скобок с индексом, ко­
торые возвращают целое число - номер элемента масси­
ва. После всех этих манипуляций возвращается значение,
хранящееся в ячейке массива с данным номером. Еще
пример: выражение вызова функции состоит из двух вы­
ражений - имени, возвращающего объект функции, и не­
скольких параметров, передаваемых функции в качестве
аргументов (их количество может быть нулевым) .

Чаще всего составное выражение получается из двух
простых с помощью оператора. Оператор принимает не­
сколько операндов (обычно два) и вычисляет результиру­
ющее значение. Например, в составном выражении х • у
используется оператор умножения. Он вычисляет произ­
ведение выражений х и у. Вместо "вычисляет значение"
часто пишут "оператор возвращает значение".

Выражения
Простейшее выражение (иногда его называют пер­

ви-чнъtм) не содержит других, более простых выражений.
В JavaScript первичным выражением может быть констан­
та (литерал) , ссылка на переменную или ключевое слово.

Литералы - это неизменные значения, внедренные
непосредственно в программу. Ниже приведены приме­
ры литералов.

1 . 23
" П ри вет ' "
/patte r n/

// Числовой литерал
// Стро ковый л итерал
// Л итерал ре гул я рного в ы ражени я

Такие ключевые слова, как t r ue , false , n u l l и t h is , яв­
ляются первичными выражениями.

И наконец, рассмотрим несколько примеров первич­
ных выражений третьего типа: имен переменных.

i // Возвращает значение переменной i
sum // Возвращает значение переменной sum

Встретив в коде идентификатор, интерпретатор
JavaScript предполагает, что это имя переменной, и воз­
вращает ее значение. Если переменной с таким именем не
существует, выражение возвращает значение u n def i ned .
Однако в строгом режиме, определенном в ECМAScript 5 ,
попытка извлечь значение несуществующей переменной
приводит к генерации ошибки Refe rence E r ro r .

Инициапизаторы
Инициализатор объекта или массива - это выраже­

ние, возвращаемым значением которого является созда­
ваемый объект или массив. Выражения инициализаторов
иногда называют обоектнъtми литералами или литералами
массивов. Однако в отличие от истинных литералов они
не являются первичными выражениями, потому что со­
держат вложенные выражения , определяющие значения
свойств и элементов.

Инициализатор массива представляет собой заклю­
ченный в квадратные скобки список выражений, разде­
ленных запятыми. Значением инициализатора массива

46 1 Гnава 3. Выражения и оnераторы

служит создаваемый массив. Элементы нового массива
получают значения, указанные в списке.

[] // Пустой массив
[1 + 2 , 3+4] // Массив из двух элементов

В инициализаторе массива выражения элементов сами
могут быть инициализаторами массивов. Следовательно,
в коде можно создавать вложенные массивы.

va r mat rix = [[1 , 2 , 3] . [4, 5 , 6] , [7 , 8 , 9]] :

После выражения, расположенного последним, мож­
но поместить еще одну запятую.

Выражения объектных инициализаторов напомина­
ют выражения инициализаторов массивов, но вместо
квадратных скобок в них используются фигурные. Кроме
того , каждое вложенное выражение содержит префикс ,
состоящий из имени свойства и двоеточия.

va r р = { х : 2 , у : 1 } : 11 Объект с двумя с войствами
va r q = { } : 11 Пустой объект без свойств
q . x = 2 ; q . y = 1 ; 11 Теперь q и меет те же

11 с войства , что и р

Объектные литералы могут быть вложенными.

va r rectangle = { uppe r left : х : 2 , у : 2 } ,
lowe rR ight : { х : 4 , у : 5 } } ;

Выражения в инициализаторе объекта или массива
вычисляются при каждом обращении к инициализатору.
Кроме того, эти выражения не обязательно должны быть
константами; они могут быть любыми выражениями язы­
ка. В качестве имен свойств в объектных литералах мож­
но использовать не идентификаторы, а строки , заключен­
ные в двойные кавычки. Это полезно при задании имен
свойств, которые являются зарезервированными слова­
ми и не могут быть идентификаторами.

Выражения 1 47

va r side = 1 ;
va r s q u a r e = { " u l " :

· l r · :
х : р . х , у : р . у } ,
х : р . х + s ide ,
у : р . у + side } } ;

Обращение к свойствам
Выражение обращения к свойству возвращает значе­

ние свойства объекта или элемента массива. В JavaScript
определены две формы обращения к свойству.

выражение . идентифика тор
выражение [выражение]

В первой форме выражение задает объект, а иден­
тификатор - имя нужного свойства. Во второй форме
первое выражение задает объект или массив, а второе
выражение, приведенное в квадратных скобках, зада­
ет имя нужного свойства или индекс элемента массива.
Рассмотрим ряд конкретных примеров.

va r о { х : 1 , у : { z : З } } ; 11 Создание объе кта
va r а [о , 4 , [5 , б]] ; 11 Создание масс и ва
о . х 11 => 1 : СВОЙСТВО Х объе кта о
o . y . z 11 => 3 : свойство z в ыражения о . у
о ["х''] 11 => 1 : свойство х объе кта о
а [1] 11 => 4 : элемент 1 вы ражения а
а [2] [" 1 "] 11 => 6 : элемент 1 в ыражения а [2]
а [О] . х 11 => 1 : свойство х выражения а [О]

Форма . идентификатор - более простая и з двух форм
доступа к свойствам, но ее можно использовать, только
когда у свойства есть имя, являющееся допустимым иден­
тификатором, причем это имя известно при написании
кода. Если имя свойства является ключевым словом или
содержит пробелы либо знаки пунктуации, необходимо
использовать форму с квадратными скобками. Кроме
того, форму с квадратными скобками необходимо исполь­
зовать при обращении к элементам массивов в случае,

48 1 Гnава 3. Выражени11 и операторы

когда имя свойства заранее неизвестно и вычисляется
на этапе выполнения кода.

Опредепение функции
Значением выражения, определяющего функцию, слу­

жит сама определяемая функция. Фактически выражение
определения функции является "функциональным лите­
ралом" в том же смысле, что и инициализатор объекта яв­
ляется "объектным литералом". Обычно выражение опре­
деления функции состоит из ключевого слова f u nction ,
после которого расположен список идентификаторов
(имен параметров) , разделенных запятыми, и блока кода
J av aScript (тела функции) в фигурных скобках. Ниже при­
веден пример определения функции.

11 Эта функция возвращает квадрат ар гумента
va r s q u a r e = f u n ct i o n (x) { ret u rn х * х; }

Функцию можно также определить с помощью ин­
струкции, а не выражения, как будет показано в главе 7.

Вызов функции
Выражение вызова определяется синтаксисом J av aScript

и начинается с выражения функции (обычно это ее имя) ,
которое идентифицирует вызываемую функцию и после ко­
торого находится список аргументов в скобках. Аргументы
являются выражениями и отделены друг от друга запятыми.
Ниже приведен ряд примеров вызова функций.

f (O)
Mat h . max (x , y , z)

а . so rt ()

11 Функция f с ар гументом О
11 Функция Mat h . max
11 с ар гументами х , у и z
11 Функция a . so rt без ар гументов

При вычислении выражения вызова сначала вычисля­
ется выражение функции, а затем - выражения аргумен-

Выражения 1 49

тов, в результате чего генерируется список значений ар­
гументов. Если значение выражения функции не является
функцией, генерируется ошибка TypeE r r o r . Значения ар­
гументов присваиваются в заданной последовательности
именам параметров, указанным в определении функции.
После этого выполняется тело функции. Если в функции
есть инструкция ret u r n , то вычисляемое ею значение ста­
новится значением выражения вызова. В противном слу­
чае выражение вызова получает значение u ndef i ned .

Каждое выражение вызова содержит некоторое выра­
жение и пару скобок со списком (возможно, пустым) . Если
перед скобками находится выражение доступа к свойству,
то выполняется В'Ызов метода. В инструкции вызова мето­
да объект или массив, содержащий вызываемое свойство,
становится значением параметра t h i s , а тело функции вы­
полняется. Этим обеспечивается соответствие cинтaкcи­
ca JavaScript парадигме объектно-ориентированного про­
граммирования, согласно которой функции (в объектно­
ориентированном программировании они называются
методами) принадлежат конкретным объектам и выпол­
няются путем обращения к этим объектам.

Создание объекта
Выражение создания об'Ое/Ста вызывает функцию, назы­

ваемую конструктором, для инициализации свойств объек­
та. Выражения создания объекта напоминают выражения
вызова функций за исключением того, что перед ними на­
ходится ключевое слово new.

new Obj ect ()
new Po i nt (2 , 3)

Если в выражении создания объекта конструктору не
передается ни один аргумент, пустую пару скобок можно
опустить.

50 / Гnава 3. Выражения и операторы

new Obj ect
new Date

Когда вычисляется выражение создания объекта, ин­
терпретатор JavaScript сначала создает пустой объект,
такой же , как и создаваемый инициализатором в блоке ,
ограниченном фигурными скобками { } . Затем интерпре­
татор вызывает определенную функцию с заданными
аргументами и передает ей новый объект как значение
ключевого слова t h i s . В теле функции ключевое слово
t h i s можно использовать для инициализации свойств соз­
даваемого объекта. Функции, предназначенные для ис­
пользования в качестве конструкторов, не возвращают
значения. Значением для выражения создания объекта
является сам созданный и инициализированный объект.
Если конструктор возвращает объектное значение , оно
становится значением для выражения создания объекта,
а созданный объект уничтожается.

Операторы
Операторы используются в арифметических и логи­

ческих выражениях, а также в выражениях сравнения
и присваивания. Полный список операторов JavaScript
приведен в табл. 3. 1 .

Табnица 3.1 . Операторы JavaScript

Оператор

++ nрефиксный или постфиксный
инкремент

nрефиксный или постфиксный
декремент

Отрицание числа

Типы

lval®num

lval®num

n um®n um

Операторы 1 51

+ Преобразование в число

Обращение бктов

Обращение булева значения

delete Удаление свойства

typeof Вычисление mпа операнда

void Возврат неопределенного значения

• , /, % Умножение, деление, остаток деления

+, - Сложение, вычктание

+ Конкатенация строк

« Сдвиг влево

» Сдвиг вправо со знаком

»> Сдвиг вправо с нулем

<, <=, >, >= Сравнение по величине

<, <=, >, >= Сравнение по алфавкту

instanceof Проверка класса объеКТс1

in Проверка существования свойства

Проверка на равенство

! = Проверка на неравенство

Проверка на строгое равенство

! == Проверка на строгое неравенство

& Побктовая кокьюнкция AND

Побкrовая исключающая
дизъюнкция XOR

52 1 Гnава 3. Выражения и операторы

Продолжение табл. 3.1

nun'@num

int®int

bool®bool

lval®bool

Любой®st г

Любой®undеf

num , nun'@num

num , nun'@num

st r , st r®st r

int , int®int

int , int®int

int , int®int

num , num®bool

st г , st r®bool

obj , func®bool

st r , obj®bool

Любой, любой®Ьоо l

Любой, любой®Ьоо l

Любой,любой®Ьооl

Любой, любой®Ьооl

int , int®int

int , int®int

&&

1 1

Побктовая дизъюнкция OR

Конъюнкция AND

Дизъюнкция OR

Выбор из двух операндов

Присваивание

• =, /=, %=, +=, -=, Операция и присваивание

&=, - -, 1 =, «=,

>>=, >>>=

Отбрасывание первого и возвращение
второго операнда

Окончание табл. 3. 1

int , i nt®int

Любой, любой ® любой

Любой, любой ® любой

Ьоо l, любой, любой ® любой

l val, любой ® любой

l val, любой ® любой

Любой, любой ® любой

Операторы, перечисленные в табл. 3 . 1, отсортиро­
ваны в порядке убывания приоритета. Некоторые одно­
типные операторы, расположенные в смежных ячейках
таблицы (например, операторы сравнения) , имеют оди­
наковые приоритеты. От приоритетов зависит последо­
вательность выполнения операций. Если два оператора
находятся в коде рядом, то сначала выполняется опе­
рация с более высоким приоритетом (в верхней части
табл. 3. 1) , а затем - с более низким.

Рассмотрим следующее выражение.

w = х + y• z ;

Оператор умножения • имеет более высокий приори­
тет, чем оператор сложения + , поэтому сначала выполня­
ется умножение, а затем - сложение. Кроме того, опера­
тор = имеет самый низкий приоритет, поэтому присваи­
вание выполняется после выполнения всех операций,
указанных справа от знака равенства.

Оnераторы [53

Последовательность выполнения операторов можно
явно переопределить с помощью скобок. Чтобы в преды­
дущем примере сначала выполнялся оператор сложения,
нужно записать инструкцию следующим образом.

w = (х+ у) * z ;

Важно помнить, что выражения доступа к свойству
и вызова функции обладают более высоким приорите­
том, чем любой из операторов, приведенных в табл. 3 . 1 .
Рассмотрим следующее выражение.

typeof my . f u nction s [x] (y)

Оператор typeof имеет один и з самых высоких при­
оритетов, тем не менее в данном выражении операция
typof выполняется после обоих обращений к свойствам
и вызова функции.

На практике , если вы не уверены, какие операции бу­
дут выполняться в первую очередь, проще всего явно за­
дать последовательность их выполнения с помощью ско­
бок. Помнить все приоритеты необязательно, потому что
порядок выполнения легко задать явно; к тому же код тог­
да будет намного понятнее. Полезно помнить только, что
умножение и деление имеют более высокий приоритет,
чем сложение и вычитание, и, кроме того, что оператор
присваивания имеет один из самых низких приоритетов ,
поэтому почти всегда выполняется в последнюю очередь.

Некоторые операторы принимают значения любого
типа, но для большинства операторов нужно, чтобы опе­
ранды имели определенный тип. Кроме того , почти все
операторы возвращают значение определенного типа.
В последнем столбце табл. 3 . 1 перед стрелкой указаны
типы операндов, а после стрелки - тип результирующе­
го (возвращаемого) значения. Количество типов перед
стрелкой указывает на арностъ (количество аргументов,

54 1 Глава 3. Выражения и операторы

или, что то же самое, операндов) оператора. Унарные
операторы имеют один операнд, бинарные - два и тернар­
нъtе - три. В JavaScript есть только один тернарный опе­
ратор - ? : .

Некоторые операторы выполняют разные операции
в зависимости от типов операндов. Фактически это раз­
ные операторы, обозначаемые одинаковыми символами.
Наиболее характерный пример - оператор + , который
выполняет суммирование после получения числовых
операндов или конкатенацию после получения строк.
Аналогично операторы сравнения, такие как <, получив
числа, сравнивают их по величине, а получив строки,
сравнивают их по алфавиту.

Ряд операторов ожидают операнды l val (left value -
значение слева) . Фактически lval - это не тип, а тради­
ционное обозначение любого выражения, которое может
находиться с левой стороны оператора присваивания.
Значениями lval вJavaScript являются переменные, свой­
ства объектов и элементы массивов.

Вычисление простого изолированного выражения
(например, 2 • 3) не влияет ни на состояние программы,
ни на любые последующие операции. Однако вычисле­
ние некоторых выражений приводит к побачным эффек­
там и может затронуть результаты будущих операций.
Наиболее очевидный пример - операторы присваива­
ния, которые изменяют значения переменных и свойств.
Это же справедливо для операторов инкремента - - и де­
кремента ++, поскольку они неявно изменяют значения
переменных и свойств. Побочными эффектами обладает
также оператор delete , потому что он делает значение
свойства неопределенным (но это не то же самое, что
присвоение значения u n de f i n ed) .

Операторы 1 55

Арифметические операторы
В этом разделе рассматриваются операторы, выпол­

няющие арифметические и другие числовые операции
над своими операндами.

• Умножение (*) . Вычисление произведения двух
операндов.

• Деление (/) . Деление первого операнда на вто­
рой. В языках программирования, различающих
целые и действительные числа, результат деления
двух целочисленных операндов также целочислен­
ный. Однако в JavaScript все числа действитель­
ные, поэтому результат деления всегда действи­
тельный. Например, операция 5/2 возвращает 2 . 5 ,
а не 2 . Деление на нуль возвращает положительную
или отрицательную бесконечность, а деление нуля
на нуль - значение NaN . Ни в одном из этих случаев
ошибка не генерируется.

• Деление по модулю (%) . Вычисление остатка цело­
численного деления первого операнда на второй.
Знак результата совпадает со знаком первого опе­
ранда. Например, операция 5%2 возвращает 1 , а - 5%2
возвращает - 1 . Обычно оператор деления по моду­
лю используется с целочисленными операндами,
но в JavaScript его можно применять с действитель­
ными значениями. Например, оператор 6 . 5%2 . 1
возвращает О . 2 .

• Сложение (+). Бинарный оператор + возвраща­
ет сумму двух операндов, если они числовые. Если
же операнды являются строками, он выполняет их
конкатенацию.

56 1 Гnава 3. Выражения и операторы

1 + 2 11 => 3
" П ривет" + + "

всем ' " 11 => " П ри вет всем ' "
" 1 " + " 2 " 11 => " 1 2 "
1 + 2 + "

белых мышей " 11 => " З бел ых мышей "
1 + (2 + "

бел ых мышей ") ; 11 => " 1 2 бел ых мышей "

Когда значения обоих операндов - числа или стро­
ки, результат очевиден. В противном случае (когда
один операнд - число, а другой - строка) выполня­
ется преобразование типов, и результат операции
зависит от того, в какой тип преобразуется один из
операндов. Правила преобразования для оператора
+ отдают приоритет конкатенации строк: если один
из операндов является строкой или объектом, преоб­
разуемым в строку, то другой операнд преобразуется
в строку и выполняется конкатенация. Сложение вы­
полняется, только если ни один из операндов не яв­
ляется строкой и не преобразуется в нее.

• Вычитание (-). Вычитание значения правого опе­
ранда из значения левого операнда.

Кроме перечисленных выше бинарных операторов,
языкJavaScript определяет ряд унарных арифметических
операторов. Унарный оператор изменяет значение одно­
го операнда.

• Унарный плюс (+). Преобразует свой операнд
в число (или значение Na N) и возвращает преобра­
зованное значение. Если операндом является чис­
ло, то этот оператор ничего не делает.

• Унарный минус (-). Преобразует операнд в число
и при необходимости изменяет знак результата.

• Инкремент (++). Увеличивает операнд на едини­
цу. Операнд должен быть значением lval (т.е . пере-

Арифметиче,кие операторы 1 57

менной, элементом массива или свойством объек­
та) . Если операнд не является числом , то этот опе­
ратор преобразует его в число, добавляет единицу
и присваивает увеличенное значение обратно пере­
менной, элементу или свойству.

Возвращаемое значение оператора ++ зависит
от его позиции относительно операнда. Если он на­
ходится перед операндом (префи'Кснъ�й ин'Кре.мент) ,
то увеличивает операнд на единицу и возвращает
увеличенное значение. Если же он находится по­
сле операнда (постфи'Кснъ�й ин'Кре.мент) , то увеличи­
вает операнд на единицу, но возвращает не увели­
ченное , а исходное значение. Рассмотрим разли­
чия между следующими двумя инструкциями.

va r i = 1 , j = ++i ; // i и j равны 2
va r i = 1 , j = i++ ; // i равно 2 , j равно

Этот оператор, как в префиксной, так и в постфикс­
ной формах, часто используется для увеличения пе­
ременной счетчика в цикле fo r .

• Декремент (-). Принимает значение l val , преобра­
зует его в число, вычитает из него единицу и при­
сваивает результат обратно операнду. Как и опера­
тор ++, возвращаемое значение зависит от позиции
оператора относительно операнда. Находясь пе­
ред операндом (префиксная форма) , он возвраща­
ет уменьшенное значение. Если же он расположен
после операнда (постфиксная форма) , то возвраща­
ет исходное значение.

Побитовые операторы манипулируют отдельными
битами двоичного представления числа. В программах
нaJavaScript они используются редко. Если вы не знакомы

58 1 Глава 3. Выражения и операторы

с двоичными представлениями десятичных целых чисел,
можете пропустить этот раздел. Побитовые операторы
принимают целочисленные операнды и обрабатывают
их так, как будто это значения, представленные 32-раз­
рядными целыми числами", а не действительные 64-раз­
рядные значения, каковыми они на самом деле являются.
При необходимости побитовые операторы сначала пре­
образуют операнд в число, а затем приводят полученное
число к 32-разрядному целому путем отбрасывания дроб­
ной части и всех битов после 32-го. Для операторов сдвига
необходим операнд с заполненными ячейками от О до 3 1 .

• Побитовая конъюнкция (&). Другие названия -
AND и И. Оператор & выполняет булеву операцию
конъюнкции над каждым битом целочисленных ар­
гументов. Бит результата равен 1 , только если со­
ответствующие биты в обоих операндах также рав­
ны 1 . Например, выражение Ох1 234 & OXOO F F возвра­
щает значение Ох0034.

• Побитовая дизъюнкция (1). Другие названия - OR
и ИЛИ. Оператор 1 выполняет булеву операцию
дизъюнкции над каждым битом целочисленных ар­
гументов. Бит результата равен единице, если еди­
нице равен хотя бы один из соответствующих битов
операндов. Например, выражение Ох 1 234 1 OxOOFF
возвращает O x 1 2FF .

• Побитовая исключающая дизъюнкция (Л) . Другие
названия - XOR и "Исключающее ИЛИ". Этот опера­
тор выполняет исключающую дизъюнкцию над каж­
дым битом целочисленных аргументов. Бит резуль­
тата равен 1 , если один из битов операндов (но не
оба) равен 1 . Например, выражение OxFFO л OxFOFO
возвращает OxOFFO.

Арифметические операторы 1 59

• Побитовое отрицание (-). Этот унарный оператор,
помещаемый перед целочисленным операндом, ин­
вертирует все биты операнда. Целочисленные зна­
чения со знаком представляются в JavaScript таким
образом, что применение оператора - эквивалент­
но изменению знака числа и вычитанию из него
единицы. Например, выражение -oxOF возвращает
OxFFFFFFFO или - 1 6 .

• Сдвиг влево (<<) . Этот оператор перемещает вле­
во все биты первого операнда на расстояние , за­
данное вторым операндом. Например, после вы­
полнения операции а < < 1 первый бит становится
вторым, второй - третьим и т.д. В позицию пер­
вого , "ушедшего" бита записывается нуль, а значе­
ние последнего , 32-го , т.е . самого старшего бита,
теряется. Важно отметить, что побитовый сдвиг
влево на одну позицию эквивалентен умножению
на 2, сдвиг на две позиции - умножению на 4 и т.д.
Например, выражение 7 « 2 возвращает 28 .

• Сдвиг вправо со знаком (>>). Этот оператор пере­
мещает все биты первого операнда вправо на рас­
стояние , заданное вторым операндом, который
должен быть целым числом от О до 3 1 . Биты, сдви­
нутые дальше правой границы, теряются. Биты сле­
ва заполняются в зависимости от знака исходного
первого операнда таким образом, чтобы сохранить
знак числа. Если исходный операнд положитель­
ный, биты слева заполняются нулями, а если от­
рицательный - единицами. Сдвиг вправо на один
бит эквивалентен делению на 2 с отбрасыванием
остатка деления, сдвиг на два бита - делению на 4
и т.д. Например, выражение 7 » 1 возвращает 3 ,
а -7 » 1 возвращает - 4 .

60 1 Гnава 3. Выражения и операторы

• Сдвиг вправо с заполнением нулями (>>>) .
Работает так же, как и оператор » , за исключени­
ем того, что биты слева при сдвиге всегда заполня­
ются нулями, независимо от знака первого операн­
да. Например, - 1 » 4 возвращает - 1 , но - 1 » > 4
возвращает OxOFFFFFFF .

Операторы сравнения
Эти операторы проверяют отношения между двумя

значениями (такие, как "равно", "больше", "является
свойством" и др.) и возвращают значение t r ue или fa lse
в зависимости от результатов проверки. Выражения срав­
нения всегда возвращают булево значение. Это часто при­
меняется в инструкциях i f, wh i l е и fo г для управление вет­
влением программы.

В JavaScript поддерживаются операторы = , == и ===.
Важно понимать различия между ними, потому что это три
совершенно разные операции: присваивание, приверка
на равенство и приверка на строгое равенство. В каждом
конкретном случае необходимо выбирать правильный опе­
ратор. Иногда их называют одним и тем же словом "равно",
однако рекомендуется даже мысленно называть их разными
словами: "присвоить", "равно" и "строго равно".

• Строгое равенство (===). Другое название - опера­
тор сравнения на иденmи'Чностъ. При проверке на ра­
венство используется строгое определение иден­
тичности, не включающее преобразования типов
операндов. Если операнды имеют разные типы,
оператор считает, что они не равны. Если оба опе­
ранда имеют примитивные типы и содержат оди­
наковые значения, они считаются равными. Кроме
того , два операнда считаются равными, если оба

Операторы сравнения 1 61

ссылаются на один и тот же объект, массив или
функцию. Если они ссылаются на разные объекты ,
они не равны, даже если эти объекты имеют иден­
тичные свойства. Аналогично два массива, состоя­
щие из одних и тех же элементов, расположенных
в одной и той же последовательности, не считают­
ся равными. Важно учитывать также, что оператор
проверки на строгое равенство считает значение
Na N не равным никакому другому значению, вклю­
чая само себя.

• Строгое неравенство (!==). Этот оператор - пря­
мая противоположность оператору проверки
на строгое равенство: он возвращает false , если два
операнда строго равны, и t г u е в противном случае.

• Равенство (==). Напоминает оператор проверки
на строгое равенство, но менее "жесткий". Получив
операнды разных типов, этот оператор пытается
привести их к одному типу и сравнить преобразо­
ванные значения. Данный оператор считает значе­
ния n u l l и u ndefi ned равными. Во многих случаях та­
кое поведение полезно, но иногда преобразование
может приводить к неожиданным сюрпризам. Все
приведенные ниже выражения возвращают t r ue .

1 == " 1 "
t rue == 1
" 1 " == t r ue
false О
[] == о

• Неравенство (!=). Этот оператор - полная проти­
воположность оператору проверки на равенство:
он возвращает f a l s e , если два значения нестрого
равны, и t r ue в противном случае.

62 1 Гnава 3. Выражения и операторы

Операторы проверки на неравенство вычисляют вза­
имное расположение двух операндов один относительно
другого в некоторой "канонической" последовательно­
сти. Операнды, не являющиеся числами или строками,
преобразуются в числа или строки. Строки интерпре­
тируются как наборы 1 6-битовых целых чисел, и при
сравнении строк фактически сравниваются их числовые
значения. Важно отметить, что процедура сравнения строк
чувствительна к регистру, причем все буквы ASCII в верхнем
регистре считаются "меньшими", чем все буквы в нижнем
регистре. Если не учитывать этого обстоятельства, мож­
но получить неожиданные результаты. Например, выра­
жение " Pa r i s " < "

а г с " возвращает t r ue , хотя буква а в ал­
фавите первая.

• Меньше (<). Этот оператор возвращает t r u e , если
первый операнд меньше второго. В противном слу­
чае возвращается false .

• Больше (>). Возвращает t r ue , если первый операнд
больше второго. В противном случае возвращается
false .

• Меньше или равно (<=). Возвращает t r ue , если пер­
вый операнд меньше второго или равен ему. В про­
тивном случае возвращается fal se .

• Больше или равно (>=). Возвращает t r ue , если пер­
вый операнд больше второго или равен ему. В про­
тивном случае возвращается false .

Два оператора сравнения представлены ключевыми
словами in и i nstanceof .

• Свойство существует (in) . Этот оператор прини­
мает два операнда. Первый операнд должен быть
строкой или иметь тип, который можно преобразо-

Операторы сравнения 1 63

вать в строку. Второй операнд должен быть объек­
том. Оператор i n возвращает t ru e , если значение
первого операнда является именем свойства право­
го операнда. Ниже приведен ряд примеров.

va r р = { х : 1 , у : 1 } ;
" х " i n р 11 => t rue

z i n р 11 => false
" toSt r i n g " i n р 11 => t r ue ,

11 так как р наследует toSt r i n g
va r а = [7 , 8 , 9] ;
" О " i n а
1 i n а

11 => t r u e , та к как а и меет элемент " О "
11 => t r ue ,
11 так как ч исло п реобразуется в строку

• Тип объекта (instanceof). Оператор i n stanceof ожи­
дает два операнда: слева - объект, а справа - класс
объекта. Данный оператор возвращает t rue , если ле­
вый операнд является экземпляром класса, указанно­
го в правом операнде. В противном случае возвраща­
ется false . В главе 8 будет показано, что вJavaScript
класс объекта определяется функцией конструкто­
ра, которая инициализирует его. Следовательно,
правый операнд оператора i n stanceof должен быть
функцией. Ниже приведен ряд примеров.

va r d = new Date () ;
d i nstanceof Dat e ; 11 => t r ue
d i nstanceof Obj ect ; 11 => t r ue
d i nsta nceof N um be г ; 11 => false
va г а = [1 , 2 , З] ;
а i nstanceof А г гау ; 11 => t r ue
а i nstanceof Obj ect ; 11 => t ru e

Лоrические выражения
Логические операторы &&, 1 1 и ! реализуют правила

булевой алгебры и часто используются совместно с опе-

64 1 Гпава 3. Выражения и операюры

раторами сравнения, позволяя объединять два выраже­
ния сравнения в одно, более сложное выражение. Важно
помнить, что в JavaScript значения n u l l , u n def i ned , О, " "

и NaN считаются такими, которые имеют булево значе­
ние false . Все друтие значения, включая объекты, строки
и массивы, имеют булево значение t rue .

Оператор && можно интерпретировать по-разному.
На простейшем уровне при использовании с булевыми
операндами этот оператор выполняет логическую опе­
рацию конъюнкции двух булевых значений (иногда эту
операцию называют логическим AND или И) . Оператор
&& принимает два операнда и возвращает значение t r ue ,
если оба операнда равны t r ue . Если хотя бы один операнд
равен false , возвращается значение false .

Часто оператор && используется совместно с двумя вы­
ражениями сравнения.

11 Возвращает t r u e , есл и х=О и у=О
х == о && у == о

Любое выражение сравнения всегда равно либо t r ue ,
либо false , поэтому оператор && работает с ними так же ,
как и с булевыми значениями, возвращая t rue или false .
Операторы сравнения имеют более высокий приоритет,
чем операторы && и 1 I , поэтому приведенное выше выра­
жение можно писать без скобок.

Однако для оператора && не обязательно, чтобы его опе­
ранды бьши булевыми значениями. Он принимает любые
значения, поскольку они могут быть преобразованы в бу­
левы. Если оба операнда преобразуются в значение t rue ,
оператор && возвращает непреобразованное значение (не
обязательно t rue) . Если же хотя бы один из операндов или
оба преобразуются в значение false , оператор возвраща­
ет false или непреобразованное значение, дающее false .
В JavaScript любое выражение (или инструкция) , ожидаю-

Лоrические выражения 1 65

щее булева значения, без проблем принимает любое зна­
чение, потому что оно автоматически преобразуется в бу­
лево. Важно также учитывать, что оператор && не всегда
возвращает значение t rue или false (см. далее) .

Таким образом, при получении значения, отличного
от булева, оператор && сначала преобразует его в булево
значение. Прежде всего преобразованию подвергается
первый операнд, расположенный слева. Если результат
преобразования равен false , значит, результат выраже­
ния равен false или непреобразованному значению неза­
висимо от значения второго операнда. Поэтому вычисле­
ние и преобразование второго операнда не выполняется.
Во многих случаях важно учитывать это правило, потому
что при вычислении второго операнда могут выполнять­
ся операции, влияющие на состояние программы (напри­
мер, могут изменяться значения переменных) .

С другой стороны, если результат преобразования ле­
вого операнда равен t rue, значит, результат выражения
зависит от правого операнда. Если его значение равно
t rue, то оператор && возвращает t rue или исходное значе­
ние, в противном случае он возвращает false . Рассмотрим
ряд примеров.

va r о = { х 1 } :
va r р = n u l l ;
о && о . х / / = > 1 : о возвращает t ru e , поэтому

// выражение воз вращает о . х
р && р . х // => n� l l : р равно false , поэтому р . х не

// вычисляется и ошибка не генери руется

Важно помнить, что оператор М �ожет не вычислять
правый операнд. В прищщенном IJl>1JIJe qримере перемен­
ная р имеет значение n u l l . Сщ:дов�тельно, чри вычисле­
нии выраженщ1 р . х должна быть сгенерирована ошибка
TypeE r ro r . Однако правый операнд не вычисляется, поэ­
тому ошибка не возникает.

66 1 Гnава 3. Выражена и операторы

Оператор 1 1 вычисляет дизъюнкцию двух операндов
(другие наз�ания этой операции - OR и ИЛИ) . Если хотя
бы один или оба операнда преобразуются в t rue , он воз­
вращает t r ue или непреобразованное значение. Если же
оба операнда преобразуются в false , он возвращает false
или непреобразованное значение.

Чаще всего оператор 1 1 применяется с булевыми опе­
рандами, однако, как и оператор &&, он может использо­
ваться с операндами других типов, и тогда его поведение
может быть довольно сложным. Сначала он вычисляет ле­
вый операнд. Если его значение преобразуется в t r ue , он
возвращает t r ue ·или непреобразованное значение (если
операнд не булев) . В противном случае вычисляется вто­
рой операнд и возвращается его значение.

Благодаря такому поведению оператор 1 1 иногда ис­
пользуется для выбора первого значения, преобразуемо­
го в t r ue . Рассмотрим приведенную ниже инструкцию.

va r max = max_wi dth l l p refe rences . max_wi d t h l 1 500 ;

Она работает следующим образом. Если определена
переменная max_wid t h , вычисление оператора прекраща­
ется и переменная max получает значение max_wid t h . В про­
тивном случае анализируется свойство max_width объекта
p refe rences . Если оно определено, то переменная max по­
лучает его значение. В противном случае переменной max
присваивается значение 500 .

Этот же прием часто используется в теле функции
для установки значений параметров по умолчанию.

f u nction сору (о , р) {
// Есл и объект р не получен ,
// и спол ьзуется пустой объе кт
p = p l l { } ;
// Тело функции

Лоrические выражения 1 67

Унарный оператор ! инвертирует булево значение
своего операнда. Например, если х равно или преобразу­
ется в t r ue , то ! х возвращает false . Если же х равно или
преобразуется в false , то выражение ! х возвращает t rue .
Оператор ! всегда возвращает t r ue или false , поэтому его
можно использовать для преобразования любого значе­
ния в булево, записав оператор дважды: ! ! х.

Поскольку ! является унарным оператором, он имеет
очень высокий приоритет. Следовательно, чтобы инвер­
тировать значение выражения p&&q , нужно применить
скобки: ! (p&&q) .

Операторы присваивания
Оператор = присваивает заданное значение перемен­

ной, свойству объекта или элементу массива.

i О // Переменной i присваи вается значение О
о . х = 1 // Свойству х объе кта о

// присваи вается значение 1

Оператор = ожидает увидеть слева операнд lva l , т.е .
переменную, свойство объекта или элемент массива.
Справа этот оператор ожидает произвольное значение
любого типа. Значением выражения присваивания слу­
жит значение правого операнда. Оператор = присваивает
его левому операнду.

Оператор присваивания обладает ассоциативностью
справа налево. Это означает, что , если в выражении есть
несколько операторов присваивания, они вычисляются
начиная с правого. Следовательно, приведенный ниже
код присваивает одно и то же значение нескольким пере­
менным.

i = j = k = О ;

Кроме обычного оператора присваивания (=) , в Java­
Script определены несколько дополнительных операто­
ров, являющихся сокращенными обозначениями двух
операций: присваивания и одной из арифметических
операций. Например, оператор += выполняет сложение
и присваивание. Оператор

total += sales_tax

эквивалентен оператору

total = total + sales_tax

Как нетрудно догадаться, оператор += работает не
только с числами, но и со строками. Получив числовые
операнды, он выполняет сложение и присваивание, а по­
лучив строковые - конкатенацию и присваивание.

Аналогично работают операторы -= , • = , &= и др.

Интерпретация строк
Как и многие другие языки программирования,

JavaScript может интерпретировать строки исходного
кода, преобразуя их в значения. Для этого нужно вызвать
в коде глобальную функцию eval () .

eval (" 3+2 ") // => 5

Динамическое вычисление строк исходного кода -
мощное средство языка, но необходимость в его практи­
ческом применении возникает очень редко. Каждый раз,
используя функцию eval () , подумайте, действительно ли
она необходима в данной ситуации (в приведенном выше
примере она явно лишняя) . Технически eval () является
функцией, но она рассматривается в данном разделе, по­
священном операторам, потому что во многом ведет себя,
как оператор.

Интерпретация строк 1 69

Функция eval () принимает один аргумент. Если пере­
дать ей любое значение, отличное от строки, она всего
лишь вернет это же значение. Если же передать стро­
ку, она попытается синтаксически проанализировать
ее и преобразовать в код JavaScгipt. Если ей не удастся
сделать это , она сгенерирует ошибку SyntaxE r r o r . При
успешном завершении синтаксического анализа функ­
ция вычисляет полученный код и возвращает значение
последнего выражения или инструкции. Если последнее
выражение или инструкция не имеет значения, функЦия
eval () возвращает значение u ndef i ned .

Важная особенность функции eval () состоит в том,
что она использует имена переменных и объектов теку­
щей среды, определенные в коде. Функция находит значе­
ния переменных и определяет новые переменные и функ­
ции так же, как и в локальном коде. Если в коде определе­
на локальная переменная х и вызвана функция eval (" х ") ,
она вернет текущее значение переменной х . Инструкция
eval (" x= 1 ") изменяет значение локальной переменной х.
Инструкция eval (" ' va r у = 3 ; ") объявляет новую локаль­
ную переменную у. Аналогично этому в инструкции вы­
зова можно даже определить новую локальную функцию.

eval (" f u nct ion f () { ret u r n х+1 ; } ") ;

Чтобы интерпретатор JavaScript эффективно обраба­
тывал функцию eval () , на нее наложено существенное
ограничение: она работает, как описано выше, только
при вызове с исходным именем eval . Как и любой функ­
ции, ей можно присвоить другое имя, но при вызове
под этим именем она будет работать Иначе. В частности,
она будет интерпретировать полученную строку как код
глобального уровня. Таким способом можно объявлять
новые глобальные переменные, но тогда невозможно бу-

70 1 Гnава 3. Выражения и операторы

дет использовать или изменять локальные переменные
вызывающей функции.

В версиях браузеров IE8 и ниже при вызове с другим
именем функция eval () не переходит на глобальный уро·
вень. Эти браузеры определяют глобальную функцию
execSc r i pt () , которая выполняет свой строковый аргу·
мент как сценарий верхнего уровня. В отличие от eval () ,
функция execSc r i pt () всегда возвращает n u l l .

Строгий режим, определенный в ECМAScript 5, на­
кладывает на поведение функции eval () дополнительные
ограничения. Когда функция eval () вызывается в строгом
режиме или передаваемая строка начинается с директи­
вы use st r i ct , функция может запрашивать или устанав­
ливать локальные переменные, но не может определять
новые переменные и функции в локальной области види­
мости. Кроме того, строгий режим делает функцию еще
более похожей на оператор тем, что в этом режиме eval
является зарезервированным словом.

Дополнительные операторы
В JavaScript определен ряд других операторов, кото·

рые не относятся к описанным выше категориям.

Усповный оnератор ? :
В JavaScript это единственный тернарный оператор

(т.е. оператор, имеющий три операнда) . В книгах его
часто обозначают как ? : , хотя в коде он используется не
в таком виде. Этот оператор имеет три операнда. Первый
указывается перед символом ? , второй - между символа­
ми ? и : , а третий - после символа : .

х > О ? х - х 11 Абсолютное значение х

Доnоnнитеnьные операторы 1 71

Операнды условного оператора могут иметь любой
тип. Первый операнд интерпретируется и вычисляется
как булев. Если значение первого операнда может быть
преобразовано в t rue , то вычисляется второй операнд,
и оператор возвращает его значение. В противном слу­
чае, если первый операнд преобразуется в false , вычис­
ляется и возвращается второй операнд. В любом случае
вычисляется только один операнд: второй или третий,
оба операнда никогда не вычисляются.

Того же результата несложно достичь с помощью ин­
струкции i f, однако оператор ? : в простых ситуациях
более удобен. Ниже приведен типичный пример его ис­
пользования. Если свойство use r . n ame существует и имеет
значение, оно используется в результирующей строке.
В противном случае в строку подставляется слово в с е м .

g reet i n g = " При вет +
(u se r . name ? u se r . name " всем ") ;

Оператор typeof
Это унарный оператор, который записывается перед

своим единственным операндом любого типа и возвраща­
ет строковое значение, содержащее тип операнда. Ниже
приведены возвращаемые значения оператора typeof при
получении значений разных типов.

х
u ndefi ned

n u l l

t r u e или false

Любое число или NaN

Любая строка

Любая функция

Любой нефункциональный объект

typeof х
" u n d e f i n ed "

" obj ect "

" boolean "

" n umbe r "

st r 1ng

" f u n ct i o n "

" ob j ect "

72 1 Глава 3. Выражения и операторы

Оператор typeof можно использовать, например, в сле­

дующем выражении.

(t ypeof va l u e == " st r i ng ")
" ". + va l u e + " ".

?
val u e

Оператор delete
Это унарный оператор, который пытается удалить ука­

занное свойство объекта или элемент массива (в С++ есть
ключевое слово delete , но оно имеет совершенно другой
смысл, чем оператор с таким же именем вJavaScript) . Как
и многие другие операторы, оператор delete чаще всего
используется не для получения возвращаемого значения,
а ради побочных эффектов, в частности, для выполнения
нужных операций. Ниже приведен ряд примеров его ис­
пользования.

va r о = { х : 1 ,
delete о . х ;
" х " i n о
delete а [2] ;
2 i n а

у : 2 } , а = [1 , 2 , З] ;
11 Удаление свойства х
11 => false : с войства не существует
11 Удаление последнего элемента
11 => false : это го элемента не существует

Оператор void
Это унарный оператор, записываемый перед един­

ственным операндом любого типа. Данный оператор
очень необычный и применяется редко. Он сначала вы­
числяет свой операнд, а затем отбрасывает его значение
и возвращает значение u n de f i n ed . Поскольку значение
операнда отбрасывается , применять оператор void имеет
смысл только ради его побочных эффектов.

Доnоnнитеnьные операторы 1 73

Оператор "запятая"
Это бинарный оператор, принимающий операнды

любого типа. Он вычисляет сначала левый операнд, а за­
тем - правый, после чего возвращает значение правого
операнда. Выражение слева всегда вычисляется, но его
значение отбрасывается. Это означает, что применять
данный оператор имеет смысл, только когда вычисле­
ние выражения слева приводит к полезным побочным
эффектам. Чаще всего он используется в цикле fo r (рас­
сматривается в главе 4) , содержащем несколько перемен­
ных цикла. В приведенном ниже примере запятые служат
для того, чтобы можно было манипулировать двумя пере­
менными в одном выражении.

fo r (va r i =O , j = 1 0 ; i < j ; i ++ , j - -) console . log (i+j) ;

74 1 Гnава 3. Выражения и операторы

ГЛАВА 4

Инструкции

В главе 3 речь шла о выражениях JavaScript. В данной
главе рассматриваются более крупные части кода - ин­
струкции, которые могут содержать выражения. В коде
JavaScript инструкции отделяются одна от другой точками
с запятыми. Инструкция - это фрагмент программы, при­
казывающий компьютеру что-либо сделать.

Выражение, имеющее побочные эффекты, также при­
казывает компьютеру что-либо сделать, например присво­
ить переменной значение или вызвать функцию. Такое
выражение может даже служить отдельной инструкцией.
В этом случае она называется инструкцией-въtражением.
Но чаще инструкции состоят из многих выражений. Еще
одна категория инструкций - инструкции-объявления, кото­
рые объявляют новые переменные или определяют но­
вые функции.

Программа JavaScript представляет собой последо­
вательность выполняемых инструкций. Интерпретатор
JavaScript выполняет их одну за другой в последователь­
ности их расположения в программе. Впрочем, последо­
вательность может быть изменена с помощью управляю­
щих инструкций, которые приводят к ветвлению програм­
мы. Управляющие инструкции делятся. на три категории.

• Условные инструкции. Это такие инструкции, как
i f и swi t c h . Они заставляют интерпретатор выпол­
нять или пропускать определенные инструкции в за­
висимости от значения управляющего выражения.

• Циклы. Например, циклы wh i l e и fo r . Они предна­
значены для повторяющегося выполнения ряда ин­
струкций.

• Переходы. Это такие инструкции, как b reak , ret u r n
и t h row . Они заставляют интерпретатор перехо­
дить из одной части программы в другую.

В табл. 4. 1 приведен синтаксис инструкций JavaScript.
Далее каждая инструкция рассматривается более подробно.

Таблица 4.1 . Инструкции JavaSaipt

b reak

case

cont inue

debugge r

default

do/while

empty

fo r

b reak [имя_метки] :

case выражение :

cont inue [метка] :

debugge r :

default :

do инструкция
while (выражение) :

fо г (инициалиэация :
проверка : инкремент)
выражение

Выход из внутреннеrо цикла, блока
swi t с h или именованноrо блока
инструкций

Метка инструкции в блоке swi tch

nереход к началу следующей
ктерации внутреннеrо или
именованного цикла

Точка прерывания отладчика

Метка инструкции, установленной
по умолчанию в блоке swi tch

Альrернативный вариант цикла

wh ile

nустой оператор; никакая операция не
выполняется

Цикл со счетчиком

f o r/in f о г (переменная i n объект) Цикл с перечислением свойств
инструкция объекта

76 1 Глава 4. Инструкции

function

i f/else

label

ret u rn

switch

th row

t ry

Окончание табл. 4. 1

function имя_ Объявление и определениефункции
функции([параметр[, . . .]])
{ тело_ функции }

i f (выражение) инструкция 1 Условный переход; ветвление
[else инструкция2] программы

имя_метки : инструкция

retu rn [выражение] ;

switch (выражение)
{ инструкции}

t h row выражение;

t ry { инструкции } [catch
{ инструкции }] [f inally
{ инструкции }]

Orмrna места в коде

Возврат значения из функции,
завершение работы функции

Выбор одного из вариантов
ветвления в зависимости от значения
выражения

Принудительная генерация
исключения

Перехват и обработка исключения

use st rict " use st rict " Напожение ограничений строгого
режима на сценарий ипи функцию

va r

whi le

va r имя [=выражение]
[" .] ;

whi l е (выражение)
инструкция

Объявление и инициапизация одной
ипи нескопьких переменных

Цикл с условием

with with (обьект) инструкция Добавлениеобъекта в начапо цепочки

Инструкция-выражение

областей видимости; в строгом
режиме эта инструкция запрещена

Простейшая разновидность инструкции - выражение
с побочными эффектами. Наиболее характерными при-

Инструкция-выражение 1 77

мерами инструкции-выражения служат выражения при­
сваивания.

g reet i n g = " П ривет ,
i • = З ;

+ name ;

Выражения с операторами инкремента (++) и декре­
мента (- -) также могут быть инструкциями присваива­
ния. Их побочный эффект состоит в изменении значения
переменной.

counte r++ ;

Оператор delete имеет важный побочный эффект -
он удаляет свойство объекта. Поэтому он чаще использу­
ется в качестве инструкции, а не как часть большего вы­
ражения.

delete о . х ;

Вызов функции - еще одна категория инструкций­
выражений.

a l e rt (g reet ing) ;
wi ndow . close () ;

Эти вызовы функций являются выражениями, но они
приводят к побочным эффектам, влияющим на браузер,
поэтому они могут использоваться в качестве инструкций.

Составные и пустые инструкции
Блок объединяет множество инструкций в одну состав­

ную инстру�сцию. Блок - это последовательность инструк­
ций, заключенная в фигурные скобки. Следовательно,
приведенный ниже код работает как одна инструкция,
и его можно использовать в любом месте программы
нaJavaScript, кроме отдельной инструкции.

78 1 Гnава 4. Инструкции

х = Math . PI :
с х = Mat h . co s (x) :
console . l og (" c os (PI) = " + сх) :

Объединение инструкций в большие блоки использу­
ется в программировании на JavaScript довольно часто.
Выражения могут содержать вложенные выражения,
точно так же инструкции могут содержать вложенные
инструкции. Формально синтаксис JavaScript обычно
разрешает создать только одну вложенную инструкцию.
Например, синтаксис цикла while определяет, что телом
цикла может быть только одна инструкция или блок ин­
струкций. Используя блоки инструкций, можно включать
много инструкций в такое место кода, в котором разреше­
на только одна инструкция.

Составные инструкции позволяют применить много
инструкций там, где синтаксис JavaScript допускает одну ин­
струкцию. Противоположный случай - пустая инструкция.
Она позволяет не включить ни одной инструкции в место,
в котором ожидается одна инструкция.

Формально пустая инструкция представляет собой
всего лишь точку с запятой. Встретив пустую инструк­
цию, интерпретатор JavaScript не выполняет никаких
действий. Пустая инструкция часто полезна для создания
цикла с пустым телом.

// И н и циал изация элементо в массива
f o r (i = О : i < a . lengt h ; a [i++ J = О) :

Инструкция-объявление
Ключевые слова va r и f u n ct io n используются

в инструкциях-обмвлениях, которые объявляют или опре­
деляют переменные и функции. Эти инструкции опреде­
ляют идентификаторы (имена переменных и функций) ,

Инструкция-объявnение 1 79

которые в результате можно использовать в других ме­
стах программы, в частности, можно присваивать им зна­
чения. Инструкции-объявления не выполняют никаких
операций над данными, но, создавая переменные и функ­
ции, определяют смысл других инструкций программы.

va r
Инструкция va r объявляет одну или несколько пере­

менных. Ниже приведен ее синтаксис.

va r имя_ 1 [=зна чение_ 1] [, . . . , имя_ п [=зна чение_ п]]

После ключевого слова va r должен находиться спи­
сок объявляемых переменных, разделенных запятыми.
Каждая переменная может иметь выражение инициали­
зации, задающее начальное значение. Ниже приведен
ряд примеров объявления переменных.

va r i : // Одна п ростая переменная
va r j = О : // Инициал и з и рованная переменная
va r р , q : // Две переменные
va r g reet i п g " П р и вет , + паmе :
va r х 2 , у = х • х :
va r х 2 ,

f f u п c t ioп (x) { ret u rn х • х } ,
у f (x) :

// Ини циализация
// В у испол ьзуется х
// Много переменных ,

// каждая в своей стро ке

Если инструкция va r находится в теле функции, она
определяет локальную переменную, область видимости
которой ограничена телом функции. Если va r находится
на верхнем уровне кода, она объявляет глобальные пере­
менные, видимые во всей пpoгpaммeJavaScript.

Если в инструкции va г не задана инициализация пере­
менной, она при объявлении получает значение u ndef i ned .

Инструкция va г может бьrгь частью цикла fo r или fo г /i n .

fo r (v a r i О : i < 1 0 ; i++) console . log (i) ;
fo r (va r i = О , j = 1 0 ; i < 1 0 ; i++ , j - -)

80 1 Гnава 4. Инструкции

con sole . log (i • j) ;
f o r (va r i i n о) console . l og (i) ;

f unction
Ключевое слово f u n c t i o n используется для определе­

ния функции. В главе 3 вы уже встречались с выражением
определения функции. Но определение можно написать
также в форме инструкции. Рассмотрим два следующих
определения функции f () .

11 Вы ражение о п ределения п рисваи вается переменной
va r f = f u nct ion (x) { ret u rn х+1 : }
11 Инструкция объя вления фун кции
f u nction f (x) { ret u r n х+ 1 : }

Инструкция объявления функции имеет следующий
синтаксис.

f u nction имя_функции ([аргумент 1
[, аргумент2

[. . . , аргумент_ п]]])
инструкции

Имя функции должно быть правильным идентификато­
ром. После него в объявлении должен идти список имен
параметров функции в скобках. Идентификаторы имен па­
раметров считаются локальными переменными. Их мож­
но использовать в теле функции для ссылки на значения
аргументов, передаваемых функции при ее вызове.

