Mastering jQuery Ul

Become an expert in creating real-world Rich Internet Applications
using the varied components of jQuery Ul

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering jQuery Ul

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Mastering jQuery Ul
Credits
About the Author

About the Reviewers

www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?

Free access for Packt account holders

Preface

What this book covers

What vou need for this book
Who this book is for

Conventions

Reader feedback

Customer support
Downloading the example code

Downloading the color images of this book

Errata
Piracy
Questions
1. Designing a Simple Quiz Application

Setting up jQuery Ul

Downloading the required files

Using jQuery/jQuery UI libraries with a CDN

Setting up the folder structure for the JavaScript and CSS files

Creating the layout

Markup for the quiz page

Styling elements

Making the quiz functional

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying data on the page
Draggable country names
Droppable capital names and scoring

Accepting a draggable element
The drop event

Resetting the quiz
Improving the quiz
Summary
2. Building a Jigsaw Puzzle Game
Getting ready
Creating the layout
Creating the markup for the puzzle
Styling elements
Making the puzzle functional
Creating slices of the image
The CSS background-position property
Starting the game
Handling events for puzzle pieces
Checking for puzzle completion
Resetting the puzzle
Improving the puzzle
Summary
3. Creating a Website Tour

Getting ready
Designing the home page

Writing markup for the page

Styling elements

Making the tour functional

Initializing accordion and tooltips

Defining the dialog
Defining the tour steps

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the tour
Displaying a tour step
Making the Previous and Next buttons functional
Ending the tour
Improving the tour

Summary
4. Creating a Tabbed News Reader

Creating the folder structure
Designing the page
Writing markup for tabs
Styling the content
Getting the code structure ready
Adding event handlers in the init method
Displaying posts of a subreddit
Creating the tab structure
Building the DOM for posts
Getting comments for a post
Improving MyjgReddit

Summary
5. Implementing CAPTCHA using Draggable and Droppable

Creating the folder structure

Implementing the drag and drop CAPTCHA

Setting a random color

Displaying the CAPTCHA

Making the drag and drop functional

Validating on the server
Improving the color CAPTCHA
Creating the slider CAPTCHA

Generating minimum and maximum values for the slider
Making the slider functional

Validating the slider values

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the slider CAPTCHA
Creating the number CAPTCHA
Generating the five-digit number
Displaying CAPTCHA on the page
Adding the sortable functionality

Validating the number on the server

Summary
6. Creating an Event Timeline Using a Slider
Creating the folder structure
Designing the page
Styling the content
Getting the code structure ready
Creating the timeline markup from data
Implementing the timeline functionality

Making the slider work
The if block

The else block

Dragging the year window
Displaying event details when a year window is clicked on

Closing the event details window

Improving the timeline

Summary
7. Using jQuery UI with Google Maps API

Creating the folder structure

Getting a Google Maps API key

Designing the page
Styling the content

Getting the code structure ready

Setting minimum and maximum prices
Displaying hotels in accordion

Setting up the spinner

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying the map
Setting markers and infowindows in the map
Implementing the slider

Improving the functionality

Summary

8. Creating a Photo Album Manager

Creating the folder structure

Designing the page
Creating placeholders for albums and pictures
Writing markup for dialog boxes
Styling the content

Creating the JSON file for albums

Getting code structure ready

Implementing the initialize method

Filling album names
Displaying the albums
Making the pictures sortable
Initializing dialogs for edit, delete, and zoom

Handling click events for edit, delete icons, and zooming pictures
Editing, deleting, and rearranging pictures

Editing a picture name

Deleting a picture

Rearranging pictures of an album

The ajaxAlbum.php file
Improving album manager

Summary
9. Creating Widgets Using the Widget Factory

The folder structure

Creating a widget to search data in a table

Writing markup for the table

Styling the content

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the widget
Defining the widget structure
Setting up default options
Initializing the widget and attaching event handlers
Filtering the table
Making changes when the option value is changed
Destroying the widget
Calling the widget from the page
Improving the searchable widget
Creating a widget to display a slideshow
Writing markup for slides
Styling the content
Implementing the widget
Defining the widget structure
Setting up default options
Initializing the widget and displaying the first slide
Displaying slides one by one

Making changes when the option value is changed
Destroying the widget

Calling the widget from the page

Improving the banner widget

Summary
10. Building a Color Picker with Hex RGB Conversion

Setting up the folder structure

Writing markup for the page

Styling the content
Implementing the color picker

Defining the object structure

The init method

Changing colors and updating the spinner

The getHexColor method

www.it-ebooks.info

http://www.it-ebooks.info/

Converting to hex

Improving the Colorpicker
Summary
11. Creating a Fully Functional Dashboard
Setting up the stage
Designing the page
Styling the content
Getting the code structure ready
Initializing the portlets
Implementing sharing buttons
Displaying Flickr photos
Creating a weather widget
Displaying posts from the reddit front page
Creating an image display widget
Improving the portlets
Summary
A. Best Practices for Developing with jQuery Ul

General Guidelines

Using a CDN
Use a customized build of jQuery Ul

Using the jQuery Ul icons

Be specific about elements as much as possible

Chain, chain, and chain

Cache selectors

Cache your loop variables

DOM manipulation is costly

Using jQuery Ul Themeroller to customize a theme

Index

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering jQuery Ul

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering jQuery Ul

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015
Production reference: 1200215
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-665-2

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author

Vijay Joshi

Reviewers

Ilija Bojchovikj
Thodoris Greasidis
Commissioning Editor
Owen Roberts
Acquisition Editor

Owen Roberts

Content Development Editor

Athira Laji

Technical Editor
Anushree Arun Tendulkar
Copy Editors

Roshni Banerjee

Merilyn Pereira

Vikrant Phadke

Project Coordinator
Harshal Ved
Proofreaders

Maria Gould

Samantha Lyon

Elinor Perry-Smith
Indexer

Mariammal Chettiyar
Production Coordinator
Manu Joseph

Cover Work

Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Vijay Joshi is a web developer who lives in New Delhi, India, with his wife and daughter.
Coming from a small town named Pithoragarh, Uttarakhand, in the Himalayas, he fell in
love with coding while in college. He has also loved PHP and JavaScript/jQuery since his
early coding days. Vijay believes that if you are passionate and enjoy your work, it
becomes more of a hobby that is not boring and it never feels like a job. After freelancing
for a few years, he founded a web development firm called Developers Lab along with
two of his friends in New Delhi, where they build products for the travel industry and
create custom web applications. Vijay is also the author of PHP jQuery Cookbook, Packt
Publishing, and the technical reviewer of PHP AJAX Cookbook and jQuery UI 1.8: The
User Interface Library for jQuery. When not coding, he likes to read, spend time with his
family, blog occasionally at http://vijayjoshi.org, and dream about getting back in shape.

Writing a book is a long and complicated task and it requires the support and coordination
of many people. I am thankful to the entire team at Packt, especially my content
development editor, Athira Laji, for being so cooperative and patient with me.

A big thank you to all the technical reviewers as well, who helped me immensely in
increasing the overall quality of this book.

Lastly, I am feeling both proud and excited to be able to contribute to the open source
community that made me what I am today.

www.it-ebooks.info

http://vijayjoshi.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Ilija Bojchovikj, is a senior manager of user experience, design, and development. He has
the know-how required to combine creativity and usability viewpoints resulting in world-
class web and mobile applications and systems.

Ilija has more than 4 years of experience, partnering with internal and external
stakeholders in discovering, building, improving, and expanding user experiences and
creating and developing outstanding user interfaces.

Ilija has experience in creating cutting-edge interface designs and information architecture
for websites and mobile applications through user-centered design processes by
constructing screen flows, prototypes, and wireframes.

Special thanks to my girlfriend, Monika, for having the patience and letting me take yet
another challenge that decreased the amount of time I could’ve spent with her.

Thodoris Greasidis is a senior web developer from Greece. He holds a polytechnic
diploma in computer, networking, and communications engineering, and a master’s in
computer science.

Thodoris is part of the Angular-UI team and has made many open source contributions,
with special interest in Mozilla projects.

He is a JavaScript enthusiast and loves bitwise operations. His interests also include web
applications and services and artificial intelligence, especially multiagent systems.

Special thanks to my family and fiancée, who supported me while reviewing this book,
and to the guys from work who encouraged me to get involved.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support files, eBooks, discount offers, and
more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at <service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

IE\ PACKT!L E°

https://www?2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can search, access, and read Packt’s entire library of books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e On demand and accessible via a web browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

To Tanu and Nauni, with all my love.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

jQuery Ul needs no introduction for itself. As the official website says, “jQuery Ul is a
curated set of user interface interactions, effects, widgets, and themes built on top of the
jQuery JavaScript Library.” It is very likely that any developer who has worked with
jQuery would have used at least one of the jQuery UI widgets.

Since it is a large library having many components with each component having multiple
options, it is common for developers to get confused. Despite having excellent
documentation, there are only a few resources that describe jQuery UI using its practical
applications. To become an expert, you must know how jQuery UI fits with real world
applications and which of its components have to be used when a use case is provided.

This is the goal of this book. Our aim is to improve your knowledge of jQuery Ul to a
master level, so that you can use it in complex real world projects with ease.

Each chapter of the book is a mini project in itself. There are detailed step-by-step
instructions along with helpful pictures that will guide you through each chapter. The
chapters are not arranged in any particular order, so you may pick up any one at random.

I am optimistic that this book will help you take jQuery UI skills to the next level.

Happy Coding!

www.it-ebooks.info

http://www.it-ebooks.info/

What this book covers

Chapter 1, Designing a Simple Quiz Application , makes use of jQuery UI’s interaction
components to create a quiz application. You will learn about jQuery UI’s sortable,
draggable, and droppable components in this chapter.

Chapter 2, Building a Jigsaw Puzzle Game, teaches you to create a Jigsaw puzzle game
using some of the jQuery Ul’s interaction components. You will learn to divide an image
into multiple tiles along with sortable techniques.

Chapter 3, Creating a Website Tour, will create a user-friendly tool to tour different parts
of a web page. You will learn about jQuery UI’s tooltip component and some other
components in this chapter.

Chapter 4, Creating a Tabbed News Reader, teaches you to create a news reader using an
external API. Using the reddit API, you will learn about creating a mashup with jQuery
UTI’s tabs and dialog components.

Chapter 5, Implementing CAPTCHA using Draggable and Droppable, deals with creating
CAPTCHAs. Using jQuery UI’s draggable and droppable components, you will be able to
create three different CAPTCHA implementations.

Chapter 6, Creating an Event Timeline Using a Slider, will teach you to create an
interactive timeline to visualize events that occurred in different years. You will also learn
different techniques of using the slider component.

Chapter 7, Using jQuery UI with Google Maps API, teaches you to use jQuery Ul
components with Google Maps. You will learn to control markers on a map using a slider.
You will also learn to control the zoom level using a spinner.

Chapter 8, Creating a Photo Album Manager, explains how to create a photo album to
display pictures. Users will be able to edit the names of any picture as well as delete
and/or rearrange pictures in an album.

Chapter 9, Creating Widgets Using the Widget Factory, teaches you to create new widgets.
In detailed steps, you will learn to create two different widgets to cover all aspects of the
jQuery UI widget factory.

Chapter 10, Building a Color Picker with Hex RGB Conversion, creates a simple color
selector tool. Along with RGB to Hex conversion, this chapter will guide you in creating a
tool that will allow you to change the text as well as the background color of a page, using
multiple slider and spinner components.

Chapter 11, Creating a Fully Functional Dashboard, puts together all the learning
acquired through the previous 10 chapters to create a dashboard with multiple widgets.
You will learn to create six different widgets in this chapter.

Appendix, Best Practices for Developing with jQuery UI, guides you with the best
possible ways to create rich applications. This chapter will also teach you about the best
coding practices and optimizations.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What you need for this book

You should have a web server installed on your system. Apache is recommended but you
can use IIS as well. You will also need PHP (version 5.2 or above) for some chapters. You
can install all of these in a single go using a software such as Wamp Server or you can
install them separately. jQuery (version 1.6 or higher recommended) and jQuery Ul
libraries (version 1.11.2 recommended) will also be required.

In terms of technical proficiency, this book assumes that you have worked with jQuery
and jQuery UI libraries, HTML, CSS, and JSON. This book will take care of the rest.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Who this book is for

This book is aimed at frontend developers who use jQuery and jQuery UI on a daily basis
and want to take their skills of jQuery UI to an advanced level. The book provides step-
by-step instructions, with details supported by pictures to help you become an expert in
using different jQuery UI components.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions

In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: “We
have created a div with CSS class container which will act as parent div for all the page
elements”

A block of code is set as follows:

var t = this;
$(".slider").slider(

{
range: "min",
max: 255,
slide : function (event, ui)
{
t.setColor($(this), ui.value);
}
change : function (event, ui)
{
t.setColor($(this), ui.value);
}
1)

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

var t = this;
$(".slider").slider(

{
range: "min",
max: 255,
slide : function (event, ui)
{
t.setColor($(this), ui.value);
+
change : function (event, uil)
{
t.setColor($(this), ui.value);
}
)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
/etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “clicking the Next button
moves you to the next screen”.

www.it-ebooks.info

http://www.it-ebooks.info/

Note

Warnings or important notes appear in a box like this.
Tip
Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from:

http://www.packtpub.com/sites/default/files/downloads/2018 66520S_Colorlmages.pdf.

www.it-ebooks.info

http://www.packtpub.com/sites/default/files/downloads/2018_6652OS_ColorImages.pdf
http://www.it-ebooks.info/

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from

https://www.packtpub.com/support.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/support
http://www.it-ebooks.info/

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Designing a Simple Quiz
Application

To begin with, we will design a simple quiz application where users have to match country
names to their corresponding capital names by dragging a country name over its correct
capital. A correct match will result in one point, and drag and drop will be disabled for
both the country and its capital.

The display will contain two columns, the first one will have country names and the
second one will have the names of the capitals of those countries. Both the columns will
be shuffled randomly. Once the user has matched all the names successfully, a modal
dialog will appear. Users will also be given the option to reset the quiz. Resetting will
restart the game and shuffle the lists again.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up jQuery Ul

We will need the jQuery and jQuery Ul libraries before going ahead. Throughout this
book, we’ll use jQuery Version 1.10.2 and jQuery UI Version 1.10.4 with the Uz
lightness theme . Note that the jQuery Ul files also contain a copy of the jQuery source

file.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading the required files

To download jQuery, visit the download page on the jQuery website at
http://jquery.com/download/.

Tip
Make sure that you download the correct version as per your requirements.

For jQuery Ul, visit the download page at http://jqueryui.com/download/ to download the
jQuery UI library.

Tip
Since we will cover all components throughout the book, download the full version of the
library.

www.it-ebooks.info

http://jquery.com/download/
http://jqueryui.com/download/
http://www.it-ebooks.info/

Using jQuery/jQuery Ul libraries with a CDN

You might be aware that Content Delivery Networks (CDN) host many popular libraries.
Since the browsers cache JavaScript files, your page will not have to load a JavaScript file
again if it is referenced from a CDN and already cached in browser. You can link jQuery
and jQuery UI among CDN’s many other libraries.

Tip
Make sure that you are connected to the Internet if you have referenced the libraries from

the CDN in your pages.

Google, Microsoft, and some other companies provide CDN for jQuery, jQuery UI, and
other libraries. Here are the links to pages for downloading these libraries:

e Google CDN can be downloaded from

https://developers.google.com/speed/libraries/devguide#jquery.
e Microsoft CDN can be downloaded from

http://www.asp.net/ajaxlibrary/cdn.ashx#Using_jQuery_from_the_ CDN_21.
e CDNJS can be downloaded from https://cdnjs.com/. It is a helpful site where you can

find many libraries and their different versions.

www.it-ebooks.info

https://developers.google.com/speed/libraries/devguide#jquery
http://www.asp.net/ajaxlibrary/cdn.ashx#Using_jQuery_from_the_CDN_21
https://cdnjs.com/
http://www.it-ebooks.info/

Setting up the folder structure for the JavaScript
and CSS files

We will now set up the folder structure that we will use for all the chapters in this book.
The steps are as follows:

1.

In your document root, create a folder named MasteringjQueryUI. Then, create a
folder for each chapter inside it.

For this chapter, create a new folder named Chapteri1 inside MasteringjQueryUI and
two more folders named js and css inside the chapteri folder.

Now extract the jQuery UI files into a separate folder and go to its js folder. You will
see three files: jQuery source file and full and minified versions of jQuery UI.

Copy the jQuery source file and any one version of jQuery UI source files and place
them inside the js folder that you created inside Chapter1 of the MasteringjQueryul
folder.

Also, copy the ui-lightness folder from the css folder from the downloaded jQuery
Ul to the css folder of chapterai.

Now we are ready to experiment with jQuery UI and create some informative and fun
examples. Let’s start our journey by creating the quiz application.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the layout

In the newly created folder Chapteri, create a file named index.html and another . js file
named quiz. js inside the js folder of chapteri. The quiz. js file will contain all the

code that we need to make the quiz functional.

www.it-ebooks.info

http://www.it-ebooks.info/

Markup for the quiz page

Open the index.html file for editing using your favorite text editor, and write the
following code in it:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Designing a simple quiz application</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div class="container'">

<button id="reset" type="button">Reset</button>
<div class="clear'"></div>
<hr/>
<div id="leftCol">
<ul id="source">

</div>
<div id="rightCol">
<ul id="target">

</div>
</div>

<div id="dialog-complete" title="Well Done!'">

<p>

Well done. You have completed the quiz successfully.</p>
</div>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/quiz.js"></script>

</body>
</html>

Tip
Downloading the example code

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

In the preceding code, inside the head section, we referenced the jQuery Ul .css file. If
you have placed the .css file elsewhere, make sure to correct the path accordingly. The
path can either be an absolute path or a relative path.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Inside the body, we have a div element named container that wraps our entire markup.
Inside container, we have created two span elements. The first span has the id value
score and it will be used to show the score of the user. The second span has the id value
reset and it will be used to reset the quiz to its initial state.

After this, we have to create two more div elements having the id value leftCol and
rightcol, respectively. leftCol has an ul element with the id value source inside it. This
ul element will contain the names of countries as list items. Similarly, rightCol has
another ul element with the id value target inside it. It will have the names of capitals as
list items.

After the container element, we have created yet another div element with the id value
dialog-complete, which will be displayed once the user has completed the quiz
successfully. Inside the dialog-complete element, we have placed a success message.

Finally, at the bottom of the page, reference the jQuery, jQuery Ul, and quiz. js files.
Note

Make sure that jQuery is included first before jQuery UlI, and that any other JavaScript file
or custom jQuery code is included or written.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling elements

We will also need some CSS styling to make the elements look good. In the head section
of the index.html file, write the following code:

<style type="text/css'">
body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 600px;
}

div.container{
border: 1px solid #000;
float:left;
margin:0 auto;
padding:10px;
width: 100%;

}

#leftCol{
float:left;

}

#rightCol{
float:right;
¥

ul{
list-style:none;
margin:0;
padding:0;
width:50%;

}

1i{
border:1px solid #000;
font-weight:bold;
margin:5px O;
padding:10px O;
text-align:center;
width:175px;

¥

#source 1i{
cursor:move;

}

#score{
font-weight:bold;
float:left;
color:#ffo000;

}

www.it-ebooks.info

http://www.it-ebooks.info/

#reset{
color:#ffo000;
cursor:pointer;
font-weight:bold;
text-align:right;
text-decoration:underline;
float:right;

}

.clear{
clear:both;

}

#dialog-complete{
display:none;

}

#dialog-complete span{
float:left;
margin:0 7px 20px 0O;
}
</style>
In the preceding code, first we defined some basic styles for the body and the container
elements. After that, the styles were defined for the ul element and its 1i items. These
styles will display the list items in the form of individual boxes. CSS for the score and
reset items follow next and finally some basic styling for the dialog elements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making the quiz functional

Our UI part is now complete and we can proceed to make the quiz functional. We will do
this in a few steps. First of all, we will display the data on the page in two columns. Then,
we will make the country names draggable. Finally, the list items with the capital names
will be made droppable so that we can drop a country name inside a capital. We will also
have to ensure that a droppable capital name accepts only the correct country name.
Finally, the resetting logic will be built.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying data on the page
Open the quiz. js file for editing and write the following code:
$(document).ready(function()

{
createQuizlLayout();

1),

On the document ready event we call a function named createQuizLayout which we need
to define now.

function createQuizlLayout()

{

//declare arrays of countries and their capitals.

var countries = ["USA", "UK", "India", "Germany", "Turkey", "France",
"Nepal", "Japan", "South Africa", "Maldives"];

var capitals = ["Washington", "London", "Delhi", "Berlin", "Istanbul",
"Paris", "Kathmandu", "Tokyo", "Capetown", "Male"];

var arrCountry = [];
for(var 1=0; i<countries.length; 1i++)
{
arrCountry.push('<li data-index=""' + (i+1) + '">' + countries[i]
+'</11i>");

}

var arrCapital = [];
for(var 1=0; i<capitals.length; i++)
{
arrCapital.push('<li data-index="' + (i+1) + '">' + capitals[i]
+'</1i>");

}

//shuffle the arrays
arrCountry = shuffle(arrCountry);
arrCapital = shuffle(arrCapital);
// once country and capital items are ready, we insert them into DOM
$('#source').html(arrCountry.join('"));
$('#target').html(arrCapital.join('"));

}

Here is what the preceding code does:

e We have defined two arrays named countries and capitals.

e The countries array contains names of 10 countries and the capitals array contains
names of the capitals of the countries defined in the countries array. The names of
capitals must be in the same order as their respective countries.

e Since we want to display the names of countries and capitals in a random order, we
will create two arrays and fill them with list items and shuffle them.

e We started with country first. We declared an array named arrcCountry. Then, we
loop in the countries array and create a list item with the country name and push it
into the arrcCountry array.

www.it-ebooks.info

http://www.it-ebooks.info/

e The same process is repeated for the capitals array.

An important point to note here is that we are giving a data attribute named index to each
list item having a value from 1 to 10. Since we have both the countries and capital names
in the same order, index will be used to match which country belongs to which capital.

After both arrays are populated, we will shuffle them so that the order of countries and
capitals becomes random. For this, we will use a simple shuffle function from the
website http://jsfromhell.com/array/shuffle. The shuffle function is defined as follows:

function shuffle(o)
{

for(var j, x, 1 = o.length; 1i; j
-1], o[i] = o[]j], o[]] = x);
return o;
i

After calling the shuffle function on both arrays arrcountry and arrcapital, the array
elements are inserted in DOM after combining them into a single string using the
JavaScript join function. The elements in the array arrcountry are inserted in ul with the
id value source and those in the array arrCapital are inserted in ul with the id value
target.

Math.floor(Math.random() * i), x = o[-

Open your browser and point it to the index.html file of the chapteri folder now. You
will see a page similar to the one shown in the following screenshot:

Reset
Usa Capetown
South Africa Paris
Germany Kathmandu
India Male
Turkey Tokyo
France Istanbul
Japan Washington
Hepal London
Maldives Delhi
UK Berlin

www.it-ebooks.info

http://jsfromhell.com/array/shuffle
http://www.it-ebooks.info/

If you reload the page, you will see that the order of countries and capitals changes each
time. This is because shuffling creates a new order for items of both lists.

www.it-ebooks.info

http://www.it-ebooks.info/

Draggable country names

To make the country names draggable, we will use the draggable component of jQuery
UL As the name suggests, the draggable component allows DOM components to be
moved around using a mouse. To do this, go to the $(document).ready() section of our
quiz.js file and call another function named initQuiz. The $(document).ready()
callback function should look like this now:

$(document).ready(function()

{

createQuizLayout();
initQuiz();

1),

Now define the initQuiz function outside document ready handler as follows:

function initQuiz()

{
$('#source 1i').draggable(
{
revert : true,
revertDuration: 200,
cursor: "move"
1)
3

The preceding code calls the draggable method of the jQuery UI library. It is being called
upon the 1i elements of the ul source, which means it will make all the list items

draggable inside the source ul. Further, we are also giving the draggable method three
options that we need for our application: revert, revertDuration, and cursor. Let’s look
at these in more detail:

e revert: This decides whether the element being dragged should revert to its original

position or not. In our case, we will set it to true. We will drag a country name onto a

capital name and revert it to its original position, that is, the country list. Another
possible value for revert is false, which means it will stay at the place where it is
when dragging stops. The values, valid and invalid, can also be provided (as
strings) for the revert option. The value valid means the draggable object will
revert only if the draggable object has been dropped on a droppable element. The
value invalid means the draggable fuction will revert if the draggable object has
not been dropped. Alternatively, a function can also be provided to revert. This is
required in complex cases where we need to perform any manipulations. The return
value for this function will decide if it will revert or not. If true is returned, the
element will revert.

e revertDuration: This defines the duration for the revert option in milliseconds.
The lower the value, the faster it will revert. This value is not considered if the revert
option is set to false.

e cursor: This is the style of cursor while an element is being dragged.

Our draggable elements are ready now, and so it is time to make the capital names

www.it-ebooks.info

http://www.it-ebooks.info/

droppable and build the logic to match countries to their correct capitals.

www.it-ebooks.info

http://www.it-ebooks.info/

Droppable capital names and scoring

In the previous section, we created an initQuiz function where we made our countries
draggable. After the draggable code, write the following code to make the capitals
droppable:

var totalScore = 0;
$('#score').text(totalScore + ' points.');
$('#target 1i').droppable(

{

accept : function(draggable)

{
if(parseInt(draggable.data('index'), 10) ===
parseInt($(this).data('index'), 10))
{

return true;

}

else

{

return false;

3
3
drop: function(event, ui)

{
var that = $(this);
that.addClass("ui-state-highlight").html('Correct!'
) .effect('bounce');
that.droppable('disable');
ui.draggable.addClass('correct ui-state-error');
(ui.draggable).draggable('disable');

totalScore++;
$('#score').text(totalScore + ' points.');
if($('li.correct').length == 10)

{
$("#dialog-complete").dialog({

resizable: false,
modal: true

1);
}

¥
3);
Now save the quiz. js file and refresh your browser. You will be able to drag the country
names now. Drag a country name to its correct capital and you will see that the country
will revert to its original position. The capital list item will show a bounce effect and its
text will change to Correct!. Both the country and capital names will be disabled now.
You will not be able to drag the country name as well. On the top left hand side, the page
will show the score as 1 points.

The screen will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

1 points.

Germany

Japan

South Africa

Turkey

USA

UK

Hepal

France

Maldives

Paris

Istanbul

Male

Tokyo

London

Capetown

Washington

Kathmandu

Berlin

Try the drag and drop for all countries in the left-hand side list. When you have matched
all countries correctly, you will see a dialog box and the page will look like the following

screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

+ Well done. You have completed the quiz

successfully.

So, a lot is happening in the preceding code. We will look at it step by step.

We defined a variable named totalScore and set it to @. We also inserted the score inside
the HTML element with the id value score. Each time the quiz starts, the score will be
reset as well. After this, we call the droppable method of jQuery UI on the list items of ul
with the id value target to make them ready to accept the draggable country elements.

We are using the accept option of the jQuery Ul draggable method to check for the
correct matches of country and capital, and we are using the drop event to change the Ul
and scoring.

Accepting a draggable element

The accept option of a droppable method defines which draggable element will be
accepted by the droppable method when a draggable element is over it; either a jQuery
selector or a function can be provided for this purpose. If a selector is given, only the
draggable element matching that selector will be accepted by the droppable method.
Since we want to match an individual country to its capital, it is better for us to use a
function instead. The function will receive the current draggable element that is being
dragged as a parameter. Inside the function, $(this) will refer to the current droppable
element. The code is as follows:

if(parseInt(draggable.data('index'), 10) == parseInt($(this).data('index'),
10))

{

www.it-ebooks.info

http://www.it-ebooks.info/

return true;

}

return false;

Since we have already defined data attributes for both countries and capitals, we can
match those to check if the current draggable-droppable pair is a correct country-capital
pair or not. If the indexes match, we return true; otherwise, we return false.

A return value true means the droppable method will accept the draggable element, and
will allow the draggable element to be dropped in it.

The drop event

The drop event will receive a draggable element once it has been passed from the accept
option. If the accept option returns false for any draggable element, then the drop event
will not be called. In our case, this means we will only receive a country’s draggable
element and its corresponding capital’s droppable element.

The callback function for the drop event receives two parameters: event and ui. Of these
two, we are interested in the ui object. Among other values, it provides us with a
reference to the draggable element that was dropped. To refer to the current droppable
element where the draggable element is dropped, we have $(this) variable with us. The
code is as follows:

$(this).addClass("ui-state-highlight").html('Correct!'

) .effect('bounce');

$(this).droppable('disable');

In the preceding code, we added the jQuery UI framework’s CSS class ui-state-
highlight to the current droppable element and then changed that list item’s HTML
content to Correct! and added the bounce effect to the droppable capital.

Since the droppable capital has been matched successfully with its country, we no longer
need it as a droppable element. Hence, the preceding code uses the disable method of the
droppable component to disable the droppable functionality.

The next two lines add CSS classes named correct and ui-state-error to the
draggable method and then disable it. The code is as follows:

ui.draggable.addClass('correct ui-state-error');
(ui.draggable).draggable('disable');

The correct class will be used to determine how many successful countries have been
matched. The class ui-state-error is just for presentation purposes to make the
successfully matched country name highlighted. Using the draggable disable method, we
disable the specific draggable element as well, because it has been matched and we do not
want it to be dragged again.

Since the drop event receives only the accepted draggable elements, we can safely
increase the variable totalScore by 1 and insert the new value back to the DOM in the
element score. This shows us the latest score each time a new match is made.

Finally, we count the number of list items in the countries’ column that have the CSS class

www.it-ebooks.info

http://www.it-ebooks.info/

named correct associated with them. Since we have 10 elements, if all the 10 list items
have the CSS class correct attached to them, it means the quiz is complete. We then show
a jQuery Ul dialog component that we kept hidden in our HTML page initially.

www.it-ebooks.info

http://www.it-ebooks.info/

Resetting the quiz

If you were wondering why we created the functions createQuizLayout and initQuiz
when we wrote the code without them, the answer is that we need to call them again. It is
better not to repeat yourself. We can now reset the quiz without having to reload the page.

We have already created an element with id reset. Visit the $(document).ready()
callback again and write the following code after those two function calls. The section will
now look like this:

$(document).ready(function()

{

createQuizLayout();
initQuiz();

$('#reset').on('click', function()

{
$('#source 1li').draggable('destroy');

$('#target 1li').droppable('destroy');

createQuizLayout();

initQuiz();

1);

1);
We have an event handler registered at the click of the reset button. It is using the
destroy method of jQuery UI on the draggable and droppable elements. The destroy
method will remove the complete draggable and droppable functionality from respective
elements. It will also remove any special CSS classes that jQuery UI might have applied

earlier.

After bringing the page to its initial state, we call the createQuizLayout and initQuiz
functions again, which will initialize our quiz once more.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the quiz

This was a basic application to begin with. There can be many more enhancements to this
quiz to make it more feature rich. You are encouraged to add more features to it and
refactor the code as well.

Here are some ideas that you can start with:

e Remove successfully matched countries and capitals
¢ If you watch closely, we do not need the variable totalScore

Tip
List items with the class correct are enough for calculating scores.

e Allow negative scoring if the user drops the country in an incorrect capital

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

The draggable and droppable methods are important components of jQuery Ul in order
to make interactive applications. We explored a few options presented by these two
components and created a simple quiz application in this process. We will see more
options presented by these two components in the following chapters as well, where we

will create a jigsaw puzzle game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Building a Jigsaw Puzzle
Game

Moving forward a bit more, in this chapter, we will see more (and slightly complex) use
cases of draggable and droppable components. We will develop a jigsaw puzzle game
where we will divide a picture into small pieces of the same size, and the user will have to
rearrange these small pieces by dragging and dropping them to form a complete picture.

The UI will have two containers on the page. One container will be used to keep the
puzzle pieces, and the other will act as a canvas for arranging these pieces. Initially, users
will be displayed a picture along with a Start button. Once the Start button is clicked, the
image will be divided into 16 pieces and these pieces will be placed in a separate
container. Users will have to drag and drop the individual pieces on the canvas and
arrange them to make the complete picture.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

Make sure that you have set up jQuery and jQuery Ul files as explained in Chapter 1,
Designing a Simple Quiz Application. You will also need an image that has dimensions
equal to 400px x 400px. The code in this chapter uses an image of a cute cat, named
kitty.jpg. Of course, you can use any image of your choice. Keep this image in the
Chapter2 folder.

Since we will create 16 pieces of this image, each having both width and height equal to
100 px, keep in mind that the image you choose should not have a single square area of
the same color exceeding 100px x 100px. This will create problems while solving the
puzzle as you will be unable to determine the correct locations of multiple pieces of the
same color.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the layout

Create a file named index.html inside the chapter2 folder. It will contain the entire
HTML. For the JavaScript code, create another file named puzzle.js inside the js folder
of chapter2. Now the chapter2 folder will have four items: the index.html file, the
image file for the puzzle (kitty.jpg), the js folder, and the css folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the markup for the puzzle

Our first step towards creating the puzzle will be to prepare the required HTML markup.
This HTML markup will then be styled using CSS. The following HTML markup will
prepare the bare-bones structure of the page required to make the puzzle:

<html>
<head>
<meta charset="utf-8">
<title>Designing a Jigsaw Puzzle</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div class="container">
<div id="pieceBox'"></div>

<div id="puzzleContainer'"></div>

<class='"clear"> </div>
<div class="clear'"> </div>

<div class="clear'"> </div>

<ul class="buttons">
<button id="start">Start</button></1i>
<button id="reset">Reset</button></1i>

</div>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/puzzle.js" type="text/javascript"></script>
</body>
</html>

In the preceding markup, we have a div element with the value of id as container, which
is a wrapper for whole page. Inside it are two div elements with pieceBox and
puzzleContainer as the values for id. The element pieceBox will act as a box in which
we will keep the 16 sliced pieces of the image, whereas the element puzzleContainer will
be the canvas on which users will drop these pieces and arrange them. Next, there is a
span element where we will show a success or error message after the user has placed all
the pieces. There is also a 1ist containing two list items. We will use them as Start and
Reset buttons.

Finally, at the bottom of the page are the references to the jQuery, jQueryUI, and puzzle.
js files.

Tip
Ensure that the path for the CSS and JavaScript files is correct.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling elements

After our page structure is ready, we need to add CSS styles for different elements created
in the markup to give the page the desired appearance. This will be done by adding some
CSS rules to the head section of the index.html file. The styles that we will use are
explained here:

<style type="text/css'">

body{
font-family:arial, verdana;
font-size:12px;
margin: 0 auto;
width: 900px;

}

div.container{
border: 1px solid #000;
float:left;
margin:0 auto;
padding:10px;
width: 100%;

}

#pieceBox{
border: 1px solid #000;
float: left;
height: 408px;
margin: 0 auto;
position:relative;
width: 408px;

}

#puzzleContainer
{
border: 1px solid #000;
float: right;
margin: 0 auto;
height: 408px;
width: 408px;
}

div.img{
background-image: url('kitty.jpg');
background-repeat: no-repeat;
height:100px;
width:100px;
float:left;
border:1px solid #000;

ul{
text-align:center;
list-style:none;
margin:o;
padding:0;

www.it-ebooks.info

http://www.it-ebooks.info/

span#message{
clear:both;
display: none;
font-size: 20px;
padding: 20px 0;
text-align: center;
width: 100%;

}

ul.buttons{
cursor:pointer;
margin-top:10px;

}

ul button{
border:1px solid #000;
font-weight:bold;
margin:0 auto;
padding:10px O;
text-align:center;
width:175px;
display:inline-block;

}
#reset{

display:none;

}

.clear{
clear:both;

</gtyle>

First, we defined some basic styles for body, container, pieceBox, and puzzleContainer.
Then we defined styling for the div elements that have the . img class. This class will be
applied to the pieces of the puzzle. Since it will not be efficient to create 16 different
images to use as jigsaw pieces, we will use a single image as a sprite. Therefore, we set
the background-image property to kitty.jpg, which is the image that we are going to
use. Using the background-position CSS property, we will be able to show a specific 100
px x 100 px part of the image.

After this, we defined some CSS properties for the success or error message and the
buttons. In the last CSS rule, we hid the Reset button as it will not be required initially.

After writing the HTML and markup, we are ready to make the puzzle functional by
plugging in the JavaScript to create the game.

Meanwhile, run the index.html file in your browser and you will see a screen with two
boxes, as shown in the following screenshot. Based on their IDs, we will call these boxes
pieceBox and puzzleContainer, respectively:

www.it-ebooks.info

http://www.it-ebooks.info/

Starl

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making the puzzle functional

Before writing any JavaScript code to create a functional puzzle, let’s write down the
features of our puzzle and see how we will achieve them.

When the page loads, an image will be displayed to the user in puzzleContainer, and a
Start button will be displayed under it. The image will actually be a collection of 16
different div elements, each having the same background image but a different
background position. Using the background-position CSS property, we will be able to
display the complete image to the user. Once the Start button is clicked, we will take
these 16 images and place them at random positions inside pieceBox. We will also display
a 4 x 4 grid, puzzleContainer, where any of the 16 pieces could be dropped. We will then
attach appropriate event handlers that will allow us to drag an individual puzzle piece
from pieceBox to puzzleContainer. Once a piece has been moved to puzzleContainer,
it cannot be dropped back to pieceBox. It can, however, be dragged into any other cell in
puzzleContainer. Once the user has arranged all the pieces, a relevant message will be
displayed.

Enough with the theory for now! Let’s dive into some practical JavaScript. In your text
editor, open the puzzle.js file.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating slices of the image

Write the following code in the puzzle. js file:

var rows = 4,
var cols = 4;
$(document).ready(function(){
var sliceStr = createSlices(true);
$('#puzzleContainer').html(sliceStr);

1)
function createSlices(uselImage){
var str = '';

var sliceArr = [];
for(var i=0, top=0, c=0; i < rows; i++, top-=100)

{
for(var j=0, left=0; j<cols; j++, left-= 100, c++)
{
if(uselmage)
{
sliceArr.push('<div style="background-position: ' + left + 'px ' +
top +'px;" class="img" data-sequence="'+c+'">"');
}
else
{

sliceArr.push('<div style="background-image:none;" class="img
imgDroppable">");

}
sliceArr.push('</div>");
}
}
return sliceArr.join('");
}

The 16 div elements will be in the form of a grid of 4 rows and 4 columns. In the
preceding code, we defined two variables, rows and cols, and set their value to 4.

Next, there is the $(document).ready(function() handler, in which we will write our
code. Inside this handler, we call the createSlices function. This function will create the
required 16 div elements and return a string with their HTML structure. This string will
then be inserted into the puzzleContainer div element.

After you have written this code, save the puzzle. js file and refresh the index.html page
on your browser. You will see a screen resembling the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Starl

Now let’s look at the createSlices function in detail.

We defined a variable named str to store the HTML structure. Next, there are two for
loops. In the outer loop, we initialized another variable named top to 6, which will be
decremented by 100 in each iteration.

Similarly, inside the inner loop, another variable named left is defined, and this will also
be decreased by 100 in each iteration. Inside the inner loop, a div element is created,
where we set the div’s left and top values using the background-position CSS property.
This is done in order to create all 16 slides with appropriate images.

A CSS class named img is also added to the div element. We have already defined CSS
properties for this class in the index.html file. This class sets the background image as
kitty.jpg for the div element. It also defines the height and width of the div as 160 px
each, and a border of 1 px is also applied.

A data attribute named data-sequence is also added to each div. This attribute will be
used later to check whether all the div elements are arranged correctly or not. Its value will
be o for the first div, 1 for the second div, 2 for the third div, and so on until 15, which is
set as a value for the last div. Once both the loops are completed, we return the complete
DOM structure from the function. This structure will now be inserted in div
puzzleContainer.

The CSS background-position property

To create a complete image using different pieces, we will need perfect placement of the
background-image property. The background-position property defines the starting left
and top positions of the background image for that specific div element. Therefore, if we
define the background position as background-position: Opx 0px, it means that the
image will get positioned at the top-left corner of element. Similarly, if we set
background-position: -100px 0px, the left corner will skip the initial 100 pixels of the

www.it-ebooks.info

http://www.it-ebooks.info/

image.

To understand this more clearly, go to the browser page and inspect the DOM using
Firebug (you can download this for Firefox from https://addons.mozilla.org/en-
US/firefox/addon/firebug/) or Chrome DevTools (check out the help on Google Chrome
DevTools at https://developer.chrome.com/devtools). You will see that the DOM structure
resembles the following screenshot:

E <div id="puzzleContainer™>

<div class="img" data—-sequence="0" style="background-position: Opx Opx;"> </diwv>

<div class="img" data—-sequence="1" style="background-position: -100px Opax;"> </div>
<div class="img" data—-sequence="2" style="background-position: -Z00px Opax;"> </div>
<div class="img" data—-sequence="3" style="background-position: -300px Opax;"> </div>

<div class="img" data—-sequence="4" style="background-position: Opx -100px;"> </div>

<div class="img" data-sequence="5" style="background-position: -100px -100px;"> </diwv>
<div class="img" data-sequence="g&" style="background-position: -Z00px -100px;"> </diwv>
<div class="img" data-sequence="7" style="background-position: -300px -100px;"> </diwv>

<div class="img" data—-sequence="8" style="background-position: Opx -Z00px;"> </div>

<div class="img" data-sequence="3" style="background-position: -100px -Z00px;"> </diwv>
<div class="img" data-sequence="10" style="background-position: -Z00px -Z200px:;"> </diwv>
<div class="img" data-sequence="11" style="background-position: -300px -Z200pm:;"> </diwv>

<div class="img" data-sequence="12" style="background-position: Opx -300px;"> </div>

<div class="img" data-sequence="13" style="background-position: -100px -300px;"> </diwv>

<div class="img" data-sequence="14" style="background-position: -Z00px -300pm:;"> </diwv>

<div class="img" data-sequence="15" style="background-position: -300px -300px:;"> </diwv>
< fdiv>

This structure clearly shows 16 different divs, each having a different background-position
setting. You can play with these values in Firebug or Chrome Developer tools in the
options provided by the browser by increasing or decreasing their values to see how the
background images are positioned on a puzzle piece.

www.it-ebooks.info

https://addons.mozilla.org/en-US/firefox/addon/firebug/
https://developer.chrome.com/devtools
http://www.it-ebooks.info/

Starting the game

Now that we have our puzzle pieces ready, we need to implement the Start button by
adding an event handler for it. This event handler will shuffle all the slices created earlier
and will place them at random positions in the div, having pieceBox as the id. The
following code needs to be added to the $(document).ready(function() handler:

$('#start').on('click', function()
{
var divs = $('#puzzleContainer > div');
var allDivs = shuffle(divs);
$("'#pieceBox').empty();
allDivs.each(function(){
var leftDistance = Math.floor((Math.random()*280)) + 'px';
var topDistance = Math.floor((Math.random()*280)) + 'px';

$(this)
.addClass('imgDraggable')
.css({

position : 'absolute',

left : leftDistance,
top : topDistance

1)
$('#pieceBox').append($(this));

1)

var sliceStr = createSlices(false);
$('#puzzleContainer').html(sliceStr);

$(this).hide();
$('#reset').show();

1)

Also, outside the $(document).ready(function() handler, define the shuffle function.
This is the same function that we used in Chapter 1, Designing a Simple Quiz Application:

function shuffle(o)
{

for(var j, x, 1 = o.length; i; j = Math.floor(Math.random() * i), x = o[-

-1], o[i] = o[]j], o[]] = x);
return o;
}

We registered a click event handler to the list item with the start ID. In the first line, we
find all the div elements inside puzzleContainer in a divs variable. We pass this array to
the shuffle function in the next line, which randomizes this array and returns it in a
variable named allDivs. Now the allDivs variable is an array of puzzle pieces (div
elements) in a random order. We need to place these pieces in the piecebox div.

Since we want these pieces to look scattered inside the pieceBox div, first we loop over
the elements of the allDivs array. In each loop iteration, we generate two random
numbers for the left and top positions for each div. We then set the div’s position to
absolute and add the left and top values. Since the pieceBox div has its position set to

www.it-ebooks.info

http://www.it-ebooks.info/

relative, each of these divs will be positioned using the left and top values relative to
pieceBox. A css class, imgDraggable, is also added to each div. This class name will be
used while dragging and dropping pieces. Finally, the div is appended to pieceBox.

The next line uses the createSlices function again to create a DOM with empty divs and
without any background image. The DOM created using this function will be inserted to
the puzzleContainer div again. Note that false is passed as a parameter to the
createSlices function this time. This is because we do not want any background image
in puzzleContainer when the game starts. This will require some modification in the
createSlices function.

Modify the createslices function written earlier to match the following code:

function createSlices(uselImage)

{
var str = '';
for(var i=0, top=0, c=0; i < rows; i++, top-=100)
{
for(var j=0, left=0; j<cols; j++, left-= 100, c++)
{
if(uselmage)
{
str+= '<div style="background-position: ' + left + 'px ' + top
+'px;" class="img" data-sequence="'+c+'">";
}
else
{

str+= '<div style="background-image:none;" class="img
imgDroppable">";
}
str+= '</div>"';
3
}
return str;

}
Note

Do not forget to change the function call in the first line inside the
$(document).ready(function()) section. Make sure var sliceStr = createSlices();
Is written as var sliceStr = createSlices(true);.

If the useImage argument for the createSlices function is set to true, the background
image will be used. If it is false, no background image will be set but a class named
imgDroppable will be added. This class will be used to attach event handlers to the places
where the puzzle pieces will be dropped.

Finally, after preparing the DOM for the pieceBox and puzzleContainer divs, the Start
button is hidden and the Reset button is displayed.

Reload the HTML page in your browser and you should see something resembling the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Resel

Reloading the page and clicking the Start button will display different positions of the
puzzle pieces every time.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling events for puzzle pieces

To be able to move pieces and use the possible movements, we first need to add events.
We will have to add two event handlers, one to make the puzzle pieces inside pieceBox
draggable and second to make the puzzleContainer pieces droppable.

Inside the event handler of the Start button, add a new function call named
addPuzzleEvents().

Outside the $(document).ready(function()) event handler, define the addPuzzleEvents
function by writing the following code:

function addPuzzleEvents()
{
$('.imgDraggable').draggable(
{
revert : 'invalid',
start : function(event, ui){
var $this = $(this);
if($this.hasClass('pieceDropped'))
{
$this.removeClass('pieceDropped');
($this.parent()).removeClass('piecePresent');
3

}
1)

$('.imgDroppable').droppable({
hoverClass: '"ui-state-highlight",
accept : function(draggable)

{

return !$(this).hasClass('piecePresent');

iy

drop: function(event, ui) {
var draggable = ui.draggable;
var droppedOn = $(this);
droppedOn.addClass('piecePresent');
$(draggable).detach().addClass('pieceDropped').css({
top: O,
left: 0O,
position:'relative'
}) .appendTo(droppedOn);

checkIfPuzzleComplete();

}
1k

}

There are two important points to be remembered here. Whenever a draggable puzzle
piece is dropped on a droppable space, a CSS class named piecebropped will be added to
that draggable piece , which will indicate that the puzzle piece has been dropped. Another
CSS class, piecePresent, will be added to the droppable space on which the piece is

www.it-ebooks.info

http://www.it-ebooks.info/

dropped. The presence of the piecePresent CSS class on a space will indicate that the
space already has a piece dropped on it and we will disallow dropping any other draggable
pieces on it.

All the puzzle pieces in pieceBox have a CSS class, imgDraggable, applied to them. We
initialized the draggable component for all such pieces. While initializing, we provided
two options for the draggable component. The first option is revert, which we set to
invalid. As you may recall from Chapter 1, Designing a Simple Quiz Application,
invalid means that a draggable piece will revert to its original position if it has not been
dropped on any space. This also means when a piece is dropped inside puzzleContainer,
you will not be able to place it back inside pieceBox.

Secondly, we added a start event handler to the piece. This event handler is called when
the dragging begins. In the preceding code, we check whether the element being dragged
has the pieceDropped class applied to it. If the pieceDropped class is not present on it, it
means the piece is still inside pieceBox and has not been dropped in puzzleContainer
yet.

If the pieceDropped class has been applied to the element, it means the puzzle piece was
already dropped and it is being dragged inside puzzleContainer only. In this case, we
want to allow the puzzle piece to be dropped onto other droppables spaces present inside
puzzleContainer. Therefore, we remove the piecebropped class from the draggable
piece. In the next line, we also remove the piecePresent class from its parent droppable
because we want the parent droppable to accept other draggable items.