Тело функции состоит из произвольного количества
инструкций JаvаSсriрt и должно быть заключено в фигур­
ные скобки. При определении функции входящие в ее
тело инструкции не выполняются. Они только ассоции­
руются с новым объектом функции, что позволяет им вы­
полняться при ее вызове.

Ниже приведены два примера объявления функций.

Инструкци11-объ11вnение 1 81

f u nction hypotenuse (x , у) {
ret u r n Mat h . sq rt (x • x + у• у) ;

f u nction facto rial (n) { // Рекурсивная функция
i f (n <= 1) r et u r n 1 ;
ret u r n n • facto r i a l (n - 1) ;

Функция может содержать вызов самой себя, как в по­
следнем примере. в таком случае она называется рекурсивний.

Инструкция объявления функции может находиться
на верхнем уровне кода J avaScript или в теле другой

_
функ­

ции, однако в этом случае она должна находиться на верх­
нем уровне функции, в которую вложена. Это означает,
что инструкция объявления функции не должна нахо­
диться внутри инструкции i f , цикла whi le и т.д.

Инструкция объявления функции отличается от выра­
жения объявления функции тем, что содержит имя функ­
ции. В обоих случаях создается объект функции, но ин­
струкция объявляет также имя функции как переменную
и присваивает ей объект функции. Как и переменные, обЪ­
явленные с ключевым словом va г, инструкции объявления
функций неявно "поднимаются" в верхнюю часть сцена­
рия или функции, в результате чего все функции сценария
или вложенные функции считаются объявленными до на­
чала выполнения кода. Это означает, что функцию можно
вызывать перед ее объявлением .

. , ,

Условия
Условная инструкция выполняет или пропускает дру­

гие инструкции в зависимости от значения заданного вы­
ражения. Условные инструкции являются как бы точками
принятия решения о том, как дальше будет выполняться

82 1 Гnава 4. Инструкции

программа, по какой ветви пойдет процесс выполнения.
Если представить себе, что ицтерпретатор движется
по некоторому маршругу в коде, то условная инструкция
представляет собой развилку, на которой интерпретатор
может пойти по одному или другому пуrи.

if
Инструкция i f - это фундаментальная управляющая

инструкция, позволяющая выполцять другие инструкции
в зависимости от некоторого условия. Она используется
в двух формах. Ниже приведен синтаксис первой формы
инструкции i f .

i f (выражение) инструкция

В этой форме сначала вычисляется выражение. Если
его значение преобразуется в t rue , выполняется инструк­
ция. В противном случае инструкция не выполняется,
а интерпретатор переходит к инструкции, расположен­
ной непосредственно после блока i f. Рассмотрим пример
использования первой формы инструкции i f. Если имя 1
пользователя use rname равно n u l l или undefi ned , перемен­
ной присваивается определенцое имя. В противном слу­
чае имя остается прежцим.

if (use rname == n u l l) use r naщ13. '" "Д*QН Добс " ;

Не забывайте, что в�ражение обязательно должно
быть заключе�щ ц ��Qб�Й.

Во второй Фщ)�(\ i1Цстру1щtщ i f используется блок
el se, который в�цwщ.истс.и, �щ·да вhlражецие преоб.ра­
зуется в false. Ниже ц�щведец сицтаксис второй формы.

i f (выражение)
инструкция_ 1

else
инструкция_2

YCJIOBllЯ 1 83

В этой форме первая инструкция выполняется , если
выражение преобразуется в t r ue , а вторая - в противном
случае. В приведенном ниже примере запись в журнал за­
висит от того, равна ли переменная n единице.

i f (п == 1) {
сопsоlе . lоg (" Поступило одно сообщение . ") ;

e lse {
coпsole . log (· · поступило + п + сообщен ий . · ·) :

else if
Инструкция i f /else вычисляет выражение и в зави­

симости от результата выполняет одну или другую часть
кода. Но что если нужно в зависимости от нескольких
условий выполнить или не выполнить много частей кода?
Один из способов сде.тiать это состоит в применении
инструкции e l se i f . Строго говоря, e l se i f не является
инструкцией языка, это всего лишь часто используемый
оборот, образуемый несколькими инструкциями i f /else .

i f (п == 1) {
11 Выполнение бло ка

else i f (п == 2) {
11 Выполнение бло ка 2

else i f (п == 3) {
11 Выполнение бл о ка 3

else
11 Выполнение бло ка 4

Приведенный выше код - всего лишь последователь­
ность инструкций i f. Каждая следующая i f представляет

84 1 Гnава 4. Инструкции

собой инструкцию очередного блока else , являющегося
частью предыдущей инструкции i f . Запись else i f более
удобная, чем ее развернутый эквивалент, приведенный
ниже.

i f (п == 1) {
11 Выполнение бло ка 1

e l se {
i f (п == 2) {

11 Выполнение бло ка 2

else {
i f (п == З) {

11 Вы полнение бло ка 3

else
11 Вы полнение бло ка 4

switch
Инструкция swi t c h задает ветвление программы.

Этого же результата можно достичь с помощью многих
инструкций else i f , как было показано выше, но если
все ветви зависят от значения одного выражения, такое
решение будет не самым эффективным, поскольку оно
вынуждает многократно вычислять одно и то же выраже­
ние. В таком случае лучше применить инструкцию swi t c h .

После ключевого слова swi t c h должны находиться вы­
ражение в скобках и блок кода в фигурных скобках.

swi t с h (выражение) {
инструкции

Усnови11 1 85

Однако полный синтаксис инструкции swi tch более
сложный. Разные места блока кода помечены ключевыми
словами case, после каждого из которых находятся выра­
жение и двоеточие. Инструкция case напоминает обыч­
ную инструкцию с меткой: ей также передается управле­
ние. Однако инструt<ЦИJI: case помечена не меткой, а выра­
жением, которое сравнивается с выражением инструкции
swi tch . При выполнении инструкции swi tch интерпрета­
тор сначала вычисляет выражение в скобках (его часто
называют управляющим выражением) , а затем сравнивает
его значение с выражениями case с помощью операто­
ра строгого равенс1'ва ===. Если интерпретатор находит
ключевое слово case to значением, строго равным значе­
нию управляющего выражения, он передает управление
инструкции, расположенной непосредственно после дво­
еточия. Если же подходящего ключевого слова case нет,
управление передается инструкции, отмеченной ме:гкой
defaul t : . Эта метка не обязательна. Если ее нет, то проис­
ходит выход из бJtока swi tch и управление передается ин­
струкции, расположенной непосредственно после него.

Следующая инструкция swi tch эквивалентна приве­
денной выше инструкции i f /else.

switch (n) {
case 1 : 11 Если n = = = 1

// Выполнение блока 1
b reak ; // Прекратить в ыполнение

case 2 : // Есл и n = = = 2
11 Выполнение блока 2
b reak ; // Прекратить выполнение

case 3 : 11 Есл и n = = = 3
11 Выполнение блока 3
b re a k ; // Прекратить выполнение

default : // Есл и ни один case не подходит
// Выполнение блока 4
b re a k ;

86 Гnава 4. Инструкции

Обратцте внuмание на ключевое слово Ь reak по­
сле каждой инструкциц case в пр»веденном выше коде.
Инструкц»я b reak рассматр»вается далее. � данном коде
она передает управление цнструкц»», расположенной по­
сле блока swi t c h , в результате чего выполнение инструкции
swi tch немедленно завершается. Таким образом, ключевое
слово case задает только начальную точку, но не определя­
ет конечную точку выполнения предыдущего блока case.
Если в этой точке опустить инструкцию Ь геа k , выполнение
блока switch будет продолжено; интерпретатор выйдет из
блока swi tch , только когда дойдет до его конца или встре­
тит инструкцию b reak. Очевидно, это не то, что нужно
для решения задачи выбора. Поэтому каждый блок case не­
обходимо заканчивать инструкцией Ь reak или ret u r n .

Ниже приведен более реалистичный пример исполь­
зования инструкции switc h . Функция conve rt () преобра­
зует значение х в строку, причем способ преобразования
зависит от типа значения х .

function conve rt (x) {
swi t c h (typeof х) {

case ' numbe r ' : // П реобразование в
// шестнадцатеричное цел ое

ret u rn х . toSt r i ng (1 6) ;
case · s t r i n g · : / / Заключение в кавычки

ret u r n + х +
default : // Любой другой тип

ret u r n St r i ng (x) ;

В предыдущих двух примерах после ключевых слов case
находятся числовые или строковые литералы. Это наибо­
лее распространенный способ использования инструкций
swi tc h , однако спецификация ECМAScript позволяет ис­
пользовать в блоке case произвольное выражение.

Усnовия 1 87

Цикnы
Инструкция цикла заставляет интерпретатор много­

кратно выполнять один и тот же блок кода, который на­
зывается телом цикла. Каждое однократное выполнение
тела цикла называется итерацией. В JavaScгipt доступны
четыре типа циклов: whi le , do/wh i l e , fo r и fo r / i n .

while
Инструкция wh i l e определяет простейший цикл, име­

ющий следующий синтаксис.

wh i l e (выражение_цикла)
тело_цикла

Дойдя до инструкции wh i le , интерпретатор в первую
очередь вычисляет выражение в скобках. Если оно пре­
образуется в false , интерпретатор пропускает тело цикла
и продолжает выполнение программы. Если же оно пре­
образуется в t r ue , интерпретатор выполняет тело цикла
и опять вычисляет выражение цикла. Этот процесс по­
вторяется до тех пор, пока на очередной итерации выра­
жение не вернет false . Если оно никогда не вернет false ,
цикл будет выполняться бесконечно. Обратите внимание
на то , что для умышленного создания бесконечного цик­
ла достаточно записать wh i le (t r ue) .

Ниже приведен пример цикла wh i l e , который выводит
на консоль числа от О до 9 .

va r count = О ;
wh i l e (co u n t < 1 0) {

console . log (count) ;
cou nt++ ;

88 1 Гnава 4. Инструкции

Сначала переменная count (она называется счеm'Чиком

цu1СЛа) имеет значение О . На каждой итерации цикла она
увеличивается на единицу. Когда она становится равной
1 0 , выражение возвращает false , в результате чего вы­
полнение инструкции whi le заканчивается и управление
передается инструкции, расположенной непосредствен­
но после закрывающей фигурной скобки.

do/while
Цикл do/wh ile отличается от wh ile тем, что выраже­

ние цикла вычисляется не в начале, а в конце тела цикла.
Следовательно, тело цикла в любом случае выполняется
хотя бы один раз. Ниже приведен синтаксис цикла do/wh i le.

do
инструкция

whi l e (выражение_ цикла) ;

В приведенном ниже примере цикл do/wh i l e выполня­
ется до тех пор, пока счетчик i не станет равным длине
массива.

f u n ction p r i n tA r ray (a) {
va r len = a . lengt h , i О ;
i f (len = = 0)

console . log (" " П ycтoй массив ") ;
e lse {

do {
console . log (a [i]) :

} w h i l e (++i < le n) :

fo r
Инструкция fo г упрощает кодирование циклов, соот­

ветствующих определенному шаблону. В большинстве ци­
клов присугствует переменная счетчика в том или ином

Цикnы 1 89

виде. Эту переменную нужно инициµизировать перед
первой итераций, обновлять перед или после каждой ите­
рации, а также проверять ее значение перед каждой итера­
цией. В цикле такого вида 1;1ницuализация, проверка и об­
новление значения счетчика - три стандартные операции.
В синтаксисе цикла fo r каждой из этих операций посвяще­
но отдельное выражение, что делает структуру цикла до­
вольно наглядной.

fо r (инициализация ; проверка ; обновление)
инструкция

Выражения инициализации, проверки и обновления
счетчика отделяются друг от друга точками с запятыми.
Они помещены в первую строку инструкции цикла, поэто­
му хорошо видны, и можно легко понять, что они делают.
Если программист случайно забудет закодировать одну из
этих операций, ошибка будет видна с первого взгляда.

Чтобы объяснить, как работает цикл fo r , рассмотрим
эквивалентный цикл while .

инициализация ;
wh i l e (пpoвepкa)

инструкция
обновление ;

Выражение инициализации вычисляется один раз
перед началом работы цикла. Чтобы выражение инициа­
лизации было полезным, оно обязательно должно иметь
побочные эффекты (обычно таким эффектом служит
операция присваивания) . В JavaScript можно объявить
и инициализировать переменную счетчика с помощью
инструкции va r непосредственно в заголовке цикла.
Областью действия этой переменной будет тело цикла.
Выражение проверка вычисляется перед каждой итераци­
ей. От его значения зависит, будет ли выполняться тело

90 1 Гnава 4. Инструкции

цикла в очередной раз или произойдет выход из цикла.
Если значение выражения проверки можно преобразо­
вать в t rue , выполняется тело цикла. В конце тела цикла
выполняется выражение обновление. Чтобы оно было по­
лезным, оно, как и выражение инициализации, должно
иметь побочные эффекты. В общем случае таким побоч­
ным эффектом служит операция присваивания, инкре­
мента или декремента.

Приведенный ниже код выводит на консоль числа от О
до 9 с помощью цикла for . Сравните его с эквивалентным
примером на основе цикла while , приведенным выше.

fo r (va r count = О ; count < 1 0 ; count++)
console . log (count) ;

fo r/in

В инструкции fo г /in используется ключевое слово fo r ,
но на этом сходство с циклом fo г заканчивается. Этот
цикл работает совершенно иначе. Ниже приведен его
синтаксис.

f o r (переменная i n обьект)
инструкция

В качестве n'еременной можно подставить имя пере­
менной или инструкцию va г, объявляющую одну пере­
менную. Выражение обикт должно возвращать объект
определенного типа. Тело цикла, как и в других циклах,
может быть инструкцией или блоком инструкций (важно
отметить, что блок также считается инструкцией).

Обычный цикл fo г легко применить для обхода эле­
ментов массива.

fo r (v a r i = О ; i < a . lengt h ; i++)
console . log (a [i]) ; // Вывод каждо го элемента

Цикnы 1 91

Цикл fo r/i n позволяет так же легко сделать это
для свойств объекта. Фактически он перечисляет имена
свойств объекта.

fo r (va r р in о)
console . log (o [p]) ; // Вы вод каждо го свойства

Подойдя к циклу fo r/ i n , интерпретатор в первую оче­
редь вычисляет выражение объект, а затем выполняет
тело цикла по одному разу для каждого перечислимого
свойства этого объекта. Перед каждой итерацией интер­
претатор присваивает имя свойства переменной цикла.

В цикле fo r/ i n перечисляются не все свойства объек­
та, а только перечислимъtе (подробнее об этом - в главе 5) .
Встроенные методы, определенные в базовой библиоте­
ке JavaScript, не являются перечислимыми. Например,
все встроенные объекты имеют метод toSt r i n g () , но цикл
fo r / i n не считает его перечислимым свойством. Все свой­
ства и методы, определенные в коде, являются перечис­
лимыми. Однако, согласно ECМAScript 5, их можно сде­
лать неперечислимыми, как показано в главе 5 .

Спецификация ECМAScript не определяет порядок
перечисления свойств объекта в цикле fo r/i n . Однако
на практике интерпретаторы JavaScript, реализованные
в браузерах всех известных производителей, перечисляют
свойства простых объектов в том же порядке, в каком они
были определены: более старые свойства идут первыми.
Если объект был создан как объектный литерал, после­
довательность перечисления совпадает с последователь­
ностью записи свойств в литерале. Обратите внимание
на то, что данное правило применимо не ко всем объек­
там. В частности, если объект содержит индексированные
свойства массива, эти свойства перечисляются в числовой
последовательности, а не в порядке их создания.

92 1 Гnава 4. Инструкции

Переходы
Инструкция перехода вынуждает интерпретатор

JavaScript перейти в заданное место исходного кода.
Инструкция b reak задает выход из цикла или другого бло­
ка. Инструкция con t i n u e задает пропуск всей оставшейся
части тела цикла и переход к началу новой итерации.
В JavaScript можно отмечать инструкции метками, что
позволяет задать в строке b reak или cont i n ue целевую
инструкцию. Инструкция ret u r n вынуждает интерпрета­
тор выйти из текущей функции, вернуть в вызывающую
функцию вычисленное значение и перейти к следующей
инструкции в вызывающей функции. Инструкция t h row
генерирует исключение, приводящее к переходу в другое
место кода. Обычно она используется совместно с блока­
ми t ry/catc h/f i n a l ly , которые определяют способ обра­
ботки исключения.

Помеченные инструкции
Любую инструкцию можно пометить, записав перед

ней идентификатор метки и двоеточие.

идентифика тор : инструкция

Пометив инструкцию, вы даете ей имя, на которое
можно ссылаться в других местах программы. Пометить
можно любую инструкцию, но польза от этого будет толь­
ко для инструкции с телом, например для цикла или услов­
ной инструкции. Присвоив циклу имя, можно использо­
вать инструкции b reak и co n t i n u e в теле цикла для выхода
из него или перехода непосредственно в верхнюю часть
цикла и выполнения следующей итерации. В JavaScript
b reak и cont i n ue - единственные инструкции, позволяю­
щие использовать метки (подробнее об этом - в следую-

Переходы 1 93

щем разделе) . Ниже приведен пример помеченного цик­
ла while . Метка используется инструкцией cont i n ue .

mainloo p : wh i l e (token ! = n u l l) {
// Код цикла
cont i n ue main loop : // Переход к началу цикла
// Код цикла

b reak
Инструкция b reak без метки приводит к немедленному

выходу из внутреннего цикла или блока swi tch . Ее синтак­
сис очень простой.

b reak ;

Поскольку в такой форме инструкция задает действие
в теле цикла или блоке swi tch , она может находиться толь­
ко в этих двух местах.

Выцiе вы уже видели примеры использования ин­
струкции b reak в блоке switch . В циклах она используется
главным образом для преждевременного выхода, когда
по какой-либо причине продолжать выПолнение цикла
не имеет смысл:�:) Кроме того, когда цикл имеет сложное
условие завершения, часто легче выйти из него с помо­
щью инструкции b reak , чем пытаться выразить сложное
условие в единственном выражении цикла. Приведенный
ниже код ищет элемент массива, имеющИй значение
ta rget. Цикл заверniается обычным способом, если та�&
го элеменtа нет. Если же он есть, йh:струкция Ь reak зав'ер:.
шает выполненИ:е цикла.

fo r (va r i = О ; i < a . leng t h : i++) {
i f (a [i] == ta rget) b re a k ;

94 1 Г111ва 4 . Инструкции

Хотя это и редко Используется на практике, JavaScript
позволяет записать имя метки после ключевого слова
b reak (только имя, без двоеточия).

b reak имя_метки ;

ЕслИ инструкция b reak записана с меткой, она завер­
шает цикл или блок инструкции:, помеченной дан:ной
меткой. Если внеmнего блока с данной меткой нет, будет
сгенерирована ошйбка. Именованная инструкция необя­
зательно должна быть циклом или блоком swi tch . С помо­
щью инструкции b reak с меткой можно выйти из любого
помеченного блока.

continue
В отличие от инструкции b reak, которая завершает

циКл, инструкция cont i n ue передает управление следую­
щей итерации цикла. Синтаксис инструкции cont i n ue

столь же прост.

cont i n u e ;

Эту инструкцию также можно записать с именем метки.

cont i n u e имя_метки ;

� обеих формах - с меткой и без - эту инструкцию
мо�iю использовать только в теле цикла. В любом другом
месте она вызовет синтаксическую ошибку.

В приведенном ниже примере инструкция cont i n ue

используетё.si:· д;:lя прекращенИя текущей и Запуска новой
итерации, если элемент массива не является числом (в
противном случае произошла бы ошибка) .

fo r (i = О ; i < data . lengt h ; i++)
i f (isNaN (data [i])) cont i n u e ;
t o t a l += data[i] ;

ПереХОДlоl 1 95

Инструкция cont i n ue с меткой обычно используется
во вложенных циклах, когда нужно задать, в какой цикл
нужно перейти.

ret u rn
Выше уже упоминалось о том, что вызов функции яв­

ляется выражением, и, как любое другое выражение, он
имеет некоторое значение. Инструкция ret u r n , записан­
ная в теле функции, определяет значение, возвращаемое
функцией, т.е . значение выражения вызова. Ниже приве­
ден синтаксис инструкции ret u r n .

ret u r n выражение ;

Инструкция r e t u r n может находиться только в теле
функции. В любом другом месте она приведет к синтакси­
ческой ошибке. Когда интерпретатор встречает инструк­
цию ret u r n , он прекращает выполнение функции, вы­
числяет выражение и возвращает значение выражения
в вызывающую функцию. В вызывающей функции оно
становится значением выражения вызова. В приведен­
ном ниже примере переменная у получает значение 4 .

function squa re (x) { ret u rn х • х : }
у = s q u a r e (2) ;

Если в теле функции нет инструкции ret u r n , функ­
ция выполняется до конца (т.е . до последней закрываю­
щей фигурной скобки) и возвращает значение u ndefi ned .
Инструкцию ret u r n можно записать и без выражения;
встретив ее, интерпретатор немедленно прекратит вы­
полнение тела функции, а функция вернет значение
u ndef i ned . В приведенном ниже примере инструкция
retu rn завершает выполнение функции, если полученный
объект неопределенный или его не существует (значение
переменной объекта равно n u l l или u n def i ned) .

96 1 Глава 4. Инструкции

function display_obj ect (o) {
if (! о) retu rn ;
// Остал ьные и нструкции в теле фун кци и

t rhow
Исключение- это сигнал о том, что во время выполнения

кода произошла ошибка. Обычно ошибку генерирует ин­
терпретатор, однако программист может принудительно
задать генерацию ошибки в определенном месте, вставив
в код инструкцию t h row. Как и обычную ошибку, ее можно
перехватить и обработать с помощью инструкции catch .

Инструкция t h row имеет следующий синтаксис.

t h row выражение;

Выражение может возвращать значение любого типа.
Обычно задают возврат числа, служащего номером, или
кодом, ошибки. Иногда задают возврат строки, содержа­
щей сообщение об ошибке. Класс E r ro r и его подклассы
используются, когда ошибки генерируются интерпре­
татором и их можно перехватить и обработать. Объект
E r ro r имеет свойство name, указывающее на тип ошибки,
и свойство message , содержащее строку с объяснением
ошибки, которую можно отобразить для пользователя.
Ниже приведен пример функции вычисления факториа­
ла, которая при получении неправильного аргумента ге­
нерирует объект E r ro r .

function facto rial (x) {
/ / Есл и х неправил ьное , генерируется и с ключение
i f (х < О) t h row пеw Е г го г (" х должно быть положител ьным ' ') :
// Выч исление возвращаемого значения
f o r (v a r f = 1 ; х > 1 ; f • = х , х - -) ;
ret u rn f ;

Переходы 1 97

Когда возникает исключение, интерпретатор JavaScript
немедленно прекращает нормальное выполнение про­
граммы и переходит к ближайшему обработчику исклю­
чений. Обработчик находится в блоке catch инструкции
t ry/catch/fi nal ly , которая рассматривается в следующем
разделе. Если с блоком, в котором возникло исключение,
не ассоциирован ни один блок cat c h , интерпретатор ищет
обработчик во внешнем блоке кода и продвигается вверх
по уровням вложенности блоков, пока не найдет обработ­
чик. Если исключение сгенерировано в функции, в кото­
рой нет инструкции t ry /catch/f i n a l ly , то интерпретатор,
естественно, не найдет обработчик в данной функции. В
этом случае он ищет обработчик в вызывающих функци­
ях, продвигаясь вверх по стеку вызова. Если же обработ­
чика нет и выше по стеку, исключение считается ошиб­
кой. Тогда выполнение программы прекращается, и поль­
зователь получает сообщение об ошибке.

t ry/catch/finally
Инструкция t ry /catch/ f i n a l l у реализует встроенный

вJavaScript механизм обработки исключений. Блок t ry со­
держит инструкции, исключения которых обрабатывают­
ся блоком catc h . Иными словами, блок catch выполняется ,
если в блоке t ry возникло исключение. После блока catch
может находиться блок f i n a l ly , содержащий код очист­
ки , который гарантированно будет выполнен независимо
от того , что происходит в блоке t ry. Блоки catch и f i n a l l у
необязательные, но после каждого блока t ry должен быть
как минимум один из них. Все блоки t ry , catch и f i n a l l y
заключены в фигурные скобки, которые нельзя опустить,
даже если блок состоит из одной инструкции.

Приведенный ниже код иллюстрирует синтаксис и на­
значение инструкций t ry/catch/f i n a l ly .

98 \ Гnава 4 . Инструкции

t ry {
11 Обычно расположенный здесь код выполняется
11 с начала до конца , но при возни кновении
11 и с ключения е го выполнение п рекращается и
11 управление передается блоку cat c h .
11 Ис ключение может возни кнуть в инструкции или
11 в теле вызванной фун кци и ; кроме то го ,
11 и с ключение может быть принудител ьно
11 с генерировано с помощью инструкции t h row .

catch (e) {
11 Инструкции это го блока выполня ются , тол ь ко
11 если бло к t ry с генери ровал исключение .
11 Локальную переменную � можно использовать
11 для ссылки на объект E r ro r или другое
11 с генерированное значение . Блок catch может
11 обработать исключение , прои гнорировать е го
11 или повторно с генерировать си гнальное
11 и с ключение с помощью инструкци и t h row .

f iпally {
11 Этот бло к в ы полняется все гда независимо от
11 то го , что п роизошло в бло ке t ry , т . е . в
11 следующих случаях :
11 1) в ы полнение блока t ry нормал ьно завершено ;
11 2) выполнение блока t ry прервано инструкцией
11 b rea k , coпt i n u e или ret u r n ;
1 1 З) исключение обработано блоком cat c h ;
11 4) необработанное исключение передано
11 вверх по стеку вызовов .

Обратите внимание на то, что после ключевого сло­
ва catch находится идентификатор в скобках, что очень
напоминает вызов функции с одним параметром. Когда
возникает исключение, этому параметру присваивается
некоторое значение, ассоциированное с исключением,
чаще всего - объект ошибки Е г го r . В отличие от обычных
переменных, этот идентификатор имеет область видимо-

Переходы 1 99

сти, совпадающую с блоком cat c h , т.е. его можно исполь­
зовать только в блоке catch .

Ниже приведен реалистичный пример использова­
ния инструкции t ry/catch . В нем используется метод
facto r ia l () , упомянутый в предыдущем разделе и вычис­
ляющий факториал заданного числа. Для ввода данных
и вывода результата используются встроенные в JavaScript
методы p rompt () и ale rt () . Если введенное число отри­
цательное или введенную строку нельзя преобразовать
в число, в функции facto r ia l () будет сгенерировано ис­
ключение.

t ry {

}

// П р и глашение в вести ч исло
va r n = Numbe r (p rompt (" B вeдитe ч и сло " , " ")) ;
// В ы ч и сление фа кториала исходя из п редположения ,
// что введено п ра в ил ьное ч исло
va r f = facto r i a l (n) ;
// В ы вод резул ьтата
a l e rt (n + " 1 = " + f) ;

catch (ех) { // П роизошло исключение
ale rt (ex) ; // Вывод сообщения об ошибке

Друrие инструкции
В этом разделе рассматриваются инструкции wi t h ,

debugge r и u s e s t r i c t , не относящиеся к упомянутым выше
категории.

with
Интерпретатор ищет значение переменной сначала

среди переменных, определенных в текущей функции, за­
тем (если функция вложенная) - во внешней функции и на­
конец - среди глобальных переменных. Инструкция wi t h

100 Гnава 4. Инструкции

временно изменяет данную последовательность поиска
переменной. Она задает объект, свойства которого долж­
ны интерпретироваться как переменные. Ниже приведен
синтаксис инструкции wi t h .

w i t h (объект)
инструкция

Инструкция может быть (и чаще всего является) бло­
ком, который выполняется так, как будто он служит телом
вложенной функции, причем свойства объекта переданы
этой функции через список параметров.

В строгом режиме (см. следующий раздел) инструкция
wi t h запрещена. В нестрогом режиме рекомендуется счи­
тать ее устаревшей и применять как можно реже, только
если в этом есть крайняя необходимость. Интерпретатору
тяжело оптимизировать код, в котором есть инструкция
wi t h , поэтому такой код выполняется намного медленнее,
чем эквивалентный код без инструкции wi t h .

debugger
Инструкция debugge r в нормальном режиме ничего

не делает. Однако если программа отладчика доступна
и выполняется, то рабочая среда может (хотя и необя­
зательно, в зависимости от реализации рабочей среды)
выполнить некоторые действия, полезные для отладки
программы с инструкцией debugge r . Чаще всего инструк­
ция debugge r работает как точка прерывания: выполнение
кода JavaScript в этой точке приостанавливается , и про­
граммист может с помощью отладчика просмотреть зна­
чения переменных, состояние стека и другие параметры
выполнения. Предположим, что в функции f () генери­
руется исключение по той причине, что она вызывается
с неопределенным аргументом, и вы не можете понять, с
какого места вызвана функция. Без отладчика выяснить

Друrие инструкции 1 1 01

это непросто, потому что программа может быть боль­
шой и содержать много точек вызова этой функции. Для
решения данной проблемы измените функцию f () . Она
должна начинаться следующим образом.

f u n c t i o n f (o) {
if (o===undefi ned) debugge r ; // Точ ка прерывания
// Остал ьная часть тела фун кции

Теперь при вызове функции f () без аргумента или
с неопределенным аргументом выполнение будет оста­
новлено, и можно будет применить отладчик для просмо­
тра стека вызовов и поиска неправильного выражения
вызова.

Формально инструкция debug g e r была добавлена
в язык только спецификацией ECМAScript 5, однако в ре­
альности она уже давно реализована во многих браузерах.

" use st rict "
Директива ·· use st r ict " введена в ECМAScript 5 для за­

дания строгого режима выполнения кода. Директива -
это не инструкция, но достаточно близкое понятие, что­
бы можно было рассмотреть ее в разделе, посвященном
инструкциям. Во фразе " use st rict " нет ключевых слов
JavaScript, это лишь строковый литерал, который игнори­
руется более ранними интерпретаторами ECМAScript 3.
Если она помещена в начала сценария или тела функции,
она имеет специальное значение для интерпретатора
ECМAScript 5.

Назначение директивы " use st rict " состоит в том,
чтобы при выполнении данного кода переключить интер­
претатор в строгий режим. В строгом режиме использует­
ся ограниченное подмножество языка, устраняющее ряд

существенных дефектов платформы и обеспечивающее

1 02 Гnава 4. Инструкции

повышенные уровни проверки ошибок и безопасности.
Ниже рассматриваются наиболее важные различия меж­
ду строгим и нестрогим режимами.

• Инструкция wi t h в строгом режиме запрещена.

• В строгом режиме все переменные должны быть
объявлены. Если присвоить значение идентифи­
катору, не являющемуся объявленной переменной,
параметром или свойством глобального объекта, то
будет сгенерирована ошибка Refe rence E r ro r . В не­
строгом режиме в этом случае будет неявно созда­
на глобальная переменная путем добавления ново­
го свойства в глобальный объект.

• В строгом режиме в функции, вызванной как функ­
ция (а не метод объекта) , ключевое слово t h i s име­
ет значение u n d e f i n e d . В нестрогом режиме всем
функциям, вызываемым как функции, посредством
значения t h i s передается глобальный объект. Это
отличие можно использовать для выяснения того,
в каком режиме работает код.

va r hasSt r i ctMode = (f u nct ion ()
" u se s t r i ct " ;
ret u r n t h i s === undefi ned ;

} ()) ;

• В строгом режиме присвоение значения свойству,
созданному в режиме "только чтение" , а также по­
пытка создания свойства несуществующего объекта
приводят к генерированию ошибки TypeE r ro r . В не­
строгом режиме Интерпретатор никак не реагиру­
ет на неудачу. Аналогичным образом в строгом ре­
жиме попытка удалить неконфигурируемое свой­
ство или значение приводит к ошибке TypeE r ro r

Друrие инструкции 1 103

или SyntaxE r ro r . В нестрогом режиме попытка при·
водит к неудаче (но интерпретатор никак не реаги·
рует на это) , и выражение delete возвращает значе·
ние false .

• В строгом режиме код, передаваемый функции
eva l () , не может объявлять переменные или опре·
делять функции в области видимости вызывающей
функции. Переменные и функции в этом случае
находятся в новой области видимости, созданной
функцией eval () . При завершении функции eval ()
эта область видимости уничтожается.

• В строгом режиме не разрешены восьмеричные це·
лые литералы (начинающиеся с О без следующего
символа х) . Вnрочем, в нестрогом режиме восьме·
ричные литералы поддерживаются не во всех реа·
лизациях рабочей среды.

• В строгом режиме идентификаторы eval и а rguments
считаются ключевыми словами, и присваивать им
значения запрещено.

104 Гnава 4. Инструкции

ГЛАВА S

Объекты

Объект - фундаментальный тип дaнныxJavaScript. Объект
представляет собой составное значение: он состоит из
многих значений (примитивных значений и других объ­
ектов) и позволяет сохранять и извлекать эти значения
и объекты по именам. Объект содержит неупорядочен­
ную коллекцию свойств, каждое из которых содержит
имя и значение. Имя свойства является строкой, поэтому
можно считать, что объекты связывают строки со значе­
ниями. Привязка строк к значениям представляет собой
структуру данных, которая может называться по-разному:
"хеш", "хеш-таблица", "словарь" или "ассоциативный
массив". Но объект - это не только набор пар "имя-зна­
чение". Кроме собственного набора свойств, объект
JavaScript может наследовать свойства другого объекта,
который называется прототипом. Методы объекта обыч­
но являются унаследованными свойствами, а наследова­
ние прототипов - ключевая ocoбeннocтьJavaScript.

Объекты J avaScript являются динамическими. Это озна­
чает, что свойства обычно можно добавлять и удалять.
Впрочем, вJavaScript ничто не мешает имитировать стати­
ческие объекты или структуры, используемые в статически
типизированных языках программирования. Кроме того,
объекты можно использовать для представления наборов
строк (игнорируя ассоциированные с ними значения) .

Любое значение JavaScript, н е являющееся строкой,
числом или значением t rue, false , n u l l или u ndefi ned , яв­
ляется объектом.

Объекты можно изменять, манипулируя ими посред­
ством ссылок на них. Например, если переменная х ссы­
лается на объект и в коде выполняется инструкция va r
у=х ; , то данная инструкция присваивает переменной у
ссылку на этот же объект, а не на его копию. Любые изме­
нения, сделанные через переменную у , будут видны через
переменную х .

Создание объектов
Объекты можно создавать с помощью объектных ли­

тералов, ключевого слова new и функции Obj ect . c reate () .

Объектные nитераnы
Проще всего создать объект, включив объектный ли­

терал в код. Об'Ое/Сmнъtй литерал - это список разделенных
запятой пар "имя-значение", заключенный в фигурные
скобки. Имя свойства и значение отделены друг от друга
двоеточием. Имя свойства представляет собой иденти­
фикатор или строковый литерал (допустима пустая стро­
ка) . Значением свойства может быть любое выражение
JavaScript. Значение выражения (это может быть прими­
тивное или объектное значение) становится значением
свойства. Ниже приведен ряд примеров создания объек­
тов с помощью объектных литералов.

va r empty = { } ;
va r point = { х : О , у : О } ;
va r point2 = {
x : p o i nt . x ,
y : po int . y+1
} ;

11 Объект без СВОЙСТВ
// Два свойства
// Объе ктны й л итерал с более
// сложными свойствами

v a r boo k = { // Имена свойств , не я вляющиеся
// идентифи каторам и , должны быть
// заключены в двойные кавычки

// В именах-л итералах разрешены п робел ы , ключе вые

1 06 Гnава 5. Объекты

11 слова и знаки пунктуации
"main t i t le " : " JavaSc r i pt " ,
· s u b - t i t l e · : " Pocket Ref " ,
" f o r " : " a l l audiences" ,
} ;

Кnючевое сnово new
Оператор new создает и инициализирует новый объект.

После ключевого слова new должен находиться вызов функ­
ции. Используемая таким образом функция называется
конструктором и служит для инициализации создаваемого
объекта. Базовая библиотекаJаvаSсriрt содержит встроен­
ные конструкторы всех встроенных типов. Ниже приве­
ден ряд примеров создания встроенных типов.

11 Пустой объе кт ; то же , что и { }
va r о = new Obj ect () ;
11 Пустой масси в ; то же , что и []
va r а = new A r ray () ;
11 Объект даты , содержащи й те кущее время
va r d = new Date () ;
11 Объект регул я рно го выражения
va r r = new RegExp (" j s ") ;

Кроме встроенных конструкторов, программист мо­
жет создавать и применять конструкторы для инициали­
зации любых создаваемых объектов. Подробнее этот во­
прос рассматривается в главе 8.

Прототипы
Прежде чем рассмотреть третью методику создания

объектов, необходимо понять, что такое прототипы.
С каждым объектом J avaScript ассоциирован другой объект
JavaScript (иногда n u l l , но редко) . Этот второй объект на­
зывается прототипом, а первый объект наследует свойства
прототипа.

СоJДание объектов 1 1 07

Все объекты, созданные объектными литералами,
имеют один и тот же прототип, на который можно ссы­
латься как на Obj ect . p rototype . Объекты, созданные с по­
мощью ключевого слова new и конструктора, имеют в ка­
честве своего прототипа значение свойства p rototype .
Например, объект new Obj ect () имеет прототип Obj ect .
p rototype , как и объект, созданный с помощью литерала
{ } . Аналогично объект new A r ray() имеет прототип A r ray .
p rototype , а объект new . Date () - прототип Date . p rototype .

Объект Obj ect . р rototype - один из редких объектов, не
имеющих прототипа и не наследующих никаких свойств.
Другие объекты прототипов - это обычные объекты,
имеющие прототипы. Все встроенные и большинство
пользовательских конструкторов имеют прототипы, на­
следуемые от Obj ect . p rototype . Например, объект Date .
p rototype наследует свойства объекта Obj ect . p rototype ,
поэтому объект Date , созданный с помощью выражения
new Date () , наследует свойства как Date . p rototype, так и
Obj ect . p rototype . Этот связанный ряд объектов прототи­
пов называется цепач:кой прототипов.

Наследование свойств и получение прототипа объек­
та рассматриваются в следующих разделах. Связь между
прототипами и конструкторами подробнее рассматрива­
ется в главе 8. Там же вы узнаете о том, как определить
новые "классы" объектов с помощью функций конструк­
торов и путем присвоения объекта прототипа свойству
р rototype .

Функция Obj ect . с геаtе()
В ECМAScript 5 определена функция Obj ect . c reat e () ,

которая создает объект, используя первый аргумент в ка­
честве прототипа объекта. Кроме того, функция Obj ect .
c reate () принимает необязательный второй аргумент,

108 Гnава S. Объекты

описывающий свойства нового объекта. Подробнее вто­
рой аргумент рассматривается в следующих разделах.

Obj ect . c reat e () - это статическая функция, а не метод,
вызываемый через индивидуальные объекты. Ей нужно
передать прототип объекта.

11 Объе кт о1 наследует свойства х и у
va r о 1 = Obj ect . c reat e ({ x : 1 , у : 2 }) ;

Можно передать значение n u l l , но тогда новый объект
не будет иметь прототипа и не унаследует ничего, даже
базового метода toSt r i n g () , а это означает, что объект не
будет работать с оператором +.

11 Объе кт о2 не наследует н и свойств , н и методов
va r о2 = Obj ect . c reate (п u l l) ;

Если нужно создать обычный пустой объект (такой, как
возвращаемый выражением { } или new Obj ect ()) , передай­
те функции Obj ect . c reate () прототип Obj ect . p rototype.

11 Объе кт оЗ анал о гичен { } или пеw Obj ect ()
va r оЗ = Obj ect . c reat e (Obj ect . p rototype) ;

Возможность создать объект с произвольным про­
тотипом (иными словами, создать "наследник" любого
объекта) - мощное средство ECМAScript 5. В листин­
ге 5 . 1 показано, как его можно имитировать средствами
ECМAScript 3. Как видите, код довольно длинный и гро­
моздкий.

Листинr 5.1. Создание объекта, насnедующеrо прототип

11 Фун кция i п h e r it () возв ращает объект , наследующий
11 свойства п рототи па р . В нем испол ьзуется
11 в веденная в ECMASc r i pt 5 фун кция Obj ect . c reat e () ,
11 есл и она о п ределена . В противном случае
11 при меняется устаревшая методи ка

Создание объектов 1 109

f u nction i n h e r i t (p) {
i f (р == n u l l) // Объект р не должен быть равен n u l l

t h row Type E r ro r () ;
i f (Obj ect . c reat e) // Вызов Obj ect . c reate ()

ret u rn Obj ect . c reate (p) ;
va r t = t ypeof р ; // Убедимся , что р - - объе кт
if (t ' == "ob j ect " && t ! == " f u nction ")

t h row Type E r ro r () ;
f u nction f () { } ; // Оп ределение конструктора
f . p rototype = р; // Установка свойства p rototype
ret u rn new f () ; // Создание наследни ка р

Код тела функции i n h e r it () будет более понятным по­
сле ознакомления с концепцией конструкторов в главе 8.

Свойства
Наиболее важная часть объекта - его свойства.

Чтение и запись свойств
Получить значение свойства можно с помощью ква­

дратных скобок [] или оператора "точка", как описано
в главе 3. Слева от точки или квадратных скобок должно
быть выражение, значением которого является объект.
При использовании точки справа от нее должен быть иден­
тификатор, обозначающий имя свойства. При использо­
вании квадратных скобок в них должно быть выражение,
возвращающее число или строку с именем свойства.

// Чтение свойства autho r объе кта book
va r autho r = book . autho r ;
// Чтение с войства s u r name объе кта autho r
va r name = autho r . s u r n ame
// Чтение с войства " m a i n t i t l e " объе кта book
va r t i t l e = book [" m a i n t i t l e "]

1 1 0 Гnава 5 . Объекты

Для создания или записи свойства используется точка
или квадратные скобки, как и для чтения, но они должны
находиться слева от оператора присваивания.

// Создание свойства edition объекта book
book . ed i t i o n = 6 ;
// Запись свойства " m a i n t i t l e " объе кта book
book [" m a i n t i t l e "] = " ECMASc r i pt " ;

Наспедование свойств
OбъeктыJavaScript имеют набор "собственных свойств"

и, кроме того, наследуют набор свойств от своих прототи­
пов. Чтобы понять эту концепцию, рассмотрим подробнее
способы обращения к свойствам. В примерах данной гла­
вы используется функция i n he ri t () , приведенная в листин­
ге 5. 1 , которая создает объекты на основе заданных про­
тотипов.

Предположим, нужно прочитать свойство х объекта о .

Если у объекта о нет собственного свойства с именем х ,
выполняется его поиск в прототипе. Если в прототипе
нет собственного свойства с этим именем, но есть свой
прототип, выполняется поиск свойства в прототипе про­
тотипа. Этот процесс продолжается до тех пор, пока не
будет найдено свойство х или не будет достигнут прото­
тип, свойство p rototype которого имеет значение n u l l .
Таким образом, атрибут прототипа создает цепочку или
связанный список прототипов, из которых наследуются
свойства (важно отметить, что в JavaScript методы объек­
та также считаются свойствами) .

// Объе кт о наследует методы из Obj ect . p rototype
va r о = { }
о . х = 1 ; // Объе кт имеет собственное свойство х .
// Объе кт р наследует о из Obj ect . p rototype
va r р = i n h e r it (o) ;
р . у = 2 ; // р имеет собственное свойство у

Свойства 1 1 1 1

// q наследует свойства из р , о и Obj ect . p rototype
va r q = i n h e r it (p) ;
q . z = 3 ; // q имеет собственное свойство z
// Метод toSt r i n g унаследо ван от Obj ect . p rototype
va r s = q . toSt r i ng () ;
// х и у унаследованы от о и р
q . x + q . y // => 3

Предположим, нужно присвоить некоторое значение
свойству х объекта о. Если о имеет собственное (не унасле­
дованное от прототипа) свойство с именем х, то операция
присвоения всего лишь изменяет значение существующе­
го свойства. В противном случае оператор присваивания
создает еще одно свойство объекта о с именем х. Если
объект о перед этим унаследовал свойство х, это унасле­
дованное свойство теперь будет скрыто вновь созданным
собственным свойством с этим же именем.

Удаnение свойств
Оператор delete (см. главу 3) удаляет свойство из объек­

та. Единственный операнд этого оператора должен быть
выражением доступа к свойству. Как ни странно, оператор
delete удаляет не значение свойства, а само свойство.

delete book . au t h o r ; // Теперь свойства autho r нет
d e lete book [" ma i n t i t le "] ;

Оператор delete удаляет только собственные свой­
ства, но не унаследованные. Чтобы удалить унаследован­
ное свойство, его нужно удалить из объекта прототипа,
в котором оно определено. Эта операция затронет все
объекты, наследующие (непосредственно или косвенно)
данный прототип.

1 1 2 Гnава 5. Об'ьекты

Проверка свойств
Объект JavaScript можно предстамять себе, как набор

свойств. Часто полезно проверить, что содержится в этом
наборе, есть ли в объекте свойство с заданным именем и ка­
кое это свойство. Это можно сделать с помощью оператора
in и методов hasOwn P rope rty () и p rope rtyisEnume raЫe () . Еще
один способ проверки состоит в чтении свойств и анализе
полученного результата.

Оператор i n принимает строку с именем свойства
с левой стороны и объект с правой стороны. Если объект
имеет собственное или унаследованное свойство с этим
именем, оператор i n возвращает t rue .

va г о = { х : 1 }
х i n о ; // t rue : объект о имеет свойство х

" у " i n о ; // false : объе кт о н е имеет свойства у
" toSt r i n g " i n о ; // t rue : унаследованное свойство

Принадлежащий объекту метод hasOwn P rope rty () про­
веряет, имеет ли объект собственное свойство с задан­
ным именем. Если свойство с этим именем унаследован­
ное, метод возвращает false .

va г о = { х : 1 }
o . hasOwnProperty (" x ") ; // t rue : есть свойство х
o . hasOwn P roperty (" y ") ; // false : есть свойство у
// Свойство toSt r i n g унаследованное
o . hasOwnProperty (" toSt r i ng ") ; // false

Если собственное свойство с заданным именем су­
ществует, то с помощью метода p rope rtyisEn ume raЫe ()
можно проверить, ямяется ли оно перечислимым. Этот
метод возвращает t rue , если указанное свойство собствен­
ное и атрибут en ume raЫe равен t rue . Некоторые встро­
енные свойства неперечислимые. Свойства, созданные
обычным кодом JavaScript , являются перечислимыми,

Свойства 1 1 1 3

если только не задано обратное с помощью методов,
определенных в спецификации ECМAScript 5 (они рас­
сматриваются в следующих разделах) .

va r о = i n h e r it ({ у : 2 }) ;
о . х = 1 ;
// Объе кт о имеет переч исл и мое свойство х
o . p rope rtyisEnume raЫe (" x ") ; // t rue
// С войство у унаследованное
о . p ropertyisEn ume raЫe (" y ") ; // false
// false : метод toSt r i n g неперечислимый
Obj ect . p rototype . р горе rtyisEnume гаЫ е (" toSt r i ng ") ;

Вместо использования оператора i n обычно можно
выполнить следующее: сначала прочитать значение свой­
ства, а затем с помощью оператора ! == проверить, опре­
делено ли оно.

va г о = { х : 1 }
о . х 1 == u ndefi ned ;
о . у ! == u ndefi ned ;
o . toSt r i n g ' == u ndefi ned ;

// t r ue
// false
// t rue

Однако есть одна операция, которую можно вьtnол­
нить только с помощью оператора i n , но не с помощью
приведенного выше способа (чтение и проверка опера­
тором ! ==) . Оператор i n отличает несуществующие свой­
ства от свойств, которые существуют, но имеют значение
u ndefined . Рассмотрим следующий код.

va r о = { х : u n def i ned }
о . х ! == u ndefi ned // false : с войство не о пределено
о . у 1 == u ndefi ned // false : с войство не существует
'' х " in о // t rue : с войство существует
у in о // false : с войство не существует

delete о . х ; // Удаление свойства х
х i n о // false : теперь свойства х нет

1 1 4 Гnава 5 . Объекты

Перечисnение свойств
Часто нужно работать не с индивидуальными свой­

ствами, а пройти по всем свойствам объекта автоматиче­
ски или получить их список, Обычно это делают с помо­
щью цикла fo r/i n , но спецификация ECМAScript 5 предо­
ставляет два удобных альтернативных способа.

Цикл fo r/i n рассмотрен в главе 4. Тело цикла fo r/i n
выполняется по одному разу для каждого перечислимого
свойства заданного объекта, причем имя свойства при­
сваивается переменной цикла. Унаследованные объектом
встроенные методы не являются перечислимыми. Но
перечислимыми, кроме прочего, являются свойства, до­
бавленные кодом в объект (если в этом же коде не указано
обратное) . Рассмотрим пример, в котором объект о имеет
три перечислимых собственных свойства.

va r о = { х : 1 , у : 2 , z : З } ;
// Унаследованные методы не перечислимые
o . p ropertyisEп ume raЫe (" toSt r i ng ") // = > false
// Вывод в цикле значений х , у и z
fo r (p i п о) coпsole . l og (p) ;

В большинстве библиотек новые методы и свой­
ства добавляются в Obj ect . р rototype таким образом, что
они наследуются и доступны для всех объектов. Однако
до ECМAScript 5 не бь�ло способа сделать добавляемые ме­
тоды неперечислимыми, поэтому все они перечислялись
в цикле f o r / i n . Для решения этой проблемы можно филь­
тровать свойства, возвращаемые объектом цикла fo r/in .
Ниже приведены два способа фильтрации.

fo r (p i n о) {
i f (! o . hasOwn P rope rty (p)) // П ропуск свойства

fo r (p iп о) {

Свойства 1 1 1 5

i f (typeof о [р] === " function ") // П ропуск метода
cont i n u e ;

Ниже приведена функция, которая с помощью цик­
ла fo r/i n копирует перечислимые свойства из объекта р

в объект о и возвращает ссылку на о. Если о и р имеют
свойство с одним и тем же именем, свойство в объек­
те о переопределяется.

function extend (o , р) {
f о г (р го р i n р) { // Все свойства объе кта р

о [р го р] = р [р го р] ; // Добавление свойства в о

retu rn о ;

Кроме цикла fo r / i n , спецификация ECМAScript 5
определяет две функции, которые перечисляют имена
свойств. Первая, Obj ect . keys () , возвращает массив имен
собственных перечислимых свойств объекта. Вторая,
Obj ect . getOwn P rope rtyName s () , в отличие от Obj ect . keys () ,
возвращает имена всех собственных свойств заданного
объекта, а не только перечислимых.

Сериаnизация свойств и объектов
Сериализшция- это процесс преобразования состояния

объекта в строку, из которой позже можно будет восстано­
вить состояние. Спецификация ECМAScript 5 определяет
две функции, предназначенные для сериализации и вос­
становления объектов JavaScript: JSON . st r i n g i fy () и JSON .
ра rse () . В этих функциях используется формат обмена
даннымиJSОN QavaScript Object Notation - зaпиcь объек­
тов JavaScript, htt p : //j son . o rg) . Синтаксис JSON напоми­
нает синтаксис литералов объектов и мaccивoвJavaScript.

о = { х : 1 , y : [fa l se , n u l l , " "] } ;

1 16 1 Гnава S. Объекты

s = JSON . st ri n g i f y (o) ; // ' {" x " : 1 , " y " : [fa lse , n u l l , " "] } '
р = JSON . pa rse (s) ; // Создание глубо кой коп и и

Реализация этих функций в ECМAScript 5 довольно
близка к реализации в ECМAScript 3, доступной по адре­
су htt p : //j son . o rg/j son2 . j s . Для практических целей их
можно считать одинаковыми. Можете свободно исполь­
зовать функции ECМAScript 5 в ECМAScript 3 с модулем
j son2 . j s .

Обратите внимание на то, что синтаксис JSON явля­
ется подмножеством синтаксиса JavaScript и поэтому не
представляет всех значений JavaScript. Поддерживаются
и могут быть восстановлены объекты, массивы, строки,
конечные числа и значения t r ue , false и n u l l .

Методы чтения и записи свойств
Свойство содержит имя и значение. В ECМAScript 5

(и в последних реализациях ECМAScript 3 во всех основ­
ных браузерах, кроме IE} значение может быть заменено
одним или двумя методами, которые называются метод
чrпения свойства (getter) и метод записи свойства (setter) .
Свойства, определенные методами чтения и записи (они
называются свойствами с методами доступа) , необходимо
отличать от простых свойств, которые являются всего
лишь значениями, напоминающими поля объектов в дру­
гих объектно-ориентированных языках.

Когда программа читает значение свойства с метода­
ми доступа, интерпретатор запускает метод чтения (не
передавая ему аргументы) . Возвращаемое значение ме­
тода чтения становится значением выражения доступа
к свойству. Когда программа записывает значение в свой­
ство с методами доступа, интерпретатор вызывает метод
записи и передает ему значение, возвращаемое с правой

Свойства 1 1 17

стороны оператора присваивания. Возвращаемое значе­
ние метода записи игнорируется.

Определить свойство с методами доступа несложно
с помощью объектного литерала.

va r о = {

} ;

// Обычное свойство (без методов доступа)
data_p rop : val ue ,
// Пара методов доступа
get accesso r_p rop () { / • Возврат значен и я • / } ,
set accesso r_p r o p (v a l u e) { / • Запись значе н и я • / }

Свойства с методами доступа определяются как одна
или две функции, имена которых совпадают с именем
свойства, но ключевое слово function заменено словом
get или set . Обратите внимание на то, что для отделения
имени свойства от метода доступа к свойству двоеточие
не используется. После тела функции необходима запятая
для отделения одного метода от другого. В качестве при­
мера рассмотрим следующий объект, представляющий
точку в двухмерном декартовом пространстве. Обычные
свойства (без методов доступа) содержат координаты х

и у точки, а свойства с методами доступа - эквивалентные
полярные координаты точки.

va г р = {
х : 1 . О ,
у : 1 . О ,
// Не забудьте добавить запятые
get r () {

ret u rп Math . sq rt (t h i s . x • t h i s . x+th i s . y • t h i s . y) ;
} ,
set r (пewval u e) {

va r oldva l u e = Math . sq rt (t h i s . x • t h i s . x+
t h i s . y • t h i s у) ;

va r rat io = newval ue/oldval ue ;
t h is . x • = rat i o ;

1 1 8 Глава 5 . Объекты

t h i s . у • = rat i o ;
} ,
get theta () { re t u r n Mat h . atan 2 (t h i s . y , t h is . x) ; }

} ;

Ниже приведен еще один пример полезного объекта,
имеющего свойство с методами доступа.

11 Генерация увел и ч и вающихся серийных номеров
va r s e r i a l n u m = {

11 Это свойство содержит следующий номер
11 Символ $ обозначает закрытое свойство
$ n : О ,
11 Увел ичение и воз врат значения
get next () { ret u rn t h i s . $n++ ; } ,

11 Установка нового значения ,
11 если оно бол ьше те куще го
set next (n) {

i f (n >= t h is . $n) t h is . $n = n ;
e lse t h row

серийный номер может тол ько увел и ч и ваться " ;
}

} ;

Атрибуты свойств
Кроме имен и значений, у свойств есть атрибуты, кото­

рые определяют, являются ли свойства записываемыми,
перечислимыми и конфигурируемыми. В ECМAScript 3
способа установки или изменения атрибутов не суще­
ствует, все свойства являются записываемыми, перечис­
лимыми и конфигурируемыми. Рассмотрим функции
ECМAScript 5, позволяющие читать и устанавливать атри­
буты свойств.

В данном разделе мы будем считать методы доступа
к свойствам атрибутами свойств. Согласно этой логике
можно даже сказать, что значение свойства без методов
доступа является атрибутом, и мы так и будем полагать

Свойства 1 1 1 9

в данном разделе. Следовательно, мы будем считать, что
у свойства без методов доступа есть имя и четыре атри­
бута: значение, доступностъ для записи, перечислимостъ и кон­
фигуриfrУемостЪ- Свойства с методами доступа не имеют
атрибутов "значение" и "доступность для записи". Их до­
ступность для записи определяется наличием или отсут­
ствием метода записи свойства. Следовательно, у свойств
с методами доступа есть четыре атрибута: метод чтения,
метод записи, перечислимостъ и конфигуриfrУемостЪ-

В определенных в ECМAScript 5 методах чтения и уста­
новки атрибутов свойств используется объект, который
называется дескриптором свойства и представляет набор
из четырех атрибутов. Объект дескриптора свойства
имеет четыре свойства с теми же именами, что и назва­
ния атрибутов представляемого свойства. Таким образом,
объект дескриптора свойства без методов доступа имеет
свойства val ue (значение) , w r i tаЫе (доступный для запи­
си) , en ume raЫe (перечислимый) и conf ig u raЫe (конфи­
гурируемый) . Дескриптор свойства с методами доступа
имеет свойства get и set вместо val ue и w r i tаЫе . Свойства
w ritaЫe , en ume raЫe и con f i g u raЫe являются булевыми
значениями, а свойства get и set - функциями.

Чтобы получить дескриптор именованного свой­
ства заданного объекта, нужно вызвать метод Obj ect .
getOwn P rope rtyDesc r i pto r () .

// Возв ращает { va l u e : 1 , w r i taЫe : t ru e ,
// e n ume raЫe : t ru e , con f i g u raЫe t rue }
Obj ect . get0wn P rope rtyDesc r i pto r ({ x : 1 } , " х ") ;
// Чтение свойства theta объекта р
// Возв ращает { get : / • f u n c • / , set : u ndefi ned ,
// e n umeraЫe : t r ue , configu raЫe : t r ue }
Obj ect . getOwn P rope rtyDesc r i pto r (р , " " t heta ") ;

Как видно из имени, метод Obj ect . getOwnP rope rtyDesc rip­
to r () работает только с собственными свойствами. Для

120 Гnава 5. Объекты

чтения атрибугов унаследованных свойств нужно явно
пройти по цепочке прототипов, как описано в следующем

разделе.
Для установки атрибугов свойства или создания свой­

ства с заданными атрибугами вызовите метод Obj ect .
defineP rope rty () и передайте ему изменяемый объект,
имя изменяемого или создаваемого свойства и объект де­
скриптора свойства.

va r о = { } ; // Сначала свойств нет
// Добавление свойства
Obj ect . defineP rope rty (o , " х " , { va l ue 1 ,

w r i tаЫе : t r ue ,
e n umeraЫe : false ,
con f i g u raЫe : t r ue }) ;

// Проверка свойства
о . х ; // => 1
Obj ect . keys (o) // => []

// Изменение атрибута доступности дл я записи
Obj ect . def ineP rope rty (o , " х " , { w r itaЫe : false }) ;

// Поп�тка изменить значение свойства
о . х = 2 ; // Ошибка TypeE r ro r в стро гом режиме
о . х / / => 1

// Свойство все еще конфи гури руемое , поэтому
// можно изменить е го значение
Obj ect . defineP rope rty (o , " х " , { val u e : 2 }) ;
о . х // => 2

// Сделаем свойство х свойством с методами доступа
Obj ect . defineP rope rty (o , " х " , {

get : f u nction () { ret u r n О ; }
}) ;
о . х // => о

Свойства 1 121

Дескриптор свойства, передаваемый методу ОЬ j ect .
defineP горе rty () , необязательно должен содержать все че­
тыре атрибута. При создании свойства опущенные атри­
буты принимают значения false или u ndefined . При моди­
фикации существующего свойства опущенные атрибуты
просто остаются прежними. Не забывайте, что данный
метод изменяет или создает только собственные свой­
ства, а с унаследованными свойствами он не работает.

С помощью метода Obj ect . defineP rope rty () можно соз­
дать или изменить более одного свойства за раз. Первый
аргумент содержит модифицируемый объект, а второй ар­
гумент - объект, отображающий имена создаваемых и мо­
дифицируемых свойств на дескрипторы этих свойств.

va r р = Obj ect . d e f i n e P rope rties ({ } , {
х : { value : 1 , w r itaЫe : t ru e ,

e numeraЫe : t rue , configu raЫe : t rue } ,
у : { value : 1 , w r i taЫe : t rue ,

e numeraЫe : t ru e , configu raЫe : t rue } ,
r : {

}
}) :

get : f u nction () {
ret u rn Math . sq rt (t h i s . x • t h i s . x+t h i s . y • t h i s . y)

} ,
e numeraЫe : t rue ,
configu raЫe : t rue

В предыдущих разделах рассматривался метод Obj ect .
c reat e () , определенный в ECМAScript 5. Первым аргу­
ментом этого метода должен быть объект прототипа соз­
даваемого объекта. Данный метод принимает также вто­
рой аргумент, совпадающий с вторым аргументом метода
Obj ect . d e f i neP rope rties () . Если передать набор дескрип­
торов свойств методу Obj ect . c reat e () , они будут примене­
ны для добавления свойств в создаваемый объект.

1 22 Гnава 5. Объекты

Атрибуты объекта
У каждого объекта есть атрибугы прототипа, класса

и расширяемости.

p rototype
Атрибуг прототипа задает объект, от которого данный

объект наследует свойства. Этот атрибуг устанавливается
при создании объекта. Как было указано в предыдущих
разделах, объекты, созданные с помощью объектных ли­
тералов, получают в качестве прототипа объект Obj ect .
p rototype. Объекты, созданные с помощью ключевого
слова new, в качестве прототипа имеют свойство p rototype
функции конструктора. Объекты, созданные с помощью
метода Obj ect . c reat e () , получают в качестве прототипа
первый аргумент (он может быть равен n u l l) .

В реализациях ECМAScript 5 можно прочитать про­
тотип любого объекта, передав данный объект методу
Obj ect . getP rototypeOf () . В ECМAScript 3 нет эквивалент­
ного метода, но иногда можно получить прототип объек­
та о с помощью выражения о . const ructo r . р rototype.

Чтобы выяснить, является ли один объект прототи­
пом (или элементом цепочки прототипов) другого объек­
та, используйте метод i s P rototypeOf () . Например, чтобы
узнать, является ли р прототипом объекта о, запишите вы­
ражение р . i sP rototypeOf (о) , как в следующем коде.

va г р = { х : 1 } ; // Оп ределение п рототипа
va r о = Obj ect . c reate (p) ; // Применение п рототипа
p . i s P rototypeOf (o) // = > t rue : о наследует о т р
Obj ect . p rototype . i s P rototypeOf (p) // => t rue для

//любо го объе кта

Обратите внимание на то, что метод i sP rototypeOf ()
играет роль, аналогичную оператору i n stanceof .

Атрибуты объекта 1 123

class
Атрибут класса содержит строку с информацией

о типе объекта. Ни в ECМAScript 5, ни в ECМAScript 3
нельзя устанавливать этот атрибут. Кроме того, суще­
ствуют только непрямые способы его чтения. Метод
toSt r i n g () , унаследованный от Obj ect . p rototype, возвра­
щает строку в следуюшем формате:

[obj ect класс]

Следовательно, для получения класса объекта можно
вызвать метод toSt r i n g () через этот объект, отсчитать
восемь символов с начала и вернуть фрагмент строки.
Главная сложность состоит в том, что многие объекты
наследуют от других объектов более полезные вариан­
ты метода toSt r i n g () , поэтому вызвать нужный вариант
toSt ri ng () можно только косвенно, с помощью метода
Funct ion . ca l l () , как показано в главе 7. В листинге 5.2
определена функция, возвращающая класс переданного
ей объекта.

Листинr 5.2. Функция, возвращающая кпасс объекта

function c lasso f (o) {
i f (о === n u l l) ret u r n " N u l l " ;
i f (о === u n d e f i ned) retu r n " Undefined " ;
ret u rn Obj ect . p rototype . toSt r i n g . ca l l (o) . s l i c e (8 , - 1) ;

extensiЫe
Атрибут exte n s iЫe (расширяемый) задает, можно

ли добавить в объект новое свойство. Спецификация
ECМAScript 5 определяет функции чтения и установки
атрибута расширяемости объекта. Чтобы выяснить, яв­
ляется ли объект расширяемым, передайте его методу

1 24 1 Гnава S. Объекты

Obj ect . i sExtens i Ы e () . Чтобы сделать объект нерасширяе­
мым, передайте его объекту Obj ect . p reven t Extension s () .

Метод Obj ect . seal () , как и Obj ect . p reven t Extensions () ,
делает объект нерасширяемым, но, кроме того, делает
все собственные свойства объекта неконфигурируемы­
ми. Следовательно, после его вызова в объект нельзя до­
бавить новые свойства, а существующие свойства нельзя
удалить или сконфигурировать. Чтобы выяснить, вызы­
вался ли метод seal () , необходимо вызвать метод Obj ect .
isSealed () .

Метод Obj ect . f reeze () блокирует объекты еще жест­
че. Он не только делает объект нерасширяемым, а его
свойства неконфигурируемыми, но и переключает все
собственные свойства, не имеющие методов доступа,
в режим "только чтение". Это называется замораживанием
объекта. Чтобы выяснить, заморожен ли объект, нужно
вызвать метод Obj ect . i s F rozen () .

Важно помнить, что результаты вызова методов ОЬ j ect .
p reve n tExtens ion s () , Obj ect . seal () и Obj ect . f reeze () необ­
ратимые. Кроме того, эти методы влияют только на пере­
даваемый им объект, а на прототипы объекта они никак
не влияют. И наконец, все эти три метода возвращают пе­
реданный им объект в новом состоянии, благодаря чему
вызовы этих методов можно делать вложенными.

о = Obj ect . sea l (Obj ect . c reat e (Obj ect . f reez e (
{ х : 1 }) , { у : { value : 2 , w r i taЫe : t ru e } })) ;

Атрибуты объекта 1 125

ГЛАВА 6

Массивы

Массив - это упорядоченный набор значений. Каждое зна­
чение называется элементом, и каждый элемент имеет обо­
значенную числом позицию в наборе, которая называется
индексом. Иными словами, индекс - это номер элемента
в массиве. Массивы JavaScript нетипизированнъ�е. Элемент
массива может иметь любой тип, а разные элементы одного
массива мoryr иметь разные типы. Элемент массива может
быть даже объектом или другим массивом. Это позволяет
создавать сложные структуры данных, такие как массивы
объектов и многомерные массивы. В JavaScript нумерация
элементов массивов начинается с нуля, и применяются
32-битовые целочисленные индексы. Следовательно, пер­
вый элемент имеет номер О, а максимальный номер эле­
мента равен 232-2 = 4294967294. Максимальное количество
элементов составляет 4294967295. MaccивыjavaScript дина­
МU"Wские. при необходимости они мoryr уменьшаться или
увеличиваться. Поэтому нет необходимости объявлять
фиксированный размер массива при его создании, а при
изменении размера нет необходимости повторно выде­
лять память для массива. Каждый массив имеет свойство
lengt h (длина) , возвращающее текущее количество элемен­
тов массива.

Maccивы javaScript - это объекты специального вида.
Индексы напоминают целочисленные имена свойств, но
на самом деле это нечто большее. Различные реализации
интерпретаторов по-разному оптимизируют массивы, по-

этому обычно обращение к индексированным элементам
массива выполняется намного быстрее, чем к свойствам
объекта.

Объекты массивов наследуют свойства от объекта
A r ray . p rototype, который определяет мощный набор ме­
тодов манипулирования массивами. Большинство этих
методов обобщеннъtе (generic) . Это означает, что они пра­
вильно работают не только с истинными массивами, но
и с "массивоподобными" объектами, такими как строки
символов.

Создание массива
Легче всего создать массив с помощью литерала масси­

ва, который представляет собой заключенный в квадрат­
ные скобки список элементов, разделенных запятыми.

va r empty = [] ; // Пустой масси в
va r p r imes = [2 , 3 , 5 , 7] ; // Массив и з ч етырех ч исел
va r misc = [{ } , t r ue , " а "] ; // Элементы разных типов

Значения в литерале массива необязательно должны
быть константами, но могут быть произвольными выра­
жениями.

var base = 1 024 ;
va r tаЫе = [base , base+ 1 , base+2 , Ьаsе+З] ;

Литерал массива может содержать объектные литера­
лы и литералы других массивов.

va r Ь = [[1 , { х : 1 , у : 2 }] , [2 , { х : З , у : 4 }]] ;

Если в литерале массива две запятые находятся ря­
дом без значения между ними, то элемент считается про­
пущенным, а массив называется разреженным (sparse) .
Пропущенный элемент имеет значение undefi ned .

128 rnaвa 6. Массивы

va r count = [1 , , З] ;
cou n t [1]
va r u ndefs = [, ,] ;

11 Элемент 1 не оп ределен
11 => u ndefi ned
11 Элементов нет , но дл ина = 2

Синтаксис литералов массивов разрешает добавить
завершающую запятую. Это означает, что , например, мас­
сив [1 , 2 ,] состоит из двух, а не из трех элементов.

Еще один способ создания массива состоит в примене­
нии конструктора A r ray() , который можно вызвать одним
из трех способов.

• Вызов без аргументов.

va r а = new A r ray() ;

• Создается пустой массив без элементов, эквива­
лентный литералу [] .

• Вызов с одним целочисленным аргументом, задаю­
щим длину (количество элементов) массива.

va r а = new A r ray(1 0) ;

Будет создан массив заданной длины. Эту форму
конструктора можно использовать для создания
массива, когда заранее известно максимальное ко­
личество элементов. Обратите внимание на то, что
в создаваемый массив при этом не записываются
никакие значения, а индексные свойства массива
" О " , " 1 " и последующие не определены.

• Явное задание нескольких элементов массива.

va r а = n ew A r ray (5 , 4, 3 , 2 , 1 , " testing ") ;

В этой форме аргументы конструктора становятся
элементами нового массива.

Важно отметить, что применить литерал массива поч­
ти всегда проще, чем конструктор A r ray() .

Создание массива 1 29

Элементы и дnина массива
Обращение к элементу массива выполняется с помо­

щью оператора [] . Ссылка на массив должна находить­
ся слева от квадратных скобок. В квадратных скобках
необходимо поместить произвольное выражение, воз­
вращающее (или преобразуемое в) целочисленное поло­
жительное значение. Этот синтаксис используется как
для чтения, так и для записи значения элемента. Ниже
приведены примеры правильных выражений.

va r а = [" wo r l d "] ; 11 Создание масси ва
va r value = а [О] ; 11 Чтение элемента о
а [1] = З . 1 4 ; 11 Запись элемента
i = 2 ;
a [i] = З ; 11 Зап и с ь элемента 2
a [i + 1) = " П ри вет ! " ; 11 Запись элемента з
a [a [i)] = а [О] ; 11 Чтение и запись элементов

Не забывайте, что массивы - это объекты специаль­
ного вида. Квадратные скобки, используемые для обраще­
ния к элементу массива, работают так же, как квадратные
скобки, применяемые для обращения к свойству объекта.
Интерпретатор преобразует заданные вами числовые ин­
дексы массива в строки. Например, индекс 1 становится
строкой " 1 " . После этого строка используется в качестве
имени свойства.

У каждого массива есть свойство length (длина) , при­
чем наличие именно этого свойства отличает массивы
от обычных объектов. Свойство length содержит количе­
ство элементов массива (предполагается, что опущенных
элементов нет) . Значение свойства length всегда на еди­
ницу больше, чем самый высокий индекс массива.

[) . l ength // => О : мас с и в не имеет элементов
[· а · , · Ь · , · с ·] . l e ngth // => З : наибол ьший индекс равен 2

130 Гnава 6. Массивы

Каждый массив является объектом, поэтому можно со­
здать в нем свойство с произвольным именем. Фактически
от обычных объектов массивы отличаются только тем, что
при использовании имени свойства, являющегося цело­
численным значением, меньшим 232-1 (или преобразуемо­
го в него) , массив автоматически создает и заполняет свой­
ство length .

Свойство le ngth доступно для записи. Если присвоить
ему положительное целое значение n , меньшее текущего
значения, то все элементы массива с индексом, большим
или равным n, будут удалены.

а= [1 , 2 , З , 4 , 5] ;
a . l eпgth З ;
a . leпgth = О ;
a . l eпgth = 5 ;

// Создание массива и з 5 элементов
// Теперь масс и в такой : [1 , 2 , 3]
// Удаление всех элементо в
// Опять 5 элементо в , но пустых

Можно также присвоить свойству length значение,
большее, чем текущая длина массива. В результате будут
созданы пустые элементы, и массив станет разреженным.

Перечисление элементов массива
Пройти по элементам массива проще всего с помощью

цикла fo r (см. главу 4) .

va r keys = Obj ect . keys (o) ; // Масси в и м е н свойств
va r values = [] // Мас с и в для значений свойств
fo r (va r i = О; i < keys . leпgt h ; i++) {
va r key = keys [i] ; // Получение имен свойств
values [i] = o [key] ; // Сохранение значений
}

Во вложенных циклах и в других ситуациях, в которых
важна производительность, рекомендуется извлечь длину
массива один раз перед началом цикла, чтобы не извле­
кать ее на каждой итерации.

Перечисление зnементов массива 1 131

fo r (va r i = О , len keys . lengt h ; i < len ; i++) {
// Тело ци кла

В ECМAScript 5 определен ряд новых методов, предна­
значенных для прохода по элементам массива путем пере­
дачи методу каждого элемента в порядке возрастания ин­
дексов функции, определяемой в коде. Наиболее общий
из этих методов - fo r Each () .

va r data = [1 , 2 , 3 , 4 , 5] ;
va r sumOfSq u a res = О ;
data . fo rEach (f u nct ion (x)

sumOfSq ua res + = х • х ;
}) ;

sumOfSq u a res

// Создание массива
// Переменная -накоп ител ь
{
// Накопление квадратов

11 =>55 : 1 +4+9+ 1 6+25

Мноrомерные массивы
Спецификация JavaScript не поддерживает истинные

многомерные массивы, но их можно успешно имитиро­
вать, создавая массивы массивов. Для обращения к значе­
нию в массиве массива нужно всего лишь написать опе­
ратор [] два раза подряд. Предположим, что mat r ix - это
массив массивов, содержащий числа. Для обращения к от­
дельному числу в этом массиве нужно написать mat r ix [x]
[у] . В приведенном ниже примере двухмерный массив
использ�ется для создания таблицы умножения, хорошо
знакомой вам еще со школы.

// Создание мно гомерного масси в а
va r tаЫе = n e w A r ray (1 0) ; / / 1 0 строк табл и цы
fo r (va r i = О ; i < taЫe . leng t h ; i++)

taЫe [i] = new A r ray(1 0) ; // 1 0 стол бцов

// Ини циал изация массива
fo r (va r row = О ; r ow < taЫe . l e ngt h ; row++) {

132 Гnава 6. Массивы

fo r (col = О : col < taЫe [row] . lengt h ; col++) {
taЫ e [row] [col] = row • col ;

// Извлечение значения 5 • 7 из табл и цы умножения
va r p roduct = tаЫе[5] [7] ; // => 3 5

Методы массивов
С объектами массивов ассоциированы многие полез­

ные методы, рассматриваемые в данном разделе.

j oin ()
Метод A r ray . j o i n () преобразует все элементы масси­

ва в строки, выполняет их конкатенацию и возвращает
полученную таким образом строку. Можно задать строку­
разделитель, отделяющую элементы массива один от дру­
гого в результирующей строке. Если разделитель не за­
дан, в этом качестве используется запятая.

va r а = [1 , 2 , 3] ;
а . j oi n () ; // = > " 1 , 2 , 3 "
а . j oi n (" ") ; // => " 1 2 3 "
a . j oi n (" ' ') ; // => " 1 23 "
va r Ь = new А г гау (5) ;
b . j o i n (' - ') // => · _ _ _ _ .

Метод St r i n g . s p l it () выполняет обратную операцию:
он создает массив, разбив полученную строку на части.

reve rse()
Метод А г гау . reve rse () изменяет последовательность

элементов массива на обратную и возвращает "реверси­
рованный" массив. Эта операция выполняется "на месте" ,
т.е. метод не создает еще один массив с переупорядочен-

Методы массивов 1 133

ными элементами, а переупорядочивает элементы в суще­
ствующем массиве.

va г а = [1 , 2 , 3] ;
а . reve rse () . j o i n () // = > " 3 , 2 , 1 "
а [О] // = > 3 : те перь [3 , 2 , 1]

so rt ()
Метод A r ray . s o rt () сортирует элементы массива "на

месте" и возвращает отсортированный массив. Когда
so rt () вызван без аргументов, он сортирует элементы
массива в алфавитном порядке.

va r а = new А г гау(" вишня " , " я бл о ко " , · · а пельси н ") ;
а . so rt () ;
va r s = a . j o i n (" , ") ;

// s == " а п ел ьсин , в ишня , яблоко ' '

Если в массиве есть неопределенные элементы, то
в процессе сортировки они перемещаются в конец мас­
сива.

Чтобы отсортировать массив в порядке, отличном
от алфавитного, необходимо передать. методу so rt ()
функцию сравнения, которая определяет, какой элемент
массива из двух полученных должен быть первым в отсор­
тированной последовательности. Если первый аргумент
должен находиться в отсортированной последовательно­
сти раньше второго, функция сравнения возвращает от­
рицательное число. Если же первый аргумент должен на­
ходиться после второго, она возвращает положительное
число. Если два аргумента эквивалентны (т.е. их последо­
вательность не играет роли) , функция сравнения должна
возвращать нуль. Например, чтобы отсортировать эле­
менты массива не в алфавитном, а в числовом порядке ,
можно написать следующий код.

va г а = [33 , 4, 1 1 1 1 , 222] ;

1 34 Гnава 6. Массивы

a . s o r t () : // В алфав итном порядке : 1 1 1 1 , 222 , 33 , 4
a . so rt (f u пctioп (a , b) {

// В ч исловом порядке : 4 , 33 , 222 , 1 1 1 1
ret u rп а - Ь : // Возв ращает <О , О , о г >О

}) :
a . so rt (f u пctioп (a , b) { ret u rп Ь - а }) :

// Обратны й ч исловой порядок

Выполнить сортировку в алфавитном порядке, не чув­
ствительном к регистру, можно следующим образом.

а = [· жук · , · Л иса · , · кот ·]
а . so rt () :

// Алфавитный порядо к , чувствител ьный к ре гистру :
[· Л иса · , · жук · , кот ·]

a . so rt (f u пctioп (s , t) {
va r а = s . t o Lowe rCase () :
va r Ь = t . t o lowe rCase () :
i f (а < Ь) ret u rп - 1 :
i f (а > Ь) ret u rп 1 ;
ret u г п О ;

}) ; // = > [· жук · , · кот · , · Л иса ·]

concat ()
Метод A r ray . concat () создает и возвращает новый мас­

сив, содержащий элементы исходного массива и значения
аргументов, заданные при вызове. Если каждый из аргу­
ментов является массивом, то элементами результирующе­
го массива становятся элементы массивов аргументов, а не
массивы аргументов. Метод concat () не изменяет массив,
через который он вызван. Ниже приведен ряд примеров.

va г а = [1 , 2 , 3] ;
a . concat (4 , 5) // Вернул [1 , 2 , 3 , 4 , 5]
a . concat ([4 , 5]) ; // Вернул [1 , 2 , 3 , 4 , 5]
a . concat ([4 , 5] , [6 , 7]) // Вернул [1 , 2 , 3 , 4 , 5 , 6 , 7]
a . concat (4 , [5 , [6 , 7]]) // Вернул [1 , 2 , 3 , 4 , 5 , [6 , 7]]

Методы массивов 1 135

slice ()
Метод А г гау . s lice () возвращает фрагмент указанного

массива. Два аргумента задают начало и конец возвращае­
мого фрагмента. Результирующий массив содержит все
элементы, начиная с заданного первым аргументом, вплоть
до элемента, заданного вторым аргументом, но не включая
его. Если передается только один аргумент, метод возвра­
щает все элементы, начиная с указанной позиции до конца
массива. Если один из аргументов отрицательный, он задает
отсчет элементов массива, начиная с конца. Не забывайте,
что метод slice () не изменяет массив, через который он вы­
зван, а возвращает в качестве результата новый массив.

vа г а = [1 , 2 , 3 , 4 , 5] ;
a . s l ice (0 , 3) ; // Возв ращает [1 , 2 , 3]
a . s l i ce (3) ; // Возв ращает [4 , 5]
a . s l ice (1 , - 1) ; // Возв ращает [2 , 3 , 4]
a . s l i c e (- 3 , - 2) ; // Возв ращает [3]

splice ()
Метод А г гау . s p l i ce () вставляет новый или удаляет

существующий элемент массива. В отличие от s l ice ()
и concat () , этот метод изменяет массив, через который
он вызван.

Первый аргумент s p l i ce () задает позицию в массиве,
в которой нужно начать вставку или удаление элементов.
Второй аргумент задает количество элементов, удаляе­
мых из массива. Если второй аргумент опущен, удаляются
все элементы, начиная с указанного первым аргументом,
вплоть до конца массива. Метод возвращает массив уда­
ленных элементов или пустой мас:сив (если ни один эле­
мент не удален) .

vа г а = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8] ;
a . s p l i ce (4) ; // Возв ращает [5 . 6 . 7 , 8] ;

1 36 Гnава 6. Массивы

// масси в а теперь равен [1 , 2 , 3 , 4]
a . s p l i c e (1 , 2) ; // Возв ращает [2 , 3] ;

// масси в а теперь равен [1 , 4]
a . s p l i ce (1 , 1) ; // Возвращает [4] ;

// масси в а теперь равен [1]

Первые два аргумента задают, какие элементы мас­
сива должны быть удалены. После них могут находиться
дополнительные аргументы, которые задают элементы,
вставляемые в массив, начиная с позиции, заданной пер­
вым аргументом.

va r а = [1 , 2 , 3 , 4 , 5] ;
a . s p l i c e (2 , 0 , ' а ' , ' Ь ') ;

/ / = > [] ; массив а равен [1 , 2 , · а ' , · Ь ' , 3 , 4 , 5]
a . s p l ice (2 , 2 , 3) ;

// => [' а ' , ' Ь '] ; масси в а равен [1 , 2 , 3 , 3 , 4 , 5]

Обратите внимание на то, что в отличие от concat ()
метод spl ice () вставляет массивы, а не их элементы.

push () и рор()
Методы push () и рор () позволяют работать с массива­

ми таким образом, как будто это стеки. Метод pus h () при­
соединяет один или несколько элементов к концу стека
(т.е. массива) и возвращает новую длину массива. Метод
рор () выполняет обратную операцию: удаляет последний
элемент стека, уменьшает длину массива и возвращает
удаленное значение. Оба метода изменяют массив "на ме­
сте", не создавая измененную копию массива.

va r stack = [] ;
stack . pus h (1 , 2) ;
stac k . рор () ;
stac k . p ush (3) ;
stac k . рор () :
stac k . p us h ([4 , 5]) ;
stac k . pop ()
stac k . рор () ;

// stack :
// stac k :
// stac k :
// stac k :
/ / stac k :
// stac k :
// stac k :
// stack :

[]
[1 , 2] , вернул 2
[1] , вернул 2
[1 , 3] , вернул 2
[1] , вернул 3
[1 , [4 , 5]] , вернул 2
[1] , вернул [4 , 5]
[] , ве рнул 1

Методы массивов 1 137

u nshift () и shift ()
Методы u n s h i ft () и s h i ft () работают аналогично ме­

тодам pus h () и р о р () , но вставляют и удаляют элементы
в начале, а не в конце массива. Метод u n s h i ft () вставляет
элемент или элементы в начало массива и сдвигает суще­
ствующие элементы в сторону более высоких индексов,
чтобы освободить место для вставляемых элементов.
Этот метод возвращает длину нового массива. Метод
s h i ft () удаляет первый элемент массива, сдвигает остав­
шиеся элементы влево и возвращает удаленный элемент.
Ниже приведен ряд примеров.

va r а = [] ;
а . u n s h i ft (1) ;
a . u n s h i ft (22) ;
а . s h i ft () ;
a . u n s h i f t (3 , [4 , 5]) ;
а . s h i ft () ;
а . s h i ft () ;
а . s h i ft () ;

toSt ring ()

11 а : []
/ / а : [1] , вернул
// а : [22 , 1] , вернул 2
// а : [1] , вернул 22
// а : [3 , [4 , 5] , 1] , вернул 3
// а : [[4 , 5] , 1] , вернул 3
/ / а : [1] , вернул [4 , 5]
/ / а : [] , вернул 1

Массив, как и любой объект JavaScript, имеет метод
toSt r i ng () . В случае массива этот метод преобразует
каждый элемент в строку (вызвав метод toSt r i n g () этого
элемента) и возвращает список полученных строк, раз­
деленных запятыми. Обратите внимание на то, что ре­
зультирующая строка не содержит квадратных скобок
или каких-либо иных разделителей значений элементов,
кроме запятых.

[1 , 2 , 3] . t oSt r i ng () // => ' 1 , 2 , 3 '
[" а " , " Ь " , " c "] . toSt r i ng () // => ' а , ь , с ·
[1 , [2 , ' с ']] toSt r i ng () // => · 1 , 2 , с ·

1 38 Гnава 6. Массивы

Методы массивов ECMAScript 5
В ECМAScript 5 определены девять новых методов

массивов для прохода по элементам, преобразования,
фильтрации, проверки, свертки и поиска. Большинство
из этих методов принимают функцию в качестве перво­
го аргумента и вызывают ее по одному разу для каждого
(или по крайней мере для некоторых) элемента массива.
В большинстве случаев предоставляемая вами функция
вызывается с тремя аргументами: значением элемента
массива, индексом элемента массива и самим массивом.
Иногда необходим только первый аргумент, а второй
и третий игнорируются. Большинство методов массивов,
принимающих функцию через первый аргумент, прини­
мают также необязательный второй аргумент. Если он за­
дан, функция вызывается таким образом, будто она явля­
ется методом второго аргумента. Таким образом, второй
передаваемый вами аргумент становится в теле функции
значением t h i s . Возвращаемое значение функции может
по-разному использоваться разными методами. Ни один
из методов массивов, определенных в ECМAScript 5, не
изменяет массив, через который он вызван, но функция,
передаваемая методу массива может изменять массив.

fo rEach ()
Метод fo rEac h () проходит по массиву, вызывая задан-

ную функцию для каждого элемента.

va r data = [1 , 2 , 3 , 4 , 5) : // Сумма элементо в
va r sum = О : // Нач инаем с нуля
dat a . f o r Eac h (f u nction (val u e) { s um += val ue : }) :
s um // => 1 5

// Увел ичение каждо го элемента
data . f o r Each (f u nction (v , i , а) { a [i] v + 1 : }) ;
data // => [2 , 3 , 4 , 5 , 6)

Методы массивов ECMAScript S 1 139

map()
Метод ma p () передает заданной функции каждый эле­

мент массива, через который он вызван, и возвращает но­
вый массив, содержащий значения, возвращенные функ­
цией. Следовательно, этот метод преобразует каждый
элемент массива согласно заданному алгоритму.

а = [1 , 2 , З] ;
Ь = a . map (f unction (x) { ret u r n х • х : }) ;
// Теперь масси в Ь равен [1 , 4 , 9)

filte r()
Метод f i l te r () возвращает массив, содержащий под­

множество элементов исходного массива, через который
он вызван. Передаваемая методу функция должна воз­
вращать значение t rue или false . Если функция, получив
элемент, возвращает t rue или значение, преобразуемое
в t r ue , то данный элемент включается в результирующее
подмножество и добавляется в массив, который станет
возвращаемым значением метода.

а = [5 , 4 , З , 2 , 1] ;
а . f i l t e r (f unction (x) { ret u r n х < 3 }) ;

/ / => [2 ' 1]
а . f i l t e r (f u nction (x , i) { ret u r n i%2==0 }) ;

/ / => [5 ' 3 ' 1]

eve ry() и some ()
Методы eve ry () и some () являются предикатами массива:

они применяют заданную функцию к элементам масси­
ва и возвращают значение t rue или false.

Метод eve ry () напоминает квантор всеобщности V :
он возвращает t r ue , если заданная функция вернула t rue
для каждого элемента массива.

140 Гnава 6. Массивы

а = [1 , 2 , 3 , 4 , 5] ;
// Все л и значения мен ьше 1 0?
а . eve r y (function (x) { ret u r n х < 1 0 ; }) //=>t rue
// Все л и значения четные?
a . eve r y (f u nction (x) { retu r n х%2 === О ; }) //=>false

Метод some () напоминает квантор существования 3 : он
возвращает t rue , если существует хотя бы один элемент
массива, для которого заданная функция возвращает t rue .
Значение false будет возвращено, если заданная функция
вернет false для всех элементов массива.

а = [1 , 2 , 3 , 4 , 5] ;
// Есть л и четное ч исло?
а . some (function (x) { ret u rn х%2===0 ; }) //=> t r ue
// Есть л и элемент , не я вл я ющийся ч и слом?
a . some (isNaN) //=> false

Обратите внимание на то, что методы eve ry () и some ()
прекращают проход по элементам массива, как только
становится известным возвращаемое значение. При вы­
зове через пустой массив метод eve ry () возвращает значе­
н'Ие t rue , а метод some () - значение fal se .

reduce () и reduceRight ()
Методы red uce () и red uceRig ht () объединяют элемен­

ты массива с помощью заданной функции, возвращая
единственное значение. В функциональном програм­
мировании это часто используемая операция, которую
обычно называют сверткой (reduction) .

va r а = [1 , 2 , 3 , 4 , 5]
// Вычисление суммы элементо в
а . reduce (function (x , y) { ret u r n х+у } , О) ; // = > 1 5
// В ы ч и сление произведения элементов
а . reduce (function (x , y) { ret u r n х•у } , 1) ; // => 1 20
// Поиск наибол ьшего элемента
а . reduce (f u nction (x , у) { ret u r n (х> у) ? х : у ; }) ;

11 =>5

Методы массивов ECMAScript S 1 141

Метод reduce () принимает два аргумента. Первый -
функция, выполняющая операцию свертки. Задача сверт­
ки состоит в том, чтобы каким-либо образом объединить,
или свернугь, два значения в одно. Эта функция должна
возвращать свернугое значение. В приведенных выше
примерах функция выполняет свертку двух значений пу­
тем их суммирования, умножения или выбора большего
значения. Второй (необязательный) аргумент - началь­
ное значение, передаваемое функции.

Функции свертки, используемые в методе red u c e () ,
существенно отличаются от функций, используемых
в f o r Eac h () и map () . Значение элемента, индекс и массив
сдвигаются и передаются через второй, третий и чет­
вертый аргументы. В первом аргументе хранится акку­
мулированный результат процесса свертки. При первом
вызове функции первый аргумент содержит начальное
значение, передаваемое через второй аргумент методу
red u c e () . При следующих вызовах первый аргумент по­
лучает значения, получаемые при предыдущих вызовах.
Например, при суммировании функция свертки в первый
раз вызывается с аргументами О и 1 . Функция суммирует
их и возвращает 1 . При втором вызове функция получает
1 и 2 и возвращает 3 и т.д. И наконец, окончательная сум­
ма, равная 1 5 , возвращается методом red uce () .

Обратите внимание на то, что в третьем примере, по­
священном поиску наибольшего элемента, передается
только один аргумент, а начальное значение не задается.
Если вызвать метод red u ce () без начального значения,
он применит в этом качестве первый элемент массива.
Следовательно, при первом вызове первым и вторым
аргументами будут считаться первый и второй элементы
массива. Заметьте , что в примерах с суммированием и пе­
ремножением также можно было опустить начальные
значения.

142 Глава 6. Массивы

Метод red uceRight () работает так же , как red uce () , за
исключением того , что обработка массива в нем выпол­
няется наоборот: начинается с верхних индексов и про­
двигается к нижним.

indexOf () и lastindexOf ()
Методы i n dexOf () и last i n dexOf () ищут в массиве эле­

мент с заданным значением и возвращают индекс его
первого вхождения или - 1 , если он не найден. Метод
i ndexOf () проходит массив от начала до конца, а метод
lasti ndexO f () - от конца к началу.

а = [О , 1 , 2 , 1 , О] ;
a . i ndex0f (1) // => 1 : а [1] равен 1
a . last index0f (1) // => 3 : а [З] равен
a . i n dexOf (З) // => - 1 : такого элемента нет

В отличие от других методов, описанных в данном раз­
деле, методы i ndexOf () и lastindexOf () не принимают функ­
цию в качестве аргумента. В них первый аргумент - искомое
значение, а второй не обязателен: он задает индекс, начиная
с которого следует выполнить поиск. Если он опущен, метод
i ndexOf () начинает поиск с начала, а lastindexOf () - с конца.
Второй аргумент может быть отрицательным; в этом случае
поиск начинается с другого конца, т.е. в первом случае -
с конца, а во втором - с начала.

Тип A r ray
Выше уже упоминалось о том, что массивы являются

объектами специального вида. Когда в программе встре­
чается неизвестный объект (будем надеяться , не летаю­
щий) , иногда бывает полезно выяснить, массив ли это.
В реализациях ECМAScript 5 это можно сделать с помо­
щью функции A r ray . isA r ray () .

Тип Array 1 143

A r ray . i sAr ray([]) // => t r ue
A r ray . i sA r ray ({ }) // => false

В любой другой версии JavaScгipt это можно сделать
с помощью следующей функции.

va r isA r ray = A r ray . i sAr ray 1 1 f u пctioп (o)
va r t s = Obj ect . p rototype . toSt r i п g ;
ret u r п typeof о === "ob j ect " &&

ts . ca l l (o) === " [obj ect A r ray] " ;
} ;

"Массивоподобные" объекты
Как указывалось выше, массивы - это объекты, имею­

щие специальное свойство length (длина) . "Массиво­
подобный" объект - это обычный объект JavaScгipt со
свойством l e n g t h и числовыми свойствами, играющи­
ми роль индексов. На практике массивоподобные объ­
екты встречаются редко (за исключением строк, кото­
рые тоже считаются массивоподобными объектами) .
Вызывать через них методы массивов нельзя. Кроме
того, со свойством l e n g t h не ассоциировано специаль­
ное поведение. В данном случае это обычное свойство.
Тем не менее по элементам .массивоподобного объекта
можно проходить в цикле так же, как по элементам на­
стоящего массива.

// Создание массивоподобного объекта
va r а = { " О " : " а " , " 1 " : " Ь " , " 2 " : " с " , l eпgth : З } ;
// П роход по этому объе кту как по массиву
va r total = о ·
fo r (va r i = О ; i < a . leпgt h ; i++)

total += a [i] ;

Многие алгоритмы массивов работают с массивопо­
добными объектами так же, как и с настоящими масси­
вами, а многие методы массивов JavaScгipt специально

144 rnaвa 6. Массивы

определены как обобщенные (generic) и могут правильно
обрабатывать массивоподобные объекты. Эти объекты
не наследуют прототип A r ray . p rototype , поэтому вызы­
вать методы массивов непосредственно через них нельзя.
Однако их можно вызвать с помощью метода ca l l () сле­
дующим образом (подробнее об этом - в главе 7) .

// Создание массивоподобно го объе кта
va r а = {" О " : " а " , " 1 " : " Ь " , " 2 " : " с " , length : З } ;
A r ray . p rototype . j o i n . ca l l (a , · · + ") // => · · а+Ь+с "
A r ray . p rototype . map . ca l l (a , f u nct ion (x) {

ret u rn x . toUppe rCase () ;
}) // => ["А " , " В " , " С "]
// Создание настояще го массива на основе
// массивоподобно го объе кта
A r ray . p rototype . s l i ce . ca l l (a , 0) // => [" а " , " Ь " , " с "]

Некоторые браузеры определяют обобщенные функ­
ции массивов непосредственно через конструктор A r ray.
В браузерах, поддерживающих эти функции, можно ис­
пользовать код следующего вида.

va r а = { " О " : " а " , " 1 " : " Ь " , " 2 " : " с " , length : З } ;
A r ray . j o i n (a , " + ")
A r ray . s l i ce (a , 0)
A r ray . map (a ,

f u nction (x) { ret u rn х . toUppe rCase () ; })

Строки в качестве массивов
В реализациях ECМAScript 5 (и многих браузерах

предыдущих версий, включая IE8 , выпущенных до появ­
ления ECМAScript 5) строки ведут себя так же, как мас­
сивы в режиме "только чтение". Это означает, что для об­
ращения к отдельным символам строки можно использо­
вать не только метод cha rAt () , но и квадратные скобки.

Строки в качестве массивов 1 145

va r s = test ;
s . cha rAt (O) // => t
s [1] // => " е "

Тем н е менее оператор typeof возвращает значение
st r i n g , а метод A r ray . i sA r ray() , получивший имя строки,
возвращает значение false . Поэтому отличить строку
от массива несложно.

Главное преимущество индексации строк состоит
всего лишь в том, что можно заменить вызовы метода
cha rAt () выражениями с квадратными скобками, которые
делают программу более компактной и легкой для визу­
ального восприятия. Кроме того, тот факт, что строки
ведут себя, как массивы, означает, что к ним можно при­
менять обобщенные методы массивов, как в следующем
примере. Приведенный ниже код удаляет из строки глас­
ные буквы.

s = " J ava"
A r ray . p rototype . j o i n . ca l l (s , ") // => " J а v а
A r ray . p rototype . f i l te r . cal l (s , f u nction (x) {

ret u r n x . match (/ [-aeiou] /) ; // Поиск со гласных букв
}) . j o i n (" ") // => " Jv "

146 Гяава 6 . Массивы

ГЛАВА 7

Функции

Функция - это блок кода JavaScript, который определен
один раз, но может выполняться многократно. В разных
языках программирования функции могут называться по­
разному: методами, процедурами или подпрограммами.
Функции JavaScript параметризованнъ�е - они могут содер­
жать список параметров, значения которых определяют­
ся в вызывающей функции. В теле вызываемой функции
параметры работают так же, как и локальные перемен­
ные. Выражение вызова функции предоставляет ей аргу­
ментъ� - значения, передаваемые в тело функции посред­
ством параметров. Функция может возвращать значение ,
вычисленное в ее теле. В вызывающей функции возвра­
щаемое значение присваивается выражению вызова.
Кроме списка параметров, при вызове функция получает
еще одно значение - контекст въ�зова. В теле функции кон­
текстом вызова служит значение ключевого слова t h i s .

Если функция включена в объект, она считается его
свойством и называется методом этого объекта. Когда
функция вызывается через некоторый объект, данный
объект становится контекстом вызова, т.е . значением
ключевого слова t h i s . Функции, предназначенные для
инициализации создаваемых объектов , называются
конструкторами. Вы уже встречались с конструкторами
в главе 5; более подробно этот вопрос рассматривается
в rлаве 8 .

В JavaScript функции являются объектами, поэтому
ими можно манипулировать, как объектами в программе.
Например, можно присвоить функцию переменной или
передать ее другой функции. Как и для любого объекта,
для функции можно создавать свойства и даже вызывать
через нее методы.

Определение функции можно вложить в определение
другой функции, причем количество уровней вложенно­
сти ничем не ограничено. Важно отметить, что тело вло­
женной функции входит в область видимости локальных
переменных, определенных во внешней функции.

Определение функции
Функция определяется с помощью ключевого слова

f u n c t i o n , которое может находиться в выражении опре­
деления функции (см. главу 3) или в инструкции объявле­
ния функции (см. главу 4) . В любой из этих форм опреде­
ление функции начинается с ключевого слова f u n c t i o n ,
после которого расположены следующие компоненты.

• Идентификатор, задающий имя функции. Имя яв­
ляется обязательной частью в объявлении функ­
ции. Оно используется как имя переменной, кото­
рой присваивается объект определяемой функции
во время ее создания. В выражении определения
функции имя не обязательно. Если оно есть, то оно
ссылается на объект функции только в ее же теле.

• Список идентификаторов, заключенный в скобки.
Идентификаторы разделены запятыми. Их количе­
ство может быть произвольным, включая нулевое.
Включенные в список идентификаторы являются
именами параметров функции. В теле функции они
ведут себя так же, как и локальные переменные.

148 Гnава 7. Функции

• Последовательность инструкций JаvаSсriрt, заклю­
ченная в фигурные скобки. Это тело функции, вы­
полняемое при ее вызове.

В листинге 7.1 приведен ряд примеров определения
функции в обеих формах: как выражения и как инструк­

ции. Обратите внимание на то, что функция, определен­
ная как выражение, полезна только как часть большего
выражения (такого, как выражение присваивания или вы­
зова) , которое что-либо делает с определяемой функцией.

Листинг 7 .1 . Примеры оnредеnения функций JavaScript

11 В ы вод имени и значения каждо го свойства
11 объе кта о ; возвращаемое значение не о п ределено
f uпction p r i n t p rops (o) {

fo r (va r р i n о)
console . log (p + + о [р] + " \n ") ;

11 Вычисление рассто я н и я между
11 точ ками (х 1 , у 1) и (х2 , у2)
f u nction distance (x 1 , у 1 , х2 , у2)

va г dx = х2 - х 1 ;
va г dy = у2 - у 1 ;
ret u rn Math . sq rt (d x • d x + d y • dy) ;

11 Рекурсивная функция (т . е . фун кци я , которая
11 вызы вает саму себя) , в ы ч исл я ющая фа кториал .
11 Напомним , что факто риал х 1 равен произ ведению
11 всех положител ьных цел ых ч исел , которые мен ьше
11 или равны х
f u nction fact o r i a l (x) {

i f (х <= 1) ret u rn 1 ;
ret u rn х • facto rial (x - 1) ;

11 Это в ы ражение оп ределяет фун кци ю , которая

Оnредеnение функции 1 149

11 возводит в квадрат свой а р гумент . Объект
11 фун кции я в но п рисвоен переменной s q u a r e
va r sq ua re = f u nction (x) { ret u r n х • х : }

11 Вы ражение фун кции может содержать имя , кото рое ,
11 однако , может быть полезным
11 тол ько дл я ее рекурси и
va r f = f u n c t i o n fact (x) {

} :

i f (х < = 1) ret u r n 1 :
e lse ret u r n x • fact (x - 1) ;

11 Выражение фун кции можно испол ьзовать
11 в качестве ар гумента дру гой фун кции
data . so rt (f u n c t i o n (a , Ь) { ret u r n а - Ь ; }) :

11 В ыражение фун кци и , выз ванное
11 немедленно после о п ределения
va r tensqua red = (f u nct ion (x) { ret u r n х • х : } (1 0)) ;

Обратите внимание на то , что при определении функ­

ции как выражения указывать имя функции необяза­
тельно. Выражение определения функции не объявляет
переменную. В противоположность этому инструкция
объявления функции фактически объявляет переменную
и присваивает ей объект функции. Имя необходимо функ­

ции, чтобы на нее можно было ссылаться. В частности, ре­
курсивная функция вычисления факториала (см. пример
выше) благодаря имени может ссылаться на саму себя.
Если выражение определения функции содержит имя, то
в локальную область видимости функции будет включено
связывание этого имени с объектом функции. В резуль­
тате имя функции становится локальной переменной,
видимой в теле этой же функции. В большинстве случа­
ев функция, определенная как выражение , не нуждается
в имени. Его отсутствие делает запись более компактной.
Выражение определения функции подходит для случаев,

1 SO Гnава 7. Функции

когда функция используется только один раз, как в двух
последних примерах, приведенных выше.

Как демонстрировалось в главе 4, инструкция объяв­
ления функции неявно "поднимается" в самую верхнюю
часть сценария или внешней функции, поэтому функцию
можно вызывать до того, как она объявлена. Однако это
не верно для функции, определенной как выражение:
чтобы вызвать такую функцию, нужно иметь возмож­
ность сослаться на нее, но нельзя сослаться на функцию,
определенную как выражение, пока она не присвоена пе­
ременной. Поэтому функцию, определенную с помощью
выражения, нельзя вызвать до ее определения.

Обратите внимание на то, что большинство (но не
все) функций в листинге 7. 1 содержат инструкцию ret u rn
(см. главу 4) . Эта инструкция приводит к прекращению
выполнения тела функции, вычислению выражения, на­
ходящегося после ключевого слова ret u r n , и возврату
в вызывающую функцию. Значение выражения после
ключевого слова ret u r n становится значением выраже­
ния для вызова функции. Если после ключевого слова
ret u rn нет ассоциированного с ним выражения, функция
возвращает значение u ndefi ned . Если в теле функции нет
инструкции ret u r n , она выполняется до конца (до послед­
ней закрывающей фигурной скобки) и возвращает в вы­
зывающую функцию значение undefined .