Next, we will prepare the droppable space. In puzzleContainer, we have 16 different
divs, which are used to accept the puzzle pieces. All of these have the imgbroppable CSS
class applied to them. We initialize the droppable component using for all elements that
have the imgDroppable class. While initializing, we provide three options, which are as
follows:

e hovercClass: In this option, we can specify the name of any CSS class, and it will be
applied to the droppable element when a draggable element will be over it. Note that
the class name will only be applied when an accepted draggable element is over the
droppable element. In the preceding code, we used the ui-state-highlight class,
which is available by default in jQueryUI themes.

e accept: This option specifies which draggable elements can be dropped on to a
droppable space. Either a jQuery selector or a function can be provided. We are using
a function here to check whether the current droppable space already has a draggable
element dropped in it or not. If the current droppable already has the piecePresent
class, we return false, which means that the draggable element will not be allowed
to drop on the current droppable space.

e drop: This event takes place once an accepted draggable element (described in the
previous bullet point) is dropped onto a droppable space. Once the draggable is
dropped, we add the piecePresent CSS class to the droppable. We also want the
dragged puzzle piece to fit to the parent droppable completely. For this, we remove
the draggable element from the DOM using jQuery’s detach method. Then we add a

www.it-ebooks.info

http://www.it-ebooks.info/

CSS class, pieceDropped, to this droppable space. We set its left and top positions
to 0 and position to relative. Finally, we append it to the parent droppable. The
CSS properties specified with it fit it to its parent droppable.

After each drop, we call the checkIfPuzzleComplete function to check whether the
puzzle has been solved.

www.it-ebooks.info

http://www.it-ebooks.info/

Checking for puzzle completion

Every time a piece is dropped inside puzzleContainer, we will have to check whether all
the pieces are in the correct order or not. To do this, we will create a function named
checkIfPuzzleComplete. This function will be called from the drop event of the
droppables. Define this function as shown in the following code:

function checkIfPuzzleComplete()

{
if($('#puzzleContainer div.pieceDropped').length !'= 16)
{
return false;
}
for(var 1 = 0; i < 16; 1i++)
{
var puzzlePiece = $('#puzzleContainer div.pieceDropped:eq('+i+')");
var sequence = parseInt(puzzlePiece.data('sequence'), 10);
if(i !'= sequence)
{
$('#message').text('Nope! You made the kitty sad :(').show();
return false;
}
}

$('#message').text('YaY! Kitty is happy now :)').show();
return true;

}

It doesn’t make any sense to check the puzzle if all 16 pieces have not been placed inside
puzzleContainer. Since each puzzle piece dropped inside puzzleContainer will have a
pieceDropped CSS class, we find out how many div elements with pieceDropped classes
are present. If they are less than 16, we can assume that all pieces have not been placed
inside the puzzle and return false from the function. If all 16 pieces are present inside
puzzleContainer, we proceed to next step.

You may remember that we assigned a data-sequence attribute to each puzzle piece. In a
correctly solved puzzle, all div elements will be in a sequence, which means their data-
sequence attributes will have values from 0 to 15 in ascending order. Similarly, in an
incorrectly solved puzzle, the data-sequence attributes of all div elements will still have
values from 0 to 15, but they will not be in order.

The for loop checks the mentioned condition. We are running a loop from 0 to 15. Each
iteration of the loop picks a div element from puzzleContainer whose index is equal to
current loop value. The eq jQuery function is used for this purpose. The sequence value
for this div element is then retrieved and compared to the current loop value. If any of the
values inside loop does not match this value, it will mean that the puzzle pieces are not in
a sequence. In this case, we display the Nope! You made the kitty sad :(message inside
the div with the message ID, and exit from the function.

If the loop completes all iterations, it means that all puzzle pieces are in order. Then we
display the YaY! Kitty is happy now :) message and return from the function. A correctly
solved puzzle will resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Y¥aY! Kitty is happy now :)

Reget

www.it-ebooks.info

http://www.it-ebooks.info/

Resetting the puzzle

To reset the puzzle, all we need to do is create the pieces again and fill puzzleContainer
with them. Write the following code inside the $(document).ready(function()) handler
to handle the reset button events:

$('#reset').on('click', function()

{

var sliceStr = createSlices(true);
$('#puzzleContainer').html(sliceStr);
$("'#pieceBox').empty();
$('#message').empty().hide();
$(this).hide();
$('#start').show();

1);

In the preceding code, we used the createSlices function with the true parameter and
inserted the generated HTML inside puzzleContainer. Next, we emptied the pieceBox.
The success or error message displayed earlier is also hidden. Finally, the Reset button is
hidden and the Start button is displayed again.

Note

We do not need to call the addPuzzleEvents function to add drag and drop events. This is
because the events were already attached to the DOM the first time the Start button was
clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the puzzle

This puzzle can be made more interesting in a number of ways. Some ideas have been
listed here. You are encouraged to add more features of your own as well:

Allow removal of pieces from puzzleContainer to pieceBox

Take a rectangular image where number of columns and rows are different

Add a countdown timer to check how long the user took to finish the puzzle
Display three to four images to users and allow them to select one image to be used
with the puzzle

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We made a somewhat complex example in this chapter, where you learned to use some
important events of draggable and droppable components. Both of these are important
components, and I encourage you to practice and try different variations as much as

possible.

In the next chapter, we will look at some other equally useful components such as dialog,
tooltip, accordion, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Creating a Website Tour

By now, we have become familiar with the extremely useful draggable and droppable
components of jQuery UI, both of which were used in the previous chapter. We will now
explore some other components in this chapter that will prove to be a valuable asset in
your web development toolbox. We will learn practical usage of the dialog, tooltip, and
accordion components together.

If you change the layout of your website, it becomes difficult for regular users to navigate
the new website initially. This might also mean a loss of visitors, if users find difficulty in
searching for specific links or sections of the website they were familiar with earlier.

We will address this problem in this chapter and solve it by creating a website tour for a
page. We will first design a simple home page for an imaginary company, and then create
the tour to navigate different sections in the page. We will place a Take a Tour button on
the page. Clicking on this button will start the tour. Each step of the tour will be a jQuery
UI dialog box that will be positioned near the link or section we want to explain. The
dialog box will have a title specific to the section and some text/HTML that will explain
the functionality of the link or section. We will also place three buttons called Previous,
Next, and End Tour to navigate the tour. While navigating with the Previous and Next
buttons, it is possible that a section where the tour box has to be displayed is not in the
current viewport. In such a case, we will scroll the page using jQuery. This will make sure
that the tour box is visible in viewport.

Apart from this, there will also be helpful tooltips in different parts of the page. We will
use the following jQuery UI components to build the complete page with the tour feature:

Dialog
Buttons
Tooltip
Accordion
Effects

www.it-ebooks.info

http://www.it-ebooks.info/

Getting ready

We will start by creating a new folder named Chapter3 inside the MasteringjQueryUl

folder. As explained in Chapterl, Designing a Simple Quiz Application, copy the js and
css folders inside the chapter3 folder. Create a file and name it index.html inside the
Chapter3 folder, and create another JavaScript file named tour. js inside the js folder.

The file structure of the chapter3 folder should look like this now:

aill < 'C:‘-.Apachv.=-_24\htu:||:|c5\[‘-.-'1asterinnguer}rUhChapterB
4|—sMasteringjJuerylUl “ | | Name
b 2] Chapterl || index.html
b Chapter2 =ijs
B Chapter3 =j css

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the home page

Let’s assume our imaginary company is called Cats and Dogs Store and it sells goods for
cats and dogs. For this company, we will design a page that will contain a header with a
logo on the left and some links on the right. There will be a two-column layout underneath
it. The left column will be a menu with several links and the right column will have an
accordion and a “shopping cart” box. Each link or section where we want to display a step
of the tour will be given an ID. These IDs will be used in JavaScript to make the tour
functional. After the page is designed, it will look like the this:

Home About Us Contact Us Take a Tour
Cats and Dogs
Store
Home
Cat Posters
Lorem ipsum dolor sit amet, consecietur 2 items

adipisicing elit. Unde magnam illum
tempore eum 8 minima quisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus guod.

Orders
© Al Orders

O Track Order

© Another item

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum &8 minima quisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus guod.

Cat posters available in different categories.
Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi

metus, molestie vel, gravida in, condimentum sit amet, nunc. Mam a nibh. Donec suscipit eros.

Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Yestibulum a velit eu ante scelerisgue
vulputate.

® Cat1
® Cat1
® Cat1

Dog Posters

Diog posters available in different categories.
Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi

metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam a nibh. Donec suscipit eros.

Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate.

® Cati
Profile * Cat1

® Cati
Lorem ipsum dolor sit amet, consectetur Videos

adipisicing elit. Unde magnam illum
tempore eum a minima quisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus guod.

Wideos available in different categories.
Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi

metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam a nibh. Donec suscipit eros.

Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque

Hel

p vulputate.
Lorem ipsum dolor sit amet, consectetur & Cat1
adipisicing elit. Unde magnam illum ® Cati
tempore eumn a8 minima quisguam sunt sequi e Cati

facere maxime in vel voluptates ea veritatis
repellat at est natus guod.

Last Link

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for the page

Now that we have a basic idea about what the home page should look like, let’s start
writing some markup now. Using Notepad++ or your favorite text editor, write the
following HTML markup in the index.html file:

<html>
<head>
<meta charset="utf-8">
<title>Creating a Website Tour</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div id="dialog"></div>

<div class="container'">
</div>
<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/tour.js" type="text/javascript'"></script>
</body>
</html>

The preceding code creates the skeleton of our page. In the head section, we linked the
HTML page to the jQuery UI CSS file and just before closing the body tag, we included
the jQuery source file, the jQuery UI JavaScript file, and the tour. js file.

Inside the body section, we defined an empty div with id dialog. This div element will
be converted to dialog box using jQuery UI’s dialog component to display the steps of the
tour.

Next, we have a div with the container class that will wrap all the elements of the page.
Inside the container class, we will first create the page header with the following HTML
code:

<div class="header">
<div id="logo">Cats and Dogs Store</div>
<ul class="topLinks">
Home</1li>
About Us</1li>
<li id="contact">Contact Us</1li>
<1li id="startTour" title="Click to start Tour'">Take a Tour</1li>

</div>
<div class="clear'"> </div>

The header has two elements inside it. The first element is a div with an id logo and the
second element is an unordered list ul with the class toplinks. This unordered list has
four items inside it. The third list item has the id value contact. This list item will be
used to show a tooltip with some contact details when the mouse hovers over it. The last
list item with the id value startTour will act as a trigger button for starting the tour. After
the header, there is an empty div with the class clear to clear the floats.

www.it-ebooks.info

http://www.it-ebooks.info/

Now, we need to create two more div elements, one each for left and right columns,
respectively. Write the following code after you have defined the header, as explained
previously:

<div class="leftCol">
<ul id="menu">

Home</1li>

<small>Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Unde magnam illum tempore eum a minima quisquam sunt sequi facere maxime in
vel voluptates ea veritatis repellat at est natus quod.</small></1li>

<1li id="orders">0rders
<ul class="submenu">
<a>All Orders</1li>
<a>Track Order</1li>
<a>Another item</1i>

</1i>

<small>Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Unde magnam illum tempore eum a minima quisquam sunt sequi facere maxime 1in
vel voluptates ea veritatis repellat at est natus quod.</small></1li>

<li id="profile">Profile</1li>

<small>Lorem ipsum dolor sit amet, consectetur adipisicing elit.
Unde magnam illum tempore eum a minima quisquam sunt sequli facere maxime 1in
vel voluptates ea veritatis repellat at est natus quod.</small></1li>

<li id="help">Help</1li>

<li class="empty'"><small>Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum tempore eum a minima quisquam sunt
sequi facere maxime in vel voluptates ea veritatis repellat at est natus
quod.</small></1i>

<li id="lastLink">Last Link</1i>

</div>

<div class="rightCol">
<div id="accordion">
<h3 id="sectionl">Cat Posters</h3>
<div>
<p>
Cat posters available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam.
Integer
ut neque. Vivamus nisi metus, molestie vel, gravida in, condimentum
sit
amet, nunc. Nam a nibh. Donec suscipit eros. Nam mi. Proin viverra
leo ut
odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate.

Cat 1</11i>

www.it-ebooks.info

http://www.it-ebooks.info/

Cat 1</1i>
Cat 1</1i>

</p>
</div>
<h3 id="section2">Dog Posters</h3>
<div>
<p>
Dog posters available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam.
Integer
ut neque. Vivamus nisi metus, molestie vel, gravida in, condimentum
sit
amet, nunc. Nam a nibh. Donec suscipit eros. Nam mi. Proin viverra
leo ut
odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate.

Cat 1</1i>
Cat 1</1i>
Cat 1</1i>

</p>
</div>
<h3 id="section3'">Videos</h3>
<div>
<p>
Videos available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam.
Integer
ut neque. Vivamus nisi metus, molestie vel, gravida in, condimentum
sit
amet, nunc. Nam a nibh. Donec suscipit eros. Nam mi. Proin
viverra leo ut
odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate.

Cat 1</1i>
Cat 1</1i>
Cat 1</1i>

</p>
</div>

</div>

<div id="cart">2 items</div>
</div>
<div class="clear'"> </div>
First we created a div with class 1eftCol. We created an unordered list ul inside it that
will act as a menu. This ul has some list items that will act as menu items but some are
only placeholders with random text to make the page longer. Also, note that we assigned
id values to some elements.

After leftCol, we created another div with the class rightcol. Inside it, there is yet

www.it-ebooks.info

http://www.it-ebooks.info/

another div with the id accordion. This div holds the markup that is required to create a
jQuery UI accordion. Each panel of accordion consists of an h3 element and a div
element. h3 will act as a header for that panel and div will become the body for that panel.
Next to the accordion markup, there is another div that has the id cart.

This completes our HTML markup for the page and we are ready to assign CSS styling to
the elements to make the page presentable.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling elements

Without any CSS styling to elements, HTML markup alone would make the page useless.
To spice up the page, let’s apply some CSS rules to decorate the page. In the head section,
create a <style> block and write the following CSS rules for the different elements:

<style type="text/css'">

body

{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 900px;

}

div.container

{
border: 1px solid #000;
float:left;
margin:10px auto O;
padding:10pXx;
width: 100%;

}

.header

{
}

height: 100px; border: 1px solid;

#logo

{
border: 1px solid #000000;
float: left;
font-weight: bold;
height: 57px;
margin: 5px;
padding-top: 30px;
text-align: center;
width: 100px;

}

ul.topLinks

{
float: right;
list-style: none outside none;
margin: 20px 20px 0 0;
padding: 0O;
text-align: right;
width: 70%;

}

ul.topLinks 1i

{
display: inline-block;
margin: O;
padding: 0O;
text-decoration: underline;
width: 15%;

www.it-ebooks.info

http://www.it-ebooks.info/

cursor:pointer;

}

#startTour

{
3

.leftCol
{

color: #ff0000;

border: 1px solid #000;
float:left;
min-height :500px;
width:25%;

}

.rightCol

{
border: 1px solid #000;
float: right;
min-height:690pXx;
width: 75%;

}

ul#menu {
list-style:none;
margin:o;
padding:0;

}

ul#menu > 1i

{
padding:10px 5px 10px 10pX;
border-top: 1px solid #000;
cursor:pointer;
font-weight:bold;

}

ul#menu > li:last-child

{
b

#accordion

{

border-bottom: 1px solid #000;

width:80%;

float:left;

padding:10px 5px;
}

#cart

{
border: 1px solid #000000;
float: right;
font-weight: bold;
height: 65px;
margin-right: 5px;
margin-top: 12px;
padding-top: 35px;
text-align: center;

www.it-ebooks.info

http://www.it-ebooks.info/

width: 100px;

}
a
{
text-decoration:none;
}
.submenu 1i
{
padding:5px;
}
small
{
font-weight:normal;
}
.empty
{
height:150px;
}
footer
{
border: 1px solid;
padding: 10px Opx;
}
#dialog
{
display:none;
}
.clear
{
clear:both;
}
</style>

The preceding CSS rules will change the layout and look of the elements in the page. The
div with the id logo will become a box and will be placed left in the header. The ul list
with the class topLinks will be floated to the right. Inside it, the 1i with id tourStart
has been set to a red color so that it could stand out as an indicator to start the tour.

The div with the classes leftCol and rightCol has been made 25% and 75% wide,
respectively, and a border has been applied to both of them. Similarly, all the 1i elements
inside the ul list, the 1eftcol div has been padded and border has been applied to them.
For elements inside rightCol, we floated the div with id accordion and cart to the left
and right, respectively. We have not written any CSS for the accordion because its
styling will be taken care of by jQuery UI’s theme after the accordion is initialized.

After all the markup has been applied, run the index.html file in your local web server.
You will see a home page similar to the following one:

www.it-ebooks.info

http://www.it-ebooks.info/

Home About Us Contact Us Take a Tour
Cats and Dogs
Store
Home
Cat Posters
Lorem ipsum dolor sit amet, consecietur 2 items

adipisicing elit. Unde magnam illum
tempore eum 8 minima quisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus guod.

Orders
© Al Orders

o Track Order

© Another item

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum a8 minima quisquam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus quod.

Profile

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum a8 minima quisquam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus quod.

Help

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum a8 minima quisquam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus quod.

Last Link

Cat posters available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi
metus, molestie vel, gravida in, condimentum sit amet, nunc. Mam a nibh. Donec suscipit eros.
Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate.

® Cat1
® Cat1
® Cat1

Dog Posters

Diog posters available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi
metus, molestie vel, gravida in, condimentum sit amet, nunc. Nam a nibh. Donec suscipit eros.
Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisgue
vulputate.

* Cat1
® Cat1
* Cat1

Videos

Wideos available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut neque. Vivamus nisi
metus, molestie vel, gravida in, condimentum sit amet, nunc. Mam a nibh. Donec suscipit eros.
Mam mi. Proin viverra leo ut odio. Curabitur malesuada. Vestibulum a velit eu ante scelerisque
vulputate,

® Cat1
® Cat1
® Cat1

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making the tour functional

Now that the layout of our page is complete, let’s discuss in brief how we are going to
implement the tour functionality. We have already created a tour . js file that we will use
for writing all the JavaScript code.

We will initialize the accordion for which we have already written the markup, and we
will also initialize the tooltip that will appear on hovering over the Contact Us link.

After that, we will define a jQuery Ul dialog component with some basic settings and
buttons for navigating the tour. Next, we will define a JavaScript array that will contain all
the steps of the tour. Finally, we will create a tour object, and we will write the functions
that will initialize the tour, display a tour step, and handle the Previous, Next, and End
Tour buttons.

Let’s write the code for the aforementioned steps and discuss them in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing accordion and tooltips

The best practice when writing JavaScript is to start by writing a jQuery
$(document).ready() handler that ensures the related jQuery or JavaScript code is
executed after the page has loaded. Open the tour.js file and start by writing the
following code in it:

$(document).ready(function(){
$('#accordion').accordion({animate : false});
$(document).tooltip(

{
items : '#contact',
content : function()
{
var strContact = '<img

src="http://maps.googleapis.com/maps/api/staticmap?
center=New+Delhi, India&zoom=13&size=300x200&sensor=false"/>";

strContact+= '<hr/>In case of any issues, here is the address of our
new office in Central Delhi which is well connected to all the places.Feel
free to visit us anytime.';

strContact+= '<hr><span class="ui-icon ui-icon-home" style="float:
left; margin-right: 5px;'">#23, Rachna Building, Karol Bagh -110005';

strContact+= '<hr><span class="ui-icon ui-icon-mail-closed"
style="float: left; margin-right: 5px;'">awesomecompany@ourlocation.com
';

return strContact;

3
1)
1);
In our markup, we assigned the id value accordion to the div that contains the markup
for the accordion. Inside the $(document).ready() handler, the first line initializes the
accordion with the animate option set to false. We also want a tooltip to appear on the
Contact Us link. To achieve this, we initialize the tooltip component of jQuery UI.

If the tooltip component is initialized without providing any options, it displays the
value of the title attribute in a tooltip. Since we want to display custom HTML, we have
used two options, items and content, for it. The items option decides which elements
will display the tooltip, and in the content option, we can provide any text or HTML to be
displayed inside the tooltip. The value of items option has been set to #contact. To set
the value of the content option, we created a string. This string contains an image and
some information text. The source for image is a static image tile from Google Maps that
shows the location of a place. You can set the value from center to any place of your
choice.

Now, we can check the progress so far. Save the file and refresh the index.html page in
the browser. You will find that jQuery UI’s accordion has been styled using jQuery UI’s
theme and has also become active. Hovering your mouse over the Contact Us link will
show the tooltip with an image and the text we defined in the content option while
initializing the tooltip.

www.it-ebooks.info

http://www.it-ebooks.info/

=L

Q | localhost: 8888 /MasteringjQueryUL/ Chapter3/ c 2 | = E v {I} []E]v N . S
Home About s Contact Us Take a Tour
Cats and Dogs
Store cnawm _
an Bazar, Matia Mahal
New Delhi Kalyanpura o O
{1} Railway - i Shak!
iandewalan O 8 N_F.W Delhi
makrishna New Delhi - Airport Express- oy,
Home o o ram Marg
_) soleMarket — New.Delhi Vifar
Lorem ipsum dolor sit amet, consectetur i 2 items
adipisicing elit. Unde magnam illum Nagar

tempore eum a minima guisguam sunt sequi
facere maxime in vel voluptates s veritatis
repellat at est natus quod.

Orders
© Al Orders

O Track Order

< Another item

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum a minima guisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus quod.

Profile

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum
tempore eum 8 minima guisguam sunt sequi
facere maxime in vel voluptates ea veritatis
repellat at est natus quod.

Cat posters available in different
Mauris mauris ante, blandit et, u
neque. Vivamus nisi metus, maole
nunc. Nam a nibh. Donec suscipif
Curabitur malesuada. Vestibulum

® Cati
® Cat1
® Cat1

Dog Posters

Videos

Soctor 4 Block £ Barakhambha

" Road Metro : ;
L Shivaii [1 Tilak Bridge
Ihs Stadium Valik Lane
[Pragat

Frishawk [

~ BB ECLLE = Maidan
EORE i) data €2014 Googls,;

In case of any issues, here is the address of our
new office in Central Delhi which is well connected
to all the places.Feel free to visit us anytime.

#23, Rachna Building, Karol Bagh -110005

= vijayj@developerslab.in

www.it-ebooks.info

http://www.it-ebooks.info/

Defining the dialog

It’s time to initialize the dialog box. We already defined a div with id dialog in the
markup. We will convert the said div to jQuery Ul dialog box. For this, we need to define
settings for the dialog and also the buttons that will appear in it. We will add the following
code outside the $(document).ready() event handler to create the dialog:

var tourDialog = $('#dialog').dialog(
{
minwidth : 315,
draggable : false,
buttons: [
{
id : 'buttonPrevious',
text: 'Previous',
click: function()

{
iy

icons:
{
primary: 'ui-icon-carat-1-w'
3
3

{
id : 'buttonNext',

text: 'Next',
click: function(event)

{
iy

icons:

{

secondary: 'ui-icon-carat-1-e'
3

text: 'End Tour',
click: function()

{
iy

icons:

{

secondary: 'ui-icon-close'

}

{

}

1
show : 'fold',

hide : 'fold'
1)

In the preceding code, we defined five options while creating the dialog. Let’s look at all

www.it-ebooks.info

http://www.it-ebooks.info/

of these one by one:

e minwidth: This option defines the minimum width the dialog must take. For our
purposes, we have set it to 315.

draggable: Since the dialog box will appear at specific places denoting respective
steps of the tour, we do not want users to drag the dialog. Hence, we have set this
option to false.

buttons: A dialog box can have one or more buttons that can be defined using the
buttons option. We need to provide an array of objects for buttons. Each object in
the array represents a button that will be displayed at the bottom of the dialog. We
have defined three buttons, each having an id, a display text, a click event handler,
and an icon. The first button has the id buttonPrevious and display text is
Previous; we have also provided a primary icon for this button. The second button
has id buttonNext and the display text is Next. Note that we have provided a
secondary icon here. The difference between the primary and secondary icons is that
the primary icon appears on the left of the text and the secondary icon appears to the
right of the text. The third button has no id but has the display text End Tour and a
secondary icon. We have left the click event handlers for all three buttons empty for

now. We will go back to these event handlers later in the chapter.
e show: We can decide which effect will be used when the dialog is displayed. Any
value mentioned in jQuery Ul effects can be provided.
e hide: This is used to define the effect that will be used when the dialog closes.

After writing the preceding code, if you reload the index.html page in your browser, you
will see that an empty dialog box with three buttons appears at the centre of the page as
soon as the page finishes loading.

D | localhost:B888/ MasteringjQueryUl/Chapter3/

© Track Order

O Another item

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum

repellat at est natus quod.

tempore eum 8 minima guisguam sunt sequi
facere maxime in vel voluptates ea veritatis

Profile

Lorem ipsum dolor sit amet, consectetur

Home About Us Contact Us Take a Tour
Cats and Dogs
Store

Home
Lorem ipsum dolor sit amet, consectetur 2 items
adipisicing elit. Unde magnam illum
tempore eum 8 minima quisquam sunt sequi Cat posters available in different categories.
tacere mentiime in'irel ioluptates ex Meriiatis Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut
repellat at est natus guod. : S = : : - =

neque. Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet,

nunc. Mam a nibh. Donec suscipit eros. Mam mi. Proin viverra leo ut odio.
Oners Curabitur malesuada. Vestibulum a velit eu ante scelerisque vulputate.

O All Orders

® Cat1
® Cat1
® Cat1

D

Previous Next End Tour

www.it-ebooks.info

http://www.it-ebooks.info/

We definitely do not want this to happen; the dialog must be displayed at the appropriate
position only when the Start Tour button is clicked. Hence, we will add another option to
the dialog, which will initialize the dialog but will not display it automatically. Add
another option to the dialog initialization code with the following code:

autoOpen : false
Note

If you have other options defined after the preceding code, make sure that you end the line
with a comma. However, there is no need for a comma if you defined autoopen as the last
option.

You can check again by reloading the page; the dialog box will not appear now.

Another important thing to note is that we used the variable tourbialog to keep a
reference to the initialized dialog. This tourDialog variable will be used henceforth in the
code to access the dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining the tour steps

For the home page we have designed, our tour will have 12 steps. Each of these steps will
be represented by a JavaScript object that has the following structure:

{

element : '#logo',

title : 'We have changed the logo !',

content : 'Did you notice that we have made some changes to our logo as
well. ',

sequence : 1
}

Let’s see what each property does:

element: This indicates the HTML element where the tour dialog box will appear
title: This is the title that will be displayed in the dialog box

content: This is the HTML content displayed in the dialog box

sequence: This is a number indicating the step of the tour. We will start with 1 and
proceed with 2, 3, and so on

Since we plan to display the tour steps on accordion as well, we will need two more
properties:

e isAccordion: The value for this property will be set to true if the element property
is part of an accordion.

e accordionIndex: This is the 0-based index of accordion panels where the tour step
will be displayed. Using this property value, we will be able to open a specific panel
of accordion before displaying a tour step.

Here is the full structure of steps of the tour for our example home page in this chapter:

var steps =
[
{
element : '#logo',
title : 'We have changed the logo !'',
content : 'Did you notice that we have made some changes to our logo

as well. ',
sequence : 1

Iy
{
element : '"#menu',
title : 'Menu On Left',
content : 'We have placed all the menu items on left hand side for

guick access.',
sequence : 2

Iy
{
element : '#orders',
title : 'Your Orders',
content : 'Orders menu has a submenu which links to different
pages.',

sequence : 3

www.it-ebooks.info

http://www.it-ebooks.info/

iy

{
element : '#profile',
title : 'Your Profile',
content : 'This link will take you to your profile page where you

will be able to edit your profile and change password among other things',
sequence : 4

3
{
element : '#help',
title : 'Get Help',
content : 'Use this link to get help related to any issues',
sequence : 5
iy
{
element : '#lastLink',
title : 'Last Menu Link',
content : 'This is last link of menu',
sequence : 6
3
{
element : '#sectionli',
title : 'Buy Cat Posters',
content : 'We have introduced a new category where you can buy

posters of cute cats ',
isAccordion : true,
accordionIndex : O,
sequence : 7

3
{
element : '#section2',
title : 'Buy Dog Posters',
content : 'Dog lovers also welcome.',
isAccordion : true,
accordionIndex : 1,
sequence : 8
Iy
{
element : '#section3',
title : 'wWatch videos',
content : 'We have collected some of the best videos from web and you

can see them here',
isAccordion : true,
accordionIndex : 2,
sequence : 9

Iy
{
element : '#cart',
title : 'Your Cart',
content : 'This is your shopping cart where all the products you have

selected will be displayed.',
sequence : 10
3
{

element : '#contact',
title : 'Contact Us',

www.it-ebooks.info

http://www.it-ebooks.info/

content : function()

{

var strContact = '<img
src="http://maps.googleapis.com/maps/api/staticmap?
center=New+Delhi, India&zoom=13&size=280x200&sensor=false"/>";

strContact+= '<hr/>In case of any issues, here is the address of
our new office in Central Delhi which is well connected to all the
places.Feel free to visit us anytime.';

strContact+= '<hr><span class="ui-icon ui-icon-home" style="float:
left; margin-right: 5px;">#23, Rachna Building, Karol Bagh -110005';

strContact+= '<hr><span class="ui-icon ui-icon-mail-closed"
style="float: left; margin-right: 5px;">
awesomecompany@ourlocation.com';

strContact+= '<hr>You can take your mouse over Contact Us link if
you want to see this information later.';

return strContact;

Iy
sequence : 11
}
{
element : '#startTour',

title : 'Thank You!',
content : 'Thank you for going through through the tour.',
sequence : 12

3
17
We defined an array named steps with 12 objects. On going through each of these
objects, you will see that we are starting with the 1ogo, then proceeding to the menu, and
so on. For quick reference, here are the id values of all the HTML elements where tour
will be displayed one step at a time:

logo
menu
orders
profile
help
lastLink
sectionl
section2
section3
cart
contact

startTour

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the tour

We have prepared the entire markup and JavaScript required to build the tour. Let’s dive in
and write some awesome JavaScript code. But before that, I would like to introduce you to
a JavaScript best coding practice.

Since the code size will grow in this chapter, as well as in following chapters, we will use
a JavaScript pattern called object literal to organize our code. Simply put, an object literal
pattern implies defining a single JavaScript object with a set of comma-separated key-
value pairs. Keys can be strings or identifiers and values can be strings, identifiers, or
functions. The advantage of this pattern is that it does not pollute the global namespace.
Keys that are defined inside the object will not be accessible directly outside that object.
You will see this in practice in a moment.

First of all, visit the $(document).ready() event handler and add the following line of
code in the end:

tour.init();

The preceding line calls the init function of a JavaScript object named tour. Outside the
$(document).ready() event handler, let’s define the tour object and its init function
with the following code:

var tour =
{

triggerElement : '#startTour',

tourStep : O,

tourSteps : steps,

defaultTitle : 'Welcome to the tour !',

defaultContent: 'This tour will show you the new changes we have made
to our site layout.
 Please use next previous buttons to proceed. Click
the End Tour button whenever you want to finish the tour.',

init : function()

{
if(this.tourSteps == undefined || this.tourSteps.length == 0)
{
alert('Cannot start tour');
return;
¥
$(this.triggerElement).on('click', function(event)
{
tour.showStep(tour.defaultTitle, tour.defaultContent, $(this));
return false;
});
b

i
The value of the triggerElement property is the id of the element, by clicking on which
the tour will start. You can set it to any element. In our example page, we have created an
element with the id startTour for this purpose. The tourstep property will keep track of
the current step of the tour. Then, the tourSteps property to which we have assigned the

www.it-ebooks.info

http://www.it-ebooks.info/

variable steps. This variable is the array of twelve steps of the tour that we declared
earlier. After this, there are two more properties named, defaultTitle and
defaultContent. The defaultTitle property contains some text that will be displayed as
the title of the dialog box when the triggerElement is clicked. Similarly, tourContent
will serve as the content of dialog box.

The init property declares a closure. Inside this closure, we check to make sure whether
the tourSteps variable has been defined and is actually an array. After this, a click event
handler is added to the triggerElement. This event handler will be responsible for
opening the dialog initially. From here, the user will start navigating the tour using the
Previous and Next buttons. The event handler calls the showStep function. The showStep
function will be responsible for displaying the dialog box and positioning it correctly next
to the element, as defined in the element property of the tourSteps array. Three
parameters are passed to the showStep function. Since this is the first time dialog opens,
we pass defaultTitle, defaultContent, and the current trigger element startElement.
We need to display the dialog box for the first time now. This will all be explained in the
next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying a tour step

The showStep function is responsible for displaying the dialog box and enabling or
disabling the Previous and Next buttons. After the init function, write the following
code to define the showStep function and another function named prevNextButtons:

showStep : function(tourStepTitle, tourStepContent, whichElement)

{
this.prevNextButtons();

$('body').animate(

{
scrollTop: $(whichElement).offset().top
}, 500, function()

{

$('.ui-state-highlight').removeClass('ui-state-highlight');

$(whichElement).addClass('ui-state-highlight');
tourDialog.dialog('option', 'title',6 tourStepTitle);

tourDialog.html(tourStepContent);

tourDialog.dialog('option', 'position', { my: 'left top',6 at:

top', of: whichElement, collision : 'flipfit' });

tourDialog.dialog('open');

1)
}
prevNextButtons : function()
{

$('#buttonNext').button('enable');
$('#buttonPrevious').button('enable');
if(this.tourStep == 0@ || this.tourStep == 1)
{

3
if(this.tourStep == this.tourSteps.length)

{
b

return;

}
Note

$('#buttonPrevious').button('disable');

$('#buttonNext').button('disable');

'right

If you keep the code for showStep after init, make sure that you have placed a comma (,)

after the closing brace of the init closure.

Inside the showStep function, we receive three function arguments: the title text, content

HTML, and the target element where a step of the tour will be displayed.

In the first line of showStep, we have called another function called prevNextButtons.
Since the showstep function will display and position a tour step, we need to enable or
disable the Previous and Next buttons. The prevNextButtons function is used to achieve

www.it-ebooks.info

http://www.it-ebooks.info/

this. If the user is on the first step of the tour, the Previous button will be disabled; if the
user is on the last step of the tour, the Next button will be disabled.

First, we enable both the Next and Previous buttons. Then, we check the tourStep
property to determine which step is being displayed currently. If it is the welcome dialog
that is shown after clicking on the Start Tour link or the first step of the tour, we disable
the Previous button. In the next line, we disable the Next button. If the value of the
tourStep variable equals the length of all the steps in the array, it means the user is on the
last step of the tour and hence we disable the Next button.

The End Tour button need not be handled, since the user can choose to end the tour
during any step.

With the Next and Previous buttons taken care of, the control now returns to the showStep
function.

Inside the showstep function, we used jQuery’s animate function to scroll the page first so
that the target element (whichElement received as a function argument) scrolls to the top
of the viewport in 500 milliseconds. After scrolling is done, the callback function for
animate fires. We remove the CSS class ui-state-highlight if it has been applied to any
element. This is to ensure that there is no highlighted element in the page. In the very next
line, the same class is applied to the current element (represented by whichElement) to
highlight it. The ui-state-highlight class from jQuery UI’s theme framework applies a
yellowish background color to an element to make it look highlighted.

We have already initialized the dialog component inside the $(document).ready() event
handler earlier. We now set the title of dialog box using jQuery UI’s option method. Then,
we set its inner HTML.

Now, we are left with one most important thing, that is, positioning the dialog. Remember
that target elements can be in any corner of the web page, so we need to position the
dialog so that its maximum area is available. To position the dialog, we have used the
position option of jQuery UI. To properly position the dialog, we have set four properties
of the position option. The name of the first property is my. We have set it to left top.
Another property is at, which we have set to right top. Setting it to right top will align
the dialog to the right top of the target element. The third property is of, where we provide
the element that we want to position the dialog against. Since we want the dialog to be
positioned against the target element, we provide it as a value of the of parameter. The last
property is collision, which is used to ensure that the maximum part of the dialog is
visible. We supplied the value f1ip. This property checks to either side of the element and
positions it to the side where more space is available. With this, our positioning is done.
We can now display the dialog.

In the last line of showStep, we called the open method of the jQuery Ul dialog which
displays the dialog. We can now check the result of our hard work so far in the browser.
Reload the index.html page and click on the Take a Tour link. Windows will scroll a
little and then the dialog will open with a fold effect. It will have the Previous button
disabled.

www.it-ebooks.info

http://www.it-ebooks.info/

¥ O | 0 localhost:8838/ Mastering)Query U/ Chapter3/ L& | |E" Go

5P|G 2l B> & [y == &2

A Take a Tour

Cats and Dogs
Store

This tour will show you the new changes we have
made to our site layout.

Please use next previous buttons to proceed.
Click the End Tour button whenever you want to
finish the tour.

Home

-

Lorem ipsum dolor sit amet, consectetur 2 items
adipisicing elit. Unde magnam illum
tempore eum & minima quisquam sunt sequi Cat posters available in different Next » End Tour =

facere maxime in vel voluptstes es veritatis Mauris mauris ante, blandit et, u

r 7
neque. Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet,
nunc. Mam a nibh. Donec suscipit eros. Mam mi. Proin viverra leo ut odio.

repellat at est natus qued.

Orders Curabitur malesuada. Vestibulum a velit eu ante scelerisque vulputate.
© Al Orders
® Cat1
© Track Order ® Cat1
o Another item ® Cat1

Lorem ipsum dolor sit amet, consectetur
adipisicing elit. Unde magnam illum b DDg Posters
tempore eum a8 minima quisguam sunt sequi
facere maxime in vel voluptates es veritatis

repellat st est natus qued. b Videos

Profile

www.it-ebooks.info

http://www.it-ebooks.info/

Making the Previous and Next buttons functional

We have successfully started the tour by showing a welcome dialog. Now, we need to
make use of the Previous and Next buttons, and the tourSteps array to navigate them.

If you recall, while we created the dialog earlier in the chapter, we created the Previous
and Next buttons and their event handlers. We will now make these buttons functional by
calling appropriate code for moving forward or backward in the tour. Visit the code where
buttons have been defined, and write the following code inside the click handler for the
Previous button:

tour.navigate('previous');

Similarly, go to the click handler for the Next button and write the following code:

tour.navigate('next');

With this done, we will now define the navigate method. The navigate method will be
defined inside the tour object after the code for the prevNextButtons function. Though
you can define the function anywhere inside the tour object, writing the methods in
sequence makes the code more readable:

navigate : function(previousOrNext)

{

if(previousOrNext == 'previous')

{
}
else

{
b

for(var 1 = 0; i<this.tourSteps.length; i++)

{

(this.tourStep) = (this.tourStep) - 1;

this.tourStep = this.tourStep + 1;

if(this.tourSteps[i].sequence == this.tourStep)

{

if(this.tourSteps[i].isAccordion)

{

$("#accordion").accordion("option", "active" ,
this.tourSteps[i].accordionIndex);

}
this.showStep(this.tourSteps[i].title, this.tourSteps[i].content,

this.tourSteps[i].element);
return;

b
}
}
A single function will be used for handling both the Previous and Next buttons. The
navigate function has an previousOrNext argument, based on which we can decide if the
tour has to be moved forward or backward. If its value is previous, we increment the
tourStep property of the tour object by one. Otherwise, we decrement its value by one.

www.it-ebooks.info

http://www.it-ebooks.info/

The increment or decrement in value ensures that we will pick the correct element, title,
and content properties from the tourSteps object while moving forward or backward.

A for loop is used to iterate in the tourSteps array. When we find that the sequence value
of a tourSteps object matches the tourstep value, we call the showStep function and
send the corresponding object’s values for element, title, and content. There is another
check that we place here for accordion. We have already defined the isAccordion and
accordionIndex properties for the tour steps. So, if we find that the isAccordion value is
true, we activate the corresponding accordion panel.

We can now check whether the Previous and Next buttons are working by reloading the
page in our browser. A typical screen when the tour is on an accordion panel will look
like this:

Yy O localhost:8338 / MasteringjQuery UL/ hapter3 B-coge Pl B Blv & v 4
Home AboutUs Contact Us Take a Tour
Cats and Dogs
Store
Home

+ Cat Posters

2it
~ Dog Posters et

Dog lovers also welcome.

Dog posters available in different categories.

Mauris mauris ante, blandit et, ultrices a, suscipit eget, quam. Integer ut

neque. Vivamus nisi metus, molestie vel, gravida in, condimentum sit amet,
Previous MNext End Tour = nunc. Mam a nibh. Donec suscipit eros. Nam mi. Proin viverra leo ut odio.

Curabitur malesuada. Vestibulum a velit eu ante scelerisque vulputate.

© Another item ® Cat1
® Cat1i
n ipsum dolor sit amet, consectetur ® Cat1
d ng Unde magnam illum
tempore eum a minima guisquam sunt sequi
facers maxime in vel voluptatss es veritatis
ideo

repellat at est natus guod.

Profile

www.it-ebooks.info

http://www.it-ebooks.info/

Ending the tour

Ending the tour is very simple compared to the complex code we have written so far. Just
visit the event handler for the End Tour button and use the following code:

tour.endTour();

We called the endTour method of the tour object. Let’s define it as well. Add the
following code inside the tour object:

endTour : function()

{
this.tourStep = 1;

$('.ui-state-highlight').removeClass('ui-state-highlight');
tourDialog.dialog('close');

}

The preceding code simply resets the tourStep to 1 so that the correct data is displayed
when the tour is started again. The CSS class ui-state-highlight is also removed from
any elements in the page.

Finally, the close method of dialog component is called, which hides the tour dialog with
the fold animation.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the tour

You can add some more interesting features to the tour to make it more dynamic. Here are
some tips to get you started:

e Modify the tour so that it moves to the next step automatically after 5 seconds
e Ability to pause the automated tour
e Embed videos in the tour dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, you learned how components can be used in different and interesting ways.
You went through the tooltip, the accordion, and most importantly the dialog components.
You also learned to better organize our code using Object Literal pattern.

In the next chapter, we will move one step ahead and use AJAX and the reddit API to
build a cool news reader.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Creating a Tabbed News
Reader

jQuery UI offers a number of components that can be used in a variety of combinations to
create rich interfaces. We saw such a combination in the previous chapter, Chapter 3,
Creating a Website Tour, where we used dialog, buttons, tooltips, and other components to
create a neat website tour feature.

Moving forward, let’s talk about tabs. Tabs are a very useful widget for the presentation
layer, that is, the user interface (UI). Most common use cases for tabbed interfaces are
Uls where there is limited space. Tabs have multiple panels in which different contents

can be displayed. Clicking on a tab opens its corresponding panel.

In this chapter, you will focus on tabs and dialog components and learn to integrate the
reddit API with the tabs. If you are not familiar with reddit, it is a news aggregation
website where all the content is submitted by the users. There are different “subreddits”
created by users for different topics such as web development, world news, technology,
PHP, jQuery, and so on. Whenever content (text or a link to any website) is submitted by a
user, other users can comment on it and upvote or downvote the content as well as other
comments. This makes the quality content more visible and features on top of the list.
Reddit also provides an API, using which we can retrieve the posts of a particular
subreddit and the comments users made on a particular post.

Using the reddit API, we will create a tabbed interface as an exercise that we will call
MyjgReddit. In the first tab, we will ask the name of a subreddit in a textbox and then we
will load the posts of that subreddit in a new tab that will be created dynamically. For each
post, we will create a View comments button. On clicking this button, we will use the API
to fetch comments for that post. These comments will then be displayed in a dialog box.
Users will also be able to close any tab by clicking on the close icon placed beside the tab
name.

In this chapter, we will cover these two components:

e Tabs
e Dialog

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the folder structure

The first step is to create the required folder structure. We will follow the same format we
have been using in previous chapters:

1. Create a folder named Cchapter4 inside the MasteringjQueryul folder.

2. Inside the chapter4 folder, create an HTML file with the name index.html, which

will contain our HTML markup.

Also, copy the js and css folders inside the chapter4 folder.

4. Now, inside the js folder, create a new file, and name it myReddit. js. This file will
contain all the code required for creating our news reader.

o

Once this setup is complete, we can move to the next step — designing the page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the page

The page we are going to design will consist of a tab widget and markup for a dialog.
Initially when the page loads, we will display one tab by default. This tab will serve as the
home page of our news reader. The tab will have two HTML controls, a textbox and a
button. All other tabs will be generated dynamically. Unlike other tabs, the first tab will be
available at all times and users will not be able to remove or close it from the tabs panel. A
dialog is required because we will use it to display comments for a particular post.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for tabs

To create both the tabs and the dialog, we will follow the markup required by the jQuery
Ul library. Add the following code to our newly created index.html file:

<html>
<head>
<meta charset="utf-8">
<title>MyjqReddit</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
<style type="text/css'"></style>
</head>
<body>
<div id="redditTabs">
<ul id="tabList">
Welcome</1i>

<div id="tabs-1" class="tabContent">
<h2>Welcome to MyjgReddit</h2>
<p>
Please enter the name of any subreddit in textbox and click the
Add It button. The subreddit contents will be loaded in a
new tab.

You can click the comments for a post by clicking the
"View Comments" link under the post title.
</p>

<label for="subredditName">Enter a subreddit name : </label>
<input type="text" id="subredditName" name="subredditName" value=""
class="ui-widget-content ui-corner-all">
<button id="addNewSubreddit" type="button">Add it</button>
<hr/>
To start with, you can try any of these subreddit names
<small>webdev, technology, AskReddit, IAMA, india,
worldnews</small>
<hr/>
<div class="ui-widget" id="errorContainer" style="display:none;">
<div class="ui-state-error ui-corner-all">

<div id="errorMessage'"></div>
</div>
</div>

</div>
</div>

<div id="dialog">
<div id="loader">
Loading Comments.. Please wait..
</div>
<div id="commentsList"></div>
</div>

www.it-ebooks.info

http://www.it-ebooks.info/

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/myReddit.js" type="text/javascript"></script>
</body>
</html>

We started by creating an HTML document and included the jQuery UI CSS file in the
head section. Inside the body section, we created a div and assigned id value redditTabs
to it. This div will act as a container for the tabs. Inside it, there is an unordered list ul
with the id value tabList. Individual list items inside this list will act as tab headers. By
default, we created one list item inside it. This list item contains an anchor that points to
the div element with id value tabs-1.

After creating the tab headers, tab panels need to be created for each of the defined tab
headers. Since we declared only one tab header, we will define only one panel. This has
been done by creating another div with id tabs-1. Note that we provided a link to this id
inside the tab header we created before it. This is needed to let jQuery UI know which tab
headers have to be linked to which panels.

Inside the tab panel tabs-1, we wrote some text to explain to the user what the page is
about. There is also a textbox with id value subredditName and next to it there is a button
with id vlaue addNewSubreddict.

Below these elements, we created a div with id errorContainer by utilizing the CSS
classes provided by jQuery UI. We also set its display style to none as this div will be
displayed only when there is any error. We used CSS class named ui-state-error on a
div and inside it we have placed an icon and another div where any error message will be
displayed.

After the div redditTabs, we defined a div with id value dialog. It will be used to
display the comments.

Since we created the basic page layout, we can check it as well. Fire up your browser and
open the index.html file in it. You should see a page similar to the following screenshot:

* Welcome

Welcome to MyjqReddit

Please enter the name of any subreddit in textbox and click the Add It button. The subreddit contents will be loaded in a new tab.
You can click the comments for a post by clicking the "View Comments" link under the post title.

Enter a subreddit name - | Add it |

To start with, vou can try any of these subreddit names : webdev, technology, AskReddit, IAMA india, worldnews

Do not worry if the page looks raw. We are going to take care of basic styling in the next
section.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

jQuery UI will apply its own style sheet of the downloaded theme once tabs are initialized.
But before that, we need to add some styles of our own to make the look and feel
consistent. The rules we are going to add will control the display of reddit posts in tabs,
and the comments that will be displayed in the dialog. Here are the CSS rules that we will
add inside the style part of the head section:

body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 900px;

3

div#redditTabs{
border: 1px solid #000;
float:left;
margin:10px auto O;
padding:10px;
width: 100%;

}

a{
text-decoration:underline;

}

.ui-tabs-panel .ui-icon

{
float:left;

}

.extras {

clear: both;
padding-bottom: 20px;
}

.extras a {
border: 1px solid #A2A2A2;
cursor: pointer;
display: block;
float: left;
margin-left: 5px;
text-decoration: none;
width: 140px;

}

.postTitle{
display: block;
padding: 5px Opx 5px 5pXx;
font-weight:bold;

b

.postTitle a {
color:#07c;

www.it-ebooks.info

http://www.it-ebooks.info/

text-decoration:none;

}

.postList{
list-style: none;
margin: O;
padding: @ 0 0 10px;
width: 100%;

3

.postList 1i {
background:none #fff;
margin:5px 0;
padding:5px;

}

.postDescription{
border-top:1px solid #ddd;
margin-top:5px;
padding:5px O 5px 5pXx;
display:none;

}

.postDescription a {
color:#07c;

}

.ui-icon-close{
float:left;
margin-top:5px;cursor:pointer;

}

small {
font-size:12px;
}

.comments {
background-color: #eee;
list-style: none outside none;
margin-bottom: 5px;
margin-right: 0;
margin-top: 5px;
padding: 2px 0;

}

.comments a.username {
color: #ff0000;

}

.comment {
background-color: #FFFFFF;
border-color: #5D5D5D;
border-image: none;
border-style: dotted dotted none;
border-width: 1px 1px O;
margin-bottom: 10px;

www.it-ebooks.info

http://www.it-ebooks.info/

padding: 0 10px 2pXx;
}

.hide {
display:none;

}

#dialog {
display:none;

}

.clear {
clear:both;

}

The CSS rules which we have defined, first add some default properties for the body.
Then, we added CSS properties to customize the display of reddit posts and the comments
that will be displayed in the dialog. We added these properties to make sure that the Ul
remains clutter-free and readable.