Вложенные функции
В JavaScript функция может быть вложена в другую

функцию, как в следующем примере.

f u nction hypotenuse (a , Ь) {
f u nction squa r e (x) { ret u r n х • х ; }

ret u r n Mat h . sq rt (sq u a re (a) + s q u a r e (b)) ;

Оnредеnение функции 1 151

В теле вложенной функции досrупны параметры и ло­
кальные переменные всех внешних функций на всех уров­
нях вложенности. Например, в приведенном выше примере
в теле функции squa re () можно читать и записывать параме­
тры а и Ь, определенные в функции hypotenuse () . В следую­
щих разделах этот вопрос рассматривается подробнее.

Как упоминалось в главе 4, инструкции объявления
функций не являются "настоящими" инструкциями, по­
тому что реализации ECМAScript 5 помещают их только
на самом высоком уровне текущего контекста. Они могут
находиться в глобальном коде или внутри других функ­
ций, но не внутри циклов, условных инструкций, блоков
t ry/catch/f i n a l ly , инструкций with или любых других бло­
ков. Учтите, что это ограничение касается только функ­
ций, объявляемых как инструкции. Выражения опреде­
ления функций могут находиться в любом месте кода
JavaScript.

Выпоnнение функций
Код JavaScript, находящийся в теле функции, при ее

определении не выполняется. Он выполняется при каж­
дом ее вызове. Функцию можно вызвать одним из четы­
рех способов:

• как функцию;

• как метод;

• как конструктор;

• через ее метод cal l () или app ly () .

Вызов функции
Функция вызывается как функция или как метод с по­

мощью выражения вызова (см. главу 3) . Выражение вызо-

152 Гnава 7. Функции

ва состоит из выражения функции, которое возвращает
объект функции, и списка параметров, разделенн!.1х запя­
тыми. Список параметров должен быть заключен в скоб­
ки. Количество параметров может быть равно нулю. Если
выражение функции является выражением обращения
к свойству (когда функция является свойством объекта
или элементом массива) , то оно считается выражением
вызова метода (подробнее этот вопрос рассматривается
в следующих разделах) . Ниже приведено несколько при­
меров вызова обычных функций (не методов) с помощью
выражений вызова.

p r i nt p rops ({ x : 1 }) ;
va r total = distance (0 , 0 , 2 , 1) + d i stance (2 , 1 , 3 , 5) ;
va r p robabi l i t y = fact o r i a l (5) /fact o r i a l (1 3) ;

При вызове вычисляется каждое выражение аргумен­
та и результирующее значение присваивается соответ­
ствующему параметру функции. В теле функции ссылка
на параметр возвращает значение аргумента.

При обычном вызове возвращаемое значение функ­
ции становится значением выражения вызова. Если функ­
ция завершается в результате того , что интерпретатор
дошел до закрывающей фигурной скобки тела функции,
она возвращает значение u ndefi ned . Если функция завер­
шается вследствие выполнения оператора ret u r n , то воз­
вращаемым значением служит значение выражения, за­
писанного после ключевого слова ret u r n . Если непосред­
ственно после слова ret u r n находится точка с запятой, то
возвращается значение u ndefi ned .

Согласно ECМAScript 3 и в нестрогом режиме
ECМAScript 5 контекстом вызова (значением t h i s) служит
глобальный объект. Однако в строгом режиме контекст
вызова равен u ndefi ned (не забывайте , что это справедли­
во только для функций, но не для методов) .

Выnоnнение функций 1 1 53

В функциях, вызываемых как функции, ключевое
слово tfl i s обычно не используется. Однако его можно
использовать для выяснения, выполняется ли функция
в строгом режиме.

va r st rict = (f u nction () { ret u r n ! t h i s ; } ()) ;

Вызов метода
Метод - это функция JavaScript, определенная как

свойство объекта. Если в коде определены функция f ()
и объект о , то можно определить метод m () объекта о с по­
мощью следующей строки:

о . m = f ;

Определив таким образом метод m () объекта о , можно
вызвать его следующим образом:

о . m () ;

Если метод m () ожидает два аргумента, выражение вы­
зова должно быть таким:

о . m (x , у) ;

Приведенное выше выражение вызова содержит вы­
ражение функции о . m и два выражения аргументов х и у.
Выражение функции является выражением обращения
к свойству (см. главу 3) . Это означает, что функция вызы­
вается как метод, а не как функция.

Аргументы и возвращаемое значение вызова метода
обрабатываются точно так же, как и в случае стандартно­
го вызова функции. Вызов метода отличается от вызова
функции только одной важной особенностью: контек­
стом вызова. Выражение обращения к свойству состоит
из двух частей: объекта (в данном примере - о) и метода
(m) . При использовании выражения вызова метода объ-

1 54 Гnава 7. Функции

ект становится контекстом вызова, и код тела функции
может ссылаться на этот объект с помощью ключевого
слова t h i s . Рассмотрим конкретный пример.

va r calcu lat o r = { // Это объе ктный л итерал
ope rand 1 : 1 ,
operand2 : 1 ,
add : f u nction ()

// Слово t h i s ссылается на объект calcu lato r
t h i s . result = t h i s . ope rand 1 + t h i s . operand2 ;

}
} ;
c a lcu lato r . add () ; // Вызов метода
calcu lato r . result // => 2

В большинстве случаев для обращения (или доступа,
что то же самое) к свойству используется точка, но в вы­
ражении доступа можно использовать и квадратные скоб­
ки, которые также приведут к вызову метода. Ниже при­
ведены примеры обоих способов вызова метода.

o [" " m " "] (x , y) ; // Э к в и валентно o . m (x , y) .
а = [f u nction (x) { ret u rn х+1 }] ;
a [O] (z) // Это та кже вызов метода

Для вызова метода можно использовать и более слож-
ные выражения доступа к свойству.

// Вызов метода toUppe rCase ()
// через объект c u stome r . s u rname
c u stome r . s u rname . toUppe rCase () ;
// Вызов метода m ()
// через воз вращаемое значение фун кции f ()
f () . m () ;

Обратите внимание на то, что t h i s является только
ключевым словом, но не именем переменной или свой­
ства. Cинтaкcиc JavaScript не позволяет присваивать t h i s
какое-либо значение.

Выnоnнение функций 1 SS

В отличие от переменных, у ключевого слова t h i s нет
области видимости, поэтому вложенная функция не на­
следует значение t h i s внешней функции. Если вложенная
функция вызывается как метод, ее значением t h i s явля­
ется объект, через который она вызвана. Если вложенная
функция вызывается как функция, то ее значением t h i s
служит либо глобальный объект (в нестрогом режиме) ,
либо значение u ndef i ned (в строгом режиме) . Многие счи­
тают (и это довольно распространенная ошибка) , что при
стандартном вызове функции ключевое слово t h i s можно
использовать для получения контекста вызова внешней
функции. На самом же деле для получения доступа к зна­
чению t h i s внешней функции необходимо сохранить
его в переменной, доступной во вложенной функции.
Традиционно для этого используется переменная с име­
нем sel f , как в следующем примере.

va r о = { / / Объект о
m : f u n c t i o n () { // Метод m объе кта о

va r self = t h i s ; // Сохранение значения t h i s
console . log (t h i s === о) ; // Вы водит " t r ue
f () ; // Вызов вложенной фун кции

}

f u nct ion f () {
console . log (t h i s
console . l og (se l f
}

} ;
o m () ; //

Вызов конструктора

о) ; 11 В ыводит " fa l s e "
о) ; // Выводит t r ue

Если перед выражением вызова метода или функции
находится ключевое слово new, значит, это вызов кон­
структора (см. главы 3 и 5; более подробно конструкторы
рассматриваются в главе 8) . Вызов конструктора отлича-

1 56 Гпава 7. Функции

ется от вызова метода или функции способом обработки
аргументов, контекста вызова и возвращаемого значения.

Если выражение вызова конструктора содержит спи­
сок аргументов в скобках, то выражения аргументов вы­
числяются и передаются в тело конструктора так же , как
и в случае вызова метода или функции. Однако если спи­
сок параметров пустой, то синтаксисJаvаSсгiрt позволяет
при вызове опустить также скобки. Например, следую­
щие две строки эквивалентны.

vа г о n e w Obj ect () ;
va r о = new Obj ect ;

Инструкция вызова конструктора создает пустой объ­
ект, который наследует свойство p rototype конструктора.
Обычно функция конструктора предназначена для ини­
циализации создаваемого объекта. Вызываемый объект
служит контекстом вызова, на который в теле конструк­
тора можно ссылаться с помощью ключевого слова t h is .
Обратите внимание на то , что новый объект служит кон­
текстом вызова, даже если вызов конструктора выглядит
так же, как и вызов метода. Это означает, что в выраже­
нии new о . m () объект о не является контекстом вызова.

Обычно функция конструктора не содержит ключево­
го слова ret u r n , потому что задача конструктора - иници­
ализировать новый объект и завершить свою работу при
достижении последней закрывающей фигурной скобки.
В этом случае новый объект становится значением выра­
жения для вызова конструктора. Однако если в конструк­
торе явно используется инструкция ret u r n для возвраще­
ния объекта, то этот объект становится значением выра­
жения вызова. Если в конструкторе используется ret u r n
без значения или возвращается примитивное значение,
то возвращаемое значение игнорируется, и новый объект
используется в качестве значения выражения вызова.

Выпоnнение функций 1 57

Косвенные вызовы
Функции JavaScript являются объектами и, как и лю­

бой объект, имеют методы. Два из этих методов - cal l ()
и apply () - позволяют вызвать функцию особым спосо­
бом, косвенно. Первый аргумент, как у метода call () , так
и у app ly () , должен быть объектом, через который вызы­
вается функция. Этот аргумент служит контекстом вызо­
ва и становится значением ключевого слова t h i s в теле
функции. Например, чтобы вызвать функцию f () как ме­
тод объекта о (не передавая аргументы) , необходимо вы­
звать ее метод cal l () или apply () .

f . ca l l (o) ;
f . apply (o) ;

Каждая из этих строк эквивалентна следующим трем
строкам (предполагается, что у объекта о еще нет свой­
ства m) .

o . m = f ; // Временно делаем f методом объе кта о
о . m () ; // Вызы ваем m через о
delete o . m · // Удал яем m

В строгом режиме ECМAScript 5 первый аргумент ме­
тода ca l l () или apply () становится значением t h i s , даже
если это значение n u l l или u n def i ned либо примитивное
значение. В реализациях ECМAScript 3 и в нестрогом ре­
жиме значение n u l l или undefi ned замещается глобальным
объектом, а примитивное значение замещается оболоч­
кой его объекта.

Все последующие аргументы cal l () после первого ар­
гумента (контекста вызова) являются значениями, пере­
даваемыми параметрам функции при вызове. Например,
чтобы передать два числа в функцию f () и вызвать ее как
метод объекта о , нужно написать такоке выражение:

158 Гnава 7. Функции

f . ca l l (o , 1 , 2) ;

Метод apply () аналогичен методу call () за исключени­
ем того , что аргументы, передаваемые функции, задаются
в массиве.

f . apply (o , [1 , 2]) ;

Если функция принимает неопределенное количе­
ство аргументов, метод app ly () позволяет применить при
вызове массив произвольной длины. Например, чтобы
найти наибольшее значение в массиве чисел , можно ис­
пользовать метод apply () для передачи элементов масси­
ва функции Math . max () .

va r biggest = Mat h . max . apply (Mat h , a r ray_of_п umbe rs) ;

Обратите внимание на то, что метод apply() принимает
как "массивоподобные" объекты, так и настоящие массивы.
В частности, можно вызвать функцию с теми же аргумента­
ми, которые определены в текущей функции, передав мас­
сив a rguments непосредственно методу apply() . Подробнее
этот вопрос рассматривается в следующем разделе.
Приведенный ниже код демонстрирует данный подход.

// Замена метода m объекта о версие й , которая
// п рото кол и рует сообщения до и после вызова
// исходного метода
f u пct ioп t race (o , m) {

va r o ri g i пal = o [m] ; // Запоминаем метод
o [m] = f u пctioп () { // Оп редел яем новый метод

coпsole . log (пew Date () , " Eп t e r i п g : " , m) ;
// Вызов исходно го метода

} ;

v a r result = o r i g i пal . appl y (t h i s , a rg umeпts) ;
coпsole . log (пеw Date () , " Exi t i п g : " , m) ;
// Возв рат резул ьтата исходного метода
ret u r п resu lt ;

Выпоnненне функций 1 1 59

Приведенная выше функция t race () получает имена
объекта и метода и замещает указанный метод новым.
Новый метод служит оболочкой для функциональности,
дополняющей исходный метод.

Арrументы и параметры функции
Определение функцииJаvаSсriрt не задает ожидаемые

типы параметров функции. Соответственно, при вызове
функции проверка типов передаваемых арrументов не
выполняется. Фактически при вызове функции не про­
веряется даже количество передаваемых арrументов. В
следующем разделе мы рассмотрим, что произойдет, если
функция вызвана с меньшим или большим количеством
арrументов, чем объявлено в ее определении.

Необязательные параметры
Когда функция вызвана с меньшим количеством арrу­

ментов, чем определено в списке параметров, "лишние"
параметры получают значение u ndefi ned . На практике
иногда полезно создать функцию, некоторые арrумен­
ты которой необязательные и могут быть опущены при
вызове. Для этого нужно иметь возможность присвоить
необязательным параметрам значения по умолчанию, как
в следующем примере.

// Доба вление имен перечислимых с войств объе кта о
// в масс и в а и воз в рат масс и в а а : если имя · · а · ·
// опущено , функция создает и возв ращает
// новый масс и в
f u n c t i o n names (o , / • необязател ьный • / а)

i f (а = = = u ndefi ned) / / Если а опущено
а = [] : // Новый массив

fo r (va r p rope rty i n о) а . p ush (p roperty) :
ret u rn а ;

1 60 Гnава 7. Функции

/! Эту фун кцию можно вызвать
// с одним ил и двумя ар гументами
va r а = names (o) ; // Получение имен свойств
names (p , a) ; // Доба вление свойств в масс и в

Как показано в главе 3 , вместо инструкции i f в первой
строке функции names () можно использовать оператор 1 1
следующим образом.

а = а 1 1 [] :

Список арrументов переменной длины:
объект Arguments

Когда функция вызывается с бальшим количеством аргу­
ментов, чем определено имен параметров, то способа пря­
мо сослаться на неименованные значения не существует.
Решение этой проблемы предоставляет объект A rg uments .
В теле функции на объект A rg uments данного вызова ссыла­
ется идентификатор a rg uments . Объект A rguments является
массивоподобным объектом (см. главу 6) , который позво­
ляет передать функции значения аргументов, извлекаемые
не по имени, а по номеру.

Предположим, определена функция f , которая ожида­
ет один аргумент х. Если вызвать эту функцию с двумя ар­
гументами, первый аргумент будет доступен в теле функ­
ции под именем параметра х или как элемент массива
a rg ument s [O] . Второй аргумент будет доступен только как
элемент a rg ument s [1] . Объект A rguments имеет свойство
l e ng t h (длина) , определяющее количество его элементов.
Следовательно, в теле функции f , вызванной с двумя аргу­
ментами, свойство a rguments . l e n g t h имеет значение 2 .

Одно из главных преимуществ объекта A rguments - воз­
можность создавать функции с произвольным количе­
ством аргументов. Приведенная ниже функция принима­
ет любое количество числовых аргументов и возвращает

Аргументы и параметры функции 1 1 61

значение наибольшего аргумента (аналогично встроен­
ной функции Mat h . max ()) .

function max (/ • • /) {
va r max = N umbe r . N EGATIVE_I N F I N ITY ;
// Поиск и запоминание наибол ьше го а р гумента
fo r (va r i = О ; i < a rg uments . lengt h ; i++)

i f (a rgument s [i] > max) max = a rg ument s [i] ;
// Возврат наибол ьше го ар гумента
retu r n max :

va r la rgest = max (1 0 , 1 00 , 2 , 4 , 1 0000 , 6) ;
11 => 1 0000

Обратите внимание на то, что функцию, принимаю­
щую произвольное количество аргументов, нельзя вы­
звать без аргументов. Кроме того, объект a rg ument s []
можно использовать для создания функций, ожидающих
фиксированное количество именованных обязательных
аргументов, после которых следует произвольное коли­
чество неименованных необязательных аргументов.

Функции как пространства имен
Как упоминалось в главе 2, область видимости пере­

менной, объявленной в теле функции, совпадает с телом
функции (включая вложенные функции) , но не распро­
страняется за ее пределы. Переменные, объявленные вне
функции, являются глобальными и видимы во всей про­
грамме. В JavaScript нет способа объявить переменную
таким образом, чтобы она была видна только в одном
блоке кода. По этой причине иногда полезно определить
функцию только для того, чтобы создать временное про­
странство имен, в котором можно определить нужные
переменные, не засоряя глобальное пространство имен.

1 62 Глава 7. Функции

Предположим, например, что у нас есть модуль кода
JavaScript, который нужно использовать в нескольких
программах (на стороне клиента, на веб-страницах,
на сервере) . Предположим также, что в этом коде опреде­
лены переменные для хранения промежуточных резуль­
татов вычислений. Проблема состоит в том, что, посколь­
ку данный модуль используется во многих программах
(причем заранее неизвестно, в каких) , мы не знаем, будут
ли созданные им переменные конфликтовать с перемен­
ными, объявленными в других программах, в которых он
используется. Решение данной проблемы состоит в поме­
щении кода в функцию, которую затем можно вызывать
в разных программах. Таким образом, переменные, кото­
рые иначе были бы глобальными, становятся локальными
в функции.

f u n c t i o n mymod u l e ()
// Здесь поместите модул ь кода .
// Любые переменные данно го модул я будут
// л о кал ьными в данной фун кци и ,
// что п редотвратит их конфл и кты с глобал ьным
// п ространством имен

mymod u le () ; // Не забудьте выз вать фун кцию !

В этом коде определена только одна глобальная пере­
менная: имя функции mymod u le . Если же и этого слишком
много , можете определить и вызвать анонимную функ­
цию в единственном выражении, не добавив ни единой
глобальной переменной.

(f u пctioп () { // Неименованное вы ражение
// Здесь находится модул ь кода

} ()) ; // Завершение и вызов функции

Данная методика определения и вызова функции
в единственном выражении применяется настолько ча-

Функции как nроnранства имен 163

сто, что стала канонической. Обратите внимание на ис­
пользование скобок. Скобка перед ключевым словом
f u nct ion обязательна, потому что без нее интерпретатор
примет ключевое слово f u nct ion за инструкцию объявле­
ния функции. Когда же есть скобки, интерпретатор пра­
вильно считает, что это выражение определения функ­
ции. Для большей наглядности рекомендуется заключать
в скобки функцию, вызываемую немедленно после опре­
деления, даже если скобки не нужны.

Замыкания
Как и в большинстве современных языков програм­

мирования , в JavaScript используются лексические обла­
сти видимости. Это означает, что функции выполняются
с использованием таких областей видимости, какими
они были в момент определения, а не в момент вызова.
Данная комбинация объекта функции с областью видимо­
сти, в которой она была определена, называется замъ�ка­
nием (closure) . В коде J avaScript замыкания становятся не­
тривиальными при использовании вложенных функций.
Сушествует ряд мощных методик программирования,
в которых применяются замыкания вложенных функций.
При первом знакомстве с замыканиями они кажутся до­
вольно загадочными, поэтому важно хорошо понимать
данную концепцию, чтобы уверенно ее применять.

Первый шаг к пониманию замыканий - знание правил
лексических областей видимости вложенных функций.
Рассмотрим следующий код.

va г scope= " Глобал ьная " : / / Глобал ьная переменная
f u пction checkscope () {

vа г sсо ре= "Локал ьная " : // Ло кал ьная переменная
f u пction f () { геt u гп scope ; }
геt u гп f () ;

1 64 Гnава 7 . Функции

checkscope () // => " Ло кал ьная "

Функция chec kscope () сначала объявляет локальную
переменную, а затем определяет и вызывает функцию, ко­
торая возвращает значение этой переменной. Вам долж­
но быть понятно, почему вызов chec kscope () возвращает
строку Л о кал ьная . Теперь немного изменим код. Можете
ли вы сказать, что вернет функция checkscope () () ?

vа г scope= " Глобал ьная " ; // Глобал ьная переменная
fu nction checkscope () {

va r sсоре= "Локальная " ; // Ло кал ьная переменная
f u nction f () { ret u rn scope ; }
ret u r n f ;

c heckscope () () // Что она вернет?

В этом коде пара скобок "перекочевала изнутри
функции chec kscope () наружу. Вместо вызова вложенной
функции с возвратом ее результата, функция c heckscope ()
теперь возвращает объект вложенной функции. Что про­
изойдет, если вызвать эту вложенную функцию (с помо­
щью еще одной пары скобок в последней строке кода) за
пределами функции, в которой она определена?

Вспомним фундаментальное правило лексических об­
ластей видимости: при выполнении функций использу­
ется цепочка областей видимости, действительная в мо­
мент определения. Вложенная функция f () определена
в цепочке, в которой переменная scope связана со стро­
кой Л о кальная . Это связывание все еще остается в силе ,
когда функция f () выполняется , независимо от того, от­
куда она вызвана. Поэтому последняя строка кода вернет
Локал ьная , а не Глобал ьная . В этом состоит удивительная
и мощная природа замыканий: они захватывают привяз­
ки локальных переменных (или параметров) во внешней
функции, в которой они определены.

Замыкания 1 1 65

Замыкания захватывают локальные переменные един­
ственного вызова функции, что дает возможность исполь­
зовать эти переменные в качестве закрытых. В приведен­
ном ниже коде замыкание используется именно таким
образом.

va r u п iq u e i пtege r = (f u пction () {
11 О п ределение вызова

va r couпte r = О ;
11 Закрытая переменная фун кции

ret u r n f u nction () { ret u r n counte r++ ; } ;
} ()) ;

Чтобы понять этот код, внимательно прочитайте его.
Сначала вам покажется, будто первая строка кода присва­
ивает функцию переменной u n iquei ntege r . Однако в дей­
ствительности код определяет и вызывает (на что намека­
ет открывающая скобка в первой строке) функцию, поэто­
му переменной u n i q uei ntege r присваивается возвращаемое
значение функции. Теперь, посмотрев на тело функции,
мы увидим, что ее возвращаемым значением служит другая
функция, а именно - объект вложенной функции, кото­
рый присваивается переменной u n i q uei nteg e r . Вложенная
функция имеет доступ к переменным в области видимости
и может использовать переменную counte r , определенную
во внешней функции. После того как внешняя функция
завершилась, никакой другой код не видит переменную
counte r . Доступ к ней имеет исключительно вложенная
функция. Поэтому каждый вызов u n iq ueintege r () вернет
новое целое число, и внешний кoд JavaScript не может из­
менить внутреннее значение counte r .

Закрытые переменные наподобие count e r необязатель­
но доступны только одной функции. Можно определить
две или больше вложенных функций в одной внешней
функции, причем все они будут иметь доступ к одной и той
же закрытой переменой. Рассмотрим следующий код.

1 66 Гnава 7. Функцнн

f u nction counte r ()
va r n = О ;
retu r n {

count : f u nction ()
reset : f u nction ()

} ;

ret u rn п++ ; } ,
n = О ; }

va r с = counte r () , // Создание двух счетч и ко в
d = counte r () ;

c . count () // => О
d . count () // => О : d и с п одсч иты ваются независимо
с . reset () // у reset () и count () общее состояние
c . count () // => О : пос кол ь ку с пе реустановлена
d . count () // => 1 : d не была переустановлена

Функция counte r () возвращает объект счетчика. Этот
объект имеет два метода: cont () возвращает следующее

целое число, а reset () переустанавливает внутреннее со­
стояние. Важно понимать, что оба метода имеют доступ к за­
крытой переменной n . Кроме того, каждый вызов counte r ()
создает новую цепочку областей видимости и новую закры­
тую переменную. Поэтому, если вызвать функцию counte r ()
дважды, она вернет два объекта счетчика с разными закры­
тыми переменными. Вызов count () или reset () через один
объект счетчика не влияет на другой объект счетчика.

В приведенном выше примере две функции определе­
ны в одной и той же цепочке областей видимости, поэто­
му они имеют доступ к одним и тем же закрытым перемен­
ным. Это весьма важная методика, но важно также пони­
мать, когда замыкания могут ошибочно получить общий
доступ к переменной, которая не должна быть для них
общей. Рассмотрим следующий код.

// Эта фун кция возв ращает функцию ,
// которая все гда возвращает v
f u nction constant (v) { ret u r n f u nction ()

{ ret u rn v ; } ; }

Замыкания 1 1 67

// Создание массива фун кций constant ()
va r f u ncs [] ;
fo r (va r i = О ; i < 1 0 ; i++) f u n c s [i] constant (i) ;

// Фун кция , находя щая ся в п ятом
// элементе массива , возв ращает 5
f u n c s [5) () // => 5

Данный код создает в цикле много замыканий. При ра­
боте с таким кодом распространенная ошибка - попытка
переместить цикл в функцию, которая определяет замы­
кания. Рассмотрим следующий код.

// Возв ращает массив фун кци й ,
// которые возв ращают 0 - 9
f u nction const f u n cs () {

va r f u ncs = [) ;
fo r (va r i = О ; i < 1 0 ; i++)

f u n c s [i] = f u nction () { ret u rn i ; } ;
ret u r n f u ncs :

va r f u n c s = const f u n cs () ;
f u n c s [5] () // Что она возв ращает?

Приведенный выше код создает 10 замыканий и сохра­
няет их в массиве. Все замыкания определены в одном вы­
зове функции, поэтому они имеют общий доступ к пере­
менной i. Когда функция consf u ncs () возвращается , зна­
чение переменной i равно 1 0 , и все 1 0 замыканий видят
данное значение. Следовательно, все функции в возвра­
щенном массиве функций возвращают то же самое значе­
ние. Очевидно, это не то, что нам нужно. Важно помнить,
что цепочка областей видимости, ассоциированная с за­
мыканием, продолжает существовать. Вложенные функ­

ции не создают закрытых копий области видимости или
статических снимков связывания переменной.

Кроме того, при создании замыканий важно помнить,
что t h i s - это ключевое слово, а не переменная. Как уже

168 Гnава 7. Функции

упоминалось, с каждым вызовом функции ассоциировано
значение t h i s , и замыкание не имеет доступа к значению
t h i s внешней функции, если только внешняя функция не
сохранила это значение в переменной.

va r self = t h i s ; // Для использования
/! во вложенной функции

Аналогично выполняется связывание переменной
a rg uments . Это не ключевое слово языка. Переменная ав­
томатически объявляется для каждого вызова функции.
Замыкание создает собственное связывание для перемен­
ной a rg uments , поэтому оно не имеет доступа к массиву ар­
гументов внешней функции, если только внешняя функ­
ция не сохранила массив в переменной с другим именем.

va r o u t e rArguments = a rgument s ;
// Дл я вложенных фун кций

Свойства, методы и конструктор функции
Вы уже знаете, что функция - это объект в JavaScript­

пpoгpaммe. Получив в качестве операнда функцию, опе­
ратор typeof возвращает строку f u n c t i o n . Но функции -
это не просто объекты, а объекты специального вида. Как
и у любых других объектов, у них есть свойства и мето­
ды. Есть даже конструктор F u n ct i o n () , предназначенный
для создания объектов функций. В предыдущих разделах
рассматривались методы ca l l () и app ly () объекта функ­
ции, а в следующих разделах мы рассмотрим свойства, ме­
тоды и конструктор F u n ct i o n () , принадлежащие функции.

Свойство length
В теле функции значение а rgument s . l e n g t h определяет

количество аргументов, переданных функции. Однако не
путайте его со свойством функции lengt h , которое имеет

Свойства, методы и конструктор функции 1 1 69

совершенно другое назначение: это свойство, доступное
только для чтения и определяющее арностъ (arity) функ­
ции, т.е. количество параметров, объявленных в списке.
Чаще всего оно совпадает с количеством аргументов,
ожидаемых функцией.

Свойство р rototype
У каждой функции есть свойство p rototype , которое

ссылается на ее прототип. У разных функций объекты
прототипа разные. Когда функция используется как кон­
структор, создаваемый объект наследует свойства объек­
та прототипа. Прототипы и свойство p rototype рассма­
тривались в главе 5. Более подробно мы вернемся к ним
в главе 8.

Метод Ьiпd ()
Метод b i n d () был добавлен в ECМAScript 5 , но его лег­

ко имитировать в ECМAScript 3. Как видно из названия,
главная цель метода - связывание функции с объектом.
При вызове метода b i nd () через функцию f и передаче
объекта о метод возвращает новую функцию. Вызов но­
вой функции в качестве функции (а не метода) приводит
к вызову исходной функции f как метода объекта о. Все
аргументы, передаваемые новой функции, передаются
исходной функции. Рассмотрим следующий пример.

// Нужно с в я зать эту функцию
f u nction f (y) { ret u r n t h i s . х + у ; }
va r о { х 1 } ; // Связы ваемый объект
va r g = f . b i nd (o) ; // После это го вызов g (x)

// п р и в едет к вызову o . f (x)
g (2) // => 3

Реализовать связывание такого вида несложно с помо­
щью следующего кода.

1 70 Гnава 7. Функции

// Воз в рат фун кци и , которая вызывает f
// как метод о , передавая ей все свои ар гументы
f u пctioп b i пd (f , о) { .

// Испол ьзование связанно го метода
if (f . Ь i п d) ret u rn f . Ь i n d (o) ;
else ret u rn f u nct i o n () {

} ;

// Есл и метод не связан , то с вязываем е го
ret u rn f . apply (o , a rg ument s) ;

Определенный в ECМAScript 5 метод b i nd () не толь·
ко связывает функцию с объектом, но и решает еще одну
задачу: связывает любой аргумент, переданный методу
b i nd () после первого аргумента. Это часто используется
в реальных программах. Следующий пример иллюстриру·
ет данную концепцию.

va r sum = f u nction (x , у) { ret u rn х + у } ;
// Создание фун кции sum со значением t h i s ,
// связанным с n u l l и первым а р гументом ,
// связанным со значением 1 ;
// эта фун кция ожидает тол ько один ар гумент
va r succ = sum . Ь i nd (n u l l , 1) ;
s ucc (2) // => 3 :

// х с вязана с 1 , а у получ ает 2

Метод toSt ring ()
Как и любой объект JavaScript, каждая функция имеет

метод toSt r i n g () . Согласно спецификации ECМAScript 5
этот метод должен возвращать строку с инструкцией
объявления функции. Однако на практике многие реали·
зации метода toSt r i ng () возвращают полный исходный
код функции. Встроенные функции обычно возвращают
строку, содержащую вместо тела функции что·то наподо·

Свойства, методы и конструктор функции 1 1 71

бие " [nat ive code] " (машинный код) . Это означает, что
исходный код метода недоступен.

Конструктор Function ()
Обычно функцию определяют с помощью ключево­

го слова f u n c t i o n либо в виде инструкции определения
функции, либо как литеральное выражение функции.
Но функцию можно определить и с помощью конструк­
тора Funct i o n () , как в следующем примере.

va r f = new Function (" x " , ' ' у ' ' , " ret u rn х • у : ") :

Эта строка кода создает функцию, почти эквивалент­
ную функции, определенной с помощью следующего, бо­
лее знакомого вам синтаксиса.

va r f = f u nction (x , у) { ret u r n х • у : }

Конструктор F u n ct io n () ожидает произвольное ко­
личество строковых аргументов. Последний аргумент -
текст тела функции. Он может содержать любые ин­
струкции JavaScript , разделенные точками с запятыми.
Остальные аргументы конструктора являются строками,
задающими имена параметров создаваемой функции.
Если нужно определить функцию, не имеющую аргумен­
тов , передайте в конструктор одну строку, содержащую
тело функции.

Важно отметить, что в функциях, создаваемых кон­
структором F u n ct i o n () , не используются лексические об­
ласти видимости. Они всегда компилируются как функ­
ции верхнего уровня, в результате чего имеют доступ
к глобальным, а не к локальным переменным.

1 72 Гnава 7. Функции

ГЛАВА 8

Классы

OбъeктыJavaScript обсуждались в главе 5. Там каждый объ­
ект рассматривался как уникальный набор свойств, раз­
ный для каждого объекта. Однако часто полезно опреде­
лить класс объектов, у которых есть ряд общих свойств.
Экземпляръ� класса имеют разные значения свойств, кото­
рые описывают их состояние. Кроме того, у них есть ряд
свойств, описывающих их поведение (эти свойства обычно
являются методами) . Поведение определено в классе и яв­
ляется общим для всех экземпляров класса. Рассмотрим,
например, класс Complex, представляющий комплексные
числа и методы, выполняющие арифметические опера­
ции над комплексными числами. Экземпляр класса Complex
имеет два свойства, в которых хранятся действительная
и мнимая части комплексного числа. Кроме того, в классе
Complex должны быть определены методы, выполняющие
операции сложения, вычитания, умножения и деления
этих чисел.

В JavaScript классы основаны на механизме наследо­
вания прототипов. Если два объекта наследуют свойства
одного и того же прототипа, то считается , что они явля­
ются экземплярами одного класса. Прототипы и наследо­
вание рассмотрены в главе 5. Если вы забыли, что такое
прототипы, прочитайте эту главу еще раз, чтобы пони­
мать материал данной главы.

Если два объекта наследуют один прототип, то обыч­
но (но необязательно) они являются созданными и ини-

циализированными одной и той же функцией конструк­
тора. Инициализаторы рассматривались в главе 3, а соз­
дание объектов и вызов конструкторов - в главе 7. Более
подробно классы и конструкторы рассматриваются в сле­
дующих разделах.

Если вы знакомы со строго типизированными объектно­
ориентированными языками, такими как Jаvа или С++, вы
наверняка заметите, что клaccы JavaScript существенно от­
личаются от классов в этих языках. Между ними есть неко­
торое синтаксическое сходство, поэтому несложно эмули­
ровать многие средства "классических" классов средствами
JavaScript. Тем не менее важно понимать, что механизм на­
следования классов и прототипов JavaScript существенно
отличается от принципов наследования в Java и других
аналогичных языках. Одно из важнейших отличий классов
JavaScript состоит в том, что они динамически расширяе­
мые, как будет показано далее.

Кnассы и прототипы
В JavaScript класс - это набор объектов, наследующих

свойства одного и того же объекта-прототипа. Прототип -
центральноесредствокласса(термины"прототип", "объект­
прототип" и "объект прототипа" - синонимы) . В листин­
ге 5 . 1 была определена функция i n h e r it () , которая воз­
вращает новый объект, наследующий заданный прото­
тип. В данной главе рассматривается встроенная функция
ECМAScript 5 Obj ect . c reate () , которую можно исполь­
зовать вместо более универсальной функции i n h e ri t () .
Определение класса JavaScript означает определение про­
тотипа и применение функции Obj ect . c reate () для созда­
ния объектов, наследующих данный прототип. Обычно но­
вые экземпляры класса нужно инициализировать, поэтому
довольно часто программисты пишуг функцию, которая

1 74 Гnава 8. Классы

создает и инициализирует новый объект. Данный процесс
демонстрируется в листинге 8. 1 . В нем определены прото­
тип объекта для класса, представляющего ряд значений,
и функция, создающая и инициализирующая новый экзем­
пляр класса.

Листинr 8.1 . Простой кnасс JavaSaipt

// range . j s : клас с , п редставляющий диапазон

// Это создающая функция , возвращающая диапазон
function range (f rom , to) {
/1 Испол ьзование фун кции Obj ect . c reate ()
11 для создания объе кта , наследующе го о п ределенный
/! ниже п рототи п . П рототип хранится как свойство
// данной функци и , и в нем оп ределены общие
11 методы объ кто в класса
va r г = Obj ect . c reate (range . methods) ;
// Сохранение начальной и конечной точ е к
// диапазона . Они я вл я ются ненаследуемыми
// свойствами , уникал ьными для объе кта
г . f rom = f ro m ;
г . to = t o ;
// Возв ращение ново го объе кта
ret u rn г ;

}

/! Объект п рототипа о п ределяет методы , насл едуемые
11 всеми объе ктам и range .
range . methods = {
// Возв ращает t r u e , есл и х попадает в диапазон
i n c l u des : f u nction (x) {
ret u rn t h i s . f rom <= х && х <= t h i s . t o ;
} ,
/1 Вызов f () по одному разу для каждо го ч исла .
11 Метод работает тол ько с числовыми диапазонами
fo reach : f u n c t i o n (f) {
fo r (va r x=Math . ce i l (t h i s . f rom) ; х <= t h i s . t o ; х++)
f (x) ;
} ,

Кпассы и прототипы 1 75

// Возврат строки , предста вляющей диапазон
toSt r i п g : f u пctioп () {

ret u r п " (" + t h i s . f rom + + t h i s . to + ")" ;
}
} ;

// Пример испол ьзования
va r r = raпge (1 , 3) ;
r . i п c l udes (2) ;
r . fo reac h (console . l og) ;
coпsole . log (r) ;

объе кта диапазона
// Создание диапазона
// => t ru e : 2 попадает
// Вывод 1 2 3
/ / В ывод (1 . . . 3)

в диапазон

В листинге 8. 1 определена функция range () , создающая
объект диапазона. Свойство range . met hods этой функции
применяется как удобное место для хранения объекта,
определяющего класс. Ни правила синтаксиса, ни согла­
шения не требуют этого. Кроме того, обратите внимание
на то, что функция range () определяет свойства f rom (от)
и to (до) для каждого объекта диапазона. Это не общие
и не наследуемые свойства, они определяют уникальное
состояние каждого объекта диапазона. И наконец, обра­
тите внимание на то , что в наследуемых методах, опреде­
ленных в range . met hods , используются свойства f rom и t o ,
причем для ссылки на них применяется ключевое слово
t h i s , ссылающееся на объект, через который вызван ме­
тод. Такое использование ключевого слова t h i s - фунда­
ментальная особенность методов любого класса.

Классы и конструкторы
В листинге 8. 1 демонстрировался один из способов

создания клacca JavaScript. Однако данный способ не счи­
тается каноническим, потому что в нем нет определения
конструктора. Консmру'Кmор - это функция, предназначен­
ная для инициализации нового объекта. Конструкторы
вызываются с помощью ключевого слова new (см. главу 7) .

1 76 Глава 8. Классы

При вызове конструктора с помощью ключевого слова new
автоматически создается объект, поэтому конструктору
остается только инициализировать его состояние. Важная
особенность вызовов конструктора состоит в том, что
свойство p rototype функции конструктора применяется
в качестве прототипа нового объекта. Это означает, что
все объекты, созданные определенным конструктором, на­
следуют один и тот же объект и, следовательно, являются
членами одного класса. В листинге 8.2 показано, как изме­
нить класс Range (см. листинг 8. 1) с использованием функ­

ции конструктора вместо создающей функции.

Листинr 8.2. Создание объектов класса Range с помощью конструктора

// raпge2 . j s : класс , п редста вл яющий диапазон

// Это функция конструктора , который
// и н и циал и з и рует новый объект Raпge .
// Обратите внимание на то , что он не создает и
// не возвращает объе кт , а тол ько
// и н и циализирует его
f u п c t i o п Raпge(f rom , t o)
// Сохранение значений начала и конца диапазона
// в ненаследуемых свойствах , уни кал ьных дл я
// каждо го объекта
t h i s . f rom = f rom ;
t h i s . to = to ;
}

// Все объекты Raпge наследуют данный объе кт .
// Имя с войства должно быть " p rototype "
Raпge . p rotot ype = {
// Возв ращает t r u e , есл и х попадает в диапазон
i п c l udes : f u пctioп (x) {
ret u rп t h i s . f rom <= х && х <= t h i s . to ;
} ,
// Вызов f () по одному разу
// для каждо го целого в диапазоне
fo reach : f u пctioп (f) {

Кnассы и конструкторы 1 77

fo r (va r x=Mat h . ce i l (t h i s . f rom) ; х <= t h i s . t o ; х++)
f (x) ;
} ,
// Возв рат строки , п редста вляющей диапазон
toSt r i n g : f u n c t i o n () {
ret u r n " (' " + t h i s . f rom + + t h i s . to + ·т· :
}
} ;

// Пример использования
vа г г = new Raпge (1 , 3) ;
г . i nc l udes (2) ;
r . fo reach (console . log) ;
consol e . log (г) ;

объе кта диапазона
// Создание объе кта range
// => t r ue : 2 попадает в диапазон
// Вы вод 1 2 3
/ / Вывод (1 . . 3)

Сравните листинги 8.2 и 8. 1 . Обратите внимание
на различия между двумя способами определения класса.
Преобразуя создающую функцию в конструктор, мы пере­
именовали ее с range () на Ra nge () . Это общепринятое со­
глашение: функция конструктора определяет класс, а имя
класса принято начинать с буквы в верхнем регистре.
Имена обычных методов и функций принято начинать
с буквы в нижнем регистре.

Еще одно важное отличие: в конце данного примера
функция конструктора Range () вызывается с помощью
ключевого слова new, а создающая функция range () вы­
зывается без него. В листинге 8 . 1 для создания объекта
использовался обычный вызов функции (см. главу 7) , а в
листинге 8.2 для этого же применяется ключевое слово
new. Поскольку конструктор Range () вызван с помощью
ключевого слова new, для создания объекта не нужно вы­
зывать метод Obj ect . c reate () или выполнять какие-либо
дополнительные операции. Новый объект автоматиче­
ски создается перед вызовом конструктора и становится
доступным как значение t h i s . Конструктор Range () всего
лишь инициализирует значение t h i s . Конструктору не

1 78 Гnава 8. Кnассы

нужно даже возвращать созданный объект. Выражение
вызова конструктора автоматически создает объект, вы­
зывает конструктор как метод этого объекта и возвраща­
ет новый объект.

Еще одно важное различие между листингами 8. 1
и 8 .2 - способ именования объекта прототипа. В первом
примере прототип называется range . met hods . Это интуи­
тивно понятное и удобное имя, но оно произвольное. Во
втором примере прототип называется Range . p rototype ,
причем это обязательное имя. Выражение вызова кон­
структора автоматически задает использование объек­
та Range . р rototype в качестве прототипа нового объекта
класса Range .

И наконец, обратите внимание на общие черты ли­
стингов 8. 1 и 8.2 : методы диапазонов определены и вызы­
ваются одинаково в обоих случаях.

Идентичность кпассов и конструкторы
Как было показано выше, прототипы объектов яв­

ляются основой идентичности класса, потому что два
объекта являются экземплярами одного класса, только
если они наследуют один и тот же объект прототипа.
Функция конструктора, инициализирующая состояние
нового объекта, не служит основой идентичности, по­
тому что у двух разных функций конструкторов могут
быть свойства p rototype , указывающие на один прототип.
Следовательно, оба этих конструктора можно использо­
вать для создания экземпляров одного класса.

Несмотря на то что конструкторы не так фундамен­
тальны, как прототипы, они все же служат "публичным
лицом" классов. Имя функции конструктора обычно яв­
ляется именем класса. Например, конструктор Range ()
создает объекты Range . Важнее, однако , то, что конструк-

Кnассы и конструкторы 1 1 79

торы используются оператором i n stanceof для проверки
членства объекта в классе. Например, чтобы узнать, яв­
ляется ли объект r членом класса Range , нужно выполнить
следующий код.

// Возв ращает t rue , если
// г наследует Raпge . p rototype
г i пstaпceof Raпge

Оператор i n stanceof фактически не проверяет, иници­
ализировался ли объект r конструктором Range () . Он про­
веряет, наследует ли объект r прототип Range . p rototype .
Тем не менее синтаксис оператора i n stanceof побуждает
использовать конструкторы для идентификации классов.

Свойство const ructo г
В листинге 8.2 свойству Range . p rototype присвоен но­

вый объект, содержащий методы класса. Определять ме­
тоды как свойства одного объектного литерала довольно
удобно, однако для создания объекта это необязательно.
В качестве конструктора можно использовать любую
функцию JavaScript, но для вызова конструктора необхо­
димо свойство p rototype . Следовательно, каждая функ­
ция JаvаSсriрt имеет свойство p rototype . Значением этого
свойства является объект, имеющий единственное не­
перечислимое свойство const ructo r . Значением свойства
const r ucto r является объект функции.

// F . p rototype . coпst ructo r э к в и в алентно F
va r F f u п ctioп () { } ; // Объект фун кции
va r р F . p rototype ; // Объе кт п рототи па
va r с p . coпst ructo r ; // Фун кция п рототипа
с F / / => t r ue

Существование предопределенного объекта прототи­
па со свойством const r ucto г означает, что создаваемые
объекты наследуют свойство const r ucto r, ссылающее-

180 Гnава 8. Кnассы

ся на их конструктор. Конструкторы идентифицируют
класс , поэтому свойство const r ucto r возвращает класс
объекта.

va r о = new F () ; // Создание объекта о класса F
o . const r ucto r === F // => t ru e

На рис. 8 . 1 показаны отношения между функцией
конструктора и объектом прототипа, а также обратная
ссылка прототипа на конструктор и экземпляры класса,
созданные с помощью конструктора.

Конструктор

Range ()
prototype

Прототип

'4-· · · · · · · · constructor

includes: .. .

foreach : .. .
toString : .. .

Экземпляры

new Range(1 , 2)

• • • • • • • • • • • • • new Range(З,4)

Рис. 8. 1. Функция конструктора, ее прототип и экземпляры класса

Обратите внимание на то, что на рис. 8. 1 конструктор
Range () используется только для примера. Однако фактиче­
ски класс Range , приведенный в листинге 8.2 , переопреде­
ляет объект Range . р rototype собственным объектом. Новый
объект прототипа не имеет свойства const ructo r , поэтому
экземпляры класса Range , определенного таким образом,
также не имеют свойства const r u cto r. Исправить эту про­
блему можно, явно добавив конструктор в прототип.

Range . p rototype = {
con st r u ct o r : Range , // Явная установка конструктора
i n c l udes : f u n ction (x) {
ret u r n t h i s . f rom <= х && х <= t h i s . t o ;
} .

Классы и конструкторы 181

11 и т . д .
} ;

Еще одна популярная методика состоит в использова­
нии предопределенного объекта прототипа со встроен­
ным свойством const r ucto r и добавлении к этому объекту
методов.

11 Расши рение п редоп ределенного объе кта
11 Range . p rototype , чтобы не переоп редел ять
11 свойство Range . p rototype . const ructo r
Range . p rototype . i ncludes = f u nct ion (x) {

ret u r n t h i s . f rom<=x && x<=t h i s . to ;
} ;
Range . p rototype . fo reach = f u nction (f)

} ;

fo r (v a r x=Math . ce i l (t h i s . f rom) ; х <= t h i s . t o ; х++)
f (x) ;

Range . p rototype . toSt r i n g = f u nct ion () {
ret u r n " (" + t h i s . f rom + ·· ·· + t h i s . to + ") " ;

} ;

Кnассы в стиnе Java
Если вы программировали на Java или другом строго

типизированном объектно-ориентированном языке, зна­
чит, вы знакомы с понятием члтов класса, к которым от­
носятся следующие сущности.

• Поля экземпляра - свойства или переменные, со­
держащие состояние индивидуального объекта.

• Методы экземпляра - методы, общие для всех эк­
земпляров, но вызываемые через индивидуальные
объекты.

• Поля класса - свойства или переменные, ассоции­
рованные со всеми объектами данного класса, а не
с одним объектом.

1 82 Гnава 8. Кпассы

• Методы класса - методы, ассоциированные с клас­
сом, а не с экземпляром, и вызываемые через класс.

Одно из существенных отличий JavaScript от Java со­
стоит в том, что вJavaScript функции являются значения­
ми, и по этой причине жесткой границы между полями
и методами не существует. Если значением свойства явля­
ется функция, значит, свойство определяет метод; в про­
тивном случае это обычное свойство , т.е. "поле". Однако
несмотря на это отличие, в JavaScript легко имитировать
каждую из четырех категорий членов класса. В JavaScript
для определения класса используются объекты трех раз­
ных видов (см. рис. 8. 1) , а свойства этих трех объектов
играют роль следующих членов класса.

• Объект конструктора. Как указано выше, функ­
ция (объект) конструктора определяет имя класса
JavaScript. Свойства, добавляемые программистом
в объект конструктора, служат полями и методами
класса.

• Объект прототипа. Свойства объекта прототипа
наследуются всеми экземплярами класса. Свойства,
значениями которых являются функции, ведут
себя, как методы экземпляра класса.

• Объект экземWIЯра. Каждый экземпляр класса явля­
ется полноценным объектом. Свойства, определен­
ные непосредственно для экземпляра, не являются
общими для всех экземпляров. Нефункциональные
свойства, определенные для экземпляров , ведут
себя, как поля экземпляров класса.

Алгоритм определения класса в JavaScript можно со­
кратить до трех шагов. Первый - создание функции кон­
структора, которая устанавливает свойства экземпляра.

Кnассы в стиnе Java 1 83

Второй - определение методов экземпляра в объекте
p rototype конструктора. И третий - определение методов
и полей класса в конструкторе. Можно даже реализовать
данный алгоритм как простую функцию defi neClass () .

// Фун кция дл я о п редел ения классов
f u п c t i o n defi neClass (const ructo r , // И н и ци ализаци я

met hod s , / / Методы экземпляра
stat i c s) // Свойства класса

if (method s) {
// Копирование методо в в прототип
fo r (va r m i n met h od s)

const ructo r . p rototype [m] = methods [m] :

i f (statics) {
// Ко п и рование стати ческих свойств в конструктор
fo r (va r s i n stat i c s)

const ructo r [s] = stat i cs [s] :

ret u rn const r u ct o r :

// Это п ростой вариант кл асса Range
va r SimpleRaпge =

defi пeClass (
f u nction (f , t) { t h i s . f = f ; t h i s . t t : } ,
{

i п c l udes : f u nction (x) {
ret u rn t h i s . f <= х && х <= t h is . t :

} ,
toSt r i n g : f u nction ()

ret u rn t h i s . f + • + t h is . t ;
}

} ,

}
) :

upto : f u nction (t) {
ret u r n new S i mpleRange (O , t) :

1 84 Гnава 8 . Кnассы

Неизменяемые классы
В главе 5 рассматривался определенный в ECМAScript 5

метод Obj ect . d e f i neP r o pe r t ies () , предназначенный для
определения неперечислимых свойств, доступных в ре­
жиме чтения. В этой же главе показано, что дескрипторы
свойств можно передавать также в метод Obj ect . c reate () .
В данном разделе мы рассмотрим использование средств
ECМAScгipt 5 для определения классов с неизменяемыми
экземплярами. В листинге 8.3 приведена неизменяемая
версия упомянутого выше класса Range с неперечислимыми
методами экземпляров (как и методы встроенных классов) .
Интересная особенность листинга 8.3 состоит в том, что
функция конструктора при вызове без ключевого слова new
работает как создающая функция.

Листинr 8.3. Неизменяемый класс, содержащий

неперечислимые методы

// Эта фун кция работает как с ключевым словом new ,
// та к и без не го ; в п ервом случае она и грает рол ь
// конструктора , а во втором - - создающей фун кции
f u nct ion Range (f rom , t o) {

// Это дескрипторы свойств ,
// доступных тол ько дл я чтен ия
va r p rops = {

f rom : { va l u e : f rom , e n umeraЫe : t r ue } ,
to : { va l u e : t o , en ume raЫe : t r ue }

} ;
if (t h i s i nsta пceof Range) // Вызов конструктора

Obj ect . d ef i neP rope rt ies (t h i s , p rops) ;
e lse // Вызов создающей фун кции

ret u r n Obj ect . c reate (Range . p rototype , p rops) ;
}
// Установка п рототи па с неперечислимыми свойствами
Obj ect . d e f i n e P r o pe rt i e s (Range . p rototype ,

i n c l udes : {

Неизменяемые классы 1 185

va l u e : f unction (x)
ret u rn t h i s . f rom <= х & & х < = t h is . t o ;

} ,
w r i t a Ы e : t r ue , con f i g u raЫe : t ru e

} ,
fo reach :

val u e : f u nction (f)
f o r (va r x=Math . ce i l (t h i s . f rom) ; x<=t h is . t o ; х++)

f (x) ;
} ,
w r i taЫe : t r ue , config u raЫe : t rue

} ,
toSt r i n g :

val u e : f u nction ()
ret u rn " (" + t h i s . f rom +
} ,

+ t h is . t o + ") " ;

w r i taЫe : t ru e , con f i g u raЫe : t r u e
}

}) ;

Подклассы
В объектно-ориентированном программировании

класс В может расширятъ класс А, при этом класс В называ­
ется поifклассом, а класс А - наiЖ.лассом. Экземпляры класса В
наследуют все методы экземпляров класса А. В классе В мож­
но определить собственные методы экземпляра; некоторые
из них моrуг переопреде.лятъ методы с этими же именами,
определенные в классе А.