After adding these rules, if you reload the index.html page in your browser, it will look a
bit more organized and readable.

® Welcome

Welcome to MyjgReddit

Please enterthe name of any subreddit in textbox and click the Add It button. The subreddit contents will be loaded in a new tab.
You can click the comments far a post by clicking the "View Comments” link under the posttitle.

Enter a subreddit name : Add it

To start with, you can try any of these subreddit names : webdev, technology, AskReddit, |AMA, india, worldnews

After jQuery UI tabs and dialog components are initialized in the next section, the jQuery
UI theme CSS will also be applied and the page will look much prettier.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the code structure ready

As we did in previous chapter, Chapter 3, Creating a Website Tour, we will use the object
literal pattern to keep our code manageable and inside a single object. We will define an
object named myReddit, inside which there will be properties and methods (they can be
called members as well) to create our news reader. Let’s start by writing the code for the
same in the myReddit. js file:

var myReddit =

{
apiURL : 'http://www.reddit.com',

tabCount : 1,
init : function()
{

+
getJSONFromAPI : function(type, id)

{
iy

createTab : function(subredditName, postList)

{

3
getPostListingHtml : function(postListing)

{
iy

displayComments : function(data)

{
iy

getCommentsHTML : function(commentsList)

{
iy

htmlDecode : function(input)

{
}
+;

$(document).ready(function()

{
myReddit.init();

3);
We created an object called myReddit with some members. Let’s analyze these members
one by one:

e The first name value pair is apiURL. This is the base URL for requests that will be
made to reddit’s JSONP API. Since there will be separate URLSs for posts and
comments, we have only defined base URL which we will change depending on the
request that will be sent.

e Next is tabCount which will be used to manage the addition and removal of tabs
dynamically. Initially tabCount is set to 1 as we already have one tab present.

e Then, there are the methods by which we will implement the required functionality.
We begin by defining an init function where we will do the basic initializations and
add the required event handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

The getJSONFromAPI method is responsible for getting responses from the reddit API
by sending appropriate requests. We will use this method to retrieve the posts as well
as retrieve the comments for a post.

Once we have fetched the posts for a subreddit from the API, we will need to create a
new tab and add it to existing tab structure. We will also have to create the DOM to
display the posts in the newly created tab.

As the name suggests, the createTab method will be used for this. It will also use the
getPostListingHtml method to create the DOM using the API response. The
getPostListingHtml method will take the API response as input and will create the
DOM. It will return the created HTML structure back to the createTab method
where it will be inserted into the DOM.

Now that posts are taken care of, we defined another method named
displayComments. This method will use the API response for comments (which we
will fetch using the get JSONFromAPI method defined earlier) to create the DOM for
displaying comments. It will use the getCommentsHTML method to iterate into the
comments and create the DOM.

Since comments could be nested multiple levels deep, the getCommentsHTML function
will be called recursively to display all available comments.

The helper method htmlDecode is used to unescape the HTML in the responses from
reddit API.

Finally, after the myReddit object definition, there is jQuery’s document ready event
handler where we call the init function of myReddit. Let’s begin by defining the
init method.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Adding event handlers in the init method

The init method is the first method of the myReddit object that is called. Since this is a
starting point for us, let’s begin by creating the tabs and attaching all the event handlers
that will be used later in the code.

Tip
It is good practice to define all event handlers in one place. Different event handlers
scattered all over the code are bad for readability, as well as for debugging the code later.

Look for the init method in the myReddit. js file and write the following code to set up
tabs and event handlers:

$("#redditTabs").tabs();
$('#addNewSubreddit').button();

$('#tabList').on('click', '.ui-icon-close', function()

{
var tabPanelContainer = $(this).prev('a').attr('href');
$(this).parent('1li').remove();
$(tabPanelContainer).remove();
$("#redditTabs").tabs('refresh');

1)

$('#redditTabs').on('click', '#addNewSubreddit', function()

{
myReddit.getJSONFromAPI('posts', $('#subredditName').val());

1)

$('#redditTabs').on('click', '.viewText', function()

{
$(this).parent('div').next('div.postDescription').toggle();

1)

$("#dialog").dialog(
{
autoOpen: false,
modal : true,

title : 'Comments',
position: { my: "center", at: "top", of: window },
width: 800,
height: 600
3);

$('#redditTabs').on('click', '.viewComments', function()

{
myReddit.getJSONFromAPI('comments', $(this).data('commentsid'));

$("#dialog").dialog('open');
3);

www.it-ebooks.info

http://www.it-ebooks.info/

$("#dialog").on("dialogopen", function(event, ui)

{

$(this).text('Loading Comments.. Please wait..');

1),

In the first line, we created jQuery UI tabs by calling the tabs method on the div
redditTabs. Doing so will make the tabs functional, and jQuery UI will also add various
CSS classes from the CSS theme. The next line creates a jQuery UI button that we placed
in the first tab. jQuery UI CSS classes will be applied to the button to make its appearance
consistent with the theme. Save the file now and reload the index.html page in the
browser. You will see that the jQuery UI theme has been applied to the tabs and the button.

Welcome to MyjgqReddit
Please enter the name of any subreddit in textbox and click the Add It button. The subreddit contents will be loaded in a new
tab.

You can click the comments for a post by clicking the "View Comments" link under the post title.

Enter a subreddit name : Add it

To start with, you can try any of these subreddit names : webdev, technology, AskReddit, IAMA, india, worldnews

Once a new tab is created, we will put a close icon left to the tab name to close the tab.
The icon will have the base class ui-icon for icons and CSS class ui-icon-close. Hence,
we have now added an event handler for the selector ui-icon-close.

By clicking on the close icon, we remove the tab as well as its corresponding tab panel.
The first line inside the event handler finds out the corresponding tab panel for this tab by
getting the value of the href attribute of the tab header. In the second line, we remove the
parent 1i of the icon. Since 1i is what makes the tab header, removing 1i will remove the
tab. Finally, we remove the tab container as well. The last line calls the refresh option.
Remember that calling the refresh method is very important. This is because we have
just removed a tab and we should let jQuery UI know to update the tab structure.

The next event handler is a simple one. We register the click handler on the button
addNewsubreddit. This event handler will take the subreddit name from the input textbox
with id as subredditName and will call the method get JSONFromAPI, which will then
fetch posts for the inputted subreddit using the API. Note that we are calling
getJSONFromAPI with two arguments. The get JSONFromAPI method will be called both for
subreddits and comments; hence, we have passed the first argument as posts because we
want to fetch the posts of a subreddit. The second argument is the unique name of the
subreddit.

Our next event handler will be for toggling the description of a particular post. When the

www.it-ebooks.info

http://www.it-ebooks.info/

posts are displayed, the HTML structure of a single post will be like this:

= clix
<div class="postTIitle">WebDev IAMAA Open Forum Lightning Round Thread!</div>
=l <div clags="eXtras">
H
View 38 Comments<Sax
< fdiv>
& vdiv class="postDescription™»
Lf1i

When the anchor with class viewText is clicked, we need to toggle the div with the class
postDescription. This div will have a description inside it. Therefore, we are accessing
its parent, which is div with the class extras and then toggling the div next to it.

With posts done, we can now move to attach event handlers for comments. As stated
earlier, we are going to display comments in a dialog. Hence, we need to define a dialog
and corresponding event handlers.

The div with id dialog will act as jQuery UI dialog. We have initialized it using some
standard options such as height, width, title, and position. Two options need specific
attention: the first one is autopen, which we have set to false because we do not want the
modal to open as soon as the page loads, and the second one is the modal option that is set
to true. This is to ensure that the user’s focus remains solely on the dialog and they do not
interact with the page while the dialog is open.

After the posts are displayed, we will need to retrieve the comments for a specific post.
All the posts will have a View XXX Comments link underneath them, where XXX is the
number of comments for the post. Each of these links will have a CSS class viewComments
and a data attribute called data-commentsid. We have attached an event handler on the
click event of the viewComments selector.

Clicking on this selector will call the get JISONFromAPI method once again. However, this
time the arguments will be different. The first argument will be comments and the second
one will be the id of the comment thread. After this method is called, we open the jQuery
Ul dialog using the open option.

Our last event handler is called when the dialog opens. Inside this, we simply insert some
text notifying the user that comments are being loaded.

With all the event handlers in place, half of our work is done. Now, let’s implement the
methods that we have called in callbacks of event handlers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying posts of a subreddit

Before proceeding further, let’s discuss the reddit API. Reddit provides a REST-based API
and multiple response formats for the data. Out of these, the simplest is adding . json to a
URL and accessing it. Adding . json at the end of any URL will get us the JSON object
for that page. You can try it yourself. If you want to get the JSON for webdev subreddit,
enter the URL http://reddit.com/r/webdev.json in your browser and you will see the JSON
response. If you want to see the formatted JSON, use Google Chrome. Similarly, to get the
comments JSON for any particular post, the URL becomes
http://reddit.com/comments/XYZ.json, where XYZ is the id for that post. You will
learn how to find the id as well in this section.

There is a restriction in browsers that you need to be aware of. Browsers do not allow you
to make cross-domain AJAX requests. It means if your application is running on the
domain abc.com, you cannot make AJAX requests to any other domain except that one.
However, you can load images, style sheets, and other resources from any domain. Since
scripts can also be loaded from any domain, they can be used as a workaround for getting
responses from other domains. Suppose we created a script tag with its src set to
http://reddit.com/r/webdev.json. However, it will simply load the JSON object inside the
scrip tags, which will be useless for us. Enter JSONP, with the URL a callback function
name is sent to the target domain. On receiving the callback name, the server wraps the
data inside this callback name and sends it back, where it is loaded inside script tags.

For example, reddit expects the JSONP callback name to be jsonp. So if we set the src tag
of script tag to http://reddit.com/r/webdev.json?jsonp=jsonp, it will return us the same
JSON response in a slightly different format. It will look something like this:

jsonp({"kind": "Listing", "data": {} })

Looks familiar now? Yes, it is a function call. This means that you must have a jsonp
function present on your page which will be passed the received data as an argument.
Inside this function, you can do anything with this data now. This is how cross-domain
requests are performed.

jQuery simplifies this task by providing jsonp as a data type and taking care of loading
the data. If you have provided a callback function name in the JSONP request and have
defined that function in your code, it will get executed before the success callback of the
AJAX request. However, we will use the success callback in order to maintain
consistency.

Let’s come back to our application; once user enters a subreddit name in the textbox and
click on the Add it button (having id value addNewSubreddit), the event handler that we
defined inside the init method will be called. Suppose the user enters a subreddit name
webdev in the textbox, the event handler will call the method get JSONFromAPI with two
arguments. The first argument will be the string posts and the second one will be the
name of subreddit, which is webdev in this case. Add the following code inside the
getJSONFromAPI method:

www.it-ebooks.info

http://reddit.com/r/webdev.json
http://reddit.com/r/webdev.json
http://reddit.com/r/webdev.json?jsonp=jsonp
http://www.it-ebooks.info/

var apiURL = this.apiURL;
if(type == 'posts')
{

apiURL+= '/r/' + id + '.json';
}
else if(type == 'comments')
{

apiURL+= '/comments/' + id + '.json';
}
else
{

alert('Error');

return;

}

$('#errorMessage').empty();
$('#errorContainer').hide();
$.ajax(
{

url: apiURL,

dataType: "jsonp",

jsonp: 'jsonp',

success: function(data)

{
if(type == 'posts')
{
myReddit.createTab(id, data);
3
else if(type == 'comments')
{
myReddit.displayComments(data);
¥
3
error: function (xhr,statusString, errorString)
{

$('#errorMessage').html('An error occured and content could not be
loaded."');
$('#errorContainer').show();
3

1);

We stored the base apiURL in a local variable url. Next, we created the full URL to access
the API. Since we are using this function for both posts and comments, we placed an if-
else block to create the URL. This time the if block will get executed, as the value for
the parameter type is posts.

After this, we removed any error message that might be on the page and hid the div with
id errorContainer.

Now, let’s discuss the AJAX request that will get the data from the reddit API. We
provided the URL in the variable apiURL. The dataType is jsonp which, as explained
previously, will get the JSON response wrapped in a parameter. This parameter has also
been defined in the next line using the option jsonp. Since reddit’s API expects the

www.it-ebooks.info

http://www.it-ebooks.info/

callback function name in the JSONP request to be jsonp, we provided this value. Next
we have the success and error callbacks that will be fired depending on whether the API
returns a successful response or any error is encountered. Inside the success callback
function, there is another if-else block. Since this request was made for posts, the if
block will be executed and the createTab function will be called with the parameters id
and data. Here, id refers to the respective subreddit names and data is the JSON response
received from the API as a parameter. Had the request been for comments, the else block
would have executed and displayComments would be called with response data as a
parameter.

Inside the error callback, we set an error message inside the div errorMessage and
displayed the div errorcContainer.

Assuming a successful response has been received from API, we need to define two more
methods to be able to display the posts. These functions are createTab and
getPostListingHtml. The method getPostListingHtml will be called from inside the
createTab method.

Before defining these functions, you need to be familiar with the response JSON structure.
The response for posts of a particular subreddit is shown in the following screenshot:

- data Object { children=[26], after="t3 2&dvor”, modhash="", more... }

after "t3_26dvor”

before

= children [Object { Kind="t3", data={..} 1, Object{ kind="t3", data={..} 1, Object [Kind="t3",
data={...} }, 23 more...]

£ 0 Object { kind="t3", data={..} }

H 1 Object [kind="t3", data={..}}

5 2 Object { kind="t3", data={..} }

H 3 Object [Kind="t3", data={..}]

5 4 Object { kind="t3", data={..} }

H 5 Object [kind="t3", data={..}]

1 6 Object { kind="t3", data={..} }

H 7 Object [kind="t3", data={..} }

1 8 Object { kind="t3", data={..} }

9 Object [Kind="t3", data={.}}

4 10 Object { kind="t3", data={..}}

As you can see, the data has the properties after, before, and children. We are only
interested in children in this chapter. The children property is an array with each
element of the array representing a post. We will see the structure of a children node when
we create the DOM for posts.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the tab structure
With the JSON structure clear, let’s write the code for the createTab method:

if(postList.data == null || postList.data.children == null)
{
$('#errorMessage').html('Oops some thing is wrong');
$('#errorContainer').show();
return;

}

var tabContent = myReddit.getPostListingHtml(postList.data.children);
(myReddit.tabCount)++;

$('#tabList').append('"' +
subredditName + ' <span class="ui-icon ui-icon-close"
role="presentation">Remove Tab</1i>'");

$("#redditTabs").append('<div id="tabs-'+(myReddit.tabCount)+'">"' +
tabContent + '</div>"');

$("#redditTabs").tabs('refresh');

var lastTabIndex $('#tabList 1i').length - 1;
$("#redditTabs").tabs('option', 'active',6 lastTabIndex);

In the createTab method, we are receiving the data in the parameter postList. The first
if block is pretty straightforward. It is checking for children in the received response. If
there are no children, an error message will be displayed and we will return from the
function.

The next line calls the getPostListingHtml method, which will be explained in the next
section. We are passing the children array as the argument here. This method will create
the DOM and return the HTML that will be stored in the variable tabContent.

Now, we need to create a tab and insert it inside the existing tab list. While defining the
myReddit object, we created the tabCount property that we initially set to 1. Since a new
tab is being created now, we increment its value by one. This value is used in the next line
where we create a list item with an anchor inside it. We also set the anchor’s href attribute
and placed the subreddit name using the variable subredditName inside it. A span element
that has the CSS classes ui-icon and ui-icon-close is also created. These classes are
from the jQuery UI theme that will display the close icon on the right-hand side of tab.
Finally, the jQuery append method is used to append this newly created tab to the
unordered list with id tabList, where tabList is the list that keeps all the tab headers
inside it.

After tab header, we need the corresponding tab body panel as well, which we referred to
as the href attribute of the anchor. For this, a new div is created and tabContent, which
holds the HTML for posts list, is inserted inside it. An id is also provided to this div. The
value for the id must be the same as the value of the href attribute defined earlier. Finally,
this div is appended to the div with id redditTabs.

Once the tab header and tab body are present in the DOM, we need to let jQuery UI know

www.it-ebooks.info

http://www.it-ebooks.info/

that the DOM has changed and it needs to update itself. This is done by calling the
refresh option in the next line.

Still, the page will show the first tab as active. We will have to switch to the newly created
tab. Since the newly created tabs are being appended to the end of the list, we need to find
the zero-based index of the last list item. This was done by finding the number of 1i
elements inside the ul tabList and subtracting 1 from it. So, if there are four tabs, the
length will be 4 and the index of last tab will be 3, stored in variable lastTabIndex.

Finally, we use the active option of jQuery Ul tabs to set the active tab by proving the
value as lastTabIndex.

Before seeing any result in the browser, we need to define the displaycomments. Buckle
up once again. Only one more function to go and you will see the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Building the DOM for posts

In the previous section, we implemented the createTab method that called
getPostListingHtml to get the HTML that displays the posts. This function receives an
array of children elements from the API response as a parameter. We will iterate over
these children elements and create the DOM. An unordered list will be created with one
post as a list item. We will also display the description text, if available, and a link to view
the comments.

We need to know beforehand the structure of a children node in order to extract data and
create the HTML. The following screenshot shows the structure of a single children node:

= children [Object { kind="t3", data={..}}, Object{ kind="t3", data={.}
=0 Object { Kind="t3", data=[..} }
- data Object { media_embed={...}, subreddit="webdev", selftext_html="
author "snissn"
created_utc 1400246091
downs 3
hidden false
id "2spjge”
is_self true
likes
media L
+ media_embed Object { |
name "t3_25pigt”
num_comments 44
num_reports
+ permalink "/r/webdev/comments/25p]. . .lightning round thread/"
+ secure_media_embed Object { }

+ selftext "WebDev BMAA volunteers:... this thread takes off'™
+ selftext_html "glt;!-- SC OFF --sgtrel...grt;elty!-- SC ON --sgr;”
stickied true
subreddit "webdey"
subreddit_id "t5_ 2gs0g”
thumbnail "aelf™
title "WebDev IRMAR Open Forum Lightning Round Thread!™
ups 21
+ url "http: f/www.reddit.com/r...lightning round thread/"
visited fzlae
kind i

There are many more properties of a children element, but we have displayed only the
relevant ones. To display the posts, we will refer to the structure displayed in the
preceding screenshot.

Start by writing the following code inside the getPostListingHtml method to create the
HTML structure:

'<ul class="postList">";

var strHtml =
= 0; 1 < postListing.length; i++)

for(var 1i

{

www.it-ebooks.info

http://www.it-ebooks.info/

var aPost = postListing[i].data;
strHtml+= '<1i>';
if(aPost.is_self)

{
3

strHtml+= '<div class="postTitle">' + aPost.title + '</div>';

else

{

strHtml+= '<div class="postTitle"><a href="'+aPost.url+"'"

target="_blank">"' + aPost.title + '</div>';

}

strHtml+= '<div class="extras">";
if(aPost.is_self && aPost.selftext_html !'= null)

{

strHtml+= '

 View Text';

}

if(parseInt(aPost.num_comments, 10) > 0)

{

strHtml+= '<a class="viewComments" data-commentsid=' + aPost.id +

'>View ' + aPost.num_comments + ' Comments';

}

else

{

}

strHtml+= '<a>No comments so far.';

strHtml+= '</div>"';
if(aPost.is_self && aPost.selftext_html !'= null)

{

strHtml+= '<div class="postDescription">' +

this.htmlDecode(aPost.selftext_html) + '</div>';

}

strHtml+= '</1i>"';

}

strHtml+= '"';
return strHtml;

Let’s go through the preceding code step by step:

We started by declaring a variable strHtml and assigning the opening tag for a ul
element. The CSS class postList has also been assigned to it.

Then, there is a for loop to iterate over the children array. Note that there is a data
property on the top level for each children node, inside which there are key-value
pairs. We have taken these values in a variable aPost.

We then append an opening li tag to strHtml.

After this, there is an if-else block. Here is a property named is_self that tells us
whether the post is a text post or a link. In reddit, a self-post means some text as title
and some text as description submitted by a user. A link post means the submitted
content is some text as title and a link. Therefore, if is_self is true, we append the
post title in a div that is available in the title property of a child element. Otherwise,
we create an anchor and set its href to aPost.url. Then, aPost.title is appended
as the display text.

Now, we want to display the text description for self posts and a link to view

www.it-ebooks.info

http://www.it-ebooks.info/

comments. For self-posts, the property selftext_html contains the post description.
We create another div with the CSS class extras. If it is a self-post and
selftext_html is not null, we create an anchor with the class viewText. Inside it,
we place a plus icon and View Text as the display text. If you remember, in the init
function, we have already defined an event handler for the selector viewText; hence,
this class was assigned.

There is an if-else block to check if there are any comments on this post. A number
of comments can be determined from the value of the num_comments property of a
child node. If comments are available, we create an anchor with the CSS class
viewComments and a data attribute data-commentsid. The data-commentsid attribute
is assigned the id property from child node. This is the attribute that will be used to
fetch comments for this post. Therefore, make sure that it is assigned correctly.

If there are no comments, we simply append the text No comments so far. The div
with the CSS class extras is closed in the next line.

Then, we display the post description if it is available. It has been kept inside a div
with the class postDescription. One important point should be noted here. The
selftext_html property contains an HTML string and this HTML is escaped. Before
inserting it into the page, it will have to be escaped. This is where our little helper
function htmlbecode is useful. We pass the HTML string to it. It simply creates a div
element, inserts the HTML string inside it, and retrieves the inserted HTML using
jQuery’s text method. This process returns unescaped HTML that we can use to
insert in our page.

Define the htmlDbecode method as follows:

return $('<div/>"').html(input).text();

The last bit is to close the ul tag and return the variable strHtml back to createTab
method where it will be inserted into the page.

With these two methods complete, we can see the fruits of our efforts. Reload the
index.html page, enter webdev in textbox, and click on the Add it button. Once the
response is received, a new tab will be visible and you will see the post listing with all
other options. The screen will resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Welcome
WebDev IAMAA Open Forum Lightning Round Thread!
+ View Text View 44 Comments

How do sites like Facebook notify individuals of events when there are so many active users?

+ view Text View 11 Comments

What programming languages have the most promising future?

+ View Text View 125 Comments

Atom Builds for Windows

View 41 Comments

Create a node.js Real Time Chat Application

+ View Text Mo comments so far.

Programming languages and frameworks with the highest amount of remote/telecommute jobs?

+ View Text View 14 Comments

Theme suggestions?

+ view Text Mo comments so far.

Testing a development site with a CDN

+ View Text View 1 Comments

Note that self-posts titles are black in color and link posts have a different color. Link
posts will open the linked URL in a new tab. The look and feel of the posts are due to the
CSS rules we defined earlier.

A couple of important points need to be mentioned here:

e Clicking on the View Text link will toggle the post description if it is available. This
is because we already defined a related event handler in the init method.

¢ You will also be able to remove the tab by closing the cross button present on right
side of the tab header. Again, this behavior is due to the event handler defined in the
init method at the beginning of the chapter.

We will now move on to the next section where we will display the comments for a
particular post in a dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting comments for a post

We have already displayed the posts and a link to view comments with each post. Each of
these links has a CSS class named viewComments. In the init method, we have defined
an event handler for the click event on this selector. This event handler calls the method
get JSONFromAPI with two arguments. The first argument is the set of string comments that
will let get JSONFromAPI know that the API request has to be made for comments. The
second parameter is the comments id for that particular post, which we assigned using the
data-commentsid attribute. The event handler for viewComments gets this value and
passes it as a second argument to get JSONFromAPI. We have already defined and discussed
the working of get JSONFromAPI. This method will request the API for comments and will
call the displayComments method with the API response as an argument. Since we are
going to display the comments in a dialog, the event handler for the viewComments
selector opens the dialog box as well.

The displayComments method will use another method called getCommentsHTML to create
the DOM structure for comments. As mentioned in the Getting ready section, since
comments could be nested multiple levels deep, the getCommentsHTML function will be
called recursively to display the comments. Let’s begin by defining the displayComments
method first. Add the following code to the displayComments method:

if(data !'= undefined && data.length > 0)

{
var permalink = this.apiURL + data[0].data.children[0].data.permalink;

var linkToReddit = 'View all the
comments on reddit';

var commentsHTML = this.getCommentsHTML(data[1l].data.children);

$('#dialog').html(linkToReddit + commentsHTML);

}

In the preceding code, data is an array containing two elements. The first element
contains the metadata related to the post, such as the post’s author, permalink, number of
comments, and so on. The following screenshot shows its structure:

www.it-ebooks.info

http://www.it-ebooks.info/

- data
=R
-| data
after
before
= children
=R
- data
approved_by
clicked
created
created_utc
distinguished
domain
downs
id
is_self
likes
+ media_embed
name
num_comments
over_18
¥ permalink
saved
SCOre
secure_media
¥ secure_media_embed
+ selftext
1 selftext_html
stickied
subreddit
subreddit_id
thumbnail
1 title

ups

+ url

[Object { Kkind="Listing",6 data=[..
Object { kind="Listing", data={...}}

Object { children=[1], modhash="",

[Object { kind="+t3", data={...}} 1]
Object { kind="t3", data=[..}}

Object { domain="zelf.webdev", media_embed=[.}, =subreddit="wd

false
14010887859
1401039985

"self.webdev"
a

TZegijn"

true

Object { 1
"t3 ZEgijx"
1z

false

"/ rfwebdev/comments,/Z6gi. . .run |

false

<

Object { }

"I suck at o

"webdev"

"t5_ZgsOg"

"self"

"Freelancers or people t...ads

<

"http://vww._reddit. com/r.._run

zke time. ‘n\nThenks!"
ilt;l—— 6C ON -->:"
from your 0S5 work?"™
dev_shops hawve you/"

11, Object{ kind="Listing",

after=nuwil, more.. }

dev_shops_heve you/"

After making sure we have comments in the first place, we got the permalink property
from metadata. Permalink is the web URL for the comments page of the related post. We
added the base URL before it to make a full URL. In the next line, we created an anchor to

open this comments page URL.

Note

Since there can be hundreds of comments for a post, reddit API sends a fixed number of
comments in response. There is an important property that can be used to retrieve more
comments: after. If you want to load more comments using a second AJAX request, you
can send the value of after property as the comment id.

The next line calls the method getCommentsHTML and it will receive an HTML string in
response from the method, which we assigned to commentsHTML variable. The last line of
our method simply inserts the permalink and HTML structure for the comments into the

dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

The getCommentsHTML method was called by passing data[1].data.children as an
argument. The data[1] element refers to the second element of the API response. This
element holds the actual comments inside a node that is named children. Each element of
the children array is a top-level comment. To get the replies for a comment, each element
of the children node has a property called replies. Again, its structure is the same as the
top-level children element. Therefore, we can create a recursive function which will get
us all the replies for a comment.

The following screenshot displays the data structure for your reference. We will refer to it
while creating the DOM. Note that there are many more properties inside the data
element, but we have removed those to show us only the ones relevant to us.

- data Object { children=[28], modhash="", after=nuli, more... }
after
before
- children [Object { Kind="t1", data={..} }, Object{ Kind="t1i", data={.} },
= 0 Object { Kind="t1", data={.}}
-l data Object { subreddit_id="t3 2qs0q", subreddit="wehdev", replies={..}
body "The future is JavaScript. The future is dark.”™
+ body_html "elt;div class="mi"egt;&...</pegt;\nelt; /divegt;"
created_utc 1400964199
downs 20
id "chagB&al™
likes
link_id "t3 26e609"
name "tl chgB&al”
num_reports
parent_id "t3_26e609"
= replies Object { kind="Listing", data={..}}
- data Object { children=[4], modhash="", after=null, more... }
after
before 1L
+ children [Object { Kind="t1", data={.} }, Object{ Kind="t1i", data={.} },
modhash o
Kind "Listing™
saved falae
score_hidden false
subreddit "webdev™
subreddit_id "tS_2gs0g”
ups 104
kind o e
& 1 Object { kind="t1", data={..}}
i 2 Object { kind="t1", data={..} }
H 3 Object { Kind="t1", data={.}}

The HTML structure for comments will be an unordered list ul with each top-level
comment being a list item 1i. Inside this 1i, we will display the username along with up
and down votes for the comment. The actual comment made by the user will be next to it.
If there are any replies for this comment, another ul will be created following the same
HTML structure. The HTML structure we are targeting to achieve is shown in the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Bl <ul class="commenta™>

=l ¢1i clags="comment™>
SomeUserName (106]20)
<div clags="md">
= <ul clags="comments™>
=l <1i clags="comment™>
AnctherlUserName (19]3)
H <div clags="md">
H <ul clasa="comments™>
<f1i
H <11 clags="comment">
H <11 class="comment™>
H ¢1i class="comment™>
<ful>
<f 13
<1i class="comment™
<1i class="comment™

R

<1li class="comment™

H B B B E

>
>
<1i clags="comment™>
>
>

<1li class="comment™

Now, let’s define the getCommentsHTML method to create this HTML. The following code
will be used to create the HTML structure for comments:

getCommentsHTML : function(commentsList)

{
var str = '<ul class="comments">"';
for(var 1 = 0; i< commentsList.length; i++)
{

var x = commentsList[i];

str+= '<li class="comment"> ' + x.data.author +
"('+x.data.ups+'|'+x.data.downs+') ' +
this.htmlDecode(x.data.body_html);

if(x.data.replies != undefined && x.data.replies != "")
{
str+= this.getCommentsHTML(x.data.replies.data.children);
}
str+= '</1i>"';

}

str+= '";
return str;

}

We receive a commentsList parameter that contains the top-level children array. To
create HTML, we begin by creating a string named str that will keep storing the HTML
strings as we create it. A top-level ul is created and the CSS class comments is assigned to
it. Then, we iterate over the elements in the commentsList array, create a 1i element for
each list item, and assign CSS class comment to it. Inside this 1i, an anchor with class
name username is created, where we place the username and up and down votes for the
comments that are available in the author, ups, and downs properties, respectively. The
comment body is available in the body_html property that we have unescaped using the
helper function htmlDecode.

The conditional statement checks if there are any replies to this comment. If the replies

www.it-ebooks.info

http://www.it-ebooks.info/

property is not empty, we call the getCommentsHTML method again and pass the children
array of the replies property to it. This method will keep getting called until there are no
replies for any children and the resulting HTML will keep getting added to the variable
str. The 1i element is closed in the last line of the for loop.

After the loop is finished, we close the ul element as well and return the HTML created so
far back to the displayComments method, where it is inserted into the DOM.

Our minimal reddit clone MyjqReddit is complete now and you can check the comments
for a post as well. Reload the index.html page in your browser and enter a subreddit
name (for example, webdev or technology) in the textbox and click on the Add It button.
From the post listing in the new tab, click on the View XXX Comments link. A dialog
will appear with the text Loading Comments... Please wait... and after the response is
received, you will see the comments in dialog. Due to the CSS classes we have applied to
the ul, 1i, and other elements, you will see that child comments are shifted to the right as
the comment level gets deeper.

Here is a screenshot of what you will see in the case of large number of comments:

www.it-ebooks.info

http://www.it-ebooks.info/

Comments

View all the comments on reddit
mipadi{107|20) @

The future is JavaScript. The future is dark.

mrarbitman(19]3)

hahah. Some of the languages that compile to js (such as coffeescript and dart) have excellent reviews. And with V8,
javascript is actually pretty good in terms of performance. There is hope for a JS future!

ikertxu{10]0}

If the future of JS is CoffeeScript and languages alike, then it is indeed a dark future. Because learning a high-level
language that compiles into another high-level language just to save on keystrokes, then is fucking pitch black.

I'm hoping more on ES6 to adapt the good stuff from CoffeeScript on its standards and have it all included in V& in all
browsers rather than abstract the process creating yet another layer of high-level language.

ThatOnePerson{9|1

Don't forget that with Emscripten we've got LLYM compiling to Javascript!

munificent{19]1}

All the performance of a dynamic language, and the ease of use of manual memory management in C!

MotEnoughBears{12 |0}
I like javascript because it's close to the metal.

loads single shotgun shell

dkuntz2{3[1)

The Birth and Death of JavaScript?

. forlackofabetteridea(1 |0)

This is a great talk. He really blends the optimism and pessimism of JS's future very well.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving MyjqReddit

In this chapter, we deliberately left out a few things in order to focus more on jQuery UI
and less on API. You can take these as an exercise to improve the mashup we created in
this chapter. Here are a few suggestions to take it to the next level:

e We display only the first set of comments for a particular post. Use the API to load
more comments by making new requests to the API using the value of after
property.

e Modify the code so that if the linked URL of any post is an image, that image should
be displayed in a modal dialog if the URL is clicked.

¢ Avoid opening duplicate tabs with the same subreddit name. For example, if the
webdev subreddit is already open in a tab, disallow any fresh requests for it and
switch to the corresponding tab instead.

e Use the progressbar component to display an animated progress bar when an AJAX
request is being sent.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This chapter was a long read focusing on the tab and dialog components. You worked with
tabs and dialog, learned to create dynamic tabs, and in this process learned about JSONP
and the reddit API as well. You must be comfortable with the object literal pattern by now.

We will see another challenge in the next chapter, where we will create three different
implementations of CAPTCHA.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Implementing CAPTCHA
using Draggable and Droppable

In the previous chapter, we created a reddit news reader that was a bit complex from a
coding point of view. To compensate for this, we will reduce our pace a bit in this chapter
and develop various implementations of CAPTCHA.

CAPTCHA (short for Completely Automated Public Turing test to tell Computers
and Humans Apart) is a form of test where web forms present questions to users that are
supposed to be solved by humans only.

Imagine a simple registration form of a website. If you know all the fields present in the
page, you can write a script to register as many times as you can.

Now, suppose a CAPTCHA challenge is placed in the registration form, where the user is
shown 10 different colors and is asked to select a random color. A regular bot will not be
able to do so and hence the registration will fail.

Note

The main purpose of CAPTCHA:S is to present such tests that only human users could
pass. Any scripts or bots should not be able to pass the CAPTCHA test.

In this chapter, we will focus on how we can create simple CAPTCHA implementations
using some of the components from the jQuery Ul library.

We will create three different types of CAPTCHA implementations. In all the
implementations, we will generate CAPTCHA values on the server side and store them in
session. Then, the page will be displayed to the user and user will validate the CAPTCHA
and submit the form. The submitted value will then be validated against the value in the
session. On successful validation, a success message will be displayed but an error
message is displayed if CAPTCHA fails. Here are the variations that we will implement in
this chapter:

e Draggable color CAPTCHA: The user will be shown five different colored boxes.
A color name will also be written. To validate CAPTCHA, the user will have to drag
the said colored box to a droppable box. After this, the form will be submitted and
the values will be validated on the server side. jQuery UI’s draggable and droppable
components will be used to built this.

e Slider CAPTCHA: Two numbers between 0 and 100 will be generated from the
server side that will be kept in session and will be shown to the user as well. In the
page, there will also be a slider component. The user will have to drag the slider and
set its minimum and maximum values to the given values. After setting the slider
values, the form will be submitted and values set on the slider will be matched
against the session values. This implementation will use jQuery UI’s slider
component.

e Number CAPTCHA: We will make this CAPTCHA a bit more difficult than the

www.it-ebooks.info

http://www.it-ebooks.info/

previous two versions. We will generate a five-digit number from the server-side
script but this number will not be printed on the page directly. We will use a CSS
sprite image to display this number using five different images. Under these images,
we will display five more numbers that will actually be the images of digits of
original number. The user will have to arrange these images in the order they appear
in original five-digit number. After this, the form will be submitted and the number
formed by arranging the images will be validated against the five-digit number that is
in session. jQuery UI’s sortable component will be used for this implementation.

Note

Since the CAPTCHA values need to be generated from a server-side script, we will
use PHP as server-side script in these examples. Even if you are not familiar with
PHP, you will not face any difficulty in following it, as the code for generating values
is simple and will be explained in full detail. The majority of the work will be done in
jQuery only. The logic is the same and you can use any other scripting language on
the server side to achieve the same effect.

Now that we are clear about what we are going to create, let’s write the code and create
the CAPTCHASs one by one. We will start with the draggable color CAPTCHA.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the folder structure

As we did in the previous chapters, we will first create the folder structure.

1.
2.

3.

Create a folder named Chapters inside the MasteringjQueryUI folder.

Copy the js and css folders from the downloaded jQuery Ul folder inside the
Chapters folder.

Inside the chapters5 folder, create a PHP file named colorCAPTCHA. php for the first
CAPTCHA.

Note

Since we are using PHP as server-side language, you will need PHP installed on your
machine along with a web server, such as Apache, to run these files. You can use a
software bundle, such as WAMP or XAMPP, to install all at one go.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the drag and drop
CAPTCHA

For our first implementation, as mentioned previously, we will first create an array of five
color names. Then, we will generate a random number between zero and four and pick the
color on that index from the array. This color name will be saved in session for validation
later on. Then, we will create five colored boxes in HTML and set their background color
using the color names defined in the array earlier. We will then create a separate div where
the user will drag and drop a colored box. Finally, we will make the dragging and
dropping functional.

As far as rules go, we will apply two restrictions: the droppable box could have only one
colored box inside it at a time and second, users should also be able to remove an earlier
dropped colored box from the droppable container and drop another box.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting a random color

Let’s begin by create the colored array first. Open the file color CAPTCHA. php in your
editor and write the following PHP code:

<?php
session_start();
$arrColors = array('red', 'green', 'blue', 'white', 'black');

$randomKey = array_rand($arrColors);

$randomColor = $arrColors[$randomKey];

$_SESSION['randomColor'] = $randomColor;
?2>
In PHP, the session_start function is used to create a new session or access a session if
it already exists. By using session_start in the first line, we created a new session. In the
next line, we defined an array named $arrcColors that contains names of five commonly
known colors. After this, we picked a random key from an array using the array_rand
function of PHP. Using this random key, we select the corresponding color name from the
array, which we stored in variable $randomColor. This variable will be used to let the user
know which colored box he/she has to drag and drop.

The last line stores the generated random color name in session. It will be used after the
page is submitted to check against the user-submitted value.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying the CAPTCHA

We have the colors array ready, and a random color name from it as well. We can now
use this data to create our page. Along with the HTML markup, we will need some CSS
styling to make the elements look better. Here is the code that will be used to create the
HTML. Add this code after the closing tag of PHP written in previous section:

<html>
<head>
<meta charset="utf-8">
<title>Color CAPTCHA</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
<style type="text/css">
body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 700px;
}
#FrmCAPTCHA{
border: 1px solid #aaa;
float: left;
margin: O auto;
padding: 20px;
width: 100%;
}
h3{
border-bottom:1px solid #aaa;
3
row{
display: block;
padding: 20px 10pXx;
clear:left;
float:left;
3
.colors{
float: left;
border: 1px solid #aaa;
padding: 20px 10px;
3
.colorTile{
border:1px solid #000;
margin:0 5px;
display: block;
float: left;
height: 40px;
width: 40px;
z-index:1;

}

.row label{
float: left;
padding: Opx 10pXx;

www.it-ebooks.info

http://www.it-ebooks.info/

width: 25px;
text-align: center;

}

.dropbox{
border: 1px solid #aaa;
float: left;
height: 82px;
width: 100px;
z-index: 0;

}

.clear{
clear:both;
3
</style>
</head>
<body>
<form id="frmCAPTCHA" method="post">
<h3>Color CAPTCHA</h3>

<div class="row">
<div class="colors">
<?php
foreach($arrColors as $color)
{
?>
<div class="colorTile" style="background-color:<?php echo
$color;?>;" data-key="<?php echo $color;?>"></div>
<?php
}
?>
</div>
</div>

<div class="row">
<div class="dropbox">Drop here </div>
</div>

</div>

<div class="row">
Solve the CAPTCHA by dragging the <u><?php echo
strtoupper ($randomColor);?></u> colored box in the box above.

</div>

<div class="row">
<input type="hidden" name="selectedColor" id="selectedColor"/>
<button type="submit" name="submit'">Check</button>
</div>
</form>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
</body>
</html>

www.it-ebooks.info

http://www.it-ebooks.info/

In the preceding code, inside the head section, we included the jQuery UI CSS file. Then,
we have custom CSS styles. These CSS rules create a 700 pixels-wide document that is
centered on the page. Various other classes are also defined to apply borders and fix the
height and width of elements.

In the body section, we start by creating a form and setting its id as frmCAPTCHA. Inside
this form, there is an h3 element that acts a page heading. There is a div, inside which we
will display the colored boxes. The div has the class row and it has another div with the
class colors inside it. The CSS class row as defined in the style section has been applied
specifically to make the div behave as rows. Inside the div with the class colors, we have
a foreach loop that iterates in the array $arrcolors and creates a div for each array
element. Note that the array $arrcColors holds the names of the five colors. Each div that
is being created is being assigned a colorTile class and a background color. The CSS
serves two purposes here. First, it defines the height, width, and a few other CSS
properties that make the div look like a square box. Second, this class will be used to
implement the draggable behavior later on for other purposes.

An important thing should be noted here. We are also defining a data attribute for the div
called data-key. The value of this attribute is the name of color. We will get back to this
in the following sections.

Another div with the class row is defined in the code, along with a div with the class
dropbox inside it. The class dropbox has been defined in the style section to make this
div a box of size 100 x 100. This div will be converted to a droppable container where
users will drag the colored boxes.

In the next row, we display a message to the user to tell them which color has to be
selected. Remember that we have the color name in the variable $randomColor.

In the last row, we have a hidden input field and a submit button. The hidden field has its
name as well as id set to selectedColor. This hidden field will be used to hold the value
of colored box that has been dropped by the user on the droppable container. The submit
button has the name submit.

Finally, we included the main jQuery file and the jQuery UI JavaScript file.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the drag and drop functional

In order to comply with the rules we have laid out in the beginning of this section, we will
need one draggable and two droppable components. The colored boxes have the class
colorTile that will be made draggable. For droppable, users can drop the colored boxes
into div with the class dropbox and they can also drag a dropped box from dropbox to the
original list of colors. Hence, two droppables will be required. After clicking on the
Check button, we will have to fill the hidden field with the value of color that is present in
dropbox.

Add the following code in the file, after the line where jQuery UI’s JavaScript file has
been loaded:

<script>
$(document).ready(function(){
$('button').button();
$('.colorTile').draggable({
revert : 'invalid',
helper: 'clone',
cursor: 'move'

1)

$('.dropbox').droppable({
accept: function(item){
if(item.hasClass('colorTile') && !'$('.dropbox .colorTile').length)
{

return true;

3

return false;

3

activeClass: 'ui-state-highlight',
drop: function(event, ui)

{
var $item = (ui.draggable);
$item.css({'left' : '0', 'top' : 0}).appendTo('.dropbox');
}
1)
$('.colors').droppable({
accept: '.colorTile',
drop: function(event, ui)
{
var $item = (ui.draggable);
$item.css({'left' : '0', 'top' : 0}).appendTo('.colors');
}
1)

$('#FrmCAPTCHA') .submit (function(){
var x = $('.dropbox .colorTile').data('key');
$('#selectedColor').val(x);
3);
37

</script>

www.it-ebooks.info

http://www.it-ebooks.info/

First of all, we converted the button into a jQuery UI button. This creates a look and feel
for the button as per jQuery UI’s theme.

Next, we made the colored boxes with the draggable class colorTile. We also provided
three options for the draggable component. The first option is revert, which has been set
to invalid. This means that draggable will revert to its original position if a drop action is
not performed. The second option is helper, which we have set to clone. Setting helper
to clone creates a duplicate copy of the element being dragged and drags the clone instead
of the original one. Once drop is done, the clone is placed in a new drop position and the
original element is removed. This gives a good visual feel to the user, as the UI changes
only after a drop is performed. The last option is cursor, which has been set to move. This
will change the cursor as soon as dragging starts.

We made the div with the class dropbox droppable. The drop can happen only if the div
being dragged has the class colorTile and dropbox has no colorTile divs inside it. We
defined an accept method to achieve this. Inside the achieve method, the first part of the
if condition checks whether it is indeed a div with the class colorTile that is being
dragged. The second part checks if there are any divs with the class colorTile inside
dropbox. If both conditions are met, true is returned, which means the drop has been
accepted. The activeClass option has been assigned the value ui-state-highlight. This
is a class name of the jQuery Uls CSS framework. Providing a class name to the
activeClass options assigns the class name to droppable, while an accepted element is
being dragged. Finally, there is the drop function. Normally, we would not require a drop
method as the div dropbox is already a droppable for div with the classes colorTile.
However, since we want to allow dragging from the div dropbox as well, we will have to
detach the div colorTile from DOM and append it to dropbox. Inside the drop method,
we are setting the top and left CSS attributes of an accepted colorTile to 6 and
appending it to dropbox. Setting these values to 0 for the div colorTile is required. This
is because while being dragged, they were positioned inside the div with the class colors
and dragging will cause the top and left values to change. Since we are appending it
inside dropbox, the old 1eft and top values should not be retained.

The second droppable is the div with the class colors itself that originally holds all divs
with the class colorTile. This droppable will be used when a user drags a div with id
colorTile from dropbox to div with the class colors. Like the previous droppable, we
have set its accept option to .colorTile and have similarly defined a drop method where
we are setting its top and left values to 0 and appending it inside the div with class
colors.

In the end a submit event handler for form is defined. Remember we defined a data
attribute data-key for each draggable div. This event handler is checking inside the
dropbox div if there is any colorTile present. If it is, we take its key value and set it as
the value of the hidden input with the id and name selectedColor, which is present just
before the submit button.

We can now check how our page looks. Save the file and access the file through your web
server. You will see a screen like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Color CAPTCHA

Drop Here

Solve the CAPTCHA by dragging the RED colored box in the box above.

Check

Clicking on the Check button will submit the form but nothing will happen, as we have
not yet validated the CAPTCHA.

www.it-ebooks.info

http://www.it-ebooks.info/

Validating on the server

To check whether the CAPTCHA has passed or failed, we need to compare the value of
the color that is present in the session to the one which was set in the hidden input
selectedColor. In the colorCAPTCHA. php file, write the following code just after
session_start() method:

if(isset($_POST['submit']))
{
if($_POST['selectedColor'] != $_SESSION['randomColor'])

{

?>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-error ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-right:
.3em; ">
CAPTCHA Failed. Try again.
</p>
</div>
</div>

<?php
}

else

{

?>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-highlight ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-
right: .3em;">
CAPTCHA Passed.
</p>
</div>
</div>

<?php

}
}
The first line of the code checks whether the form was submitted. Inside it, we take the
value stored in the session (from the session variable randomColor) and the value posted
from the form (which will be available via $_POST['selectedColor']) and compare
them. If they match, a jQuery UI themed success message is displayed; otherwise, an error
message is shown. The success and error message will appear at the top of the page.

A success message is displayed first:

www.it-ebooks.info

http://www.it-ebooks.info/

& CAPTCHA Passed.

Color CAPTCHA

| (N e

The following error message is shown if CAPTCHA fails:

A CAPTCHA Failed. Try again.

Color CAPTCHA

NN .

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the color CAPTCHA

The preceding CAPTCHA is a basic one and can be improved. Just try to think of new and
unusual ways in which components can be used. Here are a few suggestions to get you

started:

e Since not all people might recognize colors, use pictures of daily objects such as

bikes, cars, cats, chocolate, and so on.
e Allow the user to drop things in groups. Like, show 3 apples, 3 oranges and 3
mangoes and ask to drop 1 apple and 2 oranges in the dropbox.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the slider CAPTCHA

In our second implementation, we will use jQuery UI’s slider component to create a
CAPTCHA. Two numbers between 0 and 100 will be generated from the server and will
be stored in session. In the page, a range slider with two handles from 0 to 100 will be
displayed. The user will have to drag the slider handles and set the slider values so that
they match the values generated from the server side.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating minimum and maximum values for the
slider

Inside the chapters folder, create a new file named s1iderCAPTCHA. php and start by
adding the following code to it:

<?php
session_start();
$randomNumberl = (string)rand(0, 49);
$randomNumber2 = (string)rand(50, 100);
$_SESSION['sliderMin'] = $randomNumberl;

$_SESSION['sliderMax'] = $randomNumber2;
?>

The first line after the PHP opening tag <?php is a call to the session_start function
(which you will remember from the previous CAPTCHA implementation). In the next two
lines, we generate two random numbers using the rand function of PHP. The first random
number will be between 0 and 49, and the second number will be between 50 and 100.
Both of these numbers are then stored in session in the session keys sliderMin and
sliderMax, respectively, to be validated later.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the slider functional

After getting two random numbers, we can now proceed to create the slider itself. We will
now create the HTML file that will display the values generated from the server, the slider,
and a button to submit the form. Just below the closing tag of PHP, add the following code
to create the page:

<html>
<head>
<meta charset="utf-8">
<title>Slider CAPTCHA</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
<style type="text/css">
body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 500px;
}
. FrmCAPTCHA{
border: 1px solid #EEEEEE;
float: left;
margin: 0 auto;
padding: 20px;
width: 100%;
}
h3{
border-bottom:1px solid #eee;
}
row{
display: block;
padding: 20px 10px;
}
.row label{
float: left;
padding: Opx 10px;
width: 25px;
text-align: center;

}

#slider{
width:300px;float:left;
¥
.clear{
clear:both;
3
</style>
</head>
<body>
<form class="frmCAPTCHA" method="post">
<h3>Slider CAPTCHA

<small>Set the minimum and maximum values of slider to <?php echo

www.it-ebooks.info

http://www.it-ebooks.info/

$randomNumberl;?> and <?php echo $randomNumber2;?> respectively.</small>
</h3>

<div class="row'">
<label class="minVal'">0</label>
<div id="slider'"></div>
<label class="maxVal">100</label>
</div>

<div class="row">
<input type="hidden" name="minValSelected" id="minValSelected"/>
<input type="hidden" name="maxValSelected" id="maxValSelected"/>
<button type="submit" name="submit'">Check</button>
</div>
</form>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script>
$(document).ready(function(){
$('button').button();
$('#slider').slider({
values : [0, 100],
min : O,
max : 100,
slide: function(event, ui){
$('.minval').text(ui.values[0]);
$('.maxval').text(ui.values[1]);

$('#minvalSelected').val(ui.values[0Q]);
$('#maxValSelected').val(ui.values[1]);

}
1)
1)

</script>
</body>
</html>

We included the jQuery UI theme CSS file in the head section. Then, we have some CSS
rules for the elements on the page. Other classes and their properties are the same as the
previous CAPTCHA. We defined a new CSS class for the element with the id slider and
have set its width.

The document body begins by opening a form with the class frmCAPTCHA. Inside the form,
there is an h3 element and two div elements with the class name row. Inside h3, we have
displayed both the numbers that have to be set on the slider. First div with class row has
another div with id as slider and two label elements, one label before and one after the
slider. These labels will hold the current value of slider while it is dragged. The slider
div will be converted into an actual jQuery UI slider. The last div with the class row has
two hidden fields inside it and a submit button. The id and name attributes of these
hidden inputs are minvalSelected and maxVvalSelected, respectively. Whenever the slider
is dragged, the current minimum and maximum values of the slider will be set inside these
hidden fields. This finishes up our form, after which we include the jQuery js file and

www.it-ebooks.info

http://www.it-ebooks.info/

jQuery UI js file.

Then, there is the jQuery code that makes the slider functional. Inside the
$(document).ready handler, we converted the button element to jQuery Ul button
component.

Now, we can focus on the slider. Since we have two numbers that are going to be from 0
to 100, we will need 2 handles where each handle will be used to set one number. To
create handles, we need to provide the values option. It must be an array where the value
of each element is set as the handle value. So if you provide three elements in this array,
the slider will have three handles.

We provided [0, 100] as the value for the slider because our minimum and maximum
values are 0 and 100, respectively, and we need handles for these two. Next, we have set
the minimum and maximum values for slider. These values specify the starting and end
limits of the slider.

In the end, we defined the s1ide method. This method is invoked when a slider handle is
being dragged. Like other jQuery UI methods, this method receives two parameters: event
and ui. The ui object is what we need here. This object has three properties:

e handle: This is the object corresponding to the slider handle that is being dragged
e value: This is the current value of the current handle
e values: This is the an array that contains the current values of all handles

Using the ui.values array, we first update the text of labels that are to the left and right of
the slider to the current values of the slider handles. These same values are also being set
as the values of the hidden input elements. So, each time any of the slider handles is
moved, the hidden input fields will have the updated value.

Our slider is functional now and we can see it in action. Run the s1iderCAPTCHA. php file
using your web server, and you will see a page like this:

Slider CAPTCHA

Set the minimum and maximum values of slider to 44 and 89 respectively.

0 100

Check

The page will display which values have to be set on the slider.

www.it-ebooks.info

http://www.it-ebooks.info/

Validating the slider values

Clicking on the Check button on the page will submit the page, but will do nothing as of
now. To check whether the CAPTCHA has passed or failed, we need to validate the values
against the ones stored in session.

Open the s1iderCAPTCHA.php file again and add the validation code in PHP. Add the
following code after the line session_start():

if(isset($_POST['submit']))
{

if($_POST['minValSelected'] != $_SESSION['sliderMin'] ||
$_POST['maxValSelected'] != $_SESSION['sliderMax'])

{

?>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-error ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-
right: .3em;">
CAPTCHA Failed. Try again.
</p>
</div>
</div>

<?php
¥

else

{

2>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-highlight ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-
right: .3em;">
CAPTCHA Passed.
</p>
</div>
</div>

<?php
}
}

The first if condition is checking whether the form was submitted or not. Inside it, we
check the values of the hidden input elements submitted from forms that are in the
variables $_POST['minvalSelected'] and $_POST['maxValSelected']. The

$_POST['minvalSelected'] variables is being checked against the minimum, that is,

$ _SESSION['sliderMin'], and $_POST['maxVvalSelected'] is being checked against the
maximum, that is, $_SESSION['sliderMax']. If either of these values do not match, we
display a jQuery UI themed error message; on successful match, we display a success
message on the page.

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the slider CAPTCHA

You can make more than two handles and ask the user to set different values for each of
them. Instead of numbers, create an array of animal names and select two random names.
Now, set up the slider so that the animal name changes on each step. Ask the user to set
the slider in such a way that both handles have the required values for the generated
names.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the number CAPTCHA

So far, we have seen two examples with draggable, droppable, and slider. For our last
implementation, we will use the sortable component of jQuery UI.

We will generate a five-digit number on the server side and display it to the user. Then, we
will display five digits of the same numbers in random order and ask the user to arrange
them using sortables to make the original number. However, this time there will be a
difference in how we display the original number. Instead of printing the five-digit number
directly on the screen, we will display it as an image. To do this, we will need an image of
all 10 digits from zero to nine. This can be created as a single sprite of 10 images. We will
then create five div elements, set the background image to the sprite image, and
appropriately calculate and apply the background position property to display the correct
number. You can find this image in the code bundle. Look inside the chapters folder for
an image named sprite.png.

Here is what the image looks like:

You will also have to create a new file for this example. Create a new file named
numberCAPTCHA. php inside the chapters folder and place the sprite.png image here.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating the five-digit number

We have used PHP’s rand function in the previous examples. It will be used here as well
to generate a five-digit number. Write the following code in the numberCAPTCHA. php file:

<?php

session_start();

$randomNumber = (string)rand(10000, 99999);

$_SESSION['CAPTCHAvValue'] = $randomNumber;
?>
By now, you must be familiar with session_start. A new session is started and in the
next line, we used the rand function to generate a number between 160000 and 99999 and
stored it in the variable $randomNumber. Note that we have cast the number as a string.
This has been done because we will be using it as a string array later on. In the last line,

this value is stored in a session variable called CAPTCHAValue.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying CAPTCHA on the page

We will now design the page where the generated number will be displayed. Along with
the generated number, we will display the five digits of this number separately. The
following diagram shows the page design we want to create:

CAPTCHA Mumber: 3 g B 3 5

Rearrange the numbers given below to make the 5 digit number displayed abowve.

Drag to reorder; alslalals

The following code needs to be added after the closing tag of PHP:

<html>
<head>
<meta charset="utf-8">
<title>Number CAPTCHA</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
<style type="text/css'">
body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 500px;
3

#frmCAPTCHA{
border: 1px solid #EEEEEE;
float: left;
margin: 0 auto;
padding: 20px;
width: 100%;
3

h3{
border-bottom:1px solid #eee;

}

row{
display: block;
padding: 10px;
clear: left;

3

.row label{
float: left;
padding: Opx 10px;
width: 125px;
text-align: center;

www.it-ebooks.info

http://www.it-ebooks.info/

.bgNumber{
background: url("sprite.png") no-repeat scroll © 0 rgba(®, 0, 0,

0);
display: block;
float: left;
height: 27px;
width: 27px;
3
#CAPTCHATiles{
float:left;
}
.clear{
clear:both;
3
</style>
</head>
<body>

<form id="frmCAPTCHA" method="post">
<h3>Number CAPTCHA</h3>

<div class="row">
<label>CAPTCHA Number: </label>
<?php
$arrayNumbers = array();
for($i =0; $i<5; $i++)
{
array_push($arrayNumbers, $randomNumber[$i]);
$pos = ($randomNumber[$i] * 26 * -1);
2>
<div class="bgNumber" style="background-position:0px <?php echo
$pos; ?>px; "></div>
<?php
¥
?>
</div>

<div class="row">
<small>Rearrange the numbers given below to make the 5
digit number displayed above.</small>
</div>

<div class="row">
<?php
shuffle($arrayNumbers);
?>
<label>Drag to reorder: </label>
<div 1d="CAPTCHATiles">

<?php
for($1i =0; $i<count($arrayNumbers); $i++)
{
$pos = ($arrayNumbers[$i] * 26 * -1);
echo '<div data-value="'.$arrayNumbers[$i].""
name="letter_'.$arrayNumbers[$i].'" id="letter_'.$arrayNumbers[$i]."'"

class="bgNumber" style="background-position:0 '.$pos. 'px;"></div>";

www.it-ebooks.info

http://www.it-ebooks.info/

}
echo '</div>';
2>
</div>

<div class="row'">
<input type="hidden" name="filledCAPTCHAValue"
id="filledCAPTCHAValue"/>
<button type="submit" name="submit'">Check</button>
</div>
</form>
<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
</body>
</html>

As we did earlier, we included the jQuery UI CSS file in the head section and added some
CSS rules after it. Since the numbers will be displayed as individual divs, we have created
a CSS class named bgNumber that will set the background image as sprite.png and will
also set the height and width of the element. Other CSS classes and properties have also
been defined to fix the look of the other elements.

Coming to the body section, there is a form with id frmCAPTCHA. Inside it, there is an h3
element that serves as the page heading. After this, there is a div having the class row
where we display the CAPTCHA value, that is, our five-digit number.

To display the number, a for loop is used that runs through the length of the string. Each
iteration of the loop gives us access to a digit of the five-digit string. This digit is
multiplied by 26 and then multiplied by -1 and the result is stored in the variable $pos. In
the next line, a div with the class bgNumber is created and its background-position CSS
property is set. The background-position property requires setting two values for the x
and y axes of the background image of the element where “Opx Opx” is “horizontal
vertical”. In our sprite image, each digit covers around 26 pixels space horizontally and
vertically. Hence, we are multiplying the digit by 26. Multiplying it with -1 makes this
value negative. So, if 0 is top, any negative value will be towards the bottom of the image.
Since the image is vertical, we do not need to change the x axis position for the
background. The value in the $pos variable is set as the y axis position value.

For example, if the digit is 4, it becomes 4 * 26 * -1 which is -104. We set the background
position to “0 -104px”. It causes the sprite to position itself on the div at the 104th pixel
position vertically, which displays the sprite where the number written is 4.

Moving on, in the next line, we display an informative message for users. There is another
div with the class row inside where we have to display the shuffled numbers. To shuffle
the five-digit string that we have, we use the in-built str_shuffle function of PHP and
store the result in the variable $shuffledNumber. Then, inside this div, we create another
div with id CAPTCHATiles. We now loop on the variable $shuffledNumber inside this div
and set the background-position property as we did earlier.

Note

www.it-ebooks.info

http://www.it-ebooks.info/

We have an extra data-value attribute while creating divs here. The value for this
attribute is the digit itself. This value will be used just before the form is submitted to
create the five-digit number the user has made.

We have now two sets of five-digit numbers. The first one represents the original number
that was generated on the server, and the second set is the same five digits but in random
order.

The final div with the class row contains a hidden input field and a submit button. The
hidden field has its id and name as filledCAPTCHAValue. This field will hold the five-digit
number that the user has made after arranging the numbered boxes.

Close the form tag and include the jQuery JavaScript and jQuery Ul JavaScript files after
it. If you run the file on your browser now, you will see both the original five-digit number
and the shuffled digits under it. Reloading the page will result in different numbers each
time.

Number CAPTCHA

CAPTCHA Mumber: 4|3 g g 7

Rearrange the numbers given below to make the 5 digit number displayed abowve.

Drag to reorder: alzlalala

Check

www.it-ebooks.info

http://www.it-ebooks.info/

Adding the sortable functionality

Until now, users were not able to rearrange the divs to make the number required for
CAPTCHA. For this, we need to make the shuffled digits sortable. After jQuery Ul is
included, use the following code to make the digits sortable:

<script>
$(document).ready(function(){
$('button').button();
$('#CAPTCHATiles').sortable({

cursor : 'pointer'
1)
$("#FrmCAPTCHA") .submit (function(){
var str = '';

$('#CAPTCHATiles div.bgNumber').each(function(){
str+= $(this).data('value');

3)7
$('#filledCAPTCHAValue').val(str);

1),
1)

</script>

In the first line, we initialized the button component. After that, we made all the bgNumber
elements inside the div CAPTCHATiles sortable. We have only provided an option here,
which is the move value for the cursor property that will change the cursor as sorting
starts.

When the user clicks on the Check button, we need to know which five-digit number the
user has made after arranging the sortable boxes. To achieve this, we find all the sortable
divs, that is, the divs with the class bgNumber and get the value of their data attributes. A
variable str is appends all these values together, which will give us a five-digit string
representing the number that the user has made with the sortables. We assign this number
as a value to the hidden element filledCAPTCHAValue.

www.it-ebooks.info

http://www.it-ebooks.info/

Validating the number on the server

Clicking on the Check button will send the value of the element filledCAPTCHAvValue to
the server, where it will be available in the variable $_POST['filledCAPTCHAValue']. We
can check this value against the value in session to see if the user has arranged the
numbers correctly. The following PHP code will be appended to the file

numberCAPTCHA. php just after the line that has the call to the session_start() function:

if(isset($_POST['submit']))
{
if($_POST['filledCAPTCHAValue'] != $_SESSION['CAPTCHAValue'])
{
?>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-error ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-
right: .3em;">
CAPTCHA Failed. Try again.
</p>
</div>
</div>
<?php
}

else

{
2>
<div class="row ui-widget" style="line-height: 20px;">
<div class="ui-state-highlight ui-corner-all">
<p>
<span class="ui-icon ui-icon-alert" style="float: left; margin-
right: .3em;">
CAPTCHA Passed.
</p>
</div>
</div>
<?php
}
}

The preceding code is pretty straightforward. We check the value
$_POST['filledCAPTCHAValue'] against the value in the session, which is
$_SESSION['CAPTCHAValue']. In the case of a successful match, we display a success
message, or display an error message on failure.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We used three different jQuery UI components in this chapter. Although not many options
for components were used, these examples should give you the knowledge required to use
these components in unusual ways. Our purpose is to not only learn about the jQuery Ul

components, but to learn about their practical usages and the ability to think out of the
box.

In the next chapter, we will make extensive use of the slider component to create an event
timeline. Meanwhile, try to think differently and create CAPTCHASs using other
components.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Creating an Event Timeline
Using a Slider

We have used many components of the fabulous jQuery UI so far. In the previous chapter,
Chapter 5, Implementing CAPTCHA Using Draggable and Droppable, we used draggable,
droppable, and the slider functionalities to create some new CAPTCHA implementations.
In this chapter, we will use the slider again, and we will create an event timeline that
makes use of it.

The following screenshot shows what the timeline will look like. It will be a scrollable,
horizontal list of events from the year 2001 to the year 2010. The data for the events of
each year will be kept in a JavaScript object and displayed using JavaScript.

Each year will be displayed as a separate block wherein we will display the number of
events that occurred in that year. Initially, five blocks for each year will be visible when
the page loads, but we will keep the number of items to display configurable:

2004 2005 2006 2007 2008

3 events found | 1 events found | 4 events found 2 events found | 2 events found

Click to see

2006

There will be a slider under the timeline. It will have its range from 2001 to 2010.
Dragging the slider will scroll the timeline to set focus to the year set by the slider. If the
selected year is not visible, the timeline will be scrolled to bring it in focus.

To focus on a particular year, we will use another div element as a window. In the
preceding screenshot, we can see 2006 selected by a red-bordered window. The user will
be able to drag this window to set focus on other years. This will also set the slider to that
particular year.

Clicking on any year will expand the corresponding div block to full width and will list all
events in detail, which will resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Google buys YouTube for more than $1.5 billion
Apple iTunes sold 1 billionth song

Saddam Hussein executed

ltaly won FIFA World Cup 5-3 vs. France

2006

There will be some mathematics required to perform the animation, and calculations to
position the elements dynamically, so grab a cup of coffee and jump to the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the folder structure

The first step is to create the required folder structure:

1.

w

Just as in the previous chapters, create a folder named Chapter6 inside the
MasteringjQueryUI folder.

Inside this folder, create an HTML file and name it index.html. This file will keep
our HTML markup.

Also copy the js and css folder inside the chapter6 folder.

Now go inside the js folder, create a new file, and name it timeline. js. This file
will have all of the JavaScript code required for our timeline.

We can now move to the next step and write the HTML markup.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the page

HTML markup and CSS are very important when it comes to designing a feature like
timeline using a slider, because precision will be required to position the elements. Most
of the data will be filled using JavaScript. Because of this, we will need minimal markup,
but it must be accurate. Write this HTML code in your index.html file to create a basic
structure:

<html>

<head>

<meta charset="utf-8">

<title>Event Timeline</title>

<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">

</head>

<body>

<div class="container">
<div id="timeline"></div>

<div id="leftOverlay"class="overlay" ></div>
<div id="rightOverlay" class="overlay" ></div>

<div id="window">
<div class="ui-state-default ui-corner-all close"><span class="ui-
icon ui-icon-closethick"></div>
<div id="yearEvents'></div>
<div class="1link">Click to see</div>
</div>

</div>

<div class="clear"> </div>

<div id="slider'"></div>

<div class="clear'"> </div>
<label id="sliderVal'"></label>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/timeline.js"></script>
</body>
</html>

We start by creating a div element with a class container. This div will contain the
entire markup for the timeline. Inside it are four more div elements. The first element has
its id set as timeline. This div will contain individual div elements corresponding to
each year. There are 10 years in our case (from 2001 to 2010). Then there are two div
elements with their id values as leftoverlay and rightOverlay, respectively. If you
recall the first screenshot earlier in this chapter, you will realize that the year 2006 is
selected and other years to its left and right have overlays on them. Therefore,
leftoverlay will act as an overlay for the elements that are towards left of the currently
selected year, and rightoverlay will be the overlay for the elements to the right of

www.it-ebooks.info

http://www.it-ebooks.info/

currently selected year.

At the end is a div with its id set as window. This div will act as a handle or window for
the selected year. User will be able to drag it and set focus to any other year. Clicking it
will expand it to cover whole timeline div and events will be listed inside it. To achieve
this, we will require three div elements inside it.

The first div is a close icon that has been created using the ui-icon-closethick class of
the jQuery UI themeroller. Clicking on it will collapse the window and return the timeline
to its original state. The second div has the id set as yearEvents. It will display all the
events for a selected year. The final div is just for information. It asks the user to click
when the window is focused on a particular year.

Since markup is incomplete without any CSS styling, we will now write the CSS rules for
different elements.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

We will have to be very precise about the CSS rules for all elements, especially for all the
elements inside the div having id container. Write the following CSS rules in the head
section of the index.html file, and then we will go through each of these to see the
concepts behind them:

<style type="text/css'">

body{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 900px;

}

.container{
border: 1px solid #333;
border-left:0;
height: 250px;
margin: 100px auto 0O;
overflow: hidden;
position:relative;
width: 500px;

}

#timeline{
border-left: 1px solid;
width: 2000px;
position:absolute;

}

.year{
border-left: 1px solid #333;
float: left;
height: 250px;
width: 99px;
text-align:center;

}

.year div{
margin-top: 50px;

}

#window {
border: 2px solid #ff0000;
height: 247px;
left: 0;
position: absolute;
cursor:pointer;
top: O;
width: 99px;
z-index:300;

3

.close{
display:none;
position: absolute;
right: 5px;
text-decoration: underline;
top: 5px;

www.it-ebooks.info

http://www.it-ebooks.info/

}

.1ink{
bottom: 20px;
position: absolute;
text-align: center;
width: 100%;

}

.overlay{
background-color: #2b2b2b;
height: 250px;
opacity: 0.15;
position:absolute;
z-index:100;

}

#leftOverlay{
left:0;

}

#rightoOverlay({
right:opx;
width: 400px;

}

#yearEvents ul 1i{
font-size: 16px;
line-height: 25px;

}

#slider{
margin:0 auto;
width:500px;

}

#sliderval{
width: 100%;
display: block;
text-align: center;
font-weight:bold;

}

.clear{
clear:both;

}
</style>
Now let’s try to understand the important properties of all the CSS rule declarations one
by one:

e body: General CSS properties that will be applied to whole document are defined
here. The font details and document width are declared. The document is centered.

e .container: This class defines the outer body of the timeline. We have applied all
borders except on the left. The left border will be applied by a year div. The three
most important properties to note here are width, position, and overflow. Since the
div for one year is going to be 100px wide and we are initially going to display 5
years, we have set the width to 500px. Since the overlays and the window div inside
this div will have to be positioned absolutely, we have set the postion property for
the container as relative. This will cause the inside elements to position them
relative to the container div. Because the width is set to only 500px and there can

www.it-ebooks.info

http://www.it-ebooks.info/

be more than five div elements for years, we have set the overflow to hidden. This
will hide all elements after the 500px width.

e #timeline: This div will contain all other divs for each year, so we have defined its
width as 2000px.

e .year: This class will be applied to div elements for individual years. We have
defined its width as 99px. The 1px value has been assigned to left border. A height
of 250px has also been assigned. This will give us the appearance of the columns.

e .year div: This rule will be applied to div elements inside the year div.

e #window: This div will work as a focus window for a year. To make it stand out, we
have applied a 2px red-colored border to it. It has also been positioned absolute, and
the left margin has been set to 0. Absolute positioning is required so that we can
easily position it anywhere inside the timeline div. Its z-index value has been
defined as 300 to make it appear on top.

e .close: This div will work as a close icon when the window is expanded. Initially, it
will be hidden, so we have set its display property to none. It has been positioned
absolutely and 5px far from the top and right margins.

e .overlay: We will have two overlays, one on each side of the window div. This class
defines general CSS properties for them. We have set the background-color and
opacity to make it semi-transparent. The height has been set to 250px, and
absolute positioning has been done so that we can adjust the positions whenever the
window div moves.

e #leftOverlay: This is specific to the overlay on the left of window div. We have set
its left property to 0@ because initially, the window will be focused on the first year
of the timeline, and we do not need left overlay. Since its parent is the container
div, it will be positioned relative to the container.

e #rightoverlay: This overlay has been positioned to the right and its width is 400px.
This is easy to calculate as the width of window div is set to 160px, which leaves a
400 px space to its right for the overlay. Since its parent is the container div, it will
be positioned relative to the container.

e #yearEvents ul li: When a particular year is clicked on, we will display all events
for that year in the form of an unordered list ul. This list will be appended to the div
with the id yearEvents. We have set the font-size and 1ine-height properties for
each list item 11 in the list.

e #slider: Similar to the timeline, the slider width has been made 500px and set to
the center of the document using the margin property.

e #sliderval: This is a label where we will display the currently selected year when
the slider is sliding.

e .clear: This is the generic CSS class used to clear the floats.

With the preceding list, we have covered all the CSS rules required to structure the
timeline div as well as to beautify it to some extent.

Save the index.html file if you have not done so and open it in browser. The basic
structure of the page will resemble the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Click to see

Since no jQuery has been applied, the slider will not be visible yet. The rest of the display
will be created using jQuery and jQuery UI.

Let us now go to the next section, where we will jump into jQuery and get our JavaScript
code structure ready to implement the timeline.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the code structure ready

Just as we saw in the last couple of chapters, we will continue with the object-literal
pattern to organize our code. Our $(document) .ready() section will have only a call to
the init method of the object, which will encapsulate the rest of the functionality. We will
first declare all the properties and methods required to make the timeline functional, and
later implement each method.

Navigate to the js folder in your filesystem and open the timeline. js file. In this file,
write the following code to set up our object and a $(document).ready() handler to call
its init method:

$(function(){
objTimeline.init();

1)

var objTimeline =

{
itemsToDisplay : 5,
minYear : 0O,
maxYear : O,
currentYear : 0O,
maxScrollYear : 0O,
timelineWindowStartYear : 0O,
windowLeft:Q,
isWindowOpen : false,
timelineData :

[

{
year : 2001,

events : ['Human Genome Sequence Revealed', 'World Economic
Slowdown']
iy

{
year : 2002,

events : []
3

{
year : 2003,

events : ['Space shuttle Columbia crashed', 'India and Pakistan reach
cease-fire in Kashmir', 'Earthquake in Iran kills over 15,000 people']
Iy

{
year : 2004,

events : ['NASA rover Opportunity lands on Mars', 'Yasar Arafat
dies', 'Bird flu spreads in many countries']
3

{
year : 2005,

events : ['Hurricane Katrina on August 29']
3

{
year : 2006,

events : ['Google buys YouTube for more than $1.5 billion', 'Apple

www.it-ebooks.info

http://www.it-ebooks.info/

iTunes sold 1 billionth song', 'Saddam Hussein executed', ' Italy won FIFA
World Cup 5-3 vs. France']

iy

{
year : 2007,

events : [' Halo 3 released', 'Microsoft released Windows Vista']

iy

{
year : 2008,

events : ['Barack Obama became first African-American president of
USA', 'Summer olympic games held in Beijing']
I

{
year : 2009,

events : ['Israel attacks Gaza', 'Michael Jackson dies at 50 years']
3

{
year : 2010,

events : ['Apple released first iPad', 'Earthquake in Haiti']

¥
1,

init : function()

{
this.createMarkup();
this.createTimeline();
}
createMarkup : function()
{
}
createTimeline: function()
{
}
closeWindow : function()
{
}
Iy

The first block of code is jQuery’s event handler, which is fired once the page has loaded
and the DOM is ready. Inside it, we call the init method of an objTimeline object. Let’s
look at each of the properties of objTimeline in detail:

e itemsToDisplay: This is a configuration option with which we will decide how many
years have to be displayed in the timeline. This parameter is very important as we
will have to calculate the size of container div using this parameter only. Initially,
we have set it to 5.

e minYear: From the list of events, we will calculate the minimum year that is available
for events and store it in this property.

e maxYear: Just like minyear, this property will store the year with the maximum value.
Both the minyear and maxYear properties will be used to set the minimum and
maximum values for the slider.

e currentYear: This stores the year that is currently selected either by the slider or by
dragging the window div.

e maxScrollyear: This property will be calculated at runtime. It defines the maximum

www.it-ebooks.info

http://www.it-ebooks.info/

year beyond which the timeline will not scroll. Let’s see why this is important. We
have a 500 px wide container and years from 2001 to 2010. When the timeline div
scrolls and 2006 is in the extreme left, we have 2010 as the last available year on the
right. Now, if we select 2007, the timeline must stay intact and only the focus
window should move. Otherwise, we will have only 4 years visible in the timeline,
and empty space to the right.

e timelinewWindowStartYear: This property will store the value of the year that is
currently at the extreme left of the timeline. Along with the previous property,
maxScrollYear, the decision to scroll or not to scroll the window will be taken here.

e windowLeft: This will store the value of the CSS left property for the div with the id
window. Since clicking on a year window will expand it to take up the full width and
closing it will collapse it to the original size, we need to know which position it was
in before expanding.

e iswindowOpen: This keeps track of whether a year window is open in the expanded
view or not. Initially, it will be false.

e timelineData: This property is where we define the year and events for those years.
As you can see in the code, timelineData is an array of objects. Each object in the
array represents an array and has two properties, namely year and events. The
events property is an array where each item of the array represents an event. In our
case, we defined years and their events from 2001 to 2010.

e init: This is the first method of objTimeline to be called. It simply calls two more
methods, createMarkup and createTimeline.

e createMarkup: This method will be responsible for creating markup for the timeline
div and the years div from the event array defined via the timelineData property.

e createTimeline: Event handlers for slider, dragging window div, window click, and
so on will be implemented here.

e closewindow: This is used to close the window div when it is expanded after clicking
on a specific year.

The preceding object structure makes clear the way we are going for our implementation.
We will start by creating and displaying the timeline on our page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the timeline markup from data

To create the required markup, we will iterate on the array defined for the timelineData
property and fill the div with the id timeline. We will also resize the container div
based on the value of the itemsToDisplay property. Other properties such as minyear,
maxYear, currentYear, timelineWindowStartYear, and maxScrollYear will also be set.

In the timeline. js file, locate the createMarkup method and write this code to create the
timeline:

$('.container').css({width: (objTimeline.itemsToDisplay*100)+'px'});
$('#rightOverlay').css({ width: ((objTimeline.itemsToDisplay * 100) - 100)
+ 'px' });

this.minYear = this.timelineData[0].year;

this.maxYear = this.timelineData[0O].year;

var strYearDivs = '';

for(var i=0; i< this.timelineData.length; i++)

{

strYearDivs+= '<div class="year">"';

strYearDivs+= ''+ this.timelineData[i].year + '';

strYearDivs+= '<div class="numEvents">' +
(this.timelineData[i].events.length) + ' events found</div>';

strYearDivs+= '</div>"';

this.minYear = this.timelineData[i].year < this.minYear ?
this.timelineData[i].year : this.minYear;

this.maxYear = this.timelineData[i].year > this.maxYear ?
this.timelineData[i].year : this.maxYear;

}

this.currentYear = this.minYear;

this.timelineWindowStartYear = this.currentYear;
$('#sliderval').text(this.currentYear);

this.maxScrollYear = this.maxYear - (objTimeline.itemsToDisplay - 1);
$('#timeline').html(strYearDivs);

The first line sets the width of the div with the id set as container. Since we have set
itemsToDisplay to 5, a 500px width will be set for the container. Similarly, the next line
sets the width for the rightOverlay div. Since we want the first year to be selected (or
focused) by default, the width for rightoverlay will be 100 px less than the container
size.

The next two lines set a default value for minyear and maxyear by getting the value of the
year of the first element in the timelineData array.

A variable named strYearDivs is defined as an empty string. It will hold the DOM for the
timeline divs having class year. A for loop iterates in timelineData and creates a div
with the year class, with the year number written inside it. Another div with the
numEvents class is created, in which the length of the events array for each array element
is written. This loop also sets the correct minYear and maxYear values using two ternary
operators.

www.it-ebooks.info

http://www.it-ebooks.info/

After the loop is complete, we have the HTML string ready as well as the correct values
for minyear and maxvear.

Now we set the currentYear property to minyear. The timelinewWindowStartYear
property is set to currentYear as well because the first year will be focused by default.
The HTML of the sliderval label is also set to currentyear.

The penultimate line sets the maxScrollyear property. If you recall, maxScrollyear is the
value of the year beyond which the timeline will not scroll. It is calculated by subtracting
itemsToDisplay-1 from maxYear. For our example, maxYear is 2010 and itemsToDisplay
is 5, which gives us maxScrollyear as (2010 - (5-1)) = 2006. Thus, 2006 will be the
value beyond which the timeline will not scroll.

In the last line, we insert the stryearDivs HTML string into the timeline div. At this
moment, you can save the file and see after reloading the page in the browser that 5 years
have appeared in timeline and the window is fixed on the first year, as shown in the
following screenshot:

2001 2002 2003 2004 2005

2 events found 0 events found | 3 events found | 3 events found | 1 events found

Click to see

2001

You can change the value of the itemsToDisplay property and see that the UI changes
accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the timeline functionality

The page that we designed is static as of now. There are three things we need to change to
get the timeline working: slider functionality, window dragging, and displaying events for
selected year.

Let us begin implementing them one by one, starting with the slider.

www.it-ebooks.info

http://www.it-ebooks.info/

Making the slider work

The slider will have its range set to the minyear and maxYear properties. We will update
the value of the sliderval label as the slider slides, and when it stops, we will animate the
interface that includes the positioning of the timeline, window div, leftOverlay div and
rightoverlay div. In order to achieve this, we will write the following code inside the
createTimeline method:

$('#slider').slider(

{
min: objTimeline.minYear,
max: objTimeline.maxYear,

step : 1,
start : function(event, ui)
{
if(objTimeline.isWindowOpen)
{
objTimeline.closeWindow();
}
+
slide: function(event, uil)
{
objTimeline.currentYear = ui.value;
$('#sliderval').text(objTimeline.currentYear);
3
stop : function(event, uil)
{

if(objTimeline.currentYear >= objTimeline.maxScrollYear)
{
objTimeline.timelinewWindowStartYear = objTimeline.maxScrollYear;
//animate timeline
$('#timeline').animate(
{
left : (objTimeline.timelineData.length -
objTimeline.itemsToDisplay) * 100 * -1
}, 400);

var yearsToScroll = objTimeline.currentYear -
objTimeline.maxScrollYear;

//animate window
$('#window').animate(
{

left :yearsToScroll * 100
3, 400);

//animate overlays
$('#leftOverlay').show().animate(

{

width: (yearsToScroll * 100)
3, 400);
$('#rightOverlay').show().animate(
{

width: ((objTimeline.itemsToDisplay -1) * 100) -

www.it-ebooks.info

http://www.it-ebooks.info/

yearsToScroll * 100)
}, 400);
}

else

{

objTimeline.timelineWindowStartYear = objTimeline.currentYear;

var yearDiff = Math.abs(objTimeline.currentYear -
objTimeline.minYear);

var newLeft = ((yearDiff * 100)) * -1;

$('#timeline').animate(

{
left : newLeft
}, 400);

$('#window').animate(

{
left : 0
}, 400);

$('#leftOverlay').hide();

$('#rightOverlay').show().animate(

{
width: (objTimeline.itemsToDisplay * 100) - 100
3, 400);

}
}
1)

We begin by initializing the jQuery Ul slider and defining its properties. First, the min and
max properties are set to minyear and maxYear, respectively, which will set the lower and
upper bounds for the slider to slide.

Next, we set the step property to 1. This property determines the value by which the slider
will increment or decrement on each slide. Its value is 1 by default, so even if we do not
provide the step property, it will work perfectly for our application. It can be useful in
certain cases; for example, when you want to step decade by decade, you can set step to
10.

After properties, we defined the start, slide, and stop methods. The start method is
called when the user starts sliding, s1ide is called when the slide is in progress, and stop
is called when the sliding stops.

Inside the start method, we check the value of the iswindowOpen property. If it is set to
true, we call the closewindow method. Since iswindowOpen has been set to false initially,
if block will not be executed. The iswindowOpen method will be set to true later when the
user clicks on a year and the window expands to cover whole timeline. We are calling
closewindow method on startup because we want the timeline to be in its original state
when the sliding starts.

Since the slide method is called when the slider is being moved, we are setting the value
for currentyear. The ui parameter receives the current value in the ui.value property.
This will ensure that we have an updated value whenever the slider moves.

www.it-ebooks.info

http://www.it-ebooks.info/

The stop method is where we scroll the timeline and set the positions for the window and
overlays based on the selected year. This is a bit complex, so please go through it slowly.

The if block

We have an if block that will be executed only if the value of currently selected year is
equal to or more than maxScrollYear. Since maxScrollYear is 2006 in our case, the if
block will be executed only if currentyear is 2006 or greater.

Since in this case timeline will not scroll but only windows and overlays will scroll, we set
the timelinewWindowStartYear property to maxScrollYear. Now we set the left property
of the timeline so that the div that represents the maxScrollYear year remains on the
extreme left. We have used jQuery’s animate function, which will set the left property by
animating it in 400 milliseconds. The formula we are using is
(objTimeline.timelineData.length - objTimeline.itemsToDisplay) * 100 * -1.
This will give us (10 - 5) * 100 * -1, which is -500. The negative value will cause the
timeline div to scroll to the left and set 2006 in the extreme left.

Note

Remember that in this case, 2006 will always be on the extreme left and the timeline will
not scroll (this applies if itemsToDisplay is equal to 5).

Now we need to animate the window and the overlays. We have calculated the difference
in number of years in the yearsToScroll variable.

To set up the window, we need to set its left property depending on which year is selected.
If 2006 is selected, its left will property be 0; if 2007 is selected, left will be 100; left will
be 200 for 2008; and so on. Hence, the formula becomes yearsToScroll * 100.

To set the 1leftOverlay div, we need to set its width. Again, if the year is 2006, it should
not be visible, or width can be 0; in the case of 2007, the width will be 100 px. Therefore,
the same formula (yearsToScroll * 100) will be applied. Since leftoverlay is
absolutely positioned, its left value is set to 0 and it will cover the timeline from left to
right.

For rightoverlay, the formula becomes ((objTimeline.itemsToDisplay -1) * 100)
- (yearsToScroll * 100). Since rightOverlay begins from the right, it will cover the
timeline until it touches the right border of the window.

Since width and left are all numerical values, we have used jQuery’s animate function to
create the visual effect when windows and overlays change their position.

The else block

The else block will be executed when we need to scroll the timeline as well. The
calculations here are simple compared to those of the if block.

In this case, the selected year will always be the first item in the timeline div, so we start
by setting timelinewWindowStartYear to currentYear. Then we calculate the absolute
number of years between minyear and currentYear. For example, if minyear is 2001 and

www.it-ebooks.info

http://www.it-ebooks.info/

currentYear is 2005, the difference is 5 years. Since each year div is 100 px wide, we
can set the left property of the timeline to 500 px, which will position the div for
currentYear to the extreme left.

For leftoverlay can simply hide it because the currentYear div is already on the
extreme left, and we do not need a left overlay.

The calculation of the width of rightoverlay is pretty straightforward as well. We can use
the (objTimeline.itemsToDisplay * 100) - 100 formula to find the width. Using the
itemsToDisplay property rather than hard coding a value such as 5 or 3 is a good idea. It
gives you the flexibility to configure more.

This concludes our scrolling and animations for the slider. After saving the file, reload the
page in your browser and give the slider a try. You will see the div window and the left and
right overlays moving with smooth animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Dragging the year window

Apart from the slider, we also want to be able to drag the window div in the visible
viewport to focus on other years. This should also move the overlays and the slider value.
For this, we will convert the window div into a draggable and use its methods to control
the UI behavior. In the same method after the slider code, write this code to make the
window draggable and move overlays:

$('#window').draggable(
{

containment: '.container',
grid : [100,0],

cursor: 'pointer',

drag : function(event, ui)

{

var leftPos = ui.position.left;

$('#leftOverlay').css({width: leftPos}).show();

$('#rightOverlay').css({width : (objTimeline.itemsToDisplay * 100) -
leftPos - 100}).show();

iy

stop : function(event, uil)

{

var leftPos = ui.position.left;

leftPos = leftPos/100;

objTimeline.currentYear = objTimeline.timelinewWindowStartYear +
leftPos;

$('#slider').slider('value', objTimeline.currentYear);

$('#sliderval').text(objTimeline.currentYear);

¥
3);
The first option is containment, which has been set to .container. Since the #window div
is inside div.container, we don’t want it to go outside while dragging. Instead of
specifying .container, we could write the parent as well.

The grid option is used to snap the grid by an (x,y) distance horizontally and vertically.
We specified it as (100,0), which means that dragging the div horizontally will move it
100 px away from its current position.

The cursor property changes the cursor while the div is being dragged. We specified
pointer as its value.

Next, we implemented the drag method. This method invokes while div is being dragged.
Since the window is being dragged and the draggable component will position it, we need
to take care of the left and right overlays. The drag event receives the left CSS property as
a property of the ui parameter. We store it in the leftPos variable. Then we set the width
of leftoverlay to leftPos. Doing so expands leftOverlay from the extreme left to the
left border of the window.

Similarly, we set the width of rightoverlay using the (objTimeline.itemsToDisplay *
100) - leftPos - 100}) formula.

Once the user stops dragging the window, the stop method of draggable is called. Inside

www.it-ebooks.info

http://www.it-ebooks.info/

this method, we first take the left CSS value for the window as in the drag method.
Because each year div is 100 px wide, we divide it by 100 to find out how many years it
has moved by. The number of these years is added to timelinewindowStartYear to get
the year where the window is currently placed. Once we have calculated the value, we set
the value of the currentyear property. After this, we set the slider’s value to currentYear
and change the text inside the sliderval label to reflect the currently selected year.

If you reload the page in the browser now, you will be able to drag the window. Overlays
will adjust their widths accordingly, and once you stop dragging, the slider will also be set
to the year where the window div rests.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying event details when a year window is
clicked on

With all the sliding and dragging done, we now have to add the click event, which works
when a year div is clicked. It will expand the window to cover the full timeline and we
will display the event details inside it:

1. Write this code after the window dragging code to implement the click handler for
div#window:

$("#window').click(function()
{
if(objTimeline.isWindowOpen)

{
3

objTimeline.isWindowOpen = true;
$('.1link').hide();

objTimeline.windowLeft = $(this).css('left');
$(this).css({'background-color' : '#fff'})

return;

.animate({
left : 0,
width : (objTimeline.itemsToDisplay * 100) -4 + 'px',
height: '246px'
}, 100, function()

{
$('.container').css({'border' : 0});
$('.close').show();
var str = '';
for(var i=0; 1 <objTimeline.timelineData.length; i++)
{
if(objTimeline.timelineData[i].year == objTimeline.currentYear)
{
var allEvents = (objTimeline.timelineData[i]).events;
if(allEvents.length == 0)
{
str+= '<1i>No events found.</1i>"';
b
for(var j=0; j< allEvents.length; j++)
{
str+= '<1i>"';
str+= allEvents[]j];
str+= '</1i>"';
}
break;
}
3

str+= '"';
$('#yearEvents').html(str);
1)
3);

2. Check whether the window is already open using iswindowOpen property. If window

www.it-ebooks.info

http://www.it-ebooks.info/

kW

10.
11.

is already expanded for some other year, we just return from the handler.
Otherwise, we set iswindowOpen to true.

Then we hide the div having the 1ink class.

Next we set the value of the objTimeline.windowLeft property by assigning it the
current CSS to left for the div having the id as window. We need to keep this
property because we will need to reset it after the window is closed.

Now we set the background color of the window to white and animate it by setting
the left, width, and height properties. The left property is set to @ and width is set
to full width of the container div so that the window covers the full timeline div.
For the animation, we provide a time of 100 ms and a callback function that fires
when the animation is completed.

After the animation is completed, we set the border of the parent container to 0 and
display the close icon.

Now we proceed to create an unordered list of events for the selected year. This is
done easily by iterating on the objTimeline.timelineData array and comparing the
year value of each array item with the currentyear property.

Once a match is found, we create the HTML of the list’s items by iterating in the
events array for that year.

Once complete, this HTML is inserted into the yearEvents element.

This can be checked by reloading the page and clicking on a year. If you clicked on
2009, you will see something like this:

s |srael attacks Gaza
* Michael Jackson dies at 50 years

2009

www.it-ebooks.info

http://www.it-ebooks.info/

Closing the event details window

Finally, we are left with implementing the close button and resetting the timeline to its
original state:

$('.close').click(function(event)

{

objTimeline.closeWindow();

1),

The event handler for the close button calls the closewindow method of objTimeline. If
you remember, we called the closewindow method in the start method of slider as well.
Go to the closewindow method in your file and write this code to close and reset the
window:

$('.container').css({'border' : '1px solid #333', 'border-left' : 0});
$('#yearEvents').empty();
$('.close').hide();
$('.1link').show();
$("#window') .animate(
{
width: '99px’,
left : objTimeline.windowLeft
}, 500, function()

{
$(this).css({'background-color' : 'transparent'});
objTimeline.isWindowOpen = false;

3)i

This is basically some cleanup we are doing. Borders are applied to the div container as
it was originally. Then the yearEvents div is emptied. The close button is hidden and the
link div is displayed again.

Finally, we animate the window div to reset it to its original size and position. We set its
size to 99px, and the left value is set to windowLeft, which we had saved earlier. A 500
ms duration is set for the animation, and a callback function is provided.

The callback function sets the background-color of window to transparent and resets
the iswindowOpen property to false so that it may be used later when another window is
configured.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the timeline

Here are a few suggestions on how some more features can be added to the timeline to
make it more useful:

e Currently, we are relying on sequential years for some calculations. Design the
timeline such that nonsequential years and missing years can be handled (let me give
you a hint; use an index).

¢ Along with the slider, implement a date picker that allows the user to select a date
and search for matching events for that specific date.

e Implement jQuery UI’s effects to close the expanded window.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We saw that even the simplest of components, such as slider, can be helpful in creating
nice effects when used creatively. We used the slider in a unique way to achieve a nice

timeline effect in this chapter. There was a bit of mathematics involved as we did many
calculations to position the elements correctly.

In the next chapter, we will explore another jQuery UI component called spinner, along
with the slider, to create a Google Maps mashup that lists hotels of a city.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Using jJQuery Ul with Google
Maps API

We made extensive use of the slider in the previous chapter to display a timeline of events.
In this chapter, we will create a mashup using some components of jQuery UI along with
the Google Maps API.

We will create a page to display the hotels in a particular city. The page will be divided
into two columns. On the left-hand side, we will display the list of hotels, and on the right-

hand side, we will have a Google map of the city with locations of hotels marked in the
map. Clicking on any marker on the map will display an information window with some
more details. The end result will resemble the following screenshot:

Rohi

(VI Tonisu Candhe G0) = o Fanmin

Filter by Prica: USD 800 - LISD 2500 L ; - ur
4 iha Shangri La Pt
| . Sector
: Begumgpur
L
Facilities Attractions
Zoom Level: 1 = - ¥ ¢ - Hindar Air
£ * Proin elit arcu, rutrum commodo, vehicula tempus, commode &, risus. Curabitur nec arcu. Force Stalion &
Donec sollicitudin mi sit amet mauris, Nam elementum quam ullamcorper ante. Etiam aliquet =
massa et lorem. Mauris dapibus lacus auctor risus. Aenean tempor ullameorper leo. Vivamus 2
Shangrl La rem Magar Manscl sed magna quis ligula eleifend adipiscing. Duis orci. Aliquam sodales tortor vitae ipsum. Mlimar e,
Nerglor e JEk Aliquam nulla. Duis aliquam melestie erat. Ut et mauris vel pede varius sellicitudin, Sed ut Irede
i ang S ; ; e
* Ashu Palace T - | dolor nec ordi tincidunt interdum. Phasellus ipsum. Nunc tristique tempus lectus. lakash =
Villa Justiial €Y
b Hotel Vikiaim Kamruddin glackl o State
as(
| | Hagar Vil hddustrial - Vag
Hotel Conclave Boutiq l Blork A I Area
Soc
Nitath Cashopur—
Y Hotel Barkl | Hilot Kezhof N Encrave Bk ¥ FE— .
otel Parkland Block sl Garden Furniture L Nagar
Rajour Raiing AryaiNagar, naryaganj ipuria’ Vaishali |
il Rajinder : ! : F 3 Ing
| Budatis - Tilak Nagar Garden i Nagar Laximi Prest Vikar E we e
| Hastsal {44 1] Nagar [=] f,:_:J:'r
Blotk . Inder Puri o e e A
| A;Block slock 3 Har Nagar Shakarpur Extension
| Uttam s Haraina Pusa Hill .
| Magar Janakpuri Fores Pregident's R ek Bl
g : Caane kB
| Iock G Lajwiant] =5y :
Watiala Bindapur it ity Plage India Gate- i Patpargan,
Hatiala Gargant ST Central idge o Furana Oila Pargan
! Rajapur AT Fngpg. RESErvEFOTESt ooy iy Mz
I SectorS. Enclave Bamnal Ear -:.:::!-.. Delhi s I..Iqu: E
e Cantonment New
Bree %
' Pala a1
hekhaw 8
S lin 4 Mot Bagh = g,
& Saraqini o r ol
D B nNagar South o
-';,c Sector § Extension |/ it e B
RK Puram Block & i slock p - Qs S o
fibiar » Part1Ab ke
N emsa

During this process, you will learn the functionalities of the Google Maps API, along with
jQuery UI components. The jQuery Ul components that we will use in this chapter are
slider, accordion, tabs, and spinner.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the folder structure

Just as we did in previous chapters, let’s begin by creating the folder structure. Create a
new folder named Chapter7 inside the MasteringjQueryuI folder. Go inside this folder
and create an HTML file called index.html for our HTML markup. Copy the js and css
folders of jQuery Ul inside the chapter7 folder. Now go inside the js folder, create a new
file, and name it myMap. js. This file will contain all of the code required for creating our

maps mashup.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting a Google Maps API key

We will be using Google Maps JavaScript API v3 to display the maps. Google requires
that you register your application and get an API key. Getting an API key is pretty easy.

Visit https://developers.google.com/maps/documentation/javascript/tutorial#api_key from

your browser to get detailed instructions on how to obtain an API key.