Ключевое условие создания подкласса в JavaScript -
правильная инициализация объекта прототипа. Если объ­
ект О является экземпляром класса В, а В является подклас­
сом класса А, то О должен наследовать свойства А. Однако
для этого необходимо, чтобы объект прототипа В наследо­
вал объект прототипа А. Решить данную задачу можно с по­
мощью метода Obj ect . c reate() , как показано ниже (можно
также применить функцию i n h e rit () ; см. листинг 5. 1) .

1 86 Гnава В. Кпассы

// Подкласс В наследует надкласс А . . .
B . p rototype = Obj ect . c reate (A . p rototype) ;
// . . и переоп редел я ет наследуемый конструктор
B . p rototype . coпst ructo r = В ;

Две приведенные выше строки критичны для соз­
дания подклассов. Без них объект прототипа был бы
обычным объектом, наследующим Obj ect . p rototype . Это
означает, что создаваемый класс будет всего лишь под­
классом класса Obj ect , как и любой другой класс. Две при­
веденные выше строки необходимо добавить в функцию
defi пeClass () , чтобы преобразовать ее в функцию опреде­
ления подкласса defi neSubclas s () .

В листинге 8.4 класс DateRange определен как подкласс
класса Range . Объекты даты вJavaScript можно сравнивать
с помощью операторов < и > , поэтому класс DateRange на­
следует методы i n c l udes () и toSt r i ng () , но переопреде­
ляет метод fo reach () для перечисления дней в диапазо­
не. Обратите внимание на то, как установлено свойство
DateRa nge . p rototype , а также на то, что конструктор под­
класса вызывает конструктор надкласса с помощью мето­
да c a l l () для инициализации нового объекта

Листинг 8.4. Подкnасс кnасса Range

// Подкласс кл асса Range ; насл едует методы
// i n c l udes () и toSt r i пg () ; переоп редел яет метод
// fo reach () для работы с датам и
f u пct ioп DateRaпge (f rom , t o) {

// Использование конструктора надкласса
// для и н и циал и зации подкласса
Range . ca l l (t h i s , f rom , to) ;

// Эти стро ки ключевые для подкласса ; п рототип
// подкласса должен наследовать п рототип надкласса
DateRaпge . p rototype = Obj ect . c reate (Range . p rototype) ;

Подкпассы 1 1 87

DateRange . p rototype . const ructo r = DateRange ;

/ / Это " статическое" поле подкласса содержит
// кол ичество м иллисекунд в сутках
DateRange . DAY = 1 00 0 • 6 0 • 6 0 • 24 ;
// Вызов f () по одному разу
// дл я каждо го дня в диапазоне
DateRange . p rototype . fo reach = f u n ct i o п (f)

va r d = t h i s . f rom ;
wh i l e (d < t h i s . t o) {

f (d) ;
d = new Date (d . getTime () + DateRaпge . DAY) ;

va г поw = new Date () ;
va r tomo r row = new Dat e (now . getTime () + DateRange . DAY) ;
va r пextweek = new Date (пow . getTime () + ? • DateRange . DAY) ;
va r week = new DateRang e (now , nextwee k) ;

wee k . i nc l udes (tomo r row) // => t rue
week . fo reach (f u nction (d) { // Вывод дней недел и
console . log (d . tolocal eDateSt r i n g ()) ;
}) ;

Расширение кпассов
Встроенный в JavaScript механизм наследования на

основе прототипов является динамическим. Это означа­
ет, что объект наследует свойства своего прототипа, даже
если свойства прототипа изменились после создания объ­
екта. Следовательно, классы можно расширять на этапе
выполнения, добавляя новые методы в объекты прото­
типов. Ниже приведен код, добавляющий метод в класс
Range .

// Возвращение н о в о г о диапазона
// с и н вертированными конечными точ ками

1 88 Гnава 8. Классы

Range . p rototype . negate = function () {
ret u rn new Range (- t h i s . t o , - t h i s . f rom) ;

} ;

Прототипы встроенных классов JavaScript также
"открытые". Следовательно, новые методы можно до­
бавлять в классы чисел , строк, массивов, функций и т.п .
Ниже приведен ряд примеров добавления методов.

// Фун кцию f () можно вызы вать мно го раз , передавая
// номер итераци и . Н а приме р , в ывести
// · · п р и вет"' три раза можно та к :
/ / va г п = 3 ;
// n . t imes (f u п c t i o п (п)
// { conso l e . l og (n + П р и вет" ') ; }) ;
N umbe r . p rototype . t imes = f u пct ioп (f , context)

va r n = Numbe r (t h i s) ;
fo r (va r i = О ; i < n ; i++) f . c a l l (context , i) ;

} ;

// О п ределение метода ECMASc r i pt 5 St r i ng . t r i m () ,
// есл и е го не существует ; этот метод удаляет
// п робелы в начале и в конце стро ки
St r i ng . p rototype . t r im =

St r i ng . p rototype . t r im 1 1 f u nc t i o n ()
i f (l t h i s) ret u r п t h i s ;
ret u r n t h i s . replace (Г\s+ l \s+$/g , " ' " ') :

} ;

// Возв рат имени фун кции или пустой стро ки
// есл и есть с в ойство с именем , метод и з вле кает
// е г о , в п роти вном случае функция п реобразуется
// в стро ку , и з которой и з вле кается имя
F u nction . p rototype . getName = f u nc t i o n () {

} ;

ret u rn t h i s . name 1 1
t h i s . toSt r i ng () .

mat ch (/ f u nction\s • ([- (] •) \ (/) [1] ;

Расширение кnассов 1 189

Добавление метода в Obj ect . р rototype делает его до­
ступным для всех объектов. Однако делать так не реко­
мендуется, потому что в ECМAScript 5 добавленный та­
ким способом метод нельзя сделать неперечислимым.
Следовательно, он будет появляться в каждом цикле fo r /
i n , что весьма нежелательно, поскольку будет утрачен
смысл использования циклов данного вида.

1 90 Гnава 8 . КnасtЫ

rЛАВА 9

Реrуnярные выражения

Регулярное въtражение - это объект, описывающий шаблон
символов. В JavaScript реrулярные выражения представ­
лены классом RegExp . Кроме того, в классах St r i n g и Reg Exp
есть методы, в которых реrулярные выражения использу­
ются для выполнения мощных операций поиска и заме­
ны текстов путем сравнивания шаблонов. В данной главе
рассматриваются синтаксис реrулярных выражений, ис­
пользуемый для описания текстовых шаблонов, а также
методы классов St r i n g и RegExp , в которых используются
реrулярные выражения.

Описание шаблонов с помощью

реrуnярных выражений

В JavaScript каждое реrулярное выражение является
объектом класса RegExp . Конечно, его можно создать с по­
мощью конструктора, однако такой способ громоздкий
и применяется редко. Чаще реrулярные выражения соз­
даются с помощью специального литерального синтакси­
са. Литерал реrулярного выражения задается как строка
символов, обрамленная символами косой черты (сравни­
те со строковым литералом, который представляет собой
строку символов, заключенных в кавычки) . Рассмотрим
следующую инструкцию.

va r pat t e r n = /s$/ ;

Эта строка создает объект класса Reg Exp и присваивает
его переменной patte r n . Данное регулярное выражение
соответствует любой строке, заканчивающейся буквой s .
С помощью конструктора Reg Exp () это же регулярное вы­
ражение можно определить следующим образом.

va r pat t e r n = new Reg Exp (" s$ ") ;

Спецификация шаблона регулярных выражений опре­
деляет ряд символов. Большинство этих символов, вклю­
чая все буквы и цифры, описывают просто соответствие
самим себе. Например, регулярное выражение /j ava/ со­
ответствует любой строке, содержащей подстроку j ava.
Другие символы в регулярных выражениях не соответ­
ствуют себе, а имеют специальное значение. Например,
выражение /s$/ содержит два символа. Первый сим­
вол (s) означает совпадение с собой, а второй - это спе­
циальный метасимвол, соответствующий концу строки.
Следовательно , данное регулярное выражение соответ­
ствует любой строке , заканчивающейся символом s .

Литеральные символы
Почти все буквы и цифры в регулярном выражении

трактуются буквально, т.е . соответствуют сами"м себе (та­
кие символы называются литералъными) . Некоторые спе­
циальные символы обозначаются специальными управля­
ющими последовате.лъностями, показанными в табл . 9 . 1 .

Табпица 9.1 . Управпяющие поспедоватепьности, испопьзуемые
в регупярных выражениях

Управnяющая
Специапьный симвоn

посnедоватеnьность

\О Символ NUL (\uOOOO)

\ t Табулостоп (\u0009)

1 92 Гпава 9. Реrупярные выражения

Окончание табл. 9. 7

Ynpa11J1110Щ1• Сnефtа/lьный а1мвоn
nоС11едоваtеJ1ьность

\n

\v

\f

\ г

\хпп

\u xxxx

\сХ

Новая строка (\uOOOA)

Вертикальная табуляция (\uOOOB)

nодача формы (\uOOOC)

Возврат каретки (\uOOOD)

Символ набора Latiл, заданный шестнадцатеричным числом
пп; например, \хОА - это то же самое, что \ t

Символ Uпicode, заданный шестнадцатеричным числом хххх;
например, \u0009 - это то же самое, что \ t

Управляющий символ -х; например, \cJ - это то же самое,
ЧТО \n

Приведенные ниже знаки пунктуации в регулярных
выражениях имеют специальное значение.

1 \ / () [] { }

Мы обсудим их в следующих разделах. Некоторые
из этих символов имеют специальное значение только
в определенном контексте регулярного выражения, а в
других контекстах интерпретируются буквально, т.е. со­
ответствуют самим себе. Однако , как правило, при необ­
ходимости включить символ пунктуации в регулярное вы­
ражение без специального значения нужно ввести перед
ним символ обратной косой черты (\) . Обратная косая
черта отменяет специальное значение. Другие символы
пунктуации, такие как одиночная кавычка или @, не име­
ют специального значения и в любом контексте регуляр­
ного выражения соответствуют самим себе.

Оnнсанне wабnонов с помощью регуnярных выражений 1 93

Кnассы симвоnов
Отдельные литеральные символы можно объединить

в 'КЛасс символов, разместив их в квадратных скобках. Класс
символов соответствует любому символу, приведенному
в квадратных скобках. Например, регулярное выражение
/ [а Ьс]/ соответствует букве а, Ь или с. Можно также опре­
делить отрицание класса символов. Отрицаемый класс
соответствует любому символу, отличному от символов,
перечисленных в квадратных скобках. Отрицание задает­
ся путем ввода символа - после левой квадратной скобки.
Например, регулярное выражение /[-аьс]/ соответствует
любому символу, отличному от а, Ь и с. Дефис в классе сим­
волов обозначает диапазон. Например, выражение / [a - z] /
соответствует любой латинской букве в нижнем регистре,
а выражение / [a - zA-Z0 - 9] / - любой латинской букве или
цифре. Классы символов поддерживают также систему
Unicode. Например, регулярное выражение / [\u0400-\
u04FF]/ соответствует любому символу кириллицы.

В синтаксисе регулярных выражений определены со­
кращения, или ярлыки, ряда часто используемых классов
символов (табл. 9 .2) .

Табnица 9.2. Сокращения часто исnоnьзуемых классов симвоnов

[. . .] Любой символ, приведенный в квадратных скобках

[- . . .] Любой символ, отличный от приведенных в квадратных скобках

. (точка) Любой символ, кроме конца строки или возврата каретки

\ w Любая буква или цифра ASCll, включая символ подчеркивания;
эквивалентно [a -zA-Z0-9_]

\W Любой символ, не являющийся буквой или цифрой ASCl l ; эквивалентно
[- a - zA-Z0-9_]

1 94 Гnава 9. Реrуnярные выражения

Окончание табл. 9.2

Выражение Чему cocmeтmreт

\ s Любой пробельный символ Unicode (пробел, неразрывный пробел,
табулостоп и т.д.)

\S Любой символ, не являющийся пробельным символом Uпicode (обратите
внимание на то, что \w и \S - это не одно и то же)

\d Любая цифра ASCl l ; эквивалентно [0 - 9]

\ D Любой символ, отличный от цифры ASCll ; эквивалентно [- о - 9]

[\ ь] Знак возврата на одну позицию назад (клавише Backspace)

Обратите внимание на то, что в определении класса
символов можно использовать управляющие последова­
тельности. Например, выражение / [\s\d]/ соответствует
пробельному символу или цифре.

Повторение
После символа или класса символов можно ввести

символы повторения, задающие, сколько раз необходимо
повторить указанные символы. Синтаксис повторения
обобщен в табл. 9 .3 .

Таблица 9.3. Повторение в реrуnярных выражениях

СиМВО11ы Зиачеим
{ п , m } Повторить как минимум п , но не более m раз

{ п , } Повторить п или более раз

{ п } Повторить точно п раз

Повторить предыдущий элемент нуль или один раз; это означает, что
предыдущий элемент необязателен; эквивалентно { О , 1 }

+ Повторить один или более раз; эквивалентно { 1 , }

Повторить произвольное количество раз, включая нулевое;
эквивалентно { О , }

Описание wабnонов с помощью реrуnярных выражений 1 1 95

Ниже приведен ряд примеров регулярных выраже­
ний, в которых задано повторение элементов.

/\d { 2 , 4 } / // От 2 до 4 цифр
/\w { З } \d?/ // Три буквы и

/! одна необя зател ьная цифра
/\s+j ava\s+/ // Слово " j ava" с п робелами

// до и после него
/ [" (] • / // Нул ь ил и более сим воло в ,

// н е я вляющихся откры вающей скобкой

Будьте осторожны с символами * и ? . Они могут озна­
чать повторение предыдущего элемента нуль раз, поэто­
му им разрешено не соответствовать ничему. Например,
регулярное выражение /а •/ , как ни странно, может соот­
ветствовать строке ЬЬЬЬ , потому что в ней нет символа а .

Нежадное повторение
Символы повторения, приведенные в табл. 9 .3 , задают

повторение произвольное количество раз , при этом они
"захватывают" все подходящие части обрабатываемой
строки . Такое повторение называется жаднъtм. Можно
также определить нежадное повторение. Для этого доста­
точно поместить знак вопроса после символа или сим­
волов повторения: ? ? , +? , . ? или даже { 1 , 5 } ? . Например,
регулярное выражение /а+/ соответствует одному или
нескольким вхождениям символа а. Если применить его
к строке ааа , оно охватит все три символа а. Выражение
/а+?/ также охватывает произвольное количество симво­
лов а , но как можно меньшее. Если применить его к этой
же строке (ааа) , оно охватит только первый символ а .

Альтернативы, группировка и ссылки
В регулярных выражениях можно использовать спе­

циальные символы, задающие альтернативные вариан­
ты , группировку подвыражений и ссылки на предыдущие

196 Гnава 9. Реrуnярные выражения

подвыражения. Символ 1 разделяет альтернативные ва­
рианты. Например, выражение /аЬ 1 cd 1 ef / соответствует
строке аЬ , cd или ef . Еще пример: выражение /\d { З } 1 [a - z]
{ 4 } / соответствует либо трем цифрам , либо четырем бук­
вам в нижнем регистре.

Учитывайте , что альтернативы перебираются слева
направо , пока не будет найдено совпадение. Если левая
альтернатива соответствует обрабатываемой строке , пра­
вая альтернатива игнорируется, даже если соответствие
"лучшее". Следовательно, выражение /а 1 аЬ/ , применен­
ное к строке а Ь , соответствует первому символу а .

Скобки имеют в регулярных выражениях ряд специ­
альных значений. Одно из них - группировка отдельных
элементов (т.е . создание подвыражения) таким образом,
что они будут интерпретироваться символами 1 , * , + и ?
как один элемент. Например, выражение /j ava (sc r i pt) ? /
соответствует слову j ava , после которого находится не­
обязательное слово sc r i pt . Выражение / (a b l cd) + l ef/ со­
ответствует либо строке e f , либо повторению один или
более раз строки аЬ или cd .

Еще одно назначение скобок - определение подшабло­
на в шаблоне. Когда регулярное выражение успешно на­
ходит соответствие в целевой строке , то можно извлечь
части целевой строки , соответствующие любому заданно­
му подшаблону, заключенному в скобки (получение под­
строк рассматривается далее) . Предположим, что нужно
найти одну или несколько букв в нижнем регистре, после
которых есть одна или несколько цифр. Для этого можно
применить шаблон / [a - z] +\d+/. Но предположим, что нас
интересуют только цифры в конце каждого соответствия.
Заключим часть шаблона в скобки: / [a - z] + (\d +) / . После
этого можно будет извлечь цифры из подшаблона, как по­
казано далее.

Описание wабnонов с помощью реrуnярных выражений 1 1 97

Использование подвыражений в скобках позволяет
ссылаться на подвыражение далее в том же регулярном
выражении. Ссылка начинается символом \ , после кото­
рого необходимо поместить цифру или цифры. Число
указывает на номер подвыражения в скобках внутри ре­
гулярного выражения. Например, шаблон \3 ссылается
на третье подвыражение.

Ссылка на предыдушее подвыражение регулярного
выражения возвращает не шаблон подвыражения, а дей­
ствительный текст, соответствующий данному шаблону.
Следовательно, ссылки можно использовать для наложе­
ния ограничений, задающих части строки с одинаковыми
символами. Например, следующее регулярное выражение
соответствует нулевому или большему количеству симво­
лов, заключенных в одинарные или двойные кавычки.

/[. "] [� . "] * [. "] /

Однако типы открывающей и закрывающей кавычек
могут не совпадать. Например, может получиться , что от­
крывающая кавычка одинарная, а закрывающая - двой­
ная. Для решения этой проблемы необходимо использо­
вать ссылку на предыдущее соответствие.

Ссылка \ 1 соответствует тексту, найденному первым
подвыражением в скобках. В данном примере выражение
задает заключение строки в однотипные кавычки.

Можно также группировать элементы регулярного
выражения, не создавая числовые ссылки на них. Для
этого после открывающей скобки нужно ввести знак во­
проса и двоеточие, т.е . группа выглядит не как (. . .) , а как
(? : . . .) . Правила применения альтернативных вариантов,
группировки и создания ссылок приведены в табл. 9.4.

1 98 Гnава 9. Реrуnярные выражения

Табnица 9.4. Аnьтернативы, rpynnы и ссыпки в реrупярных выражениях

Сим

Альтернативные варианты; выполняется поиск соответствия
подвыражению слева или справа от данного символа

(. . .) Группировка нескольких элементов в один элемент, к которому может быть
применен символ •, +, ? или 1 . Символы, возвращенные rруппой, могут
использоваться для ссылки далее в регулярном выражении

(? : . . .) Только группировка; возвращенные символы не используются в ссылках и,
следовательно, не имеют номера

\п Ссылка, т.е. подстановка символов, возвращенных группой номер n.

Группы являются подвыражениями (возможно, вложенными)
и нумеруются слева направо. Если группы вложенные, нумеруются
открывающие скобки. Группы, начинающиеся символами (? :
в нумерации пропускаются

Задание позиции соответствия
Как было показано выше, многие элементы регуляр­

ных выражений находят соответствие одному символу
в строке. Например, выражение \s соответствует одно­
му пробельному символу. Однако некоторые элементы
регулярных выражений соответствуют позициям между
символами, а не символам. Например, \Ь соответствует
границе слова, т.е. позиции между \w (буква ASCII) и \W
(символ, отличный от буквы) . Такие элементы, как \Ь , за­
дают не символы, а позиции, в которых найдено соответ­
ствие. Иногда эти элементы называют я�трями (anchors) ,
потому что они "закрепляют" шаблон в определенной по­
зиции целевой строки. В регулярных выражениях часто
используются якорные элементы � (начало строки) и $
(конец строки) .

Например, чтобы задать соответствие строке , содер­
жащей только слово JavaSc r i p t , необходимо написать

Описание wабnонов с помощью реrупярных выражений 1 99

Г JavaSc r i pt$/. Если нужно найти отдельное слово J ava
(не входящее в слово J avaSc r i pt или какое-либо другое
слово) , примените шаблон /\sJava\s/, требующий про­
белов в начале и конце слова. Однако данное решение
порождает две проблемы. Во-первых, соответствия не
произойдет, если Java находится в начале или конце стро­
ки или в конце предложения. Вокруг J ava обязательно
должны быть пробельные символы. Во-вторых, данный
шаблон возвращает слово J ava с пробелами, а это, види­
мо, не то , что обычно нужно. Поэтому вместо соответ­
ствия пробельным символам лучше применить шаблон
соответствия границе слова \Ь . Тогда регулярное выра­
жение будет выглядеть так: /\bJava\b/. Якорный элемент
\В определяет позицию, не являющуюся границей слова.
Таким образом, шаблон /\B [S s] c r ipt/ соответствует сло­
вам JavaSc r i pt и postsc r i p t , но не sc r i pt и Sc r i pt i n g .

Виды якорных выражений перечислены в табл. 9 .5 .

Табnица 9.5. Эnементы якорных выражений

Элемент Назиl'lение

Начало строки (в многострочном или однострочном тексте)

$ Конец строки (в многострочном или однострочном тексте)

\Ь Граница слова, т.е. позиция между \w и \W или между \w и концом строки
(однако [\ Ь] соответствует символу возврата - клавише <Backspace>)

\В Позиция, не являющаяся границей слова

(? = р) Положительное условие н а последующие символы. Требует, чтобы
последующие символы соответствовали шаблону р, но не включает эти
символы в найденную строку

<? 1 р) Отрицательное условие н а последующие символы. Требует, чтобы
последующие символы не соответствовали шаблону р

200 Гnава 9. Реrуnярные выражения

Фпажки
Флажки регулярных выражений задают высокоуров­

невые правила соответствия шаблонам. В отличие от дру­
гих элементов регулярных выражений, флажки находят­
ся не между символами косой черты, а после второй ко­
сой. В JavaScript поддерживаются три флажка. Флажок i
задает поиск соответствий, нечувствительных к регистру
букв. Флажок g задает глобальный поиск соответствий,
т.е. найдены должны быть все соответствия в целевой
строке. Флажок m задает поиск соответствий в много­
строчном режиме. Это означает, что если целевая строка
содержит символы новой строки, то якоря - и $ соответ­
ствуют началу и концу каждой строки и, кроме того, нача­
лу и концу всего текста. Флажки могут задаваться в любой
комбинации. Например, шаблон /j ava$/im соответствует
строкам j ava и J ava\ n i s f u n .

Все флажки регулярных выражений перечислены
в табл. 9 .6. Флажок g подробнее рассматривается в сле­
дующем разделе.

Табnица 9.6. Фnажки реrупярных выражений

Фnажок Нuначенме

Задание соответствий, нечувствительных к регистру букв

g Глобальный поиск соответствий; это означает, что процедура поиска не
останавливается, найдя первое соответствие, а ищет все соответствия

m Многострочный режим; символ - соответствует началу каждой строки
и всего текста, а символ $ - концу каждой строки и всего текста

Использование реrуnярных выражений
В данном разделе рассматриваются методы объектов

St ri ng и Reg Ехр , в которых регулярные выражения исполь-

Испопьзованме реrупярных выражений 1 201

зуются для поиска соответствий шаблонам и выполнения
операций поиска и замены.

Методы кnасса St ring
Класс St r i n g поддерживает четыре метода, исполь­

зующих регулярные выражения. Самый простой метод -

sea rch () . Он вызывается через строку, принимает регу­
лярное выражение и возвращает либо позицию первого
символа в начале первого соответствия, либо - 1 , если
соответствий нет. Например, приведенный ниже код воз­
вращает 4.

" J avaSc r i pt " . sea rch (/sc r i pt/i) ;

Метод sea r c h () не выполняет глобальный поиск; в ар­
гументе регулярного выражения он игнорирует флажок g .

Метод replace () выполняет операции поиска и заме­
ны. Через первый аргумент он принимает регулярное вы­
ражение, а через второй :__ подставляемую строку. Метод
ищет соответствия в строке, через которую он вызван.
Если в регулярном выражении установлен флажок g , ме­
тод заменяет все найденные соответствия; в противном
случае метод заменяет только первое соответствие. Если
через первый аргумент передается не регулярное выра­
жение, а строка, то метод replace () , в отличие от метода
sea rc h () , не преобразует строку в регулярное выражение
с помощью конструктора RegExp () , а ищет точное совпа­
дение заданной строки. Например, в следующей инструк­
ции метод repl ace () применяется для унификации реги­
стров букв JavaSc r i pt во всем объекте text .

text . replace (/j avas c r i pt/g i , " J avaSc r i pt ") ;

Однако метод герlасе () еще более мощный. Как вы
помните, подвыражения в скобках нумеруются слева на­
право, и регулярное выражение запоминает подстроки,

202 Глава 9. Реrуnярные выражения

возвращаемые каждым подвыражением. Если в подстав­
ляемой строке после символа $ находится цифра, метод
заменит эти два символа возвращенной подстрокой с ука­
занным номером. Данное средство можно использовать,
например, для замены прямых двойных кавычек, у кото­
рых открывающая и закрывающая кавычки не отличают­
ся одна от другой, типографскими кавычками « и " ·

va r q uote = / " ([- "] •) " /g ;
text . replace (q uote , ' « $ 1 » ') ;

Второй аргумент метода replace () может быть функци­
ей, которая динамически вычисляет подставляемую стро­
ку. Если передать функцию, она будет вызвана по одному
разу для каждого соответствия. Первый аргумент функ­
ции - строка, соответствующая регулярному выражению,
а остальные аргументы - тексты, соответствующие каж­
дому подвыражению шаблона. Возвращаемое выражение
функции применяется в качестве подставляемой строки.

Наиболее общий метод matc h () принимает единствен­
ный аргумент - регулярное выражение и возвращает мас­
сив, содержащий результаты поиска соответствий. Если
в регулярном выражении установлен флажок g , метод воз­
вращает массив всех соответствий, обнаруженных в стро­
ке. Например, приведенная ниже инструкция находит
все цифры и создает строковый массив, содержащий эти
цифры в порядке вхождения.

· 1 плюс 2 равно 3 " . match (/\d+/g) // => [" 1 ' ' , · 2 · , " З "]

Если в регулярном выражении нет флажка g , метод
match () не выполняет глобальный поиск, а просто возвра­
щает первое соответствие. Однако и в этом случае метод
mat c h () возвращает массив: его первый элемент содержит
соответствующую строку, а остальные элементы - под­
строки, соответствующие подвыражениям регулярного

Испопьзование реrупярных выражений 1 203

выражения. По аналогии с методом repl ace () можно счи­
тать, что а [п] содержит $п .

Рассмотрим пример синтаксического разбора строки
с URL-aдpecoм с помощью следующего кода.

va r u r l = / (\w+) : \/\/ ([\w .] +) \/ (\S •) / ;
v a г text = "Адрес htt p : //www . example . соmГ david " ;
va r result = text . mat ch (u r l) ;
i f (resu lt 1 = n u l l) {

va r f u l l u r l = resu lt [O] ; // полное соответствие
va r p rotocol = resul t [1] ; // => " h t t p "
v a г h o s t result [2] ; // => "www . example . сот
va r pat h = result [3] ; // = > " -dav i d "

И наконец, рассмотрим последний метод класса
St r i n g , в котором используются регулярные выражения:
метод s p l i t () . Он разбивает строку, через которую он вы­
зван , на массив подстрок, используя аргумент в качестве
разделителя.

" 1 23 , 456 , 789 " s p l i t (" , ") ; //= > [" 1 23 " , " 456 " , " 789 "]

Метод sp l i t () может также принимать регулярное вы­
ражение через аргумент. Это позволяет, например, задать
символ разделителя таким образом, чтобы были удалены
смежные пробельные символы.

" 1 2 ,3 " . spl i t (/\s • , \s • /) ; // => [" 1 " , " 2 ' , " 3 "]

Свойства и методы кпасса Reg Exp
Каждый объект RegExp имеет пять свойств. Свойство

sou rce содержит текст регулярного выражения. Свойство
g lobal задает, установлен ли флажок g. Свойство igno reCase
задает флажок i , а свойство mul t i l i n e - флажок m . И нако­
нец, целочисленное свойство last l n dex, доступное для чте­
ния и записи, используется для шаблонов с флажком g
и содержит позицию в строке , с которой начинается еле-

204 Гnава 9. Реrуnярные выражения

дующий шаг поиска. Свойство lastl ndex используется ме­
тодами ехес () и test () , как описано далее.

В объекте RegExp определены два метода, выполняю­
щие поиск соответствия шаблонам. Они работают ана­
логично описанным выше методам класса St r i n g . Метод
ехес () класса RegExp напоминает метод match () класса
St r i n g (см. выше) за исключением того , что метод ехес ()
принимает строку, а метод mat c h () принимает регуляр­
ное выражение. Метод ехес () выполняет регулярное
выражение в заданной строке. Если он не находит со­
ответствия , он возвращает значение n u l l . Если соответ­
ствие найдено, он возвращает массив, аналогичный воз­
вращаемому методом mat c h () при отсутствии флажка g .
Нулевой элемент массива содержит строку, соответству­
ющую регулярному выражению, а каждый последующий
элемент содержит подстроку, соответствующую очеред­
ному подвыражению. В свойстве i ndex находится пози­
ция первого символа, в которой найдено соответствие,
а свойство i n p u t ссылается на исходную строку.

В отличие от match () , метод ехес () возвращает один
и тот же массив независимо от наличия флажка g в регу­
лярном выражении. Как вы помните, метод matc h () воз­
вращает массив совпадений при обработке глобального
регулярного выражения. В противоположность этому ме­
тод ехес () всегда возвращает одно соответствие и предо­
ставляет полную информацию о нем. При вызове метода
ехес () для регулярного выражения с флажком g свойство
l astl ndex объекта регулярного выражения получает по­
зицию символа, находящегося непосредственно после со­
ответствующей подстроки. При вызове метода ехес () вто­
рой раз для этого же регулярного выражения он начинает
поиск с позиции, указанной в свойстве lastl ndex . Если ме­
тод не находит соответствия , он устанавливает свойство

Испоnьзование регуnярных выражений / 205

lasti ndex равным нулю (программно можно изменить
значение lasti ndex в любой момент) . Такое поведение по­
зволяет вызывать метод ехес () многократно для прохода
в цикле по всем соответствиям регулярного выражения
в заданной строке, как в следующем примере.

va r pat t e r п = /Java/g :
va r text = " J avaSc r i pt лучше , чем Java ' " ;
va r res u l t ;
w h i le ((result = patte r п . exec (text)) ! = п u l l)

а lе гt (" Соответствие · " + resu l t [O] + +
" в позиции " + result . i пdex +

поиск с позиции + patte r п . last! пdex) ;

Метод test () класса Reg Exp намного проще, чем ехес () .
Он принимает строку и возвращает t r ue , если находит со­
ответствие.

va r pat t e r п = /j ava/i ;
patte r п . test (" JavaSc r i pt ") ; // => t r ue

Вызов test () эквивалентен вызову ехес () и возврату
t rue , если возвращаемое значение метода ехес () не равно
n u l l . Благодаря этой эквивалентности метод test () обра­
батывает глобальное регулярное выражение так же, как
и метод ехес () : он начинает поиск в заданной строке с по­
зиции, заданной значением свойства last i n dex , и, найдя
соответствие, присваивает свойству lasti ndex позицию
символа, находящегося непосредственно после соответ­
ствия. Следовательно, с помощью метода test () можно
проходить в цикле по строке так же, как и с помощью ме­
тода ехес () .

206 Гnава 9. Реrуnярные выражения

ГЛАВА 1 0

JavaScript на стороне кnиента

В предыдущих главах рассматривался синтаксис J avaScript.
Теперь же мы перейдем к использованию JavaScript в бра­
узерах на стороне клиента. Большинство встречавших­
ся ранее примеров представляли собой корректный код
JavaScript, но не привязанный к какому-либо контексту.
Это были всего лишь фрагменты кода, выполняемые не
в рабочей среде. В данной главе рассматривается рабочая
среда на стороне клиента.

Внедрение JavaScript-кoдa в НТМL-документ
Код JavaScript может находиться в НТМL-документе

между дескрипторами <sc r i pt > и </sc r i pt> .

<sc r i pt >
// Здесь находится код J avaS c r i pt

</sc r i pt>

В листинге 10. 1 приведен НТМL-файл, содержащий
простую JavaScript-пpoгpaммy. Комментарии объясняют,
что делает программа, но главное назначение данного
примера - не технические подробности, а демонстрация
внедрения кoдaJavaScript в НТМL-файл с таблицей CSS.

Листинr 10.1 . Простые цифровые ча(Ы на основе JavaSaipt

< I DOCTYPE html > < 1 - - Это файл HTM L5 - - >
< htm l > < I _ _ Ко рневой элемент - - >
<head> < ! - - За головок - - >
<t i t lе>Цифровые чacы</t i t le>

<sc r ipt> // Сценар и й JavaSc r i pt
// Функция , в ы водящая текущее время
f u пct ioп d i s playTime () {

}

va r поw = пеw Date () ; // Получение времени
// Поиск элемента с i d = " c l o c k "
va r e lt = documeпt . getElemeпtByid (" c lock ") ;
// В ы вод времени
e lt . i п п e rHTM L = пow . t o localeTimeSt r i пg () ;
// Повторение один раз в се кунду
setТimeout (d i s p layТime , 1 000) ;

// Запуск часов п р и за грузке НТМ L-до кумента
wiпdow . o п load d i s playTime ;
</sc r ipt>
<style> / • Табл и ца CSS дл я часов •/
#clock { /• Сти л и для элемента i d = " c lock " • /

foпt : b o l d 24pt saпs ; /• Круп ный шрифт •/
backg rouпd : #dd f ; / • Серый фон • /
padd iпg : 1 0 рх ; / • Отступ •/
borde r : solid Ыасk 2рх ; / • Черная рамка • /
borde r - rad i u s : 1 0р х ; /• Скругленные у гл ы • /

</style>
</head >
< body>
< h 1 >Цифровые часы</h 1 >
<sрап i d = " c lock" ></spaп>
</body>
</htm l >

< ! - - Содержимое страницы - - >
< ! - - За головок - - >
< 1 - - Текущее в ремя - - >

В дескриптор <sc r i p t> можно включить атрибут s rc ,
задающий адрес файла с кoдoмjavaScript.

<sc r i pt s rc = " . . / . . /sc r i pt s/ut i l . j s " ></sc r ipt>

Файл JavaScript должен содержать только код
JavaScript - без дескрипторов <sc r i pt> и других элемен­
тов HTML. Согласно общепринятым соглашениям файлы
JavaScript имеют расширение . j s .

208 Глава 1 О. JavaScript на стороне клиента

Добавление в НТМL-код дескриптора <sc r i p t > с атри­
бутом s rc эквивалентно размещению содержимого ука­
занного файла . j s в этом же месте между дескрипторами
<sc r i pt> и </sc r i pt> . Обратите внимание на то , что закры­
вающий дескриптор </sc r ipt> в НТМL-документе обяза­
телен , даже если задан атрибут s rc и содержимого между
дескрипторами <sc r i pt> и </sc r i pt> нет.

ЯзыкJavaScript всегда применялся для создания сцена­
риев на неб-страницах, поэтому часть его названия пере­
шла в название дескриптора <sc r i pt> . Элемент <sc r i pt>
имеет атрибут type , которому по умолчанию присвоено
значение text/j avas c r i p t . Можно присвоить его явно, но
это необязательно.

Проrраммирование на основе событий

Клиентские программы нaJavaScript обычно работают
асинхронно и управляются событиями. Когда загружается
неб-страница, сценарии обычно инициализируют некото­
рые переменные и регистрируют функции обработки со­
бытий. Затем эти функции вызываются браузером при на­
ступлении событий, для которых они зарегистрированы.
Например, неб-приложение , в котором для каких-либо
операций используются "горячие" клавиши, регистриру­
ет события клавиатуры. События используются даже в не­
интерактивных программах. Предположим , нужно соз­
дать программу, которая анализирует структуру докумен­
та и автоматически генерирует оглавление. В этом случае
события взаимодействия с пользователем не нужны, но
программа все же регистрирует обработчик события
o n l oad , чтобы программа определила, когда закончилась
загрузка страницы и документ готов к автоматической ге­
нерации оглавления.

Проrраммирование на основе событий 1 209

События и обработчики событий подробнее рассма­
триваются в главе 12 .

Объект окна
Объект Wi ndow - главная точка входа во все клиентские

cpeдcтвaJavaScript и функции API. Этот объект представ­
ляет окно или фрейм браузера, и на него можно ссылать­
ся с помощью идентификатора window. В объекте Window
определено свойство locat i o n , кqторое ссылается на объ­
ект Locat i o n , содержащий URL-aдpec отображаемой веб­
страницы. Свойство location позволяет сценариям загру­
жать в окно браузера другие веб-страницы.

window . location = " ht t p : //www . o re i l l y . com/" ;

В объекте Window определены также метод ale rt () , ко­
торый отображает диалоговое окно сообщений, и метод
setТimeout () , который регистрирует функцию, автома­
тически вызываемую через заданный интервал времени.
Выполнение приведенной ниже инструкции приведет
к появлению сообщения При вет ! через две секунды после
вызова функции.

setТimeout (fu nction () { а l е гt (" При вет ! ") ; } , 2000) ;

Обратите внимание на то, что в приведенном выше коде
нет явного использования свойства window. Это необязатель­
но, потому что на стороне клиента объект Wi ndow всегда яв­
ляется глобальным. Следовательно, объект Window находит­
ся на вершине цепочки областей видимости, и его свойства
и методы являются глобальными переменными и функция­
ми. У объекта Window есть свойство window, которое ссьтает­
ся на этот же объект. Свойство window можно явно использо­
вать в программе, но для обращения к свойствам глобально­
го объекта окна это необязательно.

210 Глава 10. JavaScript на стороне клиента

Как и в глобальном объекте , в объекте Window опреде­
лен ряд свойств и методов, полезных для создания пpo­
гpaмм J avaScript. Наиболее важное свойство document под­
робно рассматривается в главе 1 1 . Другие свойства и ме­
тоды объекта Window рассматриваются в данной главе.

Таймеры
Встроенные методы setтimeout () и set l n te rval () по­

зволяют зарегистрировать пользовательскую функцию,
вызываемую один раз или многократно по истечении
заданного интервала времени. Это важные глобальные
функции на стороне клиента, поэтому они определены
как методы объекта Window. В то же время эти функции
предназначены для решения любых задач, необязательно
связанных с окном.

Метод setТimeo ut () объекта Win dow регистрирует
функцию, выполняемую через интервал времени, за­
данный в миллисекундах. Значение , возвращаемое мето­
дом setтimeout () , можно передать методу clea rTimeout ()
для отмены выполнения зарегистрированной функции.
Если вызвать метод setтimeout () и передать аргумент О,
зарегистрированная функция не будет вызвана немедлен­
но. Она будет поставлена в очередь и вызвана в момент,
когда завершится выполнение любого текущего обработ­
чика события.

Метод set l nte rval () напоминает метод setтimeou t () за
исключением того, что регистрируемая функция вызывает­
ся многократно с интервалом, заданным в миллисекундах.

11 Метод updateCloc k () вызы вается каждые 60 се кунд
set l n t e rval (u pdateCloc k , 60000) ;

Как и setТimeout () , метод set l nte rva l () возвращает зна­
чение, которое можно передать методу clea r l n te rva l ()
для отмены вызовов зарегистрированной функции.

Объект окна 1 211

Свойство location
Свойство locat ion объекта Wi ndow ссылается на объект

Locat io n , который представляет URL-aдpec документа, ото­
браженного в окне. Кроме того, свойство locat ion можно
использовать для загрузки в окно другого документа.

Свойство h ref объекта Locat io n содержит полный
текст URL-строки текущего документа. Метод toSt ri ng ()
объекта Locat ion возвращает значение свойства h ref , поэ­
тому обычно вместо locat i o n . h ref можно писать locat i o n .

Другие свойства объекта Locat ion (p rotoco l , h o s t ,
host name , ро r t , path name , s e a r c h и hash) содержат отдельные
части URL-aдpeca. Иногда их называют свойствами деком­
позиции адреса. Кроме того , они поддерживаются объ­
ектом L i n k , создаваемым элементами <а> и <a rea> НТМL­
документа.

В объекте Locat i o n определен метод rel oad () , который
заставляет браузер перезагрузить документ.

Объект Locat i o n можно использовать для перехода
к другой странице. Для этого достаточно присвоить но­
вый URL-aдpec непосредственно свойству location .

location = " http : //www o rei l l y . com" :

Свойству locat i o n можно также присвоить относи­
тельный URL-aдpec. Он будет разрешен относительно те­
кущего URL-aдpeca.

location = " page2 . html " : // Следующая страница

Если в качестве относительного URL-aдpeca присвоить
свойству locat i o n идентификатор фрагмента страницы,
то браузер не загрузит новый документ, а перейдет к ука­
занному фрагменту текущего документа. Специальный
случай - идентификатор #top . Если ни один элемент до-

212 Гnава 1 О. JavaScript на стороне кnиента

кумента не имеет атрибута id со значением top , то браузер
перейдет к началу документа.

locat i o n = " #top " ;

Свойства декомпозиции URL-aдpeca объекта Locat i o n
доступны для записи. При изменении любого и з них не­
медленно обновляется свойство locat i o n , что заставляет
браузер загрузить новый документ (или, в случае свойства
hash , перейти в другое место текущего документа) .

locat ion . sea rch = " ? page=· + (pagenum+1) ;

История браузера
Свойство h i sto ry объекта Wi ndow ссылается на объект

H i sto ry окна. В объекте H i s to ry представлена история
просмотра страниц в виде списка документов и состоя­
ний документов.

В объекте H i sto ry есть методы bac k () и fo rwa rd () , кото­
рые имитируют щелчки на кнопках Back (Назад) и Forward
(Вперед) браузера. При вызове этих методов браузер пе­
реходит на предыдущую или следующую страницу. Метод
go () принимает целое число, задающее переход на не­
сколько страниц вперед или назад (в зависимости от зна­
ка аргумента) . Приведенная ниже инструкция задает пе­
реход на две страницы назад.

h isto ry . g o (- 2) ;

Если объект Window содержит дочерние окна (напри­
мер, элемент <i f rame> , который рассматривается в гла­
ве 1 1) , истории дочерних окон хронологически встраи­
ваются в историю главного окна. Например, если выпол­
нялись переходы в дочернем окне, то при вызове метода
h i sto ry . bac k () браузер может перейти к предыдущей стра-

Объект окна 1 213

нице дочернего окна, оставив текущую страницу главного
окна без изменений.

Современные веб-приложения могут динамически из­
менять свое содержимое без загрузки нового документа.
Для таких приложений часто необходимо, чтобы поль­
зователь мог с помощью кнопок Back и Forward браузера
переходить между состояниями, динамически создавае­
мыми приложением. Один из способов решения этой
задачи состоит в сохранении строки, отображающей те­
кущее состояние приложения, в свойстве locat i o n . h a s h .
Новый документ при этом не загружается , но создается
новый пункт истории, к которому пользователь позже
может вернуться с помощью кнопки Back. В приложении
для этого используется событие hashchange , генерируемое
браузером. Приложение, которому нужно отслеживать
кнопки Back и Forward , может зарегистрировать обработ­
чик window . o n has hc ha nge .

Другой, более сложный способ управления историей
браузера веб-приложением основан на использовании
метода h i st o ry . p u s hState () и соответствующего ему обра­
ботчика события wi ndow . o n popstate . В данной книге этот
способ не рассматривается.

Информация о браузере и экране
Иногда сценарию необходима информация о браузере,

в котором он выполняется, и о настольном компьютере,
на котором установлен браузер. В данном разделе рассма­
триваются свойства navigat io r и sc reen объекта Wi ndows ,
ссьшающиеся на объекты Navigato r и Sc reen . Эти объекты
предоставляют программе информацию, позволяющую на­
строить поведение сценария на основе характеристик сре­
ды. Объект Navigato г содержит информацию о типе брау­
зера и номере версии. Назван он так потому, что в далеком

214 Гnава 1 0. JavaScript на стороне кnиента

прошлом он поддерживал только один браузер - Netscape
Navigator, однако сейчас объект Navigat o r , несмотря на на­
звание, поддерживает все типы браузеров.

У объекта Navigato r есть четыре свойства, содержа­
щих информацию о текущем браузере.

• appName - полное имя браузера. Для 1Е это свойство
равно M i c rosoft I nt e r n e t Ex p l o re r , для Firefox -

Netscape . В целях совместимости многие другие бра­
узеры также возвращают строку Netscape .

• appVe rsion . Это свойство обычно начинается с чис­
ла, за которым следует подробная информация
о производителе и версии браузера. Число, указан­
ное в начале, обычно равно 4 . О или 5 . О и означает
совместимость с браузерами четвертого или пятого
поколения. Для строки appVe r s ion нет стандартного
формата, поэтому ее синтаксический анализ неза­
висимо от типа браузера невозможен.

• n use rAgent . Эту строку браузер передает НТТР­
серверу в заголовке USER -AGENT сообщения GET или
POST. Обычно это свойство содержит всю инфор­
мацию из appVe rsion и некоторые дополнительные
подробности. Как и в случае appVe rsion , формат дан­
ного свойства не стандартизован.

• platfo rm. Строка, идентифицирующая операцион­
ную систему и , возможно, оборудование, на кото­
ром выполняется браузер.

Кроме информации о браузере и версии, объект
Navigat o r содержит ряд дополнительных свойств и ме­
тодов. Ниже приведены некоторые стандартизованные
и нестандартизованные свойства, часто использующие­
ся в cцeнapияxJavaScript.

Обьект окна 1 215

• o n l i n e . Свойство navigat o r . o n l i n e (если оно суще­
ствует) сообщает, подключен ли в данный момент
браузер к сети.

• g e o l ocat i o n . Объект Geolocat i o n определяет функ­
ции , предназначенные для вычисления текущих ге­
ографических координат браузера. Подробности
работы с функциями объекта Geolocat io n в данной
книге не рассматриваются.

Свойство sc reen объекта' Window ссылается на объ­
ект Sc ree n , предоставляющий информацию о размерах
пользовательского монитора. Свойства width (ширина)
и he ig ht (высота) содержат размеры экрана в пикселях.
Свойства avai lWi d t h и ava i l He i g h t содержат размеры до­
ступной области экрана, в которую не входят некоторые
элементы, такие как панель задач. Объект Sc reen часто ис­
пользуется для выяснения того , выполняется ли приложе­
ние на портативном устройстве, таком как планшет или
мобильный телефон.

Диалоrовые окна
Объект Wi ndow предоставляет три метода для отобра­

жения простых диалоговых окон. Метод a l e rt () выводит
сообщение с кнопкой ОК и ожидает, пока пользователь
щелкнет на ней. Метод confi rm () требует подтверждения.
Он выводит сообщение с кнопками ОК и Отмена и ожида­
ет, пока пользователь подтвердит или отменит некоторую
операцию, щелкнув на одной из кнопок. Возвращаемое
значение (t rue или false) зависит от того, на какой кнопке
щелкнул пользователь. Метод р rompt () выводит сообщение
и текстовое поле, в которое пользователь может ввести
строку, и возвращает эту строку. В приведенном ниже коде
в качестве примера используются все три метода.

216 Гnава 10. JavaScript на стороне клиента

do {
// Зап рос стро ки
va r n = р rоmрt (" В ведите свое имя ") ;
/! Запрос подтверждения
va г o k = coпfi rm (" Имя " + n + правильное? ") ;
wh i l e (1 o k)

а l е rt (" Здравствуйте , + n) : // Вы вод п р и ветств ия

Методы ale rt () , co n f i rm () и p rompt () легко использо­
вать, однако из эстетических соображений на практике
их применяют редко. На неб-страницах в Интернете они
почти не встречаются.

Элементы документа как свойства окна
Если с помощью атрибута id присвоить элементу

НТМL-документа имя, которого нет в объекте Wi ndow, то
этот объект будет иметь неперечислимое свойство с ука­
занными именем и значением HTMLEleme n t , представляю­
щим элемент документа.

На стоР.оне клиента объект Wi ndow играет роль глобаль­
ного объекта, поэтому значение атрибута i d , используе­
мого в НТМL-документе , становится глобальной перемен­
ной (если в программе еще нет глобальной переменной
с этим же именем) , доступной для сценария. Например,
если в документе есть элемент <button i d = " o kay "/> , то
на данный элемент можно ссылаться в сценарии с помо­
щью глобальной переменной okay.

Неявное использование атрибута i d в качестве гло­
бальной переменной - историческая традиция в разви­
тии веб-браузеров. Данное средство необходимо для об­
ратной совместимости с существующими неб-страницами,
но в настоящее время использовать его не рекомендуется.
Лучше явно задавать элементы с помощью методик, рас­
смотренных в главе 1 1 .

Объект окна 1 21 7

Множественные окна и фреймы
Одно окно браузера настольного компьютера может

содержать несколько вкладок, каждая из которых служит
независимым 1шнтексrтwм просмотра (browsing context) .
Каждый контекст имеет собственный объект W i ndow и жест­
ко изолирован от всех остальных контекстов. Сценарии,
выполняющиеся в одном контексте, обычно ничего не зна­
ют о существовании других контекстов и не могут взаимо­
действовать с их объектами Wi ndow или манипулировать со­
держимым их документов. В браузере, который не поддер­
живает вкладки или в котором отключены вкладки, может
быть открыто одновременно несколько окон. В этом слу­
чае каждое окно также имеет собственный объект Window
и контекст просмотра, изолированные от других окон и не
зависящие от них.

НТМL-документ может содержать вложенные докумен­
ты, определяемые элементом < i f rame>. Элемент < i f rame>
создает вложенный контекст просмотра, представлен­
ный отдельным объектом Window. Устаревшие элементы
< f rameset> и <f rame> также создают вложенные контексты
просмотра, и каждый элемент <f rame> представлен объек­
том Window. Клиентский код JavaScript почти не отличает
вкладки, окна и фреймы друг от друга; для кода все они -
контексты просмотра, представленные объектами Window.
Вложенные контексты просмотра не изолированы друг
от друга, как отдельные вкладки. Сценарий, выполняю­
щийся во фрейме, всегда может видеть родительские и до­
черние контексты, хотя правило ограничения домена
(подробнее об этом - далее) может запретить сценарию
просматривать документы в других фреймах. Вложенные
фреймы подробнее рассматриваются в главе 1 1 .

Объект Window является глобальным на стороне кли­
ента, поэтому каждое окно или фрейм имеет отдельный

218 Глава 1 О. JavaScript на стороне кnиента

контекст просмотра. Тем не менее код JavaScript одного
окна может (с учетом правила ограничения домена) обра­
щаться к объектам, свойствам и методам , определенным
в другом окне.

Связи м@жду фр@ймами
Вы уже знаете , что код JavaScript в любом окне или

фрейме может ссылаться на собственный объект Wi n dow
по имени window или sel f . Фрейм может ссылаться на
объект Wi ndow родительского окна или фрейма с помо­
щью свойства ра r e n t .

pa rent . h istory . ba c k () :

Объект Wi ndow, представляющий окно или вкладку
верхнего уровня, не имеет контейнера, поэтому свойство
ра rent ссылается на собственное окно.

pa rent == se l f : // Дл я в е рхнеуро в н е в ы х о кон

Если фрейм находится в другом фрейме, который сам
находится в верхнеуровневом окне , то первый фрейм мо­
жет ссылаться на верхнеуровневое окно посредством вы­
ражения ра rent . ра rent . Для этого же можно использовать
свойство top . Независимо от того , как глубоко вложен
фрейм, его свойство top всегда ссылается на родитель­
ское верхнеуровневое окно. Если объект Window представ­
ляет верхнеуровневое окно, то свойство top ссылается
на собственное окно. Во фрейме, являющемся непосред­
ственным потомком верхнеуровневого окна, свойства top
и ра rent содержат одно и то же значение.