Once you are done setting up the folder structure and have an API key, move on to the
next step — designing the page.

www.it-ebooks.info

https://developers.google.com/maps/documentation/javascript/tutorial#api_key
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the page

The left-hand side of the page will have jQuery UI’s slider, spinner, and an accordion. The
slider will be used to filter hotels based on price, and the spinner will control the zoom
level of the map. The accordion will display the hotels such that the header of each
accordion panel will display the hotel name and its content panel will have the hotel price
and some description text. Write the following markup in the index.html file to create the
HTML structure:

<html>
<head>
<meta charset="utf-8">
<title>Google Maps with jQuery UI</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div>
<div class="left" >
<div class="ui-state-highlight ui-corner-all" style="padding:

7px; ">
Filter by Price:

<div class="clear"> </div>
<div id="slider"></div>
</div>
<div class="clear"> </div>
<div class="ui-state-highlight ui-corner-all" style="padding:
5px; ">
<p>
Zoom Level:
<input id="spinner" value="12" readonly="readonly"/>
</p>
</div>
<div class="clear'"> </div>
<div 1id="listing">
</div>
</div>

<div class="right" id="hotelsMap'"></div>

<div id="tabs" style="display:none;">

Info</1i>
Facilities</1i>
Attractions</1i>

<div id="info">

www.it-ebooks.info

http://www.it-ebooks.info/

Proinelitarcu, rutrumcommodo, vehicula tempus, commodo a,
risus.Curabiturnecarcu. Donecsollicitudin mi sitametmauris. Nam elementum
guam ullamcorper ante.Etiamaliquetmassa et lorem. Maurisdapibus lacus
auctorrisus.Aeneantemporullamcorperleo. Vivamussed magna quis ligula
eleifendadipiscing.Duisorci.Aliquamsodalestortor vitae
ipsum.Aliquamnulla.Duisaliquammolestieerat.Utetmaurisvelpedevariussollicitu
din. Sedut dolor necorcitinciduntinterdum. Phasellusipsum.Nunctristique
tempus lectus.

</div>
<div id="facilities">

High Speed Internet</1li>
Health Club</1i>
Airport pickup and drop</1li>

Bar</1i>
Cultural Activities</1li>
</0l1>
</div>
<div id="attractions">

International Airport - 45 minutes/16.00 Kms</1li>
New Delhi Railway Station - 10 minutes/3.00 Kms</1li>
</0l>
</div>
</div>
</div>

<script type="text/javascript"
src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY_HERE">
</script>
<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/myMap.js'"></script>
</body>
</html>

Inside the head section, we have the page title and have included jQuery UI’s CSS theme
file.

In the body section, there is a wrapper div element. Inside this div, there is another div
with the left CSS class. This div will hold the slider, spinner, and accordion. First we
created a div for slider and applied jQueryUI’s ui-state-highlight and ui-corner-all
CSS classes to it to theme it. Inside it is a strong element that works as a label. Then there
is a span element with the id value currentRange where we will display the price range
selected using the slider. Finally comes another div with the id value slider. This div
will be converted to a slider using the slider component of the library.

Next, we cleared the floats and created another div for the spinner. We applied the same
ui-state-highlight and ui-corner-all classes to theme it. Inside this div are a
strong element and a text box with the id set as spinner. We made this text box
readonly and set its value to 12 so that when the map is loaded, we can set the zoom to
12. Google maps generally have zoom levels starting from 0 to 18. A value of 12 is
enough to focus on most cities.

www.it-ebooks.info

http://www.it-ebooks.info/

The last element inside the div with the left class is a div with the id value 1isting.
This div will list all the hotels and will be converted into an accordion.

After div with the left class, we have another div with the right class and the id value
hotelsMap. This div will work as a canvas and will be used to display the maps.

Finally, we have a div with the id set as tabs and it’s display set to none. We will convert
this into jQuery Ul tabs. This div will be used after the maps are loaded. When a marker
is clicked on, the infowindow will open. We will display these tabs in the infowindow. In
real life, the data in the tabs will, of course, be filled dynamically. This is just an example
of how we can incorporate any jQuery Ul component in windows.infowindow. For this
chapter, we have created three tabs named Info, Facilities, and Attractions, each of
which will display its content for a particular hotel.

The structure of the tabs adheres to what jQuery Ul recommends. There is an unordered
list with three 1i elements inside it. Each of these 1i elements has an anchor element with
the value of the href attribute set.

After the list ul, there are three div elements. The id of each div corresponds to the href
value provided in ul.

Finally, before closing the body tag, we included all JavaScript files required. The first is
the Google Maps API, which has been included by setting the src value as
https://maps.googleapis.com/maps/api/js?key= YOUR_API_KEY_HERE. Do not forget
to replace the value of key with your API key. After this, jQuery source file and jQuery Ul
source files are included. Finally, myMap. js is also included.

This is the entire markup that will be required to display the page initially. Let’s now style
it by applying CSS rules for different elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

We need to float the div element with the left class to the left and the maps div to the
right. We also need separation for the slider, spinner, and accordion. You can write the
following CSS rules in the head section after the jQuery UI theme file has been included:

<style type="text/css'">

body

{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 100%;

}

deft

{
height:600px;
width:20%;
border: 1px solid #333;
float:left;
padding:5px;
margin-left:10px;

}

.ul-accordion .ui-accordion-content

{
¥

#slider
{

padding:10px;

margin-left:10%;
width:80%;

}

.right

{
height:610px;
width:77%;
border: 1px solid #3383;
float:right;
margin-right:10px;

}

.clear

{

}
</style>

clear:both;

There are very few styles that we have defined here. The styles for body set its font
properties and center the page. The next style is for the div with the 1eft class. We gave it
a fixed height of 600px and 20% width. It is also floated to 1eft and has a border. After
this, we override the padding property for the accordion content panels by giving a 10px
padding. Styles for slider include only the setup of the margin and width.

Finally, the style for div with the right class includes setting up its height and width. It

www.it-ebooks.info

http://www.it-ebooks.info/

is also floated to right. A border has been provided, and a small margin is also added.

After saving the index.html file, if you load it in browser, you will see a page that
resembles the following screenshot:

Filter by Price;

Zoom Level 12

With the markup and CSS ready, we can now write the JavaScript to make this page live.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the code structure ready

By now, you should have become comfortable with the object literal notation that we have
been using. We will work with it in this chapter as well, and first define an object with all

the properties we require to create the maps mashup. Open the myMap . js file inside the js
folder and use the following code to create the object structure and initialize it:

$(document).ready(function(){
myMap.initialize();

1),

var myMap =
{
map : null,
markers : [],
infowindow : null,
minPrice : 0O,
maxPrice : 0O,
hotelsList : [
{
name : 'Shangri La',
lat : '28.631541',
Ing : '77.213287',
price : 1000,
description: 'Pellentesqueaccumsanmolestieipsumutfeugiat.
Nuncvariusnislsed ligula vehicula, vitae sodales magna volutpat! Praesent
tempus faucibusnisl, velaliquetlectusviverraquis.Curabiturleoenim,
tinciduntviverravestibulumluctus, cursus et velit. Proin id metusut mi
sagittisvarius in at nulla.Aliquam semper
lobortispellentesque.Donecaliquamrisus sit ametipsumconsecteturpulvinar.',
I
{

name : 'Ashu Palace',

lat : '28.652257',

Ing : '77.19243"',

price : 1893,

description: 'Pellentesqueaccumsanmolestieipsumutfeugiat.
Nuncvariusnislsed ligula vehicula, vitae sodales magna volutpat! Praesent
tempus faucibusnisl, velaliquetlectusviverraquis.Curabiturleoenim,
tinciduntviverravestibulumluctus, cursus et velit. Proin id metusut mi
sagittisvarius in at nulla.Aliquam semper
lobortispellentesque.Donecaliquamrisus sit ametipsumconsecteturpulvinar.'

iy

{

name : 'Hotel Vikram',

lat : '28.573668',

Ing : '77.245388',

price : 2500,

description: 'Pellentesqueaccumsanmolestieipsumutfeugiat.
Nuncvariusnislsed ligula vehicula, vitae sodales magna volutpat! Praesent
tempus faucibusnisl, velaliquetlectusviverraquis.Curabiturleoenim,
tinciduntviverravestibulumluctus, cursus et velit. Proin id metusut mi
sagittisvarius in at nulla.Aliquam semper
lobortispellentesque.Donecaliquamrisus sit ametipsumconsecteturpulvinar.'

www.it-ebooks.info

http://www.it-ebooks.info/

name : 'Hotel Conclave Boutiq',

lat : '28.556124',

Ing : '77.241197',

price : 2361,

description: 'Pellentesqueaccumsanmolestieipsumutfeugiat.
Nuncvariusnislsed ligula vehicula, vitae sodales magna volutpat! Praesent
tempus faucibusnisl, velaliquetlectusviverraquis.Curabiturleoenim,
tinciduntviverravestibulumluctus, cursus et velit. Proin id metusut mi
sagittisvarius in at nulla.Aliquam semper
lobortispellentesque.Donecaliquamrisus sit ametipsumconsecteturpulvinar.'

iy

{

name : 'Hotel Parkland',

lat : '28.588139',

Ing : '77.23526"',

price : 800,

description: 'Pellentesqueaccumsanmolestieipsumutfeugiat.
Nuncvariusnislsed ligula vehicula, vitae sodales magna volutpat! Praesent
tempus faucibusnisl, velaliquetlectusviverraquis.Curabiturleoenim,
tinciduntviverravestibulumluctus, cursus et velit. Proin id metusut mi
sagittisvarius in at nulla.Aliquam semper
lobortispellentesque.Donecaliquamrisus sit ametipsumconsecteturpulvinar.'

Iy

1,

initialize : function()

{
this.setMinMaxPrices();
this.displayHotels();
this.setSpinner();
this.createMap();
this.setMarkersAndInfowindow();
this.setSlider();

}

setMinMaxPrices : function()

{

}

displayHotels : function()

{

+

setSpinner : function()

{

}

createMap : function()

{

}

setMarkersAndInfowindow : function()

{

}

setSlider : function()

{

}

iy

The event handler for $(document).ready() calls the initialize method of the myMap

www.it-ebooks.info

http://www.it-ebooks.info/

object. Since this event handler is called only after the page is loaded, it is safe to call the
initialize method even though we are going to define it later.

In the myMap object, let’s first look at each of its properties in a nutshell, and then we will
implement each of the methods:

map: This will store the reference to the Google maps object that will be created.
markers: This is used to keep track of all the markers placed in the map, markers has
been declared as an array.

infowindow: On clicking on a marker, an infowindow will be opened. Since only one
infowindow can be open at any time, we need to store its reference so that we can
open it when other markers are clicked on.

minPrice: This is the lowest available price from the list of hotels.

maxPrice: This is the highest available price from the list of hotels.

hotelsList: This is the main array that stores information about hotels we will
display in the left panel. In real-world cases, this can be populated using JSON data
from the backend. For this chapter, we have created the array with five elements (that
is, five hotels). Each hotel has five properties: name, lat, 1ng, price, and
description, where lat and 1ng refer to latitude and longitude, respectively, and
will be used to place markers on the map. For the example in this chapter, all the
coordinates are of hotels in New Delhi, India.

initialize: This is the entry point for the object. This method is responsible for
calling other methods of the object one by one. We have already called upcoming six
methods in this method.

setMinMaxPrices: This is a simple method to set the values of the minPrice and
maxPrice properties.

displayHotels: Using the hotelsList property, this method will populate the div
with id listing and convert it into an accordion.

setSpinner: We will initialize the spinner component in this method and write an
event handler that will allow us to zoom into the map.

createMap: As the name suggests, this method will simply initialize the map using
Google Maps.

setMarkersAndInfowindow: After the map is displayed, this method will place
markers on the map. It will also have event handlers that will open infowindow when
a marker is clicked on.

setSlider: This will convert the div with the id slider into a jQuery Ul slider
component and will set its range between minPrice and maxPrice. We will also write
event handlers that will show or hide hotels from the accordion based on the price.
Markers will also be displayed or hidden depending on the values set by the slider.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting minimum and maximum prices

To find out the lowest and highest prices available, we will have to loop in the hotelsList
array and set the values accordingly. The following code will set the minimum and
maximum prices for us:

setMinMaxPrices : function()
{
this.minPrice this.hotelsList[0].price;
this.maxPrice this.hotelsList[0].price;
for(var 1 = 0; i<this.hotelsList.length; i++)
{
this.minPrice = this.hotelsList[i].price <this.minPrice ?
this.hotelsList[i].price :this.minPrice;
this.maxPrice = this.hotelsList[i].price >this.maxPrice ?
this.hotelsList[i].price :this.maxPrice;
}
$('#currentRange').text('USD '+ this.minPrice + ' - ' + 'USD ' +
this.maxPrice);

}

We begin by setting both minPrice and maxPrice as the value of the price attribute of the
first array element. Then we start a for loop and use the ternary operator to set the values
for minPrice and maxPrice. After the loop finishes, we have both the values set.

We then display these values inside the span element with the currentRange ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying hotels in accordion

To display hotels, we simply have to iterate in the hotelsList array and build a DOM.
Once this is done, we can push this DOM into the div with the id 1isting. After that, we
will set the slider as well. Here is the code you can use for the displayHotels method:

displayHotels : function()

{
var str = '';
for(var 1 = 0; i<this.hotelsList.length; i++)
{

var hotel = this.hotelsList[i];
str+= '<h3 data-price="'+ hotel.price+'">"'+hotel.name+'</h3>"';
str+= '<div>';
str+= '<div class="ui-state-highlight ui-corner-all" style="padding:
5px;">Price: USD ' + hotel.price + '</div>';
str+= hotel.description;
str+= '</div>"';
}
$('#listing').html(str);
$('#listing').accordion(

{
collapsible: true,
active : false,
heightStyle : 'content'
3);
}

We begin by declaring str, a blank string. Then we start the loop. Since we have to
convert this hotels list into an accordion, we need to create the HTML compatible with it.
We create an h3 element and a div for each hotel. The hotel’s name is written inside the h3
element, and inside the div, we write the price of hotel and the description.

Note

Note that we have created a data attribute named data-price with the h3 element. It will
be used later in the chapter to filter hotels when the slider will be changed.

Once the loop is over, we insert this HTML into the div with the id listing.

Finally, we convert it into an accordion component. Note that we have provided three
properties while initializing the accordion. These properties are as follows:

e collapsible: At least one panel is open as per the accordion’s default behavior. If we
want to make all panels collapsible at once, this option has to be set to true.

e active: This property decides which panel to open when the accordion loads. We
have set it to false, which means that no panel will be open by default. You can also
pass a zero-based index if you want to open a particular panel by default. Keep in
mind that for active : false to work, you should have collapsible set to true.

e heightStyle: We set the heightStyle property to content, which will make each
accordion panel as tall as its content. Two other values are also allowed, which are
auto and fill. When set to auto, the height of the accordion is set to the panel with

www.it-ebooks.info

http://www.it-ebooks.info/

maximum height. Setting it to fill makes the height of accordion equal to its parent
container’s height.

You can now check out the fruits of hard work we have done by saving the file and
viewing it in browser, as shown in the following screenshot:

Filter by Price: USD 800 - USD 2500

foom Level: 9

Shangri La
Ashu Palace
» Hotel Vikram
Hotel Conclave Boutig

+ Hotel Parkland

You will see the price range on the top of the left panel, followed by the input element for
spinner. After the spinner, there will be the accordion. All panels of the accordion will be
closed, and the hotel name will be visible in accordion header. You can click on any hotel
name and the content panel will be displayed, which will show the price and some
description.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the spinner

The spinner is a simple component that is great to use with numbers. It has up and down
buttons, using which the numerical value of spinner can be increased or decreased.

We will use the spinner component to zoom into the map. The following code will create
the spinner and zoom into the map:

setSpinner : function()

{
$("#spinner').spinner(
{
min : 0O,
max : 18,
stop : function(event, ui)
{
myMap.map.setZoom(parseInt($(this).val(), 10));
}
1)
}

We have provided three properties for the spinner. The first two are the min and max
values, which we have set to @ and 18, respectively. These will restrict the user from
selecting values above or below the set limits.

As mentioned earlier in this chapter, 0 and 18 are used because these are the minimum and
maximum zoom levels in Google Maps.

The third method is an event handler called stop. This is called when a spin occurs, which
means that it will be called each time the user clicks on either the up or the down arrow
and the value of the spinner changes. Inside this method, we used the setZoom method to
set the zoom level. This is a method provided by the Google Maps API that takes an
integer as a parameter and sets the zoom to the said level. Since we have the map object
stored in the map property of the myMap object, we are calling setZoom on it. The
parselInt is used because the value of the spinner will be a string and we need to convert
it to a number.

Note

Always use the second parameter while using parselnt. The second parameter is the base
in which you are trying to parse. Not doing so may result in erratic behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying the map

This method simply creates the map and stores its reference in myMap .map. We will center
it on New Delhi and set its zoom level to the value set in the spinner. The following code
will define the options that we will pass to the map, and then call the maps API to display
the map:

createMap : function()

{

}

var mapOptions =

{

H

center: new google.maps.LatlLng(28.637926, 77.223726),
zoom: parseInt($('#spinner').val(), 10),
disableDefaultUI : true,

mapTypeId: google.maps.MapTypeId.ROADMAP,
scrollwheel: false

this.map = new google.maps.Map($("#hotelsMap")[0], mapOptions);
this.infowindow = new google.maps.Infowindow();

We created an object named mapOptions, where we defined the default values for some
properties. Here are the properties we defined:

center: The Google maps API’s LatLng class is used to set the map’s center at
required coordinates. For this, we pass the latitude and longitude to the LatLng
classes constructor. The coordinates provided in the preceding code are of New
Delhi.

zoom: This sets the zoom level. We just set it to the current value in the input box
spinner.

disableDefaultUI: For this example, we will remove all the controls that Google
maps loads by default. These include zoom, Pan, MapType, and Scale controls. Setting
disableDefaultUI to true loads the maps without any of these controlled. If you
want the default UI but with some of the controls, you can turn the other controls off
individually; for example, you can set panControl and zoomControl to true or
false to add or remove these controls, respectively. Refer to
https://developers.google.com/maps/documentation/javascript/controls for more
information on controls.

mapTypeId: There are four basic map types that are available in the Google Maps
API. These are ROADMAP, SATELLITE, HYBRID, and TERRAIN. We have set this
property’s value to ROADMAP.

scrollwheel: Setting scrollwheel to false disables the zooming using the mouse
scroll wheel.

After defining these options, we can load the map. This is done using the Map constructor,
where we need to provide two arguments. The first is the DOM element in which we want
to load the map, and the second is the options object that we defined in the preceding

code.

www.it-ebooks.info

https://developers.google.com/maps/documentation/javascript/controls
http://www.it-ebooks.info/

Since $("#hotelsMap") will give us the jQuery object for the hotelsMap element, we
used $("#hotelsMap")[0] to get the DOM element to pass to the map constructor. The
reference to the loaded map has been stored in the myMap . map property as well.

The last line initializes an infowindow and stores its reference in myMap.infowindow,
which will be used whenever we want to do any operation involving infowindows.

Save the file and reload the browser. You will see that the map has been loaded and is
centered on Delhi, as shown in the following screenshot. Using the spinner, you will also
be able to zoom in or out of the map:

I Bequmpur. " BCEOr- 24 T TTTETTITE T T
3 - BQuUMmpur =g A8 {
Filter by Price: USD 800- USD 2500 | frye - Fillhala * Sector 13 Gann sl R
Sectar 22~ gyydhy Vihar, Block § Madel Tawn: - D"
bl udh Viha) Aiap wF old Radlia Vilier
actor 21 b L L
'y e Sector 4 Sector 14 Bagh Phase 2 Nehiu Vihar - Rajiv hagar: Mustafabad
r Suleman R Sector B : Biock 1t Gokalpur Mandaoli
Zoom Level: Nagar Bleck 03 R Pitampura Block B hukherjes I#-?_l_fltll Bhajanpura Ehe
12 - Block W Mack Vo Seclor 2. o 0 o Nagar O 2 Ashok
b | Harsh Vihar Ashok Vihar . L Gamii miack B | Magar 4
rom Magar M I Shat Vijdy Nadar 5o Village 10 Eet :
e angolpuri Ll e d i c Shahdara Dilshad
19 o Park amia 3 Garden
. 2 Mangloi Jat- Pesranarhic =Shiv s Magar Aam Nagar
v Sheneride i P\j:!a?:e i :—-'-:E,aio Punjabi JL:tbaqh B2ty : ErilLines L'\‘..L:J-f-:ru:fr
: Kamruddin BloskH i Bagh i Hagar. Magar A g W Telibara. plogk A
v Achu Palace Magar Paschim Block:t i Block g
; ! 2hal Vihar & : Anand MoriGate Silampur Viehwas ook &
%, Puri Maoti Nagar Parbat Kishan Ganj oS i MNagar
Plack i/ lock B :
joee Vighal ar Wk Rl Jelh £ ta
Price: USD 1892 Mildthi ~_¥eshepur= Vishnu Encln;_e Kirti Magar e Karal Bagh Old Delhi = Krishna ~Anand Vihar
vehicula, vitae sodales magna Blaci H | | | Barden Furniture AryaNagar g Hagar]
volutpat! Praesent tempus ; Lf?]télurl Block Rajinder Daryagan) FTnp‘aT
faucibus nisl, vel aliquet lactus Budella | Tilak Nagar 3rden Pusa Magar . Laxmi Preat Vikar. =
i : f ; Hastsal New Delhi MNagar
viverra quis. Curabitur leo enim, otk nites. Prir IP-Extensi
tincidunt viverra vestibulum Ak enkss Harl Nagar Type 3. Janpath Shakarpur XS
2 e Uttam ; Naraina Pusa Hifl P Estate
luctus, cursus et velit. Proin id Magar Jamakpuri Farest P Famuna - Khiehiiur
= e = Iy ' e L
metus ut mi sagitts varius in at R Birik Cak Lapieantl O ks Lo 3 Rah
nulla. Aliquam semper lobortis patiala - Bindapur Garden Kty Place Central Ridge PRl = Bufana Qila Eapargan) G
pellentesque. Donec aliquam Rajapuri Sagarpur Hig g, Aeserveforest vopn puni MayurVihar e,
risus sit amet ipsum consectetur Mahavir. / Marg Area | Rabindra sundar. FIE Block 32
s Sector5. Enclave hamal Fark Delhi Wi Magar Yok
= + e Wew Asho
"ar'am Balam Cantonment Mizamuddin Nagar Ge
s Fal: a1 East b
» Hotel Vikram Ayl Shekhawati b, £ Be
Dwarka Aaj Nagar i Mot Bagh e Jangpura iy \ﬂ."'- Sector 15
. e Bl ja 5 -y = Phase 2 g Sector 1HA. G
¢+ Hotel Conclave Boutig . Pockar 1 Sector 8 Vi S Magar South . /Block E Sect
Diwarka Sy SO Extension | Sector
i - RE Piram Block Al i Lajpat Black D Ckhla 2
» Hotel Parkland Sectar 22 f Nagar Part T AballFazal Sec
1 S ! Mumnirka Grzen Park geror 3 Garhi W el DR
indira Gandhi 5 S ; i
| ile } e Fort MOBiAck Okhla
Phanha International Hauz Khas " Mep dats S2012 Gosgle. | FemsofUse | Rapena map sror

www.it-ebooks.info

http://www.it-ebooks.info/

Setting markers and infowindows in the map

Now that the map is being displayed, let’s put the markers and info windows on the
marker click event. The myMap . setMarkersAndInfowindow method will be used for this.

We will iterate in hotelsList and set up a marker at each location. Along with setting up
the marker, we will add the event handler for every click on the marker, which will open
an infowindow. Write this code in your myMap. js file to create markers and info windows:

setMarkersAndInfowindow : function()

{

for(var 1 = 0; i<this.hotelsList.length; i++)

{
var hotel = this.hotelsList[i];

var marker = new google.maps.Marker(

{
position: new google.maps.LatLng(hotel.lat, hotel.lng),

map: myMap.map,
title: hotel.name

1)

this.markers.push(marker);

google.maps.event.addListener(marker, 'click', function(marker, hotel)

{

return function()

{
var content = $('#tabs').html();

myMap .infowindow.setContent('<div id="hotelFeatures"
style="height:280px;">"'+ hotel.name+ '<hr/>' + content + '</div>"');
myMap.infowindow.open(myMap.map, marker);

Iy
}(marker, hotel));
}

google.maps.event.addListener (myMap.infowindow, 'domready', function(){
$('#hotelFeatures').tabs();

1);
}
To create a marker, we have to use the Marker class of Google Maps. There are many
properties and methods available in the Marker class, but we will confine ourselves to the
basic properties and methods because they will let us place the markers.

We are looping in the hotelsList array and creating a Marker per iteration. The three
properties we have passed to the constructor of the Marker class are position, map, and
title. The position property refers to the coordinates where the marker will be placed,
and like other places, it is represented by the LatLng class. The map property refers to the
map on which we want markers. The last property is title, for which we have provided
the hotel name hotel.name as string. This property appears as a tooltip when the user
places the mouse over a marker.

We also need to keep track of all the markers so that we can show or hide them when the

www.it-ebooks.info

http://www.it-ebooks.info/

user changes the price range using the slider. In order to do this, we created an array called
myMap .markers earlier. Here, we push each marker into this array.

Next, we have to add the event handler on a marker click. This has been done using
Google’s event handler method, addListener, which attached a click event handler to the
click event of a marker. Inside this method, we have a closure being returned by a
return statement. Inside this closure, we take the HTML of the div with id tabs in the
content variable. Using the API’s setContent method for myMap . infowindow, we set the
HTML string that will be displayed in the info window. Note that we are wrapping this
HTML in a div with the id hotelFeatures. Finally, we call the open method on

myMap . infowindow to display the info window. The open method takes two parameters,
which are the map object and the marker object for which infowindow is being opened.

After the loop, there is another event listener. It attaches a domready event listener to
infowindow. The event handler will be called each time an info window is created and
displayed. Since the infowindow contains the HTML structure compatible with a tab
component, we convert the div with the id hotelFeatures to jQuery UI tabs.

Check out the file in the browser again and click on a marker. You will see the tab
structure in info windows, as shown in the following screenshot:

[P L7 Lo
i k-
35| Ashu Palace e
3]
Facilities Attractions £
! farainpr =
Lief Ramipl W
Begumpl Proin elit arcu, rutrum commodo, vehicula tempus, commodo a, risus. Curabitur nec arcu. "I e
=] L {3 . E o . - " Upl
liha Donec sollicitudin mi sit amet mauris. Nam elemen tum quam ullamcorper ante. Etiam aliquet Nistod]
SeCiOFcE massa et lorem. Mauris dapibus lacus auctor risus. Aenean tempor ullamcorper leo. Vivamus E |
S e i T I e : : iha
& sed magna quis ligula eleifend adipiscing. Duis ord. Aliquam sodales tortor vitae ipsum. Hindon Al
r Suleman Aliquam nulla. Duis aliqguam molestie erat. Ut et mauris vel pede varius sollidtudin. 5ed ut andoli Force Station
Maa 3o ¢ " N i
| Nagar 3 dolor nec orci tincidunt interdum. Phasellus ipsum. Nunc tristique tempus lectus. Bhopura
4 }
Prem Nagar SNAlMAL. -yt atare
i x chad Garden 5
i Nangloi arden o KA lock B
| Mangloi | Frakash 1-3 o7 Road
|] - (g
Industnial__= Maoha
|
| Kamruddin ploEe pk LT : ———— Ve TE—— TeNDRra T HIGEK A Estate Nagar
Nagar Vihar ol Anand TR Silampur Vishwas Block B, 1 Wasundhara
A Mol Nagar Parbat @:u 1 Ganj 2% Ty Nagar hire
Visha aqar . “oankd, Old Delh 2 i Lo
| Nilothi _Keshopur Vishnu g :H‘,_ Kirti Naga | KarolBagh JidDet 2 Krishna Anand Vihar £ age
GAC L Block X
Blo sarden miture ; FRIRE Nagar
3 Rajour Block L Lh ARl L Daryagan) lmpuna Vaish;
Tilak N G o ' Wi ¢ o Ll Indirapuram
Bude ak Nagar gl Buie Nagar - XM Pregt Vihar
Wi % 5 w Delhi a¢ ABliay L]
Bl Inder Puri IP Extension tm ik
T alock gy Harl Nagar Janpath Shakarpur b lh L sCior 63
Uttan Naraina Pusa Hifl IR Esiate) o o oo B
Naagar Janakpuri Forest President's ok Block Bl24 {chachripur Sector 62A
| P : o . Estate Bank k B) :
| Block © Lajwanti S = I Kondl s
Aatal Bind: ur o Kirkay P ndia Gate 4 Fatpargan - Shital Vihar ctor €
Watiala Bindapu Jiedly . e Central Ridge = Purena Qila Nt ; Filistaaul
| Rajapur 7 Sagarpur Ring g Reserve FOrest toen purt > Lol Mayur Vihar gew Kond gl Santor 66
Mahavi = Niarg Are g 1o sundas E:E] By an ' ;
Sector’5 Enclave KemelPark Sodlar yelh A rrscish Nagar P Sector 11
I e Cantonment b New Ashok eLionb
arka Balan N f'..;-':.I-J-.IIJl1 Nagar Cector 10 Badior 2%
Eartoril D B :E ' 2 S
| gntor)l Shekhawat Sartar 7 ek F § i
IWatKa o | _H Maoti Bagh 2 LA 2f Map data 82014 Google TemsoflUse Reporta map
dana d

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the slider

We are almost done now. The last bit is to make the slider functional and filter out the
hotels from the accordion and markers from the map. We will also use the s1ide method
of the slider component to change the inner text of the span element, which has the id
currentRange. To filter hotels and markers, we will use the stop method of the slider
component.

Here is the code used to create the slider and its events:

setSlider : function()
{
$('#slider').slider(
{
min: myMap.minPrice,
max: myMap.maxPrice,
range : true,
values : [myMap.minPrice, myMap.maxPrice],
step : 100,
slide : function(event, ui)
{
$('#currentRange').text('USD '+ ui.values[O] + ' - ' + 'USD ' +
ui.values[1]);
3
stop : function(event, ui)
{
$('#listing h3').each(function()
{
var price = parselInt($(this).data('price'), 10);
//headerIndex corresponds to 0 based index of hotels in object as
well as in DOM
varheaderIndex = $('#listing h3').index($(this));
if(price >= ui.values[0] && price <= ui.values[1])
{
$('#listing h3:eq('+headerIndex+')"').show();
myMap.markers[headerIndex].setMap(myMap.map);
¥
else
{
$('#listing h3:eq('+headerIndex+')"').hide();
$('#listing div.ui-accordion-
content:eq('+headerIndex+"')").hide();
myMap.markers[headerIndex].setMap(null);
¥

1)
}
)
}

Since we will allow the user to set the minimum and maximum prices, we have set up a
range slider. Let’s discuss in detail the properties and methods we have used:

e min: This is the minimum value to which a slider would slide.
e max: This is the maximum value to which a slider would slide.

www.it-ebooks.info

http://www.it-ebooks.info/

e range: This is set to true because we want the user to select between min and max

values.

e values: In the case of range sliders, we have to provide an array of values where the

slider’s handles will rest by default. Hence, we have provided minPrice and
maxPrice, which means that the current range is between minPrice and maxPrice.

e step: This is the measure by which the slider will increment in each slide. We have

set it to 100, but you can set it to any other value.

e slide: This method is invoked when the user drags the slider. While the user is
sliding, we are updating the currentRange span element with the slider’s currently

selected values.

e stop: This method is called when the user stops dragging the slider. In this method,
we are taking all the h3 elements inside div with id 1isting and iterating over them.
The total number of h3 elements is equal to the number of accordion panels. For each
h3, we are getting the price data attribute, which we defined earlier. Next, we find

the index of the current h3 element among all the h3 elements. The next if block
checks whether the price of the current item falls within the range selected by the

slider. If it is within the selected range, we show the h3 element. The next line shows

the corresponding marker from the myMap .markers array. We have used Google

maps’ setMap method on a marker object to show it on map. If the price is out of the
range, we hide the h3 element and its next div, which is the accordion content panel.
Along with it, we set the marker to null as well using the setMap again, which

removes it from the map.

This makes the last bit of the slider functional as well, and we are ready to check it out.

You will see that the slider is visible now, and dragging any of its handles shows or hides

respective hotels and markers related to those hotels:

- Y T ETTT TP = TRTTaT
R I ! Nagar.] ' Telibara. plac Estate NatE
Filter by Price: LUSD 1900 - USD 2500 a Subzi Manc I
“ Anand MariGate lampur was Ihdustria a
[l Mati Nagar *arbat © Kishan Ganj % Nk b Magar e
oat At Ol A E o]
8 Karal Bagh Trenrdl Old Delhi B2 K5l Ky : e
il Nads
: Block ot il AryaMagar, narvagan 5 Jaipur 2 ali
Zoom Level I|.\‘._,|11f~r yagan | = Encldva Indirapuram
a ; acar ” aXMi Pregt Vihar e
Nagar bha :
= . New Delhi ja R Khond= a8 e
: .~Janpath Shakarp. ! PExt L Fusr e
arains Pusa Hill IR Estale
s [
lotel Vikr Foie E)
+ 11
i - India Gate 4 atpargany i I har
otel C B Cenfral Ridge = Pyrana Qila .
§ e | Reserve Forest I A Mayur Vibar new Kond o '
Dedhi Nagar NG . I 1 Baciar
tanment Jew Asho £
Mizamuidd Nagar T (o
1 East : tor 53
] <
2 : Sl Bic
ti-Bagh l@ Lra e Sector 15
s o actor
u Nags Cauth BlocWE Phase 2 E o r
Lar Extensmor
aK | : Lainat h Okhla 3
N Gan | A Part 1 Abul t
aen | Ll Garh W Enclave, Bt
rirka 1
H Kha wrt . M Block Jkhila H
| Ty ase il Jasola Salaril
4 Katwa 5 ; Fl"r" Pock)1 125 Khada
2 "8 Kailash gl : ol
..... . = F eckor 1.2 s
' Ralkajl
I ket 1 b2 ; L b Nol
MNag Alaknanda santa Yihar
: U Lado Saral glock | iSharicans _['“l" 2
| Madang City Fore Phasel 20aT

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the functionality

This application has a lot of scope for enhancements. Here are a few tips to get you
started:

e Use hotel ratings with the slider component. Allow the user to filter content based on
the rating of the hotel, such as four-star, five-star, and so on.
e [.oad data of hotels from the backend.

¢ In the information windows, show real information in the tabs instead of hardcoded
information.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In this chapter, we covered different components of jQuery UI and the Google Maps API,
and saw that mashups can be built easily using different APIs with jQuery UI. In the next
chapter, we will create a photo album manager with the help of jQuery UI’s sortable and

dialog components.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Creating a Photo Album
Manager

So far we have experimented with the jQuery UI components in many new ways and have
touched almost all of the components. In Chapter 7, Using jQuery Ul with Google Maps
API, we created a mashup with the help of slider, accordion, tabs, and spinner along with
the Google Maps API.

This chapter will teach you to create a simple photo album manager. Users will be
presented a list of photo albums on the left-hand side of the page. Clicking any album will
display all the pictures in that album on the right-hand side panel. The following is a
screenshot of the finished example. Icons for edit and delete are visible towards the right-
hand-side of each image caption:

! @ Click on an Album name to view its images. 8 pictures

- Click the pencil icon to edit
image name

- Click the trash icon to delete an
image

- Click an image to view large
size

We will allow users to edit the title of an image and delete an image by providing icons for
these actions. Clicking on an image will open its larger version in a dialog box. Users will
also be able to rearrange the pictures of an album in a sequence as per their preference.

The following image displays the page that appears when a user clicks the edit icon:

www.it-ebooks.info

http://www.it-ebooks.info/

Image Name Rangoli

Save Cancel

Since our focus is primarily on JavaScript/jQuery and not on backend, we will use a JSON
file instead of a database to store albums and picture data. Although you will, most likely,
use a database or an API in a practical real-world application, to perform the edit and
delete operations and reordering of pictures in an album, we will use a simple server-side
script written in PHP. Do not frown if you are unfamiliar with PHP. There will be simple
code and you will be able to replace PHP with any server-side language of your choice.

In creating the example in this chapter, we will use the sortable and dialog components of
jQuery UI. You will also learn about basic themeroller classes that assist in giving a
uniform look to the jQuery UI components.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the folder structure

As usual, we will begin by setting up the folder structure:

1.

o

Create a folder named chapters inside the MasteringjQueryUI folder. Directly
inside this folder create an html file and name it index.html. This file will keep our
html markup.

For this chapter, we will need two more files here. Create two files and name them
albums.json and ajaxAlbum.php. The albums.json file will keep the albums and
pictures data in the JSON format and ajaxAlbum.php is the backend script that will
be called via AJAX to edit the image name, delete an image, and reorder images of
an album.

Also, copy the js and css folders of jQuery Ul inside the chapters folder.

Create a new folder named images inside the chapter8 folder and put eight different
images of size 400 px x 400 px inside it.

Now create thumbnails of these images of the size 150 px x 150 px. Create another
subfolder named thumbs inside images and put these thumbnails there.

Now open the js folder and create a new file named photoAlbum. js. This file will
have all the JavaScript code for our timeline.

That is all we need for the folder structure. Let’s now begin by writing the HTML code to
make the page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the page

For the basic markup we will split the page in two parts. The left-hand side will have
placeholders for album names and some help text for users. The right-hand side will have
a placeholder div to display album pictures.

After these two partitions, there will be markup for dialog boxes to edit, delete, and zoom
in to an image.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating placeholders for albums and pictures

Since the album names and pictures will be displayed in the page using JavaScript, we
only need to specify placeholder divs for these. The following HTML markup for the
index.html file will be used to divide the page in two parts and create the required
elements:

<html>
<head>
<meta charset="utf-8">
<title>Photo Album Manager</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div class="ui-widget'">
<div class="left ui-widget-content">
<div id="albumNames'"></div>

<div class="ui-state-highlight ui-corner-all" style="padding:0
5px; ">
<p><span class="ui-icon ui-icon-info" style="float: left; margin-
right: .3em;">

</p>
<p>
- Click the pencil icon to edit image name

- Click the trash icon to delete an image

- Click an image to view large size
</p>
</div>
</div>

<div class="right ui-widget-content">

<div class="ui-state-highlight ui-corner-all">
<p><span class="ui-icon ui-icon-info" style="float: left; margin-
right: .3em;">
Click on an Album name to view its images.
<strong id="numImages">
</div>

<ul id="albumPics" class="ui-helper-reset ui-helper-clearfix">
<button id="btnSave'">Save Sequence</button>

</div>
</div>

<script src="js/jquery-1.10.2.js"></script>

<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/photoAlbum.js"></script>

www.it-ebooks.info

http://www.it-ebooks.info/

</body>
</html>

We have started by providing a title and including the jQuery UI theme file in the head
section. In the body, we have a div with the ui-widget class. The ui-widget class is from
the jQuery UI theme framework that applies font settings for the div and elements inside
it. Inside this div are two more div elements with classes left and right respectively.
Both these divs have another CSS class ui-widget-content attached to them. The class
ui-widget-content is also from the jQuery Ul theme framework that sets up styles like
the background border and color.

In div element having the .left class, there is a div with an id value of albumNames. The
names of all the albums will be displayed in this container. After this div is a highlight
box in which we have an info icon and some text to help the user.

In div element .right, we have a highlight div with some text written in it. We will also
display the number of pictures in an album in the strong element that has been given the
id as numImages. Next is a div with the id set as albumPics. This is a placeholder
unordered list for album images. Clicking an album name from the left panel will display
its pictures inside this ul. Each picture will be placed inside each individual 1i element.
The markup for each 1i will be created from the JSON file. The markup structure will be
as follows:

<li id="picture_1" class="ui-widget-content">
<h5 class="ui-widget-header">
Rangoli
<div class="icons">
<a data-name="Rangoli" data-id="1" class="ui-icon ui-icon-pencil"
title="Edit?" href="#">
<a data-id="1" class="ui-icon ui-icon-trash" title="Delete?"
href="#">
</div>
</h5>

</1i>

Each 1i will have an id and a ui-widget-content class. Inside it will be an h5 element
with the ui-widget-header class. This h5 element will have a span element to display the
picture name and a div with class icons to display the edit and delete icons. After h5, there
is an anchor element <a> and an image element inside it. The href attribute of the anchor

will be the path to large image sizes and the img element will have its src set to
thumbnail.

Note

The id of the 1i element has been created by appending the picture ID to the picture_
string.

Note that both the anchor elements inside div having the class .icons have data attribute
data-id.This is the ID of the picture. First anchor has another data attribute data-name.

www.it-ebooks.info

http://www.it-ebooks.info/

The last element in div having .right class is a button element with id btnSave. It will
be used to save the sequence of pictures in an album.

Finally, before closing the body tag, we have included the jQuery and jQuery UI files and
most importantly, the photoAlbum. js file.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for dialog boxes

We will also require three dialog boxes as follows:

e Clicking on the edit icon for a picture will open a dialog box with a text box and
Save and Cancel buttons

¢ Clicking on the delete icon will open a delete confirmation dialog box with Delete
and Cancel buttons

¢ Clicking on the thumbnail of a picture will open another dialog box, which will
display the large version of that image

For the edit and delete dialogs, we will not create the buttons in markup; instead, they will
be created when dialogs will be initialized using jQuery UI. The remaining markup for
these dialogs is mentioned here. Place them outside the outer div with the ui-widget
class:

<div id="dialogEdit" title="Edit Image" class="dialogBoxes'">
<fieldset>
<label for="name">Image Name</label>

<input type="text" id="txtImageName" value="" class="text ui-widget-
content ui-corner-all"/>

</fieldset>
</div>

<div id="dialogDelete" title="Confirm Delete" class="dialogBoxes'">

<p>

<span class="ui-icon ui-icon-trash" style="float:left; margin:0 7px 50pXx
0;">

Are you sure you want to delete this image?

</p>

<p>

This action is permanent.

</p>

</div>

<div id="dialogzZoom" title="zoom" class="dialogBoxes'">
</div>

The first dialog has an id dialogEdit, and we created a label and a textbox inside it. The
textbox will be used by user to input new names for an image.

The second dialog has the id dialogDelete and it has a confirmation message inside it.
The last is the dialog with id dialogzoom. We will load a large version of an image inside
it.

The title attribute of each of these divs will become the title of the dialog. All three divs

also has a class dialogBoxes attached to them which, as we will see in the next section,
will hide them.

This is the entire markup we need initially. The rest will be created using jQuery UI after
different elements are initialized.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

Some basic styles will be required to partition the page into two sections and layout of the
pictures in an album. We will need these styles inside the head section to structure the

page:

<style type="text/css">
body{
font-size:12px;
margin: Opx auto;
width: 75%;

}

Jdeft{
height:500px;
width:20%;
float:left;
padding:5px;
margin-left:10px;

}

.ui-widget-header{
margin:5px 0;
padding:5px;
cursor:pointer;

}

.right{
height:500px;
width:75%;
float:right;
margin-right:10px;
position:relative;
padding:5px;

}

#albumPics 1i{
float: left;
height: 190px;
margin: 0 0 5px;
padding: 0 5px;
width: 150px;
text-align:center;

¥

#albumPics 11 h5{
position:relative;
cursor:move;

¥

#albumPics 1i div.icons{
position: absolute;
right: 0;
top: 3px;

}

#albumPics 1i div.icons a{
float:left;
}

www.it-ebooks.info

http://www.it-ebooks.info/

#btnSave{
display:none;
}

.dialogBoxes
{

}
</style>

display:none;

We have set up the .left class of div element with a width of 20% and height of 500px.
Similarly, the .right class of div element has 75% width and 500px height. The
div.left and div.right have also been floated to the left and right respectively.

Next, we provided CSS properties for the 1i elements of the #albumPics list and the
elements inside it. Each 1i element is 150 px x 190 px in dimension and is floated to the
left. We have also added some padding to each 1i.

Last are the styles for the button #btnSave and div having the .dialogBoxes class. The
display has been set to none for both of these so that they are not visible when the page
loads.

We can now have the first look at our page. Save the index.html file and load it on your
browser. The page structure will be similar to the following screenshot:

i} © Click on an Album name to view its images.

- Click the pencil icon to edit
image name

- Click the trash icon to delete
an image

- Click an image to view large
size

Not much is visible here but it will change once we start writing some jQuery UI code to
display albums.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the JSON file for albums

Before writing any JavaScript code, we need to prepare a JSON file with information
about albums and the pictures in it. For this, we will create an array of objects. Each object
will represent an album. For this chapter, we will create the JSON with three albums. The
first album will have eight images, second will have four, and third will have none. While
experimenting, you can of course change the number of images as you wish.

To begin with, let’s write the complete JSON structure we will use for this chapter. Open
the albums. json file in your text editor and write this data into it:

[
{

Ilidll : "A:I.",

"albumName":"First Album",

"pictures":

[

{

"ig": 1’
"sequence":1,
"imageTitle":"Rangoli",
"imageThumb":"images/thumbs/1.jpg",
"imageLarge":"images/1.jpg"

Iy

{
llidll:2’
"sequence": 2,
"imageTitle":"Fair",
"imageThumb":"images/thumbs/2.jpg",
"imageLarge":"images/2.jpg"

I

{
"id":3,
"sequence":3,
"imageTitle":"Glass House",
"imageThumb":"images/thumbs/3.jpg",
"imageLarge":"images/3.jpg"

I

{
llidll :4’
"sequence":4,
"imageTitle":"Cottages",
"imageThumb":"images/thumbs/4.jpg",
"imageLarge'":'"images/4.jpg"

I

{
llidll:5’
"sequence":5,
"imageTitle":"Snow",
"imageThumb":"images/thumbs/5.jpg",
"imageLarge":"images/5.jpg"

I

{

"id":6,

www.it-ebooks.info

http://www.it-ebooks.info/

"sequence":6,
"imageTitle":"Playground",
"imageThumb":"images/thumbs/6.jpg",
"imageLarge":"images/6.jpg"

I
{
"id":?,
"sequence":7,
"imageTitle":"View from hills",
"imageThumb":"images/thumbs/7.jpg",
"imagelLarge":"images/7.jpg"
I
{
"id":8,
"sequence":8,
"imageTitle":"Signboard",
"imageThumb":"images/thumbs/8.jpg",
"imageLarge":"images/8.jpg"
}
]
3
{
llidll : "A2",
"albumName":"Second Album",
"pictures":
[
{
llidll:1’
"sequence":1,
"imageTitle":"Snow",
"imageThumb":"images/thumbs/5.jpg",
"imageLarge":"images/5.jpg"
I
{
"id": 2,
"sequence":2,
"imageTitle":"Playground",
"imageThumb":"images/thumbs/6.jpg",
"imageLarge":'"images/6.jpg"
I
{
"id":3,
"sequence":3,
"imageTitle":"Hills",
"imageThumb":"images/thumbs/7.jpg",
"imageLarge":"images/7.jpg"
I
{
llidll :4’
"sequence":4,
"imageTitle":"Sign board",
"imageThumb":"images/thumbs/8.jpg",
"imageLarge":"images/8.jpg"
}
]
}

www.it-ebooks.info

http://www.it-ebooks.info/

{
Ilidll : "A3",
"albumName":"Third Album",
"pictures":[]
}
]

As you can see, there are 3 elements, that is, albums, in this array. Each album has 3
properties, which are id, albumName, and pictures, where id refers to the unique id of an
album, albumName is the display name for that album, and pictures is an array again that
will have information of all the pictures in that album.

Note

Change the values of the imageThumb and imagelLarge variables to paths of the pictures on
your system.

Each element of the pictures array represents one picture and it has 5 properties that are
described here:

e id: This is the unique id of a picture in that album
e sequence: This displays the sequence of the image

e imageTitle: This is the name of the image

e imageThumb: This is the path to the 150 px x 150 px thumbnail of an image

e imagelLarge: This is the path to the 400 px x 400 px larger version of the same image

With the JSON also ready, we can now proceed to create and display albums. I know you
have been waiting so far to write some jQuery UI code. Let’s dive in right now.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting code structure ready

We will begin by identifying and declaring all the methods required for all the operations.
We will first have to retrieve the JSON from the server. Then we will display album names
in the left-hand-side panel. After this, we will attach several event handlers for operations
such as displaying the pictures of an album, edit image, delete, and so on.

Start with the following code structure in your js/photoAlbum. js file, which defines an
object literal to wrap the functionality for the album manager and a document ready
handler for jQuery:

var albums =

{
jsonAlbums : null,
currentAlbum : null,
currentPicturelId : null,
initialize : function()

{
$.getJSON("albums.json", function(data)
{
albums.jsonAlbums = data;
albums.fillAlbumNames();
albums.addEventHandlers();
1);
3
fillAlbumNames : function()
{
3
addEventHandlers : function()
{
3
displayAlbum : function(albumId)
{
3
editImage : function()
{
3
deleteImage : function()
{
3
saveNewSequence : function()
{
}
i
$(document).ready(function()
{
albums.initialize();
3);

The album’s object contains all the properties and methods we need to create an album
manager. Let’s have a look at each of its properties:

www.it-ebooks.info

http://www.it-ebooks.info/

e jsonAlbums: After retrieving the JSON from the server, we will store it in this
variable

e currentAlbum: This is the id of the current album being viewed. It will be set when
an album name is clicked on from the panel on the left-hand side.

e currentPictureId: This is the id of an individual picture. We will need it for edit
and delete operations.

e initialize: This will be the starting functions that will make the AJAX call to
server and start the process to build the page.

e fillAlbumNames: As the name suggests, this method will display the names of
albums in the left-hand side panel.

e addeEventHandlers: Event handlers to handle all the events on the page will be added
inside this method.

e displayAlbum: This method will display the pictures of an album. It will be called
when an album name on the left panel is clicked. The id of the album will be passed
to it.

e editImage: This method will save the edited name for an image in the source JSON
file

e deleteImage: This method will delete an image from the source JSON file

e saveNewSequence: This will be called when the Save Sequence button is clicked on.
It will save the new order of images in an album after the user has rearranged the
sequence by sorting the images. This will change the sequence in the source JSON
file

After this object is the $(document).ready() handler for jQuery, which simply calls the
initialize method of the album’s object. Therefore, we will start by implementing the
initialize method first.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the initialize method

In this method, we will load the JSON from the server and display the album names in the
left panel. Write the following code inside the initialize method to get the JSON from the
server:

$.9getJSON("albums.json", function(data)
{

albums.jsonAlbums = data;
albums.fillAlbumNames();
albums.addEventHandlers();

1),

Here we are using jQuery’s get JSON method to fetch JSON from the server. We have
specified albums.json as the URL and a success handler when a response is received. In
success event handler, response is received in a variable data that we place in property
jsonAlbums.

Next, we call the methods fillAlbumNames and addEventHandlers of the albums object.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Filling album names

To fill the album names, we will iterate in the response JSON and create HTML with
album names. We will then place this HTML inside the placeholder in the left panel:

1. Write this code for method fillAlbumNames to display albums in the left panel:

var albumNames = [];
$.each(this.jsonAlbums, function(key, album)

{

albumNames.push('<h4 class="ui-widget-header album" data-id="' +
album.id + '">' + album.albumName + ' </h4>");
3);

$('#albumNames').html(albumNames.join('"));

We have declared an array albumNames that will hold the DOM structure for each
album.

2. Next we iterate in jsonAlbums property using jQuery’s $.each iterator. In each
iteration we create an h4 element with the album name inside it.

3. We also attach CSS classes ui-widget-header and album to it, and a data attribute
data-1id, which is set to the id of the album, has also been added.

4. After $.each is finished, we push the DOM inside the div albumNames.

5. You can now verify that album names are being displayed in the left panel if you
reload the index.html page:

@ Click on an Album name to view its images.

- Click the pencil icon to edit
image name

- Click the trash icon to delete
an image

- Click an image to view large
size

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying the albums

Once album names are visible in the left panel, our first task now is to add event handlers.
The first event handler that we will add will be to display pictures when an album name is
clicked on. Then we will proceed gradually towards other event handlers.

Since each album name has a class name album attached to it, we can add an event handler
for the click event of this class name. Go to the addEventHandlers method in albums
object literal and write the following code for the event handler:

$('.album').on('click', function()

{
albums.displayAlbum($(this).data('id"));

3);

The click handler calls the method displayAlbum. The argument passed to displayAlbum
is the id of the album. Note that we had provided a data-id attribute for each album in
the previous section.

Let’s now define the displayAlbum method. In this method, we will iterate in the
jsonAlbums object and create HTML to display all the pictures in the album. Go to the
displayAlbum method and write the following code to create DOM and push it into the

page:
$('#albumPics').empty();

$('#btnSave').hide();
this.currentAlbum = albumId;

var listItems = '';
for(var 1 = 0; 1 < this.jsonAlbums.length; i++)
{

if(this.jsonAlbums[i].id == albumId)

{

if(this.jsonAlbums[i].pictures.length > 0)

{
var allPictures = this.jsonAlbums[i].pictures;
/* sort pictures by sequence before displaying*/
allPictures.sort(function(a,b)

{
return a.sequence - b.sequence;
3);
$.each(allPictures, function(key, picture)
{

listItems+= '<li class="ui-widget-content" id="picture_'+
picture.id +'">"';
listItems+= '<h5 class="ui-widget-header'">'+ picture.imageTitle + '';
listItems+= '<div class="icons">"';
listItems+= '<a href="#" title="Edit?" class="ui-icon ui-
icon-pencil" data-id="' + picture.id +'" data-name="' + picture.imageTitle
+ '"> ';
listItems+= '<a href="#" title="Delete?" class="ui-icon ui-
icon-trash" data-id=""' + picture.id +'">"';
listItems+= '</div>';
listItems+= '</h5>';

www.it-ebooks.info

http://www.it-ebooks.info/

listItems+= '';
listItems+= '<img src="' + picture.imageThumb + '" width="150"
height="150" class="large">";
listItems+= '';
listItems+= '</1i>"';

1)
$('#btnSave').show();

}

else

{

listItems+= '<1li class="ui-widget-content">No pictures in this
album</1i>";

}

$('#numImages').text(this.jsonAlbums[i].pictures.length + ' pictures');
$('#albumPics').html(listItems);
break;

}
}
We start by emptying the #albumPics list and hiding the Save button. Then we set the
currentAlbum property to albumId and create a variable named 1istItems, which will
hold the DOM for album pictures.

Next we iterate over jsonAlbums and compare the id of each album in JSON to the
variable albumId. When a match is found, we check whether there are any pictures
available for this album. In case the pictures array of an album has more than o items, we
store them in a variable allPictures. Then we sort the pictures array by key sequence.

After this, we iterate over all the pictures using $.each and create DOM by appending the
HTML string to the 1istItems variable in each iteration. We have already discussed the
structure of 1i elements in the Creating placeholders for albums and pictures section.

Once iteration is complete, we display the Save button. If there are no pictures in the
album, we create an appropriate message for DOM.

After the if-else condition, we display the number of pictures in an element with id
numImages. And finally, we push the newly created HTML that is in the variable
listItems inside list #albumPics.

Save the photoAlbum.js file and hit reload for index.html in your browser. Click on any
album name in the left panel and you will see beautiful pictures in the album in the grid
format:

www.it-ebooks.info

http://www.it-ebooks.info/

;J @ cClick on an Album name to view its images. 8 pictures

i
]

- Click the pencil icon to edit
image name

- Click the trash icon to
delete an image

- Click an image to view
large size

Save Sequence

www.it-ebooks.info

http://www.it-ebooks.info/

Making the pictures sortable

To make the pictures sortable, go to the addEventHandlers method again and append this
code to initialize the sortable component of jQuery UI:

$('#albumPics').sortable(
{

handle : '.ui-widget-header',
placeholder: "ui-state-highlight",
cursor: 'move'

3);
We have initialized the sortable components with three options:

e handle: Normally, sortable elements can be moved by dragging any part of the
container. The handle option allows us to provide a custom handle, which could be
only a part of a sortable element, to move the element. In our case, each list item that
displays the picture is made up of two parts; the first is an h5 element that displays
image name and icons and acts as a header. The second is the anchor that holds the
image. Since we want to reserve the anchor for zooming the image, we have made
the h5 element the handle. Since the h5 element has the ui-widget-header class
attached to it, we have provided this class name for the handle option.

e placeholder: When a sortable element is moved, its original position becomes
empty. By providing a placeholder value, a class is applied to the empty space, which
we can customize. Here we have provided ui-state-highlight as the placeholder
value. This class name is from jQuery UI the framework that applies a highlight
effect.

e cursor: This is the style for the mouse pointer when a sortable element is moved. We
have set it as move.

After initializing the sortable, you can check it on the browser. You will be able to
rearrange the pictures by moving them using the specified handle.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing dialogs for edit, delete, and zoom

We have also written markup for three dialogs that are used for editing an image name,
deleting an image, and zooming an image. In order to use those dialogs, we will first have
to initialize them and convert them into jQuery UI dialog components.

The code for initializing these dialogs will be written inside the addEventHandlers
method as well. Go ahead and write this code after the sortable initialization to initialize

the dialogs:

$("#dialogEdit").dialog(
{
resizable: false,
autoOpen : false,
modal: true,

buttons:{
Save: function()
{
albums.editImage();
+
Cancel: function()
{

$('#txtImageName').val('");
albums.currentPictureId = null;
$(this).dialog("close");

}
}
1)

$("#dialogDelete").dialog(
{
resizable: false,
autoOpen : false,
modal: true,
buttons:

{

Delete: function()

{
albums.deleteImage();

iy

Cancel : function()

{
albums.currentPicturelId = null;
$(this).dialog("close");

¥

}
1),

$("#dialogzoom").dialog(
{
resizable: false,
autoOpen : false,
modal: true,
position : "top",

www.it-ebooks.info

http://www.it-ebooks.info/

width:430,

show : 'scale',
hide : 'scale'
1)

Three options are common while creating all three dialogs. These properties are
resizable, autoOpen, and modal. Setting the resizable option to true will allow the user
to resize the dialog box by dragging it from its bottom right corner. We have disabled this
in our code. The autoOpen property defines whether a dialog will open automatically upon
initialization or not. We have set it to false because we want to open it manually:

e For dialogEdit we have defined two buttons, Save and Cancel:

o (Clicking on the Save button will call the editImage method, which we will

implement later
o (Clicking on Cancel will empty the textbox txtImageName, set
currentPicturelId to null, and close the dialog

e For deletebDialog, the two buttons are Delete and Cancel:

o (Clicking on Delete will call the deleteImage method, which we will implement

later
o Clicking on Cancel will set the currentPictureId to null and close the dialog

e The last dialog is dialogzoom:

o For this dialog, we have defined position as top so that it appears at the top of
viewport

o Since large image size of a picture is 400 px, we have defined width as 430,
adding for padding towards left and right.

e The show and hide options define which effects will be used when dialog opens and
closes. We have set it to the scale effect.

The dialogs have been initialized now and we can display them when the user clicks on
the edit and delete icons or tries to zoom in to an image. We will handle these events in the
following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Handling click events for edit, delete icons, and
zooming pictures

Since all the icons are inside ul#albumPics, instead of adding events for each item
individually, we can add an event handler on ul#albumPics and then check which element
was clicked on. All event handlers are passed an event object. We can use the target
property of this event object to check which element was clicked on and take action
accordingly.

Still inside the addEventHandlers method, this code will be used to handle edit, delete,
and image zoom:

$('ul#albumPics').on('click', function(event)

{

var target = $(event.target);

if(target.is('a.ui-icon-pencil'))

{
var pictureld = target.data('id');
var pictureName = target.data('name');
albums.currentPictureId = pictureld;
$('#txtImageName').val(pictureName);
$("#dialogEdit").dialog('open');

}

else if(target.is('a.ui-icon-trash'))

{
var pictureld = target.data('id');
albums.currentPictureId = pictureld;
$("#dialogbDelete").dialog('open');

}

else if(target.is('img.large'))

{
var largeImagePath = target.parent().attr('href');

$('#dialogzZzoom').html('<img src=""' + largeImagePath +
'">').,dialog('open');

}

return false;

1)

Inside the event handler, we have taken the target element in a variable named target.
The jQuery function is is then used to check which element was clicked on.

The first if condition checks whether the clicked element was the edit icon as the edit
icon has the ui-icon-pencil class. In this case, we take the id and name of the picture
using the data attributes data-id and data-name from the edit icon. Then we set the
currentPictureId property to the pictureId.

We then fill the picture name in the text box with the id txtImageName. Finally, we open
the dialogEdit dialog.

The second condition checks whether the clicked element was the Delete icon. In this
case, we take the picture id from the data-id attribute and set the currentPicturelId
property. Then we open the dialogbelete dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

The last condition checks whether the thumbnail image itself was clicked on. If this is the
case, we get the value of the href attribute of the image’s parent anchor. If you recall, the
value of the href attribute is the path to the large image. We then create an image element
and push it inside div#dialogZoom and then call the open method of the dialog ,which will
display the dialog with the scale effect.

As the icons are anchors and the image is also wrapped inside an anchor, return false is
used to disable the default behavior.

Reload the index.html page on the browser and try clicking on the Edit and Delete icons.
Respective dialogs will open for these:

Confirm Delete

T Are you sure you want to delete this
image?

This action is permanent.

Delete Cancel

Nothing will happen on clicking either the Save and Delete buttons, as we have not yet
implemented them.

However, clicking on the thumbnail will open a dialog box and will display a large version
of the image in it. You will also see the scale effect when the dialog opens and closes:

www.it-ebooks.info

http://www.it-ebooks.info/

Last event handler inside the addEventHandlers method is the click handler for btnSave.
Let’s define it as well:

$('#btnSave').button().on('click', function()
{

albums.saveNewSequence();

1)

Clicking on the Save Sequence button will call the saveNewSequence button, which we
are going to implement in the next section along with the edit and delete operations.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Editing, deleting, and rearranging
pictures

Before we code, let’s see how the edit, delete, and rearrange operations will work.

On clicking on the edit icon, a dialog box appears with the image name in a text box. The
user will edit this name and click on the Save button. Clicking on the Save button will
send an AJAX request to a PHP script. The album ID, picture ID, and edited name will be
sent to this script. Depending on the album ID and picture ID, the PHP script will change
the name of said image in the original albums. json file.

Similarly, to delete an image, we will send the album id and picture id to the PHP script.
The PHP script will delete the image from the original albums. json file.

To rearrange the sequence of images, we will get the current sequence on the page, which
the user has made after reordering the images. We will send this sequence to the PHP
script, and the script will update sequence values for each picture in album.

www.it-ebooks.info

http://www.it-ebooks.info/

Editing a picture name

On clicking on the Save button of the edit image dialog, the editImage method will be
called that will send the required AJAX request. Here is how we will define this method:

var editImageRequest = $.ajax(
{

url : 'ajaxAlbum.php',

type: "POST",

data: { action : 'edit', albumId: albums.currentAlbum, pictureld:
albums.currentPictureId, newImageName : $('#txtImageName').val() }

1),

editImageRequest.done(function(data)

{
$.getJSON("albums.json", function(data)

{
albums. jsonAlbums = data;
$('#pictureName_' +
albums.currentPicturelId).text($('#txtImageName').val());
$("#dialogEdit").dialog('close');

1)
1)
editImageRequest.fail(function(xhr, status)
{
alert("Error - " + status);
1)

In the preceding code, we send a POST request to the ajaxAlbum.php file. Four parameters
are also being sent along with the request. These parameters are as follows:

e action: This is required by the server-side script to identify which operation to
perform. We have sent edit in this case.

e albumId: This is the ID of the album whose picture is being edited. We had set it in
albums.currentAlbum when the album name was clicked on.

e pictureId: This is the ID of the picture whose name is being edited. We had set it in
albums.currentPictureId when the edit icon was clicked on.

* newImageName: This is the name of the image specified by the user in the text box.

Success callback for this AJAX request is defined next using the .done method. Once the
PHP script is done, the control will reach here and any response from the server will be
received via a parameter to this method. In our case, nothing is being returned from the
server.

Since the original JSON has changed now, we need to update the jsonAlbums property,
which still has old JSON data. To do this, we make an AJAX call again with getJSON and
place the response in jsonAlbums. Then the dialog is closed.

In case of an error, we have an error callback as well, which will display the error message
in the alert box.

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting a picture

Similar to edit, an AJAX request will be sent when the user clicks the Delete button on the
dialog box. Go to the deleteImage method and write this code to send an AJAX request to
delete the image:

var deleteImageRequest = $.ajax(

{
url : 'ajaxAlbum.php',

type: "POST",
data: { action : 'delete', albumId: albums.currentAlbum, pictureld:
albums.currentPictureld }

1),

deleteImageRequest.done(function(data)

{
$.9getJSON("albums.json", function(data)

{

albums.jsonAlbums = data;
albums.displayAlbum(albums.currentAlbum);

37
$("#dialogDelete").dialog('close');

1)

deleteImageRequest.fail(function(xhr, status)

{

alert("Error - " + status);

1)

In this AJAX request, we only need to send the album ID and the picture ID we want to
delete along with the key action whose value will be delete this time.

Similar to edit image, we have defined a success event handler that will get the updated
albums.json file from the server and put it in the albums. jsonAlbums file.

Since an image has been deleted, we need to refresh the UI as well. Hence, we call the
displayAlbum method again for the current album.

Refreshing the page and selecting an album will show that deleted images have been
removed permanently from the original JSON file.

www.it-ebooks.info

http://www.it-ebooks.info/

Rearranging pictures of an album

To rearrange pictures, we need to get the new sequence of images, which is in the page.
Clicking on the Save Sequence button will send the AJAX request with this sequence and
the PHP script will do the rest. This can be done easily using the serialize method of the
sortable component. Go to the saveNewSequence method and write this code:

var x = ($('#albumPics').sortable('serialize'));
var editSequenceRequest = $.ajax(

{
url : 'ajaxAlbum.php',

type: "POST",
data: 'action=reorder&albumId='+ albums.currentAlbum + '&' + X

1),

editSequenceRequest.done(function(data)

{
$.getJSON("albums.json", function(data)

{

albums.jsonAlbums = data;
albums.displayAlbum(albums.currentAlbum);

1)
1)

editSequenceRequest.fail(function(xhr, status)

{

alert("Error - " + status);

1)

Here’s what we did in the code:

e First of all we used the serialize method to get new sequence of IDs.

¢ Note that we have already created IDs of sortable elements as picture_1, picture_2,
picture_3, and so on, where the number after underscore(_) is the image ID.

e Using the serialize option of the sortable component will create a hash that will
be something like picture[]=1& picture[]=2& picture[]=3. On server side these
IDs will be received in an array.

e An AJAX request is then sent with action set to reorder, album ID set to
currentAlbum, and the hash that is stored in variable x.

e The success handler for this request will be similar to the delete operations success
handler. We will fetch the updated JSON using getJSON, set value of jsonAlbums,
and call the displayAlbum method again.

You can now refresh the page and see that images of albums will appear in the sequence
you saved them.

www.it-ebooks.info

http://www.it-ebooks.info/

The ajaxAlbum.php file

All the AJAX calls in previous sections were sent to the ajaxAlbum.php file. This is the
PHP file that will make all changes to the JSON file albums. json. We will place a switch
case in this file to identify paths for edit, delete, and reorder. Since PHP is not in the scope
of this chapter or book, we will not go through server-side code in too much detail. The
following is the code that will make the changes:

<?php
$albumId = $_POST['albumId'];
$pictureId = $_POST['pictureld'];

$jsonAlbums = file_get_contents('albums.json');
$jsonAlbums = json_decode($jsonAlbums);
switch($_POST['action'])
{
case 'edit':
foreach($jsonAlbums as $album)

{
if($album->id == $albumId)
{
foreach($album->pictures as $picture)
{
if($picture->id == $pictureld)
{
$picture->imageTitle = $_POST['newImageName'];
file_put_contents('albums.json', json_encode($jsonAlbums));
break;
}
}
break;
3
3
break;

case 'delete':
foreach($jsonAlbums as $album)
{
if($album->id == $albumId)
{
foreach($album->pictures as $index => $picture)
{
if($picture->id == $pictureld)
{
unset ($album->pictures[$index]);
$remaining = array_values($album->pictures);
$album->pictures = $remaining;
file_put_contents('albums.json', json_encode($jsonAlbums));
break;

b
}

break;

}

www.it-ebooks.info

http://www.it-ebooks.info/

}

break;

case 'reorder':
$picturelds = $_POST['picture'];
foreach($jsonAlbums as $album)

{
if($album->id == $albumId)

{

$sequenceStart = 1;
foreach($picturelds as $id)

{

/* find this id in in album pictures and set sequence*/
foreach($album->pictures as $picture)

{
if($picture->id == $id)

{

$picture->sequence = $sequenceStart;
$sequenceStart++;
break;

}

b
}

file_put_contents('albums.json', json_encode($jsonAlbums));
break;

b
¥

break;

}
?2>
The first and second lines get the album ID and picture ID in variables $albumId and
$pictureld, respectively. Then we load the albums. json file and convert it into an object.

Note

A key named action will be sent with each AJAX request so that the PHP script may
identify which operation to perform. The possible values are edit, delete, and reorder for
editing, deleting, and rearranging images, respectively.

Depending on the value of the action, any of the three operations take place.

For editing the image, we iterate in the JSON and after finding the correct album and
picture based on $albumId and $pictureId, we update the name. After updating the name,
we convert the object to JSON and write it back in the albums. json file with the help of
the PHP file_put_contents function.

Similarly, the delete operation is performed. After finding the correct album and image,
the array element from the pictures array is removed. The remaining JSON is written to
albums. json file, like before.

To reorder the images we have an array of the latest sequence in the form of an array in
the variable picture that was sent in the AJAX request. Then for the specified album, we
loop over all the ids sent from the browser and set a sequence accordingly. The modified
object is converted back to JSON and written in the albums. json file.

www.it-ebooks.info

http://www.it-ebooks.info/

Note

Make sure that you have write permissions on the albums. json file. Without this, no
changes will be written to the file.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving album manager

There is a lot of scope for improvement in this album manager. You can start with these
suggestions:

e Use a database instead of a JSON file

e Use a Flickr API instead of a JSON file

e Allow users to move pictures from one album to another (Hint: use connected
sortables)

e Use jQuery UI’s slider component to zoom in and zoom out of an image

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

This was a long chapter with a lot of functionalities to cover. You learned to create a basic
photo album manager application. We were able to edit image description and delete an
image from an album. We were also able to reorder the pictures in an album. In this
process, you made use of jQuery UI’s sortable and dialog components and learned about
some themeroller classes as well.

Going forward, the next chapter is going to be interesting as you will learn to create your
own widgets using jQuery UI’s widget factory.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9. Creating Widgets Using the
Widget Factory

So far, we worked with the default components or widgets provided by the jQuery Ul
library. In this chapter, we will take a step forward and use the power of jQuery Ul’s
widget factory to create our own widgets.

The widget factory of jQuery Ul is the basic building block of all the components of
jQuery UI. This means that if you create your own widgets using the widget factory as a
base, you are doing so in a standardized manner similar to the way other native widgets
have been written. This helps in maintaining consistency among all widgets. Another
advantage is that the widget factory follows an object-oriented approach to create a
widget.

We will use the widget factory in this chapter to create two widgets. Our first widget will
be used to search for a string in the rows of a HTML table. Initializing this widget for a
table will create an input textbox in the first row of the table. Typing any characters in the
textbox will start a search for the matching string in the table. Based on the input string,
only matching rows will be visible and any nonmatching rows will be hidden. We will also
allow users to customize the options for the widget as well.

The second widget will convert a list of elements into a slideshow. Elements will be
displayed one by one after a fixed duration. We will allow users to customize this widget
with options, have such as the duration for which an element will be displayed, effects
used while showing and hiding an element, and the speed of the “show and hide” effects.
We will also provide a callback method that will be available for users of the widget to
implement. This callback will be called before any element is displayed.

Both of these widgets will cover the concepts of custom widget creation, and you will be
able to create similar and advanced widgets like these easily in future.

www.it-ebooks.info

http://www.it-ebooks.info/

The folder structure

The folder structure for this chapter will be same as that of the previous chapters. Create a
folder named chapter9 inside the MasteringjQueryUI folder. Inside the chapter9 folder,
create two HTML files and name them search.html and slides.html, respectively. Also,
copy the js and css folders inside the Chapter9 folder. Now, open the js folder and create
two more JavaScript files with the names searchable. js and slides.js. These files will
be used to write widget-specific codes for searchable and slide widgets, respectively.

With the folder setup complete, let’s start to build our first widget: searchable.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a widget to search data in a table

The searchable widget will insert a new row at the beginning of the table element.
Inside this row, there will be a td element that will have a 1abel and a textbox for

searching.

For the markup on the HTML page, we will only need a table with some rows.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for the table

The entire markup will be written inside the search.html file. We will create a table with
three columns. The first column will be the serial number, the second column will be the
name of a place, and the third column will have comma-separated tags related to that
place. To create such a table, open the search.html file and write the following code to
create a regular HTML table:

<html>
<head>

<title>Searchable Widget</title>

<link rel=

"stylesheet" href="css/ui-lightness/jquery-ui-

1.10.4.custom.min.css">

</head>
<body>
<p>
<button
<button
</p>

id="btnEnable">Enable Searchable</button>
id="btnDestroy">Destroy Searchable</button>

<table width="100%" id="tblData" class="tables">

<tbody>
<tr>
<th
<th
<th
</tr>
<tr>
<td
<td
<td
</tr>
<tr>
<td
<td
<td
</tr>
<tr>
<td
<td
<td
</tr>
<tr>
<td
<td
<td
</tr>
<tr>
<td
<td
<td
</tr>
<tr>
<td
<td

width="10%">#</th>
width="35%">Place</th>
width="55%">Tags</th>

class="odd">1</td>
class="odd">Pithoragarh</td>
class="odd">Hills, Snow</td>

class="even'">2</td>
class="even'">Dhakuri</td>
class="even">Trekking, Himalayas, Camping</td>

class="odd">3</td>
class="odd">Goa</td>
class="odd">Beach, Fun, Holidays</td>

class="even'">4</td>
class="even'">Nainital</td>
class="even'">Snow, Lake, Hills</td>

class="odd">5</td>
class="odd">Dayara Bugyal</td>
class="odd">Trekking, Camping</td>

class="even'">6</td>
class="even'">Mumbai</td>

www.it-ebooks.info

http://www.it-ebooks.info/

<td class="even'">Beach, Bollywood</td>
</tr>
<tr>
<td class="odd">7</td>
<td class="odd">Agra</td>
<td class="odd">Taj Mahal, Holiday</td>
</tr>
<tr>
<td class="even">8</td>
<td class="even'">Ranikhet</td>
<td class="even'">Sunset, Hills</td>
</tr>
<tr>
<td class="odd">9</td>
<td class="odd">Auli</td>
<td class="odd">Skiing, Snow, Honeymoon</td>
</tr>
<tr>
<td class="even'">10</td>
<td class="even">Chopta</td>
<td class="even">Trekking, Honeymoon</td>
</tr>
</tbody>
</table>

<script src="js/jquery-1.10.2.js"></script>
<script src="js/jguery-ui-1.10.4.custom.min.js"></script>
<script src="js/searchable.js'"></script>
</body>
</html>

The preceding code begins by referencing the path to the jQuery UI CSS file inside the
head section. There is not much to do for this file in this example. We are using it just to
beautify the buttons. You can avoid including it altogether.

Then, inside the body tag, we defined two buttons. These buttons have the id btnEnable
and btnDestroy and these will be used to enable and destroy the widget, respectively.

Then, we created the table that has the id set to tb1lData and class set to tables. Inside
it, there are 10 rows, each having three columns with some data in each of them. Note that
each alternate row has classes odd and even applied to its cells. This is just for
presentation purpose and is not in any way related to the widget.

After creating the table, we referenced the jQuery core file, the jQuery UI core file, and
finally a reference to the searchable. js file where we will write the code to create the
widget.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

We will do some basic styling to make the table look better. We will apply styles for the
table and td elements. There will be an interesting addition, though. We will also define
some CSS rules for classes of elements that will be generated by the widget. Here are the
CSS rules to apply in the head section of the file:

<style type="text/css'">

body{
margin:0 auto;
font-family:verdana,arial;
font-size:12px;width:45%

}

.tables{
border:1px solid #000;
margin:0 auto;
width:600px;
background-color:#acaafc;

}

.tables th{
color:#fff;

}

th, td{
padding:5px;
font-size:12px;

}

p{

background-color:#acaafc;
padding:10px;

}

.even{
color:#343234;
background-color:#fff;

}

.odd{
color:#343234;
background-color:#dcdefc;

}

/* styles specific to search widget */
.mywidget-searchBoxContainer{

}

.mywidget-searchBoxContainer td{
border:1px solid #fff;

¥
.mywidget-label-search{

color::#fff;

¥
.mywidget-textbox{

}
</style>

Note the four CSS rules at the end of the code. When the widget generates a new row, the
mywidget -searchBoxContainer class will be applied to the row. For the widget’s td

www.it-ebooks.info

http://www.it-ebooks.info/

element, the mywidget - searchBoxContainer td rule will be applied. The label and the
textbox will have the mywidget-label-search and mywidget-textbox classes applied to
them, respectively.

The purpose of applying these CSS rules in widget’s HTML code is to allow theming. You
can place any CSS properties for these to customize the look of the HTML generated by
the widget.

If you load the search.html file in the browser now, you will see a nice-looking table and
two buttons at the top, as shown in the following screenshot:

I Enable Searchable I I Destroy Searchable I
1 Pithoragarh Hills, Snow
2 Chakuri Trekking, Himalayas, Camping
3 Goa Beach, Fun, Holidays
4 Mainital Snow, Lake, Hills
5 Dayara Bugyal Trekking, Camping
5] Mumbai Beach, Bollywood
7 Agra Taj Mahal, Holiday
2 Ranikhet Sunset, Hills
9 Auli Skiing, Snow, Honeymoon
10 Chopta Trekking, Honeymoon

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the widget

The widget factory follows a common pattern to define its methods. There are some basic
methods that must be implemented in order to create a widget. Hence, we will first define
the structure of the widget, and then understand the widget in detail to see what each of
the methods do, and how we can use these methods to create widgets of our own.

Let’s look at the widget structure first.

Defining the widget structure

The following code represents the life cycle of a typical jQuery UI widget. There are
many more properties that are not used so often. We will look at those properties at the
end of this chapter.

For now, write the following code in the js/searchable. js file to create the basic
skeleton of the widget:

(function ($) {
$.widget("mywidget.searchable" ,

{

options:

{

characterLength: 3,
searchLabel : 'Enter characters : '

iy

_Create: function ()

{
iy

destroy: function ()

14
setOption: function (key, value)

})(jQuery);

The widget is defined using $.widget () that takes two arguments: the first argument is
the name of the widget with the namespace and the second argument is the set of
properties of the widget. We set the name as mywidget .searchable. Here, mywidget is the
namespace and searchable is the widget name by which it will be initialized by other
users. All the widgets of jQuery Ul share the namespace ui. Hence, the dialog widget is
created using ui.dialog and so on. You can assign any namespace to your widgets.

After the widget name, we defined the properties for the widget. The preceding code
contains the basic properties that are required by $.widget. Let’s look at all of these:

e options: This is an object that has the key-value pairs. The keys and values provided
here serve as the default options values for the widget. These keys will be provided
by users when the widget is initialized.

e _create: This is the constructor of the widget. We will create the DOM required for

www.it-ebooks.info

http://www.it-ebooks.info/

the widget inside this method and inject it into the page. Event handlers for the
widget’s elements will also be added here.

e _destroy: This method is invoked when the destroy option is called on the method.
Calling the destroy method invokes a public destroy method of the jQuery Ul,
which removes any event handlers and data present in DOM. It then passes control to
_destroy, where we can remove the widget’s HTML from the page and revert any
changes that the widget made to the DOM.

e _setOption: Whenever any option is set for the widget by using the option method,
a method named _setOptions is called (note the s at the end). This method calls the
_seOption method for each option provided by the user. This method receives the
option key and value. Depending on the value of a particular key, changes are made
to the widget state, as required.

Now, we are ready to implement the code for various widget methods.

Setting up default options

For this example, we have defined two options, characterLength and searchLabel, and
set the values to 3 and Enter characters :, respectively.

The value of the characterLength option is the minimum number of characters the user
has to type before we search the table for input value. The value 3 means the widget will
search the table only when user has typed at least three characters.

The searchLabel option will have the text that will appear towards the left of the textbox.
Users will be able to set both these options when they initialize the widget.

Initializing the widget and attaching event handlers

After setting up the options, we will now implement the widget constructor _create,
where we will create the DOM and attach the event handler for searching.

Go to the _create method in the searchable. js file and write this code:

if(!'this.element.is('table'))
{

console.log('not a table');
return;

}

this.element.addClass('mywidget-searchable-table');
var colspan = (this.element).find('tr:first').children().length;

this.searchInput = $("<input type='text' class='mywidget-textbox ui-
state-highlight ui-corner-all'>")
.insertBefore((this.element).find('tr:first'))

wrap('<tr class="mywidget-searchBoxContainer"><td colspan=""'+colspan+'">
</td></tr>");

$("<label class='mywidget-label-search'>"+ this.options.searchLabel+"
</label>").insertBefore(this.searchInput);

www.it-ebooks.info

http://www.it-ebooks.info/

this._on(this.searchInput,

{

}
);

Note

keyup: "_filterTable"

The this.element and this.options will be available inside all methods. The
this.element refers to the element on which the widget was called and the this.options
allows you to access any option of the widget.

Since we want this widget exclusively for tables, the first thing we check inside the
_create method is that this.element must be a table element. If it is not, we log an error
in the console and exit from the method.

Next, we added a CSS class mywidget-searchable-table to the table. You can write any
CSS for this class to customize the look of the widget. Then, we find the number of cells
in a particular row. This will be used to set the colspan value of the row we are going to
append to the table.

Following the code is very important, as we will create the HTML and append it to DOM.
First, we created an input box with the class mywidget - textbox. Then, we inserted the
input box before the first tr element of the table. Finally, we created a new tr element
with a td element inside it and wrapped the newly created element inside this new row.
The colspan value of the td is set to the variable colspan we calculated earlier. Also, note
that the tr has been assigned a CSS class mywidget -searchBoxContainer. The newly
created element will be available via this.searchInput object to rest of the widget
methods.

We also need to place a label towards the left of the input box. Therefore, we create a label
element, assign the CSS class mywidget-label-search to it and insert it before the newly
created search box that is accessible using this.searchInput. Inside the label, we set its
text to the value of searchLabel option.

In order for the textbox to be functional, we need to add an event handler. We will attach a
keyup event handler. This is done using the _on method of the widget factory. On the,
keyup event, a method named _filterTable will be called where we will filter the table
TOWS.

Filtering the table

Inside the searchable. js file, we will have to add a new method named _filterTable
first and then implement the required code. The following code defines the _filterTable
method and the code to search all the cells of table:

_filterTable: function (event)

{

var inputVal = $.trim(this.searchInput.val());
if(inputval.length < this.options.characterLength)

{

this.element.find('tr').show();

www.it-ebooks.info

http://www.it-ebooks.info/

return;

}

this.element.find('tr:gt(0)"').each(function(index, row)

{

var found=false;
$(row).find('td, th').each(function(index, td)
{
var regExp=new RegExp(inputVal,'i');
if(regExp.test($(td).text()))
{

found = true;

}

3);
if(found)

{
$(row).show();

}

else

{
$(row) .hide();

}
1)
}

Note

If you are adding this method after any of the other methods in the searchable. js file,
make sure that you add a comma (,) to separate different methods.

We begin by storing the value of the input box in a local variable inputval. Then, we
check the length of input against the characterLength option. If the provided text input is
less than the characterLength option, we simply display all the tr elements and exit. We
proceed only if the input length is more than the value of the characterLength option.

Next is a loop using jQuery's $.each to iterate in all rows. Note that the tr:gt(0)
selector used for the tr elements. Since the first tr element is the search widget itself, we
collected rows starting from the index ‘1’. For each tr element in the loop, we receive the
index of that row and the row element itself.

For each row, we set a flag named found to false. Then, we loop again in the td and th
elements of that particular row. For each row, we test the input value against a regular
expression. If the input value matches the text in any td element of that row, we set the
found flag to true.

Once looping over td and th elements is complete, we show or hide the rows based on the
value of flag found.

With this implementation, we are halfway through creating the widget. Let’s implement
the remaining methods now.

Making changes when the option value is changed

Once the widget has been initialized, users should be able to change the characterLength
and searchLabel options using the option method. In case of the searchLabel option, we

www.it-ebooks.info

http://www.it-ebooks.info/

will have to display the new text in the page as well. The following code will take care of
both options:

_setOption: function (key, value)

{
switch (key)

{

case '"searchLabel":
this.searchInput.prev('label').text(value);
break;

default:
break;

}

this.options[key] = value;

this._super("_setOption", key, value);
}
Since _setOption is called for each option, we need to identify the keys and take actions
accordingly. For this purpose, we have placed a switch block with each option name as a

case condition.

The first case is for the option searchLabel. If this option is set, we change the text of
label to the new value. Also, we set the new value for each option using the following
code:

this.options[key] = value;.

Lastly, the _super method is called for _setoption. This method is a jQuery UI method
that updates the state of the widget internally.

Destroying the widget

The last task is to destroy the widget and clean the DOM elements we have created. The

following code will remove the widget HTML and revert the table to its original state:

_destroy: function ()

{

this.element.removeClass('mywidget-searchable-table');
$('.mywidget-searchBoxContainer').remove();

}

The first line removes the theming class mywidget-searchable-table from the table, and
the second line removes the tr element from the table.

Remember that after calling the destroy method for the widget, jQuery UI will call its
internal destroy method, which will unbind all event handlers as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Calling the widget from the page

Now that we have implemented all methods, our searchable widget is complete and we
are now ready to use it:

1. Open the search.html file.

2. Go to the bottom where you have included the searchable. js file. After
searchable. js is included, insert the following code to bind event handlers for the
Enable Searchable and Destroy Searchable buttons:

<script type="text/javascript">
$(document).ready(function()

{
$('#btnEnable').on('click', function()
{
$('#tblData').searchable(
{
characterLength : 2,
searchLabel : 'Type at least 2 characters to search : '
37
3);
$('#btnDestroy').on('click', function()
{
$('#tblData').searchable('destroy');
1)
$('button').button();
3);
</script>

The code here is pretty self-explanatory. We have bound the click event handlers for
buttons with id values btnEnable and btnDestroy. On a click of btnEnable, we
initialize the searchable widget with the options characterLength and
searchLabel. We have set the characterLength option to 2 here. For btnDisable,
we call the destroy method that will remove the widget completely.

w

Then, we will call the button widget on the buttons present in the page.
4. Open the search.html file in a browser now and click on the Enable Searchable
button. The widget will appear on the page:

www.it-ebooks.info

http://www.it-ebooks.info/

Enable Searchable Destroy Searchable

Type at least 2 characters to search : _

1 Pithoragarh Hills, Snow

2 Chakuri Trekking, Himalayas, Camping
3 Goa Beach, Fun, Holidays

4 Mainital Snow, Lake, Hills

5 Dayara Bugyal Trekking, Camping

5] Mumbai Beach, Bollywood

7 Agra Taj Mahal, Holiday

2 Ranikhet Sunset, Hills

2] Auli Skiing, Snow, Honeymoon

10 Chopta Trekking, Honeymoon

5. Now type a few characters in the search box. We have initialized the widget with
characterLength option set to 2. As soon as you type the second character, filtering
of rows will start with each keystroke. Here is how the page will look after filtering:

Enable Searchable Destroy Searchable

Type at least 2 characters to search :

9 Auli Skiing, Snow, Honeymoon

10 Chopta Trekking, Honeymoon

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the searchable widget

The searchable widget we made is a basic one but you must have got the idea of
providing options and adding events. You can try the following suggestions to enhance
this widget:

e Option to append the widget at either top or bottom

e (Case-sensitive search
¢ Excluding specific text from the search

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a widget to display a slideshow

In the previous widget, we did not make use of callbacks. Most of the widgets require
some type of custom callbacks. They provide more control to users and allow users to
interact with the widget; for example, the built-in dialog. It provides options such as open,
close, create, drag, and so on, which can be used to add dynamic behavior to the widget.
Therefore, for our second widget, we will create the widget options as well as a callback.
This will help you to understand widgets more thoroughly.

We will address this problem in our second widget, where we will convert a list of
elements into slideshow. We will allow users to customize the widget by providing options
to set the duration of a slide, the effect which will be used to show and hide the slides, the
speed of slides, and so on. We will also provide a callback method. This callback will be
called just before a slide is displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for slides

Let’s start by writing the markup for the page. For the markup, we will create a div
element that will act as a parent container, and the child elements of this div will act as
individual slides. For our example, we will keep an image and some text in each slide.

To write the markup, open the slides.html file and write the following code to create the
structure:

<html>
<head>
<title>Slideshow</title>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<p>
<button id="btnEnable">Start Slideshow</button>
<button id="btnDestroy">Stop Slideshow</button>
</p>
<div id="slideContainer'">
<div class="slide ui-state-highlight">

<p>Cras congue nisl in tellus placerat luctus. Mauris tempus ante
erat, non tempus enim posuere vel. In condimentum orci sem, a vestibulum
leo elementum eu. </p>

</div>
<div class="slide ui-state-highlight special">

<p>Ut interdum, massa quis feugiat consectetur, enim ligula varius
mi, vitae varius massa elit quis velit. In posuere egestas velit ac
molestie. Vestibulum nec dapibus justo. </p>

</div>
<div class="slide ui-state-highlight">

<p>Morbi posuere molestie mauris a ornare. Integer at ipsum vel
metus rutrum suscipit at nec ante. Nullam malesuada tempor elementum. Nam
nec sollicitudin massa. Pellentesque maximus diam at libero faucibus
porttitor. </p>

</div>
<div class="slide ui-state-highlight">

<p>In commodo laoreet mi, congue placerat purus. Cras a feugiat
velit. Nunc facilisis ac tortor a consequat. Integer congue purus et
hendrerit volutpat. Duis dictum malesuada placerat. </p>

</div>
</div>
<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/slides.js"></script>
</body>

www.it-ebooks.info

http://www.it-ebooks.info/

</html>

We started off by including the jQuery UI CSS file in the page. Inside the body section,
we created two buttons with id values btnEnable and btnDestroy, just like the previous
widget. These buttons will enable and disable the slideshow on clicking.

After buttons, there is a div with the id value slideContainer. Inside this div, we have
created four more div elements. Each of these will be a slide. Each of these div elements
has been given the classes slide and ui-state-highlight. Every slide also has an image
and some text inside it. All the images have been referenced from the images directory
inside the Chapter9 directory.

Note that the second div has another CSS class named special assigned to it. We will use
it later with the callback method.

Finally, just before the closing of the body tag, we include jQuery, jQuery UI files, and the
slides. js file that is empty at the moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

Before we check the page in browser, let’s beautify it a bit. We will define some CSS
properties for div#slideContainer, div.slide, and the p and img elements inside it. Go
to the head section of slides.html and write the following CSS rules after the jQuery Ul
CSS file is included:

<style type="text/css'">

body{
color:#025c7f;
font-family:verdana,arial;
width:700px;
margin:0 auto;

}

#slideContainer{
margin:0 auto;
font-size:20px;
position:relative;
width:700px;
text-align:justify;

3
.slide{

float:left;
padding:10px;

}
.slide img{

height: 200px; width: 300px; float: left;

}
.slide p{

display: inline-block; width: 360px; margin-left: 15px;color:#5f5f5f;
}

a{
color:#000;
font-size:15px;

}

/* styles specific to banner rotator */
.mywidget-banner{

}

.mywidget-banner-item{

3
</style>

The last two CSS rules are for the class names that will be generated by the widget. You
can specify the CSS properties here and they will be applied when the widget is activated.

Now we can see what the page looks like. Open up your browser and load the
slides.html file. You will see the slides in a column:

www.it-ebooks.info

http://www.it-ebooks.info/

| StnSideshow | | Stop Shdeshow

Cras congue nisl in tellus placerat
luctus. Mauris tempus ante erat,
non tempus enim posuere vel. In
condimentum orci sem, a
vestibulum leo elementum eu.

Ut interdum, massa quis feugiat
consectetur, enim ligula varius mi,
vitae varius massa elit quis velit.
In posuere egestas wvelit ac
molestie. Vestibulum nec dapibus
justo.

Morbi posuere molestie mauris a
ornare. Integer at ipsum vel metus
rutrum suscipit at nec ante. Nullam
malesuada tempor elementum.
Nam nec sollicitudin massa.
Pellentesque maximus diam at
libero faucibus porttitor.

In commodo laoreet mi, congue
placerat purus. Cras a feugiat velit.
Munc facilisis ac tortor a consequat.,
Integer congue purus et hendrerit
volutpat. Duis dictum malesuada
placerat.

Looks like our HTML is ready and we are prepared to spice it up with some jQuery
goodness. Let’s start by implementing the widget now.

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the widget

Like the previous widget, we will begin by defining the structure of the widget first. Since
we have already covered the various methods in previous widgets in detail, we will not go
through them here.

Defining the widget structure

Open the js/slides.js file and create the structure of the widget, as shown in the
following code:

(function ($) {
$.widget("mywidget.slideshow" ,

{ .
options:
{
duration: 3000,
effect : 'bounce',
easingbDuration : 'slow',
beforeShow : null
3
_Create: function ()
{
3
_destroy: function ()
{
3
_setOption: function (key, value)
{
3
3);
+)(JQuery);

We defined the four basic properties required to create a widget: the options object, the
constructors _create and _destroy, and the option-setter method _setOption.

Setting up default options
We have provided four options that could be customized by users:

e duration: This is the time in milliseconds for which a slide will be displayed. The
default value is 3000.

e effect: This is the effect that will be used to show and hide the slides. The default
value is bounce. Any of the jQuery easing names can be used here.

® easingDuration: This is the duration of effect in milliseconds.

e peforeShow: This is the callback method that users will be able to override.
Currently, it has been set to null.

Users will be able to override any of these options while initializing the widget. If any
option value is not provided during initialization, jQuery UI will use the default value as
defined in widget options.

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the widget and displaying the first slide

We can now start defining the constructor method _create, where we will initialize the
widget. This means we can add CSS classes to elements and display the first slide.

Write the following code for the _create method in the js/slides. js file:

_create: function ()

{

this.element.addClass('mywidget-banner');
this.element.children().addClass('mywidget-banner-item');
$('.mywidget-banner-item').hide();

this._trigger("beforeShow", null , { element : $('.mywidget-banner-
item:first')});

$('.mywidget-banner-item:first')

.addClass('current')

.show(this.options.effect, this.options.easingDuration);
this._setRotation();

}

As you now know, this.element refers to the element that was passed while initializing
the widget, which will be div# slideContainer in this case. In the first line, we attach a
CSS class mywidget -banner to to that element.

The next line attaches the CSS class mywidget -banner-item to each of the slide divs.
Then, we hid all slides using the jQuery hide method.

Now we can display the first slide with animation. However, first we will have to invoke
the beforesShow callback that has to be fired just before a slide is displayed. This is done
with the help of _trigger, a method provided by the widget factory.

As the name suggests, _trigger triggers the callback that is passed to it. It takes three
parameters: the event name, then the event that triggered this event, and the data that we
want to pass to the event. In our case, we have passed the element that will be available in
the form of the element property inside the callback.

After the callback event has been triggered, we can now display the first slide. We do this
by selecting the first slide using the .mywidget-banner-item:first selector. Then, we
add a current class to it. This is necessary to find out which element is currently being
displayed.

Note

Instead of the current class, we can also use a variable internally and update it each time
a slide is displayed.

After adding the class, we use the show method to display the first slide. Note that we have
passed the widget options effect and easingburation to show the method.

Our task is only half done yet. We also need a way to go through all the slides one by one.
For this purpose, we need to set up a timer which will execute repeatedly at the specified
duration. The code in the last line is used for the same purpose. We have also called a

www.it-ebooks.info

http://www.it-ebooks.info/

_setRotation method, which we will explore in the next section.
Displaying slides one by one

After the first slide is displayed, a call was made to _setRotation in order to set the time.
We will use the JavaScript method setInterval, which will execute a callback function at
fixed intervals. Here is the definition of the _setRotation method that we will create
inside the widget:

_setRotation : function()

{

var that = this;
this.interval = setInterval(function()

{
that.textRotate();

}, that.options.duration);

}

Inside _setRotation, we stored the reference to local scope in a local variable named
that. Then, we called the JavaScript method setInterval. As you can see in the
preceding code, setInterval will call another method textRotate (which we will define
next). We also defined the duration after which textRotate will be called by reading the
duration value from the options object.

Note

Note the variable this.interval. This will be used again when user changes the
duration option.

Now, we need to define the textRotate method that will take care of going through the
slides. Once we reach the last slide, we will restart from first slide. In the following code,
we will define the textRotate method after the _setRotation method:

textRotate : function()
{
var $that = this;
var current = $that.element.find('.current');
var next = current.next();
if(next.length==0)
{
current.removeClass('current').hide($that.options.effect,
$that.options.easingbDuration, function()
{
$('.mywidget-banner -
item:first').addClass('current').show($that.options.effect,
$that.options.easingDuration);

1),
}

else

{

current.removeClass('current').hide($that.options.effect,
$that.options.easingbDuration, function()

{
$that._trigger("beforeShow", null, { element : next});

www.it-ebooks.info

http://www.it-ebooks.info/

next.addClass('current').show($that.options.effect,

$that.options.easingDuration);

b
}

1),

Have patience if the preceding code looks a bit cryptic. Let’s understand it line by line:

First, we create a local variable $that and store the reference to current scope
variable this in it. After this, we store the reference to the element currently being
displayed in the variable current.

Note
The CSS class current is applied on the slide which is currently visible.

Then, we find the elements next to the element with CSS class current. If the
current class is on the last slide, the value of next will be 0; otherwise, it will be
greater than 0.