Свойства ра rent и top позволяют сценарию обращать­
ся к предкам фрейма. Кроме того, существует несколько
способов обращения к потомкам фрейма или окна. Фрейм
создается с помощью элемента <i f rame> . В коде можно по­
лучить объект Eleme n t , представляющий элемент <i f rame>

Объект окна 1 219

так же, как и любой другой элемент. Предположим, в до­
кументе есть дескриптор < i f rame i d= " f 1 " > . Тогда получить
объект Eleme n t , представляющий данный фрейм, можно
следующим образом:

va r е = document . get ElementByid (" f 1 ") ;

Элемент < i f rame> имеет свойство contentWi n dow, ссыла­
ющееся на объект Wi ndow фрейма, поэтому объект Window
фрейма можно получить следующим образом:

va r kid = document . getElementByid (" f 1 ") . conte ntWindow ;

Можно пойти обратным путем: от объекта Window,
представляющего фрейм, к элементу Eleme n t , содержаще·
му фрейм. Это делается с помощью свойства f rame Element
объекта Wi ndow. У объекта Window, представляющего верх·
неуровневое окно, а не фрейм, свойство f rame Eleme nt рав·
но n u l l .

va r e l t = document . getElementByid (' ' f 1 ") ;
va r w = elt . contentWi ndow ;
w . f rameElement elt // Дл я фрейма все гда t rue
w . f rameElement === null // Верхнеуро вневое окно

Однако для получения ссылки на дочерний фрейм
окна обычно можно обойтись без метода getElementByID ()
и свойства conte ntWi ndow. Каждый объект Wi ndow имеет
свойство f rames , ссылающееся на дочерние фреймы в дан­
ном окне или фрейме. Свойство f rames содержит масси­
воподобный объект, который можно индексировать чис·
ленно или по именам фреймов. Для ссылки на первый
дочерний фрейм окна можно использовать выражение
f rames [O] . Для ссылки на третий дочерний элемент вто­
рого вложенного дочернего фрейма напишите f rames [1] .
f rames [2] . Код, выполняющийся во фрейме, может ссы·
латься на "родственный" фрейм следующим образом:
ра rent . f rames [1] . Обратите внимание на то , что элементы

220 Гnава 10. JavaScript на стороне кnиента

массива f rames [] являются объектами Windows , а не эле­
ментами <i f rame> .

Если в элементе < i f rame> задан атрибут n ame или i d ,
т о фрейм можно индексировать п о имени и номеру.
Например, на фрейм с именем f 1 можно сослаться так:
f rames [" f 1 "] или f rames . f 1 .

Атрибут name или i d элемента < i f rame> можно при­
менить для присвоения фрейму имени , которое можно
использовать в коде JavaScript. Однако если применить
атрибут name , то заданное в нем имя становится также зна­
чением свойства n ame объекта Window, представляющего
фрейм. Имя, заданное таким способом, может служить
значением атрибута ta rget гиперссылки на фрейм.

Применение JavaScript во взаимодействующих окнах
Каждое окно или фрейм имеет собственный контекст

просмотра и глобальный объект Wi ndow. Однако если код
одного окна или фрейма может ссылаться на другое окно
или фрейм (и правило ограничения домена не препят­
ствует этому) , то сценарии одного окна или фрейма могут
взаимодействовать со сценариями других окон.

Предположим, на веб-странице есть два элемента
<i f rame> с именами А и В, и эти два фрейма содержат до­
кументы с одного общего сервера, а документы содержат
взаимодействующие сценарии. В сценарии фрейма А мож­
но определить переменную i .

v a r i = 3 ;

Эта переменная является свойством глобального объек­
та, т.е. объекта Window. Код фрейма А может ссылаться
на нее с помощью идентификатора i или посредством яв­
ной ссылки на объект окна.

w1ndow . i

Объект окна 1 221

Сценарий фрейма В может ссылаться на объект Wi ndow
фрейма А, поэтому он может ссылаться также на свойства
этого объекта, в частности на свойство i .

pa rent . A . i = 4 ;

Как вы помните, ключевое слово f u n c t i o n , определя­
ющее функцию, одновременно создает переменную, как
и ключевое слово va г. Если сценарий во фрейме В объ­
являет функцию f, то она становится глобальной пере­
менной во фрейме В , и код фрейма В может вызывать ее
с помощью выражения f () . Однако код фрейма А должен
сослаться на функцию f как на свойство объекта Window
фрейма В .

pa rent . В . f () ;

Если в коде фрейма А эта функция используется часто,
можно присвоить ее переменной фрейма А, чтобы ее удоб­
нее было вызывать. Можно даже присвоить ей это же имя.

va r f = parent . B . f ;

Теперь код фрейма А может вызывать функцию f () так
же, как код фрейма В .

Сделав таким образом функцию общей для нескольких
фреймов или окон, важно учитывать правила лексиче­
ской области видимости: функция выполняется в области
видимости , в которой она была определена, а не вызвана.
Следовательно, если функция f () ссылается на глобаль­
ные переменные, интерпретатор браузера ищет эти пере­
менные во фрейме В , даже если функция была вызвана во
фрейме А.

Правиnо оrраничения домена
Так называется политика ограничений безопасности,

накладываемых на код JavaScгipt, который взаимодей-

222 Гnава 10. JavaScript на стороне клиента

ствует с неб-страницами. Обычно правило ограничения
домена вступает в силу, когда на неб-страницах появляют­
ся элементы < i f rame> . В этом случае политика определяет
правила взаимодействия кoдaJavaScгipt в одном окне или
фрейме с содержимым других окон или фреймов. В част­
ности, сценарий может читать свойства только тех окон
и документов, которые имеют то же происхождение, что
и документ, содержащий сценарий.

Происхождение документа определяется в виде про­
токола, хоста и порта в URL-aдpece, из которого загружен
документ. Документы, загруженные с других неб-серверов,
а также с других портов этого же хоста, имеют другое про­
исхождение. Документы, загруженные с помощью прото­
колов h t t p : и https : , имеют разное происхождение, даже
если они загружались с одного веб-сервера.

Важно понимать, что происхождение сценария не
влияет на политику. На нее влияет только происхождение
документа, в который внедрен сценарий. Предположим,
например, что сценарий , обслуживаемый хостом А, до­
бавлен (с помощью свойства s rc или элемента <sc r i pt>)
на неб-страницу, обслуживаемую хостом В . Тогда сценарий
происходит от хоста В и обладает правом доступа к со­
держимому документов хоста В. Если сценарий создает
фрейм и загружает второй документ хоста В, то он имеет
право доступа и ко второму документу. Но если сценарий
открывает еще один фрейм и загружает в него документ
из хоста С (или даже из хоста А) , то правило ограничения
домена запретит доступ сценария к этому документу.

Правило ограничения домена применяется не ко всем
свойствам всех объектов окна другого происхождения. Тем
не менее оно применяется ко многим из них, в частности,
ко всем свойствам объекта Document . Необходимо учитывать,
что любое окно или фрейм, содержащий документ с другого

Объект окна 1 223

сервера, недоступен для сценария. Правило ограничения до­
мена применяется также к НТТР-запросам, генерируемым
объектом XMLHttpRequest (подробнее об этом - в главе 13) .
Этот объект позволяет коду JavaScript на стороне клиента
передавать любые НТТР-запросы к веб-серверу, с которого
бьт загружен хостирующий документ, но он не позволяет
сценарию взаимодействовать с другими веб-серверами.

224 Глава 10. JavaScript на стороне кпиента

Г ЛАВА 1 1

Работа с документами

Код JavaScript на стороне клиента необходим для того ,
чтобы превратить статические НТМL-документы в инте­
рактивные веб-приложения. Содержимое окна браузера
представлено объектом Docume n t , который является пред­
метом рассмотрения данной главы. Объект Document - это
центральная часть большой библиотеки АРI-функций,
называемой DOM (Document Object Model - объектная
модель документа) и предназначенной для программного
манипулирования содержимым документов.

Обзор модели DOM
Структура модели DOM не очень сложная , но в ней есть

ряд архитектурных особенностей, которые нужно пони­
мать. Вложенные элементы HTML или XML представлены
в DOM в виде дерева объектов. Древовидное представле­
ние документа содержит узлы, соответствующие дескрип­
торам или элементам, таким как <body> или <р> , и узлы,
соответствующие текстовым строкам. Представление до­
кумента может также содержать узлы, соответствующие
комментариям. Рассмотрим следующий простой документ.

< h t m l >
< head>

< t i t l e>Oбpaзeц документа</t i t l е>
</head>
<body>

< h 1 >НТМ L-до кумент</h 1 >

<р>Это < i > п ростой</i> документ . </р>
</html>

Представление DOM данного документа имеет древо­
видную структуру, показанную на рис. 1 1 . 1 .

Document

<html>

"НТМL-документ•

"Это •

"простой"

Рис. 1 1. 1. Древовидное представление НТМL-документа

Если вы не встречались с древовидными структура­
ми, вам полезно будет ознакомиться со специальной тер­
минологией (пусть вас не смущает то, что корень дерева
находится вверху, а ветви растут вниз) . Узел , располо­
женный непосредственно над данным узлом, называется
родителъски.м по отношению к нему. Узел, расположенный
непосредственно под данным узлом, называется дО'ЧеjJни.м.

226 Гnава 1 1 . Работа с документами

Два узла на одном и том же уровне, имеющие общий роди­
тельский узел , называются братъями. Узлы, расположен­
ные ниже данного узла и связанные с ним, называются по­
томками, а расположенные выше - предками данного узла.

Каждый прямоугольник на рис. 1 1 . 1 - это узел доку­
мента, представленный объектом Node . В следующих раз­
делах рассматриваются свойства и методы объекта Node .
Обратите внимание на то, что на рис. 1 1 . 1 есть три раз­
ных типа узлов. В корне дерева находится узел Document ,
представляющий весь документ. Элементы HTML пред­
ставлены узлами типа Eleme n t , а текстовое содержимое
элементов - узлами типа Text . Классы Docume n t , Element
и Text являются подклассами класса Node . В модели DOM
наиболее важны классы Document и Eleme n t , и данная глава
посвящена главным образом их свойствам и методам.

Типы и подтипы узлов образуют иерархию, показан­
ную на рис. 1 1 .2 . Обратите внимание на формальное
различие между типами Document и Element с одной сто­
роны и типами HTM LDocument и HTM LElement - с другой. Тип
Doc ument представляет документ HTML или XML, а тип
Element - элемент документа. Эти типы общие для всех
элементов и документов. В то же время типы HTM LDoc ument
и HTM LElement специфичны для документов и элементов
HTML. В данной книге часто используются обобщенные
имена классов Doc ument и Element для ссылки на документы
и элементы HTML.

Тип HTM LElement имеет много подтипов, представляющих
конкретные элементы HTML. В каждом из этих подтипов
определены свойства J avaScript, дублирующие НТМL-атри­
буты конкретного элемента или группы элементов. В не­
которых из классов, специфичных для элементов, опреде­
лены дополнительные свойства и методы, отсутствующие
в синтаксисе HTML.

Обзор модеnи DOM 1 227

HТМLHeadElement

HTMLBodyEIE\ment

HTMLntleElement

HTMl..ParagraphElemen

HТМLlnputElement

HTMLTaЫeElement

и др.

Рис. 1 1 .2. Часть иерархии узлов документа

Выбор элементов документа
Обычно программа JavaScript на стороне клиента ре­

шает свои задачи путем манипулирования одним или не­
сколькими элементами документа. При запуске програм­
мы в ней можно использовать глобальную переменную
document для ссылки на объект Docume n t . Для манипули­
рования конкретным элементом документа необходимо
каким-либо образом выбратъ объект Eleme n t , ссылающий­
ся на нужный элемент. В модели DOM предусмотрен ряд
способов выбора элемента:

•

•

•

228

по значению атрибута i d ;

по значению атрибута name;

по имени дескриптора;

Гnава 1 1 . Работа с документами

• по классу или классам CSS;

• по соответствию заданному селектору CSS.

В следующих разделах рассматривается каждый способ.

Выбор эnементов по идентификатору
Каждый элемент HTML имеет атрибут i d . Значение

этого атрибута должно быть уникальным во всем докумен­
те, т.е . никакие два элемента одного документа не могут
иметь одно и то же значение i d . Выбрать элемент на осно­
ве уникального значения id можно с помощью метода
get Eleme ntByid () объекта Docume n t .

va r sec t 1 = document . get E lementByid (" section 1 ") ;

Это наиболее простой и распространенный способ
выбора элемента. Если сценарий должен работать с неко­
торым набором элементов документа, присвойте атрибу­
там id этих элементов определенные значения. Если нуж­
но выбрать более одного элемента по идентификатору, то
полезной может быть функция getEleme n t s () , приведен­
ная в листинге 1 1 . 1 .

Листинг 1 1 .1 . Выбор многих элементов по значениям id

/•
* Эта функция ожидает п роиз вольное количество
* стро ковых ар гументов . Каждый ар гумент она
* интерп ретирует как идентифи катор элемента и вызы вает
* метод document . getElementByid () дл я каждо го элемента .
* Фун кция возв ращает объе кт , с в язы вающий
* значения i d с объектами E l ement
•/
f u n c t i o n get Elements (/ • знaчeния i d . . . • /) {

va r e lements = { } : // Нач инаем с пусто го объе кта
fo r (va r i = О ; i < a rg ume nts . lengt h ; i++)

va r id = a rgument s [i] ; // Идентифи катор элемента
va r elt = document . get ElementByid (id) ;

Выбор эnементов документа 1 229

i f (e lt == n u l l)
t h row new E r ro r (" Ta кo гo элемента нет : + id) ;

element s [i d] = elt ; // П р и в я з ка к элементу

ret u rn elements ; // Возвращение объе кта

Выбор элементов по имени
Атрибут n ame изначально был предназначен для при­

своения имен элементам форм. Значение атрибута name
используется при передаче данных формы на сервер. Как
и атрибут i d , атрибут name используется для присвоения
имени элементу. Однако в отличие от i d , значение атрибу­
та name не обязательно должно быть уникальным. Многие
элементы могут называться одинаково. Эта особенность
часто применяется в переключателях и флажках форм.
Кроме того, в отличие от i d , атрибут name допустим толь­
ко в подмножестве элементов HTML, в которое входят
формы, элементы форм и элементы < i f rame> и .

Для выбора элементов HTML на основе значений атри­
бута name необходимо вызвать метод get Eleme ntsByName ()
через объект Docume nt .

va r b t n s = documen t . getElementsByName (" colo r ") ;

Метод getEleme ntsByName () возвращает объект Nodelist ,
который работает как массив объектов Eleme n t , доступ­
ный только для чтения.

Установка атрибута name элемента < fo rm> , или
< i f rame> создает свойство объекта Document с именем, рав­
ным значению атрибута (если, конечно, у объекта Document
на тот момент не было свойства с этим именем) . Если дан­
ное имя присвоено только одному элементу, то значением
свойства объекта Document становится сам элемент. Если
данное имя присвоено нескольким элементам, то значени-

230 Гnава 1 1 . Работа с документами

ем свойства с данным именем становится объект Nodelist ,
содержащий массив элементов. Однако важно учитывать,
что свойства документа, созданные для именованных эле­
ментов < i f rame> , ссьшаются на объект Window фрейма, а не
на объект Element .

Все это означает, что элементы можно выбирать
по имени посредством свойств объекта Docume n t , имею­
щих соответствующие имена.

11 Получение элемента
11 <fo rm name= " s h i p p i ng_add ress " >
va r fo rm = document . sh i ppi ng_add ress ;

Выбор элементов по типу дескриптора
Выбирать элементы можно также по их типу (ино­

гда пишут "по имени дескриптора") с помощью метода
getElementsByTagName () объекта Docume nt . Например, полу­
чить массивоподобный (см. главу 6) объект, содержащий
объекты Element всех элементов <spa n > , присутствующих
в документе, можно с помощью следующей инструкции:

var spans = document . get ElementsByTagName (" spa n ") ;

Kaк и get ElementsByName () , мeтoд getElementsByTagName ()
возвращает объект Nodelist . Элементы возвращаемого
объекта Node list расположены в том же порядке , что и в
документе. Например, первый элемент <р> можно полу­
чить следующим образом:

va r f i rstpa ra = document . getElementsByTagName (" p ") [O] ;

Дескрипторы HTML нечувствительны к регистру, по­
этому при использовании метода getElementsByTag Name ()
с документом HTML выполняется сравнение имен, нечув­
ствительное к регистру букв. Следовательно, приведен­
ная выше инструкция вернет не только элементы ,
но и элементы .

Выбор зnементов документа 1 231

Передав методу getElementsByTag Name () метасимвол " • " ,

можно получить объект Nodelist , содержащий все элемен­
ты документа.

Метод getElementsByTagName () определен не только
в классе Docume n t , но и в классе Element . Он работает так
же, как и в классе Docume n t , но выбирает только элементы ,
являющиеся потомками элемента, через который вызван
метод. Например, чтобы найти все элементы , нахо­
дящиеся в первом элементе <р> , необходимо выполнить
следующие инструкции.

va г f i rstp= documen t . get E l ement sByTag Name (" р") [О] ;
va r f i rstpSpans = f i rst p . get E l ementsByTag Name (· · s pan ·) ;

По историческим причинам свойства быстрого доступа
к узлам некоторых типов определены в классе HTMLDocument .
Например, свойства images, fo rms и l i n ks ссьшаются на объек­
ты, ведущие себя как доступные для чтения массивы элемен­
тов , <fo rm> и <а> (но только тех элементов <а>, которые
имеют атрибут h ref) . Эти свойства ссьшаются на объекты
HTMLCol lect ion , напоминающие объекты Nodelist , но отлича­
ющиеся от них тем, что их можно индексировать по иденти­
фикаторам или именам. Выше бьшо показано, что на элемент
< fo rm> можно сослаться с помощью следующего выражения:

document . sh i p p i ng_add ress

Свойство document . fo rms позволяет сослаться на эле­
мент <fo rm> с атрибутом id или n ame следующим образом:

document . fo rms . s h i pp i ng_add ress ;

В классе HTM LDocument определены два свойства (body
и head) , ссылающиеся на специальные одиночные элемен­
ты, а не на коллекции элементов. Свойство document . body
ссьшается на элемент < body>, а свойство document . head -

на элемент <head> . Свойство document Element класса Document

232 Гnава 1 1 . Работа с документами

ссьшается на корневой элемент документа. В НТМL­
документе корневым всегда является элемент < h t m l > .

Классы Node List и HTMLCollection
Методы g e t E l em e n t s ByName () и g e t E l e m e n t s ByTa g Name () воз­
вращают объекты N od e l i s t , а такие свойства, как d o c u m e n t .

i m a g e s и d o c u m e n t . f o r m s , - объекты HTMLCo l l e c t i o n .

Это массивоподобные объекты , доступные только для чте­
ния. У них есть свойство l e n g t h . Кроме того, их можно ин­
дексировать (но только для чтения, а не для записи) , как
настоящие массивы. По содержимому объекта N o d e l i s t

или HTMLCo l l e c t i o n можно проходить в цикле.

11 Сокрытие всех и зображени й
fo r (va r i = О ; i < document . images . length ; i++)

document . images[i] . style . d isplay = " none " ;

Одна из наиболее важных и удивительных особенно­
стей объектов N o d e l i s t и HTMLCo l le c t i o n состоит в том ,
что они не являются статическими снимками состоя­
ний документа. Они постоянно обновляются при каж­
дом изменении документа. Предположим, функция
g e t E l eme n t s ByTa g Name (· d i v ·) вызывается в документе, в
котором нет ни одного элемента < d i v > . Если после этого
вставить в документ новый элемент < d i v > , то он автома­
тически станет членом полученного объекта N o d e l i s t ,

а свойство l e n g t h увеличится на единицу.

Выбор элементов по классам CSS
Атрибут c l a s s элемента HTML содержит список (воз­

можно , пустой) идентификаторов, разделенных про­
белами. Каждый идентификатор присваивает элементу
класс CSS. Любой элемент, имеющий этот же идентифи­
катор в атрибуте c l a s s , является частью того же набора

Выбор эnементов документа 1 233

элементов. В cинтaкcиceJavaScript ключевое слово c l a s s
зарезервировано для других целей, поэтому для хра­
нения значения атрибута c lass используется свойство
c l ass Name . Атрибут c l a s s обычно используется совмест­
но с таблицей CSS для присвоения презентационных
стилей всем членам набора. Кроме того , в HTML5 опре­
делен метод get Eme leme n t sByC lassName () , позволяющий
выбрать набор элементов на основе идентификаторов,
приведенных в атрибуте c l a s s .

Как и getElementsByTagName () , метод getElementsByClass­
Name () можно вызвать либо через документ, либо через эле­
мент. В любом случае он вернет динамически обновляемый
объект Nodelist , содержащий все потомки документа или
элемента данного класса. Метод getElementsByClassName ()
принимает один строковый аргумент, в котором, однако,
можно задать список из многих идентификаторов, разде­
ленных пробелами. Будут возвращены только элементы,
в атрибуте class которых содержатся все идентификато­
ры классов, заданных при вызове. Последовательность
идентификаторов не играет роли. Ниже приведены при­
меры использования метода getElementsByClassName () .

11 Поиск всех элементов кл асса wa r n i n g
va r w = document . get Elements ByClassName ("wa r n i n g ") ;
11 Поиск потомков классов fatal и е г г о г
1 1 элемента с идентифи катором log
va r log = docume nt . getElementByld (" lo g ") ;
va r fatal = log . getElementsByClassName (" fatal е г го г ") ;

Выбор эпементов по сепекторам CSS
Селекторы CSS описывают элементы и наборы эле­

ментов документа. В данной книге синтаксис селекторов
CSS не рассматривается, приведено лишь несколько при-

234 Гnава 1 1 . Работа с документами

меров. Элементы можно идентифицировать по значени­
ям i d , именам дескрипторов и классам.

#nav // Любой элемент с i d = " nav"
d i v // Любой элемент < d i v >
. wa rn i n g // Любой элемент класса wa r n i n g

В более общем случае элементы можно выбирать
по значениям атрибугов.

p [lang= " f r "] // Абзац на французском я з ы ке
• [name= " x "] // Элементы с атрибутом name= " x "

Базовые селекторы можно объединять.

span . fatal . e r ro r // элемент классов fat a l и e r ro r
span [lang= " f r "] . wa rn i ng / / п редуп реждение н а французском

Селекторы могут также определять структуру документа.

l og span // Любой потомок типа
// элемента log

#log>span // Л юбой непосредственный потомок
// элемента log

body>h 1 : f i rst - c h i l d // Первый непосредственный
// потомок < h 1 > элемента < body>

Селекторы можно объединять для выбора многих эле­
ментов или наборов элементов.

d i v , # l og // Все элементы <div> и log

Селекторы CSS позволяют выбирать элементы любы­
ми описанными выше способами: по идентификатору,
по имени, по типу дескриптора и по имени класса. С по­
мощью метода que rySe lecto rAl l () объекта Document мож­
но выбрать элементы, соответствующие селектору CSS.
Этот метод принимает строковый аргумент, содержащий
селектор CSS, и возвращает объект Nodelist , представ­
ляющий все элементы документа, соответствующие се­
лектору. В отличие от описанных выше методов выбора

Выбор элементов документа 1 235

элементов, метод q ue rySe lecto rAl l () возвращает не дина­
мический объект Nodel i st . Это означает, что полученный
таким образом объект Nodelist содержит элементы, соот­
ветствовавшие селектору на момент вызова и не обнов­
ляемые при изменении документа. Если ни один элемент
не соответствует селектору, метод q ue rySe l ect о r Al l () воз­
вращает пустой объект Nodelist . Если строка селекторов
неправильная , метод q ue rySelecto rAl l () генерирует ис­
ключение.

Кроме que rySelecto rAl l () , в объекте Document опреде­
лен метод q ue rySelecto r () , который возвращает не все,
а только первый (в последовательности документа) эле­
мент, соответствующий селектору, или n u l l , если соответ­
ствующий элемент не найден.

Эти же два метода определены и в объекте Eleme n t .
При их вызове через объект Eleme n t , а не Docume n t , поиск
элементов, соответствующих селектору, выполняется во
всем документе , а затем результирующий набор фильтру­
ется таким образом, что возвращаются только потомки
указанного элемента.

Структура и обход документа
После выбора элемента иногда необходимо найти

структурно связанные с ним части документа, такие как
родительские , братские или дочерние узлы. Объект
Document и входящие в него объекты Element и Text являют­
ся объектами класса Node . В классе Node определены сле­
дующие важные свойства.

• pa rentNode - объект Node , родительский по отноше­
нию к данному (или n u l l , если родительского нет) .

• c h i l d Nodes - массивоподобный объект Nodel i s t , до­
ступный только для чтения и динамически обнов-

236 Гnава 1 1 . Работа с документами

ляемый при изменении документа. Содержит до­
черние узлы.

• fi rstChild и lastChild - первый и последний дочер­
ние узлы данного узла или n u l l , если у данного узла
нет непосредственных потомков.

• next S i Ы i n g и p revio u s S i Ы i n g - следующий и преды­
дущий братские узлы данного узла. Два узла называ­
ются братскими, если они имеют общий непосред­
ственный родительский узел. Последовательность
братских узлов в коде JavaScript совпадает с их по­
следовательностью в документе. Эти свойства сое­
диняют узлы в двойной связанный список.

• n o d eType - тип узла. Для узла Doc ume n t это свой­
ство равно 9, для узла Element - 1 , для узла Text - 3 ,
для узла Comme nt - 8 .

• n odeVa l u e - текстовое содержимое узла Text или
Commen t .

• nodeName - имя дескриптора объекта Element , преоб­
разованное в буквы верхнего регистра.

С помощью этих свойств объекта Node можно написать
выражения, ссьшающиеся на второй дочерний узел перво­
го дочернего узла Document . Эти выражения равноправные.

document . c h i l d Nodes [O] . c h i ldNodes [1]
document . f i rstC h i l d . f i rstChi ld . nextS i Ь l i n g

Рассмотрим следующий документ.

<html>
<head><tit le>Пpoвepкa</t it le></head>
<Ьоdу>П р и вет ' </Ьоdу>
</html>

Структура и обход документа 1 237

Элемент < body> является вторым дочерним узлом пер­
вого дочернего узла. Его свойство nodeType равно 1 , а свой­
ство nodeName - BODY .

Не забывайте, что рассматриваемый программный
интерфейс очень чувствителен к изменениям документа.
Если вставить в документ единственную строку между де­
скрипторами < h tm l > и < h ead> , то узел Text , представляю­
щий новую строку, станет первым дочерним элементом
первого дочернего узла, а вторым дочерним элементом
станет < head> вместо < body> .

Если нам нужны объекты Eleme n t , а не тексты и про­
белы, то более полезным будет программный интерфейс ,
позволяющий трактовать документ как дерево объектов
Eleme n t , игнорируя узлы Text и Comme n t , которые также яв­
ляются частью документа.

Первая часть такого интерфейса на основе элемен­
тов - свойство c h i l d ren объекта Element . Как и c h i ldNodes ,
оно содержит объект Nodelist , но , в отличие от свойства
c h i ldNodes , список содержит только объекты Element .

Вторая часть интерфейса на основе элементов - пере­
численные ниже свойства объекта Eleme n t , аналогичные
дочерним и братским свойствам объекта Node .

• fi rstElementChild и last ElementChild - то же, что
и fi rstCh i l d и lastC h i l d , но содержат только объек­
ты Element .

• nextElementSiЫing и p reviousElementSiЫing - тo же,
что и next S i Ы i n g и p revi o u sS i Ы i n g , но содержат
только братские узлы Eleme n t .

• chi ld ElementCount - количество дочерних узлов
Eleme n t . Возвращает то же значение, что и c h i l d ren .
l e n g t h .

238 Глава 1 1 . Работа с документами

Атрибуты
Элемент HTML состоит из имени дескриптора и на­

бора пар "имя-значение" , которые называются атрибута­

ми. Например, элемент <а> , определяющий гиперссылку,
имеет атрибут с именем h ref и значением, указывающим
целевой адрес гиперссылки. Значения атрибутов доступ­
ны в коде JavaScript как свойства объекта HTM LEleme n t ,
представляющего данный элемент в коде HTML. В типе
HTM LElement определены универсальные атрибуты, такие
как i d , t i t le , l a n g и d i r , а также свойства, указывающие
на обработчики событий, такие как o n c l i c k. В специаль­
ных типах определены атрибуты, специфичные для дан­
ного элемента. Например, для получения URL-aдpeca
изображения можно использовать свойство s rc объекта
HTM LEleme n t , представляющего элемент .

va r img = document . getElementByid (" myimage ") ;
va r u r l = img . s rc ; // Атрибут s rc
img . id = " myimg " // Изменение атрибута id

Аналогично можно установить атрибуты передачи
формы элемента <fo rm> с помощью кoдaJavaScript.

va r f = document . fo rms [O] ; // Первая форма
f . method = " POST" ; // Задание метода переда ч и
f . act ion = " h t t p : //www . exampl e . com/submit . p h p " ;

Имена атрибутов HTML нечувствительны к регистру,
а имена свойств JavaScript чувствительны. Чтобы преобра­
зовать имя атрибута в имя свойства, запишите его в ниж­
нем регистре. Если атрибут состоит из нескольких слов,
то все слова, кроме первого; начинаются с буквы в верх­
нем регистре, например defaul tChecked или taЫ ndex .

Некоторые имена атрибутов HTML совпадают с заре­
зервированными ключевыми словами jаvаSсгiрt. Для них
необходимо добавить к имени атрибута префикс h tm l .

Атрибуты 1 239

Например, атрибут f o r элемента < label> становится свой­
ством html Fo r . В JavaScript слово class зарезервирован­
ное, но не используется, поэтому важный атрибут class
является исключением из приведенного выше правила:
в коде JavaScript соответствующее свойство называется
className .

CвoйcтвaJavaScript , представляющие атрибуты HTML,
обычно имеют строковые значения. Если атрибут бу­
лев или числовой (например, атрибуты defaul tChecked и
max leng t h элемента < i n put>) , то значение свойства не стро­
ковое, а булево или числовое. Атрибуты обработчиков со­
бытий всегда имеют в качестве значения объект Function
(или n u l l) . В HTML5 определено несколько атрибутов (та­
ких, как атрибут fo rm элемента < i n put> и родственных эле­
ментов) , преобразующих идентификатор элемента в фак­
тический объект Element .

Как было показано выше, в типе HTM LElement и его под­
типах определены свойства, соответствующие стандарт­
ным атрибутам элементов HTML. В типе Element опреде­
лены также методы getAtt r i b u te () и setAtt r i b ute () , кото­
рые можно использовать для чтения и записи значений
нестандартных атрибутов HTML.

va r image = document . images [O] ;
va r width = parseint (image . getAtt r i b u t e (' 'WI DTH ')) ;
image . setAtt r i bute (" class " , " t h umbnail ") ;

В этом коде обратите внимание на два важных раз­
личия между используемыми в нем методами и описан­
ным выше интерфейсом на основе свойств. Во-первых,
значения атрибутов всегда интерпретируются как стро­
ки. Метод getAtt r i b u te () никогда не возвращает число,
объект или булево значение. Во-вторых, в этих методах
используются стандартные имена атрибутов, даже если
они являются зарезервированными ключевыми словами

240 Гnава 1 1 . Работа с документами

JavaScript. В элементах HTML имена атрибутов нечув­
ствительны к регистру.

В объекте Element определены также два родственных
метода, hasAtt r i bute () и removeAtt r i b u t e () , которые про­
веряют наличие именованного атрибута или удаляют его.
Эти методы полезны при работе с булевыми атрибутами
(такими, как атрибут d i saЫed элемента формы) , у кото­
рых играет роль их присутствие или отсутствие, но не их
значение.

Содержимое эnемента
Взгляните еще раз на рис. 1 1 . 1 и попытайтесь ответить

на вопрос: "Что представляет собой содержимое элемен­
та < р>?" На этот вопрос можно дать три ответа.

• Строка разметки: Это < i > п росто й</i > до кумент.

• Строка текста: Это п ростой документ.

• Набор текстовых узлов: левый узел Text , узел
Element , его дочерний узел Text и правый узел Text .

Каждый из этих ответов правильный, и каждый может
быть полезным в разных ситуациях. Они отражают три
способа представления документа: в виде НТМL-кода,
в виде текста и в виде древовидной структуры.

Содержимое элемента в виде НТМL-кода
Свойство i n n e rHTM L объекта Element возвращает содер­

жимое элемента в виде строкуи разметки. Присвоение
значения этому свойству приводит к запуску синтаксиче­
ского анализатора браузера и замене текущего содержи­
мого представлением новой строки , полученным в ре­
зультате синтаксического разбора.

Содержимое эnемента 1 241

Процедура синтаксического анализа в браузерах хо­
рошо оптимизирована, поэтому операция присваивания
нового значения свойству i n ne r HTM L выполняется доста­
точно эффективно, даже несмотря на то, что для ее вы­
полнения необходим синтаксический проход по тексту.
Однако повторное выполнение данной операции с по­
мощью оператора += снижает эффективность, потому что
браузер отбрасывает предыдущий результат синтаксиче­
ского разбора и вновь выполняет этапы сериализации,
синтаксического разбора и визуализации.

Метод i nse rtAd j acentHTM L () позволяет вставлять строку
с произвольной НТМL-разметкой рядом с заданным эле­
ментом. Разметка передается методу через второй строко­
вый аргумент, а значение слова "рядом" зависит от первого
аргумента. Доступны четыре значения первого аргумента:
befo rebeg i n (перед началом) , afte rbeg i n (после начала) ,
befo reend (перед концом) и afte rend (после конца) . Эти зна­
чения задают вставку в точки, показанные на рис. 1 1 .3.

<div id="target">Этo содержимое элемента</div>
t t t t

beforebegin afterbegin beforeend afterend

Рис. 1 1.3. Точки вставки при исполыовании метода i ns e r tAdj a c e n tHTML ()

Содержимое эпемента в виде простоrо текста
Иногда необходимо получить содержимое элемента

в виде простого неформатированного текста или вста­
вить простой текст в документ, не заменяя специальные
символы (амперсанд, угловые скобки и др.) управляющи­
ми последовательностями. Обычно это делают с помо­
щью свойства textContent объекта Node .

242 Гnава 1 1 . Работа с документами

// Получение пе р в о го элемента <р>
va r р а г а = document . get ElementsByTagName (" p ") [O] ;
// Извлечение те кста перво го элемента <р>
va r text = para . textContent ;
// Изменение содержимого абзаца
рага . textContent = " П р и вет � " ;

Содержимое эnемента в виде набора узnов
Работать с содержимым элемента можно как со спис­

ком дочерних узлов, каждый из которых, в свою очередь,
имеет собственный набор потомков. В этом случае обыч­
но важны только узлы типа Text .

В листинге 1 1 .2 показана пользовательская функция
textContent () , которая рекурсивно проходит по дочер­
ним элементам и объединяет текстовое содержимое всех
потомков типа Text . Чтобы понять, как работает эта функ­
ция, вспомните, что в свойстве n odeVa l ue , определенном
в типе Node , находится содержимое узла Text .

Листинr 1 1 .2. Поиск всех узяов Text, явnяющихся потомками

заданноrо эnемента

/! Возв ращает неформатированное тексто вое
// содержимое элемента е , рекурсивно п роходя no
// дочерним элементам . Эта фун кци я работает
// анал о г и ч но сво йству textContent
f u п c t i o n textContent (e) {

va r с , type , s =
fo r (c=e . f i rstCh i l d ; c i = n u l l ;

type = с . поdеТуре ;
c=c . next S i Ы i ng)

i f (type === З)
s + = c . пodeVa l u e ;

e l se i f (type = = = 1)
s += textContent (c) ;

ret u r п s ;

// Текстовый узел :
// добавление те кста
/ / Узел Element :
/ / рекурсия

Содержимое эnемента 1 243

Обратите внимание на то, что свойство nodeVa l u e до­
ступно как для чтения , так и для записи. С его помощью
можно изменять содержимое узла Text .

Создание, вставка и удапение узпа
Вы уже знаете, как читать и обновлять содержимое до­

кумента путем манипулирования строками разметки и не­
форматированного текста. Проходя по документу с по­
мощью синтаксического анализатора, можно просматри­
вать отдельные узлы Element и Text , из которых состоит
документ. Изменять документ можно также на уровне ин­
дивидуальных узлов. В типе Document определены методы
создания объектов Element и Text , а в типе Node - методы
вставки , удаления и замены узлов дерева. В приведенной
ниже функции демонстрируются создание и вставка эле­
мента в документ.

11 Асинхронная з а г рузка и в ыполнение сценария
f u nction loadasync (u r l) {

11 Создание элемента <sc r i p t >
v a r s = document . с reateElement (" s c r i pt ") ;
11 Установка е го атрибута s г с
s . s r c = u r l ;
11 Вста в ка элемента <sc r i p t > в раздел <head>
document . head . appendCh i l d (s) ;

С помощью метода c reateElement () объекта Document
в документе можно создать узел Element . В качестве аргу­
мента методу нужно передать имя дескриптора.

Текстовые узлы создаются аналогичным методом.

va r t = document . c reat eText Node (" Этo содержимое ") ;

Еще один способ создания нового узла состоит в ко­
пировании существующего. Каждый узел имеет метод
cloneNod e () , который возвращает копию узла. Получив

244 Гnава 11. Работа с документами

аргумент t r ue , он создаст рекурсивную копию всех потом­
ков, а получив аргумент false , он создаст мелкую копию
данного узла.

Созданный узел можно вставить в документ с помо­
щью метода appendC h i l d () или i n se rtBefo re () объекта Node .
Метод appendCh i l d () вызывается через узел Eleme n t , в ко­
торый нужно вставить новый узел. Вставка выполняется
в конец списка дочерних узлов, и новый узел получает ста­
тус last C h i l d .

Метод i nse rtBefo re () напоминает метод appendC h i l d () ,
но в отличие от него получает не один, а два аргумен­
та. Первый аргумент - вставляемый узел. Второй аргу­
мент - узел , перед которым его нужно вставить. Метод
i n se rtBefo re () вызывается через узел , родительский
по отношению к вставляемому, а второй аргумент должен
быть дочерним по отношению к узлу, через который вы­
зван метод. Если через второй аргумент передать n u l l , ме­
тод i n se rtBefo r e () сработает так же , как и appendCh i l d () ,
вставив узел в конец списка.

Ниже приведена простая функция, вставляющая узел
на основе числовой индексации. В данной функции де­
монстрируется использование методов appendCh i l d ()
и i n se rtBefo re () .

11 Вставка доч ернего узла в позицию n
f u n c t i o n i n se rtAt (pa rent , c h i l d , n) {

i f (n < О 1 1 n > pa rent . ch i l d Nodes leng th)
t h row new Е r rо r (- Неправильный индекс ' ') ;

e l se i f (n == parent . ch i l dNodes . leng t h)
pa rent . appendCh i l d (c h i ld) ;

e l se
pa rent . i ns e r t Befo re (c h i l d , pa rent . c h i ldNodes [n]) ;

Если вызвать метод appendCh i ld () или i n se r t Befo re ()
для вставки узла, который уже существует в документе ,

Создание, вставка и удаnеиие узnа 1 245

этот узел будет автоматически удален из текущей позиции
и вставлен в новую позицию; нет необходимости удалять
его явно.

Метод removeCh i l d () удаляет узел из дерева документа.
Но будьте осторожны: вызывать этот метод нужно не че­
рез удаляемый узел, а через родительский. В качестве ар­
гумента методу нужно передать дочерний удаляемый узел.
Например, чтобы удалить из документа узел n , выполните
следующую инструкцию.

n . pa rentNode . removeCh i l d (n) ;

Метод replaceCh i ld () удаляет один дочерний узел
и вставляет на его место новый. Этот метод нужно вы­
звать через родительский узел, передав ему новый узел
в качестве первого аргумента и замещаемый узел - в каче­
стве второго. Например, чтобы заменить узел п строкой
текста, нужно выполнить следующий код.

va r t = document . c reateTextNod e (" [R EDACTED] ") ;
n . ра rentNode . replaceC h i l d (t , n) ;

В приведенной ниже функции демонстрируется ис­
пользование метода replaceC h i l d () .

11 Замещение узл а n элементом < Ь > и вста в ка n
11 в качестве дочернего узла
f u n c t i o n embolden (n) {

11 Есл и n я вляется стро кой , инте р п ретировать
11 ее как идентифи катор элемента
if (t ypeof n == " st r i ng ")

n = document . getElementByid (n) ;
11 Создание элемента <Ь>
va r Ь = document . c reateElement (" Ь ") ;
11 Замена п эл ементом < Ь >
n . ра rentNode . replaceC h i l d (Ь , n) ;
11 Вста вка n как потомка < Ь >
b . appendC h i l d (n) ;

246 Гnава 1 1 . Работа с документами

Стили элементов
Таблицы CSS используются для задания визуального

представления НТМL-документов. Веб-дизайнеры при­
меняют их для точной настройки шрифтов, цветов, по­
лей, отступов, рамок и позиции элемента в документе.
Но таблицы CSS интересны также для программистов,
создающих кoдJavaScript на стороне клиента, потому что
стилями CSS можно манипулировать в сценарии. В дан­
ном разделе рассматривается управление стилями CSS
посредством сценария. Предполагается , что вы немного
знакомы с таблицами CSS.

Наиболее прямолинейный способ манипулирования
стилями CSS в сценарии состоит в изменении атрибута
style конкретного элемента. Как и большинство атрибутов,
атрибут style является свойством объекта Element . Этим
свойством можно манипулировать в коде JavaScript. Однако
свойство style немного необычное: его значение - не стро­
ка или какое-либо другое примитивное значение, а объект
типа CSSStyleDecla rat ion . В коде JavaScript свойства объек­
та стиля представляют свойства CSS, заданные в атрибуте
style. Например, чтобы вывести текст элемента е крупным
полужирным синим шрифтом, нужно выполнить приведен­
ные ниже инструкцииJаvаSсriрt, присваивающие заданные
значения свойствам font -size , font-weight и colo r.

е . style . fontSize = " 24pt " ;
e . style . fontWeight = · · ь o ld " ;
e . style . co l o r = · · ы u е · · ;

В именах многих свойств стилей CSS, таких как fo n t ­
size , содержатся дефисы. В коде JavaScript дефис интер­
претируется как знак "минус" , поэтому приведенное ниже
выражение неправильное.

е . styl e . fon t - s i z e = " 24pt " ; 11 Ошибка �

Стиnи зnементов 1 247

Следовательно, имена свойств объекта CSSStyleDec l a ­
rat io n должны немного отличаться о т имен фактических
свойств CSS. Если имя свойства CSS содержит один или
несколько дефисов, имя свойства CSSStyleDecla rat io n
создается путем удаления все дефисов и преобразования
в верхний регистр каждой буквы, расположенной по­
сле дефиса. Например, свойство CSS bo rde r - left -width
доступно в коде JavaScript как свойство bo rd e r leftWi d t h .
Кроме того , если имя свойства CSS совпадает с зарезерви·
рованным cлoвoм JavaScript (например, f loat) , то к нему
добавляется префикс css .

При работе со свойствами стилей объекта CSSStyleDec­
la rat i o n не забывайте, что все значения должны задавать·
ся в виде строк. Кроме того, все свойства, определяющие
позиционирование, задаются в некоторых единицах.
Следовательно, приведенные ниже инструкции, присваи·
вающие значения свойству left , неправильные.

11 Неправил ьно � Это ч исло , а не строка
e . style . l eft = 3 0 0 ;
1 1 Неп р а в ил ьно � О пущены един и цы
е . style . left = " 3 00 " ;

Единицы необходимы при установке свойств стилей
в JavaScript точно так же , как свойств стилей CSS. Ниже
приведена правильная инструкция, присваивающая зна­
чение 300 пикселей свойству left элемента е .

е . style . left = " 300рх " ;

Если нужно присвоить свойству left вычисляемое
значение, добавьте единицы измерения в конец строки
путем конкатенации.

е . style . left = (хО + ma r g i п + bo rde r + paddi пg) + " рх " ;

Обратите внимание на то , что числовой результат пре·
образуется в строковый автоматически вследствие побоч·
но го эффекта оператора + .

248 Гnава 1 1 . Работа с документами

Атрибуг style элемента HTML задает сmр(JЦ,нъtй (inline)
стиль (в отличие от блочного) и переопределяет любой
стиль, заданный во внешней или внедренной таблице CSS.
Строчные стили обычно полезны для установки параметров
отображения, как в приведенном выше примере. Программа
может считывать свойства объекта CSSStyleDec l a rat i o n ,
представляющие строчные стили, н о они возвращают
осмысленные значения, только если до этого бьти уста­
новлены кодом JavaScript или в данном элементе HTML
есть строчный атрибуг style, устанавливающий указанные
свойства. Например, в документе может быть определена
таблица стилей, устанавливающая левое поле всех абзацев
равным 30 пикселям, но если попытаться прочитать в коде
свойство ma rg i n left одного из элементов абзаца, оно вернет
пустую строку. Чтобы свойство ma rg i n left вернуло осмыс­
ленную строку, нужно, чтобы атрибуг style бьт определен
в конкретном элементе абзаца.

Иногда легче прочитать или записать строчный стиль
элемента как одно строковое значение , а не весь объект
CSSStyleDec la rat io n . Для этого можно применить методы
getAtt r i but e () и setAtt r i bute () объекта Element или свой­
ство cssText объекта CSSStyleDecla rat i o n .

/ / Присвоение строки s атри буту style элемента е
е . setAtt r i b u te (" style " , s) ;
e . style . cssText = s ; // Другой способ

// Чтение стро ч н о го стиля элемента е
s = e . getAtt r i b u t e (" style ") ;
s = e . style . cssText ; // Другой способ

Вместо манипулирования отдельными стилями CSS
посредством строчного свойства style можно управлять
значением атрибуга class . При изменении атрибуга class
элемента HTML изменяется набор селекторов стилей,
применяемых к элементу. Таким способом можно изме-

Стили элементов 1 249

нять много свойств CSS одновременно. Например, пред­
положим, что нужно привлечь внимание пользователя
к некоторому абзацу (или другому элементу) документа.
Можно начать с определения яркого стиля для любого
элемента класса attention .

. attention { / • Яркий стил ь , п р и вл е кающий внимание•/
bac kg round-colo r : ye l l ow ; / • Желтый цвет •/
font -we i g h t : bold ; /• Полужирный шрифт •/
bo rde r : so l id Ыасk 2рх ; / • Черная рамка •/

В JavaScript идентификатор class является зарезерви­
рованным словом, поэтому атрибуr class элемента HTML
доступен в коде JavaScript по имени className . Ниже при­
веден код, устанавливающий и очищающий свойство
className элемента для добавления и удаления класса
atte n t i o n данного элемента.

f u nction g rabAttent io n (e) {
e . className = "attention " :

f u nction releaseAttention (e)
e . c l assName =

Элемент HTML может быть членом более одного клас­
са CSS, тогда атрибуr class содержит список имен классов ,
разделенных пробелами. Поэтому имя свойства c l assName
может ввести в заблуждение: на самом деле в нем может
быть много имен классов, поэтому лучше бы оно назы­
валось во множественном числе - classNames . В приве­
денных выше функциях предполагается, что свойство
className определяет одно имя класса (возможно, пустое) .
С несколькими классами эти функции не работают. Если
элементу присвоен какой-либо класс, то вызов функции
g ra ЬAttent io n () приведет к переопределению данного
класса.

250 Гnава 1 1 . Работа с документами

В HTMLS эта проблема решается путем определения
свойства classlist для каждого элемента. Значением это­
го свойства служит массивоподобный (см. главу 6) объект
DOMTo ke n l ist , элементы которого содержат имена классов
элемента. Кроме элементов массива, объект DOMToken list
содержит методы add () и remove () для добавления и удале­
ния отдельных имен классов из атрибута class элемента
HTML. Метод toggle () работает как переключатель: он
добавляет имя указанного класса, если его нет, или удаля­
ет его , если оно сушествует. Метод conta i ns () проверяет,
содержит ли атрибут class указанное имя класса.

Как идругие типы коллекций DОМ, объект DОМТо kеn list
представляет набор классов элемента динамически, а не
статически , т.е. он автоматически обновляется при из­
менении элемента. Если извлечь объект DOMTo ken list из
свойства c lassl ist элемента, а затем изменить свойство
class Name этого же элемента, изменение будет немедлен­
но отражено в списке имен классов. Аналогично этому
любые изменения в списке классов немедленно видны
в свойстве class Name .

Геометрия и прокрутка
До сих пор мы говорили о документе как об абстракт­

ном дереве элементов и текстовых узлов. Но когда браузер
отображает документ в окне, он создает визуальное пред­
ставление документа, в котором каждый элемент имеет
некоторые размеры и занимает определенную позицию.
Довольно часто веб-приложение считают документ аб­
страктным деревом элементов и не учитывают, как эти
элементы отображаются на экране. Но иногда для сцена­
рия важно учитывать точную геометрию элемента. Для
задания позиций элементов часто используются таблицы
CSS. Если нужно применить CSS для динамического пози-

Геометрия и прокрутка 1 251

ционирования элемента (например, для вывода окна под­
сказки или создания выноски) рядом с другим элементом,
позиционированным браузером, то, в первую очередь,
необходимо выяснить положение этого элемента.

Позиция элемента измеряется в пикселях. Координата х

увеличивается слева направо, а у - сверху вниз. Существуют
две разные точки, которые можно использовать в качестве
начала системы координат: верхний левый угол документа
или верхний левый угол клиентской области окна, в кото­
ром отображен документ (в первом случае они называются
координатами дО'Кумента, а во втором - О'Коннъ�ми координата­
.ми) . В окне или вкладке верхнего уровня 'К!lиенmская областъ
(viewport) - это часть окна браузера (исключая панель ин­
струментов, меню, вкладки и т.п .) , в которой фактически
отображен документ. Если документ отображен во фрейме,
то клиентской областью служит элемент <i f rame>. В любом
случае, говоря о позиции элемента, важно четко понимать,
о каких координатах идет речь: документа или оконных.

Если документ меньше клиентской области окна или
если документ не прокручивался, то верхний левый угол
документа совпадает с верхним левым углом клиентской об­
ласти. Соответственно, две указанные системы координат
совпадают одна с другой. Однако в общем случае для преоб­
разования одной системы координат в другую необходимо
добавить или вычесть смещение nрО'Круmки. Например, если
в системе координат документа у=200 пикселей и пользова­
тель прокрутил окно вниз на 75 пикселей, то элемент име­
ет координату у=125 пикселей. Аналогично, если элемент
имеет оконную координату .х=400 пикселей и пользователь
прокрутил окно на 200 пикселей по горизонтали, то в си­
стеме документа координата х равна 600 пиксел ей.

Координаты документа более фундаментальные, чем
оконные, потому что они не зависят от прокрутки . Тем не
менее в программах на стороне клиента часто использу-

252 Гnава 1 1 . Работа с документами

ются оконные координаты. При позиционировании эле­
мента с помощью стилей CSS используются координаты
документа. Но при запросе позиции элемента код полу­
чает оконные координаты. Аналогично при регистрации
обработчика событий мыши код получает оконные коор­
динаты указателя.

Чтобы преобразовать систему координат, необходи­
мо получить позицию ползунка прокрутки в окне брау­
зера. Два значения позиции ползунка можно извлечь из
свойств pageXOffset и pageYOffset объекта Window.

Иногда полезно выяснить размеры клиентской об­
ласти окна, например, чтобы вычислить, какая часть до­
кумента видна в данный момент. Эти размеры можно из­
влечь из свойств i n n e rWidth и i n n e r He ig ht объекта Window.

Для выяснения размеров и позиции элемента вызови­
те его метод getBo u n d i n gC l i e nt Rect () . Никаких аргумен­
тов он не ожидает, а возвращает объект со свойствами
left (слева) , r i g h t (справа) , t o p (сверху) и bottom (снизу) .
Свойства left и top содержат координаты х и у левого
верхнего угла элемента, а свойства r i g h t и bottom - соот­
ветствующие координаты правого нижнего угла.

Метод get Bo u n d i n gC l ient Rect () возвращает позиции
в оконной системе координат. Чтобы преобразовать их в
координаты документа (которые остаются неизменными
даже после прокрутки окна пользователем) , добавьте сме­
щение прокрутки.

11 Получение о конных координат
va r Ьох = e . getBou n d i ngCl ientRect () ;
11 Преобразование в коорди наты до кумента
va r х = box . left + window . pageXOffset ;
va r у = Ьох . top + window . pageYOffset ;

Когда элемент отображается браузером, содержимое
элемента окружено невидимыми пустыми областями, ко­
торые называются отступами (paddings) . Отступ окружен

Геометрия и прокрутка 1 253

рамкой (не обязательно) , а рамка окружена невидимыми
полями (margins) . Координаты, возвращаемые методом
get Bo u n d i ngC l ie nt Rect () , включают рамку и отступы эле­
мента, но не включают поля.

Выше мы видели, что получить позицию ползун­
ков прокрутки можно с помощью свойств pageXOffset
и pageYOffset . Если нужно установить позицию ползун­
ков, вызовите метод sc rollТo () через объект Wi ndow. Этот
метод принимает значения х и у в координатах документа
и применяет их в качестве смещения прокрутки, т.е . про­
кручивает окно таким образом, что указанные координа­
ты совпадают с левым верхним углом клиентской области
окна. Если задать точку, слишком близкую к нижнему или
правому краю документа, браузер переместит документ
как можно дальше, !но не за пределы клиентской области.

Метод sc r o l l B y () объекта Wi ndow напоминает метод
sc rol l То () за исключением того, что принимает относи­
тельные аргументы, добавляемые к текущему смещению
ползунков.

Часто документ нужно прокрутить не на заданное
расстояние, а так, чтобы некоторый элемент был виден.
Для этого можно извлечь позицию элемента с помощью
метода getBo u n d i ngC l i e n t Rect{) , преобразовать ее в коор­
динаты документа и вызвать метод sc rol lТo () . Но проще
вызвать метод sc ro l l l ntoView (,,) через элемент HTML,
который нужно показать на экране. По умолчанию ме­
тод sc ro l l l n toView () пытается поместить верхний край
элемента как можно ближе к верхнему краю клиентской
области экрана. Если передать методу единственный аргу­
мент false , он попытается сделать то же самое с нижним
краем элемента, поместив его как можно ближе к нижне­
му краю клиентской области. Одновремен'о браузер про­
крутит клиентскую область по горизонтали таким обра­
зом, чтобы сделать элемент видимым.

254 Гnава 1 1 . Работа с документами

Г ЛАВА 1 2

Обработка событий

В приложенияхJаvаSсriрt на стороне клиента использует­
ся асинхронная программная модель, управляемая собы­
тиями. В этой модели браузер генерирует событие каж­
дый раз , когда происходит что-либо важное с документом,
браузером, объектом или элементом. Например, событие
генерируется, когда завершается загрузка документа, ког­
да пользователь наводит указатель на гиперссылку, когда
пользователь нажимает клавишу и т.п. Если приложение
JavaScript заинтересовано в событиях некоторого типа,
оно должно зарегистрировать одну или несколько функ­
ций, автоматически вызываемых при наступлении собы­
тия данного типа.

Тип собъtтия - это строка, идентифицирующая собы­
тие. Например, тип mousemove (движение мыши) означает,
что пользователь переместил мышь; тип keydown (клавиша
вниз) означает, что пользователь нажал клавишу на клавиа­
туре; а тип load (загрузка) - что закончилась загрузка до­
кумента или другого сетевого ресурса. Поскольку тип иден­
тифицирует событие, его часто называют именем события.

Це.мвой узел собъtтия - это узел (элемент или объект)
документа, в котором произошло событие или который
связан каким-либо образом с событием. Говоря о со­
бытии, всегда нужно указывать его имя и целевой узел.
Например, событие load происходит в объекте Wi n dow,
а событие c l i c k - в элементе <button> . На стороне кли­
ента события чаще всего происходят в объектах Wi n dow,

Document и E lement , но некоторые события происходят
в объектах других типов. Например, в главе 1 3 рассматри­
вается событие readystatec hange , генерируемое объектом
XMLHtt pRequest .

Обрабоm'Чи'К собъtтия - это функция, реагирующая
на событие. Приложение регистрирует обработчик в бра­
узере, задавая тип и целевой объект события. При возник­
новении события заданного типа в заданном целевом объ­
екте браузер автоматически вызывает обработчик.

Об'ОеКm собъtтия - это объект, создаваемый браузером,
ассоциированный с событием и содержащий подробную
информацию о нем. Объект события передается через ар­
гумент функции-обработчика события. Все объекты собы­
тий имеют свойство type, задающее тип события, и свой­
ство ta rget , задающее целевой узел события. В каждом
типе событий определен набор свойств ассоциированного
объекта события. Например, объект события мыши содер­
жит координаты указателя, а объект события клавиатуры
содержит подробную информацию о нажатой клавише и о
состоянии в данный момент клавиш-модификаторов. Для
некоторых типов событий определено лишь несколько
стандартных свойств, таких как type и ta rget . Для этих со­
бытий важен сам факт их возникновения, а не информа­
ция о них.

Распростражние собъtтия - это процесс генерации це­
почки событий браузером в связанных объектах. События,
специфичные для единственного объекта (например,
окончание загрузки страницы - событие load в объекте
Window) , не распространяются. Некоторые события, воз­
никшие в элементе документа, распространяются вверх
по дереву документа (этот процесс называется всплыванием
события) . Например, когда пользователь наводит указа­
тель на гиперссылку, событие mou semove сначала возникает

256 Гnава 12. Обработка событий

в элементе <а>, определяющем гиперссылку. После этого
событие генерируется в контейнере, например в элемен­
те <р>, затем - в элементе <div> и наконец - в объекте
Document . Иногда удобнее зарегистрировать один обработ­
чик события в объекте Document или другом контейнере,
чем непосредственно в элементе, в котором оно возникло.
Обработчик может остановить распространение события,
в результате чего оно не будет запускать обработчики в вы­
шестоящих контейнерах.

Обработчик можно зарегистрировать в контейнере
таким образом, чтобы он перехватил событие до того,
как оно будет сгенерировано в целевом узле (подробнее
об этом - далее) .

С некоторыми событиями ассоциированы определен­
ные действия, установленные для них по умолчанию. На­
пример, после щелчка на гиперссылке таким действием
является загрузка новой страницы браузером. Обработчик
события может предотвратить это действие, вызвав метод
объекта события.

Типы событий
В данном разделе рассматривается несколько катего­

рий событий: события формы, мыши, клавиатуры и др.
Каждая категория содержит ряд типов событий. Далее
в каждом подразделе описаны события определенной ка­
тегории, а также рассмотрены важные свойства объектов
событий данной категории

События формы
�ормы и гиперссылки исторически были первы­

ми элементами, которыми манипулировали сценарии
JavaScгipt на заре Интернета. Благодаря этому события
формы наиболее стабильные и поддерживаются лучше

Типы событий 1 257

событий других категорий. Элементы <fo rm> генериру­
ют события передачи и сброса данных формы. Кнопки,
переключатели и флажки генерируют события щелчков
на них. Элементы формы, поддерживающие состояния,
в общем случае генерируют события изменения состоя­
ний, когда пользователь, например, вводит текст, выби­
рает пункт или отмечает флажок. В текстовых полях со­
бытие изменения состояния не генерируется до тех пор,
пока пользователь не заканчивает работать с ними и не
передает фокус другому элементу. Элементы формы реа­
гируют на получение и потерю фокуса двумя отдельными
событиями.

С событиями передачи и сброса формы ассоцииро­
ваны выполняемые по умолчанию действия, которые
можно отменить в обработчике события. Аналогичные
действия ассоциированы с событиями щелчков. События
получения и потери фокуса (в отличие от всех других со­
бытий формы) не всплывают.

События окна
События окна ассоциированы непосредственно с ок­

ном браузера, а не с отображаемым содержимым докумен­
та (важно отметить, что имена некоторых из этих собы­
тий совпадают с именами событий документа) .

Наиболе
,
е важное событие окна - load (загрузка) . Оно

генерируется , когда документ и все его внешние ресурсы
(такие, как изображения) полностью загружены и содер­
жимое документа отображено на экране. Альтернативные
события - DOMContent Loaded и readystatec hange . Они воз­
никают немного раньше события load - когда документ
и его элементы доступны для манипулирования пользова­
телем, но перед загрузкой внешних ресурсов.

258 Гnава 12. Обработка событий

Событие u n load противоположно событию load : оно
генерируется, когда пользователь переходит к другому до­
кументу. Обработчик события u n load можно использовать
для сохранения пользовательских состояний, но с его
помощью нельзя отменить переход к другому документу.
Событие befo r e u n l oad похоже на u n load , но предоставляет
возможность попросить пользователя подтвердить, дей­
ствительно ли он хочет перейти на другуЮ веб-страницу.
Если обработчик befo reu n l oad возвращает строку, она
будет отображена для пользователя в диалоговом окне
перед загрузкой новой страницы, и пользователь полу­
чит возможность отменить переход и оставить на экране
прежнюю страницу.

События получения и потери фокуса элементами фор­
мы также используются как события окна. Они генериру­
ются, когда текущее окно браузера получает или теряет
фокус ввода с клавиатуры.

И наконец, события изменения размеров и прокручи­
вания генерируются, когда пользователь выполняет эти
операции с помощью мыши. Событие прокручивания мо­
жет возникнуть также в любом прокручиваемом элементе
документа, в котором установлено свойство ove rf low сти­
ля css.

События мыши
Эти события генерируются, когда пользователь пере­

мещает мышь или щелкает в окне документа. События
мыши генерируются даже для наиболее глубоко вложен­
ных элементов, на которые наведен указатель, но в этом
случае они всплывают вверх по дереву документа. Объект
события мыши, передаваемый обработчику, содержит на­
бор свойств , описывающих позицию указателя, состоя­
ние кнопок мыши и состояние клавиш-модификаторов

Типы событий J 259

в момент возникновения события. Свойства c l ie ntX
и c l i e ntY определяют позицию указателя в оконной систе­
ме координат. Свойства a ltKey , ct r l Key, metaKey и s h i f t Key
равны t r ue , если в момент возникновения события со­
ответствующая клавиша-модификатор была нажата.
Свойство detai l сообщает о типе щелчка: одиночный,
двойной или тройной.

Событие mou semove генерируется с большой часто­
той, когда пользователь перемещает мышь или перета­
скивает что-либо. Поскольку это событие генерируется
часто, в его обработчик нельзя закладывать трудоемкие
задачи . События mou sedown и mouseup возникают, ког­
да пользователь нажимает и отпускает кнопку мыши.
Зарегистрировав обработчик mousedown , который реги­
стрирует обработчик mousemove, можно обнаружить пере­
таскивание и отреагировать на него. Но для этого нужно,
чтобы программа продолжала перехватывать события
mousemove , даже когда указатель выйдет за пределы элемен­
та, в котором началось перетаскивание.

После событий mousedown и mouseup браузер генериру­
ет событие c l i c k. Если пользователь щелкает на кнопке
мыши дважды (через достаточно короткий промежуток
времени) , то после второго события c l i c k браузер гене­
рирует событие двойного щелчка d Ь l c l i c k. После щелчка
правой кнопкой мыши браузер часто отображает кон­
текстное меню. Обычно событие co ntextme n u генериру­
ется перед появлением контекстного меню на экране ,
поэтому в обработчике данного события можно отменить
его отображение. Это же событие можно использовать
для извещения о щелчке правой кнопкой мыши.

Когда пользователь перемещает указатель, в момент
вхождения указателя в область элемента браузер генери­
рует событие mou seove r данного элемента. Когда указатель

260 Гnава 12. Обработка событий

выходит за пределы элемента, браузер генерирует собы­
тие mouseout данного элемента. Объекты этих событий
имеют свойство relatedTa rget , указывающее на другой
элемент, вовлеченный в перемещение. События mouseove r
и mouseout всплывают вверх по дереву документа, подоб­
но всем события мыши. Часто это неудобно, потому что
при запуске обработчика mouseout нужно выяснить, дей­
ствительно ли указатель покинул интересующий нас эле­
мент или он всего лишь переместился с одного дочернего
элемента на другой. В этом случае лучше использовать
события mouseente r и mouseleave - новые невсплывающие
версии событий mou seove r и mouseout , поддерживаемые
последними браузерами.

Когда пользователь прокручивает колесико мыши,
браузер генерирует событие mousewheel . Объект события,
передаваемый обработчику, содержит свойства, сообща­
ющие об угле и направлении поворота.

События кnавиатуры
Имея фокус , браузер генерирует события клавиатуры

каждый раз, когда пользователь нажимает или отпускает
клавишу. Однако важно учитывать, что горячие клавиши
операционной системы или браузера часто перехваты­
ваются ими и не доходят до интерпретатора JavaScript.
События клавиатуры генерируются в любом элементе до­
кумента, имеющем фокус клавиатуры, и всплывают по де­
реву вверх до окна или документа. Если ни один элемент
не имеет фокуса клавиатуры, событие генерируется непо­
средственно в документе. Обработчики событий клавиа­
туры получают объект события с полем keyCode , сообщаю­
щим, какая клавиша была нажата или отпущена. Кроме
поля keyCode , в объекте события клавиатуры есть также
свойства a l t Key, ct r l Key, metaKey и s h i ft Key, отражающие

Типы событий 1 261

состояние клавиш-модификаторов в момент возникнове­
ния события.

События keydown и keyup являются низкоуровневыми
и генерируются, когда пользователь нажимает или отпу­
скает любую клавишу, включая клавиши-модификаторы.
Когда событие keydown генерирует печатный символ, до­
полнительно возникает событие keyp ress (после keydown ,
но до keyup) . Если пользователь нажал и удерживает кла­
вишу, событие keyp ress повторяется многократно, пока
пользователь не отпустит клавишу. Событие keyp ress вы­
сокоуровневое и текстовое. В его объекте события уста­
новлен сгенерированный символ, а не нажатая клавиша.
В некоторых браузерах (в частности, в Firefox) необхо­
димо использовать свойство c ha rCode объекта события
keyp ress вместо свойства keyCode .

События keydown , keyu p и keyp ress поддерживаются
всеми браузерами, но все же их использование порожда­
ет некоторые проблемы, связанные с тем, что значения
свойства keyCode не очень хорошо стандартизированы.

События HTMLS
Спецификация HTML5 определяет ряд новых про­

граммных интерфейсов для веб-приложений. Во многих
из них определены события. В данном разделе приведены
список и краткое описание событий, введенных в HTML5.
Одни из этих событий можно использовать уже сейчас,
а другие реализованы в браузерах еще не полностью.

Одно из наиболее разрекламированных новых средств
HTML5 - элементы <aud io> и <video> , предназначенные
для воспроизведения звука и видео. С этими элемента­
ми ассоциирован длинный список событий, служащих
для передачи сообщений о сетевых событиях, статусе бу­
фера данных, статусе воспроизведения и т.д. Ниже при­
веден список этих событий.

262 Гnава 12. Обработка событий

canplay
canplayt h rough
d u rationchange
empt ied
ended
loadeddata
loadedmetadata
loadsta rt
pause
play
playing
p rog ress
ratechange
seeked
seeking
stalled
s u spend
t imeu pdate
volumechange
wai t i n g

Этим медиасобытиям передаются обычные объекты
событий без специальных свойств. Свойство ta rget иден­
тифицирует элемент <audio> или <video> , который имеет
особые свойства и методы.

Спецификация HTML5 API, связанная с перетаскивани­
ем, позволяют приложениям JavaScript принимать участие
в управляемых операционной системой операциях пере­
таскивания и обмена данными между веб-приложениями
и настольными программами. В спецификации определе­
ны следующие семь событий перетаскивания.

d ragstart
d rag
d ragend
d ragente r
d ragove r
d ragleave
d rop

Типы событий 1 263

События перетаскивания генерируются с объектами со­
бытий, аналогичными событиям мыши. Дополнительное
свойство dataT ransfe r содержит объект DataT ransfer , пре­
доставляющий информацию о передаваемых данных и до­
ступных форматах.

Спецификация HTMLS определяет механизм управ­
ления историей, позволяющий веб-приложению взаимо­
действовать с кнопками Вперед и Назад браузера. В ме­
ханизме управления историей используются события
hashchange и popstate , служащие для извещения об этапах
жизненного цикла документа, таких как загрузка или вы­
грузка. Эти события генерируются объектом Window, а не
отдельными элементами документа.

В HTMLS определено много новых средств форм.
Кроме стандартизации событий ввода, в HTMLS до­
бавлен механизм проверки формы с помощью события
ошибки, генерируемого в элементе формы, не прошед­
шем проверку.

Кроме того, в HTMLS включена поддержка автоном­
ных веб-приложений, которые можно устанавливать ло­
кально в кеше приложений и выполнять, когда браузер
отключен от сети (например, когда мобильное устрой­
ство находится вне зоны покрытия сети) . Два наиболее
важных события этого типа - o f f l i n e и o n l i ne . Они воз­
никают в объекте Wi ndow, когда браузер устанавливает или
разрывает сетевое соединение. Ряд дополнительных со­
бытий определены для извещения о прогрессе загрузки
приложения и обновлениях кеша.

cached
checking
down loading
e r ro r
no update
obsolete

264 Гnава 12. Обработка событий

p rogress
update ready

В некоторых новых библиотеках веб-приложений
для асинхронной коммуникации между приложения­
ми используется событие message. Спецификация Cross­
Document Messaging API позволяет сценариям, опреде­
ленным в документах на разных серверах, обмениваться
сообщениями меду собой. Это позволяет обойти правило
ограничения домена (см. главу 10) безопасным способом.
Каждое переданное сообщение приводит к возникнове­
нию события message в окне принимающего документа.
Передаваемый обработчику объект события имеет свой­
ство data , в котором находится содержимое сообщения,
и свойства sou rce и o rig i n , идентифицирующие передат­
чик сообщения. Аналогичным образом событие message
используется для взаимодействия с потоками Web Workers
и для обмена данными посредством протоколов Server-Sent
Events и WebSockets.

В HTML5 и других родственных стандартах опреде­
лен ряд событий, возникающих в объектах, отличных
от окон, документов и элементов. В версии 2 специфи­
кации XMLHttpRequest и спецификации File API опреде­
лены события, отслеживающие асинхронные операции
ввода-вывода. Эти события генерируются в объектах
XMLHttpRequest и FileReade r . Каждая операция чтения на­
чинается с возникновения события loadst a r t , после кото­
рого генерируются события прогресса и событие loadend .
Кроме того, каждая операция заканчивается событием
load , e r ro r или abo rt , возникающим непосредственно пе­
ред событием loadend .

И наконец, в HTML5 и родственных стандартах опре­
делен ряд дополнительных категорий событий. В специ­
фикации Web Storage API определены события объекта

Типы событий 1 265

Window, извещающие об изменении хранящихся данных.
Стандартизированы также события befo rep rint и afte rp r i nt ,
которые сначала появились в браузерах Intemet Explorer.
Эти события возникают в объекте Window непосредственно
до и после печати документа и позволяют добавить или уда­
лить содержимое, например дату и время печати документа.
Эти события не рекомендуется использовать для управле­
ния представлением печатной версии документа, потому
что для этой цели существуют средства CSS.

События сенсорных экранов и мобипьных устройств
Широкое распространение мобильных устройств,

оснащенных сенсорными экранами, потребовало созда­
ния новых категорий событий. Во мноrих случаях сен­
сорные события связываются с традиционными типами
событий, такими как щелчки или прокручивание. Но не
каждое действие на сенсорном экране эмулирует мышь, и,
наоборот, не каждое касание можно интерпретировать как
событие мыши. В данном разделе кратко рассматриваются
события жестов и касаний, генерируемые браузером Safari
на устройствах iPhone и iPad компании Apple. Кроме того,
рассматривается событие изменения ориентации, возни­
кающее, когда пользователь поворачивает устройство.

Браузер Safari генерирует события масштабирова­
ния и поворота для жестов двумя пальцами. Событие
gestu resta rt генерируется в момент начала жеста, а со­
бытие gestu reend - в конце. Между этими двумя собы­
тиями браузер генерирует последовательность событий
gestu rechange , отслеживающих жест. Объекты этих собы­
тий содержат числовые свойства scale и rotat ion . Значение
scale равно отношению текущего расстояния между паль­
цами к начальному расстоянию. Для жеста сворачивания
значение scale меньше 1 , а для жеста разворачивания -

266 Гnава 12. Обработка событий

больше 1 . Значение rotat ion равно углу поворота двух паль­
цев с начала события в градусах. Положительное значение
означает поворот по часовой стрелке.

События жестов - это высокоуровневые события, изве­
щающие программу об операциях, интерпретированных
браузером и операционной системой. Если нужно создать
собственные жесты, используйте низкоуровневые собы­
тия касания. Когда палец прикасается к экрану, возникает
событие touchsta rt . Когда палец двигается, операционная
система с высокой частотой генерирует события touchmove.
Когда палец поднимается, генерируется событие touchend .
В отличие от событий мыши события касания не переда­
ют непосредственно координаты точки прикосновения.
Вместо этого объект события касания имеет свойство
changedTouches , содержащее массивоподобный объект, эле­
менты которого описывают позицию касания.

Событие о r i e n tat io nc ha nged генерируется в объекте
Window устройством и позволяет переключать ориентацию
экрана с портретной на альбомную и обратно. Объект со­
бытия o rientat io n changed не очень полезный. Например,
в мобильной версии Safaгi текущая ориентация находится
в свойстве o rientat io n объекта Window как одно из четырех
чисел: О, 90 , 1 80 или -90 .

Регистрация обработчика события
Существуют два способа регистрации обработчика.

Первый - установка свойства целевого объекта или до­
кумента. Второй - передача обработчика методу целево­
го объекта или элемента. Чтобы задача была еще слож­
нее, существует также по две версии каждого способа.
Свойство обработчика события можно установить в коде
JavaScript, или (для элемента) можно установить соответ­
ствующий атрибут непосредственно в коде HTML.

Регистрация обработчика события 1 267

Установка свойства обработчика
Простейший способ регистрации обработчика состо­

ит в присвоении функции-обработчика свойству целево­
го объекта события. Соглашения об именовании требуют,
чтобы имя свойства обработчика начиналось с префик­
са o n , после которого должно находиться имя события:
o n c l i ck , o n c hange , o n load , onmouseove r или т.п. Обратите
внимание на то, что имена свойств чувствительны к реги­
стру и должны быть приведены в нижнем регистре, даже
когда имя события состоит из многих слов (например,
readystatechange) . Ниже представлен пример регистра­
ции обработчиков двух событий.

11 Устано в ка свойства o n l oad объе кта Wi ndow .
11 Фун кция является обработч и ком и вызывается
11 при з а грузке документа .
window . o n l oad = f u nction () {

11 Извлечение элемента <fo rm> .
va r e lt = document . getElementByid (" add ress ") ;
11 Ре гистрация фун кции - обработч и ка , которая будет
11 вызы ваться до переда ч и формы .
e l t . o n s u bmit = fu nction () { ret u r n validate (t h is) ;

Недостаток свойства обработчика состоит в том, что
в нем используется предположение, будто целевые объек­
ты будут иметь не более одного обработчика для каждого
типа события. При создании кода библиотеки, которая
будет использоваться с произвольными документами,
данный способ неприменим.

Установка атрибута обработчика
Свойство обработчика для элемента можно также

установить как атрибут соответствующего дескриптора
HTML. Значением атрибута должна быть строка кода
JavaScript , содержащая только тело функции обработчика

268 Гnава 1 2. Обработка событий

без полного объявления функции. Это означает, что код
обработчика не должен быть заключен в фигурные скоб­
ки и перед ним не должно быть ключевого слова fu nct io n ,
как показано ниже.

<button o n c l i c k= " a l e r t (· П ривет ! ·) : " >
Щел кните здесь

</button>

Если атрибут обработчика содержит много инструк­
ций J аvаSсriрt, они должны быть разделены точками с за­
пятыми. Можно переносить длинный код обработчика
в другие строки документа.

Некоторые типы событий направляются браузеру, а не
отдельному элементу документа. В коде JavaScript эти со­
бытия нужно регистрировать в объекте Window. В НТМL­
коде их нужно помещать в дескриптор <body> , а браузер
зарегистрирует их в объекте Window. Ниже приведен
полный список таких событий, определенных в проекте
спецификации HTML5.

onafte r p r i nt
o n befo r e p r i n t
o n befo r e u n l oad
o n Ы u r
one r ro r
onfocus
o n hashchange
o n l oad
onmessage
o n o f f l i n e
onon l i n e
onpagehide
o n pageshow
on popstate
on redo
o n resize
onsto rage
o n u ndo
o n u n load

Реrистрация обработчика события 1 269

При задании строки кoдaJavaScript как значения атри­
бута обработчика браузер преобразует ее в функцию, ко­
торая выглядит приблизительно так.

function (event) {
wi t h (document) {

wi t h (t h i s . fo rm 1 1 { }) {
wit h (t h i s) {

/• Здесь находится код фун кции • /

Инструкция wi t h и аргумент event подробнее рассма­
триваются при обсуждении вызова обработчика.

Метод addEvent Listene r()
В любом объекте, который может быть целевым

для события (включая Window, Document и все узлы Element) ,
определен метод add Event listene r () . Его можно исполь­
зовать для регистрации обработчика события данного
целевого объекта. Метод add Event Listene r () принимает
три аргумента. Первый - тип события, для которого ре­
гистрируется обработчик. Тип (или имя) - это строка,
в которой не должно быть префикса о п , используемого
при установке свойства обработчика. Второй аргумент -
функция, вызываемая при возникновении события дан­
ного типа (т.е. обработчик) . Третий аргумент - необя­
зательное булево значение. По умолчанию применяется
значение false . Если передать значение t r ue , функция бу­
дет зарегистрирована как перехватъ�вающий обработчик,
вызываемый на другом этапе диспетчеризации события
(подробнее об этом - далее) .

270 Гnава 1 2. Обработка событий

Приведенный ниже код регистрирует два обработчика
для события щелчка на элементе <button> . Обратите внима­
ние на различия между двумя способами регистрации.

<button i d = " mybutto n " >Щeл книтe здecь</button>
< s c r i pt >
v a г Ь = document . getElementByld (" mybutton ") ;
b . o n c l i c k = f unction () { а lе гt (" П р и вет ! ") ; } ;
b . addEventlistene r (" c l i c k " ,

f u nction () { a l e rt (" Eщe раз п р и вет � ") : }) ;
</sc r i pt>

Вызов метода addEvent listene r () с первым аргументом
c l i c k не влияет на значение свойства o nc l ick. Поэтому по­
сле щелчка на кнопке приведенный выше код выведет диа­
логовое окно ale rt () два раза. Но еще важнее то, что метод
addEvent Listene r () можно вызывать много раз для реги­
страции нескольких обработчиков одного и того же со­
бытия того же объекта. При возникновении события все
зарегистрированные обработчики будут вызваны в той по­
следовательности, в которой они были зарегистрированы.
Вызов метода addEventl istene r () более одного раза через
один и тот же объект и с одинаковыми аргументами при­
ведет к регистрации обработчика только один раз, причем
поСледующие регистрации этого обработчика не повлия­
ют на его место в ряду других обработчиков.

Метод addEvent Listene r () "идет в паре" с методом
removeEvent L istene г () , который ожидает те же аргументы,
но не регистрирует, а отменяет регистрацию обработчи­
ка. Пара этих методов часто полезна для временной ре­
гистрации обработчика. Например, иногда полезно вре­
менно зарегистрировать перехватывающие обработчики
событий mou semove и mouseup , чтобы увидеть, когда поль­
зователь начнет перетаскивание. Когда перетаскивание
закончится, регистрацию обработчиков можно будет от­
менить. Ниже приведены инструкции, отменяющие реги­
страцию двух обработчиков.

Реrистрация обработчика события 1 271

document . removeEve n t l i stene r (" mo u semove" ,
hand leMove , t rue) ;

documen t . removeEvent listene r (" mo u seu p " ,
h andleU p , t r u e) ;

Вызов обработчика события
После регистрации обработчика браузер будет автома­

тически вызывать его при возникновении события указан­
ного типа в указанном объекте. В данном разделе подробно
рассматривается выполнение функции обработчика, его
аргумент, контекст вызова (значение t h i s) , область види­
мости вызова и возвращаемое значение обработчика.

Кроме того, в данном разделе рассматривается распро­

странение события - процесс запуска обработчика в исхо­
дном целевом объекте события и возникновение события
этого же типа в узлах, расположенных выше по дереву до­
кумента.

Арrумент обработчика
Обработчики запускаются с единственным аргумен­

том, содержащим объект события. Свойства объекта со­
бытия (описанные выше) предоставляют обработчику
всю нужную информацию о событии.

При регистрации события путем установки атрибута
в целевом элементе HTML (см. выше) · браузер преобразу­
ет строку кoдa javaScript в функцию с одним аргументом,
называющимся event . Это означает, что обработчик мо­
жет ссылаться на объект события по имени event .

Контекст обработчика
Регистрируя обработчик путем установки свойства,

вы определ.Яете новый метод объекта.

e . o n c l i c k = function () { /• Код обработч ика •/ } ;

272 Гnава 12 . Обработка событий

Следовательно, обработчик вызывается как метод объ­
екта, в котором он определен , и в теле обработчика клю­
чевое слово t h i s ссылается на целевой объект события.

Обработчики, зарегистрированные с помощью мето­
да add Event listene r () , также вызываются с целевым объ­
ектом, указанным с помощью значения t h i s .

Область видимости обработчика
Как и все функции JavaScript, обработчики событий

имеют лексическую область видимости. Это означает, что
обработчик выполняется в области видимости, в которой
он был определен, а не в той, в которой он бьш вызван.
Обработчику доступны все локальные переменные в его
области видимости.

Однако область видимости обработчика, зарегистриро­
ванного как атрибут HTML, подчиняется другим правилам.
Обработчик преобразуется в высокоуровневую функцию,
которая имеет доступ только к глобальным, но не к локаль­
ным переменным. По историческим причинам обработчи­
ки выполняются в модифицированной цепочке областей
видимости. Код обработчика, определенного как атрибут
HTML, может использовать свойства целевого объекта,
родительского объекта <fo rm> и объекта Document таким об­
разом, как будто эти свойства являются локальными пере­
менными. Если обработчик события определен в атрибуте
HTML, инструкция wi t h определяет модифицированную
цепочку областей видимости.

Атрибуты HTML - не очень подходящее место для длин­
ных строк кода, поэтому модифицированная цепочка об:
ластей видимости допускает полезные сокращения. Вместо
this . tagName можно писать tagName, а вt>lесто document .
getElementByid - getElementByid . В элементах документа, на­
ходящихся в контейнере < fo rm>, можно ссьшаться на другие

Вызов обработчика события 1 273

элементы формы по значениям атрибуга id . Например, вме­
сто t h i s . fo rm . zi pcode можно написать zi pcode.

С другой стороны, модифицированная цепочка об­
ластей видимости обработчика - постоянный источник
коварных ошибок, потому что свойства объектов цепоч­
ки переопределяют одноименные свойства глобального
объекта. Особенно эта проблема актуальна в формах, по­
скольку имена и значения id элементов формы определя­
ют свойства контейнера. Например, если форма содер­
жит элемент с атрибугом i d , равным locat i o n , то во всех
обработчиках формы для ссылки на объект Locat i o n теку­
щего окна нужно вместо location писать window . locat i o n .

Возвращаемое значение обработчика
Если обработчик зарегистрирован пугем установки

свойства объекта или атрибуга HTML, его возвращаемое
значение часто играет важную роль. В общем случае воз­
вращаемое значение false сообщает браузеру о том, что
он не должен выполнять действие, установленное для со­
бытия по умолчанию. Например, обработчик события
o n c l i c k кнопки S u bm i t может вернугь false , чтобы предот­
вратить передачу данных формы. Это весьма полезно,
если процедура проверки текста, введенного пользова­
телем, нашла ошибку. Аналогично обработчик события
o n keypress поля ввода может фильтровать введенные дан­
ные, если пользователь вводит неправильные символы.

Возвращаемое значение обработчика o n be f o r e u n load
объекта Window также очень важное. Данное событие гене­
рируется, когда пользователь переходит на новую страницу.
Если обработчик возвращает строку, ее можно отобразить
в модальном диалоговом окне, которое просит пользовате­
ля подтвердить его намерение закрыть старую страницу.

274 Гnава 12. Обработка 'обытий

Важно понимать, что возвращаемые значения важны
только для обработчиков, зарегистрированных как свой­
ства. Далее будет показано, что обработчики, зарегистри­
рованные с помощью метода add Event listene r () , для предот­
вращения запуска процедуры, установленной по умолча­
нию, должны использовать метод p reventDefau lt () объекта
события.

Распространение событий
Когда целевым объектом события является окно

Window или отдельный объект (например, XM LHttpRequest) ,
браузер реагирует н а событие, запустив соответствующий
обработчик через этот объект. Если же объект события -
документ или элемент документа, ситуация существенно
усложняется.

После запуска обработчика, зарегистрированного в це­
левом элементе, большинство событий всплывают по де­
реву DOM. Сначала запускаются обработчики, зарегистри­
рованные в родительском элементе. Затем - обработчики
в следующем родительском элементе. Этот процесс про­
должается, пока не дойдет до объекта Document и далее -
до объекта Wi ndow. Всплывание событий создает альтер­
нативу: вместо регистрации обработчиков во многих от­
дельных элементах можно зарегистрировать обработчик
в одном элементе-протомке и в нем обработать событие.
Например, можно зарегистрировать событие изменения
в одном элементе <fo rm> , а не в каждом элементе формы,
в котором может произойти изменение.

Всплывают почти все события, происходящие в эле­
ментах документа. Наиболее важные исключения из это­
го правила - события получения фокуса, потери фокуса
и прокрутки. Событие загрузки элемента всплывает, но
распространение прекращается по достижении объек-

Вызов обработчика события 1 275

та Docume n t , и в объект Wi ndow оно не распространяется.
Событие load объекта Window генерируется только при за­
грузке всего документа.

Всплывание события - третья "фаза" его распростра­
нения. Вторая фаза - вызов обработчиков целевого объ­
екта. Первая фаза, происходящая перед вызовом обра­
ботчиков целевого объекта, называется перехватом. Как
вы помните, метод addEve n t l i sten e r () принимает через
необязательный третий аргумент булево значение. Если
оно равно t r ue , обработчик регистрируется как перехва­
тывающий для вызова в первой фазе распространения.

Фаза перехвата похожа на всплывание наоборот.
Сначала вызываются перехватывающие обработчики
объекта W i n d ow , затем - перехватывающие обработчи­
ки объекта Docume n t , и так далее вниз по дереву DOM ,
пока не будет достигнут перехватывающий обработ­
чик объекта, родительского по отношению к целевому.
Перехватывающие обработчики , зарегистрированные
в самом целевом объекте , не запускаются .

Процедура перехвата предоставляет возможность
"подсмотреть" событие до его передачи целевому объек­
ту. Перехватывающие обработчики обычно используют­
ся для отладки или в алгоритмах отмены событий, обе­
спечивающих фильтрацию для обработчиков целевого
объекта, которые могут быть не запущены. Одно из по­
пулярных применений данной процедуры - обработка
событий перетаскивания, когда событие движения мыши
нужно обработать в перетаскиваемом объекте , а не в эле­
менте, над которым проходит перетаскиваемый элемент.

Отмена событи11
Выше было показано, что возвращаемое значение

обработчика, зарегистрированного как свойство , мож-

276 Гnава 12. Обработка событий

но использовать для отмены действия, установленного
по умолчанию для события данного типа. С этой же целью
можно вызвать метод р reve n tDefau l t () объекта события.

Отмена действия, установленного по умолчанию, -
лишь один из видов отмены событий. Можно также от­
менить распространение события. У объектов событий
есть метод stopP гopagat i o n () , который можно вызвать
для остановки распространения события. Если есть дру­
гие обработчики , определенные в этом же объекте , они
будут вызваны, но никакие обработчики в других объек­
тах вызваны уже не будут. Метод stopP ropagat i on () можно
запустить в любой момент распространения события. Он
работает на фазе перехвата, в целевом объекте события
и на фазе всплывания. Еще один метод объекта события -
stopimmed iateP ropagat i on () - предотвращает распростра­
нение события в любой объект и вызов любого обработ­
чика, зарегистрированного в этом объекте.

Вызов обработчика события / 277

ГЛАВА 1 3

Сетевое взаимодействие

В данной главе рассматриваются четыре сетевые техно­
логии на основе клиентских JаvаSсriрt-сценариев. Первая
из них реализована в объекте XM LHttpRequest , который
широко применяется в архитектуре Ajax. Это наиболее
важная из четырех технологий, и ей посвящена основ­
ная часть главы. Кроме того, здесь описывается методи­
ка JSONP для сетевого взаимодействия в стиле Ajax с де­
скрипторами <sc r i pt> , модель Comet с новой специфика­
цией EventSource API и новый полнодуплексный протокол
WebSockets.

Класс ХМ LHtt pReq uest
Используемые браузерами средства НТТР определе­

ны в классе XMLHttpRequest . Каждый экземпляр данного
класса представляет пару "запрос-ответ" в протоколе
НТТР. Свойства и методы объекта XMLHtt pRequest позволя­
ют задать параметры запроса и прочитать данные ответа.
Класс XMLHtt pRequest часто сокращенно называют XHR.
В данной главе термин "XHR 2" обозначает новую версию
спецификации. Следует отметить, что имя XMLHtt pRequest
не имеет ничего общего с XML. Это просто совпадение ,
исторически обусловленное тем, что когда-то планирова­
лось тесно связать данную технологию с моделью XML.

Первый шаг в использовании XHR API - создание
объекта XMLHttpRequest .

va r request = n e w XMLHtt pRequest () ;

Можно также повторно использовать существующий
объект XMLHtt pReq uest , но тогда будет прерван любой за­
прос , выполняющийся через этот объект.

Каждый НТТР-запрос состоит из четырех частей:

• метод НТТР;
• запрашиваемый URL-aдpec;
• необязательный набор заголовков запроса, кото­

рый может содержать, например, аутентификаци­
онную информацию;

• необязательное тело запроса.

Передаваемый сервером НТТР-ответ состоит из трех
частей:

• числовой или текстовый код статуса, сообщающий
об успехе или неудаче запроса;

• набор заголовков ответа;
• тело ответа.

В следующих разделах демонстрируется установка каж­
дой из указанных частей НТТР-запроса, а также извлече­
ние указанных частей НТТР-ответа средствами ХНR API.

Базовая архитектура запросов и ответов НТТР доволь­
но проста, и работать с ней легко. Однако на практике ча­
сто возникают разнообразные осложнения: клиент и сер­
вер обмениваются файлами "cookie" , сервер перенаправ­
ляет браузер на другие серверы, некоторые ресурсы (но
не все) кешированы, некоторые клиенты передают все
запросы через прокси-сервер и т.п. Класс XMLHtt pReq uest
работает не на уровне протокола НТТР, а на уровне брау­
зера. Браузер сам побеспокоится о файлах "cookie" , пере­
направлении, кешировании, прокси-серверах и других
вещах, в результате чего код сможет работать только с за­
просами и ответами.

280 Глава 1 3. Сетевое взаимодействие

Объект XMLHttpRequest и локальные файлы
Возможность использовать относительные URL-aдpeca
на веб-страницах означает, что разрабатывать и тести­
ровать веб-страницы можно с помощью локальной фай­
ловой системы, а затем можно развернуть отлаженную
версию на веб-сервере. Однако при использовании Ajax
и X M L H t t p R e q u e s t это чаще всего невозможно. Объект
X M L H t t p R e q uest предназначен для работы с протоколами
НТТР и HTTPS, но не с протоколом f i l e : //. Это означа­
ет, что при работе с объектом X M L H t t p R e q u e st вам, скорее
всего, придется для тестирования программы выгружать
файлы на веб-сервер (в крайнем случае - на локальный) .

Создание запроса
После создания объекта XMLHttpReq uest следующий

шаг в создании НТТР-запроса - вызов метода open () объ­
екта XMLHtt pRequest для задания двух обязательных частей
запроса: метода и URL-aдpeca.

request . open (" G ET" , " data . csv ") ;

Первый аргумент определяет метод НТТР. Методы
GET и POST поддерживаются всеми браузерами и сер­
верами. Метод GET используется для передачи простых
запросов. Этот метод предпочтителен в следующих слу­
чаях: когда строка URL может полностью определить
запрашиваемый ресурс , когда запрос не создает побоч­
ных эффектов на сервере и когда ответ сервера доступен
для кеширования. Метод POST позволяет передать до­
полнительные данные в теле запроса. Часто эти данные
сохраняются на стороне сервера в базе данных.

Кроме GET и POST, спецификация XMLHtt pRequest по­
зволяет использовать в качестве первого аргумента мето­
да open () методы DELETE, HEAD, OPТIONS и РUТ.

Создание запроса 1 281

Второй аргумент метода open () - строка URL, являю­
щаяся содержимым запроса и задаваемая относительно
URL-aдpeca документа сценария, который вызвал метод
ope n () . Если задать абсолютный URL-aдpec, то прото­
кол, хост и порт адреса и документа должны совпадать.
Кроссдоменные НТТР-запросы, как правило, вызывают
ошибку. Однако спецификация XHR2 разрешает такие
запросы, когда их явно разрешает сервер (подробнее об
этом - далее) .

Следующий этап - установка заголовка запроса (если
это необходимо) . Например, в запросе POST для задания
МIМЕ-типа тела запроса нужен заголовок Content -Type.

request . set Request Heade r (" Content -Type " ,
" t ext/plai n ") ;

Если вызвать метод setReq uestHeade r () несколько раз
с одним и тем же заголовком, новое значение заголовка
не заменит старое. Вместо этого в НТТР-запрос будут
включены копии заголовка, или заголовок будет опреде­
лять много значений.

Не задавайте заголовки Content - Le n g t h , Date , Refe re r
и Use r -Agent ; объект XMLHtt pRequest добавляет их авто­
матически и не разрешает редактировать их вруч!JУю.
Кроме того, объект XM LHttpReq uest автоматически обраба­
тывает файлы "cookie" , задает время жизни соединения,
кодовую таблицу и правила кодирования. Программисту
не разрешено устанавливать эти заголовки.

Окончательный этап создания НТТР-запроса с помо­
щью объекта XMLHtt pRequest - задание необязательного
тела запроса и его передача на сервер. Для этого нужно
вызвать метод send () .

request . send (n u l l) ;

У запросов GET нет тела, поэтому нужно передать ме­
тоду n u l l или опустить аргумент. У запросов POST тело

282 Гnава 13. Сетевое взаимодействие

обычно есть. Его формат должен соответствовать заго­
ловку Соn tе n t -Туре , заданному методом set RequestHeade r () .

В листинге 1 3 . 1 используется каждый из упомянутых
выше методов класса XM LHtt pRequest . Данный код передает
методом POST строку текста на сервер и задает игнориро­
вание любого ответа сервера. Обратите внимание на то,
что строка, передаваемая в теле запроса, может быть до­
вольно сложным объектом, например oбъeктoмJavaScript,
закодированным с помощью метода JSON . st r i n g i fy () , или
набором пар "имя-значение", закодированных формой.

Листинr 13 .1 . Передача методом РОSТ неформатированноrо текста

на сервер

f u n c t i o n postMessage (msg) {
va r г = new XMLHtt pRequest () ; // Создание зап роса
г . open (" POSТ" , "jlog . p h p ") ; / / Открытие зап роса
// Задание формата содержимого
r . setRequestHead e r (" Content -Type " ,

" t ext/pla i n ; cha rset=UTF- 8 ") ;
// Передача сообщения в теле зап роса
г . send (msg) ;
// Ответ и гнори руется

Обратите внимание на то, что в листинге 1 3 . 1 метод
send () инициирует ответ и завершается. Следовательно,
он не блокирует поток браузера ожиданием ответа серве­
ра. Как показано в следующем разделе, НТТР-ответы яв­
ляются асинхронными.

Получение ответа
Полный НТТР-ответ состоит из кода статуса, на­

бора заголовков ответа и тела ответа. Все эти части от­
вета доступны посредством свойств и методов объекта
XMLHtt pReq uest .

Поnучение ответа 1 283

• Свойства stat u s и stat u sText возвращают статус
НТТР в числовой и текстовой формах. Эти свой­
ства содержат стандартные значения НТТР, такие
как 200 и ОК для успешного ответа или 404 и Not Fo u n d
(Не найден) для URL-aдpecoв, неправильно ссыла­
ющихся на серверный ресурс.

• Заголовки ответа можно извлечь с помощью мето­
дов getRespon seHead e r () и getAl lResponseHead e r s () .

• Тело ответа доступно в текстовом формате в свой­
стве respon seText .

Объект XMLHttpRequest работает асинхронно: метод
send () немедленно завершается после передачи запро­
са, а перечисленные выше методы и свойства ответа не­
действительны, пока не получен ответ. Чтобы получить
уведомление о поступлении ответа, необходимо вклю­
чить прослушивание события readystatechange объекта
XMLHttpRequest (в XHR 2 можно использовать события
прогресса, описанные далее) . Готовность ответа к обра­
ботке определяется значением свойства readyState .

Целочисленное значение свойства readyState опреде­
ляет статус НТТР-запроса. Ниже приведены его возмож­
ные значения.

Значение
о

2

3

4

Оn11С1нне
Метод open () еще не вызывался

Вызван метод ope n ()

Получены заголовки ответа

Получено тело ответа

Передача ответа завершена

Чтобы включить прослушивание событий readystate­
c ha nge , присвойте обработчик события свойству o n ready-

284 Гnава 13. Сетевое взаимодействие

statechange объекта XMLHtt pRequest или вызовите метод
add Eve n t listene r () . В листинге 1 3.2 приведена функция
getТext () , демонстрирующая прослушивание события
readystatechange . Сначала обработчик убеждается в том,
что запрос завершен. Затем он проверяет код статуса от­
вета, убеждаясь в том, что запрос был успешным. Затем он
просматривает заголовок Co ntent -Type , чтобы проверить,
правильный ли тип ответа. Если все три условия удовлет­
ворены, обработчик передает тело ответа как текст задан­
ной функции обратного вызова. Эта функция обработает
ответ, передав его, например, методу JSON . ра rse () .

Листинr 13.2. Поnучение НПР-ответа

// Создание НТТР -запроса GET к заданному U R L - aдpecy .
// При поступлении ответа код п роверяет формат и
// передает текст заданной фун кции обратного вызова
f u nctioп getТext (u r l , ca l l back) {

va r г = new XMLHttpRequest () ; // Создание зап роса
r . open (' " GET" , u r l) ; // Задание U R L - aдpeca
r . o n readystatechange = f u n c t i o n () {

// Проверка статуса запроса
if (r . readyState === 4 && r . stat us === 200) {

}
} ;

va r type = r . getResponseHeade r (" Content -Type ") ;
// П роверка формата ответа
if (type . match (/�text/))

callback (r . responseText) ;

r . sen d (n u l l) ; // Пе редача зап роса

НТТР-события прогресса
В предыдущих примерах событие readystatechange ис­

пользовалось для определения момента завершения НТГР­
запроса. В проекте спецификации XHR 2 определен более
полезный набор событий. В новой модели событий объект

НПР-события прогресса 1 285

XM LHttpRequest генерирует на разных фазах запроса разные
типы событий, в результате чего проверять состояние
свойства readyState больше нет необходимости.

Если браузер поддерживает спецификацию XHR 2 ,
новые события генерируются в такой последователь­
ности. При вызове метода send () генерируется одно со­
бытие loadsta rt . Когда сервер выгружает ответ, объект
XM LHttp Request многократно генерирует события р rog ress ,
обычно каждые 50 мс. Эти события можно использовать
для оповещения пользователя о прогрессе запроса. Если
запрос завершается быстро, события р rog ress могут не
возникнуть ни разу. При завершении запроса возникает
событие load .

Завершенный запрос не обязательно успешный, поэ­
тому обработчик события load должен проверить код ста­
туса в свойстве stat us объекта XMLHtt p Request , дабы убе­
диться в том, что получен ответ 200 ОК , а не, например,
404 Not Fo u n d .

Существуют три вида неудачных НТТР-запросов и три
соответствующие причины. По истечении времени за­
проса генерируется событие t imeo ut . Если запрос пре­
рван, генерируется событие abo r t . И наконец, ошибка
в сети (например, превышение допустимого количества
перенаправлений) может предотвратить завершение за­
проса и привести к возникновению события е r го r .

Объект события p rog ress имеет три дополнительных
полезных свойства (кроме обычных свойств объекта
Eve n t , таких как type и t imestamp) . Свойство loaded содер­
жит количество байтов, переданных на данный момент.
Свойство total равно общей длине (в байтах) передавае­
мых данных, указанной в заголовке Conten t - Le n g t h . Если
этого заголовка нет, свойство total равно О. Свойство
lengt hComp utaЫe равно t rue , если длина содержимого из-

286 Гnава 13. Сетевое взаимодействие

вестна, и false - в противном случае. В обработчиках со­
бытий p rog ress особенно полезны свойства total и loaded .

request . o n p rog ress = function (e) {
i f (e . lengthComputaЫe) {

va r р = Mat h . round (1 00 • e . loaded/e . t otal) ;
p rog ress . i n ne rHTM L = р + - % з а г ружено - ;

Кроме рассмотренных выше полезных событий отслежи­
вания загрузки, спецификация ХНR 2 описывает события,
позволяющие отслеживать выгрузку НТГР-запроса. В брау­
зерах, поддерживающих ХНR 2, 9бъект XMLHttpRequest име­
ет свойство upload. Его значение - объект, определяющий
метод addEvent listene r () и полный набор свойств событий
прогресса, таких как onp rog ress и on load.

Обработчики событий u p l oad используются так же ,
как и обычные обработчики прогресса. В объекте х типа
XMLHtt pRequest можно установить свойство х . o n p rog ress
для отслеживания прогресса загрузки или х . u p l oad .
о п р rog ress для отслеживания прогресса выгрузки.

Кроссдоменные запросы
Согласно правилу ограничения домена (см. главу 6)

объект XM LHttpRequest обычно может передавать запросы
только на сервер, с которого загружен документ. Это огра­
ничение закрывает ряд брешей в системе безопасности, но
оно же предотвращает ряд полезных применений кроссдо­
менных запросов. Кроссдоменные URL-aдpeca можно ис­
пользовать в элементах <fo rm> и < i f rame>, в результате чего
браузер отобразит результирующий кроссдоменный доку­
мент. Но вследствие правила ограничения домена браузер
не позволит исходному сценарию просматривать содержи­
мое кроссдоменного документа, т.е. на экране оно видно,

Кроссдоменные запросы 1 287

но для сценария недоступно. При использовании объекта
XMLHtt pRequest содержимое документа можно получить из
свойства respon seText , но то же самое правило ограниче­
ния домена не разрешит объекrу XM LHttpRequest передать
кроссдоменный запрос. Обратите внимание на то, что эле­
мент <sc r i pt> не подвержен правилу ограничения домена.
Он может загрузить и выполнить любой сценарий неза­
висимо от адреса, где он находится. Далее будет показано,
что в технологии Ajax эта свобода кроссдоменных запро­
сов делает элемент <sc r i pt> привлекательной альтернати­
вой объекrу XMLHttpRequest .

Спецификация XHR 2 разрешает кроссдоменные за­
просы к определенным веб-сайтам, указанным в заголов­
ках CORS НТТР-ответов. Если браузер поддерживает заго­
ловки CORS объекта XM LHttpRequest и запрашиваемый сайт
разрешает кроссдоменные запросы с заголовками CORS,
правило ограничения домена сушественно смягчается,
и сценарий может передавать кроссдоменные запросы.

Техноnоrия JSONP: НТТР-запросы
в элементе <sc ript>

Для определенных типов содержимого элемент
<sc r ipt> можно использовать как полезную альтернативу
объекrу XMLHttpRequest . Вставьте атрибут s rc в дескрип­
тор <sc r ipt> , и браузер сгенерирует НТТР-запрос, загру­
жающий указанный ресурс. Элементы <sc r i pt> полезны
в технологии Ajax тем, что они не подчиняются правилу
ограничения домена, в результате чего их можно исполь­
зовать для получения данных от других серверов.