The if condition in the following line checks the value of the variable next. If the
value is 0, it means that currently the last slide is being displayed and we need to
show the first slide after this. In this case, we remove the CSS class current from the
current slide and hide it. Three parameters are passed to the hide method: first is the
effect used to hide the slide, second is the duration of hiding effect animation, and the
third parameter is the callback function that will be called once hide method
completes the animation.

The third parameter is used to display the next slide (in this case, the first slide). To
select the first slide, we simply use the selector .mywidget-banner-item:first, add
the class current to it, and use the show method with the effect and
easingDuration values.

For slides other than the last one, the else block will be executed. Here as well, we
remove the current class from the currently visible slide and hide it with the effect
and easingDuration options. In the callback of the hide method, we trigger the
beforeShow callback so that the user may introduce any custom behavior. Then, we
add the current class to the next element which is stored in the next variable, and
call the show method. Now, we will pass the effect and the duration of effect from the
options object.

That is all we need to make the slides functional. You might be tempted to check the
progress so far, but we have a couple of things to do before that. Handling the change in
any of the option values, and cleaning up after the destroy method is called.

Making changes when the option value is changed

The option method can be used on any widget to get or set the value of widgets. If a user
sets a new value for an option, there should be a way for the widget to know it and change
the widget state accordingly.

We will use the _setoOption method in the same way we did in the previous widget. A
switch case will be applied for all the options. Write the following code for _setoption,

www.it-ebooks.info

http://www.it-ebooks.info/

which will help maintain the state of the widget:

_setOption: function (key, value)

{
switch (key)

{

case "duration":
clearInterval(this.interval);
this.options[key] = value;
this._setRotation();
break;

default:
this.options[key] = value;
break;

}

this._super("_setOption", key, value);
}
For options such as effect and easingDuration, there is no behavioral change in the
widget. We just need to update the values and the widget will pick up the latest values.
However, it is different for the duration option. In this case, we cleared the previous
interval using the JavaScript method clearInterval. Then, we will reset the value for the
duration option and finally call the _setRotation method again, so that the setInterval
method will be called using the new duration value.

So, now at any point the user can change the duration of slide using duration option.

Destroying the widget

To destroy the widget, we will have to stop the repeated calls to the textRotate method
and remove all the CSS classes that we attached earlier in the create method. Here is the
code:

_destroy: function ()

{

clearInterval(this.interval);

this.element.removeClass('mywidget-banner');

this.element.children().removeClass('current mywidget-banner -
item').show();

}

We start by removing the repeated call to textRotate by removing the interval using the
clearInterval method.

Then, we remove the mywidget-banner class that was applied to the slider container.
Then, we remove the mywidget-banner-item class from all the items and the current
class as well. The show method in the end ensures that all the slides are visible, as they
were prior to calling the widget.

This finishes our slideshow widget and we are now ready to see it in action.

www.it-ebooks.info

http://www.it-ebooks.info/

Calling the widget from the page

To call the widget, we will have to initialize it in the slides.html file. Hence, go to this
file and write the following code to enable and disable slideshow on clicking Start
Slideshow and Stop Slideshow buttons, respectively:

<script type="text/javascript">
$(document).ready(function()

{
$('#btnEnable').on('click', function()

{

$('#slideContainer').slideshow(
{
duration : 4000,
effect : 'clip',
easingDuration : 400,
beforeShow : function(event, ui)

{

if(ui.element.hasClass('special'))

{

}
}
1)
1)

$('#btnDestroy').on('click', function()

{
$(slideContainer).slideshow('destroy');

1)

$('button').button();
3);

</script>

ui.element.css({ 'background' : '#ffffff' });

Firstly, we attach an event handler on click of first button with id value btnEnable. Inside
the event handler, we initialize the slideshow widget with three options and a callback. We
have provided the duration as 4000 milliseconds, effect as clip, and easingDuration as
400 milliseconds.

We can also use the callback beforeshow now. If you recall, we placed a CSS class
special in the second slide. Since this callback is triggered every time just before a slide
is displayed, we are checking if the slide div has a class special attached to it. For such
an element, we set the background to white.

Next, we attach the event handler for the destroy event. In the event handler, we just call
the slideshow widget with destroy options.

Finally, we convert the enable and disable slideshow buttons to jQuery UI buttons.

We can now check the widget in action. Browse the slides.html file in the browser and
you will see all slides in a column. Clicking the Start Slideshow button will begin the

www.it-ebooks.info

http://www.it-ebooks.info/

slideshow and the first slide will be displayed with the provided effect:

Start Slideshow Stop Slideshow

Cras congue nisl in tellus placerat
luctus. Mauris tempus ante erat,
non tempus enim posuere vel. In
condimentum orci sem, a
vestibulum leo elementum eu.

On the second slide, you will also see the effect as the background will change to white
due to the beforeshow callback:

Start Slideshow Stop Slideshow

Ut interdum, massa quis feugiat
consectetur, enim ligula varius mi,
vitae varius massa elit quis velit.
In posuere egestas velit ac
molestie. Vestibulum nec dapibus
justo.

Clicking on the Stop Slideshow button will reset the page to its initial state and remove
the widget behavior completely.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the banner widget

Here are a few suggestions to help you add new features to the slideshow widget:

e Add different effects to show and hide a slide
e Implement another callback afterHide that will be called after a slide is hidden
e Disable the slideshow after a certain number of iterations of all slides

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We created two different widgets in this chapter, where you learned to customize the
widget with the help of options. You also learned to implement custom callbacks for the
widget as well. All in all, we covered the full life cycle of a widget. With the help of this
chapter, you will be able to create your own widgets with ease.

Moving forward, in the next chapter, you will learn to create a “colorpicker” tool and you
will also allow users to convert RGB values of colors to Hex and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10. Building a Color Picker with
Hex RGB Conversion

Chapter 9, Creating Widgets Using the Widget Factory, was a complex one where we
created two widgets using jQuery UI’s widget factory. In this chapter, we will relax a bit
and build something simple.

We are going to create a color selector, or color picker, that will allow the users to change
the text and background color of a page using the slider widget. We will also use the
spinner widget to represent individual colors. Any change in colors using the slider will
update the spinner and vice versa. The hex value of both text and background colors will
also be displayed dynamically on the page.

This is how our page will look after we have finished building it:

e 55 & = M |«
ee— 185 |+ e 15 |-
L 111 | g 1255
Text Color : #ffb970 Background Color : #4c9d7d

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the folder structure

To set up the folder structure, follow this simple procedure:

1. Create a folder named chapter10 inside the MasteringjQueryuI folder.

2. Directly inside this folder, create an HTML file and name it index.html.

3. Copy the js and css folder inside the chapter16 folder as well.

4. Now go inside the js folder and create a JavaScript file named colorpicker.js.

With the folder setup complete, let’s start to build the project.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Writing markup for the page

The index.html page will consist of two sections. The first section will be a text block
with some text written inside it, and the second section will have our color picker controls.
We will create separate controls for text color and background color. Inside the
index.html file write the following HTML code to build the page skeleton:

<html>
<head>
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div class="container">
<div class="ui-state-highlight" id="textBlock">
<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.
</p>
<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam,
gquis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.
</p>
<p>
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam,
gquis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non

www.it-ebooks.info

http://www.it-ebooks.info/

proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.
</p>
</div>

<div class="clear'"> </div>

<ul class="controlsContainer">
<li class="left">

<div id="txtRed" class="red slider" data-spinner="sptxtRed" data-
type="text"></div><input type="text" value="0" id="sptxtRed" data-
slider="txtRed" readonly="readonly" />

<div id="txtGreen" class="green slider" data-spinner="sptxtGreen"
data-type="text"></div><input type="text" value="0" id="sptxtGreen" data-
slider="txtGreen" readonly="readonly" />

<div id="txtBlue" class="blue slider" data-spinner="sptxtBlue"
data-type="text"></div><input type="text" value="0" id="sptxtBlue" data-
slider="txtBlue" readonly="readonly" />

<div class="clear"> </div>
Text Color : #000000
</1i>
<li class="right">
<div id="bgRed" class="red slider" data-spinner="spBgRed" data-
type="bg" ></div><input type="text" value="255" id="spBgRed" data-
slider="bgRed" readonly="readonly" />
<div id="bgGreen" class='"green slider" data-spinner="spBgGreen"
data-type="bg" ></div><input type="text" value="255" id="spBgGreen" data-
slider="bgGreen" readonly="readonly" />
<div id="bgBlue" class="blue slider" data-spinner="spBgBlue"
data-type="bg" ></div><input type="text" value="255" id="spBgBlue" data-
slider="bgBlue" readonly="readonly" />

<div class="clear"> </div>
Background Color : #ffffff
</1li>

</div>
<script src="js/jquery-1.10.2.js"></script>
<script src="js/jquery-ui-1.10.4.custom.min.js'"></script>
<script src="js/colorpicker.js"></script>
</body>
</html>

We started by including the jQuery UI CSS file inside the head section. Proceeding to the
body section, we created a div with the container class, which will act as parent div for
all the page elements. Inside this div, we created another div with id value textBlock and
aui-state-highlight class. We then put some text content inside this div. For this
example, we have made three paragraph elements, each having some random text inside it.

After div#textBlock, there is an unordered list with the controlsContainer class. This
ul element has two list items inside it. First list item has the CSS class left applied to it
and the second has CSS class right applied to it.

Inside 1i.1eft, we created three div elements. Each of these three div elements will be

www.it-ebooks.info

http://www.it-ebooks.info/

converted to a jQuery slider and will represent the red (R), green (G), and blue (B) color
code, respectively. Next to each of these divs is an input element where the current color
code will be displayed. This input will be converted to a spinner as well.

Let’s look at the first slider div and the input element next to it. The div has id txtRed
and two CSS classes red and slider applied to it. The red class will be used to style the
slider and the slider class will be used in our colorpicker. js file. Note that this div also
has two data attributes attached to it, the first is data-spinner, whose value is the id of
the input element next to the slider div we have provided as sptxtRed, the second
attribute is data- type, whose value is text. The purpose of the data-type attribute is to
let us know whether this slider will be used for changing the text color or the background
color.

Moving on to the input element next to the slider now, we have set its id as sptxtRed,
which should match the value of the data-spinner attribute on the slider div. It has
another attribute named data-slider, which contains the id of the slider, which it is
related to. Hence, its value is txtRed.

Similarly, all the slider elements have been created inside div.left and each slider has an
input next to id. The data-type attribute will have the text value for all sliders inside
div.left. All input elements have also been assigned a value of 0 as the initial text color
will be black.

The same pattern that has been followed for elements inside div.left is also followed for
elements inside div.right. The only difference is that the data-type value will be bg for
slider divs. For all input elements, a value of 255 is set as the background color is white in
the beginning.

In this manner, all the six sliders and the six input elements have been defined. Note that
each element has a unique ID.

Finally, there is a span element inside both div.left and div.right. The hex color code
will be displayed inside it. We have placed #000000 as the default value for the text color
inside the span for the text color and #ffffff as the default value for the background color
inside the span for background color.

Lastly, we have included the jQuery source file, the jQuery UI source file, and the
colorpicker. js file.

With the markup ready, we can now write the properties for the CSS classes that we used
here.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

To make the page presentable and structured, we need to add CSS properties for different
elements. We will do this inside the head section. Go to the head section in the
index.html file and write these CSS properties for different elements:

<style type="text/css'">

body{
color:#025c7f;
font-family:Georgia,arial, verdana;
width:700px;
margin:0 auto;

}

.container{
margin:0 auto;
font-size:14px;
position:relative;
width:700px;
text-align:justify;

}

#textBlock{
color:#000000;
background-color: #ffffff;

}

.ui-state-highlight{
padding: 10px;
background: none;

}

.controlsContainer{
border: 1px solid;
margin: O;
padding: O;
width: 100%;
float: left;

}

.controlsContainer 1li{
display: inline-block;
float: left;
padding: @ 0 0 50px;
width: 299px;

}

.controlsContainer div.ui-slider{
margin: 15px 0 O;
width: 200px;
float:left;

}
Jdeft{
border-right: 1px solid;
}
.clear{
clear: both;
}

.red .ui-slider-range{

www.it-ebooks.info

http://www.it-ebooks.info/

background: #ff0000;
}

.green .ui-slider-range{
background: #00ff00;

}

.blue .ui-slider-range{
background: #0000ff;

}

.ui-spinner{
height: 20px;
line-height: 1px;
margin: 11px 0@ 0 15px;
3
input[type=text]{
margin-top: 0;
width: 30px;
}
</style>
First, we defined some general rules for page body and div .container. Then, we defined
the initial text color and background color for the div with id textBlock.

Next, we defined the CSS properties for the unordered list ul .controlsContainer and its
list items. We have provided some padding and width to each list item.

We have also specified the width and other properties for the slider as well. Since the class
ui-slider is added by jQuery UI to a slider element after it is initialized, we have added
our properties in the .controlsContainer div .ui-slider rule.

To make the sliders attractive, we then defined the background colors for each of the slider
bars by defining color codes for red, green, and blue classes.

Lastly, CSS rules have been defined for the spinner and the input box.

We can now check our progress by opening the index.html page in our browser. Loading
it will display a page that resembles the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

0 255
0 255
0 255
Text Color : #ooo000 Background Color : #ffffff

It is obvious that sliders and spinners will not be displayed here. This is because we have
not written the JavaScript code required to initialize those widgets. Our next section will
take care of them.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing the color picker

In order to implement the required functionality, we first need to initialize the sliders and
spinners. Whenever a slider is changed, we need to update its corresponding spinner as
well, and conversely if someone changes the value of the spinner, we need to update the
slider to the correct value. In case any of the value changes, we will then recalculate the
current color and update the text or background color depending on the context.

www.it-ebooks.info

http://www.it-ebooks.info/

Defining the object structure

We will organize our code using the object literal pattern as we have done in earlier
chapters. We will define an init method, which will be the entry point. All event handlers
will also be applied inside this method.

To begin with, go to the js folder and open the colorpicker. js file for editing. In this
file, write the code that will define the object structure and a call to it:

var colorPicker = {
init : function ()

{
iy

setColor : function(slider, value)

{

3
getHexColor : function(sliderType)

{
iy

convertToHex : function (val)

{
3
}

$(function() {
colorPicker.init();

1)

An object named colorPicker has been defined with four methods. Let’s see what all
these methods will do:

e init: This method will be the entry point where we will initialize all components and
add any event handlers that are required.

e setColor: This method will be the main method that will take care of updating the
text and background colors. It will also update the value of the spinner whenever the
slider moves. This method has two parameters; the slider that was moved and its
current value.

e getHexColor: This method will be called from within setColor and it will return the
hex code based on the RGB values in the spinners. It takes a sliderType parameter
based on which we will decide which color has to be changed; that is, text color or
background color. The actual hex code will be calculated by the next method.

e convertToHex: This method will convert an RGB value for color into its
corresponding hex value and return it to get a HexColor method.

This was an overview of the methods we are going to use. Now we will implement these
methods one by one, and you will understand them in detail.

After the object definition, there is the jQuery’s $(document).ready() event handler that
will call the init method of our object.

www.it-ebooks.info

http://www.it-ebooks.info/

The init method

In the init method, we will initialize the sliders and the spinners and set the default
values for them as well. Write the following code for the init method in the
colorpicker.js file:

init : function ()
{
var t = this;
$(".slider").slider(

{
range: "min",
max: 255,
slide : function (event, ui)
{
t.setColor($(this), ui.value);
3
change : function (event, ui)
{
t.setColor($(this), ui.value);
}
1)
$('input').spinner(
{
min :0,
max : 255,
spin : function (event, uil)
{
var sliderRef = $(this).data('slider');
$('#' + sliderRef).slider("value", ui.value);
b
37

$("#txtRed, #txtGreen, #txtBlue").slider('value', 0);
$("#bgRed, #bgGreen, #bgBlue").slider('value', 255);

}

In the first line, we stored the current scope value, this, in a local variable named t.

Next, we will initialize the sliders. Since we have used the CSS class slider on each slider,
we can simply use the .slider selector to select all of them. During initialization, we
provide four options for sliders: range, max, slide, and change. Note the value for max,
which has been set to 255. Since the value for R, G, or B can be only between 0 and 255,
we have set max as 255. We do not need to specify min as it is 0 by default.

The s1ide method has also been defined, which is invoked every time the slider handle
moves. The call back for slide is calling the setColor method with an instance of the
current slider and the value of the current slider. The setColor method will be explained
in the next section.

Besides slide, the change method is also defined, which also calls the setColor method

www.it-ebooks.info

http://www.it-ebooks.info/

with an instance of the current slider and its value.

Note

We use both the slide and change methods. This is because a change is called once the
user has stopped sliding the slider handle and the slider value has changed. Contrary to
this, the s1ide method is called each time the user drags the slider handle. Since we want
to change colors while sliding as well, we have defined the s1ide as well as change
methods.

It is time to initialize the spinners now. The spinner widget is initialized with three
properties. These are min and max, and the spin. min and max method has been set to © and
255, respectively. Every time the up/down button on the spinner is clicked or the up/down
arrow key is used, the spin method will be called. Inside this method, $(this) refers to
the current spinner. We find our related slider to this spinner by reading the data-slider
attribute of this spinner. Once we get the exact slider, we set its value using the value
method on the slider widget.

Note

Note that calling the value method will invoke the change method of the slider as well.
This is the primary reason we have defined a callback for the change event while
initializing the sliders.

Lastly, we will set the default values for the sliders. For sliders inside div.left, we have
set the value as 0 and for sliders inside div.right, the value is set to 255.

You can now check the page on your browser. You will find that the slider and the spinner
elements are initialized now, with the values we specified:

www.it-ebooks.info

http://www.it-ebooks.info/

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameco laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

0 v =~ 2595 |-

0 v e 255 =

0 - e 255 |+
Text Color : #oooo00 Background Color : # £

You can also see that changing the spinner value using either the mouse or the keyboard
will update the value of the slider as well. However, changing the slider value will not
update the spinner. We will handle this in the next section where we will change colors as
well.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing colors and updating the spinner

The setColor method is called each time the slider or the spinner value changes. We will
now define this method to change the color based on whether the slider’s or spinner’s
value was changed. Go to the setColor method declaration and write the following code:

setColor : function(slider, value)

{
var t = this;
var spinnerRef = slider.data('spinner');
$('#' + spinnerRef).spinner("value", value);

var sliderType = slider.data('type')

var hexColor = t.getHexColor(sliderType);
if(sliderType == 'text')
{
$('#textBlock').css({'color' : hexColor});
$('.left span:last').text(hexColor);

}

else

{
$('#textBlock').css({'background-color' : hexColor});
$('.right span:last').text(hexColor);

}

}

In the preceding code, we receive the current slider and its value as a parameter. First we
get the related spinner to this slider using the data attribute spinner. Then we set the value
of the spinner to the current value of the slider.

Now we find out the type of slider for which setColor is being called and store it in the
sliderType variable. The value for sliderType will either be text, in case of sliders
inside div.left, or bg, in case of sliders inside div.right. In the next line, we will call
the getHexColor method and pass the sliderType variable as its argument. The
getHexColor method will return the hex color code for the selected color.

Next, based on the sliderType value, we set the color of div#textBlock. If the
sliderType is text, we set the color CSS property of div#textBlock and display the
selected hex code in the span inside div.left. If the sliderType value is bg, we set the
background color for div#textBlock and display the hex code for the background color in
the span inside div.right.

The getHexColor method

In the preceding section, we called the getHexColor method with the sliderType
argument. Let’s define it first, and then we will go through it in detail. Write the following
code to define the getHexColor method:

getHexColor : function(sliderType)
{

var t = this;
var allInputs;

www.it-ebooks.info

http://www.it-ebooks.info/

var hexCode = '#';
if(sliderType == 'text')

{
//text color

allInputs = $('.left').find('input[type=text]');
}

else

{

//background color
allInputs = $('.right').find('input[type=text]');
}

allInputs.each(function (index, element) {
hexCode+= t.convertToHex($(element).val());

1)

return hexCode;

}

The local variable t has stored this to point to the current scope. Another variable
allInputs is declared, and lastly a variable to store the hex code has been declared, whose
value has been set to # initially.

Next comes the if condition, which checks the value of parameter sliderType. If the
value of sliderType is text, it means we need to get all the spinner values to change the
text color. Hence, we use jQuery’s find selector to retrieve all input boxes inside
div.left. If the value of sliderType is bg, it means we need to change the background
color. Therefore, the else block will be executed and all input boxes inside div.right
will be retrieved.

To convert the color to hex, individual values for red, green, and blue will have to be
converted to hex and then concatenated to get the full color code. Therefore, we iterate in
inputs using the .each method. Another method convertToHex is called, which converts
the value of a single input to hex. Inside the each method, we keep concatenating the hex
value of the R, G, and B components to a variable hexCode. Once all iterations are done,
we return the hexCode to the parent function where it is used.

Converting to hex

convertToHex is a small method that accepts a value and converts it to the hex equivalent.
Here is the definition of the convertToHex method:

convertToHex : function (val)

{
var x = parselInt(val, 10).toString(16);

return x.length == 1 ? "0" + x : Xx;
}
Inside the method, firstly we will convert the received value to an integer using the
parseInt method and then we’ll use JavaScript’s toString method to convert it to hex,
which has base 16. In the next line, we will check the length of the converted hex value.
Since we want the 6-character dash notation for color (such as #ffeeff), we need two
characters each for red, green, and blue. Hence, we check the length of the created hex

www.it-ebooks.info

http://www.it-ebooks.info/

value. If it is only one character, we append a 0 to the beginning to make it two characters.
The hex value is then returned to the parent function.

With this, our implementation is complete and we can check it on a browser. Load the
page in your browser and play with the sliders and spinners. You will see the text or
background color changing, based on their value:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip ex ea
commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.

== 82 0

254 - : 28
—— 254 |, | 27
Text Color : #5ofefe Background Color: #001c1b

You will also see the hex code displayed below the sliders. Also note that changing the
sliders will change the value of the corresponding spinner and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the Colorpicker

This was a very basic tool that we built. You can add many more features to it and enhance
its functionality. Here are some ideas to get you started:

e Convert it into a widget where all the required DOM for sliders and spinners is
created dynamically

¢ Instead of two sliders, incorporate the text and background changing ability into a
single slider with two handles, but keep two spinners as usual

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In our penultimate chapter, we created a basic color picker/changer using sliders and
spinners. You can use it to view and change the colors of your pages dynamically.

In the last and final chapter, we will create a dashboard where we will use the knowledge
of jQuery UI that we’ve covered so far. We will use multiple jQuery UI widgets and create
our own as well.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11. Creating a Fully Functional
Dashboard

We have come a long way since the start of this book and this is the final step of our
journey. We have covered almost all the jQuery UI components in previous chapters. In
this chapter, we will relax and create a simple dashboard with five portlets. Each of these
portlets will have a widget inside them and we will use different APIs to display content
inside each of them. The five portlets will be sortable as well, and you will be able to
change their positions by dragging them.

The portlets that we will create are as follows:

¢ Share buttons: We will place sharing buttons for various social media sites. Clicking
any of these buttons will share the page on that social media site.

¢ Displaying pictures using the Flickr API: We will search the Flickr API using a tag
name and display image thumbnails and their titles. Clicking on a thumbnail will
show the image in a dialog box.

e Weather widget: This is a widget where we will display a dropdown of places
around the world and use the openweathermap API to get temperature, sunrise,
sunset, and coordinates of that place. Clicking on the coordinates will open the
locations on Google Maps.

e Reddit: This widget displays latest posts from the reddit front page. We will show
the post score and number of comments and link it to reddit.

e Images: The last widget will have a dropdown with some image names. Selecting a
name from dropdown will display the image thumbnail inline. Clicking on the
thumbnail will display the full size image in a modal dialog.

After we are done, the page will look like the following:

www.it-ebooks.info

http://www.it-ebooks.info/

tags : cat gingercat

#Caturday My Life As A Pussycat she
loves to snooze on me | love my kitty!(
link)

tags : cute cat kitten

0E & & #3a #dth #cat #garumiao #mewo
#miao #kitten #pet| link)

Hew York,Uss -

Temp: 3.36 degree celcius

Temp min: -1.00 degree celcius

Temp max: 8.00 degree celcius

Cloudiness: 90 % cloudy

Location: 40,71, -74.01 View on Google maps

1 - [gifs] Our white blood cells attacking a parasite. (score
: 4881 | comments : 1700)

2 - [pics] | told my fiancee that we needed to get a funny
tree topper to offset the "adult” tree. He nailed it... (score
: 4661 | comments : 179)

3 - [todayilearned] TIL outlaw Jesse James once gave a
poor widow who housed him in her farmhouse 51,400 to
pay off her debts. When the debt collecter arrived, he hid
outside until he left the home, robbed him, took back the
51,400 and rode off. (score : 4784 | comments : 871)

4 - [funny] | think Moah is going to have a little trouble
breeding the lions (score : 4714 | comments : 704)

-

Select image : A bit snow

www.it-ebooks.info

http://www.it-ebooks.info/

Setting up the stage

The first step is to create the required folder structure:

1. As we have in previous chapters, create a folder named Chapteri11 inside the
MasteringjQueryUI folder.

2. Directly inside this folder, create the HTML file named index.html which will

contain our HTML markup.

Also, copy the js and css folders inside the chapteri11 folder.

4. Now go inside the js folder and create a new file and name it dashboard. js. This
file will contain all the code required to create our news reader.

w

Once this setup is complete, we can move to the next step, which is designing the page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Designing the page

For the page design, we will take inspiration from the portlet script on the jQuery Ul
website. This script is a jQuery Ul sortable example from the jQuery UI demo site. The

original script can be found at http://jqueryui.com/resources/demos/sortable/portlets.html.
It uses a three-column layout but we will modify it to make two columns with two widgets

in each column and then create a widget in each of the columns.

Let us begin by writing the markup that we require. Open the index.html file in your
favorite editor and write the following markup to create the page skeleton:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Dashboard</title>
<link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-
awesome.min.css" rel="stylesheet">
<link rel="stylesheet" href="css/ui-lightness/jquery-ui-
1.10.4.custom.min.css">
</head>
<body>
<div class="column'">
<div class="portlet">
<div class="portlet-header'">Share this page</div>
<div class="shareBox portlet-content">

<i class="fa fa-facebook"></i>

<i class="fa fa-twitter"></i>

<i class="fa fa-reddit'"></i>

<i class='"fa fa-google-plus"></i>

</div>
</div>

<div class="portlet">
<div class="portlet-header'">Recent photos titled cats </div>
<div class="portlet-content flickrPics'">
<ul id="pics">
</div>
</div>
<div class="portlet">
<div class="portlet-header">Today's Weather</div>
<div class="portlet-content">
<select id="selCity'"></select>
<p id="loadingWeather">Loading..</p>
<div id="weatherInfo">

www.it-ebooks.info

http://jqueryui.com/resources/demos/sortable/portlets.html
http://www.it-ebooks.info/

<label> Temp: </label>

</1li>

<label> Temp min: </label>

</1li>

<label> Temp max: </label>

</1i>

<label> Cloudiness: </label>

</1i>

<label> Location: </label>

</1i>

</div>
</div>
</div>

</div>

<div class="column">
<div class="portlet">
<div class="portlet-header'">reddit : top items</div>
<div class="portlet-content" id="reddit">
</div>
</div>
<div class="portlet">
<div class="portlet-header">Just some images</div>
<div class="portlet-content">
Select image : <select id="imageSelector'"></select>
<div id="thumbnail'"></div>
</div>
</div>
</div>

<div id="dialog"></div>
<script src="js/jquery-1.10.2.js"></script>

<script src="js/jquery-ui-1.10.4.custom.min.js"></script>
<script src="js/dashboard.js"></script>

</body>
</html>

Let us look at this HTML in detail. Inside the head section, we provided the page title first.
After that we loaded a CSS file from the font -awesome CDN. If you are not familiar, font-
awesome is a great utility to display scalable vector icons on your web pages. Currently, it
boasts of more than 470 different icons. We are using it to display the social media icons.

Next we proceed by linking the jQuery UI CSS file inside the head section. Inside the

www.it-ebooks.info

http://www.it-ebooks.info/

body tag, we have two divs with the CSS class column applied to them. Among these, the
first has three divs inside it and second has two more divs inside it. Each of the inner divs
had class portlet applied to them. This makes a total of four divs with class portlet.

Now each of these portlet divs has two more divs inside them. One is for portlet header
and the other is to display the content of the portlet. The first div has the portlet-header
class and the second div has the portlet-content class applied to it.

The first portlet has the Share this page title. Its content div has another CSS class named
shareBox applied to it. Inside the shareBox div, we placed four hyperlinks and each one
has an attribute called type so that we may identify them later using jQuery. The value for
type attribute assigned to these hyperlinks is fb, tweet, reddit and gplus respectively.

Note

Note that we could have created the sharing links in HTML itself. But since we want to
keep it generic, we will use JavaScript to make it dynamic so that the page link will be
picked automatically.

Each hyperlink also has an icon inside it. These are font-awesome icons which are placed
using the <i> tag and specific icons are displayed by applying the icon-related CSS class
to it. Note that all icons must have a common class fa. For the icons that we are using, the
class names that are required are fa-facebook, fa-twitter, fa-reddit, and fa-google-
plus respectively.

Note

The full list of all the icons is available at http://fortawesome.github.io/Font-
Awesome/icons/ where new icons are added periodically.

The second portlet has the title Recent photos tagged “cat” and its content div has a ul
with id pics inside it. We will create the DOM inside it using the Flickr API.

The third portlet is for displaying weather. Its title is Today’s Weather. Inside this portlet,
there is a select box where we will display the list of cities for which weather will be
displayed. Next to it is a loading placeholder element, which we will display while data is
being fetched from the open weather map API. Lastly, there is another list where we
created different placeholders to display temperature, minimum and maximum
temperature, sunrise, sunset, and the location coordinates.

The fourth portlet (or first portlet in second column) is for displaying reddit front page
posts. Its title is reddit: top items and the portlet content div has the id reddit. This is
where we will insert the DOM for reddit posts.

The fifth and last portlet has the title Just some images. Its content div has a select box
inside it and another div. The select box will be populated with some image names and the
div will display the thumbnail for the selected image.

After the columns, we have another div with id dialog. It will be converted to the jQuery
Ul dialog box and the images for the first and last portlet will be displayed in it.

www.it-ebooks.info

http://fortawesome.github.io/Font-Awesome/icons/
http://www.it-ebooks.info/

Finally, just before the body tag closes, refer to the jQuery source file, the jQuery Ul
source file, and the currently empty dashboard. js file.

This prepares our page skeleton that we now need to stylize using CSS properties for
different elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling the content

We will need some generic CSS rules for columns and portlets, such as their width and
height. Besides this, we will need some other rules for the content inside different portlets.
In the head section of index.html, after jQuery UI CSS file is referred, let’s write the
following rules now for different page elements inside style tag:

body

{
font-family:arial, verdana;
font-size:12px;
margin: Opx auto;
width: 800px;

}

.column

{
width: 400px;
float: left;
padding-bottom: 100px;

}

.portlet

{
margin: 0 lem lem O;
padding: 0.3em;

3

.portlet-header

{
padding: 0.2em 0.3em;
margin-bottom: 0O.5em;
position: relative;

}

.portlet-toggle

{
position: absolute;
top: 50%;
right: 0;
margin-top: -8px;
cursor:pointer;

}

.portlet-content

{
height: 250px;
overflow-y: scroll;
padding: 0.4em;

}

.portlet-placeholder

{
border: 1px dotted black;
margin: @ lem lem O;
height: 250px;

}

.shareBox

{

text-align:center;

www.it-ebooks.info

http://www.it-ebooks.info/

overflow:hidden !important;
height:auto !important;

}

.shareBox a

{
background: none repeat scroll 0 0 #f6a828;
border-radius: 35px;
color: #fff,;
display: inline-block;
font-size: 25px;
font-weight: bold;
padding: 5px;
text-align: center;
width: 35px;
height:35px;

ul

{
list-style: outside none none;
margin: O;
padding: 0;

}

.flickrPics 1i

{
height: 100px;
overflow: hidden;
padding: 5px 0;

}

.flickrPics 1li img

{
float: left;
margin-right: 5px;
max-height: 100px;

}

#reddit ul
{

list-style: outside none none;
margin: O;

padding: O;
}
#reddit 1i , #weatherInfo 1li
{

padding: 5px 0;
min-height:20px;
}

#reddit 1i span
{

text-decoration:underline;

}
#reddit a

www.it-ebooks.info

http://www.it-ebooks.info/

{

text-decoration:none;

}

#reddit a.comments

¢ text-decoration:underline;
}

#weatherInfo label

{

font-weight:bold;
width:100px;
display:block;
float:left;

}

#weatherInfo span

{
float:left;

}

#thumbnail
{

cursor:pointer;
text-align:center;

}

The CSS properties above define the look and feel of elements inside various portlets.
First of all, we defined the rules common for all portlets by declaring the properties for the
classes column, portlet, portlet-header, portlet-toggle, portlet-content, and
portlet-placeholder.

After the common CSS rules, properties specific to contents of a portlet have been written.

Do not bother checking the page in the browser yet. We still have to add some more
classes to the portlet header and portlet content, which we will do with jQuery. Let us
move to the next section where we start coding the page.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting the code structure ready

Let’s begin by defining the structure of the JavaScript object that we will need to perform
various tasks. Open the js/dashboard.js file and write the following code:

$(document).ready(function()

{

var dashboard =

{

imageArr : [],
init : function()

{
this.initPortlets();

this.initSharing();
this.initFlickr();
this.initReddit();
this.setupWeather();
this.setupImageSelector();

iy

initPortlets : function()

{
iy

initSharing : function()
{
I

initFlickr : function()

{
iy

initReddit : function()

{
iy

setupWeather : function()

{
i

setupImageSelector : function()

{

¥
¥
dashboard.init();

1),

We start off by creating a dashboard object and defining an array named imageArr and six
methods. The imageArr array will be populated when we create the fourth portlet and
display images.

Among the methods, the first method is init, which acts as an entry method to the whole
object. Inside init, we call the initPortlets method, which will style the portlets and
add the sortable behavior. It will also make portlets toggleable.

The second method is initSharing, where we will bind event handlers for click event on
any of the social media sharing links. On clicking any such link, a new browser window
will be opened to share the link on that particular platform. Next are init methods for the
four portlets: initFlickr, which will create the first portlet, that is, Flickr pictures;

www.it-ebooks.info

http://www.it-ebooks.info/

initReddit for reddit portlet; setUpweather, which will populate the third portlet for
weather; and lastly, setupImageSelector, which will display the images dropdown in the
last portlet and add events to display selected images.

After the definition on the dashboard object, we call the dashboard.init () method to
initialize the application. This will be the first method that will be fired after the page has
loaded.

Now that we are clear with all the methods and their functionalities, we can proceed to
implement them. We will start by initializing the portlets first.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Initializing the portlets

To initialize the portlets, we will turn the column div into jQuery UI’s sortable
components. Since there are two columns, we will make the connection as well so that
portlets of a column could be dragged into another column. We will also add a toggle
button to portlet header.

Write the following code inside the initPortlets method to initialize them:

$(".column").sortable(

{

connectwWith: ".column",

handle: ".portlet-header",

cancel: ".portlet-toggle",

placeholder: "portlet-placeholder ui-corner-all"

1),

$(".portlet")
.addClass("ui-widget ui-widget-content ui-helper-clearfix ui-corner-all")
.find(".portlet-header")
.addClass("ui-widget-header ui-corner-all")
.prepend("
");

$(".portlet-toggle").click(function()
{

var icon = $(this);
icon.toggleClass("ui-icon-minusthick ui-icon-plusthick");
icon.closest(".portlet").find(".portlet-content").toggle('fast');

1)
$('#loadingwWeather').hide();

$('#weatherInfo').hide();

First we convert the column div to sortable, which will make the column div inside, the
sortable component. We also specified four options for sortables, which are described
here:

e connectWith: Since we have two columns and we want the column div inside to be
able to move between those, we need to set the connectwith option. This is why we
set its value to .column

e handle: This is the element that will be used to drag the portlet. We specified its
value as .portlet-header.

e cancel: This is the selector which will not allow dragging of portlet. Since the toggle
button is also in the portlet header, we allowed its CSS class the cancel value.

e placeholder: This is the class name that is applied to the empty space created due to
dragging an original element. We will display a dotted border for visual effects.

Now for each portlet, we add jQuery UI themeroller classes to the portlet div as well as
to the .portlet-header div inside it. After this, we create a span element and prepend it
to the portlet-header div. This span element has CSS classes ui-icon and ui-icon-
minusthick from jQuery UI’s theme, which will display a toggle icon in the portlet-

www.it-ebooks.info

http://www.it-ebooks.info/

header div.

Next is the event handler for the click event of the portlet-toggle span that toggles the
icon in the portlet header. It uses jQuery’s toggleClass method to alternate between the
ui-icon-minusthick and ui-icon-plusthick classes to change icons. Last line toggles
the visibility of the portlet-content div for that portlet.

Last two lines hide the weather loading indicator in second portlet as well as the template
for weather information.

Now we can check what our hard work has produced so far. Browse to the index.html
file using your web server in the browser and you will see the portlets in two columns, as
displayed in the following screenshot:

Select image : -

The portlets are now ready to display data. We will begin by creating the first portlet, that
is, implementing the social media sharing buttons.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Implementing sharing buttons

We have four sharing buttons and each of these needs to be configured differently to share.
When the user will click an icon, we will open a new window and based on the icon that
was clicked, redirect the user to the appropriate page. Write the following code inside the
initSharing method that will add the event handler for the click event of sharing links:

$('.shareBox a').on('click', function()

{
var type = $(this).prop('type');
dashboard.sharePage(type);

1)

Content for the first portlet has the shareBox class assigned to it and it has sharing links
inside it. In the above code, we added the click event handler for all the links inside the
.shareBox div. The callback method for the event handler first gets the value of type
attribute for the clicked link. We then call the sharePage method and pass the value of the
type property to it. This method will send users to the relevant social media page.

To implement this method go to the dashboard. js file again and add the following code
for the method after the initSharing method definition:

sharePage : function(shareType)

{

var pageUrl = encodeURIComponent(document.location);
var shareUrl;

switch(shareType)
{
case 'fb':
shareUrl = 'https://www.facebook.com/sharer/sharer.php?u="' + pageUrl;
break;

case 'tweet':
shareUrl = 'https://twitter.com/intent/tweet?text=Check out my
page&url="'+ pageUrl +'&via=v08i';
break;

case 'reddit':
shareUrl = 'http://www.reddit.com/submit?url=" + pageUrl;
break;

case 'gplus':
shareUrl = 'https://plus.google.com/share?url="' + pageUrl;
break;

default
return false;

¥
window.open(shareUrl , '', 'width=600,height=500");

iy

The sharePage method receives shareType as a parameter, that is, it can be either fb,
reddit, tweet or gplus. In the first line inside the method, we take the page URL using

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript’s document .location and then encode it using the encodeURIComponent
function. The next line has declared a variable which will store the value of sharing URL.

Now based on the value of the shareType parameter, we implemented a switch case that
will create the sharing URL. Facbook, Twitter, reddit, and Google Plus each have specific
URL formats to share data. Described here are the URL formats of each of these sites:

e Facebook: To share a URL on Facebook, the required format is
https://www.facebook.com/sharer/sharer.php?u=, where the value of u in the query
string is the URL you want to share.

e Twitter: The sharing URL for Twitter is https://twitter.com/intent/tweet?
text=&url=&via=. Here text is the tweet text, URL is the URL you want to share, and
value of via could be a twitter handle. via is not a mandatory field so you can skip it
if not required.

¢ Reddit: To submit a URL to reddit, the required URL format is
http://www.reddit.com/submit?url=, where the value of URL must be the the URL we
are sharing.

e Google Plus: The URL format of Google Plus is similar to reddit. It has the format

https://plus.google.com/share?url=.

For each of the sites in the switch statement, we created the URLs. Once the URL is
ready, we use JavaScript’s window.open method to open the URL in a new window. We
pass three parameters to window. open; the first is the URL we just created, second is an
empty string (the second parameter is the window name but we do not need it), and third
is the width and height of the new window that will be opened. If you do not provide the
third parameter, the new window will be opened in a new browser tab instead of new a
pop-up window.

Note

Make sure you have popups enabled in the browser, otherwise the new window will not be
visible.

We can now check our sharing feature on the page. Load the index.html file in your
browser and click on any of the sharing links. Here is a screenshot after the Twitter
sharing icon is clicked on:

www.it-ebooks.info

https://www.facebook.com/sharer/sharer.php?u=
https://twitter.com/intent/tweet?text=&url=&via=
http://www.reddit.com/submit?url=
https://plus.google.com/share?url=
http://www.it-ebooks.info/

'reddit : top items

0060 ‘

@ Share a link on Twitter - Mozilla Firefox ‘ £3
s

‘| & Twit... (US) | https://twitter.com/intent/tweetTtext=Check out my page&url=htty (=] | ;

’ Signup »

Share a link with your followers

Check out my page http/flocalhost:8888/MasteringjQueryUl/Chaptert1/# via
@vosi

Phone, email or username 61 Log in and Tweet

Password

Today's Weather

Remember me - Forgot password?

Note that it contains the localhost URL, which is no good for anyone else. But you get the
idea. It is obvious that any other URL can be shared.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Flickr photos

To search photos from Flickr, we will use the Flickr tags search API. The API is very
simple to implement and provides the JSON format in response apart from XML. Since
we will have to make a cross-domain request in order to contact the API, we will use
JSONP to fetch the data. The Flickr API allows a callback parameter in the URL for
JSONP requests. To implement the Flickr API, go to the initFlickr method in your file
and write the following code inside it:

$.9getJISON('https://api.flickr.com/services/feeds/photos_public.gne?
jsoncallback=?",

{
tags: 'cat',
format: 'json'
I
function(data)
{
var str = '';
$.each(data.items, function(i,item)
{
str+= '<1i>";
str+= '<a class="media" href="javascript:;" data-img="' + item.media.m
+ I|I>l;
str+= '';
str+= '';
var permaLink = 'link";
str+= ''+item.title+'(' + permaLink + ')

tags
' + item.tags;
str+= '</1i>";
1)
$('#pics').html(str);
1);

$('#pics').on('click', 'a.media', function()
{

var img = $(this).data('img');

$('#dialog').html('').dialog({modal : true});
3);
The first line uses jQuery’s get JSON method to make a call to the Flickr API. We set the
value of format as json in the request. The value of the tags parameter is set to cat,
which means it will search for pictures tagged as “cat”. The tags property can be any
string that you want to search on Flickr.

Note

The URL that is created will be https://api.flickr.com/services/feeds/photos_public.gne?
jsoncallback=&tags=cat&format=json in this case.

Once data is fetched from the service, the callback method will be invoked and it will
receive data as a parameter. Following is the JSON response format that is received from
Flickr. It will be required in order to create DOM with this response:

www.it-ebooks.info

https://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=&tags=cat&format=json
http://www.it-ebooks.info/

= data Object | title-"Racent Uploads tagged cat", [NK="https:/ wew.flickr.con/photos/tags/cat/", modified-"2014-11-19T01:52:022", more...]
description "
generator TTGPE: / WWw ?
= items [Object [title 8936", link="Rtt; ', media=[.}, more..}, Object [tile="T el smor continds.
Ekit.. Eres s Hcatlovers" G184/", media={.}, more.. }, Ohject | tifle="#bands #smoke
#pastelgru. . .sonly #grungestyle ébro” 502 5/, media={.}, more..}, 17 mare...]
2 0 Object { title="TMG 936", linK="httpa://wmw, Flickr.com/p. .. 548427EN03/15825125552/", media={..}, more...]
author "nobo i m UETnsy areslnowey]
author_id
date_taken
description
& link
= media pa" 1
= m
pubhshed
ags I hic cat tabby bugs 20147
fitle |
1 Object [litle="Y 2l amor continha. #Eit...grescusdcats gcatlowvers”, link="https:/www. (11ckT.com/p.. . 431155 g4/, media={.}, more...]
= 2 " s #amoke #pastelgeu...sonly #grungestyle #bro", link="Rttpe:// www.llickr.com/p... 4211 fv . media={.]}, more.. }
3 Object [litle="Mr Clancy fell asleep om...ty #eitten #sleepy #awa", link="httpe://www.[1lickT.com/p...4211 . media=[.}, more..]
s Object { title="Max-o-matic's amazing ne...atman #sclentist #kooky", liNK="httpe://www.[1lickT.com/p... 4211 7, media={.]}, more..]
5 Object { title="Une of my favorite shots...a #llovemycat #petoftha”, HNK="https://ww¥.[11ckT.COMP... 4211 f*, media={.}, more.. |
6 Object { tite="Long Johnson #cats #cat ¥kitten #kitty", WNK="https:/ www,CLickr, com/p. . .4211300H06/ 10759900206/ ", media=[.}, more.. |
4 7 Object { Gtle-"Layla", Hlnk=-"https://ww.[lickr.com/p.../nephentes/15203524194/%, media-{..), more... |
4 8 Object { Uitle-"Good vibes @', link-"https:/ www. [lickT.com/p. .. 4211550H06/15638146078/", media-{.}, more.. |
a 9 Object { title="Lolita", INKE="https://www.flickr.com/p.../nephentes/15823500785,/", media={..}, more.. }
1 Object { Uile="#ophelia dkitty #kitten ...som Ublackandwhite #bbw", IMK="https:/fwew. FlickT.coms/p. . 421155EN06,/15637747675", media={.]}, more... }

As you can see, in the figure above, the images are inside the items array. Using jQuery’s
$.each method we loop in this array and create the DOM. There are many properties for
each image but we are interested in its title, image, and permalink.

We create a 1i element for each of the images. Inside the 1i, we create an img, set its src,
and wrap it in an anchor. We also set a data attribute data-img for image. Next to the
image we create permalink for the image and then place it along with the title of the image
and its tags from Flickr.

Once the loop is complete, we push the newly created HTML inside the ul list having the
id #pics.

Next, we added an event handler for the click event of anchor, which contains the image.
Note the CSS class media. Inside the event handler, we get the value of the data attribute
img. Then we insert this image into the #dialog div and display the jQuery UI dialog.

This completes our Flickr widget and we can now check it in action. Reload the
index.html page and the Flickr pictures will be displayed. Click on a thumbnail and it
will be displayed in the dialog.

Here is how the page will look now:

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a weather widget

For the weather widget, first we will create the dropdown with names of cities, then we
will add the event handler for its change event. Write the following code inside the
setupWeather method to create a dropdown and binding event handler:

var cities = ['Delhi, India', 'London,UK', 'New York,USA', 'Tokyo,Japan'];

var strCity = '<option value="0">select a city</option>"';
$(cities).each(function(i, item)
{

strCity+= '<option value="' + item + '">' + item + '</option>';
1)

$('#selCity').html(strCity);

$('#selCity').change(function()

¢ var selection = $(this).val();
if(selection == 0)
{
return;
}

dashboard.displayWeather(selection);

1)

To create a cities dropdown, we created an array called cities that contains some city
names around the world. Then we iterate in this array and create dropdown options with
each city name and insert it into the dropdown with id selCity.

Next we bind the event handler for change event on the dropdown. In case a valid value is
selected in dropdown, we call a method named displayweather with the current
dropdown value. We now need to implement the displayweather method, which will
fetch data from the API and display it.

Visit the dashboard object and add a new method next to the setupweather method, as
shown in code below:

displaywWeather : function(city)
{
$('#loadingWeather').show();
$('#weatherInfo').hide();
var apiURL = 'http://api.openweathermap.org/data/2.5/weather?q="' + city;
$.ajax(
{
url: apiURL,
dataType: "jsonp",
jsonp: 'callback',
success: function(weatherData)
{
var x = {a : weatherData};
console.log(x);
$('#temp').html((weatherData.main.temp - 273.15).toFixed(2) + ' degree
celcius');

www.it-ebooks.info

http://www.it-ebooks.info/

$('#tempMin').html((weatherData.main.temp_min - 273.15).toFixed(2) + '
degree celcius');

$('#tempMax').html((weatherData.main.temp_max - 273.15).toFixed(2) + '
degree celcius');

$('#cloudiness').html((weatherData.clouds.all) + ' % cloudy');

var googleUrl = 'https://www.google.com/maps?
g='+weatherData.coord.lat+',' + weatherData.coord.lon;
var googleLink = ' View on

Google maps"';

$('#location').html(weatherData.coord.lat + ', '+ weatherData.coord.lon
+ googlelLink);

$('#weatherInfo').show();
$('#loadingWeather').hide();

iy

error: function (a,b,c)

{

console.log('Error getting weather.');
}
3);
3

The displayweather method receives the selected city value in the city parameter. Inside
this method, we first show you the element with ID loadingweather and hide the
#weatherInfo div.