Методика использования элемента <sc ript> для переда­
чи данных Ajax называется технологией JSONP Она работа­
ет, когда тело НТТР-ответа закодировано в формате JSON.

288 Гnава 13. Сетевое взаимодействие

Предположим, существует служба, обрабатывающая
запросы СЕТ и возвращающая данные в формате JSON.
Документы с этого же сервера могут обрабатывать полу­
ченные данные с помощью объекта XMLHtt pRequest и метода
JSON . ра rse () . Если на сервере включить поддержку заголов­
ков CORS, то в новых браузерах кроссдоменные докумен­
ты также смогут пользоваться службой с помощью объекта
XMLHttpRequest . Однако старые браузеры, не поддерживаю­
щие заголовки CORS, имеют доступ к службе только через
элемент <sc r i pt> . Тело документа в форматеJSОN по опре­
делению является правильным кoдoм JavaScript, и браузер
выполнит его при получении с сервера. Обработка данных
JSON приводит к их декодированию, но это по-прежнему
всего лишь данные, которые ничего не делают.

Суффикс "Р" в слове 'JSONP" означает "Padding" (под­
кладка) . При вызове через элемент <sc r i pt> служба долж­
на заключить ответ в скобки и добавить в качестве пре­
фикса имя функции JаvаSсriрt. Зaпpoc JSON передает сле­
дующие данные.

[1 , 2 , {" Обув ь " : " туфл и " }]

Ответ JSONP выглядит так.

handleRespo n s e (
[1 , 2 , { " Обувь " : "туфл и " }]
)

Как тело элемента <sc r i pt> , ответ с подкладкой не де­
лает ничего полезного: он вычисляет данные в формате
JSON (а это всего лишь выражение JavaScript) и передает
их функции handleRqsponse () , которая, как предполагается
в документе, должна сделать что-то полезное с данными.

Чтобы все это сработало, нужно каким-то образом со­
общить службе , что запрос передается элементом <sc r i pt >
и необходимо прислать ответJSОNР; а нeJSON. Это мож-

Техноnоrия JSONP: НПР-заnросы в эnементе <script> 1 289

но сделать, добавив параметр запроса в строку URL, на­
пример добавив ? j son или &j son .

На практике службы, поддерживающие JSONP, не требу­
ют от клиентских устройств использовать какое-либо опре­
деленное имя функции, такое как handleResponse. В службах,
чтобы разрешить клиенту задать имя функции, использует­
ся значение параметра запроса. Затем это имя используется
в ответе в качестве подкладки. В листинге 13.3 для задания
имени функции обратного вызова используется параметр
запроса j sonp .

В листинге 13.3 приведено определение функции
getJSON P () , создающей запрос JSONP. Данный пример до­
вольно коварный, и вы должны хорошо понимать, как он
работает. Во-первых, обратите внимание на то, как код соз­
дает элемент <sc ript> , устанавливает URL-aдpec и вставля­
ет их в документ. Процесс вставки запускает НТТР-запрос.
Во-вторых, обратите внимание на то, как код создает но­
вую внутреннюю функцию обратного вызова для каждого
запроса, сохраняя функцию как свойство getJSON P () . И на­
конец, проанализируйте, как функция обратного вызова
"зачищает" код, удаляя элемент <sc r ipt> и саму себя.

Листинr 1 3.3. Создание запроса JSONP с помощью эnемента <sc ript>

11 Создание зап роса по заданному U R L - aдpecy и
11 передача обработанных данных ответа в функцию
11 обратного вызова . Доба вление параметра
11 зап роса " j so п p " в U R L дл я задания имени
11 функции обратно го вызова дл я ответа .
f u пctioп getJSON P (u r l , c a l lback) {

11 Создание уни кал ьно го имени фун кции обратно го
11 вызова дл я данно го запроса . Имя будет
11 СВОЙ СТВОМ ЭТОЙ фун кци и .
va r cbпum = " сЬ " + getJSON P . couпte r++ ;
va r сЬпаmе = " getJSON P . " + cbnum ;
11 Доба вление имени фун кции обратного вызова
11 в U R L - cтpoкy зап роса

290 Гnава 13. Сетевое взаимодействие

i f (u r l . i пdexOf (" ? ") === - 1)
u r l += " ? j soпp= " + сЬпаmе ;

else
u rl += "&j soпp=" + сЬпаmе ;

// Создание элемента <sc ript>
va r s c r i pt = documeпt . c reateElemeпt (" sc r i pt ") ;

// Оп ределение фун кции обратного вызова
getJSON P [c b п u m] = f u пctioп (respoпse) {

t ry {
cal l back (respoпse) ; // Обработка ответа

}
f i пal ly { // Оч истка (даже в случае ошибки)

delete getJSON P [cbпum] ;
s c r i pt . pa reпtNode . removeCh i l d (sc ri pt) ;

}
} ;

// Запуск НТТР-зап роса
sc r i pt . s rc = u r l ;
documeпt . body . appeпdCh i ld (sc ri pt) ;

// Счетч и к , испол ьзуемый для генерации уни кал ьных
// имен фун кций обратно го вызова
getJSON P . couпte r = О ;

Безопасность сценариев
Чтобы использовать элемент <sc r i pt > для передачи дан­
ньIХ l\jax, нужно разрешить веб-странице выполнять код
JavaScript, полученный с удаленного сервера. Это означа­
ет, что описанные методики нельзя применять при работе
с ненадежным сервером. Используя их при работе с надеж­
ным сервером, учитывайте, что, если хакер его взломает,
он получит контроль над вашей страницей, сможет выпол­
нить любой код и отобразить любое содержимое, причем
оно будет выглядеть так, как будто получено с вашего сайта.

Техноnоrия JSONP: НПР-заnросы в зnементе <script> 1 291

В последнее время на реальных веб-сайтах часто исполь­
зуются сценарии сторонних производителей, особенно
для внедрения на страницу рекламы и презентационных
элементов. Использование дескриптора <sc r i p t > как
транспортного средства Ajax для взаимодействия с надеж­
ными веб-службами - не более опасная операция, чем ис­
пользование сценариев сторонних производителей.

Протокоn Server-Sent Event
При обычном взаимодействии по протоколу НТГР

с помощью средств ХНR ШIИ дескриптора <script> клиент
запрашивает ШIИ извлекает данные с сервера, когда в них
возникает необходимость. Но есть и другой стШiь сетевого
взаимодействия посредством протокола НТГР - модель
Comet: клиент и сервер устанавливают НТГР-соединение
и оставляют его открытым. Это позволяет серверу переда­
вать данные клиенту без предварительного запроса.

Реализовать модель Comet средствами XHR до­
вольно тяжело, но стандарт Server-Sent Events, появив­
шийся в HTML5, определяет простую спецификацию
EventSource API, облегчающую получение сообщений,
сгенерированных сервером. Для обработки серверных
событий достаточно передать URL-aдpec конструктору
EventSo u rce () , а затем начать прослушивать события со­
общений через полученный объект.

va r t i c ke r = new EventSo u rce (" stockp r i ces . ph p ") ;
t i c ke r . onmessage = fu nction (e) {

va r type = e . type ;
va r data = e . dat a ;
1 1 Здес ь нужно обработать событие

292 rnaвa 13. Сетевое взаимодействие

Объект, ассоциированный с событием сообщения,
имеет свойство data , содержащее строку, которую сервер
передал в ответ на событие. Кроме того, объект события
имеет свойство type . По умолчанию оно равно " messag e " ,
н о источник события может задать другую строку. Один
обработчик события o nmessage получает все события сер­
верного источника и при необходимости может диспет­
черизовать их на основе свойства type .

Протокол Server-Sent Events довольно прост. Клиент
инициирует соединение с сервером (при создании объ­
екта EventSou rce) , а сервер поддерживает соединение от­
крытым. При возникновении события сервер записывает
строку текста в соединение. Передаваемое событие мо­
жет выглядеть, например, следующим образом.

event : bid // Тип события
data : GOOG // Устано в ка свойства data
data : 999 // Добавление стро ки и данных

// П устая строка создает событие

Протокол WebSocket
Все описанные выше технологии сетевого взаимодей­

ствия основаны на протоколе НТТР. Это означает, что
все они ограничены фундаментальными особенностями
НТТР: это протокол без учета состояний на основе за­
просов клиента и ответов сервера. Протокол НТТР узко
специализированный. Он предназначен главным обра­
зом для получения веб-страниц и других ресурсов. Более
общие сетевые протоколы определяют долгоживущие со­
единения и дуплексную систему сообщений посредством
ТСР-сокетов. Предоставлять клиентскому коду JavaScript
доступ к низкоуровневым ТСР-сокетам небезопасно, од­
нако библиотека WebSocket API реализует безопасную
альтернативу: она позволяет клиентскому коду создавать

ПpoTOllOJI WebSocket 1 293

дуплексные сокетные соединения с сервером, поддержи­
вающим протокол WebSocket. Это существенно облегчает
решение многих сетевых задач.

Функции WebSocket API легко применять. Сначала
нужно создать сокет с помощью конструктора WebSoc ket () .

va г s = new We bSoc ket (" ws : //ws . exampl e . сот/ resou гсе") ;

Аргумент конструктора WebSocket () представляет собой
URL-aдpec с протоколом ws : / / (или wss : // для безопасных
соединений, подобно https : //) . URL-aдpec задает хост
и маршруг ресурса и может задавать порт (в WebSocket
по умолчанию используются те же порты, что в НТТР или
HTTPS) .

Создав сокет, нужно зарегистрировать для него обра-
ботчик события.

s . on open = f u nction (e) { / • Открытие со кета •/ } ;
s . o nclose = f u nction (e) { / • За крытие со кета • / } ;
s . o ne r ro r = f u nction (e) { / • Ошибка ! • / } ;
s . onmessage = function (e) {

va r m = e . data ; /• Сервер пе редал сообщение • /
} ;

Чтобы передать сообщение на сервер, нужно вызвать
метод send () сокета.

s . sеnd (" При вет , сервер ! ") ;

Когда сеанс работы с сервером завершен, нужно за­
крыть сокет, вызвав его метод close () .

Взаимодействие посредством протокола WebSocket
является двунаправленным. Когда соединение WebSocket
установлено, клиент и сервер могуг обмениваться сооб­
щениями в любой момент, и это не обязательно должны
быть запросы и ответы.

294 Глава 13. Сетевое взаимодействие

ГЛАВА 1 4

Хранение данных
на стороне клиента

В веб-приложениях АРI-функции браузера можно исполь­
зовать для локального хранения данных на компьютере
пользователя. Например, веб-приложение может сохра­
нять пользовательские настройки и данные о состоянии
сеанса, чтобы при следующем посещении страницы воз­
обновить работу точно с того места, в котором она была
прервана. Хранилища на стороне клиента обычно раз­
дельные: страницы одного сайта не могут читать данные,
сохраненные страницами другого сайта. Но две страницы
одного сайта могут иметь общее хранилище и применять
его в качестве механизма взаимодействия. Данные фор­
мы, введенные на одной странице, могут быть отображе­
ны в таблице на другой странице. Веб-приложение может
задать время жизни сохраняемых данных. Например,
можно задать хранение данных только до тех пор , пока
не будет закрыто окно или браузер. Можно также задать
сохранение данных на жестком диске , чтобы они были
доступны через месяц или год. В этой главе рассматрива­
ются два механизма хранения данных на стороне клиен­
та: новая спецификация Web Storage API и традиционные
файлы "cookie".

Хранение, безопасность и конфиденциаnьность
Браузеры часто предлагают пользователю запомнить вве­
денный им пароль и сохраняют его безопасным способом
в зашифрованном виде на диске. Однако ни в одной из
технологий хранения данных, рассматриваемых в данной
главе, шифрование не применяется. Браузер сохраняет все
на жестком диске пользователя в незашифрованном виде.
Следовательно, сохраняемые данные доступны для любо­
пытных пользователей, имеющих общий доступ к компью­
теру, и зловредных программ, которые могут выполняться
на компьютере. По этой причине ни один из рассматривае­
мых в данной главе способов хранения данных на стороне
клиента нельзя применять для сохранения паролей, сведе­
ний о банковских счетах и другой важной информации.

Учитывайте также, что многие пользователи не доверяют
сайтам, в которых используются файлы "cookie" или дру·
гие механизмы хранения на стороне клиента, позволяю­
щие каким-либо образом отслеживать действия клиента.
Применяйте рассматриваемые в данной главе методы хра·
нения только для того, чтобы пользователям было удобнее
работать на сайте. Избегайте нарушения конфиденциаль·
ности пользовательских данных. Если слишком много сай­
тов будут злоупотреблять данными на стороне клиента, то
пользователи отключат хранилища или будут часто их очи·
щать, в результате чего такое хранение потеряет смысл.

Свойства localSto rage
и sess ionSto rage

Браузеры, реализующие спецификацию Web Storage,
определяют два свойства объекта Wi ndow, предназначен­
ных для хранения данных: localSto rage и sessionSto rage .
Оба свойства ссылаются на объект Sto rage - постоянный

296 Гnава 14. Хранение данных на стороне кnиента

ассоциативный массив, связывающий строковые ключи
со строковыми значениями. Объекты Sto rage работают
так же , как и обычные oбъeктыJavaScript. Код может при­
своить строку свойству объекта, и браузер сохранит эту
строку для дальнейшего использования. Разница между
свойствами localSto rage и sessionSto rage заключается во
времени жизни и области видимости, т.е. в том, как долго
хранятся данные и в каких местах кода они доступны.

Далее будут подробно обсуждаться вопросы времени
жизни и области видимости хранилищ. Но сначала рас­
смотрим несколько примеров. В приведенном ниже коде
используется свойство loca lSto rage , но он может рабо­
тать и со свойством sessionSto rage .

// Извлечение сохраненного значения
va r name = localSto rage . use rname ;
// Экв и валентная инструкция в в иде массива
name = localSto rage [" use r name "] ;
i f (! name) { // Есл и имени нет , создаем е го

name = p rompt (" Baшe имя? ") ;
localSto rage . u se rname = name ;

// П роход п о парам " имя -значение "
fo r (va r key in localSto rag e) {

va r value = localSto rage [key] ;

В объектах Sto rage определены методы сохранения,
извлечения, последовательного просмотра и удаления
данных. Они будут рассмотрены далее.

Согласно проекту спецификации Web Storage сохра­
нять можно как структурированные данные (объекты
и массивы) , так и примитивные значения, такие как встро­
енные типы дат, регулярные выражения и даже объекты
File . Однако на момент написания этой книги браузеры
могут сохранять только строки. Если нужно сохранять

Свойства localStorage и sessionStorage 1 297

и считывать другие типы данных, их нужно кодировать
и декодировать.

// Сохраняемые ч и сла а втоматически п реобразуются
// в строки . После извлечения их нужно
// п реобразовать в ч исла
localSto rage . x = 1 0 ;
va r х = parselnt (localSto rage . x) ;

/! П реобразо вание даты в строку
localSto rage . lastRead = (new Date ()) . toUTCSt r i n g () ;
// П реобразование стро ки в дату п р и и з влечении
va r last = пеw Dat e (Date . pa rse (localSto rage . last Read)) ;

// Испол ьзуйте J SON дл я п реобразования
// объектов и масс и в о в в строку
localSto rage . data = JSON . st r i n g i f y (data) ;
va r data = J SON . pa rse (local Sto rage . d ata) ;

Время жизни и область видимости хранилища
Как уже упоминалось, свойства localSto rage и sessio n ­

S t o rage различаются временем жизни и областью видимо­
сти хранилища. Данные, записываемые через свойство
localSto rage , хранятся постоянно. Они будут находить­
ся на жестком диске до тех пор, пока их не удалит веб­
приложение или пока пользователь не попросит браузер
(посредством специальных элементов интерфейса) уда­
лить их.

Область видимости свойства localSto rage определя­
ется правилом ограничения домена. Как было показано
в главе 10 , происхождение документа определяется его
протоколом, именем хоста и портом. Все приведенные
ниже URL-aдpeca имеют разное происхождение.

htt p : //www . example . com
https : //www . exampl e . com
htt p : //static . example . com
http : //www . example . com : 8000

// Разные п ротоколы
// Разные хосты
// Разные порты

298 Глава 14. Хранение данных на стороне клиента

Все документы общего происхождения имеют общее
свойство localSto rage (независимо от происхождения
сценария, обращающегося к значениям localSto rage) . Все
такие документы моrуг читать и записывать данные друг
друга. Но документ другого происхождения не может чи­
тать или записывать эти данные (даже если в нем выпол­
няется сценарий с того же сервера) .

Область видимости свойства localSto rage ограничена
типом браузера. Например, если посетить сайт сначала
с помощью браузера Fiгefox, а затем - браузера Chгome,
то любые данные, сохраненные при первом посещении,
при втором посещении не будут доступны.

Данные, сохраненные через свойство sessionSto rage ,
имеют то же время жизни, что и верхнеуровневое окно или
вкладка браузера, в которой выполняется сценарий, сохра­
нивший данные. Когда окно или вкладка закрывается (но
не сворачивается) , все данные, сохраненные через свой­
ство sessionSto rage , удаляются. Однако некоторые совре­
менные браузеры моrуг восстанавливать недавно закры­
тые вкладки и последний сеанс просмотра. Одновременно
восстанавливаются и свойства sessionSto rage, поэтому вре­
мя жизни данных может быть бальшим.

Как и localSto rage , свойство sess io nSto rage имеет об­
ласть видимости, определяемую происхождением до­
кумента. Документы другого происхождения не имеют
доступа к значениям свойства sessio nSto rage . Однако
область видимости свойства sessionSto rage ограничена
также окном. Если в браузере открыты две вкладки, ото­
бражающие документы одного происхождения, то в этих
вкладках используются отдельные области видимости
свойств sessionSto rage . Это значит, что сценарии, вы­
полняющиеся в одной вкладке, не моrуг читать или запи­
сывать данные, записанные сценариями другой вкладки,

Свойства localStorage и sessionStorage 1 299

даже если в обеих вкладках открыта одна и та же страни­
ца и выполняются одни и те же сценарии.

Учитывайте, что область видимости свойства session­
Sto rage ограничена только окном верхнего уровня. Если
во вкладке есть два элемента <i f rame> и в этих фрей­
мах отображаются два документа общего происхожде­
ния, то сценарии фреймов будут иметь общее свойство
sessionSto rage .

Встроенные функции хранения данных
Свойства localSto rage и sessionSto rage часто использу­

ются так, как будто это обычные oбъeктыJavaScript: устано­
вите свойство, чтобы сохранить строку, и прочитайте свой­
ство, чтобы извлечь данные. Но в этих объектах определе­
ны более формальные методы. Для сохранения значения
передайте имя и значение методу setltem() . Чтобы извлечь
значение, передайте имя методу getltem () . Чтобы удалить
пару "имя-значение", передайте имя методу removeltem() .
В большинстве браузеров для удаления пары "имя-значе­
ние" можно также использовать оператор delete, как и для
удаления обычного объекта, но такой способ в IE8 не рабо­
тает. Для удаления всех сохраненных значений вызовите ме­
тод clea r () без аргументов. Количество имен сохраненных
значений хранится в свойстве length . Для циклического об­
хода значений определите переменную счетчика, изменяе­
мую от О до lengt h - 1 , и передайте ее методу key () . Ниже при­
веден пример использования свойства localSto rage. Этот же
код может работать и со свойством sessionSto rage.

localSto rage . set item (" х " , 1) ; 11 Сохранение х

localSto rage . getitem (" x ") ; 11 И з влечение " х "

11 П роход в цикле по парам " им я - значение
fo r (va r i = О ; i < localSto rage . leпgth ; i++)

11 Получение имени пары номер i

300 fnaвa 14. Хранение данных на стороне миента

va r name = localSto rage . key (i) ;
// Получение значения пары
v a r value = localSto rage . getitem (name) ;

localSto rag e . removeitem (" х ") ; / / Удаление х
localSto rage . c lea r () ; // Удаление всех данных

События храниnища
При любом изменении данных, хранящихся в свой­

ствах localSto rage и sessionSto rage , браузер генерирует
событие sto rage во всех объектах Wi ndow, в которых вид­
ны эти данные (но не в объекте окна, который внес из­
менение) . Если в браузере открыты две вкладки со стра­
ницами общего происхождения и одна из них хранит
значение в свойстве localSt o rage , то другая страница по­
лучит событие sto rage . Как вы помните, область видимо­
сти свойства sessionSto rage совпадает с верхнеуровневым
окном, поэтому события sto rage генерируются, только
если в изменение вовлечены фреймы. Кроме того, собы­
тие sto rage генерируется , только когда произошло факти­
ческое изменение. Присвоение элементу хранилища его
существующего значения или удаление несуществующего
элемента не приведет к возникновению события.

Регистрация обработчика собьrгия sto rage выполняется
с помощью метода addEvent listene r () (в 1Е он называется
attachEvent ()) . В большинстве браузеров можно также при­
своить обработчик свойству onsto rage объекта Window, но
на момент написания книги браузер Firefox не поддержива­
ет данное свойство.

Объект события sto rage имеет пять важных свойств
(к сожалению, в IE8 они не поддерживаются) .

Свойства localStorage 11 sessionStorage 1 301

•

•

•

•

•

key - имя или ключ устанавливаемого или удаляемо­
го элемента. После вызова метода clea г () это свой­
ство равно n u l l .

n ewVa l u e - новое значение элемента или n u l l , если
вызван метод removeitem () .

oldVa l u e - прежнее значение элемента (измененяе­
мое или удаляемое) или n u l l при вставке элемента.

s t o rageA r e a - равно либо свойству l o c a l S t o r a ge ,
либо свойству s e s s i o n St o r a g e целевого объекта
Wi ndow.

u r l - строка URL-aдpeca документа, сценарий кото­
рого выполнил изменение хранилища.

Свойство localSto rage и событие sto rage могут слу­
жить механизмом широковещательного распростране­
ния сообщений всем окнам браузера, в которых отобра­
жен данный сайт. Например, если пользователь попросит
сайт остановить анимацию, сайт может сохранить этот за­
прос в свойстве localSto rage таким образом, что он будет
учитываться в других окнах. Сохранив запрос пользова­
теля , браузер сгенерирует событие, позволяющее другим
окнам увидеть и выполнить его. Еще пример: представьте
себе сетевое приложение для редактирования изображе­
ний, отображающее панель инструментов в отдельном
окне. Когда пользователь выбирает инструмент, прило­
жение использует свойство localSto rage для сохранения
текущего состояния и генерации для других окон извеще­
ния о том, что выбран новый инструмент.

Файлы "cookie"
Файл "cookie" - это небольшой именованный фраг­

мент данных, хранящийся в браузере и ассоциированный

302 Гnава 14. Хранение данных на стороне кnиента

с конкретной веб-страницей или сайтом. Изначально
файлы "cookie" были предназначены для программиро­
вания на стороне сервера. На самом низком уровне они
реализованы как расширение протокола НТТР. Файлы
"cookie" автоматически перемещаются между браузером
и сервером, в результате чего серверные сценарии мо­
гут читать и редактировать файлы "cookie", хранящиеся
на стороне клиента. В этом разделе показано, как сцена­
рии на стороне клиента могут манипулировать файлами
"cookie" с помощью свойства cookie объекта Document .

Программный интерфейс для работы с файлами
"cookie" довольно старый и по этой причине поддержи­
вается везде. К сожалению, он весьма сложный. Методы
в нем не используются, а все операции с файлами "cookie"
(чтение, установка и удаление) выполняются посредством
чтения и записи свойства cookie объекта Document с по­
мощью специально отформатированных строк. Время
жизни и область видимости каждого файла "cookie" мож­
но задавать индивидуально с помощью атрибутов. Эти
атрибуты также определяются с помощью специально от­
форматированных строк, присвоенных тому же свойству
cookie .

В следующих разделах рассматриваются атрибуты
файла "cookie" , задающие его время жизни и область ви­
димости, а также демонстрируется установка и чтение
файлов "cookie" в кoдejavaScript.

Атрибуты записи "cookie": время жизни
и область видимости

Кроме имени и значения у каждой записи "cookie" есть
необязательные атрибуты, определяющие время жизни
и область видимости. По умолчанию записи "cookie" не­
постоянны. Их значения хранятся на протяжении сеанса

Файпы "cookie" 1 303

браузера и теряются, когда пользователь закрывает брау­
зер. Обратите внимание на то, что это немного отличается
от правил для времени жизни данных sessionSto rage: фай­
лы "cookie" не ассоциированы с одним окном, и их время
жизни совпадает с временем жизни процесса браузера,
а не окна. Если нужно хранить файл "cookie" дольше сеанса
браузера, то необходимо сообщить браузеру максимальное
время хранения (в секундах) в атрибуте max-age. Если зада­
но время жизни, браузер сохраняет файл "cookie" и удаля­
ет его только по истечении времени жизни.

Область видимости файла "cookie" определяется про­
исхождением документа, как и область видимости свойств
localSto rage и sessionSto rage, а также маршрутом докумен­
та. Область видимости файла "cookie" можно конфигури­
ровать с помощью атрибутов path и domai n . По умолчанию
файл "cookie" ассоциирован с веб-страницей, создавшей
его, и доступен на этой и любой другой странице в том же ка­
талоге и его подкаталогах. Например, если страница http : //
www . example . com/catalog/i ndex . html создает файл "cookie", то
он видим также для страниц http : //www . example . com/catalog/
o rde r . html и http : //www . example . com/catalog/widgets/index .
html , но не для страницы http : //www . example . com/about . html .

Чаще всего необходимо именно такое поведение, уста­
новленное по умолчанию. Но иногда желательно исполь­
зовать файл "cookie" по всему сайту независимо от того,
на какой странице он создан. Например, если пользова­
тель вводит в форму свой электронный адрес , то жела­
тельно сохранить его как используемый в следующий раз
по умолчанию на всех страницах сайта, в том числе и в
другой форме.

Для этого необходимо задать атрибут pat h записи
"cookie". Тогда любая веб-i:траница на этом же сервере,
адрес которой начинается с указанного в path префикса,

304 Гnава 14. Хранение данных на стороне миента

будет иметь доступ к данному файлу "cookie". Например,
если файл "cookie" установлен страницей ht t p : //www .
example . com/catal og/widgets/i ndex . html и атрибут path име­
ет значение /catgalog , то файл "cookie" виден также стра­
нице htt p : //www . example . com/catalog/o rde r . h tml . Если же
атрибут pat h равен /, то файл "cookie" виден любой страни­
це на сервере http : //www . example . com.

Установка атрибута path равным / создает для фай­
ла "cookie" такую же область видимости, как у свойства
localSto rage , и, кроме того , приказывает браузеру пере­
давать на сервер имя и значение записи "cookie" при каж­
дом запросе к данному сайту.

По умолчанию файлы "cookie" имеют область видимо­
сти, определяемую происхождением документа. Однако
на крупных сайтах часто желательно, чтобы файлы
"cookie" были общими для вложенных доменов. Например,
если для сервера о rde г . example . com необходимо прочитать
файл "cookie" вложенного домена catalog . example . com, то
полезным будет атрибут doma i n . Если файл "cookie" , создан­
ный страницей с домена catalog . example . com, присваива­
ет атрибуту pat h значение / и атрибуту doma i n - значение
. example . com, то этот файл будет доступен для всех страниц
доменов catalog . example . com и о rde rs . example . com, а также
на любом сервере домена exampl e . com . Если атрибут doma i n
не установлен, по умолчанию он равен имени хоста на сер­
вере, обслуживающем страницу. Важно отметить, что уста­
новить для файла "cookie" домен, отличный от домена сер­
вера, невозможно.

И наконец, последний атрибут secu ге определяет, как
файл "cookie" может передаваться по сети. По умолчанию
файл "cookie" считается опасным. Это означает, что он
передается посредством обычного соединения НТТР. Но
если файл "cookie" отмечен как безопасный, он может пе-

Файnы "(ookie" 1 305

редаваться только посредством соединения HTTPS или
посредством другого безопасного протокола.

Создание записей "cookie"
Чтобы ассоциировать значение временной записи

"cookie" с текущим документом, нужно присвоить свой­
ству cookie строку следующего формата:

имя=зна чение

Это можно сделать так.

va r v = encodeURIComponent (document . lastMod i f ied) ;
document . cookie = "ve rsion= " + v ;

При следующем чтении свойства cookie сохраненная
пара "имя-значение" будет включена в список записей
"cookie" документа. Записи "cookie" не могут содержать
двоеточия, запятые и пробелы. По этой причине для ко­
дирования значения рекомендуется использовать гло­
бальную функцию JavaScript encodeURIComponent () .

Простой файл "cookie" с парой "имя-значение" суще­
ствует на протяжении текущего сеанса браузера и теряется,
когда пользователь закрывает браузер. Для создания файла
"cookie" , существующего дольше сеанса, нужно задать время
жизни в секундах в атрибуте max-age . Для этого нужно при­
своить свойству cookie строку следующего формата:

имя=зна чение ; mах-аgе=секунды

Приведенная ниже функция устанавливает файл
"cookie" с атрибутом max-age .

// Сохранение п а р ы " им я - значение " как з а п и с и "cookie " ;
// коди рование значения с помощью фун кции
// encodeURIComponent () , чтобы заменить двоеточ и я ,
// запятые и п робел ы . Есл и параметр daysTo live
// ч исловой , фун кция устанавл и вает атрибут
// max-age . При передаче нуля запись удаляется

306 Гnава 14. Хранение данных на стороне кnиемта

f u n c t i o n setCooki e (name , val ue , d aysTo live) {
vа г cookie = name + " = " + encodeURIComponent (v a l ue) ;
i f (t ypeof daysTo Live === " n umbe г ")

cookie + = " ; max-age= " + (daysTo live • 6 0 • 6 0 • 24) ;
document . cookie = cookie ;

Атрибуты pat h , doma i n и secu ге устанавливаются анало­
гично - путем добавления строк в указанных ниже фор­
матах к строке "cookie" перед записью в свойство cookie .

раth=маршрут

dоmа i п =домен

sec u re

Чтобы изменить запись "cookie" , установите ее по­
вторно. При этом нужно повторно установить также все
атрибуты записи. Можно задать другое время жизни с по­
мощью нового атрибута max-age .

Для удаления записи "cookie" установите ее повторно
с тем же именем и атрибутами, но с произвольным значе­
нием и с атрибутом max -age , равным нулю.

Чтение записей "cookie"
При использовании свойства cookie в выражении

JavaScript возвращается строка, содержащая все записи
"cookie" текущего документа. Строка состоит из списка
пар имя=эначение, разделенных точками с запятой и про­
белами. Значение не содержит атрибуты, присвоенные
записи "cookie". Обычно при использовании свойства
document . cookie его разбивают на отдельные пары "имя­
значение" с помощью метода s p l i t () .

После извлечения записи "cookie" из свойства cookie
ее нужно интерпретировать на основе формата, приме-

Фaiinы "cookie" 1 307

ненного при создании записи. Например, можно передать
значение записи "cookie" методам decodeUR IComponent ()
и JSON . pa rse () .

В листинге 14 . 1 приведена функция getCoo k i e () , кото­
рая выполняет синтаксический разбор свойства document .
cookie и возвращает объект со свойствами, содержащими
имя и значение записи "cookie".

Листинr 14.1 . Синтакоtческий анализ свойmа d ос ume n t . со о ki е

// Возв ращение записи " cookie " документа
// состояще го из пар " им я - значени е "
/ / П редпола гается , что значения были
// за коди рованы с помощью метода
// encodeURIComponent () .
f u nction getCookie s () {

как объе кта ,

va r cookies = { } ; //
va r a l l = document . cooki e ; //

Возв ращаемый объект
Все записи " cookie "

i f (a l l === " ") //
retu rn cookies : / /

// Разбиение стро ки на пары
va r l ist = a l l . s p l i t (" : ") :
// П роход в цикл е по парам

Есл и свойство п устое ,
возв ращаем пустой объект

fo r (va r i = О : i < l i st . l e ngt h ; i++) {
va r cookie = l i s t [i] ;
// Разбиение каждой пары
va r р = cookie . i ndexOf (" = ") :
va r name = cookie . s u bst r i ng (O , p) ;
va r value = cookie . s u bst r i n g (p+1) ;
// Сохранение имени и декоди рованно го значения
cooki e s [name] = decodeURIComponent (va l u e) :

ret u rn cooki e s :

Оrраничения файлов "cookie"
Файлы "cookie" предназначены для сохранения в брау­

зере небольшого объема данных серверными сценария-

308 Гnава 14. Хранение данных на стороне кnиента

ми. Эти данные передаются на сервер при каждом запросе
соответствующего URL-aдpeca. Стандарт, определяющий
файлы "cookie" , поощряет производителей браузеров
разрешать неограниченное количество файлов неогра­
ниченного размера, но не требует от браузеров сохранят
более 300 записей (по 20 файлов "cookie" на сервер) или
более 4 Кбайт данных на одну запись. На практике браузе­
ры разрешают сохранять намного больше, чем 300 запи­
сей, но некоторые браузеры накладывают ограничение
на размер записи: он должен быть не более 4 Кбайт.

Файnы "cookie" 1 309

Предметный указатель

D
DOM, 225

н
НТТР, 279

J
JSON, 1 16
JSONP, 288

L
Lval, 55

u
Unicode, 28

w
WebSocket , 293

А

Аргумент, 147
Арифметический

оператор, 56
Арность, 54 ; 1 70
Ассоциативность, 68
Атрибут

дескриптора HTML, 239
объекта, 1 23
свойства, 1 1 9

Б
Бесконечность, 26
Бинарный оператор, 55
Блок, 78
Булево значение, 32

в
Вложенная функция, 1 5 1
Всплывание события, 256
Вызов функции, 49 ; 152
Выражение, 45

г
Глобальная переменная , 24
Глобальный объект, 35

д
Декомпозиция адреса, 2 1 2
Декремент, 58
Деление

на нуль, 27
по модулю, 56

Дескриптор свойства, 1 20
Диалоговое окно, 2 1 6
Дизъюнкция, 67
Динамический массив, 127
Динамическое

наследование, 1 88
Дочерний элемент, 226

3
Замороженный объект, 1 25
Замыкание, 164
Зарезервированное

слово, 1 8
Значение, 23

и
Идентификатор, 1 8
Идентичность, 6 1
Имя события, 255
Индекс, 1 27
Инициализатор, 46
Инкремент, 58
Инструкция, 75
Интерпретация строк, 69
Исключение, 97
История браузера, 2 1 3
Итерация , 88

Квантор, 140
Класс , 1 74

к

символов, 194
Клиентская область, 252
Комментарий, 1 7
Конкатенация, 30
Конструктор, 50; 107 ;

156 ; 1 76
Контекст

вызова, 147
просмотра, 2 1 8

Конъюнкция , 65
Координаты документа, 252
Косвенный вызов, 1 58
Кроссдоменный запрос , 287

312 Предметный указатель

л
Лексическая область

видимости, 164
Литерал массива, 46 ; 1 28
Литеральный символ , 192
Логический оператор, 64
Локальная переменная, 43

м
Мантисса, 25
Массив, 1 27
Массивоподобный

объект, 144
Метка, 93
Метод, 50; 147; 1 54 ; 173
Многомерный массив, 132

н
Надкласс , 1 86
Наследование свойств, 1 1 1
Неизменяемый класс, 1 85
Нетипизированная

переменная, 23

о
Область видимости, 43
Обработчик события , 256
Объект, 1 05

Arguments, 1 6 1
Document, 225
DOMTokenList , 25 1
Element, 227
History, 2 1 3
HTMLCollection , 232
HTMLDocument, 227

HTMLE!ement , 227
Location, 2 1 2
Math , 26
Navigator, 2 1 5
Node, 227
NodeList , 230
Screen, 2 16
Text, 227
Window, 2 10
XMLHttpRequest , 279
глобальный, 35
события , 256

Объектный литерал, 46 ; 106
Объектный тип , 23
Объявление, 24 ; 4 1 ; 80
Оконные координаты, 252
Операнд, 45
Оператор, 45 ; 5 1
Определение функции, 148
Остаток деления, 56
Отмена события, 276
Отступ, 253

п
Параметризованная

функция, 147
Первичное выражение, 45
Переменная, 23
Переопределение метода, 186
Перехват события , 276
Перечисление свойств, 1 1 5
Побитовый оператор, 58
Побитовый сдвиг, 60
Побочный эффект, 55
Подкласс, 1 86
Позиция соответствия, 199

Поиск, 143
Поле, 254
Порядок числа, 25
Постфиксный инкремент, 58
Потомок, 227
Правило ограничения

домена, 222
Предок, 227
Преобразование типов, 36
Префиксный инкремент, 58
Примитивный тип , 23
Приоритет операторов, 53
Присваивание, 68
Прототип, 105 ; 107
Пустая инструкция, 78
Пустая строка, 28

р
Распространение события ,

256 ; 272 ; 275
Расширение класса, 188
Регистрация

обработчика, 267
Регулярное выражение, 1 9 1
Рекурсивная функция , 82
Родительский элемент, 226

с
Свойство, 1 05 ; 1 1 О
Связывание, 1 70
Селектор CSS, 234
Сенсорный экран , 266
Сериализация, 1 1 6
Смещение прокрутки, 252
Собственное свойство , 1 1 1
Событие, 255

Предметный указатель 313

Сортировка, 1 34
Составная инструкция, 78
Список аргументов, 1 6 1
Сравнение, 6 1
Стек, 1 3 7
Строгий режим, 1 02
Строгое равенство, 6 1
Строка, 28
Счетчик цикла, 89

Таймер, 2 1 1
Текст, 28

т

Тело цикла, 88
Тернарный оператор, 55
Тип

переменной , 23
события , 255

Точка с запятой, 20

у
Умножение, 56
Унарный оператор, 55

314 Предметный указатеnь

Управляющая инструкция, 75
Управляющая

последовательность, 192
Управляющее выражение, 86
Условие , 82
Условный оператор, 71

ф
Фильтрация , 140
Функция, 49 ; 8 1 ; 147

ц
Целевой узел события, 255
Цепочка прототипов, 108
Цикл, 88

ч
Число, 24
Числовой литерал, 24
Член класса, 1 82

Е
Экземпляр, 1 73

я
Якорь, 199

SPR ING 3
ДЛЯ ПРОФЕССИОНАЛОВ

Кпаренс Хо,
Роб Харроп

www.williamspuЫishing.com

ISBN 978 - 5 -8459-1803-1

Гибкая, облегчен ная,
с открытым кодом п л атформа
Spring Framework п родолжает
зани мать место л идирующей
и нфраструктуры для
разработки приложен и й
нa Java д л я современн ы х
п рограмм истов
и разработчиков. Она работает
в тесной интеграции с другими
гибк и м и и облегчен н ы м и
Jаvа-технологиями
с открытым кодом , таким и
как Hibernate, Groovy,
MyBatis и т.д. В настоящее
время Spriпg также
может взаимодействовать
c Java ЕЕ и J РА 2 .
Благодаря настоящей кни ге,
вы изучите основы Spring,
освоите ключевые тем ы ,
а также ознакомитесь с
реал ьным оп ытом реал изации
в приложе н и я х удаленной
обработки, Hibernate и EJ B .
Помимо основ, вы узнаете,
как испол ьзовать Spring
Framcwork для построения
разл и ч н ы х у ровней и л и
частей корпорат и вного
Jаvа-п риложен и я , в том
ч исле транза к ц и й ,
неб-уровня и у р о в н я
презента ц и й , ра;шертывания
и многого другого.

в продаже

С# 5.0
КАРМАННЫЙ СПРАВОЧНИК

Джозеф Албахари
Бен Албахари

Скорая памощь дм програм.4fисmов м С" .5.0

O'REILLY' В
Джозеф Мбахари Бе11 Албахари

www.williamspuЫishing.com

ISBN 978- 5 - 8459-1820-8

Книга явл яется идеальным
кратким справоч н и ком,
позволяющим быстро
найти исчерп ы вающую
информацию по языку
С# 5 .0. В ней изложены все
основные темы , касающиеся
языка С# 5.0, как основы, так
и более сложные темы, такие
как перегрузка операторов,
ограничения, ковариантносп
и контравариантность,
итераторы , типы, допускающ1
н улевое значение,
заимствование операторов,
лямбда-выражения
и замыкания. Кроме того,
в книге изложена информаци
о языке LINQ, начиная
с последовательностей,
отложенного выполнения
и стандартных операторов
запроса и заканчивая
пол ным справоч н и ком
по выражениям запроса.
Описаны динамическое
связывание и новые
асинхронные фу нкции в язы1
С# 5 .0, а также вопросы,
касающиеся небезопасного
кода и указатели,
собственные атрибуты,
директивы препроцессоров
и документация X M L .

в продаже

JAVA
РУКОВОДСТВО ДЛЯ НАЧИНАЮЩИХ
ПЯТОЕ ИЗДАНИЕ

Герберт Шилдт В этом учебном пособии для
начинающих программировать
на Java подробно рассмотрены
все основные средства данного
языка программирования:

руководство дnя начинающих
' тв 1 Незаменимое учебное пособие no наnисанию;

nроq>амм на Java 1 компилированию и выполнению современн�х

Герберт Wмnдт

www.williamspuЫishing.com

ISBN 978-5-8459-1770-6

типы данных, операторы,
циклы, классы, интерфейсы,
методы, исключения, обобщения,
пакеты, основные библиотеки
классов, средства многопоточ­
ного программирования, потоки
ввода-вывода, перечисления,
апплеты и документирующие
комментарии. Применение всех
этих языковых средств Java на
практике наглядно демонстриру­
ется в небольших проектах для
самостоятельного опробования.
Книга снабжена массой полезных
советов авторитетного автора
и множеством примеров программ
с подробными комментариями,
благодаря которым они становят­
ся понятными любому читателю
независимо от уровня его подго­
товки. А для проверки прочности
приобретенных знаний и навыков
в конце каждой главы приводятся
контрольные вопросы и задания.
Книга рассчитана на широкий
круг читателей, интересующихся
программированием на Java.

в продаже

jQUERY ДЛЯ ПРОФЕССИОНАЛОВ

Адам Фримен

www.williamspuЫishing.com

В книге показано, как соз-
давать профессиональные
неб-приложения с меньшими
усилиями и при меньшем раз­
мере кода. Вы изvчите методы
работы со встроенн ьtми и дис­
тан11ио11ными данными, наvчитесь
создавать функционально насы­
щенные интерфейсы для веб­
приложений, а также познакоми­
тесь с возможностями сенсорно­
ориентированного фреймворка
j (,,luery Moblle.

Основные темы книrн:
•

•

•

•

•

•

возможности и особенности
библиотеки j Queгy;
применение базовых инст­
рументов j Query для улучше­
ния НТМ L-документов, вклю­
чения в них таблиц, форм и
средств отображения данных;
применение библиотеки j Query
UI для создания гибких и
удобных в использовании веб­
приложений;
программирование различных
элементов взаимодействия,
как перетаскивание и вставка
объектов, сортировка дан ных
и сенсорная чувствительность;
применение библиотеки
j (,,luery Moblle при разработке
сенсорно-ориентированных
интерфейсов для мобильных
устройств и планшетных ком­
пьютеров;
расширение библиотеки j Query
путем создания собственных
подключаемых модулей и вид­
жетов.

I SBN 978-5-8459-1799-7 В продаже

MICROSOFT® WINDOWS® 8
РУКОВОДСТВО nользовдТЕЛЯ

Ден Томашевский

Ден Томашевсний
Microsoft"

Windows® 8
Руководство пользователя

• Устан.ов..а,><аGрОИка

:с=:
Windows8

• Mew � �

�ю":::.."�

w w w . d i a l e k t i k a . с о m

ISBN 978-5-8459-1827-7

В этой книге описывается
последняя версия операционной
системы от Microsoft -
Windows 8. Рассказывается,
как ее установить и настроить,
какие возможности эта система
предоставляет пользователю,
в чем ее отличие от предыдущих
версий и каковы особенности
ее нового графического
интерфейса Metro. Даются
рекомендации по использованию
стандартных программ
и мультимедиа-возможностей
Windows 8, подключению
и работе в Интернете,
организации домашней сети
и настройке встроенного
брандмауэра Windows.
Книга рассчитана на
пользователей любой
квалификации и будет полезна как
начинающим, так и достаточно
опытным пользователям ПК,
ноутбуков и планшетов.

в продаже

LINUX
КАРМАННЫЙ СПРАВОЧНИК

Скотт Граннеман Данная к н и га представляет
собой краткое пособие

НЮfiХОДИМЫЙ
КОД И КОМАНДЫ

Linux®
КАРМАННЫЙ С П РАВОЧ Н И К

www.williamspuЫishing.com

ISBN 978-5-8459-1118-б

по о с н о в н ы м командам
операционной системы
Linux. Читатель найдет
в ней описание больш инства
команд, необходимых ему
в повседневной работе.
В первых гл авах представлены
те средства, с которы х
любой новичок нач и н ает
знакомство с неизвестной
ему операционной системой.
В н и х рассматриваются
вопросы вы вода на экран
информац и и о каталогах,
перехода из одного каталога
в другой, создан и я каталогов,
отображения содержи мого
файлов и т.д. По мере чтения
книги материал усложняется.
Ч и татель получает
п редставление о работе
с принтерами, правах доступа
к файлам, архивировании
и сжатии дан н ы х, поиске
информации и др.
В книгу вкл ючено большое
количество примеров,
иллюстрирующих
использование каждой
описан ной в ней команды.

в продаже

Веб-разработка

O'REILLY�

Карманный справочник по JavaScript
JavaScript - популярнейший язык программирования, который уже
более 15 лет применяется для написания сценариев интерактивных веб­
страниц. В книге представлены самые важные сведения о синтаксисе
языка и показаны примеры его практического применения. Несмотря
на малый объем карманного издания, в нем содержится все, что
необходимо знать для разработки профессиональных веб-приложений.

Главы 1 -9 посвящены описанию синтаксиса последней версии языка
JavaScript (спецификация ECMAScript 5) .

• Ти п ы данн ых, значения и перемен н ы е

• И н струкции, операторы и вы ражения

• Объекты и массивы

• Классы и фун кции

• Регулярные вы ражения

В главах 10-14 рассматрива ются функциональные возможности языка
наряду с моделью DOM и средствами поддержки HTMLS.

• Вза имодействие кода JavaScript с окнами браузера

• Сцена р и и НТМ L-документов и элементы стра н и ц ы

• Управление стиля м и и классами C S S п осредством кода JavaScr ipt

• Реа гирование на события м ы ш и и клавиатуры

• Взаи модействие с веб-серверами

• Хранение данных на комп ьютере пользователя

--

• www.wi l l iamspuЬl ish ing.com oreil ly.com

1 ' ':1 7 8 - 5 - 8 4 5 9 - 1 8 3 0 - 7
1 3 0 2 0

1 � 1 ii l 11 1 1
9 � ' 8 5 8 4 5 9 1 8 3 0 7

	JavaScript. Карманный справочник
	Оглавление
	Содержание
	Об авторе
	Изображение на обложке
	Введение
	Глава 1. Лексическая структура
	Комментарии
	Идентификаторы и зарезервированные слова
	Необязательные точки с запятой

	Глава 2. Типы данных, значения и переменные
	Числа
	Текст
	Строковые литералы

	Булевы значения
	Значения null и undefined
	Глобальный объект
	Преобразование типов
	Объявление переменных

	Глава 3. Выражения и операторы
	Выражения
	Инициализаторы
	Обращение к свойствам
	Определение функции
	Вызов функции
	Создание объекта

	Операторы
	Арифметические операторы
	Операторы сравнения
	Лоrические выражения
	Операторы присваивания
	Интерпретация строк
	Дополнительные операторы
	Усповный оnератор ? :
	Оператор typeof
	Оператор delete
	Оператор void
	Оператор "запятая"

	Глава 4. Инструкции
	Инструкция-выражение
	Составные и пустые инструкции
	Инструкция-объявление
	var
	function

	Условия
	if
	else if
	switch

	Циклы
	while
	do/while
	for
	for/in

	Переходы
	Помеченные инструкции
	break
	continue
	return
	trhow
	try/catch/finally

	Друrие инструкции
	with
	debugger
	"use strict"

	Глава 5. Объекты
	Создание объектов
	Объектные литералы
	Ключевое слово new
	Прототипы
	Функция Object. сrеаtе()

	Свойства
	Чтение и запись свойств
	Наследование свойств
	Удаление свойств
	Проверка свойств
	Перечисление свойств
	Сериализация свойств и объектов
	Методы чтения и записи свойств
	Атрибуты свойств

	Атрибуты объекта
	prototype
	class
	extensible

	Глава 6. Массивы
	Создание массива
	Элементы и длина массива
	Перечисление элементов массива
	Мноrомерные массивы
	Методы массивов
	join()
	reverse()
	sort()
	conca ()
	slice()
	splice()
	push() и рор()
	unshift () и shift()
	toString()

	Методы массивов ECMAScript 5
	forEach()
	map()
	filter ()
	every() и some()
	reduce () и reduceRight ()
	indexOf() и lastIndexOf ()

	Тип Array
	"Массивоподобные" объекты
	Строки в качестве массивов

	Глава 7. Функции
	Определение функции
	Вложенные функции

	Выпоnнение функций
	Вызов функции
	Вызов метода
	Вызов конструктора
	Косвенные вызовы

	Арrументы и параметры функции
	Необязательные параметры
	Список арrументов переменной длины: объект Arguments

	Функции как пространства имен
	Замыкания
	Свойства, методы и конструктор функции
	Свойство length
	Свойство рrototype
	Метод bind()
	Метод toString()
	Конструктор Function()

	Глава 8. Классы
	Классы и прототипы
	Классы и конструкторы
	Идентичность классов и конструкторы
	Свойство constructor

	Классы в стиле Java
	Неизменяемые классы
	Подклассы
	Расширение кпассов

	Глава 9. Регулярные выражения
	Описание шаблонов с помощью реrулярных выражений
	Литеральные символы
	Классы символов
	Повторение
	Альтернативы, группировка и ссылки
	Задание позиции соответствия
	Флажки

	Использование регулярных выражений
	Методы класса String
	Свойства и методы класса RegExp

	Глава 10. JavaScript на стороне клиента
	Внедрение JavaScript-кoдa в НТМL-документ
	Проrраммирование на основе событий
	Объект окна
	Таймеры
	Свойство location
	История браузера
	Информация о браузере и экране
	Диалоrовые окна
	Элементы документа как свойства окна
	Множественные окна и фреймы
	Связи между фреймами
	Применение JavaScript во взаимодействующих окнах
	Правило оrраничения домена

	Глава 11. Работа с документами
	Обзор модели DOM
	Выбор элементов документа
	Выбор элементов по идентификатору
	Выбор элементов по имени
	Выбор элементов по типу дескриптора
	Выбор элементов по классам CSS
	Выбор элементов по селекторам CSS

	Структура и обход документа
	Атрибуты
	Содержимое элемента
	Содержимое элемента в виде НТМL-кода
	Содержимое элемента в виде простоrо текста
	Содержимое элемента в виде набора узлов

	Создание, вставка и удаление узла
	Стили элементов
	Геометрия и прокрутка

	Глава 12. Обработка событий
	Типы событий
	События формы
	События окна
	События мыши
	События клавиатуры
	События HTML5
	События сенсорных экранов и мобильных устройств

	Регистрация обработчика события
	Установка свойства обработчика
	Установка атрибута обработчика
	Метод addEventListener()

	Вызов обработчика события
	Аргумент обработчика
	Контекст обработчика
	Область видимости обработчика
	Возвращаемое значение обработчика
	Распространение событий
	Отмена события

	Глава 13. Сетевое взаимодействие
	Класс ХМLHttpRequest
	Создание запроса
	Получение ответа
	НТТР-события прогресса
	Кроссдоменные запросы
	Технолоrия JSONP: НТТР-запросы в элементе <script>
	Протокол Server-Sent Event
	Протокол WebSocket

	Глава 14. Хранение данных на стороне клиента
	Свойства localStorage и sessionStorage
	Время жизни и область видимости хранилища
	Встроенные функции хранения данных
	События хранилища

	Файлы "cookie"
	Атрибуты записи "cookie": время жизни и область видимости
	Создание записей "cookie"
	Чтение записей "cookie"
	Ограничения файлов "cookie"

	Предметный указатель