Next we create the URL for API. The URL has format
http://api.openweathermap.org/data/2.5/weather?q=, where the value of q is the selected
city name. After creating the URL, we make an AJAX request with dataType set as jsonp
and a callback value specified. In the success callback, The API response will be collected
in the weatherData parameter, which we can now use to display different values. The
response format of JSON is as follows:

www.it-ebooks.info

http://api.openweathermap.org/data/2.5/weather?q=
http://www.it-ebooks.info/

base "cmc stations”
= clouds Object { all=20}
all 20
cod 200
- coord Object { lon=-74.01, lat=40.71}
lat 40.71
lon -74.01
dt 1416365232
id 5128581
= main Object { temp=26&.79, pressure=1019, humidity=35, more... }
humidity 35
pressure 1019
temp 268.79
temp_max 270.15
temp_min 266.15
name "New York"
= sYys Object { type=1, id=1975, message=0.1883, more... }
country "United States of America™
id 1975
message 0.18a3
sunrise 1416397692
sunset 1416432895
type 1
+ weather [Object { id=801, main="Clouds", description="few clouds", more...}]
+ wind Object { speed=8.2, deg=250, gust=12.3}

The temperature data is available in the weatherData.main object, the cloudiness data is
available in weatherData.clouds and the coordinates of the city are available in the
weatherData.coord object. Using these objects, we display the four elements temp,
tempMin, tempMax, and cloudiness with values temp, temp_min, temp_max, and
clouds.all respectively. Note that the temperature information from the API is received
in Kelvin. To convert it to Celsius, we subtracted 273.15 from the values.

Next we create a link to Google Maps for the city coordinates available in the coord
object. To display the latitude and longitudes in Google Maps, the URL must have the
format https://www.google.com/maps?q=latitude,longitude. We fill the latitude and
longitude values from the API response as well as display the values and the link inside
the span #location.

The weather widget is ready now and you can check it on the page. Reload the
index.html page and select a city name from dropdown. You will see the response as
displayed in the following picture:

www.it-ebooks.info

https://www.google.com/maps?q=latitude,longitude
http://www.it-ebooks.info/

Mew York,Uss -

Temp: -4.36 degree celcius

Temp min: -7.00 degree celcius

Temp max: -3.00 degree celcius

Cloudiness: 20 % cloudy

Location: 40.71, -74.01 View on Google maps

Clicking on the View on Google maps link will open a new tab focused on the city.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying posts from the reddit front
page

We already created an example using the reddit API in Chapter 4, Creating a Tabbed News
Reader. If you have gone through it, you can directly skip the theory section and directly
use the code and implement it.

Unlike Chapter 4, Creating a Tabbed News Reader, in this widget we will display the
posts from the reddit front page. Like earlier widgets, we will call the reddit API for JSON
of front page posts. Once data is received, we will iterate in response items and create the
DOM. Write the following code inside initReddit method to call the API:

var apiURL = 'http://www.reddit.com/r/all.json';
$.ajax(
{
url: apiURL,
dataType: "jsonp",
jsonp: 'jsonp',
success: function(data)
{
var x = {a : data};
console.log(x);
$('#reddit').html(dashboard.getRedditThreadList(data.data.children));
}
error: function (a,b,c)
{
alert('Error getting data');
}
1)

You can get the JSON for any subreddit by adding . json at the end of its name. Since we
want to get all front page posts, we have used all.json. Hence the URL becomes
http://www.reddit.com/r/all.json. Since it is a cross domain request we need to make it
jsonp. Reddit supports jsonp and expects a callback parameter in case of jsonp requests,
which we have provided as well as jsonp.

Once the request succeeds, the response is received in variable data. The response has
another object named data inside it which had yet another array named children. This
array is the actual list of posts. We pass the children array to another method
getRedditThreadList which is responsible for creating the DOM.

Let us define the getRedditThreadList method now to create the DOM. Inside the
dashboard object, write the following code to create the method and the DOM creation
code inside it:

getRedditThreadList : function(postListing)

{
var strHtml = '';
for(var 1 = 0; i < postListing.length; i++)
{

var aPost postListing[i].data;

www.it-ebooks.info

http://www.reddit.com/r/all.json
http://www.it-ebooks.info/

var permalink = 'http://reddit.com' + aPost.permalink;

strHtml+= '<1i>"';
strHtml+= (i+1) + ' - [' + aPost.subreddit + '] "' + aPost.title + ' (score : ' +
aPost.score + '| <a class="comments" href="' + permalink + '"
target="_blank"> comments : ' + aPost.num_comments + ')';
strHtml+= '</1i>"';
}
strHtml+= '"';
return strHtml;

iy

The method getRedditThreadList receives the reddit response in the postListing
parameter. Before creating DOM, let’s look at the format of an individual children node:

www.it-ebooks.info

http://www.it-ebooks.info/

kind: "Lisati

r data: {

ng",

modhash: """,
¥ children: [

T

kind: *t3",
¥ data: {

L A

v

LR

.

v v
e e e e iy e ey e e i e e e ey e

}

aftar: "
before:

t

domain: "i.imgur.cem",

banned by: null,

media_cr.lbcd: I Ty

subreddit: "mildlyinteresting”,
sel:f:'tex't_htm_'l.: nxll,

selftext: "7

likes: null,

user_r:rpcrt,s: [1]

secure media: null,
link_fiair_text: null,
id: "2mpplb”®.

gilded: 0,
secm_media_embad: |
clicked: false,

report reasons: null,

author: "resonatingfury",
media: null,

soore: 4230,
approved by: null,
over 18: falss,
hidden: fales,
thumbnail: http://b

humbs.redditmedia.com/l-jAFbNe OJmvw¥jyCL33GZwDi084byG1Xe320229IU. jpg,

subreddit id: "t5_2tish",
editad: falss,
link flair css_class: null,

author flalr ec=s class: null,
downs: 0,
mod_reports: [.

saved: false,
iz salf: false

name: "t3
permalink:

ups: 42%0,

num comments: 538,
visitad: falase,
num_reports: null,

disztinguished: null

t3_Z2mpdn3®,

null

There are a lot of properties for each children node here. But for our example we need
only six, which are permalink, subreddit, url, title, score, and num_comments. These
properties represent the permanent link on reddit for that post, the subreddit name to
which the post belongs, title of the submitted post, overall score of the post, and the
number of comments.

We simply iterate in the children array and the data for each post is present inside the
data object of the element. We then create a list item for each post where we display the

www.it-ebooks.info

http://www.it-ebooks.info/

subreddit to which it belongs along with the title of post to its next. Clicking on the title
will open the linked content which may be a reddit page or some external content. Next to
the title we display the score of the post and number of comments. The comments text is a
link which when clicked on opens the comments page on reddit in a new tab.

Once the whole DOM is created, we return it to the initReddit method where it is
inserted in the div #reddit.

Now reload the index.html page in the browser and you will see the posts from reddit’s
front page:

1 - [funny] To my fellow pale skinned individuals (score :
3630| comments : 310)

m

2 - [AdviceAnimals] At least | tried. {score : 3913| comments
. 286)

3 - [pics] Andromeda's actual size if it were brighter (score :
i 4978 | comments : 1538)

My mate franklin #kitten #franklin #ninja 4 - [funny] Canadian Romeo & Juliet (score : 4171|
#mate(link) comments : 421)

AT

5 - [aww] MY cat's face before a bath (score : 2672 |

tags : cute cat kitten
- comments : 174)

6 - [funny] | pass this guy on my way to work.. so seductive.
(score : 2923 | comments : 70) .

Select image : -

New York,USA -

Temp: -1.87 degree celcdius
Temp min: -4.00 degree celcius
Temp max: 0.00 degree celcius

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating an image display widget

This is our last widget for this page and is very simple to implement. No AJAX is
involved in it as well.

Before coding, we need to set up images that we will use in this widget. Create a folder
named images inside the Chapteri1 folder. Inside the images folder, keep five images of
your choice. For this example, I named them 1. jpg, 2.jpg, and so on. Create another
folder named thumb inside the images folder. Now create small versions (preferably
around 300 px wide) of these five images and place them in the thumb folder. With this we
are good to proceed to the code.

We will create an array of images and their names, which we will display in a dropdown.
Selecting an image will display its thumbnail. Clicking on the thumbnail will display its
larger version in the jQuery UI dialog box.

Go to the setupImageSelector method of the dashboard object and write the following
code that will set up the images array, display images names in dropdown, and bind the
event handler to display images:

this.imageArr = [

{ id: 1, name : 'Temple', path : ‘'images/1.jpg', thumb :
"images/thumb/1.jpg' },

{ id: 2, name : 'Colors', path : 'images/2.jpg', thumb :
"images/thumb/2.jpg' },

{ id: 3, name : 'Directions', path : 'images/3.jpg', thumb :
"images/thumb/3.jpg' },

{ id: 4, name : 'Flag', path : 'images/4.jpg', thumb :
"images/thumb/4.jpg' },

{ id: 5, name : 'A bit snow', path : 'images/5.jpg', thumb :
"images/thumb/5.jpg"' }
17
var str = '<option value="0">select image</option>';
$.each(dashboard.imageArr, function(i, item)
{

str+= '<option value="'+item.id+'">'+ item.name +'</option>'
1)

$('#1imageSelector').html(str);

$("#imageSelector").on('change', function()

{
dashboard.changeImage($(this));
3);
$("#thumbnail").on('click', function()
{

var imgPath = $(this).data('large');

$('#dialog').html('').dialog({modal : true,
width: 'auto', top : 0});
3);
We begin by defining the imageArr array. Each element in this array is an object
containing image information. Each object has four properties: the id property that

www.it-ebooks.info

http://www.it-ebooks.info/

uniquely identifies an image, the name property of the image that will display the name of
the image in a dropdown, the path property is the path of large images that can be a
relative or absolute path, and lastly, the thumb property is the path to the thumbnail of the
said image. Here we set the paths and names of images that we placed in the images
folder.

Next, we loop in the images array and create options for dropdowns with value of each
option as image ID. These options are then inserted into select box with id
imageSelector of the last portlet.

After this, there are two event handlers. The first image handler is for the change event of
dropdown. On the change event, it calls a changeImage method with selected options. To
implement this method, add the following code to dashboard object:

changeImage : function(selectedPic)

{
if(parselInt(selectedPic.val(), 10) == 0)

{
$('#thumbnail').empty();

return;

}

$.each(dashboard.imageArr, function(i, item)

{
if(parselInt(selectedPic.val(), 10) === item.id)

{
$('#thumbnail').data('large', item.path).html('<img src=""' +
item.thumb +'">");
return;

3
3);
}
In the first line, we check the selected value. If it is ®, we empty the div #thumbnail and
exit from the method.

Next we iterate in imageArr and check the value of selected options against the id of each
element in imageArr. Once a match is found, we add a data attribute large to the div
#thumbnail, which contains paths for large images. Then we create an image element and
set its src attribute to the thumbnail path thumb. Finally, this image is inserted inside div
#thumbnail.

The second event handler inside setupImageSelector is to display the larger version of
the image in a dialog. On clicking div #thumbnail, we first get the value of the data
attribute large, which we defined in the preceding code. Then we create an image with
src set to the image path and insert it inside the #dialog div. After this the jQuery UI’s
dialog method is called to display the dialog.

Check the index.html page in your browser now. Select an image from the dropdown and
the thumbnail will be displayed. Clicking it will display the large version in a dialog:

www.it-ebooks.info

http://www.it-ebooks.info/

New Yark,USA
Temp:

Temp min:
Temp max:
Cloudiness:

Location:

-

-4.384 degree celcius
-7.00 degree celcius
-4.00 degree celcius
1 % cloudy

40.71, -74.01 View on Google maps

Select image : A bit snow

www.it-ebooks.info

-

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Improving the portlets

There is vast scope for improving all of the portlets. Here are some of the ideas to get you
started:

Use cookies to maintain the state of portlet positions so that positions of portlets
remain intact even after the page loads

Implement other sharing buttons like Pinterest, StumbleUpon, and so on

Put a text box in the Flickr portlet and search for the API using user-entered tags

In reddit portlet, display thumbnails of images in dialog

Display the comments of a reddit post in a dialog

In the weather portlet, allow users to enter cities

Open Google Maps in-place in the weather portlet

In the images portlet, instead of using a hardcoded images, pull the information from
the database

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

In our last chapter of this book, we created some fun widgets using different APIs. I am
sure you must have learned about integrating jQuery and jQuery UI components with
different APIs.

As a bonus, there is an appendix following this chapter where you will learn about the
powerful themeroller feature of jQuery UI using which you can create your own themes.
We will also look at using different themeroller classes and using them in our projects.

I hope you had fun learning jQuery UI and creating different things in the 11 chapters of
this book. Always keep learning new things; experimenting is the best way to do it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A. Best Practices for Developing
with JQuery Ul

Congratulations for making it this far! We’ve had a great journey together in the 11
chapters of this book and I hope that you enjoyed reading and learning jQuery UI. In this
final part of the book, we will discuss the best practices for using jQuery UI. Some
techniques are applicable to jQuery UI in particular, while others apply to JavaScript and
jQuery performance in general.

We will further divide this chapter into two sections. The first contains the general
guidelines you should keep in mind while using jQuery UI, jQuery, and JavaScript in
general. The second section contains the very useful jQuery Ul themeroller. You will learn
how we can create a new theme by customizing the look and feel of jQuery UI using
themeroller.

www.it-ebooks.info

http://www.it-ebooks.info/

General Guidelines

This section has some guidelines related to jQuery Ul, jQuery, and JavaScript in general .
Let’s go through them one by one.

www.it-ebooks.info

http://www.it-ebooks.info/

Using a CDN

Instead of serving the jQuery UI library . js file and its theme’s CSS file from your web
server, it is better to use a Content Delivery Network (CDN). Using a CDN makes
loading of web pages faster. This is because browsers cache . js files. Hence, if you have
referenced a jQuery UI file from CDN, if it is found in the browser’s cache from some
earlier visit to a website, the browser will not load the file again. If you are using multiple
libraries on a page, it can have a significant effect on reducing page-load time. Another
advantage is that since these files are referenced from external domains, the browser will
be able to make multiple requests to load the files.

Here are the three popular and commonly used CDNs’ for loading jQuery and jQuery UI
files, along with their different versions:

e jQuery CDN: https://code.jquery.com/ui/

e CDN hosted by Google: https://developers.google.com/speed/libraries/devguide.
Apart from jQuery and jQuery UI, Google CDN hosts several

e Microsoft CDN: http://www.asp.net/ajax/cdn

www.it-ebooks.info

https://code.jquery.com/ui/
https://developers.google.com/speed/libraries/devguide
http://www.asp.net/ajax/cdn
http://www.it-ebooks.info/

Use a customized build of jQuery Ul

If you only want a tab widget or, say, a slider, it does not make sense to download the
whole jQuery Ul library just for this. The jQuery UI website has an option to create a
customized build with only the required components.

Go to http://jqueryui.com/download/ in your browser, this will open a download builder
page. Here you have two options, either download the complete build, or create a
customized build:

www.it-ebooks.info

http://jqueryui.com/download/
http://www.it-ebooks.info/

Campenants

[Togge

¥ core The core of jQuery Ul, required for all interactions and widgets,

Provides a factory for creating stateful widgets with a common APT.
i dependency, con 5
onz and initlatizers,

Abstracts mouse-based interactions o assist in creating certain widgets.

[7] Position Pasitions slements ralative to other slaments.
Interactions 9] Draggable Enables dragaing functionality for sny slement.
(¥ Togge @ =
&l Droppable Enables drog targels for draggable slements.
d hasic hehaviors to any
d are used by y |¥| Resizable Enables resize functionality for any element.
ants below
[¥ Selectable Aiows groups of elements to be selected with the mouse.
[¥] sortable Enables items in & st to be sorted using the mouse.
Widgets |#] Accardion Displays collapsible content panels for presenting information in a limited amount of
ik oggie Al SPACE.
Full-featured U1 Controls h [l Autocomplete Lists suggested wards as the user k& Byping.
has a range of options and is fully -
themeable ¥ Button Enhances a form with themeable buttons.
|¥| Datepicker Dizplays a calendar from an Input or Inling for selecting datec.
¥ Dialog Displays customizable dialog windows.
[¥] Menu Creates nestable menus,
[#] Progresshar Displays a status Indicator for loading state, standard percentage, and other progress
indicators,
¥ Selectmenu Duplicates and extends the functionslity of a nathe HTML select slement, allowing it to
be customizable in behavor and appearance far beyond the Emitations of a native
select,
¥ Stider Displays a flecdble siider with ranges and accessiblilty via keyboard.
¥ Spinner Displays buttons to easlly Input numbers vla the keyboard or mouse.
[¥] Tabs Transforms a set of container elements into a tab structure.
[¥] Tooltip Shows addiional information for any slement on haver or focus.
|¥| Effects Core Extends the internal juery effects. Includes morphing and easing. Reguired by all
other effects,
1 and ready to use [Blind Effect Blinds the element.
¥ Bounce Effect Bounces an element horizontally or vertcally n tdmes.
[Clip Effect Clips the element on and off ke an old TV,
[¥] Drop Féfect Moves an elament in one direction and hides it at the same time,
¥ Explode Effect Explodes an element In all directions Into n pleces. Implodes an element to ts original
whelsness,
¥ Fade Effect Fades an element.
[¥] Fold Effect Folds an element first horizontally and then vertically.
[#] Highlight Effect Highlights the backaround of an slement in & defined color for & custom duration.
& puff Effect Crestes & pulfl effect by scaling the element up and hiding it at the wame Hme,
[¥] Pulsate Effect Pulsates an element n tmes by changing the epacity to zera and back.
¥ Scale Effect Grows or shrinks an element and it content. Restores an elament bo it ariginal size.
¥ Shake Effect Shakes an element horizantally or vertically n Bmes.
[¥] Size Effect Resize an element Lo a specified width and height.
[¥1 Slide Effact Shides an element in and out of the viewpor t.
[¥] Transfer Effect Displays a transfer effect from one element to another,

Thems
Select the theme you want to include or desian a custom theme

Ul lightness =

58 tonpa:

For a customized build, first you have to select the version of jQuery UI you want to
download. Next to it are listed all components, which are grouped in four sections. Each

www.it-ebooks.info

http://www.it-ebooks.info/

component has a checkbox next to it. Checking a component’s checkbox automatically
selects other components that it depends on.

The first section is UI Core. You will probably want to retain all components as UI Core.
It is the base on top of which all other components are built. Next are the interaction
components: draggable, droppable, resizable, selectable, and sortable. All the components
in this section require the Core, Widget, and Mouse components. You can verify this by
unchecking all checkboxes first, and then checking any of the interaction components. The
third section contains the widgets and the fourth and final section has the effects API.

Once you are done with the selections, proceed to the bottom of the page and you’ll see
another option presented there to select a theme. At the time of writing, there are 2 dozen
themes available. Select any one of these and click on Download. You will be prompted to
download a customized build that will only contain your selected jQuery Ul components.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the jQuery Ul icons

jQuery UI also provides a large number of icons. Displaying an icon is also very easy. To
display an icon you just have to give two CSS class names to an HTML element. For a
particular icon, “ui-icon” is followed by the class name of that icon. The ui-icon is the
base class which must be included for each icon to be displayed.

Go to the page http://api.jqueryui.com/theming/icons/ to see all available icons.

www.it-ebooks.info

http://api.jqueryui.com/theming/icons/
http://www.it-ebooks.info/

Be specific about elements as much as possible

Element IDs are the fastest to search for in DOM compared to class names and element
names, since they are unique. You will not notice any difference in speed while using any
of the methods in small pages. But say you have a large page with hundreds of table rows
that are dynamically created. you will start seeing lags if your selectors are not efficient.

For example let’s have a look at the following HTML code:

<div class="outerDiv">
<div class="innerDiv'">
<p>A paragraph</p>
<ul id="myList">
first item</1li>
second item</1i>
third item</1li>

</div>
</div>

Now suppose you want to hide the ul element. We can use any of the two ways as written
below:

//Method 1

$('#myList').hide();

//Method 2

$('.outerDiv').find('ul#myList').hide();

For a page with a large number of elements, Method 1 in the preceding code will be fastest
as opposed to Method 2.

The point here is to be as precise as you can. If you have a choice between using multiple
parent selectors and a find selector method, always go for find.

www.it-ebooks.info

http://www.it-ebooks.info/

Chain, chain, and chain

Chaining is a great feature in jQuery, and we have used it in past chapters as well. Almost
all jQuery methods return the element itself, when a method is called. This can be used to
call multiple methods on an element. The advantages here are performance, avoiding
repetition, readability, and significant reduction in the number of lines.

Suppose you have an HTML element and you want to remove an existing class from it,
add a new class, and then toggle it. First let us do it without chaining, as shown in the
following code snippet:

$('#element').removeClass('oldClass');
$('#element').addClass('newClass');
$('#element').slideToggle('slow');

Those are three lines and a lot of repetition. Now let’s use chaining and do the same again:

$('#reset').removeClass('oldClass')
.addClass('newClass"')
.slideToggle('slow');

Now this is a single statement. You will encounter these types of situations regularly in
your applications, where chaining can save you a lot of typing as well as improve
performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Cache selectors

Whenever a selector is used, DOM is searched for that element and then the element is
fetched. As a rule of thumb, you should avoid touching the DOM as much as possible.
Caching selectors can help in this situation; once a selector is retrieved from DOM, it can
be stored in a JavaScript variable and any jQuery or jQuery UI methods can be used on it.
Here is an example:

$('#dialog').dialog();

$('#dialog').on('dialogopen', function(event,ui)

{

//do something here

1),

Instead of searching for an element with ID dialog again, you can cache it and use it again
like this:

var dialog = $('#dialog');
dialog.dialog();

dialog.on('dialogopen', function(event,ul)

{

//do something here

1)

The preceding code retrieves the element from DOM only once and then acts on it as
many times as needed.

Cache your loop variables

Similarly to that mentioned previously, when you are running for loops, you can cache
those as well:

Var myArray;//an array of 1000 items
for(var i=0; i<myArray.length; 1i++)

{

//do something here

}

What happens is that the length of myArray is calculated in each iteration, which is
obviously not good. The solution is simple, calculate length beforehand and use that value:

Var myArray;
for(var i=0, len = myArray.length; i < len; i++)

{

//do something here

}

While the loop is initializing, we store the array length in a variable len and this variable is
used for all iterations.

Note

www.it-ebooks.info

http://www.it-ebooks.info/

Small arrays may not have a visible effect on this but this is a recommended practice for
larger arrays.

www.it-ebooks.info

http://www.it-ebooks.info/

DOM manipulation is costly

Each time an element is removed from DOM, added to it, or any change is made to an
existing element, the whole DOM is affected. This is called reflow. While using jQuery
we do not think of it often but each addClass, css, html, text, and append method causes
the DOM to reflow.

A simple example is iterating in an array and creating an unordered list:

//assuming you have a ul with id myList in DOM
var fruits = ['Apple', 'Orange', 'Banana', 'Guava', 'Mango'];
for(var i =0; i< fruits.length; i++)

{
}

The preceding code looks completely harmless but it’s reflowing the DOM five times.
With some simple changes, we can reduce this number to one. Here’s how:

$('#myList').append('"' + fruits[i] + '</1i>"');

//assuming you have a ul with id myList in DOM

var fruits = ['Apple', 'Orange', 'Banana', 'Guava', 'Mango'];
var listElement = $('#myList');
var strDOM = '';

for(var i =0; i< fruits.length; i++)

{

strDOM+= '<1i>' + fruits[i] + '</1li>';

}

listElement.html(strDOM);

We created the DOM and stored it in a local variable. Once the loop is over we pushed it
back to the DOM.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using jQuery UI Themeroller to
customize a theme

jQuery UI themeroller is a great utility to design your own jQuery UI theme. It allows you
to customize the look and feel of the theme completely. The themeroller page can be
found at http://jqueryui.com/themeroller/. On opening this page, you will find a box on the
left-hand side with three tabs. The first tab is called Roll Your Own, the second tab is
Gallery, which has 24 prebuilt themes available, and the third tab is Help. We are going
to look at the first tab and its different options to customize the theme. Here is how the
first tab looks:

www.it-ebooks.info

http://jqueryui.com/themeroller/
http://www.it-ebooks.info/

¥ Core The core of jQuery U, required for all interactions and widgets,

Sattings Provides a factory for creating stateful widgets with a common APL

- =
n Inftatizers,

Abstracts mouse-based interactions to assist in creating certain widgets.

[T s —

Waight | nommal [¥] Position Positions elements relative to other elements.

Size Llilem

(=] [Draggable Enables dragaing Functianality for any elemsnk.
g : 1¥| Droppable Enables drog Bargels for draggable slements,
hahaviars th any
2] zd by |¥] Resizable Enables resize functonality for any element.
& [¥ Selectable Allows groups of elements to be selected with the mouse.
L [¥] sortable Emables items in & fist to be sorted using the mouse.
¥| Accordion Displays collapsible content panels for presenting information in a imited amaunt of
Space.
¥ Autocomplete Lists cuggected words as the user i byping.
¥ Buttan Enhances a form with themeable buttons.
|¥| Datepicker Displays a calendar from an Input or Inline for selecting datec.,
¥ Dialog Displays customdzable dlalog windows.
91 Menu Creates nestable menus.
|¥] Progressbar Displays a status indicator for loading state, standard percentage, and other progress
indicators.,
¥ Selectmenu Duplicates and extends the functionality of & natie HTML select slement, allowing it to
be customizable in behavior and appearance far beyond the Emitations of a native
select.
[Slider Césplays a flecdble slider with ranges and accessibllity via keyboard,
¥ Spinner Displays buttons to easlty Input numbers via the keyboard or mouse.
¥ Tabs Transforms a set of container elements into a tab structure.
¥ Tooltip Shows addiional information for any element on hover or focus.
|¥| Effects Core Extends the internal jQuery effects. Includes morphing and oasing. Reguired by all
other effacts.
[Blind Effect Blinds the element.
[¥] Bounce Effect Bounces an element horizentalty or vertically n Hmes,
[¥] Clip Effect Ciips the element on and off ke an old TV,
[¥1 Drop Effect Moves an elament in ane direction and hides it at the same tme,
[¥] Explode Effect Explades an element In all directions Into n pleces. Implodes an element to its original
wheleness,
¥ Fade Effect Fades an element.
| Fold Effect Falds an element first horizontally and then vertically.
| Highlight Effect Highlights the backaround of an element in & defined color for s custom duration.
& puff Effect Craates a pull effect by sealing the element up and hiding it at the ssme Hme,
[¥] pulsate Effect Pulsates an element i tmes by changing the opacity to 220 and back.
[¥] Scale Effect Grows ar shrinks an element and it content. Restorss an element to its original size.
¥ Shake Effect Shakes an element horizntally or vertically n Bmes.
¥ Size Effect Resize an element Lo a specified width and height.
¥ Slide Effect Slides an element in &nd out of the viewport.
[¥] Transfer Fffact Displays a transfer effect from one element to another.
Select the theme you want to include or desian a custom theme

Ul ightness =

55 tonpa:

Changing any value in this left-hand side box instantly changes the look of the elements
on the page, so you can see how the theme is going to look.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s look at the different options available to customize the theme:
¢ Global styles: The following are the global styles that can be applied:

o Font settings: These settings specify the global font name and the font size. If
you are planning to use a custom font (for example, the Google font), just type
the name here and load the font separately.

o Corner radius: This is the border radius width for all elements. Its default value
is 4 px.

¢ Generic: The Header/Toolbar, Content, various Clickable states, Highlight, and
Error have common fields that are as follows:

o Background color and texture: You can specify a hex code for a color or select
a color from the palette. The texture value is provided as a percentage.

o Border, text, and icon colors: As the name suggests, you have to provide color
codes for the border color, text color, and the color of the icon.

e Others: We have a few more options to customize our theme:

o Modal screens: For modal overlays, you can specify the background color and
texture. For the overlay, you can also specify its opacity.

o Shadows: For drop shadows on overlays, you can specify the background color
and texture. Besides this, there are also options to specify the shadow thickness
and offset.

Once you are done with setting all the options and are satisfied with the live preview of
the theme, just click the Download Theme button at the top and your customized theme
will be ready to download to your machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Index

e accept option / Handling events for puzzle pieces

¢ accordion component, properties
o collapsible / Displaying hotels in accordion
o active / Displaying hotels in accordion
o heightStyle / Displaying hotels in accordion
¢ ajaxAlbum.php file, parameters
action / Editing a picture name
albumld / Editing a picture name
pictureld / Editing a picture name
newlmageName / Editing a picture name
¢ album names, photo album manager
filling / Filling album names
albums, displaying / Displaying the albums
sortable pictures, creating / Making the pictures sortable
dialogs, initializing for edit / Initializing dialogs for edit, delete, and zoom
dialogs, initializing for delete / Initializing dialogs for edit, delete, and zoom
dialogs, initializing for zoom / Initializing dialogs for edit, delete, and zoom
click events, handling for delete icon / Handling click events for edit, delete
icons, and zooming pictures
o click events, handling for edit / Handling click events for edit, delete icons, and
zooming pictures
o click events, handling for image zoom / Handling click events for edit, delete
icons, and zooming pictures
e albums object, properties
jsonAlbums / Getting code structure ready
currentAlbum / Getting code structure ready
currentPictureld / Getting code structure ready
initialize / Getting code structure ready
fillAlbumNames / Getting code structure ready
addEventHandlers / Getting code structure ready
displayAlbum / Getting code structure ready
editlmage / Getting code structure ready
deletelmage / Getting code structure ready
saveNewSequence / Getting code structure ready
e API key, Google Maps
o obtaining / Getting a Google Maps API key
o URL / Getting a Google Maps API key

O O O o

O O O O O o o

O 0O 0O O O O o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

CAPTCHA
o folder structure, creating / Creating the folder structure
CDN

o about / Using jQuery/jQuery Ul libraries with a CDN, Using a CDN
o using / Using a CDN

CDNJS
o URL / Using jQuery/jQuery Ul libraries with a CDN
chaining

o about / Chain, chain, and chain
Chrome DevTools

o URL / The CSS background-position property
code structure, dashboard

o defining / Getting the code structure ready
color picker

o folder structure, setting up / Setting up the folder structure
markup, writing for page / Writing markup for the page
content, styling / Styling the content

implementing / Implementing the color picker
object structure, defining / Defining the object structure

init method, initializing / The init method

colors, modifying / Changing colors and updating the spinner

spinner, updating / Changing colors and updating the spinner
getHexColor method, defining / The getHexColor method

convertToHex method, defining / Converting to hex
o improving / Improving the Colorpicker

colorPicker object

init method / Defining the object structure

o setColor method / Defining the object structure
o getHexColor method / Defining the object structure
o convertToHex method / Defining the object structure

createSlices function / Creating slices of the image

CSS background-position property
o about / The CSS background-position property

CSS rule declarations, properties

body / Styling the content

.container / Styling the content

#timeline / Styling the content
.year / Styling the content
.year div / Styling the content
#window / Styling the content
.close / Styling the content
.overlay / Styling the content

O 0O 0O o o o o o o

(e]

O O O O O O o o

www.it-ebooks.info

http://www.it-ebooks.info/

#leftOverlay / Styling the content
#rightOverlay / Styling the content
#yearEvents ul li / Styling the content
#slider / Styling the content
#sliderVal / Styling the content
.Clear / Styling the content
e customized build, jQuery Ul
o using / Use a customized build of jQuery Ul
o URL / Use a customized build of jQuery Ul

O O O O O

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

D

e dashboard

o stage, setting up / Setting up the stage
page, designing / Designing the page
code structure, defining / Getting the code structure ready
portlets, initializing / Initializing the portlets
sharing buttons, implementing / Implementing sharing buttons
Flickr photos, displaying / Displaying Flickr photos
weather widget, creating / Creating a weather widget
posts, displaying from reddit front page / Displaying posts from the reddit front
page
o image display widget, creating / Creating an image display widget
o portlets, improving / Improving the portlets
DOM

o about / Displaying data on the page
drag and drop CAPTCHA

o implementing / Implementing the drag and drop CAPTCHA
random color, setting / Setting a random color

displaying / Displaying the CAPTCHA

making functional / Making the drag and drop functional

server, validating / Validating on the server
o color CAPTCHA, improving / Improving the color CAPTCHA

draggable method, options

o revert / Draggable country names
o revertDuration / Draggable country names
o cursor / Draggable country names
drop option / Handling events for puzzle pieces
droppable capital names, quiz application
o creating / Droppable capital names and scoring
o draggable element, accepting / Accepting a draggable element
o drop event, using / The drop event

O O O O O o o

[]
O O O o

www.it-ebooks.info

http://www.it-ebooks.info/

E

e event timeline
o folder structure, creating / Creating the folder structure
HTML markup, writing / Designing the page

content, styling / Styling the content

code structure / Getting the code structure ready

markup, creating from data / Creating the timeline markup from data
functionality, implementing / Implementing the timeline functionality
improving / Improving the timeline

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

F

e Firebug

o URL / The CSS background-position property
Flickr photos, dashboard

o displaying / Displaying Flickr photos
folder structure

o setting up / Setting up the folder structure for the JavaScript and CSS files
functionality, event timeline

o slider, implementing / Making the slider work
slider, implementing with if block / The if block
slider, implementing with else block / The else block
year window, dragging / Dragging the year window
event details, displaying on year window click / Displaying event details when a
year window is clicked on

o event details window, closing / Closing the event details window
functional puzzle, jigsaw puzzle game

o creating / Making the puzzle functional

image slices, creating / Creating slices of the image

CSS background-position property / The CSS background-position property
events, handling for puzzle pieces / Handling events for puzzle pieces
puzzle completion, checking for / Checking for puzzle completion

resetting / Resetting the puzzle

O O O o

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

G

e Google CDN
o URL / Using jQuery/jQuery Ul libraries with a CDN, Using a CDN
e guidelines, jQuery Ul
o about / General Guidelines
CDN, using / Using a CDN
icons, using / Using the jQuery Ul icons
elements, specifying / Be specific about elements as much as possible
chaining / Chain, chain, and chain
selectors, caching / Cache selectors

variables, caching / Cache your loop variables
DOM manipulation / DOM manipulation is costly

O O O O O o o

www.it-ebooks.info

http://www.it-ebooks.info/

H

e home page, tabbed news reader
o designing / Designing the page
o markup, writing for tabs / Writing markup for tabs
o content, styling / Styling the content
e home page, website tour
o designing / Designing the home page
o markup, writing / Writing markup for the page
o elements, styling / Styling elements
e hoverClass option / Handling events for puzzle pieces

www.it-ebooks.info

http://www.it-ebooks.info/

I

e icons

o URL / Designing the page
e icons, jQuery Ul

o using / Using the jQuery Ul icons

o URL / Using the jQuery Ul icons
e image display widget, dashboard

o creating / Creating an image display widget

www.it-ebooks.info

http://www.it-ebooks.info/

J

e jigsaw puzzle game
building / Getting ready

layout, creating / Creating the layout
functional puzzle, creating / Making the puzzle functional

Start button, implementing / Starting the game
o puzzle, improving / Improving the puzzle
JQuery
o URL, for downloading / Downloading the required files
o downloading / Downloading the required files
jQuery/jQuery UI libraries
o using, with CDN / Using jQuery/jQuery UI libraries with a CDN
jQuery CDN
o URL/Using a CDN
JjQuery Ul
o setting up / Setting up jQuery UI
o URL, for downloading / Downloading the required files
o downloading / Downloading the required files
O

folder structure, setting up / Setting up the folder structure for the JavaScript and
CSS files

o guidelines / General Guidelines

o customized build, using / Use a customized build of jQuery Ul
jQuery UI sortable example

o URL / Designing the page

(e]

(e]

(e]

(e]

www.it-ebooks.info

http://www.it-ebooks.info/

L

¢ layout, jigsaw puzzle game
o creating / Creating the layout
o markup, creating / Creating the markup for the puzzle
o elements, styling / Styling elements

www.it-ebooks.info

http://www.it-ebooks.info/

M

e mapOptions object, properties
o center / Displaying the map
o zoom / Displaying the map
o disableDefaultUI / Displaying the map
o mapTypeld / Displaying the map

o scrollwheel / Displaying the map
e maps mashup

o folder structure, creating / Creating the folder structure

Google Maps API key, obtaining / Getting a Google Maps API key
page, designing / Designing the page
content, styling / Styling the content
code structure / Getting the code structure ready
minimum and maximum prices, setting / Setting minimum and maximum prices
hotels, displaying in accordion / Displaying hotels in accordion
spinner, setting up / Setting up the spinner
map, displaying / Displaying the map
markers, setting in map / Setting markers and infowindows in the map
infowindows, setting in map / Setting markers and infowindows in the map
slider, implementing / Implementing the slider
o improving / Improving the functionality
e Microsoft CDN
o URL / Using jQuery/jQuery Ul libraries with a CDN, Using a CDN
e myMap object, properties
o map / Getting the code structure ready
markers / Getting the code structure ready
infowindow / Getting the code structure ready
minPrice / Getting the code structure ready
maxPrice / Getting the code structure ready
hotelsList / Getting the code structure ready
initialize / Getting the code structure ready
setMinMaxPrices / Getting the code structure ready
displayHotels / Getting the code structure ready
setSpinner / Getting the code structure ready
createMap / Getting the code structure ready
setMarkersAndInfoWindow / Getting the code structure ready
setSlider / Getting the code structure ready

O 0O 0O O 0O 0O o o o o o

0O 0O 0O O o 0o o o o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

N

e number CAPTCHA
creating / Creating the number CAPTCHA

five-digit number, generating / Generating the five-digit number

displaying, on page / Displaying CAPTCHA on the page
sortable functionality, adding / Adding the sortable functionality

number, validating on server / Validating the number on the server

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

O

e object literal

o about / Initializing the tour
e objTimeline object, properties

o itemsToDisplay / Getting the code structure ready
minYear / Getting the code structure ready
max Year / Getting the code structure ready
currentYear / Getting the code structure ready
timelineWindowStartYear / Getting the code structure ready
windowLeft / Getting the code structure ready
isWindowOpen / Getting the code structure ready
timelineData / Getting the code structure ready
init / Getting the code structure ready
createMarkup / Getting the code structure ready
createTimeline / Getting the code structure ready
closeWindow / Getting the code structure ready

O 0O 0O O 0O 0O o o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

page, dashboard

o designing / Designing the page

o content, styling / Styling the content
page, photo album manager

o designing / Designing the page
o placeholders, creating for albums / Creating placeholders for albums and

pictures
o placeholders, creating for pictures / Creating placeholders for albums and
pictures

o markup, writing for dialog boxes / Writing markup for dialog boxes
o content, styling / Styling the content
photo album manager
o folder structure, creating / Creating the folder structure
page, designing / Designing the page
JSON file, creating for albums / Creating the JSON file for albums
code structure / Getting code structure ready
initialize method, implementing / Implementing the initialize method
album names, filling / Filling album names
o improving / Improving album manager
pictures, photo album manager
o editing / Editing, deleting, and rearranging pictures
o deleting / Editing, deleting, and rearranging pictures, Deleting a picture

o rearranging / Editing, deleting, and rearranging pictures, Rearranging pictures of
an album

o picture name, editing / Editing a picture name
o ajaxAlbum.php file / The ajaxAlbum.php file
pictures array, properties

o id/ Creating the JSON file for albums

o sequence / Creating the JSON file for albums

o imageTitle / Creating the JSON file for albums

o imageThumb / Creating the JSON file for albums

o imageLarge / Creating the JSON file for albums
portlets, dashboard

o initializing / Initializing the portlets
posts, dashboard

o displaying, from reddit front page / Displaying posts from the reddit front page
posts, tabbed news reader

o displaying, of subreddit / Displaying posts of a subreddit

o tab structure, creating / Creating the tab structure
o DOM, building / Building the DOM for posts
o

comments, obtaining / Getting comments for a post

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

Q

e (uiz application
o layout, creating / Creating the layout
index.html file, editing / Markup for the quiz page
elements, styling / Styling elements
making functional / Making the quiz functional
data, displaying / Displaying data on the page
draggable country names, creating / Draggable country names
droppable capital names, creating / Droppable capital names and scoring
scores, adding / Droppable capital names and scoring
resetting / Resetting the quiz
enhancing / Improving the quiz

O 0O 0O o o o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

R

¢ range slider, properties

o min / Implementing the slider
max / Implementing the slider
range / Implementing the slider
values / Implementing the slider
step / Implementing the slider
slide / Implementing the slider
o stop / Implementing the slider
e reflow

o about / DOM manipulation is costly

O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

S

e searchable widget
o folder structure / The folder structure
creating / Creating a widget to search data in a table
markup, writing for table / Writing markup for the table
content, styling / Styling the content
implementing / Implementing the widget
widget structure, defining / Defining the widget structure
default options, setting up / Setting up default options
initializing / Initializing the widget and attaching event handlers
event handlers, attaching / Initializing the widget and attaching event handlers
table, filtering / Filtering the table
option value, setting / Making changes when the option value is changed
destroying / Destroying the widget
calling / Calling the widget from the page
o improving / Improving the searchable widget
e sharing buttons implementation, dashboard
about / Implementing sharing buttons
Facebook / Implementing sharing buttons
Twitter / Implementing sharing buttons
Reddit / Implementing sharing buttons
Google Plus / Implementing sharing buttons
¢ shuffle function
o URL / Displaying data on the page
e slider CAPTCHA
o creating / Creating the slider CAPTCHA

o minimum value, generating / Generating minimum and maximum values for the

O 0O 0O O 0o 0o o o o o o o

O O O O

(¢]

slider
o maximum value, generating / Generating minimum and maximum values for the
slider

o making functional / Making the slider functional
o slider values, validating / Validating the slider values
o improving / Improving the slider CAPTCHA
e slide widget
o folder structure / The folder structure
creating / Creating a widget to display a slideshow
markup, writing / Writing markup for slides

content, styling / Styling the content

implementing / Implementing the widget
widget structure, defining / Defining the widget structure

default options, setting up / Setting up default options
initializing / Initializing the widget and displaying the first slide
first slide, displaying / Initializing the widget and displaying the first slide

O O O O O O o o

www.it-ebooks.info

http://www.it-ebooks.info/

slides, displaying one by one / Displaying slides one by one
option value, setting / Making changes when the option value is changed
destroying / Destroying the widget
calling / Calling the widget from the page
o improving / Improving the banner widget
slide widget, options
duration / Setting up default options
effect / Setting up default options
o easingDuration / Setting up default options

beforeShow / Setting up default options
sortable component

o connectWith option / Initializing the portlets

o handle option / Initializing the portlets
o cancel option / Initializing the portlets
placeholder option / Initializing the portlets
sortable components, properties
o handle / Making the pictures sortable
o placeholder / Making the pictures sortable
o cursor / Making the pictures sortable
stage, dashboard

o setting up / Setting up the stage

O O O O

(¢]

(¢]

(¢]

(¢]

www.it-ebooks.info

http://www.it-ebooks.info/

T

e tabbed news reader
folder structure, creating / Creating the folder structure
home page, designing / Designing the page
code structure / Getting the code structure ready
event handlers, adding in init method / Adding event handlers in the init method
posts, displaying of subreddit / Displaying posts of a subreddit
improving / Improving MyjgReddit
e themeroller
o about / Using jQuery UI Themeroller to customize a theme
o used, for customizing theme / Using jQuery UI Themeroller to customize a
theme
o URL / Using jQuery Ul Themeroller to customize a theme

o options / Using jQuery Ul Themeroller to customize a theme

O O O O O O

www.it-ebooks.info

http://www.it-ebooks.info/

W

e $.widget() function, properties
options / Defining the widget structure

o _create / Defining the widget structure

o _destroy / Defining the widget structure

o _setOption / Defining the widget structure
e weather widget, dashboard

o creating / Creating a weather widget

o URL / Creating a weather widget
e website tour

folder structure, creating / Getting ready

home page, designing / Designing the home page
functionality, implementing / Making the tour functional

improving / Improving the tour

e website tour, functionality

implementing / Making the tour functional

accordion, initializing / Initializing accordion and tooltips

tooltips, initializing / Initializing accordion and tooltips

dialog box, initializing / Defining the dialog

tour steps, defining / Defining the tour steps

initializing / Initializing the tour

tour step, displaying / Displaying a tour step

Next button, defining / Making the Previous and Next buttons functional
Previous button, defining / Making the Previous and Next buttons functional
ending / Ending the tour

(¢]

O O O O

O 0O 0O O O O o o o o

www.it-ebooks.info

http://www.it-ebooks.info/

	Mastering jQuery UI
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Designing a Simple Quiz Application
	Setting up jQuery UI
	Downloading the required files
	Using jQuery/jQuery UI libraries with a CDN
	Setting up the folder structure for the JavaScript and CSS files
	Creating the layout
	Markup for the quiz page
	Styling elements
	Making the quiz functional
	Displaying data on the page
	Draggable country names
	Droppable capital names and scoring
	Accepting a draggable element
	The drop event
	Resetting the quiz
	Improving the quiz
	Summary
	2. Building a Jigsaw Puzzle Game
	Getting ready
	Creating the layout
	Creating the markup for the puzzle
	Styling elements
	Making the puzzle functional
	Creating slices of the image
	The CSS background-position property
	Starting the game
	Handling events for puzzle pieces
	Checking for puzzle completion
	Resetting the puzzle
	Improving the puzzle
	Summary
	3. Creating a Website Tour
	Getting ready
	Designing the home page
	Writing markup for the page
	Styling elements
	Making the tour functional
	Initializing accordion and tooltips
	Defining the dialog
	Defining the tour steps
	Initializing the tour
	Displaying a tour step
	Making the Previous and Next buttons functional
	Ending the tour
	Improving the tour
	Summary
	4. Creating a Tabbed News Reader
	Creating the folder structure
	Designing the page
	Writing markup for tabs
	Styling the content
	Getting the code structure ready
	Adding event handlers in the init method
	Displaying posts of a subreddit
	Creating the tab structure
	Building the DOM for posts
	Getting comments for a post
	Improving MyjqReddit
	Summary
	5. Implementing CAPTCHA using Draggable and Droppable
	Creating the folder structure
	Implementing the drag and drop CAPTCHA
	Setting a random color
	Displaying the CAPTCHA
	Making the drag and drop functional
	Validating on the server
	Improving the color CAPTCHA
	Creating the slider CAPTCHA
	Generating minimum and maximum values for the slider
	Making the slider functional
	Validating the slider values
	Improving the slider CAPTCHA
	Creating the number CAPTCHA
	Generating the five-digit number
	Displaying CAPTCHA on the page
	Adding the sortable functionality
	Validating the number on the server
	Summary
	6. Creating an Event Timeline Using a Slider
	Creating the folder structure
	Designing the page
	Styling the content
	Getting the code structure ready
	Creating the timeline markup from data
	Implementing the timeline functionality
	Making the slider work
	The if block
	The else block
	Dragging the year window
	Displaying event details when a year window is clicked on
	Closing the event details window
	Improving the timeline
	Summary
	7. Using jQuery UI with Google Maps API
	Creating the folder structure
	Getting a Google Maps API key
	Designing the page
	Styling the content
	Getting the code structure ready
	Setting minimum and maximum prices
	Displaying hotels in accordion
	Setting up the spinner
	Displaying the map
	Setting markers and infowindows in the map
	Implementing the slider
	Improving the functionality
	Summary
	8. Creating a Photo Album Manager
	Creating the folder structure
	Designing the page
	Creating placeholders for albums and pictures
	Writing markup for dialog boxes
	Styling the content
	Creating the JSON file for albums
	Getting code structure ready
	Implementing the initialize method
	Filling album names
	Displaying the albums
	Making the pictures sortable
	Initializing dialogs for edit, delete, and zoom
	Handling click events for edit, delete icons, and zooming pictures
	Editing, deleting, and rearranging pictures
	Editing a picture name
	Deleting a picture
	Rearranging pictures of an album
	The ajaxAlbum.php file
	Improving album manager
	Summary
	9. Creating Widgets Using the Widget Factory
	The folder structure
	Creating a widget to search data in a table
	Writing markup for the table
	Styling the content
	Implementing the widget
	Defining the widget structure
	Setting up default options
	Initializing the widget and attaching event handlers
	Filtering the table
	Making changes when the option value is changed
	Destroying the widget
	Calling the widget from the page
	Improving the searchable widget
	Creating a widget to display a slideshow
	Writing markup for slides
	Styling the content
	Implementing the widget
	Defining the widget structure
	Setting up default options
	Initializing the widget and displaying the first slide
	Displaying slides one by one
	Making changes when the option value is changed
	Destroying the widget
	Calling the widget from the page
	Improving the banner widget
	Summary
	10. Building a Color Picker with Hex RGB Conversion
	Setting up the folder structure
	Writing markup for the page
	Styling the content
	Implementing the color picker
	Defining the object structure
	The init method
	Changing colors and updating the spinner
	The getHexColor method
	Converting to hex
	Improving the Colorpicker
	Summary
	11. Creating a Fully Functional Dashboard
	Setting up the stage
	Designing the page
	Styling the content
	Getting the code structure ready
	Initializing the portlets
	Implementing sharing buttons
	Displaying Flickr photos
	Creating a weather widget
	Displaying posts from the reddit front page
	Creating an image display widget
	Improving the portlets
	Summary
	A. Best Practices for Developing with jQuery UI
	General Guidelines
	Using a CDN
	Use a customized build of jQuery UI
	Using the jQuery UI icons
	Be specific about elements as much as possible
	Chain, chain, and chain
	Cache selectors
	Cache your loop variables
	DOM manipulation is costly
	Using jQuery UI Themeroller to customize a theme
	Index

